]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
ccd38087 | 2 | #include "internals.h" |
022c62cb | 3 | #include "exec/gdbstub.h" |
7b59220e | 4 | #include "helper.h" |
1de7afc9 | 5 | #include "qemu/host-utils.h" |
78027bb6 | 6 | #include "sysemu/arch_init.h" |
9c17d615 | 7 | #include "sysemu/sysemu.h" |
1de7afc9 | 8 | #include "qemu/bitops.h" |
eb0ecd5a WN |
9 | #include "qemu/crc32c.h" |
10 | #include <zlib.h> /* For crc32 */ | |
0b03bdfc | 11 | |
4a501606 | 12 | #ifndef CONFIG_USER_ONLY |
aca3f40b PM |
13 | #include "exec/softmmu_exec.h" |
14 | ||
2c8dd318 | 15 | static inline int get_phys_addr(CPUARMState *env, target_ulong address, |
4a501606 | 16 | int access_type, int is_user, |
a8170e5e | 17 | hwaddr *phys_ptr, int *prot, |
4a501606 | 18 | target_ulong *page_size); |
7c2cb42b AF |
19 | |
20 | /* Definitions for the PMCCNTR and PMCR registers */ | |
21 | #define PMCRD 0x8 | |
22 | #define PMCRC 0x4 | |
23 | #define PMCRE 0x1 | |
4a501606 PM |
24 | #endif |
25 | ||
0ecb72a5 | 26 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
27 | { |
28 | int nregs; | |
29 | ||
30 | /* VFP data registers are always little-endian. */ | |
31 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
32 | if (reg < nregs) { | |
33 | stfq_le_p(buf, env->vfp.regs[reg]); | |
34 | return 8; | |
35 | } | |
36 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
37 | /* Aliases for Q regs. */ | |
38 | nregs += 16; | |
39 | if (reg < nregs) { | |
40 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
41 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
42 | return 16; | |
43 | } | |
44 | } | |
45 | switch (reg - nregs) { | |
46 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
47 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
48 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
49 | } | |
50 | return 0; | |
51 | } | |
52 | ||
0ecb72a5 | 53 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
54 | { |
55 | int nregs; | |
56 | ||
57 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
58 | if (reg < nregs) { | |
59 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
60 | return 8; | |
61 | } | |
62 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
63 | nregs += 16; | |
64 | if (reg < nregs) { | |
65 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
66 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
67 | return 16; | |
68 | } | |
69 | } | |
70 | switch (reg - nregs) { | |
71 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
72 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 73 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
74 | } |
75 | return 0; | |
76 | } | |
77 | ||
6a669427 PM |
78 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
79 | { | |
80 | switch (reg) { | |
81 | case 0 ... 31: | |
82 | /* 128 bit FP register */ | |
83 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
84 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
85 | return 16; | |
86 | case 32: | |
87 | /* FPSR */ | |
88 | stl_p(buf, vfp_get_fpsr(env)); | |
89 | return 4; | |
90 | case 33: | |
91 | /* FPCR */ | |
92 | stl_p(buf, vfp_get_fpcr(env)); | |
93 | return 4; | |
94 | default: | |
95 | return 0; | |
96 | } | |
97 | } | |
98 | ||
99 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
100 | { | |
101 | switch (reg) { | |
102 | case 0 ... 31: | |
103 | /* 128 bit FP register */ | |
104 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
105 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
106 | return 16; | |
107 | case 32: | |
108 | /* FPSR */ | |
109 | vfp_set_fpsr(env, ldl_p(buf)); | |
110 | return 4; | |
111 | case 33: | |
112 | /* FPCR */ | |
113 | vfp_set_fpcr(env, ldl_p(buf)); | |
114 | return 4; | |
115 | default: | |
116 | return 0; | |
117 | } | |
118 | } | |
119 | ||
c4241c7d | 120 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 121 | { |
67ed771d | 122 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 123 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 124 | } else { |
c4241c7d | 125 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 126 | } |
d4e6df63 PM |
127 | } |
128 | ||
c4241c7d PM |
129 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
130 | uint64_t value) | |
d4e6df63 | 131 | { |
67ed771d | 132 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
133 | CPREG_FIELD64(env, ri) = value; |
134 | } else { | |
135 | CPREG_FIELD32(env, ri) = value; | |
136 | } | |
d4e6df63 PM |
137 | } |
138 | ||
59a1c327 | 139 | static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 140 | { |
59a1c327 | 141 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 142 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 143 | return ri->resetvalue; |
721fae12 | 144 | } else if (ri->raw_readfn) { |
59a1c327 | 145 | return ri->raw_readfn(env, ri); |
721fae12 | 146 | } else if (ri->readfn) { |
59a1c327 | 147 | return ri->readfn(env, ri); |
721fae12 | 148 | } else { |
59a1c327 | 149 | return raw_read(env, ri); |
721fae12 | 150 | } |
721fae12 PM |
151 | } |
152 | ||
59a1c327 | 153 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 154 | uint64_t v) |
721fae12 PM |
155 | { |
156 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
157 | * Note that constant registers are treated as write-ignored; the |
158 | * caller should check for success by whether a readback gives the | |
159 | * value written. | |
160 | */ | |
161 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 162 | return; |
721fae12 | 163 | } else if (ri->raw_writefn) { |
c4241c7d | 164 | ri->raw_writefn(env, ri, v); |
721fae12 | 165 | } else if (ri->writefn) { |
c4241c7d | 166 | ri->writefn(env, ri, v); |
721fae12 | 167 | } else { |
afb2530f | 168 | raw_write(env, ri, v); |
721fae12 | 169 | } |
721fae12 PM |
170 | } |
171 | ||
172 | bool write_cpustate_to_list(ARMCPU *cpu) | |
173 | { | |
174 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
175 | int i; | |
176 | bool ok = true; | |
177 | ||
178 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
179 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
180 | const ARMCPRegInfo *ri; | |
59a1c327 | 181 | |
60322b39 | 182 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
183 | if (!ri) { |
184 | ok = false; | |
185 | continue; | |
186 | } | |
187 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
188 | continue; | |
189 | } | |
59a1c327 | 190 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
191 | } |
192 | return ok; | |
193 | } | |
194 | ||
195 | bool write_list_to_cpustate(ARMCPU *cpu) | |
196 | { | |
197 | int i; | |
198 | bool ok = true; | |
199 | ||
200 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
201 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
202 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
203 | const ARMCPRegInfo *ri; |
204 | ||
60322b39 | 205 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
206 | if (!ri) { |
207 | ok = false; | |
208 | continue; | |
209 | } | |
210 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
211 | continue; | |
212 | } | |
213 | /* Write value and confirm it reads back as written | |
214 | * (to catch read-only registers and partially read-only | |
215 | * registers where the incoming migration value doesn't match) | |
216 | */ | |
59a1c327 PM |
217 | write_raw_cp_reg(&cpu->env, ri, v); |
218 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
219 | ok = false; |
220 | } | |
221 | } | |
222 | return ok; | |
223 | } | |
224 | ||
225 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
226 | { | |
227 | ARMCPU *cpu = opaque; | |
228 | uint64_t regidx; | |
229 | const ARMCPRegInfo *ri; | |
230 | ||
231 | regidx = *(uint32_t *)key; | |
60322b39 | 232 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
233 | |
234 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
235 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |
236 | /* The value array need not be initialized at this point */ | |
237 | cpu->cpreg_array_len++; | |
238 | } | |
239 | } | |
240 | ||
241 | static void count_cpreg(gpointer key, gpointer opaque) | |
242 | { | |
243 | ARMCPU *cpu = opaque; | |
244 | uint64_t regidx; | |
245 | const ARMCPRegInfo *ri; | |
246 | ||
247 | regidx = *(uint32_t *)key; | |
60322b39 | 248 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
249 | |
250 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
251 | cpu->cpreg_array_len++; | |
252 | } | |
253 | } | |
254 | ||
255 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
256 | { | |
cbf239b7 AR |
257 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
258 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 259 | |
cbf239b7 AR |
260 | if (aidx > bidx) { |
261 | return 1; | |
262 | } | |
263 | if (aidx < bidx) { | |
264 | return -1; | |
265 | } | |
266 | return 0; | |
721fae12 PM |
267 | } |
268 | ||
82a3a118 PM |
269 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
270 | { | |
271 | GList **plist = udata; | |
272 | ||
273 | *plist = g_list_prepend(*plist, key); | |
274 | } | |
275 | ||
721fae12 PM |
276 | void init_cpreg_list(ARMCPU *cpu) |
277 | { | |
278 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
279 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
280 | */ | |
82a3a118 | 281 | GList *keys = NULL; |
721fae12 PM |
282 | int arraylen; |
283 | ||
82a3a118 PM |
284 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
285 | ||
721fae12 PM |
286 | keys = g_list_sort(keys, cpreg_key_compare); |
287 | ||
288 | cpu->cpreg_array_len = 0; | |
289 | ||
290 | g_list_foreach(keys, count_cpreg, cpu); | |
291 | ||
292 | arraylen = cpu->cpreg_array_len; | |
293 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
294 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
295 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
296 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
297 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
298 | cpu->cpreg_array_len = 0; | |
299 | ||
300 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
301 | ||
302 | assert(cpu->cpreg_array_len == arraylen); | |
303 | ||
304 | g_list_free(keys); | |
305 | } | |
306 | ||
c4241c7d | 307 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 308 | { |
00c8cb0a AF |
309 | ARMCPU *cpu = arm_env_get_cpu(env); |
310 | ||
c983fe6c | 311 | env->cp15.c3 = value; |
00c8cb0a | 312 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
313 | } |
314 | ||
c4241c7d | 315 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 316 | { |
00c8cb0a AF |
317 | ARMCPU *cpu = arm_env_get_cpu(env); |
318 | ||
08de207b PM |
319 | if (env->cp15.c13_fcse != value) { |
320 | /* Unlike real hardware the qemu TLB uses virtual addresses, | |
321 | * not modified virtual addresses, so this causes a TLB flush. | |
322 | */ | |
00c8cb0a | 323 | tlb_flush(CPU(cpu), 1); |
08de207b PM |
324 | env->cp15.c13_fcse = value; |
325 | } | |
08de207b | 326 | } |
c4241c7d PM |
327 | |
328 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
329 | uint64_t value) | |
08de207b | 330 | { |
00c8cb0a AF |
331 | ARMCPU *cpu = arm_env_get_cpu(env); |
332 | ||
08de207b PM |
333 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { |
334 | /* For VMSA (when not using the LPAE long descriptor page table | |
335 | * format) this register includes the ASID, so do a TLB flush. | |
336 | * For PMSA it is purely a process ID and no action is needed. | |
337 | */ | |
00c8cb0a | 338 | tlb_flush(CPU(cpu), 1); |
08de207b PM |
339 | } |
340 | env->cp15.c13_context = value; | |
08de207b PM |
341 | } |
342 | ||
c4241c7d PM |
343 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
344 | uint64_t value) | |
d929823f PM |
345 | { |
346 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
347 | ARMCPU *cpu = arm_env_get_cpu(env); |
348 | ||
349 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
350 | } |
351 | ||
c4241c7d PM |
352 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
353 | uint64_t value) | |
d929823f PM |
354 | { |
355 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
356 | ARMCPU *cpu = arm_env_get_cpu(env); |
357 | ||
358 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
359 | } |
360 | ||
c4241c7d PM |
361 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
362 | uint64_t value) | |
d929823f PM |
363 | { |
364 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
365 | ARMCPU *cpu = arm_env_get_cpu(env); |
366 | ||
367 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
368 | } |
369 | ||
c4241c7d PM |
370 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
371 | uint64_t value) | |
d929823f PM |
372 | { |
373 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
374 | ARMCPU *cpu = arm_env_get_cpu(env); |
375 | ||
376 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
377 | } |
378 | ||
e9aa6c21 PM |
379 | static const ARMCPRegInfo cp_reginfo[] = { |
380 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture | |
381 | * version" bits will read as a reserved value, which should cause | |
382 | * Linux to not try to use the debug hardware. | |
383 | */ | |
384 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
385 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
c983fe6c PM |
386 | /* MMU Domain access control / MPU write buffer control */ |
387 | { .name = "DACR", .cp = 15, | |
388 | .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
389 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
d4e6df63 | 390 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, |
08de207b PM |
391 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
392 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 393 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
08de207b | 394 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
a4f0cec6 | 395 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context), |
d4e6df63 | 396 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
4fdd17dd PM |
397 | /* ??? This covers not just the impdef TLB lockdown registers but also |
398 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
399 | */ | |
400 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
401 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
d929823f PM |
402 | /* MMU TLB control. Note that the wildcarding means we cover not just |
403 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
404 | */ | |
405 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
d4e6df63 PM |
406 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
407 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 408 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
409 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
410 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 411 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
412 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
413 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 414 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
415 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
416 | .type = ARM_CP_NO_MIGRATE }, | |
c4804214 PM |
417 | /* Cache maintenance ops; some of this space may be overridden later. */ |
418 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
419 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
420 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
421 | REGINFO_SENTINEL |
422 | }; | |
423 | ||
7d57f408 PM |
424 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
425 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
426 | * over-broad. | |
427 | */ | |
428 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
429 | .access = PL1_W, .type = ARM_CP_WFI }, | |
430 | REGINFO_SENTINEL | |
431 | }; | |
432 | ||
433 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
434 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
435 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
436 | */ | |
437 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
438 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
439 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
440 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
441 | * OMAPCP will override this space. | |
442 | */ | |
443 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
444 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
445 | .resetvalue = 0 }, | |
446 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
447 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
448 | .resetvalue = 0 }, | |
776d4e5c PM |
449 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
450 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
d4e6df63 PM |
451 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
452 | .resetvalue = 0 }, | |
7d57f408 PM |
453 | REGINFO_SENTINEL |
454 | }; | |
455 | ||
c4241c7d PM |
456 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
457 | uint64_t value) | |
2771db27 PM |
458 | { |
459 | if (env->cp15.c1_coproc != value) { | |
460 | env->cp15.c1_coproc = value; | |
461 | /* ??? Is this safe when called from within a TB? */ | |
462 | tb_flush(env); | |
463 | } | |
2771db27 PM |
464 | } |
465 | ||
7d57f408 PM |
466 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
467 | /* prefetch by MVA in v6, NOP in v7 */ | |
468 | { .name = "MVA_prefetch", | |
469 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
470 | .access = PL1_W, .type = ARM_CP_NOP }, | |
471 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
472 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 473 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 474 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 475 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 476 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 477 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 RH |
478 | .access = PL1_RW, |
479 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el1), | |
06d76f31 PM |
480 | .resetvalue = 0, }, |
481 | /* Watchpoint Fault Address Register : should actually only be present | |
482 | * for 1136, 1176, 11MPCore. | |
483 | */ | |
484 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
485 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 PM |
486 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
487 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2771db27 PM |
488 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), |
489 | .resetvalue = 0, .writefn = cpacr_write }, | |
7d57f408 PM |
490 | REGINFO_SENTINEL |
491 | }; | |
492 | ||
fcd25206 | 493 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 494 | { |
3b163b01 | 495 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 496 | * by PMUSERENR. |
200ac0ef PM |
497 | */ |
498 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
fcd25206 | 499 | return CP_ACCESS_TRAP; |
200ac0ef | 500 | } |
fcd25206 | 501 | return CP_ACCESS_OK; |
200ac0ef PM |
502 | } |
503 | ||
7c2cb42b | 504 | #ifndef CONFIG_USER_ONLY |
c4241c7d PM |
505 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
506 | uint64_t value) | |
200ac0ef | 507 | { |
7c2cb42b AF |
508 | /* Don't computer the number of ticks in user mode */ |
509 | uint32_t temp_ticks; | |
510 | ||
511 | temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
512 | get_ticks_per_sec() / 1000000; | |
513 | ||
514 | if (env->cp15.c9_pmcr & PMCRE) { | |
515 | /* If the counter is enabled */ | |
516 | if (env->cp15.c9_pmcr & PMCRD) { | |
517 | /* Increment once every 64 processor clock cycles */ | |
518 | env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt; | |
519 | } else { | |
520 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
521 | } | |
522 | } | |
523 | ||
524 | if (value & PMCRC) { | |
525 | /* The counter has been reset */ | |
526 | env->cp15.c15_ccnt = 0; | |
527 | } | |
528 | ||
200ac0ef PM |
529 | /* only the DP, X, D and E bits are writable */ |
530 | env->cp15.c9_pmcr &= ~0x39; | |
531 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b AF |
532 | |
533 | if (env->cp15.c9_pmcr & PMCRE) { | |
534 | if (env->cp15.c9_pmcr & PMCRD) { | |
535 | /* Increment once every 64 processor clock cycles */ | |
536 | temp_ticks /= 64; | |
537 | } | |
538 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
539 | } | |
540 | } | |
541 | ||
542 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
543 | { | |
544 | uint32_t total_ticks; | |
545 | ||
546 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
547 | /* Counter is disabled, do not change value */ | |
548 | return env->cp15.c15_ccnt; | |
549 | } | |
550 | ||
551 | total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
552 | get_ticks_per_sec() / 1000000; | |
553 | ||
554 | if (env->cp15.c9_pmcr & PMCRD) { | |
555 | /* Increment once every 64 processor clock cycles */ | |
556 | total_ticks /= 64; | |
557 | } | |
558 | return total_ticks - env->cp15.c15_ccnt; | |
559 | } | |
560 | ||
561 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
562 | uint64_t value) | |
563 | { | |
564 | uint32_t total_ticks; | |
565 | ||
566 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
567 | /* Counter is disabled, set the absolute value */ | |
568 | env->cp15.c15_ccnt = value; | |
569 | return; | |
570 | } | |
571 | ||
572 | total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
573 | get_ticks_per_sec() / 1000000; | |
574 | ||
575 | if (env->cp15.c9_pmcr & PMCRD) { | |
576 | /* Increment once every 64 processor clock cycles */ | |
577 | total_ticks /= 64; | |
578 | } | |
579 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 580 | } |
7c2cb42b | 581 | #endif |
200ac0ef | 582 | |
c4241c7d | 583 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
584 | uint64_t value) |
585 | { | |
200ac0ef PM |
586 | value &= (1 << 31); |
587 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
588 | } |
589 | ||
c4241c7d PM |
590 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
591 | uint64_t value) | |
200ac0ef | 592 | { |
200ac0ef PM |
593 | value &= (1 << 31); |
594 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
595 | } |
596 | ||
c4241c7d PM |
597 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
598 | uint64_t value) | |
200ac0ef | 599 | { |
200ac0ef | 600 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
601 | } |
602 | ||
c4241c7d PM |
603 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
604 | uint64_t value) | |
200ac0ef | 605 | { |
200ac0ef | 606 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
607 | } |
608 | ||
c4241c7d | 609 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
610 | uint64_t value) |
611 | { | |
612 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
613 | } |
614 | ||
c4241c7d PM |
615 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
616 | uint64_t value) | |
200ac0ef PM |
617 | { |
618 | /* We have no event counters so only the C bit can be changed */ | |
619 | value &= (1 << 31); | |
620 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
621 | } |
622 | ||
c4241c7d PM |
623 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
624 | uint64_t value) | |
200ac0ef PM |
625 | { |
626 | value &= (1 << 31); | |
627 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
628 | } |
629 | ||
c4241c7d PM |
630 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
631 | uint64_t value) | |
8641136c | 632 | { |
a505d7fe PM |
633 | /* Note that even though the AArch64 view of this register has bits |
634 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
635 | * architectural requirements for bits which are RES0 only in some | |
636 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
637 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
638 | */ | |
8641136c | 639 | env->cp15.c12_vbar = value & ~0x1Ful; |
8641136c NR |
640 | } |
641 | ||
c4241c7d | 642 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
643 | { |
644 | ARMCPU *cpu = arm_env_get_cpu(env); | |
c4241c7d | 645 | return cpu->ccsidr[env->cp15.c0_cssel]; |
776d4e5c PM |
646 | } |
647 | ||
c4241c7d PM |
648 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
649 | uint64_t value) | |
776d4e5c PM |
650 | { |
651 | env->cp15.c0_cssel = value & 0xf; | |
776d4e5c PM |
652 | } |
653 | ||
e9aa6c21 PM |
654 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
655 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | |
656 | * debug components | |
657 | */ | |
658 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
659 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
091fd17c | 660 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
e9aa6c21 | 661 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
7d57f408 PM |
662 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
663 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
664 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
665 | /* Performance monitors are implementation defined in v7, |
666 | * but with an ARM recommended set of registers, which we | |
667 | * follow (although we don't actually implement any counters) | |
668 | * | |
669 | * Performance registers fall into three categories: | |
670 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
671 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
672 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
673 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
674 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
675 | */ | |
676 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
677 | .access = PL0_RW, .resetvalue = 0, | |
678 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
679 | .writefn = pmcntenset_write, |
680 | .accessfn = pmreg_access, | |
681 | .raw_writefn = raw_write }, | |
200ac0ef PM |
682 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
683 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
684 | .accessfn = pmreg_access, |
685 | .writefn = pmcntenclr_write, | |
d4e6df63 | 686 | .type = ARM_CP_NO_MIGRATE }, |
200ac0ef PM |
687 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
688 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
689 | .accessfn = pmreg_access, |
690 | .writefn = pmovsr_write, | |
691 | .raw_writefn = raw_write }, | |
692 | /* Unimplemented so WI. */ | |
200ac0ef | 693 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 694 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 695 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 696 | * We choose to RAZ/WI. |
200ac0ef PM |
697 | */ |
698 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
699 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
700 | .accessfn = pmreg_access }, | |
7c2cb42b | 701 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 702 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b AF |
703 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
704 | .readfn = pmccntr_read, .writefn = pmccntr_write, | |
fcd25206 | 705 | .accessfn = pmreg_access }, |
7c2cb42b | 706 | #endif |
200ac0ef PM |
707 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
708 | .access = PL0_RW, | |
709 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
710 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
711 | .raw_writefn = raw_write }, | |
712 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 713 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
714 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
715 | .accessfn = pmreg_access }, | |
200ac0ef PM |
716 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
717 | .access = PL0_R | PL1_RW, | |
718 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
719 | .resetvalue = 0, | |
d4e6df63 | 720 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
721 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
722 | .access = PL1_RW, | |
723 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
724 | .resetvalue = 0, | |
d4e6df63 | 725 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 726 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
d4e6df63 | 727 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
200ac0ef | 728 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
d4e6df63 | 729 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
a505d7fe PM |
730 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
731 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c NR |
732 | .access = PL1_RW, .writefn = vbar_write, |
733 | .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar), | |
734 | .resetvalue = 0 }, | |
2771db27 PM |
735 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
736 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), | |
737 | .resetvalue = 0, }, | |
7da845b0 PM |
738 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
739 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
d4e6df63 | 740 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, |
7da845b0 PM |
741 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
742 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
776d4e5c PM |
743 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), |
744 | .writefn = csselr_write, .resetvalue = 0 }, | |
745 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |
746 | * just RAZ for all cores: | |
747 | */ | |
748 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, | |
749 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
750 | /* MAIR can just read-as-written because we don't implement caches |
751 | * and so don't need to care about memory attributes. | |
752 | */ | |
753 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
754 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
755 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1), | |
756 | .resetvalue = 0 }, | |
757 | /* For non-long-descriptor page tables these are PRRR and NMRR; | |
758 | * regardless they still act as reads-as-written for QEMU. | |
759 | * The override is necessary because of the overly-broad TLB_LOCKDOWN | |
760 | * definition. | |
761 | */ | |
762 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
763 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, | |
764 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1), | |
765 | .resetfn = arm_cp_reset_ignore }, | |
766 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
767 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, | |
768 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1), | |
769 | .resetfn = arm_cp_reset_ignore }, | |
e9aa6c21 PM |
770 | REGINFO_SENTINEL |
771 | }; | |
772 | ||
c4241c7d PM |
773 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
774 | uint64_t value) | |
c326b979 PM |
775 | { |
776 | value &= 1; | |
777 | env->teecr = value; | |
c326b979 PM |
778 | } |
779 | ||
c4241c7d | 780 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 781 | { |
c326b979 | 782 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
92611c00 | 783 | return CP_ACCESS_TRAP; |
c326b979 | 784 | } |
92611c00 | 785 | return CP_ACCESS_OK; |
c326b979 PM |
786 | } |
787 | ||
788 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
789 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
790 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
791 | .resetvalue = 0, | |
792 | .writefn = teecr_write }, | |
793 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
794 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 795 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
796 | REGINFO_SENTINEL |
797 | }; | |
798 | ||
4d31c596 | 799 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
800 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
801 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
802 | .access = PL0_RW, | |
803 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, | |
4d31c596 PM |
804 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
805 | .access = PL0_RW, | |
e4fe830b PM |
806 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0), |
807 | .resetfn = arm_cp_reset_ignore }, | |
808 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
809 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
810 | .access = PL0_R|PL1_W, | |
811 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, | |
4d31c596 PM |
812 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
813 | .access = PL0_R|PL1_W, | |
e4fe830b PM |
814 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0), |
815 | .resetfn = arm_cp_reset_ignore }, | |
816 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
817 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, | |
4d31c596 | 818 | .access = PL1_RW, |
e4fe830b | 819 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, |
4d31c596 PM |
820 | REGINFO_SENTINEL |
821 | }; | |
822 | ||
55d284af PM |
823 | #ifndef CONFIG_USER_ONLY |
824 | ||
00108f2d PM |
825 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
826 | { | |
827 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
828 | if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
829 | return CP_ACCESS_TRAP; | |
830 | } | |
831 | return CP_ACCESS_OK; | |
832 | } | |
833 | ||
834 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
835 | { | |
836 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ | |
837 | if (arm_current_pl(env) == 0 && | |
838 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |
839 | return CP_ACCESS_TRAP; | |
840 | } | |
841 | return CP_ACCESS_OK; | |
842 | } | |
843 | ||
844 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
845 | { | |
846 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if | |
847 | * EL0[PV]TEN is zero. | |
848 | */ | |
849 | if (arm_current_pl(env) == 0 && | |
850 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
851 | return CP_ACCESS_TRAP; | |
852 | } | |
853 | return CP_ACCESS_OK; | |
854 | } | |
855 | ||
856 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
857 | const ARMCPRegInfo *ri) | |
858 | { | |
859 | return gt_counter_access(env, GTIMER_PHYS); | |
860 | } | |
861 | ||
862 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
863 | const ARMCPRegInfo *ri) | |
864 | { | |
865 | return gt_counter_access(env, GTIMER_VIRT); | |
866 | } | |
867 | ||
868 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
869 | { | |
870 | return gt_timer_access(env, GTIMER_PHYS); | |
871 | } | |
872 | ||
873 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
874 | { | |
875 | return gt_timer_access(env, GTIMER_VIRT); | |
876 | } | |
877 | ||
55d284af PM |
878 | static uint64_t gt_get_countervalue(CPUARMState *env) |
879 | { | |
bc72ad67 | 880 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
881 | } |
882 | ||
883 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
884 | { | |
885 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
886 | ||
887 | if (gt->ctl & 1) { | |
888 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
889 | * reset timer to when ISTATUS next has to change | |
890 | */ | |
891 | uint64_t count = gt_get_countervalue(&cpu->env); | |
892 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
893 | int istatus = count >= gt->cval; | |
894 | uint64_t nexttick; | |
895 | ||
896 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
897 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
898 | (istatus && !(gt->ctl & 2))); | |
899 | if (istatus) { | |
900 | /* Next transition is when count rolls back over to zero */ | |
901 | nexttick = UINT64_MAX; | |
902 | } else { | |
903 | /* Next transition is when we hit cval */ | |
904 | nexttick = gt->cval; | |
905 | } | |
906 | /* Note that the desired next expiry time might be beyond the | |
907 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
908 | * set the timer for as far in the future as possible. When the | |
909 | * timer expires we will reset the timer for any remaining period. | |
910 | */ | |
911 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
912 | nexttick = INT64_MAX / GTIMER_SCALE; | |
913 | } | |
bc72ad67 | 914 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
915 | } else { |
916 | /* Timer disabled: ISTATUS and timer output always clear */ | |
917 | gt->ctl &= ~4; | |
918 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 919 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
920 | } |
921 | } | |
922 | ||
55d284af PM |
923 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
924 | { | |
925 | ARMCPU *cpu = arm_env_get_cpu(env); | |
926 | int timeridx = ri->opc1 & 1; | |
927 | ||
bc72ad67 | 928 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
929 | } |
930 | ||
c4241c7d | 931 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 932 | { |
c4241c7d | 933 | return gt_get_countervalue(env); |
55d284af PM |
934 | } |
935 | ||
c4241c7d PM |
936 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
937 | uint64_t value) | |
55d284af PM |
938 | { |
939 | int timeridx = ri->opc1 & 1; | |
940 | ||
941 | env->cp15.c14_timer[timeridx].cval = value; | |
942 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 943 | } |
c4241c7d PM |
944 | |
945 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
55d284af PM |
946 | { |
947 | int timeridx = ri->crm & 1; | |
948 | ||
c4241c7d PM |
949 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
950 | gt_get_countervalue(env)); | |
55d284af PM |
951 | } |
952 | ||
c4241c7d PM |
953 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
954 | uint64_t value) | |
55d284af PM |
955 | { |
956 | int timeridx = ri->crm & 1; | |
957 | ||
958 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |
959 | + sextract64(value, 0, 32); | |
960 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af PM |
961 | } |
962 | ||
c4241c7d PM |
963 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
964 | uint64_t value) | |
55d284af PM |
965 | { |
966 | ARMCPU *cpu = arm_env_get_cpu(env); | |
967 | int timeridx = ri->crm & 1; | |
968 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |
969 | ||
970 | env->cp15.c14_timer[timeridx].ctl = value & 3; | |
971 | if ((oldval ^ value) & 1) { | |
972 | /* Enable toggled */ | |
973 | gt_recalc_timer(cpu, timeridx); | |
974 | } else if ((oldval & value) & 2) { | |
975 | /* IMASK toggled: don't need to recalculate, | |
976 | * just set the interrupt line based on ISTATUS | |
977 | */ | |
978 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
979 | (oldval & 4) && (value & 2)); | |
980 | } | |
55d284af PM |
981 | } |
982 | ||
983 | void arm_gt_ptimer_cb(void *opaque) | |
984 | { | |
985 | ARMCPU *cpu = opaque; | |
986 | ||
987 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
988 | } | |
989 | ||
990 | void arm_gt_vtimer_cb(void *opaque) | |
991 | { | |
992 | ARMCPU *cpu = opaque; | |
993 | ||
994 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
995 | } | |
996 | ||
997 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
998 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
999 | * of software; writing it doesn't actually change the timer frequency. | |
1000 | * Our reset value matches the fixed frequency we implement the timer at. | |
1001 | */ | |
1002 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
a7adc4b7 PM |
1003 | .type = ARM_CP_NO_MIGRATE, |
1004 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
1005 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
1006 | .resetfn = arm_cp_reset_ignore, | |
1007 | }, | |
1008 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1009 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1010 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1011 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1012 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1013 | }, |
1014 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1015 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1016 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1017 | .access = PL1_RW, |
1018 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1019 | .resetvalue = 0, | |
1020 | }, | |
1021 | /* per-timer control */ | |
1022 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
1023 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
1024 | .accessfn = gt_ptimer_access, | |
1025 | .fieldoffset = offsetoflow32(CPUARMState, | |
1026 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
1027 | .resetfn = arm_cp_reset_ignore, | |
1028 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1029 | }, | |
1030 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1031 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1032 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1033 | .accessfn = gt_ptimer_access, |
55d284af PM |
1034 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1035 | .resetvalue = 0, | |
00108f2d | 1036 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1037 | }, |
1038 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
1039 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
1040 | .accessfn = gt_vtimer_access, | |
1041 | .fieldoffset = offsetoflow32(CPUARMState, | |
1042 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
1043 | .resetfn = arm_cp_reset_ignore, | |
1044 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1045 | }, | |
1046 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1047 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1048 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1049 | .accessfn = gt_vtimer_access, |
55d284af PM |
1050 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1051 | .resetvalue = 0, | |
00108f2d | 1052 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1053 | }, |
1054 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1055 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1056 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 1057 | .accessfn = gt_ptimer_access, |
55d284af PM |
1058 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1059 | }, | |
a7adc4b7 PM |
1060 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1061 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
1062 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1063 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1064 | }, | |
55d284af PM |
1065 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
1066 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 1067 | .accessfn = gt_vtimer_access, |
55d284af PM |
1068 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1069 | }, | |
a7adc4b7 PM |
1070 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1071 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
1072 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1073 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1074 | }, | |
55d284af PM |
1075 | /* The counter itself */ |
1076 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
1077 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 1078 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1079 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1080 | }, | |
1081 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1082 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
1083 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1084 | .accessfn = gt_pct_access, | |
55d284af PM |
1085 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1086 | }, | |
1087 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
1088 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 1089 | .accessfn = gt_vct_access, |
a7adc4b7 PM |
1090 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1091 | }, | |
1092 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1093 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
1094 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1095 | .accessfn = gt_vct_access, | |
55d284af PM |
1096 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1097 | }, | |
1098 | /* Comparison value, indicating when the timer goes off */ | |
1099 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
1100 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1101 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1102 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
a7adc4b7 PM |
1103 | .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore, |
1104 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1105 | }, | |
1106 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1107 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1108 | .access = PL1_RW | PL0_R, | |
1109 | .type = ARM_CP_IO, | |
1110 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
1111 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1112 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1113 | }, |
1114 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1115 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1116 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1117 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
a7adc4b7 PM |
1118 | .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore, |
1119 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1120 | }, | |
1121 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1122 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1123 | .access = PL1_RW | PL0_R, | |
1124 | .type = ARM_CP_IO, | |
1125 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1126 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1127 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1128 | }, |
1129 | REGINFO_SENTINEL | |
1130 | }; | |
1131 | ||
1132 | #else | |
1133 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1134 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1135 | * so instead just don't register any of them. |
1136 | */ | |
6cc7a3ae | 1137 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1138 | REGINFO_SENTINEL |
1139 | }; | |
1140 | ||
55d284af PM |
1141 | #endif |
1142 | ||
c4241c7d | 1143 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1144 | { |
891a2fe7 PM |
1145 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1146 | env->cp15.c7_par = value; | |
1147 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
4a501606 PM |
1148 | env->cp15.c7_par = value & 0xfffff6ff; |
1149 | } else { | |
1150 | env->cp15.c7_par = value & 0xfffff1ff; | |
1151 | } | |
4a501606 PM |
1152 | } |
1153 | ||
1154 | #ifndef CONFIG_USER_ONLY | |
1155 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1156 | |
2c8dd318 RH |
1157 | /* Return true if extended addresses are enabled. |
1158 | * This is always the case if our translation regime is 64 bit, | |
1159 | * but depends on TTBCR.EAE for 32 bit. | |
702a9357 PM |
1160 | */ |
1161 | static inline bool extended_addresses_enabled(CPUARMState *env) | |
1162 | { | |
2c8dd318 RH |
1163 | return arm_el_is_aa64(env, 1) |
1164 | || ((arm_feature(env, ARM_FEATURE_LPAE) | |
1165 | && (env->cp15.c2_control & (1U << 31)))); | |
702a9357 PM |
1166 | } |
1167 | ||
92611c00 PM |
1168 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1169 | { | |
1170 | if (ri->opc2 & 4) { | |
1171 | /* Other states are only available with TrustZone; in | |
1172 | * a non-TZ implementation these registers don't exist | |
1173 | * at all, which is an Uncategorized trap. This underdecoding | |
1174 | * is safe because the reginfo is NO_MIGRATE. | |
1175 | */ | |
1176 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1177 | } | |
1178 | return CP_ACCESS_OK; | |
1179 | } | |
1180 | ||
c4241c7d | 1181 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1182 | { |
a8170e5e | 1183 | hwaddr phys_addr; |
4a501606 PM |
1184 | target_ulong page_size; |
1185 | int prot; | |
1186 | int ret, is_user = ri->opc2 & 2; | |
1187 | int access_type = ri->opc2 & 1; | |
1188 | ||
4a501606 PM |
1189 | ret = get_phys_addr(env, value, access_type, is_user, |
1190 | &phys_addr, &prot, &page_size); | |
702a9357 PM |
1191 | if (extended_addresses_enabled(env)) { |
1192 | /* ret is a DFSR/IFSR value for the long descriptor | |
1193 | * translation table format, but with WnR always clear. | |
1194 | * Convert it to a 64-bit PAR. | |
1195 | */ | |
1196 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
1197 | if (ret == 0) { | |
1198 | par64 |= phys_addr & ~0xfffULL; | |
1199 | /* We don't set the ATTR or SH fields in the PAR. */ | |
4a501606 | 1200 | } else { |
702a9357 PM |
1201 | par64 |= 1; /* F */ |
1202 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
1203 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
1204 | * implement virtualization and therefore there can't be a stage 2 | |
1205 | * fault. | |
1206 | */ | |
4a501606 | 1207 | } |
702a9357 PM |
1208 | env->cp15.c7_par = par64; |
1209 | env->cp15.c7_par_hi = par64 >> 32; | |
4a501606 | 1210 | } else { |
702a9357 PM |
1211 | /* ret is a DFSR/IFSR value for the short descriptor |
1212 | * translation table format (with WnR always clear). | |
1213 | * Convert it to a 32-bit PAR. | |
1214 | */ | |
1215 | if (ret == 0) { | |
1216 | /* We do not set any attribute bits in the PAR */ | |
1217 | if (page_size == (1 << 24) | |
1218 | && arm_feature(env, ARM_FEATURE_V7)) { | |
1219 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; | |
1220 | } else { | |
1221 | env->cp15.c7_par = phys_addr & 0xfffff000; | |
1222 | } | |
1223 | } else { | |
775fda92 PM |
1224 | env->cp15.c7_par = ((ret & (1 << 10)) >> 5) | |
1225 | ((ret & (1 << 12)) >> 6) | | |
702a9357 PM |
1226 | ((ret & 0xf) << 1) | 1; |
1227 | } | |
1228 | env->cp15.c7_par_hi = 0; | |
4a501606 | 1229 | } |
4a501606 PM |
1230 | } |
1231 | #endif | |
1232 | ||
1233 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1234 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1235 | .access = PL1_RW, .resetvalue = 0, | |
1236 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par), | |
1237 | .writefn = par_write }, | |
1238 | #ifndef CONFIG_USER_ONLY | |
1239 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
92611c00 PM |
1240 | .access = PL1_W, .accessfn = ats_access, |
1241 | .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, | |
4a501606 PM |
1242 | #endif |
1243 | REGINFO_SENTINEL | |
1244 | }; | |
1245 | ||
18032bec PM |
1246 | /* Return basic MPU access permission bits. */ |
1247 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1248 | { | |
1249 | uint32_t ret; | |
1250 | uint32_t mask; | |
1251 | int i; | |
1252 | ret = 0; | |
1253 | mask = 3; | |
1254 | for (i = 0; i < 16; i += 2) { | |
1255 | ret |= (val >> i) & mask; | |
1256 | mask <<= 2; | |
1257 | } | |
1258 | return ret; | |
1259 | } | |
1260 | ||
1261 | /* Pad basic MPU access permission bits to extended format. */ | |
1262 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1263 | { | |
1264 | uint32_t ret; | |
1265 | uint32_t mask; | |
1266 | int i; | |
1267 | ret = 0; | |
1268 | mask = 3; | |
1269 | for (i = 0; i < 16; i += 2) { | |
1270 | ret |= (val & mask) << i; | |
1271 | mask <<= 2; | |
1272 | } | |
1273 | return ret; | |
1274 | } | |
1275 | ||
c4241c7d PM |
1276 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1277 | uint64_t value) | |
18032bec | 1278 | { |
7e09797c | 1279 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1280 | } |
1281 | ||
c4241c7d | 1282 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1283 | { |
7e09797c | 1284 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
1285 | } |
1286 | ||
c4241c7d PM |
1287 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1288 | uint64_t value) | |
18032bec | 1289 | { |
7e09797c | 1290 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1291 | } |
1292 | ||
c4241c7d | 1293 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1294 | { |
7e09797c | 1295 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
1296 | } |
1297 | ||
1298 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | |
1299 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d4e6df63 | 1300 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
7e09797c PM |
1301 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1302 | .resetvalue = 0, | |
18032bec PM |
1303 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
1304 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
d4e6df63 | 1305 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
7e09797c PM |
1306 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1307 | .resetvalue = 0, | |
18032bec PM |
1308 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
1309 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1310 | .access = PL1_RW, | |
7e09797c PM |
1311 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1312 | .resetvalue = 0, }, | |
18032bec PM |
1313 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
1314 | .access = PL1_RW, | |
7e09797c PM |
1315 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1316 | .resetvalue = 0, }, | |
ecce5c3c PM |
1317 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1318 | .access = PL1_RW, | |
1319 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1320 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1321 | .access = PL1_RW, | |
1322 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 1323 | /* Protection region base and size registers */ |
e508a92b PM |
1324 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
1325 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1326 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
1327 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
1328 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1329 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
1330 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
1331 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1332 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
1333 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
1334 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1335 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
1336 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
1337 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1338 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
1339 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
1340 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1341 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
1342 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
1343 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1344 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
1345 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
1346 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1347 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
1348 | REGINFO_SENTINEL |
1349 | }; | |
1350 | ||
c4241c7d PM |
1351 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1352 | uint64_t value) | |
ecce5c3c | 1353 | { |
2ebcebe2 PM |
1354 | int maskshift = extract32(value, 0, 3); |
1355 | ||
74f1c6dd | 1356 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) { |
e42c4db3 | 1357 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
e42c4db3 PM |
1358 | } else { |
1359 | value &= 7; | |
1360 | } | |
1361 | /* Note that we always calculate c2_mask and c2_base_mask, but | |
1362 | * they are only used for short-descriptor tables (ie if EAE is 0); | |
1363 | * for long-descriptor tables the TTBCR fields are used differently | |
1364 | * and the c2_mask and c2_base_mask values are meaningless. | |
1365 | */ | |
ecce5c3c | 1366 | env->cp15.c2_control = value; |
2ebcebe2 PM |
1367 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
1368 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
1369 | } |
1370 | ||
c4241c7d PM |
1371 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1372 | uint64_t value) | |
d4e6df63 | 1373 | { |
00c8cb0a AF |
1374 | ARMCPU *cpu = arm_env_get_cpu(env); |
1375 | ||
d4e6df63 PM |
1376 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1377 | /* With LPAE the TTBCR could result in a change of ASID | |
1378 | * via the TTBCR.A1 bit, so do a TLB flush. | |
1379 | */ | |
00c8cb0a | 1380 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 1381 | } |
c4241c7d | 1382 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
1383 | } |
1384 | ||
ecce5c3c PM |
1385 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1386 | { | |
1387 | env->cp15.c2_base_mask = 0xffffc000u; | |
1388 | env->cp15.c2_control = 0; | |
1389 | env->cp15.c2_mask = 0; | |
1390 | } | |
1391 | ||
cb2e37df PM |
1392 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1393 | uint64_t value) | |
1394 | { | |
00c8cb0a AF |
1395 | ARMCPU *cpu = arm_env_get_cpu(env); |
1396 | ||
cb2e37df | 1397 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 1398 | tlb_flush(CPU(cpu), 1); |
cb2e37df PM |
1399 | env->cp15.c2_control = value; |
1400 | } | |
1401 | ||
327ed10f PM |
1402 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1403 | uint64_t value) | |
1404 | { | |
1405 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
1406 | * must flush the TLB. | |
1407 | */ | |
1408 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
1409 | ARMCPU *cpu = arm_env_get_cpu(env); |
1410 | ||
1411 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
1412 | } |
1413 | raw_write(env, ri, value); | |
1414 | } | |
1415 | ||
18032bec PM |
1416 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
1417 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
6cd8a264 RH |
1418 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
1419 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el1), | |
1420 | .resetfn = arm_cp_reset_ignore, }, | |
18032bec PM |
1421 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
1422 | .access = PL1_RW, | |
6cd8a264 RH |
1423 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, }, |
1424 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, | |
1425 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1426 | .access = PL1_RW, | |
1427 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el1), .resetvalue = 0, }, | |
327ed10f PM |
1428 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
1429 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1430 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1431 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
1432 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1433 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1434 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1435 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
cb2e37df PM |
1436 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
1437 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1438 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
1439 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
ecce5c3c | 1440 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, |
cb2e37df PM |
1441 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
1442 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write, | |
1443 | .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, | |
1444 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) }, | |
6cd8a264 RH |
1445 | /* 64-bit FAR; this entry also gives us the AArch32 DFAR */ |
1446 | { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH, | |
1447 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1448 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el1), | |
06d76f31 | 1449 | .resetvalue = 0, }, |
18032bec PM |
1450 | REGINFO_SENTINEL |
1451 | }; | |
1452 | ||
c4241c7d PM |
1453 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1454 | uint64_t value) | |
1047b9d7 PM |
1455 | { |
1456 | env->cp15.c15_ticonfig = value & 0xe7; | |
1457 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
1458 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
1459 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
1460 | } |
1461 | ||
c4241c7d PM |
1462 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1463 | uint64_t value) | |
1047b9d7 PM |
1464 | { |
1465 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
1466 | } |
1467 | ||
c4241c7d PM |
1468 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1469 | uint64_t value) | |
1047b9d7 PM |
1470 | { |
1471 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 1472 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
1473 | } |
1474 | ||
c4241c7d PM |
1475 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1476 | uint64_t value) | |
c4804214 PM |
1477 | { |
1478 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
1479 | * containing a dirty line; cache flush operations have to reset these. | |
1480 | */ | |
1481 | env->cp15.c15_i_max = 0x000; | |
1482 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
1483 | } |
1484 | ||
18032bec PM |
1485 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
1486 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1487 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
6cd8a264 RH |
1488 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el1), |
1489 | .resetvalue = 0, }, | |
1047b9d7 PM |
1490 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1491 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1492 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1493 | .access = PL1_RW, | |
1494 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1495 | .writefn = omap_ticonfig_write }, | |
1496 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1497 | .access = PL1_RW, | |
1498 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1499 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1500 | .access = PL1_RW, .resetvalue = 0xff0, | |
1501 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1502 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1503 | .access = PL1_RW, | |
1504 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1505 | .writefn = omap_threadid_write }, | |
1506 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1507 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
d4e6df63 | 1508 | .type = ARM_CP_NO_MIGRATE, |
1047b9d7 PM |
1509 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1510 | /* TODO: Peripheral port remap register: | |
1511 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1512 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1513 | * when MMU is off. | |
1514 | */ | |
c4804214 | 1515 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 PM |
1516 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
1517 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, | |
c4804214 | 1518 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
1519 | { .name = "C9", .cp = 15, .crn = 9, |
1520 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1521 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
1522 | REGINFO_SENTINEL |
1523 | }; | |
1524 | ||
c4241c7d PM |
1525 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1526 | uint64_t value) | |
1047b9d7 PM |
1527 | { |
1528 | value &= 0x3fff; | |
1529 | if (env->cp15.c15_cpar != value) { | |
1530 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ | |
1531 | tb_flush(env); | |
1532 | env->cp15.c15_cpar = value; | |
1533 | } | |
1047b9d7 PM |
1534 | } |
1535 | ||
1536 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1537 | { .name = "XSCALE_CPAR", | |
1538 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1539 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1540 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
1541 | { .name = "XSCALE_AUXCR", |
1542 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1543 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1544 | .resetvalue = 0, }, | |
1047b9d7 PM |
1545 | REGINFO_SENTINEL |
1546 | }; | |
1547 | ||
1548 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1549 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1550 | * implementation of this implementation-defined space. | |
1551 | * Ideally this should eventually disappear in favour of actually | |
1552 | * implementing the correct behaviour for all cores. | |
1553 | */ | |
1554 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1555 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 PC |
1556 | .access = PL1_RW, |
1557 | .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE, | |
d4e6df63 | 1558 | .resetvalue = 0 }, |
18032bec PM |
1559 | REGINFO_SENTINEL |
1560 | }; | |
1561 | ||
c4804214 PM |
1562 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1563 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1564 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
d4e6df63 PM |
1565 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1566 | .resetvalue = 0 }, | |
c4804214 PM |
1567 | REGINFO_SENTINEL |
1568 | }; | |
1569 | ||
1570 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1571 | /* We never have a a block transfer operation in progress */ | |
1572 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
d4e6df63 PM |
1573 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1574 | .resetvalue = 0 }, | |
30b05bba PM |
1575 | /* The cache ops themselves: these all NOP for QEMU */ |
1576 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1577 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1578 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
1579 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1580 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
1581 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1582 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
1583 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1584 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
1585 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1586 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
1587 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
1588 | REGINFO_SENTINEL |
1589 | }; | |
1590 | ||
1591 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
1592 | /* The cache test-and-clean instructions always return (1 << 30) | |
1593 | * to indicate that there are no dirty cache lines. | |
1594 | */ | |
1595 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
d4e6df63 PM |
1596 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1597 | .resetvalue = (1 << 30) }, | |
c4804214 | 1598 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
d4e6df63 PM |
1599 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1600 | .resetvalue = (1 << 30) }, | |
c4804214 PM |
1601 | REGINFO_SENTINEL |
1602 | }; | |
1603 | ||
34f90529 PM |
1604 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
1605 | /* Ignore ReadBuffer accesses */ | |
1606 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
1607 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1608 | .access = PL1_RW, .resetvalue = 0, |
1609 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, | |
34f90529 PM |
1610 | REGINFO_SENTINEL |
1611 | }; | |
1612 | ||
c4241c7d | 1613 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 1614 | { |
55e5c285 AF |
1615 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
1616 | uint32_t mpidr = cs->cpu_index; | |
4b7fff2f PM |
1617 | /* We don't support setting cluster ID ([8..11]) (known as Aff1 |
1618 | * in later ARM ARM versions), or any of the higher affinity level fields, | |
81bdde9d PM |
1619 | * so these bits always RAZ. |
1620 | */ | |
1621 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
78dbbbe4 | 1622 | mpidr |= (1U << 31); |
81bdde9d PM |
1623 | /* Cores which are uniprocessor (non-coherent) |
1624 | * but still implement the MP extensions set | |
1625 | * bit 30. (For instance, A9UP.) However we do | |
1626 | * not currently model any of those cores. | |
1627 | */ | |
1628 | } | |
c4241c7d | 1629 | return mpidr; |
81bdde9d PM |
1630 | } |
1631 | ||
1632 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
1633 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
1634 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
d4e6df63 | 1635 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, |
81bdde9d PM |
1636 | REGINFO_SENTINEL |
1637 | }; | |
1638 | ||
c4241c7d | 1639 | static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri) |
891a2fe7 | 1640 | { |
c4241c7d | 1641 | return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; |
891a2fe7 PM |
1642 | } |
1643 | ||
c4241c7d PM |
1644 | static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1645 | uint64_t value) | |
891a2fe7 PM |
1646 | { |
1647 | env->cp15.c7_par_hi = value >> 32; | |
1648 | env->cp15.c7_par = value; | |
891a2fe7 PM |
1649 | } |
1650 | ||
1651 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1652 | { | |
1653 | env->cp15.c7_par_hi = 0; | |
1654 | env->cp15.c7_par = 0; | |
1655 | } | |
1656 | ||
7ac681cf | 1657 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 1658 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
1659 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
1660 | */ | |
b0fe2427 PM |
1661 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
1662 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
7ac681cf PM |
1663 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
1664 | .resetvalue = 0 }, | |
b0fe2427 | 1665 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf PM |
1666 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
1667 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1668 | .resetvalue = 0 }, | |
f9fc619a PM |
1669 | /* 64 bit access versions of the (dummy) debug registers */ |
1670 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
1671 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
1672 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
1673 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
891a2fe7 PM |
1674 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1675 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
1676 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, | |
1677 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | |
327ed10f PM |
1678 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
1679 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1680 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
891a2fe7 | 1681 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
327ed10f PM |
1682 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
1683 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1684 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
7ac681cf PM |
1685 | REGINFO_SENTINEL |
1686 | }; | |
1687 | ||
c4241c7d | 1688 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1689 | { |
c4241c7d | 1690 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
1691 | } |
1692 | ||
c4241c7d PM |
1693 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1694 | uint64_t value) | |
b0d2b7d0 PM |
1695 | { |
1696 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
1697 | } |
1698 | ||
c4241c7d | 1699 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1700 | { |
c4241c7d | 1701 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
1702 | } |
1703 | ||
c4241c7d PM |
1704 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1705 | uint64_t value) | |
b0d2b7d0 PM |
1706 | { |
1707 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
1708 | } |
1709 | ||
c2b820fe PM |
1710 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1711 | { | |
1712 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) { | |
1713 | return CP_ACCESS_TRAP; | |
1714 | } | |
1715 | return CP_ACCESS_OK; | |
1716 | } | |
1717 | ||
1718 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1719 | uint64_t value) | |
1720 | { | |
1721 | env->daif = value & PSTATE_DAIF; | |
1722 | } | |
1723 | ||
8af35c37 PM |
1724 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
1725 | const ARMCPRegInfo *ri) | |
1726 | { | |
1727 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
1728 | * SCTLR_EL1.UCI is set. | |
1729 | */ | |
1730 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) { | |
1731 | return CP_ACCESS_TRAP; | |
1732 | } | |
1733 | return CP_ACCESS_OK; | |
1734 | } | |
1735 | ||
168aa23b PM |
1736 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1737 | uint64_t value) | |
1738 | { | |
1739 | /* Invalidate by VA (AArch64 version) */ | |
31b030d4 | 1740 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 1741 | uint64_t pageaddr = value << 12; |
31b030d4 | 1742 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
1743 | } |
1744 | ||
1745 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1746 | uint64_t value) | |
1747 | { | |
1748 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
31b030d4 | 1749 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 1750 | uint64_t pageaddr = value << 12; |
31b030d4 | 1751 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
1752 | } |
1753 | ||
1754 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1755 | uint64_t value) | |
1756 | { | |
1757 | /* Invalidate by ASID (AArch64 version) */ | |
00c8cb0a | 1758 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 1759 | int asid = extract64(value, 48, 16); |
00c8cb0a | 1760 | tlb_flush(CPU(cpu), asid == 0); |
168aa23b PM |
1761 | } |
1762 | ||
aca3f40b PM |
1763 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1764 | { | |
1765 | /* We don't implement EL2, so the only control on DC ZVA is the | |
1766 | * bit in the SCTLR which can prohibit access for EL0. | |
1767 | */ | |
1768 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) { | |
1769 | return CP_ACCESS_TRAP; | |
1770 | } | |
1771 | return CP_ACCESS_OK; | |
1772 | } | |
1773 | ||
1774 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1775 | { | |
1776 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1777 | int dzp_bit = 1 << 4; | |
1778 | ||
1779 | /* DZP indicates whether DC ZVA access is allowed */ | |
1780 | if (aa64_zva_access(env, NULL) != CP_ACCESS_OK) { | |
1781 | dzp_bit = 0; | |
1782 | } | |
1783 | return cpu->dcz_blocksize | dzp_bit; | |
1784 | } | |
1785 | ||
f502cfc2 PM |
1786 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1787 | { | |
1788 | if (!env->pstate & PSTATE_SP) { | |
1789 | /* Access to SP_EL0 is undefined if it's being used as | |
1790 | * the stack pointer. | |
1791 | */ | |
1792 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1793 | } | |
1794 | return CP_ACCESS_OK; | |
1795 | } | |
1796 | ||
1797 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1798 | { | |
1799 | return env->pstate & PSTATE_SP; | |
1800 | } | |
1801 | ||
1802 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
1803 | { | |
1804 | update_spsel(env, val); | |
1805 | } | |
1806 | ||
b0d2b7d0 PM |
1807 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
1808 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
1809 | * significantly for system emulation of AArch64 CPUs. | |
1810 | */ | |
1811 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
1812 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
1813 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
1814 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
1815 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
1816 | .type = ARM_CP_NO_MIGRATE, | |
1817 | .access = PL0_RW, .accessfn = aa64_daif_access, | |
1818 | .fieldoffset = offsetof(CPUARMState, daif), | |
1819 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
1820 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
1821 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
1822 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
1823 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
1824 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
1825 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
1826 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
1827 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
aca3f40b PM |
1828 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE, |
1829 | .readfn = aa64_dczid_read }, | |
1830 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
1831 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
1832 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
1833 | #ifndef CONFIG_USER_ONLY | |
1834 | /* Avoid overhead of an access check that always passes in user-mode */ | |
1835 | .accessfn = aa64_zva_access, | |
1836 | #endif | |
1837 | }, | |
0eef9d98 PM |
1838 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
1839 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
1840 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
1841 | /* Cache ops: all NOPs since we don't emulate caches */ |
1842 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
1843 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
1844 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1845 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
1846 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
1847 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1848 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
1849 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
1850 | .access = PL0_W, .type = ARM_CP_NOP, | |
1851 | .accessfn = aa64_cacheop_access }, | |
1852 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
1853 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1854 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1855 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
1856 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
1857 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1858 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
1859 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
1860 | .access = PL0_W, .type = ARM_CP_NOP, | |
1861 | .accessfn = aa64_cacheop_access }, | |
1862 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
1863 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
1864 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1865 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
1866 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
1867 | .access = PL0_W, .type = ARM_CP_NOP, | |
1868 | .accessfn = aa64_cacheop_access }, | |
1869 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
1870 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
1871 | .access = PL0_W, .type = ARM_CP_NOP, | |
1872 | .accessfn = aa64_cacheop_access }, | |
1873 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
1874 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
1875 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
1876 | /* TLBI operations */ |
1877 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
1878 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
1879 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1880 | .writefn = tlbiall_write }, | |
1881 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, | |
1882 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1, | |
1883 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1884 | .writefn = tlbi_aa64_va_write }, | |
1885 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, | |
1886 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2, | |
1887 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1888 | .writefn = tlbi_aa64_asid_write }, | |
1889 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, | |
1890 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3, | |
1891 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1892 | .writefn = tlbi_aa64_vaa_write }, | |
1893 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, | |
1894 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5, | |
1895 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1896 | .writefn = tlbi_aa64_va_write }, | |
1897 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, | |
1898 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7, | |
1899 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1900 | .writefn = tlbi_aa64_vaa_write }, | |
1901 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, | |
1902 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
1903 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1904 | .writefn = tlbiall_write }, | |
1905 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
1906 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1, | |
1907 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1908 | .writefn = tlbi_aa64_va_write }, | |
1909 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
1910 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2, | |
1911 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1912 | .writefn = tlbi_aa64_asid_write }, | |
1913 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
1914 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3, | |
1915 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1916 | .writefn = tlbi_aa64_vaa_write }, | |
1917 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
1918 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5, | |
1919 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1920 | .writefn = tlbi_aa64_va_write }, | |
1921 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
1922 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7, | |
1923 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1924 | .writefn = tlbi_aa64_vaa_write }, | |
91e24069 PM |
1925 | /* Dummy implementation of monitor debug system control register: |
1926 | * we don't support debug. | |
1927 | */ | |
1928 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64, | |
1929 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
1930 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
cd5c11b8 PM |
1931 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
1932 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64, | |
1933 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1934 | .access = PL1_W, .type = ARM_CP_NOP }, | |
a0618a19 PM |
1935 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
1936 | .type = ARM_CP_NO_MIGRATE, | |
1937 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, | |
1938 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, elr_el1) }, | |
a65f1de9 PM |
1939 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
1940 | .type = ARM_CP_NO_MIGRATE, | |
1941 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, | |
1942 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) }, | |
f502cfc2 PM |
1943 | /* We rely on the access checks not allowing the guest to write to the |
1944 | * state field when SPSel indicates that it's being used as the stack | |
1945 | * pointer. | |
1946 | */ | |
1947 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
1948 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
1949 | .access = PL1_RW, .accessfn = sp_el0_access, | |
1950 | .type = ARM_CP_NO_MIGRATE, | |
1951 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, | |
1952 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, | |
1953 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
1954 | .type = ARM_CP_NO_MIGRATE, | |
1955 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, | |
b0d2b7d0 PM |
1956 | REGINFO_SENTINEL |
1957 | }; | |
1958 | ||
c4241c7d PM |
1959 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1960 | uint64_t value) | |
2771db27 | 1961 | { |
00c8cb0a AF |
1962 | ARMCPU *cpu = arm_env_get_cpu(env); |
1963 | ||
2771db27 PM |
1964 | env->cp15.c1_sys = value; |
1965 | /* ??? Lots of these bits are not implemented. */ | |
1966 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
00c8cb0a | 1967 | tlb_flush(CPU(cpu), 1); |
2771db27 PM |
1968 | } |
1969 | ||
7da845b0 PM |
1970 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1971 | { | |
1972 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
1973 | * but the AArch32 CTR has its own reginfo struct) | |
1974 | */ | |
1975 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) { | |
1976 | return CP_ACCESS_TRAP; | |
1977 | } | |
1978 | return CP_ACCESS_OK; | |
1979 | } | |
1980 | ||
0b45451e PM |
1981 | static void define_aarch64_debug_regs(ARMCPU *cpu) |
1982 | { | |
1983 | /* Define breakpoint and watchpoint registers. These do nothing | |
1984 | * but read as written, for now. | |
1985 | */ | |
1986 | int i; | |
1987 | ||
1988 | for (i = 0; i < 16; i++) { | |
1989 | ARMCPRegInfo dbgregs[] = { | |
1990 | { .name = "DBGBVR", .state = ARM_CP_STATE_AA64, | |
1991 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
1992 | .access = PL1_RW, | |
1993 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) }, | |
1994 | { .name = "DBGBCR", .state = ARM_CP_STATE_AA64, | |
1995 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
1996 | .access = PL1_RW, | |
1997 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) }, | |
1998 | { .name = "DBGWVR", .state = ARM_CP_STATE_AA64, | |
1999 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
2000 | .access = PL1_RW, | |
2001 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) }, | |
2002 | { .name = "DBGWCR", .state = ARM_CP_STATE_AA64, | |
2003 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
2004 | .access = PL1_RW, | |
2005 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) }, | |
2006 | REGINFO_SENTINEL | |
2007 | }; | |
2008 | define_arm_cp_regs(cpu, dbgregs); | |
2009 | } | |
2010 | } | |
2011 | ||
2ceb98c0 PM |
2012 | void register_cp_regs_for_features(ARMCPU *cpu) |
2013 | { | |
2014 | /* Register all the coprocessor registers based on feature bits */ | |
2015 | CPUARMState *env = &cpu->env; | |
2016 | if (arm_feature(env, ARM_FEATURE_M)) { | |
2017 | /* M profile has no coprocessor registers */ | |
2018 | return; | |
2019 | } | |
2020 | ||
e9aa6c21 | 2021 | define_arm_cp_regs(cpu, cp_reginfo); |
7d57f408 | 2022 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
2023 | /* The ID registers all have impdef reset values */ |
2024 | ARMCPRegInfo v6_idregs[] = { | |
2025 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, | |
2026 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
2027 | .resetvalue = cpu->id_pfr0 }, | |
2028 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, | |
2029 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
2030 | .resetvalue = cpu->id_pfr1 }, | |
2031 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, | |
2032 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
2033 | .resetvalue = cpu->id_dfr0 }, | |
2034 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, | |
2035 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
2036 | .resetvalue = cpu->id_afr0 }, | |
2037 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, | |
2038 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
2039 | .resetvalue = cpu->id_mmfr0 }, | |
2040 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, | |
2041 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
2042 | .resetvalue = cpu->id_mmfr1 }, | |
2043 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, | |
2044 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
2045 | .resetvalue = cpu->id_mmfr2 }, | |
2046 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, | |
2047 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
2048 | .resetvalue = cpu->id_mmfr3 }, | |
2049 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, | |
2050 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
2051 | .resetvalue = cpu->id_isar0 }, | |
2052 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, | |
2053 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
2054 | .resetvalue = cpu->id_isar1 }, | |
2055 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, | |
2056 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
2057 | .resetvalue = cpu->id_isar2 }, | |
2058 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, | |
2059 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
2060 | .resetvalue = cpu->id_isar3 }, | |
2061 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, | |
2062 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
2063 | .resetvalue = cpu->id_isar4 }, | |
2064 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, | |
2065 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
2066 | .resetvalue = cpu->id_isar5 }, | |
2067 | /* 6..7 are as yet unallocated and must RAZ */ | |
2068 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
2069 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
2070 | .resetvalue = 0 }, | |
2071 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
2072 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
2073 | .resetvalue = 0 }, | |
2074 | REGINFO_SENTINEL | |
2075 | }; | |
2076 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
2077 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
2078 | } else { | |
2079 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
2080 | } | |
4d31c596 PM |
2081 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
2082 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
2083 | } | |
e9aa6c21 | 2084 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 2085 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
2086 | * field as main ID register, and we implement only the cycle |
2087 | * count register. | |
200ac0ef | 2088 | */ |
7c2cb42b | 2089 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
2090 | ARMCPRegInfo pmcr = { |
2091 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
2092 | .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, | |
d6d60581 | 2093 | .type = ARM_CP_IO, |
200ac0ef | 2094 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
2095 | .accessfn = pmreg_access, .writefn = pmcr_write, |
2096 | .raw_writefn = raw_write, | |
200ac0ef | 2097 | }; |
7c2cb42b AF |
2098 | define_one_arm_cp_reg(cpu, &pmcr); |
2099 | #endif | |
776d4e5c | 2100 | ARMCPRegInfo clidr = { |
7da845b0 PM |
2101 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
2102 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
2103 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
2104 | }; | |
776d4e5c | 2105 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 2106 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
7d57f408 PM |
2107 | } else { |
2108 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 2109 | } |
b0d2b7d0 | 2110 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
2111 | /* AArch64 ID registers, which all have impdef reset values */ |
2112 | ARMCPRegInfo v8_idregs[] = { | |
2113 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2114 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
2115 | .access = PL1_R, .type = ARM_CP_CONST, | |
2116 | .resetvalue = cpu->id_aa64pfr0 }, | |
2117 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2118 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
2119 | .access = PL1_R, .type = ARM_CP_CONST, | |
2120 | .resetvalue = cpu->id_aa64pfr1}, | |
2121 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2122 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
2123 | .access = PL1_R, .type = ARM_CP_CONST, | |
9225d739 PM |
2124 | /* We mask out the PMUVer field, beacuse we don't currently |
2125 | * implement the PMU. Not advertising it prevents the guest | |
2126 | * from trying to use it and getting UNDEFs on registers we | |
2127 | * don't implement. | |
2128 | */ | |
2129 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
2130 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
2131 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
2132 | .access = PL1_R, .type = ARM_CP_CONST, | |
2133 | .resetvalue = cpu->id_aa64dfr1 }, | |
2134 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2135 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
2136 | .access = PL1_R, .type = ARM_CP_CONST, | |
2137 | .resetvalue = cpu->id_aa64afr0 }, | |
2138 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2139 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
2140 | .access = PL1_R, .type = ARM_CP_CONST, | |
2141 | .resetvalue = cpu->id_aa64afr1 }, | |
2142 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
2143 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
2144 | .access = PL1_R, .type = ARM_CP_CONST, | |
2145 | .resetvalue = cpu->id_aa64isar0 }, | |
2146 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
2147 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
2148 | .access = PL1_R, .type = ARM_CP_CONST, | |
2149 | .resetvalue = cpu->id_aa64isar1 }, | |
2150 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2151 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
2152 | .access = PL1_R, .type = ARM_CP_CONST, | |
2153 | .resetvalue = cpu->id_aa64mmfr0 }, | |
2154 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2155 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
2156 | .access = PL1_R, .type = ARM_CP_CONST, | |
2157 | .resetvalue = cpu->id_aa64mmfr1 }, | |
2158 | REGINFO_SENTINEL | |
2159 | }; | |
2160 | define_arm_cp_regs(cpu, v8_idregs); | |
b0d2b7d0 | 2161 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
0b45451e | 2162 | define_aarch64_debug_regs(cpu); |
b0d2b7d0 | 2163 | } |
18032bec PM |
2164 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
2165 | /* These are the MPU registers prior to PMSAv6. Any new | |
2166 | * PMSA core later than the ARM946 will require that we | |
2167 | * implement the PMSAv6 or PMSAv7 registers, which are | |
2168 | * completely different. | |
2169 | */ | |
2170 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
2171 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
2172 | } else { | |
2173 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
2174 | } | |
c326b979 PM |
2175 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
2176 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
2177 | } | |
6cc7a3ae PM |
2178 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
2179 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
2180 | } | |
4a501606 PM |
2181 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
2182 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
2183 | } | |
c4804214 PM |
2184 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
2185 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
2186 | } | |
2187 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
2188 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
2189 | } | |
2190 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
2191 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
2192 | } | |
18032bec PM |
2193 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
2194 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
2195 | } | |
34f90529 PM |
2196 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
2197 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
2198 | } | |
1047b9d7 PM |
2199 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
2200 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
2201 | } | |
2202 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
2203 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
2204 | } | |
7ac681cf PM |
2205 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2206 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
2207 | } | |
7884849c PM |
2208 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
2209 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
2210 | * be read-only (ie write causes UNDEF exception). | |
2211 | */ | |
2212 | { | |
2213 | ARMCPRegInfo id_cp_reginfo[] = { | |
2214 | /* Note that the MIDR isn't a simple constant register because | |
2215 | * of the TI925 behaviour where writes to another register can | |
2216 | * cause the MIDR value to change. | |
97ce8d61 PC |
2217 | * |
2218 | * Unimplemented registers in the c15 0 0 0 space default to | |
2219 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
2220 | * and friends override accordingly. | |
7884849c PM |
2221 | */ |
2222 | { .name = "MIDR", | |
97ce8d61 | 2223 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 2224 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 2225 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
2226 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
2227 | .type = ARM_CP_OVERRIDE }, | |
cd4da631 PM |
2228 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64, |
2229 | .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0, | |
2230 | .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST }, | |
7884849c PM |
2231 | { .name = "CTR", |
2232 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2233 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
7da845b0 PM |
2234 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
2235 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
2236 | .access = PL0_R, .accessfn = ctr_el0_access, | |
2237 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
7884849c PM |
2238 | { .name = "TCMTR", |
2239 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2240 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2241 | { .name = "TLBTR", | |
2242 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
2243 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2244 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | |
2245 | { .name = "DUMMY", | |
2246 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
2247 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2248 | { .name = "DUMMY", | |
2249 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
2250 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2251 | { .name = "DUMMY", | |
2252 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
2253 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2254 | { .name = "DUMMY", | |
2255 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
2256 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2257 | { .name = "DUMMY", | |
2258 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
2259 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2260 | REGINFO_SENTINEL | |
2261 | }; | |
2262 | ARMCPRegInfo crn0_wi_reginfo = { | |
2263 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
2264 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
2265 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
2266 | }; | |
2267 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
2268 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
2269 | ARMCPRegInfo *r; | |
2270 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
2271 | * whole space. Then update the specific ID registers to allow write |
2272 | * access, so that they ignore writes rather than causing them to | |
2273 | * UNDEF. | |
7884849c PM |
2274 | */ |
2275 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
2276 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { | |
2277 | r->access = PL1_RW; | |
7884849c | 2278 | } |
7884849c | 2279 | } |
a703eda1 | 2280 | define_arm_cp_regs(cpu, id_cp_reginfo); |
7884849c PM |
2281 | } |
2282 | ||
97ce8d61 PC |
2283 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
2284 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
2285 | } | |
2286 | ||
2771db27 PM |
2287 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
2288 | ARMCPRegInfo auxcr = { | |
2289 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2290 | .access = PL1_RW, .type = ARM_CP_CONST, | |
2291 | .resetvalue = cpu->reset_auxcr | |
2292 | }; | |
2293 | define_one_arm_cp_reg(cpu, &auxcr); | |
2294 | } | |
2295 | ||
d8ba780b PC |
2296 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
2297 | ARMCPRegInfo cbar = { | |
2298 | .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
2299 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
2300 | .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address) | |
2301 | }; | |
2302 | define_one_arm_cp_reg(cpu, &cbar); | |
2303 | } | |
2304 | ||
2771db27 PM |
2305 | /* Generic registers whose values depend on the implementation */ |
2306 | { | |
2307 | ARMCPRegInfo sctlr = { | |
5ebafdf3 PM |
2308 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
2309 | .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2771db27 | 2310 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), |
d4e6df63 PM |
2311 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
2312 | .raw_writefn = raw_write, | |
2771db27 PM |
2313 | }; |
2314 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
2315 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
2316 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
2317 | * an MMU enable to execute from cache. Imitate this behaviour. | |
2318 | */ | |
2319 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
2320 | } | |
2321 | define_one_arm_cp_reg(cpu, &sctlr); | |
2322 | } | |
2ceb98c0 PM |
2323 | } |
2324 | ||
778c3a06 | 2325 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 2326 | { |
9262685b | 2327 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
2328 | } |
2329 | ||
2330 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
2331 | { | |
22169d41 | 2332 | CPUState *cs = CPU(cpu); |
14969266 AF |
2333 | CPUARMState *env = &cpu->env; |
2334 | ||
6a669427 PM |
2335 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
2336 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
2337 | aarch64_fpu_gdb_set_reg, | |
2338 | 34, "aarch64-fpu.xml", 0); | |
2339 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 2340 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2341 | 51, "arm-neon.xml", 0); |
2342 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 2343 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2344 | 35, "arm-vfp3.xml", 0); |
2345 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 2346 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2347 | 19, "arm-vfp.xml", 0); |
2348 | } | |
40f137e1 PB |
2349 | } |
2350 | ||
777dc784 PM |
2351 | /* Sort alphabetically by type name, except for "any". */ |
2352 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 2353 | { |
777dc784 PM |
2354 | ObjectClass *class_a = (ObjectClass *)a; |
2355 | ObjectClass *class_b = (ObjectClass *)b; | |
2356 | const char *name_a, *name_b; | |
5adb4839 | 2357 | |
777dc784 PM |
2358 | name_a = object_class_get_name(class_a); |
2359 | name_b = object_class_get_name(class_b); | |
51492fd1 | 2360 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 2361 | return 1; |
51492fd1 | 2362 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
2363 | return -1; |
2364 | } else { | |
2365 | return strcmp(name_a, name_b); | |
5adb4839 PB |
2366 | } |
2367 | } | |
2368 | ||
777dc784 | 2369 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 2370 | { |
777dc784 | 2371 | ObjectClass *oc = data; |
92a31361 | 2372 | CPUListState *s = user_data; |
51492fd1 AF |
2373 | const char *typename; |
2374 | char *name; | |
3371d272 | 2375 | |
51492fd1 AF |
2376 | typename = object_class_get_name(oc); |
2377 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 2378 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
2379 | name); |
2380 | g_free(name); | |
777dc784 PM |
2381 | } |
2382 | ||
2383 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
2384 | { | |
92a31361 | 2385 | CPUListState s = { |
777dc784 PM |
2386 | .file = f, |
2387 | .cpu_fprintf = cpu_fprintf, | |
2388 | }; | |
2389 | GSList *list; | |
2390 | ||
2391 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
2392 | list = g_slist_sort(list, arm_cpu_list_compare); | |
2393 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
2394 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
2395 | g_slist_free(list); | |
a96c0514 PM |
2396 | #ifdef CONFIG_KVM |
2397 | /* The 'host' CPU type is dynamically registered only if KVM is | |
2398 | * enabled, so we have to special-case it here: | |
2399 | */ | |
2400 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
2401 | #endif | |
40f137e1 PB |
2402 | } |
2403 | ||
78027bb6 CR |
2404 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
2405 | { | |
2406 | ObjectClass *oc = data; | |
2407 | CpuDefinitionInfoList **cpu_list = user_data; | |
2408 | CpuDefinitionInfoList *entry; | |
2409 | CpuDefinitionInfo *info; | |
2410 | const char *typename; | |
2411 | ||
2412 | typename = object_class_get_name(oc); | |
2413 | info = g_malloc0(sizeof(*info)); | |
2414 | info->name = g_strndup(typename, | |
2415 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
2416 | ||
2417 | entry = g_malloc0(sizeof(*entry)); | |
2418 | entry->value = info; | |
2419 | entry->next = *cpu_list; | |
2420 | *cpu_list = entry; | |
2421 | } | |
2422 | ||
2423 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
2424 | { | |
2425 | CpuDefinitionInfoList *cpu_list = NULL; | |
2426 | GSList *list; | |
2427 | ||
2428 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
2429 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
2430 | g_slist_free(list); | |
2431 | ||
2432 | return cpu_list; | |
2433 | } | |
2434 | ||
6e6efd61 | 2435 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
f5a0a5a5 PM |
2436 | void *opaque, int state, |
2437 | int crm, int opc1, int opc2) | |
6e6efd61 PM |
2438 | { |
2439 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
2440 | * add a single reginfo struct to the hash table. | |
2441 | */ | |
2442 | uint32_t *key = g_new(uint32_t, 1); | |
2443 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
2444 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
f5a0a5a5 PM |
2445 | if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { |
2446 | /* The AArch32 view of a shared register sees the lower 32 bits | |
2447 | * of a 64 bit backing field. It is not migratable as the AArch64 | |
2448 | * view handles that. AArch64 also handles reset. | |
2449 | * We assume it is a cp15 register. | |
2450 | */ | |
2451 | r2->cp = 15; | |
2452 | r2->type |= ARM_CP_NO_MIGRATE; | |
2453 | r2->resetfn = arm_cp_reset_ignore; | |
2454 | #ifdef HOST_WORDS_BIGENDIAN | |
2455 | if (r2->fieldoffset) { | |
2456 | r2->fieldoffset += sizeof(uint32_t); | |
2457 | } | |
2458 | #endif | |
2459 | } | |
2460 | if (state == ARM_CP_STATE_AA64) { | |
2461 | /* To allow abbreviation of ARMCPRegInfo | |
2462 | * definitions, we treat cp == 0 as equivalent to | |
2463 | * the value for "standard guest-visible sysreg". | |
2464 | */ | |
2465 | if (r->cp == 0) { | |
2466 | r2->cp = CP_REG_ARM64_SYSREG_CP; | |
2467 | } | |
2468 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
2469 | r2->opc0, opc1, opc2); | |
2470 | } else { | |
2471 | *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2); | |
2472 | } | |
6e6efd61 PM |
2473 | if (opaque) { |
2474 | r2->opaque = opaque; | |
2475 | } | |
67ed771d PM |
2476 | /* reginfo passed to helpers is correct for the actual access, |
2477 | * and is never ARM_CP_STATE_BOTH: | |
2478 | */ | |
2479 | r2->state = state; | |
6e6efd61 PM |
2480 | /* Make sure reginfo passed to helpers for wildcarded regs |
2481 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
2482 | */ | |
2483 | r2->crm = crm; | |
2484 | r2->opc1 = opc1; | |
2485 | r2->opc2 = opc2; | |
2486 | /* By convention, for wildcarded registers only the first | |
2487 | * entry is used for migration; the others are marked as | |
2488 | * NO_MIGRATE so we don't try to transfer the register | |
2489 | * multiple times. Special registers (ie NOP/WFI) are | |
2490 | * never migratable. | |
2491 | */ | |
2492 | if ((r->type & ARM_CP_SPECIAL) || | |
2493 | ((r->crm == CP_ANY) && crm != 0) || | |
2494 | ((r->opc1 == CP_ANY) && opc1 != 0) || | |
2495 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
2496 | r2->type |= ARM_CP_NO_MIGRATE; | |
2497 | } | |
2498 | ||
2499 | /* Overriding of an existing definition must be explicitly | |
2500 | * requested. | |
2501 | */ | |
2502 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
2503 | ARMCPRegInfo *oldreg; | |
2504 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
2505 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
2506 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
2507 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
2508 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
2509 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
2510 | oldreg->name, r2->name); | |
2511 | g_assert_not_reached(); | |
2512 | } | |
2513 | } | |
2514 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
2515 | } | |
2516 | ||
2517 | ||
4b6a83fb PM |
2518 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
2519 | const ARMCPRegInfo *r, void *opaque) | |
2520 | { | |
2521 | /* Define implementations of coprocessor registers. | |
2522 | * We store these in a hashtable because typically | |
2523 | * there are less than 150 registers in a space which | |
2524 | * is 16*16*16*8*8 = 262144 in size. | |
2525 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
2526 | * If a register is defined twice then the second definition is | |
2527 | * used, so this can be used to define some generic registers and | |
2528 | * then override them with implementation specific variations. | |
2529 | * At least one of the original and the second definition should | |
2530 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
2531 | * against accidental use. | |
f5a0a5a5 PM |
2532 | * |
2533 | * The state field defines whether the register is to be | |
2534 | * visible in the AArch32 or AArch64 execution state. If the | |
2535 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
2536 | * reginfo structure for the AArch32 view, which sees the lower | |
2537 | * 32 bits of the 64 bit register. | |
2538 | * | |
2539 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
2540 | * be wildcarded. AArch64 registers are always considered to be 64 | |
2541 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
2542 | * the register, if any. | |
4b6a83fb | 2543 | */ |
f5a0a5a5 | 2544 | int crm, opc1, opc2, state; |
4b6a83fb PM |
2545 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
2546 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
2547 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
2548 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
2549 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
2550 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
2551 | /* 64 bit registers have only CRm and Opc1 fields */ | |
2552 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
2553 | /* op0 only exists in the AArch64 encodings */ |
2554 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
2555 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
2556 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
2557 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
2558 | * encodes a minimum access level for the register. We roll this | |
2559 | * runtime check into our general permission check code, so check | |
2560 | * here that the reginfo's specified permissions are strict enough | |
2561 | * to encompass the generic architectural permission check. | |
2562 | */ | |
2563 | if (r->state != ARM_CP_STATE_AA32) { | |
2564 | int mask = 0; | |
2565 | switch (r->opc1) { | |
2566 | case 0: case 1: case 2: | |
2567 | /* min_EL EL1 */ | |
2568 | mask = PL1_RW; | |
2569 | break; | |
2570 | case 3: | |
2571 | /* min_EL EL0 */ | |
2572 | mask = PL0_RW; | |
2573 | break; | |
2574 | case 4: | |
2575 | /* min_EL EL2 */ | |
2576 | mask = PL2_RW; | |
2577 | break; | |
2578 | case 5: | |
2579 | /* unallocated encoding, so not possible */ | |
2580 | assert(false); | |
2581 | break; | |
2582 | case 6: | |
2583 | /* min_EL EL3 */ | |
2584 | mask = PL3_RW; | |
2585 | break; | |
2586 | case 7: | |
2587 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
2588 | mask = PL1_RW; | |
2589 | break; | |
2590 | default: | |
2591 | /* broken reginfo with out-of-range opc1 */ | |
2592 | assert(false); | |
2593 | break; | |
2594 | } | |
2595 | /* assert our permissions are not too lax (stricter is fine) */ | |
2596 | assert((r->access & ~mask) == 0); | |
2597 | } | |
2598 | ||
4b6a83fb PM |
2599 | /* Check that the register definition has enough info to handle |
2600 | * reads and writes if they are permitted. | |
2601 | */ | |
2602 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
2603 | if (r->access & PL3_R) { | |
2604 | assert(r->fieldoffset || r->readfn); | |
2605 | } | |
2606 | if (r->access & PL3_W) { | |
2607 | assert(r->fieldoffset || r->writefn); | |
2608 | } | |
2609 | } | |
2610 | /* Bad type field probably means missing sentinel at end of reg list */ | |
2611 | assert(cptype_valid(r->type)); | |
2612 | for (crm = crmmin; crm <= crmmax; crm++) { | |
2613 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
2614 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
2615 | for (state = ARM_CP_STATE_AA32; |
2616 | state <= ARM_CP_STATE_AA64; state++) { | |
2617 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
2618 | continue; | |
2619 | } | |
2620 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
2621 | crm, opc1, opc2); | |
2622 | } | |
4b6a83fb PM |
2623 | } |
2624 | } | |
2625 | } | |
2626 | } | |
2627 | ||
2628 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
2629 | const ARMCPRegInfo *regs, void *opaque) | |
2630 | { | |
2631 | /* Define a whole list of registers */ | |
2632 | const ARMCPRegInfo *r; | |
2633 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
2634 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
2635 | } | |
2636 | } | |
2637 | ||
60322b39 | 2638 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 2639 | { |
60322b39 | 2640 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
2641 | } |
2642 | ||
c4241c7d PM |
2643 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
2644 | uint64_t value) | |
4b6a83fb PM |
2645 | { |
2646 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
2647 | } |
2648 | ||
c4241c7d | 2649 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
2650 | { |
2651 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
2652 | return 0; |
2653 | } | |
2654 | ||
f5a0a5a5 PM |
2655 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
2656 | { | |
2657 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
2658 | } | |
2659 | ||
0ecb72a5 | 2660 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
2661 | { |
2662 | /* Return true if it is not valid for us to switch to | |
2663 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
2664 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
2665 | */ | |
2666 | switch (mode) { | |
2667 | case ARM_CPU_MODE_USR: | |
2668 | case ARM_CPU_MODE_SYS: | |
2669 | case ARM_CPU_MODE_SVC: | |
2670 | case ARM_CPU_MODE_ABT: | |
2671 | case ARM_CPU_MODE_UND: | |
2672 | case ARM_CPU_MODE_IRQ: | |
2673 | case ARM_CPU_MODE_FIQ: | |
2674 | return 0; | |
2675 | default: | |
2676 | return 1; | |
2677 | } | |
2678 | } | |
2679 | ||
2f4a40e5 AZ |
2680 | uint32_t cpsr_read(CPUARMState *env) |
2681 | { | |
2682 | int ZF; | |
6fbe23d5 PB |
2683 | ZF = (env->ZF == 0); |
2684 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
2685 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
2686 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
2687 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 2688 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
2689 | } |
2690 | ||
2691 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
2692 | { | |
2f4a40e5 | 2693 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
2694 | env->ZF = (~val) & CPSR_Z; |
2695 | env->NF = val; | |
2f4a40e5 AZ |
2696 | env->CF = (val >> 29) & 1; |
2697 | env->VF = (val << 3) & 0x80000000; | |
2698 | } | |
2699 | if (mask & CPSR_Q) | |
2700 | env->QF = ((val & CPSR_Q) != 0); | |
2701 | if (mask & CPSR_T) | |
2702 | env->thumb = ((val & CPSR_T) != 0); | |
2703 | if (mask & CPSR_IT_0_1) { | |
2704 | env->condexec_bits &= ~3; | |
2705 | env->condexec_bits |= (val >> 25) & 3; | |
2706 | } | |
2707 | if (mask & CPSR_IT_2_7) { | |
2708 | env->condexec_bits &= 3; | |
2709 | env->condexec_bits |= (val >> 8) & 0xfc; | |
2710 | } | |
2711 | if (mask & CPSR_GE) { | |
2712 | env->GE = (val >> 16) & 0xf; | |
2713 | } | |
2714 | ||
4cc35614 PM |
2715 | env->daif &= ~(CPSR_AIF & mask); |
2716 | env->daif |= val & CPSR_AIF & mask; | |
2717 | ||
2f4a40e5 | 2718 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
2719 | if (bad_mode_switch(env, val & CPSR_M)) { |
2720 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
2721 | * We choose to ignore the attempt and leave the CPSR M field | |
2722 | * untouched. | |
2723 | */ | |
2724 | mask &= ~CPSR_M; | |
2725 | } else { | |
2726 | switch_mode(env, val & CPSR_M); | |
2727 | } | |
2f4a40e5 AZ |
2728 | } |
2729 | mask &= ~CACHED_CPSR_BITS; | |
2730 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
2731 | } | |
2732 | ||
b26eefb6 PB |
2733 | /* Sign/zero extend */ |
2734 | uint32_t HELPER(sxtb16)(uint32_t x) | |
2735 | { | |
2736 | uint32_t res; | |
2737 | res = (uint16_t)(int8_t)x; | |
2738 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
2739 | return res; | |
2740 | } | |
2741 | ||
2742 | uint32_t HELPER(uxtb16)(uint32_t x) | |
2743 | { | |
2744 | uint32_t res; | |
2745 | res = (uint16_t)(uint8_t)x; | |
2746 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
2747 | return res; | |
2748 | } | |
2749 | ||
f51bbbfe PB |
2750 | uint32_t HELPER(clz)(uint32_t x) |
2751 | { | |
7bbcb0af | 2752 | return clz32(x); |
f51bbbfe PB |
2753 | } |
2754 | ||
3670669c PB |
2755 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
2756 | { | |
2757 | if (den == 0) | |
2758 | return 0; | |
686eeb93 AJ |
2759 | if (num == INT_MIN && den == -1) |
2760 | return INT_MIN; | |
3670669c PB |
2761 | return num / den; |
2762 | } | |
2763 | ||
2764 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
2765 | { | |
2766 | if (den == 0) | |
2767 | return 0; | |
2768 | return num / den; | |
2769 | } | |
2770 | ||
2771 | uint32_t HELPER(rbit)(uint32_t x) | |
2772 | { | |
2773 | x = ((x & 0xff000000) >> 24) | |
2774 | | ((x & 0x00ff0000) >> 8) | |
2775 | | ((x & 0x0000ff00) << 8) | |
2776 | | ((x & 0x000000ff) << 24); | |
2777 | x = ((x & 0xf0f0f0f0) >> 4) | |
2778 | | ((x & 0x0f0f0f0f) << 4); | |
2779 | x = ((x & 0x88888888) >> 3) | |
2780 | | ((x & 0x44444444) >> 1) | |
2781 | | ((x & 0x22222222) << 1) | |
2782 | | ((x & 0x11111111) << 3); | |
2783 | return x; | |
2784 | } | |
2785 | ||
5fafdf24 | 2786 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 2787 | |
97a8ea5a | 2788 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 2789 | { |
27103424 | 2790 | cs->exception_index = -1; |
b5ff1b31 FB |
2791 | } |
2792 | ||
7510454e AF |
2793 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, |
2794 | int mmu_idx) | |
b5ff1b31 | 2795 | { |
7510454e AF |
2796 | ARMCPU *cpu = ARM_CPU(cs); |
2797 | CPUARMState *env = &cpu->env; | |
2798 | ||
abf1172f | 2799 | env->exception.vaddress = address; |
b5ff1b31 | 2800 | if (rw == 2) { |
27103424 | 2801 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 | 2802 | } else { |
27103424 | 2803 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 FB |
2804 | } |
2805 | return 1; | |
2806 | } | |
2807 | ||
9ee6e8bb | 2808 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 2809 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 2810 | { |
a47dddd7 AF |
2811 | ARMCPU *cpu = arm_env_get_cpu(env); |
2812 | ||
2813 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
2814 | } |
2815 | ||
0ecb72a5 | 2816 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 2817 | { |
a47dddd7 AF |
2818 | ARMCPU *cpu = arm_env_get_cpu(env); |
2819 | ||
2820 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
2821 | return 0; |
2822 | } | |
2823 | ||
0ecb72a5 | 2824 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 2825 | { |
a47dddd7 AF |
2826 | ARMCPU *cpu = arm_env_get_cpu(env); |
2827 | ||
2828 | if (mode != ARM_CPU_MODE_USR) { | |
2829 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
2830 | } | |
b5ff1b31 FB |
2831 | } |
2832 | ||
0ecb72a5 | 2833 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 2834 | { |
a47dddd7 AF |
2835 | ARMCPU *cpu = arm_env_get_cpu(env); |
2836 | ||
2837 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
2838 | } |
2839 | ||
0ecb72a5 | 2840 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 2841 | { |
a47dddd7 AF |
2842 | ARMCPU *cpu = arm_env_get_cpu(env); |
2843 | ||
2844 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
2845 | return 0; |
2846 | } | |
2847 | ||
b5ff1b31 FB |
2848 | #else |
2849 | ||
2850 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 2851 | int bank_number(int mode) |
b5ff1b31 FB |
2852 | { |
2853 | switch (mode) { | |
2854 | case ARM_CPU_MODE_USR: | |
2855 | case ARM_CPU_MODE_SYS: | |
2856 | return 0; | |
2857 | case ARM_CPU_MODE_SVC: | |
2858 | return 1; | |
2859 | case ARM_CPU_MODE_ABT: | |
2860 | return 2; | |
2861 | case ARM_CPU_MODE_UND: | |
2862 | return 3; | |
2863 | case ARM_CPU_MODE_IRQ: | |
2864 | return 4; | |
2865 | case ARM_CPU_MODE_FIQ: | |
2866 | return 5; | |
2867 | } | |
f5206413 | 2868 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
2869 | } |
2870 | ||
0ecb72a5 | 2871 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
2872 | { |
2873 | int old_mode; | |
2874 | int i; | |
2875 | ||
2876 | old_mode = env->uncached_cpsr & CPSR_M; | |
2877 | if (mode == old_mode) | |
2878 | return; | |
2879 | ||
2880 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
2881 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 2882 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
2883 | } else if (mode == ARM_CPU_MODE_FIQ) { |
2884 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 2885 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
2886 | } |
2887 | ||
f5206413 | 2888 | i = bank_number(old_mode); |
b5ff1b31 FB |
2889 | env->banked_r13[i] = env->regs[13]; |
2890 | env->banked_r14[i] = env->regs[14]; | |
2891 | env->banked_spsr[i] = env->spsr; | |
2892 | ||
f5206413 | 2893 | i = bank_number(mode); |
b5ff1b31 FB |
2894 | env->regs[13] = env->banked_r13[i]; |
2895 | env->regs[14] = env->banked_r14[i]; | |
2896 | env->spsr = env->banked_spsr[i]; | |
2897 | } | |
2898 | ||
9ee6e8bb PB |
2899 | static void v7m_push(CPUARMState *env, uint32_t val) |
2900 | { | |
70d74660 AF |
2901 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
2902 | ||
9ee6e8bb | 2903 | env->regs[13] -= 4; |
ab1da857 | 2904 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
2905 | } |
2906 | ||
2907 | static uint32_t v7m_pop(CPUARMState *env) | |
2908 | { | |
70d74660 | 2909 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 2910 | uint32_t val; |
70d74660 | 2911 | |
fdfba1a2 | 2912 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
2913 | env->regs[13] += 4; |
2914 | return val; | |
2915 | } | |
2916 | ||
2917 | /* Switch to V7M main or process stack pointer. */ | |
2918 | static void switch_v7m_sp(CPUARMState *env, int process) | |
2919 | { | |
2920 | uint32_t tmp; | |
2921 | if (env->v7m.current_sp != process) { | |
2922 | tmp = env->v7m.other_sp; | |
2923 | env->v7m.other_sp = env->regs[13]; | |
2924 | env->regs[13] = tmp; | |
2925 | env->v7m.current_sp = process; | |
2926 | } | |
2927 | } | |
2928 | ||
2929 | static void do_v7m_exception_exit(CPUARMState *env) | |
2930 | { | |
2931 | uint32_t type; | |
2932 | uint32_t xpsr; | |
2933 | ||
2934 | type = env->regs[15]; | |
2935 | if (env->v7m.exception != 0) | |
983fe826 | 2936 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
2937 | |
2938 | /* Switch to the target stack. */ | |
2939 | switch_v7m_sp(env, (type & 4) != 0); | |
2940 | /* Pop registers. */ | |
2941 | env->regs[0] = v7m_pop(env); | |
2942 | env->regs[1] = v7m_pop(env); | |
2943 | env->regs[2] = v7m_pop(env); | |
2944 | env->regs[3] = v7m_pop(env); | |
2945 | env->regs[12] = v7m_pop(env); | |
2946 | env->regs[14] = v7m_pop(env); | |
2947 | env->regs[15] = v7m_pop(env); | |
2948 | xpsr = v7m_pop(env); | |
2949 | xpsr_write(env, xpsr, 0xfffffdff); | |
2950 | /* Undo stack alignment. */ | |
2951 | if (xpsr & 0x200) | |
2952 | env->regs[13] |= 4; | |
2953 | /* ??? The exception return type specifies Thread/Handler mode. However | |
2954 | this is also implied by the xPSR value. Not sure what to do | |
2955 | if there is a mismatch. */ | |
2956 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
2957 | pointer. */ | |
2958 | } | |
2959 | ||
e6f010cc | 2960 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 2961 | { |
e6f010cc AF |
2962 | ARMCPU *cpu = ARM_CPU(cs); |
2963 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
2964 | uint32_t xpsr = xpsr_read(env); |
2965 | uint32_t lr; | |
2966 | uint32_t addr; | |
2967 | ||
27103424 | 2968 | arm_log_exception(cs->exception_index); |
3f1beaca | 2969 | |
9ee6e8bb PB |
2970 | lr = 0xfffffff1; |
2971 | if (env->v7m.current_sp) | |
2972 | lr |= 4; | |
2973 | if (env->v7m.exception == 0) | |
2974 | lr |= 8; | |
2975 | ||
2976 | /* For exceptions we just mark as pending on the NVIC, and let that | |
2977 | handle it. */ | |
2978 | /* TODO: Need to escalate if the current priority is higher than the | |
2979 | one we're raising. */ | |
27103424 | 2980 | switch (cs->exception_index) { |
9ee6e8bb | 2981 | case EXCP_UDEF: |
983fe826 | 2982 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
2983 | return; |
2984 | case EXCP_SWI: | |
314e2296 | 2985 | /* The PC already points to the next instruction. */ |
983fe826 | 2986 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
2987 | return; |
2988 | case EXCP_PREFETCH_ABORT: | |
2989 | case EXCP_DATA_ABORT: | |
abf1172f PM |
2990 | /* TODO: if we implemented the MPU registers, this is where we |
2991 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
2992 | */ | |
983fe826 | 2993 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
2994 | return; |
2995 | case EXCP_BKPT: | |
2ad207d4 PB |
2996 | if (semihosting_enabled) { |
2997 | int nr; | |
d31dd73e | 2998 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
2999 | if (nr == 0xab) { |
3000 | env->regs[15] += 2; | |
3001 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 3002 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
3003 | return; |
3004 | } | |
3005 | } | |
983fe826 | 3006 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
3007 | return; |
3008 | case EXCP_IRQ: | |
983fe826 | 3009 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
3010 | break; |
3011 | case EXCP_EXCEPTION_EXIT: | |
3012 | do_v7m_exception_exit(env); | |
3013 | return; | |
3014 | default: | |
a47dddd7 | 3015 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
3016 | return; /* Never happens. Keep compiler happy. */ |
3017 | } | |
3018 | ||
3019 | /* Align stack pointer. */ | |
3020 | /* ??? Should only do this if Configuration Control Register | |
3021 | STACKALIGN bit is set. */ | |
3022 | if (env->regs[13] & 4) { | |
ab19b0ec | 3023 | env->regs[13] -= 4; |
9ee6e8bb PB |
3024 | xpsr |= 0x200; |
3025 | } | |
6c95676b | 3026 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
3027 | v7m_push(env, xpsr); |
3028 | v7m_push(env, env->regs[15]); | |
3029 | v7m_push(env, env->regs[14]); | |
3030 | v7m_push(env, env->regs[12]); | |
3031 | v7m_push(env, env->regs[3]); | |
3032 | v7m_push(env, env->regs[2]); | |
3033 | v7m_push(env, env->regs[1]); | |
3034 | v7m_push(env, env->regs[0]); | |
3035 | switch_v7m_sp(env, 0); | |
c98d174c PM |
3036 | /* Clear IT bits */ |
3037 | env->condexec_bits = 0; | |
9ee6e8bb | 3038 | env->regs[14] = lr; |
fdfba1a2 | 3039 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
3040 | env->regs[15] = addr & 0xfffffffe; |
3041 | env->thumb = addr & 1; | |
3042 | } | |
3043 | ||
b5ff1b31 | 3044 | /* Handle a CPU exception. */ |
97a8ea5a | 3045 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 3046 | { |
97a8ea5a AF |
3047 | ARMCPU *cpu = ARM_CPU(cs); |
3048 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
3049 | uint32_t addr; |
3050 | uint32_t mask; | |
3051 | int new_mode; | |
3052 | uint32_t offset; | |
3053 | ||
e6f010cc AF |
3054 | assert(!IS_M(env)); |
3055 | ||
27103424 | 3056 | arm_log_exception(cs->exception_index); |
3f1beaca | 3057 | |
b5ff1b31 | 3058 | /* TODO: Vectored interrupt controller. */ |
27103424 | 3059 | switch (cs->exception_index) { |
b5ff1b31 FB |
3060 | case EXCP_UDEF: |
3061 | new_mode = ARM_CPU_MODE_UND; | |
3062 | addr = 0x04; | |
3063 | mask = CPSR_I; | |
3064 | if (env->thumb) | |
3065 | offset = 2; | |
3066 | else | |
3067 | offset = 4; | |
3068 | break; | |
3069 | case EXCP_SWI: | |
8e71621f PB |
3070 | if (semihosting_enabled) { |
3071 | /* Check for semihosting interrupt. */ | |
3072 | if (env->thumb) { | |
d31dd73e BS |
3073 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
3074 | & 0xff; | |
8e71621f | 3075 | } else { |
d31dd73e | 3076 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 3077 | & 0xffffff; |
8e71621f PB |
3078 | } |
3079 | /* Only intercept calls from privileged modes, to provide some | |
3080 | semblance of security. */ | |
3081 | if (((mask == 0x123456 && !env->thumb) | |
3082 | || (mask == 0xab && env->thumb)) | |
3083 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
3084 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 3085 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
3086 | return; |
3087 | } | |
3088 | } | |
b5ff1b31 FB |
3089 | new_mode = ARM_CPU_MODE_SVC; |
3090 | addr = 0x08; | |
3091 | mask = CPSR_I; | |
601d70b9 | 3092 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
3093 | offset = 0; |
3094 | break; | |
06c949e6 | 3095 | case EXCP_BKPT: |
9ee6e8bb | 3096 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 3097 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 3098 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
3099 | if (mask == 0xab |
3100 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
3101 | env->regs[15] += 2; | |
3102 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 3103 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
3104 | return; |
3105 | } | |
3106 | } | |
abf1172f | 3107 | env->exception.fsr = 2; |
9ee6e8bb PB |
3108 | /* Fall through to prefetch abort. */ |
3109 | case EXCP_PREFETCH_ABORT: | |
6cd8a264 RH |
3110 | env->cp15.ifsr_el2 = env->exception.fsr; |
3111 | env->cp15.far_el1 = deposit64(env->cp15.far_el1, 32, 32, | |
3112 | env->exception.vaddress); | |
3f1beaca | 3113 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
6cd8a264 | 3114 | env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
3115 | new_mode = ARM_CPU_MODE_ABT; |
3116 | addr = 0x0c; | |
3117 | mask = CPSR_A | CPSR_I; | |
3118 | offset = 4; | |
3119 | break; | |
3120 | case EXCP_DATA_ABORT: | |
6cd8a264 RH |
3121 | env->cp15.esr_el1 = env->exception.fsr; |
3122 | env->cp15.far_el1 = deposit64(env->cp15.far_el1, 0, 32, | |
3123 | env->exception.vaddress); | |
3f1beaca | 3124 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
6cd8a264 RH |
3125 | (uint32_t)env->cp15.esr_el1, |
3126 | (uint32_t)env->exception.vaddress); | |
b5ff1b31 FB |
3127 | new_mode = ARM_CPU_MODE_ABT; |
3128 | addr = 0x10; | |
3129 | mask = CPSR_A | CPSR_I; | |
3130 | offset = 8; | |
3131 | break; | |
3132 | case EXCP_IRQ: | |
3133 | new_mode = ARM_CPU_MODE_IRQ; | |
3134 | addr = 0x18; | |
3135 | /* Disable IRQ and imprecise data aborts. */ | |
3136 | mask = CPSR_A | CPSR_I; | |
3137 | offset = 4; | |
3138 | break; | |
3139 | case EXCP_FIQ: | |
3140 | new_mode = ARM_CPU_MODE_FIQ; | |
3141 | addr = 0x1c; | |
3142 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
3143 | mask = CPSR_A | CPSR_I | CPSR_F; | |
3144 | offset = 4; | |
3145 | break; | |
3146 | default: | |
a47dddd7 | 3147 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
3148 | return; /* Never happens. Keep compiler happy. */ |
3149 | } | |
3150 | /* High vectors. */ | |
76e3e1bc | 3151 | if (env->cp15.c1_sys & SCTLR_V) { |
8641136c | 3152 | /* when enabled, base address cannot be remapped. */ |
b5ff1b31 | 3153 | addr += 0xffff0000; |
8641136c NR |
3154 | } else { |
3155 | /* ARM v7 architectures provide a vector base address register to remap | |
3156 | * the interrupt vector table. | |
3157 | * This register is only followed in non-monitor mode, and has a secure | |
3158 | * and un-secure copy. Since the cpu is always in a un-secure operation | |
3159 | * and is never in monitor mode this feature is always active. | |
3160 | * Note: only bits 31:5 are valid. | |
3161 | */ | |
3162 | addr += env->cp15.c12_vbar; | |
b5ff1b31 FB |
3163 | } |
3164 | switch_mode (env, new_mode); | |
3165 | env->spsr = cpsr_read(env); | |
9ee6e8bb PB |
3166 | /* Clear IT bits. */ |
3167 | env->condexec_bits = 0; | |
30a8cac1 | 3168 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 3169 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 3170 | env->daif |= mask; |
be5e7a76 DES |
3171 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
3172 | * and we should just guard the thumb mode on V4 */ | |
3173 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
76e3e1bc | 3174 | env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0; |
be5e7a76 | 3175 | } |
b5ff1b31 FB |
3176 | env->regs[14] = env->regs[15] + offset; |
3177 | env->regs[15] = addr; | |
259186a7 | 3178 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
3179 | } |
3180 | ||
3181 | /* Check section/page access permissions. | |
3182 | Returns the page protection flags, or zero if the access is not | |
3183 | permitted. */ | |
0ecb72a5 | 3184 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
dd4ebc2e | 3185 | int access_type, int is_user) |
b5ff1b31 | 3186 | { |
9ee6e8bb PB |
3187 | int prot_ro; |
3188 | ||
dd4ebc2e | 3189 | if (domain_prot == 3) { |
b5ff1b31 | 3190 | return PAGE_READ | PAGE_WRITE; |
dd4ebc2e | 3191 | } |
b5ff1b31 | 3192 | |
9ee6e8bb PB |
3193 | if (access_type == 1) |
3194 | prot_ro = 0; | |
3195 | else | |
3196 | prot_ro = PAGE_READ; | |
3197 | ||
b5ff1b31 FB |
3198 | switch (ap) { |
3199 | case 0: | |
99f678a6 PM |
3200 | if (arm_feature(env, ARM_FEATURE_V7)) { |
3201 | return 0; | |
3202 | } | |
78600320 | 3203 | if (access_type == 1) |
b5ff1b31 | 3204 | return 0; |
76e3e1bc PM |
3205 | switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) { |
3206 | case SCTLR_S: | |
b5ff1b31 | 3207 | return is_user ? 0 : PAGE_READ; |
76e3e1bc | 3208 | case SCTLR_R: |
b5ff1b31 FB |
3209 | return PAGE_READ; |
3210 | default: | |
3211 | return 0; | |
3212 | } | |
3213 | case 1: | |
3214 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
3215 | case 2: | |
3216 | if (is_user) | |
9ee6e8bb | 3217 | return prot_ro; |
b5ff1b31 FB |
3218 | else |
3219 | return PAGE_READ | PAGE_WRITE; | |
3220 | case 3: | |
3221 | return PAGE_READ | PAGE_WRITE; | |
d4934d18 | 3222 | case 4: /* Reserved. */ |
9ee6e8bb PB |
3223 | return 0; |
3224 | case 5: | |
3225 | return is_user ? 0 : prot_ro; | |
3226 | case 6: | |
3227 | return prot_ro; | |
d4934d18 | 3228 | case 7: |
0ab06d83 | 3229 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
d4934d18 PB |
3230 | return 0; |
3231 | return prot_ro; | |
b5ff1b31 FB |
3232 | default: |
3233 | abort(); | |
3234 | } | |
3235 | } | |
3236 | ||
0ecb72a5 | 3237 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
b2fa1797 PB |
3238 | { |
3239 | uint32_t table; | |
3240 | ||
3241 | if (address & env->cp15.c2_mask) | |
327ed10f | 3242 | table = env->cp15.ttbr1_el1 & 0xffffc000; |
b2fa1797 | 3243 | else |
327ed10f | 3244 | table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask; |
b2fa1797 PB |
3245 | |
3246 | table |= (address >> 18) & 0x3ffc; | |
3247 | return table; | |
3248 | } | |
3249 | ||
0ecb72a5 | 3250 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 3251 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 3252 | int *prot, target_ulong *page_size) |
b5ff1b31 | 3253 | { |
70d74660 | 3254 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
3255 | int code; |
3256 | uint32_t table; | |
3257 | uint32_t desc; | |
3258 | int type; | |
3259 | int ap; | |
3260 | int domain; | |
dd4ebc2e | 3261 | int domain_prot; |
a8170e5e | 3262 | hwaddr phys_addr; |
b5ff1b31 | 3263 | |
9ee6e8bb PB |
3264 | /* Pagetable walk. */ |
3265 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 3266 | table = get_level1_table_address(env, address); |
fdfba1a2 | 3267 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 3268 | type = (desc & 3); |
dd4ebc2e JCD |
3269 | domain = (desc >> 5) & 0x0f; |
3270 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
9ee6e8bb | 3271 | if (type == 0) { |
601d70b9 | 3272 | /* Section translation fault. */ |
9ee6e8bb PB |
3273 | code = 5; |
3274 | goto do_fault; | |
3275 | } | |
dd4ebc2e | 3276 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
3277 | if (type == 2) |
3278 | code = 9; /* Section domain fault. */ | |
3279 | else | |
3280 | code = 11; /* Page domain fault. */ | |
3281 | goto do_fault; | |
3282 | } | |
3283 | if (type == 2) { | |
3284 | /* 1Mb section. */ | |
3285 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
3286 | ap = (desc >> 10) & 3; | |
3287 | code = 13; | |
d4c430a8 | 3288 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
3289 | } else { |
3290 | /* Lookup l2 entry. */ | |
3291 | if (type == 1) { | |
3292 | /* Coarse pagetable. */ | |
3293 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
3294 | } else { | |
3295 | /* Fine pagetable. */ | |
3296 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
3297 | } | |
fdfba1a2 | 3298 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
3299 | switch (desc & 3) { |
3300 | case 0: /* Page translation fault. */ | |
3301 | code = 7; | |
3302 | goto do_fault; | |
3303 | case 1: /* 64k page. */ | |
3304 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
3305 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 3306 | *page_size = 0x10000; |
ce819861 | 3307 | break; |
9ee6e8bb PB |
3308 | case 2: /* 4k page. */ |
3309 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 3310 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 3311 | *page_size = 0x1000; |
ce819861 | 3312 | break; |
9ee6e8bb PB |
3313 | case 3: /* 1k page. */ |
3314 | if (type == 1) { | |
3315 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
3316 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3317 | } else { | |
3318 | /* Page translation fault. */ | |
3319 | code = 7; | |
3320 | goto do_fault; | |
3321 | } | |
3322 | } else { | |
3323 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
3324 | } | |
3325 | ap = (desc >> 4) & 3; | |
d4c430a8 | 3326 | *page_size = 0x400; |
ce819861 PB |
3327 | break; |
3328 | default: | |
9ee6e8bb PB |
3329 | /* Never happens, but compiler isn't smart enough to tell. */ |
3330 | abort(); | |
ce819861 | 3331 | } |
9ee6e8bb PB |
3332 | code = 15; |
3333 | } | |
dd4ebc2e | 3334 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
9ee6e8bb PB |
3335 | if (!*prot) { |
3336 | /* Access permission fault. */ | |
3337 | goto do_fault; | |
3338 | } | |
3ad493fc | 3339 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
3340 | *phys_ptr = phys_addr; |
3341 | return 0; | |
3342 | do_fault: | |
3343 | return code | (domain << 4); | |
3344 | } | |
3345 | ||
0ecb72a5 | 3346 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 3347 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 3348 | int *prot, target_ulong *page_size) |
9ee6e8bb | 3349 | { |
70d74660 | 3350 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
3351 | int code; |
3352 | uint32_t table; | |
3353 | uint32_t desc; | |
3354 | uint32_t xn; | |
de9b05b8 | 3355 | uint32_t pxn = 0; |
9ee6e8bb PB |
3356 | int type; |
3357 | int ap; | |
de9b05b8 | 3358 | int domain = 0; |
dd4ebc2e | 3359 | int domain_prot; |
a8170e5e | 3360 | hwaddr phys_addr; |
9ee6e8bb PB |
3361 | |
3362 | /* Pagetable walk. */ | |
3363 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 3364 | table = get_level1_table_address(env, address); |
fdfba1a2 | 3365 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 3366 | type = (desc & 3); |
de9b05b8 PM |
3367 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
3368 | /* Section translation fault, or attempt to use the encoding | |
3369 | * which is Reserved on implementations without PXN. | |
3370 | */ | |
9ee6e8bb | 3371 | code = 5; |
9ee6e8bb | 3372 | goto do_fault; |
de9b05b8 PM |
3373 | } |
3374 | if ((type == 1) || !(desc & (1 << 18))) { | |
3375 | /* Page or Section. */ | |
dd4ebc2e | 3376 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 3377 | } |
dd4ebc2e JCD |
3378 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
3379 | if (domain_prot == 0 || domain_prot == 2) { | |
de9b05b8 | 3380 | if (type != 1) { |
9ee6e8bb | 3381 | code = 9; /* Section domain fault. */ |
de9b05b8 | 3382 | } else { |
9ee6e8bb | 3383 | code = 11; /* Page domain fault. */ |
de9b05b8 | 3384 | } |
9ee6e8bb PB |
3385 | goto do_fault; |
3386 | } | |
de9b05b8 | 3387 | if (type != 1) { |
9ee6e8bb PB |
3388 | if (desc & (1 << 18)) { |
3389 | /* Supersection. */ | |
3390 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 3391 | *page_size = 0x1000000; |
b5ff1b31 | 3392 | } else { |
9ee6e8bb PB |
3393 | /* Section. */ |
3394 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 3395 | *page_size = 0x100000; |
b5ff1b31 | 3396 | } |
9ee6e8bb PB |
3397 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
3398 | xn = desc & (1 << 4); | |
de9b05b8 | 3399 | pxn = desc & 1; |
9ee6e8bb PB |
3400 | code = 13; |
3401 | } else { | |
de9b05b8 PM |
3402 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
3403 | pxn = (desc >> 2) & 1; | |
3404 | } | |
9ee6e8bb PB |
3405 | /* Lookup l2 entry. */ |
3406 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
fdfba1a2 | 3407 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
3408 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
3409 | switch (desc & 3) { | |
3410 | case 0: /* Page translation fault. */ | |
3411 | code = 7; | |
b5ff1b31 | 3412 | goto do_fault; |
9ee6e8bb PB |
3413 | case 1: /* 64k page. */ |
3414 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
3415 | xn = desc & (1 << 15); | |
d4c430a8 | 3416 | *page_size = 0x10000; |
9ee6e8bb PB |
3417 | break; |
3418 | case 2: case 3: /* 4k page. */ | |
3419 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3420 | xn = desc & 1; | |
d4c430a8 | 3421 | *page_size = 0x1000; |
9ee6e8bb PB |
3422 | break; |
3423 | default: | |
3424 | /* Never happens, but compiler isn't smart enough to tell. */ | |
3425 | abort(); | |
b5ff1b31 | 3426 | } |
9ee6e8bb PB |
3427 | code = 15; |
3428 | } | |
dd4ebc2e | 3429 | if (domain_prot == 3) { |
c0034328 JR |
3430 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
3431 | } else { | |
de9b05b8 PM |
3432 | if (pxn && !is_user) { |
3433 | xn = 1; | |
3434 | } | |
c0034328 JR |
3435 | if (xn && access_type == 2) |
3436 | goto do_fault; | |
9ee6e8bb | 3437 | |
c0034328 | 3438 | /* The simplified model uses AP[0] as an access control bit. */ |
76e3e1bc | 3439 | if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) { |
c0034328 JR |
3440 | /* Access flag fault. */ |
3441 | code = (code == 15) ? 6 : 3; | |
3442 | goto do_fault; | |
3443 | } | |
dd4ebc2e | 3444 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
c0034328 JR |
3445 | if (!*prot) { |
3446 | /* Access permission fault. */ | |
3447 | goto do_fault; | |
3448 | } | |
3449 | if (!xn) { | |
3450 | *prot |= PAGE_EXEC; | |
3451 | } | |
3ad493fc | 3452 | } |
9ee6e8bb | 3453 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
3454 | return 0; |
3455 | do_fault: | |
3456 | return code | (domain << 4); | |
3457 | } | |
3458 | ||
3dde962f PM |
3459 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
3460 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
3461 | */ | |
3462 | typedef enum { | |
3463 | translation_fault = 1, | |
3464 | access_fault = 2, | |
3465 | permission_fault = 3, | |
3466 | } MMUFaultType; | |
3467 | ||
2c8dd318 | 3468 | static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
3dde962f | 3469 | int access_type, int is_user, |
a8170e5e | 3470 | hwaddr *phys_ptr, int *prot, |
3dde962f PM |
3471 | target_ulong *page_size_ptr) |
3472 | { | |
70d74660 | 3473 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
3474 | /* Read an LPAE long-descriptor translation table. */ |
3475 | MMUFaultType fault_type = translation_fault; | |
3476 | uint32_t level = 1; | |
3477 | uint32_t epd; | |
2c8dd318 RH |
3478 | int32_t tsz; |
3479 | uint32_t tg; | |
3dde962f PM |
3480 | uint64_t ttbr; |
3481 | int ttbr_select; | |
2c8dd318 | 3482 | hwaddr descaddr, descmask; |
3dde962f PM |
3483 | uint32_t tableattrs; |
3484 | target_ulong page_size; | |
3485 | uint32_t attrs; | |
2c8dd318 RH |
3486 | int32_t granule_sz = 9; |
3487 | int32_t va_size = 32; | |
3488 | int32_t tbi = 0; | |
3489 | ||
3490 | if (arm_el_is_aa64(env, 1)) { | |
3491 | va_size = 64; | |
3492 | if (extract64(address, 55, 1)) | |
3493 | tbi = extract64(env->cp15.c2_control, 38, 1); | |
3494 | else | |
3495 | tbi = extract64(env->cp15.c2_control, 37, 1); | |
3496 | tbi *= 8; | |
3497 | } | |
3dde962f PM |
3498 | |
3499 | /* Determine whether this address is in the region controlled by | |
3500 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
3501 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
3502 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
3503 | */ | |
2c8dd318 RH |
3504 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6); |
3505 | if (arm_el_is_aa64(env, 1)) { | |
3506 | t0sz = MIN(t0sz, 39); | |
3507 | t0sz = MAX(t0sz, 16); | |
3508 | } | |
3509 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6); | |
3510 | if (arm_el_is_aa64(env, 1)) { | |
3511 | t1sz = MIN(t1sz, 39); | |
3512 | t1sz = MAX(t1sz, 16); | |
3513 | } | |
3514 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
3515 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
3516 | ttbr_select = 0; | |
2c8dd318 | 3517 | } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) { |
3dde962f PM |
3518 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
3519 | ttbr_select = 1; | |
3520 | } else if (!t0sz) { | |
3521 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
3522 | ttbr_select = 0; | |
3523 | } else if (!t1sz) { | |
3524 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
3525 | ttbr_select = 1; | |
3526 | } else { | |
3527 | /* in the gap between the two regions, this is a Translation fault */ | |
3528 | fault_type = translation_fault; | |
3529 | goto do_fault; | |
3530 | } | |
3531 | ||
3532 | /* Note that QEMU ignores shareability and cacheability attributes, | |
3533 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
3534 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
3535 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
3536 | * implement any ASID-like capability so we can ignore it (instead | |
3537 | * we will always flush the TLB any time the ASID is changed). | |
3538 | */ | |
3539 | if (ttbr_select == 0) { | |
327ed10f | 3540 | ttbr = env->cp15.ttbr0_el1; |
3dde962f PM |
3541 | epd = extract32(env->cp15.c2_control, 7, 1); |
3542 | tsz = t0sz; | |
2c8dd318 RH |
3543 | |
3544 | tg = extract32(env->cp15.c2_control, 14, 2); | |
3545 | if (tg == 1) { /* 64KB pages */ | |
3546 | granule_sz = 13; | |
3547 | } | |
3548 | if (tg == 2) { /* 16KB pages */ | |
3549 | granule_sz = 11; | |
3550 | } | |
3dde962f | 3551 | } else { |
327ed10f | 3552 | ttbr = env->cp15.ttbr1_el1; |
3dde962f PM |
3553 | epd = extract32(env->cp15.c2_control, 23, 1); |
3554 | tsz = t1sz; | |
2c8dd318 RH |
3555 | |
3556 | tg = extract32(env->cp15.c2_control, 30, 2); | |
3557 | if (tg == 3) { /* 64KB pages */ | |
3558 | granule_sz = 13; | |
3559 | } | |
3560 | if (tg == 1) { /* 16KB pages */ | |
3561 | granule_sz = 11; | |
3562 | } | |
3dde962f PM |
3563 | } |
3564 | ||
3565 | if (epd) { | |
3566 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
3567 | goto do_fault; | |
3568 | } | |
3569 | ||
2c8dd318 RH |
3570 | /* The starting level depends on the virtual address size which can be |
3571 | * up to 48-bits and the translation granule size. | |
3dde962f | 3572 | */ |
2c8dd318 RH |
3573 | if ((va_size - tsz) > (granule_sz * 4 + 3)) { |
3574 | level = 0; | |
3575 | } else if ((va_size - tsz) > (granule_sz * 3 + 3)) { | |
3576 | level = 1; | |
3dde962f | 3577 | } else { |
2c8dd318 | 3578 | level = 2; |
3dde962f PM |
3579 | } |
3580 | ||
3581 | /* Clear the vaddr bits which aren't part of the within-region address, | |
3582 | * so that we don't have to special case things when calculating the | |
3583 | * first descriptor address. | |
3584 | */ | |
2c8dd318 RH |
3585 | if (tsz) { |
3586 | address &= (1ULL << (va_size - tsz)) - 1; | |
3587 | } | |
3588 | ||
3589 | descmask = (1ULL << (granule_sz + 3)) - 1; | |
3dde962f PM |
3590 | |
3591 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 RH |
3592 | descaddr = extract64(ttbr, 0, 48); |
3593 | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | |
3dde962f PM |
3594 | |
3595 | tableattrs = 0; | |
3596 | for (;;) { | |
3597 | uint64_t descriptor; | |
3598 | ||
2c8dd318 RH |
3599 | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; |
3600 | descaddr &= ~7ULL; | |
2c17449b | 3601 | descriptor = ldq_phys(cs->as, descaddr); |
3dde962f PM |
3602 | if (!(descriptor & 1) || |
3603 | (!(descriptor & 2) && (level == 3))) { | |
3604 | /* Invalid, or the Reserved level 3 encoding */ | |
3605 | goto do_fault; | |
3606 | } | |
3607 | descaddr = descriptor & 0xfffffff000ULL; | |
3608 | ||
3609 | if ((descriptor & 2) && (level < 3)) { | |
3610 | /* Table entry. The top five bits are attributes which may | |
3611 | * propagate down through lower levels of the table (and | |
3612 | * which are all arranged so that 0 means "no effect", so | |
3613 | * we can gather them up by ORing in the bits at each level). | |
3614 | */ | |
3615 | tableattrs |= extract64(descriptor, 59, 5); | |
3616 | level++; | |
3617 | continue; | |
3618 | } | |
3619 | /* Block entry at level 1 or 2, or page entry at level 3. | |
3620 | * These are basically the same thing, although the number | |
3621 | * of bits we pull in from the vaddr varies. | |
3622 | */ | |
2c8dd318 | 3623 | page_size = (1 << ((granule_sz * (4 - level)) + 3)); |
3dde962f PM |
3624 | descaddr |= (address & (page_size - 1)); |
3625 | /* Extract attributes from the descriptor and merge with table attrs */ | |
2c8dd318 RH |
3626 | if (arm_feature(env, ARM_FEATURE_V8)) { |
3627 | attrs = extract64(descriptor, 2, 10) | |
3628 | | (extract64(descriptor, 53, 11) << 10); | |
3629 | } else { | |
3630 | attrs = extract64(descriptor, 2, 10) | |
3631 | | (extract64(descriptor, 52, 12) << 10); | |
3632 | } | |
3dde962f PM |
3633 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
3634 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
3635 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
3636 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
3637 | */ | |
3638 | if (extract32(tableattrs, 2, 1)) { | |
3639 | attrs &= ~(1 << 4); | |
3640 | } | |
3641 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
3642 | break; | |
3643 | } | |
3644 | /* Here descaddr is the final physical address, and attributes | |
3645 | * are all in attrs. | |
3646 | */ | |
3647 | fault_type = access_fault; | |
3648 | if ((attrs & (1 << 8)) == 0) { | |
3649 | /* Access flag */ | |
3650 | goto do_fault; | |
3651 | } | |
3652 | fault_type = permission_fault; | |
3653 | if (is_user && !(attrs & (1 << 4))) { | |
3654 | /* Unprivileged access not enabled */ | |
3655 | goto do_fault; | |
3656 | } | |
3657 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
3658 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { | |
3659 | /* XN or PXN */ | |
3660 | if (access_type == 2) { | |
3661 | goto do_fault; | |
3662 | } | |
3663 | *prot &= ~PAGE_EXEC; | |
3664 | } | |
3665 | if (attrs & (1 << 5)) { | |
3666 | /* Write access forbidden */ | |
3667 | if (access_type == 1) { | |
3668 | goto do_fault; | |
3669 | } | |
3670 | *prot &= ~PAGE_WRITE; | |
3671 | } | |
3672 | ||
3673 | *phys_ptr = descaddr; | |
3674 | *page_size_ptr = page_size; | |
3675 | return 0; | |
3676 | ||
3677 | do_fault: | |
3678 | /* Long-descriptor format IFSR/DFSR value */ | |
3679 | return (1 << 9) | (fault_type << 2) | level; | |
3680 | } | |
3681 | ||
77a71dd1 PM |
3682 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
3683 | int access_type, int is_user, | |
a8170e5e | 3684 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
3685 | { |
3686 | int n; | |
3687 | uint32_t mask; | |
3688 | uint32_t base; | |
3689 | ||
3690 | *phys_ptr = address; | |
3691 | for (n = 7; n >= 0; n--) { | |
3692 | base = env->cp15.c6_region[n]; | |
3693 | if ((base & 1) == 0) | |
3694 | continue; | |
3695 | mask = 1 << ((base >> 1) & 0x1f); | |
3696 | /* Keep this shift separate from the above to avoid an | |
3697 | (undefined) << 32. */ | |
3698 | mask = (mask << 1) - 1; | |
3699 | if (((base ^ address) & ~mask) == 0) | |
3700 | break; | |
3701 | } | |
3702 | if (n < 0) | |
3703 | return 2; | |
3704 | ||
3705 | if (access_type == 2) { | |
7e09797c | 3706 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 3707 | } else { |
7e09797c | 3708 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
3709 | } |
3710 | mask = (mask >> (n * 4)) & 0xf; | |
3711 | switch (mask) { | |
3712 | case 0: | |
3713 | return 1; | |
3714 | case 1: | |
3715 | if (is_user) | |
3716 | return 1; | |
3717 | *prot = PAGE_READ | PAGE_WRITE; | |
3718 | break; | |
3719 | case 2: | |
3720 | *prot = PAGE_READ; | |
3721 | if (!is_user) | |
3722 | *prot |= PAGE_WRITE; | |
3723 | break; | |
3724 | case 3: | |
3725 | *prot = PAGE_READ | PAGE_WRITE; | |
3726 | break; | |
3727 | case 5: | |
3728 | if (is_user) | |
3729 | return 1; | |
3730 | *prot = PAGE_READ; | |
3731 | break; | |
3732 | case 6: | |
3733 | *prot = PAGE_READ; | |
3734 | break; | |
3735 | default: | |
3736 | /* Bad permission. */ | |
3737 | return 1; | |
3738 | } | |
3ad493fc | 3739 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
3740 | return 0; |
3741 | } | |
3742 | ||
702a9357 PM |
3743 | /* get_phys_addr - get the physical address for this virtual address |
3744 | * | |
3745 | * Find the physical address corresponding to the given virtual address, | |
3746 | * by doing a translation table walk on MMU based systems or using the | |
3747 | * MPU state on MPU based systems. | |
3748 | * | |
3749 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
3750 | * prot and page_size are not filled in, and the return value provides | |
3751 | * information on why the translation aborted, in the format of a | |
3752 | * DFSR/IFSR fault register, with the following caveats: | |
3753 | * * we honour the short vs long DFSR format differences. | |
3754 | * * the WnR bit is never set (the caller must do this). | |
3755 | * * for MPU based systems we don't bother to return a full FSR format | |
3756 | * value. | |
3757 | * | |
3758 | * @env: CPUARMState | |
3759 | * @address: virtual address to get physical address for | |
3760 | * @access_type: 0 for read, 1 for write, 2 for execute | |
3761 | * @is_user: 0 for privileged access, 1 for user | |
3762 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
3763 | * @prot: set to the permissions for the page containing phys_ptr | |
3764 | * @page_size: set to the size of the page containing phys_ptr | |
3765 | */ | |
2c8dd318 | 3766 | static inline int get_phys_addr(CPUARMState *env, target_ulong address, |
9ee6e8bb | 3767 | int access_type, int is_user, |
a8170e5e | 3768 | hwaddr *phys_ptr, int *prot, |
d4c430a8 | 3769 | target_ulong *page_size) |
9ee6e8bb PB |
3770 | { |
3771 | /* Fast Context Switch Extension. */ | |
3772 | if (address < 0x02000000) | |
3773 | address += env->cp15.c13_fcse; | |
3774 | ||
76e3e1bc | 3775 | if ((env->cp15.c1_sys & SCTLR_M) == 0) { |
9ee6e8bb PB |
3776 | /* MMU/MPU disabled. */ |
3777 | *phys_ptr = address; | |
3ad493fc | 3778 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 3779 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
3780 | return 0; |
3781 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 3782 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
3783 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
3784 | prot); | |
3dde962f PM |
3785 | } else if (extended_addresses_enabled(env)) { |
3786 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
3787 | prot, page_size); | |
76e3e1bc | 3788 | } else if (env->cp15.c1_sys & SCTLR_XP) { |
9ee6e8bb | 3789 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
d4c430a8 | 3790 | prot, page_size); |
9ee6e8bb PB |
3791 | } else { |
3792 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 3793 | prot, page_size); |
9ee6e8bb PB |
3794 | } |
3795 | } | |
3796 | ||
7510454e AF |
3797 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, |
3798 | int access_type, int mmu_idx) | |
b5ff1b31 | 3799 | { |
7510454e AF |
3800 | ARMCPU *cpu = ARM_CPU(cs); |
3801 | CPUARMState *env = &cpu->env; | |
a8170e5e | 3802 | hwaddr phys_addr; |
d4c430a8 | 3803 | target_ulong page_size; |
b5ff1b31 | 3804 | int prot; |
6ebbf390 | 3805 | int ret, is_user; |
00892383 RH |
3806 | uint32_t syn; |
3807 | bool same_el = (arm_current_pl(env) != 0); | |
b5ff1b31 | 3808 | |
6ebbf390 | 3809 | is_user = mmu_idx == MMU_USER_IDX; |
d4c430a8 PB |
3810 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
3811 | &page_size); | |
b5ff1b31 FB |
3812 | if (ret == 0) { |
3813 | /* Map a single [sub]page. */ | |
a8170e5e | 3814 | phys_addr &= ~(hwaddr)0x3ff; |
2c8dd318 | 3815 | address &= ~(target_ulong)0x3ff; |
0c591eb0 | 3816 | tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size); |
d4c430a8 | 3817 | return 0; |
b5ff1b31 FB |
3818 | } |
3819 | ||
00892383 RH |
3820 | /* AArch64 syndrome does not have an LPAE bit */ |
3821 | syn = ret & ~(1 << 9); | |
3822 | ||
3823 | /* For insn and data aborts we assume there is no instruction syndrome | |
3824 | * information; this is always true for exceptions reported to EL1. | |
3825 | */ | |
b5ff1b31 | 3826 | if (access_type == 2) { |
00892383 | 3827 | syn = syn_insn_abort(same_el, 0, 0, syn); |
27103424 | 3828 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 | 3829 | } else { |
00892383 | 3830 | syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn); |
abf1172f PM |
3831 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) { |
3832 | ret |= (1 << 11); | |
3833 | } | |
27103424 | 3834 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 | 3835 | } |
00892383 RH |
3836 | |
3837 | env->exception.syndrome = syn; | |
abf1172f PM |
3838 | env->exception.vaddress = address; |
3839 | env->exception.fsr = ret; | |
b5ff1b31 FB |
3840 | return 1; |
3841 | } | |
3842 | ||
00b941e5 | 3843 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 3844 | { |
00b941e5 | 3845 | ARMCPU *cpu = ARM_CPU(cs); |
a8170e5e | 3846 | hwaddr phys_addr; |
d4c430a8 | 3847 | target_ulong page_size; |
b5ff1b31 FB |
3848 | int prot; |
3849 | int ret; | |
3850 | ||
00b941e5 | 3851 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
b5ff1b31 | 3852 | |
00b941e5 | 3853 | if (ret != 0) { |
b5ff1b31 | 3854 | return -1; |
00b941e5 | 3855 | } |
b5ff1b31 FB |
3856 | |
3857 | return phys_addr; | |
3858 | } | |
3859 | ||
0ecb72a5 | 3860 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 3861 | { |
39ea3d4e PM |
3862 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
3863 | env->regs[13] = val; | |
3864 | } else { | |
f5206413 | 3865 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 3866 | } |
9ee6e8bb PB |
3867 | } |
3868 | ||
0ecb72a5 | 3869 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 3870 | { |
39ea3d4e PM |
3871 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
3872 | return env->regs[13]; | |
3873 | } else { | |
f5206413 | 3874 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 3875 | } |
9ee6e8bb PB |
3876 | } |
3877 | ||
0ecb72a5 | 3878 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 3879 | { |
a47dddd7 AF |
3880 | ARMCPU *cpu = arm_env_get_cpu(env); |
3881 | ||
9ee6e8bb PB |
3882 | switch (reg) { |
3883 | case 0: /* APSR */ | |
3884 | return xpsr_read(env) & 0xf8000000; | |
3885 | case 1: /* IAPSR */ | |
3886 | return xpsr_read(env) & 0xf80001ff; | |
3887 | case 2: /* EAPSR */ | |
3888 | return xpsr_read(env) & 0xff00fc00; | |
3889 | case 3: /* xPSR */ | |
3890 | return xpsr_read(env) & 0xff00fdff; | |
3891 | case 5: /* IPSR */ | |
3892 | return xpsr_read(env) & 0x000001ff; | |
3893 | case 6: /* EPSR */ | |
3894 | return xpsr_read(env) & 0x0700fc00; | |
3895 | case 7: /* IEPSR */ | |
3896 | return xpsr_read(env) & 0x0700edff; | |
3897 | case 8: /* MSP */ | |
3898 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
3899 | case 9: /* PSP */ | |
3900 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
3901 | case 16: /* PRIMASK */ | |
4cc35614 | 3902 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
3903 | case 17: /* BASEPRI */ |
3904 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 3905 | return env->v7m.basepri; |
82845826 | 3906 | case 19: /* FAULTMASK */ |
4cc35614 | 3907 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
3908 | case 20: /* CONTROL */ |
3909 | return env->v7m.control; | |
3910 | default: | |
3911 | /* ??? For debugging only. */ | |
a47dddd7 | 3912 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
3913 | return 0; |
3914 | } | |
3915 | } | |
3916 | ||
0ecb72a5 | 3917 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 3918 | { |
a47dddd7 AF |
3919 | ARMCPU *cpu = arm_env_get_cpu(env); |
3920 | ||
9ee6e8bb PB |
3921 | switch (reg) { |
3922 | case 0: /* APSR */ | |
3923 | xpsr_write(env, val, 0xf8000000); | |
3924 | break; | |
3925 | case 1: /* IAPSR */ | |
3926 | xpsr_write(env, val, 0xf8000000); | |
3927 | break; | |
3928 | case 2: /* EAPSR */ | |
3929 | xpsr_write(env, val, 0xfe00fc00); | |
3930 | break; | |
3931 | case 3: /* xPSR */ | |
3932 | xpsr_write(env, val, 0xfe00fc00); | |
3933 | break; | |
3934 | case 5: /* IPSR */ | |
3935 | /* IPSR bits are readonly. */ | |
3936 | break; | |
3937 | case 6: /* EPSR */ | |
3938 | xpsr_write(env, val, 0x0600fc00); | |
3939 | break; | |
3940 | case 7: /* IEPSR */ | |
3941 | xpsr_write(env, val, 0x0600fc00); | |
3942 | break; | |
3943 | case 8: /* MSP */ | |
3944 | if (env->v7m.current_sp) | |
3945 | env->v7m.other_sp = val; | |
3946 | else | |
3947 | env->regs[13] = val; | |
3948 | break; | |
3949 | case 9: /* PSP */ | |
3950 | if (env->v7m.current_sp) | |
3951 | env->regs[13] = val; | |
3952 | else | |
3953 | env->v7m.other_sp = val; | |
3954 | break; | |
3955 | case 16: /* PRIMASK */ | |
4cc35614 PM |
3956 | if (val & 1) { |
3957 | env->daif |= PSTATE_I; | |
3958 | } else { | |
3959 | env->daif &= ~PSTATE_I; | |
3960 | } | |
9ee6e8bb | 3961 | break; |
82845826 | 3962 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
3963 | env->v7m.basepri = val & 0xff; |
3964 | break; | |
82845826 | 3965 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
3966 | val &= 0xff; |
3967 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
3968 | env->v7m.basepri = val; | |
3969 | break; | |
82845826 | 3970 | case 19: /* FAULTMASK */ |
4cc35614 PM |
3971 | if (val & 1) { |
3972 | env->daif |= PSTATE_F; | |
3973 | } else { | |
3974 | env->daif &= ~PSTATE_F; | |
3975 | } | |
82845826 | 3976 | break; |
9ee6e8bb PB |
3977 | case 20: /* CONTROL */ |
3978 | env->v7m.control = val & 3; | |
3979 | switch_v7m_sp(env, (val & 2) != 0); | |
3980 | break; | |
3981 | default: | |
3982 | /* ??? For debugging only. */ | |
a47dddd7 | 3983 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
3984 | return; |
3985 | } | |
3986 | } | |
3987 | ||
b5ff1b31 | 3988 | #endif |
6ddbc6e4 | 3989 | |
aca3f40b PM |
3990 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
3991 | { | |
3992 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
3993 | * Note that we do not implement the (architecturally mandated) | |
3994 | * alignment fault for attempts to use this on Device memory | |
3995 | * (which matches the usual QEMU behaviour of not implementing either | |
3996 | * alignment faults or any memory attribute handling). | |
3997 | */ | |
3998 | ||
3999 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4000 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
4001 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
4002 | ||
4003 | #ifndef CONFIG_USER_ONLY | |
4004 | { | |
4005 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
4006 | * the block size so we might have to do more than one TLB lookup. | |
4007 | * We know that in fact for any v8 CPU the page size is at least 4K | |
4008 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
4009 | * 1K as an artefact of legacy v5 subpage support being present in the | |
4010 | * same QEMU executable. | |
4011 | */ | |
4012 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
4013 | void *hostaddr[maxidx]; | |
4014 | int try, i; | |
4015 | ||
4016 | for (try = 0; try < 2; try++) { | |
4017 | ||
4018 | for (i = 0; i < maxidx; i++) { | |
4019 | hostaddr[i] = tlb_vaddr_to_host(env, | |
4020 | vaddr + TARGET_PAGE_SIZE * i, | |
4021 | 1, cpu_mmu_index(env)); | |
4022 | if (!hostaddr[i]) { | |
4023 | break; | |
4024 | } | |
4025 | } | |
4026 | if (i == maxidx) { | |
4027 | /* If it's all in the TLB it's fair game for just writing to; | |
4028 | * we know we don't need to update dirty status, etc. | |
4029 | */ | |
4030 | for (i = 0; i < maxidx - 1; i++) { | |
4031 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
4032 | } | |
4033 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
4034 | return; | |
4035 | } | |
4036 | /* OK, try a store and see if we can populate the tlb. This | |
4037 | * might cause an exception if the memory isn't writable, | |
4038 | * in which case we will longjmp out of here. We must for | |
4039 | * this purpose use the actual register value passed to us | |
4040 | * so that we get the fault address right. | |
4041 | */ | |
4042 | helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA()); | |
4043 | /* Now we can populate the other TLB entries, if any */ | |
4044 | for (i = 0; i < maxidx; i++) { | |
4045 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
4046 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
4047 | helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA()); | |
4048 | } | |
4049 | } | |
4050 | } | |
4051 | ||
4052 | /* Slow path (probably attempt to do this to an I/O device or | |
4053 | * similar, or clearing of a block of code we have translations | |
4054 | * cached for). Just do a series of byte writes as the architecture | |
4055 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
4056 | * memset(), unmap() sequence here because: | |
4057 | * + we'd need to account for the blocksize being larger than a page | |
4058 | * + the direct-RAM access case is almost always going to be dealt | |
4059 | * with in the fastpath code above, so there's no speed benefit | |
4060 | * + we would have to deal with the map returning NULL because the | |
4061 | * bounce buffer was in use | |
4062 | */ | |
4063 | for (i = 0; i < blocklen; i++) { | |
4064 | helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA()); | |
4065 | } | |
4066 | } | |
4067 | #else | |
4068 | memset(g2h(vaddr), 0, blocklen); | |
4069 | #endif | |
4070 | } | |
4071 | ||
6ddbc6e4 PB |
4072 | /* Note that signed overflow is undefined in C. The following routines are |
4073 | careful to use unsigned types where modulo arithmetic is required. | |
4074 | Failure to do so _will_ break on newer gcc. */ | |
4075 | ||
4076 | /* Signed saturating arithmetic. */ | |
4077 | ||
1654b2d6 | 4078 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
4079 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
4080 | { | |
4081 | uint16_t res; | |
4082 | ||
4083 | res = a + b; | |
4084 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
4085 | if (a & 0x8000) | |
4086 | res = 0x8000; | |
4087 | else | |
4088 | res = 0x7fff; | |
4089 | } | |
4090 | return res; | |
4091 | } | |
4092 | ||
1654b2d6 | 4093 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
4094 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
4095 | { | |
4096 | uint8_t res; | |
4097 | ||
4098 | res = a + b; | |
4099 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
4100 | if (a & 0x80) | |
4101 | res = 0x80; | |
4102 | else | |
4103 | res = 0x7f; | |
4104 | } | |
4105 | return res; | |
4106 | } | |
4107 | ||
1654b2d6 | 4108 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
4109 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
4110 | { | |
4111 | uint16_t res; | |
4112 | ||
4113 | res = a - b; | |
4114 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
4115 | if (a & 0x8000) | |
4116 | res = 0x8000; | |
4117 | else | |
4118 | res = 0x7fff; | |
4119 | } | |
4120 | return res; | |
4121 | } | |
4122 | ||
1654b2d6 | 4123 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
4124 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
4125 | { | |
4126 | uint8_t res; | |
4127 | ||
4128 | res = a - b; | |
4129 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
4130 | if (a & 0x80) | |
4131 | res = 0x80; | |
4132 | else | |
4133 | res = 0x7f; | |
4134 | } | |
4135 | return res; | |
4136 | } | |
4137 | ||
4138 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
4139 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
4140 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
4141 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
4142 | #define PFX q | |
4143 | ||
4144 | #include "op_addsub.h" | |
4145 | ||
4146 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 4147 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
4148 | { |
4149 | uint16_t res; | |
4150 | res = a + b; | |
4151 | if (res < a) | |
4152 | res = 0xffff; | |
4153 | return res; | |
4154 | } | |
4155 | ||
460a09c1 | 4156 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 4157 | { |
4c4fd3f8 | 4158 | if (a > b) |
6ddbc6e4 PB |
4159 | return a - b; |
4160 | else | |
4161 | return 0; | |
4162 | } | |
4163 | ||
4164 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
4165 | { | |
4166 | uint8_t res; | |
4167 | res = a + b; | |
4168 | if (res < a) | |
4169 | res = 0xff; | |
4170 | return res; | |
4171 | } | |
4172 | ||
4173 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
4174 | { | |
4c4fd3f8 | 4175 | if (a > b) |
6ddbc6e4 PB |
4176 | return a - b; |
4177 | else | |
4178 | return 0; | |
4179 | } | |
4180 | ||
4181 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
4182 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
4183 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
4184 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
4185 | #define PFX uq | |
4186 | ||
4187 | #include "op_addsub.h" | |
4188 | ||
4189 | /* Signed modulo arithmetic. */ | |
4190 | #define SARITH16(a, b, n, op) do { \ | |
4191 | int32_t sum; \ | |
db6e2e65 | 4192 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
4193 | RESULT(sum, n, 16); \ |
4194 | if (sum >= 0) \ | |
4195 | ge |= 3 << (n * 2); \ | |
4196 | } while(0) | |
4197 | ||
4198 | #define SARITH8(a, b, n, op) do { \ | |
4199 | int32_t sum; \ | |
db6e2e65 | 4200 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
4201 | RESULT(sum, n, 8); \ |
4202 | if (sum >= 0) \ | |
4203 | ge |= 1 << n; \ | |
4204 | } while(0) | |
4205 | ||
4206 | ||
4207 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
4208 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
4209 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
4210 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
4211 | #define PFX s | |
4212 | #define ARITH_GE | |
4213 | ||
4214 | #include "op_addsub.h" | |
4215 | ||
4216 | /* Unsigned modulo arithmetic. */ | |
4217 | #define ADD16(a, b, n) do { \ | |
4218 | uint32_t sum; \ | |
4219 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
4220 | RESULT(sum, n, 16); \ | |
a87aa10b | 4221 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
4222 | ge |= 3 << (n * 2); \ |
4223 | } while(0) | |
4224 | ||
4225 | #define ADD8(a, b, n) do { \ | |
4226 | uint32_t sum; \ | |
4227 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
4228 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
4229 | if ((sum >> 8) == 1) \ |
4230 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
4231 | } while(0) |
4232 | ||
4233 | #define SUB16(a, b, n) do { \ | |
4234 | uint32_t sum; \ | |
4235 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
4236 | RESULT(sum, n, 16); \ | |
4237 | if ((sum >> 16) == 0) \ | |
4238 | ge |= 3 << (n * 2); \ | |
4239 | } while(0) | |
4240 | ||
4241 | #define SUB8(a, b, n) do { \ | |
4242 | uint32_t sum; \ | |
4243 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
4244 | RESULT(sum, n, 8); \ | |
4245 | if ((sum >> 8) == 0) \ | |
a87aa10b | 4246 | ge |= 1 << n; \ |
6ddbc6e4 PB |
4247 | } while(0) |
4248 | ||
4249 | #define PFX u | |
4250 | #define ARITH_GE | |
4251 | ||
4252 | #include "op_addsub.h" | |
4253 | ||
4254 | /* Halved signed arithmetic. */ | |
4255 | #define ADD16(a, b, n) \ | |
4256 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
4257 | #define SUB16(a, b, n) \ | |
4258 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
4259 | #define ADD8(a, b, n) \ | |
4260 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
4261 | #define SUB8(a, b, n) \ | |
4262 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
4263 | #define PFX sh | |
4264 | ||
4265 | #include "op_addsub.h" | |
4266 | ||
4267 | /* Halved unsigned arithmetic. */ | |
4268 | #define ADD16(a, b, n) \ | |
4269 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
4270 | #define SUB16(a, b, n) \ | |
4271 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
4272 | #define ADD8(a, b, n) \ | |
4273 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
4274 | #define SUB8(a, b, n) \ | |
4275 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
4276 | #define PFX uh | |
4277 | ||
4278 | #include "op_addsub.h" | |
4279 | ||
4280 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
4281 | { | |
4282 | if (a > b) | |
4283 | return a - b; | |
4284 | else | |
4285 | return b - a; | |
4286 | } | |
4287 | ||
4288 | /* Unsigned sum of absolute byte differences. */ | |
4289 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
4290 | { | |
4291 | uint32_t sum; | |
4292 | sum = do_usad(a, b); | |
4293 | sum += do_usad(a >> 8, b >> 8); | |
4294 | sum += do_usad(a >> 16, b >>16); | |
4295 | sum += do_usad(a >> 24, b >> 24); | |
4296 | return sum; | |
4297 | } | |
4298 | ||
4299 | /* For ARMv6 SEL instruction. */ | |
4300 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
4301 | { | |
4302 | uint32_t mask; | |
4303 | ||
4304 | mask = 0; | |
4305 | if (flags & 1) | |
4306 | mask |= 0xff; | |
4307 | if (flags & 2) | |
4308 | mask |= 0xff00; | |
4309 | if (flags & 4) | |
4310 | mask |= 0xff0000; | |
4311 | if (flags & 8) | |
4312 | mask |= 0xff000000; | |
4313 | return (a & mask) | (b & ~mask); | |
4314 | } | |
4315 | ||
b90372ad PM |
4316 | /* VFP support. We follow the convention used for VFP instructions: |
4317 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
4318 | "d" suffix. */ |
4319 | ||
4320 | /* Convert host exception flags to vfp form. */ | |
4321 | static inline int vfp_exceptbits_from_host(int host_bits) | |
4322 | { | |
4323 | int target_bits = 0; | |
4324 | ||
4325 | if (host_bits & float_flag_invalid) | |
4326 | target_bits |= 1; | |
4327 | if (host_bits & float_flag_divbyzero) | |
4328 | target_bits |= 2; | |
4329 | if (host_bits & float_flag_overflow) | |
4330 | target_bits |= 4; | |
36802b6b | 4331 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
4332 | target_bits |= 8; |
4333 | if (host_bits & float_flag_inexact) | |
4334 | target_bits |= 0x10; | |
cecd8504 PM |
4335 | if (host_bits & float_flag_input_denormal) |
4336 | target_bits |= 0x80; | |
4373f3ce PB |
4337 | return target_bits; |
4338 | } | |
4339 | ||
0ecb72a5 | 4340 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
4341 | { |
4342 | int i; | |
4343 | uint32_t fpscr; | |
4344 | ||
4345 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
4346 | | (env->vfp.vec_len << 16) | |
4347 | | (env->vfp.vec_stride << 20); | |
4348 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 4349 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
4350 | fpscr |= vfp_exceptbits_from_host(i); |
4351 | return fpscr; | |
4352 | } | |
4353 | ||
0ecb72a5 | 4354 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
4355 | { |
4356 | return HELPER(vfp_get_fpscr)(env); | |
4357 | } | |
4358 | ||
4373f3ce PB |
4359 | /* Convert vfp exception flags to target form. */ |
4360 | static inline int vfp_exceptbits_to_host(int target_bits) | |
4361 | { | |
4362 | int host_bits = 0; | |
4363 | ||
4364 | if (target_bits & 1) | |
4365 | host_bits |= float_flag_invalid; | |
4366 | if (target_bits & 2) | |
4367 | host_bits |= float_flag_divbyzero; | |
4368 | if (target_bits & 4) | |
4369 | host_bits |= float_flag_overflow; | |
4370 | if (target_bits & 8) | |
4371 | host_bits |= float_flag_underflow; | |
4372 | if (target_bits & 0x10) | |
4373 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
4374 | if (target_bits & 0x80) |
4375 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
4376 | return host_bits; |
4377 | } | |
4378 | ||
0ecb72a5 | 4379 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
4380 | { |
4381 | int i; | |
4382 | uint32_t changed; | |
4383 | ||
4384 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
4385 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
4386 | env->vfp.vec_len = (val >> 16) & 7; | |
4387 | env->vfp.vec_stride = (val >> 20) & 3; | |
4388 | ||
4389 | changed ^= val; | |
4390 | if (changed & (3 << 22)) { | |
4391 | i = (val >> 22) & 3; | |
4392 | switch (i) { | |
4d3da0f3 | 4393 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
4394 | i = float_round_nearest_even; |
4395 | break; | |
4d3da0f3 | 4396 | case FPROUNDING_POSINF: |
4373f3ce PB |
4397 | i = float_round_up; |
4398 | break; | |
4d3da0f3 | 4399 | case FPROUNDING_NEGINF: |
4373f3ce PB |
4400 | i = float_round_down; |
4401 | break; | |
4d3da0f3 | 4402 | case FPROUNDING_ZERO: |
4373f3ce PB |
4403 | i = float_round_to_zero; |
4404 | break; | |
4405 | } | |
4406 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
4407 | } | |
cecd8504 | 4408 | if (changed & (1 << 24)) { |
fe76d976 | 4409 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
4410 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
4411 | } | |
5c7908ed PB |
4412 | if (changed & (1 << 25)) |
4413 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 4414 | |
b12c390b | 4415 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 4416 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 4417 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
4418 | } |
4419 | ||
0ecb72a5 | 4420 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
4421 | { |
4422 | HELPER(vfp_set_fpscr)(env, val); | |
4423 | } | |
4424 | ||
4373f3ce PB |
4425 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
4426 | ||
4427 | #define VFP_BINOP(name) \ | |
ae1857ec | 4428 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 4429 | { \ |
ae1857ec PM |
4430 | float_status *fpst = fpstp; \ |
4431 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 4432 | } \ |
ae1857ec | 4433 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 4434 | { \ |
ae1857ec PM |
4435 | float_status *fpst = fpstp; \ |
4436 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
4437 | } |
4438 | VFP_BINOP(add) | |
4439 | VFP_BINOP(sub) | |
4440 | VFP_BINOP(mul) | |
4441 | VFP_BINOP(div) | |
f71a2ae5 PM |
4442 | VFP_BINOP(min) |
4443 | VFP_BINOP(max) | |
4444 | VFP_BINOP(minnum) | |
4445 | VFP_BINOP(maxnum) | |
4373f3ce PB |
4446 | #undef VFP_BINOP |
4447 | ||
4448 | float32 VFP_HELPER(neg, s)(float32 a) | |
4449 | { | |
4450 | return float32_chs(a); | |
4451 | } | |
4452 | ||
4453 | float64 VFP_HELPER(neg, d)(float64 a) | |
4454 | { | |
66230e0d | 4455 | return float64_chs(a); |
4373f3ce PB |
4456 | } |
4457 | ||
4458 | float32 VFP_HELPER(abs, s)(float32 a) | |
4459 | { | |
4460 | return float32_abs(a); | |
4461 | } | |
4462 | ||
4463 | float64 VFP_HELPER(abs, d)(float64 a) | |
4464 | { | |
66230e0d | 4465 | return float64_abs(a); |
4373f3ce PB |
4466 | } |
4467 | ||
0ecb72a5 | 4468 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
4469 | { |
4470 | return float32_sqrt(a, &env->vfp.fp_status); | |
4471 | } | |
4472 | ||
0ecb72a5 | 4473 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
4474 | { |
4475 | return float64_sqrt(a, &env->vfp.fp_status); | |
4476 | } | |
4477 | ||
4478 | /* XXX: check quiet/signaling case */ | |
4479 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 4480 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
4481 | { \ |
4482 | uint32_t flags; \ | |
4483 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
4484 | case 0: flags = 0x6; break; \ | |
4485 | case -1: flags = 0x8; break; \ | |
4486 | case 1: flags = 0x2; break; \ | |
4487 | default: case 2: flags = 0x3; break; \ | |
4488 | } \ | |
4489 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
4490 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
4491 | } \ | |
0ecb72a5 | 4492 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
4493 | { \ |
4494 | uint32_t flags; \ | |
4495 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
4496 | case 0: flags = 0x6; break; \ | |
4497 | case -1: flags = 0x8; break; \ | |
4498 | case 1: flags = 0x2; break; \ | |
4499 | default: case 2: flags = 0x3; break; \ | |
4500 | } \ | |
4501 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
4502 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
4503 | } | |
4504 | DO_VFP_cmp(s, float32) | |
4505 | DO_VFP_cmp(d, float64) | |
4506 | #undef DO_VFP_cmp | |
4507 | ||
5500b06c | 4508 | /* Integer to float and float to integer conversions */ |
4373f3ce | 4509 | |
5500b06c PM |
4510 | #define CONV_ITOF(name, fsz, sign) \ |
4511 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
4512 | { \ | |
4513 | float_status *fpst = fpstp; \ | |
85836979 | 4514 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
4515 | } |
4516 | ||
5500b06c PM |
4517 | #define CONV_FTOI(name, fsz, sign, round) \ |
4518 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
4519 | { \ | |
4520 | float_status *fpst = fpstp; \ | |
4521 | if (float##fsz##_is_any_nan(x)) { \ | |
4522 | float_raise(float_flag_invalid, fpst); \ | |
4523 | return 0; \ | |
4524 | } \ | |
4525 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
4526 | } |
4527 | ||
5500b06c PM |
4528 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
4529 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
4530 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
4531 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 4532 | |
5500b06c PM |
4533 | FLOAT_CONVS(si, s, 32, ) |
4534 | FLOAT_CONVS(si, d, 64, ) | |
4535 | FLOAT_CONVS(ui, s, 32, u) | |
4536 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 4537 | |
5500b06c PM |
4538 | #undef CONV_ITOF |
4539 | #undef CONV_FTOI | |
4540 | #undef FLOAT_CONVS | |
4373f3ce PB |
4541 | |
4542 | /* floating point conversion */ | |
0ecb72a5 | 4543 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 4544 | { |
2d627737 PM |
4545 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
4546 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
4547 | * a quiet NaN by forcing the most significant frac bit to 1. | |
4548 | */ | |
4549 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
4550 | } |
4551 | ||
0ecb72a5 | 4552 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 4553 | { |
2d627737 PM |
4554 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
4555 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
4556 | * a quiet NaN by forcing the most significant frac bit to 1. | |
4557 | */ | |
4558 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
4559 | } |
4560 | ||
4561 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 4562 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
4563 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
4564 | void *fpstp) \ | |
4373f3ce | 4565 | { \ |
5500b06c | 4566 | float_status *fpst = fpstp; \ |
622465e1 | 4567 | float##fsz tmp; \ |
8ed697e8 | 4568 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 4569 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
4570 | } |
4571 | ||
abe66f70 PM |
4572 | /* Notice that we want only input-denormal exception flags from the |
4573 | * scalbn operation: the other possible flags (overflow+inexact if | |
4574 | * we overflow to infinity, output-denormal) aren't correct for the | |
4575 | * complete scale-and-convert operation. | |
4576 | */ | |
16d5b3ca WN |
4577 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
4578 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
4579 | uint32_t shift, \ | |
4580 | void *fpstp) \ | |
4373f3ce | 4581 | { \ |
5500b06c | 4582 | float_status *fpst = fpstp; \ |
abe66f70 | 4583 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
4584 | float##fsz tmp; \ |
4585 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 4586 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 4587 | return 0; \ |
09d9487f | 4588 | } \ |
5500b06c | 4589 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
4590 | old_exc_flags |= get_float_exception_flags(fpst) \ |
4591 | & float_flag_input_denormal; \ | |
4592 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 4593 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
4594 | } |
4595 | ||
16d5b3ca WN |
4596 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
4597 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
4598 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
4599 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
4600 | ||
4601 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
4602 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
4603 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 4604 | |
8ed697e8 WN |
4605 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
4606 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 4607 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
4608 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
4609 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 4610 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
4611 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
4612 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 4613 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
4614 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
4615 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 4616 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 4617 | #undef VFP_CONV_FIX |
16d5b3ca WN |
4618 | #undef VFP_CONV_FIX_FLOAT |
4619 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 4620 | |
52a1f6a3 AG |
4621 | /* Set the current fp rounding mode and return the old one. |
4622 | * The argument is a softfloat float_round_ value. | |
4623 | */ | |
4624 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
4625 | { | |
4626 | float_status *fp_status = &env->vfp.fp_status; | |
4627 | ||
4628 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
4629 | set_float_rounding_mode(rmode, fp_status); | |
4630 | ||
4631 | return prev_rmode; | |
4632 | } | |
4633 | ||
43630e58 WN |
4634 | /* Set the current fp rounding mode in the standard fp status and return |
4635 | * the old one. This is for NEON instructions that need to change the | |
4636 | * rounding mode but wish to use the standard FPSCR values for everything | |
4637 | * else. Always set the rounding mode back to the correct value after | |
4638 | * modifying it. | |
4639 | * The argument is a softfloat float_round_ value. | |
4640 | */ | |
4641 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
4642 | { | |
4643 | float_status *fp_status = &env->vfp.standard_fp_status; | |
4644 | ||
4645 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
4646 | set_float_rounding_mode(rmode, fp_status); | |
4647 | ||
4648 | return prev_rmode; | |
4649 | } | |
4650 | ||
60011498 | 4651 | /* Half precision conversions. */ |
0ecb72a5 | 4652 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 4653 | { |
60011498 | 4654 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
4655 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
4656 | if (ieee) { | |
4657 | return float32_maybe_silence_nan(r); | |
4658 | } | |
4659 | return r; | |
60011498 PB |
4660 | } |
4661 | ||
0ecb72a5 | 4662 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 4663 | { |
60011498 | 4664 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
4665 | float16 r = float32_to_float16(a, ieee, s); |
4666 | if (ieee) { | |
4667 | r = float16_maybe_silence_nan(r); | |
4668 | } | |
4669 | return float16_val(r); | |
60011498 PB |
4670 | } |
4671 | ||
0ecb72a5 | 4672 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
4673 | { |
4674 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
4675 | } | |
4676 | ||
0ecb72a5 | 4677 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
4678 | { |
4679 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
4680 | } | |
4681 | ||
0ecb72a5 | 4682 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
4683 | { |
4684 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
4685 | } | |
4686 | ||
0ecb72a5 | 4687 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
4688 | { |
4689 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
4690 | } | |
4691 | ||
8900aad2 PM |
4692 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
4693 | { | |
4694 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4695 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
4696 | if (ieee) { | |
4697 | return float64_maybe_silence_nan(r); | |
4698 | } | |
4699 | return r; | |
4700 | } | |
4701 | ||
4702 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
4703 | { | |
4704 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4705 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
4706 | if (ieee) { | |
4707 | r = float16_maybe_silence_nan(r); | |
4708 | } | |
4709 | return float16_val(r); | |
4710 | } | |
4711 | ||
dda3ec49 | 4712 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
4713 | #define float32_three make_float32(0x40400000) |
4714 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 4715 | |
0ecb72a5 | 4716 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 4717 | { |
dda3ec49 PM |
4718 | float_status *s = &env->vfp.standard_fp_status; |
4719 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
4720 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
4721 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
4722 | float_raise(float_flag_input_denormal, s); | |
4723 | } | |
dda3ec49 PM |
4724 | return float32_two; |
4725 | } | |
4726 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
4727 | } |
4728 | ||
0ecb72a5 | 4729 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 4730 | { |
71826966 | 4731 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
4732 | float32 product; |
4733 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
4734 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
4735 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
4736 | float_raise(float_flag_input_denormal, s); | |
4737 | } | |
6aae3df1 | 4738 | return float32_one_point_five; |
9ea62f57 | 4739 | } |
6aae3df1 PM |
4740 | product = float32_mul(a, b, s); |
4741 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
4742 | } |
4743 | ||
8f8e3aa4 PB |
4744 | /* NEON helpers. */ |
4745 | ||
56bf4fe2 CL |
4746 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
4747 | * int->float conversions at run-time. */ | |
4748 | #define float64_256 make_float64(0x4070000000000000LL) | |
4749 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
4750 | #define float32_maxnorm make_float32(0x7f7fffff) |
4751 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 4752 | |
b6d4443a AB |
4753 | /* Reciprocal functions |
4754 | * | |
4755 | * The algorithm that must be used to calculate the estimate | |
4756 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 4757 | */ |
b6d4443a AB |
4758 | |
4759 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 4760 | { |
1146a817 PM |
4761 | /* These calculations mustn't set any fp exception flags, |
4762 | * so we use a local copy of the fp_status. | |
4763 | */ | |
b6d4443a | 4764 | float_status dummy_status = *real_fp_status; |
1146a817 | 4765 | float_status *s = &dummy_status; |
fe0e4872 CL |
4766 | /* q = (int)(a * 512.0) */ |
4767 | float64 q = float64_mul(float64_512, a, s); | |
4768 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
4769 | ||
4770 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
4771 | q = int64_to_float64(q_int, s); | |
4772 | q = float64_add(q, float64_half, s); | |
4773 | q = float64_div(q, float64_512, s); | |
4774 | q = float64_div(float64_one, q, s); | |
4775 | ||
4776 | /* s = (int)(256.0 * r + 0.5) */ | |
4777 | q = float64_mul(q, float64_256, s); | |
4778 | q = float64_add(q, float64_half, s); | |
4779 | q_int = float64_to_int64_round_to_zero(q, s); | |
4780 | ||
4781 | /* return (double)s / 256.0 */ | |
4782 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
4783 | } | |
4784 | ||
b6d4443a AB |
4785 | /* Common wrapper to call recip_estimate */ |
4786 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 4787 | { |
b6d4443a AB |
4788 | uint64_t val64 = float64_val(num); |
4789 | uint64_t frac = extract64(val64, 0, 52); | |
4790 | int64_t exp = extract64(val64, 52, 11); | |
4791 | uint64_t sbit; | |
4792 | float64 scaled, estimate; | |
fe0e4872 | 4793 | |
b6d4443a AB |
4794 | /* Generate the scaled number for the estimate function */ |
4795 | if (exp == 0) { | |
4796 | if (extract64(frac, 51, 1) == 0) { | |
4797 | exp = -1; | |
4798 | frac = extract64(frac, 0, 50) << 2; | |
4799 | } else { | |
4800 | frac = extract64(frac, 0, 51) << 1; | |
4801 | } | |
4802 | } | |
fe0e4872 | 4803 | |
b6d4443a AB |
4804 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
4805 | scaled = make_float64((0x3feULL << 52) | |
4806 | | extract64(frac, 44, 8) << 44); | |
4807 | ||
4808 | estimate = recip_estimate(scaled, fpst); | |
4809 | ||
4810 | /* Build new result */ | |
4811 | val64 = float64_val(estimate); | |
4812 | sbit = 0x8000000000000000ULL & val64; | |
4813 | exp = off - exp; | |
4814 | frac = extract64(val64, 0, 52); | |
4815 | ||
4816 | if (exp == 0) { | |
4817 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
4818 | } else if (exp == -1) { | |
4819 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
4820 | exp = 0; | |
4821 | } | |
4822 | ||
4823 | return make_float64(sbit | (exp << 52) | frac); | |
4824 | } | |
4825 | ||
4826 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
4827 | { | |
4828 | switch (fpst->float_rounding_mode) { | |
4829 | case float_round_nearest_even: /* Round to Nearest */ | |
4830 | return true; | |
4831 | case float_round_up: /* Round to +Inf */ | |
4832 | return !sign_bit; | |
4833 | case float_round_down: /* Round to -Inf */ | |
4834 | return sign_bit; | |
4835 | case float_round_to_zero: /* Round to Zero */ | |
4836 | return false; | |
4837 | } | |
4838 | ||
4839 | g_assert_not_reached(); | |
4840 | } | |
4841 | ||
4842 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
4843 | { | |
4844 | float_status *fpst = fpstp; | |
4845 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
4846 | uint32_t f32_val = float32_val(f32); | |
4847 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
4848 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
4849 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
4850 | float64 f64, r64; | |
4851 | uint64_t r64_val; | |
4852 | int64_t r64_exp; | |
4853 | uint64_t r64_frac; | |
4854 | ||
4855 | if (float32_is_any_nan(f32)) { | |
4856 | float32 nan = f32; | |
4857 | if (float32_is_signaling_nan(f32)) { | |
4858 | float_raise(float_flag_invalid, fpst); | |
4859 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 4860 | } |
b6d4443a AB |
4861 | if (fpst->default_nan_mode) { |
4862 | nan = float32_default_nan; | |
43fe9bdb | 4863 | } |
b6d4443a AB |
4864 | return nan; |
4865 | } else if (float32_is_infinity(f32)) { | |
4866 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
4867 | } else if (float32_is_zero(f32)) { | |
4868 | float_raise(float_flag_divbyzero, fpst); | |
4869 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
4870 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
4871 | /* Abs(value) < 2.0^-128 */ | |
4872 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
4873 | if (round_to_inf(fpst, f32_sbit)) { | |
4874 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
4875 | } else { | |
4876 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
4877 | } | |
4878 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
4879 | float_raise(float_flag_underflow, fpst); | |
4880 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
4881 | } |
4882 | ||
fe0e4872 | 4883 | |
b6d4443a AB |
4884 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
4885 | r64 = call_recip_estimate(f64, 253, fpst); | |
4886 | r64_val = float64_val(r64); | |
4887 | r64_exp = extract64(r64_val, 52, 11); | |
4888 | r64_frac = extract64(r64_val, 0, 52); | |
4889 | ||
4890 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
4891 | return make_float32(f32_sbit | | |
4892 | (r64_exp & 0xff) << 23 | | |
4893 | extract64(r64_frac, 29, 24)); | |
4894 | } | |
4895 | ||
4896 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
4897 | { | |
4898 | float_status *fpst = fpstp; | |
4899 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
4900 | uint64_t f64_val = float64_val(f64); | |
4901 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
4902 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
4903 | float64 r64; | |
4904 | uint64_t r64_val; | |
4905 | int64_t r64_exp; | |
4906 | uint64_t r64_frac; | |
4907 | ||
4908 | /* Deal with any special cases */ | |
4909 | if (float64_is_any_nan(f64)) { | |
4910 | float64 nan = f64; | |
4911 | if (float64_is_signaling_nan(f64)) { | |
4912 | float_raise(float_flag_invalid, fpst); | |
4913 | nan = float64_maybe_silence_nan(f64); | |
4914 | } | |
4915 | if (fpst->default_nan_mode) { | |
4916 | nan = float64_default_nan; | |
4917 | } | |
4918 | return nan; | |
4919 | } else if (float64_is_infinity(f64)) { | |
4920 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
4921 | } else if (float64_is_zero(f64)) { | |
4922 | float_raise(float_flag_divbyzero, fpst); | |
4923 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
4924 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
4925 | /* Abs(value) < 2.0^-1024 */ | |
4926 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
4927 | if (round_to_inf(fpst, f64_sbit)) { | |
4928 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
4929 | } else { | |
4930 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
4931 | } | |
4932 | } else if (f64_exp >= 1023 && fpst->flush_to_zero) { | |
4933 | float_raise(float_flag_underflow, fpst); | |
4934 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
4935 | } | |
fe0e4872 | 4936 | |
b6d4443a AB |
4937 | r64 = call_recip_estimate(f64, 2045, fpst); |
4938 | r64_val = float64_val(r64); | |
4939 | r64_exp = extract64(r64_val, 52, 11); | |
4940 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 4941 | |
b6d4443a AB |
4942 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
4943 | return make_float64(f64_sbit | | |
4944 | ((r64_exp & 0x7ff) << 52) | | |
4945 | r64_frac); | |
4373f3ce PB |
4946 | } |
4947 | ||
e07be5d2 CL |
4948 | /* The algorithm that must be used to calculate the estimate |
4949 | * is specified by the ARM ARM. | |
4950 | */ | |
c2fb418e | 4951 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 4952 | { |
1146a817 PM |
4953 | /* These calculations mustn't set any fp exception flags, |
4954 | * so we use a local copy of the fp_status. | |
4955 | */ | |
c2fb418e | 4956 | float_status dummy_status = *real_fp_status; |
1146a817 | 4957 | float_status *s = &dummy_status; |
e07be5d2 CL |
4958 | float64 q; |
4959 | int64_t q_int; | |
4960 | ||
4961 | if (float64_lt(a, float64_half, s)) { | |
4962 | /* range 0.25 <= a < 0.5 */ | |
4963 | ||
4964 | /* a in units of 1/512 rounded down */ | |
4965 | /* q0 = (int)(a * 512.0); */ | |
4966 | q = float64_mul(float64_512, a, s); | |
4967 | q_int = float64_to_int64_round_to_zero(q, s); | |
4968 | ||
4969 | /* reciprocal root r */ | |
4970 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
4971 | q = int64_to_float64(q_int, s); | |
4972 | q = float64_add(q, float64_half, s); | |
4973 | q = float64_div(q, float64_512, s); | |
4974 | q = float64_sqrt(q, s); | |
4975 | q = float64_div(float64_one, q, s); | |
4976 | } else { | |
4977 | /* range 0.5 <= a < 1.0 */ | |
4978 | ||
4979 | /* a in units of 1/256 rounded down */ | |
4980 | /* q1 = (int)(a * 256.0); */ | |
4981 | q = float64_mul(float64_256, a, s); | |
4982 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
4983 | ||
4984 | /* reciprocal root r */ | |
4985 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
4986 | q = int64_to_float64(q_int, s); | |
4987 | q = float64_add(q, float64_half, s); | |
4988 | q = float64_div(q, float64_256, s); | |
4989 | q = float64_sqrt(q, s); | |
4990 | q = float64_div(float64_one, q, s); | |
4991 | } | |
4992 | /* r in units of 1/256 rounded to nearest */ | |
4993 | /* s = (int)(256.0 * r + 0.5); */ | |
4994 | ||
4995 | q = float64_mul(q, float64_256,s ); | |
4996 | q = float64_add(q, float64_half, s); | |
4997 | q_int = float64_to_int64_round_to_zero(q, s); | |
4998 | ||
4999 | /* return (double)s / 256.0;*/ | |
5000 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
5001 | } | |
5002 | ||
c2fb418e | 5003 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 5004 | { |
c2fb418e AB |
5005 | float_status *s = fpstp; |
5006 | float32 f32 = float32_squash_input_denormal(input, s); | |
5007 | uint32_t val = float32_val(f32); | |
5008 | uint32_t f32_sbit = 0x80000000 & val; | |
5009 | int32_t f32_exp = extract32(val, 23, 8); | |
5010 | uint32_t f32_frac = extract32(val, 0, 23); | |
5011 | uint64_t f64_frac; | |
5012 | uint64_t val64; | |
e07be5d2 CL |
5013 | int result_exp; |
5014 | float64 f64; | |
e07be5d2 | 5015 | |
c2fb418e AB |
5016 | if (float32_is_any_nan(f32)) { |
5017 | float32 nan = f32; | |
5018 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 5019 | float_raise(float_flag_invalid, s); |
c2fb418e | 5020 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 5021 | } |
c2fb418e AB |
5022 | if (s->default_nan_mode) { |
5023 | nan = float32_default_nan; | |
43fe9bdb | 5024 | } |
c2fb418e AB |
5025 | return nan; |
5026 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 5027 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
5028 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
5029 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
5030 | float_raise(float_flag_invalid, s); |
5031 | return float32_default_nan; | |
c2fb418e | 5032 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
5033 | return float32_zero; |
5034 | } | |
5035 | ||
c2fb418e | 5036 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 5037 | * preserving the parity of the exponent. */ |
c2fb418e AB |
5038 | |
5039 | f64_frac = ((uint64_t) f32_frac) << 29; | |
5040 | if (f32_exp == 0) { | |
5041 | while (extract64(f64_frac, 51, 1) == 0) { | |
5042 | f64_frac = f64_frac << 1; | |
5043 | f32_exp = f32_exp-1; | |
5044 | } | |
5045 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
5046 | } | |
5047 | ||
5048 | if (extract64(f32_exp, 0, 1) == 0) { | |
5049 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 5050 | | (0x3feULL << 52) |
c2fb418e | 5051 | | f64_frac); |
e07be5d2 | 5052 | } else { |
c2fb418e | 5053 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 5054 | | (0x3fdULL << 52) |
c2fb418e | 5055 | | f64_frac); |
e07be5d2 CL |
5056 | } |
5057 | ||
c2fb418e | 5058 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 5059 | |
c2fb418e | 5060 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
5061 | |
5062 | val64 = float64_val(f64); | |
5063 | ||
26cc6abf | 5064 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
5065 | | ((val64 >> 29) & 0x7fffff); |
5066 | return make_float32(val); | |
4373f3ce PB |
5067 | } |
5068 | ||
c2fb418e AB |
5069 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
5070 | { | |
5071 | float_status *s = fpstp; | |
5072 | float64 f64 = float64_squash_input_denormal(input, s); | |
5073 | uint64_t val = float64_val(f64); | |
5074 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
5075 | int64_t f64_exp = extract64(val, 52, 11); | |
5076 | uint64_t f64_frac = extract64(val, 0, 52); | |
5077 | int64_t result_exp; | |
5078 | uint64_t result_frac; | |
5079 | ||
5080 | if (float64_is_any_nan(f64)) { | |
5081 | float64 nan = f64; | |
5082 | if (float64_is_signaling_nan(f64)) { | |
5083 | float_raise(float_flag_invalid, s); | |
5084 | nan = float64_maybe_silence_nan(f64); | |
5085 | } | |
5086 | if (s->default_nan_mode) { | |
5087 | nan = float64_default_nan; | |
5088 | } | |
5089 | return nan; | |
5090 | } else if (float64_is_zero(f64)) { | |
5091 | float_raise(float_flag_divbyzero, s); | |
5092 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
5093 | } else if (float64_is_neg(f64)) { | |
5094 | float_raise(float_flag_invalid, s); | |
5095 | return float64_default_nan; | |
5096 | } else if (float64_is_infinity(f64)) { | |
5097 | return float64_zero; | |
5098 | } | |
5099 | ||
5100 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
5101 | * preserving the parity of the exponent. */ | |
5102 | ||
5103 | if (f64_exp == 0) { | |
5104 | while (extract64(f64_frac, 51, 1) == 0) { | |
5105 | f64_frac = f64_frac << 1; | |
5106 | f64_exp = f64_exp - 1; | |
5107 | } | |
5108 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
5109 | } | |
5110 | ||
5111 | if (extract64(f64_exp, 0, 1) == 0) { | |
5112 | f64 = make_float64(f64_sbit | |
5113 | | (0x3feULL << 52) | |
5114 | | f64_frac); | |
5115 | } else { | |
5116 | f64 = make_float64(f64_sbit | |
5117 | | (0x3fdULL << 52) | |
5118 | | f64_frac); | |
5119 | } | |
5120 | ||
5121 | result_exp = (3068 - f64_exp) / 2; | |
5122 | ||
5123 | f64 = recip_sqrt_estimate(f64, s); | |
5124 | ||
5125 | result_frac = extract64(float64_val(f64), 0, 52); | |
5126 | ||
5127 | return make_float64(f64_sbit | | |
5128 | ((result_exp & 0x7ff) << 52) | | |
5129 | result_frac); | |
5130 | } | |
5131 | ||
b6d4443a | 5132 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 5133 | { |
b6d4443a | 5134 | float_status *s = fpstp; |
fe0e4872 CL |
5135 | float64 f64; |
5136 | ||
5137 | if ((a & 0x80000000) == 0) { | |
5138 | return 0xffffffff; | |
5139 | } | |
5140 | ||
5141 | f64 = make_float64((0x3feULL << 52) | |
5142 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
5143 | ||
b6d4443a | 5144 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
5145 | |
5146 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
5147 | } |
5148 | ||
c2fb418e | 5149 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 5150 | { |
c2fb418e | 5151 | float_status *fpst = fpstp; |
e07be5d2 CL |
5152 | float64 f64; |
5153 | ||
5154 | if ((a & 0xc0000000) == 0) { | |
5155 | return 0xffffffff; | |
5156 | } | |
5157 | ||
5158 | if (a & 0x80000000) { | |
5159 | f64 = make_float64((0x3feULL << 52) | |
5160 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
5161 | } else { /* bits 31-30 == '01' */ | |
5162 | f64 = make_float64((0x3fdULL << 52) | |
5163 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
5164 | } | |
5165 | ||
c2fb418e | 5166 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
5167 | |
5168 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 5169 | } |
fe1479c3 | 5170 | |
da97f52c PM |
5171 | /* VFPv4 fused multiply-accumulate */ |
5172 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
5173 | { | |
5174 | float_status *fpst = fpstp; | |
5175 | return float32_muladd(a, b, c, 0, fpst); | |
5176 | } | |
5177 | ||
5178 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
5179 | { | |
5180 | float_status *fpst = fpstp; | |
5181 | return float64_muladd(a, b, c, 0, fpst); | |
5182 | } | |
d9b0848d PM |
5183 | |
5184 | /* ARMv8 round to integral */ | |
5185 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
5186 | { | |
5187 | return float32_round_to_int(x, fp_status); | |
5188 | } | |
5189 | ||
5190 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
5191 | { | |
5192 | return float64_round_to_int(x, fp_status); | |
5193 | } | |
5194 | ||
5195 | float32 HELPER(rints)(float32 x, void *fp_status) | |
5196 | { | |
5197 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
5198 | float32 ret; | |
5199 | ||
5200 | ret = float32_round_to_int(x, fp_status); | |
5201 | ||
5202 | /* Suppress any inexact exceptions the conversion produced */ | |
5203 | if (!(old_flags & float_flag_inexact)) { | |
5204 | new_flags = get_float_exception_flags(fp_status); | |
5205 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
5206 | } | |
5207 | ||
5208 | return ret; | |
5209 | } | |
5210 | ||
5211 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
5212 | { | |
5213 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
5214 | float64 ret; | |
5215 | ||
5216 | ret = float64_round_to_int(x, fp_status); | |
5217 | ||
5218 | new_flags = get_float_exception_flags(fp_status); | |
5219 | ||
5220 | /* Suppress any inexact exceptions the conversion produced */ | |
5221 | if (!(old_flags & float_flag_inexact)) { | |
5222 | new_flags = get_float_exception_flags(fp_status); | |
5223 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
5224 | } | |
5225 | ||
5226 | return ret; | |
5227 | } | |
9972da66 WN |
5228 | |
5229 | /* Convert ARM rounding mode to softfloat */ | |
5230 | int arm_rmode_to_sf(int rmode) | |
5231 | { | |
5232 | switch (rmode) { | |
5233 | case FPROUNDING_TIEAWAY: | |
5234 | rmode = float_round_ties_away; | |
5235 | break; | |
5236 | case FPROUNDING_ODD: | |
5237 | /* FIXME: add support for TIEAWAY and ODD */ | |
5238 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
5239 | rmode); | |
5240 | case FPROUNDING_TIEEVEN: | |
5241 | default: | |
5242 | rmode = float_round_nearest_even; | |
5243 | break; | |
5244 | case FPROUNDING_POSINF: | |
5245 | rmode = float_round_up; | |
5246 | break; | |
5247 | case FPROUNDING_NEGINF: | |
5248 | rmode = float_round_down; | |
5249 | break; | |
5250 | case FPROUNDING_ZERO: | |
5251 | rmode = float_round_to_zero; | |
5252 | break; | |
5253 | } | |
5254 | return rmode; | |
5255 | } | |
eb0ecd5a WN |
5256 | |
5257 | static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes) | |
5258 | { | |
5259 | memset(buf, 0, 4); | |
5260 | ||
5261 | if (bytes == 1) { | |
5262 | buf[0] = val & 0xff; | |
5263 | } else if (bytes == 2) { | |
5264 | buf[0] = val & 0xff; | |
5265 | buf[1] = (val >> 8) & 0xff; | |
5266 | } else { | |
5267 | buf[0] = val & 0xff; | |
5268 | buf[1] = (val >> 8) & 0xff; | |
5269 | buf[2] = (val >> 16) & 0xff; | |
5270 | buf[3] = (val >> 24) & 0xff; | |
5271 | } | |
5272 | } | |
5273 | ||
5274 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) | |
5275 | { | |
5276 | uint8_t buf[4]; | |
5277 | ||
5278 | crc_init_buffer(buf, val, bytes); | |
5279 | ||
5280 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
5281 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
5282 | } | |
5283 | ||
5284 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
5285 | { | |
5286 | uint8_t buf[4]; | |
5287 | ||
5288 | crc_init_buffer(buf, val, bytes); | |
5289 | ||
5290 | /* Linux crc32c converts the output to one's complement. */ | |
5291 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
5292 | } |