]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
ccd38087 | 2 | #include "internals.h" |
022c62cb | 3 | #include "exec/gdbstub.h" |
2ef6175a | 4 | #include "exec/helper-proto.h" |
1de7afc9 | 5 | #include "qemu/host-utils.h" |
78027bb6 | 6 | #include "sysemu/arch_init.h" |
9c17d615 | 7 | #include "sysemu/sysemu.h" |
1de7afc9 | 8 | #include "qemu/bitops.h" |
eb0ecd5a | 9 | #include "qemu/crc32c.h" |
f08b6170 | 10 | #include "exec/cpu_ldst.h" |
1d854765 | 11 | #include "arm_ldst.h" |
eb0ecd5a | 12 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 13 | #include "exec/semihost.h" |
0b03bdfc | 14 | |
352c98e5 LV |
15 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
16 | ||
4a501606 | 17 | #ifndef CONFIG_USER_ONLY |
b7cc4e82 PC |
18 | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, |
19 | int access_type, ARMMMUIdx mmu_idx, | |
20 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
21 | target_ulong *page_size, uint32_t *fsr); | |
7c2cb42b AF |
22 | |
23 | /* Definitions for the PMCCNTR and PMCR registers */ | |
24 | #define PMCRD 0x8 | |
25 | #define PMCRC 0x4 | |
26 | #define PMCRE 0x1 | |
4a501606 PM |
27 | #endif |
28 | ||
0ecb72a5 | 29 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
30 | { |
31 | int nregs; | |
32 | ||
33 | /* VFP data registers are always little-endian. */ | |
34 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
35 | if (reg < nregs) { | |
36 | stfq_le_p(buf, env->vfp.regs[reg]); | |
37 | return 8; | |
38 | } | |
39 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
40 | /* Aliases for Q regs. */ | |
41 | nregs += 16; | |
42 | if (reg < nregs) { | |
43 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
44 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
45 | return 16; | |
46 | } | |
47 | } | |
48 | switch (reg - nregs) { | |
49 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
50 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
51 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
52 | } | |
53 | return 0; | |
54 | } | |
55 | ||
0ecb72a5 | 56 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
57 | { |
58 | int nregs; | |
59 | ||
60 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
61 | if (reg < nregs) { | |
62 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
63 | return 8; | |
64 | } | |
65 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
66 | nregs += 16; | |
67 | if (reg < nregs) { | |
68 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
69 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
70 | return 16; | |
71 | } | |
72 | } | |
73 | switch (reg - nregs) { | |
74 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
75 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 76 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
77 | } |
78 | return 0; | |
79 | } | |
80 | ||
6a669427 PM |
81 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
82 | { | |
83 | switch (reg) { | |
84 | case 0 ... 31: | |
85 | /* 128 bit FP register */ | |
86 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
87 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
88 | return 16; | |
89 | case 32: | |
90 | /* FPSR */ | |
91 | stl_p(buf, vfp_get_fpsr(env)); | |
92 | return 4; | |
93 | case 33: | |
94 | /* FPCR */ | |
95 | stl_p(buf, vfp_get_fpcr(env)); | |
96 | return 4; | |
97 | default: | |
98 | return 0; | |
99 | } | |
100 | } | |
101 | ||
102 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
103 | { | |
104 | switch (reg) { | |
105 | case 0 ... 31: | |
106 | /* 128 bit FP register */ | |
107 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
108 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
109 | return 16; | |
110 | case 32: | |
111 | /* FPSR */ | |
112 | vfp_set_fpsr(env, ldl_p(buf)); | |
113 | return 4; | |
114 | case 33: | |
115 | /* FPCR */ | |
116 | vfp_set_fpcr(env, ldl_p(buf)); | |
117 | return 4; | |
118 | default: | |
119 | return 0; | |
120 | } | |
121 | } | |
122 | ||
c4241c7d | 123 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 124 | { |
375421cc | 125 | assert(ri->fieldoffset); |
67ed771d | 126 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 127 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 128 | } else { |
c4241c7d | 129 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 130 | } |
d4e6df63 PM |
131 | } |
132 | ||
c4241c7d PM |
133 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
134 | uint64_t value) | |
d4e6df63 | 135 | { |
375421cc | 136 | assert(ri->fieldoffset); |
67ed771d | 137 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
138 | CPREG_FIELD64(env, ri) = value; |
139 | } else { | |
140 | CPREG_FIELD32(env, ri) = value; | |
141 | } | |
d4e6df63 PM |
142 | } |
143 | ||
11f136ee FA |
144 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
145 | { | |
146 | return (char *)env + ri->fieldoffset; | |
147 | } | |
148 | ||
49a66191 | 149 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 150 | { |
59a1c327 | 151 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 152 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 153 | return ri->resetvalue; |
721fae12 | 154 | } else if (ri->raw_readfn) { |
59a1c327 | 155 | return ri->raw_readfn(env, ri); |
721fae12 | 156 | } else if (ri->readfn) { |
59a1c327 | 157 | return ri->readfn(env, ri); |
721fae12 | 158 | } else { |
59a1c327 | 159 | return raw_read(env, ri); |
721fae12 | 160 | } |
721fae12 PM |
161 | } |
162 | ||
59a1c327 | 163 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 164 | uint64_t v) |
721fae12 PM |
165 | { |
166 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
167 | * Note that constant registers are treated as write-ignored; the |
168 | * caller should check for success by whether a readback gives the | |
169 | * value written. | |
170 | */ | |
171 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 172 | return; |
721fae12 | 173 | } else if (ri->raw_writefn) { |
c4241c7d | 174 | ri->raw_writefn(env, ri, v); |
721fae12 | 175 | } else if (ri->writefn) { |
c4241c7d | 176 | ri->writefn(env, ri, v); |
721fae12 | 177 | } else { |
afb2530f | 178 | raw_write(env, ri, v); |
721fae12 | 179 | } |
721fae12 PM |
180 | } |
181 | ||
375421cc PM |
182 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
183 | { | |
184 | /* Return true if the regdef would cause an assertion if you called | |
185 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
186 | * program bug for it not to have the NO_RAW flag). | |
187 | * NB that returning false here doesn't necessarily mean that calling | |
188 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
189 | * read/write access functions which are safe for raw use" from "has | |
190 | * read/write access functions which have side effects but has forgotten | |
191 | * to provide raw access functions". | |
192 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
193 | * and assertions in raw_read()/raw_write(). | |
194 | */ | |
195 | if ((ri->type & ARM_CP_CONST) || | |
196 | ri->fieldoffset || | |
197 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
198 | return false; | |
199 | } | |
200 | return true; | |
201 | } | |
202 | ||
721fae12 PM |
203 | bool write_cpustate_to_list(ARMCPU *cpu) |
204 | { | |
205 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
206 | int i; | |
207 | bool ok = true; | |
208 | ||
209 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
210 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
211 | const ARMCPRegInfo *ri; | |
59a1c327 | 212 | |
60322b39 | 213 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
214 | if (!ri) { |
215 | ok = false; | |
216 | continue; | |
217 | } | |
7a0e58fa | 218 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
219 | continue; |
220 | } | |
59a1c327 | 221 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
222 | } |
223 | return ok; | |
224 | } | |
225 | ||
226 | bool write_list_to_cpustate(ARMCPU *cpu) | |
227 | { | |
228 | int i; | |
229 | bool ok = true; | |
230 | ||
231 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
232 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
233 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
234 | const ARMCPRegInfo *ri; |
235 | ||
60322b39 | 236 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
237 | if (!ri) { |
238 | ok = false; | |
239 | continue; | |
240 | } | |
7a0e58fa | 241 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
242 | continue; |
243 | } | |
244 | /* Write value and confirm it reads back as written | |
245 | * (to catch read-only registers and partially read-only | |
246 | * registers where the incoming migration value doesn't match) | |
247 | */ | |
59a1c327 PM |
248 | write_raw_cp_reg(&cpu->env, ri, v); |
249 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
250 | ok = false; |
251 | } | |
252 | } | |
253 | return ok; | |
254 | } | |
255 | ||
256 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
257 | { | |
258 | ARMCPU *cpu = opaque; | |
259 | uint64_t regidx; | |
260 | const ARMCPRegInfo *ri; | |
261 | ||
262 | regidx = *(uint32_t *)key; | |
60322b39 | 263 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 264 | |
7a0e58fa | 265 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
266 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
267 | /* The value array need not be initialized at this point */ | |
268 | cpu->cpreg_array_len++; | |
269 | } | |
270 | } | |
271 | ||
272 | static void count_cpreg(gpointer key, gpointer opaque) | |
273 | { | |
274 | ARMCPU *cpu = opaque; | |
275 | uint64_t regidx; | |
276 | const ARMCPRegInfo *ri; | |
277 | ||
278 | regidx = *(uint32_t *)key; | |
60322b39 | 279 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 280 | |
7a0e58fa | 281 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
282 | cpu->cpreg_array_len++; |
283 | } | |
284 | } | |
285 | ||
286 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
287 | { | |
cbf239b7 AR |
288 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
289 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 290 | |
cbf239b7 AR |
291 | if (aidx > bidx) { |
292 | return 1; | |
293 | } | |
294 | if (aidx < bidx) { | |
295 | return -1; | |
296 | } | |
297 | return 0; | |
721fae12 PM |
298 | } |
299 | ||
300 | void init_cpreg_list(ARMCPU *cpu) | |
301 | { | |
302 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
303 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
304 | */ | |
57b6d95e | 305 | GList *keys; |
721fae12 PM |
306 | int arraylen; |
307 | ||
57b6d95e | 308 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
309 | keys = g_list_sort(keys, cpreg_key_compare); |
310 | ||
311 | cpu->cpreg_array_len = 0; | |
312 | ||
313 | g_list_foreach(keys, count_cpreg, cpu); | |
314 | ||
315 | arraylen = cpu->cpreg_array_len; | |
316 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
317 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
318 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
319 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
320 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
321 | cpu->cpreg_array_len = 0; | |
322 | ||
323 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
324 | ||
325 | assert(cpu->cpreg_array_len == arraylen); | |
326 | ||
327 | g_list_free(keys); | |
328 | } | |
329 | ||
68e9c2fe EI |
330 | /* |
331 | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but | |
332 | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. | |
333 | * | |
334 | * access_el3_aa32ns: Used to check AArch32 register views. | |
335 | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. | |
336 | */ | |
337 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
338 | const ARMCPRegInfo *ri) | |
339 | { | |
340 | bool secure = arm_is_secure_below_el3(env); | |
341 | ||
342 | assert(!arm_el_is_aa64(env, 3)); | |
343 | if (secure) { | |
344 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
345 | } | |
346 | return CP_ACCESS_OK; | |
347 | } | |
348 | ||
349 | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, | |
350 | const ARMCPRegInfo *ri) | |
351 | { | |
352 | if (!arm_el_is_aa64(env, 3)) { | |
353 | return access_el3_aa32ns(env, ri); | |
354 | } | |
355 | return CP_ACCESS_OK; | |
356 | } | |
357 | ||
c4241c7d | 358 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 359 | { |
00c8cb0a AF |
360 | ARMCPU *cpu = arm_env_get_cpu(env); |
361 | ||
8d5c773e | 362 | raw_write(env, ri, value); |
00c8cb0a | 363 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
364 | } |
365 | ||
c4241c7d | 366 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 367 | { |
00c8cb0a AF |
368 | ARMCPU *cpu = arm_env_get_cpu(env); |
369 | ||
8d5c773e | 370 | if (raw_read(env, ri) != value) { |
08de207b PM |
371 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
372 | * not modified virtual addresses, so this causes a TLB flush. | |
373 | */ | |
00c8cb0a | 374 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 375 | raw_write(env, ri, value); |
08de207b | 376 | } |
08de207b | 377 | } |
c4241c7d PM |
378 | |
379 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
380 | uint64_t value) | |
08de207b | 381 | { |
00c8cb0a AF |
382 | ARMCPU *cpu = arm_env_get_cpu(env); |
383 | ||
8d5c773e | 384 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 385 | && !extended_addresses_enabled(env)) { |
08de207b PM |
386 | /* For VMSA (when not using the LPAE long descriptor page table |
387 | * format) this register includes the ASID, so do a TLB flush. | |
388 | * For PMSA it is purely a process ID and no action is needed. | |
389 | */ | |
00c8cb0a | 390 | tlb_flush(CPU(cpu), 1); |
08de207b | 391 | } |
8d5c773e | 392 | raw_write(env, ri, value); |
08de207b PM |
393 | } |
394 | ||
c4241c7d PM |
395 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
396 | uint64_t value) | |
d929823f PM |
397 | { |
398 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
399 | ARMCPU *cpu = arm_env_get_cpu(env); |
400 | ||
401 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
402 | } |
403 | ||
c4241c7d PM |
404 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
405 | uint64_t value) | |
d929823f PM |
406 | { |
407 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
408 | ARMCPU *cpu = arm_env_get_cpu(env); |
409 | ||
410 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
411 | } |
412 | ||
c4241c7d PM |
413 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
414 | uint64_t value) | |
d929823f PM |
415 | { |
416 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
417 | ARMCPU *cpu = arm_env_get_cpu(env); |
418 | ||
419 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
420 | } |
421 | ||
c4241c7d PM |
422 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
423 | uint64_t value) | |
d929823f PM |
424 | { |
425 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
426 | ARMCPU *cpu = arm_env_get_cpu(env); |
427 | ||
428 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
429 | } |
430 | ||
fa439fc5 PM |
431 | /* IS variants of TLB operations must affect all cores */ |
432 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
433 | uint64_t value) | |
434 | { | |
435 | CPUState *other_cs; | |
436 | ||
437 | CPU_FOREACH(other_cs) { | |
438 | tlb_flush(other_cs, 1); | |
439 | } | |
440 | } | |
441 | ||
442 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
443 | uint64_t value) | |
444 | { | |
445 | CPUState *other_cs; | |
446 | ||
447 | CPU_FOREACH(other_cs) { | |
448 | tlb_flush(other_cs, value == 0); | |
449 | } | |
450 | } | |
451 | ||
452 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
453 | uint64_t value) | |
454 | { | |
455 | CPUState *other_cs; | |
456 | ||
457 | CPU_FOREACH(other_cs) { | |
458 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
459 | } | |
460 | } | |
461 | ||
462 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
463 | uint64_t value) | |
464 | { | |
465 | CPUState *other_cs; | |
466 | ||
467 | CPU_FOREACH(other_cs) { | |
468 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
469 | } | |
470 | } | |
471 | ||
e9aa6c21 | 472 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
473 | /* Define the secure and non-secure FCSE identifier CP registers |
474 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
475 | * the secure register to be properly reset and migrated. There is also no | |
476 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
477 | */ | |
478 | { .name = "FCSEIDR(NS)", | |
479 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
480 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
481 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
482 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
483 | { .name = "FCSEIDR(S)", | |
484 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
485 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
486 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 487 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
488 | /* Define the secure and non-secure context identifier CP registers |
489 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
490 | * the secure register to be properly reset and migrated. In the | |
491 | * non-secure case, the 32-bit register will have reset and migration | |
492 | * disabled during registration as it is handled by the 64-bit instance. | |
493 | */ | |
494 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 495 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
496 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
497 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
498 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
499 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
500 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
501 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
502 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 503 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
504 | REGINFO_SENTINEL |
505 | }; | |
506 | ||
507 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
508 | /* NB: Some of these registers exist in v8 but with more precise | |
509 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
510 | */ | |
511 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
512 | { .name = "DACR", |
513 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
514 | .access = PL1_RW, .resetvalue = 0, | |
515 | .writefn = dacr_write, .raw_writefn = raw_write, | |
516 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
517 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
518 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
519 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 520 | */ |
a903c449 EI |
521 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
522 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
523 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
524 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
525 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
526 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
527 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 528 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
529 | /* Cache maintenance ops; some of this space may be overridden later. */ |
530 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
531 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
532 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
533 | REGINFO_SENTINEL |
534 | }; | |
535 | ||
7d57f408 PM |
536 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
537 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
538 | * over-broad. | |
539 | */ | |
540 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
541 | .access = PL1_W, .type = ARM_CP_WFI }, | |
542 | REGINFO_SENTINEL | |
543 | }; | |
544 | ||
545 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
546 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
547 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
548 | */ | |
549 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
550 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
551 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
552 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
553 | * OMAPCP will override this space. | |
554 | */ | |
555 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
556 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
557 | .resetvalue = 0 }, | |
558 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
559 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
560 | .resetvalue = 0 }, | |
776d4e5c PM |
561 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
562 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 563 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 564 | .resetvalue = 0 }, |
50300698 PM |
565 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
566 | * implementing it as RAZ means the "debug architecture version" bits | |
567 | * will read as a reserved value, which should cause Linux to not try | |
568 | * to use the debug hardware. | |
569 | */ | |
570 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
571 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
572 | /* MMU TLB control. Note that the wildcarding means we cover not just |
573 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
574 | */ | |
575 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
576 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 577 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
578 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
579 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 580 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
581 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
582 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 583 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
584 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
585 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 586 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
587 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
588 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
589 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
590 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
591 | REGINFO_SENTINEL |
592 | }; | |
593 | ||
c4241c7d PM |
594 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
595 | uint64_t value) | |
2771db27 | 596 | { |
f0aff255 FA |
597 | uint32_t mask = 0; |
598 | ||
599 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
600 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
601 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
602 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
603 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
604 | */ | |
605 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
606 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
607 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
608 | ||
609 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
610 | /* ASEDIS [31] bit is RAO/WI */ | |
611 | value |= (1 << 31); | |
612 | } | |
613 | ||
614 | /* VFPv3 and upwards with NEON implement 32 double precision | |
615 | * registers (D0-D31). | |
616 | */ | |
617 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
618 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
619 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
620 | value |= (1 << 30); | |
621 | } | |
622 | } | |
623 | value &= mask; | |
2771db27 | 624 | } |
7ebd5f2e | 625 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
626 | } |
627 | ||
c6f19164 GB |
628 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
629 | { | |
630 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
631 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
632 | if (arm_current_el(env) == 1 && | |
633 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
634 | return CP_ACCESS_TRAP_EL2; | |
635 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
636 | } else if (arm_current_el(env) < 3 && | |
637 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
638 | return CP_ACCESS_TRAP_EL3; | |
639 | } | |
640 | } | |
641 | ||
642 | return CP_ACCESS_OK; | |
643 | } | |
644 | ||
645 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
646 | { | |
647 | /* Check if CPTR accesses are set to trap to EL3 */ | |
648 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
649 | return CP_ACCESS_TRAP_EL3; | |
650 | } | |
651 | ||
652 | return CP_ACCESS_OK; | |
653 | } | |
654 | ||
7d57f408 PM |
655 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
656 | /* prefetch by MVA in v6, NOP in v7 */ | |
657 | { .name = "MVA_prefetch", | |
658 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
659 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
660 | /* We need to break the TB after ISB to execute self-modifying code |
661 | * correctly and also to take any pending interrupts immediately. | |
662 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
663 | */ | |
7d57f408 | 664 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 665 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 666 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 667 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 668 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 669 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 670 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 671 | .access = PL1_RW, |
b848ce2b FA |
672 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
673 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
674 | .resetvalue = 0, }, |
675 | /* Watchpoint Fault Address Register : should actually only be present | |
676 | * for 1136, 1176, 11MPCore. | |
677 | */ | |
678 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
679 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 680 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 681 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 682 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 683 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
684 | REGINFO_SENTINEL |
685 | }; | |
686 | ||
fcd25206 | 687 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 688 | { |
3b163b01 | 689 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 690 | * by PMUSERENR. |
200ac0ef | 691 | */ |
dcbff19b | 692 | if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { |
fcd25206 | 693 | return CP_ACCESS_TRAP; |
200ac0ef | 694 | } |
fcd25206 | 695 | return CP_ACCESS_OK; |
200ac0ef PM |
696 | } |
697 | ||
7c2cb42b | 698 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
699 | |
700 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
701 | { | |
702 | /* This does not support checking PMCCFILTR_EL0 register */ | |
703 | ||
704 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
705 | return false; | |
706 | } | |
707 | ||
708 | return true; | |
709 | } | |
710 | ||
ec7b4ce4 AF |
711 | void pmccntr_sync(CPUARMState *env) |
712 | { | |
713 | uint64_t temp_ticks; | |
714 | ||
352c98e5 LV |
715 | temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
716 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
ec7b4ce4 AF |
717 | |
718 | if (env->cp15.c9_pmcr & PMCRD) { | |
719 | /* Increment once every 64 processor clock cycles */ | |
720 | temp_ticks /= 64; | |
721 | } | |
722 | ||
723 | if (arm_ccnt_enabled(env)) { | |
724 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
725 | } | |
726 | } | |
727 | ||
c4241c7d PM |
728 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
729 | uint64_t value) | |
200ac0ef | 730 | { |
942a155b | 731 | pmccntr_sync(env); |
7c2cb42b AF |
732 | |
733 | if (value & PMCRC) { | |
734 | /* The counter has been reset */ | |
735 | env->cp15.c15_ccnt = 0; | |
736 | } | |
737 | ||
200ac0ef PM |
738 | /* only the DP, X, D and E bits are writable */ |
739 | env->cp15.c9_pmcr &= ~0x39; | |
740 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 741 | |
942a155b | 742 | pmccntr_sync(env); |
7c2cb42b AF |
743 | } |
744 | ||
745 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
746 | { | |
c92c0687 | 747 | uint64_t total_ticks; |
7c2cb42b | 748 | |
942a155b | 749 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
750 | /* Counter is disabled, do not change value */ |
751 | return env->cp15.c15_ccnt; | |
752 | } | |
753 | ||
352c98e5 LV |
754 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
755 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
756 | |
757 | if (env->cp15.c9_pmcr & PMCRD) { | |
758 | /* Increment once every 64 processor clock cycles */ | |
759 | total_ticks /= 64; | |
760 | } | |
761 | return total_ticks - env->cp15.c15_ccnt; | |
762 | } | |
763 | ||
764 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
765 | uint64_t value) | |
766 | { | |
c92c0687 | 767 | uint64_t total_ticks; |
7c2cb42b | 768 | |
942a155b | 769 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
770 | /* Counter is disabled, set the absolute value */ |
771 | env->cp15.c15_ccnt = value; | |
772 | return; | |
773 | } | |
774 | ||
352c98e5 LV |
775 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
776 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
777 | |
778 | if (env->cp15.c9_pmcr & PMCRD) { | |
779 | /* Increment once every 64 processor clock cycles */ | |
780 | total_ticks /= 64; | |
781 | } | |
782 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 783 | } |
421c7ebd PC |
784 | |
785 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
786 | uint64_t value) | |
787 | { | |
788 | uint64_t cur_val = pmccntr_read(env, NULL); | |
789 | ||
790 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
791 | } | |
792 | ||
ec7b4ce4 AF |
793 | #else /* CONFIG_USER_ONLY */ |
794 | ||
795 | void pmccntr_sync(CPUARMState *env) | |
796 | { | |
797 | } | |
798 | ||
7c2cb42b | 799 | #endif |
200ac0ef | 800 | |
0614601c AF |
801 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
802 | uint64_t value) | |
803 | { | |
804 | pmccntr_sync(env); | |
805 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
806 | pmccntr_sync(env); | |
807 | } | |
808 | ||
c4241c7d | 809 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
810 | uint64_t value) |
811 | { | |
200ac0ef PM |
812 | value &= (1 << 31); |
813 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
814 | } |
815 | ||
c4241c7d PM |
816 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
817 | uint64_t value) | |
200ac0ef | 818 | { |
200ac0ef PM |
819 | value &= (1 << 31); |
820 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
821 | } |
822 | ||
c4241c7d PM |
823 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
824 | uint64_t value) | |
200ac0ef | 825 | { |
200ac0ef | 826 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
827 | } |
828 | ||
c4241c7d PM |
829 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
830 | uint64_t value) | |
200ac0ef | 831 | { |
200ac0ef | 832 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
833 | } |
834 | ||
c4241c7d | 835 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
836 | uint64_t value) |
837 | { | |
838 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
839 | } |
840 | ||
c4241c7d PM |
841 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
842 | uint64_t value) | |
200ac0ef PM |
843 | { |
844 | /* We have no event counters so only the C bit can be changed */ | |
845 | value &= (1 << 31); | |
846 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
847 | } |
848 | ||
c4241c7d PM |
849 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
850 | uint64_t value) | |
200ac0ef PM |
851 | { |
852 | value &= (1 << 31); | |
853 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
854 | } |
855 | ||
c4241c7d PM |
856 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
857 | uint64_t value) | |
8641136c | 858 | { |
a505d7fe PM |
859 | /* Note that even though the AArch64 view of this register has bits |
860 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
861 | * architectural requirements for bits which are RES0 only in some | |
862 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
863 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
864 | */ | |
855ea66d | 865 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
866 | } |
867 | ||
64e0e2de EI |
868 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
869 | { | |
870 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
871 | * For bits that vary between AArch32/64, code needs to check the | |
872 | * current execution mode before directly using the feature bit. | |
873 | */ | |
874 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
875 | ||
876 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
877 | valid_mask &= ~SCR_HCE; | |
878 | ||
879 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
880 | * supported if EL2 exists. The bit is UNK/SBZP when | |
881 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
882 | * when EL2 is unavailable. | |
4eb27640 | 883 | * On ARMv8, this bit is always available. |
64e0e2de | 884 | */ |
4eb27640 GB |
885 | if (arm_feature(env, ARM_FEATURE_V7) && |
886 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
887 | valid_mask &= ~SCR_SMD; |
888 | } | |
889 | } | |
890 | ||
891 | /* Clear all-context RES0 bits. */ | |
892 | value &= valid_mask; | |
893 | raw_write(env, ri, value); | |
894 | } | |
895 | ||
c4241c7d | 896 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
897 | { |
898 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
899 | |
900 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
901 | * bank | |
902 | */ | |
903 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
904 | ri->secure & ARM_CP_SECSTATE_S); | |
905 | ||
906 | return cpu->ccsidr[index]; | |
776d4e5c PM |
907 | } |
908 | ||
c4241c7d PM |
909 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
910 | uint64_t value) | |
776d4e5c | 911 | { |
8d5c773e | 912 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
913 | } |
914 | ||
1090b9c6 PM |
915 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
916 | { | |
917 | CPUState *cs = ENV_GET_CPU(env); | |
918 | uint64_t ret = 0; | |
919 | ||
920 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
921 | ret |= CPSR_I; | |
922 | } | |
923 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
924 | ret |= CPSR_F; | |
925 | } | |
926 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
927 | return ret; | |
928 | } | |
929 | ||
e9aa6c21 | 930 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
931 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
932 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
933 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
934 | /* Performance monitors are implementation defined in v7, |
935 | * but with an ARM recommended set of registers, which we | |
936 | * follow (although we don't actually implement any counters) | |
937 | * | |
938 | * Performance registers fall into three categories: | |
939 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
940 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
941 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
942 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
943 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
944 | */ | |
945 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 946 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 947 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
948 | .writefn = pmcntenset_write, |
949 | .accessfn = pmreg_access, | |
950 | .raw_writefn = raw_write }, | |
8521466b AF |
951 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
952 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
953 | .access = PL0_RW, .accessfn = pmreg_access, | |
954 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
955 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 956 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
957 | .access = PL0_RW, |
958 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
959 | .accessfn = pmreg_access, |
960 | .writefn = pmcntenclr_write, | |
7a0e58fa | 961 | .type = ARM_CP_ALIAS }, |
8521466b AF |
962 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
963 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
964 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 965 | .type = ARM_CP_ALIAS, |
8521466b AF |
966 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
967 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
968 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
969 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
970 | .accessfn = pmreg_access, |
971 | .writefn = pmovsr_write, | |
972 | .raw_writefn = raw_write }, | |
973 | /* Unimplemented so WI. */ | |
200ac0ef | 974 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 975 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 976 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 977 | * We choose to RAZ/WI. |
200ac0ef PM |
978 | */ |
979 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
980 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
981 | .accessfn = pmreg_access }, | |
7c2cb42b | 982 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 983 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 984 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 985 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 986 | .accessfn = pmreg_access }, |
8521466b AF |
987 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
988 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
989 | .access = PL0_RW, .accessfn = pmreg_access, | |
990 | .type = ARM_CP_IO, | |
991 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 992 | #endif |
8521466b AF |
993 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
994 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 995 | .writefn = pmccfiltr_write, |
8521466b AF |
996 | .access = PL0_RW, .accessfn = pmreg_access, |
997 | .type = ARM_CP_IO, | |
998 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
999 | .resetvalue = 0, }, | |
200ac0ef PM |
1000 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
1001 | .access = PL0_RW, | |
1002 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
1003 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
1004 | .raw_writefn = raw_write }, | |
1005 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 1006 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
1007 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
1008 | .accessfn = pmreg_access }, | |
200ac0ef PM |
1009 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1010 | .access = PL0_R | PL1_RW, | |
1011 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
1012 | .resetvalue = 0, | |
d4e6df63 | 1013 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
1014 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1015 | .access = PL1_RW, | |
1016 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
1017 | .resetvalue = 0, | |
d4e6df63 | 1018 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 1019 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 1020 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
200ac0ef | 1021 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 1022 | .writefn = pmintenclr_write, }, |
a505d7fe PM |
1023 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
1024 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 1025 | .access = PL1_RW, .writefn = vbar_write, |
fb6c91ba GB |
1026 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
1027 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8641136c | 1028 | .resetvalue = 0 }, |
7da845b0 PM |
1029 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
1030 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 1031 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
1032 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
1033 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1034 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1035 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1036 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1037 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1038 | * just RAZ for all cores: | |
1039 | */ | |
0ff644a7 PM |
1040 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1041 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1042 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1043 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1044 | * choose to RAZ/WI for all cores. | |
1045 | */ | |
1046 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1047 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1048 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1049 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1050 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1051 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1052 | /* MAIR can just read-as-written because we don't implement caches |
1053 | * and so don't need to care about memory attributes. | |
1054 | */ | |
1055 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1056 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1057 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 | 1058 | .resetvalue = 0 }, |
4cfb8ad8 PM |
1059 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
1060 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
1061 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
1062 | .resetvalue = 0 }, | |
b0fe2427 PM |
1063 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
1064 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1065 | */ |
1281f8e3 | 1066 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1067 | * allows them to assign the correct fieldoffset based on the endianness |
1068 | * handled in the field definitions. | |
1069 | */ | |
a903c449 | 1070 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1071 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1072 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1073 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1074 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1075 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1076 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1077 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1078 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1079 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1080 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1081 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1082 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1083 | /* 32 bit ITLB invalidates */ |
1084 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1085 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1086 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1087 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1088 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1089 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1090 | /* 32 bit DTLB invalidates */ |
1091 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1092 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1093 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1094 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1095 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1096 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1097 | /* 32 bit TLB invalidates */ |
1098 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1099 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1100 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1101 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1102 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1103 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1104 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1105 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1106 | REGINFO_SENTINEL |
1107 | }; | |
1108 | ||
1109 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1110 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1111 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1112 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1113 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1114 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1115 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1116 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1117 | .writefn = tlbiasid_is_write }, |
995939a6 | 1118 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1119 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1120 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1121 | REGINFO_SENTINEL |
1122 | }; | |
1123 | ||
c4241c7d PM |
1124 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1125 | uint64_t value) | |
c326b979 PM |
1126 | { |
1127 | value &= 1; | |
1128 | env->teecr = value; | |
c326b979 PM |
1129 | } |
1130 | ||
c4241c7d | 1131 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 1132 | { |
dcbff19b | 1133 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1134 | return CP_ACCESS_TRAP; |
c326b979 | 1135 | } |
92611c00 | 1136 | return CP_ACCESS_OK; |
c326b979 PM |
1137 | } |
1138 | ||
1139 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1140 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1141 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1142 | .resetvalue = 0, | |
1143 | .writefn = teecr_write }, | |
1144 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1145 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1146 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1147 | REGINFO_SENTINEL |
1148 | }; | |
1149 | ||
4d31c596 | 1150 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1151 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1152 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1153 | .access = PL0_RW, | |
54bf36ed | 1154 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1155 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1156 | .access = PL0_RW, | |
54bf36ed FA |
1157 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1158 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1159 | .resetfn = arm_cp_reset_ignore }, |
1160 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1161 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1162 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1163 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1164 | .resetvalue = 0}, | |
4d31c596 PM |
1165 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1166 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1167 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1168 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1169 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1170 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1171 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1172 | .access = PL1_RW, |
54bf36ed FA |
1173 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1174 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1175 | .access = PL1_RW, | |
1176 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1177 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1178 | .resetvalue = 0 }, | |
4d31c596 PM |
1179 | REGINFO_SENTINEL |
1180 | }; | |
1181 | ||
55d284af PM |
1182 | #ifndef CONFIG_USER_ONLY |
1183 | ||
00108f2d PM |
1184 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1185 | { | |
1186 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
dcbff19b | 1187 | if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
00108f2d PM |
1188 | return CP_ACCESS_TRAP; |
1189 | } | |
1190 | return CP_ACCESS_OK; | |
1191 | } | |
1192 | ||
1193 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
1194 | { | |
0b6440af EI |
1195 | unsigned int cur_el = arm_current_el(env); |
1196 | bool secure = arm_is_secure(env); | |
1197 | ||
00108f2d | 1198 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1199 | if (cur_el == 0 && |
00108f2d PM |
1200 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1201 | return CP_ACCESS_TRAP; | |
1202 | } | |
0b6440af EI |
1203 | |
1204 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1205 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1206 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1207 | return CP_ACCESS_TRAP_EL2; | |
1208 | } | |
00108f2d PM |
1209 | return CP_ACCESS_OK; |
1210 | } | |
1211 | ||
1212 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
1213 | { | |
0b6440af EI |
1214 | unsigned int cur_el = arm_current_el(env); |
1215 | bool secure = arm_is_secure(env); | |
1216 | ||
00108f2d PM |
1217 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1218 | * EL0[PV]TEN is zero. | |
1219 | */ | |
0b6440af | 1220 | if (cur_el == 0 && |
00108f2d PM |
1221 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1222 | return CP_ACCESS_TRAP; | |
1223 | } | |
0b6440af EI |
1224 | |
1225 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1226 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1227 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1228 | return CP_ACCESS_TRAP_EL2; | |
1229 | } | |
00108f2d PM |
1230 | return CP_ACCESS_OK; |
1231 | } | |
1232 | ||
1233 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
1234 | const ARMCPRegInfo *ri) | |
1235 | { | |
1236 | return gt_counter_access(env, GTIMER_PHYS); | |
1237 | } | |
1238 | ||
1239 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
1240 | const ARMCPRegInfo *ri) | |
1241 | { | |
1242 | return gt_counter_access(env, GTIMER_VIRT); | |
1243 | } | |
1244 | ||
1245 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1246 | { | |
1247 | return gt_timer_access(env, GTIMER_PHYS); | |
1248 | } | |
1249 | ||
1250 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1251 | { | |
1252 | return gt_timer_access(env, GTIMER_VIRT); | |
1253 | } | |
1254 | ||
b4d3978c PM |
1255 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
1256 | const ARMCPRegInfo *ri) | |
1257 | { | |
1258 | /* The AArch64 register view of the secure physical timer is | |
1259 | * always accessible from EL3, and configurably accessible from | |
1260 | * Secure EL1. | |
1261 | */ | |
1262 | switch (arm_current_el(env)) { | |
1263 | case 1: | |
1264 | if (!arm_is_secure(env)) { | |
1265 | return CP_ACCESS_TRAP; | |
1266 | } | |
1267 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
1268 | return CP_ACCESS_TRAP_EL3; | |
1269 | } | |
1270 | return CP_ACCESS_OK; | |
1271 | case 0: | |
1272 | case 2: | |
1273 | return CP_ACCESS_TRAP; | |
1274 | case 3: | |
1275 | return CP_ACCESS_OK; | |
1276 | default: | |
1277 | g_assert_not_reached(); | |
1278 | } | |
1279 | } | |
1280 | ||
55d284af PM |
1281 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1282 | { | |
bc72ad67 | 1283 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1284 | } |
1285 | ||
1286 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1287 | { | |
1288 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1289 | ||
1290 | if (gt->ctl & 1) { | |
1291 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1292 | * reset timer to when ISTATUS next has to change | |
1293 | */ | |
edac4d8a EI |
1294 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1295 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1296 | uint64_t count = gt_get_countervalue(&cpu->env); |
1297 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1298 | int istatus = count - offset >= gt->cval; |
55d284af PM |
1299 | uint64_t nexttick; |
1300 | ||
1301 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1302 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1303 | (istatus && !(gt->ctl & 2))); | |
1304 | if (istatus) { | |
1305 | /* Next transition is when count rolls back over to zero */ | |
1306 | nexttick = UINT64_MAX; | |
1307 | } else { | |
1308 | /* Next transition is when we hit cval */ | |
edac4d8a | 1309 | nexttick = gt->cval + offset; |
55d284af PM |
1310 | } |
1311 | /* Note that the desired next expiry time might be beyond the | |
1312 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1313 | * set the timer for as far in the future as possible. When the | |
1314 | * timer expires we will reset the timer for any remaining period. | |
1315 | */ | |
1316 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1317 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1318 | } | |
bc72ad67 | 1319 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1320 | } else { |
1321 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1322 | gt->ctl &= ~4; | |
1323 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1324 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1325 | } |
1326 | } | |
1327 | ||
0e3eca4c EI |
1328 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1329 | int timeridx) | |
55d284af PM |
1330 | { |
1331 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1332 | |
bc72ad67 | 1333 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1334 | } |
1335 | ||
c4241c7d | 1336 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1337 | { |
c4241c7d | 1338 | return gt_get_countervalue(env); |
55d284af PM |
1339 | } |
1340 | ||
edac4d8a EI |
1341 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1342 | { | |
1343 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1344 | } | |
1345 | ||
c4241c7d | 1346 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1347 | int timeridx, |
c4241c7d | 1348 | uint64_t value) |
55d284af | 1349 | { |
55d284af PM |
1350 | env->cp15.c14_timer[timeridx].cval = value; |
1351 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1352 | } |
c4241c7d | 1353 | |
0e3eca4c EI |
1354 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1355 | int timeridx) | |
55d284af | 1356 | { |
edac4d8a | 1357 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1358 | |
c4241c7d | 1359 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1360 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1361 | } |
1362 | ||
c4241c7d | 1363 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1364 | int timeridx, |
c4241c7d | 1365 | uint64_t value) |
55d284af | 1366 | { |
edac4d8a | 1367 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1368 | |
edac4d8a | 1369 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1370 | sextract64(value, 0, 32); |
55d284af | 1371 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1372 | } |
1373 | ||
c4241c7d | 1374 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1375 | int timeridx, |
c4241c7d | 1376 | uint64_t value) |
55d284af PM |
1377 | { |
1378 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1379 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1380 | ||
d3afacc7 | 1381 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1382 | if ((oldval ^ value) & 1) { |
1383 | /* Enable toggled */ | |
1384 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1385 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1386 | /* IMASK toggled: don't need to recalculate, |
1387 | * just set the interrupt line based on ISTATUS | |
1388 | */ | |
1389 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1390 | (oldval & 4) && !(value & 2)); |
55d284af | 1391 | } |
55d284af PM |
1392 | } |
1393 | ||
0e3eca4c EI |
1394 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1395 | { | |
1396 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1397 | } | |
1398 | ||
1399 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1400 | uint64_t value) | |
1401 | { | |
1402 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1403 | } | |
1404 | ||
1405 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1406 | { | |
1407 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1408 | } | |
1409 | ||
1410 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1411 | uint64_t value) | |
1412 | { | |
1413 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1414 | } | |
1415 | ||
1416 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1417 | uint64_t value) | |
1418 | { | |
1419 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1420 | } | |
1421 | ||
1422 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1423 | { | |
1424 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1425 | } | |
1426 | ||
1427 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1428 | uint64_t value) | |
1429 | { | |
1430 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1431 | } | |
1432 | ||
1433 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1434 | { | |
1435 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1436 | } | |
1437 | ||
1438 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1439 | uint64_t value) | |
1440 | { | |
1441 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1442 | } | |
1443 | ||
1444 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1445 | uint64_t value) | |
1446 | { | |
1447 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1448 | } | |
1449 | ||
edac4d8a EI |
1450 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1451 | uint64_t value) | |
1452 | { | |
1453 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1454 | ||
1455 | raw_write(env, ri, value); | |
1456 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1457 | } | |
1458 | ||
b0e66d95 EI |
1459 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1460 | { | |
1461 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1462 | } | |
1463 | ||
1464 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1465 | uint64_t value) | |
1466 | { | |
1467 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1468 | } | |
1469 | ||
1470 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1471 | { | |
1472 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1473 | } | |
1474 | ||
1475 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1476 | uint64_t value) | |
1477 | { | |
1478 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1479 | } | |
1480 | ||
1481 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1482 | uint64_t value) | |
1483 | { | |
1484 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1485 | } | |
1486 | ||
b4d3978c PM |
1487 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1488 | { | |
1489 | gt_timer_reset(env, ri, GTIMER_SEC); | |
1490 | } | |
1491 | ||
1492 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1493 | uint64_t value) | |
1494 | { | |
1495 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
1496 | } | |
1497 | ||
1498 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1499 | { | |
1500 | return gt_tval_read(env, ri, GTIMER_SEC); | |
1501 | } | |
1502 | ||
1503 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1504 | uint64_t value) | |
1505 | { | |
1506 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
1507 | } | |
1508 | ||
1509 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1510 | uint64_t value) | |
1511 | { | |
1512 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
1513 | } | |
1514 | ||
55d284af PM |
1515 | void arm_gt_ptimer_cb(void *opaque) |
1516 | { | |
1517 | ARMCPU *cpu = opaque; | |
1518 | ||
1519 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1520 | } | |
1521 | ||
1522 | void arm_gt_vtimer_cb(void *opaque) | |
1523 | { | |
1524 | ARMCPU *cpu = opaque; | |
1525 | ||
1526 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1527 | } | |
1528 | ||
b0e66d95 EI |
1529 | void arm_gt_htimer_cb(void *opaque) |
1530 | { | |
1531 | ARMCPU *cpu = opaque; | |
1532 | ||
1533 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1534 | } | |
1535 | ||
b4d3978c PM |
1536 | void arm_gt_stimer_cb(void *opaque) |
1537 | { | |
1538 | ARMCPU *cpu = opaque; | |
1539 | ||
1540 | gt_recalc_timer(cpu, GTIMER_SEC); | |
1541 | } | |
1542 | ||
55d284af PM |
1543 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1544 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1545 | * of software; writing it doesn't actually change the timer frequency. | |
1546 | * Our reset value matches the fixed frequency we implement the timer at. | |
1547 | */ | |
1548 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1549 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1550 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1551 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1552 | }, |
1553 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1554 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1555 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1556 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1557 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1558 | }, |
1559 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1560 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1561 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1562 | .access = PL1_RW, |
1563 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1564 | .resetvalue = 0, | |
1565 | }, | |
1566 | /* per-timer control */ | |
1567 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 1568 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1569 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1570 | .accessfn = gt_ptimer_access, |
1571 | .fieldoffset = offsetoflow32(CPUARMState, | |
1572 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1573 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 | 1574 | }, |
9ff9dd3c PM |
1575 | { .name = "CNTP_CTL(S)", |
1576 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1577 | .secure = ARM_CP_SECSTATE_S, | |
1578 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | |
1579 | .accessfn = gt_ptimer_access, | |
1580 | .fieldoffset = offsetoflow32(CPUARMState, | |
1581 | cp15.c14_timer[GTIMER_SEC].ctl), | |
1582 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1583 | }, | |
a7adc4b7 PM |
1584 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
1585 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1586 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1587 | .accessfn = gt_ptimer_access, |
55d284af PM |
1588 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1589 | .resetvalue = 0, | |
0e3eca4c | 1590 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1591 | }, |
1592 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1593 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1594 | .accessfn = gt_vtimer_access, |
1595 | .fieldoffset = offsetoflow32(CPUARMState, | |
1596 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1597 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1598 | }, |
1599 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1600 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1601 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1602 | .accessfn = gt_vtimer_access, |
55d284af PM |
1603 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1604 | .resetvalue = 0, | |
0e3eca4c | 1605 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1606 | }, |
1607 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1608 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 1609 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1610 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1611 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1612 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 1613 | }, |
9ff9dd3c PM |
1614 | { .name = "CNTP_TVAL(S)", |
1615 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1616 | .secure = ARM_CP_SECSTATE_S, | |
1617 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1618 | .accessfn = gt_ptimer_access, | |
1619 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
1620 | }, | |
a7adc4b7 PM |
1621 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1622 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 1623 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1624 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
1625 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 1626 | }, |
55d284af | 1627 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 1628 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1629 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1630 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 1631 | }, |
a7adc4b7 PM |
1632 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1633 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1634 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1635 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
1636 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 1637 | }, |
55d284af PM |
1638 | /* The counter itself */ |
1639 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 1640 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1641 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1642 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1643 | }, | |
1644 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1645 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 1646 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1647 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
1648 | }, |
1649 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 1650 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1651 | .accessfn = gt_vct_access, |
edac4d8a | 1652 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
1653 | }, |
1654 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1655 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 1656 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1657 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
1658 | }, |
1659 | /* Comparison value, indicating when the timer goes off */ | |
1660 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 1661 | .secure = ARM_CP_SECSTATE_NS, |
55d284af | 1662 | .access = PL1_RW | PL0_R, |
7a0e58fa | 1663 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1664 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 1665 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1666 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 | 1667 | }, |
9ff9dd3c PM |
1668 | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
1669 | .secure = ARM_CP_SECSTATE_S, | |
1670 | .access = PL1_RW | PL0_R, | |
1671 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | |
1672 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1673 | .accessfn = gt_ptimer_access, | |
1674 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1675 | }, | |
a7adc4b7 PM |
1676 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
1677 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1678 | .access = PL1_RW | PL0_R, | |
1679 | .type = ARM_CP_IO, | |
1680 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 1681 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 1682 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1683 | }, |
1684 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1685 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1686 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1687 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 1688 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1689 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1690 | }, |
1691 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1692 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1693 | .access = PL1_RW | PL0_R, | |
1694 | .type = ARM_CP_IO, | |
1695 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1696 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 1697 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af | 1698 | }, |
b4d3978c PM |
1699 | /* Secure timer -- this is actually restricted to only EL3 |
1700 | * and configurably Secure-EL1 via the accessfn. | |
1701 | */ | |
1702 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1703 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
1704 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
1705 | .accessfn = gt_stimer_access, | |
1706 | .readfn = gt_sec_tval_read, | |
1707 | .writefn = gt_sec_tval_write, | |
1708 | .resetfn = gt_sec_timer_reset, | |
1709 | }, | |
1710 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
1711 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
1712 | .type = ARM_CP_IO, .access = PL1_RW, | |
1713 | .accessfn = gt_stimer_access, | |
1714 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
1715 | .resetvalue = 0, | |
1716 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1717 | }, | |
1718 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1719 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
1720 | .type = ARM_CP_IO, .access = PL1_RW, | |
1721 | .accessfn = gt_stimer_access, | |
1722 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1723 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1724 | }, | |
55d284af PM |
1725 | REGINFO_SENTINEL |
1726 | }; | |
1727 | ||
1728 | #else | |
1729 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1730 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1731 | * so instead just don't register any of them. |
1732 | */ | |
6cc7a3ae | 1733 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1734 | REGINFO_SENTINEL |
1735 | }; | |
1736 | ||
55d284af PM |
1737 | #endif |
1738 | ||
c4241c7d | 1739 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1740 | { |
891a2fe7 | 1741 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 1742 | raw_write(env, ri, value); |
891a2fe7 | 1743 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 1744 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 1745 | } else { |
8d5c773e | 1746 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 1747 | } |
4a501606 PM |
1748 | } |
1749 | ||
1750 | #ifndef CONFIG_USER_ONLY | |
1751 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1752 | |
92611c00 PM |
1753 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1754 | { | |
1755 | if (ri->opc2 & 4) { | |
87562e4f PM |
1756 | /* The ATS12NSO* operations must trap to EL3 if executed in |
1757 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
1758 | * They are simply UNDEF if executed from NS EL1. | |
1759 | * They function normally from EL2 or EL3. | |
92611c00 | 1760 | */ |
87562e4f PM |
1761 | if (arm_current_el(env) == 1) { |
1762 | if (arm_is_secure_below_el3(env)) { | |
1763 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
1764 | } | |
1765 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1766 | } | |
92611c00 PM |
1767 | } |
1768 | return CP_ACCESS_OK; | |
1769 | } | |
1770 | ||
060e8a48 | 1771 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
d3649702 | 1772 | int access_type, ARMMMUIdx mmu_idx) |
4a501606 | 1773 | { |
a8170e5e | 1774 | hwaddr phys_addr; |
4a501606 PM |
1775 | target_ulong page_size; |
1776 | int prot; | |
b7cc4e82 PC |
1777 | uint32_t fsr; |
1778 | bool ret; | |
01c097f7 | 1779 | uint64_t par64; |
8bf5b6a9 | 1780 | MemTxAttrs attrs = {}; |
4a501606 | 1781 | |
d3649702 | 1782 | ret = get_phys_addr(env, value, access_type, mmu_idx, |
b7cc4e82 | 1783 | &phys_addr, &attrs, &prot, &page_size, &fsr); |
702a9357 | 1784 | if (extended_addresses_enabled(env)) { |
b7cc4e82 | 1785 | /* fsr is a DFSR/IFSR value for the long descriptor |
702a9357 PM |
1786 | * translation table format, but with WnR always clear. |
1787 | * Convert it to a 64-bit PAR. | |
1788 | */ | |
01c097f7 | 1789 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 1790 | if (!ret) { |
702a9357 | 1791 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
1792 | if (!attrs.secure) { |
1793 | par64 |= (1 << 9); /* NS */ | |
1794 | } | |
702a9357 | 1795 | /* We don't set the ATTR or SH fields in the PAR. */ |
4a501606 | 1796 | } else { |
702a9357 | 1797 | par64 |= 1; /* F */ |
b7cc4e82 | 1798 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
1799 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
1800 | * implement virtualization and therefore there can't be a stage 2 | |
1801 | * fault. | |
1802 | */ | |
4a501606 PM |
1803 | } |
1804 | } else { | |
b7cc4e82 | 1805 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
1806 | * translation table format (with WnR always clear). |
1807 | * Convert it to a 32-bit PAR. | |
1808 | */ | |
b7cc4e82 | 1809 | if (!ret) { |
702a9357 PM |
1810 | /* We do not set any attribute bits in the PAR */ |
1811 | if (page_size == (1 << 24) | |
1812 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 1813 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 1814 | } else { |
01c097f7 | 1815 | par64 = phys_addr & 0xfffff000; |
702a9357 | 1816 | } |
8bf5b6a9 PM |
1817 | if (!attrs.secure) { |
1818 | par64 |= (1 << 9); /* NS */ | |
1819 | } | |
702a9357 | 1820 | } else { |
b7cc4e82 PC |
1821 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
1822 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 1823 | } |
4a501606 | 1824 | } |
060e8a48 PM |
1825 | return par64; |
1826 | } | |
1827 | ||
1828 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1829 | { | |
060e8a48 PM |
1830 | int access_type = ri->opc2 & 1; |
1831 | uint64_t par64; | |
d3649702 PM |
1832 | ARMMMUIdx mmu_idx; |
1833 | int el = arm_current_el(env); | |
1834 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 1835 | |
d3649702 PM |
1836 | switch (ri->opc2 & 6) { |
1837 | case 0: | |
1838 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
1839 | switch (el) { | |
1840 | case 3: | |
1841 | mmu_idx = ARMMMUIdx_S1E3; | |
1842 | break; | |
1843 | case 2: | |
1844 | mmu_idx = ARMMMUIdx_S1NSE1; | |
1845 | break; | |
1846 | case 1: | |
1847 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1848 | break; | |
1849 | default: | |
1850 | g_assert_not_reached(); | |
1851 | } | |
1852 | break; | |
1853 | case 2: | |
1854 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
1855 | switch (el) { | |
1856 | case 3: | |
1857 | mmu_idx = ARMMMUIdx_S1SE0; | |
1858 | break; | |
1859 | case 2: | |
1860 | mmu_idx = ARMMMUIdx_S1NSE0; | |
1861 | break; | |
1862 | case 1: | |
1863 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1864 | break; | |
1865 | default: | |
1866 | g_assert_not_reached(); | |
1867 | } | |
1868 | break; | |
1869 | case 4: | |
1870 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
1871 | mmu_idx = ARMMMUIdx_S12NSE1; | |
1872 | break; | |
1873 | case 6: | |
1874 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
1875 | mmu_idx = ARMMMUIdx_S12NSE0; | |
1876 | break; | |
1877 | default: | |
1878 | g_assert_not_reached(); | |
1879 | } | |
1880 | ||
1881 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
1882 | |
1883 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 1884 | } |
060e8a48 | 1885 | |
14db7fe0 PM |
1886 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1887 | uint64_t value) | |
1888 | { | |
1889 | int access_type = ri->opc2 & 1; | |
1890 | uint64_t par64; | |
1891 | ||
1892 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | |
1893 | ||
1894 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
1895 | } | |
1896 | ||
2a47df95 PM |
1897 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1898 | { | |
1899 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
1900 | return CP_ACCESS_TRAP; | |
1901 | } | |
1902 | return CP_ACCESS_OK; | |
1903 | } | |
1904 | ||
060e8a48 PM |
1905 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
1906 | uint64_t value) | |
1907 | { | |
060e8a48 | 1908 | int access_type = ri->opc2 & 1; |
d3649702 PM |
1909 | ARMMMUIdx mmu_idx; |
1910 | int secure = arm_is_secure_below_el3(env); | |
1911 | ||
1912 | switch (ri->opc2 & 6) { | |
1913 | case 0: | |
1914 | switch (ri->opc1) { | |
1915 | case 0: /* AT S1E1R, AT S1E1W */ | |
1916 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1917 | break; | |
1918 | case 4: /* AT S1E2R, AT S1E2W */ | |
1919 | mmu_idx = ARMMMUIdx_S1E2; | |
1920 | break; | |
1921 | case 6: /* AT S1E3R, AT S1E3W */ | |
1922 | mmu_idx = ARMMMUIdx_S1E3; | |
1923 | break; | |
1924 | default: | |
1925 | g_assert_not_reached(); | |
1926 | } | |
1927 | break; | |
1928 | case 2: /* AT S1E0R, AT S1E0W */ | |
1929 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1930 | break; | |
1931 | case 4: /* AT S12E1R, AT S12E1W */ | |
2a47df95 | 1932 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
d3649702 PM |
1933 | break; |
1934 | case 6: /* AT S12E0R, AT S12E0W */ | |
2a47df95 | 1935 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
d3649702 PM |
1936 | break; |
1937 | default: | |
1938 | g_assert_not_reached(); | |
1939 | } | |
060e8a48 | 1940 | |
d3649702 | 1941 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 1942 | } |
4a501606 PM |
1943 | #endif |
1944 | ||
1945 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1946 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1947 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
1948 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
1949 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
1950 | .writefn = par_write }, |
1951 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 1952 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 1953 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 1954 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 1955 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
1956 | #endif |
1957 | REGINFO_SENTINEL | |
1958 | }; | |
1959 | ||
18032bec PM |
1960 | /* Return basic MPU access permission bits. */ |
1961 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1962 | { | |
1963 | uint32_t ret; | |
1964 | uint32_t mask; | |
1965 | int i; | |
1966 | ret = 0; | |
1967 | mask = 3; | |
1968 | for (i = 0; i < 16; i += 2) { | |
1969 | ret |= (val >> i) & mask; | |
1970 | mask <<= 2; | |
1971 | } | |
1972 | return ret; | |
1973 | } | |
1974 | ||
1975 | /* Pad basic MPU access permission bits to extended format. */ | |
1976 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1977 | { | |
1978 | uint32_t ret; | |
1979 | uint32_t mask; | |
1980 | int i; | |
1981 | ret = 0; | |
1982 | mask = 3; | |
1983 | for (i = 0; i < 16; i += 2) { | |
1984 | ret |= (val & mask) << i; | |
1985 | mask <<= 2; | |
1986 | } | |
1987 | return ret; | |
1988 | } | |
1989 | ||
c4241c7d PM |
1990 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1991 | uint64_t value) | |
18032bec | 1992 | { |
7e09797c | 1993 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1994 | } |
1995 | ||
c4241c7d | 1996 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1997 | { |
7e09797c | 1998 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
1999 | } |
2000 | ||
c4241c7d PM |
2001 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2002 | uint64_t value) | |
18032bec | 2003 | { |
7e09797c | 2004 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2005 | } |
2006 | ||
c4241c7d | 2007 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2008 | { |
7e09797c | 2009 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
2010 | } |
2011 | ||
6cb0b013 PC |
2012 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2013 | { | |
2014 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2015 | ||
2016 | if (!u32p) { | |
2017 | return 0; | |
2018 | } | |
2019 | ||
2020 | u32p += env->cp15.c6_rgnr; | |
2021 | return *u32p; | |
2022 | } | |
2023 | ||
2024 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2025 | uint64_t value) | |
2026 | { | |
2027 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2028 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2029 | ||
2030 | if (!u32p) { | |
2031 | return; | |
2032 | } | |
2033 | ||
2034 | u32p += env->cp15.c6_rgnr; | |
2035 | tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ | |
2036 | *u32p = value; | |
2037 | } | |
2038 | ||
2039 | static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
2040 | { | |
2041 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2042 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2043 | ||
2044 | if (!u32p) { | |
2045 | return; | |
2046 | } | |
2047 | ||
2048 | memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); | |
2049 | } | |
2050 | ||
2051 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2052 | uint64_t value) | |
2053 | { | |
2054 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2055 | uint32_t nrgs = cpu->pmsav7_dregion; | |
2056 | ||
2057 | if (value >= nrgs) { | |
2058 | qemu_log_mask(LOG_GUEST_ERROR, | |
2059 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
2060 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
2061 | return; | |
2062 | } | |
2063 | ||
2064 | raw_write(env, ri, value); | |
2065 | } | |
2066 | ||
2067 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
2068 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, | |
2069 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2070 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
2071 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2072 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, | |
2073 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2074 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
2075 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2076 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, | |
2077 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2078 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
2079 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2080 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, | |
2081 | .access = PL1_RW, | |
2082 | .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), | |
2083 | .writefn = pmsav7_rgnr_write }, | |
2084 | REGINFO_SENTINEL | |
2085 | }; | |
2086 | ||
18032bec PM |
2087 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
2088 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2089 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2090 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
2091 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
2092 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2093 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2094 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
2095 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
2096 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2097 | .access = PL1_RW, | |
7e09797c PM |
2098 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
2099 | .resetvalue = 0, }, | |
18032bec PM |
2100 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
2101 | .access = PL1_RW, | |
7e09797c PM |
2102 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
2103 | .resetvalue = 0, }, | |
ecce5c3c PM |
2104 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2105 | .access = PL1_RW, | |
2106 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
2107 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2108 | .access = PL1_RW, | |
2109 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 2110 | /* Protection region base and size registers */ |
e508a92b PM |
2111 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
2112 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2113 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
2114 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
2115 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2116 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
2117 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
2118 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2119 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
2120 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
2121 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2122 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
2123 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
2124 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2125 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
2126 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
2127 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2128 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
2129 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
2130 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2131 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
2132 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
2133 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2134 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
2135 | REGINFO_SENTINEL |
2136 | }; | |
2137 | ||
c4241c7d PM |
2138 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2139 | uint64_t value) | |
ecce5c3c | 2140 | { |
11f136ee | 2141 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
2142 | int maskshift = extract32(value, 0, 3); |
2143 | ||
e389be16 FA |
2144 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2145 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
2146 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
2147 | * using Long-desciptor translation table format */ | |
2148 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
2149 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2150 | /* In an implementation that includes the Security Extensions | |
2151 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
2152 | * Short-descriptor translation table format. | |
2153 | */ | |
2154 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
2155 | } else { | |
2156 | value &= TTBCR_N; | |
2157 | } | |
e42c4db3 | 2158 | } |
e389be16 | 2159 | |
b6af0975 | 2160 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 2161 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 2162 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
2163 | * for long-descriptor tables the TCR fields are used differently |
2164 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 2165 | */ |
11f136ee FA |
2166 | tcr->raw_tcr = value; |
2167 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
2168 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
2169 | } |
2170 | ||
c4241c7d PM |
2171 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2172 | uint64_t value) | |
d4e6df63 | 2173 | { |
00c8cb0a AF |
2174 | ARMCPU *cpu = arm_env_get_cpu(env); |
2175 | ||
d4e6df63 PM |
2176 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2177 | /* With LPAE the TTBCR could result in a change of ASID | |
2178 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2179 | */ | |
00c8cb0a | 2180 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 2181 | } |
c4241c7d | 2182 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2183 | } |
2184 | ||
ecce5c3c PM |
2185 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2186 | { | |
11f136ee FA |
2187 | TCR *tcr = raw_ptr(env, ri); |
2188 | ||
2189 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2190 | * the TCR being reset. | |
2191 | */ | |
2192 | tcr->raw_tcr = 0; | |
2193 | tcr->mask = 0; | |
2194 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2195 | } |
2196 | ||
cb2e37df PM |
2197 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2198 | uint64_t value) | |
2199 | { | |
00c8cb0a | 2200 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2201 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2202 | |
cb2e37df | 2203 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 2204 | tlb_flush(CPU(cpu), 1); |
11f136ee | 2205 | tcr->raw_tcr = value; |
cb2e37df PM |
2206 | } |
2207 | ||
327ed10f PM |
2208 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2209 | uint64_t value) | |
2210 | { | |
2211 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2212 | * must flush the TLB. | |
2213 | */ | |
2214 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2215 | ARMCPU *cpu = arm_env_get_cpu(env); |
2216 | ||
2217 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
2218 | } |
2219 | raw_write(env, ri, value); | |
2220 | } | |
2221 | ||
b698e9cf EI |
2222 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2223 | uint64_t value) | |
2224 | { | |
2225 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2226 | CPUState *cs = CPU(cpu); | |
2227 | ||
2228 | /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ | |
2229 | if (raw_read(env, ri) != value) { | |
2230 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | |
2231 | ARMMMUIdx_S2NS, -1); | |
2232 | raw_write(env, ri, value); | |
2233 | } | |
2234 | } | |
2235 | ||
8e5d75c9 | 2236 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2237 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2238 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2239 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2240 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2241 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2242 | .access = PL1_RW, .resetvalue = 0, |
2243 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2244 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2245 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2246 | .access = PL1_RW, .resetvalue = 0, | |
2247 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2248 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2249 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2250 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2251 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2252 | .resetvalue = 0, }, | |
2253 | REGINFO_SENTINEL | |
2254 | }; | |
2255 | ||
2256 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2257 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2258 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2259 | .access = PL1_RW, | |
d81c519c | 2260 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2261 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2262 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2263 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2264 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2265 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2266 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2267 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2268 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2269 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2270 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2271 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2272 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2273 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2274 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2275 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2276 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2277 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2278 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2279 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2280 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2281 | REGINFO_SENTINEL |
2282 | }; | |
2283 | ||
c4241c7d PM |
2284 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2285 | uint64_t value) | |
1047b9d7 PM |
2286 | { |
2287 | env->cp15.c15_ticonfig = value & 0xe7; | |
2288 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2289 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2290 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2291 | } |
2292 | ||
c4241c7d PM |
2293 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2294 | uint64_t value) | |
1047b9d7 PM |
2295 | { |
2296 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2297 | } |
2298 | ||
c4241c7d PM |
2299 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2300 | uint64_t value) | |
1047b9d7 PM |
2301 | { |
2302 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2303 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2304 | } |
2305 | ||
c4241c7d PM |
2306 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2307 | uint64_t value) | |
c4804214 PM |
2308 | { |
2309 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2310 | * containing a dirty line; cache flush operations have to reset these. | |
2311 | */ | |
2312 | env->cp15.c15_i_max = 0x000; | |
2313 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2314 | } |
2315 | ||
18032bec PM |
2316 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2317 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2318 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2319 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2320 | .resetvalue = 0, }, |
1047b9d7 PM |
2321 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2322 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2323 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2324 | .access = PL1_RW, | |
2325 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2326 | .writefn = omap_ticonfig_write }, | |
2327 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2328 | .access = PL1_RW, | |
2329 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2330 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2331 | .access = PL1_RW, .resetvalue = 0xff0, | |
2332 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2333 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2334 | .access = PL1_RW, | |
2335 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2336 | .writefn = omap_threadid_write }, | |
2337 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2338 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2339 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2340 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2341 | /* TODO: Peripheral port remap register: | |
2342 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2343 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2344 | * when MMU is off. | |
2345 | */ | |
c4804214 | 2346 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2347 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2348 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2349 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2350 | { .name = "C9", .cp = 15, .crn = 9, |
2351 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2352 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2353 | REGINFO_SENTINEL |
2354 | }; | |
2355 | ||
c4241c7d PM |
2356 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2357 | uint64_t value) | |
1047b9d7 | 2358 | { |
c0f4af17 | 2359 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2360 | } |
2361 | ||
2362 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2363 | { .name = "XSCALE_CPAR", | |
2364 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2365 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2366 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2367 | { .name = "XSCALE_AUXCR", |
2368 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2369 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2370 | .resetvalue = 0, }, | |
3b771579 PM |
2371 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2372 | * and hope the guest does not really rely on cache behaviour. | |
2373 | */ | |
2374 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2375 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2376 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2377 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2378 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2379 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2380 | { .name = "XSCALE_DCACHE_LOCK", | |
2381 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2382 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2383 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2384 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2385 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2386 | REGINFO_SENTINEL |
2387 | }; | |
2388 | ||
2389 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2390 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2391 | * implementation of this implementation-defined space. | |
2392 | * Ideally this should eventually disappear in favour of actually | |
2393 | * implementing the correct behaviour for all cores. | |
2394 | */ | |
2395 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2396 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2397 | .access = PL1_RW, |
7a0e58fa | 2398 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2399 | .resetvalue = 0 }, |
18032bec PM |
2400 | REGINFO_SENTINEL |
2401 | }; | |
2402 | ||
c4804214 PM |
2403 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2404 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2405 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2406 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2407 | .resetvalue = 0 }, |
c4804214 PM |
2408 | REGINFO_SENTINEL |
2409 | }; | |
2410 | ||
2411 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2412 | /* We never have a a block transfer operation in progress */ | |
2413 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2414 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2415 | .resetvalue = 0 }, |
30b05bba PM |
2416 | /* The cache ops themselves: these all NOP for QEMU */ |
2417 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2418 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2419 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2420 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2421 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2422 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2423 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2424 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2425 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2426 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2427 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2428 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2429 | REGINFO_SENTINEL |
2430 | }; | |
2431 | ||
2432 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2433 | /* The cache test-and-clean instructions always return (1 << 30) | |
2434 | * to indicate that there are no dirty cache lines. | |
2435 | */ | |
2436 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2437 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2438 | .resetvalue = (1 << 30) }, |
c4804214 | 2439 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2440 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2441 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2442 | REGINFO_SENTINEL |
2443 | }; | |
2444 | ||
34f90529 PM |
2445 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2446 | /* Ignore ReadBuffer accesses */ | |
2447 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2448 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2449 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2450 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2451 | REGINFO_SENTINEL |
2452 | }; | |
2453 | ||
731de9e6 EI |
2454 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2455 | { | |
2456 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2457 | unsigned int cur_el = arm_current_el(env); | |
2458 | bool secure = arm_is_secure(env); | |
2459 | ||
2460 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2461 | return env->cp15.vpidr_el2; | |
2462 | } | |
2463 | return raw_read(env, ri); | |
2464 | } | |
2465 | ||
06a7e647 | 2466 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 2467 | { |
eb5e1d3c PF |
2468 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2469 | uint64_t mpidr = cpu->mp_affinity; | |
2470 | ||
81bdde9d | 2471 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2472 | mpidr |= (1U << 31); |
81bdde9d PM |
2473 | /* Cores which are uniprocessor (non-coherent) |
2474 | * but still implement the MP extensions set | |
a8e81b31 | 2475 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2476 | */ |
a8e81b31 PC |
2477 | if (cpu->mp_is_up) { |
2478 | mpidr |= (1u << 30); | |
2479 | } | |
81bdde9d | 2480 | } |
c4241c7d | 2481 | return mpidr; |
81bdde9d PM |
2482 | } |
2483 | ||
06a7e647 EI |
2484 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2485 | { | |
f0d574d6 EI |
2486 | unsigned int cur_el = arm_current_el(env); |
2487 | bool secure = arm_is_secure(env); | |
2488 | ||
2489 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2490 | return env->cp15.vmpidr_el2; | |
2491 | } | |
06a7e647 EI |
2492 | return mpidr_read_val(env); |
2493 | } | |
2494 | ||
81bdde9d | 2495 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
4b7fff2f PM |
2496 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2497 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2498 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2499 | REGINFO_SENTINEL |
2500 | }; | |
2501 | ||
7ac681cf | 2502 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2503 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2504 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2505 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2506 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2507 | .resetvalue = 0 }, |
b0fe2427 | 2508 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2509 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2510 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2511 | .resetvalue = 0 }, |
891a2fe7 | 2512 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2513 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2514 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2515 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2516 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2517 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2518 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2519 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2520 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2521 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2522 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2523 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2524 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2525 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2526 | REGINFO_SENTINEL |
2527 | }; | |
2528 | ||
c4241c7d | 2529 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2530 | { |
c4241c7d | 2531 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2532 | } |
2533 | ||
c4241c7d PM |
2534 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2535 | uint64_t value) | |
b0d2b7d0 PM |
2536 | { |
2537 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2538 | } |
2539 | ||
c4241c7d | 2540 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2541 | { |
c4241c7d | 2542 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2543 | } |
2544 | ||
c4241c7d PM |
2545 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2546 | uint64_t value) | |
b0d2b7d0 PM |
2547 | { |
2548 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2549 | } |
2550 | ||
c2b820fe PM |
2551 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2552 | { | |
137feaa9 | 2553 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2554 | return CP_ACCESS_TRAP; |
2555 | } | |
2556 | return CP_ACCESS_OK; | |
2557 | } | |
2558 | ||
2559 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2560 | uint64_t value) | |
2561 | { | |
2562 | env->daif = value & PSTATE_DAIF; | |
2563 | } | |
2564 | ||
8af35c37 PM |
2565 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
2566 | const ARMCPRegInfo *ri) | |
2567 | { | |
2568 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2569 | * SCTLR_EL1.UCI is set. | |
2570 | */ | |
137feaa9 | 2571 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2572 | return CP_ACCESS_TRAP; |
2573 | } | |
2574 | return CP_ACCESS_OK; | |
2575 | } | |
2576 | ||
dbb1fb27 AB |
2577 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2578 | * Page D4-1736 (DDI0487A.b) | |
2579 | */ | |
2580 | ||
fd3ed969 PM |
2581 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2582 | uint64_t value) | |
168aa23b | 2583 | { |
31b030d4 | 2584 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 | 2585 | CPUState *cs = CPU(cpu); |
dbb1fb27 | 2586 | |
fd3ed969 PM |
2587 | if (arm_is_secure_below_el3(env)) { |
2588 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2589 | } else { | |
2590 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | |
2591 | } | |
168aa23b PM |
2592 | } |
2593 | ||
fd3ed969 PM |
2594 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2595 | uint64_t value) | |
168aa23b | 2596 | { |
fd3ed969 PM |
2597 | bool sec = arm_is_secure_below_el3(env); |
2598 | CPUState *other_cs; | |
dbb1fb27 | 2599 | |
fd3ed969 PM |
2600 | CPU_FOREACH(other_cs) { |
2601 | if (sec) { | |
2602 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2603 | } else { | |
2604 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2605 | ARMMMUIdx_S12NSE0, -1); | |
2606 | } | |
2607 | } | |
168aa23b PM |
2608 | } |
2609 | ||
fd3ed969 PM |
2610 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2611 | uint64_t value) | |
168aa23b | 2612 | { |
fd3ed969 PM |
2613 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
2614 | * stage 2 translations, whereas most other scopes only invalidate | |
2615 | * stage 1 translations. | |
2616 | */ | |
00c8cb0a | 2617 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 PM |
2618 | CPUState *cs = CPU(cpu); |
2619 | ||
2620 | if (arm_is_secure_below_el3(env)) { | |
2621 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2622 | } else { | |
2623 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
2624 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | |
2625 | ARMMMUIdx_S2NS, -1); | |
2626 | } else { | |
2627 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | |
2628 | } | |
2629 | } | |
168aa23b PM |
2630 | } |
2631 | ||
fd3ed969 | 2632 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
2633 | uint64_t value) |
2634 | { | |
fd3ed969 PM |
2635 | ARMCPU *cpu = arm_env_get_cpu(env); |
2636 | CPUState *cs = CPU(cpu); | |
2637 | ||
2638 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); | |
2639 | } | |
2640 | ||
43efaa33 PM |
2641 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2642 | uint64_t value) | |
2643 | { | |
2644 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2645 | CPUState *cs = CPU(cpu); | |
2646 | ||
2647 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); | |
2648 | } | |
2649 | ||
fd3ed969 PM |
2650 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2651 | uint64_t value) | |
2652 | { | |
2653 | /* Note that the 'ALL' scope must invalidate both stage 1 and | |
2654 | * stage 2 translations, whereas most other scopes only invalidate | |
2655 | * stage 1 translations. | |
2656 | */ | |
2657 | bool sec = arm_is_secure_below_el3(env); | |
2658 | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); | |
fa439fc5 | 2659 | CPUState *other_cs; |
fa439fc5 PM |
2660 | |
2661 | CPU_FOREACH(other_cs) { | |
fd3ed969 PM |
2662 | if (sec) { |
2663 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2664 | } else if (has_el2) { | |
2665 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2666 | ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); | |
2667 | } else { | |
2668 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2669 | ARMMMUIdx_S12NSE0, -1); | |
2670 | } | |
fa439fc5 PM |
2671 | } |
2672 | } | |
2673 | ||
2bfb9d75 PM |
2674 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2675 | uint64_t value) | |
2676 | { | |
2677 | CPUState *other_cs; | |
2678 | ||
2679 | CPU_FOREACH(other_cs) { | |
2680 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); | |
2681 | } | |
2682 | } | |
2683 | ||
43efaa33 PM |
2684 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2685 | uint64_t value) | |
2686 | { | |
2687 | CPUState *other_cs; | |
2688 | ||
2689 | CPU_FOREACH(other_cs) { | |
2690 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); | |
2691 | } | |
2692 | } | |
2693 | ||
fd3ed969 PM |
2694 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2695 | uint64_t value) | |
2696 | { | |
2697 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
2698 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
2699 | * since we don't support flush-for-specific-ASID-only or | |
2700 | * flush-last-level-only. | |
2701 | */ | |
2702 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2703 | CPUState *cs = CPU(cpu); | |
2704 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2705 | ||
2706 | if (arm_is_secure_below_el3(env)) { | |
2707 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, | |
2708 | ARMMMUIdx_S1SE0, -1); | |
2709 | } else { | |
2710 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, | |
2711 | ARMMMUIdx_S12NSE0, -1); | |
2712 | } | |
2713 | } | |
2714 | ||
2715 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2716 | uint64_t value) | |
fa439fc5 | 2717 | { |
fd3ed969 PM |
2718 | /* Invalidate by VA, EL2 |
2719 | * Currently handles both VAE2 and VALE2, since we don't support | |
2720 | * flush-last-level-only. | |
2721 | */ | |
2722 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2723 | CPUState *cs = CPU(cpu); | |
2724 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2725 | ||
2726 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); | |
2727 | } | |
2728 | ||
43efaa33 PM |
2729 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2730 | uint64_t value) | |
2731 | { | |
2732 | /* Invalidate by VA, EL3 | |
2733 | * Currently handles both VAE3 and VALE3, since we don't support | |
2734 | * flush-last-level-only. | |
2735 | */ | |
2736 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2737 | CPUState *cs = CPU(cpu); | |
2738 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2739 | ||
2740 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); | |
2741 | } | |
2742 | ||
fd3ed969 PM |
2743 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2744 | uint64_t value) | |
2745 | { | |
2746 | bool sec = arm_is_secure_below_el3(env); | |
fa439fc5 PM |
2747 | CPUState *other_cs; |
2748 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2749 | ||
2750 | CPU_FOREACH(other_cs) { | |
fd3ed969 PM |
2751 | if (sec) { |
2752 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, | |
2753 | ARMMMUIdx_S1SE0, -1); | |
2754 | } else { | |
2755 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, | |
2756 | ARMMMUIdx_S12NSE0, -1); | |
2757 | } | |
fa439fc5 PM |
2758 | } |
2759 | } | |
2760 | ||
fd3ed969 PM |
2761 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2762 | uint64_t value) | |
fa439fc5 PM |
2763 | { |
2764 | CPUState *other_cs; | |
fd3ed969 | 2765 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
fa439fc5 PM |
2766 | |
2767 | CPU_FOREACH(other_cs) { | |
fd3ed969 | 2768 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); |
fa439fc5 PM |
2769 | } |
2770 | } | |
2771 | ||
43efaa33 PM |
2772 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2773 | uint64_t value) | |
2774 | { | |
2775 | CPUState *other_cs; | |
2776 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2777 | ||
2778 | CPU_FOREACH(other_cs) { | |
2779 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); | |
2780 | } | |
2781 | } | |
2782 | ||
cea66e91 PM |
2783 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2784 | uint64_t value) | |
2785 | { | |
2786 | /* Invalidate by IPA. This has to invalidate any structures that | |
2787 | * contain only stage 2 translation information, but does not need | |
2788 | * to apply to structures that contain combined stage 1 and stage 2 | |
2789 | * translation information. | |
2790 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
2791 | */ | |
2792 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2793 | CPUState *cs = CPU(cpu); | |
2794 | uint64_t pageaddr; | |
2795 | ||
2796 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
2797 | return; | |
2798 | } | |
2799 | ||
2800 | pageaddr = sextract64(value << 12, 0, 48); | |
2801 | ||
2802 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
2803 | } | |
2804 | ||
2805 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2806 | uint64_t value) | |
2807 | { | |
2808 | CPUState *other_cs; | |
2809 | uint64_t pageaddr; | |
2810 | ||
2811 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
2812 | return; | |
2813 | } | |
2814 | ||
2815 | pageaddr = sextract64(value << 12, 0, 48); | |
2816 | ||
2817 | CPU_FOREACH(other_cs) { | |
2818 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
2819 | } | |
2820 | } | |
2821 | ||
aca3f40b PM |
2822 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2823 | { | |
2824 | /* We don't implement EL2, so the only control on DC ZVA is the | |
2825 | * bit in the SCTLR which can prohibit access for EL0. | |
2826 | */ | |
137feaa9 | 2827 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
2828 | return CP_ACCESS_TRAP; |
2829 | } | |
2830 | return CP_ACCESS_OK; | |
2831 | } | |
2832 | ||
2833 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2834 | { | |
2835 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2836 | int dzp_bit = 1 << 4; | |
2837 | ||
2838 | /* DZP indicates whether DC ZVA access is allowed */ | |
14e5f106 | 2839 | if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { |
aca3f40b PM |
2840 | dzp_bit = 0; |
2841 | } | |
2842 | return cpu->dcz_blocksize | dzp_bit; | |
2843 | } | |
2844 | ||
f502cfc2 PM |
2845 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2846 | { | |
cdcf1405 | 2847 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
2848 | /* Access to SP_EL0 is undefined if it's being used as |
2849 | * the stack pointer. | |
2850 | */ | |
2851 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2852 | } | |
2853 | return CP_ACCESS_OK; | |
2854 | } | |
2855 | ||
2856 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2857 | { | |
2858 | return env->pstate & PSTATE_SP; | |
2859 | } | |
2860 | ||
2861 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
2862 | { | |
2863 | update_spsel(env, val); | |
2864 | } | |
2865 | ||
137feaa9 FA |
2866 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2867 | uint64_t value) | |
2868 | { | |
2869 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2870 | ||
2871 | if (raw_read(env, ri) == value) { | |
2872 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
2873 | * to do a lot of pointless SCTLR writes. | |
2874 | */ | |
2875 | return; | |
2876 | } | |
2877 | ||
2878 | raw_write(env, ri, value); | |
2879 | /* ??? Lots of these bits are not implemented. */ | |
2880 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
2881 | tlb_flush(CPU(cpu), 1); | |
2882 | } | |
2883 | ||
b0d2b7d0 PM |
2884 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
2885 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
2886 | * significantly for system emulation of AArch64 CPUs. | |
2887 | */ | |
2888 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
2889 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
2890 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
2891 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
2892 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 2893 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
2894 | .access = PL0_RW, .accessfn = aa64_daif_access, |
2895 | .fieldoffset = offsetof(CPUARMState, daif), | |
2896 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
2897 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
2898 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
2899 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
2900 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
2901 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
2902 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
2903 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
2904 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 2905 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
2906 | .readfn = aa64_dczid_read }, |
2907 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
2908 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
2909 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
2910 | #ifndef CONFIG_USER_ONLY | |
2911 | /* Avoid overhead of an access check that always passes in user-mode */ | |
2912 | .accessfn = aa64_zva_access, | |
2913 | #endif | |
2914 | }, | |
0eef9d98 PM |
2915 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
2916 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
2917 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
2918 | /* Cache ops: all NOPs since we don't emulate caches */ |
2919 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
2920 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2921 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2922 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
2923 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2924 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2925 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
2926 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
2927 | .access = PL0_W, .type = ARM_CP_NOP, | |
2928 | .accessfn = aa64_cacheop_access }, | |
2929 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
2930 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2931 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2932 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
2933 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2934 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2935 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
2936 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
2937 | .access = PL0_W, .type = ARM_CP_NOP, | |
2938 | .accessfn = aa64_cacheop_access }, | |
2939 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
2940 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2941 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2942 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
2943 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
2944 | .access = PL0_W, .type = ARM_CP_NOP, | |
2945 | .accessfn = aa64_cacheop_access }, | |
2946 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
2947 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
2948 | .access = PL0_W, .type = ARM_CP_NOP, | |
2949 | .accessfn = aa64_cacheop_access }, | |
2950 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
2951 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2952 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
2953 | /* TLBI operations */ |
2954 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2955 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 2956 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2957 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 2958 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2959 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 2960 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2961 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 2962 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2963 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 2964 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2965 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 2966 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2967 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 2968 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2969 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 2970 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2971 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2972 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2973 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 2974 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2975 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 2976 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2977 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 2978 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2979 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 2980 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2981 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 2982 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2983 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 2984 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2985 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 2986 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2987 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 2988 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2989 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 2990 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2991 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 2992 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2993 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 2994 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2995 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 2996 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2997 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 2998 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2999 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3000 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3001 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
3002 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
3003 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3004 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3005 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
3006 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
3007 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3008 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3009 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
83ddf975 PM |
3010 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
3011 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3012 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3013 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
3014 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
3015 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
3016 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3017 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
3018 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
3019 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3020 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3021 | .writefn = tlbi_aa64_ipas2e1_write }, | |
3022 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | |
3023 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3024 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3025 | .writefn = tlbi_aa64_ipas2e1_write }, | |
83ddf975 PM |
3026 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
3027 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3028 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3029 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
3030 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
3031 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
3032 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3033 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
3034 | #ifndef CONFIG_USER_ONLY |
3035 | /* 64 bit address translation operations */ | |
3036 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
3037 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 3038 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3039 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
3040 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 3041 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3042 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
3043 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 3044 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3045 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
3046 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 3047 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2a47df95 | 3048 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 3049 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
2a47df95 PM |
3050 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3051 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3052 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
2a47df95 PM |
3053 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3054 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3055 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
2a47df95 PM |
3056 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3057 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3058 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
2a47df95 PM |
3059 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3060 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | |
3061 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
3062 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
3063 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3064 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | |
3065 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
3066 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
c96fc9b5 EI |
3067 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
3068 | .type = ARM_CP_ALIAS, | |
3069 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
3070 | .access = PL1_RW, .resetvalue = 0, | |
3071 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
3072 | .writefn = par_write }, | |
19525524 | 3073 | #endif |
995939a6 | 3074 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 3075 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3076 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 3077 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3078 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 3079 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 3080 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3081 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 3082 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3083 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
9449fdf6 PM |
3084 | /* 32 bit cache operations */ |
3085 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3086 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3087 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
3088 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3089 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3090 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3091 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
3092 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3093 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
3094 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3095 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
3096 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3097 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3098 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3099 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3100 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3101 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
3102 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3103 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3104 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3105 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
3106 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3107 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
3108 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3109 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3110 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3111 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
3112 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
3113 | .access = PL1_RW, .resetvalue = 0, | |
3114 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3115 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
3116 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 3117 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3118 | .type = ARM_CP_ALIAS, |
a0618a19 | 3119 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
3120 | .access = PL1_RW, |
3121 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 3122 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3123 | .type = ARM_CP_ALIAS, |
a65f1de9 | 3124 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
7847f9ea | 3125 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) }, |
f502cfc2 PM |
3126 | /* We rely on the access checks not allowing the guest to write to the |
3127 | * state field when SPSel indicates that it's being used as the stack | |
3128 | * pointer. | |
3129 | */ | |
3130 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
3131 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
3132 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 3133 | .type = ARM_CP_ALIAS, |
f502cfc2 | 3134 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
3135 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
3136 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3137 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3138 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
3139 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
3140 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 3141 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 3142 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
b0d2b7d0 PM |
3143 | REGINFO_SENTINEL |
3144 | }; | |
3145 | ||
d42e3c26 | 3146 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 3147 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
3148 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3149 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3150 | .access = PL2_RW, | |
3151 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 3152 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3153 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
3154 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
3155 | .access = PL2_RW, | |
3156 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
3157 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3158 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3159 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
3160 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3161 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3162 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3163 | .resetvalue = 0 }, | |
3164 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3165 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3166 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2179ef95 PM |
3167 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3168 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3169 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3170 | .resetvalue = 0 }, | |
3171 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3172 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3173 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3174 | .resetvalue = 0 }, | |
37cd6c24 PM |
3175 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3176 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3177 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3178 | .resetvalue = 0 }, | |
3179 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3180 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3181 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3182 | .resetvalue = 0 }, | |
06ec4c8c EI |
3183 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3184 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3185 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e9c2fe EI |
3186 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
3187 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3188 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3189 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b698e9cf EI |
3190 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3191 | .cp = 15, .opc1 = 6, .crm = 2, | |
3192 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3193 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | |
3194 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3195 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3196 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
3197 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3198 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3199 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
3200 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3201 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3202 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
3203 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3204 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3205 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3206 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3207 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3208 | .resetvalue = 0 }, | |
0b6440af EI |
3209 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3210 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3211 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
3212 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3213 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3214 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3215 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3216 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3217 | .resetvalue = 0 }, | |
b0e66d95 EI |
3218 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3219 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3220 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3221 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3222 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3223 | .resetvalue = 0 }, | |
3224 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3225 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3226 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3227 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3228 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3229 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
3230 | REGINFO_SENTINEL |
3231 | }; | |
3232 | ||
f149e3e8 EI |
3233 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
3234 | { | |
3235 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3236 | uint64_t valid_mask = HCR_MASK; | |
3237 | ||
3238 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3239 | valid_mask &= ~HCR_HCD; | |
3240 | } else { | |
3241 | valid_mask &= ~HCR_TSC; | |
3242 | } | |
3243 | ||
3244 | /* Clear RES0 bits. */ | |
3245 | value &= valid_mask; | |
3246 | ||
3247 | /* These bits change the MMU setup: | |
3248 | * HCR_VM enables stage 2 translation | |
3249 | * HCR_PTW forbids certain page-table setups | |
3250 | * HCR_DC Disables stage1 and enables stage2 translation | |
3251 | */ | |
3252 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
3253 | tlb_flush(CPU(cpu), 1); | |
3254 | } | |
3255 | raw_write(env, ri, value); | |
3256 | } | |
3257 | ||
4771cd01 | 3258 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
3259 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
3260 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
3261 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
3262 | .writefn = hcr_write }, | |
0c17d68c FA |
3263 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
3264 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
3265 | .access = PL2_RW, .resetvalue = 0, | |
3266 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3267 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3b685ba7 | 3268 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3269 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3270 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
3271 | .access = PL2_RW, | |
3272 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 3273 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3274 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
3275 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
3276 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
88ca1c2d FA |
3277 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, |
3278 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
3279 | .access = PL2_RW, .resetvalue = 0, | |
3280 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
63b60551 EI |
3281 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
3282 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
3283 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 3284 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3285 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3286 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
3287 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, | |
d42e3c26 EI |
3288 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3289 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3290 | .access = PL2_RW, .writefn = vbar_write, | |
3291 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
3292 | .resetvalue = 0 }, | |
884b4dee GB |
3293 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
3294 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3295 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3296 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
3297 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3298 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3299 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3300 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
3301 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3302 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3303 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
3304 | .resetvalue = 0 }, | |
3305 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3306 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3307 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3308 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
3309 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3310 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3311 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3312 | .resetvalue = 0 }, | |
3313 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
3314 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3315 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3316 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3317 | .resetvalue = 0 }, | |
37cd6c24 PM |
3318 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3319 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3320 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3321 | .resetvalue = 0 }, | |
3322 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3323 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3324 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3325 | .resetvalue = 0 }, | |
06ec4c8c EI |
3326 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3327 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3328 | .access = PL2_RW, .writefn = vmsa_tcr_el1_write, | |
3329 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
3330 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, | |
68e9c2fe EI |
3331 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
3332 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3333 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3334 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
3335 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
3336 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3337 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3338 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
b698e9cf EI |
3339 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3340 | .cp = 15, .opc1 = 6, .crm = 2, | |
3341 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
3342 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3343 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
3344 | .writefn = vttbr_write }, | |
3345 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3346 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3347 | .access = PL2_RW, .writefn = vttbr_write, | |
3348 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
3349 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3350 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3351 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3352 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
3353 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3354 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3355 | .access = PL2_RW, .resetvalue = 0, | |
3356 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
3357 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3358 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3359 | .access = PL2_RW, .resetvalue = 0, | |
3360 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
3361 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3362 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 3363 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
51da9014 EI |
3364 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
3365 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3366 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3367 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
3368 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
3369 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3370 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3371 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
3372 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
3373 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
3374 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3375 | .writefn = tlbi_aa64_vae2_write }, | |
3376 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
3377 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3378 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3379 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
3380 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
3381 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3382 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3383 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
3384 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
3385 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3386 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3387 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 3388 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
3389 | /* Unlike the other EL2-related AT operations, these must |
3390 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
3391 | * define them here rather than with the rest of the AT ops. | |
3392 | */ | |
3393 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
3394 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3395 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3396 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3397 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | |
3398 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3399 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3400 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
14db7fe0 PM |
3401 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
3402 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
3403 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
3404 | * to behave as if SCR.NS was 1. | |
3405 | */ | |
3406 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3407 | .access = PL2_W, | |
3408 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
3409 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3410 | .access = PL2_W, | |
3411 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
0b6440af EI |
3412 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3413 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3414 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
3415 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
3416 | * both ARMv7 and ARMv8. | |
3417 | */ | |
3418 | .access = PL2_RW, .resetvalue = 3, | |
3419 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
3420 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3421 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3422 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
3423 | .writefn = gt_cntvoff_write, | |
3424 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
3425 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3426 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
3427 | .writefn = gt_cntvoff_write, | |
3428 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
3429 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3430 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3431 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3432 | .type = ARM_CP_IO, .access = PL2_RW, | |
3433 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3434 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3435 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3436 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
3437 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3438 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3439 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3440 | .type = ARM_CP_IO, .access = PL2_RW, | |
3441 | .resetfn = gt_hyp_timer_reset, | |
3442 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
3443 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3444 | .type = ARM_CP_IO, | |
3445 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3446 | .access = PL2_RW, | |
3447 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
3448 | .resetvalue = 0, | |
3449 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 3450 | #endif |
3b685ba7 EI |
3451 | REGINFO_SENTINEL |
3452 | }; | |
3453 | ||
60fb1a87 GB |
3454 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
3455 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
3456 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
3457 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
3458 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 3459 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 GB |
3460 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
3461 | .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 3462 | .writefn = scr_write }, |
60fb1a87 GB |
3463 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
3464 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
3465 | .access = PL3_RW, .resetvalue = 0, | |
3466 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
3467 | { .name = "SDER", | |
3468 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
3469 | .access = PL3_RW, .resetvalue = 0, | |
3470 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
3471 | /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ | |
3472 | { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
3473 | .access = PL3_W | PL1_R, .resetvalue = 0, | |
3474 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, | |
3475 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
3476 | .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, | |
3477 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, | |
137feaa9 | 3478 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
e46e1a74 | 3479 | .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */ |
137feaa9 FA |
3480 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, |
3481 | .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3482 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, | |
7dd8c9af FA |
3483 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
3484 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
3485 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
3486 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
3487 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
3488 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
3489 | .access = PL3_RW, .writefn = vmsa_tcr_el1_write, | |
3490 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
3491 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, | |
81547d66 | 3492 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3493 | .type = ARM_CP_ALIAS, |
81547d66 EI |
3494 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
3495 | .access = PL3_RW, | |
3496 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 3497 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3498 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
3499 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
3500 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
3501 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
3502 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
3503 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 3504 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3505 | .type = ARM_CP_ALIAS, |
81547d66 EI |
3506 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
3507 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, | |
a1ba125c EI |
3508 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
3509 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
3510 | .access = PL3_RW, .writefn = vbar_write, | |
3511 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
3512 | .resetvalue = 0 }, | |
c6f19164 GB |
3513 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
3514 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
3515 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3516 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
3517 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
3518 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
3519 | .access = PL3_RW, .resetvalue = 0, | |
3520 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
3521 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
3522 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
3523 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3524 | .resetvalue = 0 }, | |
37cd6c24 PM |
3525 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
3526 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
3527 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3528 | .resetvalue = 0 }, | |
3529 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
3530 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
3531 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3532 | .resetvalue = 0 }, | |
43efaa33 PM |
3533 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
3534 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
3535 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3536 | .writefn = tlbi_aa64_alle3is_write }, | |
3537 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
3538 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
3539 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3540 | .writefn = tlbi_aa64_vae3is_write }, | |
3541 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
3542 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
3543 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3544 | .writefn = tlbi_aa64_vae3is_write }, | |
3545 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
3546 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
3547 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3548 | .writefn = tlbi_aa64_alle3_write }, | |
3549 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
3550 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
3551 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3552 | .writefn = tlbi_aa64_vae3_write }, | |
3553 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
3554 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
3555 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3556 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
3557 | REGINFO_SENTINEL |
3558 | }; | |
3559 | ||
7da845b0 PM |
3560 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
3561 | { | |
3562 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
3563 | * but the AArch32 CTR has its own reginfo struct) | |
3564 | */ | |
137feaa9 | 3565 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
3566 | return CP_ACCESS_TRAP; |
3567 | } | |
3568 | return CP_ACCESS_OK; | |
3569 | } | |
3570 | ||
50300698 | 3571 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 3572 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
3573 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
3574 | * unlike DBGDRAR it is never accessible from EL0. | |
3575 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
3576 | * accessor. | |
50300698 PM |
3577 | */ |
3578 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
3579 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
3580 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
3581 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
3582 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 PM |
3583 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
3584 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 3585 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
3586 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
3587 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
0e5e8935 PM |
3588 | .access = PL1_RW, |
3589 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
3590 | .resetvalue = 0 }, | |
5e8b12ff PM |
3591 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
3592 | * We don't implement the configurable EL0 access. | |
3593 | */ | |
3594 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
3595 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3596 | .type = ARM_CP_ALIAS, |
5e8b12ff | 3597 | .access = PL1_R, |
b061a82b | 3598 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
50300698 | 3599 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
10aae104 PM |
3600 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
3601 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
50300698 | 3602 | .access = PL1_W, .type = ARM_CP_NOP }, |
5e8b12ff PM |
3603 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
3604 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
3605 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
3606 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
3607 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't | |
3608 | * implement vector catch debug events yet. | |
3609 | */ | |
3610 | { .name = "DBGVCR", | |
3611 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
3612 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
50300698 PM |
3613 | REGINFO_SENTINEL |
3614 | }; | |
3615 | ||
3616 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
3617 | /* 64 bit access versions of the (dummy) debug registers */ | |
3618 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
3619 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3620 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
3621 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3622 | REGINFO_SENTINEL | |
3623 | }; | |
3624 | ||
9ee98ce8 PM |
3625 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
3626 | { | |
3627 | CPUARMState *env = &cpu->env; | |
3628 | vaddr len = 0; | |
3629 | vaddr wvr = env->cp15.dbgwvr[n]; | |
3630 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
3631 | int mask; | |
3632 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
3633 | ||
3634 | if (env->cpu_watchpoint[n]) { | |
3635 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
3636 | env->cpu_watchpoint[n] = NULL; | |
3637 | } | |
3638 | ||
3639 | if (!extract64(wcr, 0, 1)) { | |
3640 | /* E bit clear : watchpoint disabled */ | |
3641 | return; | |
3642 | } | |
3643 | ||
3644 | switch (extract64(wcr, 3, 2)) { | |
3645 | case 0: | |
3646 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
3647 | return; | |
3648 | case 1: | |
3649 | flags |= BP_MEM_READ; | |
3650 | break; | |
3651 | case 2: | |
3652 | flags |= BP_MEM_WRITE; | |
3653 | break; | |
3654 | case 3: | |
3655 | flags |= BP_MEM_ACCESS; | |
3656 | break; | |
3657 | } | |
3658 | ||
3659 | /* Attempts to use both MASK and BAS fields simultaneously are | |
3660 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
3661 | * thus generating a watchpoint for every byte in the masked region. | |
3662 | */ | |
3663 | mask = extract64(wcr, 24, 4); | |
3664 | if (mask == 1 || mask == 2) { | |
3665 | /* Reserved values of MASK; we must act as if the mask value was | |
3666 | * some non-reserved value, or as if the watchpoint were disabled. | |
3667 | * We choose the latter. | |
3668 | */ | |
3669 | return; | |
3670 | } else if (mask) { | |
3671 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
3672 | len = 1ULL << mask; | |
3673 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
3674 | * whether the watchpoint fires when the unmasked bits match; we opt | |
3675 | * to generate the exceptions. | |
3676 | */ | |
3677 | wvr &= ~(len - 1); | |
3678 | } else { | |
3679 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
3680 | int bas = extract64(wcr, 5, 8); | |
3681 | int basstart; | |
3682 | ||
3683 | if (bas == 0) { | |
3684 | /* This must act as if the watchpoint is disabled */ | |
3685 | return; | |
3686 | } | |
3687 | ||
3688 | if (extract64(wvr, 2, 1)) { | |
3689 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
3690 | * ignored, and BAS[3:0] define which bytes to watch. | |
3691 | */ | |
3692 | bas &= 0xf; | |
3693 | } | |
3694 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
3695 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
3696 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
3697 | * We choose to ignore any non-zero bits after the first range of 1s. | |
3698 | */ | |
3699 | basstart = ctz32(bas); | |
3700 | len = cto32(bas >> basstart); | |
3701 | wvr += basstart; | |
3702 | } | |
3703 | ||
3704 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
3705 | &env->cpu_watchpoint[n]); | |
3706 | } | |
3707 | ||
3708 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
3709 | { | |
3710 | int i; | |
3711 | CPUARMState *env = &cpu->env; | |
3712 | ||
3713 | /* Completely clear out existing QEMU watchpoints and our array, to | |
3714 | * avoid possible stale entries following migration load. | |
3715 | */ | |
3716 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
3717 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
3718 | ||
3719 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
3720 | hw_watchpoint_update(cpu, i); | |
3721 | } | |
3722 | } | |
3723 | ||
3724 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3725 | uint64_t value) | |
3726 | { | |
3727 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3728 | int i = ri->crm; | |
3729 | ||
3730 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
3731 | * register reads and behaves as if values written are sign extended. | |
3732 | * Bits [1:0] are RES0. | |
3733 | */ | |
3734 | value = sextract64(value, 0, 49) & ~3ULL; | |
3735 | ||
3736 | raw_write(env, ri, value); | |
3737 | hw_watchpoint_update(cpu, i); | |
3738 | } | |
3739 | ||
3740 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3741 | uint64_t value) | |
3742 | { | |
3743 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3744 | int i = ri->crm; | |
3745 | ||
3746 | raw_write(env, ri, value); | |
3747 | hw_watchpoint_update(cpu, i); | |
3748 | } | |
3749 | ||
46747d15 PM |
3750 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
3751 | { | |
3752 | CPUARMState *env = &cpu->env; | |
3753 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
3754 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
3755 | vaddr addr; | |
3756 | int bt; | |
3757 | int flags = BP_CPU; | |
3758 | ||
3759 | if (env->cpu_breakpoint[n]) { | |
3760 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
3761 | env->cpu_breakpoint[n] = NULL; | |
3762 | } | |
3763 | ||
3764 | if (!extract64(bcr, 0, 1)) { | |
3765 | /* E bit clear : watchpoint disabled */ | |
3766 | return; | |
3767 | } | |
3768 | ||
3769 | bt = extract64(bcr, 20, 4); | |
3770 | ||
3771 | switch (bt) { | |
3772 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
3773 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
3774 | qemu_log_mask(LOG_UNIMP, | |
3775 | "arm: address mismatch breakpoint types not implemented"); | |
3776 | return; | |
3777 | case 0: /* unlinked address match */ | |
3778 | case 1: /* linked address match */ | |
3779 | { | |
3780 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
3781 | * we behave as if the register was sign extended. Bits [1:0] are | |
3782 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
3783 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
3784 | * a bp will fire if the addresses covered by the bp and the addresses | |
3785 | * covered by the insn overlap but the insn doesn't start at the | |
3786 | * start of the bp address range. We choose to require the insn and | |
3787 | * the bp to have the same address. The constraints on writing to | |
3788 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
3789 | * 0b0000 => no breakpoint | |
3790 | * 0b0011 => breakpoint on addr | |
3791 | * 0b1100 => breakpoint on addr + 2 | |
3792 | * 0b1111 => breakpoint on addr | |
3793 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
3794 | */ | |
3795 | int bas = extract64(bcr, 5, 4); | |
3796 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
3797 | if (bas == 0) { | |
3798 | return; | |
3799 | } | |
3800 | if (bas == 0xc) { | |
3801 | addr += 2; | |
3802 | } | |
3803 | break; | |
3804 | } | |
3805 | case 2: /* unlinked context ID match */ | |
3806 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
3807 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
3808 | qemu_log_mask(LOG_UNIMP, | |
3809 | "arm: unlinked context breakpoint types not implemented"); | |
3810 | return; | |
3811 | case 9: /* linked VMID match (reserved if no EL2) */ | |
3812 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
3813 | case 3: /* linked context ID match */ | |
3814 | default: | |
3815 | /* We must generate no events for Linked context matches (unless | |
3816 | * they are linked to by some other bp/wp, which is handled in | |
3817 | * updates for the linking bp/wp). We choose to also generate no events | |
3818 | * for reserved values. | |
3819 | */ | |
3820 | return; | |
3821 | } | |
3822 | ||
3823 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
3824 | } | |
3825 | ||
3826 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
3827 | { | |
3828 | int i; | |
3829 | CPUARMState *env = &cpu->env; | |
3830 | ||
3831 | /* Completely clear out existing QEMU breakpoints and our array, to | |
3832 | * avoid possible stale entries following migration load. | |
3833 | */ | |
3834 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
3835 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
3836 | ||
3837 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
3838 | hw_breakpoint_update(cpu, i); | |
3839 | } | |
3840 | } | |
3841 | ||
3842 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3843 | uint64_t value) | |
3844 | { | |
3845 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3846 | int i = ri->crm; | |
3847 | ||
3848 | raw_write(env, ri, value); | |
3849 | hw_breakpoint_update(cpu, i); | |
3850 | } | |
3851 | ||
3852 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3853 | uint64_t value) | |
3854 | { | |
3855 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3856 | int i = ri->crm; | |
3857 | ||
3858 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
3859 | * copy of BAS[0]. | |
3860 | */ | |
3861 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
3862 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
3863 | ||
3864 | raw_write(env, ri, value); | |
3865 | hw_breakpoint_update(cpu, i); | |
3866 | } | |
3867 | ||
50300698 | 3868 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 3869 | { |
50300698 PM |
3870 | /* Define v7 and v8 architectural debug registers. |
3871 | * These are just dummy implementations for now. | |
0b45451e PM |
3872 | */ |
3873 | int i; | |
3ff6fc91 | 3874 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
3875 | ARMCPRegInfo dbgdidr = { |
3876 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
3877 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
3878 | }; | |
3879 | ||
3ff6fc91 | 3880 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
3881 | brps = extract32(cpu->dbgdidr, 24, 4); |
3882 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
3883 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
3884 | ||
3885 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
3886 | |
3887 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
3888 | * of the debug registers such as number of breakpoints; | |
3889 | * check that if they both exist then they agree. | |
3890 | */ | |
3891 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
3892 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
3893 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 3894 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 3895 | } |
0b45451e | 3896 | |
48eb3ae6 | 3897 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
3898 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
3899 | ||
3900 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
3901 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
3902 | } | |
3903 | ||
48eb3ae6 | 3904 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 3905 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
3906 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
3907 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
0b45451e | 3908 | .access = PL1_RW, |
46747d15 PM |
3909 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
3910 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
3911 | }, | |
10aae104 PM |
3912 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
3913 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
0b45451e | 3914 | .access = PL1_RW, |
46747d15 PM |
3915 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
3916 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
3917 | }, | |
48eb3ae6 PM |
3918 | REGINFO_SENTINEL |
3919 | }; | |
3920 | define_arm_cp_regs(cpu, dbgregs); | |
3921 | } | |
3922 | ||
3923 | for (i = 0; i < wrps + 1; i++) { | |
3924 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
3925 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
3926 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
0b45451e | 3927 | .access = PL1_RW, |
9ee98ce8 PM |
3928 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
3929 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
3930 | }, | |
10aae104 PM |
3931 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
3932 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
0b45451e | 3933 | .access = PL1_RW, |
9ee98ce8 PM |
3934 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
3935 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
3936 | }, | |
3937 | REGINFO_SENTINEL | |
0b45451e PM |
3938 | }; |
3939 | define_arm_cp_regs(cpu, dbgregs); | |
3940 | } | |
3941 | } | |
3942 | ||
2ceb98c0 PM |
3943 | void register_cp_regs_for_features(ARMCPU *cpu) |
3944 | { | |
3945 | /* Register all the coprocessor registers based on feature bits */ | |
3946 | CPUARMState *env = &cpu->env; | |
3947 | if (arm_feature(env, ARM_FEATURE_M)) { | |
3948 | /* M profile has no coprocessor registers */ | |
3949 | return; | |
3950 | } | |
3951 | ||
e9aa6c21 | 3952 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
3953 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
3954 | /* Must go early as it is full of wildcards that may be | |
3955 | * overridden by later definitions. | |
3956 | */ | |
3957 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
3958 | } | |
3959 | ||
7d57f408 | 3960 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
3961 | /* The ID registers all have impdef reset values */ |
3962 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
3963 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
3964 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
3965 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3966 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
3967 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
3968 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
3969 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3970 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
3971 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
3972 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
3973 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3974 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
3975 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
3976 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
3977 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3978 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
3979 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
3980 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
3981 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3982 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
3983 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
3984 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
3985 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3986 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
3987 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
3988 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
3989 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3990 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
3991 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
3992 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
3993 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3994 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
3995 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
3996 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
3997 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3998 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
3999 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
4000 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
4001 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4002 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
4003 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
4004 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
4005 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4006 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
4007 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
4008 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
4009 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4010 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
4011 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
4012 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
4013 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4014 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
4015 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
4016 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
4017 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
4018 | .resetvalue = cpu->id_isar5 }, |
4019 | /* 6..7 are as yet unallocated and must RAZ */ | |
4020 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
4021 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
4022 | .resetvalue = 0 }, | |
4023 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
4024 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
4025 | .resetvalue = 0 }, | |
4026 | REGINFO_SENTINEL | |
4027 | }; | |
4028 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
4029 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
4030 | } else { | |
4031 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
4032 | } | |
4d31c596 PM |
4033 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
4034 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
4035 | } | |
5e5cf9e3 PC |
4036 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
4037 | !arm_feature(env, ARM_FEATURE_MPU)) { | |
995939a6 PM |
4038 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
4039 | } | |
e9aa6c21 | 4040 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 4041 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
4042 | * field as main ID register, and we implement only the cycle |
4043 | * count register. | |
200ac0ef | 4044 | */ |
7c2cb42b | 4045 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
4046 | ARMCPRegInfo pmcr = { |
4047 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 4048 | .access = PL0_RW, |
7a0e58fa | 4049 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 4050 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
4051 | .accessfn = pmreg_access, .writefn = pmcr_write, |
4052 | .raw_writefn = raw_write, | |
200ac0ef | 4053 | }; |
8521466b AF |
4054 | ARMCPRegInfo pmcr64 = { |
4055 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
4056 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
4057 | .access = PL0_RW, .accessfn = pmreg_access, | |
4058 | .type = ARM_CP_IO, | |
4059 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
4060 | .resetvalue = cpu->midr & 0xff000000, | |
4061 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
4062 | }; | |
7c2cb42b | 4063 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 4064 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 4065 | #endif |
776d4e5c | 4066 | ARMCPRegInfo clidr = { |
7da845b0 PM |
4067 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
4068 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
4069 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
4070 | }; | |
776d4e5c | 4071 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 4072 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 4073 | define_debug_regs(cpu); |
7d57f408 PM |
4074 | } else { |
4075 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 4076 | } |
b0d2b7d0 | 4077 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
4078 | /* AArch64 ID registers, which all have impdef reset values */ |
4079 | ARMCPRegInfo v8_idregs[] = { | |
4080 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4081 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
4082 | .access = PL1_R, .type = ARM_CP_CONST, | |
4083 | .resetvalue = cpu->id_aa64pfr0 }, | |
4084 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4085 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
4086 | .access = PL1_R, .type = ARM_CP_CONST, | |
4087 | .resetvalue = cpu->id_aa64pfr1}, | |
4088 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4089 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
4090 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 4091 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
4092 | * implement the PMU. Not advertising it prevents the guest |
4093 | * from trying to use it and getting UNDEFs on registers we | |
4094 | * don't implement. | |
4095 | */ | |
4096 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
4097 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
4098 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
4099 | .access = PL1_R, .type = ARM_CP_CONST, | |
4100 | .resetvalue = cpu->id_aa64dfr1 }, | |
4101 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4102 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
4103 | .access = PL1_R, .type = ARM_CP_CONST, | |
4104 | .resetvalue = cpu->id_aa64afr0 }, | |
4105 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4106 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
4107 | .access = PL1_R, .type = ARM_CP_CONST, | |
4108 | .resetvalue = cpu->id_aa64afr1 }, | |
4109 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
4110 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
4111 | .access = PL1_R, .type = ARM_CP_CONST, | |
4112 | .resetvalue = cpu->id_aa64isar0 }, | |
4113 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
4114 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
4115 | .access = PL1_R, .type = ARM_CP_CONST, | |
4116 | .resetvalue = cpu->id_aa64isar1 }, | |
4117 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4118 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
4119 | .access = PL1_R, .type = ARM_CP_CONST, | |
4120 | .resetvalue = cpu->id_aa64mmfr0 }, | |
4121 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4122 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
4123 | .access = PL1_R, .type = ARM_CP_CONST, | |
4124 | .resetvalue = cpu->id_aa64mmfr1 }, | |
a50c0f51 PM |
4125 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
4126 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
4127 | .access = PL1_R, .type = ARM_CP_CONST, | |
4128 | .resetvalue = cpu->mvfr0 }, | |
4129 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4130 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
4131 | .access = PL1_R, .type = ARM_CP_CONST, | |
4132 | .resetvalue = cpu->mvfr1 }, | |
4133 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
4134 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
4135 | .access = PL1_R, .type = ARM_CP_CONST, | |
4136 | .resetvalue = cpu->mvfr2 }, | |
e60cef86 PM |
4137 | REGINFO_SENTINEL |
4138 | }; | |
be8e8128 GB |
4139 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
4140 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
4141 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
4142 | ARMCPRegInfo rvbar = { | |
4143 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4144 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
4145 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
4146 | }; | |
4147 | define_one_arm_cp_reg(cpu, &rvbar); | |
4148 | } | |
e60cef86 | 4149 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
4150 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
4151 | } | |
3b685ba7 | 4152 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
f0d574d6 | 4153 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
4154 | ARMCPRegInfo vpidr_regs[] = { |
4155 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
4156 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4157 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4158 | .resetvalue = cpu->midr, | |
4159 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
4160 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4161 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4162 | .access = PL2_RW, .resetvalue = cpu->midr, | |
4163 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4164 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
4165 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4166 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4167 | .resetvalue = vmpidr_def, | |
4168 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
4169 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4170 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4171 | .access = PL2_RW, | |
4172 | .resetvalue = vmpidr_def, | |
4173 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
731de9e6 EI |
4174 | REGINFO_SENTINEL |
4175 | }; | |
4176 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4177 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
4178 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
4179 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
4180 | ARMCPRegInfo rvbar = { | |
4181 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
4182 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
4183 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
4184 | }; | |
4185 | define_one_arm_cp_reg(cpu, &rvbar); | |
4186 | } | |
d42e3c26 EI |
4187 | } else { |
4188 | /* If EL2 is missing but higher ELs are enabled, we need to | |
4189 | * register the no_el2 reginfos. | |
4190 | */ | |
4191 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
f0d574d6 EI |
4192 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
4193 | * of MIDR_EL1 and MPIDR_EL1. | |
731de9e6 EI |
4194 | */ |
4195 | ARMCPRegInfo vpidr_regs[] = { | |
4196 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | |
4197 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4198 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4199 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, | |
4200 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4201 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
4202 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4203 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4204 | .type = ARM_CP_NO_RAW, | |
4205 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | |
731de9e6 EI |
4206 | REGINFO_SENTINEL |
4207 | }; | |
4208 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4209 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 4210 | } |
3b685ba7 | 4211 | } |
81547d66 | 4212 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 4213 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
be8e8128 GB |
4214 | ARMCPRegInfo rvbar = { |
4215 | .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
4216 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
4217 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar | |
4218 | }; | |
4219 | define_one_arm_cp_reg(cpu, &rvbar); | |
81547d66 | 4220 | } |
18032bec | 4221 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
6cb0b013 PC |
4222 | if (arm_feature(env, ARM_FEATURE_V6)) { |
4223 | /* PMSAv6 not implemented */ | |
4224 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
4225 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
4226 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
4227 | } else { | |
4228 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
4229 | } | |
18032bec | 4230 | } else { |
8e5d75c9 | 4231 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
4232 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
4233 | } | |
c326b979 PM |
4234 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
4235 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
4236 | } | |
6cc7a3ae PM |
4237 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
4238 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
4239 | } | |
4a501606 PM |
4240 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
4241 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
4242 | } | |
c4804214 PM |
4243 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
4244 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
4245 | } | |
4246 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
4247 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
4248 | } | |
4249 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
4250 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
4251 | } | |
18032bec PM |
4252 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
4253 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
4254 | } | |
34f90529 PM |
4255 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
4256 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
4257 | } | |
1047b9d7 PM |
4258 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
4259 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
4260 | } | |
4261 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
4262 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
4263 | } | |
7ac681cf PM |
4264 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
4265 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
4266 | } | |
7884849c PM |
4267 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
4268 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
4269 | * be read-only (ie write causes UNDEF exception). | |
4270 | */ | |
4271 | { | |
00a29f3d PM |
4272 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
4273 | /* Pre-v8 MIDR space. | |
4274 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
4275 | * of the TI925 behaviour where writes to another register can |
4276 | * cause the MIDR value to change. | |
97ce8d61 PC |
4277 | * |
4278 | * Unimplemented registers in the c15 0 0 0 space default to | |
4279 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
4280 | * and friends override accordingly. | |
7884849c PM |
4281 | */ |
4282 | { .name = "MIDR", | |
97ce8d61 | 4283 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 4284 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 4285 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 4286 | .readfn = midr_read, |
97ce8d61 PC |
4287 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
4288 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
4289 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
4290 | { .name = "DUMMY", | |
4291 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
4292 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4293 | { .name = "DUMMY", | |
4294 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
4295 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4296 | { .name = "DUMMY", | |
4297 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
4298 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4299 | { .name = "DUMMY", | |
4300 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
4301 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4302 | { .name = "DUMMY", | |
4303 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
4304 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4305 | REGINFO_SENTINEL | |
4306 | }; | |
00a29f3d | 4307 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
4308 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
4309 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
4310 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
4311 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
4312 | .readfn = midr_read }, | |
ac00c79f SF |
4313 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
4314 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
4315 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
4316 | .access = PL1_R, .resetvalue = cpu->midr }, | |
4317 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
4318 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
4319 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
4320 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
4321 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 4322 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
4323 | REGINFO_SENTINEL |
4324 | }; | |
4325 | ARMCPRegInfo id_cp_reginfo[] = { | |
4326 | /* These are common to v8 and pre-v8 */ | |
4327 | { .name = "CTR", | |
4328 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
4329 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
4330 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
4331 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
4332 | .access = PL0_R, .accessfn = ctr_el0_access, | |
4333 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
4334 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
4335 | { .name = "TCMTR", | |
4336 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
4337 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
4338 | REGINFO_SENTINEL |
4339 | }; | |
8085ce63 PC |
4340 | /* TLBTR is specific to VMSA */ |
4341 | ARMCPRegInfo id_tlbtr_reginfo = { | |
4342 | .name = "TLBTR", | |
4343 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
4344 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
4345 | }; | |
3281af81 PC |
4346 | /* MPUIR is specific to PMSA V6+ */ |
4347 | ARMCPRegInfo id_mpuir_reginfo = { | |
4348 | .name = "MPUIR", | |
4349 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
4350 | .access = PL1_R, .type = ARM_CP_CONST, | |
4351 | .resetvalue = cpu->pmsav7_dregion << 8 | |
4352 | }; | |
7884849c PM |
4353 | ARMCPRegInfo crn0_wi_reginfo = { |
4354 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
4355 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
4356 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
4357 | }; | |
4358 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
4359 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
4360 | ARMCPRegInfo *r; | |
4361 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
4362 | * whole space. Then update the specific ID registers to allow write |
4363 | * access, so that they ignore writes rather than causing them to | |
4364 | * UNDEF. | |
7884849c PM |
4365 | */ |
4366 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
4367 | for (r = id_pre_v8_midr_cp_reginfo; |
4368 | r->type != ARM_CP_SENTINEL; r++) { | |
4369 | r->access = PL1_RW; | |
4370 | } | |
7884849c PM |
4371 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
4372 | r->access = PL1_RW; | |
7884849c | 4373 | } |
8085ce63 | 4374 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 4375 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 4376 | } |
00a29f3d PM |
4377 | if (arm_feature(env, ARM_FEATURE_V8)) { |
4378 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
4379 | } else { | |
4380 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
4381 | } | |
a703eda1 | 4382 | define_arm_cp_regs(cpu, id_cp_reginfo); |
8085ce63 PC |
4383 | if (!arm_feature(env, ARM_FEATURE_MPU)) { |
4384 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); | |
3281af81 PC |
4385 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
4386 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 4387 | } |
7884849c PM |
4388 | } |
4389 | ||
97ce8d61 PC |
4390 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
4391 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
4392 | } | |
4393 | ||
2771db27 | 4394 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
4395 | ARMCPRegInfo auxcr_reginfo[] = { |
4396 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
4397 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
4398 | .access = PL1_RW, .type = ARM_CP_CONST, | |
4399 | .resetvalue = cpu->reset_auxcr }, | |
4400 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | |
4401 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
4402 | .access = PL2_RW, .type = ARM_CP_CONST, | |
4403 | .resetvalue = 0 }, | |
4404 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
4405 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
4406 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4407 | .resetvalue = 0 }, | |
4408 | REGINFO_SENTINEL | |
2771db27 | 4409 | }; |
834a6c69 | 4410 | define_arm_cp_regs(cpu, auxcr_reginfo); |
2771db27 PM |
4411 | } |
4412 | ||
d8ba780b | 4413 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
4414 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
4415 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
4416 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
4417 | | extract64(cpu->reset_cbar, 32, 12); | |
4418 | ARMCPRegInfo cbar_reginfo[] = { | |
4419 | { .name = "CBAR", | |
4420 | .type = ARM_CP_CONST, | |
4421 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
4422 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
4423 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4424 | .type = ARM_CP_CONST, | |
4425 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
4426 | .access = PL1_R, .resetvalue = cbar32 }, | |
4427 | REGINFO_SENTINEL | |
4428 | }; | |
4429 | /* We don't implement a r/w 64 bit CBAR currently */ | |
4430 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
4431 | define_arm_cp_regs(cpu, cbar_reginfo); | |
4432 | } else { | |
4433 | ARMCPRegInfo cbar = { | |
4434 | .name = "CBAR", | |
4435 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
4436 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
4437 | .fieldoffset = offsetof(CPUARMState, | |
4438 | cp15.c15_config_base_address) | |
4439 | }; | |
4440 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
4441 | cbar.access = PL1_R; | |
4442 | cbar.fieldoffset = 0; | |
4443 | cbar.type = ARM_CP_CONST; | |
4444 | } | |
4445 | define_one_arm_cp_reg(cpu, &cbar); | |
4446 | } | |
d8ba780b PC |
4447 | } |
4448 | ||
2771db27 PM |
4449 | /* Generic registers whose values depend on the implementation */ |
4450 | { | |
4451 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 4452 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
4453 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
4454 | .access = PL1_RW, | |
4455 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
4456 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
4457 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
4458 | .raw_writefn = raw_write, | |
2771db27 PM |
4459 | }; |
4460 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
4461 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
4462 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
4463 | * an MMU enable to execute from cache. Imitate this behaviour. | |
4464 | */ | |
4465 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
4466 | } | |
4467 | define_one_arm_cp_reg(cpu, &sctlr); | |
4468 | } | |
2ceb98c0 PM |
4469 | } |
4470 | ||
778c3a06 | 4471 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 4472 | { |
9262685b | 4473 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
4474 | } |
4475 | ||
4476 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
4477 | { | |
22169d41 | 4478 | CPUState *cs = CPU(cpu); |
14969266 AF |
4479 | CPUARMState *env = &cpu->env; |
4480 | ||
6a669427 PM |
4481 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
4482 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
4483 | aarch64_fpu_gdb_set_reg, | |
4484 | 34, "aarch64-fpu.xml", 0); | |
4485 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 4486 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4487 | 51, "arm-neon.xml", 0); |
4488 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 4489 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4490 | 35, "arm-vfp3.xml", 0); |
4491 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 4492 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4493 | 19, "arm-vfp.xml", 0); |
4494 | } | |
40f137e1 PB |
4495 | } |
4496 | ||
777dc784 PM |
4497 | /* Sort alphabetically by type name, except for "any". */ |
4498 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 4499 | { |
777dc784 PM |
4500 | ObjectClass *class_a = (ObjectClass *)a; |
4501 | ObjectClass *class_b = (ObjectClass *)b; | |
4502 | const char *name_a, *name_b; | |
5adb4839 | 4503 | |
777dc784 PM |
4504 | name_a = object_class_get_name(class_a); |
4505 | name_b = object_class_get_name(class_b); | |
51492fd1 | 4506 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 4507 | return 1; |
51492fd1 | 4508 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
4509 | return -1; |
4510 | } else { | |
4511 | return strcmp(name_a, name_b); | |
5adb4839 PB |
4512 | } |
4513 | } | |
4514 | ||
777dc784 | 4515 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 4516 | { |
777dc784 | 4517 | ObjectClass *oc = data; |
92a31361 | 4518 | CPUListState *s = user_data; |
51492fd1 AF |
4519 | const char *typename; |
4520 | char *name; | |
3371d272 | 4521 | |
51492fd1 AF |
4522 | typename = object_class_get_name(oc); |
4523 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 4524 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
4525 | name); |
4526 | g_free(name); | |
777dc784 PM |
4527 | } |
4528 | ||
4529 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
4530 | { | |
92a31361 | 4531 | CPUListState s = { |
777dc784 PM |
4532 | .file = f, |
4533 | .cpu_fprintf = cpu_fprintf, | |
4534 | }; | |
4535 | GSList *list; | |
4536 | ||
4537 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
4538 | list = g_slist_sort(list, arm_cpu_list_compare); | |
4539 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
4540 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
4541 | g_slist_free(list); | |
a96c0514 PM |
4542 | #ifdef CONFIG_KVM |
4543 | /* The 'host' CPU type is dynamically registered only if KVM is | |
4544 | * enabled, so we have to special-case it here: | |
4545 | */ | |
4546 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
4547 | #endif | |
40f137e1 PB |
4548 | } |
4549 | ||
78027bb6 CR |
4550 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
4551 | { | |
4552 | ObjectClass *oc = data; | |
4553 | CpuDefinitionInfoList **cpu_list = user_data; | |
4554 | CpuDefinitionInfoList *entry; | |
4555 | CpuDefinitionInfo *info; | |
4556 | const char *typename; | |
4557 | ||
4558 | typename = object_class_get_name(oc); | |
4559 | info = g_malloc0(sizeof(*info)); | |
4560 | info->name = g_strndup(typename, | |
4561 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
4562 | ||
4563 | entry = g_malloc0(sizeof(*entry)); | |
4564 | entry->value = info; | |
4565 | entry->next = *cpu_list; | |
4566 | *cpu_list = entry; | |
4567 | } | |
4568 | ||
4569 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
4570 | { | |
4571 | CpuDefinitionInfoList *cpu_list = NULL; | |
4572 | GSList *list; | |
4573 | ||
4574 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
4575 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
4576 | g_slist_free(list); | |
4577 | ||
4578 | return cpu_list; | |
4579 | } | |
4580 | ||
6e6efd61 | 4581 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 4582 | void *opaque, int state, int secstate, |
f5a0a5a5 | 4583 | int crm, int opc1, int opc2) |
6e6efd61 PM |
4584 | { |
4585 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
4586 | * add a single reginfo struct to the hash table. | |
4587 | */ | |
4588 | uint32_t *key = g_new(uint32_t, 1); | |
4589 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
4590 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
4591 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
4592 | ||
4593 | /* Reset the secure state to the specific incoming state. This is | |
4594 | * necessary as the register may have been defined with both states. | |
4595 | */ | |
4596 | r2->secure = secstate; | |
4597 | ||
4598 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
4599 | /* Register is banked (using both entries in array). | |
4600 | * Overwriting fieldoffset as the array is only used to define | |
4601 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 4602 | */ |
3f3c82a5 FA |
4603 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
4604 | } | |
4605 | ||
4606 | if (state == ARM_CP_STATE_AA32) { | |
4607 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
4608 | /* If the register is banked then we don't need to migrate or | |
4609 | * reset the 32-bit instance in certain cases: | |
4610 | * | |
4611 | * 1) If the register has both 32-bit and 64-bit instances then we | |
4612 | * can count on the 64-bit instance taking care of the | |
4613 | * non-secure bank. | |
4614 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
4615 | * taking care of the secure bank. This requires that separate | |
4616 | * 32 and 64-bit definitions are provided. | |
4617 | */ | |
4618 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
4619 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 4620 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
4621 | } |
4622 | } else if ((secstate != r->secure) && !ns) { | |
4623 | /* The register is not banked so we only want to allow migration of | |
4624 | * the non-secure instance. | |
4625 | */ | |
7a0e58fa | 4626 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 4627 | } |
3f3c82a5 FA |
4628 | |
4629 | if (r->state == ARM_CP_STATE_BOTH) { | |
4630 | /* We assume it is a cp15 register if the .cp field is left unset. | |
4631 | */ | |
4632 | if (r2->cp == 0) { | |
4633 | r2->cp = 15; | |
4634 | } | |
4635 | ||
f5a0a5a5 | 4636 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
4637 | if (r2->fieldoffset) { |
4638 | r2->fieldoffset += sizeof(uint32_t); | |
4639 | } | |
f5a0a5a5 | 4640 | #endif |
3f3c82a5 | 4641 | } |
f5a0a5a5 PM |
4642 | } |
4643 | if (state == ARM_CP_STATE_AA64) { | |
4644 | /* To allow abbreviation of ARMCPRegInfo | |
4645 | * definitions, we treat cp == 0 as equivalent to | |
4646 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
4647 | * STATE_BOTH definitions are also always "standard |
4648 | * sysreg" in their AArch64 view (the .cp value may | |
4649 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 4650 | */ |
58a1d8ce | 4651 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
4652 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
4653 | } | |
4654 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
4655 | r2->opc0, opc1, opc2); | |
4656 | } else { | |
51a79b03 | 4657 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 4658 | } |
6e6efd61 PM |
4659 | if (opaque) { |
4660 | r2->opaque = opaque; | |
4661 | } | |
67ed771d PM |
4662 | /* reginfo passed to helpers is correct for the actual access, |
4663 | * and is never ARM_CP_STATE_BOTH: | |
4664 | */ | |
4665 | r2->state = state; | |
6e6efd61 PM |
4666 | /* Make sure reginfo passed to helpers for wildcarded regs |
4667 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
4668 | */ | |
4669 | r2->crm = crm; | |
4670 | r2->opc1 = opc1; | |
4671 | r2->opc2 = opc2; | |
4672 | /* By convention, for wildcarded registers only the first | |
4673 | * entry is used for migration; the others are marked as | |
7a0e58fa | 4674 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 4675 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 4676 | * never migratable and not even raw-accessible. |
6e6efd61 | 4677 | */ |
7a0e58fa PM |
4678 | if ((r->type & ARM_CP_SPECIAL)) { |
4679 | r2->type |= ARM_CP_NO_RAW; | |
4680 | } | |
4681 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
4682 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
4683 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 4684 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
4685 | } |
4686 | ||
375421cc PM |
4687 | /* Check that raw accesses are either forbidden or handled. Note that |
4688 | * we can't assert this earlier because the setup of fieldoffset for | |
4689 | * banked registers has to be done first. | |
4690 | */ | |
4691 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
4692 | assert(!raw_accessors_invalid(r2)); | |
4693 | } | |
4694 | ||
6e6efd61 PM |
4695 | /* Overriding of an existing definition must be explicitly |
4696 | * requested. | |
4697 | */ | |
4698 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
4699 | ARMCPRegInfo *oldreg; | |
4700 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
4701 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
4702 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
4703 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
4704 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
4705 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
4706 | oldreg->name, r2->name); | |
4707 | g_assert_not_reached(); | |
4708 | } | |
4709 | } | |
4710 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
4711 | } | |
4712 | ||
4713 | ||
4b6a83fb PM |
4714 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
4715 | const ARMCPRegInfo *r, void *opaque) | |
4716 | { | |
4717 | /* Define implementations of coprocessor registers. | |
4718 | * We store these in a hashtable because typically | |
4719 | * there are less than 150 registers in a space which | |
4720 | * is 16*16*16*8*8 = 262144 in size. | |
4721 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
4722 | * If a register is defined twice then the second definition is | |
4723 | * used, so this can be used to define some generic registers and | |
4724 | * then override them with implementation specific variations. | |
4725 | * At least one of the original and the second definition should | |
4726 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
4727 | * against accidental use. | |
f5a0a5a5 PM |
4728 | * |
4729 | * The state field defines whether the register is to be | |
4730 | * visible in the AArch32 or AArch64 execution state. If the | |
4731 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
4732 | * reginfo structure for the AArch32 view, which sees the lower | |
4733 | * 32 bits of the 64 bit register. | |
4734 | * | |
4735 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
4736 | * be wildcarded. AArch64 registers are always considered to be 64 | |
4737 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
4738 | * the register, if any. | |
4b6a83fb | 4739 | */ |
f5a0a5a5 | 4740 | int crm, opc1, opc2, state; |
4b6a83fb PM |
4741 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
4742 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
4743 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
4744 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
4745 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
4746 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
4747 | /* 64 bit registers have only CRm and Opc1 fields */ | |
4748 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
4749 | /* op0 only exists in the AArch64 encodings */ |
4750 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
4751 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
4752 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
4753 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
4754 | * encodes a minimum access level for the register. We roll this | |
4755 | * runtime check into our general permission check code, so check | |
4756 | * here that the reginfo's specified permissions are strict enough | |
4757 | * to encompass the generic architectural permission check. | |
4758 | */ | |
4759 | if (r->state != ARM_CP_STATE_AA32) { | |
4760 | int mask = 0; | |
4761 | switch (r->opc1) { | |
4762 | case 0: case 1: case 2: | |
4763 | /* min_EL EL1 */ | |
4764 | mask = PL1_RW; | |
4765 | break; | |
4766 | case 3: | |
4767 | /* min_EL EL0 */ | |
4768 | mask = PL0_RW; | |
4769 | break; | |
4770 | case 4: | |
4771 | /* min_EL EL2 */ | |
4772 | mask = PL2_RW; | |
4773 | break; | |
4774 | case 5: | |
4775 | /* unallocated encoding, so not possible */ | |
4776 | assert(false); | |
4777 | break; | |
4778 | case 6: | |
4779 | /* min_EL EL3 */ | |
4780 | mask = PL3_RW; | |
4781 | break; | |
4782 | case 7: | |
4783 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
4784 | mask = PL1_RW; | |
4785 | break; | |
4786 | default: | |
4787 | /* broken reginfo with out-of-range opc1 */ | |
4788 | assert(false); | |
4789 | break; | |
4790 | } | |
4791 | /* assert our permissions are not too lax (stricter is fine) */ | |
4792 | assert((r->access & ~mask) == 0); | |
4793 | } | |
4794 | ||
4b6a83fb PM |
4795 | /* Check that the register definition has enough info to handle |
4796 | * reads and writes if they are permitted. | |
4797 | */ | |
4798 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
4799 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
4800 | assert((r->fieldoffset || |
4801 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
4802 | r->readfn); | |
4b6a83fb PM |
4803 | } |
4804 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
4805 | assert((r->fieldoffset || |
4806 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
4807 | r->writefn); | |
4b6a83fb PM |
4808 | } |
4809 | } | |
4810 | /* Bad type field probably means missing sentinel at end of reg list */ | |
4811 | assert(cptype_valid(r->type)); | |
4812 | for (crm = crmmin; crm <= crmmax; crm++) { | |
4813 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
4814 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
4815 | for (state = ARM_CP_STATE_AA32; |
4816 | state <= ARM_CP_STATE_AA64; state++) { | |
4817 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
4818 | continue; | |
4819 | } | |
3f3c82a5 FA |
4820 | if (state == ARM_CP_STATE_AA32) { |
4821 | /* Under AArch32 CP registers can be common | |
4822 | * (same for secure and non-secure world) or banked. | |
4823 | */ | |
4824 | switch (r->secure) { | |
4825 | case ARM_CP_SECSTATE_S: | |
4826 | case ARM_CP_SECSTATE_NS: | |
4827 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4828 | r->secure, crm, opc1, opc2); | |
4829 | break; | |
4830 | default: | |
4831 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4832 | ARM_CP_SECSTATE_S, | |
4833 | crm, opc1, opc2); | |
4834 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4835 | ARM_CP_SECSTATE_NS, | |
4836 | crm, opc1, opc2); | |
4837 | break; | |
4838 | } | |
4839 | } else { | |
4840 | /* AArch64 registers get mapped to non-secure instance | |
4841 | * of AArch32 */ | |
4842 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4843 | ARM_CP_SECSTATE_NS, | |
4844 | crm, opc1, opc2); | |
4845 | } | |
f5a0a5a5 | 4846 | } |
4b6a83fb PM |
4847 | } |
4848 | } | |
4849 | } | |
4850 | } | |
4851 | ||
4852 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
4853 | const ARMCPRegInfo *regs, void *opaque) | |
4854 | { | |
4855 | /* Define a whole list of registers */ | |
4856 | const ARMCPRegInfo *r; | |
4857 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
4858 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
4859 | } | |
4860 | } | |
4861 | ||
60322b39 | 4862 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 4863 | { |
60322b39 | 4864 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
4865 | } |
4866 | ||
c4241c7d PM |
4867 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
4868 | uint64_t value) | |
4b6a83fb PM |
4869 | { |
4870 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
4871 | } |
4872 | ||
c4241c7d | 4873 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
4874 | { |
4875 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
4876 | return 0; |
4877 | } | |
4878 | ||
f5a0a5a5 PM |
4879 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
4880 | { | |
4881 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
4882 | } | |
4883 | ||
0ecb72a5 | 4884 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
4885 | { |
4886 | /* Return true if it is not valid for us to switch to | |
4887 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
4888 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
4889 | */ | |
4890 | switch (mode) { | |
4891 | case ARM_CPU_MODE_USR: | |
4892 | case ARM_CPU_MODE_SYS: | |
4893 | case ARM_CPU_MODE_SVC: | |
4894 | case ARM_CPU_MODE_ABT: | |
4895 | case ARM_CPU_MODE_UND: | |
4896 | case ARM_CPU_MODE_IRQ: | |
4897 | case ARM_CPU_MODE_FIQ: | |
4898 | return 0; | |
027fc527 SF |
4899 | case ARM_CPU_MODE_MON: |
4900 | return !arm_is_secure(env); | |
37064a8b PM |
4901 | default: |
4902 | return 1; | |
4903 | } | |
4904 | } | |
4905 | ||
2f4a40e5 AZ |
4906 | uint32_t cpsr_read(CPUARMState *env) |
4907 | { | |
4908 | int ZF; | |
6fbe23d5 PB |
4909 | ZF = (env->ZF == 0); |
4910 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
4911 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
4912 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
4913 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 4914 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
4915 | } |
4916 | ||
4917 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
4918 | { | |
6e8801f9 FA |
4919 | uint32_t changed_daif; |
4920 | ||
2f4a40e5 | 4921 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
4922 | env->ZF = (~val) & CPSR_Z; |
4923 | env->NF = val; | |
2f4a40e5 AZ |
4924 | env->CF = (val >> 29) & 1; |
4925 | env->VF = (val << 3) & 0x80000000; | |
4926 | } | |
4927 | if (mask & CPSR_Q) | |
4928 | env->QF = ((val & CPSR_Q) != 0); | |
4929 | if (mask & CPSR_T) | |
4930 | env->thumb = ((val & CPSR_T) != 0); | |
4931 | if (mask & CPSR_IT_0_1) { | |
4932 | env->condexec_bits &= ~3; | |
4933 | env->condexec_bits |= (val >> 25) & 3; | |
4934 | } | |
4935 | if (mask & CPSR_IT_2_7) { | |
4936 | env->condexec_bits &= 3; | |
4937 | env->condexec_bits |= (val >> 8) & 0xfc; | |
4938 | } | |
4939 | if (mask & CPSR_GE) { | |
4940 | env->GE = (val >> 16) & 0xf; | |
4941 | } | |
4942 | ||
6e8801f9 FA |
4943 | /* In a V7 implementation that includes the security extensions but does |
4944 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
4945 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
4946 | * bits respectively. | |
4947 | * | |
4948 | * In a V8 implementation, it is permitted for privileged software to | |
4949 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
4950 | */ | |
4951 | if (!arm_feature(env, ARM_FEATURE_V8) && | |
4952 | arm_feature(env, ARM_FEATURE_EL3) && | |
4953 | !arm_feature(env, ARM_FEATURE_EL2) && | |
4954 | !arm_is_secure(env)) { | |
4955 | ||
4956 | changed_daif = (env->daif ^ val) & mask; | |
4957 | ||
4958 | if (changed_daif & CPSR_A) { | |
4959 | /* Check to see if we are allowed to change the masking of async | |
4960 | * abort exceptions from a non-secure state. | |
4961 | */ | |
4962 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
4963 | qemu_log_mask(LOG_GUEST_ERROR, | |
4964 | "Ignoring attempt to switch CPSR_A flag from " | |
4965 | "non-secure world with SCR.AW bit clear\n"); | |
4966 | mask &= ~CPSR_A; | |
4967 | } | |
4968 | } | |
4969 | ||
4970 | if (changed_daif & CPSR_F) { | |
4971 | /* Check to see if we are allowed to change the masking of FIQ | |
4972 | * exceptions from a non-secure state. | |
4973 | */ | |
4974 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
4975 | qemu_log_mask(LOG_GUEST_ERROR, | |
4976 | "Ignoring attempt to switch CPSR_F flag from " | |
4977 | "non-secure world with SCR.FW bit clear\n"); | |
4978 | mask &= ~CPSR_F; | |
4979 | } | |
4980 | ||
4981 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
4982 | * If this bit is set software is not allowed to mask | |
4983 | * FIQs, but is allowed to set CPSR_F to 0. | |
4984 | */ | |
4985 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
4986 | (val & CPSR_F)) { | |
4987 | qemu_log_mask(LOG_GUEST_ERROR, | |
4988 | "Ignoring attempt to enable CPSR_F flag " | |
4989 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
4990 | mask &= ~CPSR_F; | |
4991 | } | |
4992 | } | |
4993 | } | |
4994 | ||
4cc35614 PM |
4995 | env->daif &= ~(CPSR_AIF & mask); |
4996 | env->daif |= val & CPSR_AIF & mask; | |
4997 | ||
2f4a40e5 | 4998 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
4999 | if (bad_mode_switch(env, val & CPSR_M)) { |
5000 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
5001 | * We choose to ignore the attempt and leave the CPSR M field | |
5002 | * untouched. | |
5003 | */ | |
5004 | mask &= ~CPSR_M; | |
5005 | } else { | |
5006 | switch_mode(env, val & CPSR_M); | |
5007 | } | |
2f4a40e5 AZ |
5008 | } |
5009 | mask &= ~CACHED_CPSR_BITS; | |
5010 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
5011 | } | |
5012 | ||
b26eefb6 PB |
5013 | /* Sign/zero extend */ |
5014 | uint32_t HELPER(sxtb16)(uint32_t x) | |
5015 | { | |
5016 | uint32_t res; | |
5017 | res = (uint16_t)(int8_t)x; | |
5018 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
5019 | return res; | |
5020 | } | |
5021 | ||
5022 | uint32_t HELPER(uxtb16)(uint32_t x) | |
5023 | { | |
5024 | uint32_t res; | |
5025 | res = (uint16_t)(uint8_t)x; | |
5026 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
5027 | return res; | |
5028 | } | |
5029 | ||
f51bbbfe PB |
5030 | uint32_t HELPER(clz)(uint32_t x) |
5031 | { | |
7bbcb0af | 5032 | return clz32(x); |
f51bbbfe PB |
5033 | } |
5034 | ||
3670669c PB |
5035 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
5036 | { | |
5037 | if (den == 0) | |
5038 | return 0; | |
686eeb93 AJ |
5039 | if (num == INT_MIN && den == -1) |
5040 | return INT_MIN; | |
3670669c PB |
5041 | return num / den; |
5042 | } | |
5043 | ||
5044 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
5045 | { | |
5046 | if (den == 0) | |
5047 | return 0; | |
5048 | return num / den; | |
5049 | } | |
5050 | ||
5051 | uint32_t HELPER(rbit)(uint32_t x) | |
5052 | { | |
42fedbca | 5053 | return revbit32(x); |
3670669c PB |
5054 | } |
5055 | ||
5fafdf24 | 5056 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 5057 | |
9ee6e8bb | 5058 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 5059 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 5060 | { |
a47dddd7 AF |
5061 | ARMCPU *cpu = arm_env_get_cpu(env); |
5062 | ||
5063 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
5064 | } |
5065 | ||
0ecb72a5 | 5066 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 5067 | { |
a47dddd7 AF |
5068 | ARMCPU *cpu = arm_env_get_cpu(env); |
5069 | ||
5070 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
5071 | return 0; |
5072 | } | |
5073 | ||
0ecb72a5 | 5074 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 5075 | { |
a47dddd7 AF |
5076 | ARMCPU *cpu = arm_env_get_cpu(env); |
5077 | ||
5078 | if (mode != ARM_CPU_MODE_USR) { | |
5079 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
5080 | } | |
b5ff1b31 FB |
5081 | } |
5082 | ||
0ecb72a5 | 5083 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 5084 | { |
a47dddd7 AF |
5085 | ARMCPU *cpu = arm_env_get_cpu(env); |
5086 | ||
5087 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
5088 | } |
5089 | ||
0ecb72a5 | 5090 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 5091 | { |
a47dddd7 AF |
5092 | ARMCPU *cpu = arm_env_get_cpu(env); |
5093 | ||
5094 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
5095 | return 0; |
5096 | } | |
5097 | ||
012a906b GB |
5098 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5099 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
5100 | { |
5101 | return 1; | |
5102 | } | |
5103 | ||
ce02049d GB |
5104 | void aarch64_sync_64_to_32(CPUARMState *env) |
5105 | { | |
5106 | g_assert_not_reached(); | |
5107 | } | |
5108 | ||
b5ff1b31 FB |
5109 | #else |
5110 | ||
5111 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 5112 | int bank_number(int mode) |
b5ff1b31 FB |
5113 | { |
5114 | switch (mode) { | |
5115 | case ARM_CPU_MODE_USR: | |
5116 | case ARM_CPU_MODE_SYS: | |
5117 | return 0; | |
5118 | case ARM_CPU_MODE_SVC: | |
5119 | return 1; | |
5120 | case ARM_CPU_MODE_ABT: | |
5121 | return 2; | |
5122 | case ARM_CPU_MODE_UND: | |
5123 | return 3; | |
5124 | case ARM_CPU_MODE_IRQ: | |
5125 | return 4; | |
5126 | case ARM_CPU_MODE_FIQ: | |
5127 | return 5; | |
28c9457d EI |
5128 | case ARM_CPU_MODE_HYP: |
5129 | return 6; | |
5130 | case ARM_CPU_MODE_MON: | |
5131 | return 7; | |
b5ff1b31 | 5132 | } |
8f6fd322 | 5133 | g_assert_not_reached(); |
b5ff1b31 FB |
5134 | } |
5135 | ||
0ecb72a5 | 5136 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
5137 | { |
5138 | int old_mode; | |
5139 | int i; | |
5140 | ||
5141 | old_mode = env->uncached_cpsr & CPSR_M; | |
5142 | if (mode == old_mode) | |
5143 | return; | |
5144 | ||
5145 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
5146 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5147 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5148 | } else if (mode == ARM_CPU_MODE_FIQ) { |
5149 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5150 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5151 | } |
5152 | ||
f5206413 | 5153 | i = bank_number(old_mode); |
b5ff1b31 FB |
5154 | env->banked_r13[i] = env->regs[13]; |
5155 | env->banked_r14[i] = env->regs[14]; | |
5156 | env->banked_spsr[i] = env->spsr; | |
5157 | ||
f5206413 | 5158 | i = bank_number(mode); |
b5ff1b31 FB |
5159 | env->regs[13] = env->banked_r13[i]; |
5160 | env->regs[14] = env->banked_r14[i]; | |
5161 | env->spsr = env->banked_spsr[i]; | |
5162 | } | |
5163 | ||
0eeb17d6 GB |
5164 | /* Physical Interrupt Target EL Lookup Table |
5165 | * | |
5166 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
5167 | * | |
5168 | * The below multi-dimensional table is used for looking up the target | |
5169 | * exception level given numerous condition criteria. Specifically, the | |
5170 | * target EL is based on SCR and HCR routing controls as well as the | |
5171 | * currently executing EL and secure state. | |
5172 | * | |
5173 | * Dimensions: | |
5174 | * target_el_table[2][2][2][2][2][4] | |
5175 | * | | | | | +--- Current EL | |
5176 | * | | | | +------ Non-secure(0)/Secure(1) | |
5177 | * | | | +--------- HCR mask override | |
5178 | * | | +------------ SCR exec state control | |
5179 | * | +--------------- SCR mask override | |
5180 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
5181 | * | |
5182 | * The table values are as such: | |
5183 | * 0-3 = EL0-EL3 | |
5184 | * -1 = Cannot occur | |
5185 | * | |
5186 | * The ARM ARM target EL table includes entries indicating that an "exception | |
5187 | * is not taken". The two cases where this is applicable are: | |
5188 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
5189 | * routed to EL3. | |
5190 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
5191 | * routed to EL2. | |
5192 | * In these two cases, the below table contain a target of EL1. This value is | |
5193 | * returned as it is expected that the consumer of the table data will check | |
5194 | * for "target EL >= current EL" to ensure the exception is not taken. | |
5195 | * | |
5196 | * SCR HCR | |
5197 | * 64 EA AMO From | |
5198 | * BIT IRQ IMO Non-secure Secure | |
5199 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
5200 | */ | |
82c39f6a | 5201 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
5202 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
5203 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
5204 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
5205 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
5206 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5207 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
5208 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5209 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
5210 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
5211 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
5212 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
5213 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
5214 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
5215 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
5216 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
5217 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
5218 | }; | |
5219 | ||
5220 | /* | |
5221 | * Determine the target EL for physical exceptions | |
5222 | */ | |
012a906b GB |
5223 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5224 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
5225 | { |
5226 | CPUARMState *env = cs->env_ptr; | |
2cde031f | 5227 | int rw; |
0eeb17d6 GB |
5228 | int scr; |
5229 | int hcr; | |
5230 | int target_el; | |
2cde031f SS |
5231 | /* Is the highest EL AArch64? */ |
5232 | int is64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
5233 | ||
5234 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
5235 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
5236 | } else { | |
5237 | /* Either EL2 is the highest EL (and so the EL2 register width | |
5238 | * is given by is64); or there is no EL2 or EL3, in which case | |
5239 | * the value of 'rw' does not affect the table lookup anyway. | |
5240 | */ | |
5241 | rw = is64; | |
5242 | } | |
0eeb17d6 GB |
5243 | |
5244 | switch (excp_idx) { | |
5245 | case EXCP_IRQ: | |
5246 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
5247 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
5248 | break; | |
5249 | case EXCP_FIQ: | |
5250 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
5251 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
5252 | break; | |
5253 | default: | |
5254 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
5255 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
5256 | break; | |
5257 | }; | |
5258 | ||
5259 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
5260 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
5261 | ||
5262 | /* Perform a table-lookup for the target EL given the current state */ | |
5263 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
5264 | ||
5265 | assert(target_el > 0); | |
5266 | ||
5267 | return target_el; | |
5268 | } | |
5269 | ||
9ee6e8bb PB |
5270 | static void v7m_push(CPUARMState *env, uint32_t val) |
5271 | { | |
70d74660 AF |
5272 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
5273 | ||
9ee6e8bb | 5274 | env->regs[13] -= 4; |
ab1da857 | 5275 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
5276 | } |
5277 | ||
5278 | static uint32_t v7m_pop(CPUARMState *env) | |
5279 | { | |
70d74660 | 5280 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 5281 | uint32_t val; |
70d74660 | 5282 | |
fdfba1a2 | 5283 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
5284 | env->regs[13] += 4; |
5285 | return val; | |
5286 | } | |
5287 | ||
5288 | /* Switch to V7M main or process stack pointer. */ | |
5289 | static void switch_v7m_sp(CPUARMState *env, int process) | |
5290 | { | |
5291 | uint32_t tmp; | |
5292 | if (env->v7m.current_sp != process) { | |
5293 | tmp = env->v7m.other_sp; | |
5294 | env->v7m.other_sp = env->regs[13]; | |
5295 | env->regs[13] = tmp; | |
5296 | env->v7m.current_sp = process; | |
5297 | } | |
5298 | } | |
5299 | ||
5300 | static void do_v7m_exception_exit(CPUARMState *env) | |
5301 | { | |
5302 | uint32_t type; | |
5303 | uint32_t xpsr; | |
5304 | ||
5305 | type = env->regs[15]; | |
5306 | if (env->v7m.exception != 0) | |
983fe826 | 5307 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
5308 | |
5309 | /* Switch to the target stack. */ | |
5310 | switch_v7m_sp(env, (type & 4) != 0); | |
5311 | /* Pop registers. */ | |
5312 | env->regs[0] = v7m_pop(env); | |
5313 | env->regs[1] = v7m_pop(env); | |
5314 | env->regs[2] = v7m_pop(env); | |
5315 | env->regs[3] = v7m_pop(env); | |
5316 | env->regs[12] = v7m_pop(env); | |
5317 | env->regs[14] = v7m_pop(env); | |
5318 | env->regs[15] = v7m_pop(env); | |
fcf83ab1 PM |
5319 | if (env->regs[15] & 1) { |
5320 | qemu_log_mask(LOG_GUEST_ERROR, | |
5321 | "M profile return from interrupt with misaligned " | |
5322 | "PC is UNPREDICTABLE\n"); | |
5323 | /* Actual hardware seems to ignore the lsbit, and there are several | |
5324 | * RTOSes out there which incorrectly assume the r15 in the stack | |
5325 | * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. | |
5326 | */ | |
5327 | env->regs[15] &= ~1U; | |
5328 | } | |
9ee6e8bb PB |
5329 | xpsr = v7m_pop(env); |
5330 | xpsr_write(env, xpsr, 0xfffffdff); | |
5331 | /* Undo stack alignment. */ | |
5332 | if (xpsr & 0x200) | |
5333 | env->regs[13] |= 4; | |
5334 | /* ??? The exception return type specifies Thread/Handler mode. However | |
5335 | this is also implied by the xPSR value. Not sure what to do | |
5336 | if there is a mismatch. */ | |
5337 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
5338 | pointer. */ | |
5339 | } | |
5340 | ||
e6f010cc | 5341 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 5342 | { |
e6f010cc AF |
5343 | ARMCPU *cpu = ARM_CPU(cs); |
5344 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
5345 | uint32_t xpsr = xpsr_read(env); |
5346 | uint32_t lr; | |
5347 | uint32_t addr; | |
5348 | ||
27103424 | 5349 | arm_log_exception(cs->exception_index); |
3f1beaca | 5350 | |
9ee6e8bb PB |
5351 | lr = 0xfffffff1; |
5352 | if (env->v7m.current_sp) | |
5353 | lr |= 4; | |
5354 | if (env->v7m.exception == 0) | |
5355 | lr |= 8; | |
5356 | ||
5357 | /* For exceptions we just mark as pending on the NVIC, and let that | |
5358 | handle it. */ | |
5359 | /* TODO: Need to escalate if the current priority is higher than the | |
5360 | one we're raising. */ | |
27103424 | 5361 | switch (cs->exception_index) { |
9ee6e8bb | 5362 | case EXCP_UDEF: |
983fe826 | 5363 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
5364 | return; |
5365 | case EXCP_SWI: | |
314e2296 | 5366 | /* The PC already points to the next instruction. */ |
983fe826 | 5367 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
5368 | return; |
5369 | case EXCP_PREFETCH_ABORT: | |
5370 | case EXCP_DATA_ABORT: | |
abf1172f PM |
5371 | /* TODO: if we implemented the MPU registers, this is where we |
5372 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
5373 | */ | |
983fe826 | 5374 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
5375 | return; |
5376 | case EXCP_BKPT: | |
cfe67cef | 5377 | if (semihosting_enabled()) { |
2ad207d4 | 5378 | int nr; |
d31dd73e | 5379 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
5380 | if (nr == 0xab) { |
5381 | env->regs[15] += 2; | |
205ace55 CC |
5382 | qemu_log_mask(CPU_LOG_INT, |
5383 | "...handling as semihosting call 0x%x\n", | |
5384 | env->regs[0]); | |
2ad207d4 PB |
5385 | env->regs[0] = do_arm_semihosting(env); |
5386 | return; | |
5387 | } | |
5388 | } | |
983fe826 | 5389 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
5390 | return; |
5391 | case EXCP_IRQ: | |
983fe826 | 5392 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
5393 | break; |
5394 | case EXCP_EXCEPTION_EXIT: | |
5395 | do_v7m_exception_exit(env); | |
5396 | return; | |
5397 | default: | |
a47dddd7 | 5398 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
5399 | return; /* Never happens. Keep compiler happy. */ |
5400 | } | |
5401 | ||
5402 | /* Align stack pointer. */ | |
5403 | /* ??? Should only do this if Configuration Control Register | |
5404 | STACKALIGN bit is set. */ | |
5405 | if (env->regs[13] & 4) { | |
ab19b0ec | 5406 | env->regs[13] -= 4; |
9ee6e8bb PB |
5407 | xpsr |= 0x200; |
5408 | } | |
6c95676b | 5409 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
5410 | v7m_push(env, xpsr); |
5411 | v7m_push(env, env->regs[15]); | |
5412 | v7m_push(env, env->regs[14]); | |
5413 | v7m_push(env, env->regs[12]); | |
5414 | v7m_push(env, env->regs[3]); | |
5415 | v7m_push(env, env->regs[2]); | |
5416 | v7m_push(env, env->regs[1]); | |
5417 | v7m_push(env, env->regs[0]); | |
5418 | switch_v7m_sp(env, 0); | |
c98d174c PM |
5419 | /* Clear IT bits */ |
5420 | env->condexec_bits = 0; | |
9ee6e8bb | 5421 | env->regs[14] = lr; |
fdfba1a2 | 5422 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
5423 | env->regs[15] = addr & 0xfffffffe; |
5424 | env->thumb = addr & 1; | |
5425 | } | |
5426 | ||
ce02049d GB |
5427 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
5428 | * register set. This is necessary when switching between AArch32 and AArch64 | |
5429 | * execution state. | |
5430 | */ | |
5431 | void aarch64_sync_32_to_64(CPUARMState *env) | |
5432 | { | |
5433 | int i; | |
5434 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
5435 | ||
5436 | /* We can blanket copy R[0:7] to X[0:7] */ | |
5437 | for (i = 0; i < 8; i++) { | |
5438 | env->xregs[i] = env->regs[i]; | |
5439 | } | |
5440 | ||
5441 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
5442 | * Otherwise, they come from the banked user regs. | |
5443 | */ | |
5444 | if (mode == ARM_CPU_MODE_FIQ) { | |
5445 | for (i = 8; i < 13; i++) { | |
5446 | env->xregs[i] = env->usr_regs[i - 8]; | |
5447 | } | |
5448 | } else { | |
5449 | for (i = 8; i < 13; i++) { | |
5450 | env->xregs[i] = env->regs[i]; | |
5451 | } | |
5452 | } | |
5453 | ||
5454 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
5455 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
5456 | * from the mode banked register. | |
5457 | */ | |
5458 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
5459 | env->xregs[13] = env->regs[13]; | |
5460 | env->xregs[14] = env->regs[14]; | |
5461 | } else { | |
5462 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
5463 | /* HYP is an exception in that it is copied from r14 */ | |
5464 | if (mode == ARM_CPU_MODE_HYP) { | |
5465 | env->xregs[14] = env->regs[14]; | |
5466 | } else { | |
5467 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
5468 | } | |
5469 | } | |
5470 | ||
5471 | if (mode == ARM_CPU_MODE_HYP) { | |
5472 | env->xregs[15] = env->regs[13]; | |
5473 | } else { | |
5474 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
5475 | } | |
5476 | ||
5477 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
5478 | env->xregs[16] = env->regs[14]; |
5479 | env->xregs[17] = env->regs[13]; | |
ce02049d | 5480 | } else { |
3a9148d0 SS |
5481 | env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; |
5482 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
ce02049d GB |
5483 | } |
5484 | ||
5485 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
5486 | env->xregs[18] = env->regs[14]; |
5487 | env->xregs[19] = env->regs[13]; | |
ce02049d | 5488 | } else { |
3a9148d0 SS |
5489 | env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; |
5490 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
ce02049d GB |
5491 | } |
5492 | ||
5493 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
5494 | env->xregs[20] = env->regs[14]; |
5495 | env->xregs[21] = env->regs[13]; | |
ce02049d | 5496 | } else { |
3a9148d0 SS |
5497 | env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; |
5498 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
ce02049d GB |
5499 | } |
5500 | ||
5501 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
5502 | env->xregs[22] = env->regs[14]; |
5503 | env->xregs[23] = env->regs[13]; | |
ce02049d | 5504 | } else { |
3a9148d0 SS |
5505 | env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; |
5506 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
ce02049d GB |
5507 | } |
5508 | ||
5509 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
5510 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
5511 | * FIQ bank for r8-r14. | |
5512 | */ | |
5513 | if (mode == ARM_CPU_MODE_FIQ) { | |
5514 | for (i = 24; i < 31; i++) { | |
5515 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
5516 | } | |
5517 | } else { | |
5518 | for (i = 24; i < 29; i++) { | |
5519 | env->xregs[i] = env->fiq_regs[i - 24]; | |
5520 | } | |
5521 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
5522 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
5523 | } | |
5524 | ||
5525 | env->pc = env->regs[15]; | |
5526 | } | |
5527 | ||
5528 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
5529 | * register set. This is necessary when switching between AArch32 and AArch64 | |
5530 | * execution state. | |
5531 | */ | |
5532 | void aarch64_sync_64_to_32(CPUARMState *env) | |
5533 | { | |
5534 | int i; | |
5535 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
5536 | ||
5537 | /* We can blanket copy X[0:7] to R[0:7] */ | |
5538 | for (i = 0; i < 8; i++) { | |
5539 | env->regs[i] = env->xregs[i]; | |
5540 | } | |
5541 | ||
5542 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
5543 | * Otherwise, we copy x8-x12 into the banked user regs. | |
5544 | */ | |
5545 | if (mode == ARM_CPU_MODE_FIQ) { | |
5546 | for (i = 8; i < 13; i++) { | |
5547 | env->usr_regs[i - 8] = env->xregs[i]; | |
5548 | } | |
5549 | } else { | |
5550 | for (i = 8; i < 13; i++) { | |
5551 | env->regs[i] = env->xregs[i]; | |
5552 | } | |
5553 | } | |
5554 | ||
5555 | /* Registers r13 & r14 depend on the current mode. | |
5556 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
5557 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
5558 | * for the mode. | |
5559 | */ | |
5560 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
5561 | env->regs[13] = env->xregs[13]; | |
5562 | env->regs[14] = env->xregs[14]; | |
5563 | } else { | |
5564 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
5565 | ||
5566 | /* HYP is an exception in that it does not have its own banked r14 but | |
5567 | * shares the USR r14 | |
5568 | */ | |
5569 | if (mode == ARM_CPU_MODE_HYP) { | |
5570 | env->regs[14] = env->xregs[14]; | |
5571 | } else { | |
5572 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
5573 | } | |
5574 | } | |
5575 | ||
5576 | if (mode == ARM_CPU_MODE_HYP) { | |
5577 | env->regs[13] = env->xregs[15]; | |
5578 | } else { | |
5579 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
5580 | } | |
5581 | ||
5582 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
5583 | env->regs[14] = env->xregs[16]; |
5584 | env->regs[13] = env->xregs[17]; | |
ce02049d | 5585 | } else { |
3a9148d0 SS |
5586 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
5587 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
ce02049d GB |
5588 | } |
5589 | ||
5590 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
5591 | env->regs[14] = env->xregs[18]; |
5592 | env->regs[13] = env->xregs[19]; | |
ce02049d | 5593 | } else { |
3a9148d0 SS |
5594 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
5595 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
ce02049d GB |
5596 | } |
5597 | ||
5598 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
5599 | env->regs[14] = env->xregs[20]; |
5600 | env->regs[13] = env->xregs[21]; | |
ce02049d | 5601 | } else { |
3a9148d0 SS |
5602 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
5603 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
5604 | } |
5605 | ||
5606 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
5607 | env->regs[14] = env->xregs[22]; |
5608 | env->regs[13] = env->xregs[23]; | |
ce02049d | 5609 | } else { |
3a9148d0 SS |
5610 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
5611 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
ce02049d GB |
5612 | } |
5613 | ||
5614 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
5615 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
5616 | * FIQ bank for r8-r14. | |
5617 | */ | |
5618 | if (mode == ARM_CPU_MODE_FIQ) { | |
5619 | for (i = 24; i < 31; i++) { | |
5620 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
5621 | } | |
5622 | } else { | |
5623 | for (i = 24; i < 29; i++) { | |
5624 | env->fiq_regs[i - 24] = env->xregs[i]; | |
5625 | } | |
5626 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
5627 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
5628 | } | |
5629 | ||
5630 | env->regs[15] = env->pc; | |
5631 | } | |
5632 | ||
b5ff1b31 | 5633 | /* Handle a CPU exception. */ |
97a8ea5a | 5634 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 5635 | { |
97a8ea5a AF |
5636 | ARMCPU *cpu = ARM_CPU(cs); |
5637 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
5638 | uint32_t addr; |
5639 | uint32_t mask; | |
5640 | int new_mode; | |
5641 | uint32_t offset; | |
16a906fd | 5642 | uint32_t moe; |
b5ff1b31 | 5643 | |
e6f010cc AF |
5644 | assert(!IS_M(env)); |
5645 | ||
27103424 | 5646 | arm_log_exception(cs->exception_index); |
3f1beaca | 5647 | |
98128601 RH |
5648 | if (arm_is_psci_call(cpu, cs->exception_index)) { |
5649 | arm_handle_psci_call(cpu); | |
5650 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
5651 | return; | |
5652 | } | |
5653 | ||
16a906fd PM |
5654 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
5655 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
5656 | case EC_BREAKPOINT: | |
5657 | case EC_BREAKPOINT_SAME_EL: | |
5658 | moe = 1; | |
5659 | break; | |
5660 | case EC_WATCHPOINT: | |
5661 | case EC_WATCHPOINT_SAME_EL: | |
5662 | moe = 10; | |
5663 | break; | |
5664 | case EC_AA32_BKPT: | |
5665 | moe = 3; | |
5666 | break; | |
5667 | case EC_VECTORCATCH: | |
5668 | moe = 5; | |
5669 | break; | |
5670 | default: | |
5671 | moe = 0; | |
5672 | break; | |
5673 | } | |
5674 | ||
5675 | if (moe) { | |
5676 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
5677 | } | |
5678 | ||
b5ff1b31 | 5679 | /* TODO: Vectored interrupt controller. */ |
27103424 | 5680 | switch (cs->exception_index) { |
b5ff1b31 FB |
5681 | case EXCP_UDEF: |
5682 | new_mode = ARM_CPU_MODE_UND; | |
5683 | addr = 0x04; | |
5684 | mask = CPSR_I; | |
5685 | if (env->thumb) | |
5686 | offset = 2; | |
5687 | else | |
5688 | offset = 4; | |
5689 | break; | |
5690 | case EXCP_SWI: | |
cfe67cef | 5691 | if (semihosting_enabled()) { |
8e71621f PB |
5692 | /* Check for semihosting interrupt. */ |
5693 | if (env->thumb) { | |
d31dd73e BS |
5694 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
5695 | & 0xff; | |
8e71621f | 5696 | } else { |
d31dd73e | 5697 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 5698 | & 0xffffff; |
8e71621f PB |
5699 | } |
5700 | /* Only intercept calls from privileged modes, to provide some | |
5701 | semblance of security. */ | |
5702 | if (((mask == 0x123456 && !env->thumb) | |
5703 | || (mask == 0xab && env->thumb)) | |
5704 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
205ace55 CC |
5705 | qemu_log_mask(CPU_LOG_INT, |
5706 | "...handling as semihosting call 0x%x\n", | |
5707 | env->regs[0]); | |
8e71621f PB |
5708 | env->regs[0] = do_arm_semihosting(env); |
5709 | return; | |
5710 | } | |
5711 | } | |
b5ff1b31 FB |
5712 | new_mode = ARM_CPU_MODE_SVC; |
5713 | addr = 0x08; | |
5714 | mask = CPSR_I; | |
601d70b9 | 5715 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
5716 | offset = 0; |
5717 | break; | |
06c949e6 | 5718 | case EXCP_BKPT: |
9ee6e8bb | 5719 | /* See if this is a semihosting syscall. */ |
cfe67cef | 5720 | if (env->thumb && semihosting_enabled()) { |
d31dd73e | 5721 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
5722 | if (mask == 0xab |
5723 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
5724 | env->regs[15] += 2; | |
205ace55 CC |
5725 | qemu_log_mask(CPU_LOG_INT, |
5726 | "...handling as semihosting call 0x%x\n", | |
5727 | env->regs[0]); | |
9ee6e8bb PB |
5728 | env->regs[0] = do_arm_semihosting(env); |
5729 | return; | |
5730 | } | |
5731 | } | |
abf1172f | 5732 | env->exception.fsr = 2; |
9ee6e8bb PB |
5733 | /* Fall through to prefetch abort. */ |
5734 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 5735 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 5736 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 5737 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 5738 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
5739 | new_mode = ARM_CPU_MODE_ABT; |
5740 | addr = 0x0c; | |
5741 | mask = CPSR_A | CPSR_I; | |
5742 | offset = 4; | |
5743 | break; | |
5744 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 5745 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 5746 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 5747 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 5748 | env->exception.fsr, |
6cd8a264 | 5749 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
5750 | new_mode = ARM_CPU_MODE_ABT; |
5751 | addr = 0x10; | |
5752 | mask = CPSR_A | CPSR_I; | |
5753 | offset = 8; | |
5754 | break; | |
5755 | case EXCP_IRQ: | |
5756 | new_mode = ARM_CPU_MODE_IRQ; | |
5757 | addr = 0x18; | |
5758 | /* Disable IRQ and imprecise data aborts. */ | |
5759 | mask = CPSR_A | CPSR_I; | |
5760 | offset = 4; | |
de38d23b FA |
5761 | if (env->cp15.scr_el3 & SCR_IRQ) { |
5762 | /* IRQ routed to monitor mode */ | |
5763 | new_mode = ARM_CPU_MODE_MON; | |
5764 | mask |= CPSR_F; | |
5765 | } | |
b5ff1b31 FB |
5766 | break; |
5767 | case EXCP_FIQ: | |
5768 | new_mode = ARM_CPU_MODE_FIQ; | |
5769 | addr = 0x1c; | |
5770 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
5771 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
5772 | if (env->cp15.scr_el3 & SCR_FIQ) { |
5773 | /* FIQ routed to monitor mode */ | |
5774 | new_mode = ARM_CPU_MODE_MON; | |
5775 | } | |
b5ff1b31 FB |
5776 | offset = 4; |
5777 | break; | |
dbe9d163 FA |
5778 | case EXCP_SMC: |
5779 | new_mode = ARM_CPU_MODE_MON; | |
5780 | addr = 0x08; | |
5781 | mask = CPSR_A | CPSR_I | CPSR_F; | |
5782 | offset = 0; | |
5783 | break; | |
b5ff1b31 | 5784 | default: |
a47dddd7 | 5785 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
5786 | return; /* Never happens. Keep compiler happy. */ |
5787 | } | |
e89e51a1 FA |
5788 | |
5789 | if (new_mode == ARM_CPU_MODE_MON) { | |
5790 | addr += env->cp15.mvbar; | |
137feaa9 | 5791 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 5792 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 5793 | addr += 0xffff0000; |
8641136c NR |
5794 | } else { |
5795 | /* ARM v7 architectures provide a vector base address register to remap | |
5796 | * the interrupt vector table. | |
e89e51a1 | 5797 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
5798 | * Note: only bits 31:5 are valid. |
5799 | */ | |
fb6c91ba | 5800 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 5801 | } |
dbe9d163 FA |
5802 | |
5803 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
5804 | env->cp15.scr_el3 &= ~SCR_NS; | |
5805 | } | |
5806 | ||
b5ff1b31 | 5807 | switch_mode (env, new_mode); |
662cefb7 PM |
5808 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
5809 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
5810 | */ | |
5811 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 5812 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
5813 | /* Clear IT bits. */ |
5814 | env->condexec_bits = 0; | |
30a8cac1 | 5815 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 5816 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 5817 | env->daif |= mask; |
be5e7a76 DES |
5818 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
5819 | * and we should just guard the thumb mode on V4 */ | |
5820 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 5821 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 5822 | } |
b5ff1b31 FB |
5823 | env->regs[14] = env->regs[15] + offset; |
5824 | env->regs[15] = addr; | |
259186a7 | 5825 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
5826 | } |
5827 | ||
0480f69a PM |
5828 | |
5829 | /* Return the exception level which controls this address translation regime */ | |
5830 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5831 | { | |
5832 | switch (mmu_idx) { | |
5833 | case ARMMMUIdx_S2NS: | |
5834 | case ARMMMUIdx_S1E2: | |
5835 | return 2; | |
5836 | case ARMMMUIdx_S1E3: | |
5837 | return 3; | |
5838 | case ARMMMUIdx_S1SE0: | |
5839 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
5840 | case ARMMMUIdx_S1SE1: | |
5841 | case ARMMMUIdx_S1NSE0: | |
5842 | case ARMMMUIdx_S1NSE1: | |
5843 | return 1; | |
5844 | default: | |
5845 | g_assert_not_reached(); | |
5846 | } | |
5847 | } | |
5848 | ||
8bf5b6a9 PM |
5849 | /* Return true if this address translation regime is secure */ |
5850 | static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5851 | { | |
5852 | switch (mmu_idx) { | |
5853 | case ARMMMUIdx_S12NSE0: | |
5854 | case ARMMMUIdx_S12NSE1: | |
5855 | case ARMMMUIdx_S1NSE0: | |
5856 | case ARMMMUIdx_S1NSE1: | |
5857 | case ARMMMUIdx_S1E2: | |
5858 | case ARMMMUIdx_S2NS: | |
5859 | return false; | |
5860 | case ARMMMUIdx_S1E3: | |
5861 | case ARMMMUIdx_S1SE0: | |
5862 | case ARMMMUIdx_S1SE1: | |
5863 | return true; | |
5864 | default: | |
5865 | g_assert_not_reached(); | |
5866 | } | |
5867 | } | |
5868 | ||
0480f69a PM |
5869 | /* Return the SCTLR value which controls this address translation regime */ |
5870 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5871 | { | |
5872 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
5873 | } | |
5874 | ||
5875 | /* Return true if the specified stage of address translation is disabled */ | |
5876 | static inline bool regime_translation_disabled(CPUARMState *env, | |
5877 | ARMMMUIdx mmu_idx) | |
5878 | { | |
5879 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5880 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
5881 | } | |
5882 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
5883 | } | |
5884 | ||
5885 | /* Return the TCR controlling this translation regime */ | |
5886 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5887 | { | |
5888 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
68e9c2fe | 5889 | return &env->cp15.vtcr_el2; |
0480f69a PM |
5890 | } |
5891 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
5892 | } | |
5893 | ||
aef878be GB |
5894 | /* Return the TTBR associated with this translation regime */ |
5895 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
5896 | int ttbrn) | |
5897 | { | |
5898 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
b698e9cf | 5899 | return env->cp15.vttbr_el2; |
aef878be GB |
5900 | } |
5901 | if (ttbrn == 0) { | |
5902 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
5903 | } else { | |
5904 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
5905 | } | |
5906 | } | |
5907 | ||
0480f69a PM |
5908 | /* Return true if the translation regime is using LPAE format page tables */ |
5909 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
5910 | ARMMMUIdx mmu_idx) | |
5911 | { | |
5912 | int el = regime_el(env, mmu_idx); | |
5913 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
5914 | return true; | |
5915 | } | |
5916 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
5917 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
5918 | return true; | |
5919 | } | |
5920 | return false; | |
5921 | } | |
5922 | ||
5923 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5924 | { | |
5925 | switch (mmu_idx) { | |
5926 | case ARMMMUIdx_S1SE0: | |
5927 | case ARMMMUIdx_S1NSE0: | |
5928 | return true; | |
5929 | default: | |
5930 | return false; | |
5931 | case ARMMMUIdx_S12NSE0: | |
5932 | case ARMMMUIdx_S12NSE1: | |
5933 | g_assert_not_reached(); | |
5934 | } | |
5935 | } | |
5936 | ||
0fbf5238 AJ |
5937 | /* Translate section/page access permissions to page |
5938 | * R/W protection flags | |
d76951b6 AJ |
5939 | * |
5940 | * @env: CPUARMState | |
5941 | * @mmu_idx: MMU index indicating required translation regime | |
5942 | * @ap: The 3-bit access permissions (AP[2:0]) | |
5943 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
5944 | */ |
5945 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
5946 | int ap, int domain_prot) | |
5947 | { | |
554b0b09 PM |
5948 | bool is_user = regime_is_user(env, mmu_idx); |
5949 | ||
5950 | if (domain_prot == 3) { | |
5951 | return PAGE_READ | PAGE_WRITE; | |
5952 | } | |
5953 | ||
554b0b09 PM |
5954 | switch (ap) { |
5955 | case 0: | |
5956 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
5957 | return 0; | |
5958 | } | |
554b0b09 PM |
5959 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
5960 | case SCTLR_S: | |
5961 | return is_user ? 0 : PAGE_READ; | |
5962 | case SCTLR_R: | |
5963 | return PAGE_READ; | |
5964 | default: | |
5965 | return 0; | |
5966 | } | |
5967 | case 1: | |
5968 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
5969 | case 2: | |
87c3d486 | 5970 | if (is_user) { |
0fbf5238 | 5971 | return PAGE_READ; |
87c3d486 | 5972 | } else { |
554b0b09 | 5973 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 5974 | } |
554b0b09 PM |
5975 | case 3: |
5976 | return PAGE_READ | PAGE_WRITE; | |
5977 | case 4: /* Reserved. */ | |
5978 | return 0; | |
5979 | case 5: | |
0fbf5238 | 5980 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 5981 | case 6: |
0fbf5238 | 5982 | return PAGE_READ; |
554b0b09 | 5983 | case 7: |
87c3d486 | 5984 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 5985 | return 0; |
87c3d486 | 5986 | } |
0fbf5238 | 5987 | return PAGE_READ; |
554b0b09 | 5988 | default: |
0fbf5238 | 5989 | g_assert_not_reached(); |
554b0b09 | 5990 | } |
b5ff1b31 FB |
5991 | } |
5992 | ||
d76951b6 AJ |
5993 | /* Translate section/page access permissions to page |
5994 | * R/W protection flags. | |
5995 | * | |
d76951b6 | 5996 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 5997 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 5998 | */ |
d8e052b3 | 5999 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 6000 | { |
d76951b6 AJ |
6001 | switch (ap) { |
6002 | case 0: | |
6003 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
6004 | case 1: | |
6005 | return PAGE_READ | PAGE_WRITE; | |
6006 | case 2: | |
6007 | return is_user ? 0 : PAGE_READ; | |
6008 | case 3: | |
6009 | return PAGE_READ; | |
6010 | default: | |
6011 | g_assert_not_reached(); | |
6012 | } | |
6013 | } | |
6014 | ||
d8e052b3 AJ |
6015 | static inline int |
6016 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
6017 | { | |
6018 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
6019 | } | |
6020 | ||
6021 | /* Translate section/page access permissions to protection flags | |
6022 | * | |
6023 | * @env: CPUARMState | |
6024 | * @mmu_idx: MMU index indicating required translation regime | |
6025 | * @is_aa64: TRUE if AArch64 | |
6026 | * @ap: The 2-bit simple AP (AP[2:1]) | |
6027 | * @ns: NS (non-secure) bit | |
6028 | * @xn: XN (execute-never) bit | |
6029 | * @pxn: PXN (privileged execute-never) bit | |
6030 | */ | |
6031 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
6032 | int ap, int ns, int xn, int pxn) | |
6033 | { | |
6034 | bool is_user = regime_is_user(env, mmu_idx); | |
6035 | int prot_rw, user_rw; | |
6036 | bool have_wxn; | |
6037 | int wxn = 0; | |
6038 | ||
6039 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
6040 | ||
6041 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
6042 | if (is_user) { | |
6043 | prot_rw = user_rw; | |
6044 | } else { | |
6045 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
6046 | } | |
6047 | ||
6048 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
6049 | return prot_rw; | |
6050 | } | |
6051 | ||
6052 | /* TODO have_wxn should be replaced with | |
6053 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
6054 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
6055 | * compatible processors have EL2, which is required for [U]WXN. | |
6056 | */ | |
6057 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
6058 | ||
6059 | if (have_wxn) { | |
6060 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
6061 | } | |
6062 | ||
6063 | if (is_aa64) { | |
6064 | switch (regime_el(env, mmu_idx)) { | |
6065 | case 1: | |
6066 | if (!is_user) { | |
6067 | xn = pxn || (user_rw & PAGE_WRITE); | |
6068 | } | |
6069 | break; | |
6070 | case 2: | |
6071 | case 3: | |
6072 | break; | |
6073 | } | |
6074 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
6075 | switch (regime_el(env, mmu_idx)) { | |
6076 | case 1: | |
6077 | case 3: | |
6078 | if (is_user) { | |
6079 | xn = xn || !(user_rw & PAGE_READ); | |
6080 | } else { | |
6081 | int uwxn = 0; | |
6082 | if (have_wxn) { | |
6083 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
6084 | } | |
6085 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
6086 | (uwxn && (user_rw & PAGE_WRITE)); | |
6087 | } | |
6088 | break; | |
6089 | case 2: | |
6090 | break; | |
6091 | } | |
6092 | } else { | |
6093 | xn = wxn = 0; | |
6094 | } | |
6095 | ||
6096 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
6097 | return prot_rw; | |
6098 | } | |
6099 | return prot_rw | PAGE_EXEC; | |
6100 | } | |
6101 | ||
0480f69a PM |
6102 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
6103 | uint32_t *table, uint32_t address) | |
b2fa1797 | 6104 | { |
0480f69a | 6105 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 6106 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 6107 | |
11f136ee FA |
6108 | if (address & tcr->mask) { |
6109 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
6110 | /* Translation table walk disabled for TTBR1 */ |
6111 | return false; | |
6112 | } | |
aef878be | 6113 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 6114 | } else { |
11f136ee | 6115 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
6116 | /* Translation table walk disabled for TTBR0 */ |
6117 | return false; | |
6118 | } | |
aef878be | 6119 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
6120 | } |
6121 | *table |= (address >> 18) & 0x3ffc; | |
6122 | return true; | |
b2fa1797 PB |
6123 | } |
6124 | ||
ebca90e4 PM |
6125 | /* All loads done in the course of a page table walk go through here. |
6126 | * TODO: rather than ignoring errors from physical memory reads (which | |
6127 | * are external aborts in ARM terminology) we should propagate this | |
6128 | * error out so that we can turn it into a Data Abort if this walk | |
6129 | * was being done for a CPU load/store or an address translation instruction | |
6130 | * (but not if it was for a debug access). | |
6131 | */ | |
6132 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
6133 | { | |
6134 | MemTxAttrs attrs = {}; | |
6135 | ||
6136 | attrs.secure = is_secure; | |
6137 | return address_space_ldl(cs->as, addr, attrs, NULL); | |
6138 | } | |
6139 | ||
6140 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
6141 | { | |
6142 | MemTxAttrs attrs = {}; | |
6143 | ||
6144 | attrs.secure = is_secure; | |
6145 | return address_space_ldq(cs->as, addr, attrs, NULL); | |
6146 | } | |
6147 | ||
b7cc4e82 PC |
6148 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
6149 | int access_type, ARMMMUIdx mmu_idx, | |
6150 | hwaddr *phys_ptr, int *prot, | |
6151 | target_ulong *page_size, uint32_t *fsr) | |
b5ff1b31 | 6152 | { |
70d74660 | 6153 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
6154 | int code; |
6155 | uint32_t table; | |
6156 | uint32_t desc; | |
6157 | int type; | |
6158 | int ap; | |
e389be16 | 6159 | int domain = 0; |
dd4ebc2e | 6160 | int domain_prot; |
a8170e5e | 6161 | hwaddr phys_addr; |
0480f69a | 6162 | uint32_t dacr; |
b5ff1b31 | 6163 | |
9ee6e8bb PB |
6164 | /* Pagetable walk. */ |
6165 | /* Lookup l1 descriptor. */ | |
0480f69a | 6166 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
6167 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
6168 | code = 5; | |
6169 | goto do_fault; | |
6170 | } | |
ebca90e4 | 6171 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 6172 | type = (desc & 3); |
dd4ebc2e | 6173 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
6174 | if (regime_el(env, mmu_idx) == 1) { |
6175 | dacr = env->cp15.dacr_ns; | |
6176 | } else { | |
6177 | dacr = env->cp15.dacr_s; | |
6178 | } | |
6179 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 6180 | if (type == 0) { |
601d70b9 | 6181 | /* Section translation fault. */ |
9ee6e8bb PB |
6182 | code = 5; |
6183 | goto do_fault; | |
6184 | } | |
dd4ebc2e | 6185 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
6186 | if (type == 2) |
6187 | code = 9; /* Section domain fault. */ | |
6188 | else | |
6189 | code = 11; /* Page domain fault. */ | |
6190 | goto do_fault; | |
6191 | } | |
6192 | if (type == 2) { | |
6193 | /* 1Mb section. */ | |
6194 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
6195 | ap = (desc >> 10) & 3; | |
6196 | code = 13; | |
d4c430a8 | 6197 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
6198 | } else { |
6199 | /* Lookup l2 entry. */ | |
554b0b09 PM |
6200 | if (type == 1) { |
6201 | /* Coarse pagetable. */ | |
6202 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
6203 | } else { | |
6204 | /* Fine pagetable. */ | |
6205 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
6206 | } | |
ebca90e4 | 6207 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
6208 | switch (desc & 3) { |
6209 | case 0: /* Page translation fault. */ | |
6210 | code = 7; | |
6211 | goto do_fault; | |
6212 | case 1: /* 64k page. */ | |
6213 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
6214 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 6215 | *page_size = 0x10000; |
ce819861 | 6216 | break; |
9ee6e8bb PB |
6217 | case 2: /* 4k page. */ |
6218 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 6219 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 6220 | *page_size = 0x1000; |
ce819861 | 6221 | break; |
fc1891c7 | 6222 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 6223 | if (type == 1) { |
fc1891c7 PM |
6224 | /* ARMv6/XScale extended small page format */ |
6225 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
6226 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 6227 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 6228 | *page_size = 0x1000; |
554b0b09 | 6229 | } else { |
fc1891c7 PM |
6230 | /* UNPREDICTABLE in ARMv5; we choose to take a |
6231 | * page translation fault. | |
6232 | */ | |
554b0b09 PM |
6233 | code = 7; |
6234 | goto do_fault; | |
6235 | } | |
6236 | } else { | |
6237 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 6238 | *page_size = 0x400; |
554b0b09 | 6239 | } |
9ee6e8bb | 6240 | ap = (desc >> 4) & 3; |
ce819861 PB |
6241 | break; |
6242 | default: | |
9ee6e8bb PB |
6243 | /* Never happens, but compiler isn't smart enough to tell. */ |
6244 | abort(); | |
ce819861 | 6245 | } |
9ee6e8bb PB |
6246 | code = 15; |
6247 | } | |
0fbf5238 AJ |
6248 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
6249 | *prot |= *prot ? PAGE_EXEC : 0; | |
6250 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
6251 | /* Access permission fault. */ |
6252 | goto do_fault; | |
6253 | } | |
6254 | *phys_ptr = phys_addr; | |
b7cc4e82 | 6255 | return false; |
9ee6e8bb | 6256 | do_fault: |
b7cc4e82 PC |
6257 | *fsr = code | (domain << 4); |
6258 | return true; | |
9ee6e8bb PB |
6259 | } |
6260 | ||
b7cc4e82 PC |
6261 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
6262 | int access_type, ARMMMUIdx mmu_idx, | |
6263 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
6264 | target_ulong *page_size, uint32_t *fsr) | |
9ee6e8bb | 6265 | { |
70d74660 | 6266 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
6267 | int code; |
6268 | uint32_t table; | |
6269 | uint32_t desc; | |
6270 | uint32_t xn; | |
de9b05b8 | 6271 | uint32_t pxn = 0; |
9ee6e8bb PB |
6272 | int type; |
6273 | int ap; | |
de9b05b8 | 6274 | int domain = 0; |
dd4ebc2e | 6275 | int domain_prot; |
a8170e5e | 6276 | hwaddr phys_addr; |
0480f69a | 6277 | uint32_t dacr; |
8bf5b6a9 | 6278 | bool ns; |
9ee6e8bb PB |
6279 | |
6280 | /* Pagetable walk. */ | |
6281 | /* Lookup l1 descriptor. */ | |
0480f69a | 6282 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
6283 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
6284 | code = 5; | |
6285 | goto do_fault; | |
6286 | } | |
ebca90e4 | 6287 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 6288 | type = (desc & 3); |
de9b05b8 PM |
6289 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
6290 | /* Section translation fault, or attempt to use the encoding | |
6291 | * which is Reserved on implementations without PXN. | |
6292 | */ | |
9ee6e8bb | 6293 | code = 5; |
9ee6e8bb | 6294 | goto do_fault; |
de9b05b8 PM |
6295 | } |
6296 | if ((type == 1) || !(desc & (1 << 18))) { | |
6297 | /* Page or Section. */ | |
dd4ebc2e | 6298 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 6299 | } |
0480f69a PM |
6300 | if (regime_el(env, mmu_idx) == 1) { |
6301 | dacr = env->cp15.dacr_ns; | |
6302 | } else { | |
6303 | dacr = env->cp15.dacr_s; | |
6304 | } | |
6305 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 6306 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 6307 | if (type != 1) { |
9ee6e8bb | 6308 | code = 9; /* Section domain fault. */ |
de9b05b8 | 6309 | } else { |
9ee6e8bb | 6310 | code = 11; /* Page domain fault. */ |
de9b05b8 | 6311 | } |
9ee6e8bb PB |
6312 | goto do_fault; |
6313 | } | |
de9b05b8 | 6314 | if (type != 1) { |
9ee6e8bb PB |
6315 | if (desc & (1 << 18)) { |
6316 | /* Supersection. */ | |
6317 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
6318 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
6319 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 6320 | *page_size = 0x1000000; |
b5ff1b31 | 6321 | } else { |
9ee6e8bb PB |
6322 | /* Section. */ |
6323 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 6324 | *page_size = 0x100000; |
b5ff1b31 | 6325 | } |
9ee6e8bb PB |
6326 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
6327 | xn = desc & (1 << 4); | |
de9b05b8 | 6328 | pxn = desc & 1; |
9ee6e8bb | 6329 | code = 13; |
8bf5b6a9 | 6330 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 6331 | } else { |
de9b05b8 PM |
6332 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
6333 | pxn = (desc >> 2) & 1; | |
6334 | } | |
8bf5b6a9 | 6335 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
6336 | /* Lookup l2 entry. */ |
6337 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
ebca90e4 | 6338 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
6339 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
6340 | switch (desc & 3) { | |
6341 | case 0: /* Page translation fault. */ | |
6342 | code = 7; | |
b5ff1b31 | 6343 | goto do_fault; |
9ee6e8bb PB |
6344 | case 1: /* 64k page. */ |
6345 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
6346 | xn = desc & (1 << 15); | |
d4c430a8 | 6347 | *page_size = 0x10000; |
9ee6e8bb PB |
6348 | break; |
6349 | case 2: case 3: /* 4k page. */ | |
6350 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
6351 | xn = desc & 1; | |
d4c430a8 | 6352 | *page_size = 0x1000; |
9ee6e8bb PB |
6353 | break; |
6354 | default: | |
6355 | /* Never happens, but compiler isn't smart enough to tell. */ | |
6356 | abort(); | |
b5ff1b31 | 6357 | } |
9ee6e8bb PB |
6358 | code = 15; |
6359 | } | |
dd4ebc2e | 6360 | if (domain_prot == 3) { |
c0034328 JR |
6361 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
6362 | } else { | |
0480f69a | 6363 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
6364 | xn = 1; |
6365 | } | |
c0034328 JR |
6366 | if (xn && access_type == 2) |
6367 | goto do_fault; | |
9ee6e8bb | 6368 | |
d76951b6 AJ |
6369 | if (arm_feature(env, ARM_FEATURE_V6K) && |
6370 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
6371 | /* The simplified model uses AP[0] as an access control bit. */ | |
6372 | if ((ap & 1) == 0) { | |
6373 | /* Access flag fault. */ | |
6374 | code = (code == 15) ? 6 : 3; | |
6375 | goto do_fault; | |
6376 | } | |
6377 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
6378 | } else { | |
6379 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 6380 | } |
0fbf5238 AJ |
6381 | if (*prot && !xn) { |
6382 | *prot |= PAGE_EXEC; | |
6383 | } | |
6384 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
6385 | /* Access permission fault. */ |
6386 | goto do_fault; | |
6387 | } | |
3ad493fc | 6388 | } |
8bf5b6a9 PM |
6389 | if (ns) { |
6390 | /* The NS bit will (as required by the architecture) have no effect if | |
6391 | * the CPU doesn't support TZ or this is a non-secure translation | |
6392 | * regime, because the attribute will already be non-secure. | |
6393 | */ | |
6394 | attrs->secure = false; | |
6395 | } | |
9ee6e8bb | 6396 | *phys_ptr = phys_addr; |
b7cc4e82 | 6397 | return false; |
b5ff1b31 | 6398 | do_fault: |
b7cc4e82 PC |
6399 | *fsr = code | (domain << 4); |
6400 | return true; | |
b5ff1b31 FB |
6401 | } |
6402 | ||
3dde962f PM |
6403 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
6404 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
6405 | */ | |
6406 | typedef enum { | |
6407 | translation_fault = 1, | |
6408 | access_fault = 2, | |
6409 | permission_fault = 3, | |
6410 | } MMUFaultType; | |
6411 | ||
b7cc4e82 PC |
6412 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
6413 | int access_type, ARMMMUIdx mmu_idx, | |
6414 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | |
6415 | target_ulong *page_size_ptr, uint32_t *fsr) | |
3dde962f | 6416 | { |
70d74660 | 6417 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
6418 | /* Read an LPAE long-descriptor translation table. */ |
6419 | MMUFaultType fault_type = translation_fault; | |
6420 | uint32_t level = 1; | |
0c5fbf3b | 6421 | uint32_t epd = 0; |
2c8dd318 RH |
6422 | int32_t tsz; |
6423 | uint32_t tg; | |
3dde962f PM |
6424 | uint64_t ttbr; |
6425 | int ttbr_select; | |
2c8dd318 | 6426 | hwaddr descaddr, descmask; |
3dde962f PM |
6427 | uint32_t tableattrs; |
6428 | target_ulong page_size; | |
6429 | uint32_t attrs; | |
2c8dd318 RH |
6430 | int32_t granule_sz = 9; |
6431 | int32_t va_size = 32; | |
6432 | int32_t tbi = 0; | |
0480f69a | 6433 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 6434 | int ap, ns, xn, pxn; |
88e8add8 GB |
6435 | uint32_t el = regime_el(env, mmu_idx); |
6436 | bool ttbr1_valid = true; | |
0480f69a PM |
6437 | |
6438 | /* TODO: | |
88e8add8 GB |
6439 | * This code does not handle the different format TCR for VTCR_EL2. |
6440 | * This code also does not support shareability levels. | |
6441 | * Attribute and permission bit handling should also be checked when adding | |
6442 | * support for those page table walks. | |
0480f69a | 6443 | */ |
88e8add8 | 6444 | if (arm_el_is_aa64(env, el)) { |
2c8dd318 | 6445 | va_size = 64; |
88e8add8 | 6446 | if (el > 1) { |
1edee470 EI |
6447 | if (mmu_idx != ARMMMUIdx_S2NS) { |
6448 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
6449 | } | |
88e8add8 GB |
6450 | } else { |
6451 | if (extract64(address, 55, 1)) { | |
6452 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
6453 | } else { | |
6454 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
6455 | } | |
6456 | } | |
2c8dd318 | 6457 | tbi *= 8; |
88e8add8 GB |
6458 | |
6459 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
6460 | * invalid. | |
6461 | */ | |
6462 | if (el > 1) { | |
6463 | ttbr1_valid = false; | |
6464 | } | |
d0a2cbce PM |
6465 | } else { |
6466 | /* There is no TTBR1 for EL2 */ | |
6467 | if (el == 2) { | |
6468 | ttbr1_valid = false; | |
6469 | } | |
2c8dd318 | 6470 | } |
3dde962f PM |
6471 | |
6472 | /* Determine whether this address is in the region controlled by | |
6473 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
6474 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
6475 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
6476 | */ | |
11f136ee | 6477 | uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); |
0480f69a | 6478 | if (va_size == 64) { |
2c8dd318 RH |
6479 | t0sz = MIN(t0sz, 39); |
6480 | t0sz = MAX(t0sz, 16); | |
6481 | } | |
11f136ee | 6482 | uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); |
0480f69a | 6483 | if (va_size == 64) { |
2c8dd318 RH |
6484 | t1sz = MIN(t1sz, 39); |
6485 | t1sz = MAX(t1sz, 16); | |
6486 | } | |
6487 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
6488 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
6489 | ttbr_select = 0; | |
88e8add8 GB |
6490 | } else if (ttbr1_valid && t1sz && |
6491 | !extract64(~address, va_size - t1sz, t1sz - tbi)) { | |
3dde962f PM |
6492 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
6493 | ttbr_select = 1; | |
6494 | } else if (!t0sz) { | |
6495 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
6496 | ttbr_select = 0; | |
88e8add8 | 6497 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
6498 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
6499 | ttbr_select = 1; | |
6500 | } else { | |
6501 | /* in the gap between the two regions, this is a Translation fault */ | |
6502 | fault_type = translation_fault; | |
6503 | goto do_fault; | |
6504 | } | |
6505 | ||
6506 | /* Note that QEMU ignores shareability and cacheability attributes, | |
6507 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
6508 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
6509 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
6510 | * implement any ASID-like capability so we can ignore it (instead | |
6511 | * we will always flush the TLB any time the ASID is changed). | |
6512 | */ | |
6513 | if (ttbr_select == 0) { | |
aef878be | 6514 | ttbr = regime_ttbr(env, mmu_idx, 0); |
0c5fbf3b EI |
6515 | if (el < 2) { |
6516 | epd = extract32(tcr->raw_tcr, 7, 1); | |
6517 | } | |
3dde962f | 6518 | tsz = t0sz; |
2c8dd318 | 6519 | |
11f136ee | 6520 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 RH |
6521 | if (tg == 1) { /* 64KB pages */ |
6522 | granule_sz = 13; | |
6523 | } | |
6524 | if (tg == 2) { /* 16KB pages */ | |
6525 | granule_sz = 11; | |
6526 | } | |
3dde962f | 6527 | } else { |
88e8add8 GB |
6528 | /* We should only be here if TTBR1 is valid */ |
6529 | assert(ttbr1_valid); | |
6530 | ||
aef878be | 6531 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 6532 | epd = extract32(tcr->raw_tcr, 23, 1); |
3dde962f | 6533 | tsz = t1sz; |
2c8dd318 | 6534 | |
11f136ee | 6535 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 RH |
6536 | if (tg == 3) { /* 64KB pages */ |
6537 | granule_sz = 13; | |
6538 | } | |
6539 | if (tg == 1) { /* 16KB pages */ | |
6540 | granule_sz = 11; | |
6541 | } | |
3dde962f PM |
6542 | } |
6543 | ||
0480f69a PM |
6544 | /* Here we should have set up all the parameters for the translation: |
6545 | * va_size, ttbr, epd, tsz, granule_sz, tbi | |
6546 | */ | |
6547 | ||
3dde962f | 6548 | if (epd) { |
88e8add8 GB |
6549 | /* Translation table walk disabled => Translation fault on TLB miss |
6550 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
6551 | */ | |
3dde962f PM |
6552 | goto do_fault; |
6553 | } | |
6554 | ||
d6be29e3 PM |
6555 | /* The starting level depends on the virtual address size (which can be |
6556 | * up to 48 bits) and the translation granule size. It indicates the number | |
6557 | * of strides (granule_sz bits at a time) needed to consume the bits | |
6558 | * of the input address. In the pseudocode this is: | |
6559 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
6560 | * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is | |
6561 | * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. | |
6562 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
6563 | * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz | |
6564 | * = 4 - (va_size - tsz - 4) / granule_sz; | |
3dde962f | 6565 | */ |
d6be29e3 | 6566 | level = 4 - (va_size - tsz - 4) / granule_sz; |
3dde962f PM |
6567 | |
6568 | /* Clear the vaddr bits which aren't part of the within-region address, | |
6569 | * so that we don't have to special case things when calculating the | |
6570 | * first descriptor address. | |
6571 | */ | |
2c8dd318 RH |
6572 | if (tsz) { |
6573 | address &= (1ULL << (va_size - tsz)) - 1; | |
6574 | } | |
6575 | ||
6576 | descmask = (1ULL << (granule_sz + 3)) - 1; | |
3dde962f PM |
6577 | |
6578 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 RH |
6579 | descaddr = extract64(ttbr, 0, 48); |
6580 | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | |
3dde962f | 6581 | |
ebca90e4 PM |
6582 | /* Secure accesses start with the page table in secure memory and |
6583 | * can be downgraded to non-secure at any step. Non-secure accesses | |
6584 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
6585 | * bits at each step. | |
6586 | */ | |
6587 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
6588 | for (;;) { |
6589 | uint64_t descriptor; | |
ebca90e4 | 6590 | bool nstable; |
3dde962f | 6591 | |
2c8dd318 RH |
6592 | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; |
6593 | descaddr &= ~7ULL; | |
ebca90e4 PM |
6594 | nstable = extract32(tableattrs, 4, 1); |
6595 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable); | |
3dde962f PM |
6596 | if (!(descriptor & 1) || |
6597 | (!(descriptor & 2) && (level == 3))) { | |
6598 | /* Invalid, or the Reserved level 3 encoding */ | |
6599 | goto do_fault; | |
6600 | } | |
6601 | descaddr = descriptor & 0xfffffff000ULL; | |
6602 | ||
6603 | if ((descriptor & 2) && (level < 3)) { | |
6604 | /* Table entry. The top five bits are attributes which may | |
6605 | * propagate down through lower levels of the table (and | |
6606 | * which are all arranged so that 0 means "no effect", so | |
6607 | * we can gather them up by ORing in the bits at each level). | |
6608 | */ | |
6609 | tableattrs |= extract64(descriptor, 59, 5); | |
6610 | level++; | |
6611 | continue; | |
6612 | } | |
6613 | /* Block entry at level 1 or 2, or page entry at level 3. | |
6614 | * These are basically the same thing, although the number | |
6615 | * of bits we pull in from the vaddr varies. | |
6616 | */ | |
5661ae6b | 6617 | page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); |
3dde962f PM |
6618 | descaddr |= (address & (page_size - 1)); |
6619 | /* Extract attributes from the descriptor and merge with table attrs */ | |
d615efac IC |
6620 | attrs = extract64(descriptor, 2, 10) |
6621 | | (extract64(descriptor, 52, 12) << 10); | |
3dde962f PM |
6622 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
6623 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
6624 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
6625 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
6626 | */ | |
6627 | if (extract32(tableattrs, 2, 1)) { | |
6628 | attrs &= ~(1 << 4); | |
6629 | } | |
ebca90e4 | 6630 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
6631 | break; |
6632 | } | |
6633 | /* Here descaddr is the final physical address, and attributes | |
6634 | * are all in attrs. | |
6635 | */ | |
6636 | fault_type = access_fault; | |
6637 | if ((attrs & (1 << 8)) == 0) { | |
6638 | /* Access flag */ | |
6639 | goto do_fault; | |
6640 | } | |
d8e052b3 AJ |
6641 | |
6642 | ap = extract32(attrs, 4, 2); | |
6643 | ns = extract32(attrs, 3, 1); | |
6644 | xn = extract32(attrs, 12, 1); | |
6645 | pxn = extract32(attrs, 11, 1); | |
6646 | ||
6647 | *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); | |
6648 | ||
3dde962f | 6649 | fault_type = permission_fault; |
d8e052b3 | 6650 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
6651 | goto do_fault; |
6652 | } | |
3dde962f | 6653 | |
8bf5b6a9 PM |
6654 | if (ns) { |
6655 | /* The NS bit will (as required by the architecture) have no effect if | |
6656 | * the CPU doesn't support TZ or this is a non-secure translation | |
6657 | * regime, because the attribute will already be non-secure. | |
6658 | */ | |
6659 | txattrs->secure = false; | |
6660 | } | |
3dde962f PM |
6661 | *phys_ptr = descaddr; |
6662 | *page_size_ptr = page_size; | |
b7cc4e82 | 6663 | return false; |
3dde962f PM |
6664 | |
6665 | do_fault: | |
6666 | /* Long-descriptor format IFSR/DFSR value */ | |
b7cc4e82 PC |
6667 | *fsr = (1 << 9) | (fault_type << 2) | level; |
6668 | return true; | |
3dde962f PM |
6669 | } |
6670 | ||
f6bda88f PC |
6671 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
6672 | ARMMMUIdx mmu_idx, | |
6673 | int32_t address, int *prot) | |
6674 | { | |
6675 | *prot = PAGE_READ | PAGE_WRITE; | |
6676 | switch (address) { | |
6677 | case 0xF0000000 ... 0xFFFFFFFF: | |
6678 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ | |
6679 | *prot |= PAGE_EXEC; | |
6680 | } | |
6681 | break; | |
6682 | case 0x00000000 ... 0x7FFFFFFF: | |
6683 | *prot |= PAGE_EXEC; | |
6684 | break; | |
6685 | } | |
6686 | ||
6687 | } | |
6688 | ||
6689 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, | |
6690 | int access_type, ARMMMUIdx mmu_idx, | |
6691 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
6692 | { | |
6693 | ARMCPU *cpu = arm_env_get_cpu(env); | |
6694 | int n; | |
6695 | bool is_user = regime_is_user(env, mmu_idx); | |
6696 | ||
6697 | *phys_ptr = address; | |
6698 | *prot = 0; | |
6699 | ||
6700 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
6701 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
6702 | } else { /* MPU enabled */ | |
6703 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
6704 | /* region search */ | |
6705 | uint32_t base = env->pmsav7.drbar[n]; | |
6706 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
6707 | uint32_t rmask; | |
6708 | bool srdis = false; | |
6709 | ||
6710 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
6711 | continue; | |
6712 | } | |
6713 | ||
6714 | if (!rsize) { | |
6715 | qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); | |
6716 | continue; | |
6717 | } | |
6718 | rsize++; | |
6719 | rmask = (1ull << rsize) - 1; | |
6720 | ||
6721 | if (base & rmask) { | |
6722 | qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " | |
6723 | "to DRSR region size, mask = %" PRIx32, | |
6724 | base, rmask); | |
6725 | continue; | |
6726 | } | |
6727 | ||
6728 | if (address < base || address > base + rmask) { | |
6729 | continue; | |
6730 | } | |
6731 | ||
6732 | /* Region matched */ | |
6733 | ||
6734 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
6735 | int i, snd; | |
6736 | uint32_t srdis_mask; | |
6737 | ||
6738 | rsize -= 3; /* sub region size (power of 2) */ | |
6739 | snd = ((address - base) >> rsize) & 0x7; | |
6740 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
6741 | ||
6742 | srdis_mask = srdis ? 0x3 : 0x0; | |
6743 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
6744 | /* This will check in groups of 2, 4 and then 8, whether | |
6745 | * the subregion bits are consistent. rsize is incremented | |
6746 | * back up to give the region size, considering consistent | |
6747 | * adjacent subregions as one region. Stop testing if rsize | |
6748 | * is already big enough for an entire QEMU page. | |
6749 | */ | |
6750 | int snd_rounded = snd & ~(i - 1); | |
6751 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
6752 | snd_rounded + 8, i); | |
6753 | if (srdis_mask ^ srdis_multi) { | |
6754 | break; | |
6755 | } | |
6756 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
6757 | rsize++; | |
6758 | } | |
6759 | } | |
6760 | if (rsize < TARGET_PAGE_BITS) { | |
6761 | qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" | |
6762 | "alignment of %" PRIu32 " bits. Minimum is %d\n", | |
6763 | rsize, TARGET_PAGE_BITS); | |
6764 | continue; | |
6765 | } | |
6766 | if (srdis) { | |
6767 | continue; | |
6768 | } | |
6769 | break; | |
6770 | } | |
6771 | ||
6772 | if (n == -1) { /* no hits */ | |
6773 | if (cpu->pmsav7_dregion && | |
6774 | (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { | |
6775 | /* background fault */ | |
6776 | *fsr = 0; | |
6777 | return true; | |
6778 | } | |
6779 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
6780 | } else { /* a MPU hit! */ | |
6781 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
6782 | ||
6783 | if (is_user) { /* User mode AP bit decoding */ | |
6784 | switch (ap) { | |
6785 | case 0: | |
6786 | case 1: | |
6787 | case 5: | |
6788 | break; /* no access */ | |
6789 | case 3: | |
6790 | *prot |= PAGE_WRITE; | |
6791 | /* fall through */ | |
6792 | case 2: | |
6793 | case 6: | |
6794 | *prot |= PAGE_READ | PAGE_EXEC; | |
6795 | break; | |
6796 | default: | |
6797 | qemu_log_mask(LOG_GUEST_ERROR, | |
6798 | "Bad value for AP bits in DRACR %" | |
6799 | PRIx32 "\n", ap); | |
6800 | } | |
6801 | } else { /* Priv. mode AP bits decoding */ | |
6802 | switch (ap) { | |
6803 | case 0: | |
6804 | break; /* no access */ | |
6805 | case 1: | |
6806 | case 2: | |
6807 | case 3: | |
6808 | *prot |= PAGE_WRITE; | |
6809 | /* fall through */ | |
6810 | case 5: | |
6811 | case 6: | |
6812 | *prot |= PAGE_READ | PAGE_EXEC; | |
6813 | break; | |
6814 | default: | |
6815 | qemu_log_mask(LOG_GUEST_ERROR, | |
6816 | "Bad value for AP bits in DRACR %" | |
6817 | PRIx32 "\n", ap); | |
6818 | } | |
6819 | } | |
6820 | ||
6821 | /* execute never */ | |
6822 | if (env->pmsav7.dracr[n] & (1 << 12)) { | |
6823 | *prot &= ~PAGE_EXEC; | |
6824 | } | |
6825 | } | |
6826 | } | |
6827 | ||
6828 | *fsr = 0x00d; /* Permission fault */ | |
6829 | return !(*prot & (1 << access_type)); | |
6830 | } | |
6831 | ||
13689d43 PC |
6832 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
6833 | int access_type, ARMMMUIdx mmu_idx, | |
6834 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
9ee6e8bb PB |
6835 | { |
6836 | int n; | |
6837 | uint32_t mask; | |
6838 | uint32_t base; | |
0480f69a | 6839 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb PB |
6840 | |
6841 | *phys_ptr = address; | |
6842 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 6843 | base = env->cp15.c6_region[n]; |
87c3d486 | 6844 | if ((base & 1) == 0) { |
554b0b09 | 6845 | continue; |
87c3d486 | 6846 | } |
554b0b09 PM |
6847 | mask = 1 << ((base >> 1) & 0x1f); |
6848 | /* Keep this shift separate from the above to avoid an | |
6849 | (undefined) << 32. */ | |
6850 | mask = (mask << 1) - 1; | |
87c3d486 | 6851 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 6852 | break; |
87c3d486 | 6853 | } |
9ee6e8bb | 6854 | } |
87c3d486 | 6855 | if (n < 0) { |
b7cc4e82 PC |
6856 | *fsr = 2; |
6857 | return true; | |
87c3d486 | 6858 | } |
9ee6e8bb PB |
6859 | |
6860 | if (access_type == 2) { | |
7e09797c | 6861 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 6862 | } else { |
7e09797c | 6863 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
6864 | } |
6865 | mask = (mask >> (n * 4)) & 0xf; | |
6866 | switch (mask) { | |
6867 | case 0: | |
b7cc4e82 PC |
6868 | *fsr = 1; |
6869 | return true; | |
9ee6e8bb | 6870 | case 1: |
87c3d486 | 6871 | if (is_user) { |
b7cc4e82 PC |
6872 | *fsr = 1; |
6873 | return true; | |
87c3d486 | 6874 | } |
554b0b09 PM |
6875 | *prot = PAGE_READ | PAGE_WRITE; |
6876 | break; | |
9ee6e8bb | 6877 | case 2: |
554b0b09 | 6878 | *prot = PAGE_READ; |
87c3d486 | 6879 | if (!is_user) { |
554b0b09 | 6880 | *prot |= PAGE_WRITE; |
87c3d486 | 6881 | } |
554b0b09 | 6882 | break; |
9ee6e8bb | 6883 | case 3: |
554b0b09 PM |
6884 | *prot = PAGE_READ | PAGE_WRITE; |
6885 | break; | |
9ee6e8bb | 6886 | case 5: |
87c3d486 | 6887 | if (is_user) { |
b7cc4e82 PC |
6888 | *fsr = 1; |
6889 | return true; | |
87c3d486 | 6890 | } |
554b0b09 PM |
6891 | *prot = PAGE_READ; |
6892 | break; | |
9ee6e8bb | 6893 | case 6: |
554b0b09 PM |
6894 | *prot = PAGE_READ; |
6895 | break; | |
9ee6e8bb | 6896 | default: |
554b0b09 | 6897 | /* Bad permission. */ |
b7cc4e82 PC |
6898 | *fsr = 1; |
6899 | return true; | |
9ee6e8bb | 6900 | } |
3ad493fc | 6901 | *prot |= PAGE_EXEC; |
b7cc4e82 | 6902 | return false; |
9ee6e8bb PB |
6903 | } |
6904 | ||
702a9357 PM |
6905 | /* get_phys_addr - get the physical address for this virtual address |
6906 | * | |
6907 | * Find the physical address corresponding to the given virtual address, | |
6908 | * by doing a translation table walk on MMU based systems or using the | |
6909 | * MPU state on MPU based systems. | |
6910 | * | |
b7cc4e82 PC |
6911 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
6912 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
6913 | * information on why the translation aborted, in the format of a |
6914 | * DFSR/IFSR fault register, with the following caveats: | |
6915 | * * we honour the short vs long DFSR format differences. | |
6916 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 6917 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
6918 | * value. |
6919 | * | |
6920 | * @env: CPUARMState | |
6921 | * @address: virtual address to get physical address for | |
6922 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 6923 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 6924 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 6925 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
6926 | * @prot: set to the permissions for the page containing phys_ptr |
6927 | * @page_size: set to the size of the page containing phys_ptr | |
b7cc4e82 | 6928 | * @fsr: set to the DFSR/IFSR value on failure |
702a9357 | 6929 | */ |
b7cc4e82 PC |
6930 | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, |
6931 | int access_type, ARMMMUIdx mmu_idx, | |
6932 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
6933 | target_ulong *page_size, uint32_t *fsr) | |
9ee6e8bb | 6934 | { |
0480f69a PM |
6935 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
6936 | /* TODO: when we support EL2 we should here call ourselves recursively | |
ebca90e4 PM |
6937 | * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw |
6938 | * functions will also need changing to perform ARMMMUIdx_S2NS loads | |
6939 | * rather than direct physical memory loads when appropriate. | |
0480f69a PM |
6940 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. |
6941 | */ | |
6942 | assert(!arm_feature(env, ARM_FEATURE_EL2)); | |
6943 | mmu_idx += ARMMMUIdx_S1NSE0; | |
6944 | } | |
d3649702 | 6945 | |
8bf5b6a9 PM |
6946 | /* The page table entries may downgrade secure to non-secure, but |
6947 | * cannot upgrade an non-secure translation regime's attributes | |
6948 | * to secure. | |
6949 | */ | |
6950 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 6951 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 6952 | |
0480f69a PM |
6953 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
6954 | * In v7 and earlier it affects all stage 1 translations. | |
6955 | */ | |
6956 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
6957 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
6958 | if (regime_el(env, mmu_idx) == 3) { | |
6959 | address += env->cp15.fcseidr_s; | |
6960 | } else { | |
6961 | address += env->cp15.fcseidr_ns; | |
6962 | } | |
54bf36ed | 6963 | } |
9ee6e8bb | 6964 | |
f6bda88f PC |
6965 | /* pmsav7 has special handling for when MPU is disabled so call it before |
6966 | * the common MMU/MPU disabled check below. | |
6967 | */ | |
6968 | if (arm_feature(env, ARM_FEATURE_MPU) && | |
6969 | arm_feature(env, ARM_FEATURE_V7)) { | |
6970 | *page_size = TARGET_PAGE_SIZE; | |
6971 | return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
6972 | phys_ptr, prot, fsr); | |
6973 | } | |
6974 | ||
0480f69a | 6975 | if (regime_translation_disabled(env, mmu_idx)) { |
9ee6e8bb PB |
6976 | /* MMU/MPU disabled. */ |
6977 | *phys_ptr = address; | |
3ad493fc | 6978 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 6979 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 6980 | return 0; |
0480f69a PM |
6981 | } |
6982 | ||
6983 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |
f6bda88f | 6984 | /* Pre-v7 MPU */ |
d4c430a8 | 6985 | *page_size = TARGET_PAGE_SIZE; |
13689d43 PC |
6986 | return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
6987 | phys_ptr, prot, fsr); | |
0480f69a PM |
6988 | } |
6989 | ||
6990 | if (regime_using_lpae_format(env, mmu_idx)) { | |
6991 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
b7cc4e82 | 6992 | attrs, prot, page_size, fsr); |
0480f69a PM |
6993 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
6994 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
b7cc4e82 | 6995 | attrs, prot, page_size, fsr); |
9ee6e8bb | 6996 | } else { |
0480f69a | 6997 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
b7cc4e82 | 6998 | prot, page_size, fsr); |
9ee6e8bb PB |
6999 | } |
7000 | } | |
7001 | ||
8c6084bf | 7002 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
7003 | * to the TLB. Return false on success, or true on failure. Populate |
7004 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 7005 | */ |
b7cc4e82 PC |
7006 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
7007 | int access_type, int mmu_idx, uint32_t *fsr) | |
b5ff1b31 | 7008 | { |
7510454e AF |
7009 | ARMCPU *cpu = ARM_CPU(cs); |
7010 | CPUARMState *env = &cpu->env; | |
a8170e5e | 7011 | hwaddr phys_addr; |
d4c430a8 | 7012 | target_ulong page_size; |
b5ff1b31 | 7013 | int prot; |
d3649702 | 7014 | int ret; |
8bf5b6a9 | 7015 | MemTxAttrs attrs = {}; |
b5ff1b31 | 7016 | |
8bf5b6a9 | 7017 | ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, |
b7cc4e82 PC |
7018 | &attrs, &prot, &page_size, fsr); |
7019 | if (!ret) { | |
b5ff1b31 | 7020 | /* Map a single [sub]page. */ |
dcd82c11 AB |
7021 | phys_addr &= TARGET_PAGE_MASK; |
7022 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
7023 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
7024 | prot, mmu_idx, page_size); | |
d4c430a8 | 7025 | return 0; |
b5ff1b31 FB |
7026 | } |
7027 | ||
8c6084bf | 7028 | return ret; |
b5ff1b31 FB |
7029 | } |
7030 | ||
00b941e5 | 7031 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 7032 | { |
00b941e5 | 7033 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 7034 | CPUARMState *env = &cpu->env; |
a8170e5e | 7035 | hwaddr phys_addr; |
d4c430a8 | 7036 | target_ulong page_size; |
b5ff1b31 | 7037 | int prot; |
b7cc4e82 PC |
7038 | bool ret; |
7039 | uint32_t fsr; | |
8bf5b6a9 | 7040 | MemTxAttrs attrs = {}; |
b5ff1b31 | 7041 | |
97ed5ccd | 7042 | ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, |
b7cc4e82 | 7043 | &attrs, &prot, &page_size, &fsr); |
b5ff1b31 | 7044 | |
b7cc4e82 | 7045 | if (ret) { |
b5ff1b31 | 7046 | return -1; |
00b941e5 | 7047 | } |
b5ff1b31 FB |
7048 | |
7049 | return phys_addr; | |
7050 | } | |
7051 | ||
0ecb72a5 | 7052 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 7053 | { |
39ea3d4e PM |
7054 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
7055 | env->regs[13] = val; | |
7056 | } else { | |
f5206413 | 7057 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 7058 | } |
9ee6e8bb PB |
7059 | } |
7060 | ||
0ecb72a5 | 7061 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 7062 | { |
39ea3d4e PM |
7063 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
7064 | return env->regs[13]; | |
7065 | } else { | |
f5206413 | 7066 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 7067 | } |
9ee6e8bb PB |
7068 | } |
7069 | ||
0ecb72a5 | 7070 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 7071 | { |
a47dddd7 AF |
7072 | ARMCPU *cpu = arm_env_get_cpu(env); |
7073 | ||
9ee6e8bb PB |
7074 | switch (reg) { |
7075 | case 0: /* APSR */ | |
7076 | return xpsr_read(env) & 0xf8000000; | |
7077 | case 1: /* IAPSR */ | |
7078 | return xpsr_read(env) & 0xf80001ff; | |
7079 | case 2: /* EAPSR */ | |
7080 | return xpsr_read(env) & 0xff00fc00; | |
7081 | case 3: /* xPSR */ | |
7082 | return xpsr_read(env) & 0xff00fdff; | |
7083 | case 5: /* IPSR */ | |
7084 | return xpsr_read(env) & 0x000001ff; | |
7085 | case 6: /* EPSR */ | |
7086 | return xpsr_read(env) & 0x0700fc00; | |
7087 | case 7: /* IEPSR */ | |
7088 | return xpsr_read(env) & 0x0700edff; | |
7089 | case 8: /* MSP */ | |
7090 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
7091 | case 9: /* PSP */ | |
7092 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
7093 | case 16: /* PRIMASK */ | |
4cc35614 | 7094 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
7095 | case 17: /* BASEPRI */ |
7096 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 7097 | return env->v7m.basepri; |
82845826 | 7098 | case 19: /* FAULTMASK */ |
4cc35614 | 7099 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
7100 | case 20: /* CONTROL */ |
7101 | return env->v7m.control; | |
7102 | default: | |
7103 | /* ??? For debugging only. */ | |
a47dddd7 | 7104 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
7105 | return 0; |
7106 | } | |
7107 | } | |
7108 | ||
0ecb72a5 | 7109 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 7110 | { |
a47dddd7 AF |
7111 | ARMCPU *cpu = arm_env_get_cpu(env); |
7112 | ||
9ee6e8bb PB |
7113 | switch (reg) { |
7114 | case 0: /* APSR */ | |
7115 | xpsr_write(env, val, 0xf8000000); | |
7116 | break; | |
7117 | case 1: /* IAPSR */ | |
7118 | xpsr_write(env, val, 0xf8000000); | |
7119 | break; | |
7120 | case 2: /* EAPSR */ | |
7121 | xpsr_write(env, val, 0xfe00fc00); | |
7122 | break; | |
7123 | case 3: /* xPSR */ | |
7124 | xpsr_write(env, val, 0xfe00fc00); | |
7125 | break; | |
7126 | case 5: /* IPSR */ | |
7127 | /* IPSR bits are readonly. */ | |
7128 | break; | |
7129 | case 6: /* EPSR */ | |
7130 | xpsr_write(env, val, 0x0600fc00); | |
7131 | break; | |
7132 | case 7: /* IEPSR */ | |
7133 | xpsr_write(env, val, 0x0600fc00); | |
7134 | break; | |
7135 | case 8: /* MSP */ | |
7136 | if (env->v7m.current_sp) | |
7137 | env->v7m.other_sp = val; | |
7138 | else | |
7139 | env->regs[13] = val; | |
7140 | break; | |
7141 | case 9: /* PSP */ | |
7142 | if (env->v7m.current_sp) | |
7143 | env->regs[13] = val; | |
7144 | else | |
7145 | env->v7m.other_sp = val; | |
7146 | break; | |
7147 | case 16: /* PRIMASK */ | |
4cc35614 PM |
7148 | if (val & 1) { |
7149 | env->daif |= PSTATE_I; | |
7150 | } else { | |
7151 | env->daif &= ~PSTATE_I; | |
7152 | } | |
9ee6e8bb | 7153 | break; |
82845826 | 7154 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
7155 | env->v7m.basepri = val & 0xff; |
7156 | break; | |
82845826 | 7157 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
7158 | val &= 0xff; |
7159 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
7160 | env->v7m.basepri = val; | |
7161 | break; | |
82845826 | 7162 | case 19: /* FAULTMASK */ |
4cc35614 PM |
7163 | if (val & 1) { |
7164 | env->daif |= PSTATE_F; | |
7165 | } else { | |
7166 | env->daif &= ~PSTATE_F; | |
7167 | } | |
82845826 | 7168 | break; |
9ee6e8bb PB |
7169 | case 20: /* CONTROL */ |
7170 | env->v7m.control = val & 3; | |
7171 | switch_v7m_sp(env, (val & 2) != 0); | |
7172 | break; | |
7173 | default: | |
7174 | /* ??? For debugging only. */ | |
a47dddd7 | 7175 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
7176 | return; |
7177 | } | |
7178 | } | |
7179 | ||
b5ff1b31 | 7180 | #endif |
6ddbc6e4 | 7181 | |
aca3f40b PM |
7182 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
7183 | { | |
7184 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
7185 | * Note that we do not implement the (architecturally mandated) | |
7186 | * alignment fault for attempts to use this on Device memory | |
7187 | * (which matches the usual QEMU behaviour of not implementing either | |
7188 | * alignment faults or any memory attribute handling). | |
7189 | */ | |
7190 | ||
7191 | ARMCPU *cpu = arm_env_get_cpu(env); | |
7192 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
7193 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
7194 | ||
7195 | #ifndef CONFIG_USER_ONLY | |
7196 | { | |
7197 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
7198 | * the block size so we might have to do more than one TLB lookup. | |
7199 | * We know that in fact for any v8 CPU the page size is at least 4K | |
7200 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
7201 | * 1K as an artefact of legacy v5 subpage support being present in the | |
7202 | * same QEMU executable. | |
7203 | */ | |
7204 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
7205 | void *hostaddr[maxidx]; | |
7206 | int try, i; | |
97ed5ccd | 7207 | unsigned mmu_idx = cpu_mmu_index(env, false); |
3972ef6f | 7208 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
aca3f40b PM |
7209 | |
7210 | for (try = 0; try < 2; try++) { | |
7211 | ||
7212 | for (i = 0; i < maxidx; i++) { | |
7213 | hostaddr[i] = tlb_vaddr_to_host(env, | |
7214 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 7215 | 1, mmu_idx); |
aca3f40b PM |
7216 | if (!hostaddr[i]) { |
7217 | break; | |
7218 | } | |
7219 | } | |
7220 | if (i == maxidx) { | |
7221 | /* If it's all in the TLB it's fair game for just writing to; | |
7222 | * we know we don't need to update dirty status, etc. | |
7223 | */ | |
7224 | for (i = 0; i < maxidx - 1; i++) { | |
7225 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
7226 | } | |
7227 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
7228 | return; | |
7229 | } | |
7230 | /* OK, try a store and see if we can populate the tlb. This | |
7231 | * might cause an exception if the memory isn't writable, | |
7232 | * in which case we will longjmp out of here. We must for | |
7233 | * this purpose use the actual register value passed to us | |
7234 | * so that we get the fault address right. | |
7235 | */ | |
3972ef6f | 7236 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA()); |
aca3f40b PM |
7237 | /* Now we can populate the other TLB entries, if any */ |
7238 | for (i = 0; i < maxidx; i++) { | |
7239 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
7240 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
3972ef6f | 7241 | helper_ret_stb_mmu(env, va, 0, oi, GETRA()); |
aca3f40b PM |
7242 | } |
7243 | } | |
7244 | } | |
7245 | ||
7246 | /* Slow path (probably attempt to do this to an I/O device or | |
7247 | * similar, or clearing of a block of code we have translations | |
7248 | * cached for). Just do a series of byte writes as the architecture | |
7249 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
7250 | * memset(), unmap() sequence here because: | |
7251 | * + we'd need to account for the blocksize being larger than a page | |
7252 | * + the direct-RAM access case is almost always going to be dealt | |
7253 | * with in the fastpath code above, so there's no speed benefit | |
7254 | * + we would have to deal with the map returning NULL because the | |
7255 | * bounce buffer was in use | |
7256 | */ | |
7257 | for (i = 0; i < blocklen; i++) { | |
3972ef6f | 7258 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA()); |
aca3f40b PM |
7259 | } |
7260 | } | |
7261 | #else | |
7262 | memset(g2h(vaddr), 0, blocklen); | |
7263 | #endif | |
7264 | } | |
7265 | ||
6ddbc6e4 PB |
7266 | /* Note that signed overflow is undefined in C. The following routines are |
7267 | careful to use unsigned types where modulo arithmetic is required. | |
7268 | Failure to do so _will_ break on newer gcc. */ | |
7269 | ||
7270 | /* Signed saturating arithmetic. */ | |
7271 | ||
1654b2d6 | 7272 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
7273 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
7274 | { | |
7275 | uint16_t res; | |
7276 | ||
7277 | res = a + b; | |
7278 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
7279 | if (a & 0x8000) | |
7280 | res = 0x8000; | |
7281 | else | |
7282 | res = 0x7fff; | |
7283 | } | |
7284 | return res; | |
7285 | } | |
7286 | ||
1654b2d6 | 7287 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
7288 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
7289 | { | |
7290 | uint8_t res; | |
7291 | ||
7292 | res = a + b; | |
7293 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
7294 | if (a & 0x80) | |
7295 | res = 0x80; | |
7296 | else | |
7297 | res = 0x7f; | |
7298 | } | |
7299 | return res; | |
7300 | } | |
7301 | ||
1654b2d6 | 7302 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
7303 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
7304 | { | |
7305 | uint16_t res; | |
7306 | ||
7307 | res = a - b; | |
7308 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
7309 | if (a & 0x8000) | |
7310 | res = 0x8000; | |
7311 | else | |
7312 | res = 0x7fff; | |
7313 | } | |
7314 | return res; | |
7315 | } | |
7316 | ||
1654b2d6 | 7317 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
7318 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
7319 | { | |
7320 | uint8_t res; | |
7321 | ||
7322 | res = a - b; | |
7323 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
7324 | if (a & 0x80) | |
7325 | res = 0x80; | |
7326 | else | |
7327 | res = 0x7f; | |
7328 | } | |
7329 | return res; | |
7330 | } | |
7331 | ||
7332 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
7333 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
7334 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
7335 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
7336 | #define PFX q | |
7337 | ||
7338 | #include "op_addsub.h" | |
7339 | ||
7340 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 7341 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
7342 | { |
7343 | uint16_t res; | |
7344 | res = a + b; | |
7345 | if (res < a) | |
7346 | res = 0xffff; | |
7347 | return res; | |
7348 | } | |
7349 | ||
460a09c1 | 7350 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 7351 | { |
4c4fd3f8 | 7352 | if (a > b) |
6ddbc6e4 PB |
7353 | return a - b; |
7354 | else | |
7355 | return 0; | |
7356 | } | |
7357 | ||
7358 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
7359 | { | |
7360 | uint8_t res; | |
7361 | res = a + b; | |
7362 | if (res < a) | |
7363 | res = 0xff; | |
7364 | return res; | |
7365 | } | |
7366 | ||
7367 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
7368 | { | |
4c4fd3f8 | 7369 | if (a > b) |
6ddbc6e4 PB |
7370 | return a - b; |
7371 | else | |
7372 | return 0; | |
7373 | } | |
7374 | ||
7375 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
7376 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
7377 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
7378 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
7379 | #define PFX uq | |
7380 | ||
7381 | #include "op_addsub.h" | |
7382 | ||
7383 | /* Signed modulo arithmetic. */ | |
7384 | #define SARITH16(a, b, n, op) do { \ | |
7385 | int32_t sum; \ | |
db6e2e65 | 7386 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
7387 | RESULT(sum, n, 16); \ |
7388 | if (sum >= 0) \ | |
7389 | ge |= 3 << (n * 2); \ | |
7390 | } while(0) | |
7391 | ||
7392 | #define SARITH8(a, b, n, op) do { \ | |
7393 | int32_t sum; \ | |
db6e2e65 | 7394 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
7395 | RESULT(sum, n, 8); \ |
7396 | if (sum >= 0) \ | |
7397 | ge |= 1 << n; \ | |
7398 | } while(0) | |
7399 | ||
7400 | ||
7401 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
7402 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
7403 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
7404 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
7405 | #define PFX s | |
7406 | #define ARITH_GE | |
7407 | ||
7408 | #include "op_addsub.h" | |
7409 | ||
7410 | /* Unsigned modulo arithmetic. */ | |
7411 | #define ADD16(a, b, n) do { \ | |
7412 | uint32_t sum; \ | |
7413 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
7414 | RESULT(sum, n, 16); \ | |
a87aa10b | 7415 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
7416 | ge |= 3 << (n * 2); \ |
7417 | } while(0) | |
7418 | ||
7419 | #define ADD8(a, b, n) do { \ | |
7420 | uint32_t sum; \ | |
7421 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
7422 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
7423 | if ((sum >> 8) == 1) \ |
7424 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
7425 | } while(0) |
7426 | ||
7427 | #define SUB16(a, b, n) do { \ | |
7428 | uint32_t sum; \ | |
7429 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
7430 | RESULT(sum, n, 16); \ | |
7431 | if ((sum >> 16) == 0) \ | |
7432 | ge |= 3 << (n * 2); \ | |
7433 | } while(0) | |
7434 | ||
7435 | #define SUB8(a, b, n) do { \ | |
7436 | uint32_t sum; \ | |
7437 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
7438 | RESULT(sum, n, 8); \ | |
7439 | if ((sum >> 8) == 0) \ | |
a87aa10b | 7440 | ge |= 1 << n; \ |
6ddbc6e4 PB |
7441 | } while(0) |
7442 | ||
7443 | #define PFX u | |
7444 | #define ARITH_GE | |
7445 | ||
7446 | #include "op_addsub.h" | |
7447 | ||
7448 | /* Halved signed arithmetic. */ | |
7449 | #define ADD16(a, b, n) \ | |
7450 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
7451 | #define SUB16(a, b, n) \ | |
7452 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
7453 | #define ADD8(a, b, n) \ | |
7454 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
7455 | #define SUB8(a, b, n) \ | |
7456 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
7457 | #define PFX sh | |
7458 | ||
7459 | #include "op_addsub.h" | |
7460 | ||
7461 | /* Halved unsigned arithmetic. */ | |
7462 | #define ADD16(a, b, n) \ | |
7463 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
7464 | #define SUB16(a, b, n) \ | |
7465 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
7466 | #define ADD8(a, b, n) \ | |
7467 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
7468 | #define SUB8(a, b, n) \ | |
7469 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
7470 | #define PFX uh | |
7471 | ||
7472 | #include "op_addsub.h" | |
7473 | ||
7474 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
7475 | { | |
7476 | if (a > b) | |
7477 | return a - b; | |
7478 | else | |
7479 | return b - a; | |
7480 | } | |
7481 | ||
7482 | /* Unsigned sum of absolute byte differences. */ | |
7483 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
7484 | { | |
7485 | uint32_t sum; | |
7486 | sum = do_usad(a, b); | |
7487 | sum += do_usad(a >> 8, b >> 8); | |
7488 | sum += do_usad(a >> 16, b >>16); | |
7489 | sum += do_usad(a >> 24, b >> 24); | |
7490 | return sum; | |
7491 | } | |
7492 | ||
7493 | /* For ARMv6 SEL instruction. */ | |
7494 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
7495 | { | |
7496 | uint32_t mask; | |
7497 | ||
7498 | mask = 0; | |
7499 | if (flags & 1) | |
7500 | mask |= 0xff; | |
7501 | if (flags & 2) | |
7502 | mask |= 0xff00; | |
7503 | if (flags & 4) | |
7504 | mask |= 0xff0000; | |
7505 | if (flags & 8) | |
7506 | mask |= 0xff000000; | |
7507 | return (a & mask) | (b & ~mask); | |
7508 | } | |
7509 | ||
b90372ad PM |
7510 | /* VFP support. We follow the convention used for VFP instructions: |
7511 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
7512 | "d" suffix. */ |
7513 | ||
7514 | /* Convert host exception flags to vfp form. */ | |
7515 | static inline int vfp_exceptbits_from_host(int host_bits) | |
7516 | { | |
7517 | int target_bits = 0; | |
7518 | ||
7519 | if (host_bits & float_flag_invalid) | |
7520 | target_bits |= 1; | |
7521 | if (host_bits & float_flag_divbyzero) | |
7522 | target_bits |= 2; | |
7523 | if (host_bits & float_flag_overflow) | |
7524 | target_bits |= 4; | |
36802b6b | 7525 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
7526 | target_bits |= 8; |
7527 | if (host_bits & float_flag_inexact) | |
7528 | target_bits |= 0x10; | |
cecd8504 PM |
7529 | if (host_bits & float_flag_input_denormal) |
7530 | target_bits |= 0x80; | |
4373f3ce PB |
7531 | return target_bits; |
7532 | } | |
7533 | ||
0ecb72a5 | 7534 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
7535 | { |
7536 | int i; | |
7537 | uint32_t fpscr; | |
7538 | ||
7539 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
7540 | | (env->vfp.vec_len << 16) | |
7541 | | (env->vfp.vec_stride << 20); | |
7542 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 7543 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
7544 | fpscr |= vfp_exceptbits_from_host(i); |
7545 | return fpscr; | |
7546 | } | |
7547 | ||
0ecb72a5 | 7548 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
7549 | { |
7550 | return HELPER(vfp_get_fpscr)(env); | |
7551 | } | |
7552 | ||
4373f3ce PB |
7553 | /* Convert vfp exception flags to target form. */ |
7554 | static inline int vfp_exceptbits_to_host(int target_bits) | |
7555 | { | |
7556 | int host_bits = 0; | |
7557 | ||
7558 | if (target_bits & 1) | |
7559 | host_bits |= float_flag_invalid; | |
7560 | if (target_bits & 2) | |
7561 | host_bits |= float_flag_divbyzero; | |
7562 | if (target_bits & 4) | |
7563 | host_bits |= float_flag_overflow; | |
7564 | if (target_bits & 8) | |
7565 | host_bits |= float_flag_underflow; | |
7566 | if (target_bits & 0x10) | |
7567 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
7568 | if (target_bits & 0x80) |
7569 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
7570 | return host_bits; |
7571 | } | |
7572 | ||
0ecb72a5 | 7573 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
7574 | { |
7575 | int i; | |
7576 | uint32_t changed; | |
7577 | ||
7578 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
7579 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
7580 | env->vfp.vec_len = (val >> 16) & 7; | |
7581 | env->vfp.vec_stride = (val >> 20) & 3; | |
7582 | ||
7583 | changed ^= val; | |
7584 | if (changed & (3 << 22)) { | |
7585 | i = (val >> 22) & 3; | |
7586 | switch (i) { | |
4d3da0f3 | 7587 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
7588 | i = float_round_nearest_even; |
7589 | break; | |
4d3da0f3 | 7590 | case FPROUNDING_POSINF: |
4373f3ce PB |
7591 | i = float_round_up; |
7592 | break; | |
4d3da0f3 | 7593 | case FPROUNDING_NEGINF: |
4373f3ce PB |
7594 | i = float_round_down; |
7595 | break; | |
4d3da0f3 | 7596 | case FPROUNDING_ZERO: |
4373f3ce PB |
7597 | i = float_round_to_zero; |
7598 | break; | |
7599 | } | |
7600 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
7601 | } | |
cecd8504 | 7602 | if (changed & (1 << 24)) { |
fe76d976 | 7603 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
7604 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
7605 | } | |
5c7908ed PB |
7606 | if (changed & (1 << 25)) |
7607 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 7608 | |
b12c390b | 7609 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 7610 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 7611 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
7612 | } |
7613 | ||
0ecb72a5 | 7614 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
7615 | { |
7616 | HELPER(vfp_set_fpscr)(env, val); | |
7617 | } | |
7618 | ||
4373f3ce PB |
7619 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
7620 | ||
7621 | #define VFP_BINOP(name) \ | |
ae1857ec | 7622 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 7623 | { \ |
ae1857ec PM |
7624 | float_status *fpst = fpstp; \ |
7625 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 7626 | } \ |
ae1857ec | 7627 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 7628 | { \ |
ae1857ec PM |
7629 | float_status *fpst = fpstp; \ |
7630 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
7631 | } |
7632 | VFP_BINOP(add) | |
7633 | VFP_BINOP(sub) | |
7634 | VFP_BINOP(mul) | |
7635 | VFP_BINOP(div) | |
f71a2ae5 PM |
7636 | VFP_BINOP(min) |
7637 | VFP_BINOP(max) | |
7638 | VFP_BINOP(minnum) | |
7639 | VFP_BINOP(maxnum) | |
4373f3ce PB |
7640 | #undef VFP_BINOP |
7641 | ||
7642 | float32 VFP_HELPER(neg, s)(float32 a) | |
7643 | { | |
7644 | return float32_chs(a); | |
7645 | } | |
7646 | ||
7647 | float64 VFP_HELPER(neg, d)(float64 a) | |
7648 | { | |
66230e0d | 7649 | return float64_chs(a); |
4373f3ce PB |
7650 | } |
7651 | ||
7652 | float32 VFP_HELPER(abs, s)(float32 a) | |
7653 | { | |
7654 | return float32_abs(a); | |
7655 | } | |
7656 | ||
7657 | float64 VFP_HELPER(abs, d)(float64 a) | |
7658 | { | |
66230e0d | 7659 | return float64_abs(a); |
4373f3ce PB |
7660 | } |
7661 | ||
0ecb72a5 | 7662 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
7663 | { |
7664 | return float32_sqrt(a, &env->vfp.fp_status); | |
7665 | } | |
7666 | ||
0ecb72a5 | 7667 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
7668 | { |
7669 | return float64_sqrt(a, &env->vfp.fp_status); | |
7670 | } | |
7671 | ||
7672 | /* XXX: check quiet/signaling case */ | |
7673 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 7674 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
7675 | { \ |
7676 | uint32_t flags; \ | |
7677 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
7678 | case 0: flags = 0x6; break; \ | |
7679 | case -1: flags = 0x8; break; \ | |
7680 | case 1: flags = 0x2; break; \ | |
7681 | default: case 2: flags = 0x3; break; \ | |
7682 | } \ | |
7683 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
7684 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
7685 | } \ | |
0ecb72a5 | 7686 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
7687 | { \ |
7688 | uint32_t flags; \ | |
7689 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
7690 | case 0: flags = 0x6; break; \ | |
7691 | case -1: flags = 0x8; break; \ | |
7692 | case 1: flags = 0x2; break; \ | |
7693 | default: case 2: flags = 0x3; break; \ | |
7694 | } \ | |
7695 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
7696 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
7697 | } | |
7698 | DO_VFP_cmp(s, float32) | |
7699 | DO_VFP_cmp(d, float64) | |
7700 | #undef DO_VFP_cmp | |
7701 | ||
5500b06c | 7702 | /* Integer to float and float to integer conversions */ |
4373f3ce | 7703 | |
5500b06c PM |
7704 | #define CONV_ITOF(name, fsz, sign) \ |
7705 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
7706 | { \ | |
7707 | float_status *fpst = fpstp; \ | |
85836979 | 7708 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
7709 | } |
7710 | ||
5500b06c PM |
7711 | #define CONV_FTOI(name, fsz, sign, round) \ |
7712 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
7713 | { \ | |
7714 | float_status *fpst = fpstp; \ | |
7715 | if (float##fsz##_is_any_nan(x)) { \ | |
7716 | float_raise(float_flag_invalid, fpst); \ | |
7717 | return 0; \ | |
7718 | } \ | |
7719 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
7720 | } |
7721 | ||
5500b06c PM |
7722 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
7723 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
7724 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
7725 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 7726 | |
5500b06c PM |
7727 | FLOAT_CONVS(si, s, 32, ) |
7728 | FLOAT_CONVS(si, d, 64, ) | |
7729 | FLOAT_CONVS(ui, s, 32, u) | |
7730 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 7731 | |
5500b06c PM |
7732 | #undef CONV_ITOF |
7733 | #undef CONV_FTOI | |
7734 | #undef FLOAT_CONVS | |
4373f3ce PB |
7735 | |
7736 | /* floating point conversion */ | |
0ecb72a5 | 7737 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 7738 | { |
2d627737 PM |
7739 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
7740 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
7741 | * a quiet NaN by forcing the most significant frac bit to 1. | |
7742 | */ | |
7743 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
7744 | } |
7745 | ||
0ecb72a5 | 7746 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 7747 | { |
2d627737 PM |
7748 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
7749 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
7750 | * a quiet NaN by forcing the most significant frac bit to 1. | |
7751 | */ | |
7752 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
7753 | } |
7754 | ||
7755 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 7756 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
7757 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
7758 | void *fpstp) \ | |
4373f3ce | 7759 | { \ |
5500b06c | 7760 | float_status *fpst = fpstp; \ |
622465e1 | 7761 | float##fsz tmp; \ |
8ed697e8 | 7762 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 7763 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
7764 | } |
7765 | ||
abe66f70 PM |
7766 | /* Notice that we want only input-denormal exception flags from the |
7767 | * scalbn operation: the other possible flags (overflow+inexact if | |
7768 | * we overflow to infinity, output-denormal) aren't correct for the | |
7769 | * complete scale-and-convert operation. | |
7770 | */ | |
16d5b3ca WN |
7771 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
7772 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
7773 | uint32_t shift, \ | |
7774 | void *fpstp) \ | |
4373f3ce | 7775 | { \ |
5500b06c | 7776 | float_status *fpst = fpstp; \ |
abe66f70 | 7777 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
7778 | float##fsz tmp; \ |
7779 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 7780 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 7781 | return 0; \ |
09d9487f | 7782 | } \ |
5500b06c | 7783 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
7784 | old_exc_flags |= get_float_exception_flags(fpst) \ |
7785 | & float_flag_input_denormal; \ | |
7786 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 7787 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
7788 | } |
7789 | ||
16d5b3ca WN |
7790 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
7791 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
7792 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
7793 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
7794 | ||
7795 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
7796 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
7797 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 7798 | |
8ed697e8 WN |
7799 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
7800 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 7801 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
7802 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
7803 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 7804 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
7805 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
7806 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 7807 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
7808 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
7809 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 7810 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 7811 | #undef VFP_CONV_FIX |
16d5b3ca WN |
7812 | #undef VFP_CONV_FIX_FLOAT |
7813 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 7814 | |
52a1f6a3 AG |
7815 | /* Set the current fp rounding mode and return the old one. |
7816 | * The argument is a softfloat float_round_ value. | |
7817 | */ | |
7818 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
7819 | { | |
7820 | float_status *fp_status = &env->vfp.fp_status; | |
7821 | ||
7822 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
7823 | set_float_rounding_mode(rmode, fp_status); | |
7824 | ||
7825 | return prev_rmode; | |
7826 | } | |
7827 | ||
43630e58 WN |
7828 | /* Set the current fp rounding mode in the standard fp status and return |
7829 | * the old one. This is for NEON instructions that need to change the | |
7830 | * rounding mode but wish to use the standard FPSCR values for everything | |
7831 | * else. Always set the rounding mode back to the correct value after | |
7832 | * modifying it. | |
7833 | * The argument is a softfloat float_round_ value. | |
7834 | */ | |
7835 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
7836 | { | |
7837 | float_status *fp_status = &env->vfp.standard_fp_status; | |
7838 | ||
7839 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
7840 | set_float_rounding_mode(rmode, fp_status); | |
7841 | ||
7842 | return prev_rmode; | |
7843 | } | |
7844 | ||
60011498 | 7845 | /* Half precision conversions. */ |
0ecb72a5 | 7846 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 7847 | { |
60011498 | 7848 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
7849 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
7850 | if (ieee) { | |
7851 | return float32_maybe_silence_nan(r); | |
7852 | } | |
7853 | return r; | |
60011498 PB |
7854 | } |
7855 | ||
0ecb72a5 | 7856 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 7857 | { |
60011498 | 7858 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
7859 | float16 r = float32_to_float16(a, ieee, s); |
7860 | if (ieee) { | |
7861 | r = float16_maybe_silence_nan(r); | |
7862 | } | |
7863 | return float16_val(r); | |
60011498 PB |
7864 | } |
7865 | ||
0ecb72a5 | 7866 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
7867 | { |
7868 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
7869 | } | |
7870 | ||
0ecb72a5 | 7871 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
7872 | { |
7873 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
7874 | } | |
7875 | ||
0ecb72a5 | 7876 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
7877 | { |
7878 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
7879 | } | |
7880 | ||
0ecb72a5 | 7881 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
7882 | { |
7883 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
7884 | } | |
7885 | ||
8900aad2 PM |
7886 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
7887 | { | |
7888 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
7889 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
7890 | if (ieee) { | |
7891 | return float64_maybe_silence_nan(r); | |
7892 | } | |
7893 | return r; | |
7894 | } | |
7895 | ||
7896 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
7897 | { | |
7898 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
7899 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
7900 | if (ieee) { | |
7901 | r = float16_maybe_silence_nan(r); | |
7902 | } | |
7903 | return float16_val(r); | |
7904 | } | |
7905 | ||
dda3ec49 | 7906 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
7907 | #define float32_three make_float32(0x40400000) |
7908 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 7909 | |
0ecb72a5 | 7910 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 7911 | { |
dda3ec49 PM |
7912 | float_status *s = &env->vfp.standard_fp_status; |
7913 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
7914 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
7915 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
7916 | float_raise(float_flag_input_denormal, s); | |
7917 | } | |
dda3ec49 PM |
7918 | return float32_two; |
7919 | } | |
7920 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
7921 | } |
7922 | ||
0ecb72a5 | 7923 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 7924 | { |
71826966 | 7925 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
7926 | float32 product; |
7927 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
7928 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
7929 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
7930 | float_raise(float_flag_input_denormal, s); | |
7931 | } | |
6aae3df1 | 7932 | return float32_one_point_five; |
9ea62f57 | 7933 | } |
6aae3df1 PM |
7934 | product = float32_mul(a, b, s); |
7935 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
7936 | } |
7937 | ||
8f8e3aa4 PB |
7938 | /* NEON helpers. */ |
7939 | ||
56bf4fe2 CL |
7940 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
7941 | * int->float conversions at run-time. */ | |
7942 | #define float64_256 make_float64(0x4070000000000000LL) | |
7943 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
7944 | #define float32_maxnorm make_float32(0x7f7fffff) |
7945 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 7946 | |
b6d4443a AB |
7947 | /* Reciprocal functions |
7948 | * | |
7949 | * The algorithm that must be used to calculate the estimate | |
7950 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 7951 | */ |
b6d4443a AB |
7952 | |
7953 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 7954 | { |
1146a817 PM |
7955 | /* These calculations mustn't set any fp exception flags, |
7956 | * so we use a local copy of the fp_status. | |
7957 | */ | |
b6d4443a | 7958 | float_status dummy_status = *real_fp_status; |
1146a817 | 7959 | float_status *s = &dummy_status; |
fe0e4872 CL |
7960 | /* q = (int)(a * 512.0) */ |
7961 | float64 q = float64_mul(float64_512, a, s); | |
7962 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
7963 | ||
7964 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
7965 | q = int64_to_float64(q_int, s); | |
7966 | q = float64_add(q, float64_half, s); | |
7967 | q = float64_div(q, float64_512, s); | |
7968 | q = float64_div(float64_one, q, s); | |
7969 | ||
7970 | /* s = (int)(256.0 * r + 0.5) */ | |
7971 | q = float64_mul(q, float64_256, s); | |
7972 | q = float64_add(q, float64_half, s); | |
7973 | q_int = float64_to_int64_round_to_zero(q, s); | |
7974 | ||
7975 | /* return (double)s / 256.0 */ | |
7976 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
7977 | } | |
7978 | ||
b6d4443a AB |
7979 | /* Common wrapper to call recip_estimate */ |
7980 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 7981 | { |
b6d4443a AB |
7982 | uint64_t val64 = float64_val(num); |
7983 | uint64_t frac = extract64(val64, 0, 52); | |
7984 | int64_t exp = extract64(val64, 52, 11); | |
7985 | uint64_t sbit; | |
7986 | float64 scaled, estimate; | |
fe0e4872 | 7987 | |
b6d4443a AB |
7988 | /* Generate the scaled number for the estimate function */ |
7989 | if (exp == 0) { | |
7990 | if (extract64(frac, 51, 1) == 0) { | |
7991 | exp = -1; | |
7992 | frac = extract64(frac, 0, 50) << 2; | |
7993 | } else { | |
7994 | frac = extract64(frac, 0, 51) << 1; | |
7995 | } | |
7996 | } | |
fe0e4872 | 7997 | |
b6d4443a AB |
7998 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
7999 | scaled = make_float64((0x3feULL << 52) | |
8000 | | extract64(frac, 44, 8) << 44); | |
8001 | ||
8002 | estimate = recip_estimate(scaled, fpst); | |
8003 | ||
8004 | /* Build new result */ | |
8005 | val64 = float64_val(estimate); | |
8006 | sbit = 0x8000000000000000ULL & val64; | |
8007 | exp = off - exp; | |
8008 | frac = extract64(val64, 0, 52); | |
8009 | ||
8010 | if (exp == 0) { | |
8011 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
8012 | } else if (exp == -1) { | |
8013 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
8014 | exp = 0; | |
8015 | } | |
8016 | ||
8017 | return make_float64(sbit | (exp << 52) | frac); | |
8018 | } | |
8019 | ||
8020 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
8021 | { | |
8022 | switch (fpst->float_rounding_mode) { | |
8023 | case float_round_nearest_even: /* Round to Nearest */ | |
8024 | return true; | |
8025 | case float_round_up: /* Round to +Inf */ | |
8026 | return !sign_bit; | |
8027 | case float_round_down: /* Round to -Inf */ | |
8028 | return sign_bit; | |
8029 | case float_round_to_zero: /* Round to Zero */ | |
8030 | return false; | |
8031 | } | |
8032 | ||
8033 | g_assert_not_reached(); | |
8034 | } | |
8035 | ||
8036 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
8037 | { | |
8038 | float_status *fpst = fpstp; | |
8039 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
8040 | uint32_t f32_val = float32_val(f32); | |
8041 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
8042 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
8043 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
8044 | float64 f64, r64; | |
8045 | uint64_t r64_val; | |
8046 | int64_t r64_exp; | |
8047 | uint64_t r64_frac; | |
8048 | ||
8049 | if (float32_is_any_nan(f32)) { | |
8050 | float32 nan = f32; | |
8051 | if (float32_is_signaling_nan(f32)) { | |
8052 | float_raise(float_flag_invalid, fpst); | |
8053 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 8054 | } |
b6d4443a AB |
8055 | if (fpst->default_nan_mode) { |
8056 | nan = float32_default_nan; | |
43fe9bdb | 8057 | } |
b6d4443a AB |
8058 | return nan; |
8059 | } else if (float32_is_infinity(f32)) { | |
8060 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
8061 | } else if (float32_is_zero(f32)) { | |
8062 | float_raise(float_flag_divbyzero, fpst); | |
8063 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
8064 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
8065 | /* Abs(value) < 2.0^-128 */ | |
8066 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
8067 | if (round_to_inf(fpst, f32_sbit)) { | |
8068 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
8069 | } else { | |
8070 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
8071 | } | |
8072 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
8073 | float_raise(float_flag_underflow, fpst); | |
8074 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
8075 | } |
8076 | ||
fe0e4872 | 8077 | |
b6d4443a AB |
8078 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
8079 | r64 = call_recip_estimate(f64, 253, fpst); | |
8080 | r64_val = float64_val(r64); | |
8081 | r64_exp = extract64(r64_val, 52, 11); | |
8082 | r64_frac = extract64(r64_val, 0, 52); | |
8083 | ||
8084 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
8085 | return make_float32(f32_sbit | | |
8086 | (r64_exp & 0xff) << 23 | | |
8087 | extract64(r64_frac, 29, 24)); | |
8088 | } | |
8089 | ||
8090 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
8091 | { | |
8092 | float_status *fpst = fpstp; | |
8093 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
8094 | uint64_t f64_val = float64_val(f64); | |
8095 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
8096 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
8097 | float64 r64; | |
8098 | uint64_t r64_val; | |
8099 | int64_t r64_exp; | |
8100 | uint64_t r64_frac; | |
8101 | ||
8102 | /* Deal with any special cases */ | |
8103 | if (float64_is_any_nan(f64)) { | |
8104 | float64 nan = f64; | |
8105 | if (float64_is_signaling_nan(f64)) { | |
8106 | float_raise(float_flag_invalid, fpst); | |
8107 | nan = float64_maybe_silence_nan(f64); | |
8108 | } | |
8109 | if (fpst->default_nan_mode) { | |
8110 | nan = float64_default_nan; | |
8111 | } | |
8112 | return nan; | |
8113 | } else if (float64_is_infinity(f64)) { | |
8114 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
8115 | } else if (float64_is_zero(f64)) { | |
8116 | float_raise(float_flag_divbyzero, fpst); | |
8117 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
8118 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
8119 | /* Abs(value) < 2.0^-1024 */ | |
8120 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
8121 | if (round_to_inf(fpst, f64_sbit)) { | |
8122 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
8123 | } else { | |
8124 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
8125 | } | |
fc1792e9 | 8126 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
8127 | float_raise(float_flag_underflow, fpst); |
8128 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
8129 | } | |
fe0e4872 | 8130 | |
b6d4443a AB |
8131 | r64 = call_recip_estimate(f64, 2045, fpst); |
8132 | r64_val = float64_val(r64); | |
8133 | r64_exp = extract64(r64_val, 52, 11); | |
8134 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 8135 | |
b6d4443a AB |
8136 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
8137 | return make_float64(f64_sbit | | |
8138 | ((r64_exp & 0x7ff) << 52) | | |
8139 | r64_frac); | |
4373f3ce PB |
8140 | } |
8141 | ||
e07be5d2 CL |
8142 | /* The algorithm that must be used to calculate the estimate |
8143 | * is specified by the ARM ARM. | |
8144 | */ | |
c2fb418e | 8145 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 8146 | { |
1146a817 PM |
8147 | /* These calculations mustn't set any fp exception flags, |
8148 | * so we use a local copy of the fp_status. | |
8149 | */ | |
c2fb418e | 8150 | float_status dummy_status = *real_fp_status; |
1146a817 | 8151 | float_status *s = &dummy_status; |
e07be5d2 CL |
8152 | float64 q; |
8153 | int64_t q_int; | |
8154 | ||
8155 | if (float64_lt(a, float64_half, s)) { | |
8156 | /* range 0.25 <= a < 0.5 */ | |
8157 | ||
8158 | /* a in units of 1/512 rounded down */ | |
8159 | /* q0 = (int)(a * 512.0); */ | |
8160 | q = float64_mul(float64_512, a, s); | |
8161 | q_int = float64_to_int64_round_to_zero(q, s); | |
8162 | ||
8163 | /* reciprocal root r */ | |
8164 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
8165 | q = int64_to_float64(q_int, s); | |
8166 | q = float64_add(q, float64_half, s); | |
8167 | q = float64_div(q, float64_512, s); | |
8168 | q = float64_sqrt(q, s); | |
8169 | q = float64_div(float64_one, q, s); | |
8170 | } else { | |
8171 | /* range 0.5 <= a < 1.0 */ | |
8172 | ||
8173 | /* a in units of 1/256 rounded down */ | |
8174 | /* q1 = (int)(a * 256.0); */ | |
8175 | q = float64_mul(float64_256, a, s); | |
8176 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
8177 | ||
8178 | /* reciprocal root r */ | |
8179 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
8180 | q = int64_to_float64(q_int, s); | |
8181 | q = float64_add(q, float64_half, s); | |
8182 | q = float64_div(q, float64_256, s); | |
8183 | q = float64_sqrt(q, s); | |
8184 | q = float64_div(float64_one, q, s); | |
8185 | } | |
8186 | /* r in units of 1/256 rounded to nearest */ | |
8187 | /* s = (int)(256.0 * r + 0.5); */ | |
8188 | ||
8189 | q = float64_mul(q, float64_256,s ); | |
8190 | q = float64_add(q, float64_half, s); | |
8191 | q_int = float64_to_int64_round_to_zero(q, s); | |
8192 | ||
8193 | /* return (double)s / 256.0;*/ | |
8194 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
8195 | } | |
8196 | ||
c2fb418e | 8197 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 8198 | { |
c2fb418e AB |
8199 | float_status *s = fpstp; |
8200 | float32 f32 = float32_squash_input_denormal(input, s); | |
8201 | uint32_t val = float32_val(f32); | |
8202 | uint32_t f32_sbit = 0x80000000 & val; | |
8203 | int32_t f32_exp = extract32(val, 23, 8); | |
8204 | uint32_t f32_frac = extract32(val, 0, 23); | |
8205 | uint64_t f64_frac; | |
8206 | uint64_t val64; | |
e07be5d2 CL |
8207 | int result_exp; |
8208 | float64 f64; | |
e07be5d2 | 8209 | |
c2fb418e AB |
8210 | if (float32_is_any_nan(f32)) { |
8211 | float32 nan = f32; | |
8212 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 8213 | float_raise(float_flag_invalid, s); |
c2fb418e | 8214 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 8215 | } |
c2fb418e AB |
8216 | if (s->default_nan_mode) { |
8217 | nan = float32_default_nan; | |
43fe9bdb | 8218 | } |
c2fb418e AB |
8219 | return nan; |
8220 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 8221 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
8222 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
8223 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
8224 | float_raise(float_flag_invalid, s); |
8225 | return float32_default_nan; | |
c2fb418e | 8226 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
8227 | return float32_zero; |
8228 | } | |
8229 | ||
c2fb418e | 8230 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 8231 | * preserving the parity of the exponent. */ |
c2fb418e AB |
8232 | |
8233 | f64_frac = ((uint64_t) f32_frac) << 29; | |
8234 | if (f32_exp == 0) { | |
8235 | while (extract64(f64_frac, 51, 1) == 0) { | |
8236 | f64_frac = f64_frac << 1; | |
8237 | f32_exp = f32_exp-1; | |
8238 | } | |
8239 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
8240 | } | |
8241 | ||
8242 | if (extract64(f32_exp, 0, 1) == 0) { | |
8243 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 8244 | | (0x3feULL << 52) |
c2fb418e | 8245 | | f64_frac); |
e07be5d2 | 8246 | } else { |
c2fb418e | 8247 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 8248 | | (0x3fdULL << 52) |
c2fb418e | 8249 | | f64_frac); |
e07be5d2 CL |
8250 | } |
8251 | ||
c2fb418e | 8252 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 8253 | |
c2fb418e | 8254 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
8255 | |
8256 | val64 = float64_val(f64); | |
8257 | ||
26cc6abf | 8258 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
8259 | | ((val64 >> 29) & 0x7fffff); |
8260 | return make_float32(val); | |
4373f3ce PB |
8261 | } |
8262 | ||
c2fb418e AB |
8263 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
8264 | { | |
8265 | float_status *s = fpstp; | |
8266 | float64 f64 = float64_squash_input_denormal(input, s); | |
8267 | uint64_t val = float64_val(f64); | |
8268 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
8269 | int64_t f64_exp = extract64(val, 52, 11); | |
8270 | uint64_t f64_frac = extract64(val, 0, 52); | |
8271 | int64_t result_exp; | |
8272 | uint64_t result_frac; | |
8273 | ||
8274 | if (float64_is_any_nan(f64)) { | |
8275 | float64 nan = f64; | |
8276 | if (float64_is_signaling_nan(f64)) { | |
8277 | float_raise(float_flag_invalid, s); | |
8278 | nan = float64_maybe_silence_nan(f64); | |
8279 | } | |
8280 | if (s->default_nan_mode) { | |
8281 | nan = float64_default_nan; | |
8282 | } | |
8283 | return nan; | |
8284 | } else if (float64_is_zero(f64)) { | |
8285 | float_raise(float_flag_divbyzero, s); | |
8286 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
8287 | } else if (float64_is_neg(f64)) { | |
8288 | float_raise(float_flag_invalid, s); | |
8289 | return float64_default_nan; | |
8290 | } else if (float64_is_infinity(f64)) { | |
8291 | return float64_zero; | |
8292 | } | |
8293 | ||
8294 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
8295 | * preserving the parity of the exponent. */ | |
8296 | ||
8297 | if (f64_exp == 0) { | |
8298 | while (extract64(f64_frac, 51, 1) == 0) { | |
8299 | f64_frac = f64_frac << 1; | |
8300 | f64_exp = f64_exp - 1; | |
8301 | } | |
8302 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
8303 | } | |
8304 | ||
8305 | if (extract64(f64_exp, 0, 1) == 0) { | |
8306 | f64 = make_float64(f64_sbit | |
8307 | | (0x3feULL << 52) | |
8308 | | f64_frac); | |
8309 | } else { | |
8310 | f64 = make_float64(f64_sbit | |
8311 | | (0x3fdULL << 52) | |
8312 | | f64_frac); | |
8313 | } | |
8314 | ||
8315 | result_exp = (3068 - f64_exp) / 2; | |
8316 | ||
8317 | f64 = recip_sqrt_estimate(f64, s); | |
8318 | ||
8319 | result_frac = extract64(float64_val(f64), 0, 52); | |
8320 | ||
8321 | return make_float64(f64_sbit | | |
8322 | ((result_exp & 0x7ff) << 52) | | |
8323 | result_frac); | |
8324 | } | |
8325 | ||
b6d4443a | 8326 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 8327 | { |
b6d4443a | 8328 | float_status *s = fpstp; |
fe0e4872 CL |
8329 | float64 f64; |
8330 | ||
8331 | if ((a & 0x80000000) == 0) { | |
8332 | return 0xffffffff; | |
8333 | } | |
8334 | ||
8335 | f64 = make_float64((0x3feULL << 52) | |
8336 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
8337 | ||
b6d4443a | 8338 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
8339 | |
8340 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
8341 | } |
8342 | ||
c2fb418e | 8343 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 8344 | { |
c2fb418e | 8345 | float_status *fpst = fpstp; |
e07be5d2 CL |
8346 | float64 f64; |
8347 | ||
8348 | if ((a & 0xc0000000) == 0) { | |
8349 | return 0xffffffff; | |
8350 | } | |
8351 | ||
8352 | if (a & 0x80000000) { | |
8353 | f64 = make_float64((0x3feULL << 52) | |
8354 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
8355 | } else { /* bits 31-30 == '01' */ | |
8356 | f64 = make_float64((0x3fdULL << 52) | |
8357 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
8358 | } | |
8359 | ||
c2fb418e | 8360 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
8361 | |
8362 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 8363 | } |
fe1479c3 | 8364 | |
da97f52c PM |
8365 | /* VFPv4 fused multiply-accumulate */ |
8366 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
8367 | { | |
8368 | float_status *fpst = fpstp; | |
8369 | return float32_muladd(a, b, c, 0, fpst); | |
8370 | } | |
8371 | ||
8372 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
8373 | { | |
8374 | float_status *fpst = fpstp; | |
8375 | return float64_muladd(a, b, c, 0, fpst); | |
8376 | } | |
d9b0848d PM |
8377 | |
8378 | /* ARMv8 round to integral */ | |
8379 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
8380 | { | |
8381 | return float32_round_to_int(x, fp_status); | |
8382 | } | |
8383 | ||
8384 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
8385 | { | |
8386 | return float64_round_to_int(x, fp_status); | |
8387 | } | |
8388 | ||
8389 | float32 HELPER(rints)(float32 x, void *fp_status) | |
8390 | { | |
8391 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
8392 | float32 ret; | |
8393 | ||
8394 | ret = float32_round_to_int(x, fp_status); | |
8395 | ||
8396 | /* Suppress any inexact exceptions the conversion produced */ | |
8397 | if (!(old_flags & float_flag_inexact)) { | |
8398 | new_flags = get_float_exception_flags(fp_status); | |
8399 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
8400 | } | |
8401 | ||
8402 | return ret; | |
8403 | } | |
8404 | ||
8405 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
8406 | { | |
8407 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
8408 | float64 ret; | |
8409 | ||
8410 | ret = float64_round_to_int(x, fp_status); | |
8411 | ||
8412 | new_flags = get_float_exception_flags(fp_status); | |
8413 | ||
8414 | /* Suppress any inexact exceptions the conversion produced */ | |
8415 | if (!(old_flags & float_flag_inexact)) { | |
8416 | new_flags = get_float_exception_flags(fp_status); | |
8417 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
8418 | } | |
8419 | ||
8420 | return ret; | |
8421 | } | |
9972da66 WN |
8422 | |
8423 | /* Convert ARM rounding mode to softfloat */ | |
8424 | int arm_rmode_to_sf(int rmode) | |
8425 | { | |
8426 | switch (rmode) { | |
8427 | case FPROUNDING_TIEAWAY: | |
8428 | rmode = float_round_ties_away; | |
8429 | break; | |
8430 | case FPROUNDING_ODD: | |
8431 | /* FIXME: add support for TIEAWAY and ODD */ | |
8432 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
8433 | rmode); | |
8434 | case FPROUNDING_TIEEVEN: | |
8435 | default: | |
8436 | rmode = float_round_nearest_even; | |
8437 | break; | |
8438 | case FPROUNDING_POSINF: | |
8439 | rmode = float_round_up; | |
8440 | break; | |
8441 | case FPROUNDING_NEGINF: | |
8442 | rmode = float_round_down; | |
8443 | break; | |
8444 | case FPROUNDING_ZERO: | |
8445 | rmode = float_round_to_zero; | |
8446 | break; | |
8447 | } | |
8448 | return rmode; | |
8449 | } | |
eb0ecd5a | 8450 | |
aa633469 PM |
8451 | /* CRC helpers. |
8452 | * The upper bytes of val (above the number specified by 'bytes') must have | |
8453 | * been zeroed out by the caller. | |
8454 | */ | |
eb0ecd5a WN |
8455 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
8456 | { | |
8457 | uint8_t buf[4]; | |
8458 | ||
aa633469 | 8459 | stl_le_p(buf, val); |
eb0ecd5a WN |
8460 | |
8461 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
8462 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
8463 | } | |
8464 | ||
8465 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
8466 | { | |
8467 | uint8_t buf[4]; | |
8468 | ||
aa633469 | 8469 | stl_le_p(buf, val); |
eb0ecd5a WN |
8470 | |
8471 | /* Linux crc32c converts the output to one's complement. */ | |
8472 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
8473 | } |