]>
Commit | Line | Data |
---|---|---|
74c21bd0 | 1 | #include "qemu/osdep.h" |
194cbc49 | 2 | #include "trace.h" |
b5ff1b31 | 3 | #include "cpu.h" |
ccd38087 | 4 | #include "internals.h" |
022c62cb | 5 | #include "exec/gdbstub.h" |
2ef6175a | 6 | #include "exec/helper-proto.h" |
1de7afc9 | 7 | #include "qemu/host-utils.h" |
78027bb6 | 8 | #include "sysemu/arch_init.h" |
9c17d615 | 9 | #include "sysemu/sysemu.h" |
1de7afc9 | 10 | #include "qemu/bitops.h" |
eb0ecd5a | 11 | #include "qemu/crc32c.h" |
63c91552 | 12 | #include "exec/exec-all.h" |
f08b6170 | 13 | #include "exec/cpu_ldst.h" |
1d854765 | 14 | #include "arm_ldst.h" |
eb0ecd5a | 15 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 16 | #include "exec/semihost.h" |
f3a9b694 | 17 | #include "sysemu/kvm.h" |
0b03bdfc | 18 | |
352c98e5 LV |
19 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
20 | ||
4a501606 | 21 | #ifndef CONFIG_USER_ONLY |
5b2d261d AB |
22 | /* Cacheability and shareability attributes for a memory access */ |
23 | typedef struct ARMCacheAttrs { | |
24 | unsigned int attrs:8; /* as in the MAIR register encoding */ | |
25 | unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ | |
26 | } ARMCacheAttrs; | |
27 | ||
af51f566 | 28 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
03ae85f8 | 29 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
af51f566 | 30 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
bc52bfeb | 31 | target_ulong *page_size, |
5b2d261d | 32 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); |
7c2cb42b | 33 | |
37785977 | 34 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
03ae85f8 | 35 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
37785977 | 36 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
da909b2c | 37 | target_ulong *page_size_ptr, |
5b2d261d | 38 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); |
37785977 | 39 | |
35337cc3 PM |
40 | /* Security attributes for an address, as returned by v8m_security_lookup. */ |
41 | typedef struct V8M_SAttributes { | |
42 | bool ns; | |
43 | bool nsc; | |
44 | uint8_t sregion; | |
45 | bool srvalid; | |
46 | uint8_t iregion; | |
47 | bool irvalid; | |
48 | } V8M_SAttributes; | |
49 | ||
333e10c5 PM |
50 | static void v8m_security_lookup(CPUARMState *env, uint32_t address, |
51 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
52 | V8M_SAttributes *sattrs); | |
53 | ||
7c2cb42b AF |
54 | /* Definitions for the PMCCNTR and PMCR registers */ |
55 | #define PMCRD 0x8 | |
56 | #define PMCRC 0x4 | |
57 | #define PMCRE 0x1 | |
4a501606 PM |
58 | #endif |
59 | ||
0ecb72a5 | 60 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
61 | { |
62 | int nregs; | |
63 | ||
64 | /* VFP data registers are always little-endian. */ | |
65 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
66 | if (reg < nregs) { | |
9a2b5256 | 67 | stq_le_p(buf, *aa32_vfp_dreg(env, reg)); |
56aebc89 PB |
68 | return 8; |
69 | } | |
70 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
71 | /* Aliases for Q regs. */ | |
72 | nregs += 16; | |
73 | if (reg < nregs) { | |
9a2b5256 RH |
74 | uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
75 | stq_le_p(buf, q[0]); | |
76 | stq_le_p(buf + 8, q[1]); | |
56aebc89 PB |
77 | return 16; |
78 | } | |
79 | } | |
80 | switch (reg - nregs) { | |
81 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
82 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
83 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
84 | } | |
85 | return 0; | |
86 | } | |
87 | ||
0ecb72a5 | 88 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
89 | { |
90 | int nregs; | |
91 | ||
92 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
93 | if (reg < nregs) { | |
9a2b5256 | 94 | *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); |
56aebc89 PB |
95 | return 8; |
96 | } | |
97 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
98 | nregs += 16; | |
99 | if (reg < nregs) { | |
9a2b5256 RH |
100 | uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
101 | q[0] = ldq_le_p(buf); | |
102 | q[1] = ldq_le_p(buf + 8); | |
56aebc89 PB |
103 | return 16; |
104 | } | |
105 | } | |
106 | switch (reg - nregs) { | |
107 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
108 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 109 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
110 | } |
111 | return 0; | |
112 | } | |
113 | ||
6a669427 PM |
114 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
115 | { | |
116 | switch (reg) { | |
117 | case 0 ... 31: | |
118 | /* 128 bit FP register */ | |
9a2b5256 RH |
119 | { |
120 | uint64_t *q = aa64_vfp_qreg(env, reg); | |
121 | stq_le_p(buf, q[0]); | |
122 | stq_le_p(buf + 8, q[1]); | |
123 | return 16; | |
124 | } | |
6a669427 PM |
125 | case 32: |
126 | /* FPSR */ | |
127 | stl_p(buf, vfp_get_fpsr(env)); | |
128 | return 4; | |
129 | case 33: | |
130 | /* FPCR */ | |
131 | stl_p(buf, vfp_get_fpcr(env)); | |
132 | return 4; | |
133 | default: | |
134 | return 0; | |
135 | } | |
136 | } | |
137 | ||
138 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
139 | { | |
140 | switch (reg) { | |
141 | case 0 ... 31: | |
142 | /* 128 bit FP register */ | |
9a2b5256 RH |
143 | { |
144 | uint64_t *q = aa64_vfp_qreg(env, reg); | |
145 | q[0] = ldq_le_p(buf); | |
146 | q[1] = ldq_le_p(buf + 8); | |
147 | return 16; | |
148 | } | |
6a669427 PM |
149 | case 32: |
150 | /* FPSR */ | |
151 | vfp_set_fpsr(env, ldl_p(buf)); | |
152 | return 4; | |
153 | case 33: | |
154 | /* FPCR */ | |
155 | vfp_set_fpcr(env, ldl_p(buf)); | |
156 | return 4; | |
157 | default: | |
158 | return 0; | |
159 | } | |
160 | } | |
161 | ||
c4241c7d | 162 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 163 | { |
375421cc | 164 | assert(ri->fieldoffset); |
67ed771d | 165 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 166 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 167 | } else { |
c4241c7d | 168 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 169 | } |
d4e6df63 PM |
170 | } |
171 | ||
c4241c7d PM |
172 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
173 | uint64_t value) | |
d4e6df63 | 174 | { |
375421cc | 175 | assert(ri->fieldoffset); |
67ed771d | 176 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
177 | CPREG_FIELD64(env, ri) = value; |
178 | } else { | |
179 | CPREG_FIELD32(env, ri) = value; | |
180 | } | |
d4e6df63 PM |
181 | } |
182 | ||
11f136ee FA |
183 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
184 | { | |
185 | return (char *)env + ri->fieldoffset; | |
186 | } | |
187 | ||
49a66191 | 188 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 189 | { |
59a1c327 | 190 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 191 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 192 | return ri->resetvalue; |
721fae12 | 193 | } else if (ri->raw_readfn) { |
59a1c327 | 194 | return ri->raw_readfn(env, ri); |
721fae12 | 195 | } else if (ri->readfn) { |
59a1c327 | 196 | return ri->readfn(env, ri); |
721fae12 | 197 | } else { |
59a1c327 | 198 | return raw_read(env, ri); |
721fae12 | 199 | } |
721fae12 PM |
200 | } |
201 | ||
59a1c327 | 202 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 203 | uint64_t v) |
721fae12 PM |
204 | { |
205 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
206 | * Note that constant registers are treated as write-ignored; the |
207 | * caller should check for success by whether a readback gives the | |
208 | * value written. | |
209 | */ | |
210 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 211 | return; |
721fae12 | 212 | } else if (ri->raw_writefn) { |
c4241c7d | 213 | ri->raw_writefn(env, ri, v); |
721fae12 | 214 | } else if (ri->writefn) { |
c4241c7d | 215 | ri->writefn(env, ri, v); |
721fae12 | 216 | } else { |
afb2530f | 217 | raw_write(env, ri, v); |
721fae12 | 218 | } |
721fae12 PM |
219 | } |
220 | ||
375421cc PM |
221 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
222 | { | |
223 | /* Return true if the regdef would cause an assertion if you called | |
224 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
225 | * program bug for it not to have the NO_RAW flag). | |
226 | * NB that returning false here doesn't necessarily mean that calling | |
227 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
228 | * read/write access functions which are safe for raw use" from "has | |
229 | * read/write access functions which have side effects but has forgotten | |
230 | * to provide raw access functions". | |
231 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
232 | * and assertions in raw_read()/raw_write(). | |
233 | */ | |
234 | if ((ri->type & ARM_CP_CONST) || | |
235 | ri->fieldoffset || | |
236 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
237 | return false; | |
238 | } | |
239 | return true; | |
240 | } | |
241 | ||
721fae12 PM |
242 | bool write_cpustate_to_list(ARMCPU *cpu) |
243 | { | |
244 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
245 | int i; | |
246 | bool ok = true; | |
247 | ||
248 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
249 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
250 | const ARMCPRegInfo *ri; | |
59a1c327 | 251 | |
60322b39 | 252 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
253 | if (!ri) { |
254 | ok = false; | |
255 | continue; | |
256 | } | |
7a0e58fa | 257 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
258 | continue; |
259 | } | |
59a1c327 | 260 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
261 | } |
262 | return ok; | |
263 | } | |
264 | ||
265 | bool write_list_to_cpustate(ARMCPU *cpu) | |
266 | { | |
267 | int i; | |
268 | bool ok = true; | |
269 | ||
270 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
271 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
272 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
273 | const ARMCPRegInfo *ri; |
274 | ||
60322b39 | 275 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
276 | if (!ri) { |
277 | ok = false; | |
278 | continue; | |
279 | } | |
7a0e58fa | 280 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
281 | continue; |
282 | } | |
283 | /* Write value and confirm it reads back as written | |
284 | * (to catch read-only registers and partially read-only | |
285 | * registers where the incoming migration value doesn't match) | |
286 | */ | |
59a1c327 PM |
287 | write_raw_cp_reg(&cpu->env, ri, v); |
288 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
289 | ok = false; |
290 | } | |
291 | } | |
292 | return ok; | |
293 | } | |
294 | ||
295 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
296 | { | |
297 | ARMCPU *cpu = opaque; | |
298 | uint64_t regidx; | |
299 | const ARMCPRegInfo *ri; | |
300 | ||
301 | regidx = *(uint32_t *)key; | |
60322b39 | 302 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 303 | |
7a0e58fa | 304 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
305 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
306 | /* The value array need not be initialized at this point */ | |
307 | cpu->cpreg_array_len++; | |
308 | } | |
309 | } | |
310 | ||
311 | static void count_cpreg(gpointer key, gpointer opaque) | |
312 | { | |
313 | ARMCPU *cpu = opaque; | |
314 | uint64_t regidx; | |
315 | const ARMCPRegInfo *ri; | |
316 | ||
317 | regidx = *(uint32_t *)key; | |
60322b39 | 318 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 319 | |
7a0e58fa | 320 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
321 | cpu->cpreg_array_len++; |
322 | } | |
323 | } | |
324 | ||
325 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
326 | { | |
cbf239b7 AR |
327 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
328 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 329 | |
cbf239b7 AR |
330 | if (aidx > bidx) { |
331 | return 1; | |
332 | } | |
333 | if (aidx < bidx) { | |
334 | return -1; | |
335 | } | |
336 | return 0; | |
721fae12 PM |
337 | } |
338 | ||
339 | void init_cpreg_list(ARMCPU *cpu) | |
340 | { | |
341 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
342 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
343 | */ | |
57b6d95e | 344 | GList *keys; |
721fae12 PM |
345 | int arraylen; |
346 | ||
57b6d95e | 347 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
348 | keys = g_list_sort(keys, cpreg_key_compare); |
349 | ||
350 | cpu->cpreg_array_len = 0; | |
351 | ||
352 | g_list_foreach(keys, count_cpreg, cpu); | |
353 | ||
354 | arraylen = cpu->cpreg_array_len; | |
355 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
356 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
357 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
358 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
359 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
360 | cpu->cpreg_array_len = 0; | |
361 | ||
362 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
363 | ||
364 | assert(cpu->cpreg_array_len == arraylen); | |
365 | ||
366 | g_list_free(keys); | |
367 | } | |
368 | ||
68e9c2fe EI |
369 | /* |
370 | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but | |
371 | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. | |
372 | * | |
373 | * access_el3_aa32ns: Used to check AArch32 register views. | |
374 | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. | |
375 | */ | |
376 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
3f208fd7 PM |
377 | const ARMCPRegInfo *ri, |
378 | bool isread) | |
68e9c2fe EI |
379 | { |
380 | bool secure = arm_is_secure_below_el3(env); | |
381 | ||
382 | assert(!arm_el_is_aa64(env, 3)); | |
383 | if (secure) { | |
384 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
385 | } | |
386 | return CP_ACCESS_OK; | |
387 | } | |
388 | ||
389 | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, | |
3f208fd7 PM |
390 | const ARMCPRegInfo *ri, |
391 | bool isread) | |
68e9c2fe EI |
392 | { |
393 | if (!arm_el_is_aa64(env, 3)) { | |
3f208fd7 | 394 | return access_el3_aa32ns(env, ri, isread); |
68e9c2fe EI |
395 | } |
396 | return CP_ACCESS_OK; | |
397 | } | |
398 | ||
5513c3ab PM |
399 | /* Some secure-only AArch32 registers trap to EL3 if used from |
400 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). | |
401 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. | |
402 | * We assume that the .access field is set to PL1_RW. | |
403 | */ | |
404 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, | |
3f208fd7 PM |
405 | const ARMCPRegInfo *ri, |
406 | bool isread) | |
5513c3ab PM |
407 | { |
408 | if (arm_current_el(env) == 3) { | |
409 | return CP_ACCESS_OK; | |
410 | } | |
411 | if (arm_is_secure_below_el3(env)) { | |
412 | return CP_ACCESS_TRAP_EL3; | |
413 | } | |
414 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ | |
415 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
416 | } | |
417 | ||
187f678d PM |
418 | /* Check for traps to "powerdown debug" registers, which are controlled |
419 | * by MDCR.TDOSA | |
420 | */ | |
421 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, | |
422 | bool isread) | |
423 | { | |
424 | int el = arm_current_el(env); | |
425 | ||
426 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) | |
427 | && !arm_is_secure_below_el3(env)) { | |
428 | return CP_ACCESS_TRAP_EL2; | |
429 | } | |
430 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { | |
431 | return CP_ACCESS_TRAP_EL3; | |
432 | } | |
433 | return CP_ACCESS_OK; | |
434 | } | |
435 | ||
91b0a238 PM |
436 | /* Check for traps to "debug ROM" registers, which are controlled |
437 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. | |
438 | */ | |
439 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, | |
440 | bool isread) | |
441 | { | |
442 | int el = arm_current_el(env); | |
443 | ||
444 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) | |
445 | && !arm_is_secure_below_el3(env)) { | |
446 | return CP_ACCESS_TRAP_EL2; | |
447 | } | |
448 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
449 | return CP_ACCESS_TRAP_EL3; | |
450 | } | |
451 | return CP_ACCESS_OK; | |
452 | } | |
453 | ||
d6c8cf81 PM |
454 | /* Check for traps to general debug registers, which are controlled |
455 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. | |
456 | */ | |
457 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, | |
458 | bool isread) | |
459 | { | |
460 | int el = arm_current_el(env); | |
461 | ||
462 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) | |
463 | && !arm_is_secure_below_el3(env)) { | |
464 | return CP_ACCESS_TRAP_EL2; | |
465 | } | |
466 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
467 | return CP_ACCESS_TRAP_EL3; | |
468 | } | |
469 | return CP_ACCESS_OK; | |
470 | } | |
471 | ||
1fce1ba9 PM |
472 | /* Check for traps to performance monitor registers, which are controlled |
473 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. | |
474 | */ | |
475 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, | |
476 | bool isread) | |
477 | { | |
478 | int el = arm_current_el(env); | |
479 | ||
480 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) | |
481 | && !arm_is_secure_below_el3(env)) { | |
482 | return CP_ACCESS_TRAP_EL2; | |
483 | } | |
484 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
485 | return CP_ACCESS_TRAP_EL3; | |
486 | } | |
487 | return CP_ACCESS_OK; | |
488 | } | |
489 | ||
c4241c7d | 490 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 491 | { |
00c8cb0a AF |
492 | ARMCPU *cpu = arm_env_get_cpu(env); |
493 | ||
8d5c773e | 494 | raw_write(env, ri, value); |
d10eb08f | 495 | tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
496 | } |
497 | ||
c4241c7d | 498 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 499 | { |
00c8cb0a AF |
500 | ARMCPU *cpu = arm_env_get_cpu(env); |
501 | ||
8d5c773e | 502 | if (raw_read(env, ri) != value) { |
08de207b PM |
503 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
504 | * not modified virtual addresses, so this causes a TLB flush. | |
505 | */ | |
d10eb08f | 506 | tlb_flush(CPU(cpu)); |
8d5c773e | 507 | raw_write(env, ri, value); |
08de207b | 508 | } |
08de207b | 509 | } |
c4241c7d PM |
510 | |
511 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
512 | uint64_t value) | |
08de207b | 513 | { |
00c8cb0a AF |
514 | ARMCPU *cpu = arm_env_get_cpu(env); |
515 | ||
452a0955 | 516 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) |
014406b5 | 517 | && !extended_addresses_enabled(env)) { |
08de207b PM |
518 | /* For VMSA (when not using the LPAE long descriptor page table |
519 | * format) this register includes the ASID, so do a TLB flush. | |
520 | * For PMSA it is purely a process ID and no action is needed. | |
521 | */ | |
d10eb08f | 522 | tlb_flush(CPU(cpu)); |
08de207b | 523 | } |
8d5c773e | 524 | raw_write(env, ri, value); |
08de207b PM |
525 | } |
526 | ||
c4241c7d PM |
527 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
528 | uint64_t value) | |
d929823f PM |
529 | { |
530 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
531 | ARMCPU *cpu = arm_env_get_cpu(env); |
532 | ||
d10eb08f | 533 | tlb_flush(CPU(cpu)); |
d929823f PM |
534 | } |
535 | ||
c4241c7d PM |
536 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
537 | uint64_t value) | |
d929823f PM |
538 | { |
539 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
540 | ARMCPU *cpu = arm_env_get_cpu(env); |
541 | ||
542 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
543 | } |
544 | ||
c4241c7d PM |
545 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
546 | uint64_t value) | |
d929823f PM |
547 | { |
548 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
549 | ARMCPU *cpu = arm_env_get_cpu(env); |
550 | ||
d10eb08f | 551 | tlb_flush(CPU(cpu)); |
d929823f PM |
552 | } |
553 | ||
c4241c7d PM |
554 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
555 | uint64_t value) | |
d929823f PM |
556 | { |
557 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
558 | ARMCPU *cpu = arm_env_get_cpu(env); |
559 | ||
560 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
561 | } |
562 | ||
fa439fc5 PM |
563 | /* IS variants of TLB operations must affect all cores */ |
564 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
565 | uint64_t value) | |
566 | { | |
a67cf277 | 567 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 568 | |
a67cf277 | 569 | tlb_flush_all_cpus_synced(cs); |
fa439fc5 PM |
570 | } |
571 | ||
572 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
573 | uint64_t value) | |
574 | { | |
a67cf277 | 575 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 576 | |
a67cf277 | 577 | tlb_flush_all_cpus_synced(cs); |
fa439fc5 PM |
578 | } |
579 | ||
580 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
581 | uint64_t value) | |
582 | { | |
a67cf277 | 583 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 584 | |
a67cf277 | 585 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
fa439fc5 PM |
586 | } |
587 | ||
588 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
589 | uint64_t value) | |
590 | { | |
a67cf277 | 591 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 592 | |
a67cf277 | 593 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
fa439fc5 PM |
594 | } |
595 | ||
541ef8c2 SS |
596 | static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
597 | uint64_t value) | |
598 | { | |
599 | CPUState *cs = ENV_GET_CPU(env); | |
600 | ||
0336cbf8 | 601 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
602 | ARMMMUIdxBit_S12NSE1 | |
603 | ARMMMUIdxBit_S12NSE0 | | |
604 | ARMMMUIdxBit_S2NS); | |
541ef8c2 SS |
605 | } |
606 | ||
607 | static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
608 | uint64_t value) | |
609 | { | |
a67cf277 | 610 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 | 611 | |
a67cf277 | 612 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
8bd5c820 PM |
613 | ARMMMUIdxBit_S12NSE1 | |
614 | ARMMMUIdxBit_S12NSE0 | | |
615 | ARMMMUIdxBit_S2NS); | |
541ef8c2 SS |
616 | } |
617 | ||
618 | static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
619 | uint64_t value) | |
620 | { | |
621 | /* Invalidate by IPA. This has to invalidate any structures that | |
622 | * contain only stage 2 translation information, but does not need | |
623 | * to apply to structures that contain combined stage 1 and stage 2 | |
624 | * translation information. | |
625 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
626 | */ | |
627 | CPUState *cs = ENV_GET_CPU(env); | |
628 | uint64_t pageaddr; | |
629 | ||
630 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
631 | return; | |
632 | } | |
633 | ||
634 | pageaddr = sextract64(value << 12, 0, 40); | |
635 | ||
8bd5c820 | 636 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
541ef8c2 SS |
637 | } |
638 | ||
639 | static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
640 | uint64_t value) | |
641 | { | |
a67cf277 | 642 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 SS |
643 | uint64_t pageaddr; |
644 | ||
645 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
646 | return; | |
647 | } | |
648 | ||
649 | pageaddr = sextract64(value << 12, 0, 40); | |
650 | ||
a67cf277 | 651 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 652 | ARMMMUIdxBit_S2NS); |
541ef8c2 SS |
653 | } |
654 | ||
655 | static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
656 | uint64_t value) | |
657 | { | |
658 | CPUState *cs = ENV_GET_CPU(env); | |
659 | ||
8bd5c820 | 660 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
661 | } |
662 | ||
663 | static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
664 | uint64_t value) | |
665 | { | |
a67cf277 | 666 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 | 667 | |
8bd5c820 | 668 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
669 | } |
670 | ||
671 | static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
672 | uint64_t value) | |
673 | { | |
674 | CPUState *cs = ENV_GET_CPU(env); | |
675 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); | |
676 | ||
8bd5c820 | 677 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
678 | } |
679 | ||
680 | static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
681 | uint64_t value) | |
682 | { | |
a67cf277 | 683 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 SS |
684 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
685 | ||
a67cf277 | 686 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 687 | ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
688 | } |
689 | ||
e9aa6c21 | 690 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
691 | /* Define the secure and non-secure FCSE identifier CP registers |
692 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
693 | * the secure register to be properly reset and migrated. There is also no | |
694 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
695 | */ | |
696 | { .name = "FCSEIDR(NS)", | |
697 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
698 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
699 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
700 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
701 | { .name = "FCSEIDR(S)", | |
702 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
703 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
704 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 705 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
706 | /* Define the secure and non-secure context identifier CP registers |
707 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
708 | * the secure register to be properly reset and migrated. In the | |
709 | * non-secure case, the 32-bit register will have reset and migration | |
710 | * disabled during registration as it is handled by the 64-bit instance. | |
711 | */ | |
712 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 713 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
714 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
715 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
716 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
717 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
718 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
719 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
720 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 721 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
722 | REGINFO_SENTINEL |
723 | }; | |
724 | ||
725 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
726 | /* NB: Some of these registers exist in v8 but with more precise | |
727 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
728 | */ | |
729 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
730 | { .name = "DACR", |
731 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
732 | .access = PL1_RW, .resetvalue = 0, | |
733 | .writefn = dacr_write, .raw_writefn = raw_write, | |
734 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
735 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
736 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
737 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 738 | */ |
a903c449 EI |
739 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
740 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
741 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
742 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
743 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
744 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
745 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 746 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
747 | /* Cache maintenance ops; some of this space may be overridden later. */ |
748 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
749 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
750 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
751 | REGINFO_SENTINEL |
752 | }; | |
753 | ||
7d57f408 PM |
754 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
755 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
756 | * over-broad. | |
757 | */ | |
758 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
759 | .access = PL1_W, .type = ARM_CP_WFI }, | |
760 | REGINFO_SENTINEL | |
761 | }; | |
762 | ||
763 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
764 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
765 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
766 | */ | |
767 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
768 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
769 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
770 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
771 | * OMAPCP will override this space. | |
772 | */ | |
773 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
774 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
775 | .resetvalue = 0 }, | |
776 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
777 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
778 | .resetvalue = 0 }, | |
776d4e5c PM |
779 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
780 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 781 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 782 | .resetvalue = 0 }, |
50300698 PM |
783 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
784 | * implementing it as RAZ means the "debug architecture version" bits | |
785 | * will read as a reserved value, which should cause Linux to not try | |
786 | * to use the debug hardware. | |
787 | */ | |
788 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
789 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
790 | /* MMU TLB control. Note that the wildcarding means we cover not just |
791 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
792 | */ | |
793 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
794 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 795 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
796 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
797 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 798 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
799 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
800 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 801 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
802 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
803 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 804 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
805 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
806 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
807 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
808 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
809 | REGINFO_SENTINEL |
810 | }; | |
811 | ||
c4241c7d PM |
812 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
813 | uint64_t value) | |
2771db27 | 814 | { |
f0aff255 FA |
815 | uint32_t mask = 0; |
816 | ||
817 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
818 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
819 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
820 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
821 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
822 | */ | |
823 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
824 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
825 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
826 | ||
827 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
828 | /* ASEDIS [31] bit is RAO/WI */ | |
829 | value |= (1 << 31); | |
830 | } | |
831 | ||
832 | /* VFPv3 and upwards with NEON implement 32 double precision | |
833 | * registers (D0-D31). | |
834 | */ | |
835 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
836 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
837 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
838 | value |= (1 << 30); | |
839 | } | |
840 | } | |
841 | value &= mask; | |
2771db27 | 842 | } |
7ebd5f2e | 843 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
844 | } |
845 | ||
3f208fd7 PM |
846 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
847 | bool isread) | |
c6f19164 GB |
848 | { |
849 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
850 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
851 | if (arm_current_el(env) == 1 && | |
852 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
853 | return CP_ACCESS_TRAP_EL2; | |
854 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
855 | } else if (arm_current_el(env) < 3 && | |
856 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
857 | return CP_ACCESS_TRAP_EL3; | |
858 | } | |
859 | } | |
860 | ||
861 | return CP_ACCESS_OK; | |
862 | } | |
863 | ||
3f208fd7 PM |
864 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
865 | bool isread) | |
c6f19164 GB |
866 | { |
867 | /* Check if CPTR accesses are set to trap to EL3 */ | |
868 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
869 | return CP_ACCESS_TRAP_EL3; | |
870 | } | |
871 | ||
872 | return CP_ACCESS_OK; | |
873 | } | |
874 | ||
7d57f408 PM |
875 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
876 | /* prefetch by MVA in v6, NOP in v7 */ | |
877 | { .name = "MVA_prefetch", | |
878 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
879 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
880 | /* We need to break the TB after ISB to execute self-modifying code |
881 | * correctly and also to take any pending interrupts immediately. | |
882 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
883 | */ | |
7d57f408 | 884 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 885 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 886 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 887 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 888 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 889 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 890 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 891 | .access = PL1_RW, |
b848ce2b FA |
892 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
893 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
894 | .resetvalue = 0, }, |
895 | /* Watchpoint Fault Address Register : should actually only be present | |
896 | * for 1136, 1176, 11MPCore. | |
897 | */ | |
898 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
899 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 900 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 901 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 902 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 903 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
904 | REGINFO_SENTINEL |
905 | }; | |
906 | ||
3f208fd7 PM |
907 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
908 | bool isread) | |
200ac0ef | 909 | { |
3b163b01 | 910 | /* Performance monitor registers user accessibility is controlled |
1fce1ba9 PM |
911 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
912 | * trapping to EL2 or EL3 for other accesses. | |
200ac0ef | 913 | */ |
1fce1ba9 PM |
914 | int el = arm_current_el(env); |
915 | ||
6ecd0b6b | 916 | if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { |
fcd25206 | 917 | return CP_ACCESS_TRAP; |
200ac0ef | 918 | } |
1fce1ba9 PM |
919 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
920 | && !arm_is_secure_below_el3(env)) { | |
921 | return CP_ACCESS_TRAP_EL2; | |
922 | } | |
923 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
924 | return CP_ACCESS_TRAP_EL3; | |
925 | } | |
926 | ||
fcd25206 | 927 | return CP_ACCESS_OK; |
200ac0ef PM |
928 | } |
929 | ||
6ecd0b6b AB |
930 | static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, |
931 | const ARMCPRegInfo *ri, | |
932 | bool isread) | |
933 | { | |
934 | /* ER: event counter read trap control */ | |
935 | if (arm_feature(env, ARM_FEATURE_V8) | |
936 | && arm_current_el(env) == 0 | |
937 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 | |
938 | && isread) { | |
939 | return CP_ACCESS_OK; | |
940 | } | |
941 | ||
942 | return pmreg_access(env, ri, isread); | |
943 | } | |
944 | ||
945 | static CPAccessResult pmreg_access_swinc(CPUARMState *env, | |
946 | const ARMCPRegInfo *ri, | |
947 | bool isread) | |
948 | { | |
949 | /* SW: software increment write trap control */ | |
950 | if (arm_feature(env, ARM_FEATURE_V8) | |
951 | && arm_current_el(env) == 0 | |
952 | && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 | |
953 | && !isread) { | |
954 | return CP_ACCESS_OK; | |
955 | } | |
956 | ||
957 | return pmreg_access(env, ri, isread); | |
958 | } | |
959 | ||
7c2cb42b | 960 | #ifndef CONFIG_USER_ONLY |
87124fde | 961 | |
6ecd0b6b AB |
962 | static CPAccessResult pmreg_access_selr(CPUARMState *env, |
963 | const ARMCPRegInfo *ri, | |
964 | bool isread) | |
965 | { | |
966 | /* ER: event counter read trap control */ | |
967 | if (arm_feature(env, ARM_FEATURE_V8) | |
968 | && arm_current_el(env) == 0 | |
969 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { | |
970 | return CP_ACCESS_OK; | |
971 | } | |
972 | ||
973 | return pmreg_access(env, ri, isread); | |
974 | } | |
975 | ||
976 | static CPAccessResult pmreg_access_ccntr(CPUARMState *env, | |
977 | const ARMCPRegInfo *ri, | |
978 | bool isread) | |
979 | { | |
980 | /* CR: cycle counter read trap control */ | |
981 | if (arm_feature(env, ARM_FEATURE_V8) | |
982 | && arm_current_el(env) == 0 | |
983 | && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 | |
984 | && isread) { | |
985 | return CP_ACCESS_OK; | |
986 | } | |
987 | ||
988 | return pmreg_access(env, ri, isread); | |
989 | } | |
990 | ||
87124fde AF |
991 | static inline bool arm_ccnt_enabled(CPUARMState *env) |
992 | { | |
993 | /* This does not support checking PMCCFILTR_EL0 register */ | |
994 | ||
995 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
996 | return false; | |
997 | } | |
998 | ||
999 | return true; | |
1000 | } | |
1001 | ||
ec7b4ce4 AF |
1002 | void pmccntr_sync(CPUARMState *env) |
1003 | { | |
1004 | uint64_t temp_ticks; | |
1005 | ||
352c98e5 LV |
1006 | temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
1007 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
ec7b4ce4 AF |
1008 | |
1009 | if (env->cp15.c9_pmcr & PMCRD) { | |
1010 | /* Increment once every 64 processor clock cycles */ | |
1011 | temp_ticks /= 64; | |
1012 | } | |
1013 | ||
1014 | if (arm_ccnt_enabled(env)) { | |
1015 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
1016 | } | |
1017 | } | |
1018 | ||
c4241c7d PM |
1019 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1020 | uint64_t value) | |
200ac0ef | 1021 | { |
942a155b | 1022 | pmccntr_sync(env); |
7c2cb42b AF |
1023 | |
1024 | if (value & PMCRC) { | |
1025 | /* The counter has been reset */ | |
1026 | env->cp15.c15_ccnt = 0; | |
1027 | } | |
1028 | ||
200ac0ef PM |
1029 | /* only the DP, X, D and E bits are writable */ |
1030 | env->cp15.c9_pmcr &= ~0x39; | |
1031 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 1032 | |
942a155b | 1033 | pmccntr_sync(env); |
7c2cb42b AF |
1034 | } |
1035 | ||
1036 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1037 | { | |
c92c0687 | 1038 | uint64_t total_ticks; |
7c2cb42b | 1039 | |
942a155b | 1040 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
1041 | /* Counter is disabled, do not change value */ |
1042 | return env->cp15.c15_ccnt; | |
1043 | } | |
1044 | ||
352c98e5 LV |
1045 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
1046 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
1047 | |
1048 | if (env->cp15.c9_pmcr & PMCRD) { | |
1049 | /* Increment once every 64 processor clock cycles */ | |
1050 | total_ticks /= 64; | |
1051 | } | |
1052 | return total_ticks - env->cp15.c15_ccnt; | |
1053 | } | |
1054 | ||
6b040780 WH |
1055 | static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1056 | uint64_t value) | |
1057 | { | |
1058 | /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and | |
1059 | * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the | |
1060 | * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are | |
1061 | * accessed. | |
1062 | */ | |
1063 | env->cp15.c9_pmselr = value & 0x1f; | |
1064 | } | |
1065 | ||
7c2cb42b AF |
1066 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1067 | uint64_t value) | |
1068 | { | |
c92c0687 | 1069 | uint64_t total_ticks; |
7c2cb42b | 1070 | |
942a155b | 1071 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
1072 | /* Counter is disabled, set the absolute value */ |
1073 | env->cp15.c15_ccnt = value; | |
1074 | return; | |
1075 | } | |
1076 | ||
352c98e5 LV |
1077 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
1078 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
1079 | |
1080 | if (env->cp15.c9_pmcr & PMCRD) { | |
1081 | /* Increment once every 64 processor clock cycles */ | |
1082 | total_ticks /= 64; | |
1083 | } | |
1084 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 1085 | } |
421c7ebd PC |
1086 | |
1087 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1088 | uint64_t value) | |
1089 | { | |
1090 | uint64_t cur_val = pmccntr_read(env, NULL); | |
1091 | ||
1092 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
1093 | } | |
1094 | ||
ec7b4ce4 AF |
1095 | #else /* CONFIG_USER_ONLY */ |
1096 | ||
1097 | void pmccntr_sync(CPUARMState *env) | |
1098 | { | |
1099 | } | |
1100 | ||
7c2cb42b | 1101 | #endif |
200ac0ef | 1102 | |
0614601c AF |
1103 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1104 | uint64_t value) | |
1105 | { | |
1106 | pmccntr_sync(env); | |
1107 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
1108 | pmccntr_sync(env); | |
1109 | } | |
1110 | ||
c4241c7d | 1111 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1112 | uint64_t value) |
1113 | { | |
200ac0ef PM |
1114 | value &= (1 << 31); |
1115 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
1116 | } |
1117 | ||
c4241c7d PM |
1118 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1119 | uint64_t value) | |
200ac0ef | 1120 | { |
200ac0ef PM |
1121 | value &= (1 << 31); |
1122 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
1123 | } |
1124 | ||
c4241c7d PM |
1125 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1126 | uint64_t value) | |
200ac0ef | 1127 | { |
200ac0ef | 1128 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
1129 | } |
1130 | ||
c4241c7d PM |
1131 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1132 | uint64_t value) | |
200ac0ef | 1133 | { |
fdb86656 WH |
1134 | /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when |
1135 | * PMSELR value is equal to or greater than the number of implemented | |
1136 | * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. | |
1137 | */ | |
1138 | if (env->cp15.c9_pmselr == 0x1f) { | |
1139 | pmccfiltr_write(env, ri, value); | |
1140 | } | |
1141 | } | |
1142 | ||
1143 | static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1144 | { | |
1145 | /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER | |
1146 | * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). | |
1147 | */ | |
1148 | if (env->cp15.c9_pmselr == 0x1f) { | |
1149 | return env->cp15.pmccfiltr_el0; | |
1150 | } else { | |
1151 | return 0; | |
1152 | } | |
200ac0ef PM |
1153 | } |
1154 | ||
c4241c7d | 1155 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1156 | uint64_t value) |
1157 | { | |
6ecd0b6b AB |
1158 | if (arm_feature(env, ARM_FEATURE_V8)) { |
1159 | env->cp15.c9_pmuserenr = value & 0xf; | |
1160 | } else { | |
1161 | env->cp15.c9_pmuserenr = value & 1; | |
1162 | } | |
200ac0ef PM |
1163 | } |
1164 | ||
c4241c7d PM |
1165 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1166 | uint64_t value) | |
200ac0ef PM |
1167 | { |
1168 | /* We have no event counters so only the C bit can be changed */ | |
1169 | value &= (1 << 31); | |
1170 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
1171 | } |
1172 | ||
c4241c7d PM |
1173 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1174 | uint64_t value) | |
200ac0ef PM |
1175 | { |
1176 | value &= (1 << 31); | |
1177 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
1178 | } |
1179 | ||
c4241c7d PM |
1180 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1181 | uint64_t value) | |
8641136c | 1182 | { |
a505d7fe PM |
1183 | /* Note that even though the AArch64 view of this register has bits |
1184 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
1185 | * architectural requirements for bits which are RES0 only in some | |
1186 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
1187 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
1188 | */ | |
855ea66d | 1189 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
1190 | } |
1191 | ||
64e0e2de EI |
1192 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1193 | { | |
1194 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
1195 | * For bits that vary between AArch32/64, code needs to check the | |
1196 | * current execution mode before directly using the feature bit. | |
1197 | */ | |
1198 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
1199 | ||
1200 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
1201 | valid_mask &= ~SCR_HCE; | |
1202 | ||
1203 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
1204 | * supported if EL2 exists. The bit is UNK/SBZP when | |
1205 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
1206 | * when EL2 is unavailable. | |
4eb27640 | 1207 | * On ARMv8, this bit is always available. |
64e0e2de | 1208 | */ |
4eb27640 GB |
1209 | if (arm_feature(env, ARM_FEATURE_V7) && |
1210 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
1211 | valid_mask &= ~SCR_SMD; |
1212 | } | |
1213 | } | |
1214 | ||
1215 | /* Clear all-context RES0 bits. */ | |
1216 | value &= valid_mask; | |
1217 | raw_write(env, ri, value); | |
1218 | } | |
1219 | ||
c4241c7d | 1220 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
1221 | { |
1222 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
1223 | |
1224 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
1225 | * bank | |
1226 | */ | |
1227 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
1228 | ri->secure & ARM_CP_SECSTATE_S); | |
1229 | ||
1230 | return cpu->ccsidr[index]; | |
776d4e5c PM |
1231 | } |
1232 | ||
c4241c7d PM |
1233 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1234 | uint64_t value) | |
776d4e5c | 1235 | { |
8d5c773e | 1236 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
1237 | } |
1238 | ||
1090b9c6 PM |
1239 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1240 | { | |
1241 | CPUState *cs = ENV_GET_CPU(env); | |
1242 | uint64_t ret = 0; | |
1243 | ||
1244 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
1245 | ret |= CPSR_I; | |
1246 | } | |
1247 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
1248 | ret |= CPSR_F; | |
1249 | } | |
1250 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
1251 | return ret; | |
1252 | } | |
1253 | ||
e9aa6c21 | 1254 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
1255 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
1256 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
1257 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
1258 | /* Performance monitors are implementation defined in v7, |
1259 | * but with an ARM recommended set of registers, which we | |
1260 | * follow (although we don't actually implement any counters) | |
1261 | * | |
1262 | * Performance registers fall into three categories: | |
1263 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
1264 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
1265 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
1266 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
1267 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
1268 | */ | |
1269 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1270 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 1271 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
1272 | .writefn = pmcntenset_write, |
1273 | .accessfn = pmreg_access, | |
1274 | .raw_writefn = raw_write }, | |
8521466b AF |
1275 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
1276 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
1277 | .access = PL0_RW, .accessfn = pmreg_access, | |
1278 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
1279 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 1280 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
1281 | .access = PL0_RW, |
1282 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
1283 | .accessfn = pmreg_access, |
1284 | .writefn = pmcntenclr_write, | |
7a0e58fa | 1285 | .type = ARM_CP_ALIAS }, |
8521466b AF |
1286 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
1287 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
1288 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 1289 | .type = ARM_CP_ALIAS, |
8521466b AF |
1290 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
1291 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
1292 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
1293 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
1294 | .accessfn = pmreg_access, |
1295 | .writefn = pmovsr_write, | |
1296 | .raw_writefn = raw_write }, | |
978364f1 AF |
1297 | { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
1298 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, | |
1299 | .access = PL0_RW, .accessfn = pmreg_access, | |
1300 | .type = ARM_CP_ALIAS, | |
1301 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
1302 | .writefn = pmovsr_write, | |
1303 | .raw_writefn = raw_write }, | |
fcd25206 | 1304 | /* Unimplemented so WI. */ |
200ac0ef | 1305 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
6ecd0b6b | 1306 | .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, |
7c2cb42b | 1307 | #ifndef CONFIG_USER_ONLY |
6b040780 WH |
1308 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
1309 | .access = PL0_RW, .type = ARM_CP_ALIAS, | |
1310 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), | |
6ecd0b6b | 1311 | .accessfn = pmreg_access_selr, .writefn = pmselr_write, |
6b040780 WH |
1312 | .raw_writefn = raw_write}, |
1313 | { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, | |
1314 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, | |
6ecd0b6b | 1315 | .access = PL0_RW, .accessfn = pmreg_access_selr, |
6b040780 WH |
1316 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), |
1317 | .writefn = pmselr_write, .raw_writefn = raw_write, }, | |
200ac0ef | 1318 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 1319 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 1320 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
6ecd0b6b | 1321 | .accessfn = pmreg_access_ccntr }, |
8521466b AF |
1322 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
1323 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
6ecd0b6b | 1324 | .access = PL0_RW, .accessfn = pmreg_access_ccntr, |
8521466b AF |
1325 | .type = ARM_CP_IO, |
1326 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 1327 | #endif |
8521466b AF |
1328 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
1329 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 1330 | .writefn = pmccfiltr_write, |
8521466b AF |
1331 | .access = PL0_RW, .accessfn = pmreg_access, |
1332 | .type = ARM_CP_IO, | |
1333 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
1334 | .resetvalue = 0, }, | |
200ac0ef | 1335 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
fdb86656 WH |
1336 | .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, |
1337 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, | |
1338 | { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, | |
1339 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, | |
1340 | .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, | |
1341 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, | |
fcd25206 | 1342 | /* Unimplemented, RAZ/WI. */ |
200ac0ef | 1343 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 | 1344 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
6ecd0b6b | 1345 | .accessfn = pmreg_access_xevcntr }, |
200ac0ef | 1346 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1fce1ba9 | 1347 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
200ac0ef PM |
1348 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1349 | .resetvalue = 0, | |
d4e6df63 | 1350 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
8a83ffc2 AF |
1351 | { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
1352 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, | |
1fce1ba9 | 1353 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
8a83ffc2 AF |
1354 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1355 | .resetvalue = 0, | |
1356 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
200ac0ef | 1357 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1fce1ba9 | 1358 | .access = PL1_RW, .accessfn = access_tpm, |
e6ec5457 WH |
1359 | .type = ARM_CP_ALIAS, |
1360 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), | |
200ac0ef | 1361 | .resetvalue = 0, |
d4e6df63 | 1362 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
e6ec5457 WH |
1363 | { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, |
1364 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, | |
1365 | .access = PL1_RW, .accessfn = access_tpm, | |
1366 | .type = ARM_CP_IO, | |
1367 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
1368 | .writefn = pmintenset_write, .raw_writefn = raw_write, | |
1369 | .resetvalue = 0x0 }, | |
200ac0ef | 1370 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
1fce1ba9 | 1371 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
200ac0ef | 1372 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 1373 | .writefn = pmintenclr_write, }, |
978364f1 AF |
1374 | { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
1375 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, | |
1fce1ba9 | 1376 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
978364f1 AF |
1377 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
1378 | .writefn = pmintenclr_write }, | |
7da845b0 PM |
1379 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
1380 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 1381 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
1382 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
1383 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1384 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1385 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1386 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1387 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1388 | * just RAZ for all cores: | |
1389 | */ | |
0ff644a7 PM |
1390 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1391 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1392 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1393 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1394 | * choose to RAZ/WI for all cores. | |
1395 | */ | |
1396 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1397 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1398 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1399 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1400 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1401 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1402 | /* MAIR can just read-as-written because we don't implement caches |
1403 | * and so don't need to care about memory attributes. | |
1404 | */ | |
1405 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1406 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1407 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 | 1408 | .resetvalue = 0 }, |
4cfb8ad8 PM |
1409 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
1410 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
1411 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
1412 | .resetvalue = 0 }, | |
b0fe2427 PM |
1413 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
1414 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1415 | */ |
1281f8e3 | 1416 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1417 | * allows them to assign the correct fieldoffset based on the endianness |
1418 | * handled in the field definitions. | |
1419 | */ | |
a903c449 | 1420 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1421 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1422 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1423 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1424 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1425 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1426 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1427 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1428 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1429 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1430 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1431 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1432 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1433 | /* 32 bit ITLB invalidates */ |
1434 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1435 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1436 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1437 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1438 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1439 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1440 | /* 32 bit DTLB invalidates */ |
1441 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1442 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1443 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1444 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1445 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1446 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1447 | /* 32 bit TLB invalidates */ |
1448 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1449 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1450 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1451 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1452 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1453 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1454 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1455 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1456 | REGINFO_SENTINEL |
1457 | }; | |
1458 | ||
1459 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1460 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1461 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1462 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1463 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1464 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1465 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1466 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1467 | .writefn = tlbiasid_is_write }, |
995939a6 | 1468 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1469 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1470 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1471 | REGINFO_SENTINEL |
1472 | }; | |
1473 | ||
c4241c7d PM |
1474 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1475 | uint64_t value) | |
c326b979 PM |
1476 | { |
1477 | value &= 1; | |
1478 | env->teecr = value; | |
c326b979 PM |
1479 | } |
1480 | ||
3f208fd7 PM |
1481 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1482 | bool isread) | |
c326b979 | 1483 | { |
dcbff19b | 1484 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1485 | return CP_ACCESS_TRAP; |
c326b979 | 1486 | } |
92611c00 | 1487 | return CP_ACCESS_OK; |
c326b979 PM |
1488 | } |
1489 | ||
1490 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1491 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1492 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1493 | .resetvalue = 0, | |
1494 | .writefn = teecr_write }, | |
1495 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1496 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1497 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1498 | REGINFO_SENTINEL |
1499 | }; | |
1500 | ||
4d31c596 | 1501 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1502 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1503 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1504 | .access = PL0_RW, | |
54bf36ed | 1505 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1506 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1507 | .access = PL0_RW, | |
54bf36ed FA |
1508 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1509 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1510 | .resetfn = arm_cp_reset_ignore }, |
1511 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1512 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1513 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1514 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1515 | .resetvalue = 0}, | |
4d31c596 PM |
1516 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1517 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1518 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1519 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1520 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1521 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1522 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1523 | .access = PL1_RW, |
54bf36ed FA |
1524 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1525 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1526 | .access = PL1_RW, | |
1527 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1528 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1529 | .resetvalue = 0 }, | |
4d31c596 PM |
1530 | REGINFO_SENTINEL |
1531 | }; | |
1532 | ||
55d284af PM |
1533 | #ifndef CONFIG_USER_ONLY |
1534 | ||
3f208fd7 PM |
1535 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1536 | bool isread) | |
00108f2d | 1537 | { |
75502672 PM |
1538 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
1539 | * Writable only at the highest implemented exception level. | |
1540 | */ | |
1541 | int el = arm_current_el(env); | |
1542 | ||
1543 | switch (el) { | |
1544 | case 0: | |
1545 | if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
1546 | return CP_ACCESS_TRAP; | |
1547 | } | |
1548 | break; | |
1549 | case 1: | |
1550 | if (!isread && ri->state == ARM_CP_STATE_AA32 && | |
1551 | arm_is_secure_below_el3(env)) { | |
1552 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ | |
1553 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1554 | } | |
1555 | break; | |
1556 | case 2: | |
1557 | case 3: | |
1558 | break; | |
00108f2d | 1559 | } |
75502672 PM |
1560 | |
1561 | if (!isread && el < arm_highest_el(env)) { | |
1562 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1563 | } | |
1564 | ||
00108f2d PM |
1565 | return CP_ACCESS_OK; |
1566 | } | |
1567 | ||
3f208fd7 PM |
1568 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
1569 | bool isread) | |
00108f2d | 1570 | { |
0b6440af EI |
1571 | unsigned int cur_el = arm_current_el(env); |
1572 | bool secure = arm_is_secure(env); | |
1573 | ||
00108f2d | 1574 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1575 | if (cur_el == 0 && |
00108f2d PM |
1576 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1577 | return CP_ACCESS_TRAP; | |
1578 | } | |
0b6440af EI |
1579 | |
1580 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1581 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1582 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1583 | return CP_ACCESS_TRAP_EL2; | |
1584 | } | |
00108f2d PM |
1585 | return CP_ACCESS_OK; |
1586 | } | |
1587 | ||
3f208fd7 PM |
1588 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
1589 | bool isread) | |
00108f2d | 1590 | { |
0b6440af EI |
1591 | unsigned int cur_el = arm_current_el(env); |
1592 | bool secure = arm_is_secure(env); | |
1593 | ||
00108f2d PM |
1594 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1595 | * EL0[PV]TEN is zero. | |
1596 | */ | |
0b6440af | 1597 | if (cur_el == 0 && |
00108f2d PM |
1598 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1599 | return CP_ACCESS_TRAP; | |
1600 | } | |
0b6440af EI |
1601 | |
1602 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1603 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1604 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1605 | return CP_ACCESS_TRAP_EL2; | |
1606 | } | |
00108f2d PM |
1607 | return CP_ACCESS_OK; |
1608 | } | |
1609 | ||
1610 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
3f208fd7 PM |
1611 | const ARMCPRegInfo *ri, |
1612 | bool isread) | |
00108f2d | 1613 | { |
3f208fd7 | 1614 | return gt_counter_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1615 | } |
1616 | ||
1617 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
3f208fd7 PM |
1618 | const ARMCPRegInfo *ri, |
1619 | bool isread) | |
00108f2d | 1620 | { |
3f208fd7 | 1621 | return gt_counter_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1622 | } |
1623 | ||
3f208fd7 PM |
1624 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1625 | bool isread) | |
00108f2d | 1626 | { |
3f208fd7 | 1627 | return gt_timer_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1628 | } |
1629 | ||
3f208fd7 PM |
1630 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1631 | bool isread) | |
00108f2d | 1632 | { |
3f208fd7 | 1633 | return gt_timer_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1634 | } |
1635 | ||
b4d3978c | 1636 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
3f208fd7 PM |
1637 | const ARMCPRegInfo *ri, |
1638 | bool isread) | |
b4d3978c PM |
1639 | { |
1640 | /* The AArch64 register view of the secure physical timer is | |
1641 | * always accessible from EL3, and configurably accessible from | |
1642 | * Secure EL1. | |
1643 | */ | |
1644 | switch (arm_current_el(env)) { | |
1645 | case 1: | |
1646 | if (!arm_is_secure(env)) { | |
1647 | return CP_ACCESS_TRAP; | |
1648 | } | |
1649 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
1650 | return CP_ACCESS_TRAP_EL3; | |
1651 | } | |
1652 | return CP_ACCESS_OK; | |
1653 | case 0: | |
1654 | case 2: | |
1655 | return CP_ACCESS_TRAP; | |
1656 | case 3: | |
1657 | return CP_ACCESS_OK; | |
1658 | default: | |
1659 | g_assert_not_reached(); | |
1660 | } | |
1661 | } | |
1662 | ||
55d284af PM |
1663 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1664 | { | |
bc72ad67 | 1665 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1666 | } |
1667 | ||
1668 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1669 | { | |
1670 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1671 | ||
1672 | if (gt->ctl & 1) { | |
1673 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1674 | * reset timer to when ISTATUS next has to change | |
1675 | */ | |
edac4d8a EI |
1676 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1677 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1678 | uint64_t count = gt_get_countervalue(&cpu->env); |
1679 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1680 | int istatus = count - offset >= gt->cval; |
55d284af | 1681 | uint64_t nexttick; |
194cbc49 | 1682 | int irqstate; |
55d284af PM |
1683 | |
1684 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
194cbc49 PM |
1685 | |
1686 | irqstate = (istatus && !(gt->ctl & 2)); | |
1687 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
1688 | ||
55d284af PM |
1689 | if (istatus) { |
1690 | /* Next transition is when count rolls back over to zero */ | |
1691 | nexttick = UINT64_MAX; | |
1692 | } else { | |
1693 | /* Next transition is when we hit cval */ | |
edac4d8a | 1694 | nexttick = gt->cval + offset; |
55d284af PM |
1695 | } |
1696 | /* Note that the desired next expiry time might be beyond the | |
1697 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1698 | * set the timer for as far in the future as possible. When the | |
1699 | * timer expires we will reset the timer for any remaining period. | |
1700 | */ | |
1701 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1702 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1703 | } | |
bc72ad67 | 1704 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
194cbc49 | 1705 | trace_arm_gt_recalc(timeridx, irqstate, nexttick); |
55d284af PM |
1706 | } else { |
1707 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1708 | gt->ctl &= ~4; | |
1709 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1710 | timer_del(cpu->gt_timer[timeridx]); |
194cbc49 | 1711 | trace_arm_gt_recalc_disabled(timeridx); |
55d284af PM |
1712 | } |
1713 | } | |
1714 | ||
0e3eca4c EI |
1715 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1716 | int timeridx) | |
55d284af PM |
1717 | { |
1718 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1719 | |
bc72ad67 | 1720 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1721 | } |
1722 | ||
c4241c7d | 1723 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1724 | { |
c4241c7d | 1725 | return gt_get_countervalue(env); |
55d284af PM |
1726 | } |
1727 | ||
edac4d8a EI |
1728 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1729 | { | |
1730 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1731 | } | |
1732 | ||
c4241c7d | 1733 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1734 | int timeridx, |
c4241c7d | 1735 | uint64_t value) |
55d284af | 1736 | { |
194cbc49 | 1737 | trace_arm_gt_cval_write(timeridx, value); |
55d284af PM |
1738 | env->cp15.c14_timer[timeridx].cval = value; |
1739 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1740 | } |
c4241c7d | 1741 | |
0e3eca4c EI |
1742 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1743 | int timeridx) | |
55d284af | 1744 | { |
edac4d8a | 1745 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1746 | |
c4241c7d | 1747 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1748 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1749 | } |
1750 | ||
c4241c7d | 1751 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1752 | int timeridx, |
c4241c7d | 1753 | uint64_t value) |
55d284af | 1754 | { |
edac4d8a | 1755 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1756 | |
194cbc49 | 1757 | trace_arm_gt_tval_write(timeridx, value); |
edac4d8a | 1758 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1759 | sextract64(value, 0, 32); |
55d284af | 1760 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1761 | } |
1762 | ||
c4241c7d | 1763 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1764 | int timeridx, |
c4241c7d | 1765 | uint64_t value) |
55d284af PM |
1766 | { |
1767 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1768 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1769 | ||
194cbc49 | 1770 | trace_arm_gt_ctl_write(timeridx, value); |
d3afacc7 | 1771 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1772 | if ((oldval ^ value) & 1) { |
1773 | /* Enable toggled */ | |
1774 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1775 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1776 | /* IMASK toggled: don't need to recalculate, |
1777 | * just set the interrupt line based on ISTATUS | |
1778 | */ | |
194cbc49 PM |
1779 | int irqstate = (oldval & 4) && !(value & 2); |
1780 | ||
1781 | trace_arm_gt_imask_toggle(timeridx, irqstate); | |
1782 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
55d284af | 1783 | } |
55d284af PM |
1784 | } |
1785 | ||
0e3eca4c EI |
1786 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1787 | { | |
1788 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1789 | } | |
1790 | ||
1791 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1792 | uint64_t value) | |
1793 | { | |
1794 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1795 | } | |
1796 | ||
1797 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1798 | { | |
1799 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1800 | } | |
1801 | ||
1802 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1803 | uint64_t value) | |
1804 | { | |
1805 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1806 | } | |
1807 | ||
1808 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1809 | uint64_t value) | |
1810 | { | |
1811 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1812 | } | |
1813 | ||
1814 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1815 | { | |
1816 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1817 | } | |
1818 | ||
1819 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1820 | uint64_t value) | |
1821 | { | |
1822 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1823 | } | |
1824 | ||
1825 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1826 | { | |
1827 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1828 | } | |
1829 | ||
1830 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1831 | uint64_t value) | |
1832 | { | |
1833 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1834 | } | |
1835 | ||
1836 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1837 | uint64_t value) | |
1838 | { | |
1839 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1840 | } | |
1841 | ||
edac4d8a EI |
1842 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1843 | uint64_t value) | |
1844 | { | |
1845 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1846 | ||
194cbc49 | 1847 | trace_arm_gt_cntvoff_write(value); |
edac4d8a EI |
1848 | raw_write(env, ri, value); |
1849 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1850 | } | |
1851 | ||
b0e66d95 EI |
1852 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1853 | { | |
1854 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1855 | } | |
1856 | ||
1857 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1858 | uint64_t value) | |
1859 | { | |
1860 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1861 | } | |
1862 | ||
1863 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1864 | { | |
1865 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1866 | } | |
1867 | ||
1868 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1869 | uint64_t value) | |
1870 | { | |
1871 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1872 | } | |
1873 | ||
1874 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1875 | uint64_t value) | |
1876 | { | |
1877 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1878 | } | |
1879 | ||
b4d3978c PM |
1880 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1881 | { | |
1882 | gt_timer_reset(env, ri, GTIMER_SEC); | |
1883 | } | |
1884 | ||
1885 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1886 | uint64_t value) | |
1887 | { | |
1888 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
1889 | } | |
1890 | ||
1891 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1892 | { | |
1893 | return gt_tval_read(env, ri, GTIMER_SEC); | |
1894 | } | |
1895 | ||
1896 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1897 | uint64_t value) | |
1898 | { | |
1899 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
1900 | } | |
1901 | ||
1902 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1903 | uint64_t value) | |
1904 | { | |
1905 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
1906 | } | |
1907 | ||
55d284af PM |
1908 | void arm_gt_ptimer_cb(void *opaque) |
1909 | { | |
1910 | ARMCPU *cpu = opaque; | |
1911 | ||
1912 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1913 | } | |
1914 | ||
1915 | void arm_gt_vtimer_cb(void *opaque) | |
1916 | { | |
1917 | ARMCPU *cpu = opaque; | |
1918 | ||
1919 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1920 | } | |
1921 | ||
b0e66d95 EI |
1922 | void arm_gt_htimer_cb(void *opaque) |
1923 | { | |
1924 | ARMCPU *cpu = opaque; | |
1925 | ||
1926 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1927 | } | |
1928 | ||
b4d3978c PM |
1929 | void arm_gt_stimer_cb(void *opaque) |
1930 | { | |
1931 | ARMCPU *cpu = opaque; | |
1932 | ||
1933 | gt_recalc_timer(cpu, GTIMER_SEC); | |
1934 | } | |
1935 | ||
55d284af PM |
1936 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1937 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1938 | * of software; writing it doesn't actually change the timer frequency. | |
1939 | * Our reset value matches the fixed frequency we implement the timer at. | |
1940 | */ | |
1941 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1942 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1943 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1944 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1945 | }, |
1946 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1947 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1948 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1949 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1950 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1951 | }, |
1952 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1953 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1954 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1955 | .access = PL1_RW, |
1956 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1957 | .resetvalue = 0, | |
1958 | }, | |
1959 | /* per-timer control */ | |
1960 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 1961 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1962 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1963 | .accessfn = gt_ptimer_access, |
1964 | .fieldoffset = offsetoflow32(CPUARMState, | |
1965 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1966 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 | 1967 | }, |
9ff9dd3c PM |
1968 | { .name = "CNTP_CTL(S)", |
1969 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1970 | .secure = ARM_CP_SECSTATE_S, | |
1971 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | |
1972 | .accessfn = gt_ptimer_access, | |
1973 | .fieldoffset = offsetoflow32(CPUARMState, | |
1974 | cp15.c14_timer[GTIMER_SEC].ctl), | |
1975 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1976 | }, | |
a7adc4b7 PM |
1977 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
1978 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1979 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1980 | .accessfn = gt_ptimer_access, |
55d284af PM |
1981 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1982 | .resetvalue = 0, | |
0e3eca4c | 1983 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1984 | }, |
1985 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1986 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1987 | .accessfn = gt_vtimer_access, |
1988 | .fieldoffset = offsetoflow32(CPUARMState, | |
1989 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1990 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1991 | }, |
1992 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1993 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1994 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1995 | .accessfn = gt_vtimer_access, |
55d284af PM |
1996 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1997 | .resetvalue = 0, | |
0e3eca4c | 1998 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1999 | }, |
2000 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
2001 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 2002 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 2003 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 2004 | .accessfn = gt_ptimer_access, |
0e3eca4c | 2005 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 2006 | }, |
9ff9dd3c PM |
2007 | { .name = "CNTP_TVAL(S)", |
2008 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2009 | .secure = ARM_CP_SECSTATE_S, | |
2010 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
2011 | .accessfn = gt_ptimer_access, | |
2012 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
2013 | }, | |
a7adc4b7 PM |
2014 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
2015 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 2016 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
2017 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
2018 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 2019 | }, |
55d284af | 2020 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2021 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 2022 | .accessfn = gt_vtimer_access, |
0e3eca4c | 2023 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 2024 | }, |
a7adc4b7 PM |
2025 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
2026 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 2027 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
2028 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
2029 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 2030 | }, |
55d284af PM |
2031 | /* The counter itself */ |
2032 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 2033 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 2034 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
2035 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
2036 | }, | |
2037 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
2038 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 2039 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 2040 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
2041 | }, |
2042 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 2043 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 2044 | .accessfn = gt_vct_access, |
edac4d8a | 2045 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
2046 | }, |
2047 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
2048 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 2049 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 2050 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
2051 | }, |
2052 | /* Comparison value, indicating when the timer goes off */ | |
2053 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 2054 | .secure = ARM_CP_SECSTATE_NS, |
55d284af | 2055 | .access = PL1_RW | PL0_R, |
7a0e58fa | 2056 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 2057 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 2058 | .accessfn = gt_ptimer_access, |
0e3eca4c | 2059 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 | 2060 | }, |
9ff9dd3c PM |
2061 | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
2062 | .secure = ARM_CP_SECSTATE_S, | |
2063 | .access = PL1_RW | PL0_R, | |
2064 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | |
2065 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
2066 | .accessfn = gt_ptimer_access, | |
2067 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
2068 | }, | |
a7adc4b7 PM |
2069 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
2070 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
2071 | .access = PL1_RW | PL0_R, | |
2072 | .type = ARM_CP_IO, | |
2073 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 2074 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 2075 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
2076 | }, |
2077 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
2078 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 2079 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 2080 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 2081 | .accessfn = gt_vtimer_access, |
0e3eca4c | 2082 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
2083 | }, |
2084 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
2085 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
2086 | .access = PL1_RW | PL0_R, | |
2087 | .type = ARM_CP_IO, | |
2088 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
2089 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 2090 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af | 2091 | }, |
b4d3978c PM |
2092 | /* Secure timer -- this is actually restricted to only EL3 |
2093 | * and configurably Secure-EL1 via the accessfn. | |
2094 | */ | |
2095 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
2096 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
2097 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
2098 | .accessfn = gt_stimer_access, | |
2099 | .readfn = gt_sec_tval_read, | |
2100 | .writefn = gt_sec_tval_write, | |
2101 | .resetfn = gt_sec_timer_reset, | |
2102 | }, | |
2103 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
2104 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
2105 | .type = ARM_CP_IO, .access = PL1_RW, | |
2106 | .accessfn = gt_stimer_access, | |
2107 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
2108 | .resetvalue = 0, | |
2109 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
2110 | }, | |
2111 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
2112 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
2113 | .type = ARM_CP_IO, .access = PL1_RW, | |
2114 | .accessfn = gt_stimer_access, | |
2115 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
2116 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
2117 | }, | |
55d284af PM |
2118 | REGINFO_SENTINEL |
2119 | }; | |
2120 | ||
2121 | #else | |
2122 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 2123 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
2124 | * so instead just don't register any of them. |
2125 | */ | |
6cc7a3ae | 2126 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
2127 | REGINFO_SENTINEL |
2128 | }; | |
2129 | ||
55d284af PM |
2130 | #endif |
2131 | ||
c4241c7d | 2132 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 2133 | { |
891a2fe7 | 2134 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 2135 | raw_write(env, ri, value); |
891a2fe7 | 2136 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 2137 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 2138 | } else { |
8d5c773e | 2139 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 2140 | } |
4a501606 PM |
2141 | } |
2142 | ||
2143 | #ifndef CONFIG_USER_ONLY | |
2144 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 2145 | |
3f208fd7 PM |
2146 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2147 | bool isread) | |
92611c00 PM |
2148 | { |
2149 | if (ri->opc2 & 4) { | |
87562e4f PM |
2150 | /* The ATS12NSO* operations must trap to EL3 if executed in |
2151 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
2152 | * They are simply UNDEF if executed from NS EL1. | |
2153 | * They function normally from EL2 or EL3. | |
92611c00 | 2154 | */ |
87562e4f PM |
2155 | if (arm_current_el(env) == 1) { |
2156 | if (arm_is_secure_below_el3(env)) { | |
2157 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
2158 | } | |
2159 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2160 | } | |
92611c00 PM |
2161 | } |
2162 | return CP_ACCESS_OK; | |
2163 | } | |
2164 | ||
060e8a48 | 2165 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
03ae85f8 | 2166 | MMUAccessType access_type, ARMMMUIdx mmu_idx) |
4a501606 | 2167 | { |
a8170e5e | 2168 | hwaddr phys_addr; |
4a501606 PM |
2169 | target_ulong page_size; |
2170 | int prot; | |
b7cc4e82 | 2171 | bool ret; |
01c097f7 | 2172 | uint64_t par64; |
1313e2d7 | 2173 | bool format64 = false; |
8bf5b6a9 | 2174 | MemTxAttrs attrs = {}; |
e14b5a23 | 2175 | ARMMMUFaultInfo fi = {}; |
5b2d261d | 2176 | ARMCacheAttrs cacheattrs = {}; |
4a501606 | 2177 | |
5b2d261d | 2178 | ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, |
bc52bfeb | 2179 | &prot, &page_size, &fi, &cacheattrs); |
1313e2d7 EI |
2180 | |
2181 | if (is_a64(env)) { | |
2182 | format64 = true; | |
2183 | } else if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
2184 | /* | |
2185 | * ATS1Cxx: | |
2186 | * * TTBCR.EAE determines whether the result is returned using the | |
2187 | * 32-bit or the 64-bit PAR format | |
2188 | * * Instructions executed in Hyp mode always use the 64bit format | |
2189 | * | |
2190 | * ATS1S2NSOxx uses the 64bit format if any of the following is true: | |
2191 | * * The Non-secure TTBCR.EAE bit is set to 1 | |
2192 | * * The implementation includes EL2, and the value of HCR.VM is 1 | |
2193 | * | |
2194 | * ATS1Hx always uses the 64bit format (not supported yet). | |
2195 | */ | |
2196 | format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); | |
2197 | ||
2198 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
2199 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { | |
2200 | format64 |= env->cp15.hcr_el2 & HCR_VM; | |
2201 | } else { | |
2202 | format64 |= arm_current_el(env) == 2; | |
2203 | } | |
2204 | } | |
2205 | } | |
2206 | ||
2207 | if (format64) { | |
5efe9ed4 | 2208 | /* Create a 64-bit PAR */ |
01c097f7 | 2209 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 2210 | if (!ret) { |
702a9357 | 2211 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
2212 | if (!attrs.secure) { |
2213 | par64 |= (1 << 9); /* NS */ | |
2214 | } | |
5b2d261d AB |
2215 | par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ |
2216 | par64 |= cacheattrs.shareability << 7; /* SH */ | |
4a501606 | 2217 | } else { |
5efe9ed4 PM |
2218 | uint32_t fsr = arm_fi_to_lfsc(&fi); |
2219 | ||
702a9357 | 2220 | par64 |= 1; /* F */ |
b7cc4e82 | 2221 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
2222 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
2223 | * implement virtualization and therefore there can't be a stage 2 | |
2224 | * fault. | |
2225 | */ | |
4a501606 PM |
2226 | } |
2227 | } else { | |
b7cc4e82 | 2228 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
2229 | * translation table format (with WnR always clear). |
2230 | * Convert it to a 32-bit PAR. | |
2231 | */ | |
b7cc4e82 | 2232 | if (!ret) { |
702a9357 PM |
2233 | /* We do not set any attribute bits in the PAR */ |
2234 | if (page_size == (1 << 24) | |
2235 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 2236 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 2237 | } else { |
01c097f7 | 2238 | par64 = phys_addr & 0xfffff000; |
702a9357 | 2239 | } |
8bf5b6a9 PM |
2240 | if (!attrs.secure) { |
2241 | par64 |= (1 << 9); /* NS */ | |
2242 | } | |
702a9357 | 2243 | } else { |
5efe9ed4 PM |
2244 | uint32_t fsr = arm_fi_to_sfsc(&fi); |
2245 | ||
b7cc4e82 PC |
2246 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
2247 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 2248 | } |
4a501606 | 2249 | } |
060e8a48 PM |
2250 | return par64; |
2251 | } | |
2252 | ||
2253 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
2254 | { | |
03ae85f8 | 2255 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
060e8a48 | 2256 | uint64_t par64; |
d3649702 PM |
2257 | ARMMMUIdx mmu_idx; |
2258 | int el = arm_current_el(env); | |
2259 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 2260 | |
d3649702 PM |
2261 | switch (ri->opc2 & 6) { |
2262 | case 0: | |
2263 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
2264 | switch (el) { | |
2265 | case 3: | |
2266 | mmu_idx = ARMMMUIdx_S1E3; | |
2267 | break; | |
2268 | case 2: | |
2269 | mmu_idx = ARMMMUIdx_S1NSE1; | |
2270 | break; | |
2271 | case 1: | |
2272 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2273 | break; | |
2274 | default: | |
2275 | g_assert_not_reached(); | |
2276 | } | |
2277 | break; | |
2278 | case 2: | |
2279 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
2280 | switch (el) { | |
2281 | case 3: | |
2282 | mmu_idx = ARMMMUIdx_S1SE0; | |
2283 | break; | |
2284 | case 2: | |
2285 | mmu_idx = ARMMMUIdx_S1NSE0; | |
2286 | break; | |
2287 | case 1: | |
2288 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2289 | break; | |
2290 | default: | |
2291 | g_assert_not_reached(); | |
2292 | } | |
2293 | break; | |
2294 | case 4: | |
2295 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
2296 | mmu_idx = ARMMMUIdx_S12NSE1; | |
2297 | break; | |
2298 | case 6: | |
2299 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
2300 | mmu_idx = ARMMMUIdx_S12NSE0; | |
2301 | break; | |
2302 | default: | |
2303 | g_assert_not_reached(); | |
2304 | } | |
2305 | ||
2306 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
2307 | |
2308 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 2309 | } |
060e8a48 | 2310 | |
14db7fe0 PM |
2311 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2312 | uint64_t value) | |
2313 | { | |
03ae85f8 | 2314 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
14db7fe0 PM |
2315 | uint64_t par64; |
2316 | ||
2317 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | |
2318 | ||
2319 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
2320 | } | |
2321 | ||
3f208fd7 PM |
2322 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2323 | bool isread) | |
2a47df95 PM |
2324 | { |
2325 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
2326 | return CP_ACCESS_TRAP; | |
2327 | } | |
2328 | return CP_ACCESS_OK; | |
2329 | } | |
2330 | ||
060e8a48 PM |
2331 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
2332 | uint64_t value) | |
2333 | { | |
03ae85f8 | 2334 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
d3649702 PM |
2335 | ARMMMUIdx mmu_idx; |
2336 | int secure = arm_is_secure_below_el3(env); | |
2337 | ||
2338 | switch (ri->opc2 & 6) { | |
2339 | case 0: | |
2340 | switch (ri->opc1) { | |
2341 | case 0: /* AT S1E1R, AT S1E1W */ | |
2342 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2343 | break; | |
2344 | case 4: /* AT S1E2R, AT S1E2W */ | |
2345 | mmu_idx = ARMMMUIdx_S1E2; | |
2346 | break; | |
2347 | case 6: /* AT S1E3R, AT S1E3W */ | |
2348 | mmu_idx = ARMMMUIdx_S1E3; | |
2349 | break; | |
2350 | default: | |
2351 | g_assert_not_reached(); | |
2352 | } | |
2353 | break; | |
2354 | case 2: /* AT S1E0R, AT S1E0W */ | |
2355 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2356 | break; | |
2357 | case 4: /* AT S12E1R, AT S12E1W */ | |
2a47df95 | 2358 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
d3649702 PM |
2359 | break; |
2360 | case 6: /* AT S12E0R, AT S12E0W */ | |
2a47df95 | 2361 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
d3649702 PM |
2362 | break; |
2363 | default: | |
2364 | g_assert_not_reached(); | |
2365 | } | |
060e8a48 | 2366 | |
d3649702 | 2367 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 2368 | } |
4a501606 PM |
2369 | #endif |
2370 | ||
2371 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
2372 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2373 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
2374 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
2375 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
2376 | .writefn = par_write }, |
2377 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 2378 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 2379 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 2380 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 2381 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
2382 | #endif |
2383 | REGINFO_SENTINEL | |
2384 | }; | |
2385 | ||
18032bec PM |
2386 | /* Return basic MPU access permission bits. */ |
2387 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
2388 | { | |
2389 | uint32_t ret; | |
2390 | uint32_t mask; | |
2391 | int i; | |
2392 | ret = 0; | |
2393 | mask = 3; | |
2394 | for (i = 0; i < 16; i += 2) { | |
2395 | ret |= (val >> i) & mask; | |
2396 | mask <<= 2; | |
2397 | } | |
2398 | return ret; | |
2399 | } | |
2400 | ||
2401 | /* Pad basic MPU access permission bits to extended format. */ | |
2402 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
2403 | { | |
2404 | uint32_t ret; | |
2405 | uint32_t mask; | |
2406 | int i; | |
2407 | ret = 0; | |
2408 | mask = 3; | |
2409 | for (i = 0; i < 16; i += 2) { | |
2410 | ret |= (val & mask) << i; | |
2411 | mask <<= 2; | |
2412 | } | |
2413 | return ret; | |
2414 | } | |
2415 | ||
c4241c7d PM |
2416 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2417 | uint64_t value) | |
18032bec | 2418 | { |
7e09797c | 2419 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2420 | } |
2421 | ||
c4241c7d | 2422 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2423 | { |
7e09797c | 2424 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
2425 | } |
2426 | ||
c4241c7d PM |
2427 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2428 | uint64_t value) | |
18032bec | 2429 | { |
7e09797c | 2430 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2431 | } |
2432 | ||
c4241c7d | 2433 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2434 | { |
7e09797c | 2435 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
2436 | } |
2437 | ||
6cb0b013 PC |
2438 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2439 | { | |
2440 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2441 | ||
2442 | if (!u32p) { | |
2443 | return 0; | |
2444 | } | |
2445 | ||
1bc04a88 | 2446 | u32p += env->pmsav7.rnr[M_REG_NS]; |
6cb0b013 PC |
2447 | return *u32p; |
2448 | } | |
2449 | ||
2450 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2451 | uint64_t value) | |
2452 | { | |
2453 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2454 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2455 | ||
2456 | if (!u32p) { | |
2457 | return; | |
2458 | } | |
2459 | ||
1bc04a88 | 2460 | u32p += env->pmsav7.rnr[M_REG_NS]; |
d10eb08f | 2461 | tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ |
6cb0b013 PC |
2462 | *u32p = value; |
2463 | } | |
2464 | ||
6cb0b013 PC |
2465 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2466 | uint64_t value) | |
2467 | { | |
2468 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2469 | uint32_t nrgs = cpu->pmsav7_dregion; | |
2470 | ||
2471 | if (value >= nrgs) { | |
2472 | qemu_log_mask(LOG_GUEST_ERROR, | |
2473 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
2474 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
2475 | return; | |
2476 | } | |
2477 | ||
2478 | raw_write(env, ri, value); | |
2479 | } | |
2480 | ||
2481 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
69ceea64 PM |
2482 | /* Reset for all these registers is handled in arm_cpu_reset(), |
2483 | * because the PMSAv7 is also used by M-profile CPUs, which do | |
2484 | * not register cpregs but still need the state to be reset. | |
2485 | */ | |
6cb0b013 PC |
2486 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
2487 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2488 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
69ceea64 PM |
2489 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2490 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2491 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
2492 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2493 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
69ceea64 PM |
2494 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2495 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2496 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
2497 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2498 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
69ceea64 PM |
2499 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2500 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2501 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
2502 | .access = PL1_RW, | |
1bc04a88 | 2503 | .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), |
69ceea64 PM |
2504 | .writefn = pmsav7_rgnr_write, |
2505 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2506 | REGINFO_SENTINEL |
2507 | }; | |
2508 | ||
18032bec PM |
2509 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
2510 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2511 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2512 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
2513 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
2514 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2515 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2516 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
2517 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
2518 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2519 | .access = PL1_RW, | |
7e09797c PM |
2520 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
2521 | .resetvalue = 0, }, | |
18032bec PM |
2522 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
2523 | .access = PL1_RW, | |
7e09797c PM |
2524 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
2525 | .resetvalue = 0, }, | |
ecce5c3c PM |
2526 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2527 | .access = PL1_RW, | |
2528 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
2529 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2530 | .access = PL1_RW, | |
2531 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 2532 | /* Protection region base and size registers */ |
e508a92b PM |
2533 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
2534 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2535 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
2536 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
2537 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2538 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
2539 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
2540 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2541 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
2542 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
2543 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2544 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
2545 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
2546 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2547 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
2548 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
2549 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2550 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
2551 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
2552 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2553 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
2554 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
2555 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2556 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
2557 | REGINFO_SENTINEL |
2558 | }; | |
2559 | ||
c4241c7d PM |
2560 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2561 | uint64_t value) | |
ecce5c3c | 2562 | { |
11f136ee | 2563 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
2564 | int maskshift = extract32(value, 0, 3); |
2565 | ||
e389be16 FA |
2566 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2567 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
2568 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
2569 | * using Long-desciptor translation table format */ | |
2570 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
2571 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2572 | /* In an implementation that includes the Security Extensions | |
2573 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
2574 | * Short-descriptor translation table format. | |
2575 | */ | |
2576 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
2577 | } else { | |
2578 | value &= TTBCR_N; | |
2579 | } | |
e42c4db3 | 2580 | } |
e389be16 | 2581 | |
b6af0975 | 2582 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 2583 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 2584 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
2585 | * for long-descriptor tables the TCR fields are used differently |
2586 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 2587 | */ |
11f136ee FA |
2588 | tcr->raw_tcr = value; |
2589 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
2590 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
2591 | } |
2592 | ||
c4241c7d PM |
2593 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2594 | uint64_t value) | |
d4e6df63 | 2595 | { |
00c8cb0a AF |
2596 | ARMCPU *cpu = arm_env_get_cpu(env); |
2597 | ||
d4e6df63 PM |
2598 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2599 | /* With LPAE the TTBCR could result in a change of ASID | |
2600 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2601 | */ | |
d10eb08f | 2602 | tlb_flush(CPU(cpu)); |
d4e6df63 | 2603 | } |
c4241c7d | 2604 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2605 | } |
2606 | ||
ecce5c3c PM |
2607 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2608 | { | |
11f136ee FA |
2609 | TCR *tcr = raw_ptr(env, ri); |
2610 | ||
2611 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2612 | * the TCR being reset. | |
2613 | */ | |
2614 | tcr->raw_tcr = 0; | |
2615 | tcr->mask = 0; | |
2616 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2617 | } |
2618 | ||
cb2e37df PM |
2619 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2620 | uint64_t value) | |
2621 | { | |
00c8cb0a | 2622 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2623 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2624 | |
cb2e37df | 2625 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
d10eb08f | 2626 | tlb_flush(CPU(cpu)); |
11f136ee | 2627 | tcr->raw_tcr = value; |
cb2e37df PM |
2628 | } |
2629 | ||
327ed10f PM |
2630 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2631 | uint64_t value) | |
2632 | { | |
2633 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2634 | * must flush the TLB. | |
2635 | */ | |
2636 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2637 | ARMCPU *cpu = arm_env_get_cpu(env); |
2638 | ||
d10eb08f | 2639 | tlb_flush(CPU(cpu)); |
327ed10f PM |
2640 | } |
2641 | raw_write(env, ri, value); | |
2642 | } | |
2643 | ||
b698e9cf EI |
2644 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2645 | uint64_t value) | |
2646 | { | |
2647 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2648 | CPUState *cs = CPU(cpu); | |
2649 | ||
2650 | /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ | |
2651 | if (raw_read(env, ri) != value) { | |
0336cbf8 | 2652 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
2653 | ARMMMUIdxBit_S12NSE1 | |
2654 | ARMMMUIdxBit_S12NSE0 | | |
2655 | ARMMMUIdxBit_S2NS); | |
b698e9cf EI |
2656 | raw_write(env, ri, value); |
2657 | } | |
2658 | } | |
2659 | ||
8e5d75c9 | 2660 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2661 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2662 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2663 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2664 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2665 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2666 | .access = PL1_RW, .resetvalue = 0, |
2667 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2668 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2669 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2670 | .access = PL1_RW, .resetvalue = 0, | |
2671 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2672 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2673 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2674 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2675 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2676 | .resetvalue = 0, }, | |
2677 | REGINFO_SENTINEL | |
2678 | }; | |
2679 | ||
2680 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2681 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2682 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2683 | .access = PL1_RW, | |
d81c519c | 2684 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2685 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2686 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2687 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2688 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2689 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2690 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2691 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2692 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2693 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2694 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2695 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2696 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2697 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2698 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2699 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2700 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2701 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2702 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2703 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2704 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2705 | REGINFO_SENTINEL |
2706 | }; | |
2707 | ||
c4241c7d PM |
2708 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2709 | uint64_t value) | |
1047b9d7 PM |
2710 | { |
2711 | env->cp15.c15_ticonfig = value & 0xe7; | |
2712 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2713 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2714 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2715 | } |
2716 | ||
c4241c7d PM |
2717 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2718 | uint64_t value) | |
1047b9d7 PM |
2719 | { |
2720 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2721 | } |
2722 | ||
c4241c7d PM |
2723 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2724 | uint64_t value) | |
1047b9d7 PM |
2725 | { |
2726 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2727 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2728 | } |
2729 | ||
c4241c7d PM |
2730 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2731 | uint64_t value) | |
c4804214 PM |
2732 | { |
2733 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2734 | * containing a dirty line; cache flush operations have to reset these. | |
2735 | */ | |
2736 | env->cp15.c15_i_max = 0x000; | |
2737 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2738 | } |
2739 | ||
18032bec PM |
2740 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2741 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2742 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2743 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2744 | .resetvalue = 0, }, |
1047b9d7 PM |
2745 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2746 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2747 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2748 | .access = PL1_RW, | |
2749 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2750 | .writefn = omap_ticonfig_write }, | |
2751 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2752 | .access = PL1_RW, | |
2753 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2754 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2755 | .access = PL1_RW, .resetvalue = 0xff0, | |
2756 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2757 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2758 | .access = PL1_RW, | |
2759 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2760 | .writefn = omap_threadid_write }, | |
2761 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2762 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2763 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2764 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2765 | /* TODO: Peripheral port remap register: | |
2766 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2767 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2768 | * when MMU is off. | |
2769 | */ | |
c4804214 | 2770 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2771 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2772 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2773 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2774 | { .name = "C9", .cp = 15, .crn = 9, |
2775 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2776 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2777 | REGINFO_SENTINEL |
2778 | }; | |
2779 | ||
c4241c7d PM |
2780 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2781 | uint64_t value) | |
1047b9d7 | 2782 | { |
c0f4af17 | 2783 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2784 | } |
2785 | ||
2786 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2787 | { .name = "XSCALE_CPAR", | |
2788 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2789 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2790 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2791 | { .name = "XSCALE_AUXCR", |
2792 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2793 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2794 | .resetvalue = 0, }, | |
3b771579 PM |
2795 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2796 | * and hope the guest does not really rely on cache behaviour. | |
2797 | */ | |
2798 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2799 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2800 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2801 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2802 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2803 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2804 | { .name = "XSCALE_DCACHE_LOCK", | |
2805 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2806 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2807 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2808 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2809 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2810 | REGINFO_SENTINEL |
2811 | }; | |
2812 | ||
2813 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2814 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2815 | * implementation of this implementation-defined space. | |
2816 | * Ideally this should eventually disappear in favour of actually | |
2817 | * implementing the correct behaviour for all cores. | |
2818 | */ | |
2819 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2820 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2821 | .access = PL1_RW, |
7a0e58fa | 2822 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2823 | .resetvalue = 0 }, |
18032bec PM |
2824 | REGINFO_SENTINEL |
2825 | }; | |
2826 | ||
c4804214 PM |
2827 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2828 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2829 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2830 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2831 | .resetvalue = 0 }, |
c4804214 PM |
2832 | REGINFO_SENTINEL |
2833 | }; | |
2834 | ||
2835 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2836 | /* We never have a a block transfer operation in progress */ | |
2837 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2838 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2839 | .resetvalue = 0 }, |
30b05bba PM |
2840 | /* The cache ops themselves: these all NOP for QEMU */ |
2841 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2842 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2843 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2844 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2845 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2846 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2847 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2848 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2849 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2850 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2851 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2852 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2853 | REGINFO_SENTINEL |
2854 | }; | |
2855 | ||
2856 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2857 | /* The cache test-and-clean instructions always return (1 << 30) | |
2858 | * to indicate that there are no dirty cache lines. | |
2859 | */ | |
2860 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2861 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2862 | .resetvalue = (1 << 30) }, |
c4804214 | 2863 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2864 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2865 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2866 | REGINFO_SENTINEL |
2867 | }; | |
2868 | ||
34f90529 PM |
2869 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2870 | /* Ignore ReadBuffer accesses */ | |
2871 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2872 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2873 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2874 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2875 | REGINFO_SENTINEL |
2876 | }; | |
2877 | ||
731de9e6 EI |
2878 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2879 | { | |
2880 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2881 | unsigned int cur_el = arm_current_el(env); | |
2882 | bool secure = arm_is_secure(env); | |
2883 | ||
2884 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2885 | return env->cp15.vpidr_el2; | |
2886 | } | |
2887 | return raw_read(env, ri); | |
2888 | } | |
2889 | ||
06a7e647 | 2890 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 2891 | { |
eb5e1d3c PF |
2892 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2893 | uint64_t mpidr = cpu->mp_affinity; | |
2894 | ||
81bdde9d | 2895 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2896 | mpidr |= (1U << 31); |
81bdde9d PM |
2897 | /* Cores which are uniprocessor (non-coherent) |
2898 | * but still implement the MP extensions set | |
a8e81b31 | 2899 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2900 | */ |
a8e81b31 PC |
2901 | if (cpu->mp_is_up) { |
2902 | mpidr |= (1u << 30); | |
2903 | } | |
81bdde9d | 2904 | } |
c4241c7d | 2905 | return mpidr; |
81bdde9d PM |
2906 | } |
2907 | ||
06a7e647 EI |
2908 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2909 | { | |
f0d574d6 EI |
2910 | unsigned int cur_el = arm_current_el(env); |
2911 | bool secure = arm_is_secure(env); | |
2912 | ||
2913 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2914 | return env->cp15.vmpidr_el2; | |
2915 | } | |
06a7e647 EI |
2916 | return mpidr_read_val(env); |
2917 | } | |
2918 | ||
81bdde9d | 2919 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
4b7fff2f PM |
2920 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2921 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2922 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2923 | REGINFO_SENTINEL |
2924 | }; | |
2925 | ||
7ac681cf | 2926 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2927 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2928 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2929 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2930 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2931 | .resetvalue = 0 }, |
b0fe2427 | 2932 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2933 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2934 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2935 | .resetvalue = 0 }, |
891a2fe7 | 2936 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2937 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2938 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2939 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2940 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2941 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2942 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2943 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2944 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2945 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2946 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2947 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2948 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2949 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2950 | REGINFO_SENTINEL |
2951 | }; | |
2952 | ||
c4241c7d | 2953 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2954 | { |
c4241c7d | 2955 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2956 | } |
2957 | ||
c4241c7d PM |
2958 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2959 | uint64_t value) | |
b0d2b7d0 PM |
2960 | { |
2961 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2962 | } |
2963 | ||
c4241c7d | 2964 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2965 | { |
c4241c7d | 2966 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2967 | } |
2968 | ||
c4241c7d PM |
2969 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2970 | uint64_t value) | |
b0d2b7d0 PM |
2971 | { |
2972 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2973 | } |
2974 | ||
3f208fd7 PM |
2975 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2976 | bool isread) | |
c2b820fe | 2977 | { |
137feaa9 | 2978 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2979 | return CP_ACCESS_TRAP; |
2980 | } | |
2981 | return CP_ACCESS_OK; | |
2982 | } | |
2983 | ||
2984 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2985 | uint64_t value) | |
2986 | { | |
2987 | env->daif = value & PSTATE_DAIF; | |
2988 | } | |
2989 | ||
8af35c37 | 2990 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
3f208fd7 PM |
2991 | const ARMCPRegInfo *ri, |
2992 | bool isread) | |
8af35c37 PM |
2993 | { |
2994 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2995 | * SCTLR_EL1.UCI is set. | |
2996 | */ | |
137feaa9 | 2997 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2998 | return CP_ACCESS_TRAP; |
2999 | } | |
3000 | return CP_ACCESS_OK; | |
3001 | } | |
3002 | ||
dbb1fb27 AB |
3003 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
3004 | * Page D4-1736 (DDI0487A.b) | |
3005 | */ | |
3006 | ||
fd3ed969 PM |
3007 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3008 | uint64_t value) | |
168aa23b | 3009 | { |
a67cf277 | 3010 | CPUState *cs = ENV_GET_CPU(env); |
dbb1fb27 | 3011 | |
fd3ed969 | 3012 | if (arm_is_secure_below_el3(env)) { |
0336cbf8 | 3013 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3014 | ARMMMUIdxBit_S1SE1 | |
3015 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 | 3016 | } else { |
0336cbf8 | 3017 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3018 | ARMMMUIdxBit_S12NSE1 | |
3019 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 | 3020 | } |
168aa23b PM |
3021 | } |
3022 | ||
fd3ed969 PM |
3023 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3024 | uint64_t value) | |
168aa23b | 3025 | { |
a67cf277 | 3026 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 | 3027 | bool sec = arm_is_secure_below_el3(env); |
dbb1fb27 | 3028 | |
a67cf277 AB |
3029 | if (sec) { |
3030 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3031 | ARMMMUIdxBit_S1SE1 | |
3032 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
3033 | } else { |
3034 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3035 | ARMMMUIdxBit_S12NSE1 | |
3036 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 | 3037 | } |
168aa23b PM |
3038 | } |
3039 | ||
fd3ed969 PM |
3040 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3041 | uint64_t value) | |
168aa23b | 3042 | { |
fd3ed969 PM |
3043 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
3044 | * stage 2 translations, whereas most other scopes only invalidate | |
3045 | * stage 1 translations. | |
3046 | */ | |
00c8cb0a | 3047 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 PM |
3048 | CPUState *cs = CPU(cpu); |
3049 | ||
3050 | if (arm_is_secure_below_el3(env)) { | |
0336cbf8 | 3051 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3052 | ARMMMUIdxBit_S1SE1 | |
3053 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 PM |
3054 | } else { |
3055 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
0336cbf8 | 3056 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3057 | ARMMMUIdxBit_S12NSE1 | |
3058 | ARMMMUIdxBit_S12NSE0 | | |
3059 | ARMMMUIdxBit_S2NS); | |
fd3ed969 | 3060 | } else { |
0336cbf8 | 3061 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3062 | ARMMMUIdxBit_S12NSE1 | |
3063 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 PM |
3064 | } |
3065 | } | |
168aa23b PM |
3066 | } |
3067 | ||
fd3ed969 | 3068 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
3069 | uint64_t value) |
3070 | { | |
fd3ed969 PM |
3071 | ARMCPU *cpu = arm_env_get_cpu(env); |
3072 | CPUState *cs = CPU(cpu); | |
3073 | ||
8bd5c820 | 3074 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
fd3ed969 PM |
3075 | } |
3076 | ||
43efaa33 PM |
3077 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3078 | uint64_t value) | |
3079 | { | |
3080 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3081 | CPUState *cs = CPU(cpu); | |
3082 | ||
8bd5c820 | 3083 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3084 | } |
3085 | ||
fd3ed969 PM |
3086 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3087 | uint64_t value) | |
3088 | { | |
3089 | /* Note that the 'ALL' scope must invalidate both stage 1 and | |
3090 | * stage 2 translations, whereas most other scopes only invalidate | |
3091 | * stage 1 translations. | |
3092 | */ | |
a67cf277 | 3093 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 PM |
3094 | bool sec = arm_is_secure_below_el3(env); |
3095 | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); | |
a67cf277 AB |
3096 | |
3097 | if (sec) { | |
3098 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3099 | ARMMMUIdxBit_S1SE1 | |
3100 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
3101 | } else if (has_el2) { |
3102 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3103 | ARMMMUIdxBit_S12NSE1 | |
3104 | ARMMMUIdxBit_S12NSE0 | | |
3105 | ARMMMUIdxBit_S2NS); | |
a67cf277 AB |
3106 | } else { |
3107 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3108 | ARMMMUIdxBit_S12NSE1 | |
3109 | ARMMMUIdxBit_S12NSE0); | |
fa439fc5 PM |
3110 | } |
3111 | } | |
3112 | ||
2bfb9d75 PM |
3113 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3114 | uint64_t value) | |
3115 | { | |
a67cf277 | 3116 | CPUState *cs = ENV_GET_CPU(env); |
2bfb9d75 | 3117 | |
8bd5c820 | 3118 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
2bfb9d75 PM |
3119 | } |
3120 | ||
43efaa33 PM |
3121 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3122 | uint64_t value) | |
3123 | { | |
a67cf277 | 3124 | CPUState *cs = ENV_GET_CPU(env); |
43efaa33 | 3125 | |
8bd5c820 | 3126 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3127 | } |
3128 | ||
fd3ed969 PM |
3129 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3130 | uint64_t value) | |
3131 | { | |
3132 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
3133 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
3134 | * since we don't support flush-for-specific-ASID-only or | |
3135 | * flush-last-level-only. | |
3136 | */ | |
3137 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3138 | CPUState *cs = CPU(cpu); | |
3139 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3140 | ||
3141 | if (arm_is_secure_below_el3(env)) { | |
0336cbf8 | 3142 | tlb_flush_page_by_mmuidx(cs, pageaddr, |
8bd5c820 PM |
3143 | ARMMMUIdxBit_S1SE1 | |
3144 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 | 3145 | } else { |
0336cbf8 | 3146 | tlb_flush_page_by_mmuidx(cs, pageaddr, |
8bd5c820 PM |
3147 | ARMMMUIdxBit_S12NSE1 | |
3148 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 PM |
3149 | } |
3150 | } | |
3151 | ||
3152 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3153 | uint64_t value) | |
fa439fc5 | 3154 | { |
fd3ed969 PM |
3155 | /* Invalidate by VA, EL2 |
3156 | * Currently handles both VAE2 and VALE2, since we don't support | |
3157 | * flush-last-level-only. | |
3158 | */ | |
3159 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3160 | CPUState *cs = CPU(cpu); | |
3161 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3162 | ||
8bd5c820 | 3163 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
fd3ed969 PM |
3164 | } |
3165 | ||
43efaa33 PM |
3166 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3167 | uint64_t value) | |
3168 | { | |
3169 | /* Invalidate by VA, EL3 | |
3170 | * Currently handles both VAE3 and VALE3, since we don't support | |
3171 | * flush-last-level-only. | |
3172 | */ | |
3173 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3174 | CPUState *cs = CPU(cpu); | |
3175 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3176 | ||
8bd5c820 | 3177 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3178 | } |
3179 | ||
fd3ed969 PM |
3180 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3181 | uint64_t value) | |
3182 | { | |
a67cf277 AB |
3183 | ARMCPU *cpu = arm_env_get_cpu(env); |
3184 | CPUState *cs = CPU(cpu); | |
fd3ed969 | 3185 | bool sec = arm_is_secure_below_el3(env); |
fa439fc5 PM |
3186 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
3187 | ||
a67cf277 AB |
3188 | if (sec) { |
3189 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, | |
8bd5c820 PM |
3190 | ARMMMUIdxBit_S1SE1 | |
3191 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
3192 | } else { |
3193 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, | |
8bd5c820 PM |
3194 | ARMMMUIdxBit_S12NSE1 | |
3195 | ARMMMUIdxBit_S12NSE0); | |
fa439fc5 PM |
3196 | } |
3197 | } | |
3198 | ||
fd3ed969 PM |
3199 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3200 | uint64_t value) | |
fa439fc5 | 3201 | { |
a67cf277 | 3202 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 | 3203 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
fa439fc5 | 3204 | |
a67cf277 | 3205 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3206 | ARMMMUIdxBit_S1E2); |
fa439fc5 PM |
3207 | } |
3208 | ||
43efaa33 PM |
3209 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3210 | uint64_t value) | |
3211 | { | |
a67cf277 | 3212 | CPUState *cs = ENV_GET_CPU(env); |
43efaa33 PM |
3213 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
3214 | ||
a67cf277 | 3215 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3216 | ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3217 | } |
3218 | ||
cea66e91 PM |
3219 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3220 | uint64_t value) | |
3221 | { | |
3222 | /* Invalidate by IPA. This has to invalidate any structures that | |
3223 | * contain only stage 2 translation information, but does not need | |
3224 | * to apply to structures that contain combined stage 1 and stage 2 | |
3225 | * translation information. | |
3226 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
3227 | */ | |
3228 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3229 | CPUState *cs = CPU(cpu); | |
3230 | uint64_t pageaddr; | |
3231 | ||
3232 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
3233 | return; | |
3234 | } | |
3235 | ||
3236 | pageaddr = sextract64(value << 12, 0, 48); | |
3237 | ||
8bd5c820 | 3238 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
cea66e91 PM |
3239 | } |
3240 | ||
3241 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3242 | uint64_t value) | |
3243 | { | |
a67cf277 | 3244 | CPUState *cs = ENV_GET_CPU(env); |
cea66e91 PM |
3245 | uint64_t pageaddr; |
3246 | ||
3247 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
3248 | return; | |
3249 | } | |
3250 | ||
3251 | pageaddr = sextract64(value << 12, 0, 48); | |
3252 | ||
a67cf277 | 3253 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3254 | ARMMMUIdxBit_S2NS); |
cea66e91 PM |
3255 | } |
3256 | ||
3f208fd7 PM |
3257 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3258 | bool isread) | |
aca3f40b PM |
3259 | { |
3260 | /* We don't implement EL2, so the only control on DC ZVA is the | |
3261 | * bit in the SCTLR which can prohibit access for EL0. | |
3262 | */ | |
137feaa9 | 3263 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
3264 | return CP_ACCESS_TRAP; |
3265 | } | |
3266 | return CP_ACCESS_OK; | |
3267 | } | |
3268 | ||
3269 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3270 | { | |
3271 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3272 | int dzp_bit = 1 << 4; | |
3273 | ||
3274 | /* DZP indicates whether DC ZVA access is allowed */ | |
3f208fd7 | 3275 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
aca3f40b PM |
3276 | dzp_bit = 0; |
3277 | } | |
3278 | return cpu->dcz_blocksize | dzp_bit; | |
3279 | } | |
3280 | ||
3f208fd7 PM |
3281 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3282 | bool isread) | |
f502cfc2 | 3283 | { |
cdcf1405 | 3284 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
3285 | /* Access to SP_EL0 is undefined if it's being used as |
3286 | * the stack pointer. | |
3287 | */ | |
3288 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3289 | } | |
3290 | return CP_ACCESS_OK; | |
3291 | } | |
3292 | ||
3293 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3294 | { | |
3295 | return env->pstate & PSTATE_SP; | |
3296 | } | |
3297 | ||
3298 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
3299 | { | |
3300 | update_spsel(env, val); | |
3301 | } | |
3302 | ||
137feaa9 FA |
3303 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3304 | uint64_t value) | |
3305 | { | |
3306 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3307 | ||
3308 | if (raw_read(env, ri) == value) { | |
3309 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
3310 | * to do a lot of pointless SCTLR writes. | |
3311 | */ | |
3312 | return; | |
3313 | } | |
3314 | ||
06312feb PM |
3315 | if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { |
3316 | /* M bit is RAZ/WI for PMSA with no MPU implemented */ | |
3317 | value &= ~SCTLR_M; | |
3318 | } | |
3319 | ||
137feaa9 FA |
3320 | raw_write(env, ri, value); |
3321 | /* ??? Lots of these bits are not implemented. */ | |
3322 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
d10eb08f | 3323 | tlb_flush(CPU(cpu)); |
137feaa9 FA |
3324 | } |
3325 | ||
3f208fd7 PM |
3326 | static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3327 | bool isread) | |
03fbf20f PM |
3328 | { |
3329 | if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { | |
f2cae609 | 3330 | return CP_ACCESS_TRAP_FP_EL2; |
03fbf20f PM |
3331 | } |
3332 | if (env->cp15.cptr_el[3] & CPTR_TFP) { | |
f2cae609 | 3333 | return CP_ACCESS_TRAP_FP_EL3; |
03fbf20f PM |
3334 | } |
3335 | return CP_ACCESS_OK; | |
3336 | } | |
3337 | ||
a8d64e73 PM |
3338 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3339 | uint64_t value) | |
3340 | { | |
3341 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; | |
3342 | } | |
3343 | ||
b0d2b7d0 PM |
3344 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
3345 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
3346 | * significantly for system emulation of AArch64 CPUs. | |
3347 | */ | |
3348 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
3349 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
3350 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
3351 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
3352 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 3353 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
3354 | .access = PL0_RW, .accessfn = aa64_daif_access, |
3355 | .fieldoffset = offsetof(CPUARMState, daif), | |
3356 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
3357 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
3358 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
3359 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
3360 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
3361 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
3362 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
3363 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
3364 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 3365 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
3366 | .readfn = aa64_dczid_read }, |
3367 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
3368 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
3369 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
3370 | #ifndef CONFIG_USER_ONLY | |
3371 | /* Avoid overhead of an access check that always passes in user-mode */ | |
3372 | .accessfn = aa64_zva_access, | |
3373 | #endif | |
3374 | }, | |
0eef9d98 PM |
3375 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
3376 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
3377 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
3378 | /* Cache ops: all NOPs since we don't emulate caches */ |
3379 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
3380 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3381 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3382 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
3383 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3384 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3385 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
3386 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
3387 | .access = PL0_W, .type = ARM_CP_NOP, | |
3388 | .accessfn = aa64_cacheop_access }, | |
3389 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
3390 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3391 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3392 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
3393 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3394 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3395 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
3396 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
3397 | .access = PL0_W, .type = ARM_CP_NOP, | |
3398 | .accessfn = aa64_cacheop_access }, | |
3399 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
3400 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3401 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3402 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
3403 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
3404 | .access = PL0_W, .type = ARM_CP_NOP, | |
3405 | .accessfn = aa64_cacheop_access }, | |
3406 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
3407 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
3408 | .access = PL0_W, .type = ARM_CP_NOP, | |
3409 | .accessfn = aa64_cacheop_access }, | |
3410 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
3411 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3412 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
3413 | /* TLBI operations */ |
3414 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 3415 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 3416 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3417 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3418 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3419 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 3420 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3421 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3422 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3423 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 3424 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3425 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3426 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3427 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 3428 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3429 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3430 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3431 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3432 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3433 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3434 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3435 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3436 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3437 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3438 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3439 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 3440 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3441 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3442 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3443 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 3444 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3445 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3446 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3447 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 3448 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3449 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3450 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3451 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 3452 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3453 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3454 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3455 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3456 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3457 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3458 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3459 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3460 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3461 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
3462 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
3463 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3464 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3465 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
3466 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
3467 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3468 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3469 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
83ddf975 PM |
3470 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
3471 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3472 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3473 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
3474 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
3475 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
3476 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3477 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
3478 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
3479 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3480 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3481 | .writefn = tlbi_aa64_ipas2e1_write }, | |
3482 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | |
3483 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3484 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3485 | .writefn = tlbi_aa64_ipas2e1_write }, | |
83ddf975 PM |
3486 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
3487 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3488 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3489 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
3490 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
3491 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
3492 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3493 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
3494 | #ifndef CONFIG_USER_ONLY |
3495 | /* 64 bit address translation operations */ | |
3496 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
3497 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 3498 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3499 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
3500 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 3501 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3502 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
3503 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 3504 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3505 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
3506 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 3507 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2a47df95 | 3508 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 3509 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
2a47df95 PM |
3510 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3511 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3512 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
2a47df95 PM |
3513 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3514 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3515 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
2a47df95 PM |
3516 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3517 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3518 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
2a47df95 PM |
3519 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3520 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | |
3521 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
3522 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
3523 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3524 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | |
3525 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
3526 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
c96fc9b5 EI |
3527 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
3528 | .type = ARM_CP_ALIAS, | |
3529 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
3530 | .access = PL1_RW, .resetvalue = 0, | |
3531 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
3532 | .writefn = par_write }, | |
19525524 | 3533 | #endif |
995939a6 | 3534 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 3535 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3536 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 3537 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3538 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 3539 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 3540 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3541 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 3542 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3543 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
541ef8c2 SS |
3544 | { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
3545 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3546 | .writefn = tlbimva_hyp_write }, | |
3547 | { .name = "TLBIMVALHIS", | |
3548 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3549 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3550 | .writefn = tlbimva_hyp_is_write }, | |
3551 | { .name = "TLBIIPAS2", | |
3552 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3553 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3554 | .writefn = tlbiipas2_write }, | |
3555 | { .name = "TLBIIPAS2IS", | |
3556 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3557 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3558 | .writefn = tlbiipas2_is_write }, | |
3559 | { .name = "TLBIIPAS2L", | |
3560 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3561 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3562 | .writefn = tlbiipas2_write }, | |
3563 | { .name = "TLBIIPAS2LIS", | |
3564 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3565 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3566 | .writefn = tlbiipas2_is_write }, | |
9449fdf6 PM |
3567 | /* 32 bit cache operations */ |
3568 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3569 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3570 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
3571 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3572 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3573 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3574 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
3575 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3576 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
3577 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3578 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
3579 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3580 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3581 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3582 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3583 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3584 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
3585 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3586 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3587 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3588 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
3589 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3590 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
3591 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3592 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3593 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3594 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
3595 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
3596 | .access = PL1_RW, .resetvalue = 0, | |
3597 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3598 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
3599 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 3600 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3601 | .type = ARM_CP_ALIAS, |
a0618a19 | 3602 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
3603 | .access = PL1_RW, |
3604 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 3605 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3606 | .type = ARM_CP_ALIAS, |
a65f1de9 | 3607 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3608 | .access = PL1_RW, |
3609 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, | |
f502cfc2 PM |
3610 | /* We rely on the access checks not allowing the guest to write to the |
3611 | * state field when SPSel indicates that it's being used as the stack | |
3612 | * pointer. | |
3613 | */ | |
3614 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
3615 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
3616 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 3617 | .type = ARM_CP_ALIAS, |
f502cfc2 | 3618 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
3619 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
3620 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3621 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3622 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
3623 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
3624 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 3625 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 3626 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
03fbf20f PM |
3627 | { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
3628 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, | |
3629 | .type = ARM_CP_ALIAS, | |
3630 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), | |
3631 | .access = PL2_RW, .accessfn = fpexc32_access }, | |
6a43e0b6 PM |
3632 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
3633 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
3634 | .access = PL2_RW, .resetvalue = 0, | |
3635 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3636 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3637 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | |
3638 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
3639 | .access = PL2_RW, .resetvalue = 0, | |
3640 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
3641 | { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, | |
3642 | .type = ARM_CP_ALIAS, | |
3643 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, | |
3644 | .access = PL2_RW, | |
3645 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, | |
3646 | { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, | |
3647 | .type = ARM_CP_ALIAS, | |
3648 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, | |
3649 | .access = PL2_RW, | |
3650 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, | |
3651 | { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, | |
3652 | .type = ARM_CP_ALIAS, | |
3653 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, | |
3654 | .access = PL2_RW, | |
3655 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, | |
3656 | { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, | |
3657 | .type = ARM_CP_ALIAS, | |
3658 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, | |
3659 | .access = PL2_RW, | |
3660 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, | |
a8d64e73 PM |
3661 | { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
3662 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, | |
3663 | .resetvalue = 0, | |
3664 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, | |
3665 | { .name = "SDCR", .type = ARM_CP_ALIAS, | |
3666 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, | |
3667 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, | |
3668 | .writefn = sdcr_write, | |
3669 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, | |
b0d2b7d0 PM |
3670 | REGINFO_SENTINEL |
3671 | }; | |
3672 | ||
d42e3c26 | 3673 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 3674 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
3675 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3676 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3677 | .access = PL2_RW, | |
3678 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 3679 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3680 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
3681 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
3682 | .access = PL2_RW, | |
3683 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
3684 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3685 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3686 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
3687 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3688 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3689 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3690 | .resetvalue = 0 }, | |
3691 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3692 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3693 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2179ef95 PM |
3694 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3695 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3696 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3697 | .resetvalue = 0 }, | |
3698 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3699 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3700 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3701 | .resetvalue = 0 }, | |
37cd6c24 PM |
3702 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3703 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3704 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3705 | .resetvalue = 0 }, | |
3706 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3707 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3708 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3709 | .resetvalue = 0 }, | |
06ec4c8c EI |
3710 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3711 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3712 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e9c2fe EI |
3713 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
3714 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3715 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3716 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b698e9cf EI |
3717 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3718 | .cp = 15, .opc1 = 6, .crm = 2, | |
3719 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3720 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | |
3721 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3722 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3723 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
3724 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3725 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3726 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
3727 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3728 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3729 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
3730 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3731 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3732 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3733 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3734 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3735 | .resetvalue = 0 }, | |
0b6440af EI |
3736 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3737 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3738 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
3739 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3740 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3741 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3742 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3743 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3744 | .resetvalue = 0 }, | |
b0e66d95 EI |
3745 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3746 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3747 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3748 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3749 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3750 | .resetvalue = 0 }, | |
3751 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3752 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3753 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3754 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3755 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3756 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
14cc7b54 SF |
3757 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
3758 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
d6c8cf81 PM |
3759 | .access = PL2_RW, .accessfn = access_tda, |
3760 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
59e05530 EI |
3761 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
3762 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3763 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3764 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2a5a9abd AF |
3765 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
3766 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
3767 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
3768 | REGINFO_SENTINEL |
3769 | }; | |
3770 | ||
f149e3e8 EI |
3771 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
3772 | { | |
3773 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3774 | uint64_t valid_mask = HCR_MASK; | |
3775 | ||
3776 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3777 | valid_mask &= ~HCR_HCD; | |
77077a83 JK |
3778 | } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
3779 | /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. | |
3780 | * However, if we're using the SMC PSCI conduit then QEMU is | |
3781 | * effectively acting like EL3 firmware and so the guest at | |
3782 | * EL2 should retain the ability to prevent EL1 from being | |
3783 | * able to make SMC calls into the ersatz firmware, so in | |
3784 | * that case HCR.TSC should be read/write. | |
3785 | */ | |
f149e3e8 EI |
3786 | valid_mask &= ~HCR_TSC; |
3787 | } | |
3788 | ||
3789 | /* Clear RES0 bits. */ | |
3790 | value &= valid_mask; | |
3791 | ||
3792 | /* These bits change the MMU setup: | |
3793 | * HCR_VM enables stage 2 translation | |
3794 | * HCR_PTW forbids certain page-table setups | |
3795 | * HCR_DC Disables stage1 and enables stage2 translation | |
3796 | */ | |
3797 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
d10eb08f | 3798 | tlb_flush(CPU(cpu)); |
f149e3e8 EI |
3799 | } |
3800 | raw_write(env, ri, value); | |
3801 | } | |
3802 | ||
4771cd01 | 3803 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
3804 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
3805 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
3806 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
3807 | .writefn = hcr_write }, | |
3b685ba7 | 3808 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3809 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3810 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
3811 | .access = PL2_RW, | |
3812 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 3813 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
3814 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
3815 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
63b60551 EI |
3816 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
3817 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
3818 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 3819 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3820 | .type = ARM_CP_ALIAS, |
3b685ba7 | 3821 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3822 | .access = PL2_RW, |
3823 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, | |
d42e3c26 EI |
3824 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3825 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3826 | .access = PL2_RW, .writefn = vbar_write, | |
3827 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
3828 | .resetvalue = 0 }, | |
884b4dee GB |
3829 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
3830 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3831 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3832 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
3833 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3834 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3835 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3836 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
3837 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3838 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3839 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
3840 | .resetvalue = 0 }, | |
3841 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3842 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3843 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3844 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
3845 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3846 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3847 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3848 | .resetvalue = 0 }, | |
3849 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
3850 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3851 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3852 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3853 | .resetvalue = 0 }, | |
37cd6c24 PM |
3854 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3855 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3856 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3857 | .resetvalue = 0 }, | |
3858 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3859 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3860 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3861 | .resetvalue = 0 }, | |
06ec4c8c EI |
3862 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3863 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
3864 | .access = PL2_RW, |
3865 | /* no .writefn needed as this can't cause an ASID change; | |
3866 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
3867 | */ | |
06ec4c8c | 3868 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
68e9c2fe EI |
3869 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
3870 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 | 3871 | .type = ARM_CP_ALIAS, |
68e9c2fe EI |
3872 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
3873 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
3874 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
3875 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 PM |
3876 | .access = PL2_RW, |
3877 | /* no .writefn needed as this can't cause an ASID change; | |
3878 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
3879 | */ | |
68e9c2fe | 3880 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
b698e9cf EI |
3881 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3882 | .cp = 15, .opc1 = 6, .crm = 2, | |
3883 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
3884 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3885 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
3886 | .writefn = vttbr_write }, | |
3887 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3888 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3889 | .access = PL2_RW, .writefn = vttbr_write, | |
3890 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
3891 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3892 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3893 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3894 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
3895 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3896 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3897 | .access = PL2_RW, .resetvalue = 0, | |
3898 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
3899 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3900 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3901 | .access = PL2_RW, .resetvalue = 0, | |
3902 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
3903 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3904 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 3905 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
541ef8c2 SS |
3906 | { .name = "TLBIALLNSNH", |
3907 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3908 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3909 | .writefn = tlbiall_nsnh_write }, | |
3910 | { .name = "TLBIALLNSNHIS", | |
3911 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3912 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3913 | .writefn = tlbiall_nsnh_is_write }, | |
3914 | { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3915 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3916 | .writefn = tlbiall_hyp_write }, | |
3917 | { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3918 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3919 | .writefn = tlbiall_hyp_is_write }, | |
3920 | { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3921 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3922 | .writefn = tlbimva_hyp_write }, | |
3923 | { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3924 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3925 | .writefn = tlbimva_hyp_is_write }, | |
51da9014 EI |
3926 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
3927 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3928 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3929 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
3930 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
3931 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3932 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3933 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
3934 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
3935 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
3936 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3937 | .writefn = tlbi_aa64_vae2_write }, | |
3938 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
3939 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3940 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3941 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
3942 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
3943 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3944 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3945 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
3946 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
3947 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3948 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3949 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 3950 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
3951 | /* Unlike the other EL2-related AT operations, these must |
3952 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
3953 | * define them here rather than with the rest of the AT ops. | |
3954 | */ | |
3955 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
3956 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3957 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3958 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3959 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | |
3960 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3961 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3962 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
14db7fe0 PM |
3963 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
3964 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
3965 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
3966 | * to behave as if SCR.NS was 1. | |
3967 | */ | |
3968 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3969 | .access = PL2_W, | |
3970 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
3971 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3972 | .access = PL2_W, | |
3973 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
0b6440af EI |
3974 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3975 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3976 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
3977 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
3978 | * both ARMv7 and ARMv8. | |
3979 | */ | |
3980 | .access = PL2_RW, .resetvalue = 3, | |
3981 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
3982 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3983 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3984 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
3985 | .writefn = gt_cntvoff_write, | |
3986 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
3987 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3988 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
3989 | .writefn = gt_cntvoff_write, | |
3990 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
3991 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3992 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3993 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3994 | .type = ARM_CP_IO, .access = PL2_RW, | |
3995 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3996 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3997 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3998 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
3999 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
4000 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
4001 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
d44ec156 | 4002 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
b0e66d95 EI |
4003 | .resetfn = gt_hyp_timer_reset, |
4004 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
4005 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
4006 | .type = ARM_CP_IO, | |
4007 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
4008 | .access = PL2_RW, | |
4009 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
4010 | .resetvalue = 0, | |
4011 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 4012 | #endif |
14cc7b54 SF |
4013 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
4014 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we | |
4015 | * don't impelment any PMU event counters, so using zero as a reset | |
4016 | * value for MDCR_EL2 is okay | |
4017 | */ | |
4018 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, | |
4019 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
4020 | .access = PL2_RW, .resetvalue = 0, | |
4021 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, | |
59e05530 EI |
4022 | { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
4023 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
4024 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4025 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
4026 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, | |
4027 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
4028 | .access = PL2_RW, | |
4029 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
2a5a9abd AF |
4030 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
4031 | .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
4032 | .access = PL2_RW, | |
4033 | .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, | |
3b685ba7 EI |
4034 | REGINFO_SENTINEL |
4035 | }; | |
4036 | ||
2f027fc5 PM |
4037 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4038 | bool isread) | |
4039 | { | |
4040 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. | |
4041 | * At Secure EL1 it traps to EL3. | |
4042 | */ | |
4043 | if (arm_current_el(env) == 3) { | |
4044 | return CP_ACCESS_OK; | |
4045 | } | |
4046 | if (arm_is_secure_below_el3(env)) { | |
4047 | return CP_ACCESS_TRAP_EL3; | |
4048 | } | |
4049 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ | |
4050 | if (isread) { | |
4051 | return CP_ACCESS_OK; | |
4052 | } | |
4053 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
4054 | } | |
4055 | ||
60fb1a87 GB |
4056 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
4057 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
4058 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
4059 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
4060 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 4061 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 | 4062 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
efe4a274 PM |
4063 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
4064 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 4065 | .writefn = scr_write }, |
60fb1a87 GB |
4066 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
4067 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
4068 | .access = PL3_RW, .resetvalue = 0, | |
4069 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
4070 | { .name = "SDER", | |
4071 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
4072 | .access = PL3_RW, .resetvalue = 0, | |
4073 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
60fb1a87 | 4074 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
efe4a274 PM |
4075 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
4076 | .writefn = vbar_write, .resetvalue = 0, | |
60fb1a87 | 4077 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
7dd8c9af FA |
4078 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
4079 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
4080 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
4081 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
4082 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
4083 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
4084 | .access = PL3_RW, |
4085 | /* no .writefn needed as this can't cause an ASID change; | |
811595a2 PM |
4086 | * we must provide a .raw_writefn and .resetfn because we handle |
4087 | * reset and migration for the AArch32 TTBCR(S), which might be | |
4088 | * using mask and base_mask. | |
6459b94c | 4089 | */ |
811595a2 | 4090 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee | 4091 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
81547d66 | 4092 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 4093 | .type = ARM_CP_ALIAS, |
81547d66 EI |
4094 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
4095 | .access = PL3_RW, | |
4096 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 4097 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
4098 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
4099 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
4100 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
4101 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
4102 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 4103 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 4104 | .type = ARM_CP_ALIAS, |
81547d66 | 4105 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
4106 | .access = PL3_RW, |
4107 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, | |
a1ba125c EI |
4108 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
4109 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
4110 | .access = PL3_RW, .writefn = vbar_write, | |
4111 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
4112 | .resetvalue = 0 }, | |
c6f19164 GB |
4113 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
4114 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
4115 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
4116 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
4117 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
4118 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
4119 | .access = PL3_RW, .resetvalue = 0, | |
4120 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
4121 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
4122 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
4123 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4124 | .resetvalue = 0 }, | |
37cd6c24 PM |
4125 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
4126 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
4127 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4128 | .resetvalue = 0 }, | |
4129 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
4130 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
4131 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4132 | .resetvalue = 0 }, | |
43efaa33 PM |
4133 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
4134 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
4135 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4136 | .writefn = tlbi_aa64_alle3is_write }, | |
4137 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
4138 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
4139 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4140 | .writefn = tlbi_aa64_vae3is_write }, | |
4141 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
4142 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
4143 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4144 | .writefn = tlbi_aa64_vae3is_write }, | |
4145 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
4146 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
4147 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4148 | .writefn = tlbi_aa64_alle3_write }, | |
4149 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
4150 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
4151 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4152 | .writefn = tlbi_aa64_vae3_write }, | |
4153 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
4154 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
4155 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4156 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
4157 | REGINFO_SENTINEL |
4158 | }; | |
4159 | ||
3f208fd7 PM |
4160 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4161 | bool isread) | |
7da845b0 PM |
4162 | { |
4163 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
4164 | * but the AArch32 CTR has its own reginfo struct) | |
4165 | */ | |
137feaa9 | 4166 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
4167 | return CP_ACCESS_TRAP; |
4168 | } | |
4169 | return CP_ACCESS_OK; | |
4170 | } | |
4171 | ||
1424ca8d DM |
4172 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4173 | uint64_t value) | |
4174 | { | |
4175 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be | |
4176 | * read via a bit in OSLSR_EL1. | |
4177 | */ | |
4178 | int oslock; | |
4179 | ||
4180 | if (ri->state == ARM_CP_STATE_AA32) { | |
4181 | oslock = (value == 0xC5ACCE55); | |
4182 | } else { | |
4183 | oslock = value & 1; | |
4184 | } | |
4185 | ||
4186 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); | |
4187 | } | |
4188 | ||
50300698 | 4189 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 4190 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
4191 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
4192 | * unlike DBGDRAR it is never accessible from EL0. | |
4193 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
4194 | * accessor. | |
50300698 PM |
4195 | */ |
4196 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
91b0a238 PM |
4197 | .access = PL0_R, .accessfn = access_tdra, |
4198 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
4199 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
4200 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
91b0a238 PM |
4201 | .access = PL1_R, .accessfn = access_tdra, |
4202 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 | 4203 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
91b0a238 PM |
4204 | .access = PL0_R, .accessfn = access_tdra, |
4205 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 4206 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
4207 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
4208 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
d6c8cf81 | 4209 | .access = PL1_RW, .accessfn = access_tda, |
0e5e8935 PM |
4210 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
4211 | .resetvalue = 0 }, | |
5e8b12ff PM |
4212 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
4213 | * We don't implement the configurable EL0 access. | |
4214 | */ | |
4215 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
4216 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 4217 | .type = ARM_CP_ALIAS, |
d6c8cf81 | 4218 | .access = PL1_R, .accessfn = access_tda, |
b061a82b | 4219 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
10aae104 PM |
4220 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
4221 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1424ca8d | 4222 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
187f678d | 4223 | .accessfn = access_tdosa, |
1424ca8d DM |
4224 | .writefn = oslar_write }, |
4225 | { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, | |
4226 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, | |
4227 | .access = PL1_R, .resetvalue = 10, | |
187f678d | 4228 | .accessfn = access_tdosa, |
1424ca8d | 4229 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
5e8b12ff PM |
4230 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
4231 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
4232 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
187f678d PM |
4233 | .access = PL1_RW, .accessfn = access_tdosa, |
4234 | .type = ARM_CP_NOP }, | |
5e8b12ff PM |
4235 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
4236 | * implement vector catch debug events yet. | |
4237 | */ | |
4238 | { .name = "DBGVCR", | |
4239 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
d6c8cf81 PM |
4240 | .access = PL1_RW, .accessfn = access_tda, |
4241 | .type = ARM_CP_NOP }, | |
4d2ec4da PM |
4242 | /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor |
4243 | * to save and restore a 32-bit guest's DBGVCR) | |
4244 | */ | |
4245 | { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, | |
4246 | .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, | |
4247 | .access = PL2_RW, .accessfn = access_tda, | |
4248 | .type = ARM_CP_NOP }, | |
5dbdc434 PM |
4249 | /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications |
4250 | * Channel but Linux may try to access this register. The 32-bit | |
4251 | * alias is DBGDCCINT. | |
4252 | */ | |
4253 | { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, | |
4254 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
4255 | .access = PL1_RW, .accessfn = access_tda, | |
4256 | .type = ARM_CP_NOP }, | |
50300698 PM |
4257 | REGINFO_SENTINEL |
4258 | }; | |
4259 | ||
4260 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
4261 | /* 64 bit access versions of the (dummy) debug registers */ | |
4262 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
4263 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
4264 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
4265 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
4266 | REGINFO_SENTINEL | |
4267 | }; | |
4268 | ||
9ee98ce8 PM |
4269 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
4270 | { | |
4271 | CPUARMState *env = &cpu->env; | |
4272 | vaddr len = 0; | |
4273 | vaddr wvr = env->cp15.dbgwvr[n]; | |
4274 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
4275 | int mask; | |
4276 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
4277 | ||
4278 | if (env->cpu_watchpoint[n]) { | |
4279 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
4280 | env->cpu_watchpoint[n] = NULL; | |
4281 | } | |
4282 | ||
4283 | if (!extract64(wcr, 0, 1)) { | |
4284 | /* E bit clear : watchpoint disabled */ | |
4285 | return; | |
4286 | } | |
4287 | ||
4288 | switch (extract64(wcr, 3, 2)) { | |
4289 | case 0: | |
4290 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
4291 | return; | |
4292 | case 1: | |
4293 | flags |= BP_MEM_READ; | |
4294 | break; | |
4295 | case 2: | |
4296 | flags |= BP_MEM_WRITE; | |
4297 | break; | |
4298 | case 3: | |
4299 | flags |= BP_MEM_ACCESS; | |
4300 | break; | |
4301 | } | |
4302 | ||
4303 | /* Attempts to use both MASK and BAS fields simultaneously are | |
4304 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
4305 | * thus generating a watchpoint for every byte in the masked region. | |
4306 | */ | |
4307 | mask = extract64(wcr, 24, 4); | |
4308 | if (mask == 1 || mask == 2) { | |
4309 | /* Reserved values of MASK; we must act as if the mask value was | |
4310 | * some non-reserved value, or as if the watchpoint were disabled. | |
4311 | * We choose the latter. | |
4312 | */ | |
4313 | return; | |
4314 | } else if (mask) { | |
4315 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
4316 | len = 1ULL << mask; | |
4317 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
4318 | * whether the watchpoint fires when the unmasked bits match; we opt | |
4319 | * to generate the exceptions. | |
4320 | */ | |
4321 | wvr &= ~(len - 1); | |
4322 | } else { | |
4323 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
4324 | int bas = extract64(wcr, 5, 8); | |
4325 | int basstart; | |
4326 | ||
4327 | if (bas == 0) { | |
4328 | /* This must act as if the watchpoint is disabled */ | |
4329 | return; | |
4330 | } | |
4331 | ||
4332 | if (extract64(wvr, 2, 1)) { | |
4333 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
4334 | * ignored, and BAS[3:0] define which bytes to watch. | |
4335 | */ | |
4336 | bas &= 0xf; | |
4337 | } | |
4338 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
4339 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
4340 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
4341 | * We choose to ignore any non-zero bits after the first range of 1s. | |
4342 | */ | |
4343 | basstart = ctz32(bas); | |
4344 | len = cto32(bas >> basstart); | |
4345 | wvr += basstart; | |
4346 | } | |
4347 | ||
4348 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
4349 | &env->cpu_watchpoint[n]); | |
4350 | } | |
4351 | ||
4352 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
4353 | { | |
4354 | int i; | |
4355 | CPUARMState *env = &cpu->env; | |
4356 | ||
4357 | /* Completely clear out existing QEMU watchpoints and our array, to | |
4358 | * avoid possible stale entries following migration load. | |
4359 | */ | |
4360 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
4361 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
4362 | ||
4363 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
4364 | hw_watchpoint_update(cpu, i); | |
4365 | } | |
4366 | } | |
4367 | ||
4368 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4369 | uint64_t value) | |
4370 | { | |
4371 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4372 | int i = ri->crm; | |
4373 | ||
4374 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
4375 | * register reads and behaves as if values written are sign extended. | |
4376 | * Bits [1:0] are RES0. | |
4377 | */ | |
4378 | value = sextract64(value, 0, 49) & ~3ULL; | |
4379 | ||
4380 | raw_write(env, ri, value); | |
4381 | hw_watchpoint_update(cpu, i); | |
4382 | } | |
4383 | ||
4384 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4385 | uint64_t value) | |
4386 | { | |
4387 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4388 | int i = ri->crm; | |
4389 | ||
4390 | raw_write(env, ri, value); | |
4391 | hw_watchpoint_update(cpu, i); | |
4392 | } | |
4393 | ||
46747d15 PM |
4394 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
4395 | { | |
4396 | CPUARMState *env = &cpu->env; | |
4397 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
4398 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
4399 | vaddr addr; | |
4400 | int bt; | |
4401 | int flags = BP_CPU; | |
4402 | ||
4403 | if (env->cpu_breakpoint[n]) { | |
4404 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
4405 | env->cpu_breakpoint[n] = NULL; | |
4406 | } | |
4407 | ||
4408 | if (!extract64(bcr, 0, 1)) { | |
4409 | /* E bit clear : watchpoint disabled */ | |
4410 | return; | |
4411 | } | |
4412 | ||
4413 | bt = extract64(bcr, 20, 4); | |
4414 | ||
4415 | switch (bt) { | |
4416 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
4417 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
4418 | qemu_log_mask(LOG_UNIMP, | |
4419 | "arm: address mismatch breakpoint types not implemented"); | |
4420 | return; | |
4421 | case 0: /* unlinked address match */ | |
4422 | case 1: /* linked address match */ | |
4423 | { | |
4424 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
4425 | * we behave as if the register was sign extended. Bits [1:0] are | |
4426 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
4427 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
4428 | * a bp will fire if the addresses covered by the bp and the addresses | |
4429 | * covered by the insn overlap but the insn doesn't start at the | |
4430 | * start of the bp address range. We choose to require the insn and | |
4431 | * the bp to have the same address. The constraints on writing to | |
4432 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
4433 | * 0b0000 => no breakpoint | |
4434 | * 0b0011 => breakpoint on addr | |
4435 | * 0b1100 => breakpoint on addr + 2 | |
4436 | * 0b1111 => breakpoint on addr | |
4437 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
4438 | */ | |
4439 | int bas = extract64(bcr, 5, 4); | |
4440 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
4441 | if (bas == 0) { | |
4442 | return; | |
4443 | } | |
4444 | if (bas == 0xc) { | |
4445 | addr += 2; | |
4446 | } | |
4447 | break; | |
4448 | } | |
4449 | case 2: /* unlinked context ID match */ | |
4450 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
4451 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
4452 | qemu_log_mask(LOG_UNIMP, | |
4453 | "arm: unlinked context breakpoint types not implemented"); | |
4454 | return; | |
4455 | case 9: /* linked VMID match (reserved if no EL2) */ | |
4456 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
4457 | case 3: /* linked context ID match */ | |
4458 | default: | |
4459 | /* We must generate no events for Linked context matches (unless | |
4460 | * they are linked to by some other bp/wp, which is handled in | |
4461 | * updates for the linking bp/wp). We choose to also generate no events | |
4462 | * for reserved values. | |
4463 | */ | |
4464 | return; | |
4465 | } | |
4466 | ||
4467 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
4468 | } | |
4469 | ||
4470 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
4471 | { | |
4472 | int i; | |
4473 | CPUARMState *env = &cpu->env; | |
4474 | ||
4475 | /* Completely clear out existing QEMU breakpoints and our array, to | |
4476 | * avoid possible stale entries following migration load. | |
4477 | */ | |
4478 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
4479 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
4480 | ||
4481 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
4482 | hw_breakpoint_update(cpu, i); | |
4483 | } | |
4484 | } | |
4485 | ||
4486 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4487 | uint64_t value) | |
4488 | { | |
4489 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4490 | int i = ri->crm; | |
4491 | ||
4492 | raw_write(env, ri, value); | |
4493 | hw_breakpoint_update(cpu, i); | |
4494 | } | |
4495 | ||
4496 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4497 | uint64_t value) | |
4498 | { | |
4499 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4500 | int i = ri->crm; | |
4501 | ||
4502 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
4503 | * copy of BAS[0]. | |
4504 | */ | |
4505 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
4506 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
4507 | ||
4508 | raw_write(env, ri, value); | |
4509 | hw_breakpoint_update(cpu, i); | |
4510 | } | |
4511 | ||
50300698 | 4512 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 4513 | { |
50300698 PM |
4514 | /* Define v7 and v8 architectural debug registers. |
4515 | * These are just dummy implementations for now. | |
0b45451e PM |
4516 | */ |
4517 | int i; | |
3ff6fc91 | 4518 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
4519 | ARMCPRegInfo dbgdidr = { |
4520 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d6c8cf81 PM |
4521 | .access = PL0_R, .accessfn = access_tda, |
4522 | .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
48eb3ae6 PM |
4523 | }; |
4524 | ||
3ff6fc91 | 4525 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
4526 | brps = extract32(cpu->dbgdidr, 24, 4); |
4527 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
4528 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
4529 | ||
4530 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
4531 | |
4532 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
4533 | * of the debug registers such as number of breakpoints; | |
4534 | * check that if they both exist then they agree. | |
4535 | */ | |
4536 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
4537 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
4538 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 4539 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 4540 | } |
0b45451e | 4541 | |
48eb3ae6 | 4542 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
4543 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
4544 | ||
4545 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
4546 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
4547 | } | |
4548 | ||
48eb3ae6 | 4549 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 4550 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
4551 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
4552 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
d6c8cf81 | 4553 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4554 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
4555 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
4556 | }, | |
10aae104 PM |
4557 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
4558 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
d6c8cf81 | 4559 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4560 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
4561 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
4562 | }, | |
48eb3ae6 PM |
4563 | REGINFO_SENTINEL |
4564 | }; | |
4565 | define_arm_cp_regs(cpu, dbgregs); | |
4566 | } | |
4567 | ||
4568 | for (i = 0; i < wrps + 1; i++) { | |
4569 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
4570 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
4571 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
d6c8cf81 | 4572 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4573 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
4574 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
4575 | }, | |
10aae104 PM |
4576 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
4577 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
d6c8cf81 | 4578 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4579 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
4580 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
4581 | }, | |
4582 | REGINFO_SENTINEL | |
0b45451e PM |
4583 | }; |
4584 | define_arm_cp_regs(cpu, dbgregs); | |
4585 | } | |
4586 | } | |
4587 | ||
96a8b92e PM |
4588 | /* We don't know until after realize whether there's a GICv3 |
4589 | * attached, and that is what registers the gicv3 sysregs. | |
4590 | * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 | |
4591 | * at runtime. | |
4592 | */ | |
4593 | static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
4594 | { | |
4595 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4596 | uint64_t pfr1 = cpu->id_pfr1; | |
4597 | ||
4598 | if (env->gicv3state) { | |
4599 | pfr1 |= 1 << 28; | |
4600 | } | |
4601 | return pfr1; | |
4602 | } | |
4603 | ||
4604 | static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
4605 | { | |
4606 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4607 | uint64_t pfr0 = cpu->id_aa64pfr0; | |
4608 | ||
4609 | if (env->gicv3state) { | |
4610 | pfr0 |= 1 << 24; | |
4611 | } | |
4612 | return pfr0; | |
4613 | } | |
4614 | ||
2ceb98c0 PM |
4615 | void register_cp_regs_for_features(ARMCPU *cpu) |
4616 | { | |
4617 | /* Register all the coprocessor registers based on feature bits */ | |
4618 | CPUARMState *env = &cpu->env; | |
4619 | if (arm_feature(env, ARM_FEATURE_M)) { | |
4620 | /* M profile has no coprocessor registers */ | |
4621 | return; | |
4622 | } | |
4623 | ||
e9aa6c21 | 4624 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
4625 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
4626 | /* Must go early as it is full of wildcards that may be | |
4627 | * overridden by later definitions. | |
4628 | */ | |
4629 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
4630 | } | |
4631 | ||
7d57f408 | 4632 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
4633 | /* The ID registers all have impdef reset values */ |
4634 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
4635 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
4636 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
4637 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4638 | .resetvalue = cpu->id_pfr0 }, |
96a8b92e PM |
4639 | /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know |
4640 | * the value of the GIC field until after we define these regs. | |
4641 | */ | |
0ff644a7 PM |
4642 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
4643 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
96a8b92e PM |
4644 | .access = PL1_R, .type = ARM_CP_NO_RAW, |
4645 | .readfn = id_pfr1_read, | |
4646 | .writefn = arm_cp_write_ignore }, | |
0ff644a7 PM |
4647 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
4648 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
4649 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4650 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
4651 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
4652 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
4653 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4654 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
4655 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
4656 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
4657 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4658 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
4659 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
4660 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
4661 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4662 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
4663 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
4664 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
4665 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4666 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
4667 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
4668 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
4669 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4670 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
4671 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
4672 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
4673 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4674 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
4675 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
4676 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
4677 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4678 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
4679 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
4680 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
4681 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4682 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
4683 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
4684 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
4685 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4686 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
4687 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
4688 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
4689 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4690 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
4691 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
4692 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
4693 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4694 | .resetvalue = cpu->id_isar5 }, |
e20d84c1 PM |
4695 | { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
4696 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, | |
4697 | .access = PL1_R, .type = ARM_CP_CONST, | |
4698 | .resetvalue = cpu->id_mmfr4 }, | |
4699 | /* 7 is as yet unallocated and must RAZ */ | |
4700 | { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, | |
4701 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, | |
4702 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
4703 | .resetvalue = 0 }, |
4704 | REGINFO_SENTINEL | |
4705 | }; | |
4706 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
4707 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
4708 | } else { | |
4709 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
4710 | } | |
4d31c596 PM |
4711 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
4712 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
4713 | } | |
5e5cf9e3 | 4714 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
452a0955 | 4715 | !arm_feature(env, ARM_FEATURE_PMSA)) { |
995939a6 PM |
4716 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
4717 | } | |
e9aa6c21 | 4718 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 4719 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
4720 | * field as main ID register, and we implement only the cycle |
4721 | * count register. | |
200ac0ef | 4722 | */ |
7c2cb42b | 4723 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
4724 | ARMCPRegInfo pmcr = { |
4725 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 4726 | .access = PL0_RW, |
7a0e58fa | 4727 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 4728 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
4729 | .accessfn = pmreg_access, .writefn = pmcr_write, |
4730 | .raw_writefn = raw_write, | |
200ac0ef | 4731 | }; |
8521466b AF |
4732 | ARMCPRegInfo pmcr64 = { |
4733 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
4734 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
4735 | .access = PL0_RW, .accessfn = pmreg_access, | |
4736 | .type = ARM_CP_IO, | |
4737 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
4738 | .resetvalue = cpu->midr & 0xff000000, | |
4739 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
4740 | }; | |
7c2cb42b | 4741 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 4742 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 4743 | #endif |
776d4e5c | 4744 | ARMCPRegInfo clidr = { |
7da845b0 PM |
4745 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
4746 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
4747 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
4748 | }; | |
776d4e5c | 4749 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 4750 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 4751 | define_debug_regs(cpu); |
7d57f408 PM |
4752 | } else { |
4753 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 4754 | } |
b0d2b7d0 | 4755 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e20d84c1 PM |
4756 | /* AArch64 ID registers, which all have impdef reset values. |
4757 | * Note that within the ID register ranges the unused slots | |
4758 | * must all RAZ, not UNDEF; future architecture versions may | |
4759 | * define new registers here. | |
4760 | */ | |
e60cef86 | 4761 | ARMCPRegInfo v8_idregs[] = { |
96a8b92e PM |
4762 | /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't |
4763 | * know the right value for the GIC field until after we | |
4764 | * define these regs. | |
4765 | */ | |
e60cef86 PM |
4766 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, |
4767 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
96a8b92e PM |
4768 | .access = PL1_R, .type = ARM_CP_NO_RAW, |
4769 | .readfn = id_aa64pfr0_read, | |
4770 | .writefn = arm_cp_write_ignore }, | |
e60cef86 PM |
4771 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, |
4772 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
4773 | .access = PL1_R, .type = ARM_CP_CONST, | |
4774 | .resetvalue = cpu->id_aa64pfr1}, | |
e20d84c1 PM |
4775 | { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4776 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, | |
4777 | .access = PL1_R, .type = ARM_CP_CONST, | |
4778 | .resetvalue = 0 }, | |
4779 | { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4780 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, | |
4781 | .access = PL1_R, .type = ARM_CP_CONST, | |
4782 | .resetvalue = 0 }, | |
4783 | { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4784 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, | |
4785 | .access = PL1_R, .type = ARM_CP_CONST, | |
4786 | .resetvalue = 0 }, | |
4787 | { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4788 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, | |
4789 | .access = PL1_R, .type = ARM_CP_CONST, | |
4790 | .resetvalue = 0 }, | |
4791 | { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4792 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, | |
4793 | .access = PL1_R, .type = ARM_CP_CONST, | |
4794 | .resetvalue = 0 }, | |
4795 | { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4796 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, | |
4797 | .access = PL1_R, .type = ARM_CP_CONST, | |
4798 | .resetvalue = 0 }, | |
e60cef86 PM |
4799 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
4800 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
4801 | .access = PL1_R, .type = ARM_CP_CONST, | |
d6f02ce3 | 4802 | .resetvalue = cpu->id_aa64dfr0 }, |
e60cef86 PM |
4803 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
4804 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
4805 | .access = PL1_R, .type = ARM_CP_CONST, | |
4806 | .resetvalue = cpu->id_aa64dfr1 }, | |
e20d84c1 PM |
4807 | { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4808 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, | |
4809 | .access = PL1_R, .type = ARM_CP_CONST, | |
4810 | .resetvalue = 0 }, | |
4811 | { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4812 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, | |
4813 | .access = PL1_R, .type = ARM_CP_CONST, | |
4814 | .resetvalue = 0 }, | |
e60cef86 PM |
4815 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
4816 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
4817 | .access = PL1_R, .type = ARM_CP_CONST, | |
4818 | .resetvalue = cpu->id_aa64afr0 }, | |
4819 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4820 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
4821 | .access = PL1_R, .type = ARM_CP_CONST, | |
4822 | .resetvalue = cpu->id_aa64afr1 }, | |
e20d84c1 PM |
4823 | { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4824 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, | |
4825 | .access = PL1_R, .type = ARM_CP_CONST, | |
4826 | .resetvalue = 0 }, | |
4827 | { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4828 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, | |
4829 | .access = PL1_R, .type = ARM_CP_CONST, | |
4830 | .resetvalue = 0 }, | |
e60cef86 PM |
4831 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
4832 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
4833 | .access = PL1_R, .type = ARM_CP_CONST, | |
4834 | .resetvalue = cpu->id_aa64isar0 }, | |
4835 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
4836 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
4837 | .access = PL1_R, .type = ARM_CP_CONST, | |
4838 | .resetvalue = cpu->id_aa64isar1 }, | |
e20d84c1 PM |
4839 | { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4840 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, | |
4841 | .access = PL1_R, .type = ARM_CP_CONST, | |
4842 | .resetvalue = 0 }, | |
4843 | { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4844 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, | |
4845 | .access = PL1_R, .type = ARM_CP_CONST, | |
4846 | .resetvalue = 0 }, | |
4847 | { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4848 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, | |
4849 | .access = PL1_R, .type = ARM_CP_CONST, | |
4850 | .resetvalue = 0 }, | |
4851 | { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4852 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, | |
4853 | .access = PL1_R, .type = ARM_CP_CONST, | |
4854 | .resetvalue = 0 }, | |
4855 | { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4856 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, | |
4857 | .access = PL1_R, .type = ARM_CP_CONST, | |
4858 | .resetvalue = 0 }, | |
4859 | { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4860 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, | |
4861 | .access = PL1_R, .type = ARM_CP_CONST, | |
4862 | .resetvalue = 0 }, | |
e60cef86 PM |
4863 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
4864 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
4865 | .access = PL1_R, .type = ARM_CP_CONST, | |
4866 | .resetvalue = cpu->id_aa64mmfr0 }, | |
4867 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4868 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
4869 | .access = PL1_R, .type = ARM_CP_CONST, | |
4870 | .resetvalue = cpu->id_aa64mmfr1 }, | |
e20d84c1 PM |
4871 | { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4872 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, | |
4873 | .access = PL1_R, .type = ARM_CP_CONST, | |
4874 | .resetvalue = 0 }, | |
4875 | { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4876 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, | |
4877 | .access = PL1_R, .type = ARM_CP_CONST, | |
4878 | .resetvalue = 0 }, | |
4879 | { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4880 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, | |
4881 | .access = PL1_R, .type = ARM_CP_CONST, | |
4882 | .resetvalue = 0 }, | |
4883 | { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4884 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, | |
4885 | .access = PL1_R, .type = ARM_CP_CONST, | |
4886 | .resetvalue = 0 }, | |
4887 | { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4888 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, | |
4889 | .access = PL1_R, .type = ARM_CP_CONST, | |
4890 | .resetvalue = 0 }, | |
4891 | { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4892 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, | |
4893 | .access = PL1_R, .type = ARM_CP_CONST, | |
4894 | .resetvalue = 0 }, | |
a50c0f51 PM |
4895 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
4896 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
4897 | .access = PL1_R, .type = ARM_CP_CONST, | |
4898 | .resetvalue = cpu->mvfr0 }, | |
4899 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4900 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
4901 | .access = PL1_R, .type = ARM_CP_CONST, | |
4902 | .resetvalue = cpu->mvfr1 }, | |
4903 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
4904 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
4905 | .access = PL1_R, .type = ARM_CP_CONST, | |
4906 | .resetvalue = cpu->mvfr2 }, | |
e20d84c1 PM |
4907 | { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4908 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, | |
4909 | .access = PL1_R, .type = ARM_CP_CONST, | |
4910 | .resetvalue = 0 }, | |
4911 | { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4912 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, | |
4913 | .access = PL1_R, .type = ARM_CP_CONST, | |
4914 | .resetvalue = 0 }, | |
4915 | { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4916 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, | |
4917 | .access = PL1_R, .type = ARM_CP_CONST, | |
4918 | .resetvalue = 0 }, | |
4919 | { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4920 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, | |
4921 | .access = PL1_R, .type = ARM_CP_CONST, | |
4922 | .resetvalue = 0 }, | |
4923 | { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4924 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, | |
4925 | .access = PL1_R, .type = ARM_CP_CONST, | |
4926 | .resetvalue = 0 }, | |
4054bfa9 AF |
4927 | { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
4928 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, | |
4929 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4930 | .resetvalue = cpu->pmceid0 }, | |
4931 | { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, | |
4932 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, | |
4933 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4934 | .resetvalue = cpu->pmceid0 }, | |
4935 | { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, | |
4936 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, | |
4937 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4938 | .resetvalue = cpu->pmceid1 }, | |
4939 | { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, | |
4940 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, | |
4941 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4942 | .resetvalue = cpu->pmceid1 }, | |
e60cef86 PM |
4943 | REGINFO_SENTINEL |
4944 | }; | |
be8e8128 GB |
4945 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
4946 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
4947 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
4948 | ARMCPRegInfo rvbar = { | |
4949 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4950 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
4951 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
4952 | }; | |
4953 | define_one_arm_cp_reg(cpu, &rvbar); | |
4954 | } | |
e60cef86 | 4955 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
4956 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
4957 | } | |
3b685ba7 | 4958 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
f0d574d6 | 4959 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
4960 | ARMCPRegInfo vpidr_regs[] = { |
4961 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
4962 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4963 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4964 | .resetvalue = cpu->midr, | |
4965 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
4966 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4967 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4968 | .access = PL2_RW, .resetvalue = cpu->midr, | |
4969 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4970 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
4971 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4972 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4973 | .resetvalue = vmpidr_def, | |
4974 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
4975 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4976 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4977 | .access = PL2_RW, | |
4978 | .resetvalue = vmpidr_def, | |
4979 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
731de9e6 EI |
4980 | REGINFO_SENTINEL |
4981 | }; | |
4982 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4983 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
4984 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
4985 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
4986 | ARMCPRegInfo rvbar = { | |
4987 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
4988 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
4989 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
4990 | }; | |
4991 | define_one_arm_cp_reg(cpu, &rvbar); | |
4992 | } | |
d42e3c26 EI |
4993 | } else { |
4994 | /* If EL2 is missing but higher ELs are enabled, we need to | |
4995 | * register the no_el2 reginfos. | |
4996 | */ | |
4997 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
f0d574d6 EI |
4998 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
4999 | * of MIDR_EL1 and MPIDR_EL1. | |
731de9e6 EI |
5000 | */ |
5001 | ARMCPRegInfo vpidr_regs[] = { | |
5002 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | |
5003 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
5004 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
5005 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, | |
5006 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
5007 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
5008 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
5009 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
5010 | .type = ARM_CP_NO_RAW, | |
5011 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | |
731de9e6 EI |
5012 | REGINFO_SENTINEL |
5013 | }; | |
5014 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 5015 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 5016 | } |
3b685ba7 | 5017 | } |
81547d66 | 5018 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 5019 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
e24fdd23 PM |
5020 | ARMCPRegInfo el3_regs[] = { |
5021 | { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
5022 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
5023 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, | |
5024 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, | |
5025 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
5026 | .access = PL3_RW, | |
5027 | .raw_writefn = raw_write, .writefn = sctlr_write, | |
5028 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), | |
5029 | .resetvalue = cpu->reset_sctlr }, | |
5030 | REGINFO_SENTINEL | |
be8e8128 | 5031 | }; |
e24fdd23 PM |
5032 | |
5033 | define_arm_cp_regs(cpu, el3_regs); | |
81547d66 | 5034 | } |
2f027fc5 PM |
5035 | /* The behaviour of NSACR is sufficiently various that we don't |
5036 | * try to describe it in a single reginfo: | |
5037 | * if EL3 is 64 bit, then trap to EL3 from S EL1, | |
5038 | * reads as constant 0xc00 from NS EL1 and NS EL2 | |
5039 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 | |
5040 | * if v7 without EL3, register doesn't exist | |
5041 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 | |
5042 | */ | |
5043 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
5044 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
5045 | ARMCPRegInfo nsacr = { | |
5046 | .name = "NSACR", .type = ARM_CP_CONST, | |
5047 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
5048 | .access = PL1_RW, .accessfn = nsacr_access, | |
5049 | .resetvalue = 0xc00 | |
5050 | }; | |
5051 | define_one_arm_cp_reg(cpu, &nsacr); | |
5052 | } else { | |
5053 | ARMCPRegInfo nsacr = { | |
5054 | .name = "NSACR", | |
5055 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
5056 | .access = PL3_RW | PL1_R, | |
5057 | .resetvalue = 0, | |
5058 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) | |
5059 | }; | |
5060 | define_one_arm_cp_reg(cpu, &nsacr); | |
5061 | } | |
5062 | } else { | |
5063 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
5064 | ARMCPRegInfo nsacr = { | |
5065 | .name = "NSACR", .type = ARM_CP_CONST, | |
5066 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
5067 | .access = PL1_R, | |
5068 | .resetvalue = 0xc00 | |
5069 | }; | |
5070 | define_one_arm_cp_reg(cpu, &nsacr); | |
5071 | } | |
5072 | } | |
5073 | ||
452a0955 | 5074 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
6cb0b013 PC |
5075 | if (arm_feature(env, ARM_FEATURE_V6)) { |
5076 | /* PMSAv6 not implemented */ | |
5077 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
5078 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
5079 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
5080 | } else { | |
5081 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
5082 | } | |
18032bec | 5083 | } else { |
8e5d75c9 | 5084 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
5085 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
5086 | } | |
c326b979 PM |
5087 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
5088 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
5089 | } | |
6cc7a3ae PM |
5090 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
5091 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
5092 | } | |
4a501606 PM |
5093 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
5094 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
5095 | } | |
c4804214 PM |
5096 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
5097 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
5098 | } | |
5099 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
5100 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
5101 | } | |
5102 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
5103 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
5104 | } | |
18032bec PM |
5105 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
5106 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
5107 | } | |
34f90529 PM |
5108 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
5109 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
5110 | } | |
1047b9d7 PM |
5111 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
5112 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
5113 | } | |
5114 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
5115 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
5116 | } | |
7ac681cf PM |
5117 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
5118 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
5119 | } | |
7884849c PM |
5120 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
5121 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
5122 | * be read-only (ie write causes UNDEF exception). | |
5123 | */ | |
5124 | { | |
00a29f3d PM |
5125 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
5126 | /* Pre-v8 MIDR space. | |
5127 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
5128 | * of the TI925 behaviour where writes to another register can |
5129 | * cause the MIDR value to change. | |
97ce8d61 PC |
5130 | * |
5131 | * Unimplemented registers in the c15 0 0 0 space default to | |
5132 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
5133 | * and friends override accordingly. | |
7884849c PM |
5134 | */ |
5135 | { .name = "MIDR", | |
97ce8d61 | 5136 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 5137 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 5138 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 5139 | .readfn = midr_read, |
97ce8d61 PC |
5140 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
5141 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
5142 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
5143 | { .name = "DUMMY", | |
5144 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
5145 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5146 | { .name = "DUMMY", | |
5147 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
5148 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5149 | { .name = "DUMMY", | |
5150 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
5151 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5152 | { .name = "DUMMY", | |
5153 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
5154 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5155 | { .name = "DUMMY", | |
5156 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
5157 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5158 | REGINFO_SENTINEL | |
5159 | }; | |
00a29f3d | 5160 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
5161 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
5162 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
5163 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
5164 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
5165 | .readfn = midr_read }, | |
ac00c79f SF |
5166 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
5167 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
5168 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
5169 | .access = PL1_R, .resetvalue = cpu->midr }, | |
5170 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
5171 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
5172 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
5173 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
5174 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 5175 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
5176 | REGINFO_SENTINEL |
5177 | }; | |
5178 | ARMCPRegInfo id_cp_reginfo[] = { | |
5179 | /* These are common to v8 and pre-v8 */ | |
5180 | { .name = "CTR", | |
5181 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
5182 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
5183 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
5184 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
5185 | .access = PL0_R, .accessfn = ctr_el0_access, | |
5186 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
5187 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
5188 | { .name = "TCMTR", | |
5189 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
5190 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
5191 | REGINFO_SENTINEL |
5192 | }; | |
8085ce63 PC |
5193 | /* TLBTR is specific to VMSA */ |
5194 | ARMCPRegInfo id_tlbtr_reginfo = { | |
5195 | .name = "TLBTR", | |
5196 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
5197 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
5198 | }; | |
3281af81 PC |
5199 | /* MPUIR is specific to PMSA V6+ */ |
5200 | ARMCPRegInfo id_mpuir_reginfo = { | |
5201 | .name = "MPUIR", | |
5202 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
5203 | .access = PL1_R, .type = ARM_CP_CONST, | |
5204 | .resetvalue = cpu->pmsav7_dregion << 8 | |
5205 | }; | |
7884849c PM |
5206 | ARMCPRegInfo crn0_wi_reginfo = { |
5207 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
5208 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
5209 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
5210 | }; | |
5211 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
5212 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
5213 | ARMCPRegInfo *r; | |
5214 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
5215 | * whole space. Then update the specific ID registers to allow write |
5216 | * access, so that they ignore writes rather than causing them to | |
5217 | * UNDEF. | |
7884849c PM |
5218 | */ |
5219 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
5220 | for (r = id_pre_v8_midr_cp_reginfo; |
5221 | r->type != ARM_CP_SENTINEL; r++) { | |
5222 | r->access = PL1_RW; | |
5223 | } | |
7884849c PM |
5224 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
5225 | r->access = PL1_RW; | |
7884849c | 5226 | } |
8085ce63 | 5227 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 5228 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 5229 | } |
00a29f3d PM |
5230 | if (arm_feature(env, ARM_FEATURE_V8)) { |
5231 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
5232 | } else { | |
5233 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
5234 | } | |
a703eda1 | 5235 | define_arm_cp_regs(cpu, id_cp_reginfo); |
452a0955 | 5236 | if (!arm_feature(env, ARM_FEATURE_PMSA)) { |
8085ce63 | 5237 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
3281af81 PC |
5238 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
5239 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 5240 | } |
7884849c PM |
5241 | } |
5242 | ||
97ce8d61 PC |
5243 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
5244 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
5245 | } | |
5246 | ||
2771db27 | 5247 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
5248 | ARMCPRegInfo auxcr_reginfo[] = { |
5249 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
5250 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
5251 | .access = PL1_RW, .type = ARM_CP_CONST, | |
5252 | .resetvalue = cpu->reset_auxcr }, | |
5253 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | |
5254 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
5255 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5256 | .resetvalue = 0 }, | |
5257 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
5258 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
5259 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5260 | .resetvalue = 0 }, | |
5261 | REGINFO_SENTINEL | |
2771db27 | 5262 | }; |
834a6c69 | 5263 | define_arm_cp_regs(cpu, auxcr_reginfo); |
2771db27 PM |
5264 | } |
5265 | ||
d8ba780b | 5266 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
5267 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
5268 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
5269 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
5270 | | extract64(cpu->reset_cbar, 32, 12); | |
5271 | ARMCPRegInfo cbar_reginfo[] = { | |
5272 | { .name = "CBAR", | |
5273 | .type = ARM_CP_CONST, | |
5274 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
5275 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
5276 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
5277 | .type = ARM_CP_CONST, | |
5278 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
5279 | .access = PL1_R, .resetvalue = cbar32 }, | |
5280 | REGINFO_SENTINEL | |
5281 | }; | |
5282 | /* We don't implement a r/w 64 bit CBAR currently */ | |
5283 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
5284 | define_arm_cp_regs(cpu, cbar_reginfo); | |
5285 | } else { | |
5286 | ARMCPRegInfo cbar = { | |
5287 | .name = "CBAR", | |
5288 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
5289 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
5290 | .fieldoffset = offsetof(CPUARMState, | |
5291 | cp15.c15_config_base_address) | |
5292 | }; | |
5293 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
5294 | cbar.access = PL1_R; | |
5295 | cbar.fieldoffset = 0; | |
5296 | cbar.type = ARM_CP_CONST; | |
5297 | } | |
5298 | define_one_arm_cp_reg(cpu, &cbar); | |
5299 | } | |
d8ba780b PC |
5300 | } |
5301 | ||
91db4642 CLG |
5302 | if (arm_feature(env, ARM_FEATURE_VBAR)) { |
5303 | ARMCPRegInfo vbar_cp_reginfo[] = { | |
5304 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, | |
5305 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
5306 | .access = PL1_RW, .writefn = vbar_write, | |
5307 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), | |
5308 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
5309 | .resetvalue = 0 }, | |
5310 | REGINFO_SENTINEL | |
5311 | }; | |
5312 | define_arm_cp_regs(cpu, vbar_cp_reginfo); | |
5313 | } | |
5314 | ||
2771db27 PM |
5315 | /* Generic registers whose values depend on the implementation */ |
5316 | { | |
5317 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 5318 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
5319 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
5320 | .access = PL1_RW, | |
5321 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
5322 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
5323 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
5324 | .raw_writefn = raw_write, | |
2771db27 PM |
5325 | }; |
5326 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
5327 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
5328 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
5329 | * an MMU enable to execute from cache. Imitate this behaviour. | |
5330 | */ | |
5331 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
5332 | } | |
5333 | define_one_arm_cp_reg(cpu, &sctlr); | |
5334 | } | |
2ceb98c0 PM |
5335 | } |
5336 | ||
14969266 AF |
5337 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
5338 | { | |
22169d41 | 5339 | CPUState *cs = CPU(cpu); |
14969266 AF |
5340 | CPUARMState *env = &cpu->env; |
5341 | ||
6a669427 PM |
5342 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
5343 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
5344 | aarch64_fpu_gdb_set_reg, | |
5345 | 34, "aarch64-fpu.xml", 0); | |
5346 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 5347 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5348 | 51, "arm-neon.xml", 0); |
5349 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 5350 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5351 | 35, "arm-vfp3.xml", 0); |
5352 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 5353 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5354 | 19, "arm-vfp.xml", 0); |
5355 | } | |
40f137e1 PB |
5356 | } |
5357 | ||
777dc784 PM |
5358 | /* Sort alphabetically by type name, except for "any". */ |
5359 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 5360 | { |
777dc784 PM |
5361 | ObjectClass *class_a = (ObjectClass *)a; |
5362 | ObjectClass *class_b = (ObjectClass *)b; | |
5363 | const char *name_a, *name_b; | |
5adb4839 | 5364 | |
777dc784 PM |
5365 | name_a = object_class_get_name(class_a); |
5366 | name_b = object_class_get_name(class_b); | |
51492fd1 | 5367 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 5368 | return 1; |
51492fd1 | 5369 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
5370 | return -1; |
5371 | } else { | |
5372 | return strcmp(name_a, name_b); | |
5adb4839 PB |
5373 | } |
5374 | } | |
5375 | ||
777dc784 | 5376 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 5377 | { |
777dc784 | 5378 | ObjectClass *oc = data; |
92a31361 | 5379 | CPUListState *s = user_data; |
51492fd1 AF |
5380 | const char *typename; |
5381 | char *name; | |
3371d272 | 5382 | |
51492fd1 AF |
5383 | typename = object_class_get_name(oc); |
5384 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 5385 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
5386 | name); |
5387 | g_free(name); | |
777dc784 PM |
5388 | } |
5389 | ||
5390 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
5391 | { | |
92a31361 | 5392 | CPUListState s = { |
777dc784 PM |
5393 | .file = f, |
5394 | .cpu_fprintf = cpu_fprintf, | |
5395 | }; | |
5396 | GSList *list; | |
5397 | ||
5398 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5399 | list = g_slist_sort(list, arm_cpu_list_compare); | |
5400 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
5401 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
5402 | g_slist_free(list); | |
a96c0514 PM |
5403 | #ifdef CONFIG_KVM |
5404 | /* The 'host' CPU type is dynamically registered only if KVM is | |
5405 | * enabled, so we have to special-case it here: | |
5406 | */ | |
5407 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
5408 | #endif | |
40f137e1 PB |
5409 | } |
5410 | ||
78027bb6 CR |
5411 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
5412 | { | |
5413 | ObjectClass *oc = data; | |
5414 | CpuDefinitionInfoList **cpu_list = user_data; | |
5415 | CpuDefinitionInfoList *entry; | |
5416 | CpuDefinitionInfo *info; | |
5417 | const char *typename; | |
5418 | ||
5419 | typename = object_class_get_name(oc); | |
5420 | info = g_malloc0(sizeof(*info)); | |
5421 | info->name = g_strndup(typename, | |
5422 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
8ed877b7 | 5423 | info->q_typename = g_strdup(typename); |
78027bb6 CR |
5424 | |
5425 | entry = g_malloc0(sizeof(*entry)); | |
5426 | entry->value = info; | |
5427 | entry->next = *cpu_list; | |
5428 | *cpu_list = entry; | |
5429 | } | |
5430 | ||
5431 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
5432 | { | |
5433 | CpuDefinitionInfoList *cpu_list = NULL; | |
5434 | GSList *list; | |
5435 | ||
5436 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5437 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
5438 | g_slist_free(list); | |
5439 | ||
5440 | return cpu_list; | |
5441 | } | |
5442 | ||
6e6efd61 | 5443 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 5444 | void *opaque, int state, int secstate, |
f5a0a5a5 | 5445 | int crm, int opc1, int opc2) |
6e6efd61 PM |
5446 | { |
5447 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
5448 | * add a single reginfo struct to the hash table. | |
5449 | */ | |
5450 | uint32_t *key = g_new(uint32_t, 1); | |
5451 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
5452 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
5453 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
5454 | ||
5455 | /* Reset the secure state to the specific incoming state. This is | |
5456 | * necessary as the register may have been defined with both states. | |
5457 | */ | |
5458 | r2->secure = secstate; | |
5459 | ||
5460 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5461 | /* Register is banked (using both entries in array). | |
5462 | * Overwriting fieldoffset as the array is only used to define | |
5463 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 5464 | */ |
3f3c82a5 FA |
5465 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
5466 | } | |
5467 | ||
5468 | if (state == ARM_CP_STATE_AA32) { | |
5469 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5470 | /* If the register is banked then we don't need to migrate or | |
5471 | * reset the 32-bit instance in certain cases: | |
5472 | * | |
5473 | * 1) If the register has both 32-bit and 64-bit instances then we | |
5474 | * can count on the 64-bit instance taking care of the | |
5475 | * non-secure bank. | |
5476 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
5477 | * taking care of the secure bank. This requires that separate | |
5478 | * 32 and 64-bit definitions are provided. | |
5479 | */ | |
5480 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
5481 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 5482 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
5483 | } |
5484 | } else if ((secstate != r->secure) && !ns) { | |
5485 | /* The register is not banked so we only want to allow migration of | |
5486 | * the non-secure instance. | |
5487 | */ | |
7a0e58fa | 5488 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 5489 | } |
3f3c82a5 FA |
5490 | |
5491 | if (r->state == ARM_CP_STATE_BOTH) { | |
5492 | /* We assume it is a cp15 register if the .cp field is left unset. | |
5493 | */ | |
5494 | if (r2->cp == 0) { | |
5495 | r2->cp = 15; | |
5496 | } | |
5497 | ||
f5a0a5a5 | 5498 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
5499 | if (r2->fieldoffset) { |
5500 | r2->fieldoffset += sizeof(uint32_t); | |
5501 | } | |
f5a0a5a5 | 5502 | #endif |
3f3c82a5 | 5503 | } |
f5a0a5a5 PM |
5504 | } |
5505 | if (state == ARM_CP_STATE_AA64) { | |
5506 | /* To allow abbreviation of ARMCPRegInfo | |
5507 | * definitions, we treat cp == 0 as equivalent to | |
5508 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
5509 | * STATE_BOTH definitions are also always "standard |
5510 | * sysreg" in their AArch64 view (the .cp value may | |
5511 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 5512 | */ |
58a1d8ce | 5513 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
5514 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
5515 | } | |
5516 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
5517 | r2->opc0, opc1, opc2); | |
5518 | } else { | |
51a79b03 | 5519 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 5520 | } |
6e6efd61 PM |
5521 | if (opaque) { |
5522 | r2->opaque = opaque; | |
5523 | } | |
67ed771d PM |
5524 | /* reginfo passed to helpers is correct for the actual access, |
5525 | * and is never ARM_CP_STATE_BOTH: | |
5526 | */ | |
5527 | r2->state = state; | |
6e6efd61 PM |
5528 | /* Make sure reginfo passed to helpers for wildcarded regs |
5529 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
5530 | */ | |
5531 | r2->crm = crm; | |
5532 | r2->opc1 = opc1; | |
5533 | r2->opc2 = opc2; | |
5534 | /* By convention, for wildcarded registers only the first | |
5535 | * entry is used for migration; the others are marked as | |
7a0e58fa | 5536 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 5537 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 5538 | * never migratable and not even raw-accessible. |
6e6efd61 | 5539 | */ |
7a0e58fa PM |
5540 | if ((r->type & ARM_CP_SPECIAL)) { |
5541 | r2->type |= ARM_CP_NO_RAW; | |
5542 | } | |
5543 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
5544 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
5545 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 5546 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
5547 | } |
5548 | ||
375421cc PM |
5549 | /* Check that raw accesses are either forbidden or handled. Note that |
5550 | * we can't assert this earlier because the setup of fieldoffset for | |
5551 | * banked registers has to be done first. | |
5552 | */ | |
5553 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
5554 | assert(!raw_accessors_invalid(r2)); | |
5555 | } | |
5556 | ||
6e6efd61 PM |
5557 | /* Overriding of an existing definition must be explicitly |
5558 | * requested. | |
5559 | */ | |
5560 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
5561 | ARMCPRegInfo *oldreg; | |
5562 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
5563 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
5564 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
5565 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
5566 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
5567 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
5568 | oldreg->name, r2->name); | |
5569 | g_assert_not_reached(); | |
5570 | } | |
5571 | } | |
5572 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
5573 | } | |
5574 | ||
5575 | ||
4b6a83fb PM |
5576 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
5577 | const ARMCPRegInfo *r, void *opaque) | |
5578 | { | |
5579 | /* Define implementations of coprocessor registers. | |
5580 | * We store these in a hashtable because typically | |
5581 | * there are less than 150 registers in a space which | |
5582 | * is 16*16*16*8*8 = 262144 in size. | |
5583 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
5584 | * If a register is defined twice then the second definition is | |
5585 | * used, so this can be used to define some generic registers and | |
5586 | * then override them with implementation specific variations. | |
5587 | * At least one of the original and the second definition should | |
5588 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
5589 | * against accidental use. | |
f5a0a5a5 PM |
5590 | * |
5591 | * The state field defines whether the register is to be | |
5592 | * visible in the AArch32 or AArch64 execution state. If the | |
5593 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
5594 | * reginfo structure for the AArch32 view, which sees the lower | |
5595 | * 32 bits of the 64 bit register. | |
5596 | * | |
5597 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
5598 | * be wildcarded. AArch64 registers are always considered to be 64 | |
5599 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
5600 | * the register, if any. | |
4b6a83fb | 5601 | */ |
f5a0a5a5 | 5602 | int crm, opc1, opc2, state; |
4b6a83fb PM |
5603 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
5604 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
5605 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
5606 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
5607 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
5608 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
5609 | /* 64 bit registers have only CRm and Opc1 fields */ | |
5610 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
5611 | /* op0 only exists in the AArch64 encodings */ |
5612 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
5613 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
5614 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
5615 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
5616 | * encodes a minimum access level for the register. We roll this | |
5617 | * runtime check into our general permission check code, so check | |
5618 | * here that the reginfo's specified permissions are strict enough | |
5619 | * to encompass the generic architectural permission check. | |
5620 | */ | |
5621 | if (r->state != ARM_CP_STATE_AA32) { | |
5622 | int mask = 0; | |
5623 | switch (r->opc1) { | |
5624 | case 0: case 1: case 2: | |
5625 | /* min_EL EL1 */ | |
5626 | mask = PL1_RW; | |
5627 | break; | |
5628 | case 3: | |
5629 | /* min_EL EL0 */ | |
5630 | mask = PL0_RW; | |
5631 | break; | |
5632 | case 4: | |
5633 | /* min_EL EL2 */ | |
5634 | mask = PL2_RW; | |
5635 | break; | |
5636 | case 5: | |
5637 | /* unallocated encoding, so not possible */ | |
5638 | assert(false); | |
5639 | break; | |
5640 | case 6: | |
5641 | /* min_EL EL3 */ | |
5642 | mask = PL3_RW; | |
5643 | break; | |
5644 | case 7: | |
5645 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
5646 | mask = PL1_RW; | |
5647 | break; | |
5648 | default: | |
5649 | /* broken reginfo with out-of-range opc1 */ | |
5650 | assert(false); | |
5651 | break; | |
5652 | } | |
5653 | /* assert our permissions are not too lax (stricter is fine) */ | |
5654 | assert((r->access & ~mask) == 0); | |
5655 | } | |
5656 | ||
4b6a83fb PM |
5657 | /* Check that the register definition has enough info to handle |
5658 | * reads and writes if they are permitted. | |
5659 | */ | |
5660 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
5661 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
5662 | assert((r->fieldoffset || |
5663 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5664 | r->readfn); | |
4b6a83fb PM |
5665 | } |
5666 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
5667 | assert((r->fieldoffset || |
5668 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5669 | r->writefn); | |
4b6a83fb PM |
5670 | } |
5671 | } | |
5672 | /* Bad type field probably means missing sentinel at end of reg list */ | |
5673 | assert(cptype_valid(r->type)); | |
5674 | for (crm = crmmin; crm <= crmmax; crm++) { | |
5675 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
5676 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
5677 | for (state = ARM_CP_STATE_AA32; |
5678 | state <= ARM_CP_STATE_AA64; state++) { | |
5679 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
5680 | continue; | |
5681 | } | |
3f3c82a5 FA |
5682 | if (state == ARM_CP_STATE_AA32) { |
5683 | /* Under AArch32 CP registers can be common | |
5684 | * (same for secure and non-secure world) or banked. | |
5685 | */ | |
5686 | switch (r->secure) { | |
5687 | case ARM_CP_SECSTATE_S: | |
5688 | case ARM_CP_SECSTATE_NS: | |
5689 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5690 | r->secure, crm, opc1, opc2); | |
5691 | break; | |
5692 | default: | |
5693 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5694 | ARM_CP_SECSTATE_S, | |
5695 | crm, opc1, opc2); | |
5696 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5697 | ARM_CP_SECSTATE_NS, | |
5698 | crm, opc1, opc2); | |
5699 | break; | |
5700 | } | |
5701 | } else { | |
5702 | /* AArch64 registers get mapped to non-secure instance | |
5703 | * of AArch32 */ | |
5704 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5705 | ARM_CP_SECSTATE_NS, | |
5706 | crm, opc1, opc2); | |
5707 | } | |
f5a0a5a5 | 5708 | } |
4b6a83fb PM |
5709 | } |
5710 | } | |
5711 | } | |
5712 | } | |
5713 | ||
5714 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
5715 | const ARMCPRegInfo *regs, void *opaque) | |
5716 | { | |
5717 | /* Define a whole list of registers */ | |
5718 | const ARMCPRegInfo *r; | |
5719 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
5720 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
5721 | } | |
5722 | } | |
5723 | ||
60322b39 | 5724 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 5725 | { |
60322b39 | 5726 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
5727 | } |
5728 | ||
c4241c7d PM |
5729 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
5730 | uint64_t value) | |
4b6a83fb PM |
5731 | { |
5732 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
5733 | } |
5734 | ||
c4241c7d | 5735 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
5736 | { |
5737 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
5738 | return 0; |
5739 | } | |
5740 | ||
f5a0a5a5 PM |
5741 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
5742 | { | |
5743 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
5744 | } | |
5745 | ||
af393ffc | 5746 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
37064a8b PM |
5747 | { |
5748 | /* Return true if it is not valid for us to switch to | |
5749 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
5750 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
5751 | */ | |
af393ffc PM |
5752 | |
5753 | /* Changes to or from Hyp via MSR and CPS are illegal. */ | |
5754 | if (write_type == CPSRWriteByInstr && | |
5755 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || | |
5756 | mode == ARM_CPU_MODE_HYP)) { | |
5757 | return 1; | |
5758 | } | |
5759 | ||
37064a8b PM |
5760 | switch (mode) { |
5761 | case ARM_CPU_MODE_USR: | |
10eacda7 | 5762 | return 0; |
37064a8b PM |
5763 | case ARM_CPU_MODE_SYS: |
5764 | case ARM_CPU_MODE_SVC: | |
5765 | case ARM_CPU_MODE_ABT: | |
5766 | case ARM_CPU_MODE_UND: | |
5767 | case ARM_CPU_MODE_IRQ: | |
5768 | case ARM_CPU_MODE_FIQ: | |
52ff951b PM |
5769 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
5770 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) | |
5771 | */ | |
10eacda7 PM |
5772 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
5773 | * and CPS are treated as illegal mode changes. | |
5774 | */ | |
5775 | if (write_type == CPSRWriteByInstr && | |
5776 | (env->cp15.hcr_el2 & HCR_TGE) && | |
5777 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && | |
5778 | !arm_is_secure_below_el3(env)) { | |
5779 | return 1; | |
5780 | } | |
37064a8b | 5781 | return 0; |
e6c8fc07 PM |
5782 | case ARM_CPU_MODE_HYP: |
5783 | return !arm_feature(env, ARM_FEATURE_EL2) | |
5784 | || arm_current_el(env) < 2 || arm_is_secure(env); | |
027fc527 | 5785 | case ARM_CPU_MODE_MON: |
58ae2d1f | 5786 | return arm_current_el(env) < 3; |
37064a8b PM |
5787 | default: |
5788 | return 1; | |
5789 | } | |
5790 | } | |
5791 | ||
2f4a40e5 AZ |
5792 | uint32_t cpsr_read(CPUARMState *env) |
5793 | { | |
5794 | int ZF; | |
6fbe23d5 PB |
5795 | ZF = (env->ZF == 0); |
5796 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
5797 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
5798 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
5799 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 5800 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
5801 | } |
5802 | ||
50866ba5 PM |
5803 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
5804 | CPSRWriteType write_type) | |
2f4a40e5 | 5805 | { |
6e8801f9 FA |
5806 | uint32_t changed_daif; |
5807 | ||
2f4a40e5 | 5808 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
5809 | env->ZF = (~val) & CPSR_Z; |
5810 | env->NF = val; | |
2f4a40e5 AZ |
5811 | env->CF = (val >> 29) & 1; |
5812 | env->VF = (val << 3) & 0x80000000; | |
5813 | } | |
5814 | if (mask & CPSR_Q) | |
5815 | env->QF = ((val & CPSR_Q) != 0); | |
5816 | if (mask & CPSR_T) | |
5817 | env->thumb = ((val & CPSR_T) != 0); | |
5818 | if (mask & CPSR_IT_0_1) { | |
5819 | env->condexec_bits &= ~3; | |
5820 | env->condexec_bits |= (val >> 25) & 3; | |
5821 | } | |
5822 | if (mask & CPSR_IT_2_7) { | |
5823 | env->condexec_bits &= 3; | |
5824 | env->condexec_bits |= (val >> 8) & 0xfc; | |
5825 | } | |
5826 | if (mask & CPSR_GE) { | |
5827 | env->GE = (val >> 16) & 0xf; | |
5828 | } | |
5829 | ||
6e8801f9 FA |
5830 | /* In a V7 implementation that includes the security extensions but does |
5831 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
5832 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
5833 | * bits respectively. | |
5834 | * | |
5835 | * In a V8 implementation, it is permitted for privileged software to | |
5836 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
5837 | */ | |
f8c88bbc | 5838 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
6e8801f9 FA |
5839 | arm_feature(env, ARM_FEATURE_EL3) && |
5840 | !arm_feature(env, ARM_FEATURE_EL2) && | |
5841 | !arm_is_secure(env)) { | |
5842 | ||
5843 | changed_daif = (env->daif ^ val) & mask; | |
5844 | ||
5845 | if (changed_daif & CPSR_A) { | |
5846 | /* Check to see if we are allowed to change the masking of async | |
5847 | * abort exceptions from a non-secure state. | |
5848 | */ | |
5849 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
5850 | qemu_log_mask(LOG_GUEST_ERROR, | |
5851 | "Ignoring attempt to switch CPSR_A flag from " | |
5852 | "non-secure world with SCR.AW bit clear\n"); | |
5853 | mask &= ~CPSR_A; | |
5854 | } | |
5855 | } | |
5856 | ||
5857 | if (changed_daif & CPSR_F) { | |
5858 | /* Check to see if we are allowed to change the masking of FIQ | |
5859 | * exceptions from a non-secure state. | |
5860 | */ | |
5861 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
5862 | qemu_log_mask(LOG_GUEST_ERROR, | |
5863 | "Ignoring attempt to switch CPSR_F flag from " | |
5864 | "non-secure world with SCR.FW bit clear\n"); | |
5865 | mask &= ~CPSR_F; | |
5866 | } | |
5867 | ||
5868 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
5869 | * If this bit is set software is not allowed to mask | |
5870 | * FIQs, but is allowed to set CPSR_F to 0. | |
5871 | */ | |
5872 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
5873 | (val & CPSR_F)) { | |
5874 | qemu_log_mask(LOG_GUEST_ERROR, | |
5875 | "Ignoring attempt to enable CPSR_F flag " | |
5876 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
5877 | mask &= ~CPSR_F; | |
5878 | } | |
5879 | } | |
5880 | } | |
5881 | ||
4cc35614 PM |
5882 | env->daif &= ~(CPSR_AIF & mask); |
5883 | env->daif |= val & CPSR_AIF & mask; | |
5884 | ||
f8c88bbc PM |
5885 | if (write_type != CPSRWriteRaw && |
5886 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { | |
8c4f0eb9 PM |
5887 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
5888 | /* Note that we can only get here in USR mode if this is a | |
5889 | * gdb stub write; for this case we follow the architectural | |
5890 | * behaviour for guest writes in USR mode of ignoring an attempt | |
5891 | * to switch mode. (Those are caught by translate.c for writes | |
5892 | * triggered by guest instructions.) | |
5893 | */ | |
5894 | mask &= ~CPSR_M; | |
5895 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { | |
81907a58 PM |
5896 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
5897 | * v7, and has defined behaviour in v8: | |
5898 | * + leave CPSR.M untouched | |
5899 | * + allow changes to the other CPSR fields | |
5900 | * + set PSTATE.IL | |
5901 | * For user changes via the GDB stub, we don't set PSTATE.IL, | |
5902 | * as this would be unnecessarily harsh for a user error. | |
37064a8b PM |
5903 | */ |
5904 | mask &= ~CPSR_M; | |
81907a58 PM |
5905 | if (write_type != CPSRWriteByGDBStub && |
5906 | arm_feature(env, ARM_FEATURE_V8)) { | |
5907 | mask |= CPSR_IL; | |
5908 | val |= CPSR_IL; | |
5909 | } | |
37064a8b PM |
5910 | } else { |
5911 | switch_mode(env, val & CPSR_M); | |
5912 | } | |
2f4a40e5 AZ |
5913 | } |
5914 | mask &= ~CACHED_CPSR_BITS; | |
5915 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
5916 | } | |
5917 | ||
b26eefb6 PB |
5918 | /* Sign/zero extend */ |
5919 | uint32_t HELPER(sxtb16)(uint32_t x) | |
5920 | { | |
5921 | uint32_t res; | |
5922 | res = (uint16_t)(int8_t)x; | |
5923 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
5924 | return res; | |
5925 | } | |
5926 | ||
5927 | uint32_t HELPER(uxtb16)(uint32_t x) | |
5928 | { | |
5929 | uint32_t res; | |
5930 | res = (uint16_t)(uint8_t)x; | |
5931 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
5932 | return res; | |
5933 | } | |
5934 | ||
3670669c PB |
5935 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
5936 | { | |
5937 | if (den == 0) | |
5938 | return 0; | |
686eeb93 AJ |
5939 | if (num == INT_MIN && den == -1) |
5940 | return INT_MIN; | |
3670669c PB |
5941 | return num / den; |
5942 | } | |
5943 | ||
5944 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
5945 | { | |
5946 | if (den == 0) | |
5947 | return 0; | |
5948 | return num / den; | |
5949 | } | |
5950 | ||
5951 | uint32_t HELPER(rbit)(uint32_t x) | |
5952 | { | |
42fedbca | 5953 | return revbit32(x); |
3670669c PB |
5954 | } |
5955 | ||
5fafdf24 | 5956 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 5957 | |
9ee6e8bb | 5958 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 5959 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 5960 | { |
a47dddd7 AF |
5961 | ARMCPU *cpu = arm_env_get_cpu(env); |
5962 | ||
5963 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
5964 | } |
5965 | ||
0ecb72a5 | 5966 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 5967 | { |
a47dddd7 AF |
5968 | ARMCPU *cpu = arm_env_get_cpu(env); |
5969 | ||
5970 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
5971 | return 0; |
5972 | } | |
5973 | ||
fb602cb7 PM |
5974 | void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) |
5975 | { | |
5976 | /* translate.c should never generate calls here in user-only mode */ | |
5977 | g_assert_not_reached(); | |
5978 | } | |
5979 | ||
3e3fa230 PM |
5980 | void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) |
5981 | { | |
5982 | /* translate.c should never generate calls here in user-only mode */ | |
5983 | g_assert_not_reached(); | |
5984 | } | |
5985 | ||
5158de24 PM |
5986 | uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) |
5987 | { | |
5988 | /* The TT instructions can be used by unprivileged code, but in | |
5989 | * user-only emulation we don't have the MPU. | |
5990 | * Luckily since we know we are NonSecure unprivileged (and that in | |
5991 | * turn means that the A flag wasn't specified), all the bits in the | |
5992 | * register must be zero: | |
5993 | * IREGION: 0 because IRVALID is 0 | |
5994 | * IRVALID: 0 because NS | |
5995 | * S: 0 because NS | |
5996 | * NSRW: 0 because NS | |
5997 | * NSR: 0 because NS | |
5998 | * RW: 0 because unpriv and A flag not set | |
5999 | * R: 0 because unpriv and A flag not set | |
6000 | * SRVALID: 0 because NS | |
6001 | * MRVALID: 0 because unpriv and A flag not set | |
6002 | * SREGION: 0 becaus SRVALID is 0 | |
6003 | * MREGION: 0 because MRVALID is 0 | |
6004 | */ | |
6005 | return 0; | |
6006 | } | |
6007 | ||
0ecb72a5 | 6008 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 6009 | { |
a47dddd7 AF |
6010 | ARMCPU *cpu = arm_env_get_cpu(env); |
6011 | ||
6012 | if (mode != ARM_CPU_MODE_USR) { | |
6013 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
6014 | } | |
b5ff1b31 FB |
6015 | } |
6016 | ||
012a906b GB |
6017 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
6018 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
6019 | { |
6020 | return 1; | |
6021 | } | |
6022 | ||
ce02049d GB |
6023 | void aarch64_sync_64_to_32(CPUARMState *env) |
6024 | { | |
6025 | g_assert_not_reached(); | |
6026 | } | |
6027 | ||
b5ff1b31 FB |
6028 | #else |
6029 | ||
0ecb72a5 | 6030 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
6031 | { |
6032 | int old_mode; | |
6033 | int i; | |
6034 | ||
6035 | old_mode = env->uncached_cpsr & CPSR_M; | |
6036 | if (mode == old_mode) | |
6037 | return; | |
6038 | ||
6039 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
6040 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 6041 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
6042 | } else if (mode == ARM_CPU_MODE_FIQ) { |
6043 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 6044 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
6045 | } |
6046 | ||
f5206413 | 6047 | i = bank_number(old_mode); |
b5ff1b31 FB |
6048 | env->banked_r13[i] = env->regs[13]; |
6049 | env->banked_r14[i] = env->regs[14]; | |
6050 | env->banked_spsr[i] = env->spsr; | |
6051 | ||
f5206413 | 6052 | i = bank_number(mode); |
b5ff1b31 FB |
6053 | env->regs[13] = env->banked_r13[i]; |
6054 | env->regs[14] = env->banked_r14[i]; | |
6055 | env->spsr = env->banked_spsr[i]; | |
6056 | } | |
6057 | ||
0eeb17d6 GB |
6058 | /* Physical Interrupt Target EL Lookup Table |
6059 | * | |
6060 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
6061 | * | |
6062 | * The below multi-dimensional table is used for looking up the target | |
6063 | * exception level given numerous condition criteria. Specifically, the | |
6064 | * target EL is based on SCR and HCR routing controls as well as the | |
6065 | * currently executing EL and secure state. | |
6066 | * | |
6067 | * Dimensions: | |
6068 | * target_el_table[2][2][2][2][2][4] | |
6069 | * | | | | | +--- Current EL | |
6070 | * | | | | +------ Non-secure(0)/Secure(1) | |
6071 | * | | | +--------- HCR mask override | |
6072 | * | | +------------ SCR exec state control | |
6073 | * | +--------------- SCR mask override | |
6074 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
6075 | * | |
6076 | * The table values are as such: | |
6077 | * 0-3 = EL0-EL3 | |
6078 | * -1 = Cannot occur | |
6079 | * | |
6080 | * The ARM ARM target EL table includes entries indicating that an "exception | |
6081 | * is not taken". The two cases where this is applicable are: | |
6082 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
6083 | * routed to EL3. | |
6084 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
6085 | * routed to EL2. | |
6086 | * In these two cases, the below table contain a target of EL1. This value is | |
6087 | * returned as it is expected that the consumer of the table data will check | |
6088 | * for "target EL >= current EL" to ensure the exception is not taken. | |
6089 | * | |
6090 | * SCR HCR | |
6091 | * 64 EA AMO From | |
6092 | * BIT IRQ IMO Non-secure Secure | |
6093 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
6094 | */ | |
82c39f6a | 6095 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
6096 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
6097 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
6098 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
6099 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
6100 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
6101 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
6102 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
6103 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
6104 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
6105 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
6106 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
6107 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
6108 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
6109 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
6110 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
6111 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
6112 | }; | |
6113 | ||
6114 | /* | |
6115 | * Determine the target EL for physical exceptions | |
6116 | */ | |
012a906b GB |
6117 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
6118 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
6119 | { |
6120 | CPUARMState *env = cs->env_ptr; | |
2cde031f | 6121 | int rw; |
0eeb17d6 GB |
6122 | int scr; |
6123 | int hcr; | |
6124 | int target_el; | |
2cde031f SS |
6125 | /* Is the highest EL AArch64? */ |
6126 | int is64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
6127 | ||
6128 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
6129 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
6130 | } else { | |
6131 | /* Either EL2 is the highest EL (and so the EL2 register width | |
6132 | * is given by is64); or there is no EL2 or EL3, in which case | |
6133 | * the value of 'rw' does not affect the table lookup anyway. | |
6134 | */ | |
6135 | rw = is64; | |
6136 | } | |
0eeb17d6 GB |
6137 | |
6138 | switch (excp_idx) { | |
6139 | case EXCP_IRQ: | |
6140 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
6141 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
6142 | break; | |
6143 | case EXCP_FIQ: | |
6144 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
6145 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
6146 | break; | |
6147 | default: | |
6148 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
6149 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
6150 | break; | |
6151 | }; | |
6152 | ||
6153 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
6154 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
6155 | ||
6156 | /* Perform a table-lookup for the target EL given the current state */ | |
6157 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
6158 | ||
6159 | assert(target_el > 0); | |
6160 | ||
6161 | return target_el; | |
6162 | } | |
6163 | ||
9ee6e8bb PB |
6164 | static void v7m_push(CPUARMState *env, uint32_t val) |
6165 | { | |
70d74660 AF |
6166 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
6167 | ||
9ee6e8bb | 6168 | env->regs[13] -= 4; |
ab1da857 | 6169 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
6170 | } |
6171 | ||
fb602cb7 PM |
6172 | /* Return true if we're using the process stack pointer (not the MSP) */ |
6173 | static bool v7m_using_psp(CPUARMState *env) | |
6174 | { | |
6175 | /* Handler mode always uses the main stack; for thread mode | |
6176 | * the CONTROL.SPSEL bit determines the answer. | |
6177 | * Note that in v7M it is not possible to be in Handler mode with | |
6178 | * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. | |
6179 | */ | |
6180 | return !arm_v7m_is_handler_mode(env) && | |
6181 | env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; | |
6182 | } | |
6183 | ||
3f0cddee PM |
6184 | /* Write to v7M CONTROL.SPSEL bit for the specified security bank. |
6185 | * This may change the current stack pointer between Main and Process | |
6186 | * stack pointers if it is done for the CONTROL register for the current | |
6187 | * security state. | |
de2db7ec | 6188 | */ |
3f0cddee PM |
6189 | static void write_v7m_control_spsel_for_secstate(CPUARMState *env, |
6190 | bool new_spsel, | |
6191 | bool secstate) | |
9ee6e8bb | 6192 | { |
3f0cddee | 6193 | bool old_is_psp = v7m_using_psp(env); |
de2db7ec | 6194 | |
3f0cddee PM |
6195 | env->v7m.control[secstate] = |
6196 | deposit32(env->v7m.control[secstate], | |
de2db7ec PM |
6197 | R_V7M_CONTROL_SPSEL_SHIFT, |
6198 | R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); | |
6199 | ||
3f0cddee PM |
6200 | if (secstate == env->v7m.secure) { |
6201 | bool new_is_psp = v7m_using_psp(env); | |
6202 | uint32_t tmp; | |
abc24d86 | 6203 | |
3f0cddee PM |
6204 | if (old_is_psp != new_is_psp) { |
6205 | tmp = env->v7m.other_sp; | |
6206 | env->v7m.other_sp = env->regs[13]; | |
6207 | env->regs[13] = tmp; | |
6208 | } | |
de2db7ec PM |
6209 | } |
6210 | } | |
6211 | ||
3f0cddee PM |
6212 | /* Write to v7M CONTROL.SPSEL bit. This may change the current |
6213 | * stack pointer between Main and Process stack pointers. | |
6214 | */ | |
6215 | static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) | |
6216 | { | |
6217 | write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); | |
6218 | } | |
6219 | ||
de2db7ec PM |
6220 | void write_v7m_exception(CPUARMState *env, uint32_t new_exc) |
6221 | { | |
6222 | /* Write a new value to v7m.exception, thus transitioning into or out | |
6223 | * of Handler mode; this may result in a change of active stack pointer. | |
6224 | */ | |
6225 | bool new_is_psp, old_is_psp = v7m_using_psp(env); | |
6226 | uint32_t tmp; | |
abc24d86 | 6227 | |
de2db7ec PM |
6228 | env->v7m.exception = new_exc; |
6229 | ||
6230 | new_is_psp = v7m_using_psp(env); | |
6231 | ||
6232 | if (old_is_psp != new_is_psp) { | |
6233 | tmp = env->v7m.other_sp; | |
6234 | env->v7m.other_sp = env->regs[13]; | |
6235 | env->regs[13] = tmp; | |
9ee6e8bb PB |
6236 | } |
6237 | } | |
6238 | ||
fb602cb7 PM |
6239 | /* Switch M profile security state between NS and S */ |
6240 | static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) | |
6241 | { | |
6242 | uint32_t new_ss_msp, new_ss_psp; | |
6243 | ||
6244 | if (env->v7m.secure == new_secstate) { | |
6245 | return; | |
6246 | } | |
6247 | ||
6248 | /* All the banked state is accessed by looking at env->v7m.secure | |
6249 | * except for the stack pointer; rearrange the SP appropriately. | |
6250 | */ | |
6251 | new_ss_msp = env->v7m.other_ss_msp; | |
6252 | new_ss_psp = env->v7m.other_ss_psp; | |
6253 | ||
6254 | if (v7m_using_psp(env)) { | |
6255 | env->v7m.other_ss_psp = env->regs[13]; | |
6256 | env->v7m.other_ss_msp = env->v7m.other_sp; | |
6257 | } else { | |
6258 | env->v7m.other_ss_msp = env->regs[13]; | |
6259 | env->v7m.other_ss_psp = env->v7m.other_sp; | |
6260 | } | |
6261 | ||
6262 | env->v7m.secure = new_secstate; | |
6263 | ||
6264 | if (v7m_using_psp(env)) { | |
6265 | env->regs[13] = new_ss_psp; | |
6266 | env->v7m.other_sp = new_ss_msp; | |
6267 | } else { | |
6268 | env->regs[13] = new_ss_msp; | |
6269 | env->v7m.other_sp = new_ss_psp; | |
6270 | } | |
6271 | } | |
6272 | ||
6273 | void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) | |
6274 | { | |
6275 | /* Handle v7M BXNS: | |
6276 | * - if the return value is a magic value, do exception return (like BX) | |
6277 | * - otherwise bit 0 of the return value is the target security state | |
6278 | */ | |
d02a8698 PM |
6279 | uint32_t min_magic; |
6280 | ||
6281 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6282 | /* Covers FNC_RETURN and EXC_RETURN magic */ | |
6283 | min_magic = FNC_RETURN_MIN_MAGIC; | |
6284 | } else { | |
6285 | /* EXC_RETURN magic only */ | |
6286 | min_magic = EXC_RETURN_MIN_MAGIC; | |
6287 | } | |
6288 | ||
6289 | if (dest >= min_magic) { | |
fb602cb7 PM |
6290 | /* This is an exception return magic value; put it where |
6291 | * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. | |
6292 | * Note that if we ever add gen_ss_advance() singlestep support to | |
6293 | * M profile this should count as an "instruction execution complete" | |
6294 | * event (compare gen_bx_excret_final_code()). | |
6295 | */ | |
6296 | env->regs[15] = dest & ~1; | |
6297 | env->thumb = dest & 1; | |
6298 | HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); | |
6299 | /* notreached */ | |
6300 | } | |
6301 | ||
6302 | /* translate.c should have made BXNS UNDEF unless we're secure */ | |
6303 | assert(env->v7m.secure); | |
6304 | ||
6305 | switch_v7m_security_state(env, dest & 1); | |
6306 | env->thumb = 1; | |
6307 | env->regs[15] = dest & ~1; | |
6308 | } | |
6309 | ||
3e3fa230 PM |
6310 | void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) |
6311 | { | |
6312 | /* Handle v7M BLXNS: | |
6313 | * - bit 0 of the destination address is the target security state | |
6314 | */ | |
6315 | ||
6316 | /* At this point regs[15] is the address just after the BLXNS */ | |
6317 | uint32_t nextinst = env->regs[15] | 1; | |
6318 | uint32_t sp = env->regs[13] - 8; | |
6319 | uint32_t saved_psr; | |
6320 | ||
6321 | /* translate.c will have made BLXNS UNDEF unless we're secure */ | |
6322 | assert(env->v7m.secure); | |
6323 | ||
6324 | if (dest & 1) { | |
6325 | /* target is Secure, so this is just a normal BLX, | |
6326 | * except that the low bit doesn't indicate Thumb/not. | |
6327 | */ | |
6328 | env->regs[14] = nextinst; | |
6329 | env->thumb = 1; | |
6330 | env->regs[15] = dest & ~1; | |
6331 | return; | |
6332 | } | |
6333 | ||
6334 | /* Target is non-secure: first push a stack frame */ | |
6335 | if (!QEMU_IS_ALIGNED(sp, 8)) { | |
6336 | qemu_log_mask(LOG_GUEST_ERROR, | |
6337 | "BLXNS with misaligned SP is UNPREDICTABLE\n"); | |
6338 | } | |
6339 | ||
6340 | saved_psr = env->v7m.exception; | |
6341 | if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { | |
6342 | saved_psr |= XPSR_SFPA; | |
6343 | } | |
6344 | ||
6345 | /* Note that these stores can throw exceptions on MPU faults */ | |
6346 | cpu_stl_data(env, sp, nextinst); | |
6347 | cpu_stl_data(env, sp + 4, saved_psr); | |
6348 | ||
6349 | env->regs[13] = sp; | |
6350 | env->regs[14] = 0xfeffffff; | |
6351 | if (arm_v7m_is_handler_mode(env)) { | |
6352 | /* Write a dummy value to IPSR, to avoid leaking the current secure | |
6353 | * exception number to non-secure code. This is guaranteed not | |
6354 | * to cause write_v7m_exception() to actually change stacks. | |
6355 | */ | |
6356 | write_v7m_exception(env, 1); | |
6357 | } | |
6358 | switch_v7m_security_state(env, 0); | |
6359 | env->thumb = 1; | |
6360 | env->regs[15] = dest; | |
6361 | } | |
6362 | ||
5b522399 PM |
6363 | static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, |
6364 | bool spsel) | |
6365 | { | |
6366 | /* Return a pointer to the location where we currently store the | |
6367 | * stack pointer for the requested security state and thread mode. | |
6368 | * This pointer will become invalid if the CPU state is updated | |
6369 | * such that the stack pointers are switched around (eg changing | |
6370 | * the SPSEL control bit). | |
6371 | * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). | |
6372 | * Unlike that pseudocode, we require the caller to pass us in the | |
6373 | * SPSEL control bit value; this is because we also use this | |
6374 | * function in handling of pushing of the callee-saves registers | |
6375 | * part of the v8M stack frame (pseudocode PushCalleeStack()), | |
6376 | * and in the tailchain codepath the SPSEL bit comes from the exception | |
6377 | * return magic LR value from the previous exception. The pseudocode | |
6378 | * opencodes the stack-selection in PushCalleeStack(), but we prefer | |
6379 | * to make this utility function generic enough to do the job. | |
6380 | */ | |
6381 | bool want_psp = threadmode && spsel; | |
6382 | ||
6383 | if (secure == env->v7m.secure) { | |
de2db7ec PM |
6384 | if (want_psp == v7m_using_psp(env)) { |
6385 | return &env->regs[13]; | |
6386 | } else { | |
6387 | return &env->v7m.other_sp; | |
6388 | } | |
5b522399 PM |
6389 | } else { |
6390 | if (want_psp) { | |
6391 | return &env->v7m.other_ss_psp; | |
6392 | } else { | |
6393 | return &env->v7m.other_ss_msp; | |
6394 | } | |
6395 | } | |
6396 | } | |
6397 | ||
d3392718 | 6398 | static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure) |
39ae2474 PM |
6399 | { |
6400 | CPUState *cs = CPU(cpu); | |
6401 | CPUARMState *env = &cpu->env; | |
6402 | MemTxResult result; | |
d3392718 | 6403 | hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4; |
39ae2474 PM |
6404 | uint32_t addr; |
6405 | ||
6406 | addr = address_space_ldl(cs->as, vec, | |
6407 | MEMTXATTRS_UNSPECIFIED, &result); | |
6408 | if (result != MEMTX_OK) { | |
6409 | /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, | |
6410 | * which would then be immediately followed by our failing to load | |
6411 | * the entry vector for that HardFault, which is a Lockup case. | |
6412 | * Since we don't model Lockup, we just report this guest error | |
6413 | * via cpu_abort(). | |
6414 | */ | |
d3392718 PM |
6415 | cpu_abort(cs, "Failed to read from %s exception vector table " |
6416 | "entry %08x\n", targets_secure ? "secure" : "nonsecure", | |
6417 | (unsigned)vec); | |
39ae2474 PM |
6418 | } |
6419 | return addr; | |
6420 | } | |
6421 | ||
d3392718 PM |
6422 | static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain) |
6423 | { | |
6424 | /* For v8M, push the callee-saves register part of the stack frame. | |
6425 | * Compare the v8M pseudocode PushCalleeStack(). | |
6426 | * In the tailchaining case this may not be the current stack. | |
6427 | */ | |
6428 | CPUARMState *env = &cpu->env; | |
6429 | CPUState *cs = CPU(cpu); | |
6430 | uint32_t *frame_sp_p; | |
6431 | uint32_t frameptr; | |
6432 | ||
6433 | if (dotailchain) { | |
6434 | frame_sp_p = get_v7m_sp_ptr(env, true, | |
6435 | lr & R_V7M_EXCRET_MODE_MASK, | |
6436 | lr & R_V7M_EXCRET_SPSEL_MASK); | |
6437 | } else { | |
6438 | frame_sp_p = &env->regs[13]; | |
6439 | } | |
6440 | ||
6441 | frameptr = *frame_sp_p - 0x28; | |
6442 | ||
6443 | stl_phys(cs->as, frameptr, 0xfefa125b); | |
6444 | stl_phys(cs->as, frameptr + 0x8, env->regs[4]); | |
6445 | stl_phys(cs->as, frameptr + 0xc, env->regs[5]); | |
6446 | stl_phys(cs->as, frameptr + 0x10, env->regs[6]); | |
6447 | stl_phys(cs->as, frameptr + 0x14, env->regs[7]); | |
6448 | stl_phys(cs->as, frameptr + 0x18, env->regs[8]); | |
6449 | stl_phys(cs->as, frameptr + 0x1c, env->regs[9]); | |
6450 | stl_phys(cs->as, frameptr + 0x20, env->regs[10]); | |
6451 | stl_phys(cs->as, frameptr + 0x24, env->regs[11]); | |
6452 | ||
6453 | *frame_sp_p = frameptr; | |
6454 | } | |
6455 | ||
6456 | static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain) | |
39ae2474 PM |
6457 | { |
6458 | /* Do the "take the exception" parts of exception entry, | |
6459 | * but not the pushing of state to the stack. This is | |
6460 | * similar to the pseudocode ExceptionTaken() function. | |
6461 | */ | |
6462 | CPUARMState *env = &cpu->env; | |
6463 | uint32_t addr; | |
d3392718 PM |
6464 | bool targets_secure; |
6465 | ||
6466 | targets_secure = armv7m_nvic_acknowledge_irq(env->nvic); | |
6467 | ||
6468 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
6469 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && | |
6470 | (lr & R_V7M_EXCRET_S_MASK)) { | |
6471 | /* The background code (the owner of the registers in the | |
6472 | * exception frame) is Secure. This means it may either already | |
6473 | * have or now needs to push callee-saves registers. | |
6474 | */ | |
6475 | if (targets_secure) { | |
6476 | if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { | |
6477 | /* We took an exception from Secure to NonSecure | |
6478 | * (which means the callee-saved registers got stacked) | |
6479 | * and are now tailchaining to a Secure exception. | |
6480 | * Clear DCRS so eventual return from this Secure | |
6481 | * exception unstacks the callee-saved registers. | |
6482 | */ | |
6483 | lr &= ~R_V7M_EXCRET_DCRS_MASK; | |
6484 | } | |
6485 | } else { | |
6486 | /* We're going to a non-secure exception; push the | |
6487 | * callee-saves registers to the stack now, if they're | |
6488 | * not already saved. | |
6489 | */ | |
6490 | if (lr & R_V7M_EXCRET_DCRS_MASK && | |
6491 | !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { | |
6492 | v7m_push_callee_stack(cpu, lr, dotailchain); | |
6493 | } | |
6494 | lr |= R_V7M_EXCRET_DCRS_MASK; | |
6495 | } | |
6496 | } | |
6497 | ||
6498 | lr &= ~R_V7M_EXCRET_ES_MASK; | |
6499 | if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6500 | lr |= R_V7M_EXCRET_ES_MASK; | |
6501 | } | |
6502 | lr &= ~R_V7M_EXCRET_SPSEL_MASK; | |
6503 | if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { | |
6504 | lr |= R_V7M_EXCRET_SPSEL_MASK; | |
6505 | } | |
6506 | ||
6507 | /* Clear registers if necessary to prevent non-secure exception | |
6508 | * code being able to see register values from secure code. | |
6509 | * Where register values become architecturally UNKNOWN we leave | |
6510 | * them with their previous values. | |
6511 | */ | |
6512 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6513 | if (!targets_secure) { | |
6514 | /* Always clear the caller-saved registers (they have been | |
6515 | * pushed to the stack earlier in v7m_push_stack()). | |
6516 | * Clear callee-saved registers if the background code is | |
6517 | * Secure (in which case these regs were saved in | |
6518 | * v7m_push_callee_stack()). | |
6519 | */ | |
6520 | int i; | |
6521 | ||
6522 | for (i = 0; i < 13; i++) { | |
6523 | /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ | |
6524 | if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { | |
6525 | env->regs[i] = 0; | |
6526 | } | |
6527 | } | |
6528 | /* Clear EAPSR */ | |
6529 | xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); | |
6530 | } | |
6531 | } | |
6532 | } | |
39ae2474 | 6533 | |
d3392718 PM |
6534 | /* Switch to target security state -- must do this before writing SPSEL */ |
6535 | switch_v7m_security_state(env, targets_secure); | |
de2db7ec | 6536 | write_v7m_control_spsel(env, 0); |
dc3c4c14 | 6537 | arm_clear_exclusive(env); |
39ae2474 PM |
6538 | /* Clear IT bits */ |
6539 | env->condexec_bits = 0; | |
6540 | env->regs[14] = lr; | |
d3392718 | 6541 | addr = arm_v7m_load_vector(cpu, targets_secure); |
39ae2474 PM |
6542 | env->regs[15] = addr & 0xfffffffe; |
6543 | env->thumb = addr & 1; | |
6544 | } | |
6545 | ||
6546 | static void v7m_push_stack(ARMCPU *cpu) | |
6547 | { | |
6548 | /* Do the "set up stack frame" part of exception entry, | |
6549 | * similar to pseudocode PushStack(). | |
6550 | */ | |
6551 | CPUARMState *env = &cpu->env; | |
6552 | uint32_t xpsr = xpsr_read(env); | |
6553 | ||
6554 | /* Align stack pointer if the guest wants that */ | |
9d40cd8a PM |
6555 | if ((env->regs[13] & 4) && |
6556 | (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { | |
39ae2474 | 6557 | env->regs[13] -= 4; |
987ab45e | 6558 | xpsr |= XPSR_SPREALIGN; |
39ae2474 PM |
6559 | } |
6560 | /* Switch to the handler mode. */ | |
6561 | v7m_push(env, xpsr); | |
6562 | v7m_push(env, env->regs[15]); | |
6563 | v7m_push(env, env->regs[14]); | |
6564 | v7m_push(env, env->regs[12]); | |
6565 | v7m_push(env, env->regs[3]); | |
6566 | v7m_push(env, env->regs[2]); | |
6567 | v7m_push(env, env->regs[1]); | |
6568 | v7m_push(env, env->regs[0]); | |
6569 | } | |
6570 | ||
aa488fe3 | 6571 | static void do_v7m_exception_exit(ARMCPU *cpu) |
9ee6e8bb | 6572 | { |
aa488fe3 | 6573 | CPUARMState *env = &cpu->env; |
5b522399 | 6574 | CPUState *cs = CPU(cpu); |
351e527a | 6575 | uint32_t excret; |
9ee6e8bb | 6576 | uint32_t xpsr; |
aa488fe3 | 6577 | bool ufault = false; |
bfb2eb52 PM |
6578 | bool sfault = false; |
6579 | bool return_to_sp_process; | |
6580 | bool return_to_handler; | |
aa488fe3 | 6581 | bool rettobase = false; |
5cb18069 | 6582 | bool exc_secure = false; |
5b522399 | 6583 | bool return_to_secure; |
aa488fe3 | 6584 | |
d02a8698 PM |
6585 | /* If we're not in Handler mode then jumps to magic exception-exit |
6586 | * addresses don't have magic behaviour. However for the v8M | |
6587 | * security extensions the magic secure-function-return has to | |
6588 | * work in thread mode too, so to avoid doing an extra check in | |
6589 | * the generated code we allow exception-exit magic to also cause the | |
6590 | * internal exception and bring us here in thread mode. Correct code | |
6591 | * will never try to do this (the following insn fetch will always | |
6592 | * fault) so we the overhead of having taken an unnecessary exception | |
6593 | * doesn't matter. | |
aa488fe3 | 6594 | */ |
d02a8698 PM |
6595 | if (!arm_v7m_is_handler_mode(env)) { |
6596 | return; | |
6597 | } | |
aa488fe3 PM |
6598 | |
6599 | /* In the spec pseudocode ExceptionReturn() is called directly | |
6600 | * from BXWritePC() and gets the full target PC value including | |
6601 | * bit zero. In QEMU's implementation we treat it as a normal | |
6602 | * jump-to-register (which is then caught later on), and so split | |
6603 | * the target value up between env->regs[15] and env->thumb in | |
6604 | * gen_bx(). Reconstitute it. | |
6605 | */ | |
351e527a | 6606 | excret = env->regs[15]; |
aa488fe3 | 6607 | if (env->thumb) { |
351e527a | 6608 | excret |= 1; |
aa488fe3 PM |
6609 | } |
6610 | ||
6611 | qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 | |
6612 | " previous exception %d\n", | |
351e527a | 6613 | excret, env->v7m.exception); |
aa488fe3 | 6614 | |
351e527a | 6615 | if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { |
aa488fe3 | 6616 | qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " |
351e527a PM |
6617 | "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", |
6618 | excret); | |
aa488fe3 PM |
6619 | } |
6620 | ||
bfb2eb52 PM |
6621 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
6622 | /* EXC_RETURN.ES validation check (R_SMFL). We must do this before | |
6623 | * we pick which FAULTMASK to clear. | |
6624 | */ | |
6625 | if (!env->v7m.secure && | |
6626 | ((excret & R_V7M_EXCRET_ES_MASK) || | |
6627 | !(excret & R_V7M_EXCRET_DCRS_MASK))) { | |
6628 | sfault = 1; | |
6629 | /* For all other purposes, treat ES as 0 (R_HXSR) */ | |
6630 | excret &= ~R_V7M_EXCRET_ES_MASK; | |
6631 | } | |
6632 | } | |
6633 | ||
a20ee600 | 6634 | if (env->v7m.exception != ARMV7M_EXCP_NMI) { |
42a6686b PM |
6635 | /* Auto-clear FAULTMASK on return from other than NMI. |
6636 | * If the security extension is implemented then this only | |
6637 | * happens if the raw execution priority is >= 0; the | |
6638 | * value of the ES bit in the exception return value indicates | |
6639 | * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) | |
6640 | */ | |
6641 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
5cb18069 | 6642 | exc_secure = excret & R_V7M_EXCRET_ES_MASK; |
42a6686b | 6643 | if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { |
5cb18069 | 6644 | env->v7m.faultmask[exc_secure] = 0; |
42a6686b PM |
6645 | } |
6646 | } else { | |
6647 | env->v7m.faultmask[M_REG_NS] = 0; | |
6648 | } | |
a20ee600 | 6649 | } |
aa488fe3 | 6650 | |
5cb18069 PM |
6651 | switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, |
6652 | exc_secure)) { | |
aa488fe3 PM |
6653 | case -1: |
6654 | /* attempt to exit an exception that isn't active */ | |
6655 | ufault = true; | |
6656 | break; | |
6657 | case 0: | |
6658 | /* still an irq active now */ | |
6659 | break; | |
6660 | case 1: | |
6661 | /* we returned to base exception level, no nesting. | |
6662 | * (In the pseudocode this is written using "NestedActivation != 1" | |
6663 | * where we have 'rettobase == false'.) | |
6664 | */ | |
6665 | rettobase = true; | |
6666 | break; | |
6667 | default: | |
6668 | g_assert_not_reached(); | |
6669 | } | |
6670 | ||
bfb2eb52 PM |
6671 | return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); |
6672 | return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; | |
5b522399 PM |
6673 | return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && |
6674 | (excret & R_V7M_EXCRET_S_MASK); | |
6675 | ||
bfb2eb52 PM |
6676 | if (arm_feature(env, ARM_FEATURE_V8)) { |
6677 | if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6678 | /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); | |
6679 | * we choose to take the UsageFault. | |
6680 | */ | |
6681 | if ((excret & R_V7M_EXCRET_S_MASK) || | |
6682 | (excret & R_V7M_EXCRET_ES_MASK) || | |
6683 | !(excret & R_V7M_EXCRET_DCRS_MASK)) { | |
6684 | ufault = true; | |
6685 | } | |
6686 | } | |
6687 | if (excret & R_V7M_EXCRET_RES0_MASK) { | |
aa488fe3 PM |
6688 | ufault = true; |
6689 | } | |
bfb2eb52 PM |
6690 | } else { |
6691 | /* For v7M we only recognize certain combinations of the low bits */ | |
6692 | switch (excret & 0xf) { | |
6693 | case 1: /* Return to Handler */ | |
6694 | break; | |
6695 | case 13: /* Return to Thread using Process stack */ | |
6696 | case 9: /* Return to Thread using Main stack */ | |
6697 | /* We only need to check NONBASETHRDENA for v7M, because in | |
6698 | * v8M this bit does not exist (it is RES1). | |
6699 | */ | |
6700 | if (!rettobase && | |
6701 | !(env->v7m.ccr[env->v7m.secure] & | |
6702 | R_V7M_CCR_NONBASETHRDENA_MASK)) { | |
6703 | ufault = true; | |
6704 | } | |
6705 | break; | |
6706 | default: | |
6707 | ufault = true; | |
6708 | } | |
6709 | } | |
6710 | ||
6711 | if (sfault) { | |
6712 | env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; | |
6713 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
d3392718 | 6714 | v7m_exception_taken(cpu, excret, true); |
bfb2eb52 PM |
6715 | qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
6716 | "stackframe: failed EXC_RETURN.ES validity check\n"); | |
6717 | return; | |
aa488fe3 PM |
6718 | } |
6719 | ||
6720 | if (ufault) { | |
6721 | /* Bad exception return: instead of popping the exception | |
6722 | * stack, directly take a usage fault on the current stack. | |
6723 | */ | |
334e8dad | 6724 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
2fb50a33 | 6725 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
d3392718 | 6726 | v7m_exception_taken(cpu, excret, true); |
aa488fe3 PM |
6727 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " |
6728 | "stackframe: failed exception return integrity check\n"); | |
6729 | return; | |
a20ee600 | 6730 | } |
9ee6e8bb | 6731 | |
de2db7ec PM |
6732 | /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in |
6733 | * Handler mode (and will be until we write the new XPSR.Interrupt | |
6734 | * field) this does not switch around the current stack pointer. | |
5b522399 | 6735 | */ |
3f0cddee | 6736 | write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); |
5b522399 | 6737 | |
3919e60b PM |
6738 | switch_v7m_security_state(env, return_to_secure); |
6739 | ||
5b522399 PM |
6740 | { |
6741 | /* The stack pointer we should be reading the exception frame from | |
6742 | * depends on bits in the magic exception return type value (and | |
6743 | * for v8M isn't necessarily the stack pointer we will eventually | |
6744 | * end up resuming execution with). Get a pointer to the location | |
6745 | * in the CPU state struct where the SP we need is currently being | |
6746 | * stored; we will use and modify it in place. | |
6747 | * We use this limited C variable scope so we don't accidentally | |
6748 | * use 'frame_sp_p' after we do something that makes it invalid. | |
fcf83ab1 | 6749 | */ |
5b522399 PM |
6750 | uint32_t *frame_sp_p = get_v7m_sp_ptr(env, |
6751 | return_to_secure, | |
6752 | !return_to_handler, | |
6753 | return_to_sp_process); | |
6754 | uint32_t frameptr = *frame_sp_p; | |
6755 | ||
cb484f9a PM |
6756 | if (!QEMU_IS_ALIGNED(frameptr, 8) && |
6757 | arm_feature(env, ARM_FEATURE_V8)) { | |
6758 | qemu_log_mask(LOG_GUEST_ERROR, | |
6759 | "M profile exception return with non-8-aligned SP " | |
6760 | "for destination state is UNPREDICTABLE\n"); | |
6761 | } | |
6762 | ||
907bedb3 PM |
6763 | /* Do we need to pop callee-saved registers? */ |
6764 | if (return_to_secure && | |
6765 | ((excret & R_V7M_EXCRET_ES_MASK) == 0 || | |
6766 | (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { | |
6767 | uint32_t expected_sig = 0xfefa125b; | |
6768 | uint32_t actual_sig = ldl_phys(cs->as, frameptr); | |
6769 | ||
6770 | if (expected_sig != actual_sig) { | |
6771 | /* Take a SecureFault on the current stack */ | |
6772 | env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; | |
6773 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
d3392718 | 6774 | v7m_exception_taken(cpu, excret, true); |
907bedb3 PM |
6775 | qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
6776 | "stackframe: failed exception return integrity " | |
6777 | "signature check\n"); | |
6778 | return; | |
6779 | } | |
6780 | ||
6781 | env->regs[4] = ldl_phys(cs->as, frameptr + 0x8); | |
6782 | env->regs[5] = ldl_phys(cs->as, frameptr + 0xc); | |
6783 | env->regs[6] = ldl_phys(cs->as, frameptr + 0x10); | |
6784 | env->regs[7] = ldl_phys(cs->as, frameptr + 0x14); | |
6785 | env->regs[8] = ldl_phys(cs->as, frameptr + 0x18); | |
6786 | env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c); | |
6787 | env->regs[10] = ldl_phys(cs->as, frameptr + 0x20); | |
6788 | env->regs[11] = ldl_phys(cs->as, frameptr + 0x24); | |
6789 | ||
6790 | frameptr += 0x28; | |
6791 | } | |
6792 | ||
5b522399 PM |
6793 | /* Pop registers. TODO: make these accesses use the correct |
6794 | * attributes and address space (S/NS, priv/unpriv) and handle | |
6795 | * memory transaction failures. | |
6796 | */ | |
6797 | env->regs[0] = ldl_phys(cs->as, frameptr); | |
6798 | env->regs[1] = ldl_phys(cs->as, frameptr + 0x4); | |
6799 | env->regs[2] = ldl_phys(cs->as, frameptr + 0x8); | |
6800 | env->regs[3] = ldl_phys(cs->as, frameptr + 0xc); | |
6801 | env->regs[12] = ldl_phys(cs->as, frameptr + 0x10); | |
6802 | env->regs[14] = ldl_phys(cs->as, frameptr + 0x14); | |
6803 | env->regs[15] = ldl_phys(cs->as, frameptr + 0x18); | |
4e4259d3 PM |
6804 | |
6805 | /* Returning from an exception with a PC with bit 0 set is defined | |
6806 | * behaviour on v8M (bit 0 is ignored), but for v7M it was specified | |
6807 | * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore | |
6808 | * the lsbit, and there are several RTOSes out there which incorrectly | |
6809 | * assume the r15 in the stack frame should be a Thumb-style "lsbit | |
6810 | * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but | |
6811 | * complain about the badly behaved guest. | |
6812 | */ | |
5b522399 | 6813 | if (env->regs[15] & 1) { |
5b522399 | 6814 | env->regs[15] &= ~1U; |
4e4259d3 PM |
6815 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
6816 | qemu_log_mask(LOG_GUEST_ERROR, | |
6817 | "M profile return from interrupt with misaligned " | |
6818 | "PC is UNPREDICTABLE on v7M\n"); | |
6819 | } | |
5b522399 | 6820 | } |
4e4259d3 | 6821 | |
5b522399 PM |
6822 | xpsr = ldl_phys(cs->as, frameptr + 0x1c); |
6823 | ||
224e0c30 PM |
6824 | if (arm_feature(env, ARM_FEATURE_V8)) { |
6825 | /* For v8M we have to check whether the xPSR exception field | |
6826 | * matches the EXCRET value for return to handler/thread | |
6827 | * before we commit to changing the SP and xPSR. | |
6828 | */ | |
6829 | bool will_be_handler = (xpsr & XPSR_EXCP) != 0; | |
6830 | if (return_to_handler != will_be_handler) { | |
6831 | /* Take an INVPC UsageFault on the current stack. | |
6832 | * By this point we will have switched to the security state | |
6833 | * for the background state, so this UsageFault will target | |
6834 | * that state. | |
6835 | */ | |
6836 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, | |
6837 | env->v7m.secure); | |
6838 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; | |
d3392718 | 6839 | v7m_exception_taken(cpu, excret, true); |
224e0c30 PM |
6840 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " |
6841 | "stackframe: failed exception return integrity " | |
6842 | "check\n"); | |
6843 | return; | |
6844 | } | |
6845 | } | |
6846 | ||
5b522399 PM |
6847 | /* Commit to consuming the stack frame */ |
6848 | frameptr += 0x20; | |
6849 | /* Undo stack alignment (the SPREALIGN bit indicates that the original | |
6850 | * pre-exception SP was not 8-aligned and we added a padding word to | |
6851 | * align it, so we undo this by ORing in the bit that increases it | |
6852 | * from the current 8-aligned value to the 8-unaligned value. (Adding 4 | |
6853 | * would work too but a logical OR is how the pseudocode specifies it.) | |
6854 | */ | |
6855 | if (xpsr & XPSR_SPREALIGN) { | |
6856 | frameptr |= 4; | |
6857 | } | |
6858 | *frame_sp_p = frameptr; | |
fcf83ab1 | 6859 | } |
5b522399 | 6860 | /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ |
987ab45e | 6861 | xpsr_write(env, xpsr, ~XPSR_SPREALIGN); |
aa488fe3 PM |
6862 | |
6863 | /* The restored xPSR exception field will be zero if we're | |
6864 | * resuming in Thread mode. If that doesn't match what the | |
351e527a | 6865 | * exception return excret specified then this is a UsageFault. |
224e0c30 | 6866 | * v7M requires we make this check here; v8M did it earlier. |
aa488fe3 | 6867 | */ |
15b3f556 | 6868 | if (return_to_handler != arm_v7m_is_handler_mode(env)) { |
224e0c30 PM |
6869 | /* Take an INVPC UsageFault by pushing the stack again; |
6870 | * we know we're v7M so this is never a Secure UsageFault. | |
2fb50a33 | 6871 | */ |
224e0c30 | 6872 | assert(!arm_feature(env, ARM_FEATURE_V8)); |
2fb50a33 | 6873 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); |
334e8dad | 6874 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
aa488fe3 | 6875 | v7m_push_stack(cpu); |
d3392718 | 6876 | v7m_exception_taken(cpu, excret, false); |
aa488fe3 PM |
6877 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " |
6878 | "failed exception return integrity check\n"); | |
6879 | return; | |
6880 | } | |
6881 | ||
6882 | /* Otherwise, we have a successful exception exit. */ | |
dc3c4c14 | 6883 | arm_clear_exclusive(env); |
aa488fe3 | 6884 | qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); |
9ee6e8bb PB |
6885 | } |
6886 | ||
d02a8698 PM |
6887 | static bool do_v7m_function_return(ARMCPU *cpu) |
6888 | { | |
6889 | /* v8M security extensions magic function return. | |
6890 | * We may either: | |
6891 | * (1) throw an exception (longjump) | |
6892 | * (2) return true if we successfully handled the function return | |
6893 | * (3) return false if we failed a consistency check and have | |
6894 | * pended a UsageFault that needs to be taken now | |
6895 | * | |
6896 | * At this point the magic return value is split between env->regs[15] | |
6897 | * and env->thumb. We don't bother to reconstitute it because we don't | |
6898 | * need it (all values are handled the same way). | |
6899 | */ | |
6900 | CPUARMState *env = &cpu->env; | |
6901 | uint32_t newpc, newpsr, newpsr_exc; | |
6902 | ||
6903 | qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); | |
6904 | ||
6905 | { | |
6906 | bool threadmode, spsel; | |
6907 | TCGMemOpIdx oi; | |
6908 | ARMMMUIdx mmu_idx; | |
6909 | uint32_t *frame_sp_p; | |
6910 | uint32_t frameptr; | |
6911 | ||
6912 | /* Pull the return address and IPSR from the Secure stack */ | |
6913 | threadmode = !arm_v7m_is_handler_mode(env); | |
6914 | spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; | |
6915 | ||
6916 | frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); | |
6917 | frameptr = *frame_sp_p; | |
6918 | ||
6919 | /* These loads may throw an exception (for MPU faults). We want to | |
6920 | * do them as secure, so work out what MMU index that is. | |
6921 | */ | |
6922 | mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); | |
6923 | oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); | |
6924 | newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); | |
6925 | newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); | |
6926 | ||
6927 | /* Consistency checks on new IPSR */ | |
6928 | newpsr_exc = newpsr & XPSR_EXCP; | |
6929 | if (!((env->v7m.exception == 0 && newpsr_exc == 0) || | |
6930 | (env->v7m.exception == 1 && newpsr_exc != 0))) { | |
6931 | /* Pend the fault and tell our caller to take it */ | |
6932 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; | |
6933 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, | |
6934 | env->v7m.secure); | |
6935 | qemu_log_mask(CPU_LOG_INT, | |
6936 | "...taking INVPC UsageFault: " | |
6937 | "IPSR consistency check failed\n"); | |
6938 | return false; | |
6939 | } | |
6940 | ||
6941 | *frame_sp_p = frameptr + 8; | |
6942 | } | |
6943 | ||
6944 | /* This invalidates frame_sp_p */ | |
6945 | switch_v7m_security_state(env, true); | |
6946 | env->v7m.exception = newpsr_exc; | |
6947 | env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; | |
6948 | if (newpsr & XPSR_SFPA) { | |
6949 | env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; | |
6950 | } | |
6951 | xpsr_write(env, 0, XPSR_IT); | |
6952 | env->thumb = newpc & 1; | |
6953 | env->regs[15] = newpc & ~1; | |
6954 | ||
6955 | qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); | |
6956 | return true; | |
6957 | } | |
6958 | ||
27a7ea8a PB |
6959 | static void arm_log_exception(int idx) |
6960 | { | |
6961 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
6962 | const char *exc = NULL; | |
2c4a7cc5 PM |
6963 | static const char * const excnames[] = { |
6964 | [EXCP_UDEF] = "Undefined Instruction", | |
6965 | [EXCP_SWI] = "SVC", | |
6966 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
6967 | [EXCP_DATA_ABORT] = "Data Abort", | |
6968 | [EXCP_IRQ] = "IRQ", | |
6969 | [EXCP_FIQ] = "FIQ", | |
6970 | [EXCP_BKPT] = "Breakpoint", | |
6971 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
6972 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
6973 | [EXCP_HVC] = "Hypervisor Call", | |
6974 | [EXCP_HYP_TRAP] = "Hypervisor Trap", | |
6975 | [EXCP_SMC] = "Secure Monitor Call", | |
6976 | [EXCP_VIRQ] = "Virtual IRQ", | |
6977 | [EXCP_VFIQ] = "Virtual FIQ", | |
6978 | [EXCP_SEMIHOST] = "Semihosting call", | |
6979 | [EXCP_NOCP] = "v7M NOCP UsageFault", | |
6980 | [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", | |
6981 | }; | |
27a7ea8a PB |
6982 | |
6983 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
6984 | exc = excnames[idx]; | |
6985 | } | |
6986 | if (!exc) { | |
6987 | exc = "unknown"; | |
6988 | } | |
6989 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
6990 | } | |
6991 | } | |
6992 | ||
333e10c5 PM |
6993 | static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, |
6994 | uint32_t addr, uint16_t *insn) | |
6995 | { | |
6996 | /* Load a 16-bit portion of a v7M instruction, returning true on success, | |
6997 | * or false on failure (in which case we will have pended the appropriate | |
6998 | * exception). | |
6999 | * We need to do the instruction fetch's MPU and SAU checks | |
7000 | * like this because there is no MMU index that would allow | |
7001 | * doing the load with a single function call. Instead we must | |
7002 | * first check that the security attributes permit the load | |
7003 | * and that they don't mismatch on the two halves of the instruction, | |
7004 | * and then we do the load as a secure load (ie using the security | |
7005 | * attributes of the address, not the CPU, as architecturally required). | |
7006 | */ | |
7007 | CPUState *cs = CPU(cpu); | |
7008 | CPUARMState *env = &cpu->env; | |
7009 | V8M_SAttributes sattrs = {}; | |
7010 | MemTxAttrs attrs = {}; | |
7011 | ARMMMUFaultInfo fi = {}; | |
7012 | MemTxResult txres; | |
7013 | target_ulong page_size; | |
7014 | hwaddr physaddr; | |
7015 | int prot; | |
333e10c5 PM |
7016 | |
7017 | v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); | |
7018 | if (!sattrs.nsc || sattrs.ns) { | |
7019 | /* This must be the second half of the insn, and it straddles a | |
7020 | * region boundary with the second half not being S&NSC. | |
7021 | */ | |
7022 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
7023 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
7024 | qemu_log_mask(CPU_LOG_INT, | |
7025 | "...really SecureFault with SFSR.INVEP\n"); | |
7026 | return false; | |
7027 | } | |
7028 | if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, | |
bc52bfeb | 7029 | &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { |
333e10c5 PM |
7030 | /* the MPU lookup failed */ |
7031 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; | |
7032 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); | |
7033 | qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); | |
7034 | return false; | |
7035 | } | |
7036 | *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, | |
7037 | attrs, &txres); | |
7038 | if (txres != MEMTX_OK) { | |
7039 | env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; | |
7040 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); | |
7041 | qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); | |
7042 | return false; | |
7043 | } | |
7044 | return true; | |
7045 | } | |
7046 | ||
7047 | static bool v7m_handle_execute_nsc(ARMCPU *cpu) | |
7048 | { | |
7049 | /* Check whether this attempt to execute code in a Secure & NS-Callable | |
7050 | * memory region is for an SG instruction; if so, then emulate the | |
7051 | * effect of the SG instruction and return true. Otherwise pend | |
7052 | * the correct kind of exception and return false. | |
7053 | */ | |
7054 | CPUARMState *env = &cpu->env; | |
7055 | ARMMMUIdx mmu_idx; | |
7056 | uint16_t insn; | |
7057 | ||
7058 | /* We should never get here unless get_phys_addr_pmsav8() caused | |
7059 | * an exception for NS executing in S&NSC memory. | |
7060 | */ | |
7061 | assert(!env->v7m.secure); | |
7062 | assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); | |
7063 | ||
7064 | /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ | |
7065 | mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); | |
7066 | ||
7067 | if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { | |
7068 | return false; | |
7069 | } | |
7070 | ||
7071 | if (!env->thumb) { | |
7072 | goto gen_invep; | |
7073 | } | |
7074 | ||
7075 | if (insn != 0xe97f) { | |
7076 | /* Not an SG instruction first half (we choose the IMPDEF | |
7077 | * early-SG-check option). | |
7078 | */ | |
7079 | goto gen_invep; | |
7080 | } | |
7081 | ||
7082 | if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { | |
7083 | return false; | |
7084 | } | |
7085 | ||
7086 | if (insn != 0xe97f) { | |
7087 | /* Not an SG instruction second half (yes, both halves of the SG | |
7088 | * insn have the same hex value) | |
7089 | */ | |
7090 | goto gen_invep; | |
7091 | } | |
7092 | ||
7093 | /* OK, we have confirmed that we really have an SG instruction. | |
7094 | * We know we're NS in S memory so don't need to repeat those checks. | |
7095 | */ | |
7096 | qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 | |
7097 | ", executing it\n", env->regs[15]); | |
7098 | env->regs[14] &= ~1; | |
7099 | switch_v7m_security_state(env, true); | |
7100 | xpsr_write(env, 0, XPSR_IT); | |
7101 | env->regs[15] += 4; | |
7102 | return true; | |
7103 | ||
7104 | gen_invep: | |
7105 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
7106 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
7107 | qemu_log_mask(CPU_LOG_INT, | |
7108 | "...really SecureFault with SFSR.INVEP\n"); | |
7109 | return false; | |
7110 | } | |
7111 | ||
e6f010cc | 7112 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 7113 | { |
e6f010cc AF |
7114 | ARMCPU *cpu = ARM_CPU(cs); |
7115 | CPUARMState *env = &cpu->env; | |
9ee6e8bb | 7116 | uint32_t lr; |
9ee6e8bb | 7117 | |
27103424 | 7118 | arm_log_exception(cs->exception_index); |
3f1beaca | 7119 | |
9ee6e8bb PB |
7120 | /* For exceptions we just mark as pending on the NVIC, and let that |
7121 | handle it. */ | |
27103424 | 7122 | switch (cs->exception_index) { |
9ee6e8bb | 7123 | case EXCP_UDEF: |
2fb50a33 | 7124 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 7125 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; |
a25dc805 | 7126 | break; |
7517748e | 7127 | case EXCP_NOCP: |
2fb50a33 | 7128 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 7129 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; |
a25dc805 | 7130 | break; |
e13886e3 | 7131 | case EXCP_INVSTATE: |
2fb50a33 | 7132 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 7133 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; |
e13886e3 | 7134 | break; |
9ee6e8bb | 7135 | case EXCP_SWI: |
314e2296 | 7136 | /* The PC already points to the next instruction. */ |
2fb50a33 | 7137 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); |
a25dc805 | 7138 | break; |
9ee6e8bb PB |
7139 | case EXCP_PREFETCH_ABORT: |
7140 | case EXCP_DATA_ABORT: | |
5dd0641d MD |
7141 | /* Note that for M profile we don't have a guest facing FSR, but |
7142 | * the env->exception.fsr will be populated by the code that | |
7143 | * raises the fault, in the A profile short-descriptor format. | |
abf1172f | 7144 | */ |
5dd0641d | 7145 | switch (env->exception.fsr & 0xf) { |
35337cc3 PM |
7146 | case M_FAKE_FSR_NSC_EXEC: |
7147 | /* Exception generated when we try to execute code at an address | |
7148 | * which is marked as Secure & Non-Secure Callable and the CPU | |
7149 | * is in the Non-Secure state. The only instruction which can | |
7150 | * be executed like this is SG (and that only if both halves of | |
7151 | * the SG instruction have the same security attributes.) | |
7152 | * Everything else must generate an INVEP SecureFault, so we | |
7153 | * emulate the SG instruction here. | |
35337cc3 | 7154 | */ |
333e10c5 PM |
7155 | if (v7m_handle_execute_nsc(cpu)) { |
7156 | return; | |
7157 | } | |
35337cc3 PM |
7158 | break; |
7159 | case M_FAKE_FSR_SFAULT: | |
7160 | /* Various flavours of SecureFault for attempts to execute or | |
7161 | * access data in the wrong security state. | |
7162 | */ | |
7163 | switch (cs->exception_index) { | |
7164 | case EXCP_PREFETCH_ABORT: | |
7165 | if (env->v7m.secure) { | |
7166 | env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; | |
7167 | qemu_log_mask(CPU_LOG_INT, | |
7168 | "...really SecureFault with SFSR.INVTRAN\n"); | |
7169 | } else { | |
7170 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
7171 | qemu_log_mask(CPU_LOG_INT, | |
7172 | "...really SecureFault with SFSR.INVEP\n"); | |
7173 | } | |
7174 | break; | |
7175 | case EXCP_DATA_ABORT: | |
7176 | /* This must be an NS access to S memory */ | |
7177 | env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; | |
7178 | qemu_log_mask(CPU_LOG_INT, | |
7179 | "...really SecureFault with SFSR.AUVIOL\n"); | |
7180 | break; | |
7181 | } | |
7182 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
7183 | break; | |
5dd0641d MD |
7184 | case 0x8: /* External Abort */ |
7185 | switch (cs->exception_index) { | |
7186 | case EXCP_PREFETCH_ABORT: | |
c6158878 PM |
7187 | env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; |
7188 | qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); | |
5dd0641d MD |
7189 | break; |
7190 | case EXCP_DATA_ABORT: | |
334e8dad | 7191 | env->v7m.cfsr[M_REG_NS] |= |
c6158878 | 7192 | (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); |
5dd0641d MD |
7193 | env->v7m.bfar = env->exception.vaddress; |
7194 | qemu_log_mask(CPU_LOG_INT, | |
c6158878 | 7195 | "...with CFSR.PRECISERR and BFAR 0x%x\n", |
5dd0641d MD |
7196 | env->v7m.bfar); |
7197 | break; | |
7198 | } | |
2fb50a33 | 7199 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); |
5dd0641d MD |
7200 | break; |
7201 | default: | |
7202 | /* All other FSR values are either MPU faults or "can't happen | |
7203 | * for M profile" cases. | |
7204 | */ | |
7205 | switch (cs->exception_index) { | |
7206 | case EXCP_PREFETCH_ABORT: | |
334e8dad | 7207 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; |
5dd0641d MD |
7208 | qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); |
7209 | break; | |
7210 | case EXCP_DATA_ABORT: | |
334e8dad | 7211 | env->v7m.cfsr[env->v7m.secure] |= |
5dd0641d | 7212 | (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); |
c51a5cfc | 7213 | env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; |
5dd0641d MD |
7214 | qemu_log_mask(CPU_LOG_INT, |
7215 | "...with CFSR.DACCVIOL and MMFAR 0x%x\n", | |
c51a5cfc | 7216 | env->v7m.mmfar[env->v7m.secure]); |
5dd0641d MD |
7217 | break; |
7218 | } | |
2fb50a33 PM |
7219 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, |
7220 | env->v7m.secure); | |
5dd0641d MD |
7221 | break; |
7222 | } | |
a25dc805 | 7223 | break; |
9ee6e8bb | 7224 | case EXCP_BKPT: |
cfe67cef | 7225 | if (semihosting_enabled()) { |
2ad207d4 | 7226 | int nr; |
f9fd40eb | 7227 | nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; |
2ad207d4 PB |
7228 | if (nr == 0xab) { |
7229 | env->regs[15] += 2; | |
205ace55 CC |
7230 | qemu_log_mask(CPU_LOG_INT, |
7231 | "...handling as semihosting call 0x%x\n", | |
7232 | env->regs[0]); | |
2ad207d4 PB |
7233 | env->regs[0] = do_arm_semihosting(env); |
7234 | return; | |
7235 | } | |
7236 | } | |
2fb50a33 | 7237 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); |
a25dc805 | 7238 | break; |
9ee6e8bb | 7239 | case EXCP_IRQ: |
9ee6e8bb PB |
7240 | break; |
7241 | case EXCP_EXCEPTION_EXIT: | |
d02a8698 PM |
7242 | if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { |
7243 | /* Must be v8M security extension function return */ | |
7244 | assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); | |
7245 | assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); | |
7246 | if (do_v7m_function_return(cpu)) { | |
7247 | return; | |
7248 | } | |
7249 | } else { | |
7250 | do_v7m_exception_exit(cpu); | |
7251 | return; | |
7252 | } | |
7253 | break; | |
9ee6e8bb | 7254 | default: |
a47dddd7 | 7255 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
7256 | return; /* Never happens. Keep compiler happy. */ |
7257 | } | |
7258 | ||
d3392718 PM |
7259 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7260 | lr = R_V7M_EXCRET_RES1_MASK | | |
7261 | R_V7M_EXCRET_DCRS_MASK | | |
7262 | R_V7M_EXCRET_FTYPE_MASK; | |
7263 | /* The S bit indicates whether we should return to Secure | |
7264 | * or NonSecure (ie our current state). | |
7265 | * The ES bit indicates whether we're taking this exception | |
7266 | * to Secure or NonSecure (ie our target state). We set it | |
7267 | * later, in v7m_exception_taken(). | |
7268 | * The SPSEL bit is also set in v7m_exception_taken() for v8M. | |
7269 | * This corresponds to the ARM ARM pseudocode for v8M setting | |
7270 | * some LR bits in PushStack() and some in ExceptionTaken(); | |
7271 | * the distinction matters for the tailchain cases where we | |
7272 | * can take an exception without pushing the stack. | |
7273 | */ | |
7274 | if (env->v7m.secure) { | |
7275 | lr |= R_V7M_EXCRET_S_MASK; | |
7276 | } | |
7277 | } else { | |
7278 | lr = R_V7M_EXCRET_RES1_MASK | | |
7279 | R_V7M_EXCRET_S_MASK | | |
7280 | R_V7M_EXCRET_DCRS_MASK | | |
7281 | R_V7M_EXCRET_FTYPE_MASK | | |
7282 | R_V7M_EXCRET_ES_MASK; | |
7283 | if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { | |
7284 | lr |= R_V7M_EXCRET_SPSEL_MASK; | |
7285 | } | |
bd70b29b | 7286 | } |
15b3f556 | 7287 | if (!arm_v7m_is_handler_mode(env)) { |
4d1e7a47 | 7288 | lr |= R_V7M_EXCRET_MODE_MASK; |
bd70b29b PM |
7289 | } |
7290 | ||
39ae2474 | 7291 | v7m_push_stack(cpu); |
d3392718 | 7292 | v7m_exception_taken(cpu, lr, false); |
a25dc805 | 7293 | qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); |
9ee6e8bb PB |
7294 | } |
7295 | ||
ce02049d GB |
7296 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
7297 | * register set. This is necessary when switching between AArch32 and AArch64 | |
7298 | * execution state. | |
7299 | */ | |
7300 | void aarch64_sync_32_to_64(CPUARMState *env) | |
7301 | { | |
7302 | int i; | |
7303 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
7304 | ||
7305 | /* We can blanket copy R[0:7] to X[0:7] */ | |
7306 | for (i = 0; i < 8; i++) { | |
7307 | env->xregs[i] = env->regs[i]; | |
7308 | } | |
7309 | ||
7310 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
7311 | * Otherwise, they come from the banked user regs. | |
7312 | */ | |
7313 | if (mode == ARM_CPU_MODE_FIQ) { | |
7314 | for (i = 8; i < 13; i++) { | |
7315 | env->xregs[i] = env->usr_regs[i - 8]; | |
7316 | } | |
7317 | } else { | |
7318 | for (i = 8; i < 13; i++) { | |
7319 | env->xregs[i] = env->regs[i]; | |
7320 | } | |
7321 | } | |
7322 | ||
7323 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
7324 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
7325 | * from the mode banked register. | |
7326 | */ | |
7327 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
7328 | env->xregs[13] = env->regs[13]; | |
7329 | env->xregs[14] = env->regs[14]; | |
7330 | } else { | |
7331 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
7332 | /* HYP is an exception in that it is copied from r14 */ | |
7333 | if (mode == ARM_CPU_MODE_HYP) { | |
7334 | env->xregs[14] = env->regs[14]; | |
7335 | } else { | |
7336 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
7337 | } | |
7338 | } | |
7339 | ||
7340 | if (mode == ARM_CPU_MODE_HYP) { | |
7341 | env->xregs[15] = env->regs[13]; | |
7342 | } else { | |
7343 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
7344 | } | |
7345 | ||
7346 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
7347 | env->xregs[16] = env->regs[14]; |
7348 | env->xregs[17] = env->regs[13]; | |
ce02049d | 7349 | } else { |
3a9148d0 SS |
7350 | env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; |
7351 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
ce02049d GB |
7352 | } |
7353 | ||
7354 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
7355 | env->xregs[18] = env->regs[14]; |
7356 | env->xregs[19] = env->regs[13]; | |
ce02049d | 7357 | } else { |
3a9148d0 SS |
7358 | env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; |
7359 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
ce02049d GB |
7360 | } |
7361 | ||
7362 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
7363 | env->xregs[20] = env->regs[14]; |
7364 | env->xregs[21] = env->regs[13]; | |
ce02049d | 7365 | } else { |
3a9148d0 SS |
7366 | env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; |
7367 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
ce02049d GB |
7368 | } |
7369 | ||
7370 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
7371 | env->xregs[22] = env->regs[14]; |
7372 | env->xregs[23] = env->regs[13]; | |
ce02049d | 7373 | } else { |
3a9148d0 SS |
7374 | env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; |
7375 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
ce02049d GB |
7376 | } |
7377 | ||
7378 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
7379 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
7380 | * FIQ bank for r8-r14. | |
7381 | */ | |
7382 | if (mode == ARM_CPU_MODE_FIQ) { | |
7383 | for (i = 24; i < 31; i++) { | |
7384 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
7385 | } | |
7386 | } else { | |
7387 | for (i = 24; i < 29; i++) { | |
7388 | env->xregs[i] = env->fiq_regs[i - 24]; | |
7389 | } | |
7390 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
7391 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
7392 | } | |
7393 | ||
7394 | env->pc = env->regs[15]; | |
7395 | } | |
7396 | ||
7397 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
7398 | * register set. This is necessary when switching between AArch32 and AArch64 | |
7399 | * execution state. | |
7400 | */ | |
7401 | void aarch64_sync_64_to_32(CPUARMState *env) | |
7402 | { | |
7403 | int i; | |
7404 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
7405 | ||
7406 | /* We can blanket copy X[0:7] to R[0:7] */ | |
7407 | for (i = 0; i < 8; i++) { | |
7408 | env->regs[i] = env->xregs[i]; | |
7409 | } | |
7410 | ||
7411 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
7412 | * Otherwise, we copy x8-x12 into the banked user regs. | |
7413 | */ | |
7414 | if (mode == ARM_CPU_MODE_FIQ) { | |
7415 | for (i = 8; i < 13; i++) { | |
7416 | env->usr_regs[i - 8] = env->xregs[i]; | |
7417 | } | |
7418 | } else { | |
7419 | for (i = 8; i < 13; i++) { | |
7420 | env->regs[i] = env->xregs[i]; | |
7421 | } | |
7422 | } | |
7423 | ||
7424 | /* Registers r13 & r14 depend on the current mode. | |
7425 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
7426 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
7427 | * for the mode. | |
7428 | */ | |
7429 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
7430 | env->regs[13] = env->xregs[13]; | |
7431 | env->regs[14] = env->xregs[14]; | |
7432 | } else { | |
7433 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
7434 | ||
7435 | /* HYP is an exception in that it does not have its own banked r14 but | |
7436 | * shares the USR r14 | |
7437 | */ | |
7438 | if (mode == ARM_CPU_MODE_HYP) { | |
7439 | env->regs[14] = env->xregs[14]; | |
7440 | } else { | |
7441 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
7442 | } | |
7443 | } | |
7444 | ||
7445 | if (mode == ARM_CPU_MODE_HYP) { | |
7446 | env->regs[13] = env->xregs[15]; | |
7447 | } else { | |
7448 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
7449 | } | |
7450 | ||
7451 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
7452 | env->regs[14] = env->xregs[16]; |
7453 | env->regs[13] = env->xregs[17]; | |
ce02049d | 7454 | } else { |
3a9148d0 SS |
7455 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
7456 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
ce02049d GB |
7457 | } |
7458 | ||
7459 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
7460 | env->regs[14] = env->xregs[18]; |
7461 | env->regs[13] = env->xregs[19]; | |
ce02049d | 7462 | } else { |
3a9148d0 SS |
7463 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
7464 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
ce02049d GB |
7465 | } |
7466 | ||
7467 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
7468 | env->regs[14] = env->xregs[20]; |
7469 | env->regs[13] = env->xregs[21]; | |
ce02049d | 7470 | } else { |
3a9148d0 SS |
7471 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
7472 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
7473 | } |
7474 | ||
7475 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
7476 | env->regs[14] = env->xregs[22]; |
7477 | env->regs[13] = env->xregs[23]; | |
ce02049d | 7478 | } else { |
3a9148d0 SS |
7479 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
7480 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
ce02049d GB |
7481 | } |
7482 | ||
7483 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
7484 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
7485 | * FIQ bank for r8-r14. | |
7486 | */ | |
7487 | if (mode == ARM_CPU_MODE_FIQ) { | |
7488 | for (i = 24; i < 31; i++) { | |
7489 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
7490 | } | |
7491 | } else { | |
7492 | for (i = 24; i < 29; i++) { | |
7493 | env->fiq_regs[i - 24] = env->xregs[i]; | |
7494 | } | |
7495 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
7496 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
7497 | } | |
7498 | ||
7499 | env->regs[15] = env->pc; | |
7500 | } | |
7501 | ||
966f758c | 7502 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
b5ff1b31 | 7503 | { |
97a8ea5a AF |
7504 | ARMCPU *cpu = ARM_CPU(cs); |
7505 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
7506 | uint32_t addr; |
7507 | uint32_t mask; | |
7508 | int new_mode; | |
7509 | uint32_t offset; | |
16a906fd | 7510 | uint32_t moe; |
b5ff1b31 | 7511 | |
16a906fd PM |
7512 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
7513 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
7514 | case EC_BREAKPOINT: | |
7515 | case EC_BREAKPOINT_SAME_EL: | |
7516 | moe = 1; | |
7517 | break; | |
7518 | case EC_WATCHPOINT: | |
7519 | case EC_WATCHPOINT_SAME_EL: | |
7520 | moe = 10; | |
7521 | break; | |
7522 | case EC_AA32_BKPT: | |
7523 | moe = 3; | |
7524 | break; | |
7525 | case EC_VECTORCATCH: | |
7526 | moe = 5; | |
7527 | break; | |
7528 | default: | |
7529 | moe = 0; | |
7530 | break; | |
7531 | } | |
7532 | ||
7533 | if (moe) { | |
7534 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
7535 | } | |
7536 | ||
b5ff1b31 | 7537 | /* TODO: Vectored interrupt controller. */ |
27103424 | 7538 | switch (cs->exception_index) { |
b5ff1b31 FB |
7539 | case EXCP_UDEF: |
7540 | new_mode = ARM_CPU_MODE_UND; | |
7541 | addr = 0x04; | |
7542 | mask = CPSR_I; | |
7543 | if (env->thumb) | |
7544 | offset = 2; | |
7545 | else | |
7546 | offset = 4; | |
7547 | break; | |
7548 | case EXCP_SWI: | |
7549 | new_mode = ARM_CPU_MODE_SVC; | |
7550 | addr = 0x08; | |
7551 | mask = CPSR_I; | |
601d70b9 | 7552 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
7553 | offset = 0; |
7554 | break; | |
06c949e6 | 7555 | case EXCP_BKPT: |
abf1172f | 7556 | env->exception.fsr = 2; |
9ee6e8bb PB |
7557 | /* Fall through to prefetch abort. */ |
7558 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 7559 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 7560 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 7561 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 7562 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
7563 | new_mode = ARM_CPU_MODE_ABT; |
7564 | addr = 0x0c; | |
7565 | mask = CPSR_A | CPSR_I; | |
7566 | offset = 4; | |
7567 | break; | |
7568 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 7569 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 7570 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 7571 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 7572 | env->exception.fsr, |
6cd8a264 | 7573 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
7574 | new_mode = ARM_CPU_MODE_ABT; |
7575 | addr = 0x10; | |
7576 | mask = CPSR_A | CPSR_I; | |
7577 | offset = 8; | |
7578 | break; | |
7579 | case EXCP_IRQ: | |
7580 | new_mode = ARM_CPU_MODE_IRQ; | |
7581 | addr = 0x18; | |
7582 | /* Disable IRQ and imprecise data aborts. */ | |
7583 | mask = CPSR_A | CPSR_I; | |
7584 | offset = 4; | |
de38d23b FA |
7585 | if (env->cp15.scr_el3 & SCR_IRQ) { |
7586 | /* IRQ routed to monitor mode */ | |
7587 | new_mode = ARM_CPU_MODE_MON; | |
7588 | mask |= CPSR_F; | |
7589 | } | |
b5ff1b31 FB |
7590 | break; |
7591 | case EXCP_FIQ: | |
7592 | new_mode = ARM_CPU_MODE_FIQ; | |
7593 | addr = 0x1c; | |
7594 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
7595 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
7596 | if (env->cp15.scr_el3 & SCR_FIQ) { |
7597 | /* FIQ routed to monitor mode */ | |
7598 | new_mode = ARM_CPU_MODE_MON; | |
7599 | } | |
b5ff1b31 FB |
7600 | offset = 4; |
7601 | break; | |
87a4b270 PM |
7602 | case EXCP_VIRQ: |
7603 | new_mode = ARM_CPU_MODE_IRQ; | |
7604 | addr = 0x18; | |
7605 | /* Disable IRQ and imprecise data aborts. */ | |
7606 | mask = CPSR_A | CPSR_I; | |
7607 | offset = 4; | |
7608 | break; | |
7609 | case EXCP_VFIQ: | |
7610 | new_mode = ARM_CPU_MODE_FIQ; | |
7611 | addr = 0x1c; | |
7612 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
7613 | mask = CPSR_A | CPSR_I | CPSR_F; | |
7614 | offset = 4; | |
7615 | break; | |
dbe9d163 FA |
7616 | case EXCP_SMC: |
7617 | new_mode = ARM_CPU_MODE_MON; | |
7618 | addr = 0x08; | |
7619 | mask = CPSR_A | CPSR_I | CPSR_F; | |
7620 | offset = 0; | |
7621 | break; | |
b5ff1b31 | 7622 | default: |
a47dddd7 | 7623 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
7624 | return; /* Never happens. Keep compiler happy. */ |
7625 | } | |
e89e51a1 FA |
7626 | |
7627 | if (new_mode == ARM_CPU_MODE_MON) { | |
7628 | addr += env->cp15.mvbar; | |
137feaa9 | 7629 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 7630 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 7631 | addr += 0xffff0000; |
8641136c NR |
7632 | } else { |
7633 | /* ARM v7 architectures provide a vector base address register to remap | |
7634 | * the interrupt vector table. | |
e89e51a1 | 7635 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
7636 | * Note: only bits 31:5 are valid. |
7637 | */ | |
fb6c91ba | 7638 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 7639 | } |
dbe9d163 FA |
7640 | |
7641 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
7642 | env->cp15.scr_el3 &= ~SCR_NS; | |
7643 | } | |
7644 | ||
b5ff1b31 | 7645 | switch_mode (env, new_mode); |
662cefb7 PM |
7646 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
7647 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
7648 | */ | |
7649 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 7650 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
7651 | /* Clear IT bits. */ |
7652 | env->condexec_bits = 0; | |
30a8cac1 | 7653 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 7654 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
73462ddd PC |
7655 | /* Set new mode endianness */ |
7656 | env->uncached_cpsr &= ~CPSR_E; | |
7657 | if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { | |
3823b9db | 7658 | env->uncached_cpsr |= CPSR_E; |
73462ddd | 7659 | } |
4cc35614 | 7660 | env->daif |= mask; |
be5e7a76 DES |
7661 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
7662 | * and we should just guard the thumb mode on V4 */ | |
7663 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 7664 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 7665 | } |
b5ff1b31 FB |
7666 | env->regs[14] = env->regs[15] + offset; |
7667 | env->regs[15] = addr; | |
b5ff1b31 FB |
7668 | } |
7669 | ||
966f758c PM |
7670 | /* Handle exception entry to a target EL which is using AArch64 */ |
7671 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) | |
f3a9b694 PM |
7672 | { |
7673 | ARMCPU *cpu = ARM_CPU(cs); | |
7674 | CPUARMState *env = &cpu->env; | |
7675 | unsigned int new_el = env->exception.target_el; | |
7676 | target_ulong addr = env->cp15.vbar_el[new_el]; | |
7677 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | |
7678 | ||
7679 | if (arm_current_el(env) < new_el) { | |
3d6f7617 PM |
7680 | /* Entry vector offset depends on whether the implemented EL |
7681 | * immediately lower than the target level is using AArch32 or AArch64 | |
7682 | */ | |
7683 | bool is_aa64; | |
7684 | ||
7685 | switch (new_el) { | |
7686 | case 3: | |
7687 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; | |
7688 | break; | |
7689 | case 2: | |
7690 | is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; | |
7691 | break; | |
7692 | case 1: | |
7693 | is_aa64 = is_a64(env); | |
7694 | break; | |
7695 | default: | |
7696 | g_assert_not_reached(); | |
7697 | } | |
7698 | ||
7699 | if (is_aa64) { | |
f3a9b694 PM |
7700 | addr += 0x400; |
7701 | } else { | |
7702 | addr += 0x600; | |
7703 | } | |
7704 | } else if (pstate_read(env) & PSTATE_SP) { | |
7705 | addr += 0x200; | |
7706 | } | |
7707 | ||
f3a9b694 PM |
7708 | switch (cs->exception_index) { |
7709 | case EXCP_PREFETCH_ABORT: | |
7710 | case EXCP_DATA_ABORT: | |
7711 | env->cp15.far_el[new_el] = env->exception.vaddress; | |
7712 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
7713 | env->cp15.far_el[new_el]); | |
7714 | /* fall through */ | |
7715 | case EXCP_BKPT: | |
7716 | case EXCP_UDEF: | |
7717 | case EXCP_SWI: | |
7718 | case EXCP_HVC: | |
7719 | case EXCP_HYP_TRAP: | |
7720 | case EXCP_SMC: | |
7721 | env->cp15.esr_el[new_el] = env->exception.syndrome; | |
7722 | break; | |
7723 | case EXCP_IRQ: | |
7724 | case EXCP_VIRQ: | |
7725 | addr += 0x80; | |
7726 | break; | |
7727 | case EXCP_FIQ: | |
7728 | case EXCP_VFIQ: | |
7729 | addr += 0x100; | |
7730 | break; | |
7731 | case EXCP_SEMIHOST: | |
7732 | qemu_log_mask(CPU_LOG_INT, | |
7733 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
7734 | env->xregs[0]); | |
7735 | env->xregs[0] = do_arm_semihosting(env); | |
7736 | return; | |
7737 | default: | |
7738 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
7739 | } | |
7740 | ||
7741 | if (is_a64(env)) { | |
7742 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); | |
7743 | aarch64_save_sp(env, arm_current_el(env)); | |
7744 | env->elr_el[new_el] = env->pc; | |
7745 | } else { | |
7746 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); | |
f3a9b694 PM |
7747 | env->elr_el[new_el] = env->regs[15]; |
7748 | ||
7749 | aarch64_sync_32_to_64(env); | |
7750 | ||
7751 | env->condexec_bits = 0; | |
7752 | } | |
7753 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", | |
7754 | env->elr_el[new_el]); | |
7755 | ||
7756 | pstate_write(env, PSTATE_DAIF | new_mode); | |
7757 | env->aarch64 = 1; | |
7758 | aarch64_restore_sp(env, new_el); | |
7759 | ||
7760 | env->pc = addr; | |
7761 | ||
7762 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", | |
7763 | new_el, env->pc, pstate_read(env)); | |
966f758c PM |
7764 | } |
7765 | ||
904c04de PM |
7766 | static inline bool check_for_semihosting(CPUState *cs) |
7767 | { | |
7768 | /* Check whether this exception is a semihosting call; if so | |
7769 | * then handle it and return true; otherwise return false. | |
7770 | */ | |
7771 | ARMCPU *cpu = ARM_CPU(cs); | |
7772 | CPUARMState *env = &cpu->env; | |
7773 | ||
7774 | if (is_a64(env)) { | |
7775 | if (cs->exception_index == EXCP_SEMIHOST) { | |
7776 | /* This is always the 64-bit semihosting exception. | |
7777 | * The "is this usermode" and "is semihosting enabled" | |
7778 | * checks have been done at translate time. | |
7779 | */ | |
7780 | qemu_log_mask(CPU_LOG_INT, | |
7781 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
7782 | env->xregs[0]); | |
7783 | env->xregs[0] = do_arm_semihosting(env); | |
7784 | return true; | |
7785 | } | |
7786 | return false; | |
7787 | } else { | |
7788 | uint32_t imm; | |
7789 | ||
7790 | /* Only intercept calls from privileged modes, to provide some | |
7791 | * semblance of security. | |
7792 | */ | |
19a6e31c PM |
7793 | if (cs->exception_index != EXCP_SEMIHOST && |
7794 | (!semihosting_enabled() || | |
7795 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { | |
904c04de PM |
7796 | return false; |
7797 | } | |
7798 | ||
7799 | switch (cs->exception_index) { | |
19a6e31c PM |
7800 | case EXCP_SEMIHOST: |
7801 | /* This is always a semihosting call; the "is this usermode" | |
7802 | * and "is semihosting enabled" checks have been done at | |
7803 | * translate time. | |
7804 | */ | |
7805 | break; | |
904c04de PM |
7806 | case EXCP_SWI: |
7807 | /* Check for semihosting interrupt. */ | |
7808 | if (env->thumb) { | |
f9fd40eb | 7809 | imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) |
904c04de PM |
7810 | & 0xff; |
7811 | if (imm == 0xab) { | |
7812 | break; | |
7813 | } | |
7814 | } else { | |
f9fd40eb | 7815 | imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) |
904c04de PM |
7816 | & 0xffffff; |
7817 | if (imm == 0x123456) { | |
7818 | break; | |
7819 | } | |
7820 | } | |
7821 | return false; | |
7822 | case EXCP_BKPT: | |
7823 | /* See if this is a semihosting syscall. */ | |
7824 | if (env->thumb) { | |
f9fd40eb | 7825 | imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) |
904c04de PM |
7826 | & 0xff; |
7827 | if (imm == 0xab) { | |
7828 | env->regs[15] += 2; | |
7829 | break; | |
7830 | } | |
7831 | } | |
7832 | return false; | |
7833 | default: | |
7834 | return false; | |
7835 | } | |
7836 | ||
7837 | qemu_log_mask(CPU_LOG_INT, | |
7838 | "...handling as semihosting call 0x%x\n", | |
7839 | env->regs[0]); | |
7840 | env->regs[0] = do_arm_semihosting(env); | |
7841 | return true; | |
7842 | } | |
7843 | } | |
7844 | ||
966f758c PM |
7845 | /* Handle a CPU exception for A and R profile CPUs. |
7846 | * Do any appropriate logging, handle PSCI calls, and then hand off | |
7847 | * to the AArch64-entry or AArch32-entry function depending on the | |
7848 | * target exception level's register width. | |
7849 | */ | |
7850 | void arm_cpu_do_interrupt(CPUState *cs) | |
7851 | { | |
7852 | ARMCPU *cpu = ARM_CPU(cs); | |
7853 | CPUARMState *env = &cpu->env; | |
7854 | unsigned int new_el = env->exception.target_el; | |
7855 | ||
531c60a9 | 7856 | assert(!arm_feature(env, ARM_FEATURE_M)); |
966f758c PM |
7857 | |
7858 | arm_log_exception(cs->exception_index); | |
7859 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), | |
7860 | new_el); | |
7861 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
7862 | && !excp_is_internal(cs->exception_index)) { | |
6568da45 | 7863 | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", |
966f758c PM |
7864 | env->exception.syndrome >> ARM_EL_EC_SHIFT, |
7865 | env->exception.syndrome); | |
7866 | } | |
7867 | ||
7868 | if (arm_is_psci_call(cpu, cs->exception_index)) { | |
7869 | arm_handle_psci_call(cpu); | |
7870 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
7871 | return; | |
7872 | } | |
7873 | ||
904c04de PM |
7874 | /* Semihosting semantics depend on the register width of the |
7875 | * code that caused the exception, not the target exception level, | |
7876 | * so must be handled here. | |
966f758c | 7877 | */ |
904c04de PM |
7878 | if (check_for_semihosting(cs)) { |
7879 | return; | |
7880 | } | |
7881 | ||
7882 | assert(!excp_is_internal(cs->exception_index)); | |
7883 | if (arm_el_is_aa64(env, new_el)) { | |
966f758c PM |
7884 | arm_cpu_do_interrupt_aarch64(cs); |
7885 | } else { | |
7886 | arm_cpu_do_interrupt_aarch32(cs); | |
7887 | } | |
f3a9b694 | 7888 | |
8d04fb55 JK |
7889 | /* Hooks may change global state so BQL should be held, also the |
7890 | * BQL needs to be held for any modification of | |
7891 | * cs->interrupt_request. | |
7892 | */ | |
7893 | g_assert(qemu_mutex_iothread_locked()); | |
7894 | ||
bd7d00fc PM |
7895 | arm_call_el_change_hook(cpu); |
7896 | ||
f3a9b694 PM |
7897 | if (!kvm_enabled()) { |
7898 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
7899 | } | |
7900 | } | |
0480f69a PM |
7901 | |
7902 | /* Return the exception level which controls this address translation regime */ | |
7903 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7904 | { | |
7905 | switch (mmu_idx) { | |
7906 | case ARMMMUIdx_S2NS: | |
7907 | case ARMMMUIdx_S1E2: | |
7908 | return 2; | |
7909 | case ARMMMUIdx_S1E3: | |
7910 | return 3; | |
7911 | case ARMMMUIdx_S1SE0: | |
7912 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
7913 | case ARMMMUIdx_S1SE1: | |
7914 | case ARMMMUIdx_S1NSE0: | |
7915 | case ARMMMUIdx_S1NSE1: | |
62593718 PM |
7916 | case ARMMMUIdx_MPrivNegPri: |
7917 | case ARMMMUIdx_MUserNegPri: | |
e7b921c2 PM |
7918 | case ARMMMUIdx_MPriv: |
7919 | case ARMMMUIdx_MUser: | |
62593718 PM |
7920 | case ARMMMUIdx_MSPrivNegPri: |
7921 | case ARMMMUIdx_MSUserNegPri: | |
66787c78 | 7922 | case ARMMMUIdx_MSPriv: |
66787c78 | 7923 | case ARMMMUIdx_MSUser: |
0480f69a PM |
7924 | return 1; |
7925 | default: | |
7926 | g_assert_not_reached(); | |
7927 | } | |
7928 | } | |
7929 | ||
7930 | /* Return the SCTLR value which controls this address translation regime */ | |
7931 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7932 | { | |
7933 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
7934 | } | |
7935 | ||
7936 | /* Return true if the specified stage of address translation is disabled */ | |
7937 | static inline bool regime_translation_disabled(CPUARMState *env, | |
7938 | ARMMMUIdx mmu_idx) | |
7939 | { | |
29c483a5 | 7940 | if (arm_feature(env, ARM_FEATURE_M)) { |
ecf5e8ea | 7941 | switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & |
3bef7012 PM |
7942 | (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
7943 | case R_V7M_MPU_CTRL_ENABLE_MASK: | |
7944 | /* Enabled, but not for HardFault and NMI */ | |
62593718 | 7945 | return mmu_idx & ARM_MMU_IDX_M_NEGPRI; |
3bef7012 PM |
7946 | case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
7947 | /* Enabled for all cases */ | |
7948 | return false; | |
7949 | case 0: | |
7950 | default: | |
7951 | /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but | |
7952 | * we warned about that in armv7m_nvic.c when the guest set it. | |
7953 | */ | |
7954 | return true; | |
7955 | } | |
29c483a5 MD |
7956 | } |
7957 | ||
0480f69a PM |
7958 | if (mmu_idx == ARMMMUIdx_S2NS) { |
7959 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
7960 | } | |
7961 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
7962 | } | |
7963 | ||
73462ddd PC |
7964 | static inline bool regime_translation_big_endian(CPUARMState *env, |
7965 | ARMMMUIdx mmu_idx) | |
7966 | { | |
7967 | return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; | |
7968 | } | |
7969 | ||
0480f69a PM |
7970 | /* Return the TCR controlling this translation regime */ |
7971 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7972 | { | |
7973 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
68e9c2fe | 7974 | return &env->cp15.vtcr_el2; |
0480f69a PM |
7975 | } |
7976 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
7977 | } | |
7978 | ||
8bd5c820 PM |
7979 | /* Convert a possible stage1+2 MMU index into the appropriate |
7980 | * stage 1 MMU index | |
7981 | */ | |
7982 | static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) | |
7983 | { | |
7984 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { | |
7985 | mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); | |
7986 | } | |
7987 | return mmu_idx; | |
7988 | } | |
7989 | ||
86fb3fa4 TH |
7990 | /* Returns TBI0 value for current regime el */ |
7991 | uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7992 | { | |
7993 | TCR *tcr; | |
7994 | uint32_t el; | |
7995 | ||
7996 | /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert | |
8bd5c820 PM |
7997 | * a stage 1+2 mmu index into the appropriate stage 1 mmu index. |
7998 | */ | |
7999 | mmu_idx = stage_1_mmu_idx(mmu_idx); | |
86fb3fa4 TH |
8000 | |
8001 | tcr = regime_tcr(env, mmu_idx); | |
8002 | el = regime_el(env, mmu_idx); | |
8003 | ||
8004 | if (el > 1) { | |
8005 | return extract64(tcr->raw_tcr, 20, 1); | |
8006 | } else { | |
8007 | return extract64(tcr->raw_tcr, 37, 1); | |
8008 | } | |
8009 | } | |
8010 | ||
8011 | /* Returns TBI1 value for current regime el */ | |
8012 | uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) | |
8013 | { | |
8014 | TCR *tcr; | |
8015 | uint32_t el; | |
8016 | ||
8017 | /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert | |
8bd5c820 PM |
8018 | * a stage 1+2 mmu index into the appropriate stage 1 mmu index. |
8019 | */ | |
8020 | mmu_idx = stage_1_mmu_idx(mmu_idx); | |
86fb3fa4 TH |
8021 | |
8022 | tcr = regime_tcr(env, mmu_idx); | |
8023 | el = regime_el(env, mmu_idx); | |
8024 | ||
8025 | if (el > 1) { | |
8026 | return 0; | |
8027 | } else { | |
8028 | return extract64(tcr->raw_tcr, 38, 1); | |
8029 | } | |
8030 | } | |
8031 | ||
aef878be GB |
8032 | /* Return the TTBR associated with this translation regime */ |
8033 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
8034 | int ttbrn) | |
8035 | { | |
8036 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
b698e9cf | 8037 | return env->cp15.vttbr_el2; |
aef878be GB |
8038 | } |
8039 | if (ttbrn == 0) { | |
8040 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
8041 | } else { | |
8042 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
8043 | } | |
8044 | } | |
8045 | ||
0480f69a PM |
8046 | /* Return true if the translation regime is using LPAE format page tables */ |
8047 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
8048 | ARMMMUIdx mmu_idx) | |
8049 | { | |
8050 | int el = regime_el(env, mmu_idx); | |
8051 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
8052 | return true; | |
8053 | } | |
8054 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
8055 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
8056 | return true; | |
8057 | } | |
8058 | return false; | |
8059 | } | |
8060 | ||
deb2db99 AR |
8061 | /* Returns true if the stage 1 translation regime is using LPAE format page |
8062 | * tables. Used when raising alignment exceptions, whose FSR changes depending | |
8063 | * on whether the long or short descriptor format is in use. */ | |
8064 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) | |
30901475 | 8065 | { |
8bd5c820 | 8066 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
deb2db99 | 8067 | |
30901475 AB |
8068 | return regime_using_lpae_format(env, mmu_idx); |
8069 | } | |
8070 | ||
0480f69a PM |
8071 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
8072 | { | |
8073 | switch (mmu_idx) { | |
8074 | case ARMMMUIdx_S1SE0: | |
8075 | case ARMMMUIdx_S1NSE0: | |
e7b921c2 | 8076 | case ARMMMUIdx_MUser: |
871bec7c | 8077 | case ARMMMUIdx_MSUser: |
62593718 PM |
8078 | case ARMMMUIdx_MUserNegPri: |
8079 | case ARMMMUIdx_MSUserNegPri: | |
0480f69a PM |
8080 | return true; |
8081 | default: | |
8082 | return false; | |
8083 | case ARMMMUIdx_S12NSE0: | |
8084 | case ARMMMUIdx_S12NSE1: | |
8085 | g_assert_not_reached(); | |
8086 | } | |
8087 | } | |
8088 | ||
0fbf5238 AJ |
8089 | /* Translate section/page access permissions to page |
8090 | * R/W protection flags | |
d76951b6 AJ |
8091 | * |
8092 | * @env: CPUARMState | |
8093 | * @mmu_idx: MMU index indicating required translation regime | |
8094 | * @ap: The 3-bit access permissions (AP[2:0]) | |
8095 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
8096 | */ |
8097 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
8098 | int ap, int domain_prot) | |
8099 | { | |
554b0b09 PM |
8100 | bool is_user = regime_is_user(env, mmu_idx); |
8101 | ||
8102 | if (domain_prot == 3) { | |
8103 | return PAGE_READ | PAGE_WRITE; | |
8104 | } | |
8105 | ||
554b0b09 PM |
8106 | switch (ap) { |
8107 | case 0: | |
8108 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
8109 | return 0; | |
8110 | } | |
554b0b09 PM |
8111 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
8112 | case SCTLR_S: | |
8113 | return is_user ? 0 : PAGE_READ; | |
8114 | case SCTLR_R: | |
8115 | return PAGE_READ; | |
8116 | default: | |
8117 | return 0; | |
8118 | } | |
8119 | case 1: | |
8120 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
8121 | case 2: | |
87c3d486 | 8122 | if (is_user) { |
0fbf5238 | 8123 | return PAGE_READ; |
87c3d486 | 8124 | } else { |
554b0b09 | 8125 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 8126 | } |
554b0b09 PM |
8127 | case 3: |
8128 | return PAGE_READ | PAGE_WRITE; | |
8129 | case 4: /* Reserved. */ | |
8130 | return 0; | |
8131 | case 5: | |
0fbf5238 | 8132 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 8133 | case 6: |
0fbf5238 | 8134 | return PAGE_READ; |
554b0b09 | 8135 | case 7: |
87c3d486 | 8136 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 8137 | return 0; |
87c3d486 | 8138 | } |
0fbf5238 | 8139 | return PAGE_READ; |
554b0b09 | 8140 | default: |
0fbf5238 | 8141 | g_assert_not_reached(); |
554b0b09 | 8142 | } |
b5ff1b31 FB |
8143 | } |
8144 | ||
d76951b6 AJ |
8145 | /* Translate section/page access permissions to page |
8146 | * R/W protection flags. | |
8147 | * | |
d76951b6 | 8148 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 8149 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 8150 | */ |
d8e052b3 | 8151 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 8152 | { |
d76951b6 AJ |
8153 | switch (ap) { |
8154 | case 0: | |
8155 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
8156 | case 1: | |
8157 | return PAGE_READ | PAGE_WRITE; | |
8158 | case 2: | |
8159 | return is_user ? 0 : PAGE_READ; | |
8160 | case 3: | |
8161 | return PAGE_READ; | |
8162 | default: | |
8163 | g_assert_not_reached(); | |
8164 | } | |
8165 | } | |
8166 | ||
d8e052b3 AJ |
8167 | static inline int |
8168 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
8169 | { | |
8170 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
8171 | } | |
8172 | ||
6ab1a5ee EI |
8173 | /* Translate S2 section/page access permissions to protection flags |
8174 | * | |
8175 | * @env: CPUARMState | |
8176 | * @s2ap: The 2-bit stage2 access permissions (S2AP) | |
8177 | * @xn: XN (execute-never) bit | |
8178 | */ | |
8179 | static int get_S2prot(CPUARMState *env, int s2ap, int xn) | |
8180 | { | |
8181 | int prot = 0; | |
8182 | ||
8183 | if (s2ap & 1) { | |
8184 | prot |= PAGE_READ; | |
8185 | } | |
8186 | if (s2ap & 2) { | |
8187 | prot |= PAGE_WRITE; | |
8188 | } | |
8189 | if (!xn) { | |
dfda6837 SS |
8190 | if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
8191 | prot |= PAGE_EXEC; | |
8192 | } | |
6ab1a5ee EI |
8193 | } |
8194 | return prot; | |
8195 | } | |
8196 | ||
d8e052b3 AJ |
8197 | /* Translate section/page access permissions to protection flags |
8198 | * | |
8199 | * @env: CPUARMState | |
8200 | * @mmu_idx: MMU index indicating required translation regime | |
8201 | * @is_aa64: TRUE if AArch64 | |
8202 | * @ap: The 2-bit simple AP (AP[2:1]) | |
8203 | * @ns: NS (non-secure) bit | |
8204 | * @xn: XN (execute-never) bit | |
8205 | * @pxn: PXN (privileged execute-never) bit | |
8206 | */ | |
8207 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
8208 | int ap, int ns, int xn, int pxn) | |
8209 | { | |
8210 | bool is_user = regime_is_user(env, mmu_idx); | |
8211 | int prot_rw, user_rw; | |
8212 | bool have_wxn; | |
8213 | int wxn = 0; | |
8214 | ||
8215 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
8216 | ||
8217 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
8218 | if (is_user) { | |
8219 | prot_rw = user_rw; | |
8220 | } else { | |
8221 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
8222 | } | |
8223 | ||
8224 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
8225 | return prot_rw; | |
8226 | } | |
8227 | ||
8228 | /* TODO have_wxn should be replaced with | |
8229 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
8230 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
8231 | * compatible processors have EL2, which is required for [U]WXN. | |
8232 | */ | |
8233 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
8234 | ||
8235 | if (have_wxn) { | |
8236 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
8237 | } | |
8238 | ||
8239 | if (is_aa64) { | |
8240 | switch (regime_el(env, mmu_idx)) { | |
8241 | case 1: | |
8242 | if (!is_user) { | |
8243 | xn = pxn || (user_rw & PAGE_WRITE); | |
8244 | } | |
8245 | break; | |
8246 | case 2: | |
8247 | case 3: | |
8248 | break; | |
8249 | } | |
8250 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
8251 | switch (regime_el(env, mmu_idx)) { | |
8252 | case 1: | |
8253 | case 3: | |
8254 | if (is_user) { | |
8255 | xn = xn || !(user_rw & PAGE_READ); | |
8256 | } else { | |
8257 | int uwxn = 0; | |
8258 | if (have_wxn) { | |
8259 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
8260 | } | |
8261 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
8262 | (uwxn && (user_rw & PAGE_WRITE)); | |
8263 | } | |
8264 | break; | |
8265 | case 2: | |
8266 | break; | |
8267 | } | |
8268 | } else { | |
8269 | xn = wxn = 0; | |
8270 | } | |
8271 | ||
8272 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
8273 | return prot_rw; | |
8274 | } | |
8275 | return prot_rw | PAGE_EXEC; | |
8276 | } | |
8277 | ||
0480f69a PM |
8278 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
8279 | uint32_t *table, uint32_t address) | |
b2fa1797 | 8280 | { |
0480f69a | 8281 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 8282 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 8283 | |
11f136ee FA |
8284 | if (address & tcr->mask) { |
8285 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
8286 | /* Translation table walk disabled for TTBR1 */ |
8287 | return false; | |
8288 | } | |
aef878be | 8289 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 8290 | } else { |
11f136ee | 8291 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
8292 | /* Translation table walk disabled for TTBR0 */ |
8293 | return false; | |
8294 | } | |
aef878be | 8295 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
8296 | } |
8297 | *table |= (address >> 18) & 0x3ffc; | |
8298 | return true; | |
b2fa1797 PB |
8299 | } |
8300 | ||
37785977 EI |
8301 | /* Translate a S1 pagetable walk through S2 if needed. */ |
8302 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, | |
8303 | hwaddr addr, MemTxAttrs txattrs, | |
37785977 EI |
8304 | ARMMMUFaultInfo *fi) |
8305 | { | |
8306 | if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && | |
8307 | !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
8308 | target_ulong s2size; | |
8309 | hwaddr s2pa; | |
8310 | int s2prot; | |
8311 | int ret; | |
8312 | ||
8313 | ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, | |
da909b2c | 8314 | &txattrs, &s2prot, &s2size, fi, NULL); |
37785977 | 8315 | if (ret) { |
3b39d734 | 8316 | assert(fi->type != ARMFault_None); |
37785977 EI |
8317 | fi->s2addr = addr; |
8318 | fi->stage2 = true; | |
8319 | fi->s1ptw = true; | |
8320 | return ~0; | |
8321 | } | |
8322 | addr = s2pa; | |
8323 | } | |
8324 | return addr; | |
8325 | } | |
8326 | ||
ebca90e4 PM |
8327 | /* All loads done in the course of a page table walk go through here. |
8328 | * TODO: rather than ignoring errors from physical memory reads (which | |
8329 | * are external aborts in ARM terminology) we should propagate this | |
8330 | * error out so that we can turn it into a Data Abort if this walk | |
8331 | * was being done for a CPU load/store or an address translation instruction | |
8332 | * (but not if it was for a debug access). | |
8333 | */ | |
a614e698 | 8334 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
3795a6de | 8335 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
ebca90e4 | 8336 | { |
a614e698 EI |
8337 | ARMCPU *cpu = ARM_CPU(cs); |
8338 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 8339 | MemTxAttrs attrs = {}; |
3b39d734 | 8340 | MemTxResult result = MEMTX_OK; |
5ce4ff65 | 8341 | AddressSpace *as; |
3b39d734 | 8342 | uint32_t data; |
ebca90e4 PM |
8343 | |
8344 | attrs.secure = is_secure; | |
5ce4ff65 | 8345 | as = arm_addressspace(cs, attrs); |
3795a6de | 8346 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); |
a614e698 EI |
8347 | if (fi->s1ptw) { |
8348 | return 0; | |
8349 | } | |
73462ddd | 8350 | if (regime_translation_big_endian(env, mmu_idx)) { |
3b39d734 | 8351 | data = address_space_ldl_be(as, addr, attrs, &result); |
73462ddd | 8352 | } else { |
3b39d734 | 8353 | data = address_space_ldl_le(as, addr, attrs, &result); |
73462ddd | 8354 | } |
3b39d734 PM |
8355 | if (result == MEMTX_OK) { |
8356 | return data; | |
8357 | } | |
8358 | fi->type = ARMFault_SyncExternalOnWalk; | |
8359 | fi->ea = arm_extabort_type(result); | |
8360 | return 0; | |
ebca90e4 PM |
8361 | } |
8362 | ||
37785977 | 8363 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
3795a6de | 8364 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
ebca90e4 | 8365 | { |
37785977 EI |
8366 | ARMCPU *cpu = ARM_CPU(cs); |
8367 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 8368 | MemTxAttrs attrs = {}; |
3b39d734 | 8369 | MemTxResult result = MEMTX_OK; |
5ce4ff65 | 8370 | AddressSpace *as; |
9aea1ea3 | 8371 | uint64_t data; |
ebca90e4 PM |
8372 | |
8373 | attrs.secure = is_secure; | |
5ce4ff65 | 8374 | as = arm_addressspace(cs, attrs); |
3795a6de | 8375 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); |
37785977 EI |
8376 | if (fi->s1ptw) { |
8377 | return 0; | |
8378 | } | |
73462ddd | 8379 | if (regime_translation_big_endian(env, mmu_idx)) { |
3b39d734 | 8380 | data = address_space_ldq_be(as, addr, attrs, &result); |
73462ddd | 8381 | } else { |
3b39d734 PM |
8382 | data = address_space_ldq_le(as, addr, attrs, &result); |
8383 | } | |
8384 | if (result == MEMTX_OK) { | |
8385 | return data; | |
73462ddd | 8386 | } |
3b39d734 PM |
8387 | fi->type = ARMFault_SyncExternalOnWalk; |
8388 | fi->ea = arm_extabort_type(result); | |
8389 | return 0; | |
ebca90e4 PM |
8390 | } |
8391 | ||
b7cc4e82 | 8392 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
03ae85f8 | 8393 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8394 | hwaddr *phys_ptr, int *prot, |
f989983e | 8395 | target_ulong *page_size, |
e14b5a23 | 8396 | ARMMMUFaultInfo *fi) |
b5ff1b31 | 8397 | { |
70d74660 | 8398 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
f989983e | 8399 | int level = 1; |
b5ff1b31 FB |
8400 | uint32_t table; |
8401 | uint32_t desc; | |
8402 | int type; | |
8403 | int ap; | |
e389be16 | 8404 | int domain = 0; |
dd4ebc2e | 8405 | int domain_prot; |
a8170e5e | 8406 | hwaddr phys_addr; |
0480f69a | 8407 | uint32_t dacr; |
b5ff1b31 | 8408 | |
9ee6e8bb PB |
8409 | /* Pagetable walk. */ |
8410 | /* Lookup l1 descriptor. */ | |
0480f69a | 8411 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 | 8412 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
f989983e | 8413 | fi->type = ARMFault_Translation; |
e389be16 FA |
8414 | goto do_fault; |
8415 | } | |
a614e698 | 8416 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 8417 | mmu_idx, fi); |
3b39d734 PM |
8418 | if (fi->type != ARMFault_None) { |
8419 | goto do_fault; | |
8420 | } | |
9ee6e8bb | 8421 | type = (desc & 3); |
dd4ebc2e | 8422 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
8423 | if (regime_el(env, mmu_idx) == 1) { |
8424 | dacr = env->cp15.dacr_ns; | |
8425 | } else { | |
8426 | dacr = env->cp15.dacr_s; | |
8427 | } | |
8428 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 8429 | if (type == 0) { |
601d70b9 | 8430 | /* Section translation fault. */ |
f989983e | 8431 | fi->type = ARMFault_Translation; |
9ee6e8bb PB |
8432 | goto do_fault; |
8433 | } | |
f989983e PM |
8434 | if (type != 2) { |
8435 | level = 2; | |
8436 | } | |
dd4ebc2e | 8437 | if (domain_prot == 0 || domain_prot == 2) { |
f989983e | 8438 | fi->type = ARMFault_Domain; |
9ee6e8bb PB |
8439 | goto do_fault; |
8440 | } | |
8441 | if (type == 2) { | |
8442 | /* 1Mb section. */ | |
8443 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
8444 | ap = (desc >> 10) & 3; | |
d4c430a8 | 8445 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
8446 | } else { |
8447 | /* Lookup l2 entry. */ | |
554b0b09 PM |
8448 | if (type == 1) { |
8449 | /* Coarse pagetable. */ | |
8450 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
8451 | } else { | |
8452 | /* Fine pagetable. */ | |
8453 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
8454 | } | |
a614e698 | 8455 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 8456 | mmu_idx, fi); |
3b39d734 PM |
8457 | if (fi->type != ARMFault_None) { |
8458 | goto do_fault; | |
8459 | } | |
9ee6e8bb PB |
8460 | switch (desc & 3) { |
8461 | case 0: /* Page translation fault. */ | |
f989983e | 8462 | fi->type = ARMFault_Translation; |
9ee6e8bb PB |
8463 | goto do_fault; |
8464 | case 1: /* 64k page. */ | |
8465 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
8466 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 8467 | *page_size = 0x10000; |
ce819861 | 8468 | break; |
9ee6e8bb PB |
8469 | case 2: /* 4k page. */ |
8470 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 8471 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 8472 | *page_size = 0x1000; |
ce819861 | 8473 | break; |
fc1891c7 | 8474 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 8475 | if (type == 1) { |
fc1891c7 PM |
8476 | /* ARMv6/XScale extended small page format */ |
8477 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
8478 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 8479 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 8480 | *page_size = 0x1000; |
554b0b09 | 8481 | } else { |
fc1891c7 PM |
8482 | /* UNPREDICTABLE in ARMv5; we choose to take a |
8483 | * page translation fault. | |
8484 | */ | |
f989983e | 8485 | fi->type = ARMFault_Translation; |
554b0b09 PM |
8486 | goto do_fault; |
8487 | } | |
8488 | } else { | |
8489 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 8490 | *page_size = 0x400; |
554b0b09 | 8491 | } |
9ee6e8bb | 8492 | ap = (desc >> 4) & 3; |
ce819861 PB |
8493 | break; |
8494 | default: | |
9ee6e8bb PB |
8495 | /* Never happens, but compiler isn't smart enough to tell. */ |
8496 | abort(); | |
ce819861 | 8497 | } |
9ee6e8bb | 8498 | } |
0fbf5238 AJ |
8499 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
8500 | *prot |= *prot ? PAGE_EXEC : 0; | |
8501 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb | 8502 | /* Access permission fault. */ |
f989983e | 8503 | fi->type = ARMFault_Permission; |
9ee6e8bb PB |
8504 | goto do_fault; |
8505 | } | |
8506 | *phys_ptr = phys_addr; | |
b7cc4e82 | 8507 | return false; |
9ee6e8bb | 8508 | do_fault: |
f989983e PM |
8509 | fi->domain = domain; |
8510 | fi->level = level; | |
b7cc4e82 | 8511 | return true; |
9ee6e8bb PB |
8512 | } |
8513 | ||
b7cc4e82 | 8514 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
03ae85f8 | 8515 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8516 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
f06cf243 | 8517 | target_ulong *page_size, ARMMMUFaultInfo *fi) |
9ee6e8bb | 8518 | { |
70d74660 | 8519 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
f06cf243 | 8520 | int level = 1; |
9ee6e8bb PB |
8521 | uint32_t table; |
8522 | uint32_t desc; | |
8523 | uint32_t xn; | |
de9b05b8 | 8524 | uint32_t pxn = 0; |
9ee6e8bb PB |
8525 | int type; |
8526 | int ap; | |
de9b05b8 | 8527 | int domain = 0; |
dd4ebc2e | 8528 | int domain_prot; |
a8170e5e | 8529 | hwaddr phys_addr; |
0480f69a | 8530 | uint32_t dacr; |
8bf5b6a9 | 8531 | bool ns; |
9ee6e8bb PB |
8532 | |
8533 | /* Pagetable walk. */ | |
8534 | /* Lookup l1 descriptor. */ | |
0480f69a | 8535 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 | 8536 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
f06cf243 | 8537 | fi->type = ARMFault_Translation; |
e389be16 FA |
8538 | goto do_fault; |
8539 | } | |
a614e698 | 8540 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 8541 | mmu_idx, fi); |
3b39d734 PM |
8542 | if (fi->type != ARMFault_None) { |
8543 | goto do_fault; | |
8544 | } | |
9ee6e8bb | 8545 | type = (desc & 3); |
de9b05b8 PM |
8546 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
8547 | /* Section translation fault, or attempt to use the encoding | |
8548 | * which is Reserved on implementations without PXN. | |
8549 | */ | |
f06cf243 | 8550 | fi->type = ARMFault_Translation; |
9ee6e8bb | 8551 | goto do_fault; |
de9b05b8 PM |
8552 | } |
8553 | if ((type == 1) || !(desc & (1 << 18))) { | |
8554 | /* Page or Section. */ | |
dd4ebc2e | 8555 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 8556 | } |
0480f69a PM |
8557 | if (regime_el(env, mmu_idx) == 1) { |
8558 | dacr = env->cp15.dacr_ns; | |
8559 | } else { | |
8560 | dacr = env->cp15.dacr_s; | |
8561 | } | |
f06cf243 PM |
8562 | if (type == 1) { |
8563 | level = 2; | |
8564 | } | |
0480f69a | 8565 | domain_prot = (dacr >> (domain * 2)) & 3; |
dd4ebc2e | 8566 | if (domain_prot == 0 || domain_prot == 2) { |
f06cf243 PM |
8567 | /* Section or Page domain fault */ |
8568 | fi->type = ARMFault_Domain; | |
9ee6e8bb PB |
8569 | goto do_fault; |
8570 | } | |
de9b05b8 | 8571 | if (type != 1) { |
9ee6e8bb PB |
8572 | if (desc & (1 << 18)) { |
8573 | /* Supersection. */ | |
8574 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
8575 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
8576 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 8577 | *page_size = 0x1000000; |
b5ff1b31 | 8578 | } else { |
9ee6e8bb PB |
8579 | /* Section. */ |
8580 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 8581 | *page_size = 0x100000; |
b5ff1b31 | 8582 | } |
9ee6e8bb PB |
8583 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
8584 | xn = desc & (1 << 4); | |
de9b05b8 | 8585 | pxn = desc & 1; |
8bf5b6a9 | 8586 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 8587 | } else { |
de9b05b8 PM |
8588 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
8589 | pxn = (desc >> 2) & 1; | |
8590 | } | |
8bf5b6a9 | 8591 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
8592 | /* Lookup l2 entry. */ |
8593 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
a614e698 | 8594 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 8595 | mmu_idx, fi); |
3b39d734 PM |
8596 | if (fi->type != ARMFault_None) { |
8597 | goto do_fault; | |
8598 | } | |
9ee6e8bb PB |
8599 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
8600 | switch (desc & 3) { | |
8601 | case 0: /* Page translation fault. */ | |
f06cf243 | 8602 | fi->type = ARMFault_Translation; |
b5ff1b31 | 8603 | goto do_fault; |
9ee6e8bb PB |
8604 | case 1: /* 64k page. */ |
8605 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
8606 | xn = desc & (1 << 15); | |
d4c430a8 | 8607 | *page_size = 0x10000; |
9ee6e8bb PB |
8608 | break; |
8609 | case 2: case 3: /* 4k page. */ | |
8610 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
8611 | xn = desc & 1; | |
d4c430a8 | 8612 | *page_size = 0x1000; |
9ee6e8bb PB |
8613 | break; |
8614 | default: | |
8615 | /* Never happens, but compiler isn't smart enough to tell. */ | |
8616 | abort(); | |
b5ff1b31 | 8617 | } |
9ee6e8bb | 8618 | } |
dd4ebc2e | 8619 | if (domain_prot == 3) { |
c0034328 JR |
8620 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
8621 | } else { | |
0480f69a | 8622 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
8623 | xn = 1; |
8624 | } | |
f06cf243 PM |
8625 | if (xn && access_type == MMU_INST_FETCH) { |
8626 | fi->type = ARMFault_Permission; | |
c0034328 | 8627 | goto do_fault; |
f06cf243 | 8628 | } |
9ee6e8bb | 8629 | |
d76951b6 AJ |
8630 | if (arm_feature(env, ARM_FEATURE_V6K) && |
8631 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
8632 | /* The simplified model uses AP[0] as an access control bit. */ | |
8633 | if ((ap & 1) == 0) { | |
8634 | /* Access flag fault. */ | |
f06cf243 | 8635 | fi->type = ARMFault_AccessFlag; |
d76951b6 AJ |
8636 | goto do_fault; |
8637 | } | |
8638 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
8639 | } else { | |
8640 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 8641 | } |
0fbf5238 AJ |
8642 | if (*prot && !xn) { |
8643 | *prot |= PAGE_EXEC; | |
8644 | } | |
8645 | if (!(*prot & (1 << access_type))) { | |
c0034328 | 8646 | /* Access permission fault. */ |
f06cf243 | 8647 | fi->type = ARMFault_Permission; |
c0034328 JR |
8648 | goto do_fault; |
8649 | } | |
3ad493fc | 8650 | } |
8bf5b6a9 PM |
8651 | if (ns) { |
8652 | /* The NS bit will (as required by the architecture) have no effect if | |
8653 | * the CPU doesn't support TZ or this is a non-secure translation | |
8654 | * regime, because the attribute will already be non-secure. | |
8655 | */ | |
8656 | attrs->secure = false; | |
8657 | } | |
9ee6e8bb | 8658 | *phys_ptr = phys_addr; |
b7cc4e82 | 8659 | return false; |
b5ff1b31 | 8660 | do_fault: |
f06cf243 PM |
8661 | fi->domain = domain; |
8662 | fi->level = level; | |
b7cc4e82 | 8663 | return true; |
b5ff1b31 FB |
8664 | } |
8665 | ||
1853d5a9 | 8666 | /* |
a0e966c9 | 8667 | * check_s2_mmu_setup |
1853d5a9 EI |
8668 | * @cpu: ARMCPU |
8669 | * @is_aa64: True if the translation regime is in AArch64 state | |
8670 | * @startlevel: Suggested starting level | |
8671 | * @inputsize: Bitsize of IPAs | |
8672 | * @stride: Page-table stride (See the ARM ARM) | |
8673 | * | |
a0e966c9 EI |
8674 | * Returns true if the suggested S2 translation parameters are OK and |
8675 | * false otherwise. | |
1853d5a9 | 8676 | */ |
a0e966c9 EI |
8677 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
8678 | int inputsize, int stride) | |
1853d5a9 | 8679 | { |
98d68ec2 EI |
8680 | const int grainsize = stride + 3; |
8681 | int startsizecheck; | |
8682 | ||
1853d5a9 EI |
8683 | /* Negative levels are never allowed. */ |
8684 | if (level < 0) { | |
8685 | return false; | |
8686 | } | |
8687 | ||
98d68ec2 EI |
8688 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
8689 | if (startsizecheck < 1 || startsizecheck > stride + 4) { | |
8690 | return false; | |
8691 | } | |
8692 | ||
1853d5a9 | 8693 | if (is_aa64) { |
3526423e | 8694 | CPUARMState *env = &cpu->env; |
1853d5a9 EI |
8695 | unsigned int pamax = arm_pamax(cpu); |
8696 | ||
8697 | switch (stride) { | |
8698 | case 13: /* 64KB Pages. */ | |
8699 | if (level == 0 || (level == 1 && pamax <= 42)) { | |
8700 | return false; | |
8701 | } | |
8702 | break; | |
8703 | case 11: /* 16KB Pages. */ | |
8704 | if (level == 0 || (level == 1 && pamax <= 40)) { | |
8705 | return false; | |
8706 | } | |
8707 | break; | |
8708 | case 9: /* 4KB Pages. */ | |
8709 | if (level == 0 && pamax <= 42) { | |
8710 | return false; | |
8711 | } | |
8712 | break; | |
8713 | default: | |
8714 | g_assert_not_reached(); | |
8715 | } | |
3526423e EI |
8716 | |
8717 | /* Inputsize checks. */ | |
8718 | if (inputsize > pamax && | |
8719 | (arm_el_is_aa64(env, 1) || inputsize > 40)) { | |
8720 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ | |
8721 | return false; | |
8722 | } | |
1853d5a9 | 8723 | } else { |
1853d5a9 EI |
8724 | /* AArch32 only supports 4KB pages. Assert on that. */ |
8725 | assert(stride == 9); | |
8726 | ||
8727 | if (level == 0) { | |
8728 | return false; | |
8729 | } | |
1853d5a9 EI |
8730 | } |
8731 | return true; | |
8732 | } | |
8733 | ||
5b2d261d AB |
8734 | /* Translate from the 4-bit stage 2 representation of |
8735 | * memory attributes (without cache-allocation hints) to | |
8736 | * the 8-bit representation of the stage 1 MAIR registers | |
8737 | * (which includes allocation hints). | |
8738 | * | |
8739 | * ref: shared/translation/attrs/S2AttrDecode() | |
8740 | * .../S2ConvertAttrsHints() | |
8741 | */ | |
8742 | static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) | |
8743 | { | |
8744 | uint8_t hiattr = extract32(s2attrs, 2, 2); | |
8745 | uint8_t loattr = extract32(s2attrs, 0, 2); | |
8746 | uint8_t hihint = 0, lohint = 0; | |
8747 | ||
8748 | if (hiattr != 0) { /* normal memory */ | |
8749 | if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ | |
8750 | hiattr = loattr = 1; /* non-cacheable */ | |
8751 | } else { | |
8752 | if (hiattr != 1) { /* Write-through or write-back */ | |
8753 | hihint = 3; /* RW allocate */ | |
8754 | } | |
8755 | if (loattr != 1) { /* Write-through or write-back */ | |
8756 | lohint = 3; /* RW allocate */ | |
8757 | } | |
8758 | } | |
8759 | } | |
8760 | ||
8761 | return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; | |
8762 | } | |
8763 | ||
b7cc4e82 | 8764 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
03ae85f8 | 8765 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8766 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
da909b2c | 8767 | target_ulong *page_size_ptr, |
5b2d261d | 8768 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
3dde962f | 8769 | { |
1853d5a9 EI |
8770 | ARMCPU *cpu = arm_env_get_cpu(env); |
8771 | CPUState *cs = CPU(cpu); | |
3dde962f | 8772 | /* Read an LPAE long-descriptor translation table. */ |
da909b2c | 8773 | ARMFaultType fault_type = ARMFault_Translation; |
1b4093ea | 8774 | uint32_t level; |
0c5fbf3b | 8775 | uint32_t epd = 0; |
1f4c8c18 | 8776 | int32_t t0sz, t1sz; |
2c8dd318 | 8777 | uint32_t tg; |
3dde962f PM |
8778 | uint64_t ttbr; |
8779 | int ttbr_select; | |
dddb5223 | 8780 | hwaddr descaddr, indexmask, indexmask_grainsize; |
3dde962f PM |
8781 | uint32_t tableattrs; |
8782 | target_ulong page_size; | |
8783 | uint32_t attrs; | |
973a5434 | 8784 | int32_t stride = 9; |
6e99f762 | 8785 | int32_t addrsize; |
4ca6a051 | 8786 | int inputsize; |
2c8dd318 | 8787 | int32_t tbi = 0; |
0480f69a | 8788 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 8789 | int ap, ns, xn, pxn; |
88e8add8 GB |
8790 | uint32_t el = regime_el(env, mmu_idx); |
8791 | bool ttbr1_valid = true; | |
6109769a | 8792 | uint64_t descaddrmask; |
6e99f762 | 8793 | bool aarch64 = arm_el_is_aa64(env, el); |
0480f69a PM |
8794 | |
8795 | /* TODO: | |
88e8add8 GB |
8796 | * This code does not handle the different format TCR for VTCR_EL2. |
8797 | * This code also does not support shareability levels. | |
8798 | * Attribute and permission bit handling should also be checked when adding | |
8799 | * support for those page table walks. | |
0480f69a | 8800 | */ |
6e99f762 | 8801 | if (aarch64) { |
1b4093ea | 8802 | level = 0; |
6e99f762 | 8803 | addrsize = 64; |
88e8add8 | 8804 | if (el > 1) { |
1edee470 EI |
8805 | if (mmu_idx != ARMMMUIdx_S2NS) { |
8806 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
8807 | } | |
88e8add8 GB |
8808 | } else { |
8809 | if (extract64(address, 55, 1)) { | |
8810 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
8811 | } else { | |
8812 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
8813 | } | |
8814 | } | |
2c8dd318 | 8815 | tbi *= 8; |
88e8add8 GB |
8816 | |
8817 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
8818 | * invalid. | |
8819 | */ | |
8820 | if (el > 1) { | |
8821 | ttbr1_valid = false; | |
8822 | } | |
d0a2cbce | 8823 | } else { |
1b4093ea | 8824 | level = 1; |
6e99f762 | 8825 | addrsize = 32; |
d0a2cbce PM |
8826 | /* There is no TTBR1 for EL2 */ |
8827 | if (el == 2) { | |
8828 | ttbr1_valid = false; | |
8829 | } | |
2c8dd318 | 8830 | } |
3dde962f PM |
8831 | |
8832 | /* Determine whether this address is in the region controlled by | |
8833 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
8834 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
8835 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
8836 | */ | |
6e99f762 | 8837 | if (aarch64) { |
4ee38098 EI |
8838 | /* AArch64 translation. */ |
8839 | t0sz = extract32(tcr->raw_tcr, 0, 6); | |
2c8dd318 RH |
8840 | t0sz = MIN(t0sz, 39); |
8841 | t0sz = MAX(t0sz, 16); | |
4ee38098 EI |
8842 | } else if (mmu_idx != ARMMMUIdx_S2NS) { |
8843 | /* AArch32 stage 1 translation. */ | |
8844 | t0sz = extract32(tcr->raw_tcr, 0, 3); | |
8845 | } else { | |
8846 | /* AArch32 stage 2 translation. */ | |
8847 | bool sext = extract32(tcr->raw_tcr, 4, 1); | |
8848 | bool sign = extract32(tcr->raw_tcr, 3, 1); | |
6e99f762 SS |
8849 | /* Address size is 40-bit for a stage 2 translation, |
8850 | * and t0sz can be negative (from -8 to 7), | |
8851 | * so we need to adjust it to use the TTBR selecting logic below. | |
8852 | */ | |
8853 | addrsize = 40; | |
8854 | t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; | |
4ee38098 EI |
8855 | |
8856 | /* If the sign-extend bit is not the same as t0sz[3], the result | |
8857 | * is unpredictable. Flag this as a guest error. */ | |
8858 | if (sign != sext) { | |
8859 | qemu_log_mask(LOG_GUEST_ERROR, | |
39cba610 | 8860 | "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); |
4ee38098 | 8861 | } |
2c8dd318 | 8862 | } |
1f4c8c18 | 8863 | t1sz = extract32(tcr->raw_tcr, 16, 6); |
6e99f762 | 8864 | if (aarch64) { |
2c8dd318 RH |
8865 | t1sz = MIN(t1sz, 39); |
8866 | t1sz = MAX(t1sz, 16); | |
8867 | } | |
6e99f762 | 8868 | if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { |
3dde962f PM |
8869 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
8870 | ttbr_select = 0; | |
88e8add8 | 8871 | } else if (ttbr1_valid && t1sz && |
6e99f762 | 8872 | !extract64(~address, addrsize - t1sz, t1sz - tbi)) { |
3dde962f PM |
8873 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
8874 | ttbr_select = 1; | |
8875 | } else if (!t0sz) { | |
8876 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
8877 | ttbr_select = 0; | |
88e8add8 | 8878 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
8879 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
8880 | ttbr_select = 1; | |
8881 | } else { | |
8882 | /* in the gap between the two regions, this is a Translation fault */ | |
da909b2c | 8883 | fault_type = ARMFault_Translation; |
3dde962f PM |
8884 | goto do_fault; |
8885 | } | |
8886 | ||
8887 | /* Note that QEMU ignores shareability and cacheability attributes, | |
8888 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
8889 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
8890 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
8891 | * implement any ASID-like capability so we can ignore it (instead | |
8892 | * we will always flush the TLB any time the ASID is changed). | |
8893 | */ | |
8894 | if (ttbr_select == 0) { | |
aef878be | 8895 | ttbr = regime_ttbr(env, mmu_idx, 0); |
0c5fbf3b EI |
8896 | if (el < 2) { |
8897 | epd = extract32(tcr->raw_tcr, 7, 1); | |
8898 | } | |
6e99f762 | 8899 | inputsize = addrsize - t0sz; |
2c8dd318 | 8900 | |
11f136ee | 8901 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 | 8902 | if (tg == 1) { /* 64KB pages */ |
973a5434 | 8903 | stride = 13; |
2c8dd318 RH |
8904 | } |
8905 | if (tg == 2) { /* 16KB pages */ | |
973a5434 | 8906 | stride = 11; |
2c8dd318 | 8907 | } |
3dde962f | 8908 | } else { |
88e8add8 GB |
8909 | /* We should only be here if TTBR1 is valid */ |
8910 | assert(ttbr1_valid); | |
8911 | ||
aef878be | 8912 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 8913 | epd = extract32(tcr->raw_tcr, 23, 1); |
6e99f762 | 8914 | inputsize = addrsize - t1sz; |
2c8dd318 | 8915 | |
11f136ee | 8916 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 | 8917 | if (tg == 3) { /* 64KB pages */ |
973a5434 | 8918 | stride = 13; |
2c8dd318 RH |
8919 | } |
8920 | if (tg == 1) { /* 16KB pages */ | |
973a5434 | 8921 | stride = 11; |
2c8dd318 | 8922 | } |
3dde962f PM |
8923 | } |
8924 | ||
0480f69a | 8925 | /* Here we should have set up all the parameters for the translation: |
6e99f762 | 8926 | * inputsize, ttbr, epd, stride, tbi |
0480f69a PM |
8927 | */ |
8928 | ||
3dde962f | 8929 | if (epd) { |
88e8add8 GB |
8930 | /* Translation table walk disabled => Translation fault on TLB miss |
8931 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
8932 | */ | |
3dde962f PM |
8933 | goto do_fault; |
8934 | } | |
8935 | ||
1853d5a9 EI |
8936 | if (mmu_idx != ARMMMUIdx_S2NS) { |
8937 | /* The starting level depends on the virtual address size (which can | |
8938 | * be up to 48 bits) and the translation granule size. It indicates | |
8939 | * the number of strides (stride bits at a time) needed to | |
8940 | * consume the bits of the input address. In the pseudocode this is: | |
8941 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
8942 | * where their 'inputsize' is our 'inputsize', 'grainsize' is | |
8943 | * our 'stride + 3' and 'stride' is our 'stride'. | |
8944 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
8945 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride | |
8946 | * = 4 - (inputsize - 4) / stride; | |
8947 | */ | |
8948 | level = 4 - (inputsize - 4) / stride; | |
8949 | } else { | |
8950 | /* For stage 2 translations the starting level is specified by the | |
8951 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) | |
8952 | */ | |
1b4093ea SS |
8953 | uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
8954 | uint32_t startlevel; | |
1853d5a9 EI |
8955 | bool ok; |
8956 | ||
6e99f762 | 8957 | if (!aarch64 || stride == 9) { |
1853d5a9 | 8958 | /* AArch32 or 4KB pages */ |
1b4093ea | 8959 | startlevel = 2 - sl0; |
1853d5a9 EI |
8960 | } else { |
8961 | /* 16KB or 64KB pages */ | |
1b4093ea | 8962 | startlevel = 3 - sl0; |
1853d5a9 EI |
8963 | } |
8964 | ||
8965 | /* Check that the starting level is valid. */ | |
6e99f762 | 8966 | ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
1b4093ea | 8967 | inputsize, stride); |
1853d5a9 | 8968 | if (!ok) { |
da909b2c | 8969 | fault_type = ARMFault_Translation; |
1853d5a9 EI |
8970 | goto do_fault; |
8971 | } | |
1b4093ea | 8972 | level = startlevel; |
1853d5a9 | 8973 | } |
3dde962f | 8974 | |
dddb5223 SS |
8975 | indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
8976 | indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; | |
3dde962f PM |
8977 | |
8978 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 | 8979 | descaddr = extract64(ttbr, 0, 48); |
dddb5223 | 8980 | descaddr &= ~indexmask; |
3dde962f | 8981 | |
6109769a | 8982 | /* The address field in the descriptor goes up to bit 39 for ARMv7 |
dddb5223 SS |
8983 | * but up to bit 47 for ARMv8, but we use the descaddrmask |
8984 | * up to bit 39 for AArch32, because we don't need other bits in that case | |
8985 | * to construct next descriptor address (anyway they should be all zeroes). | |
6109769a | 8986 | */ |
6e99f762 | 8987 | descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
dddb5223 | 8988 | ~indexmask_grainsize; |
6109769a | 8989 | |
ebca90e4 PM |
8990 | /* Secure accesses start with the page table in secure memory and |
8991 | * can be downgraded to non-secure at any step. Non-secure accesses | |
8992 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
8993 | * bits at each step. | |
8994 | */ | |
8995 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
8996 | for (;;) { |
8997 | uint64_t descriptor; | |
ebca90e4 | 8998 | bool nstable; |
3dde962f | 8999 | |
dddb5223 | 9000 | descaddr |= (address >> (stride * (4 - level))) & indexmask; |
2c8dd318 | 9001 | descaddr &= ~7ULL; |
ebca90e4 | 9002 | nstable = extract32(tableattrs, 4, 1); |
3795a6de | 9003 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); |
3b39d734 | 9004 | if (fi->type != ARMFault_None) { |
37785977 EI |
9005 | goto do_fault; |
9006 | } | |
9007 | ||
3dde962f PM |
9008 | if (!(descriptor & 1) || |
9009 | (!(descriptor & 2) && (level == 3))) { | |
9010 | /* Invalid, or the Reserved level 3 encoding */ | |
9011 | goto do_fault; | |
9012 | } | |
6109769a | 9013 | descaddr = descriptor & descaddrmask; |
3dde962f PM |
9014 | |
9015 | if ((descriptor & 2) && (level < 3)) { | |
9016 | /* Table entry. The top five bits are attributes which may | |
9017 | * propagate down through lower levels of the table (and | |
9018 | * which are all arranged so that 0 means "no effect", so | |
9019 | * we can gather them up by ORing in the bits at each level). | |
9020 | */ | |
9021 | tableattrs |= extract64(descriptor, 59, 5); | |
9022 | level++; | |
dddb5223 | 9023 | indexmask = indexmask_grainsize; |
3dde962f PM |
9024 | continue; |
9025 | } | |
9026 | /* Block entry at level 1 or 2, or page entry at level 3. | |
9027 | * These are basically the same thing, although the number | |
9028 | * of bits we pull in from the vaddr varies. | |
9029 | */ | |
973a5434 | 9030 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
3dde962f | 9031 | descaddr |= (address & (page_size - 1)); |
6ab1a5ee | 9032 | /* Extract attributes from the descriptor */ |
d615efac IC |
9033 | attrs = extract64(descriptor, 2, 10) |
9034 | | (extract64(descriptor, 52, 12) << 10); | |
6ab1a5ee EI |
9035 | |
9036 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
9037 | /* Stage 2 table descriptors do not include any attribute fields */ | |
9038 | break; | |
9039 | } | |
9040 | /* Merge in attributes from table descriptors */ | |
3dde962f PM |
9041 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
9042 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
9043 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
9044 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
9045 | */ | |
9046 | if (extract32(tableattrs, 2, 1)) { | |
9047 | attrs &= ~(1 << 4); | |
9048 | } | |
ebca90e4 | 9049 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
9050 | break; |
9051 | } | |
9052 | /* Here descaddr is the final physical address, and attributes | |
9053 | * are all in attrs. | |
9054 | */ | |
da909b2c | 9055 | fault_type = ARMFault_AccessFlag; |
3dde962f PM |
9056 | if ((attrs & (1 << 8)) == 0) { |
9057 | /* Access flag */ | |
9058 | goto do_fault; | |
9059 | } | |
d8e052b3 AJ |
9060 | |
9061 | ap = extract32(attrs, 4, 2); | |
d8e052b3 | 9062 | xn = extract32(attrs, 12, 1); |
d8e052b3 | 9063 | |
6ab1a5ee EI |
9064 | if (mmu_idx == ARMMMUIdx_S2NS) { |
9065 | ns = true; | |
9066 | *prot = get_S2prot(env, ap, xn); | |
9067 | } else { | |
9068 | ns = extract32(attrs, 3, 1); | |
9069 | pxn = extract32(attrs, 11, 1); | |
6e99f762 | 9070 | *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
6ab1a5ee | 9071 | } |
d8e052b3 | 9072 | |
da909b2c | 9073 | fault_type = ARMFault_Permission; |
d8e052b3 | 9074 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
9075 | goto do_fault; |
9076 | } | |
3dde962f | 9077 | |
8bf5b6a9 PM |
9078 | if (ns) { |
9079 | /* The NS bit will (as required by the architecture) have no effect if | |
9080 | * the CPU doesn't support TZ or this is a non-secure translation | |
9081 | * regime, because the attribute will already be non-secure. | |
9082 | */ | |
9083 | txattrs->secure = false; | |
9084 | } | |
5b2d261d AB |
9085 | |
9086 | if (cacheattrs != NULL) { | |
9087 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
9088 | cacheattrs->attrs = convert_stage2_attrs(env, | |
9089 | extract32(attrs, 0, 4)); | |
9090 | } else { | |
9091 | /* Index into MAIR registers for cache attributes */ | |
9092 | uint8_t attrindx = extract32(attrs, 0, 3); | |
9093 | uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; | |
9094 | assert(attrindx <= 7); | |
9095 | cacheattrs->attrs = extract64(mair, attrindx * 8, 8); | |
9096 | } | |
9097 | cacheattrs->shareability = extract32(attrs, 6, 2); | |
9098 | } | |
9099 | ||
3dde962f PM |
9100 | *phys_ptr = descaddr; |
9101 | *page_size_ptr = page_size; | |
b7cc4e82 | 9102 | return false; |
3dde962f PM |
9103 | |
9104 | do_fault: | |
da909b2c PM |
9105 | fi->type = fault_type; |
9106 | fi->level = level; | |
37785977 EI |
9107 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
9108 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); | |
b7cc4e82 | 9109 | return true; |
3dde962f PM |
9110 | } |
9111 | ||
f6bda88f PC |
9112 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
9113 | ARMMMUIdx mmu_idx, | |
9114 | int32_t address, int *prot) | |
9115 | { | |
3a00d560 MD |
9116 | if (!arm_feature(env, ARM_FEATURE_M)) { |
9117 | *prot = PAGE_READ | PAGE_WRITE; | |
9118 | switch (address) { | |
9119 | case 0xF0000000 ... 0xFFFFFFFF: | |
9120 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { | |
9121 | /* hivecs execing is ok */ | |
9122 | *prot |= PAGE_EXEC; | |
9123 | } | |
9124 | break; | |
9125 | case 0x00000000 ... 0x7FFFFFFF: | |
f6bda88f | 9126 | *prot |= PAGE_EXEC; |
3a00d560 MD |
9127 | break; |
9128 | } | |
9129 | } else { | |
9130 | /* Default system address map for M profile cores. | |
9131 | * The architecture specifies which regions are execute-never; | |
9132 | * at the MPU level no other checks are defined. | |
9133 | */ | |
9134 | switch (address) { | |
9135 | case 0x00000000 ... 0x1fffffff: /* ROM */ | |
9136 | case 0x20000000 ... 0x3fffffff: /* SRAM */ | |
9137 | case 0x60000000 ... 0x7fffffff: /* RAM */ | |
9138 | case 0x80000000 ... 0x9fffffff: /* RAM */ | |
9139 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
9140 | break; | |
9141 | case 0x40000000 ... 0x5fffffff: /* Peripheral */ | |
9142 | case 0xa0000000 ... 0xbfffffff: /* Device */ | |
9143 | case 0xc0000000 ... 0xdfffffff: /* Device */ | |
9144 | case 0xe0000000 ... 0xffffffff: /* System */ | |
9145 | *prot = PAGE_READ | PAGE_WRITE; | |
9146 | break; | |
9147 | default: | |
9148 | g_assert_not_reached(); | |
f6bda88f | 9149 | } |
f6bda88f | 9150 | } |
f6bda88f PC |
9151 | } |
9152 | ||
29c483a5 MD |
9153 | static bool pmsav7_use_background_region(ARMCPU *cpu, |
9154 | ARMMMUIdx mmu_idx, bool is_user) | |
9155 | { | |
9156 | /* Return true if we should use the default memory map as a | |
9157 | * "background" region if there are no hits against any MPU regions. | |
9158 | */ | |
9159 | CPUARMState *env = &cpu->env; | |
9160 | ||
9161 | if (is_user) { | |
9162 | return false; | |
9163 | } | |
9164 | ||
9165 | if (arm_feature(env, ARM_FEATURE_M)) { | |
ecf5e8ea PM |
9166 | return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] |
9167 | & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; | |
29c483a5 MD |
9168 | } else { |
9169 | return regime_sctlr(env, mmu_idx) & SCTLR_BR; | |
9170 | } | |
9171 | } | |
9172 | ||
38aaa60c PM |
9173 | static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
9174 | { | |
9175 | /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ | |
9176 | return arm_feature(env, ARM_FEATURE_M) && | |
9177 | extract32(address, 20, 12) == 0xe00; | |
9178 | } | |
9179 | ||
bf446a11 PM |
9180 | static inline bool m_is_system_region(CPUARMState *env, uint32_t address) |
9181 | { | |
9182 | /* True if address is in the M profile system region | |
9183 | * 0xe0000000 - 0xffffffff | |
9184 | */ | |
9185 | return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; | |
9186 | } | |
9187 | ||
f6bda88f | 9188 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
03ae85f8 | 9189 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
9375ad15 PM |
9190 | hwaddr *phys_ptr, int *prot, |
9191 | ARMMMUFaultInfo *fi) | |
f6bda88f PC |
9192 | { |
9193 | ARMCPU *cpu = arm_env_get_cpu(env); | |
9194 | int n; | |
9195 | bool is_user = regime_is_user(env, mmu_idx); | |
9196 | ||
9197 | *phys_ptr = address; | |
9198 | *prot = 0; | |
9199 | ||
38aaa60c PM |
9200 | if (regime_translation_disabled(env, mmu_idx) || |
9201 | m_is_ppb_region(env, address)) { | |
9202 | /* MPU disabled or M profile PPB access: use default memory map. | |
9203 | * The other case which uses the default memory map in the | |
9204 | * v7M ARM ARM pseudocode is exception vector reads from the vector | |
9205 | * table. In QEMU those accesses are done in arm_v7m_load_vector(), | |
9206 | * which always does a direct read using address_space_ldl(), rather | |
9207 | * than going via this function, so we don't need to check that here. | |
9208 | */ | |
f6bda88f PC |
9209 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
9210 | } else { /* MPU enabled */ | |
9211 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
9212 | /* region search */ | |
9213 | uint32_t base = env->pmsav7.drbar[n]; | |
9214 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
9215 | uint32_t rmask; | |
9216 | bool srdis = false; | |
9217 | ||
9218 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
9219 | continue; | |
9220 | } | |
9221 | ||
9222 | if (!rsize) { | |
c9f9f124 MD |
9223 | qemu_log_mask(LOG_GUEST_ERROR, |
9224 | "DRSR[%d]: Rsize field cannot be 0\n", n); | |
f6bda88f PC |
9225 | continue; |
9226 | } | |
9227 | rsize++; | |
9228 | rmask = (1ull << rsize) - 1; | |
9229 | ||
9230 | if (base & rmask) { | |
c9f9f124 MD |
9231 | qemu_log_mask(LOG_GUEST_ERROR, |
9232 | "DRBAR[%d]: 0x%" PRIx32 " misaligned " | |
9233 | "to DRSR region size, mask = 0x%" PRIx32 "\n", | |
9234 | n, base, rmask); | |
f6bda88f PC |
9235 | continue; |
9236 | } | |
9237 | ||
9238 | if (address < base || address > base + rmask) { | |
9239 | continue; | |
9240 | } | |
9241 | ||
9242 | /* Region matched */ | |
9243 | ||
9244 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
9245 | int i, snd; | |
9246 | uint32_t srdis_mask; | |
9247 | ||
9248 | rsize -= 3; /* sub region size (power of 2) */ | |
9249 | snd = ((address - base) >> rsize) & 0x7; | |
9250 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
9251 | ||
9252 | srdis_mask = srdis ? 0x3 : 0x0; | |
9253 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
9254 | /* This will check in groups of 2, 4 and then 8, whether | |
9255 | * the subregion bits are consistent. rsize is incremented | |
9256 | * back up to give the region size, considering consistent | |
9257 | * adjacent subregions as one region. Stop testing if rsize | |
9258 | * is already big enough for an entire QEMU page. | |
9259 | */ | |
9260 | int snd_rounded = snd & ~(i - 1); | |
9261 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
9262 | snd_rounded + 8, i); | |
9263 | if (srdis_mask ^ srdis_multi) { | |
9264 | break; | |
9265 | } | |
9266 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
9267 | rsize++; | |
9268 | } | |
9269 | } | |
9270 | if (rsize < TARGET_PAGE_BITS) { | |
c9f9f124 MD |
9271 | qemu_log_mask(LOG_UNIMP, |
9272 | "DRSR[%d]: No support for MPU (sub)region " | |
f6bda88f | 9273 | "alignment of %" PRIu32 " bits. Minimum is %d\n", |
c9f9f124 | 9274 | n, rsize, TARGET_PAGE_BITS); |
f6bda88f PC |
9275 | continue; |
9276 | } | |
9277 | if (srdis) { | |
9278 | continue; | |
9279 | } | |
9280 | break; | |
9281 | } | |
9282 | ||
9283 | if (n == -1) { /* no hits */ | |
29c483a5 | 9284 | if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
f6bda88f | 9285 | /* background fault */ |
9375ad15 | 9286 | fi->type = ARMFault_Background; |
f6bda88f PC |
9287 | return true; |
9288 | } | |
9289 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
9290 | } else { /* a MPU hit! */ | |
9291 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
bf446a11 PM |
9292 | uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
9293 | ||
9294 | if (m_is_system_region(env, address)) { | |
9295 | /* System space is always execute never */ | |
9296 | xn = 1; | |
9297 | } | |
f6bda88f PC |
9298 | |
9299 | if (is_user) { /* User mode AP bit decoding */ | |
9300 | switch (ap) { | |
9301 | case 0: | |
9302 | case 1: | |
9303 | case 5: | |
9304 | break; /* no access */ | |
9305 | case 3: | |
9306 | *prot |= PAGE_WRITE; | |
9307 | /* fall through */ | |
9308 | case 2: | |
9309 | case 6: | |
9310 | *prot |= PAGE_READ | PAGE_EXEC; | |
9311 | break; | |
8638f1ad PM |
9312 | case 7: |
9313 | /* for v7M, same as 6; for R profile a reserved value */ | |
9314 | if (arm_feature(env, ARM_FEATURE_M)) { | |
9315 | *prot |= PAGE_READ | PAGE_EXEC; | |
9316 | break; | |
9317 | } | |
9318 | /* fall through */ | |
f6bda88f PC |
9319 | default: |
9320 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
9321 | "DRACR[%d]: Bad value for AP bits: 0x%" |
9322 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
9323 | } |
9324 | } else { /* Priv. mode AP bits decoding */ | |
9325 | switch (ap) { | |
9326 | case 0: | |
9327 | break; /* no access */ | |
9328 | case 1: | |
9329 | case 2: | |
9330 | case 3: | |
9331 | *prot |= PAGE_WRITE; | |
9332 | /* fall through */ | |
9333 | case 5: | |
9334 | case 6: | |
9335 | *prot |= PAGE_READ | PAGE_EXEC; | |
9336 | break; | |
8638f1ad PM |
9337 | case 7: |
9338 | /* for v7M, same as 6; for R profile a reserved value */ | |
9339 | if (arm_feature(env, ARM_FEATURE_M)) { | |
9340 | *prot |= PAGE_READ | PAGE_EXEC; | |
9341 | break; | |
9342 | } | |
9343 | /* fall through */ | |
f6bda88f PC |
9344 | default: |
9345 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
9346 | "DRACR[%d]: Bad value for AP bits: 0x%" |
9347 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
9348 | } |
9349 | } | |
9350 | ||
9351 | /* execute never */ | |
bf446a11 | 9352 | if (xn) { |
f6bda88f PC |
9353 | *prot &= ~PAGE_EXEC; |
9354 | } | |
9355 | } | |
9356 | } | |
9357 | ||
9375ad15 PM |
9358 | fi->type = ARMFault_Permission; |
9359 | fi->level = 1; | |
f6bda88f PC |
9360 | return !(*prot & (1 << access_type)); |
9361 | } | |
9362 | ||
35337cc3 PM |
9363 | static bool v8m_is_sau_exempt(CPUARMState *env, |
9364 | uint32_t address, MMUAccessType access_type) | |
9365 | { | |
9366 | /* The architecture specifies that certain address ranges are | |
9367 | * exempt from v8M SAU/IDAU checks. | |
9368 | */ | |
9369 | return | |
9370 | (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || | |
9371 | (address >= 0xe0000000 && address <= 0xe0002fff) || | |
9372 | (address >= 0xe000e000 && address <= 0xe000efff) || | |
9373 | (address >= 0xe002e000 && address <= 0xe002efff) || | |
9374 | (address >= 0xe0040000 && address <= 0xe0041fff) || | |
9375 | (address >= 0xe00ff000 && address <= 0xe00fffff); | |
9376 | } | |
9377 | ||
9378 | static void v8m_security_lookup(CPUARMState *env, uint32_t address, | |
9379 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
9380 | V8M_SAttributes *sattrs) | |
9381 | { | |
9382 | /* Look up the security attributes for this address. Compare the | |
9383 | * pseudocode SecurityCheck() function. | |
9384 | * We assume the caller has zero-initialized *sattrs. | |
9385 | */ | |
9386 | ARMCPU *cpu = arm_env_get_cpu(env); | |
9387 | int r; | |
9388 | ||
9389 | /* TODO: implement IDAU */ | |
9390 | ||
9391 | if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { | |
9392 | /* 0xf0000000..0xffffffff is always S for insn fetches */ | |
9393 | return; | |
9394 | } | |
9395 | ||
9396 | if (v8m_is_sau_exempt(env, address, access_type)) { | |
9397 | sattrs->ns = !regime_is_secure(env, mmu_idx); | |
9398 | return; | |
9399 | } | |
9400 | ||
9401 | switch (env->sau.ctrl & 3) { | |
9402 | case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ | |
9403 | break; | |
9404 | case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ | |
9405 | sattrs->ns = true; | |
9406 | break; | |
9407 | default: /* SAU.ENABLE == 1 */ | |
9408 | for (r = 0; r < cpu->sau_sregion; r++) { | |
9409 | if (env->sau.rlar[r] & 1) { | |
9410 | uint32_t base = env->sau.rbar[r] & ~0x1f; | |
9411 | uint32_t limit = env->sau.rlar[r] | 0x1f; | |
9412 | ||
9413 | if (base <= address && limit >= address) { | |
9414 | if (sattrs->srvalid) { | |
9415 | /* If we hit in more than one region then we must report | |
9416 | * as Secure, not NS-Callable, with no valid region | |
9417 | * number info. | |
9418 | */ | |
9419 | sattrs->ns = false; | |
9420 | sattrs->nsc = false; | |
9421 | sattrs->sregion = 0; | |
9422 | sattrs->srvalid = false; | |
9423 | break; | |
9424 | } else { | |
9425 | if (env->sau.rlar[r] & 2) { | |
9426 | sattrs->nsc = true; | |
9427 | } else { | |
9428 | sattrs->ns = true; | |
9429 | } | |
9430 | sattrs->srvalid = true; | |
9431 | sattrs->sregion = r; | |
9432 | } | |
9433 | } | |
9434 | } | |
9435 | } | |
9436 | ||
9437 | /* TODO when we support the IDAU then it may override the result here */ | |
9438 | break; | |
9439 | } | |
9440 | } | |
9441 | ||
54317c0f PM |
9442 | static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, |
9443 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
9444 | hwaddr *phys_ptr, MemTxAttrs *txattrs, | |
3f551b5b | 9445 | int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion) |
54317c0f PM |
9446 | { |
9447 | /* Perform a PMSAv8 MPU lookup (without also doing the SAU check | |
9448 | * that a full phys-to-virt translation does). | |
9449 | * mregion is (if not NULL) set to the region number which matched, | |
9450 | * or -1 if no region number is returned (MPU off, address did not | |
9451 | * hit a region, address hit in multiple regions). | |
9452 | */ | |
504e3cc3 PM |
9453 | ARMCPU *cpu = arm_env_get_cpu(env); |
9454 | bool is_user = regime_is_user(env, mmu_idx); | |
62c58ee0 | 9455 | uint32_t secure = regime_is_secure(env, mmu_idx); |
504e3cc3 PM |
9456 | int n; |
9457 | int matchregion = -1; | |
9458 | bool hit = false; | |
9459 | ||
9460 | *phys_ptr = address; | |
9461 | *prot = 0; | |
54317c0f PM |
9462 | if (mregion) { |
9463 | *mregion = -1; | |
35337cc3 PM |
9464 | } |
9465 | ||
504e3cc3 PM |
9466 | /* Unlike the ARM ARM pseudocode, we don't need to check whether this |
9467 | * was an exception vector read from the vector table (which is always | |
9468 | * done using the default system address map), because those accesses | |
9469 | * are done in arm_v7m_load_vector(), which always does a direct | |
9470 | * read using address_space_ldl(), rather than going via this function. | |
9471 | */ | |
9472 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
9473 | hit = true; | |
9474 | } else if (m_is_ppb_region(env, address)) { | |
9475 | hit = true; | |
9476 | } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { | |
9477 | hit = true; | |
9478 | } else { | |
9479 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
9480 | /* region search */ | |
9481 | /* Note that the base address is bits [31:5] from the register | |
9482 | * with bits [4:0] all zeroes, but the limit address is bits | |
9483 | * [31:5] from the register with bits [4:0] all ones. | |
9484 | */ | |
62c58ee0 PM |
9485 | uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; |
9486 | uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; | |
504e3cc3 | 9487 | |
62c58ee0 | 9488 | if (!(env->pmsav8.rlar[secure][n] & 0x1)) { |
504e3cc3 PM |
9489 | /* Region disabled */ |
9490 | continue; | |
9491 | } | |
9492 | ||
9493 | if (address < base || address > limit) { | |
9494 | continue; | |
9495 | } | |
9496 | ||
9497 | if (hit) { | |
9498 | /* Multiple regions match -- always a failure (unlike | |
9499 | * PMSAv7 where highest-numbered-region wins) | |
9500 | */ | |
3f551b5b PM |
9501 | fi->type = ARMFault_Permission; |
9502 | fi->level = 1; | |
504e3cc3 PM |
9503 | return true; |
9504 | } | |
9505 | ||
9506 | matchregion = n; | |
9507 | hit = true; | |
9508 | ||
9509 | if (base & ~TARGET_PAGE_MASK) { | |
9510 | qemu_log_mask(LOG_UNIMP, | |
9511 | "MPU_RBAR[%d]: No support for MPU region base" | |
9512 | "address of 0x%" PRIx32 ". Minimum alignment is " | |
9513 | "%d\n", | |
9514 | n, base, TARGET_PAGE_BITS); | |
9515 | continue; | |
9516 | } | |
9517 | if ((limit + 1) & ~TARGET_PAGE_MASK) { | |
9518 | qemu_log_mask(LOG_UNIMP, | |
9519 | "MPU_RBAR[%d]: No support for MPU region limit" | |
9520 | "address of 0x%" PRIx32 ". Minimum alignment is " | |
9521 | "%d\n", | |
9522 | n, limit, TARGET_PAGE_BITS); | |
9523 | continue; | |
9524 | } | |
9525 | } | |
9526 | } | |
9527 | ||
9528 | if (!hit) { | |
9529 | /* background fault */ | |
3f551b5b | 9530 | fi->type = ARMFault_Background; |
504e3cc3 PM |
9531 | return true; |
9532 | } | |
9533 | ||
9534 | if (matchregion == -1) { | |
9535 | /* hit using the background region */ | |
9536 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
9537 | } else { | |
62c58ee0 PM |
9538 | uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); |
9539 | uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); | |
504e3cc3 PM |
9540 | |
9541 | if (m_is_system_region(env, address)) { | |
9542 | /* System space is always execute never */ | |
9543 | xn = 1; | |
9544 | } | |
9545 | ||
9546 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); | |
9547 | if (*prot && !xn) { | |
9548 | *prot |= PAGE_EXEC; | |
9549 | } | |
9550 | /* We don't need to look the attribute up in the MAIR0/MAIR1 | |
9551 | * registers because that only tells us about cacheability. | |
9552 | */ | |
54317c0f PM |
9553 | if (mregion) { |
9554 | *mregion = matchregion; | |
9555 | } | |
504e3cc3 PM |
9556 | } |
9557 | ||
3f551b5b PM |
9558 | fi->type = ARMFault_Permission; |
9559 | fi->level = 1; | |
504e3cc3 PM |
9560 | return !(*prot & (1 << access_type)); |
9561 | } | |
9562 | ||
54317c0f PM |
9563 | |
9564 | static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, | |
9565 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
9566 | hwaddr *phys_ptr, MemTxAttrs *txattrs, | |
3f551b5b | 9567 | int *prot, ARMMMUFaultInfo *fi) |
54317c0f PM |
9568 | { |
9569 | uint32_t secure = regime_is_secure(env, mmu_idx); | |
9570 | V8M_SAttributes sattrs = {}; | |
9571 | ||
9572 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
9573 | v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); | |
9574 | if (access_type == MMU_INST_FETCH) { | |
9575 | /* Instruction fetches always use the MMU bank and the | |
9576 | * transaction attribute determined by the fetch address, | |
9577 | * regardless of CPU state. This is painful for QEMU | |
9578 | * to handle, because it would mean we need to encode | |
9579 | * into the mmu_idx not just the (user, negpri) information | |
9580 | * for the current security state but also that for the | |
9581 | * other security state, which would balloon the number | |
9582 | * of mmu_idx values needed alarmingly. | |
9583 | * Fortunately we can avoid this because it's not actually | |
9584 | * possible to arbitrarily execute code from memory with | |
9585 | * the wrong security attribute: it will always generate | |
9586 | * an exception of some kind or another, apart from the | |
9587 | * special case of an NS CPU executing an SG instruction | |
9588 | * in S&NSC memory. So we always just fail the translation | |
9589 | * here and sort things out in the exception handler | |
9590 | * (including possibly emulating an SG instruction). | |
9591 | */ | |
9592 | if (sattrs.ns != !secure) { | |
3f551b5b PM |
9593 | if (sattrs.nsc) { |
9594 | fi->type = ARMFault_QEMU_NSCExec; | |
9595 | } else { | |
9596 | fi->type = ARMFault_QEMU_SFault; | |
9597 | } | |
54317c0f PM |
9598 | *phys_ptr = address; |
9599 | *prot = 0; | |
9600 | return true; | |
9601 | } | |
9602 | } else { | |
9603 | /* For data accesses we always use the MMU bank indicated | |
9604 | * by the current CPU state, but the security attributes | |
9605 | * might downgrade a secure access to nonsecure. | |
9606 | */ | |
9607 | if (sattrs.ns) { | |
9608 | txattrs->secure = false; | |
9609 | } else if (!secure) { | |
9610 | /* NS access to S memory must fault. | |
9611 | * Architecturally we should first check whether the | |
9612 | * MPU information for this address indicates that we | |
9613 | * are doing an unaligned access to Device memory, which | |
9614 | * should generate a UsageFault instead. QEMU does not | |
9615 | * currently check for that kind of unaligned access though. | |
9616 | * If we added it we would need to do so as a special case | |
9617 | * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). | |
9618 | */ | |
3f551b5b | 9619 | fi->type = ARMFault_QEMU_SFault; |
54317c0f PM |
9620 | *phys_ptr = address; |
9621 | *prot = 0; | |
9622 | return true; | |
9623 | } | |
9624 | } | |
9625 | } | |
9626 | ||
9627 | return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, | |
3f551b5b | 9628 | txattrs, prot, fi, NULL); |
54317c0f PM |
9629 | } |
9630 | ||
13689d43 | 9631 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
03ae85f8 | 9632 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
53a4e5c5 PM |
9633 | hwaddr *phys_ptr, int *prot, |
9634 | ARMMMUFaultInfo *fi) | |
9ee6e8bb PB |
9635 | { |
9636 | int n; | |
9637 | uint32_t mask; | |
9638 | uint32_t base; | |
0480f69a | 9639 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb | 9640 | |
3279adb9 PM |
9641 | if (regime_translation_disabled(env, mmu_idx)) { |
9642 | /* MPU disabled. */ | |
9643 | *phys_ptr = address; | |
9644 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
9645 | return false; | |
9646 | } | |
9647 | ||
9ee6e8bb PB |
9648 | *phys_ptr = address; |
9649 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 9650 | base = env->cp15.c6_region[n]; |
87c3d486 | 9651 | if ((base & 1) == 0) { |
554b0b09 | 9652 | continue; |
87c3d486 | 9653 | } |
554b0b09 PM |
9654 | mask = 1 << ((base >> 1) & 0x1f); |
9655 | /* Keep this shift separate from the above to avoid an | |
9656 | (undefined) << 32. */ | |
9657 | mask = (mask << 1) - 1; | |
87c3d486 | 9658 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 9659 | break; |
87c3d486 | 9660 | } |
9ee6e8bb | 9661 | } |
87c3d486 | 9662 | if (n < 0) { |
53a4e5c5 | 9663 | fi->type = ARMFault_Background; |
b7cc4e82 | 9664 | return true; |
87c3d486 | 9665 | } |
9ee6e8bb | 9666 | |
03ae85f8 | 9667 | if (access_type == MMU_INST_FETCH) { |
7e09797c | 9668 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 9669 | } else { |
7e09797c | 9670 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
9671 | } |
9672 | mask = (mask >> (n * 4)) & 0xf; | |
9673 | switch (mask) { | |
9674 | case 0: | |
53a4e5c5 PM |
9675 | fi->type = ARMFault_Permission; |
9676 | fi->level = 1; | |
b7cc4e82 | 9677 | return true; |
9ee6e8bb | 9678 | case 1: |
87c3d486 | 9679 | if (is_user) { |
53a4e5c5 PM |
9680 | fi->type = ARMFault_Permission; |
9681 | fi->level = 1; | |
b7cc4e82 | 9682 | return true; |
87c3d486 | 9683 | } |
554b0b09 PM |
9684 | *prot = PAGE_READ | PAGE_WRITE; |
9685 | break; | |
9ee6e8bb | 9686 | case 2: |
554b0b09 | 9687 | *prot = PAGE_READ; |
87c3d486 | 9688 | if (!is_user) { |
554b0b09 | 9689 | *prot |= PAGE_WRITE; |
87c3d486 | 9690 | } |
554b0b09 | 9691 | break; |
9ee6e8bb | 9692 | case 3: |
554b0b09 PM |
9693 | *prot = PAGE_READ | PAGE_WRITE; |
9694 | break; | |
9ee6e8bb | 9695 | case 5: |
87c3d486 | 9696 | if (is_user) { |
53a4e5c5 PM |
9697 | fi->type = ARMFault_Permission; |
9698 | fi->level = 1; | |
b7cc4e82 | 9699 | return true; |
87c3d486 | 9700 | } |
554b0b09 PM |
9701 | *prot = PAGE_READ; |
9702 | break; | |
9ee6e8bb | 9703 | case 6: |
554b0b09 PM |
9704 | *prot = PAGE_READ; |
9705 | break; | |
9ee6e8bb | 9706 | default: |
554b0b09 | 9707 | /* Bad permission. */ |
53a4e5c5 PM |
9708 | fi->type = ARMFault_Permission; |
9709 | fi->level = 1; | |
b7cc4e82 | 9710 | return true; |
9ee6e8bb | 9711 | } |
3ad493fc | 9712 | *prot |= PAGE_EXEC; |
b7cc4e82 | 9713 | return false; |
9ee6e8bb PB |
9714 | } |
9715 | ||
5b2d261d AB |
9716 | /* Combine either inner or outer cacheability attributes for normal |
9717 | * memory, according to table D4-42 and pseudocode procedure | |
9718 | * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). | |
9719 | * | |
9720 | * NB: only stage 1 includes allocation hints (RW bits), leading to | |
9721 | * some asymmetry. | |
9722 | */ | |
9723 | static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) | |
9724 | { | |
9725 | if (s1 == 4 || s2 == 4) { | |
9726 | /* non-cacheable has precedence */ | |
9727 | return 4; | |
9728 | } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { | |
9729 | /* stage 1 write-through takes precedence */ | |
9730 | return s1; | |
9731 | } else if (extract32(s2, 2, 2) == 2) { | |
9732 | /* stage 2 write-through takes precedence, but the allocation hint | |
9733 | * is still taken from stage 1 | |
9734 | */ | |
9735 | return (2 << 2) | extract32(s1, 0, 2); | |
9736 | } else { /* write-back */ | |
9737 | return s1; | |
9738 | } | |
9739 | } | |
9740 | ||
9741 | /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 | |
9742 | * and CombineS1S2Desc() | |
9743 | * | |
9744 | * @s1: Attributes from stage 1 walk | |
9745 | * @s2: Attributes from stage 2 walk | |
9746 | */ | |
9747 | static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) | |
9748 | { | |
9749 | uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); | |
9750 | uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); | |
9751 | ARMCacheAttrs ret; | |
9752 | ||
9753 | /* Combine shareability attributes (table D4-43) */ | |
9754 | if (s1.shareability == 2 || s2.shareability == 2) { | |
9755 | /* if either are outer-shareable, the result is outer-shareable */ | |
9756 | ret.shareability = 2; | |
9757 | } else if (s1.shareability == 3 || s2.shareability == 3) { | |
9758 | /* if either are inner-shareable, the result is inner-shareable */ | |
9759 | ret.shareability = 3; | |
9760 | } else { | |
9761 | /* both non-shareable */ | |
9762 | ret.shareability = 0; | |
9763 | } | |
9764 | ||
9765 | /* Combine memory type and cacheability attributes */ | |
9766 | if (s1hi == 0 || s2hi == 0) { | |
9767 | /* Device has precedence over normal */ | |
9768 | if (s1lo == 0 || s2lo == 0) { | |
9769 | /* nGnRnE has precedence over anything */ | |
9770 | ret.attrs = 0; | |
9771 | } else if (s1lo == 4 || s2lo == 4) { | |
9772 | /* non-Reordering has precedence over Reordering */ | |
9773 | ret.attrs = 4; /* nGnRE */ | |
9774 | } else if (s1lo == 8 || s2lo == 8) { | |
9775 | /* non-Gathering has precedence over Gathering */ | |
9776 | ret.attrs = 8; /* nGRE */ | |
9777 | } else { | |
9778 | ret.attrs = 0xc; /* GRE */ | |
9779 | } | |
9780 | ||
9781 | /* Any location for which the resultant memory type is any | |
9782 | * type of Device memory is always treated as Outer Shareable. | |
9783 | */ | |
9784 | ret.shareability = 2; | |
9785 | } else { /* Normal memory */ | |
9786 | /* Outer/inner cacheability combine independently */ | |
9787 | ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 | |
9788 | | combine_cacheattr_nibble(s1lo, s2lo); | |
9789 | ||
9790 | if (ret.attrs == 0x44) { | |
9791 | /* Any location for which the resultant memory type is Normal | |
9792 | * Inner Non-cacheable, Outer Non-cacheable is always treated | |
9793 | * as Outer Shareable. | |
9794 | */ | |
9795 | ret.shareability = 2; | |
9796 | } | |
9797 | } | |
9798 | ||
9799 | return ret; | |
9800 | } | |
9801 | ||
9802 | ||
702a9357 PM |
9803 | /* get_phys_addr - get the physical address for this virtual address |
9804 | * | |
9805 | * Find the physical address corresponding to the given virtual address, | |
9806 | * by doing a translation table walk on MMU based systems or using the | |
9807 | * MPU state on MPU based systems. | |
9808 | * | |
b7cc4e82 PC |
9809 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
9810 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
9811 | * information on why the translation aborted, in the format of a |
9812 | * DFSR/IFSR fault register, with the following caveats: | |
9813 | * * we honour the short vs long DFSR format differences. | |
9814 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 9815 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
9816 | * value. |
9817 | * | |
9818 | * @env: CPUARMState | |
9819 | * @address: virtual address to get physical address for | |
9820 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 9821 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 9822 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 9823 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
9824 | * @prot: set to the permissions for the page containing phys_ptr |
9825 | * @page_size: set to the size of the page containing phys_ptr | |
5b2d261d AB |
9826 | * @fi: set to fault info if the translation fails |
9827 | * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes | |
702a9357 | 9828 | */ |
af51f566 | 9829 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
03ae85f8 | 9830 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
af51f566 | 9831 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
bc52bfeb | 9832 | target_ulong *page_size, |
5b2d261d | 9833 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
9ee6e8bb | 9834 | { |
0480f69a | 9835 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
9b539263 EI |
9836 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
9837 | * translations. | |
0480f69a | 9838 | */ |
9b539263 EI |
9839 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
9840 | hwaddr ipa; | |
9841 | int s2_prot; | |
9842 | int ret; | |
5b2d261d | 9843 | ARMCacheAttrs cacheattrs2 = {}; |
9b539263 EI |
9844 | |
9845 | ret = get_phys_addr(env, address, access_type, | |
8bd5c820 | 9846 | stage_1_mmu_idx(mmu_idx), &ipa, attrs, |
bc52bfeb | 9847 | prot, page_size, fi, cacheattrs); |
9b539263 EI |
9848 | |
9849 | /* If S1 fails or S2 is disabled, return early. */ | |
9850 | if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
9851 | *phys_ptr = ipa; | |
9852 | return ret; | |
9853 | } | |
9854 | ||
9855 | /* S1 is done. Now do S2 translation. */ | |
9856 | ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, | |
9857 | phys_ptr, attrs, &s2_prot, | |
da909b2c | 9858 | page_size, fi, |
5b2d261d | 9859 | cacheattrs != NULL ? &cacheattrs2 : NULL); |
9b539263 EI |
9860 | fi->s2addr = ipa; |
9861 | /* Combine the S1 and S2 perms. */ | |
9862 | *prot &= s2_prot; | |
5b2d261d AB |
9863 | |
9864 | /* Combine the S1 and S2 cache attributes, if needed */ | |
9865 | if (!ret && cacheattrs != NULL) { | |
9866 | *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); | |
9867 | } | |
9868 | ||
9b539263 EI |
9869 | return ret; |
9870 | } else { | |
9871 | /* | |
9872 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | |
9873 | */ | |
8bd5c820 | 9874 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
9b539263 | 9875 | } |
0480f69a | 9876 | } |
d3649702 | 9877 | |
8bf5b6a9 PM |
9878 | /* The page table entries may downgrade secure to non-secure, but |
9879 | * cannot upgrade an non-secure translation regime's attributes | |
9880 | * to secure. | |
9881 | */ | |
9882 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 9883 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 9884 | |
0480f69a PM |
9885 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
9886 | * In v7 and earlier it affects all stage 1 translations. | |
9887 | */ | |
9888 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
9889 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
9890 | if (regime_el(env, mmu_idx) == 3) { | |
9891 | address += env->cp15.fcseidr_s; | |
9892 | } else { | |
9893 | address += env->cp15.fcseidr_ns; | |
9894 | } | |
54bf36ed | 9895 | } |
9ee6e8bb | 9896 | |
3279adb9 | 9897 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
c9f9f124 | 9898 | bool ret; |
f6bda88f | 9899 | *page_size = TARGET_PAGE_SIZE; |
3279adb9 | 9900 | |
504e3cc3 PM |
9901 | if (arm_feature(env, ARM_FEATURE_V8)) { |
9902 | /* PMSAv8 */ | |
9903 | ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, | |
3f551b5b | 9904 | phys_ptr, attrs, prot, fi); |
504e3cc3 | 9905 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
3279adb9 PM |
9906 | /* PMSAv7 */ |
9907 | ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
9375ad15 | 9908 | phys_ptr, prot, fi); |
3279adb9 PM |
9909 | } else { |
9910 | /* Pre-v7 MPU */ | |
9911 | ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, | |
53a4e5c5 | 9912 | phys_ptr, prot, fi); |
3279adb9 PM |
9913 | } |
9914 | qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 | |
c9f9f124 | 9915 | " mmu_idx %u -> %s (prot %c%c%c)\n", |
709e4407 PM |
9916 | access_type == MMU_DATA_LOAD ? "reading" : |
9917 | (access_type == MMU_DATA_STORE ? "writing" : "execute"), | |
c9f9f124 MD |
9918 | (uint32_t)address, mmu_idx, |
9919 | ret ? "Miss" : "Hit", | |
9920 | *prot & PAGE_READ ? 'r' : '-', | |
9921 | *prot & PAGE_WRITE ? 'w' : '-', | |
9922 | *prot & PAGE_EXEC ? 'x' : '-'); | |
9923 | ||
9924 | return ret; | |
f6bda88f PC |
9925 | } |
9926 | ||
3279adb9 PM |
9927 | /* Definitely a real MMU, not an MPU */ |
9928 | ||
0480f69a | 9929 | if (regime_translation_disabled(env, mmu_idx)) { |
3279adb9 | 9930 | /* MMU disabled. */ |
9ee6e8bb | 9931 | *phys_ptr = address; |
3ad493fc | 9932 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 9933 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 9934 | return 0; |
0480f69a PM |
9935 | } |
9936 | ||
0480f69a | 9937 | if (regime_using_lpae_format(env, mmu_idx)) { |
bc52bfeb PM |
9938 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, |
9939 | phys_ptr, attrs, prot, page_size, | |
9940 | fi, cacheattrs); | |
0480f69a | 9941 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
bc52bfeb PM |
9942 | return get_phys_addr_v6(env, address, access_type, mmu_idx, |
9943 | phys_ptr, attrs, prot, page_size, fi); | |
9ee6e8bb | 9944 | } else { |
bc52bfeb | 9945 | return get_phys_addr_v5(env, address, access_type, mmu_idx, |
f989983e | 9946 | phys_ptr, prot, page_size, fi); |
9ee6e8bb PB |
9947 | } |
9948 | } | |
9949 | ||
8c6084bf | 9950 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
9951 | * to the TLB. Return false on success, or true on failure. Populate |
9952 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 9953 | */ |
b7cc4e82 | 9954 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
bc52bfeb | 9955 | MMUAccessType access_type, int mmu_idx, |
e14b5a23 | 9956 | ARMMMUFaultInfo *fi) |
b5ff1b31 | 9957 | { |
7510454e AF |
9958 | ARMCPU *cpu = ARM_CPU(cs); |
9959 | CPUARMState *env = &cpu->env; | |
a8170e5e | 9960 | hwaddr phys_addr; |
d4c430a8 | 9961 | target_ulong page_size; |
b5ff1b31 | 9962 | int prot; |
d3649702 | 9963 | int ret; |
8bf5b6a9 | 9964 | MemTxAttrs attrs = {}; |
b5ff1b31 | 9965 | |
8bd5c820 PM |
9966 | ret = get_phys_addr(env, address, access_type, |
9967 | core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, | |
bc52bfeb | 9968 | &attrs, &prot, &page_size, fi, NULL); |
b7cc4e82 | 9969 | if (!ret) { |
b5ff1b31 | 9970 | /* Map a single [sub]page. */ |
dcd82c11 AB |
9971 | phys_addr &= TARGET_PAGE_MASK; |
9972 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
9973 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
9974 | prot, mmu_idx, page_size); | |
d4c430a8 | 9975 | return 0; |
b5ff1b31 FB |
9976 | } |
9977 | ||
8c6084bf | 9978 | return ret; |
b5ff1b31 FB |
9979 | } |
9980 | ||
0faea0c7 PM |
9981 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
9982 | MemTxAttrs *attrs) | |
b5ff1b31 | 9983 | { |
00b941e5 | 9984 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 9985 | CPUARMState *env = &cpu->env; |
a8170e5e | 9986 | hwaddr phys_addr; |
d4c430a8 | 9987 | target_ulong page_size; |
b5ff1b31 | 9988 | int prot; |
b7cc4e82 | 9989 | bool ret; |
e14b5a23 | 9990 | ARMMMUFaultInfo fi = {}; |
8bd5c820 | 9991 | ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); |
b5ff1b31 | 9992 | |
0faea0c7 PM |
9993 | *attrs = (MemTxAttrs) {}; |
9994 | ||
8bd5c820 | 9995 | ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, |
bc52bfeb | 9996 | attrs, &prot, &page_size, &fi, NULL); |
b5ff1b31 | 9997 | |
b7cc4e82 | 9998 | if (ret) { |
b5ff1b31 | 9999 | return -1; |
00b941e5 | 10000 | } |
b5ff1b31 FB |
10001 | return phys_addr; |
10002 | } | |
10003 | ||
0ecb72a5 | 10004 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 10005 | { |
58117c9b MD |
10006 | uint32_t mask; |
10007 | unsigned el = arm_current_el(env); | |
10008 | ||
10009 | /* First handle registers which unprivileged can read */ | |
10010 | ||
10011 | switch (reg) { | |
10012 | case 0 ... 7: /* xPSR sub-fields */ | |
10013 | mask = 0; | |
10014 | if ((reg & 1) && el) { | |
987ab45e | 10015 | mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ |
58117c9b MD |
10016 | } |
10017 | if (!(reg & 4)) { | |
987ab45e | 10018 | mask |= XPSR_NZCV | XPSR_Q; /* APSR */ |
58117c9b MD |
10019 | } |
10020 | /* EPSR reads as zero */ | |
10021 | return xpsr_read(env) & mask; | |
10022 | break; | |
10023 | case 20: /* CONTROL */ | |
8bfc26ea | 10024 | return env->v7m.control[env->v7m.secure]; |
50f11062 PM |
10025 | case 0x94: /* CONTROL_NS */ |
10026 | /* We have to handle this here because unprivileged Secure code | |
10027 | * can read the NS CONTROL register. | |
10028 | */ | |
10029 | if (!env->v7m.secure) { | |
10030 | return 0; | |
10031 | } | |
10032 | return env->v7m.control[M_REG_NS]; | |
58117c9b MD |
10033 | } |
10034 | ||
10035 | if (el == 0) { | |
10036 | return 0; /* unprivileged reads others as zero */ | |
10037 | } | |
a47dddd7 | 10038 | |
50f11062 PM |
10039 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
10040 | switch (reg) { | |
10041 | case 0x88: /* MSP_NS */ | |
10042 | if (!env->v7m.secure) { | |
10043 | return 0; | |
10044 | } | |
10045 | return env->v7m.other_ss_msp; | |
10046 | case 0x89: /* PSP_NS */ | |
10047 | if (!env->v7m.secure) { | |
10048 | return 0; | |
10049 | } | |
10050 | return env->v7m.other_ss_psp; | |
10051 | case 0x90: /* PRIMASK_NS */ | |
10052 | if (!env->v7m.secure) { | |
10053 | return 0; | |
10054 | } | |
10055 | return env->v7m.primask[M_REG_NS]; | |
10056 | case 0x91: /* BASEPRI_NS */ | |
10057 | if (!env->v7m.secure) { | |
10058 | return 0; | |
10059 | } | |
10060 | return env->v7m.basepri[M_REG_NS]; | |
10061 | case 0x93: /* FAULTMASK_NS */ | |
10062 | if (!env->v7m.secure) { | |
10063 | return 0; | |
10064 | } | |
10065 | return env->v7m.faultmask[M_REG_NS]; | |
10066 | case 0x98: /* SP_NS */ | |
10067 | { | |
10068 | /* This gives the non-secure SP selected based on whether we're | |
10069 | * currently in handler mode or not, using the NS CONTROL.SPSEL. | |
10070 | */ | |
10071 | bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; | |
10072 | ||
10073 | if (!env->v7m.secure) { | |
10074 | return 0; | |
10075 | } | |
10076 | if (!arm_v7m_is_handler_mode(env) && spsel) { | |
10077 | return env->v7m.other_ss_psp; | |
10078 | } else { | |
10079 | return env->v7m.other_ss_msp; | |
10080 | } | |
10081 | } | |
10082 | default: | |
10083 | break; | |
10084 | } | |
10085 | } | |
10086 | ||
9ee6e8bb | 10087 | switch (reg) { |
9ee6e8bb | 10088 | case 8: /* MSP */ |
1169d3aa | 10089 | return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; |
9ee6e8bb | 10090 | case 9: /* PSP */ |
1169d3aa | 10091 | return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; |
9ee6e8bb | 10092 | case 16: /* PRIMASK */ |
6d804834 | 10093 | return env->v7m.primask[env->v7m.secure]; |
82845826 SH |
10094 | case 17: /* BASEPRI */ |
10095 | case 18: /* BASEPRI_MAX */ | |
acf94941 | 10096 | return env->v7m.basepri[env->v7m.secure]; |
82845826 | 10097 | case 19: /* FAULTMASK */ |
42a6686b | 10098 | return env->v7m.faultmask[env->v7m.secure]; |
9ee6e8bb | 10099 | default: |
58117c9b MD |
10100 | qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" |
10101 | " register %d\n", reg); | |
9ee6e8bb PB |
10102 | return 0; |
10103 | } | |
10104 | } | |
10105 | ||
b28b3377 PM |
10106 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) |
10107 | { | |
10108 | /* We're passed bits [11..0] of the instruction; extract | |
10109 | * SYSm and the mask bits. | |
10110 | * Invalid combinations of SYSm and mask are UNPREDICTABLE; | |
10111 | * we choose to treat them as if the mask bits were valid. | |
10112 | * NB that the pseudocode 'mask' variable is bits [11..10], | |
10113 | * whereas ours is [11..8]. | |
10114 | */ | |
10115 | uint32_t mask = extract32(maskreg, 8, 4); | |
10116 | uint32_t reg = extract32(maskreg, 0, 8); | |
10117 | ||
58117c9b MD |
10118 | if (arm_current_el(env) == 0 && reg > 7) { |
10119 | /* only xPSR sub-fields may be written by unprivileged */ | |
10120 | return; | |
10121 | } | |
a47dddd7 | 10122 | |
50f11062 PM |
10123 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
10124 | switch (reg) { | |
10125 | case 0x88: /* MSP_NS */ | |
10126 | if (!env->v7m.secure) { | |
10127 | return; | |
10128 | } | |
10129 | env->v7m.other_ss_msp = val; | |
10130 | return; | |
10131 | case 0x89: /* PSP_NS */ | |
10132 | if (!env->v7m.secure) { | |
10133 | return; | |
10134 | } | |
10135 | env->v7m.other_ss_psp = val; | |
10136 | return; | |
10137 | case 0x90: /* PRIMASK_NS */ | |
10138 | if (!env->v7m.secure) { | |
10139 | return; | |
10140 | } | |
10141 | env->v7m.primask[M_REG_NS] = val & 1; | |
10142 | return; | |
10143 | case 0x91: /* BASEPRI_NS */ | |
10144 | if (!env->v7m.secure) { | |
10145 | return; | |
10146 | } | |
10147 | env->v7m.basepri[M_REG_NS] = val & 0xff; | |
10148 | return; | |
10149 | case 0x93: /* FAULTMASK_NS */ | |
10150 | if (!env->v7m.secure) { | |
10151 | return; | |
10152 | } | |
10153 | env->v7m.faultmask[M_REG_NS] = val & 1; | |
10154 | return; | |
10155 | case 0x98: /* SP_NS */ | |
10156 | { | |
10157 | /* This gives the non-secure SP selected based on whether we're | |
10158 | * currently in handler mode or not, using the NS CONTROL.SPSEL. | |
10159 | */ | |
10160 | bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; | |
10161 | ||
10162 | if (!env->v7m.secure) { | |
10163 | return; | |
10164 | } | |
10165 | if (!arm_v7m_is_handler_mode(env) && spsel) { | |
10166 | env->v7m.other_ss_psp = val; | |
10167 | } else { | |
10168 | env->v7m.other_ss_msp = val; | |
10169 | } | |
10170 | return; | |
10171 | } | |
10172 | default: | |
10173 | break; | |
10174 | } | |
10175 | } | |
10176 | ||
9ee6e8bb | 10177 | switch (reg) { |
58117c9b MD |
10178 | case 0 ... 7: /* xPSR sub-fields */ |
10179 | /* only APSR is actually writable */ | |
b28b3377 PM |
10180 | if (!(reg & 4)) { |
10181 | uint32_t apsrmask = 0; | |
10182 | ||
10183 | if (mask & 8) { | |
987ab45e | 10184 | apsrmask |= XPSR_NZCV | XPSR_Q; |
b28b3377 PM |
10185 | } |
10186 | if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { | |
987ab45e | 10187 | apsrmask |= XPSR_GE; |
b28b3377 PM |
10188 | } |
10189 | xpsr_write(env, val, apsrmask); | |
58117c9b | 10190 | } |
9ee6e8bb PB |
10191 | break; |
10192 | case 8: /* MSP */ | |
1169d3aa | 10193 | if (v7m_using_psp(env)) { |
9ee6e8bb | 10194 | env->v7m.other_sp = val; |
abc24d86 | 10195 | } else { |
9ee6e8bb | 10196 | env->regs[13] = val; |
abc24d86 | 10197 | } |
9ee6e8bb PB |
10198 | break; |
10199 | case 9: /* PSP */ | |
1169d3aa | 10200 | if (v7m_using_psp(env)) { |
9ee6e8bb | 10201 | env->regs[13] = val; |
abc24d86 | 10202 | } else { |
9ee6e8bb | 10203 | env->v7m.other_sp = val; |
abc24d86 | 10204 | } |
9ee6e8bb PB |
10205 | break; |
10206 | case 16: /* PRIMASK */ | |
6d804834 | 10207 | env->v7m.primask[env->v7m.secure] = val & 1; |
9ee6e8bb | 10208 | break; |
82845826 | 10209 | case 17: /* BASEPRI */ |
acf94941 | 10210 | env->v7m.basepri[env->v7m.secure] = val & 0xff; |
9ee6e8bb | 10211 | break; |
82845826 | 10212 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb | 10213 | val &= 0xff; |
acf94941 PM |
10214 | if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] |
10215 | || env->v7m.basepri[env->v7m.secure] == 0)) { | |
10216 | env->v7m.basepri[env->v7m.secure] = val; | |
10217 | } | |
9ee6e8bb | 10218 | break; |
82845826 | 10219 | case 19: /* FAULTMASK */ |
42a6686b | 10220 | env->v7m.faultmask[env->v7m.secure] = val & 1; |
82845826 | 10221 | break; |
9ee6e8bb | 10222 | case 20: /* CONTROL */ |
792dac30 PM |
10223 | /* Writing to the SPSEL bit only has an effect if we are in |
10224 | * thread mode; other bits can be updated by any privileged code. | |
de2db7ec | 10225 | * write_v7m_control_spsel() deals with updating the SPSEL bit in |
792dac30 | 10226 | * env->v7m.control, so we only need update the others. |
83d7f86d PM |
10227 | * For v7M, we must just ignore explicit writes to SPSEL in handler |
10228 | * mode; for v8M the write is permitted but will have no effect. | |
792dac30 | 10229 | */ |
83d7f86d PM |
10230 | if (arm_feature(env, ARM_FEATURE_V8) || |
10231 | !arm_v7m_is_handler_mode(env)) { | |
de2db7ec | 10232 | write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); |
792dac30 | 10233 | } |
8bfc26ea PM |
10234 | env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; |
10235 | env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; | |
9ee6e8bb PB |
10236 | break; |
10237 | default: | |
58117c9b MD |
10238 | qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" |
10239 | " register %d\n", reg); | |
9ee6e8bb PB |
10240 | return; |
10241 | } | |
10242 | } | |
10243 | ||
5158de24 PM |
10244 | uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) |
10245 | { | |
10246 | /* Implement the TT instruction. op is bits [7:6] of the insn. */ | |
10247 | bool forceunpriv = op & 1; | |
10248 | bool alt = op & 2; | |
10249 | V8M_SAttributes sattrs = {}; | |
10250 | uint32_t tt_resp; | |
10251 | bool r, rw, nsr, nsrw, mrvalid; | |
10252 | int prot; | |
3f551b5b | 10253 | ARMMMUFaultInfo fi = {}; |
5158de24 PM |
10254 | MemTxAttrs attrs = {}; |
10255 | hwaddr phys_addr; | |
5158de24 PM |
10256 | ARMMMUIdx mmu_idx; |
10257 | uint32_t mregion; | |
10258 | bool targetpriv; | |
10259 | bool targetsec = env->v7m.secure; | |
10260 | ||
10261 | /* Work out what the security state and privilege level we're | |
10262 | * interested in is... | |
10263 | */ | |
10264 | if (alt) { | |
10265 | targetsec = !targetsec; | |
10266 | } | |
10267 | ||
10268 | if (forceunpriv) { | |
10269 | targetpriv = false; | |
10270 | } else { | |
10271 | targetpriv = arm_v7m_is_handler_mode(env) || | |
10272 | !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); | |
10273 | } | |
10274 | ||
10275 | /* ...and then figure out which MMU index this is */ | |
10276 | mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); | |
10277 | ||
10278 | /* We know that the MPU and SAU don't care about the access type | |
10279 | * for our purposes beyond that we don't want to claim to be | |
10280 | * an insn fetch, so we arbitrarily call this a read. | |
10281 | */ | |
10282 | ||
10283 | /* MPU region info only available for privileged or if | |
10284 | * inspecting the other MPU state. | |
10285 | */ | |
10286 | if (arm_current_el(env) != 0 || alt) { | |
10287 | /* We can ignore the return value as prot is always set */ | |
10288 | pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, | |
3f551b5b | 10289 | &phys_addr, &attrs, &prot, &fi, &mregion); |
5158de24 PM |
10290 | if (mregion == -1) { |
10291 | mrvalid = false; | |
10292 | mregion = 0; | |
10293 | } else { | |
10294 | mrvalid = true; | |
10295 | } | |
10296 | r = prot & PAGE_READ; | |
10297 | rw = prot & PAGE_WRITE; | |
10298 | } else { | |
10299 | r = false; | |
10300 | rw = false; | |
10301 | mrvalid = false; | |
10302 | mregion = 0; | |
10303 | } | |
10304 | ||
10305 | if (env->v7m.secure) { | |
10306 | v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); | |
10307 | nsr = sattrs.ns && r; | |
10308 | nsrw = sattrs.ns && rw; | |
10309 | } else { | |
10310 | sattrs.ns = true; | |
10311 | nsr = false; | |
10312 | nsrw = false; | |
10313 | } | |
10314 | ||
10315 | tt_resp = (sattrs.iregion << 24) | | |
10316 | (sattrs.irvalid << 23) | | |
10317 | ((!sattrs.ns) << 22) | | |
10318 | (nsrw << 21) | | |
10319 | (nsr << 20) | | |
10320 | (rw << 19) | | |
10321 | (r << 18) | | |
10322 | (sattrs.srvalid << 17) | | |
10323 | (mrvalid << 16) | | |
10324 | (sattrs.sregion << 8) | | |
10325 | mregion; | |
10326 | ||
10327 | return tt_resp; | |
10328 | } | |
10329 | ||
b5ff1b31 | 10330 | #endif |
6ddbc6e4 | 10331 | |
aca3f40b PM |
10332 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
10333 | { | |
10334 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
10335 | * Note that we do not implement the (architecturally mandated) | |
10336 | * alignment fault for attempts to use this on Device memory | |
10337 | * (which matches the usual QEMU behaviour of not implementing either | |
10338 | * alignment faults or any memory attribute handling). | |
10339 | */ | |
10340 | ||
10341 | ARMCPU *cpu = arm_env_get_cpu(env); | |
10342 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
10343 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
10344 | ||
10345 | #ifndef CONFIG_USER_ONLY | |
10346 | { | |
10347 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
10348 | * the block size so we might have to do more than one TLB lookup. | |
10349 | * We know that in fact for any v8 CPU the page size is at least 4K | |
10350 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
10351 | * 1K as an artefact of legacy v5 subpage support being present in the | |
10352 | * same QEMU executable. | |
10353 | */ | |
10354 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
10355 | void *hostaddr[maxidx]; | |
10356 | int try, i; | |
97ed5ccd | 10357 | unsigned mmu_idx = cpu_mmu_index(env, false); |
3972ef6f | 10358 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
aca3f40b PM |
10359 | |
10360 | for (try = 0; try < 2; try++) { | |
10361 | ||
10362 | for (i = 0; i < maxidx; i++) { | |
10363 | hostaddr[i] = tlb_vaddr_to_host(env, | |
10364 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 10365 | 1, mmu_idx); |
aca3f40b PM |
10366 | if (!hostaddr[i]) { |
10367 | break; | |
10368 | } | |
10369 | } | |
10370 | if (i == maxidx) { | |
10371 | /* If it's all in the TLB it's fair game for just writing to; | |
10372 | * we know we don't need to update dirty status, etc. | |
10373 | */ | |
10374 | for (i = 0; i < maxidx - 1; i++) { | |
10375 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
10376 | } | |
10377 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
10378 | return; | |
10379 | } | |
10380 | /* OK, try a store and see if we can populate the tlb. This | |
10381 | * might cause an exception if the memory isn't writable, | |
10382 | * in which case we will longjmp out of here. We must for | |
10383 | * this purpose use the actual register value passed to us | |
10384 | * so that we get the fault address right. | |
10385 | */ | |
01ecaf43 | 10386 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); |
aca3f40b PM |
10387 | /* Now we can populate the other TLB entries, if any */ |
10388 | for (i = 0; i < maxidx; i++) { | |
10389 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
10390 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
01ecaf43 | 10391 | helper_ret_stb_mmu(env, va, 0, oi, GETPC()); |
aca3f40b PM |
10392 | } |
10393 | } | |
10394 | } | |
10395 | ||
10396 | /* Slow path (probably attempt to do this to an I/O device or | |
10397 | * similar, or clearing of a block of code we have translations | |
10398 | * cached for). Just do a series of byte writes as the architecture | |
10399 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
10400 | * memset(), unmap() sequence here because: | |
10401 | * + we'd need to account for the blocksize being larger than a page | |
10402 | * + the direct-RAM access case is almost always going to be dealt | |
10403 | * with in the fastpath code above, so there's no speed benefit | |
10404 | * + we would have to deal with the map returning NULL because the | |
10405 | * bounce buffer was in use | |
10406 | */ | |
10407 | for (i = 0; i < blocklen; i++) { | |
01ecaf43 | 10408 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); |
aca3f40b PM |
10409 | } |
10410 | } | |
10411 | #else | |
10412 | memset(g2h(vaddr), 0, blocklen); | |
10413 | #endif | |
10414 | } | |
10415 | ||
6ddbc6e4 PB |
10416 | /* Note that signed overflow is undefined in C. The following routines are |
10417 | careful to use unsigned types where modulo arithmetic is required. | |
10418 | Failure to do so _will_ break on newer gcc. */ | |
10419 | ||
10420 | /* Signed saturating arithmetic. */ | |
10421 | ||
1654b2d6 | 10422 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
10423 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
10424 | { | |
10425 | uint16_t res; | |
10426 | ||
10427 | res = a + b; | |
10428 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
10429 | if (a & 0x8000) | |
10430 | res = 0x8000; | |
10431 | else | |
10432 | res = 0x7fff; | |
10433 | } | |
10434 | return res; | |
10435 | } | |
10436 | ||
1654b2d6 | 10437 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
10438 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
10439 | { | |
10440 | uint8_t res; | |
10441 | ||
10442 | res = a + b; | |
10443 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
10444 | if (a & 0x80) | |
10445 | res = 0x80; | |
10446 | else | |
10447 | res = 0x7f; | |
10448 | } | |
10449 | return res; | |
10450 | } | |
10451 | ||
1654b2d6 | 10452 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
10453 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
10454 | { | |
10455 | uint16_t res; | |
10456 | ||
10457 | res = a - b; | |
10458 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
10459 | if (a & 0x8000) | |
10460 | res = 0x8000; | |
10461 | else | |
10462 | res = 0x7fff; | |
10463 | } | |
10464 | return res; | |
10465 | } | |
10466 | ||
1654b2d6 | 10467 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
10468 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
10469 | { | |
10470 | uint8_t res; | |
10471 | ||
10472 | res = a - b; | |
10473 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
10474 | if (a & 0x80) | |
10475 | res = 0x80; | |
10476 | else | |
10477 | res = 0x7f; | |
10478 | } | |
10479 | return res; | |
10480 | } | |
10481 | ||
10482 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
10483 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
10484 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
10485 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
10486 | #define PFX q | |
10487 | ||
10488 | #include "op_addsub.h" | |
10489 | ||
10490 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 10491 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
10492 | { |
10493 | uint16_t res; | |
10494 | res = a + b; | |
10495 | if (res < a) | |
10496 | res = 0xffff; | |
10497 | return res; | |
10498 | } | |
10499 | ||
460a09c1 | 10500 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 10501 | { |
4c4fd3f8 | 10502 | if (a > b) |
6ddbc6e4 PB |
10503 | return a - b; |
10504 | else | |
10505 | return 0; | |
10506 | } | |
10507 | ||
10508 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
10509 | { | |
10510 | uint8_t res; | |
10511 | res = a + b; | |
10512 | if (res < a) | |
10513 | res = 0xff; | |
10514 | return res; | |
10515 | } | |
10516 | ||
10517 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
10518 | { | |
4c4fd3f8 | 10519 | if (a > b) |
6ddbc6e4 PB |
10520 | return a - b; |
10521 | else | |
10522 | return 0; | |
10523 | } | |
10524 | ||
10525 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
10526 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
10527 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
10528 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
10529 | #define PFX uq | |
10530 | ||
10531 | #include "op_addsub.h" | |
10532 | ||
10533 | /* Signed modulo arithmetic. */ | |
10534 | #define SARITH16(a, b, n, op) do { \ | |
10535 | int32_t sum; \ | |
db6e2e65 | 10536 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
10537 | RESULT(sum, n, 16); \ |
10538 | if (sum >= 0) \ | |
10539 | ge |= 3 << (n * 2); \ | |
10540 | } while(0) | |
10541 | ||
10542 | #define SARITH8(a, b, n, op) do { \ | |
10543 | int32_t sum; \ | |
db6e2e65 | 10544 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
10545 | RESULT(sum, n, 8); \ |
10546 | if (sum >= 0) \ | |
10547 | ge |= 1 << n; \ | |
10548 | } while(0) | |
10549 | ||
10550 | ||
10551 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
10552 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
10553 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
10554 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
10555 | #define PFX s | |
10556 | #define ARITH_GE | |
10557 | ||
10558 | #include "op_addsub.h" | |
10559 | ||
10560 | /* Unsigned modulo arithmetic. */ | |
10561 | #define ADD16(a, b, n) do { \ | |
10562 | uint32_t sum; \ | |
10563 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
10564 | RESULT(sum, n, 16); \ | |
a87aa10b | 10565 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
10566 | ge |= 3 << (n * 2); \ |
10567 | } while(0) | |
10568 | ||
10569 | #define ADD8(a, b, n) do { \ | |
10570 | uint32_t sum; \ | |
10571 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
10572 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
10573 | if ((sum >> 8) == 1) \ |
10574 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
10575 | } while(0) |
10576 | ||
10577 | #define SUB16(a, b, n) do { \ | |
10578 | uint32_t sum; \ | |
10579 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
10580 | RESULT(sum, n, 16); \ | |
10581 | if ((sum >> 16) == 0) \ | |
10582 | ge |= 3 << (n * 2); \ | |
10583 | } while(0) | |
10584 | ||
10585 | #define SUB8(a, b, n) do { \ | |
10586 | uint32_t sum; \ | |
10587 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
10588 | RESULT(sum, n, 8); \ | |
10589 | if ((sum >> 8) == 0) \ | |
a87aa10b | 10590 | ge |= 1 << n; \ |
6ddbc6e4 PB |
10591 | } while(0) |
10592 | ||
10593 | #define PFX u | |
10594 | #define ARITH_GE | |
10595 | ||
10596 | #include "op_addsub.h" | |
10597 | ||
10598 | /* Halved signed arithmetic. */ | |
10599 | #define ADD16(a, b, n) \ | |
10600 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
10601 | #define SUB16(a, b, n) \ | |
10602 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
10603 | #define ADD8(a, b, n) \ | |
10604 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
10605 | #define SUB8(a, b, n) \ | |
10606 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
10607 | #define PFX sh | |
10608 | ||
10609 | #include "op_addsub.h" | |
10610 | ||
10611 | /* Halved unsigned arithmetic. */ | |
10612 | #define ADD16(a, b, n) \ | |
10613 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
10614 | #define SUB16(a, b, n) \ | |
10615 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
10616 | #define ADD8(a, b, n) \ | |
10617 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
10618 | #define SUB8(a, b, n) \ | |
10619 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
10620 | #define PFX uh | |
10621 | ||
10622 | #include "op_addsub.h" | |
10623 | ||
10624 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
10625 | { | |
10626 | if (a > b) | |
10627 | return a - b; | |
10628 | else | |
10629 | return b - a; | |
10630 | } | |
10631 | ||
10632 | /* Unsigned sum of absolute byte differences. */ | |
10633 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
10634 | { | |
10635 | uint32_t sum; | |
10636 | sum = do_usad(a, b); | |
10637 | sum += do_usad(a >> 8, b >> 8); | |
10638 | sum += do_usad(a >> 16, b >>16); | |
10639 | sum += do_usad(a >> 24, b >> 24); | |
10640 | return sum; | |
10641 | } | |
10642 | ||
10643 | /* For ARMv6 SEL instruction. */ | |
10644 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
10645 | { | |
10646 | uint32_t mask; | |
10647 | ||
10648 | mask = 0; | |
10649 | if (flags & 1) | |
10650 | mask |= 0xff; | |
10651 | if (flags & 2) | |
10652 | mask |= 0xff00; | |
10653 | if (flags & 4) | |
10654 | mask |= 0xff0000; | |
10655 | if (flags & 8) | |
10656 | mask |= 0xff000000; | |
10657 | return (a & mask) | (b & ~mask); | |
10658 | } | |
10659 | ||
b90372ad PM |
10660 | /* VFP support. We follow the convention used for VFP instructions: |
10661 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
10662 | "d" suffix. */ |
10663 | ||
10664 | /* Convert host exception flags to vfp form. */ | |
10665 | static inline int vfp_exceptbits_from_host(int host_bits) | |
10666 | { | |
10667 | int target_bits = 0; | |
10668 | ||
10669 | if (host_bits & float_flag_invalid) | |
10670 | target_bits |= 1; | |
10671 | if (host_bits & float_flag_divbyzero) | |
10672 | target_bits |= 2; | |
10673 | if (host_bits & float_flag_overflow) | |
10674 | target_bits |= 4; | |
36802b6b | 10675 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
10676 | target_bits |= 8; |
10677 | if (host_bits & float_flag_inexact) | |
10678 | target_bits |= 0x10; | |
cecd8504 PM |
10679 | if (host_bits & float_flag_input_denormal) |
10680 | target_bits |= 0x80; | |
4373f3ce PB |
10681 | return target_bits; |
10682 | } | |
10683 | ||
0ecb72a5 | 10684 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
10685 | { |
10686 | int i; | |
10687 | uint32_t fpscr; | |
10688 | ||
10689 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
10690 | | (env->vfp.vec_len << 16) | |
10691 | | (env->vfp.vec_stride << 20); | |
10692 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 10693 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
10694 | fpscr |= vfp_exceptbits_from_host(i); |
10695 | return fpscr; | |
10696 | } | |
10697 | ||
0ecb72a5 | 10698 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
10699 | { |
10700 | return HELPER(vfp_get_fpscr)(env); | |
10701 | } | |
10702 | ||
4373f3ce PB |
10703 | /* Convert vfp exception flags to target form. */ |
10704 | static inline int vfp_exceptbits_to_host(int target_bits) | |
10705 | { | |
10706 | int host_bits = 0; | |
10707 | ||
10708 | if (target_bits & 1) | |
10709 | host_bits |= float_flag_invalid; | |
10710 | if (target_bits & 2) | |
10711 | host_bits |= float_flag_divbyzero; | |
10712 | if (target_bits & 4) | |
10713 | host_bits |= float_flag_overflow; | |
10714 | if (target_bits & 8) | |
10715 | host_bits |= float_flag_underflow; | |
10716 | if (target_bits & 0x10) | |
10717 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
10718 | if (target_bits & 0x80) |
10719 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
10720 | return host_bits; |
10721 | } | |
10722 | ||
0ecb72a5 | 10723 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
10724 | { |
10725 | int i; | |
10726 | uint32_t changed; | |
10727 | ||
10728 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
10729 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
10730 | env->vfp.vec_len = (val >> 16) & 7; | |
10731 | env->vfp.vec_stride = (val >> 20) & 3; | |
10732 | ||
10733 | changed ^= val; | |
10734 | if (changed & (3 << 22)) { | |
10735 | i = (val >> 22) & 3; | |
10736 | switch (i) { | |
4d3da0f3 | 10737 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
10738 | i = float_round_nearest_even; |
10739 | break; | |
4d3da0f3 | 10740 | case FPROUNDING_POSINF: |
4373f3ce PB |
10741 | i = float_round_up; |
10742 | break; | |
4d3da0f3 | 10743 | case FPROUNDING_NEGINF: |
4373f3ce PB |
10744 | i = float_round_down; |
10745 | break; | |
4d3da0f3 | 10746 | case FPROUNDING_ZERO: |
4373f3ce PB |
10747 | i = float_round_to_zero; |
10748 | break; | |
10749 | } | |
10750 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
10751 | } | |
cecd8504 | 10752 | if (changed & (1 << 24)) { |
fe76d976 | 10753 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
10754 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
10755 | } | |
5c7908ed PB |
10756 | if (changed & (1 << 25)) |
10757 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 10758 | |
b12c390b | 10759 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 10760 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 10761 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
10762 | } |
10763 | ||
0ecb72a5 | 10764 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
10765 | { |
10766 | HELPER(vfp_set_fpscr)(env, val); | |
10767 | } | |
10768 | ||
4373f3ce PB |
10769 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
10770 | ||
10771 | #define VFP_BINOP(name) \ | |
ae1857ec | 10772 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 10773 | { \ |
ae1857ec PM |
10774 | float_status *fpst = fpstp; \ |
10775 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 10776 | } \ |
ae1857ec | 10777 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 10778 | { \ |
ae1857ec PM |
10779 | float_status *fpst = fpstp; \ |
10780 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
10781 | } |
10782 | VFP_BINOP(add) | |
10783 | VFP_BINOP(sub) | |
10784 | VFP_BINOP(mul) | |
10785 | VFP_BINOP(div) | |
f71a2ae5 PM |
10786 | VFP_BINOP(min) |
10787 | VFP_BINOP(max) | |
10788 | VFP_BINOP(minnum) | |
10789 | VFP_BINOP(maxnum) | |
4373f3ce PB |
10790 | #undef VFP_BINOP |
10791 | ||
10792 | float32 VFP_HELPER(neg, s)(float32 a) | |
10793 | { | |
10794 | return float32_chs(a); | |
10795 | } | |
10796 | ||
10797 | float64 VFP_HELPER(neg, d)(float64 a) | |
10798 | { | |
66230e0d | 10799 | return float64_chs(a); |
4373f3ce PB |
10800 | } |
10801 | ||
10802 | float32 VFP_HELPER(abs, s)(float32 a) | |
10803 | { | |
10804 | return float32_abs(a); | |
10805 | } | |
10806 | ||
10807 | float64 VFP_HELPER(abs, d)(float64 a) | |
10808 | { | |
66230e0d | 10809 | return float64_abs(a); |
4373f3ce PB |
10810 | } |
10811 | ||
0ecb72a5 | 10812 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
10813 | { |
10814 | return float32_sqrt(a, &env->vfp.fp_status); | |
10815 | } | |
10816 | ||
0ecb72a5 | 10817 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
10818 | { |
10819 | return float64_sqrt(a, &env->vfp.fp_status); | |
10820 | } | |
10821 | ||
10822 | /* XXX: check quiet/signaling case */ | |
10823 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 10824 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
10825 | { \ |
10826 | uint32_t flags; \ | |
10827 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
10828 | case 0: flags = 0x6; break; \ | |
10829 | case -1: flags = 0x8; break; \ | |
10830 | case 1: flags = 0x2; break; \ | |
10831 | default: case 2: flags = 0x3; break; \ | |
10832 | } \ | |
10833 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
10834 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
10835 | } \ | |
0ecb72a5 | 10836 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
10837 | { \ |
10838 | uint32_t flags; \ | |
10839 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
10840 | case 0: flags = 0x6; break; \ | |
10841 | case -1: flags = 0x8; break; \ | |
10842 | case 1: flags = 0x2; break; \ | |
10843 | default: case 2: flags = 0x3; break; \ | |
10844 | } \ | |
10845 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
10846 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
10847 | } | |
10848 | DO_VFP_cmp(s, float32) | |
10849 | DO_VFP_cmp(d, float64) | |
10850 | #undef DO_VFP_cmp | |
10851 | ||
5500b06c | 10852 | /* Integer to float and float to integer conversions */ |
4373f3ce | 10853 | |
5500b06c PM |
10854 | #define CONV_ITOF(name, fsz, sign) \ |
10855 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
10856 | { \ | |
10857 | float_status *fpst = fpstp; \ | |
85836979 | 10858 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
10859 | } |
10860 | ||
5500b06c PM |
10861 | #define CONV_FTOI(name, fsz, sign, round) \ |
10862 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
10863 | { \ | |
10864 | float_status *fpst = fpstp; \ | |
10865 | if (float##fsz##_is_any_nan(x)) { \ | |
10866 | float_raise(float_flag_invalid, fpst); \ | |
10867 | return 0; \ | |
10868 | } \ | |
10869 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
10870 | } |
10871 | ||
5500b06c PM |
10872 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
10873 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
10874 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
10875 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 10876 | |
5500b06c PM |
10877 | FLOAT_CONVS(si, s, 32, ) |
10878 | FLOAT_CONVS(si, d, 64, ) | |
10879 | FLOAT_CONVS(ui, s, 32, u) | |
10880 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 10881 | |
5500b06c PM |
10882 | #undef CONV_ITOF |
10883 | #undef CONV_FTOI | |
10884 | #undef FLOAT_CONVS | |
4373f3ce PB |
10885 | |
10886 | /* floating point conversion */ | |
0ecb72a5 | 10887 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 10888 | { |
2d627737 PM |
10889 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
10890 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
10891 | * a quiet NaN by forcing the most significant frac bit to 1. | |
10892 | */ | |
af39bc8c | 10893 | return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
4373f3ce PB |
10894 | } |
10895 | ||
0ecb72a5 | 10896 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 10897 | { |
2d627737 PM |
10898 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
10899 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
10900 | * a quiet NaN by forcing the most significant frac bit to 1. | |
10901 | */ | |
af39bc8c | 10902 | return float32_maybe_silence_nan(r, &env->vfp.fp_status); |
4373f3ce PB |
10903 | } |
10904 | ||
10905 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 10906 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
10907 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
10908 | void *fpstp) \ | |
4373f3ce | 10909 | { \ |
5500b06c | 10910 | float_status *fpst = fpstp; \ |
622465e1 | 10911 | float##fsz tmp; \ |
8ed697e8 | 10912 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 10913 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
10914 | } |
10915 | ||
abe66f70 PM |
10916 | /* Notice that we want only input-denormal exception flags from the |
10917 | * scalbn operation: the other possible flags (overflow+inexact if | |
10918 | * we overflow to infinity, output-denormal) aren't correct for the | |
10919 | * complete scale-and-convert operation. | |
10920 | */ | |
16d5b3ca WN |
10921 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
10922 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
10923 | uint32_t shift, \ | |
10924 | void *fpstp) \ | |
4373f3ce | 10925 | { \ |
5500b06c | 10926 | float_status *fpst = fpstp; \ |
abe66f70 | 10927 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
10928 | float##fsz tmp; \ |
10929 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 10930 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 10931 | return 0; \ |
09d9487f | 10932 | } \ |
5500b06c | 10933 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
10934 | old_exc_flags |= get_float_exception_flags(fpst) \ |
10935 | & float_flag_input_denormal; \ | |
10936 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 10937 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
10938 | } |
10939 | ||
16d5b3ca WN |
10940 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
10941 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
10942 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
10943 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
10944 | ||
10945 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
10946 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
10947 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 10948 | |
8ed697e8 WN |
10949 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
10950 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 10951 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
10952 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
10953 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 10954 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
10955 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
10956 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 10957 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
10958 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
10959 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 10960 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 10961 | #undef VFP_CONV_FIX |
16d5b3ca WN |
10962 | #undef VFP_CONV_FIX_FLOAT |
10963 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 10964 | |
52a1f6a3 AG |
10965 | /* Set the current fp rounding mode and return the old one. |
10966 | * The argument is a softfloat float_round_ value. | |
10967 | */ | |
10968 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
10969 | { | |
10970 | float_status *fp_status = &env->vfp.fp_status; | |
10971 | ||
10972 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
10973 | set_float_rounding_mode(rmode, fp_status); | |
10974 | ||
10975 | return prev_rmode; | |
10976 | } | |
10977 | ||
43630e58 WN |
10978 | /* Set the current fp rounding mode in the standard fp status and return |
10979 | * the old one. This is for NEON instructions that need to change the | |
10980 | * rounding mode but wish to use the standard FPSCR values for everything | |
10981 | * else. Always set the rounding mode back to the correct value after | |
10982 | * modifying it. | |
10983 | * The argument is a softfloat float_round_ value. | |
10984 | */ | |
10985 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
10986 | { | |
10987 | float_status *fp_status = &env->vfp.standard_fp_status; | |
10988 | ||
10989 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
10990 | set_float_rounding_mode(rmode, fp_status); | |
10991 | ||
10992 | return prev_rmode; | |
10993 | } | |
10994 | ||
60011498 | 10995 | /* Half precision conversions. */ |
0ecb72a5 | 10996 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 10997 | { |
60011498 | 10998 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
10999 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
11000 | if (ieee) { | |
af39bc8c | 11001 | return float32_maybe_silence_nan(r, s); |
fb91678d PM |
11002 | } |
11003 | return r; | |
60011498 PB |
11004 | } |
11005 | ||
0ecb72a5 | 11006 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 11007 | { |
60011498 | 11008 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
11009 | float16 r = float32_to_float16(a, ieee, s); |
11010 | if (ieee) { | |
af39bc8c | 11011 | r = float16_maybe_silence_nan(r, s); |
fb91678d PM |
11012 | } |
11013 | return float16_val(r); | |
60011498 PB |
11014 | } |
11015 | ||
0ecb72a5 | 11016 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
11017 | { |
11018 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
11019 | } | |
11020 | ||
0ecb72a5 | 11021 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
11022 | { |
11023 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
11024 | } | |
11025 | ||
0ecb72a5 | 11026 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
11027 | { |
11028 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
11029 | } | |
11030 | ||
0ecb72a5 | 11031 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
11032 | { |
11033 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
11034 | } | |
11035 | ||
8900aad2 PM |
11036 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
11037 | { | |
11038 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
11039 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
11040 | if (ieee) { | |
af39bc8c | 11041 | return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
8900aad2 PM |
11042 | } |
11043 | return r; | |
11044 | } | |
11045 | ||
11046 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
11047 | { | |
11048 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
11049 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
11050 | if (ieee) { | |
af39bc8c | 11051 | r = float16_maybe_silence_nan(r, &env->vfp.fp_status); |
8900aad2 PM |
11052 | } |
11053 | return float16_val(r); | |
11054 | } | |
11055 | ||
dda3ec49 | 11056 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
11057 | #define float32_three make_float32(0x40400000) |
11058 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 11059 | |
0ecb72a5 | 11060 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 11061 | { |
dda3ec49 PM |
11062 | float_status *s = &env->vfp.standard_fp_status; |
11063 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
11064 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
11065 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
11066 | float_raise(float_flag_input_denormal, s); | |
11067 | } | |
dda3ec49 PM |
11068 | return float32_two; |
11069 | } | |
11070 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
11071 | } |
11072 | ||
0ecb72a5 | 11073 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 11074 | { |
71826966 | 11075 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
11076 | float32 product; |
11077 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
11078 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
11079 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
11080 | float_raise(float_flag_input_denormal, s); | |
11081 | } | |
6aae3df1 | 11082 | return float32_one_point_five; |
9ea62f57 | 11083 | } |
6aae3df1 PM |
11084 | product = float32_mul(a, b, s); |
11085 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
11086 | } |
11087 | ||
8f8e3aa4 PB |
11088 | /* NEON helpers. */ |
11089 | ||
56bf4fe2 CL |
11090 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
11091 | * int->float conversions at run-time. */ | |
11092 | #define float64_256 make_float64(0x4070000000000000LL) | |
11093 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
11094 | #define float32_maxnorm make_float32(0x7f7fffff) |
11095 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 11096 | |
b6d4443a AB |
11097 | /* Reciprocal functions |
11098 | * | |
11099 | * The algorithm that must be used to calculate the estimate | |
11100 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 11101 | */ |
b6d4443a AB |
11102 | |
11103 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 11104 | { |
1146a817 PM |
11105 | /* These calculations mustn't set any fp exception flags, |
11106 | * so we use a local copy of the fp_status. | |
11107 | */ | |
b6d4443a | 11108 | float_status dummy_status = *real_fp_status; |
1146a817 | 11109 | float_status *s = &dummy_status; |
fe0e4872 CL |
11110 | /* q = (int)(a * 512.0) */ |
11111 | float64 q = float64_mul(float64_512, a, s); | |
11112 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
11113 | ||
11114 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
11115 | q = int64_to_float64(q_int, s); | |
11116 | q = float64_add(q, float64_half, s); | |
11117 | q = float64_div(q, float64_512, s); | |
11118 | q = float64_div(float64_one, q, s); | |
11119 | ||
11120 | /* s = (int)(256.0 * r + 0.5) */ | |
11121 | q = float64_mul(q, float64_256, s); | |
11122 | q = float64_add(q, float64_half, s); | |
11123 | q_int = float64_to_int64_round_to_zero(q, s); | |
11124 | ||
11125 | /* return (double)s / 256.0 */ | |
11126 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
11127 | } | |
11128 | ||
b6d4443a AB |
11129 | /* Common wrapper to call recip_estimate */ |
11130 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 11131 | { |
b6d4443a AB |
11132 | uint64_t val64 = float64_val(num); |
11133 | uint64_t frac = extract64(val64, 0, 52); | |
11134 | int64_t exp = extract64(val64, 52, 11); | |
11135 | uint64_t sbit; | |
11136 | float64 scaled, estimate; | |
fe0e4872 | 11137 | |
b6d4443a AB |
11138 | /* Generate the scaled number for the estimate function */ |
11139 | if (exp == 0) { | |
11140 | if (extract64(frac, 51, 1) == 0) { | |
11141 | exp = -1; | |
11142 | frac = extract64(frac, 0, 50) << 2; | |
11143 | } else { | |
11144 | frac = extract64(frac, 0, 51) << 1; | |
11145 | } | |
11146 | } | |
fe0e4872 | 11147 | |
b6d4443a AB |
11148 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
11149 | scaled = make_float64((0x3feULL << 52) | |
11150 | | extract64(frac, 44, 8) << 44); | |
11151 | ||
11152 | estimate = recip_estimate(scaled, fpst); | |
11153 | ||
11154 | /* Build new result */ | |
11155 | val64 = float64_val(estimate); | |
11156 | sbit = 0x8000000000000000ULL & val64; | |
11157 | exp = off - exp; | |
11158 | frac = extract64(val64, 0, 52); | |
11159 | ||
11160 | if (exp == 0) { | |
11161 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
11162 | } else if (exp == -1) { | |
11163 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
11164 | exp = 0; | |
11165 | } | |
11166 | ||
11167 | return make_float64(sbit | (exp << 52) | frac); | |
11168 | } | |
11169 | ||
11170 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
11171 | { | |
11172 | switch (fpst->float_rounding_mode) { | |
11173 | case float_round_nearest_even: /* Round to Nearest */ | |
11174 | return true; | |
11175 | case float_round_up: /* Round to +Inf */ | |
11176 | return !sign_bit; | |
11177 | case float_round_down: /* Round to -Inf */ | |
11178 | return sign_bit; | |
11179 | case float_round_to_zero: /* Round to Zero */ | |
11180 | return false; | |
11181 | } | |
11182 | ||
11183 | g_assert_not_reached(); | |
11184 | } | |
11185 | ||
11186 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
11187 | { | |
11188 | float_status *fpst = fpstp; | |
11189 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
11190 | uint32_t f32_val = float32_val(f32); | |
11191 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
11192 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
11193 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
11194 | float64 f64, r64; | |
11195 | uint64_t r64_val; | |
11196 | int64_t r64_exp; | |
11197 | uint64_t r64_frac; | |
11198 | ||
11199 | if (float32_is_any_nan(f32)) { | |
11200 | float32 nan = f32; | |
af39bc8c | 11201 | if (float32_is_signaling_nan(f32, fpst)) { |
b6d4443a | 11202 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 11203 | nan = float32_maybe_silence_nan(f32, fpst); |
fe0e4872 | 11204 | } |
b6d4443a | 11205 | if (fpst->default_nan_mode) { |
af39bc8c | 11206 | nan = float32_default_nan(fpst); |
43fe9bdb | 11207 | } |
b6d4443a AB |
11208 | return nan; |
11209 | } else if (float32_is_infinity(f32)) { | |
11210 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
11211 | } else if (float32_is_zero(f32)) { | |
11212 | float_raise(float_flag_divbyzero, fpst); | |
11213 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
11214 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
11215 | /* Abs(value) < 2.0^-128 */ | |
11216 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
11217 | if (round_to_inf(fpst, f32_sbit)) { | |
11218 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
11219 | } else { | |
11220 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
11221 | } | |
11222 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
11223 | float_raise(float_flag_underflow, fpst); | |
11224 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
11225 | } |
11226 | ||
fe0e4872 | 11227 | |
b6d4443a AB |
11228 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
11229 | r64 = call_recip_estimate(f64, 253, fpst); | |
11230 | r64_val = float64_val(r64); | |
11231 | r64_exp = extract64(r64_val, 52, 11); | |
11232 | r64_frac = extract64(r64_val, 0, 52); | |
11233 | ||
11234 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
11235 | return make_float32(f32_sbit | | |
11236 | (r64_exp & 0xff) << 23 | | |
11237 | extract64(r64_frac, 29, 24)); | |
11238 | } | |
11239 | ||
11240 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
11241 | { | |
11242 | float_status *fpst = fpstp; | |
11243 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
11244 | uint64_t f64_val = float64_val(f64); | |
11245 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
11246 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
11247 | float64 r64; | |
11248 | uint64_t r64_val; | |
11249 | int64_t r64_exp; | |
11250 | uint64_t r64_frac; | |
11251 | ||
11252 | /* Deal with any special cases */ | |
11253 | if (float64_is_any_nan(f64)) { | |
11254 | float64 nan = f64; | |
af39bc8c | 11255 | if (float64_is_signaling_nan(f64, fpst)) { |
b6d4443a | 11256 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 11257 | nan = float64_maybe_silence_nan(f64, fpst); |
b6d4443a AB |
11258 | } |
11259 | if (fpst->default_nan_mode) { | |
af39bc8c | 11260 | nan = float64_default_nan(fpst); |
b6d4443a AB |
11261 | } |
11262 | return nan; | |
11263 | } else if (float64_is_infinity(f64)) { | |
11264 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
11265 | } else if (float64_is_zero(f64)) { | |
11266 | float_raise(float_flag_divbyzero, fpst); | |
11267 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
11268 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
11269 | /* Abs(value) < 2.0^-1024 */ | |
11270 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
11271 | if (round_to_inf(fpst, f64_sbit)) { | |
11272 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
11273 | } else { | |
11274 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
11275 | } | |
fc1792e9 | 11276 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
11277 | float_raise(float_flag_underflow, fpst); |
11278 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
11279 | } | |
fe0e4872 | 11280 | |
b6d4443a AB |
11281 | r64 = call_recip_estimate(f64, 2045, fpst); |
11282 | r64_val = float64_val(r64); | |
11283 | r64_exp = extract64(r64_val, 52, 11); | |
11284 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 11285 | |
b6d4443a AB |
11286 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
11287 | return make_float64(f64_sbit | | |
11288 | ((r64_exp & 0x7ff) << 52) | | |
11289 | r64_frac); | |
4373f3ce PB |
11290 | } |
11291 | ||
e07be5d2 CL |
11292 | /* The algorithm that must be used to calculate the estimate |
11293 | * is specified by the ARM ARM. | |
11294 | */ | |
c2fb418e | 11295 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 11296 | { |
1146a817 PM |
11297 | /* These calculations mustn't set any fp exception flags, |
11298 | * so we use a local copy of the fp_status. | |
11299 | */ | |
c2fb418e | 11300 | float_status dummy_status = *real_fp_status; |
1146a817 | 11301 | float_status *s = &dummy_status; |
e07be5d2 CL |
11302 | float64 q; |
11303 | int64_t q_int; | |
11304 | ||
11305 | if (float64_lt(a, float64_half, s)) { | |
11306 | /* range 0.25 <= a < 0.5 */ | |
11307 | ||
11308 | /* a in units of 1/512 rounded down */ | |
11309 | /* q0 = (int)(a * 512.0); */ | |
11310 | q = float64_mul(float64_512, a, s); | |
11311 | q_int = float64_to_int64_round_to_zero(q, s); | |
11312 | ||
11313 | /* reciprocal root r */ | |
11314 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
11315 | q = int64_to_float64(q_int, s); | |
11316 | q = float64_add(q, float64_half, s); | |
11317 | q = float64_div(q, float64_512, s); | |
11318 | q = float64_sqrt(q, s); | |
11319 | q = float64_div(float64_one, q, s); | |
11320 | } else { | |
11321 | /* range 0.5 <= a < 1.0 */ | |
11322 | ||
11323 | /* a in units of 1/256 rounded down */ | |
11324 | /* q1 = (int)(a * 256.0); */ | |
11325 | q = float64_mul(float64_256, a, s); | |
11326 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
11327 | ||
11328 | /* reciprocal root r */ | |
11329 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
11330 | q = int64_to_float64(q_int, s); | |
11331 | q = float64_add(q, float64_half, s); | |
11332 | q = float64_div(q, float64_256, s); | |
11333 | q = float64_sqrt(q, s); | |
11334 | q = float64_div(float64_one, q, s); | |
11335 | } | |
11336 | /* r in units of 1/256 rounded to nearest */ | |
11337 | /* s = (int)(256.0 * r + 0.5); */ | |
11338 | ||
11339 | q = float64_mul(q, float64_256,s ); | |
11340 | q = float64_add(q, float64_half, s); | |
11341 | q_int = float64_to_int64_round_to_zero(q, s); | |
11342 | ||
11343 | /* return (double)s / 256.0;*/ | |
11344 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
11345 | } | |
11346 | ||
c2fb418e | 11347 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 11348 | { |
c2fb418e AB |
11349 | float_status *s = fpstp; |
11350 | float32 f32 = float32_squash_input_denormal(input, s); | |
11351 | uint32_t val = float32_val(f32); | |
11352 | uint32_t f32_sbit = 0x80000000 & val; | |
11353 | int32_t f32_exp = extract32(val, 23, 8); | |
11354 | uint32_t f32_frac = extract32(val, 0, 23); | |
11355 | uint64_t f64_frac; | |
11356 | uint64_t val64; | |
e07be5d2 CL |
11357 | int result_exp; |
11358 | float64 f64; | |
e07be5d2 | 11359 | |
c2fb418e AB |
11360 | if (float32_is_any_nan(f32)) { |
11361 | float32 nan = f32; | |
af39bc8c | 11362 | if (float32_is_signaling_nan(f32, s)) { |
e07be5d2 | 11363 | float_raise(float_flag_invalid, s); |
af39bc8c | 11364 | nan = float32_maybe_silence_nan(f32, s); |
e07be5d2 | 11365 | } |
c2fb418e | 11366 | if (s->default_nan_mode) { |
af39bc8c | 11367 | nan = float32_default_nan(s); |
43fe9bdb | 11368 | } |
c2fb418e AB |
11369 | return nan; |
11370 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 11371 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
11372 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
11373 | } else if (float32_is_neg(f32)) { | |
e07be5d2 | 11374 | float_raise(float_flag_invalid, s); |
af39bc8c | 11375 | return float32_default_nan(s); |
c2fb418e | 11376 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
11377 | return float32_zero; |
11378 | } | |
11379 | ||
c2fb418e | 11380 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 11381 | * preserving the parity of the exponent. */ |
c2fb418e AB |
11382 | |
11383 | f64_frac = ((uint64_t) f32_frac) << 29; | |
11384 | if (f32_exp == 0) { | |
11385 | while (extract64(f64_frac, 51, 1) == 0) { | |
11386 | f64_frac = f64_frac << 1; | |
11387 | f32_exp = f32_exp-1; | |
11388 | } | |
11389 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
11390 | } | |
11391 | ||
11392 | if (extract64(f32_exp, 0, 1) == 0) { | |
11393 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 11394 | | (0x3feULL << 52) |
c2fb418e | 11395 | | f64_frac); |
e07be5d2 | 11396 | } else { |
c2fb418e | 11397 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 11398 | | (0x3fdULL << 52) |
c2fb418e | 11399 | | f64_frac); |
e07be5d2 CL |
11400 | } |
11401 | ||
c2fb418e | 11402 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 11403 | |
c2fb418e | 11404 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
11405 | |
11406 | val64 = float64_val(f64); | |
11407 | ||
26cc6abf | 11408 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
11409 | | ((val64 >> 29) & 0x7fffff); |
11410 | return make_float32(val); | |
4373f3ce PB |
11411 | } |
11412 | ||
c2fb418e AB |
11413 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
11414 | { | |
11415 | float_status *s = fpstp; | |
11416 | float64 f64 = float64_squash_input_denormal(input, s); | |
11417 | uint64_t val = float64_val(f64); | |
11418 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
11419 | int64_t f64_exp = extract64(val, 52, 11); | |
11420 | uint64_t f64_frac = extract64(val, 0, 52); | |
11421 | int64_t result_exp; | |
11422 | uint64_t result_frac; | |
11423 | ||
11424 | if (float64_is_any_nan(f64)) { | |
11425 | float64 nan = f64; | |
af39bc8c | 11426 | if (float64_is_signaling_nan(f64, s)) { |
c2fb418e | 11427 | float_raise(float_flag_invalid, s); |
af39bc8c | 11428 | nan = float64_maybe_silence_nan(f64, s); |
c2fb418e AB |
11429 | } |
11430 | if (s->default_nan_mode) { | |
af39bc8c | 11431 | nan = float64_default_nan(s); |
c2fb418e AB |
11432 | } |
11433 | return nan; | |
11434 | } else if (float64_is_zero(f64)) { | |
11435 | float_raise(float_flag_divbyzero, s); | |
11436 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
11437 | } else if (float64_is_neg(f64)) { | |
11438 | float_raise(float_flag_invalid, s); | |
af39bc8c | 11439 | return float64_default_nan(s); |
c2fb418e AB |
11440 | } else if (float64_is_infinity(f64)) { |
11441 | return float64_zero; | |
11442 | } | |
11443 | ||
11444 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
11445 | * preserving the parity of the exponent. */ | |
11446 | ||
11447 | if (f64_exp == 0) { | |
11448 | while (extract64(f64_frac, 51, 1) == 0) { | |
11449 | f64_frac = f64_frac << 1; | |
11450 | f64_exp = f64_exp - 1; | |
11451 | } | |
11452 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
11453 | } | |
11454 | ||
11455 | if (extract64(f64_exp, 0, 1) == 0) { | |
11456 | f64 = make_float64(f64_sbit | |
11457 | | (0x3feULL << 52) | |
11458 | | f64_frac); | |
11459 | } else { | |
11460 | f64 = make_float64(f64_sbit | |
11461 | | (0x3fdULL << 52) | |
11462 | | f64_frac); | |
11463 | } | |
11464 | ||
11465 | result_exp = (3068 - f64_exp) / 2; | |
11466 | ||
11467 | f64 = recip_sqrt_estimate(f64, s); | |
11468 | ||
11469 | result_frac = extract64(float64_val(f64), 0, 52); | |
11470 | ||
11471 | return make_float64(f64_sbit | | |
11472 | ((result_exp & 0x7ff) << 52) | | |
11473 | result_frac); | |
11474 | } | |
11475 | ||
b6d4443a | 11476 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 11477 | { |
b6d4443a | 11478 | float_status *s = fpstp; |
fe0e4872 CL |
11479 | float64 f64; |
11480 | ||
11481 | if ((a & 0x80000000) == 0) { | |
11482 | return 0xffffffff; | |
11483 | } | |
11484 | ||
11485 | f64 = make_float64((0x3feULL << 52) | |
11486 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
11487 | ||
b6d4443a | 11488 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
11489 | |
11490 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
11491 | } |
11492 | ||
c2fb418e | 11493 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 11494 | { |
c2fb418e | 11495 | float_status *fpst = fpstp; |
e07be5d2 CL |
11496 | float64 f64; |
11497 | ||
11498 | if ((a & 0xc0000000) == 0) { | |
11499 | return 0xffffffff; | |
11500 | } | |
11501 | ||
11502 | if (a & 0x80000000) { | |
11503 | f64 = make_float64((0x3feULL << 52) | |
11504 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
11505 | } else { /* bits 31-30 == '01' */ | |
11506 | f64 = make_float64((0x3fdULL << 52) | |
11507 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
11508 | } | |
11509 | ||
c2fb418e | 11510 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
11511 | |
11512 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 11513 | } |
fe1479c3 | 11514 | |
da97f52c PM |
11515 | /* VFPv4 fused multiply-accumulate */ |
11516 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
11517 | { | |
11518 | float_status *fpst = fpstp; | |
11519 | return float32_muladd(a, b, c, 0, fpst); | |
11520 | } | |
11521 | ||
11522 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
11523 | { | |
11524 | float_status *fpst = fpstp; | |
11525 | return float64_muladd(a, b, c, 0, fpst); | |
11526 | } | |
d9b0848d PM |
11527 | |
11528 | /* ARMv8 round to integral */ | |
11529 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
11530 | { | |
11531 | return float32_round_to_int(x, fp_status); | |
11532 | } | |
11533 | ||
11534 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
11535 | { | |
11536 | return float64_round_to_int(x, fp_status); | |
11537 | } | |
11538 | ||
11539 | float32 HELPER(rints)(float32 x, void *fp_status) | |
11540 | { | |
11541 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
11542 | float32 ret; | |
11543 | ||
11544 | ret = float32_round_to_int(x, fp_status); | |
11545 | ||
11546 | /* Suppress any inexact exceptions the conversion produced */ | |
11547 | if (!(old_flags & float_flag_inexact)) { | |
11548 | new_flags = get_float_exception_flags(fp_status); | |
11549 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
11550 | } | |
11551 | ||
11552 | return ret; | |
11553 | } | |
11554 | ||
11555 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
11556 | { | |
11557 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
11558 | float64 ret; | |
11559 | ||
11560 | ret = float64_round_to_int(x, fp_status); | |
11561 | ||
11562 | new_flags = get_float_exception_flags(fp_status); | |
11563 | ||
11564 | /* Suppress any inexact exceptions the conversion produced */ | |
11565 | if (!(old_flags & float_flag_inexact)) { | |
11566 | new_flags = get_float_exception_flags(fp_status); | |
11567 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
11568 | } | |
11569 | ||
11570 | return ret; | |
11571 | } | |
9972da66 WN |
11572 | |
11573 | /* Convert ARM rounding mode to softfloat */ | |
11574 | int arm_rmode_to_sf(int rmode) | |
11575 | { | |
11576 | switch (rmode) { | |
11577 | case FPROUNDING_TIEAWAY: | |
11578 | rmode = float_round_ties_away; | |
11579 | break; | |
11580 | case FPROUNDING_ODD: | |
11581 | /* FIXME: add support for TIEAWAY and ODD */ | |
11582 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
11583 | rmode); | |
11584 | case FPROUNDING_TIEEVEN: | |
11585 | default: | |
11586 | rmode = float_round_nearest_even; | |
11587 | break; | |
11588 | case FPROUNDING_POSINF: | |
11589 | rmode = float_round_up; | |
11590 | break; | |
11591 | case FPROUNDING_NEGINF: | |
11592 | rmode = float_round_down; | |
11593 | break; | |
11594 | case FPROUNDING_ZERO: | |
11595 | rmode = float_round_to_zero; | |
11596 | break; | |
11597 | } | |
11598 | return rmode; | |
11599 | } | |
eb0ecd5a | 11600 | |
aa633469 PM |
11601 | /* CRC helpers. |
11602 | * The upper bytes of val (above the number specified by 'bytes') must have | |
11603 | * been zeroed out by the caller. | |
11604 | */ | |
eb0ecd5a WN |
11605 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
11606 | { | |
11607 | uint8_t buf[4]; | |
11608 | ||
aa633469 | 11609 | stl_le_p(buf, val); |
eb0ecd5a WN |
11610 | |
11611 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
11612 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
11613 | } | |
11614 | ||
11615 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
11616 | { | |
11617 | uint8_t buf[4]; | |
11618 | ||
aa633469 | 11619 | stl_le_p(buf, val); |
eb0ecd5a WN |
11620 | |
11621 | /* Linux crc32c converts the output to one's complement. */ | |
11622 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
11623 | } | |
a9e01311 RH |
11624 | |
11625 | /* Return the exception level to which FP-disabled exceptions should | |
11626 | * be taken, or 0 if FP is enabled. | |
11627 | */ | |
11628 | static inline int fp_exception_el(CPUARMState *env) | |
11629 | { | |
11630 | int fpen; | |
11631 | int cur_el = arm_current_el(env); | |
11632 | ||
11633 | /* CPACR and the CPTR registers don't exist before v6, so FP is | |
11634 | * always accessible | |
11635 | */ | |
11636 | if (!arm_feature(env, ARM_FEATURE_V6)) { | |
11637 | return 0; | |
11638 | } | |
11639 | ||
11640 | /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: | |
11641 | * 0, 2 : trap EL0 and EL1/PL1 accesses | |
11642 | * 1 : trap only EL0 accesses | |
11643 | * 3 : trap no accesses | |
11644 | */ | |
11645 | fpen = extract32(env->cp15.cpacr_el1, 20, 2); | |
11646 | switch (fpen) { | |
11647 | case 0: | |
11648 | case 2: | |
11649 | if (cur_el == 0 || cur_el == 1) { | |
11650 | /* Trap to PL1, which might be EL1 or EL3 */ | |
11651 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
11652 | return 3; | |
11653 | } | |
11654 | return 1; | |
11655 | } | |
11656 | if (cur_el == 3 && !is_a64(env)) { | |
11657 | /* Secure PL1 running at EL3 */ | |
11658 | return 3; | |
11659 | } | |
11660 | break; | |
11661 | case 1: | |
11662 | if (cur_el == 0) { | |
11663 | return 1; | |
11664 | } | |
11665 | break; | |
11666 | case 3: | |
11667 | break; | |
11668 | } | |
11669 | ||
11670 | /* For the CPTR registers we don't need to guard with an ARM_FEATURE | |
11671 | * check because zero bits in the registers mean "don't trap". | |
11672 | */ | |
11673 | ||
11674 | /* CPTR_EL2 : present in v7VE or v8 */ | |
11675 | if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) | |
11676 | && !arm_is_secure_below_el3(env)) { | |
11677 | /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ | |
11678 | return 2; | |
11679 | } | |
11680 | ||
11681 | /* CPTR_EL3 : present in v8 */ | |
11682 | if (extract32(env->cp15.cptr_el[3], 10, 1)) { | |
11683 | /* Trap all FP ops to EL3 */ | |
11684 | return 3; | |
11685 | } | |
11686 | ||
11687 | return 0; | |
11688 | } | |
11689 | ||
11690 | void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, | |
11691 | target_ulong *cs_base, uint32_t *flags) | |
11692 | { | |
11693 | ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); | |
11694 | if (is_a64(env)) { | |
11695 | *pc = env->pc; | |
11696 | *flags = ARM_TBFLAG_AARCH64_STATE_MASK; | |
11697 | /* Get control bits for tagged addresses */ | |
11698 | *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); | |
11699 | *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); | |
11700 | } else { | |
11701 | *pc = env->regs[15]; | |
11702 | *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) | |
11703 | | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) | |
11704 | | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) | |
11705 | | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) | |
11706 | | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); | |
11707 | if (!(access_secure_reg(env))) { | |
11708 | *flags |= ARM_TBFLAG_NS_MASK; | |
11709 | } | |
11710 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) | |
11711 | || arm_el_is_aa64(env, 1)) { | |
11712 | *flags |= ARM_TBFLAG_VFPEN_MASK; | |
11713 | } | |
11714 | *flags |= (extract32(env->cp15.c15_cpar, 0, 2) | |
11715 | << ARM_TBFLAG_XSCALE_CPAR_SHIFT); | |
11716 | } | |
11717 | ||
11718 | *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); | |
11719 | ||
11720 | /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine | |
11721 | * states defined in the ARM ARM for software singlestep: | |
11722 | * SS_ACTIVE PSTATE.SS State | |
11723 | * 0 x Inactive (the TB flag for SS is always 0) | |
11724 | * 1 0 Active-pending | |
11725 | * 1 1 Active-not-pending | |
11726 | */ | |
11727 | if (arm_singlestep_active(env)) { | |
11728 | *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; | |
11729 | if (is_a64(env)) { | |
11730 | if (env->pstate & PSTATE_SS) { | |
11731 | *flags |= ARM_TBFLAG_PSTATE_SS_MASK; | |
11732 | } | |
11733 | } else { | |
11734 | if (env->uncached_cpsr & PSTATE_SS) { | |
11735 | *flags |= ARM_TBFLAG_PSTATE_SS_MASK; | |
11736 | } | |
11737 | } | |
11738 | } | |
11739 | if (arm_cpu_data_is_big_endian(env)) { | |
11740 | *flags |= ARM_TBFLAG_BE_DATA_MASK; | |
11741 | } | |
11742 | *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; | |
11743 | ||
11744 | if (arm_v7m_is_handler_mode(env)) { | |
11745 | *flags |= ARM_TBFLAG_HANDLER_MASK; | |
11746 | } | |
11747 | ||
11748 | *cs_base = 0; | |
11749 | } |