]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
ccd38087 | 2 | #include "internals.h" |
022c62cb | 3 | #include "exec/gdbstub.h" |
2ef6175a | 4 | #include "exec/helper-proto.h" |
1de7afc9 | 5 | #include "qemu/host-utils.h" |
78027bb6 | 6 | #include "sysemu/arch_init.h" |
9c17d615 | 7 | #include "sysemu/sysemu.h" |
1de7afc9 | 8 | #include "qemu/bitops.h" |
eb0ecd5a | 9 | #include "qemu/crc32c.h" |
f08b6170 | 10 | #include "exec/cpu_ldst.h" |
1d854765 | 11 | #include "arm_ldst.h" |
eb0ecd5a | 12 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 13 | #include "exec/semihost.h" |
0b03bdfc | 14 | |
4a501606 | 15 | #ifndef CONFIG_USER_ONLY |
b7cc4e82 PC |
16 | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, |
17 | int access_type, ARMMMUIdx mmu_idx, | |
18 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
19 | target_ulong *page_size, uint32_t *fsr); | |
7c2cb42b AF |
20 | |
21 | /* Definitions for the PMCCNTR and PMCR registers */ | |
22 | #define PMCRD 0x8 | |
23 | #define PMCRC 0x4 | |
24 | #define PMCRE 0x1 | |
4a501606 PM |
25 | #endif |
26 | ||
0ecb72a5 | 27 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
28 | { |
29 | int nregs; | |
30 | ||
31 | /* VFP data registers are always little-endian. */ | |
32 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
33 | if (reg < nregs) { | |
34 | stfq_le_p(buf, env->vfp.regs[reg]); | |
35 | return 8; | |
36 | } | |
37 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
38 | /* Aliases for Q regs. */ | |
39 | nregs += 16; | |
40 | if (reg < nregs) { | |
41 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
42 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
43 | return 16; | |
44 | } | |
45 | } | |
46 | switch (reg - nregs) { | |
47 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
48 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
49 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
50 | } | |
51 | return 0; | |
52 | } | |
53 | ||
0ecb72a5 | 54 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
55 | { |
56 | int nregs; | |
57 | ||
58 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
59 | if (reg < nregs) { | |
60 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
61 | return 8; | |
62 | } | |
63 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
64 | nregs += 16; | |
65 | if (reg < nregs) { | |
66 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
67 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
68 | return 16; | |
69 | } | |
70 | } | |
71 | switch (reg - nregs) { | |
72 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
73 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 74 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
75 | } |
76 | return 0; | |
77 | } | |
78 | ||
6a669427 PM |
79 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
80 | { | |
81 | switch (reg) { | |
82 | case 0 ... 31: | |
83 | /* 128 bit FP register */ | |
84 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
85 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
86 | return 16; | |
87 | case 32: | |
88 | /* FPSR */ | |
89 | stl_p(buf, vfp_get_fpsr(env)); | |
90 | return 4; | |
91 | case 33: | |
92 | /* FPCR */ | |
93 | stl_p(buf, vfp_get_fpcr(env)); | |
94 | return 4; | |
95 | default: | |
96 | return 0; | |
97 | } | |
98 | } | |
99 | ||
100 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
101 | { | |
102 | switch (reg) { | |
103 | case 0 ... 31: | |
104 | /* 128 bit FP register */ | |
105 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
106 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
107 | return 16; | |
108 | case 32: | |
109 | /* FPSR */ | |
110 | vfp_set_fpsr(env, ldl_p(buf)); | |
111 | return 4; | |
112 | case 33: | |
113 | /* FPCR */ | |
114 | vfp_set_fpcr(env, ldl_p(buf)); | |
115 | return 4; | |
116 | default: | |
117 | return 0; | |
118 | } | |
119 | } | |
120 | ||
c4241c7d | 121 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 122 | { |
375421cc | 123 | assert(ri->fieldoffset); |
67ed771d | 124 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 125 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 126 | } else { |
c4241c7d | 127 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 128 | } |
d4e6df63 PM |
129 | } |
130 | ||
c4241c7d PM |
131 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
132 | uint64_t value) | |
d4e6df63 | 133 | { |
375421cc | 134 | assert(ri->fieldoffset); |
67ed771d | 135 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
136 | CPREG_FIELD64(env, ri) = value; |
137 | } else { | |
138 | CPREG_FIELD32(env, ri) = value; | |
139 | } | |
d4e6df63 PM |
140 | } |
141 | ||
11f136ee FA |
142 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
143 | { | |
144 | return (char *)env + ri->fieldoffset; | |
145 | } | |
146 | ||
49a66191 | 147 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 148 | { |
59a1c327 | 149 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 150 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 151 | return ri->resetvalue; |
721fae12 | 152 | } else if (ri->raw_readfn) { |
59a1c327 | 153 | return ri->raw_readfn(env, ri); |
721fae12 | 154 | } else if (ri->readfn) { |
59a1c327 | 155 | return ri->readfn(env, ri); |
721fae12 | 156 | } else { |
59a1c327 | 157 | return raw_read(env, ri); |
721fae12 | 158 | } |
721fae12 PM |
159 | } |
160 | ||
59a1c327 | 161 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 162 | uint64_t v) |
721fae12 PM |
163 | { |
164 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
165 | * Note that constant registers are treated as write-ignored; the |
166 | * caller should check for success by whether a readback gives the | |
167 | * value written. | |
168 | */ | |
169 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 170 | return; |
721fae12 | 171 | } else if (ri->raw_writefn) { |
c4241c7d | 172 | ri->raw_writefn(env, ri, v); |
721fae12 | 173 | } else if (ri->writefn) { |
c4241c7d | 174 | ri->writefn(env, ri, v); |
721fae12 | 175 | } else { |
afb2530f | 176 | raw_write(env, ri, v); |
721fae12 | 177 | } |
721fae12 PM |
178 | } |
179 | ||
375421cc PM |
180 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
181 | { | |
182 | /* Return true if the regdef would cause an assertion if you called | |
183 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
184 | * program bug for it not to have the NO_RAW flag). | |
185 | * NB that returning false here doesn't necessarily mean that calling | |
186 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
187 | * read/write access functions which are safe for raw use" from "has | |
188 | * read/write access functions which have side effects but has forgotten | |
189 | * to provide raw access functions". | |
190 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
191 | * and assertions in raw_read()/raw_write(). | |
192 | */ | |
193 | if ((ri->type & ARM_CP_CONST) || | |
194 | ri->fieldoffset || | |
195 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
196 | return false; | |
197 | } | |
198 | return true; | |
199 | } | |
200 | ||
721fae12 PM |
201 | bool write_cpustate_to_list(ARMCPU *cpu) |
202 | { | |
203 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
204 | int i; | |
205 | bool ok = true; | |
206 | ||
207 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
208 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
209 | const ARMCPRegInfo *ri; | |
59a1c327 | 210 | |
60322b39 | 211 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
212 | if (!ri) { |
213 | ok = false; | |
214 | continue; | |
215 | } | |
7a0e58fa | 216 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
217 | continue; |
218 | } | |
59a1c327 | 219 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
220 | } |
221 | return ok; | |
222 | } | |
223 | ||
224 | bool write_list_to_cpustate(ARMCPU *cpu) | |
225 | { | |
226 | int i; | |
227 | bool ok = true; | |
228 | ||
229 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
230 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
231 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
232 | const ARMCPRegInfo *ri; |
233 | ||
60322b39 | 234 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
235 | if (!ri) { |
236 | ok = false; | |
237 | continue; | |
238 | } | |
7a0e58fa | 239 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
240 | continue; |
241 | } | |
242 | /* Write value and confirm it reads back as written | |
243 | * (to catch read-only registers and partially read-only | |
244 | * registers where the incoming migration value doesn't match) | |
245 | */ | |
59a1c327 PM |
246 | write_raw_cp_reg(&cpu->env, ri, v); |
247 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
248 | ok = false; |
249 | } | |
250 | } | |
251 | return ok; | |
252 | } | |
253 | ||
254 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
255 | { | |
256 | ARMCPU *cpu = opaque; | |
257 | uint64_t regidx; | |
258 | const ARMCPRegInfo *ri; | |
259 | ||
260 | regidx = *(uint32_t *)key; | |
60322b39 | 261 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 262 | |
7a0e58fa | 263 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
264 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
265 | /* The value array need not be initialized at this point */ | |
266 | cpu->cpreg_array_len++; | |
267 | } | |
268 | } | |
269 | ||
270 | static void count_cpreg(gpointer key, gpointer opaque) | |
271 | { | |
272 | ARMCPU *cpu = opaque; | |
273 | uint64_t regidx; | |
274 | const ARMCPRegInfo *ri; | |
275 | ||
276 | regidx = *(uint32_t *)key; | |
60322b39 | 277 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 278 | |
7a0e58fa | 279 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
280 | cpu->cpreg_array_len++; |
281 | } | |
282 | } | |
283 | ||
284 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
285 | { | |
cbf239b7 AR |
286 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
287 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 288 | |
cbf239b7 AR |
289 | if (aidx > bidx) { |
290 | return 1; | |
291 | } | |
292 | if (aidx < bidx) { | |
293 | return -1; | |
294 | } | |
295 | return 0; | |
721fae12 PM |
296 | } |
297 | ||
298 | void init_cpreg_list(ARMCPU *cpu) | |
299 | { | |
300 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
301 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
302 | */ | |
57b6d95e | 303 | GList *keys; |
721fae12 PM |
304 | int arraylen; |
305 | ||
57b6d95e | 306 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
307 | keys = g_list_sort(keys, cpreg_key_compare); |
308 | ||
309 | cpu->cpreg_array_len = 0; | |
310 | ||
311 | g_list_foreach(keys, count_cpreg, cpu); | |
312 | ||
313 | arraylen = cpu->cpreg_array_len; | |
314 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
315 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
316 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
317 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
318 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
319 | cpu->cpreg_array_len = 0; | |
320 | ||
321 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
322 | ||
323 | assert(cpu->cpreg_array_len == arraylen); | |
324 | ||
325 | g_list_free(keys); | |
326 | } | |
327 | ||
c4241c7d | 328 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 329 | { |
00c8cb0a AF |
330 | ARMCPU *cpu = arm_env_get_cpu(env); |
331 | ||
8d5c773e | 332 | raw_write(env, ri, value); |
00c8cb0a | 333 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
334 | } |
335 | ||
c4241c7d | 336 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 337 | { |
00c8cb0a AF |
338 | ARMCPU *cpu = arm_env_get_cpu(env); |
339 | ||
8d5c773e | 340 | if (raw_read(env, ri) != value) { |
08de207b PM |
341 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
342 | * not modified virtual addresses, so this causes a TLB flush. | |
343 | */ | |
00c8cb0a | 344 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 345 | raw_write(env, ri, value); |
08de207b | 346 | } |
08de207b | 347 | } |
c4241c7d PM |
348 | |
349 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
350 | uint64_t value) | |
08de207b | 351 | { |
00c8cb0a AF |
352 | ARMCPU *cpu = arm_env_get_cpu(env); |
353 | ||
8d5c773e | 354 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 355 | && !extended_addresses_enabled(env)) { |
08de207b PM |
356 | /* For VMSA (when not using the LPAE long descriptor page table |
357 | * format) this register includes the ASID, so do a TLB flush. | |
358 | * For PMSA it is purely a process ID and no action is needed. | |
359 | */ | |
00c8cb0a | 360 | tlb_flush(CPU(cpu), 1); |
08de207b | 361 | } |
8d5c773e | 362 | raw_write(env, ri, value); |
08de207b PM |
363 | } |
364 | ||
c4241c7d PM |
365 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
366 | uint64_t value) | |
d929823f PM |
367 | { |
368 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
369 | ARMCPU *cpu = arm_env_get_cpu(env); |
370 | ||
371 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
372 | } |
373 | ||
c4241c7d PM |
374 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
375 | uint64_t value) | |
d929823f PM |
376 | { |
377 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
378 | ARMCPU *cpu = arm_env_get_cpu(env); |
379 | ||
380 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
381 | } |
382 | ||
c4241c7d PM |
383 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
384 | uint64_t value) | |
d929823f PM |
385 | { |
386 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
387 | ARMCPU *cpu = arm_env_get_cpu(env); |
388 | ||
389 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
390 | } |
391 | ||
c4241c7d PM |
392 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
393 | uint64_t value) | |
d929823f PM |
394 | { |
395 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
396 | ARMCPU *cpu = arm_env_get_cpu(env); |
397 | ||
398 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
399 | } |
400 | ||
fa439fc5 PM |
401 | /* IS variants of TLB operations must affect all cores */ |
402 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
403 | uint64_t value) | |
404 | { | |
405 | CPUState *other_cs; | |
406 | ||
407 | CPU_FOREACH(other_cs) { | |
408 | tlb_flush(other_cs, 1); | |
409 | } | |
410 | } | |
411 | ||
412 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
413 | uint64_t value) | |
414 | { | |
415 | CPUState *other_cs; | |
416 | ||
417 | CPU_FOREACH(other_cs) { | |
418 | tlb_flush(other_cs, value == 0); | |
419 | } | |
420 | } | |
421 | ||
422 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
423 | uint64_t value) | |
424 | { | |
425 | CPUState *other_cs; | |
426 | ||
427 | CPU_FOREACH(other_cs) { | |
428 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
429 | } | |
430 | } | |
431 | ||
432 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
433 | uint64_t value) | |
434 | { | |
435 | CPUState *other_cs; | |
436 | ||
437 | CPU_FOREACH(other_cs) { | |
438 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
439 | } | |
440 | } | |
441 | ||
e9aa6c21 | 442 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
443 | /* Define the secure and non-secure FCSE identifier CP registers |
444 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
445 | * the secure register to be properly reset and migrated. There is also no | |
446 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
447 | */ | |
448 | { .name = "FCSEIDR(NS)", | |
449 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
450 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
451 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
452 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
453 | { .name = "FCSEIDR(S)", | |
454 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
455 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
456 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 457 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
458 | /* Define the secure and non-secure context identifier CP registers |
459 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
460 | * the secure register to be properly reset and migrated. In the | |
461 | * non-secure case, the 32-bit register will have reset and migration | |
462 | * disabled during registration as it is handled by the 64-bit instance. | |
463 | */ | |
464 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 465 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
466 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
467 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
468 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
469 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
470 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
471 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
472 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 473 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
474 | REGINFO_SENTINEL |
475 | }; | |
476 | ||
477 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
478 | /* NB: Some of these registers exist in v8 but with more precise | |
479 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
480 | */ | |
481 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
482 | { .name = "DACR", |
483 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
484 | .access = PL1_RW, .resetvalue = 0, | |
485 | .writefn = dacr_write, .raw_writefn = raw_write, | |
486 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
487 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
488 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
489 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 490 | */ |
a903c449 EI |
491 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
492 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
493 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
494 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
495 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
496 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
497 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 498 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
499 | /* Cache maintenance ops; some of this space may be overridden later. */ |
500 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
501 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
502 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
503 | REGINFO_SENTINEL |
504 | }; | |
505 | ||
7d57f408 PM |
506 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
507 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
508 | * over-broad. | |
509 | */ | |
510 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
511 | .access = PL1_W, .type = ARM_CP_WFI }, | |
512 | REGINFO_SENTINEL | |
513 | }; | |
514 | ||
515 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
516 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
517 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
518 | */ | |
519 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
520 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
521 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
522 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
523 | * OMAPCP will override this space. | |
524 | */ | |
525 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
526 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
527 | .resetvalue = 0 }, | |
528 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
529 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
530 | .resetvalue = 0 }, | |
776d4e5c PM |
531 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
532 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 533 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 534 | .resetvalue = 0 }, |
50300698 PM |
535 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
536 | * implementing it as RAZ means the "debug architecture version" bits | |
537 | * will read as a reserved value, which should cause Linux to not try | |
538 | * to use the debug hardware. | |
539 | */ | |
540 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
541 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
542 | /* MMU TLB control. Note that the wildcarding means we cover not just |
543 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
544 | */ | |
545 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
546 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 547 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
548 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
549 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 550 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
551 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
552 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 553 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
554 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
555 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 556 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
557 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
558 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
559 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
560 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
561 | REGINFO_SENTINEL |
562 | }; | |
563 | ||
c4241c7d PM |
564 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
565 | uint64_t value) | |
2771db27 | 566 | { |
f0aff255 FA |
567 | uint32_t mask = 0; |
568 | ||
569 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
570 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
571 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
572 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
573 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
574 | */ | |
575 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
576 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
577 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
578 | ||
579 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
580 | /* ASEDIS [31] bit is RAO/WI */ | |
581 | value |= (1 << 31); | |
582 | } | |
583 | ||
584 | /* VFPv3 and upwards with NEON implement 32 double precision | |
585 | * registers (D0-D31). | |
586 | */ | |
587 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
588 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
589 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
590 | value |= (1 << 30); | |
591 | } | |
592 | } | |
593 | value &= mask; | |
2771db27 | 594 | } |
7ebd5f2e | 595 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
596 | } |
597 | ||
c6f19164 GB |
598 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
599 | { | |
600 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
601 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
602 | if (arm_current_el(env) == 1 && | |
603 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
604 | return CP_ACCESS_TRAP_EL2; | |
605 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
606 | } else if (arm_current_el(env) < 3 && | |
607 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
608 | return CP_ACCESS_TRAP_EL3; | |
609 | } | |
610 | } | |
611 | ||
612 | return CP_ACCESS_OK; | |
613 | } | |
614 | ||
615 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
616 | { | |
617 | /* Check if CPTR accesses are set to trap to EL3 */ | |
618 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
619 | return CP_ACCESS_TRAP_EL3; | |
620 | } | |
621 | ||
622 | return CP_ACCESS_OK; | |
623 | } | |
624 | ||
7d57f408 PM |
625 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
626 | /* prefetch by MVA in v6, NOP in v7 */ | |
627 | { .name = "MVA_prefetch", | |
628 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
629 | .access = PL1_W, .type = ARM_CP_NOP }, | |
630 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
631 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 632 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 633 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 634 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 635 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 636 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 637 | .access = PL1_RW, |
b848ce2b FA |
638 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
639 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
640 | .resetvalue = 0, }, |
641 | /* Watchpoint Fault Address Register : should actually only be present | |
642 | * for 1136, 1176, 11MPCore. | |
643 | */ | |
644 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
645 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 646 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 647 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 648 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 649 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
650 | REGINFO_SENTINEL |
651 | }; | |
652 | ||
fcd25206 | 653 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 654 | { |
3b163b01 | 655 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 656 | * by PMUSERENR. |
200ac0ef | 657 | */ |
dcbff19b | 658 | if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { |
fcd25206 | 659 | return CP_ACCESS_TRAP; |
200ac0ef | 660 | } |
fcd25206 | 661 | return CP_ACCESS_OK; |
200ac0ef PM |
662 | } |
663 | ||
7c2cb42b | 664 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
665 | |
666 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
667 | { | |
668 | /* This does not support checking PMCCFILTR_EL0 register */ | |
669 | ||
670 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
671 | return false; | |
672 | } | |
673 | ||
674 | return true; | |
675 | } | |
676 | ||
ec7b4ce4 AF |
677 | void pmccntr_sync(CPUARMState *env) |
678 | { | |
679 | uint64_t temp_ticks; | |
680 | ||
681 | temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | |
682 | get_ticks_per_sec(), 1000000); | |
683 | ||
684 | if (env->cp15.c9_pmcr & PMCRD) { | |
685 | /* Increment once every 64 processor clock cycles */ | |
686 | temp_ticks /= 64; | |
687 | } | |
688 | ||
689 | if (arm_ccnt_enabled(env)) { | |
690 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
691 | } | |
692 | } | |
693 | ||
c4241c7d PM |
694 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
695 | uint64_t value) | |
200ac0ef | 696 | { |
942a155b | 697 | pmccntr_sync(env); |
7c2cb42b AF |
698 | |
699 | if (value & PMCRC) { | |
700 | /* The counter has been reset */ | |
701 | env->cp15.c15_ccnt = 0; | |
702 | } | |
703 | ||
200ac0ef PM |
704 | /* only the DP, X, D and E bits are writable */ |
705 | env->cp15.c9_pmcr &= ~0x39; | |
706 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 707 | |
942a155b | 708 | pmccntr_sync(env); |
7c2cb42b AF |
709 | } |
710 | ||
711 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
712 | { | |
c92c0687 | 713 | uint64_t total_ticks; |
7c2cb42b | 714 | |
942a155b | 715 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
716 | /* Counter is disabled, do not change value */ |
717 | return env->cp15.c15_ccnt; | |
718 | } | |
719 | ||
c92c0687 AF |
720 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
721 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
722 | |
723 | if (env->cp15.c9_pmcr & PMCRD) { | |
724 | /* Increment once every 64 processor clock cycles */ | |
725 | total_ticks /= 64; | |
726 | } | |
727 | return total_ticks - env->cp15.c15_ccnt; | |
728 | } | |
729 | ||
730 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
731 | uint64_t value) | |
732 | { | |
c92c0687 | 733 | uint64_t total_ticks; |
7c2cb42b | 734 | |
942a155b | 735 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
736 | /* Counter is disabled, set the absolute value */ |
737 | env->cp15.c15_ccnt = value; | |
738 | return; | |
739 | } | |
740 | ||
c92c0687 AF |
741 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
742 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
743 | |
744 | if (env->cp15.c9_pmcr & PMCRD) { | |
745 | /* Increment once every 64 processor clock cycles */ | |
746 | total_ticks /= 64; | |
747 | } | |
748 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 749 | } |
421c7ebd PC |
750 | |
751 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
752 | uint64_t value) | |
753 | { | |
754 | uint64_t cur_val = pmccntr_read(env, NULL); | |
755 | ||
756 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
757 | } | |
758 | ||
ec7b4ce4 AF |
759 | #else /* CONFIG_USER_ONLY */ |
760 | ||
761 | void pmccntr_sync(CPUARMState *env) | |
762 | { | |
763 | } | |
764 | ||
7c2cb42b | 765 | #endif |
200ac0ef | 766 | |
0614601c AF |
767 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
768 | uint64_t value) | |
769 | { | |
770 | pmccntr_sync(env); | |
771 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
772 | pmccntr_sync(env); | |
773 | } | |
774 | ||
c4241c7d | 775 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
776 | uint64_t value) |
777 | { | |
200ac0ef PM |
778 | value &= (1 << 31); |
779 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
780 | } |
781 | ||
c4241c7d PM |
782 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
783 | uint64_t value) | |
200ac0ef | 784 | { |
200ac0ef PM |
785 | value &= (1 << 31); |
786 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
787 | } |
788 | ||
c4241c7d PM |
789 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
790 | uint64_t value) | |
200ac0ef | 791 | { |
200ac0ef | 792 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
793 | } |
794 | ||
c4241c7d PM |
795 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
796 | uint64_t value) | |
200ac0ef | 797 | { |
200ac0ef | 798 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
799 | } |
800 | ||
c4241c7d | 801 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
802 | uint64_t value) |
803 | { | |
804 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
805 | } |
806 | ||
c4241c7d PM |
807 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
808 | uint64_t value) | |
200ac0ef PM |
809 | { |
810 | /* We have no event counters so only the C bit can be changed */ | |
811 | value &= (1 << 31); | |
812 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
813 | } |
814 | ||
c4241c7d PM |
815 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
816 | uint64_t value) | |
200ac0ef PM |
817 | { |
818 | value &= (1 << 31); | |
819 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
820 | } |
821 | ||
c4241c7d PM |
822 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
823 | uint64_t value) | |
8641136c | 824 | { |
a505d7fe PM |
825 | /* Note that even though the AArch64 view of this register has bits |
826 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
827 | * architectural requirements for bits which are RES0 only in some | |
828 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
829 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
830 | */ | |
855ea66d | 831 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
832 | } |
833 | ||
64e0e2de EI |
834 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
835 | { | |
836 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
837 | * For bits that vary between AArch32/64, code needs to check the | |
838 | * current execution mode before directly using the feature bit. | |
839 | */ | |
840 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
841 | ||
842 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
843 | valid_mask &= ~SCR_HCE; | |
844 | ||
845 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
846 | * supported if EL2 exists. The bit is UNK/SBZP when | |
847 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
848 | * when EL2 is unavailable. | |
4eb27640 | 849 | * On ARMv8, this bit is always available. |
64e0e2de | 850 | */ |
4eb27640 GB |
851 | if (arm_feature(env, ARM_FEATURE_V7) && |
852 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
853 | valid_mask &= ~SCR_SMD; |
854 | } | |
855 | } | |
856 | ||
857 | /* Clear all-context RES0 bits. */ | |
858 | value &= valid_mask; | |
859 | raw_write(env, ri, value); | |
860 | } | |
861 | ||
c4241c7d | 862 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
863 | { |
864 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
865 | |
866 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
867 | * bank | |
868 | */ | |
869 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
870 | ri->secure & ARM_CP_SECSTATE_S); | |
871 | ||
872 | return cpu->ccsidr[index]; | |
776d4e5c PM |
873 | } |
874 | ||
c4241c7d PM |
875 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
876 | uint64_t value) | |
776d4e5c | 877 | { |
8d5c773e | 878 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
879 | } |
880 | ||
1090b9c6 PM |
881 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
882 | { | |
883 | CPUState *cs = ENV_GET_CPU(env); | |
884 | uint64_t ret = 0; | |
885 | ||
886 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
887 | ret |= CPSR_I; | |
888 | } | |
889 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
890 | ret |= CPSR_F; | |
891 | } | |
892 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
893 | return ret; | |
894 | } | |
895 | ||
e9aa6c21 | 896 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
897 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
898 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
899 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
900 | /* Performance monitors are implementation defined in v7, |
901 | * but with an ARM recommended set of registers, which we | |
902 | * follow (although we don't actually implement any counters) | |
903 | * | |
904 | * Performance registers fall into three categories: | |
905 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
906 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
907 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
908 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
909 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
910 | */ | |
911 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 912 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 913 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
914 | .writefn = pmcntenset_write, |
915 | .accessfn = pmreg_access, | |
916 | .raw_writefn = raw_write }, | |
8521466b AF |
917 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
918 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
919 | .access = PL0_RW, .accessfn = pmreg_access, | |
920 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
921 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 922 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
923 | .access = PL0_RW, |
924 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
925 | .accessfn = pmreg_access, |
926 | .writefn = pmcntenclr_write, | |
7a0e58fa | 927 | .type = ARM_CP_ALIAS }, |
8521466b AF |
928 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
929 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
930 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 931 | .type = ARM_CP_ALIAS, |
8521466b AF |
932 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
933 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
934 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
935 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
936 | .accessfn = pmreg_access, |
937 | .writefn = pmovsr_write, | |
938 | .raw_writefn = raw_write }, | |
939 | /* Unimplemented so WI. */ | |
200ac0ef | 940 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 941 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 942 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 943 | * We choose to RAZ/WI. |
200ac0ef PM |
944 | */ |
945 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
946 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
947 | .accessfn = pmreg_access }, | |
7c2cb42b | 948 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 949 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 950 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 951 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 952 | .accessfn = pmreg_access }, |
8521466b AF |
953 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
954 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
955 | .access = PL0_RW, .accessfn = pmreg_access, | |
956 | .type = ARM_CP_IO, | |
957 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 958 | #endif |
8521466b AF |
959 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
960 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 961 | .writefn = pmccfiltr_write, |
8521466b AF |
962 | .access = PL0_RW, .accessfn = pmreg_access, |
963 | .type = ARM_CP_IO, | |
964 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
965 | .resetvalue = 0, }, | |
200ac0ef PM |
966 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
967 | .access = PL0_RW, | |
968 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
969 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
970 | .raw_writefn = raw_write }, | |
971 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 972 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
973 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
974 | .accessfn = pmreg_access }, | |
200ac0ef PM |
975 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
976 | .access = PL0_R | PL1_RW, | |
977 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
978 | .resetvalue = 0, | |
d4e6df63 | 979 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
980 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
981 | .access = PL1_RW, | |
982 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
983 | .resetvalue = 0, | |
d4e6df63 | 984 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 985 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 986 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
200ac0ef | 987 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 988 | .writefn = pmintenclr_write, }, |
a505d7fe PM |
989 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
990 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 991 | .access = PL1_RW, .writefn = vbar_write, |
fb6c91ba GB |
992 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
993 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8641136c | 994 | .resetvalue = 0 }, |
7da845b0 PM |
995 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
996 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 997 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
998 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
999 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1000 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1001 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1002 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1003 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1004 | * just RAZ for all cores: | |
1005 | */ | |
0ff644a7 PM |
1006 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1007 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1008 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1009 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1010 | * choose to RAZ/WI for all cores. | |
1011 | */ | |
1012 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1013 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1014 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1015 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1016 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1017 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1018 | /* MAIR can just read-as-written because we don't implement caches |
1019 | * and so don't need to care about memory attributes. | |
1020 | */ | |
1021 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1022 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1023 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 PM |
1024 | .resetvalue = 0 }, |
1025 | /* For non-long-descriptor page tables these are PRRR and NMRR; | |
1026 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1027 | */ |
1281f8e3 | 1028 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1029 | * allows them to assign the correct fieldoffset based on the endianness |
1030 | * handled in the field definitions. | |
1031 | */ | |
a903c449 | 1032 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1033 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1034 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1035 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1036 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1037 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1038 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1039 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1040 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1041 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1042 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1043 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1044 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1045 | /* 32 bit ITLB invalidates */ |
1046 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1047 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1048 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1049 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1050 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1051 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1052 | /* 32 bit DTLB invalidates */ |
1053 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1054 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1055 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1056 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1057 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1058 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1059 | /* 32 bit TLB invalidates */ |
1060 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1061 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1062 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1063 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1064 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1065 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1066 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1067 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1068 | REGINFO_SENTINEL |
1069 | }; | |
1070 | ||
1071 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1072 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1073 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1074 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1075 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1076 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1077 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1078 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1079 | .writefn = tlbiasid_is_write }, |
995939a6 | 1080 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1081 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1082 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1083 | REGINFO_SENTINEL |
1084 | }; | |
1085 | ||
c4241c7d PM |
1086 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1087 | uint64_t value) | |
c326b979 PM |
1088 | { |
1089 | value &= 1; | |
1090 | env->teecr = value; | |
c326b979 PM |
1091 | } |
1092 | ||
c4241c7d | 1093 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 1094 | { |
dcbff19b | 1095 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1096 | return CP_ACCESS_TRAP; |
c326b979 | 1097 | } |
92611c00 | 1098 | return CP_ACCESS_OK; |
c326b979 PM |
1099 | } |
1100 | ||
1101 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1102 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1103 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1104 | .resetvalue = 0, | |
1105 | .writefn = teecr_write }, | |
1106 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1107 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1108 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1109 | REGINFO_SENTINEL |
1110 | }; | |
1111 | ||
4d31c596 | 1112 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1113 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1114 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1115 | .access = PL0_RW, | |
54bf36ed | 1116 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1117 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1118 | .access = PL0_RW, | |
54bf36ed FA |
1119 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1120 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1121 | .resetfn = arm_cp_reset_ignore }, |
1122 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1123 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1124 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1125 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1126 | .resetvalue = 0}, | |
4d31c596 PM |
1127 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1128 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1129 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1130 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1131 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1132 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1133 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1134 | .access = PL1_RW, |
54bf36ed FA |
1135 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1136 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1137 | .access = PL1_RW, | |
1138 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1139 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1140 | .resetvalue = 0 }, | |
4d31c596 PM |
1141 | REGINFO_SENTINEL |
1142 | }; | |
1143 | ||
55d284af PM |
1144 | #ifndef CONFIG_USER_ONLY |
1145 | ||
00108f2d PM |
1146 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1147 | { | |
1148 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
dcbff19b | 1149 | if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
00108f2d PM |
1150 | return CP_ACCESS_TRAP; |
1151 | } | |
1152 | return CP_ACCESS_OK; | |
1153 | } | |
1154 | ||
1155 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
1156 | { | |
0b6440af EI |
1157 | unsigned int cur_el = arm_current_el(env); |
1158 | bool secure = arm_is_secure(env); | |
1159 | ||
00108f2d | 1160 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1161 | if (cur_el == 0 && |
00108f2d PM |
1162 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1163 | return CP_ACCESS_TRAP; | |
1164 | } | |
0b6440af EI |
1165 | |
1166 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1167 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1168 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1169 | return CP_ACCESS_TRAP_EL2; | |
1170 | } | |
00108f2d PM |
1171 | return CP_ACCESS_OK; |
1172 | } | |
1173 | ||
1174 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
1175 | { | |
0b6440af EI |
1176 | unsigned int cur_el = arm_current_el(env); |
1177 | bool secure = arm_is_secure(env); | |
1178 | ||
00108f2d PM |
1179 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1180 | * EL0[PV]TEN is zero. | |
1181 | */ | |
0b6440af | 1182 | if (cur_el == 0 && |
00108f2d PM |
1183 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1184 | return CP_ACCESS_TRAP; | |
1185 | } | |
0b6440af EI |
1186 | |
1187 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1188 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1189 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1190 | return CP_ACCESS_TRAP_EL2; | |
1191 | } | |
00108f2d PM |
1192 | return CP_ACCESS_OK; |
1193 | } | |
1194 | ||
1195 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
1196 | const ARMCPRegInfo *ri) | |
1197 | { | |
1198 | return gt_counter_access(env, GTIMER_PHYS); | |
1199 | } | |
1200 | ||
1201 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
1202 | const ARMCPRegInfo *ri) | |
1203 | { | |
1204 | return gt_counter_access(env, GTIMER_VIRT); | |
1205 | } | |
1206 | ||
1207 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1208 | { | |
1209 | return gt_timer_access(env, GTIMER_PHYS); | |
1210 | } | |
1211 | ||
1212 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1213 | { | |
1214 | return gt_timer_access(env, GTIMER_VIRT); | |
1215 | } | |
1216 | ||
55d284af PM |
1217 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1218 | { | |
bc72ad67 | 1219 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1220 | } |
1221 | ||
1222 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1223 | { | |
1224 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1225 | ||
1226 | if (gt->ctl & 1) { | |
1227 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1228 | * reset timer to when ISTATUS next has to change | |
1229 | */ | |
edac4d8a EI |
1230 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1231 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1232 | uint64_t count = gt_get_countervalue(&cpu->env); |
1233 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1234 | int istatus = count - offset >= gt->cval; |
55d284af PM |
1235 | uint64_t nexttick; |
1236 | ||
1237 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1238 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1239 | (istatus && !(gt->ctl & 2))); | |
1240 | if (istatus) { | |
1241 | /* Next transition is when count rolls back over to zero */ | |
1242 | nexttick = UINT64_MAX; | |
1243 | } else { | |
1244 | /* Next transition is when we hit cval */ | |
edac4d8a | 1245 | nexttick = gt->cval + offset; |
55d284af PM |
1246 | } |
1247 | /* Note that the desired next expiry time might be beyond the | |
1248 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1249 | * set the timer for as far in the future as possible. When the | |
1250 | * timer expires we will reset the timer for any remaining period. | |
1251 | */ | |
1252 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1253 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1254 | } | |
bc72ad67 | 1255 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1256 | } else { |
1257 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1258 | gt->ctl &= ~4; | |
1259 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1260 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1261 | } |
1262 | } | |
1263 | ||
0e3eca4c EI |
1264 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1265 | int timeridx) | |
55d284af PM |
1266 | { |
1267 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1268 | |
bc72ad67 | 1269 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1270 | } |
1271 | ||
c4241c7d | 1272 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1273 | { |
c4241c7d | 1274 | return gt_get_countervalue(env); |
55d284af PM |
1275 | } |
1276 | ||
edac4d8a EI |
1277 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1278 | { | |
1279 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1280 | } | |
1281 | ||
c4241c7d | 1282 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1283 | int timeridx, |
c4241c7d | 1284 | uint64_t value) |
55d284af | 1285 | { |
55d284af PM |
1286 | env->cp15.c14_timer[timeridx].cval = value; |
1287 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1288 | } |
c4241c7d | 1289 | |
0e3eca4c EI |
1290 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1291 | int timeridx) | |
55d284af | 1292 | { |
edac4d8a | 1293 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1294 | |
c4241c7d | 1295 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1296 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1297 | } |
1298 | ||
c4241c7d | 1299 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1300 | int timeridx, |
c4241c7d | 1301 | uint64_t value) |
55d284af | 1302 | { |
edac4d8a | 1303 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1304 | |
edac4d8a | 1305 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1306 | sextract64(value, 0, 32); |
55d284af | 1307 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1308 | } |
1309 | ||
c4241c7d | 1310 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1311 | int timeridx, |
c4241c7d | 1312 | uint64_t value) |
55d284af PM |
1313 | { |
1314 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1315 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1316 | ||
d3afacc7 | 1317 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1318 | if ((oldval ^ value) & 1) { |
1319 | /* Enable toggled */ | |
1320 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1321 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1322 | /* IMASK toggled: don't need to recalculate, |
1323 | * just set the interrupt line based on ISTATUS | |
1324 | */ | |
1325 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1326 | (oldval & 4) && !(value & 2)); |
55d284af | 1327 | } |
55d284af PM |
1328 | } |
1329 | ||
0e3eca4c EI |
1330 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1331 | { | |
1332 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1333 | } | |
1334 | ||
1335 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1336 | uint64_t value) | |
1337 | { | |
1338 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1339 | } | |
1340 | ||
1341 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1342 | { | |
1343 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1344 | } | |
1345 | ||
1346 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1347 | uint64_t value) | |
1348 | { | |
1349 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1350 | } | |
1351 | ||
1352 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1353 | uint64_t value) | |
1354 | { | |
1355 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1356 | } | |
1357 | ||
1358 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1359 | { | |
1360 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1361 | } | |
1362 | ||
1363 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1364 | uint64_t value) | |
1365 | { | |
1366 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1367 | } | |
1368 | ||
1369 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1370 | { | |
1371 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1372 | } | |
1373 | ||
1374 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1375 | uint64_t value) | |
1376 | { | |
1377 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1378 | } | |
1379 | ||
1380 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1381 | uint64_t value) | |
1382 | { | |
1383 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1384 | } | |
1385 | ||
edac4d8a EI |
1386 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1387 | uint64_t value) | |
1388 | { | |
1389 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1390 | ||
1391 | raw_write(env, ri, value); | |
1392 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1393 | } | |
1394 | ||
b0e66d95 EI |
1395 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1396 | { | |
1397 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1398 | } | |
1399 | ||
1400 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1401 | uint64_t value) | |
1402 | { | |
1403 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1404 | } | |
1405 | ||
1406 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1407 | { | |
1408 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1409 | } | |
1410 | ||
1411 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1412 | uint64_t value) | |
1413 | { | |
1414 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1415 | } | |
1416 | ||
1417 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1418 | uint64_t value) | |
1419 | { | |
1420 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1421 | } | |
1422 | ||
55d284af PM |
1423 | void arm_gt_ptimer_cb(void *opaque) |
1424 | { | |
1425 | ARMCPU *cpu = opaque; | |
1426 | ||
1427 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1428 | } | |
1429 | ||
1430 | void arm_gt_vtimer_cb(void *opaque) | |
1431 | { | |
1432 | ARMCPU *cpu = opaque; | |
1433 | ||
1434 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1435 | } | |
1436 | ||
b0e66d95 EI |
1437 | void arm_gt_htimer_cb(void *opaque) |
1438 | { | |
1439 | ARMCPU *cpu = opaque; | |
1440 | ||
1441 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1442 | } | |
1443 | ||
55d284af PM |
1444 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1445 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1446 | * of software; writing it doesn't actually change the timer frequency. | |
1447 | * Our reset value matches the fixed frequency we implement the timer at. | |
1448 | */ | |
1449 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1450 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1451 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1452 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1453 | }, |
1454 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1455 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1456 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1457 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1458 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1459 | }, |
1460 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1461 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1462 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1463 | .access = PL1_RW, |
1464 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1465 | .resetvalue = 0, | |
1466 | }, | |
1467 | /* per-timer control */ | |
1468 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1469 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1470 | .accessfn = gt_ptimer_access, |
1471 | .fieldoffset = offsetoflow32(CPUARMState, | |
1472 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1473 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1474 | }, |
1475 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1476 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1477 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1478 | .accessfn = gt_ptimer_access, |
55d284af PM |
1479 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1480 | .resetvalue = 0, | |
0e3eca4c | 1481 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1482 | }, |
1483 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1484 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1485 | .accessfn = gt_vtimer_access, |
1486 | .fieldoffset = offsetoflow32(CPUARMState, | |
1487 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1488 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1489 | }, |
1490 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1491 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1492 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1493 | .accessfn = gt_vtimer_access, |
55d284af PM |
1494 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1495 | .resetvalue = 0, | |
0e3eca4c | 1496 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1497 | }, |
1498 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1499 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1500 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1501 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1502 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 1503 | }, |
a7adc4b7 PM |
1504 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1505 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 1506 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1507 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
1508 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 1509 | }, |
55d284af | 1510 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 1511 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1512 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1513 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 1514 | }, |
a7adc4b7 PM |
1515 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1516 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1517 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1518 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
1519 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 1520 | }, |
55d284af PM |
1521 | /* The counter itself */ |
1522 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 1523 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1524 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1525 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1526 | }, | |
1527 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1528 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 1529 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1530 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
1531 | }, |
1532 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 1533 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1534 | .accessfn = gt_vct_access, |
edac4d8a | 1535 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
1536 | }, |
1537 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1538 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 1539 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1540 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
1541 | }, |
1542 | /* Comparison value, indicating when the timer goes off */ | |
1543 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
1544 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1545 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1546 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 1547 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1548 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1549 | }, |
1550 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1551 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1552 | .access = PL1_RW | PL0_R, | |
1553 | .type = ARM_CP_IO, | |
1554 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 1555 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 1556 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1557 | }, |
1558 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1559 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1560 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1561 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 1562 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1563 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1564 | }, |
1565 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1566 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1567 | .access = PL1_RW | PL0_R, | |
1568 | .type = ARM_CP_IO, | |
1569 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1570 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 1571 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1572 | }, |
1573 | REGINFO_SENTINEL | |
1574 | }; | |
1575 | ||
1576 | #else | |
1577 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1578 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1579 | * so instead just don't register any of them. |
1580 | */ | |
6cc7a3ae | 1581 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1582 | REGINFO_SENTINEL |
1583 | }; | |
1584 | ||
55d284af PM |
1585 | #endif |
1586 | ||
c4241c7d | 1587 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1588 | { |
891a2fe7 | 1589 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 1590 | raw_write(env, ri, value); |
891a2fe7 | 1591 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 1592 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 1593 | } else { |
8d5c773e | 1594 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 1595 | } |
4a501606 PM |
1596 | } |
1597 | ||
1598 | #ifndef CONFIG_USER_ONLY | |
1599 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1600 | |
92611c00 PM |
1601 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1602 | { | |
1603 | if (ri->opc2 & 4) { | |
1604 | /* Other states are only available with TrustZone; in | |
1605 | * a non-TZ implementation these registers don't exist | |
1606 | * at all, which is an Uncategorized trap. This underdecoding | |
7a0e58fa | 1607 | * is safe because the reginfo is NO_RAW. |
92611c00 PM |
1608 | */ |
1609 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1610 | } | |
1611 | return CP_ACCESS_OK; | |
1612 | } | |
1613 | ||
060e8a48 | 1614 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
d3649702 | 1615 | int access_type, ARMMMUIdx mmu_idx) |
4a501606 | 1616 | { |
a8170e5e | 1617 | hwaddr phys_addr; |
4a501606 PM |
1618 | target_ulong page_size; |
1619 | int prot; | |
b7cc4e82 PC |
1620 | uint32_t fsr; |
1621 | bool ret; | |
01c097f7 | 1622 | uint64_t par64; |
8bf5b6a9 | 1623 | MemTxAttrs attrs = {}; |
4a501606 | 1624 | |
d3649702 | 1625 | ret = get_phys_addr(env, value, access_type, mmu_idx, |
b7cc4e82 | 1626 | &phys_addr, &attrs, &prot, &page_size, &fsr); |
702a9357 | 1627 | if (extended_addresses_enabled(env)) { |
b7cc4e82 | 1628 | /* fsr is a DFSR/IFSR value for the long descriptor |
702a9357 PM |
1629 | * translation table format, but with WnR always clear. |
1630 | * Convert it to a 64-bit PAR. | |
1631 | */ | |
01c097f7 | 1632 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 1633 | if (!ret) { |
702a9357 | 1634 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
1635 | if (!attrs.secure) { |
1636 | par64 |= (1 << 9); /* NS */ | |
1637 | } | |
702a9357 | 1638 | /* We don't set the ATTR or SH fields in the PAR. */ |
4a501606 | 1639 | } else { |
702a9357 | 1640 | par64 |= 1; /* F */ |
b7cc4e82 | 1641 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
1642 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
1643 | * implement virtualization and therefore there can't be a stage 2 | |
1644 | * fault. | |
1645 | */ | |
4a501606 PM |
1646 | } |
1647 | } else { | |
b7cc4e82 | 1648 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
1649 | * translation table format (with WnR always clear). |
1650 | * Convert it to a 32-bit PAR. | |
1651 | */ | |
b7cc4e82 | 1652 | if (!ret) { |
702a9357 PM |
1653 | /* We do not set any attribute bits in the PAR */ |
1654 | if (page_size == (1 << 24) | |
1655 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 1656 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 1657 | } else { |
01c097f7 | 1658 | par64 = phys_addr & 0xfffff000; |
702a9357 | 1659 | } |
8bf5b6a9 PM |
1660 | if (!attrs.secure) { |
1661 | par64 |= (1 << 9); /* NS */ | |
1662 | } | |
702a9357 | 1663 | } else { |
b7cc4e82 PC |
1664 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
1665 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 1666 | } |
4a501606 | 1667 | } |
060e8a48 PM |
1668 | return par64; |
1669 | } | |
1670 | ||
1671 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1672 | { | |
060e8a48 PM |
1673 | int access_type = ri->opc2 & 1; |
1674 | uint64_t par64; | |
d3649702 PM |
1675 | ARMMMUIdx mmu_idx; |
1676 | int el = arm_current_el(env); | |
1677 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 1678 | |
d3649702 PM |
1679 | switch (ri->opc2 & 6) { |
1680 | case 0: | |
1681 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
1682 | switch (el) { | |
1683 | case 3: | |
1684 | mmu_idx = ARMMMUIdx_S1E3; | |
1685 | break; | |
1686 | case 2: | |
1687 | mmu_idx = ARMMMUIdx_S1NSE1; | |
1688 | break; | |
1689 | case 1: | |
1690 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1691 | break; | |
1692 | default: | |
1693 | g_assert_not_reached(); | |
1694 | } | |
1695 | break; | |
1696 | case 2: | |
1697 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
1698 | switch (el) { | |
1699 | case 3: | |
1700 | mmu_idx = ARMMMUIdx_S1SE0; | |
1701 | break; | |
1702 | case 2: | |
1703 | mmu_idx = ARMMMUIdx_S1NSE0; | |
1704 | break; | |
1705 | case 1: | |
1706 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1707 | break; | |
1708 | default: | |
1709 | g_assert_not_reached(); | |
1710 | } | |
1711 | break; | |
1712 | case 4: | |
1713 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
1714 | mmu_idx = ARMMMUIdx_S12NSE1; | |
1715 | break; | |
1716 | case 6: | |
1717 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
1718 | mmu_idx = ARMMMUIdx_S12NSE0; | |
1719 | break; | |
1720 | default: | |
1721 | g_assert_not_reached(); | |
1722 | } | |
1723 | ||
1724 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
1725 | |
1726 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 1727 | } |
060e8a48 PM |
1728 | |
1729 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, | |
1730 | uint64_t value) | |
1731 | { | |
060e8a48 | 1732 | int access_type = ri->opc2 & 1; |
d3649702 PM |
1733 | ARMMMUIdx mmu_idx; |
1734 | int secure = arm_is_secure_below_el3(env); | |
1735 | ||
1736 | switch (ri->opc2 & 6) { | |
1737 | case 0: | |
1738 | switch (ri->opc1) { | |
1739 | case 0: /* AT S1E1R, AT S1E1W */ | |
1740 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1741 | break; | |
1742 | case 4: /* AT S1E2R, AT S1E2W */ | |
1743 | mmu_idx = ARMMMUIdx_S1E2; | |
1744 | break; | |
1745 | case 6: /* AT S1E3R, AT S1E3W */ | |
1746 | mmu_idx = ARMMMUIdx_S1E3; | |
1747 | break; | |
1748 | default: | |
1749 | g_assert_not_reached(); | |
1750 | } | |
1751 | break; | |
1752 | case 2: /* AT S1E0R, AT S1E0W */ | |
1753 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1754 | break; | |
1755 | case 4: /* AT S12E1R, AT S12E1W */ | |
1756 | mmu_idx = ARMMMUIdx_S12NSE1; | |
1757 | break; | |
1758 | case 6: /* AT S12E0R, AT S12E0W */ | |
1759 | mmu_idx = ARMMMUIdx_S12NSE0; | |
1760 | break; | |
1761 | default: | |
1762 | g_assert_not_reached(); | |
1763 | } | |
060e8a48 | 1764 | |
d3649702 | 1765 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 1766 | } |
4a501606 PM |
1767 | #endif |
1768 | ||
1769 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1770 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1771 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
1772 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
1773 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
1774 | .writefn = par_write }, |
1775 | #ifndef CONFIG_USER_ONLY | |
1776 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
92611c00 | 1777 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 1778 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
1779 | #endif |
1780 | REGINFO_SENTINEL | |
1781 | }; | |
1782 | ||
18032bec PM |
1783 | /* Return basic MPU access permission bits. */ |
1784 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1785 | { | |
1786 | uint32_t ret; | |
1787 | uint32_t mask; | |
1788 | int i; | |
1789 | ret = 0; | |
1790 | mask = 3; | |
1791 | for (i = 0; i < 16; i += 2) { | |
1792 | ret |= (val >> i) & mask; | |
1793 | mask <<= 2; | |
1794 | } | |
1795 | return ret; | |
1796 | } | |
1797 | ||
1798 | /* Pad basic MPU access permission bits to extended format. */ | |
1799 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1800 | { | |
1801 | uint32_t ret; | |
1802 | uint32_t mask; | |
1803 | int i; | |
1804 | ret = 0; | |
1805 | mask = 3; | |
1806 | for (i = 0; i < 16; i += 2) { | |
1807 | ret |= (val & mask) << i; | |
1808 | mask <<= 2; | |
1809 | } | |
1810 | return ret; | |
1811 | } | |
1812 | ||
c4241c7d PM |
1813 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1814 | uint64_t value) | |
18032bec | 1815 | { |
7e09797c | 1816 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1817 | } |
1818 | ||
c4241c7d | 1819 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1820 | { |
7e09797c | 1821 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
1822 | } |
1823 | ||
c4241c7d PM |
1824 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1825 | uint64_t value) | |
18032bec | 1826 | { |
7e09797c | 1827 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1828 | } |
1829 | ||
c4241c7d | 1830 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1831 | { |
7e09797c | 1832 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
1833 | } |
1834 | ||
6cb0b013 PC |
1835 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1836 | { | |
1837 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
1838 | ||
1839 | if (!u32p) { | |
1840 | return 0; | |
1841 | } | |
1842 | ||
1843 | u32p += env->cp15.c6_rgnr; | |
1844 | return *u32p; | |
1845 | } | |
1846 | ||
1847 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1848 | uint64_t value) | |
1849 | { | |
1850 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1851 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
1852 | ||
1853 | if (!u32p) { | |
1854 | return; | |
1855 | } | |
1856 | ||
1857 | u32p += env->cp15.c6_rgnr; | |
1858 | tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ | |
1859 | *u32p = value; | |
1860 | } | |
1861 | ||
1862 | static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1863 | { | |
1864 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1865 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
1866 | ||
1867 | if (!u32p) { | |
1868 | return; | |
1869 | } | |
1870 | ||
1871 | memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); | |
1872 | } | |
1873 | ||
1874 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1875 | uint64_t value) | |
1876 | { | |
1877 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1878 | uint32_t nrgs = cpu->pmsav7_dregion; | |
1879 | ||
1880 | if (value >= nrgs) { | |
1881 | qemu_log_mask(LOG_GUEST_ERROR, | |
1882 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
1883 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
1884 | return; | |
1885 | } | |
1886 | ||
1887 | raw_write(env, ri, value); | |
1888 | } | |
1889 | ||
1890 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
1891 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, | |
1892 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
1893 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
1894 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
1895 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, | |
1896 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
1897 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
1898 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
1899 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, | |
1900 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
1901 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
1902 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
1903 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, | |
1904 | .access = PL1_RW, | |
1905 | .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), | |
1906 | .writefn = pmsav7_rgnr_write }, | |
1907 | REGINFO_SENTINEL | |
1908 | }; | |
1909 | ||
18032bec PM |
1910 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
1911 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1912 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 1913 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
1914 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
1915 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1916 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 1917 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
1918 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
1919 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1920 | .access = PL1_RW, | |
7e09797c PM |
1921 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1922 | .resetvalue = 0, }, | |
18032bec PM |
1923 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
1924 | .access = PL1_RW, | |
7e09797c PM |
1925 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1926 | .resetvalue = 0, }, | |
ecce5c3c PM |
1927 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1928 | .access = PL1_RW, | |
1929 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1930 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1931 | .access = PL1_RW, | |
1932 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 1933 | /* Protection region base and size registers */ |
e508a92b PM |
1934 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
1935 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1936 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
1937 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
1938 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1939 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
1940 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
1941 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1942 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
1943 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
1944 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1945 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
1946 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
1947 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1948 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
1949 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
1950 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1951 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
1952 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
1953 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1954 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
1955 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
1956 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1957 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
1958 | REGINFO_SENTINEL |
1959 | }; | |
1960 | ||
c4241c7d PM |
1961 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1962 | uint64_t value) | |
ecce5c3c | 1963 | { |
11f136ee | 1964 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
1965 | int maskshift = extract32(value, 0, 3); |
1966 | ||
e389be16 FA |
1967 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
1968 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
1969 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
1970 | * using Long-desciptor translation table format */ | |
1971 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
1972 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1973 | /* In an implementation that includes the Security Extensions | |
1974 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
1975 | * Short-descriptor translation table format. | |
1976 | */ | |
1977 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
1978 | } else { | |
1979 | value &= TTBCR_N; | |
1980 | } | |
e42c4db3 | 1981 | } |
e389be16 | 1982 | |
11f136ee FA |
1983 | /* Update the masks corresponding to the the TCR bank being written |
1984 | * Note that we always calculate mask and base_mask, but | |
e42c4db3 | 1985 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
1986 | * for long-descriptor tables the TCR fields are used differently |
1987 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 1988 | */ |
11f136ee FA |
1989 | tcr->raw_tcr = value; |
1990 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
1991 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
1992 | } |
1993 | ||
c4241c7d PM |
1994 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1995 | uint64_t value) | |
d4e6df63 | 1996 | { |
00c8cb0a AF |
1997 | ARMCPU *cpu = arm_env_get_cpu(env); |
1998 | ||
d4e6df63 PM |
1999 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2000 | /* With LPAE the TTBCR could result in a change of ASID | |
2001 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2002 | */ | |
00c8cb0a | 2003 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 2004 | } |
c4241c7d | 2005 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2006 | } |
2007 | ||
ecce5c3c PM |
2008 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2009 | { | |
11f136ee FA |
2010 | TCR *tcr = raw_ptr(env, ri); |
2011 | ||
2012 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2013 | * the TCR being reset. | |
2014 | */ | |
2015 | tcr->raw_tcr = 0; | |
2016 | tcr->mask = 0; | |
2017 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2018 | } |
2019 | ||
cb2e37df PM |
2020 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2021 | uint64_t value) | |
2022 | { | |
00c8cb0a | 2023 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2024 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2025 | |
cb2e37df | 2026 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 2027 | tlb_flush(CPU(cpu), 1); |
11f136ee | 2028 | tcr->raw_tcr = value; |
cb2e37df PM |
2029 | } |
2030 | ||
327ed10f PM |
2031 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2032 | uint64_t value) | |
2033 | { | |
2034 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2035 | * must flush the TLB. | |
2036 | */ | |
2037 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2038 | ARMCPU *cpu = arm_env_get_cpu(env); |
2039 | ||
2040 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
2041 | } |
2042 | raw_write(env, ri, value); | |
2043 | } | |
2044 | ||
8e5d75c9 | 2045 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2046 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2047 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2048 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2049 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2050 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2051 | .access = PL1_RW, .resetvalue = 0, |
2052 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2053 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2054 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2055 | .access = PL1_RW, .resetvalue = 0, | |
2056 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2057 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2058 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2059 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2060 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2061 | .resetvalue = 0, }, | |
2062 | REGINFO_SENTINEL | |
2063 | }; | |
2064 | ||
2065 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2066 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2067 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2068 | .access = PL1_RW, | |
d81c519c | 2069 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2070 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2071 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2072 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2073 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2074 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2075 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2076 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2077 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2078 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2079 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2080 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2081 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2082 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2083 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2084 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2085 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2086 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2087 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2088 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2089 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2090 | REGINFO_SENTINEL |
2091 | }; | |
2092 | ||
c4241c7d PM |
2093 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2094 | uint64_t value) | |
1047b9d7 PM |
2095 | { |
2096 | env->cp15.c15_ticonfig = value & 0xe7; | |
2097 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2098 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2099 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2100 | } |
2101 | ||
c4241c7d PM |
2102 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2103 | uint64_t value) | |
1047b9d7 PM |
2104 | { |
2105 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2106 | } |
2107 | ||
c4241c7d PM |
2108 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2109 | uint64_t value) | |
1047b9d7 PM |
2110 | { |
2111 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2112 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2113 | } |
2114 | ||
c4241c7d PM |
2115 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2116 | uint64_t value) | |
c4804214 PM |
2117 | { |
2118 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2119 | * containing a dirty line; cache flush operations have to reset these. | |
2120 | */ | |
2121 | env->cp15.c15_i_max = 0x000; | |
2122 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2123 | } |
2124 | ||
18032bec PM |
2125 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2126 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2127 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2128 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2129 | .resetvalue = 0, }, |
1047b9d7 PM |
2130 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2131 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2132 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2133 | .access = PL1_RW, | |
2134 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2135 | .writefn = omap_ticonfig_write }, | |
2136 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2137 | .access = PL1_RW, | |
2138 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2139 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2140 | .access = PL1_RW, .resetvalue = 0xff0, | |
2141 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2142 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2143 | .access = PL1_RW, | |
2144 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2145 | .writefn = omap_threadid_write }, | |
2146 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2147 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2148 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2149 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2150 | /* TODO: Peripheral port remap register: | |
2151 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2152 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2153 | * when MMU is off. | |
2154 | */ | |
c4804214 | 2155 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2156 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2157 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2158 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2159 | { .name = "C9", .cp = 15, .crn = 9, |
2160 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2161 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2162 | REGINFO_SENTINEL |
2163 | }; | |
2164 | ||
c4241c7d PM |
2165 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2166 | uint64_t value) | |
1047b9d7 | 2167 | { |
c0f4af17 | 2168 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2169 | } |
2170 | ||
2171 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2172 | { .name = "XSCALE_CPAR", | |
2173 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2174 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2175 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2176 | { .name = "XSCALE_AUXCR", |
2177 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2178 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2179 | .resetvalue = 0, }, | |
3b771579 PM |
2180 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2181 | * and hope the guest does not really rely on cache behaviour. | |
2182 | */ | |
2183 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2184 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2185 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2186 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2187 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2188 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2189 | { .name = "XSCALE_DCACHE_LOCK", | |
2190 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2191 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2192 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2193 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2194 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2195 | REGINFO_SENTINEL |
2196 | }; | |
2197 | ||
2198 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2199 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2200 | * implementation of this implementation-defined space. | |
2201 | * Ideally this should eventually disappear in favour of actually | |
2202 | * implementing the correct behaviour for all cores. | |
2203 | */ | |
2204 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2205 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2206 | .access = PL1_RW, |
7a0e58fa | 2207 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2208 | .resetvalue = 0 }, |
18032bec PM |
2209 | REGINFO_SENTINEL |
2210 | }; | |
2211 | ||
c4804214 PM |
2212 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2213 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2214 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2215 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2216 | .resetvalue = 0 }, |
c4804214 PM |
2217 | REGINFO_SENTINEL |
2218 | }; | |
2219 | ||
2220 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2221 | /* We never have a a block transfer operation in progress */ | |
2222 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2223 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2224 | .resetvalue = 0 }, |
30b05bba PM |
2225 | /* The cache ops themselves: these all NOP for QEMU */ |
2226 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2227 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2228 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2229 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2230 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2231 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2232 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2233 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2234 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2235 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2236 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2237 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2238 | REGINFO_SENTINEL |
2239 | }; | |
2240 | ||
2241 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2242 | /* The cache test-and-clean instructions always return (1 << 30) | |
2243 | * to indicate that there are no dirty cache lines. | |
2244 | */ | |
2245 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2246 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2247 | .resetvalue = (1 << 30) }, |
c4804214 | 2248 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2249 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2250 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2251 | REGINFO_SENTINEL |
2252 | }; | |
2253 | ||
34f90529 PM |
2254 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2255 | /* Ignore ReadBuffer accesses */ | |
2256 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2257 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2258 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2259 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2260 | REGINFO_SENTINEL |
2261 | }; | |
2262 | ||
c4241c7d | 2263 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 2264 | { |
eb5e1d3c PF |
2265 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2266 | uint64_t mpidr = cpu->mp_affinity; | |
2267 | ||
81bdde9d | 2268 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2269 | mpidr |= (1U << 31); |
81bdde9d PM |
2270 | /* Cores which are uniprocessor (non-coherent) |
2271 | * but still implement the MP extensions set | |
a8e81b31 | 2272 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2273 | */ |
a8e81b31 PC |
2274 | if (cpu->mp_is_up) { |
2275 | mpidr |= (1u << 30); | |
2276 | } | |
81bdde9d | 2277 | } |
c4241c7d | 2278 | return mpidr; |
81bdde9d PM |
2279 | } |
2280 | ||
2281 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
2282 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2283 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2284 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2285 | REGINFO_SENTINEL |
2286 | }; | |
2287 | ||
7ac681cf | 2288 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2289 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2290 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2291 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2292 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2293 | .resetvalue = 0 }, |
b0fe2427 | 2294 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2295 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2296 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2297 | .resetvalue = 0 }, |
891a2fe7 | 2298 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2299 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2300 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2301 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2302 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2303 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2304 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2305 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2306 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2307 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2308 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2309 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2310 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2311 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2312 | REGINFO_SENTINEL |
2313 | }; | |
2314 | ||
c4241c7d | 2315 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2316 | { |
c4241c7d | 2317 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2318 | } |
2319 | ||
c4241c7d PM |
2320 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2321 | uint64_t value) | |
b0d2b7d0 PM |
2322 | { |
2323 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2324 | } |
2325 | ||
c4241c7d | 2326 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2327 | { |
c4241c7d | 2328 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2329 | } |
2330 | ||
c4241c7d PM |
2331 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2332 | uint64_t value) | |
b0d2b7d0 PM |
2333 | { |
2334 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2335 | } |
2336 | ||
c2b820fe PM |
2337 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2338 | { | |
137feaa9 | 2339 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2340 | return CP_ACCESS_TRAP; |
2341 | } | |
2342 | return CP_ACCESS_OK; | |
2343 | } | |
2344 | ||
2345 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2346 | uint64_t value) | |
2347 | { | |
2348 | env->daif = value & PSTATE_DAIF; | |
2349 | } | |
2350 | ||
8af35c37 PM |
2351 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
2352 | const ARMCPRegInfo *ri) | |
2353 | { | |
2354 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2355 | * SCTLR_EL1.UCI is set. | |
2356 | */ | |
137feaa9 | 2357 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2358 | return CP_ACCESS_TRAP; |
2359 | } | |
2360 | return CP_ACCESS_OK; | |
2361 | } | |
2362 | ||
dbb1fb27 AB |
2363 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2364 | * Page D4-1736 (DDI0487A.b) | |
2365 | */ | |
2366 | ||
168aa23b PM |
2367 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2368 | uint64_t value) | |
2369 | { | |
2370 | /* Invalidate by VA (AArch64 version) */ | |
31b030d4 | 2371 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
2372 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
2373 | ||
31b030d4 | 2374 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
2375 | } |
2376 | ||
2377 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2378 | uint64_t value) | |
2379 | { | |
2380 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
31b030d4 | 2381 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
2382 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
2383 | ||
31b030d4 | 2384 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
2385 | } |
2386 | ||
2387 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2388 | uint64_t value) | |
2389 | { | |
2390 | /* Invalidate by ASID (AArch64 version) */ | |
00c8cb0a | 2391 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 2392 | int asid = extract64(value, 48, 16); |
00c8cb0a | 2393 | tlb_flush(CPU(cpu), asid == 0); |
168aa23b PM |
2394 | } |
2395 | ||
fa439fc5 PM |
2396 | static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2397 | uint64_t value) | |
2398 | { | |
2399 | CPUState *other_cs; | |
2400 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2401 | ||
2402 | CPU_FOREACH(other_cs) { | |
2403 | tlb_flush_page(other_cs, pageaddr); | |
2404 | } | |
2405 | } | |
2406 | ||
2407 | static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2408 | uint64_t value) | |
2409 | { | |
2410 | CPUState *other_cs; | |
2411 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2412 | ||
2413 | CPU_FOREACH(other_cs) { | |
2414 | tlb_flush_page(other_cs, pageaddr); | |
2415 | } | |
2416 | } | |
2417 | ||
2418 | static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2419 | uint64_t value) | |
2420 | { | |
2421 | CPUState *other_cs; | |
2422 | int asid = extract64(value, 48, 16); | |
2423 | ||
2424 | CPU_FOREACH(other_cs) { | |
2425 | tlb_flush(other_cs, asid == 0); | |
2426 | } | |
2427 | } | |
2428 | ||
aca3f40b PM |
2429 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2430 | { | |
2431 | /* We don't implement EL2, so the only control on DC ZVA is the | |
2432 | * bit in the SCTLR which can prohibit access for EL0. | |
2433 | */ | |
137feaa9 | 2434 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
2435 | return CP_ACCESS_TRAP; |
2436 | } | |
2437 | return CP_ACCESS_OK; | |
2438 | } | |
2439 | ||
2440 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2441 | { | |
2442 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2443 | int dzp_bit = 1 << 4; | |
2444 | ||
2445 | /* DZP indicates whether DC ZVA access is allowed */ | |
14e5f106 | 2446 | if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { |
aca3f40b PM |
2447 | dzp_bit = 0; |
2448 | } | |
2449 | return cpu->dcz_blocksize | dzp_bit; | |
2450 | } | |
2451 | ||
f502cfc2 PM |
2452 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2453 | { | |
cdcf1405 | 2454 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
2455 | /* Access to SP_EL0 is undefined if it's being used as |
2456 | * the stack pointer. | |
2457 | */ | |
2458 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2459 | } | |
2460 | return CP_ACCESS_OK; | |
2461 | } | |
2462 | ||
2463 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2464 | { | |
2465 | return env->pstate & PSTATE_SP; | |
2466 | } | |
2467 | ||
2468 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
2469 | { | |
2470 | update_spsel(env, val); | |
2471 | } | |
2472 | ||
137feaa9 FA |
2473 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2474 | uint64_t value) | |
2475 | { | |
2476 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2477 | ||
2478 | if (raw_read(env, ri) == value) { | |
2479 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
2480 | * to do a lot of pointless SCTLR writes. | |
2481 | */ | |
2482 | return; | |
2483 | } | |
2484 | ||
2485 | raw_write(env, ri, value); | |
2486 | /* ??? Lots of these bits are not implemented. */ | |
2487 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
2488 | tlb_flush(CPU(cpu), 1); | |
2489 | } | |
2490 | ||
b0d2b7d0 PM |
2491 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
2492 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
2493 | * significantly for system emulation of AArch64 CPUs. | |
2494 | */ | |
2495 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
2496 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
2497 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
2498 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
2499 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 2500 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
2501 | .access = PL0_RW, .accessfn = aa64_daif_access, |
2502 | .fieldoffset = offsetof(CPUARMState, daif), | |
2503 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
2504 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
2505 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
2506 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
2507 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
2508 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
2509 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
2510 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
2511 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 2512 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
2513 | .readfn = aa64_dczid_read }, |
2514 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
2515 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
2516 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
2517 | #ifndef CONFIG_USER_ONLY | |
2518 | /* Avoid overhead of an access check that always passes in user-mode */ | |
2519 | .accessfn = aa64_zva_access, | |
2520 | #endif | |
2521 | }, | |
0eef9d98 PM |
2522 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
2523 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
2524 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
2525 | /* Cache ops: all NOPs since we don't emulate caches */ |
2526 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
2527 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2528 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2529 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
2530 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2531 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2532 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
2533 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
2534 | .access = PL0_W, .type = ARM_CP_NOP, | |
2535 | .accessfn = aa64_cacheop_access }, | |
2536 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
2537 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2538 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2539 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
2540 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2541 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2542 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
2543 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
2544 | .access = PL0_W, .type = ARM_CP_NOP, | |
2545 | .accessfn = aa64_cacheop_access }, | |
2546 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
2547 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2548 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2549 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
2550 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
2551 | .access = PL0_W, .type = ARM_CP_NOP, | |
2552 | .accessfn = aa64_cacheop_access }, | |
2553 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
2554 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
2555 | .access = PL0_W, .type = ARM_CP_NOP, | |
2556 | .accessfn = aa64_cacheop_access }, | |
2557 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
2558 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2559 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b | 2560 | /* TLBI operations */ |
bdb9e2d6 EI |
2561 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
2562 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
2563 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2564 | .writefn = tlbiall_write }, | |
2565 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, | |
2566 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
2567 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2a6332d9 | 2568 | .writefn = tlbiall_is_write }, |
168aa23b | 2569 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2570 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 2571 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2572 | .writefn = tlbiall_is_write }, |
168aa23b | 2573 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2574 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 2575 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2576 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2577 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2578 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 2579 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2580 | .writefn = tlbi_aa64_asid_is_write }, |
168aa23b | 2581 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2582 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 2583 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2584 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2585 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2586 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2587 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2588 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2589 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2590 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 2591 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2592 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2593 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2594 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 2595 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2596 | .writefn = tlbiall_write }, |
2597 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2598 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 2599 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2600 | .writefn = tlbi_aa64_va_write }, |
2601 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2602 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 2603 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2604 | .writefn = tlbi_aa64_asid_write }, |
2605 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2606 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 2607 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2608 | .writefn = tlbi_aa64_vaa_write }, |
2609 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2610 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 2611 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2612 | .writefn = tlbi_aa64_va_write }, |
2613 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2614 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 2615 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b | 2616 | .writefn = tlbi_aa64_vaa_write }, |
19525524 PM |
2617 | #ifndef CONFIG_USER_ONLY |
2618 | /* 64 bit address translation operations */ | |
2619 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
2620 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 2621 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2622 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
2623 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 2624 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2625 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
2626 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 2627 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2628 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
2629 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 2630 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 | 2631 | #endif |
995939a6 | 2632 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 2633 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2634 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 2635 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 2636 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 2637 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 2638 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 2639 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 2640 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 2641 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
9449fdf6 PM |
2642 | /* 32 bit cache operations */ |
2643 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2644 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2645 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
2646 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2647 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2648 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2649 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
2650 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2651 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
2652 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2653 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
2654 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2655 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2656 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2657 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2658 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2659 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
2660 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2661 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2662 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2663 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
2664 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2665 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
2666 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2667 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2668 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2669 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
2670 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
2671 | .access = PL1_RW, .resetvalue = 0, | |
2672 | .writefn = dacr_write, .raw_writefn = raw_write, | |
2673 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
2674 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 2675 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2676 | .type = ARM_CP_ALIAS, |
a0618a19 | 2677 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
2678 | .access = PL1_RW, |
2679 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 2680 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2681 | .type = ARM_CP_ALIAS, |
a65f1de9 | 2682 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
7847f9ea | 2683 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) }, |
f502cfc2 PM |
2684 | /* We rely on the access checks not allowing the guest to write to the |
2685 | * state field when SPSel indicates that it's being used as the stack | |
2686 | * pointer. | |
2687 | */ | |
2688 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
2689 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
2690 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 2691 | .type = ARM_CP_ALIAS, |
f502cfc2 | 2692 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
2693 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
2694 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2695 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 2696 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
2697 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
2698 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 2699 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 2700 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
b0d2b7d0 PM |
2701 | REGINFO_SENTINEL |
2702 | }; | |
2703 | ||
d42e3c26 | 2704 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 2705 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
2706 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
2707 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2708 | .access = PL2_RW, | |
2709 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 2710 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2711 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
2712 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
2713 | .access = PL2_RW, | |
2714 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
2715 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
2716 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
2717 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
2718 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
2719 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
2720 | .access = PL2_RW, .type = ARM_CP_CONST, | |
2721 | .resetvalue = 0 }, | |
2722 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
2723 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
2724 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
06ec4c8c EI |
2725 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
2726 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
2727 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
2728 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
2729 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
2730 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
2731 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
2732 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
2733 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
2734 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
2735 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
2736 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2737 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
2738 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
2739 | .resetvalue = 0 }, | |
0b6440af EI |
2740 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
2741 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
2742 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
2743 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
2744 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
2745 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2746 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
2747 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
2748 | .resetvalue = 0 }, | |
b0e66d95 EI |
2749 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
2750 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
2751 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2752 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
2753 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
2754 | .resetvalue = 0 }, | |
2755 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
2756 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
2757 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2758 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
2759 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
2760 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
2761 | REGINFO_SENTINEL |
2762 | }; | |
2763 | ||
f149e3e8 EI |
2764 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
2765 | { | |
2766 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2767 | uint64_t valid_mask = HCR_MASK; | |
2768 | ||
2769 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2770 | valid_mask &= ~HCR_HCD; | |
2771 | } else { | |
2772 | valid_mask &= ~HCR_TSC; | |
2773 | } | |
2774 | ||
2775 | /* Clear RES0 bits. */ | |
2776 | value &= valid_mask; | |
2777 | ||
2778 | /* These bits change the MMU setup: | |
2779 | * HCR_VM enables stage 2 translation | |
2780 | * HCR_PTW forbids certain page-table setups | |
2781 | * HCR_DC Disables stage1 and enables stage2 translation | |
2782 | */ | |
2783 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
2784 | tlb_flush(CPU(cpu), 1); | |
2785 | } | |
2786 | raw_write(env, ri, value); | |
2787 | } | |
2788 | ||
4771cd01 | 2789 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
2790 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
2791 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
2792 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
2793 | .writefn = hcr_write }, | |
0c17d68c FA |
2794 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
2795 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
2796 | .access = PL2_RW, .resetvalue = 0, | |
2797 | .writefn = dacr_write, .raw_writefn = raw_write, | |
2798 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3b685ba7 | 2799 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2800 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
2801 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
2802 | .access = PL2_RW, | |
2803 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 2804 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2805 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
2806 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
2807 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
88ca1c2d FA |
2808 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, |
2809 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
2810 | .access = PL2_RW, .resetvalue = 0, | |
2811 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
63b60551 EI |
2812 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
2813 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
2814 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 2815 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2816 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
2817 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
2818 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, | |
d42e3c26 EI |
2819 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
2820 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2821 | .access = PL2_RW, .writefn = vbar_write, | |
2822 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
2823 | .resetvalue = 0 }, | |
884b4dee GB |
2824 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
2825 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2826 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 2827 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
2828 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
2829 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
2830 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
2831 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
2832 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
2833 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
2834 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
2835 | .resetvalue = 0 }, | |
2836 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
2837 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
2838 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
2839 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
06ec4c8c EI |
2840 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
2841 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
2842 | .access = PL2_RW, .writefn = vmsa_tcr_el1_write, | |
2843 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
2844 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, | |
b9cb5323 EI |
2845 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
2846 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
2847 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
2848 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
2849 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
2850 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
2851 | .access = PL2_RW, .resetvalue = 0, | |
2852 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
2853 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
2854 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
2855 | .access = PL2_RW, .resetvalue = 0, | |
2856 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
2857 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
2858 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 2859 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
51da9014 EI |
2860 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
2861 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
2862 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
2863 | .writefn = tlbiall_write }, | |
8742d49d EI |
2864 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
2865 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
2866 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
2867 | .writefn = tlbi_aa64_vaa_write }, | |
2868 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, | |
2869 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
2870 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
2871 | .writefn = tlbi_aa64_vaa_write }, | |
edac4d8a | 2872 | #ifndef CONFIG_USER_ONLY |
0b6440af EI |
2873 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
2874 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
2875 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
2876 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
2877 | * both ARMv7 and ARMv8. | |
2878 | */ | |
2879 | .access = PL2_RW, .resetvalue = 3, | |
2880 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
2881 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
2882 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
2883 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
2884 | .writefn = gt_cntvoff_write, | |
2885 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
2886 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
2887 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
2888 | .writefn = gt_cntvoff_write, | |
2889 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
2890 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
2891 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
2892 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
2893 | .type = ARM_CP_IO, .access = PL2_RW, | |
2894 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
2895 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
2896 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
2897 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
2898 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
2899 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
2900 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
2901 | .type = ARM_CP_IO, .access = PL2_RW, | |
2902 | .resetfn = gt_hyp_timer_reset, | |
2903 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
2904 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
2905 | .type = ARM_CP_IO, | |
2906 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
2907 | .access = PL2_RW, | |
2908 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
2909 | .resetvalue = 0, | |
2910 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 2911 | #endif |
3b685ba7 EI |
2912 | REGINFO_SENTINEL |
2913 | }; | |
2914 | ||
60fb1a87 GB |
2915 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
2916 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
2917 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
2918 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
2919 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 2920 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 GB |
2921 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
2922 | .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 2923 | .writefn = scr_write }, |
60fb1a87 GB |
2924 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
2925 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
2926 | .access = PL3_RW, .resetvalue = 0, | |
2927 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
2928 | { .name = "SDER", | |
2929 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
2930 | .access = PL3_RW, .resetvalue = 0, | |
2931 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
2932 | /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ | |
2933 | { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
2934 | .access = PL3_W | PL1_R, .resetvalue = 0, | |
2935 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, | |
2936 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
2937 | .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, | |
2938 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, | |
137feaa9 | 2939 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
e46e1a74 | 2940 | .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */ |
137feaa9 FA |
2941 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, |
2942 | .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
2943 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, | |
7dd8c9af FA |
2944 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
2945 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
2946 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2947 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
2948 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
2949 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
2950 | .access = PL3_RW, .writefn = vmsa_tcr_el1_write, | |
2951 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
2952 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, | |
81547d66 | 2953 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2954 | .type = ARM_CP_ALIAS, |
81547d66 EI |
2955 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
2956 | .access = PL3_RW, | |
2957 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 2958 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2959 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
2960 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
2961 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
2962 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
2963 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
2964 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 2965 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2966 | .type = ARM_CP_ALIAS, |
81547d66 EI |
2967 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
2968 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, | |
a1ba125c EI |
2969 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
2970 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
2971 | .access = PL3_RW, .writefn = vbar_write, | |
2972 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
2973 | .resetvalue = 0 }, | |
c6f19164 GB |
2974 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
2975 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
2976 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
2977 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
0f1a3b24 FA |
2978 | REGINFO_SENTINEL |
2979 | }; | |
2980 | ||
7da845b0 PM |
2981 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2982 | { | |
2983 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
2984 | * but the AArch32 CTR has its own reginfo struct) | |
2985 | */ | |
137feaa9 | 2986 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
2987 | return CP_ACCESS_TRAP; |
2988 | } | |
2989 | return CP_ACCESS_OK; | |
2990 | } | |
2991 | ||
50300698 | 2992 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 2993 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
2994 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
2995 | * unlike DBGDRAR it is never accessible from EL0. | |
2996 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
2997 | * accessor. | |
50300698 PM |
2998 | */ |
2999 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
3000 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
3001 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
3002 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
3003 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 PM |
3004 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
3005 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 3006 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
3007 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
3008 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
0e5e8935 PM |
3009 | .access = PL1_RW, |
3010 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
3011 | .resetvalue = 0 }, | |
5e8b12ff PM |
3012 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
3013 | * We don't implement the configurable EL0 access. | |
3014 | */ | |
3015 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
3016 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3017 | .type = ARM_CP_ALIAS, |
5e8b12ff | 3018 | .access = PL1_R, |
b061a82b | 3019 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
50300698 | 3020 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
10aae104 PM |
3021 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
3022 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
50300698 | 3023 | .access = PL1_W, .type = ARM_CP_NOP }, |
5e8b12ff PM |
3024 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
3025 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
3026 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
3027 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
3028 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't | |
3029 | * implement vector catch debug events yet. | |
3030 | */ | |
3031 | { .name = "DBGVCR", | |
3032 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
3033 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
50300698 PM |
3034 | REGINFO_SENTINEL |
3035 | }; | |
3036 | ||
3037 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
3038 | /* 64 bit access versions of the (dummy) debug registers */ | |
3039 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
3040 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3041 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
3042 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3043 | REGINFO_SENTINEL | |
3044 | }; | |
3045 | ||
9ee98ce8 PM |
3046 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
3047 | { | |
3048 | CPUARMState *env = &cpu->env; | |
3049 | vaddr len = 0; | |
3050 | vaddr wvr = env->cp15.dbgwvr[n]; | |
3051 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
3052 | int mask; | |
3053 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
3054 | ||
3055 | if (env->cpu_watchpoint[n]) { | |
3056 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
3057 | env->cpu_watchpoint[n] = NULL; | |
3058 | } | |
3059 | ||
3060 | if (!extract64(wcr, 0, 1)) { | |
3061 | /* E bit clear : watchpoint disabled */ | |
3062 | return; | |
3063 | } | |
3064 | ||
3065 | switch (extract64(wcr, 3, 2)) { | |
3066 | case 0: | |
3067 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
3068 | return; | |
3069 | case 1: | |
3070 | flags |= BP_MEM_READ; | |
3071 | break; | |
3072 | case 2: | |
3073 | flags |= BP_MEM_WRITE; | |
3074 | break; | |
3075 | case 3: | |
3076 | flags |= BP_MEM_ACCESS; | |
3077 | break; | |
3078 | } | |
3079 | ||
3080 | /* Attempts to use both MASK and BAS fields simultaneously are | |
3081 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
3082 | * thus generating a watchpoint for every byte in the masked region. | |
3083 | */ | |
3084 | mask = extract64(wcr, 24, 4); | |
3085 | if (mask == 1 || mask == 2) { | |
3086 | /* Reserved values of MASK; we must act as if the mask value was | |
3087 | * some non-reserved value, or as if the watchpoint were disabled. | |
3088 | * We choose the latter. | |
3089 | */ | |
3090 | return; | |
3091 | } else if (mask) { | |
3092 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
3093 | len = 1ULL << mask; | |
3094 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
3095 | * whether the watchpoint fires when the unmasked bits match; we opt | |
3096 | * to generate the exceptions. | |
3097 | */ | |
3098 | wvr &= ~(len - 1); | |
3099 | } else { | |
3100 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
3101 | int bas = extract64(wcr, 5, 8); | |
3102 | int basstart; | |
3103 | ||
3104 | if (bas == 0) { | |
3105 | /* This must act as if the watchpoint is disabled */ | |
3106 | return; | |
3107 | } | |
3108 | ||
3109 | if (extract64(wvr, 2, 1)) { | |
3110 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
3111 | * ignored, and BAS[3:0] define which bytes to watch. | |
3112 | */ | |
3113 | bas &= 0xf; | |
3114 | } | |
3115 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
3116 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
3117 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
3118 | * We choose to ignore any non-zero bits after the first range of 1s. | |
3119 | */ | |
3120 | basstart = ctz32(bas); | |
3121 | len = cto32(bas >> basstart); | |
3122 | wvr += basstart; | |
3123 | } | |
3124 | ||
3125 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
3126 | &env->cpu_watchpoint[n]); | |
3127 | } | |
3128 | ||
3129 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
3130 | { | |
3131 | int i; | |
3132 | CPUARMState *env = &cpu->env; | |
3133 | ||
3134 | /* Completely clear out existing QEMU watchpoints and our array, to | |
3135 | * avoid possible stale entries following migration load. | |
3136 | */ | |
3137 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
3138 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
3139 | ||
3140 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
3141 | hw_watchpoint_update(cpu, i); | |
3142 | } | |
3143 | } | |
3144 | ||
3145 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3146 | uint64_t value) | |
3147 | { | |
3148 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3149 | int i = ri->crm; | |
3150 | ||
3151 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
3152 | * register reads and behaves as if values written are sign extended. | |
3153 | * Bits [1:0] are RES0. | |
3154 | */ | |
3155 | value = sextract64(value, 0, 49) & ~3ULL; | |
3156 | ||
3157 | raw_write(env, ri, value); | |
3158 | hw_watchpoint_update(cpu, i); | |
3159 | } | |
3160 | ||
3161 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3162 | uint64_t value) | |
3163 | { | |
3164 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3165 | int i = ri->crm; | |
3166 | ||
3167 | raw_write(env, ri, value); | |
3168 | hw_watchpoint_update(cpu, i); | |
3169 | } | |
3170 | ||
46747d15 PM |
3171 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
3172 | { | |
3173 | CPUARMState *env = &cpu->env; | |
3174 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
3175 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
3176 | vaddr addr; | |
3177 | int bt; | |
3178 | int flags = BP_CPU; | |
3179 | ||
3180 | if (env->cpu_breakpoint[n]) { | |
3181 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
3182 | env->cpu_breakpoint[n] = NULL; | |
3183 | } | |
3184 | ||
3185 | if (!extract64(bcr, 0, 1)) { | |
3186 | /* E bit clear : watchpoint disabled */ | |
3187 | return; | |
3188 | } | |
3189 | ||
3190 | bt = extract64(bcr, 20, 4); | |
3191 | ||
3192 | switch (bt) { | |
3193 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
3194 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
3195 | qemu_log_mask(LOG_UNIMP, | |
3196 | "arm: address mismatch breakpoint types not implemented"); | |
3197 | return; | |
3198 | case 0: /* unlinked address match */ | |
3199 | case 1: /* linked address match */ | |
3200 | { | |
3201 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
3202 | * we behave as if the register was sign extended. Bits [1:0] are | |
3203 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
3204 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
3205 | * a bp will fire if the addresses covered by the bp and the addresses | |
3206 | * covered by the insn overlap but the insn doesn't start at the | |
3207 | * start of the bp address range. We choose to require the insn and | |
3208 | * the bp to have the same address. The constraints on writing to | |
3209 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
3210 | * 0b0000 => no breakpoint | |
3211 | * 0b0011 => breakpoint on addr | |
3212 | * 0b1100 => breakpoint on addr + 2 | |
3213 | * 0b1111 => breakpoint on addr | |
3214 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
3215 | */ | |
3216 | int bas = extract64(bcr, 5, 4); | |
3217 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
3218 | if (bas == 0) { | |
3219 | return; | |
3220 | } | |
3221 | if (bas == 0xc) { | |
3222 | addr += 2; | |
3223 | } | |
3224 | break; | |
3225 | } | |
3226 | case 2: /* unlinked context ID match */ | |
3227 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
3228 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
3229 | qemu_log_mask(LOG_UNIMP, | |
3230 | "arm: unlinked context breakpoint types not implemented"); | |
3231 | return; | |
3232 | case 9: /* linked VMID match (reserved if no EL2) */ | |
3233 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
3234 | case 3: /* linked context ID match */ | |
3235 | default: | |
3236 | /* We must generate no events for Linked context matches (unless | |
3237 | * they are linked to by some other bp/wp, which is handled in | |
3238 | * updates for the linking bp/wp). We choose to also generate no events | |
3239 | * for reserved values. | |
3240 | */ | |
3241 | return; | |
3242 | } | |
3243 | ||
3244 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
3245 | } | |
3246 | ||
3247 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
3248 | { | |
3249 | int i; | |
3250 | CPUARMState *env = &cpu->env; | |
3251 | ||
3252 | /* Completely clear out existing QEMU breakpoints and our array, to | |
3253 | * avoid possible stale entries following migration load. | |
3254 | */ | |
3255 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
3256 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
3257 | ||
3258 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
3259 | hw_breakpoint_update(cpu, i); | |
3260 | } | |
3261 | } | |
3262 | ||
3263 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3264 | uint64_t value) | |
3265 | { | |
3266 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3267 | int i = ri->crm; | |
3268 | ||
3269 | raw_write(env, ri, value); | |
3270 | hw_breakpoint_update(cpu, i); | |
3271 | } | |
3272 | ||
3273 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3274 | uint64_t value) | |
3275 | { | |
3276 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3277 | int i = ri->crm; | |
3278 | ||
3279 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
3280 | * copy of BAS[0]. | |
3281 | */ | |
3282 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
3283 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
3284 | ||
3285 | raw_write(env, ri, value); | |
3286 | hw_breakpoint_update(cpu, i); | |
3287 | } | |
3288 | ||
50300698 | 3289 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 3290 | { |
50300698 PM |
3291 | /* Define v7 and v8 architectural debug registers. |
3292 | * These are just dummy implementations for now. | |
0b45451e PM |
3293 | */ |
3294 | int i; | |
3ff6fc91 | 3295 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
3296 | ARMCPRegInfo dbgdidr = { |
3297 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
3298 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
3299 | }; | |
3300 | ||
3ff6fc91 | 3301 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
3302 | brps = extract32(cpu->dbgdidr, 24, 4); |
3303 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
3304 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
3305 | ||
3306 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
3307 | |
3308 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
3309 | * of the debug registers such as number of breakpoints; | |
3310 | * check that if they both exist then they agree. | |
3311 | */ | |
3312 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
3313 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
3314 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 3315 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 3316 | } |
0b45451e | 3317 | |
48eb3ae6 | 3318 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
3319 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
3320 | ||
3321 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
3322 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
3323 | } | |
3324 | ||
48eb3ae6 | 3325 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 3326 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
3327 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
3328 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
0b45451e | 3329 | .access = PL1_RW, |
46747d15 PM |
3330 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
3331 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
3332 | }, | |
10aae104 PM |
3333 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
3334 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
0b45451e | 3335 | .access = PL1_RW, |
46747d15 PM |
3336 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
3337 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
3338 | }, | |
48eb3ae6 PM |
3339 | REGINFO_SENTINEL |
3340 | }; | |
3341 | define_arm_cp_regs(cpu, dbgregs); | |
3342 | } | |
3343 | ||
3344 | for (i = 0; i < wrps + 1; i++) { | |
3345 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
3346 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
3347 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
0b45451e | 3348 | .access = PL1_RW, |
9ee98ce8 PM |
3349 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
3350 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
3351 | }, | |
10aae104 PM |
3352 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
3353 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
0b45451e | 3354 | .access = PL1_RW, |
9ee98ce8 PM |
3355 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
3356 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
3357 | }, | |
3358 | REGINFO_SENTINEL | |
0b45451e PM |
3359 | }; |
3360 | define_arm_cp_regs(cpu, dbgregs); | |
3361 | } | |
3362 | } | |
3363 | ||
2ceb98c0 PM |
3364 | void register_cp_regs_for_features(ARMCPU *cpu) |
3365 | { | |
3366 | /* Register all the coprocessor registers based on feature bits */ | |
3367 | CPUARMState *env = &cpu->env; | |
3368 | if (arm_feature(env, ARM_FEATURE_M)) { | |
3369 | /* M profile has no coprocessor registers */ | |
3370 | return; | |
3371 | } | |
3372 | ||
e9aa6c21 | 3373 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
3374 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
3375 | /* Must go early as it is full of wildcards that may be | |
3376 | * overridden by later definitions. | |
3377 | */ | |
3378 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
3379 | } | |
3380 | ||
7d57f408 | 3381 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
3382 | /* The ID registers all have impdef reset values */ |
3383 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
3384 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
3385 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
3386 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3387 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
3388 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
3389 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
3390 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3391 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
3392 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
3393 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
3394 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3395 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
3396 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
3397 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
3398 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3399 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
3400 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
3401 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
3402 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3403 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
3404 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
3405 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
3406 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3407 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
3408 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
3409 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
3410 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3411 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
3412 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
3413 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
3414 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3415 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
3416 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
3417 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
3418 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3419 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
3420 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
3421 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
3422 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3423 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
3424 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
3425 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
3426 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3427 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
3428 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
3429 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
3430 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3431 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
3432 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
3433 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
3434 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3435 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
3436 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
3437 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
3438 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
3439 | .resetvalue = cpu->id_isar5 }, |
3440 | /* 6..7 are as yet unallocated and must RAZ */ | |
3441 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
3442 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
3443 | .resetvalue = 0 }, | |
3444 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
3445 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
3446 | .resetvalue = 0 }, | |
3447 | REGINFO_SENTINEL | |
3448 | }; | |
3449 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
3450 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
3451 | } else { | |
3452 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
3453 | } | |
4d31c596 PM |
3454 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
3455 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
3456 | } | |
5e5cf9e3 PC |
3457 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
3458 | !arm_feature(env, ARM_FEATURE_MPU)) { | |
995939a6 PM |
3459 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
3460 | } | |
e9aa6c21 | 3461 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 3462 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
3463 | * field as main ID register, and we implement only the cycle |
3464 | * count register. | |
200ac0ef | 3465 | */ |
7c2cb42b | 3466 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
3467 | ARMCPRegInfo pmcr = { |
3468 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 3469 | .access = PL0_RW, |
7a0e58fa | 3470 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 3471 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
3472 | .accessfn = pmreg_access, .writefn = pmcr_write, |
3473 | .raw_writefn = raw_write, | |
200ac0ef | 3474 | }; |
8521466b AF |
3475 | ARMCPRegInfo pmcr64 = { |
3476 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
3477 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
3478 | .access = PL0_RW, .accessfn = pmreg_access, | |
3479 | .type = ARM_CP_IO, | |
3480 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
3481 | .resetvalue = cpu->midr & 0xff000000, | |
3482 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
3483 | }; | |
7c2cb42b | 3484 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 3485 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 3486 | #endif |
776d4e5c | 3487 | ARMCPRegInfo clidr = { |
7da845b0 PM |
3488 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
3489 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
3490 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
3491 | }; | |
776d4e5c | 3492 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 3493 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 3494 | define_debug_regs(cpu); |
7d57f408 PM |
3495 | } else { |
3496 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 3497 | } |
b0d2b7d0 | 3498 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
3499 | /* AArch64 ID registers, which all have impdef reset values */ |
3500 | ARMCPRegInfo v8_idregs[] = { | |
3501 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3502 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
3503 | .access = PL1_R, .type = ARM_CP_CONST, | |
3504 | .resetvalue = cpu->id_aa64pfr0 }, | |
3505 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3506 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
3507 | .access = PL1_R, .type = ARM_CP_CONST, | |
3508 | .resetvalue = cpu->id_aa64pfr1}, | |
3509 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3510 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
3511 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 3512 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
3513 | * implement the PMU. Not advertising it prevents the guest |
3514 | * from trying to use it and getting UNDEFs on registers we | |
3515 | * don't implement. | |
3516 | */ | |
3517 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
3518 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
3519 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
3520 | .access = PL1_R, .type = ARM_CP_CONST, | |
3521 | .resetvalue = cpu->id_aa64dfr1 }, | |
3522 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3523 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
3524 | .access = PL1_R, .type = ARM_CP_CONST, | |
3525 | .resetvalue = cpu->id_aa64afr0 }, | |
3526 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3527 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
3528 | .access = PL1_R, .type = ARM_CP_CONST, | |
3529 | .resetvalue = cpu->id_aa64afr1 }, | |
3530 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
3531 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
3532 | .access = PL1_R, .type = ARM_CP_CONST, | |
3533 | .resetvalue = cpu->id_aa64isar0 }, | |
3534 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
3535 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
3536 | .access = PL1_R, .type = ARM_CP_CONST, | |
3537 | .resetvalue = cpu->id_aa64isar1 }, | |
3538 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3539 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
3540 | .access = PL1_R, .type = ARM_CP_CONST, | |
3541 | .resetvalue = cpu->id_aa64mmfr0 }, | |
3542 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3543 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
3544 | .access = PL1_R, .type = ARM_CP_CONST, | |
3545 | .resetvalue = cpu->id_aa64mmfr1 }, | |
a50c0f51 PM |
3546 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
3547 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
3548 | .access = PL1_R, .type = ARM_CP_CONST, | |
3549 | .resetvalue = cpu->mvfr0 }, | |
3550 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3551 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
3552 | .access = PL1_R, .type = ARM_CP_CONST, | |
3553 | .resetvalue = cpu->mvfr1 }, | |
3554 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
3555 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
3556 | .access = PL1_R, .type = ARM_CP_CONST, | |
3557 | .resetvalue = cpu->mvfr2 }, | |
e60cef86 PM |
3558 | REGINFO_SENTINEL |
3559 | }; | |
be8e8128 GB |
3560 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
3561 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
3562 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
3563 | ARMCPRegInfo rvbar = { | |
3564 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
3565 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
3566 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
3567 | }; | |
3568 | define_one_arm_cp_reg(cpu, &rvbar); | |
3569 | } | |
e60cef86 | 3570 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
3571 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
3572 | } | |
3b685ba7 | 3573 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
4771cd01 | 3574 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
3575 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
3576 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
3577 | ARMCPRegInfo rvbar = { | |
3578 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
3579 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
3580 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
3581 | }; | |
3582 | define_one_arm_cp_reg(cpu, &rvbar); | |
3583 | } | |
d42e3c26 EI |
3584 | } else { |
3585 | /* If EL2 is missing but higher ELs are enabled, we need to | |
3586 | * register the no_el2 reginfos. | |
3587 | */ | |
3588 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
4771cd01 | 3589 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 3590 | } |
3b685ba7 | 3591 | } |
81547d66 | 3592 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 3593 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
be8e8128 GB |
3594 | ARMCPRegInfo rvbar = { |
3595 | .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
3596 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
3597 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar | |
3598 | }; | |
3599 | define_one_arm_cp_reg(cpu, &rvbar); | |
81547d66 | 3600 | } |
18032bec | 3601 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
6cb0b013 PC |
3602 | if (arm_feature(env, ARM_FEATURE_V6)) { |
3603 | /* PMSAv6 not implemented */ | |
3604 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
3605 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
3606 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
3607 | } else { | |
3608 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
3609 | } | |
18032bec | 3610 | } else { |
8e5d75c9 | 3611 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
3612 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
3613 | } | |
c326b979 PM |
3614 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
3615 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
3616 | } | |
6cc7a3ae PM |
3617 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
3618 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
3619 | } | |
4a501606 PM |
3620 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
3621 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
3622 | } | |
c4804214 PM |
3623 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
3624 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
3625 | } | |
3626 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
3627 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
3628 | } | |
3629 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
3630 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
3631 | } | |
18032bec PM |
3632 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
3633 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
3634 | } | |
34f90529 PM |
3635 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
3636 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
3637 | } | |
1047b9d7 PM |
3638 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
3639 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
3640 | } | |
3641 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
3642 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
3643 | } | |
7ac681cf PM |
3644 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
3645 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
3646 | } | |
7884849c PM |
3647 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
3648 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
3649 | * be read-only (ie write causes UNDEF exception). | |
3650 | */ | |
3651 | { | |
00a29f3d PM |
3652 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
3653 | /* Pre-v8 MIDR space. | |
3654 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
3655 | * of the TI925 behaviour where writes to another register can |
3656 | * cause the MIDR value to change. | |
97ce8d61 PC |
3657 | * |
3658 | * Unimplemented registers in the c15 0 0 0 space default to | |
3659 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
3660 | * and friends override accordingly. | |
7884849c PM |
3661 | */ |
3662 | { .name = "MIDR", | |
97ce8d61 | 3663 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 3664 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 3665 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
3666 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
3667 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
3668 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
3669 | { .name = "DUMMY", | |
3670 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
3671 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3672 | { .name = "DUMMY", | |
3673 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
3674 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3675 | { .name = "DUMMY", | |
3676 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
3677 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3678 | { .name = "DUMMY", | |
3679 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
3680 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3681 | { .name = "DUMMY", | |
3682 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
3683 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3684 | REGINFO_SENTINEL | |
3685 | }; | |
00a29f3d | 3686 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
3687 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
3688 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
3689 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
ac00c79f SF |
3690 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
3691 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
3692 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
3693 | .access = PL1_R, .resetvalue = cpu->midr }, | |
3694 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
3695 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
3696 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
3697 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
3698 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 3699 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
3700 | REGINFO_SENTINEL |
3701 | }; | |
3702 | ARMCPRegInfo id_cp_reginfo[] = { | |
3703 | /* These are common to v8 and pre-v8 */ | |
3704 | { .name = "CTR", | |
3705 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
3706 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3707 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
3708 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
3709 | .access = PL0_R, .accessfn = ctr_el0_access, | |
3710 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3711 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
3712 | { .name = "TCMTR", | |
3713 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
3714 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
3715 | REGINFO_SENTINEL |
3716 | }; | |
8085ce63 PC |
3717 | /* TLBTR is specific to VMSA */ |
3718 | ARMCPRegInfo id_tlbtr_reginfo = { | |
3719 | .name = "TLBTR", | |
3720 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
3721 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
3722 | }; | |
3281af81 PC |
3723 | /* MPUIR is specific to PMSA V6+ */ |
3724 | ARMCPRegInfo id_mpuir_reginfo = { | |
3725 | .name = "MPUIR", | |
3726 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
3727 | .access = PL1_R, .type = ARM_CP_CONST, | |
3728 | .resetvalue = cpu->pmsav7_dregion << 8 | |
3729 | }; | |
7884849c PM |
3730 | ARMCPRegInfo crn0_wi_reginfo = { |
3731 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
3732 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
3733 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
3734 | }; | |
3735 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
3736 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
3737 | ARMCPRegInfo *r; | |
3738 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
3739 | * whole space. Then update the specific ID registers to allow write |
3740 | * access, so that they ignore writes rather than causing them to | |
3741 | * UNDEF. | |
7884849c PM |
3742 | */ |
3743 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
3744 | for (r = id_pre_v8_midr_cp_reginfo; |
3745 | r->type != ARM_CP_SENTINEL; r++) { | |
3746 | r->access = PL1_RW; | |
3747 | } | |
7884849c PM |
3748 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
3749 | r->access = PL1_RW; | |
7884849c | 3750 | } |
8085ce63 | 3751 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 3752 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 3753 | } |
00a29f3d PM |
3754 | if (arm_feature(env, ARM_FEATURE_V8)) { |
3755 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
3756 | } else { | |
3757 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
3758 | } | |
a703eda1 | 3759 | define_arm_cp_regs(cpu, id_cp_reginfo); |
8085ce63 PC |
3760 | if (!arm_feature(env, ARM_FEATURE_MPU)) { |
3761 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); | |
3281af81 PC |
3762 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
3763 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 3764 | } |
7884849c PM |
3765 | } |
3766 | ||
97ce8d61 PC |
3767 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
3768 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
3769 | } | |
3770 | ||
2771db27 PM |
3771 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
3772 | ARMCPRegInfo auxcr = { | |
2eef0bf8 PM |
3773 | .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, |
3774 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
2771db27 PM |
3775 | .access = PL1_RW, .type = ARM_CP_CONST, |
3776 | .resetvalue = cpu->reset_auxcr | |
3777 | }; | |
3778 | define_one_arm_cp_reg(cpu, &auxcr); | |
3779 | } | |
3780 | ||
d8ba780b | 3781 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
3782 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
3783 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
3784 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
3785 | | extract64(cpu->reset_cbar, 32, 12); | |
3786 | ARMCPRegInfo cbar_reginfo[] = { | |
3787 | { .name = "CBAR", | |
3788 | .type = ARM_CP_CONST, | |
3789 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
3790 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
3791 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
3792 | .type = ARM_CP_CONST, | |
3793 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
3794 | .access = PL1_R, .resetvalue = cbar32 }, | |
3795 | REGINFO_SENTINEL | |
3796 | }; | |
3797 | /* We don't implement a r/w 64 bit CBAR currently */ | |
3798 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
3799 | define_arm_cp_regs(cpu, cbar_reginfo); | |
3800 | } else { | |
3801 | ARMCPRegInfo cbar = { | |
3802 | .name = "CBAR", | |
3803 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
3804 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
3805 | .fieldoffset = offsetof(CPUARMState, | |
3806 | cp15.c15_config_base_address) | |
3807 | }; | |
3808 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
3809 | cbar.access = PL1_R; | |
3810 | cbar.fieldoffset = 0; | |
3811 | cbar.type = ARM_CP_CONST; | |
3812 | } | |
3813 | define_one_arm_cp_reg(cpu, &cbar); | |
3814 | } | |
d8ba780b PC |
3815 | } |
3816 | ||
2771db27 PM |
3817 | /* Generic registers whose values depend on the implementation */ |
3818 | { | |
3819 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 3820 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
3821 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
3822 | .access = PL1_RW, | |
3823 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
3824 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
3825 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
3826 | .raw_writefn = raw_write, | |
2771db27 PM |
3827 | }; |
3828 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
3829 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
3830 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
3831 | * an MMU enable to execute from cache. Imitate this behaviour. | |
3832 | */ | |
3833 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
3834 | } | |
3835 | define_one_arm_cp_reg(cpu, &sctlr); | |
3836 | } | |
2ceb98c0 PM |
3837 | } |
3838 | ||
778c3a06 | 3839 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 3840 | { |
9262685b | 3841 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
3842 | } |
3843 | ||
3844 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
3845 | { | |
22169d41 | 3846 | CPUState *cs = CPU(cpu); |
14969266 AF |
3847 | CPUARMState *env = &cpu->env; |
3848 | ||
6a669427 PM |
3849 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
3850 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
3851 | aarch64_fpu_gdb_set_reg, | |
3852 | 34, "aarch64-fpu.xml", 0); | |
3853 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 3854 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3855 | 51, "arm-neon.xml", 0); |
3856 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 3857 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3858 | 35, "arm-vfp3.xml", 0); |
3859 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 3860 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3861 | 19, "arm-vfp.xml", 0); |
3862 | } | |
40f137e1 PB |
3863 | } |
3864 | ||
777dc784 PM |
3865 | /* Sort alphabetically by type name, except for "any". */ |
3866 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 3867 | { |
777dc784 PM |
3868 | ObjectClass *class_a = (ObjectClass *)a; |
3869 | ObjectClass *class_b = (ObjectClass *)b; | |
3870 | const char *name_a, *name_b; | |
5adb4839 | 3871 | |
777dc784 PM |
3872 | name_a = object_class_get_name(class_a); |
3873 | name_b = object_class_get_name(class_b); | |
51492fd1 | 3874 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 3875 | return 1; |
51492fd1 | 3876 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
3877 | return -1; |
3878 | } else { | |
3879 | return strcmp(name_a, name_b); | |
5adb4839 PB |
3880 | } |
3881 | } | |
3882 | ||
777dc784 | 3883 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 3884 | { |
777dc784 | 3885 | ObjectClass *oc = data; |
92a31361 | 3886 | CPUListState *s = user_data; |
51492fd1 AF |
3887 | const char *typename; |
3888 | char *name; | |
3371d272 | 3889 | |
51492fd1 AF |
3890 | typename = object_class_get_name(oc); |
3891 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 3892 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
3893 | name); |
3894 | g_free(name); | |
777dc784 PM |
3895 | } |
3896 | ||
3897 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
3898 | { | |
92a31361 | 3899 | CPUListState s = { |
777dc784 PM |
3900 | .file = f, |
3901 | .cpu_fprintf = cpu_fprintf, | |
3902 | }; | |
3903 | GSList *list; | |
3904 | ||
3905 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
3906 | list = g_slist_sort(list, arm_cpu_list_compare); | |
3907 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
3908 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
3909 | g_slist_free(list); | |
a96c0514 PM |
3910 | #ifdef CONFIG_KVM |
3911 | /* The 'host' CPU type is dynamically registered only if KVM is | |
3912 | * enabled, so we have to special-case it here: | |
3913 | */ | |
3914 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
3915 | #endif | |
40f137e1 PB |
3916 | } |
3917 | ||
78027bb6 CR |
3918 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
3919 | { | |
3920 | ObjectClass *oc = data; | |
3921 | CpuDefinitionInfoList **cpu_list = user_data; | |
3922 | CpuDefinitionInfoList *entry; | |
3923 | CpuDefinitionInfo *info; | |
3924 | const char *typename; | |
3925 | ||
3926 | typename = object_class_get_name(oc); | |
3927 | info = g_malloc0(sizeof(*info)); | |
3928 | info->name = g_strndup(typename, | |
3929 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
3930 | ||
3931 | entry = g_malloc0(sizeof(*entry)); | |
3932 | entry->value = info; | |
3933 | entry->next = *cpu_list; | |
3934 | *cpu_list = entry; | |
3935 | } | |
3936 | ||
3937 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
3938 | { | |
3939 | CpuDefinitionInfoList *cpu_list = NULL; | |
3940 | GSList *list; | |
3941 | ||
3942 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
3943 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
3944 | g_slist_free(list); | |
3945 | ||
3946 | return cpu_list; | |
3947 | } | |
3948 | ||
6e6efd61 | 3949 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 3950 | void *opaque, int state, int secstate, |
f5a0a5a5 | 3951 | int crm, int opc1, int opc2) |
6e6efd61 PM |
3952 | { |
3953 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
3954 | * add a single reginfo struct to the hash table. | |
3955 | */ | |
3956 | uint32_t *key = g_new(uint32_t, 1); | |
3957 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
3958 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
3959 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
3960 | ||
3961 | /* Reset the secure state to the specific incoming state. This is | |
3962 | * necessary as the register may have been defined with both states. | |
3963 | */ | |
3964 | r2->secure = secstate; | |
3965 | ||
3966 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
3967 | /* Register is banked (using both entries in array). | |
3968 | * Overwriting fieldoffset as the array is only used to define | |
3969 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 3970 | */ |
3f3c82a5 FA |
3971 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
3972 | } | |
3973 | ||
3974 | if (state == ARM_CP_STATE_AA32) { | |
3975 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
3976 | /* If the register is banked then we don't need to migrate or | |
3977 | * reset the 32-bit instance in certain cases: | |
3978 | * | |
3979 | * 1) If the register has both 32-bit and 64-bit instances then we | |
3980 | * can count on the 64-bit instance taking care of the | |
3981 | * non-secure bank. | |
3982 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
3983 | * taking care of the secure bank. This requires that separate | |
3984 | * 32 and 64-bit definitions are provided. | |
3985 | */ | |
3986 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
3987 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 3988 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
3989 | } |
3990 | } else if ((secstate != r->secure) && !ns) { | |
3991 | /* The register is not banked so we only want to allow migration of | |
3992 | * the non-secure instance. | |
3993 | */ | |
7a0e58fa | 3994 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 3995 | } |
3f3c82a5 FA |
3996 | |
3997 | if (r->state == ARM_CP_STATE_BOTH) { | |
3998 | /* We assume it is a cp15 register if the .cp field is left unset. | |
3999 | */ | |
4000 | if (r2->cp == 0) { | |
4001 | r2->cp = 15; | |
4002 | } | |
4003 | ||
f5a0a5a5 | 4004 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
4005 | if (r2->fieldoffset) { |
4006 | r2->fieldoffset += sizeof(uint32_t); | |
4007 | } | |
f5a0a5a5 | 4008 | #endif |
3f3c82a5 | 4009 | } |
f5a0a5a5 PM |
4010 | } |
4011 | if (state == ARM_CP_STATE_AA64) { | |
4012 | /* To allow abbreviation of ARMCPRegInfo | |
4013 | * definitions, we treat cp == 0 as equivalent to | |
4014 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
4015 | * STATE_BOTH definitions are also always "standard |
4016 | * sysreg" in their AArch64 view (the .cp value may | |
4017 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 4018 | */ |
58a1d8ce | 4019 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
4020 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
4021 | } | |
4022 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
4023 | r2->opc0, opc1, opc2); | |
4024 | } else { | |
51a79b03 | 4025 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 4026 | } |
6e6efd61 PM |
4027 | if (opaque) { |
4028 | r2->opaque = opaque; | |
4029 | } | |
67ed771d PM |
4030 | /* reginfo passed to helpers is correct for the actual access, |
4031 | * and is never ARM_CP_STATE_BOTH: | |
4032 | */ | |
4033 | r2->state = state; | |
6e6efd61 PM |
4034 | /* Make sure reginfo passed to helpers for wildcarded regs |
4035 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
4036 | */ | |
4037 | r2->crm = crm; | |
4038 | r2->opc1 = opc1; | |
4039 | r2->opc2 = opc2; | |
4040 | /* By convention, for wildcarded registers only the first | |
4041 | * entry is used for migration; the others are marked as | |
7a0e58fa | 4042 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 4043 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 4044 | * never migratable and not even raw-accessible. |
6e6efd61 | 4045 | */ |
7a0e58fa PM |
4046 | if ((r->type & ARM_CP_SPECIAL)) { |
4047 | r2->type |= ARM_CP_NO_RAW; | |
4048 | } | |
4049 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
4050 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
4051 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 4052 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
4053 | } |
4054 | ||
375421cc PM |
4055 | /* Check that raw accesses are either forbidden or handled. Note that |
4056 | * we can't assert this earlier because the setup of fieldoffset for | |
4057 | * banked registers has to be done first. | |
4058 | */ | |
4059 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
4060 | assert(!raw_accessors_invalid(r2)); | |
4061 | } | |
4062 | ||
6e6efd61 PM |
4063 | /* Overriding of an existing definition must be explicitly |
4064 | * requested. | |
4065 | */ | |
4066 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
4067 | ARMCPRegInfo *oldreg; | |
4068 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
4069 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
4070 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
4071 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
4072 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
4073 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
4074 | oldreg->name, r2->name); | |
4075 | g_assert_not_reached(); | |
4076 | } | |
4077 | } | |
4078 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
4079 | } | |
4080 | ||
4081 | ||
4b6a83fb PM |
4082 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
4083 | const ARMCPRegInfo *r, void *opaque) | |
4084 | { | |
4085 | /* Define implementations of coprocessor registers. | |
4086 | * We store these in a hashtable because typically | |
4087 | * there are less than 150 registers in a space which | |
4088 | * is 16*16*16*8*8 = 262144 in size. | |
4089 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
4090 | * If a register is defined twice then the second definition is | |
4091 | * used, so this can be used to define some generic registers and | |
4092 | * then override them with implementation specific variations. | |
4093 | * At least one of the original and the second definition should | |
4094 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
4095 | * against accidental use. | |
f5a0a5a5 PM |
4096 | * |
4097 | * The state field defines whether the register is to be | |
4098 | * visible in the AArch32 or AArch64 execution state. If the | |
4099 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
4100 | * reginfo structure for the AArch32 view, which sees the lower | |
4101 | * 32 bits of the 64 bit register. | |
4102 | * | |
4103 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
4104 | * be wildcarded. AArch64 registers are always considered to be 64 | |
4105 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
4106 | * the register, if any. | |
4b6a83fb | 4107 | */ |
f5a0a5a5 | 4108 | int crm, opc1, opc2, state; |
4b6a83fb PM |
4109 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
4110 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
4111 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
4112 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
4113 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
4114 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
4115 | /* 64 bit registers have only CRm and Opc1 fields */ | |
4116 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
4117 | /* op0 only exists in the AArch64 encodings */ |
4118 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
4119 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
4120 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
4121 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
4122 | * encodes a minimum access level for the register. We roll this | |
4123 | * runtime check into our general permission check code, so check | |
4124 | * here that the reginfo's specified permissions are strict enough | |
4125 | * to encompass the generic architectural permission check. | |
4126 | */ | |
4127 | if (r->state != ARM_CP_STATE_AA32) { | |
4128 | int mask = 0; | |
4129 | switch (r->opc1) { | |
4130 | case 0: case 1: case 2: | |
4131 | /* min_EL EL1 */ | |
4132 | mask = PL1_RW; | |
4133 | break; | |
4134 | case 3: | |
4135 | /* min_EL EL0 */ | |
4136 | mask = PL0_RW; | |
4137 | break; | |
4138 | case 4: | |
4139 | /* min_EL EL2 */ | |
4140 | mask = PL2_RW; | |
4141 | break; | |
4142 | case 5: | |
4143 | /* unallocated encoding, so not possible */ | |
4144 | assert(false); | |
4145 | break; | |
4146 | case 6: | |
4147 | /* min_EL EL3 */ | |
4148 | mask = PL3_RW; | |
4149 | break; | |
4150 | case 7: | |
4151 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
4152 | mask = PL1_RW; | |
4153 | break; | |
4154 | default: | |
4155 | /* broken reginfo with out-of-range opc1 */ | |
4156 | assert(false); | |
4157 | break; | |
4158 | } | |
4159 | /* assert our permissions are not too lax (stricter is fine) */ | |
4160 | assert((r->access & ~mask) == 0); | |
4161 | } | |
4162 | ||
4b6a83fb PM |
4163 | /* Check that the register definition has enough info to handle |
4164 | * reads and writes if they are permitted. | |
4165 | */ | |
4166 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
4167 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
4168 | assert((r->fieldoffset || |
4169 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
4170 | r->readfn); | |
4b6a83fb PM |
4171 | } |
4172 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
4173 | assert((r->fieldoffset || |
4174 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
4175 | r->writefn); | |
4b6a83fb PM |
4176 | } |
4177 | } | |
4178 | /* Bad type field probably means missing sentinel at end of reg list */ | |
4179 | assert(cptype_valid(r->type)); | |
4180 | for (crm = crmmin; crm <= crmmax; crm++) { | |
4181 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
4182 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
4183 | for (state = ARM_CP_STATE_AA32; |
4184 | state <= ARM_CP_STATE_AA64; state++) { | |
4185 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
4186 | continue; | |
4187 | } | |
3f3c82a5 FA |
4188 | if (state == ARM_CP_STATE_AA32) { |
4189 | /* Under AArch32 CP registers can be common | |
4190 | * (same for secure and non-secure world) or banked. | |
4191 | */ | |
4192 | switch (r->secure) { | |
4193 | case ARM_CP_SECSTATE_S: | |
4194 | case ARM_CP_SECSTATE_NS: | |
4195 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4196 | r->secure, crm, opc1, opc2); | |
4197 | break; | |
4198 | default: | |
4199 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4200 | ARM_CP_SECSTATE_S, | |
4201 | crm, opc1, opc2); | |
4202 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4203 | ARM_CP_SECSTATE_NS, | |
4204 | crm, opc1, opc2); | |
4205 | break; | |
4206 | } | |
4207 | } else { | |
4208 | /* AArch64 registers get mapped to non-secure instance | |
4209 | * of AArch32 */ | |
4210 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4211 | ARM_CP_SECSTATE_NS, | |
4212 | crm, opc1, opc2); | |
4213 | } | |
f5a0a5a5 | 4214 | } |
4b6a83fb PM |
4215 | } |
4216 | } | |
4217 | } | |
4218 | } | |
4219 | ||
4220 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
4221 | const ARMCPRegInfo *regs, void *opaque) | |
4222 | { | |
4223 | /* Define a whole list of registers */ | |
4224 | const ARMCPRegInfo *r; | |
4225 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
4226 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
4227 | } | |
4228 | } | |
4229 | ||
60322b39 | 4230 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 4231 | { |
60322b39 | 4232 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
4233 | } |
4234 | ||
c4241c7d PM |
4235 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
4236 | uint64_t value) | |
4b6a83fb PM |
4237 | { |
4238 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
4239 | } |
4240 | ||
c4241c7d | 4241 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
4242 | { |
4243 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
4244 | return 0; |
4245 | } | |
4246 | ||
f5a0a5a5 PM |
4247 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
4248 | { | |
4249 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
4250 | } | |
4251 | ||
0ecb72a5 | 4252 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
4253 | { |
4254 | /* Return true if it is not valid for us to switch to | |
4255 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
4256 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
4257 | */ | |
4258 | switch (mode) { | |
4259 | case ARM_CPU_MODE_USR: | |
4260 | case ARM_CPU_MODE_SYS: | |
4261 | case ARM_CPU_MODE_SVC: | |
4262 | case ARM_CPU_MODE_ABT: | |
4263 | case ARM_CPU_MODE_UND: | |
4264 | case ARM_CPU_MODE_IRQ: | |
4265 | case ARM_CPU_MODE_FIQ: | |
4266 | return 0; | |
027fc527 SF |
4267 | case ARM_CPU_MODE_MON: |
4268 | return !arm_is_secure(env); | |
37064a8b PM |
4269 | default: |
4270 | return 1; | |
4271 | } | |
4272 | } | |
4273 | ||
2f4a40e5 AZ |
4274 | uint32_t cpsr_read(CPUARMState *env) |
4275 | { | |
4276 | int ZF; | |
6fbe23d5 PB |
4277 | ZF = (env->ZF == 0); |
4278 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
4279 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
4280 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
4281 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 4282 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
4283 | } |
4284 | ||
4285 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
4286 | { | |
6e8801f9 FA |
4287 | uint32_t changed_daif; |
4288 | ||
2f4a40e5 | 4289 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
4290 | env->ZF = (~val) & CPSR_Z; |
4291 | env->NF = val; | |
2f4a40e5 AZ |
4292 | env->CF = (val >> 29) & 1; |
4293 | env->VF = (val << 3) & 0x80000000; | |
4294 | } | |
4295 | if (mask & CPSR_Q) | |
4296 | env->QF = ((val & CPSR_Q) != 0); | |
4297 | if (mask & CPSR_T) | |
4298 | env->thumb = ((val & CPSR_T) != 0); | |
4299 | if (mask & CPSR_IT_0_1) { | |
4300 | env->condexec_bits &= ~3; | |
4301 | env->condexec_bits |= (val >> 25) & 3; | |
4302 | } | |
4303 | if (mask & CPSR_IT_2_7) { | |
4304 | env->condexec_bits &= 3; | |
4305 | env->condexec_bits |= (val >> 8) & 0xfc; | |
4306 | } | |
4307 | if (mask & CPSR_GE) { | |
4308 | env->GE = (val >> 16) & 0xf; | |
4309 | } | |
4310 | ||
6e8801f9 FA |
4311 | /* In a V7 implementation that includes the security extensions but does |
4312 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
4313 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
4314 | * bits respectively. | |
4315 | * | |
4316 | * In a V8 implementation, it is permitted for privileged software to | |
4317 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
4318 | */ | |
4319 | if (!arm_feature(env, ARM_FEATURE_V8) && | |
4320 | arm_feature(env, ARM_FEATURE_EL3) && | |
4321 | !arm_feature(env, ARM_FEATURE_EL2) && | |
4322 | !arm_is_secure(env)) { | |
4323 | ||
4324 | changed_daif = (env->daif ^ val) & mask; | |
4325 | ||
4326 | if (changed_daif & CPSR_A) { | |
4327 | /* Check to see if we are allowed to change the masking of async | |
4328 | * abort exceptions from a non-secure state. | |
4329 | */ | |
4330 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
4331 | qemu_log_mask(LOG_GUEST_ERROR, | |
4332 | "Ignoring attempt to switch CPSR_A flag from " | |
4333 | "non-secure world with SCR.AW bit clear\n"); | |
4334 | mask &= ~CPSR_A; | |
4335 | } | |
4336 | } | |
4337 | ||
4338 | if (changed_daif & CPSR_F) { | |
4339 | /* Check to see if we are allowed to change the masking of FIQ | |
4340 | * exceptions from a non-secure state. | |
4341 | */ | |
4342 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
4343 | qemu_log_mask(LOG_GUEST_ERROR, | |
4344 | "Ignoring attempt to switch CPSR_F flag from " | |
4345 | "non-secure world with SCR.FW bit clear\n"); | |
4346 | mask &= ~CPSR_F; | |
4347 | } | |
4348 | ||
4349 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
4350 | * If this bit is set software is not allowed to mask | |
4351 | * FIQs, but is allowed to set CPSR_F to 0. | |
4352 | */ | |
4353 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
4354 | (val & CPSR_F)) { | |
4355 | qemu_log_mask(LOG_GUEST_ERROR, | |
4356 | "Ignoring attempt to enable CPSR_F flag " | |
4357 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
4358 | mask &= ~CPSR_F; | |
4359 | } | |
4360 | } | |
4361 | } | |
4362 | ||
4cc35614 PM |
4363 | env->daif &= ~(CPSR_AIF & mask); |
4364 | env->daif |= val & CPSR_AIF & mask; | |
4365 | ||
2f4a40e5 | 4366 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
4367 | if (bad_mode_switch(env, val & CPSR_M)) { |
4368 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
4369 | * We choose to ignore the attempt and leave the CPSR M field | |
4370 | * untouched. | |
4371 | */ | |
4372 | mask &= ~CPSR_M; | |
4373 | } else { | |
4374 | switch_mode(env, val & CPSR_M); | |
4375 | } | |
2f4a40e5 AZ |
4376 | } |
4377 | mask &= ~CACHED_CPSR_BITS; | |
4378 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
4379 | } | |
4380 | ||
b26eefb6 PB |
4381 | /* Sign/zero extend */ |
4382 | uint32_t HELPER(sxtb16)(uint32_t x) | |
4383 | { | |
4384 | uint32_t res; | |
4385 | res = (uint16_t)(int8_t)x; | |
4386 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
4387 | return res; | |
4388 | } | |
4389 | ||
4390 | uint32_t HELPER(uxtb16)(uint32_t x) | |
4391 | { | |
4392 | uint32_t res; | |
4393 | res = (uint16_t)(uint8_t)x; | |
4394 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
4395 | return res; | |
4396 | } | |
4397 | ||
f51bbbfe PB |
4398 | uint32_t HELPER(clz)(uint32_t x) |
4399 | { | |
7bbcb0af | 4400 | return clz32(x); |
f51bbbfe PB |
4401 | } |
4402 | ||
3670669c PB |
4403 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
4404 | { | |
4405 | if (den == 0) | |
4406 | return 0; | |
686eeb93 AJ |
4407 | if (num == INT_MIN && den == -1) |
4408 | return INT_MIN; | |
3670669c PB |
4409 | return num / den; |
4410 | } | |
4411 | ||
4412 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
4413 | { | |
4414 | if (den == 0) | |
4415 | return 0; | |
4416 | return num / den; | |
4417 | } | |
4418 | ||
4419 | uint32_t HELPER(rbit)(uint32_t x) | |
4420 | { | |
4421 | x = ((x & 0xff000000) >> 24) | |
4422 | | ((x & 0x00ff0000) >> 8) | |
4423 | | ((x & 0x0000ff00) << 8) | |
4424 | | ((x & 0x000000ff) << 24); | |
4425 | x = ((x & 0xf0f0f0f0) >> 4) | |
4426 | | ((x & 0x0f0f0f0f) << 4); | |
4427 | x = ((x & 0x88888888) >> 3) | |
4428 | | ((x & 0x44444444) >> 1) | |
4429 | | ((x & 0x22222222) << 1) | |
4430 | | ((x & 0x11111111) << 3); | |
4431 | return x; | |
4432 | } | |
4433 | ||
5fafdf24 | 4434 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 4435 | |
9ee6e8bb | 4436 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 4437 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 4438 | { |
a47dddd7 AF |
4439 | ARMCPU *cpu = arm_env_get_cpu(env); |
4440 | ||
4441 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
4442 | } |
4443 | ||
0ecb72a5 | 4444 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 4445 | { |
a47dddd7 AF |
4446 | ARMCPU *cpu = arm_env_get_cpu(env); |
4447 | ||
4448 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
4449 | return 0; |
4450 | } | |
4451 | ||
0ecb72a5 | 4452 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 4453 | { |
a47dddd7 AF |
4454 | ARMCPU *cpu = arm_env_get_cpu(env); |
4455 | ||
4456 | if (mode != ARM_CPU_MODE_USR) { | |
4457 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
4458 | } | |
b5ff1b31 FB |
4459 | } |
4460 | ||
0ecb72a5 | 4461 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 4462 | { |
a47dddd7 AF |
4463 | ARMCPU *cpu = arm_env_get_cpu(env); |
4464 | ||
4465 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
4466 | } |
4467 | ||
0ecb72a5 | 4468 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 4469 | { |
a47dddd7 AF |
4470 | ARMCPU *cpu = arm_env_get_cpu(env); |
4471 | ||
4472 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
4473 | return 0; |
4474 | } | |
4475 | ||
012a906b GB |
4476 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
4477 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
4478 | { |
4479 | return 1; | |
4480 | } | |
4481 | ||
ce02049d GB |
4482 | void aarch64_sync_64_to_32(CPUARMState *env) |
4483 | { | |
4484 | g_assert_not_reached(); | |
4485 | } | |
4486 | ||
b5ff1b31 FB |
4487 | #else |
4488 | ||
4489 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 4490 | int bank_number(int mode) |
b5ff1b31 FB |
4491 | { |
4492 | switch (mode) { | |
4493 | case ARM_CPU_MODE_USR: | |
4494 | case ARM_CPU_MODE_SYS: | |
4495 | return 0; | |
4496 | case ARM_CPU_MODE_SVC: | |
4497 | return 1; | |
4498 | case ARM_CPU_MODE_ABT: | |
4499 | return 2; | |
4500 | case ARM_CPU_MODE_UND: | |
4501 | return 3; | |
4502 | case ARM_CPU_MODE_IRQ: | |
4503 | return 4; | |
4504 | case ARM_CPU_MODE_FIQ: | |
4505 | return 5; | |
28c9457d EI |
4506 | case ARM_CPU_MODE_HYP: |
4507 | return 6; | |
4508 | case ARM_CPU_MODE_MON: | |
4509 | return 7; | |
b5ff1b31 | 4510 | } |
f5206413 | 4511 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
4512 | } |
4513 | ||
0ecb72a5 | 4514 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
4515 | { |
4516 | int old_mode; | |
4517 | int i; | |
4518 | ||
4519 | old_mode = env->uncached_cpsr & CPSR_M; | |
4520 | if (mode == old_mode) | |
4521 | return; | |
4522 | ||
4523 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
4524 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 4525 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
4526 | } else if (mode == ARM_CPU_MODE_FIQ) { |
4527 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 4528 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
4529 | } |
4530 | ||
f5206413 | 4531 | i = bank_number(old_mode); |
b5ff1b31 FB |
4532 | env->banked_r13[i] = env->regs[13]; |
4533 | env->banked_r14[i] = env->regs[14]; | |
4534 | env->banked_spsr[i] = env->spsr; | |
4535 | ||
f5206413 | 4536 | i = bank_number(mode); |
b5ff1b31 FB |
4537 | env->regs[13] = env->banked_r13[i]; |
4538 | env->regs[14] = env->banked_r14[i]; | |
4539 | env->spsr = env->banked_spsr[i]; | |
4540 | } | |
4541 | ||
0eeb17d6 GB |
4542 | /* Physical Interrupt Target EL Lookup Table |
4543 | * | |
4544 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
4545 | * | |
4546 | * The below multi-dimensional table is used for looking up the target | |
4547 | * exception level given numerous condition criteria. Specifically, the | |
4548 | * target EL is based on SCR and HCR routing controls as well as the | |
4549 | * currently executing EL and secure state. | |
4550 | * | |
4551 | * Dimensions: | |
4552 | * target_el_table[2][2][2][2][2][4] | |
4553 | * | | | | | +--- Current EL | |
4554 | * | | | | +------ Non-secure(0)/Secure(1) | |
4555 | * | | | +--------- HCR mask override | |
4556 | * | | +------------ SCR exec state control | |
4557 | * | +--------------- SCR mask override | |
4558 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
4559 | * | |
4560 | * The table values are as such: | |
4561 | * 0-3 = EL0-EL3 | |
4562 | * -1 = Cannot occur | |
4563 | * | |
4564 | * The ARM ARM target EL table includes entries indicating that an "exception | |
4565 | * is not taken". The two cases where this is applicable are: | |
4566 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
4567 | * routed to EL3. | |
4568 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
4569 | * routed to EL2. | |
4570 | * In these two cases, the below table contain a target of EL1. This value is | |
4571 | * returned as it is expected that the consumer of the table data will check | |
4572 | * for "target EL >= current EL" to ensure the exception is not taken. | |
4573 | * | |
4574 | * SCR HCR | |
4575 | * 64 EA AMO From | |
4576 | * BIT IRQ IMO Non-secure Secure | |
4577 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
4578 | */ | |
4579 | const int8_t target_el_table[2][2][2][2][2][4] = { | |
4580 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
4581 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
4582 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
4583 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
4584 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
4585 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
4586 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
4587 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
4588 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
4589 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
4590 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
4591 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
4592 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
4593 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
4594 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
4595 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
4596 | }; | |
4597 | ||
4598 | /* | |
4599 | * Determine the target EL for physical exceptions | |
4600 | */ | |
012a906b GB |
4601 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
4602 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
4603 | { |
4604 | CPUARMState *env = cs->env_ptr; | |
4605 | int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
4606 | int scr; | |
4607 | int hcr; | |
4608 | int target_el; | |
4609 | int is64 = arm_el_is_aa64(env, 3); | |
4610 | ||
4611 | switch (excp_idx) { | |
4612 | case EXCP_IRQ: | |
4613 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
4614 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
4615 | break; | |
4616 | case EXCP_FIQ: | |
4617 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
4618 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
4619 | break; | |
4620 | default: | |
4621 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
4622 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
4623 | break; | |
4624 | }; | |
4625 | ||
4626 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
4627 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
4628 | ||
4629 | /* Perform a table-lookup for the target EL given the current state */ | |
4630 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
4631 | ||
4632 | assert(target_el > 0); | |
4633 | ||
4634 | return target_el; | |
4635 | } | |
4636 | ||
9ee6e8bb PB |
4637 | static void v7m_push(CPUARMState *env, uint32_t val) |
4638 | { | |
70d74660 AF |
4639 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
4640 | ||
9ee6e8bb | 4641 | env->regs[13] -= 4; |
ab1da857 | 4642 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
4643 | } |
4644 | ||
4645 | static uint32_t v7m_pop(CPUARMState *env) | |
4646 | { | |
70d74660 | 4647 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 4648 | uint32_t val; |
70d74660 | 4649 | |
fdfba1a2 | 4650 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
4651 | env->regs[13] += 4; |
4652 | return val; | |
4653 | } | |
4654 | ||
4655 | /* Switch to V7M main or process stack pointer. */ | |
4656 | static void switch_v7m_sp(CPUARMState *env, int process) | |
4657 | { | |
4658 | uint32_t tmp; | |
4659 | if (env->v7m.current_sp != process) { | |
4660 | tmp = env->v7m.other_sp; | |
4661 | env->v7m.other_sp = env->regs[13]; | |
4662 | env->regs[13] = tmp; | |
4663 | env->v7m.current_sp = process; | |
4664 | } | |
4665 | } | |
4666 | ||
4667 | static void do_v7m_exception_exit(CPUARMState *env) | |
4668 | { | |
4669 | uint32_t type; | |
4670 | uint32_t xpsr; | |
4671 | ||
4672 | type = env->regs[15]; | |
4673 | if (env->v7m.exception != 0) | |
983fe826 | 4674 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
4675 | |
4676 | /* Switch to the target stack. */ | |
4677 | switch_v7m_sp(env, (type & 4) != 0); | |
4678 | /* Pop registers. */ | |
4679 | env->regs[0] = v7m_pop(env); | |
4680 | env->regs[1] = v7m_pop(env); | |
4681 | env->regs[2] = v7m_pop(env); | |
4682 | env->regs[3] = v7m_pop(env); | |
4683 | env->regs[12] = v7m_pop(env); | |
4684 | env->regs[14] = v7m_pop(env); | |
4685 | env->regs[15] = v7m_pop(env); | |
fcf83ab1 PM |
4686 | if (env->regs[15] & 1) { |
4687 | qemu_log_mask(LOG_GUEST_ERROR, | |
4688 | "M profile return from interrupt with misaligned " | |
4689 | "PC is UNPREDICTABLE\n"); | |
4690 | /* Actual hardware seems to ignore the lsbit, and there are several | |
4691 | * RTOSes out there which incorrectly assume the r15 in the stack | |
4692 | * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. | |
4693 | */ | |
4694 | env->regs[15] &= ~1U; | |
4695 | } | |
9ee6e8bb PB |
4696 | xpsr = v7m_pop(env); |
4697 | xpsr_write(env, xpsr, 0xfffffdff); | |
4698 | /* Undo stack alignment. */ | |
4699 | if (xpsr & 0x200) | |
4700 | env->regs[13] |= 4; | |
4701 | /* ??? The exception return type specifies Thread/Handler mode. However | |
4702 | this is also implied by the xPSR value. Not sure what to do | |
4703 | if there is a mismatch. */ | |
4704 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
4705 | pointer. */ | |
4706 | } | |
4707 | ||
e6f010cc | 4708 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 4709 | { |
e6f010cc AF |
4710 | ARMCPU *cpu = ARM_CPU(cs); |
4711 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
4712 | uint32_t xpsr = xpsr_read(env); |
4713 | uint32_t lr; | |
4714 | uint32_t addr; | |
4715 | ||
27103424 | 4716 | arm_log_exception(cs->exception_index); |
3f1beaca | 4717 | |
9ee6e8bb PB |
4718 | lr = 0xfffffff1; |
4719 | if (env->v7m.current_sp) | |
4720 | lr |= 4; | |
4721 | if (env->v7m.exception == 0) | |
4722 | lr |= 8; | |
4723 | ||
4724 | /* For exceptions we just mark as pending on the NVIC, and let that | |
4725 | handle it. */ | |
4726 | /* TODO: Need to escalate if the current priority is higher than the | |
4727 | one we're raising. */ | |
27103424 | 4728 | switch (cs->exception_index) { |
9ee6e8bb | 4729 | case EXCP_UDEF: |
983fe826 | 4730 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
4731 | return; |
4732 | case EXCP_SWI: | |
314e2296 | 4733 | /* The PC already points to the next instruction. */ |
983fe826 | 4734 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
4735 | return; |
4736 | case EXCP_PREFETCH_ABORT: | |
4737 | case EXCP_DATA_ABORT: | |
abf1172f PM |
4738 | /* TODO: if we implemented the MPU registers, this is where we |
4739 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
4740 | */ | |
983fe826 | 4741 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
4742 | return; |
4743 | case EXCP_BKPT: | |
cfe67cef | 4744 | if (semihosting_enabled()) { |
2ad207d4 | 4745 | int nr; |
d31dd73e | 4746 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
4747 | if (nr == 0xab) { |
4748 | env->regs[15] += 2; | |
4749 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4750 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
4751 | return; |
4752 | } | |
4753 | } | |
983fe826 | 4754 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
4755 | return; |
4756 | case EXCP_IRQ: | |
983fe826 | 4757 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
4758 | break; |
4759 | case EXCP_EXCEPTION_EXIT: | |
4760 | do_v7m_exception_exit(env); | |
4761 | return; | |
4762 | default: | |
a47dddd7 | 4763 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
4764 | return; /* Never happens. Keep compiler happy. */ |
4765 | } | |
4766 | ||
4767 | /* Align stack pointer. */ | |
4768 | /* ??? Should only do this if Configuration Control Register | |
4769 | STACKALIGN bit is set. */ | |
4770 | if (env->regs[13] & 4) { | |
ab19b0ec | 4771 | env->regs[13] -= 4; |
9ee6e8bb PB |
4772 | xpsr |= 0x200; |
4773 | } | |
6c95676b | 4774 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
4775 | v7m_push(env, xpsr); |
4776 | v7m_push(env, env->regs[15]); | |
4777 | v7m_push(env, env->regs[14]); | |
4778 | v7m_push(env, env->regs[12]); | |
4779 | v7m_push(env, env->regs[3]); | |
4780 | v7m_push(env, env->regs[2]); | |
4781 | v7m_push(env, env->regs[1]); | |
4782 | v7m_push(env, env->regs[0]); | |
4783 | switch_v7m_sp(env, 0); | |
c98d174c PM |
4784 | /* Clear IT bits */ |
4785 | env->condexec_bits = 0; | |
9ee6e8bb | 4786 | env->regs[14] = lr; |
fdfba1a2 | 4787 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
4788 | env->regs[15] = addr & 0xfffffffe; |
4789 | env->thumb = addr & 1; | |
4790 | } | |
4791 | ||
ce02049d GB |
4792 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
4793 | * register set. This is necessary when switching between AArch32 and AArch64 | |
4794 | * execution state. | |
4795 | */ | |
4796 | void aarch64_sync_32_to_64(CPUARMState *env) | |
4797 | { | |
4798 | int i; | |
4799 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
4800 | ||
4801 | /* We can blanket copy R[0:7] to X[0:7] */ | |
4802 | for (i = 0; i < 8; i++) { | |
4803 | env->xregs[i] = env->regs[i]; | |
4804 | } | |
4805 | ||
4806 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
4807 | * Otherwise, they come from the banked user regs. | |
4808 | */ | |
4809 | if (mode == ARM_CPU_MODE_FIQ) { | |
4810 | for (i = 8; i < 13; i++) { | |
4811 | env->xregs[i] = env->usr_regs[i - 8]; | |
4812 | } | |
4813 | } else { | |
4814 | for (i = 8; i < 13; i++) { | |
4815 | env->xregs[i] = env->regs[i]; | |
4816 | } | |
4817 | } | |
4818 | ||
4819 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
4820 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
4821 | * from the mode banked register. | |
4822 | */ | |
4823 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
4824 | env->xregs[13] = env->regs[13]; | |
4825 | env->xregs[14] = env->regs[14]; | |
4826 | } else { | |
4827 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
4828 | /* HYP is an exception in that it is copied from r14 */ | |
4829 | if (mode == ARM_CPU_MODE_HYP) { | |
4830 | env->xregs[14] = env->regs[14]; | |
4831 | } else { | |
4832 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
4833 | } | |
4834 | } | |
4835 | ||
4836 | if (mode == ARM_CPU_MODE_HYP) { | |
4837 | env->xregs[15] = env->regs[13]; | |
4838 | } else { | |
4839 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
4840 | } | |
4841 | ||
4842 | if (mode == ARM_CPU_MODE_IRQ) { | |
4843 | env->xregs[16] = env->regs[13]; | |
4844 | env->xregs[17] = env->regs[14]; | |
4845 | } else { | |
4846 | env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
4847 | env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; | |
4848 | } | |
4849 | ||
4850 | if (mode == ARM_CPU_MODE_SVC) { | |
4851 | env->xregs[18] = env->regs[13]; | |
4852 | env->xregs[19] = env->regs[14]; | |
4853 | } else { | |
4854 | env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
4855 | env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; | |
4856 | } | |
4857 | ||
4858 | if (mode == ARM_CPU_MODE_ABT) { | |
4859 | env->xregs[20] = env->regs[13]; | |
4860 | env->xregs[21] = env->regs[14]; | |
4861 | } else { | |
4862 | env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
4863 | env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; | |
4864 | } | |
4865 | ||
4866 | if (mode == ARM_CPU_MODE_UND) { | |
4867 | env->xregs[22] = env->regs[13]; | |
4868 | env->xregs[23] = env->regs[14]; | |
4869 | } else { | |
4870 | env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
4871 | env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; | |
4872 | } | |
4873 | ||
4874 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
4875 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
4876 | * FIQ bank for r8-r14. | |
4877 | */ | |
4878 | if (mode == ARM_CPU_MODE_FIQ) { | |
4879 | for (i = 24; i < 31; i++) { | |
4880 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
4881 | } | |
4882 | } else { | |
4883 | for (i = 24; i < 29; i++) { | |
4884 | env->xregs[i] = env->fiq_regs[i - 24]; | |
4885 | } | |
4886 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
4887 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
4888 | } | |
4889 | ||
4890 | env->pc = env->regs[15]; | |
4891 | } | |
4892 | ||
4893 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
4894 | * register set. This is necessary when switching between AArch32 and AArch64 | |
4895 | * execution state. | |
4896 | */ | |
4897 | void aarch64_sync_64_to_32(CPUARMState *env) | |
4898 | { | |
4899 | int i; | |
4900 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
4901 | ||
4902 | /* We can blanket copy X[0:7] to R[0:7] */ | |
4903 | for (i = 0; i < 8; i++) { | |
4904 | env->regs[i] = env->xregs[i]; | |
4905 | } | |
4906 | ||
4907 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
4908 | * Otherwise, we copy x8-x12 into the banked user regs. | |
4909 | */ | |
4910 | if (mode == ARM_CPU_MODE_FIQ) { | |
4911 | for (i = 8; i < 13; i++) { | |
4912 | env->usr_regs[i - 8] = env->xregs[i]; | |
4913 | } | |
4914 | } else { | |
4915 | for (i = 8; i < 13; i++) { | |
4916 | env->regs[i] = env->xregs[i]; | |
4917 | } | |
4918 | } | |
4919 | ||
4920 | /* Registers r13 & r14 depend on the current mode. | |
4921 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
4922 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
4923 | * for the mode. | |
4924 | */ | |
4925 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
4926 | env->regs[13] = env->xregs[13]; | |
4927 | env->regs[14] = env->xregs[14]; | |
4928 | } else { | |
4929 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
4930 | ||
4931 | /* HYP is an exception in that it does not have its own banked r14 but | |
4932 | * shares the USR r14 | |
4933 | */ | |
4934 | if (mode == ARM_CPU_MODE_HYP) { | |
4935 | env->regs[14] = env->xregs[14]; | |
4936 | } else { | |
4937 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
4938 | } | |
4939 | } | |
4940 | ||
4941 | if (mode == ARM_CPU_MODE_HYP) { | |
4942 | env->regs[13] = env->xregs[15]; | |
4943 | } else { | |
4944 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
4945 | } | |
4946 | ||
4947 | if (mode == ARM_CPU_MODE_IRQ) { | |
4948 | env->regs[13] = env->xregs[16]; | |
4949 | env->regs[14] = env->xregs[17]; | |
4950 | } else { | |
4951 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; | |
4952 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
4953 | } | |
4954 | ||
4955 | if (mode == ARM_CPU_MODE_SVC) { | |
4956 | env->regs[13] = env->xregs[18]; | |
4957 | env->regs[14] = env->xregs[19]; | |
4958 | } else { | |
4959 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; | |
4960 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
4961 | } | |
4962 | ||
4963 | if (mode == ARM_CPU_MODE_ABT) { | |
4964 | env->regs[13] = env->xregs[20]; | |
4965 | env->regs[14] = env->xregs[21]; | |
4966 | } else { | |
4967 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; | |
4968 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
4969 | } | |
4970 | ||
4971 | if (mode == ARM_CPU_MODE_UND) { | |
4972 | env->regs[13] = env->xregs[22]; | |
4973 | env->regs[14] = env->xregs[23]; | |
4974 | } else { | |
4975 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; | |
4976 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
4977 | } | |
4978 | ||
4979 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
4980 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
4981 | * FIQ bank for r8-r14. | |
4982 | */ | |
4983 | if (mode == ARM_CPU_MODE_FIQ) { | |
4984 | for (i = 24; i < 31; i++) { | |
4985 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
4986 | } | |
4987 | } else { | |
4988 | for (i = 24; i < 29; i++) { | |
4989 | env->fiq_regs[i - 24] = env->xregs[i]; | |
4990 | } | |
4991 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
4992 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
4993 | } | |
4994 | ||
4995 | env->regs[15] = env->pc; | |
4996 | } | |
4997 | ||
b5ff1b31 | 4998 | /* Handle a CPU exception. */ |
97a8ea5a | 4999 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 5000 | { |
97a8ea5a AF |
5001 | ARMCPU *cpu = ARM_CPU(cs); |
5002 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
5003 | uint32_t addr; |
5004 | uint32_t mask; | |
5005 | int new_mode; | |
5006 | uint32_t offset; | |
16a906fd | 5007 | uint32_t moe; |
b5ff1b31 | 5008 | |
e6f010cc AF |
5009 | assert(!IS_M(env)); |
5010 | ||
27103424 | 5011 | arm_log_exception(cs->exception_index); |
3f1beaca | 5012 | |
98128601 RH |
5013 | if (arm_is_psci_call(cpu, cs->exception_index)) { |
5014 | arm_handle_psci_call(cpu); | |
5015 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
5016 | return; | |
5017 | } | |
5018 | ||
16a906fd PM |
5019 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
5020 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
5021 | case EC_BREAKPOINT: | |
5022 | case EC_BREAKPOINT_SAME_EL: | |
5023 | moe = 1; | |
5024 | break; | |
5025 | case EC_WATCHPOINT: | |
5026 | case EC_WATCHPOINT_SAME_EL: | |
5027 | moe = 10; | |
5028 | break; | |
5029 | case EC_AA32_BKPT: | |
5030 | moe = 3; | |
5031 | break; | |
5032 | case EC_VECTORCATCH: | |
5033 | moe = 5; | |
5034 | break; | |
5035 | default: | |
5036 | moe = 0; | |
5037 | break; | |
5038 | } | |
5039 | ||
5040 | if (moe) { | |
5041 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
5042 | } | |
5043 | ||
b5ff1b31 | 5044 | /* TODO: Vectored interrupt controller. */ |
27103424 | 5045 | switch (cs->exception_index) { |
b5ff1b31 FB |
5046 | case EXCP_UDEF: |
5047 | new_mode = ARM_CPU_MODE_UND; | |
5048 | addr = 0x04; | |
5049 | mask = CPSR_I; | |
5050 | if (env->thumb) | |
5051 | offset = 2; | |
5052 | else | |
5053 | offset = 4; | |
5054 | break; | |
5055 | case EXCP_SWI: | |
cfe67cef | 5056 | if (semihosting_enabled()) { |
8e71621f PB |
5057 | /* Check for semihosting interrupt. */ |
5058 | if (env->thumb) { | |
d31dd73e BS |
5059 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
5060 | & 0xff; | |
8e71621f | 5061 | } else { |
d31dd73e | 5062 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 5063 | & 0xffffff; |
8e71621f PB |
5064 | } |
5065 | /* Only intercept calls from privileged modes, to provide some | |
5066 | semblance of security. */ | |
5067 | if (((mask == 0x123456 && !env->thumb) | |
5068 | || (mask == 0xab && env->thumb)) | |
5069 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
5070 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 5071 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
5072 | return; |
5073 | } | |
5074 | } | |
b5ff1b31 FB |
5075 | new_mode = ARM_CPU_MODE_SVC; |
5076 | addr = 0x08; | |
5077 | mask = CPSR_I; | |
601d70b9 | 5078 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
5079 | offset = 0; |
5080 | break; | |
06c949e6 | 5081 | case EXCP_BKPT: |
9ee6e8bb | 5082 | /* See if this is a semihosting syscall. */ |
cfe67cef | 5083 | if (env->thumb && semihosting_enabled()) { |
d31dd73e | 5084 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
5085 | if (mask == 0xab |
5086 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
5087 | env->regs[15] += 2; | |
5088 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 5089 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
5090 | return; |
5091 | } | |
5092 | } | |
abf1172f | 5093 | env->exception.fsr = 2; |
9ee6e8bb PB |
5094 | /* Fall through to prefetch abort. */ |
5095 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 5096 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 5097 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 5098 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 5099 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
5100 | new_mode = ARM_CPU_MODE_ABT; |
5101 | addr = 0x0c; | |
5102 | mask = CPSR_A | CPSR_I; | |
5103 | offset = 4; | |
5104 | break; | |
5105 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 5106 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 5107 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 5108 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 5109 | env->exception.fsr, |
6cd8a264 | 5110 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
5111 | new_mode = ARM_CPU_MODE_ABT; |
5112 | addr = 0x10; | |
5113 | mask = CPSR_A | CPSR_I; | |
5114 | offset = 8; | |
5115 | break; | |
5116 | case EXCP_IRQ: | |
5117 | new_mode = ARM_CPU_MODE_IRQ; | |
5118 | addr = 0x18; | |
5119 | /* Disable IRQ and imprecise data aborts. */ | |
5120 | mask = CPSR_A | CPSR_I; | |
5121 | offset = 4; | |
de38d23b FA |
5122 | if (env->cp15.scr_el3 & SCR_IRQ) { |
5123 | /* IRQ routed to monitor mode */ | |
5124 | new_mode = ARM_CPU_MODE_MON; | |
5125 | mask |= CPSR_F; | |
5126 | } | |
b5ff1b31 FB |
5127 | break; |
5128 | case EXCP_FIQ: | |
5129 | new_mode = ARM_CPU_MODE_FIQ; | |
5130 | addr = 0x1c; | |
5131 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
5132 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
5133 | if (env->cp15.scr_el3 & SCR_FIQ) { |
5134 | /* FIQ routed to monitor mode */ | |
5135 | new_mode = ARM_CPU_MODE_MON; | |
5136 | } | |
b5ff1b31 FB |
5137 | offset = 4; |
5138 | break; | |
dbe9d163 FA |
5139 | case EXCP_SMC: |
5140 | new_mode = ARM_CPU_MODE_MON; | |
5141 | addr = 0x08; | |
5142 | mask = CPSR_A | CPSR_I | CPSR_F; | |
5143 | offset = 0; | |
5144 | break; | |
b5ff1b31 | 5145 | default: |
a47dddd7 | 5146 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
5147 | return; /* Never happens. Keep compiler happy. */ |
5148 | } | |
e89e51a1 FA |
5149 | |
5150 | if (new_mode == ARM_CPU_MODE_MON) { | |
5151 | addr += env->cp15.mvbar; | |
137feaa9 | 5152 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 5153 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 5154 | addr += 0xffff0000; |
8641136c NR |
5155 | } else { |
5156 | /* ARM v7 architectures provide a vector base address register to remap | |
5157 | * the interrupt vector table. | |
e89e51a1 | 5158 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
5159 | * Note: only bits 31:5 are valid. |
5160 | */ | |
fb6c91ba | 5161 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 5162 | } |
dbe9d163 FA |
5163 | |
5164 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
5165 | env->cp15.scr_el3 &= ~SCR_NS; | |
5166 | } | |
5167 | ||
b5ff1b31 | 5168 | switch_mode (env, new_mode); |
662cefb7 PM |
5169 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
5170 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
5171 | */ | |
5172 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 5173 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
5174 | /* Clear IT bits. */ |
5175 | env->condexec_bits = 0; | |
30a8cac1 | 5176 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 5177 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 5178 | env->daif |= mask; |
be5e7a76 DES |
5179 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
5180 | * and we should just guard the thumb mode on V4 */ | |
5181 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 5182 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 5183 | } |
b5ff1b31 FB |
5184 | env->regs[14] = env->regs[15] + offset; |
5185 | env->regs[15] = addr; | |
259186a7 | 5186 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
5187 | } |
5188 | ||
0480f69a PM |
5189 | |
5190 | /* Return the exception level which controls this address translation regime */ | |
5191 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5192 | { | |
5193 | switch (mmu_idx) { | |
5194 | case ARMMMUIdx_S2NS: | |
5195 | case ARMMMUIdx_S1E2: | |
5196 | return 2; | |
5197 | case ARMMMUIdx_S1E3: | |
5198 | return 3; | |
5199 | case ARMMMUIdx_S1SE0: | |
5200 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
5201 | case ARMMMUIdx_S1SE1: | |
5202 | case ARMMMUIdx_S1NSE0: | |
5203 | case ARMMMUIdx_S1NSE1: | |
5204 | return 1; | |
5205 | default: | |
5206 | g_assert_not_reached(); | |
5207 | } | |
5208 | } | |
5209 | ||
8bf5b6a9 PM |
5210 | /* Return true if this address translation regime is secure */ |
5211 | static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5212 | { | |
5213 | switch (mmu_idx) { | |
5214 | case ARMMMUIdx_S12NSE0: | |
5215 | case ARMMMUIdx_S12NSE1: | |
5216 | case ARMMMUIdx_S1NSE0: | |
5217 | case ARMMMUIdx_S1NSE1: | |
5218 | case ARMMMUIdx_S1E2: | |
5219 | case ARMMMUIdx_S2NS: | |
5220 | return false; | |
5221 | case ARMMMUIdx_S1E3: | |
5222 | case ARMMMUIdx_S1SE0: | |
5223 | case ARMMMUIdx_S1SE1: | |
5224 | return true; | |
5225 | default: | |
5226 | g_assert_not_reached(); | |
5227 | } | |
5228 | } | |
5229 | ||
0480f69a PM |
5230 | /* Return the SCTLR value which controls this address translation regime */ |
5231 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5232 | { | |
5233 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
5234 | } | |
5235 | ||
5236 | /* Return true if the specified stage of address translation is disabled */ | |
5237 | static inline bool regime_translation_disabled(CPUARMState *env, | |
5238 | ARMMMUIdx mmu_idx) | |
5239 | { | |
5240 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5241 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
5242 | } | |
5243 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
5244 | } | |
5245 | ||
5246 | /* Return the TCR controlling this translation regime */ | |
5247 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5248 | { | |
5249 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5250 | /* TODO: return VTCR_EL2 */ | |
5251 | g_assert_not_reached(); | |
5252 | } | |
5253 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
5254 | } | |
5255 | ||
aef878be GB |
5256 | /* Return the TTBR associated with this translation regime */ |
5257 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
5258 | int ttbrn) | |
5259 | { | |
5260 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5261 | /* TODO: return VTTBR_EL2 */ | |
5262 | g_assert_not_reached(); | |
5263 | } | |
5264 | if (ttbrn == 0) { | |
5265 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
5266 | } else { | |
5267 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
5268 | } | |
5269 | } | |
5270 | ||
0480f69a PM |
5271 | /* Return true if the translation regime is using LPAE format page tables */ |
5272 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
5273 | ARMMMUIdx mmu_idx) | |
5274 | { | |
5275 | int el = regime_el(env, mmu_idx); | |
5276 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
5277 | return true; | |
5278 | } | |
5279 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
5280 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
5281 | return true; | |
5282 | } | |
5283 | return false; | |
5284 | } | |
5285 | ||
5286 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5287 | { | |
5288 | switch (mmu_idx) { | |
5289 | case ARMMMUIdx_S1SE0: | |
5290 | case ARMMMUIdx_S1NSE0: | |
5291 | return true; | |
5292 | default: | |
5293 | return false; | |
5294 | case ARMMMUIdx_S12NSE0: | |
5295 | case ARMMMUIdx_S12NSE1: | |
5296 | g_assert_not_reached(); | |
5297 | } | |
5298 | } | |
5299 | ||
0fbf5238 AJ |
5300 | /* Translate section/page access permissions to page |
5301 | * R/W protection flags | |
d76951b6 AJ |
5302 | * |
5303 | * @env: CPUARMState | |
5304 | * @mmu_idx: MMU index indicating required translation regime | |
5305 | * @ap: The 3-bit access permissions (AP[2:0]) | |
5306 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
5307 | */ |
5308 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
5309 | int ap, int domain_prot) | |
5310 | { | |
554b0b09 PM |
5311 | bool is_user = regime_is_user(env, mmu_idx); |
5312 | ||
5313 | if (domain_prot == 3) { | |
5314 | return PAGE_READ | PAGE_WRITE; | |
5315 | } | |
5316 | ||
554b0b09 PM |
5317 | switch (ap) { |
5318 | case 0: | |
5319 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
5320 | return 0; | |
5321 | } | |
554b0b09 PM |
5322 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
5323 | case SCTLR_S: | |
5324 | return is_user ? 0 : PAGE_READ; | |
5325 | case SCTLR_R: | |
5326 | return PAGE_READ; | |
5327 | default: | |
5328 | return 0; | |
5329 | } | |
5330 | case 1: | |
5331 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
5332 | case 2: | |
87c3d486 | 5333 | if (is_user) { |
0fbf5238 | 5334 | return PAGE_READ; |
87c3d486 | 5335 | } else { |
554b0b09 | 5336 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 5337 | } |
554b0b09 PM |
5338 | case 3: |
5339 | return PAGE_READ | PAGE_WRITE; | |
5340 | case 4: /* Reserved. */ | |
5341 | return 0; | |
5342 | case 5: | |
0fbf5238 | 5343 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 5344 | case 6: |
0fbf5238 | 5345 | return PAGE_READ; |
554b0b09 | 5346 | case 7: |
87c3d486 | 5347 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 5348 | return 0; |
87c3d486 | 5349 | } |
0fbf5238 | 5350 | return PAGE_READ; |
554b0b09 | 5351 | default: |
0fbf5238 | 5352 | g_assert_not_reached(); |
554b0b09 | 5353 | } |
b5ff1b31 FB |
5354 | } |
5355 | ||
d76951b6 AJ |
5356 | /* Translate section/page access permissions to page |
5357 | * R/W protection flags. | |
5358 | * | |
d76951b6 | 5359 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 5360 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 5361 | */ |
d8e052b3 | 5362 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 5363 | { |
d76951b6 AJ |
5364 | switch (ap) { |
5365 | case 0: | |
5366 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
5367 | case 1: | |
5368 | return PAGE_READ | PAGE_WRITE; | |
5369 | case 2: | |
5370 | return is_user ? 0 : PAGE_READ; | |
5371 | case 3: | |
5372 | return PAGE_READ; | |
5373 | default: | |
5374 | g_assert_not_reached(); | |
5375 | } | |
5376 | } | |
5377 | ||
d8e052b3 AJ |
5378 | static inline int |
5379 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
5380 | { | |
5381 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
5382 | } | |
5383 | ||
5384 | /* Translate section/page access permissions to protection flags | |
5385 | * | |
5386 | * @env: CPUARMState | |
5387 | * @mmu_idx: MMU index indicating required translation regime | |
5388 | * @is_aa64: TRUE if AArch64 | |
5389 | * @ap: The 2-bit simple AP (AP[2:1]) | |
5390 | * @ns: NS (non-secure) bit | |
5391 | * @xn: XN (execute-never) bit | |
5392 | * @pxn: PXN (privileged execute-never) bit | |
5393 | */ | |
5394 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
5395 | int ap, int ns, int xn, int pxn) | |
5396 | { | |
5397 | bool is_user = regime_is_user(env, mmu_idx); | |
5398 | int prot_rw, user_rw; | |
5399 | bool have_wxn; | |
5400 | int wxn = 0; | |
5401 | ||
5402 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
5403 | ||
5404 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
5405 | if (is_user) { | |
5406 | prot_rw = user_rw; | |
5407 | } else { | |
5408 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
5409 | } | |
5410 | ||
5411 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
5412 | return prot_rw; | |
5413 | } | |
5414 | ||
5415 | /* TODO have_wxn should be replaced with | |
5416 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
5417 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
5418 | * compatible processors have EL2, which is required for [U]WXN. | |
5419 | */ | |
5420 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
5421 | ||
5422 | if (have_wxn) { | |
5423 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
5424 | } | |
5425 | ||
5426 | if (is_aa64) { | |
5427 | switch (regime_el(env, mmu_idx)) { | |
5428 | case 1: | |
5429 | if (!is_user) { | |
5430 | xn = pxn || (user_rw & PAGE_WRITE); | |
5431 | } | |
5432 | break; | |
5433 | case 2: | |
5434 | case 3: | |
5435 | break; | |
5436 | } | |
5437 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
5438 | switch (regime_el(env, mmu_idx)) { | |
5439 | case 1: | |
5440 | case 3: | |
5441 | if (is_user) { | |
5442 | xn = xn || !(user_rw & PAGE_READ); | |
5443 | } else { | |
5444 | int uwxn = 0; | |
5445 | if (have_wxn) { | |
5446 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
5447 | } | |
5448 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
5449 | (uwxn && (user_rw & PAGE_WRITE)); | |
5450 | } | |
5451 | break; | |
5452 | case 2: | |
5453 | break; | |
5454 | } | |
5455 | } else { | |
5456 | xn = wxn = 0; | |
5457 | } | |
5458 | ||
5459 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
5460 | return prot_rw; | |
5461 | } | |
5462 | return prot_rw | PAGE_EXEC; | |
5463 | } | |
5464 | ||
0480f69a PM |
5465 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
5466 | uint32_t *table, uint32_t address) | |
b2fa1797 | 5467 | { |
0480f69a | 5468 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 5469 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 5470 | |
11f136ee FA |
5471 | if (address & tcr->mask) { |
5472 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
5473 | /* Translation table walk disabled for TTBR1 */ |
5474 | return false; | |
5475 | } | |
aef878be | 5476 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 5477 | } else { |
11f136ee | 5478 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
5479 | /* Translation table walk disabled for TTBR0 */ |
5480 | return false; | |
5481 | } | |
aef878be | 5482 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
5483 | } |
5484 | *table |= (address >> 18) & 0x3ffc; | |
5485 | return true; | |
b2fa1797 PB |
5486 | } |
5487 | ||
ebca90e4 PM |
5488 | /* All loads done in the course of a page table walk go through here. |
5489 | * TODO: rather than ignoring errors from physical memory reads (which | |
5490 | * are external aborts in ARM terminology) we should propagate this | |
5491 | * error out so that we can turn it into a Data Abort if this walk | |
5492 | * was being done for a CPU load/store or an address translation instruction | |
5493 | * (but not if it was for a debug access). | |
5494 | */ | |
5495 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
5496 | { | |
5497 | MemTxAttrs attrs = {}; | |
5498 | ||
5499 | attrs.secure = is_secure; | |
5500 | return address_space_ldl(cs->as, addr, attrs, NULL); | |
5501 | } | |
5502 | ||
5503 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
5504 | { | |
5505 | MemTxAttrs attrs = {}; | |
5506 | ||
5507 | attrs.secure = is_secure; | |
5508 | return address_space_ldq(cs->as, addr, attrs, NULL); | |
5509 | } | |
5510 | ||
b7cc4e82 PC |
5511 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
5512 | int access_type, ARMMMUIdx mmu_idx, | |
5513 | hwaddr *phys_ptr, int *prot, | |
5514 | target_ulong *page_size, uint32_t *fsr) | |
b5ff1b31 | 5515 | { |
70d74660 | 5516 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
5517 | int code; |
5518 | uint32_t table; | |
5519 | uint32_t desc; | |
5520 | int type; | |
5521 | int ap; | |
e389be16 | 5522 | int domain = 0; |
dd4ebc2e | 5523 | int domain_prot; |
a8170e5e | 5524 | hwaddr phys_addr; |
0480f69a | 5525 | uint32_t dacr; |
b5ff1b31 | 5526 | |
9ee6e8bb PB |
5527 | /* Pagetable walk. */ |
5528 | /* Lookup l1 descriptor. */ | |
0480f69a | 5529 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
5530 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
5531 | code = 5; | |
5532 | goto do_fault; | |
5533 | } | |
ebca90e4 | 5534 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 5535 | type = (desc & 3); |
dd4ebc2e | 5536 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
5537 | if (regime_el(env, mmu_idx) == 1) { |
5538 | dacr = env->cp15.dacr_ns; | |
5539 | } else { | |
5540 | dacr = env->cp15.dacr_s; | |
5541 | } | |
5542 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 5543 | if (type == 0) { |
601d70b9 | 5544 | /* Section translation fault. */ |
9ee6e8bb PB |
5545 | code = 5; |
5546 | goto do_fault; | |
5547 | } | |
dd4ebc2e | 5548 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
5549 | if (type == 2) |
5550 | code = 9; /* Section domain fault. */ | |
5551 | else | |
5552 | code = 11; /* Page domain fault. */ | |
5553 | goto do_fault; | |
5554 | } | |
5555 | if (type == 2) { | |
5556 | /* 1Mb section. */ | |
5557 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
5558 | ap = (desc >> 10) & 3; | |
5559 | code = 13; | |
d4c430a8 | 5560 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
5561 | } else { |
5562 | /* Lookup l2 entry. */ | |
554b0b09 PM |
5563 | if (type == 1) { |
5564 | /* Coarse pagetable. */ | |
5565 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
5566 | } else { | |
5567 | /* Fine pagetable. */ | |
5568 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
5569 | } | |
ebca90e4 | 5570 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
5571 | switch (desc & 3) { |
5572 | case 0: /* Page translation fault. */ | |
5573 | code = 7; | |
5574 | goto do_fault; | |
5575 | case 1: /* 64k page. */ | |
5576 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
5577 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 5578 | *page_size = 0x10000; |
ce819861 | 5579 | break; |
9ee6e8bb PB |
5580 | case 2: /* 4k page. */ |
5581 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 5582 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 5583 | *page_size = 0x1000; |
ce819861 | 5584 | break; |
fc1891c7 | 5585 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 5586 | if (type == 1) { |
fc1891c7 PM |
5587 | /* ARMv6/XScale extended small page format */ |
5588 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
5589 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 5590 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 5591 | *page_size = 0x1000; |
554b0b09 | 5592 | } else { |
fc1891c7 PM |
5593 | /* UNPREDICTABLE in ARMv5; we choose to take a |
5594 | * page translation fault. | |
5595 | */ | |
554b0b09 PM |
5596 | code = 7; |
5597 | goto do_fault; | |
5598 | } | |
5599 | } else { | |
5600 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 5601 | *page_size = 0x400; |
554b0b09 | 5602 | } |
9ee6e8bb | 5603 | ap = (desc >> 4) & 3; |
ce819861 PB |
5604 | break; |
5605 | default: | |
9ee6e8bb PB |
5606 | /* Never happens, but compiler isn't smart enough to tell. */ |
5607 | abort(); | |
ce819861 | 5608 | } |
9ee6e8bb PB |
5609 | code = 15; |
5610 | } | |
0fbf5238 AJ |
5611 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
5612 | *prot |= *prot ? PAGE_EXEC : 0; | |
5613 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
5614 | /* Access permission fault. */ |
5615 | goto do_fault; | |
5616 | } | |
5617 | *phys_ptr = phys_addr; | |
b7cc4e82 | 5618 | return false; |
9ee6e8bb | 5619 | do_fault: |
b7cc4e82 PC |
5620 | *fsr = code | (domain << 4); |
5621 | return true; | |
9ee6e8bb PB |
5622 | } |
5623 | ||
b7cc4e82 PC |
5624 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
5625 | int access_type, ARMMMUIdx mmu_idx, | |
5626 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
5627 | target_ulong *page_size, uint32_t *fsr) | |
9ee6e8bb | 5628 | { |
70d74660 | 5629 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
5630 | int code; |
5631 | uint32_t table; | |
5632 | uint32_t desc; | |
5633 | uint32_t xn; | |
de9b05b8 | 5634 | uint32_t pxn = 0; |
9ee6e8bb PB |
5635 | int type; |
5636 | int ap; | |
de9b05b8 | 5637 | int domain = 0; |
dd4ebc2e | 5638 | int domain_prot; |
a8170e5e | 5639 | hwaddr phys_addr; |
0480f69a | 5640 | uint32_t dacr; |
8bf5b6a9 | 5641 | bool ns; |
9ee6e8bb PB |
5642 | |
5643 | /* Pagetable walk. */ | |
5644 | /* Lookup l1 descriptor. */ | |
0480f69a | 5645 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
5646 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
5647 | code = 5; | |
5648 | goto do_fault; | |
5649 | } | |
ebca90e4 | 5650 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 5651 | type = (desc & 3); |
de9b05b8 PM |
5652 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
5653 | /* Section translation fault, or attempt to use the encoding | |
5654 | * which is Reserved on implementations without PXN. | |
5655 | */ | |
9ee6e8bb | 5656 | code = 5; |
9ee6e8bb | 5657 | goto do_fault; |
de9b05b8 PM |
5658 | } |
5659 | if ((type == 1) || !(desc & (1 << 18))) { | |
5660 | /* Page or Section. */ | |
dd4ebc2e | 5661 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 5662 | } |
0480f69a PM |
5663 | if (regime_el(env, mmu_idx) == 1) { |
5664 | dacr = env->cp15.dacr_ns; | |
5665 | } else { | |
5666 | dacr = env->cp15.dacr_s; | |
5667 | } | |
5668 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 5669 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 5670 | if (type != 1) { |
9ee6e8bb | 5671 | code = 9; /* Section domain fault. */ |
de9b05b8 | 5672 | } else { |
9ee6e8bb | 5673 | code = 11; /* Page domain fault. */ |
de9b05b8 | 5674 | } |
9ee6e8bb PB |
5675 | goto do_fault; |
5676 | } | |
de9b05b8 | 5677 | if (type != 1) { |
9ee6e8bb PB |
5678 | if (desc & (1 << 18)) { |
5679 | /* Supersection. */ | |
5680 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
5681 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
5682 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 5683 | *page_size = 0x1000000; |
b5ff1b31 | 5684 | } else { |
9ee6e8bb PB |
5685 | /* Section. */ |
5686 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 5687 | *page_size = 0x100000; |
b5ff1b31 | 5688 | } |
9ee6e8bb PB |
5689 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
5690 | xn = desc & (1 << 4); | |
de9b05b8 | 5691 | pxn = desc & 1; |
9ee6e8bb | 5692 | code = 13; |
8bf5b6a9 | 5693 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 5694 | } else { |
de9b05b8 PM |
5695 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
5696 | pxn = (desc >> 2) & 1; | |
5697 | } | |
8bf5b6a9 | 5698 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
5699 | /* Lookup l2 entry. */ |
5700 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
ebca90e4 | 5701 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
5702 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
5703 | switch (desc & 3) { | |
5704 | case 0: /* Page translation fault. */ | |
5705 | code = 7; | |
b5ff1b31 | 5706 | goto do_fault; |
9ee6e8bb PB |
5707 | case 1: /* 64k page. */ |
5708 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
5709 | xn = desc & (1 << 15); | |
d4c430a8 | 5710 | *page_size = 0x10000; |
9ee6e8bb PB |
5711 | break; |
5712 | case 2: case 3: /* 4k page. */ | |
5713 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
5714 | xn = desc & 1; | |
d4c430a8 | 5715 | *page_size = 0x1000; |
9ee6e8bb PB |
5716 | break; |
5717 | default: | |
5718 | /* Never happens, but compiler isn't smart enough to tell. */ | |
5719 | abort(); | |
b5ff1b31 | 5720 | } |
9ee6e8bb PB |
5721 | code = 15; |
5722 | } | |
dd4ebc2e | 5723 | if (domain_prot == 3) { |
c0034328 JR |
5724 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
5725 | } else { | |
0480f69a | 5726 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
5727 | xn = 1; |
5728 | } | |
c0034328 JR |
5729 | if (xn && access_type == 2) |
5730 | goto do_fault; | |
9ee6e8bb | 5731 | |
d76951b6 AJ |
5732 | if (arm_feature(env, ARM_FEATURE_V6K) && |
5733 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
5734 | /* The simplified model uses AP[0] as an access control bit. */ | |
5735 | if ((ap & 1) == 0) { | |
5736 | /* Access flag fault. */ | |
5737 | code = (code == 15) ? 6 : 3; | |
5738 | goto do_fault; | |
5739 | } | |
5740 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
5741 | } else { | |
5742 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 5743 | } |
0fbf5238 AJ |
5744 | if (*prot && !xn) { |
5745 | *prot |= PAGE_EXEC; | |
5746 | } | |
5747 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
5748 | /* Access permission fault. */ |
5749 | goto do_fault; | |
5750 | } | |
3ad493fc | 5751 | } |
8bf5b6a9 PM |
5752 | if (ns) { |
5753 | /* The NS bit will (as required by the architecture) have no effect if | |
5754 | * the CPU doesn't support TZ or this is a non-secure translation | |
5755 | * regime, because the attribute will already be non-secure. | |
5756 | */ | |
5757 | attrs->secure = false; | |
5758 | } | |
9ee6e8bb | 5759 | *phys_ptr = phys_addr; |
b7cc4e82 | 5760 | return false; |
b5ff1b31 | 5761 | do_fault: |
b7cc4e82 PC |
5762 | *fsr = code | (domain << 4); |
5763 | return true; | |
b5ff1b31 FB |
5764 | } |
5765 | ||
3dde962f PM |
5766 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
5767 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
5768 | */ | |
5769 | typedef enum { | |
5770 | translation_fault = 1, | |
5771 | access_fault = 2, | |
5772 | permission_fault = 3, | |
5773 | } MMUFaultType; | |
5774 | ||
b7cc4e82 PC |
5775 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
5776 | int access_type, ARMMMUIdx mmu_idx, | |
5777 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | |
5778 | target_ulong *page_size_ptr, uint32_t *fsr) | |
3dde962f | 5779 | { |
70d74660 | 5780 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
5781 | /* Read an LPAE long-descriptor translation table. */ |
5782 | MMUFaultType fault_type = translation_fault; | |
5783 | uint32_t level = 1; | |
5784 | uint32_t epd; | |
2c8dd318 RH |
5785 | int32_t tsz; |
5786 | uint32_t tg; | |
3dde962f PM |
5787 | uint64_t ttbr; |
5788 | int ttbr_select; | |
2c8dd318 | 5789 | hwaddr descaddr, descmask; |
3dde962f PM |
5790 | uint32_t tableattrs; |
5791 | target_ulong page_size; | |
5792 | uint32_t attrs; | |
2c8dd318 RH |
5793 | int32_t granule_sz = 9; |
5794 | int32_t va_size = 32; | |
5795 | int32_t tbi = 0; | |
0480f69a | 5796 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 5797 | int ap, ns, xn, pxn; |
88e8add8 GB |
5798 | uint32_t el = regime_el(env, mmu_idx); |
5799 | bool ttbr1_valid = true; | |
0480f69a PM |
5800 | |
5801 | /* TODO: | |
88e8add8 GB |
5802 | * This code does not handle the different format TCR for VTCR_EL2. |
5803 | * This code also does not support shareability levels. | |
5804 | * Attribute and permission bit handling should also be checked when adding | |
5805 | * support for those page table walks. | |
0480f69a | 5806 | */ |
88e8add8 | 5807 | if (arm_el_is_aa64(env, el)) { |
2c8dd318 | 5808 | va_size = 64; |
88e8add8 GB |
5809 | if (el > 1) { |
5810 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
5811 | } else { | |
5812 | if (extract64(address, 55, 1)) { | |
5813 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
5814 | } else { | |
5815 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
5816 | } | |
5817 | } | |
2c8dd318 | 5818 | tbi *= 8; |
88e8add8 GB |
5819 | |
5820 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
5821 | * invalid. | |
5822 | */ | |
5823 | if (el > 1) { | |
5824 | ttbr1_valid = false; | |
5825 | } | |
2c8dd318 | 5826 | } |
3dde962f PM |
5827 | |
5828 | /* Determine whether this address is in the region controlled by | |
5829 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
5830 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
5831 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
5832 | */ | |
11f136ee | 5833 | uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); |
0480f69a | 5834 | if (va_size == 64) { |
2c8dd318 RH |
5835 | t0sz = MIN(t0sz, 39); |
5836 | t0sz = MAX(t0sz, 16); | |
5837 | } | |
11f136ee | 5838 | uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); |
0480f69a | 5839 | if (va_size == 64) { |
2c8dd318 RH |
5840 | t1sz = MIN(t1sz, 39); |
5841 | t1sz = MAX(t1sz, 16); | |
5842 | } | |
5843 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
5844 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
5845 | ttbr_select = 0; | |
88e8add8 GB |
5846 | } else if (ttbr1_valid && t1sz && |
5847 | !extract64(~address, va_size - t1sz, t1sz - tbi)) { | |
3dde962f PM |
5848 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
5849 | ttbr_select = 1; | |
5850 | } else if (!t0sz) { | |
5851 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
5852 | ttbr_select = 0; | |
88e8add8 | 5853 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
5854 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
5855 | ttbr_select = 1; | |
5856 | } else { | |
5857 | /* in the gap between the two regions, this is a Translation fault */ | |
5858 | fault_type = translation_fault; | |
5859 | goto do_fault; | |
5860 | } | |
5861 | ||
5862 | /* Note that QEMU ignores shareability and cacheability attributes, | |
5863 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
5864 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
5865 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
5866 | * implement any ASID-like capability so we can ignore it (instead | |
5867 | * we will always flush the TLB any time the ASID is changed). | |
5868 | */ | |
5869 | if (ttbr_select == 0) { | |
aef878be | 5870 | ttbr = regime_ttbr(env, mmu_idx, 0); |
11f136ee | 5871 | epd = extract32(tcr->raw_tcr, 7, 1); |
3dde962f | 5872 | tsz = t0sz; |
2c8dd318 | 5873 | |
11f136ee | 5874 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 RH |
5875 | if (tg == 1) { /* 64KB pages */ |
5876 | granule_sz = 13; | |
5877 | } | |
5878 | if (tg == 2) { /* 16KB pages */ | |
5879 | granule_sz = 11; | |
5880 | } | |
3dde962f | 5881 | } else { |
88e8add8 GB |
5882 | /* We should only be here if TTBR1 is valid */ |
5883 | assert(ttbr1_valid); | |
5884 | ||
aef878be | 5885 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 5886 | epd = extract32(tcr->raw_tcr, 23, 1); |
3dde962f | 5887 | tsz = t1sz; |
2c8dd318 | 5888 | |
11f136ee | 5889 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 RH |
5890 | if (tg == 3) { /* 64KB pages */ |
5891 | granule_sz = 13; | |
5892 | } | |
5893 | if (tg == 1) { /* 16KB pages */ | |
5894 | granule_sz = 11; | |
5895 | } | |
3dde962f PM |
5896 | } |
5897 | ||
0480f69a PM |
5898 | /* Here we should have set up all the parameters for the translation: |
5899 | * va_size, ttbr, epd, tsz, granule_sz, tbi | |
5900 | */ | |
5901 | ||
3dde962f | 5902 | if (epd) { |
88e8add8 GB |
5903 | /* Translation table walk disabled => Translation fault on TLB miss |
5904 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
5905 | */ | |
3dde962f PM |
5906 | goto do_fault; |
5907 | } | |
5908 | ||
d6be29e3 PM |
5909 | /* The starting level depends on the virtual address size (which can be |
5910 | * up to 48 bits) and the translation granule size. It indicates the number | |
5911 | * of strides (granule_sz bits at a time) needed to consume the bits | |
5912 | * of the input address. In the pseudocode this is: | |
5913 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
5914 | * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is | |
5915 | * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. | |
5916 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
5917 | * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz | |
5918 | * = 4 - (va_size - tsz - 4) / granule_sz; | |
3dde962f | 5919 | */ |
d6be29e3 | 5920 | level = 4 - (va_size - tsz - 4) / granule_sz; |
3dde962f PM |
5921 | |
5922 | /* Clear the vaddr bits which aren't part of the within-region address, | |
5923 | * so that we don't have to special case things when calculating the | |
5924 | * first descriptor address. | |
5925 | */ | |
2c8dd318 RH |
5926 | if (tsz) { |
5927 | address &= (1ULL << (va_size - tsz)) - 1; | |
5928 | } | |
5929 | ||
5930 | descmask = (1ULL << (granule_sz + 3)) - 1; | |
3dde962f PM |
5931 | |
5932 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 RH |
5933 | descaddr = extract64(ttbr, 0, 48); |
5934 | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | |
3dde962f | 5935 | |
ebca90e4 PM |
5936 | /* Secure accesses start with the page table in secure memory and |
5937 | * can be downgraded to non-secure at any step. Non-secure accesses | |
5938 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
5939 | * bits at each step. | |
5940 | */ | |
5941 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
5942 | for (;;) { |
5943 | uint64_t descriptor; | |
ebca90e4 | 5944 | bool nstable; |
3dde962f | 5945 | |
2c8dd318 RH |
5946 | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; |
5947 | descaddr &= ~7ULL; | |
ebca90e4 PM |
5948 | nstable = extract32(tableattrs, 4, 1); |
5949 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable); | |
3dde962f PM |
5950 | if (!(descriptor & 1) || |
5951 | (!(descriptor & 2) && (level == 3))) { | |
5952 | /* Invalid, or the Reserved level 3 encoding */ | |
5953 | goto do_fault; | |
5954 | } | |
5955 | descaddr = descriptor & 0xfffffff000ULL; | |
5956 | ||
5957 | if ((descriptor & 2) && (level < 3)) { | |
5958 | /* Table entry. The top five bits are attributes which may | |
5959 | * propagate down through lower levels of the table (and | |
5960 | * which are all arranged so that 0 means "no effect", so | |
5961 | * we can gather them up by ORing in the bits at each level). | |
5962 | */ | |
5963 | tableattrs |= extract64(descriptor, 59, 5); | |
5964 | level++; | |
5965 | continue; | |
5966 | } | |
5967 | /* Block entry at level 1 or 2, or page entry at level 3. | |
5968 | * These are basically the same thing, although the number | |
5969 | * of bits we pull in from the vaddr varies. | |
5970 | */ | |
5661ae6b | 5971 | page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); |
3dde962f PM |
5972 | descaddr |= (address & (page_size - 1)); |
5973 | /* Extract attributes from the descriptor and merge with table attrs */ | |
d615efac IC |
5974 | attrs = extract64(descriptor, 2, 10) |
5975 | | (extract64(descriptor, 52, 12) << 10); | |
3dde962f PM |
5976 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
5977 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
5978 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
5979 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
5980 | */ | |
5981 | if (extract32(tableattrs, 2, 1)) { | |
5982 | attrs &= ~(1 << 4); | |
5983 | } | |
ebca90e4 | 5984 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
5985 | break; |
5986 | } | |
5987 | /* Here descaddr is the final physical address, and attributes | |
5988 | * are all in attrs. | |
5989 | */ | |
5990 | fault_type = access_fault; | |
5991 | if ((attrs & (1 << 8)) == 0) { | |
5992 | /* Access flag */ | |
5993 | goto do_fault; | |
5994 | } | |
d8e052b3 AJ |
5995 | |
5996 | ap = extract32(attrs, 4, 2); | |
5997 | ns = extract32(attrs, 3, 1); | |
5998 | xn = extract32(attrs, 12, 1); | |
5999 | pxn = extract32(attrs, 11, 1); | |
6000 | ||
6001 | *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); | |
6002 | ||
3dde962f | 6003 | fault_type = permission_fault; |
d8e052b3 | 6004 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
6005 | goto do_fault; |
6006 | } | |
3dde962f | 6007 | |
8bf5b6a9 PM |
6008 | if (ns) { |
6009 | /* The NS bit will (as required by the architecture) have no effect if | |
6010 | * the CPU doesn't support TZ or this is a non-secure translation | |
6011 | * regime, because the attribute will already be non-secure. | |
6012 | */ | |
6013 | txattrs->secure = false; | |
6014 | } | |
3dde962f PM |
6015 | *phys_ptr = descaddr; |
6016 | *page_size_ptr = page_size; | |
b7cc4e82 | 6017 | return false; |
3dde962f PM |
6018 | |
6019 | do_fault: | |
6020 | /* Long-descriptor format IFSR/DFSR value */ | |
b7cc4e82 PC |
6021 | *fsr = (1 << 9) | (fault_type << 2) | level; |
6022 | return true; | |
3dde962f PM |
6023 | } |
6024 | ||
f6bda88f PC |
6025 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
6026 | ARMMMUIdx mmu_idx, | |
6027 | int32_t address, int *prot) | |
6028 | { | |
6029 | *prot = PAGE_READ | PAGE_WRITE; | |
6030 | switch (address) { | |
6031 | case 0xF0000000 ... 0xFFFFFFFF: | |
6032 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ | |
6033 | *prot |= PAGE_EXEC; | |
6034 | } | |
6035 | break; | |
6036 | case 0x00000000 ... 0x7FFFFFFF: | |
6037 | *prot |= PAGE_EXEC; | |
6038 | break; | |
6039 | } | |
6040 | ||
6041 | } | |
6042 | ||
6043 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, | |
6044 | int access_type, ARMMMUIdx mmu_idx, | |
6045 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
6046 | { | |
6047 | ARMCPU *cpu = arm_env_get_cpu(env); | |
6048 | int n; | |
6049 | bool is_user = regime_is_user(env, mmu_idx); | |
6050 | ||
6051 | *phys_ptr = address; | |
6052 | *prot = 0; | |
6053 | ||
6054 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
6055 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
6056 | } else { /* MPU enabled */ | |
6057 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
6058 | /* region search */ | |
6059 | uint32_t base = env->pmsav7.drbar[n]; | |
6060 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
6061 | uint32_t rmask; | |
6062 | bool srdis = false; | |
6063 | ||
6064 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
6065 | continue; | |
6066 | } | |
6067 | ||
6068 | if (!rsize) { | |
6069 | qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); | |
6070 | continue; | |
6071 | } | |
6072 | rsize++; | |
6073 | rmask = (1ull << rsize) - 1; | |
6074 | ||
6075 | if (base & rmask) { | |
6076 | qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " | |
6077 | "to DRSR region size, mask = %" PRIx32, | |
6078 | base, rmask); | |
6079 | continue; | |
6080 | } | |
6081 | ||
6082 | if (address < base || address > base + rmask) { | |
6083 | continue; | |
6084 | } | |
6085 | ||
6086 | /* Region matched */ | |
6087 | ||
6088 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
6089 | int i, snd; | |
6090 | uint32_t srdis_mask; | |
6091 | ||
6092 | rsize -= 3; /* sub region size (power of 2) */ | |
6093 | snd = ((address - base) >> rsize) & 0x7; | |
6094 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
6095 | ||
6096 | srdis_mask = srdis ? 0x3 : 0x0; | |
6097 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
6098 | /* This will check in groups of 2, 4 and then 8, whether | |
6099 | * the subregion bits are consistent. rsize is incremented | |
6100 | * back up to give the region size, considering consistent | |
6101 | * adjacent subregions as one region. Stop testing if rsize | |
6102 | * is already big enough for an entire QEMU page. | |
6103 | */ | |
6104 | int snd_rounded = snd & ~(i - 1); | |
6105 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
6106 | snd_rounded + 8, i); | |
6107 | if (srdis_mask ^ srdis_multi) { | |
6108 | break; | |
6109 | } | |
6110 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
6111 | rsize++; | |
6112 | } | |
6113 | } | |
6114 | if (rsize < TARGET_PAGE_BITS) { | |
6115 | qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" | |
6116 | "alignment of %" PRIu32 " bits. Minimum is %d\n", | |
6117 | rsize, TARGET_PAGE_BITS); | |
6118 | continue; | |
6119 | } | |
6120 | if (srdis) { | |
6121 | continue; | |
6122 | } | |
6123 | break; | |
6124 | } | |
6125 | ||
6126 | if (n == -1) { /* no hits */ | |
6127 | if (cpu->pmsav7_dregion && | |
6128 | (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { | |
6129 | /* background fault */ | |
6130 | *fsr = 0; | |
6131 | return true; | |
6132 | } | |
6133 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
6134 | } else { /* a MPU hit! */ | |
6135 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
6136 | ||
6137 | if (is_user) { /* User mode AP bit decoding */ | |
6138 | switch (ap) { | |
6139 | case 0: | |
6140 | case 1: | |
6141 | case 5: | |
6142 | break; /* no access */ | |
6143 | case 3: | |
6144 | *prot |= PAGE_WRITE; | |
6145 | /* fall through */ | |
6146 | case 2: | |
6147 | case 6: | |
6148 | *prot |= PAGE_READ | PAGE_EXEC; | |
6149 | break; | |
6150 | default: | |
6151 | qemu_log_mask(LOG_GUEST_ERROR, | |
6152 | "Bad value for AP bits in DRACR %" | |
6153 | PRIx32 "\n", ap); | |
6154 | } | |
6155 | } else { /* Priv. mode AP bits decoding */ | |
6156 | switch (ap) { | |
6157 | case 0: | |
6158 | break; /* no access */ | |
6159 | case 1: | |
6160 | case 2: | |
6161 | case 3: | |
6162 | *prot |= PAGE_WRITE; | |
6163 | /* fall through */ | |
6164 | case 5: | |
6165 | case 6: | |
6166 | *prot |= PAGE_READ | PAGE_EXEC; | |
6167 | break; | |
6168 | default: | |
6169 | qemu_log_mask(LOG_GUEST_ERROR, | |
6170 | "Bad value for AP bits in DRACR %" | |
6171 | PRIx32 "\n", ap); | |
6172 | } | |
6173 | } | |
6174 | ||
6175 | /* execute never */ | |
6176 | if (env->pmsav7.dracr[n] & (1 << 12)) { | |
6177 | *prot &= ~PAGE_EXEC; | |
6178 | } | |
6179 | } | |
6180 | } | |
6181 | ||
6182 | *fsr = 0x00d; /* Permission fault */ | |
6183 | return !(*prot & (1 << access_type)); | |
6184 | } | |
6185 | ||
13689d43 PC |
6186 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
6187 | int access_type, ARMMMUIdx mmu_idx, | |
6188 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
9ee6e8bb PB |
6189 | { |
6190 | int n; | |
6191 | uint32_t mask; | |
6192 | uint32_t base; | |
0480f69a | 6193 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb PB |
6194 | |
6195 | *phys_ptr = address; | |
6196 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 6197 | base = env->cp15.c6_region[n]; |
87c3d486 | 6198 | if ((base & 1) == 0) { |
554b0b09 | 6199 | continue; |
87c3d486 | 6200 | } |
554b0b09 PM |
6201 | mask = 1 << ((base >> 1) & 0x1f); |
6202 | /* Keep this shift separate from the above to avoid an | |
6203 | (undefined) << 32. */ | |
6204 | mask = (mask << 1) - 1; | |
87c3d486 | 6205 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 6206 | break; |
87c3d486 | 6207 | } |
9ee6e8bb | 6208 | } |
87c3d486 | 6209 | if (n < 0) { |
b7cc4e82 PC |
6210 | *fsr = 2; |
6211 | return true; | |
87c3d486 | 6212 | } |
9ee6e8bb PB |
6213 | |
6214 | if (access_type == 2) { | |
7e09797c | 6215 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 6216 | } else { |
7e09797c | 6217 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
6218 | } |
6219 | mask = (mask >> (n * 4)) & 0xf; | |
6220 | switch (mask) { | |
6221 | case 0: | |
b7cc4e82 PC |
6222 | *fsr = 1; |
6223 | return true; | |
9ee6e8bb | 6224 | case 1: |
87c3d486 | 6225 | if (is_user) { |
b7cc4e82 PC |
6226 | *fsr = 1; |
6227 | return true; | |
87c3d486 | 6228 | } |
554b0b09 PM |
6229 | *prot = PAGE_READ | PAGE_WRITE; |
6230 | break; | |
9ee6e8bb | 6231 | case 2: |
554b0b09 | 6232 | *prot = PAGE_READ; |
87c3d486 | 6233 | if (!is_user) { |
554b0b09 | 6234 | *prot |= PAGE_WRITE; |
87c3d486 | 6235 | } |
554b0b09 | 6236 | break; |
9ee6e8bb | 6237 | case 3: |
554b0b09 PM |
6238 | *prot = PAGE_READ | PAGE_WRITE; |
6239 | break; | |
9ee6e8bb | 6240 | case 5: |
87c3d486 | 6241 | if (is_user) { |
b7cc4e82 PC |
6242 | *fsr = 1; |
6243 | return true; | |
87c3d486 | 6244 | } |
554b0b09 PM |
6245 | *prot = PAGE_READ; |
6246 | break; | |
9ee6e8bb | 6247 | case 6: |
554b0b09 PM |
6248 | *prot = PAGE_READ; |
6249 | break; | |
9ee6e8bb | 6250 | default: |
554b0b09 | 6251 | /* Bad permission. */ |
b7cc4e82 PC |
6252 | *fsr = 1; |
6253 | return true; | |
9ee6e8bb | 6254 | } |
3ad493fc | 6255 | *prot |= PAGE_EXEC; |
b7cc4e82 | 6256 | return false; |
9ee6e8bb PB |
6257 | } |
6258 | ||
702a9357 PM |
6259 | /* get_phys_addr - get the physical address for this virtual address |
6260 | * | |
6261 | * Find the physical address corresponding to the given virtual address, | |
6262 | * by doing a translation table walk on MMU based systems or using the | |
6263 | * MPU state on MPU based systems. | |
6264 | * | |
b7cc4e82 PC |
6265 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
6266 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
6267 | * information on why the translation aborted, in the format of a |
6268 | * DFSR/IFSR fault register, with the following caveats: | |
6269 | * * we honour the short vs long DFSR format differences. | |
6270 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 6271 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
6272 | * value. |
6273 | * | |
6274 | * @env: CPUARMState | |
6275 | * @address: virtual address to get physical address for | |
6276 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 6277 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 6278 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 6279 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
6280 | * @prot: set to the permissions for the page containing phys_ptr |
6281 | * @page_size: set to the size of the page containing phys_ptr | |
b7cc4e82 | 6282 | * @fsr: set to the DFSR/IFSR value on failure |
702a9357 | 6283 | */ |
b7cc4e82 PC |
6284 | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, |
6285 | int access_type, ARMMMUIdx mmu_idx, | |
6286 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
6287 | target_ulong *page_size, uint32_t *fsr) | |
9ee6e8bb | 6288 | { |
0480f69a PM |
6289 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
6290 | /* TODO: when we support EL2 we should here call ourselves recursively | |
ebca90e4 PM |
6291 | * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw |
6292 | * functions will also need changing to perform ARMMMUIdx_S2NS loads | |
6293 | * rather than direct physical memory loads when appropriate. | |
0480f69a PM |
6294 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. |
6295 | */ | |
6296 | assert(!arm_feature(env, ARM_FEATURE_EL2)); | |
6297 | mmu_idx += ARMMMUIdx_S1NSE0; | |
6298 | } | |
d3649702 | 6299 | |
8bf5b6a9 PM |
6300 | /* The page table entries may downgrade secure to non-secure, but |
6301 | * cannot upgrade an non-secure translation regime's attributes | |
6302 | * to secure. | |
6303 | */ | |
6304 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 6305 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 6306 | |
0480f69a PM |
6307 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
6308 | * In v7 and earlier it affects all stage 1 translations. | |
6309 | */ | |
6310 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
6311 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
6312 | if (regime_el(env, mmu_idx) == 3) { | |
6313 | address += env->cp15.fcseidr_s; | |
6314 | } else { | |
6315 | address += env->cp15.fcseidr_ns; | |
6316 | } | |
54bf36ed | 6317 | } |
9ee6e8bb | 6318 | |
f6bda88f PC |
6319 | /* pmsav7 has special handling for when MPU is disabled so call it before |
6320 | * the common MMU/MPU disabled check below. | |
6321 | */ | |
6322 | if (arm_feature(env, ARM_FEATURE_MPU) && | |
6323 | arm_feature(env, ARM_FEATURE_V7)) { | |
6324 | *page_size = TARGET_PAGE_SIZE; | |
6325 | return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
6326 | phys_ptr, prot, fsr); | |
6327 | } | |
6328 | ||
0480f69a | 6329 | if (regime_translation_disabled(env, mmu_idx)) { |
9ee6e8bb PB |
6330 | /* MMU/MPU disabled. */ |
6331 | *phys_ptr = address; | |
3ad493fc | 6332 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 6333 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 6334 | return 0; |
0480f69a PM |
6335 | } |
6336 | ||
6337 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |
f6bda88f | 6338 | /* Pre-v7 MPU */ |
d4c430a8 | 6339 | *page_size = TARGET_PAGE_SIZE; |
13689d43 PC |
6340 | return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
6341 | phys_ptr, prot, fsr); | |
0480f69a PM |
6342 | } |
6343 | ||
6344 | if (regime_using_lpae_format(env, mmu_idx)) { | |
6345 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
b7cc4e82 | 6346 | attrs, prot, page_size, fsr); |
0480f69a PM |
6347 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
6348 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
b7cc4e82 | 6349 | attrs, prot, page_size, fsr); |
9ee6e8bb | 6350 | } else { |
0480f69a | 6351 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
b7cc4e82 | 6352 | prot, page_size, fsr); |
9ee6e8bb PB |
6353 | } |
6354 | } | |
6355 | ||
8c6084bf | 6356 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
6357 | * to the TLB. Return false on success, or true on failure. Populate |
6358 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 6359 | */ |
b7cc4e82 PC |
6360 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
6361 | int access_type, int mmu_idx, uint32_t *fsr) | |
b5ff1b31 | 6362 | { |
7510454e AF |
6363 | ARMCPU *cpu = ARM_CPU(cs); |
6364 | CPUARMState *env = &cpu->env; | |
a8170e5e | 6365 | hwaddr phys_addr; |
d4c430a8 | 6366 | target_ulong page_size; |
b5ff1b31 | 6367 | int prot; |
d3649702 | 6368 | int ret; |
8bf5b6a9 | 6369 | MemTxAttrs attrs = {}; |
b5ff1b31 | 6370 | |
8bf5b6a9 | 6371 | ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, |
b7cc4e82 PC |
6372 | &attrs, &prot, &page_size, fsr); |
6373 | if (!ret) { | |
b5ff1b31 | 6374 | /* Map a single [sub]page. */ |
dcd82c11 AB |
6375 | phys_addr &= TARGET_PAGE_MASK; |
6376 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
6377 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
6378 | prot, mmu_idx, page_size); | |
d4c430a8 | 6379 | return 0; |
b5ff1b31 FB |
6380 | } |
6381 | ||
8c6084bf | 6382 | return ret; |
b5ff1b31 FB |
6383 | } |
6384 | ||
00b941e5 | 6385 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 6386 | { |
00b941e5 | 6387 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 6388 | CPUARMState *env = &cpu->env; |
a8170e5e | 6389 | hwaddr phys_addr; |
d4c430a8 | 6390 | target_ulong page_size; |
b5ff1b31 | 6391 | int prot; |
b7cc4e82 PC |
6392 | bool ret; |
6393 | uint32_t fsr; | |
8bf5b6a9 | 6394 | MemTxAttrs attrs = {}; |
b5ff1b31 | 6395 | |
d3649702 | 6396 | ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr, |
b7cc4e82 | 6397 | &attrs, &prot, &page_size, &fsr); |
b5ff1b31 | 6398 | |
b7cc4e82 | 6399 | if (ret) { |
b5ff1b31 | 6400 | return -1; |
00b941e5 | 6401 | } |
b5ff1b31 FB |
6402 | |
6403 | return phys_addr; | |
6404 | } | |
6405 | ||
0ecb72a5 | 6406 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 6407 | { |
39ea3d4e PM |
6408 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
6409 | env->regs[13] = val; | |
6410 | } else { | |
f5206413 | 6411 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 6412 | } |
9ee6e8bb PB |
6413 | } |
6414 | ||
0ecb72a5 | 6415 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 6416 | { |
39ea3d4e PM |
6417 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
6418 | return env->regs[13]; | |
6419 | } else { | |
f5206413 | 6420 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 6421 | } |
9ee6e8bb PB |
6422 | } |
6423 | ||
0ecb72a5 | 6424 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 6425 | { |
a47dddd7 AF |
6426 | ARMCPU *cpu = arm_env_get_cpu(env); |
6427 | ||
9ee6e8bb PB |
6428 | switch (reg) { |
6429 | case 0: /* APSR */ | |
6430 | return xpsr_read(env) & 0xf8000000; | |
6431 | case 1: /* IAPSR */ | |
6432 | return xpsr_read(env) & 0xf80001ff; | |
6433 | case 2: /* EAPSR */ | |
6434 | return xpsr_read(env) & 0xff00fc00; | |
6435 | case 3: /* xPSR */ | |
6436 | return xpsr_read(env) & 0xff00fdff; | |
6437 | case 5: /* IPSR */ | |
6438 | return xpsr_read(env) & 0x000001ff; | |
6439 | case 6: /* EPSR */ | |
6440 | return xpsr_read(env) & 0x0700fc00; | |
6441 | case 7: /* IEPSR */ | |
6442 | return xpsr_read(env) & 0x0700edff; | |
6443 | case 8: /* MSP */ | |
6444 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
6445 | case 9: /* PSP */ | |
6446 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
6447 | case 16: /* PRIMASK */ | |
4cc35614 | 6448 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
6449 | case 17: /* BASEPRI */ |
6450 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 6451 | return env->v7m.basepri; |
82845826 | 6452 | case 19: /* FAULTMASK */ |
4cc35614 | 6453 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
6454 | case 20: /* CONTROL */ |
6455 | return env->v7m.control; | |
6456 | default: | |
6457 | /* ??? For debugging only. */ | |
a47dddd7 | 6458 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
6459 | return 0; |
6460 | } | |
6461 | } | |
6462 | ||
0ecb72a5 | 6463 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 6464 | { |
a47dddd7 AF |
6465 | ARMCPU *cpu = arm_env_get_cpu(env); |
6466 | ||
9ee6e8bb PB |
6467 | switch (reg) { |
6468 | case 0: /* APSR */ | |
6469 | xpsr_write(env, val, 0xf8000000); | |
6470 | break; | |
6471 | case 1: /* IAPSR */ | |
6472 | xpsr_write(env, val, 0xf8000000); | |
6473 | break; | |
6474 | case 2: /* EAPSR */ | |
6475 | xpsr_write(env, val, 0xfe00fc00); | |
6476 | break; | |
6477 | case 3: /* xPSR */ | |
6478 | xpsr_write(env, val, 0xfe00fc00); | |
6479 | break; | |
6480 | case 5: /* IPSR */ | |
6481 | /* IPSR bits are readonly. */ | |
6482 | break; | |
6483 | case 6: /* EPSR */ | |
6484 | xpsr_write(env, val, 0x0600fc00); | |
6485 | break; | |
6486 | case 7: /* IEPSR */ | |
6487 | xpsr_write(env, val, 0x0600fc00); | |
6488 | break; | |
6489 | case 8: /* MSP */ | |
6490 | if (env->v7m.current_sp) | |
6491 | env->v7m.other_sp = val; | |
6492 | else | |
6493 | env->regs[13] = val; | |
6494 | break; | |
6495 | case 9: /* PSP */ | |
6496 | if (env->v7m.current_sp) | |
6497 | env->regs[13] = val; | |
6498 | else | |
6499 | env->v7m.other_sp = val; | |
6500 | break; | |
6501 | case 16: /* PRIMASK */ | |
4cc35614 PM |
6502 | if (val & 1) { |
6503 | env->daif |= PSTATE_I; | |
6504 | } else { | |
6505 | env->daif &= ~PSTATE_I; | |
6506 | } | |
9ee6e8bb | 6507 | break; |
82845826 | 6508 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
6509 | env->v7m.basepri = val & 0xff; |
6510 | break; | |
82845826 | 6511 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
6512 | val &= 0xff; |
6513 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
6514 | env->v7m.basepri = val; | |
6515 | break; | |
82845826 | 6516 | case 19: /* FAULTMASK */ |
4cc35614 PM |
6517 | if (val & 1) { |
6518 | env->daif |= PSTATE_F; | |
6519 | } else { | |
6520 | env->daif &= ~PSTATE_F; | |
6521 | } | |
82845826 | 6522 | break; |
9ee6e8bb PB |
6523 | case 20: /* CONTROL */ |
6524 | env->v7m.control = val & 3; | |
6525 | switch_v7m_sp(env, (val & 2) != 0); | |
6526 | break; | |
6527 | default: | |
6528 | /* ??? For debugging only. */ | |
a47dddd7 | 6529 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
6530 | return; |
6531 | } | |
6532 | } | |
6533 | ||
b5ff1b31 | 6534 | #endif |
6ddbc6e4 | 6535 | |
aca3f40b PM |
6536 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
6537 | { | |
6538 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
6539 | * Note that we do not implement the (architecturally mandated) | |
6540 | * alignment fault for attempts to use this on Device memory | |
6541 | * (which matches the usual QEMU behaviour of not implementing either | |
6542 | * alignment faults or any memory attribute handling). | |
6543 | */ | |
6544 | ||
6545 | ARMCPU *cpu = arm_env_get_cpu(env); | |
6546 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
6547 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
6548 | ||
6549 | #ifndef CONFIG_USER_ONLY | |
6550 | { | |
6551 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
6552 | * the block size so we might have to do more than one TLB lookup. | |
6553 | * We know that in fact for any v8 CPU the page size is at least 4K | |
6554 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
6555 | * 1K as an artefact of legacy v5 subpage support being present in the | |
6556 | * same QEMU executable. | |
6557 | */ | |
6558 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
6559 | void *hostaddr[maxidx]; | |
6560 | int try, i; | |
3972ef6f RH |
6561 | unsigned mmu_idx = cpu_mmu_index(env); |
6562 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); | |
aca3f40b PM |
6563 | |
6564 | for (try = 0; try < 2; try++) { | |
6565 | ||
6566 | for (i = 0; i < maxidx; i++) { | |
6567 | hostaddr[i] = tlb_vaddr_to_host(env, | |
6568 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 6569 | 1, mmu_idx); |
aca3f40b PM |
6570 | if (!hostaddr[i]) { |
6571 | break; | |
6572 | } | |
6573 | } | |
6574 | if (i == maxidx) { | |
6575 | /* If it's all in the TLB it's fair game for just writing to; | |
6576 | * we know we don't need to update dirty status, etc. | |
6577 | */ | |
6578 | for (i = 0; i < maxidx - 1; i++) { | |
6579 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
6580 | } | |
6581 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
6582 | return; | |
6583 | } | |
6584 | /* OK, try a store and see if we can populate the tlb. This | |
6585 | * might cause an exception if the memory isn't writable, | |
6586 | * in which case we will longjmp out of here. We must for | |
6587 | * this purpose use the actual register value passed to us | |
6588 | * so that we get the fault address right. | |
6589 | */ | |
3972ef6f | 6590 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA()); |
aca3f40b PM |
6591 | /* Now we can populate the other TLB entries, if any */ |
6592 | for (i = 0; i < maxidx; i++) { | |
6593 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
6594 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
3972ef6f | 6595 | helper_ret_stb_mmu(env, va, 0, oi, GETRA()); |
aca3f40b PM |
6596 | } |
6597 | } | |
6598 | } | |
6599 | ||
6600 | /* Slow path (probably attempt to do this to an I/O device or | |
6601 | * similar, or clearing of a block of code we have translations | |
6602 | * cached for). Just do a series of byte writes as the architecture | |
6603 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
6604 | * memset(), unmap() sequence here because: | |
6605 | * + we'd need to account for the blocksize being larger than a page | |
6606 | * + the direct-RAM access case is almost always going to be dealt | |
6607 | * with in the fastpath code above, so there's no speed benefit | |
6608 | * + we would have to deal with the map returning NULL because the | |
6609 | * bounce buffer was in use | |
6610 | */ | |
6611 | for (i = 0; i < blocklen; i++) { | |
3972ef6f | 6612 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA()); |
aca3f40b PM |
6613 | } |
6614 | } | |
6615 | #else | |
6616 | memset(g2h(vaddr), 0, blocklen); | |
6617 | #endif | |
6618 | } | |
6619 | ||
6ddbc6e4 PB |
6620 | /* Note that signed overflow is undefined in C. The following routines are |
6621 | careful to use unsigned types where modulo arithmetic is required. | |
6622 | Failure to do so _will_ break on newer gcc. */ | |
6623 | ||
6624 | /* Signed saturating arithmetic. */ | |
6625 | ||
1654b2d6 | 6626 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
6627 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
6628 | { | |
6629 | uint16_t res; | |
6630 | ||
6631 | res = a + b; | |
6632 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
6633 | if (a & 0x8000) | |
6634 | res = 0x8000; | |
6635 | else | |
6636 | res = 0x7fff; | |
6637 | } | |
6638 | return res; | |
6639 | } | |
6640 | ||
1654b2d6 | 6641 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
6642 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
6643 | { | |
6644 | uint8_t res; | |
6645 | ||
6646 | res = a + b; | |
6647 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
6648 | if (a & 0x80) | |
6649 | res = 0x80; | |
6650 | else | |
6651 | res = 0x7f; | |
6652 | } | |
6653 | return res; | |
6654 | } | |
6655 | ||
1654b2d6 | 6656 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
6657 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
6658 | { | |
6659 | uint16_t res; | |
6660 | ||
6661 | res = a - b; | |
6662 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
6663 | if (a & 0x8000) | |
6664 | res = 0x8000; | |
6665 | else | |
6666 | res = 0x7fff; | |
6667 | } | |
6668 | return res; | |
6669 | } | |
6670 | ||
1654b2d6 | 6671 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
6672 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
6673 | { | |
6674 | uint8_t res; | |
6675 | ||
6676 | res = a - b; | |
6677 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
6678 | if (a & 0x80) | |
6679 | res = 0x80; | |
6680 | else | |
6681 | res = 0x7f; | |
6682 | } | |
6683 | return res; | |
6684 | } | |
6685 | ||
6686 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
6687 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
6688 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
6689 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
6690 | #define PFX q | |
6691 | ||
6692 | #include "op_addsub.h" | |
6693 | ||
6694 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 6695 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
6696 | { |
6697 | uint16_t res; | |
6698 | res = a + b; | |
6699 | if (res < a) | |
6700 | res = 0xffff; | |
6701 | return res; | |
6702 | } | |
6703 | ||
460a09c1 | 6704 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 6705 | { |
4c4fd3f8 | 6706 | if (a > b) |
6ddbc6e4 PB |
6707 | return a - b; |
6708 | else | |
6709 | return 0; | |
6710 | } | |
6711 | ||
6712 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
6713 | { | |
6714 | uint8_t res; | |
6715 | res = a + b; | |
6716 | if (res < a) | |
6717 | res = 0xff; | |
6718 | return res; | |
6719 | } | |
6720 | ||
6721 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
6722 | { | |
4c4fd3f8 | 6723 | if (a > b) |
6ddbc6e4 PB |
6724 | return a - b; |
6725 | else | |
6726 | return 0; | |
6727 | } | |
6728 | ||
6729 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
6730 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
6731 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
6732 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
6733 | #define PFX uq | |
6734 | ||
6735 | #include "op_addsub.h" | |
6736 | ||
6737 | /* Signed modulo arithmetic. */ | |
6738 | #define SARITH16(a, b, n, op) do { \ | |
6739 | int32_t sum; \ | |
db6e2e65 | 6740 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
6741 | RESULT(sum, n, 16); \ |
6742 | if (sum >= 0) \ | |
6743 | ge |= 3 << (n * 2); \ | |
6744 | } while(0) | |
6745 | ||
6746 | #define SARITH8(a, b, n, op) do { \ | |
6747 | int32_t sum; \ | |
db6e2e65 | 6748 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
6749 | RESULT(sum, n, 8); \ |
6750 | if (sum >= 0) \ | |
6751 | ge |= 1 << n; \ | |
6752 | } while(0) | |
6753 | ||
6754 | ||
6755 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
6756 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
6757 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
6758 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
6759 | #define PFX s | |
6760 | #define ARITH_GE | |
6761 | ||
6762 | #include "op_addsub.h" | |
6763 | ||
6764 | /* Unsigned modulo arithmetic. */ | |
6765 | #define ADD16(a, b, n) do { \ | |
6766 | uint32_t sum; \ | |
6767 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
6768 | RESULT(sum, n, 16); \ | |
a87aa10b | 6769 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
6770 | ge |= 3 << (n * 2); \ |
6771 | } while(0) | |
6772 | ||
6773 | #define ADD8(a, b, n) do { \ | |
6774 | uint32_t sum; \ | |
6775 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
6776 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
6777 | if ((sum >> 8) == 1) \ |
6778 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
6779 | } while(0) |
6780 | ||
6781 | #define SUB16(a, b, n) do { \ | |
6782 | uint32_t sum; \ | |
6783 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
6784 | RESULT(sum, n, 16); \ | |
6785 | if ((sum >> 16) == 0) \ | |
6786 | ge |= 3 << (n * 2); \ | |
6787 | } while(0) | |
6788 | ||
6789 | #define SUB8(a, b, n) do { \ | |
6790 | uint32_t sum; \ | |
6791 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
6792 | RESULT(sum, n, 8); \ | |
6793 | if ((sum >> 8) == 0) \ | |
a87aa10b | 6794 | ge |= 1 << n; \ |
6ddbc6e4 PB |
6795 | } while(0) |
6796 | ||
6797 | #define PFX u | |
6798 | #define ARITH_GE | |
6799 | ||
6800 | #include "op_addsub.h" | |
6801 | ||
6802 | /* Halved signed arithmetic. */ | |
6803 | #define ADD16(a, b, n) \ | |
6804 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
6805 | #define SUB16(a, b, n) \ | |
6806 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
6807 | #define ADD8(a, b, n) \ | |
6808 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
6809 | #define SUB8(a, b, n) \ | |
6810 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
6811 | #define PFX sh | |
6812 | ||
6813 | #include "op_addsub.h" | |
6814 | ||
6815 | /* Halved unsigned arithmetic. */ | |
6816 | #define ADD16(a, b, n) \ | |
6817 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
6818 | #define SUB16(a, b, n) \ | |
6819 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
6820 | #define ADD8(a, b, n) \ | |
6821 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
6822 | #define SUB8(a, b, n) \ | |
6823 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
6824 | #define PFX uh | |
6825 | ||
6826 | #include "op_addsub.h" | |
6827 | ||
6828 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
6829 | { | |
6830 | if (a > b) | |
6831 | return a - b; | |
6832 | else | |
6833 | return b - a; | |
6834 | } | |
6835 | ||
6836 | /* Unsigned sum of absolute byte differences. */ | |
6837 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
6838 | { | |
6839 | uint32_t sum; | |
6840 | sum = do_usad(a, b); | |
6841 | sum += do_usad(a >> 8, b >> 8); | |
6842 | sum += do_usad(a >> 16, b >>16); | |
6843 | sum += do_usad(a >> 24, b >> 24); | |
6844 | return sum; | |
6845 | } | |
6846 | ||
6847 | /* For ARMv6 SEL instruction. */ | |
6848 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
6849 | { | |
6850 | uint32_t mask; | |
6851 | ||
6852 | mask = 0; | |
6853 | if (flags & 1) | |
6854 | mask |= 0xff; | |
6855 | if (flags & 2) | |
6856 | mask |= 0xff00; | |
6857 | if (flags & 4) | |
6858 | mask |= 0xff0000; | |
6859 | if (flags & 8) | |
6860 | mask |= 0xff000000; | |
6861 | return (a & mask) | (b & ~mask); | |
6862 | } | |
6863 | ||
b90372ad PM |
6864 | /* VFP support. We follow the convention used for VFP instructions: |
6865 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
6866 | "d" suffix. */ |
6867 | ||
6868 | /* Convert host exception flags to vfp form. */ | |
6869 | static inline int vfp_exceptbits_from_host(int host_bits) | |
6870 | { | |
6871 | int target_bits = 0; | |
6872 | ||
6873 | if (host_bits & float_flag_invalid) | |
6874 | target_bits |= 1; | |
6875 | if (host_bits & float_flag_divbyzero) | |
6876 | target_bits |= 2; | |
6877 | if (host_bits & float_flag_overflow) | |
6878 | target_bits |= 4; | |
36802b6b | 6879 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
6880 | target_bits |= 8; |
6881 | if (host_bits & float_flag_inexact) | |
6882 | target_bits |= 0x10; | |
cecd8504 PM |
6883 | if (host_bits & float_flag_input_denormal) |
6884 | target_bits |= 0x80; | |
4373f3ce PB |
6885 | return target_bits; |
6886 | } | |
6887 | ||
0ecb72a5 | 6888 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
6889 | { |
6890 | int i; | |
6891 | uint32_t fpscr; | |
6892 | ||
6893 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
6894 | | (env->vfp.vec_len << 16) | |
6895 | | (env->vfp.vec_stride << 20); | |
6896 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 6897 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
6898 | fpscr |= vfp_exceptbits_from_host(i); |
6899 | return fpscr; | |
6900 | } | |
6901 | ||
0ecb72a5 | 6902 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
6903 | { |
6904 | return HELPER(vfp_get_fpscr)(env); | |
6905 | } | |
6906 | ||
4373f3ce PB |
6907 | /* Convert vfp exception flags to target form. */ |
6908 | static inline int vfp_exceptbits_to_host(int target_bits) | |
6909 | { | |
6910 | int host_bits = 0; | |
6911 | ||
6912 | if (target_bits & 1) | |
6913 | host_bits |= float_flag_invalid; | |
6914 | if (target_bits & 2) | |
6915 | host_bits |= float_flag_divbyzero; | |
6916 | if (target_bits & 4) | |
6917 | host_bits |= float_flag_overflow; | |
6918 | if (target_bits & 8) | |
6919 | host_bits |= float_flag_underflow; | |
6920 | if (target_bits & 0x10) | |
6921 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
6922 | if (target_bits & 0x80) |
6923 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
6924 | return host_bits; |
6925 | } | |
6926 | ||
0ecb72a5 | 6927 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
6928 | { |
6929 | int i; | |
6930 | uint32_t changed; | |
6931 | ||
6932 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
6933 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
6934 | env->vfp.vec_len = (val >> 16) & 7; | |
6935 | env->vfp.vec_stride = (val >> 20) & 3; | |
6936 | ||
6937 | changed ^= val; | |
6938 | if (changed & (3 << 22)) { | |
6939 | i = (val >> 22) & 3; | |
6940 | switch (i) { | |
4d3da0f3 | 6941 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
6942 | i = float_round_nearest_even; |
6943 | break; | |
4d3da0f3 | 6944 | case FPROUNDING_POSINF: |
4373f3ce PB |
6945 | i = float_round_up; |
6946 | break; | |
4d3da0f3 | 6947 | case FPROUNDING_NEGINF: |
4373f3ce PB |
6948 | i = float_round_down; |
6949 | break; | |
4d3da0f3 | 6950 | case FPROUNDING_ZERO: |
4373f3ce PB |
6951 | i = float_round_to_zero; |
6952 | break; | |
6953 | } | |
6954 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
6955 | } | |
cecd8504 | 6956 | if (changed & (1 << 24)) { |
fe76d976 | 6957 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
6958 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
6959 | } | |
5c7908ed PB |
6960 | if (changed & (1 << 25)) |
6961 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 6962 | |
b12c390b | 6963 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 6964 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 6965 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
6966 | } |
6967 | ||
0ecb72a5 | 6968 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
6969 | { |
6970 | HELPER(vfp_set_fpscr)(env, val); | |
6971 | } | |
6972 | ||
4373f3ce PB |
6973 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
6974 | ||
6975 | #define VFP_BINOP(name) \ | |
ae1857ec | 6976 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 6977 | { \ |
ae1857ec PM |
6978 | float_status *fpst = fpstp; \ |
6979 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 6980 | } \ |
ae1857ec | 6981 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 6982 | { \ |
ae1857ec PM |
6983 | float_status *fpst = fpstp; \ |
6984 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
6985 | } |
6986 | VFP_BINOP(add) | |
6987 | VFP_BINOP(sub) | |
6988 | VFP_BINOP(mul) | |
6989 | VFP_BINOP(div) | |
f71a2ae5 PM |
6990 | VFP_BINOP(min) |
6991 | VFP_BINOP(max) | |
6992 | VFP_BINOP(minnum) | |
6993 | VFP_BINOP(maxnum) | |
4373f3ce PB |
6994 | #undef VFP_BINOP |
6995 | ||
6996 | float32 VFP_HELPER(neg, s)(float32 a) | |
6997 | { | |
6998 | return float32_chs(a); | |
6999 | } | |
7000 | ||
7001 | float64 VFP_HELPER(neg, d)(float64 a) | |
7002 | { | |
66230e0d | 7003 | return float64_chs(a); |
4373f3ce PB |
7004 | } |
7005 | ||
7006 | float32 VFP_HELPER(abs, s)(float32 a) | |
7007 | { | |
7008 | return float32_abs(a); | |
7009 | } | |
7010 | ||
7011 | float64 VFP_HELPER(abs, d)(float64 a) | |
7012 | { | |
66230e0d | 7013 | return float64_abs(a); |
4373f3ce PB |
7014 | } |
7015 | ||
0ecb72a5 | 7016 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
7017 | { |
7018 | return float32_sqrt(a, &env->vfp.fp_status); | |
7019 | } | |
7020 | ||
0ecb72a5 | 7021 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
7022 | { |
7023 | return float64_sqrt(a, &env->vfp.fp_status); | |
7024 | } | |
7025 | ||
7026 | /* XXX: check quiet/signaling case */ | |
7027 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 7028 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
7029 | { \ |
7030 | uint32_t flags; \ | |
7031 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
7032 | case 0: flags = 0x6; break; \ | |
7033 | case -1: flags = 0x8; break; \ | |
7034 | case 1: flags = 0x2; break; \ | |
7035 | default: case 2: flags = 0x3; break; \ | |
7036 | } \ | |
7037 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
7038 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
7039 | } \ | |
0ecb72a5 | 7040 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
7041 | { \ |
7042 | uint32_t flags; \ | |
7043 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
7044 | case 0: flags = 0x6; break; \ | |
7045 | case -1: flags = 0x8; break; \ | |
7046 | case 1: flags = 0x2; break; \ | |
7047 | default: case 2: flags = 0x3; break; \ | |
7048 | } \ | |
7049 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
7050 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
7051 | } | |
7052 | DO_VFP_cmp(s, float32) | |
7053 | DO_VFP_cmp(d, float64) | |
7054 | #undef DO_VFP_cmp | |
7055 | ||
5500b06c | 7056 | /* Integer to float and float to integer conversions */ |
4373f3ce | 7057 | |
5500b06c PM |
7058 | #define CONV_ITOF(name, fsz, sign) \ |
7059 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
7060 | { \ | |
7061 | float_status *fpst = fpstp; \ | |
85836979 | 7062 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
7063 | } |
7064 | ||
5500b06c PM |
7065 | #define CONV_FTOI(name, fsz, sign, round) \ |
7066 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
7067 | { \ | |
7068 | float_status *fpst = fpstp; \ | |
7069 | if (float##fsz##_is_any_nan(x)) { \ | |
7070 | float_raise(float_flag_invalid, fpst); \ | |
7071 | return 0; \ | |
7072 | } \ | |
7073 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
7074 | } |
7075 | ||
5500b06c PM |
7076 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
7077 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
7078 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
7079 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 7080 | |
5500b06c PM |
7081 | FLOAT_CONVS(si, s, 32, ) |
7082 | FLOAT_CONVS(si, d, 64, ) | |
7083 | FLOAT_CONVS(ui, s, 32, u) | |
7084 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 7085 | |
5500b06c PM |
7086 | #undef CONV_ITOF |
7087 | #undef CONV_FTOI | |
7088 | #undef FLOAT_CONVS | |
4373f3ce PB |
7089 | |
7090 | /* floating point conversion */ | |
0ecb72a5 | 7091 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 7092 | { |
2d627737 PM |
7093 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
7094 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
7095 | * a quiet NaN by forcing the most significant frac bit to 1. | |
7096 | */ | |
7097 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
7098 | } |
7099 | ||
0ecb72a5 | 7100 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 7101 | { |
2d627737 PM |
7102 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
7103 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
7104 | * a quiet NaN by forcing the most significant frac bit to 1. | |
7105 | */ | |
7106 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
7107 | } |
7108 | ||
7109 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 7110 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
7111 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
7112 | void *fpstp) \ | |
4373f3ce | 7113 | { \ |
5500b06c | 7114 | float_status *fpst = fpstp; \ |
622465e1 | 7115 | float##fsz tmp; \ |
8ed697e8 | 7116 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 7117 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
7118 | } |
7119 | ||
abe66f70 PM |
7120 | /* Notice that we want only input-denormal exception flags from the |
7121 | * scalbn operation: the other possible flags (overflow+inexact if | |
7122 | * we overflow to infinity, output-denormal) aren't correct for the | |
7123 | * complete scale-and-convert operation. | |
7124 | */ | |
16d5b3ca WN |
7125 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
7126 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
7127 | uint32_t shift, \ | |
7128 | void *fpstp) \ | |
4373f3ce | 7129 | { \ |
5500b06c | 7130 | float_status *fpst = fpstp; \ |
abe66f70 | 7131 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
7132 | float##fsz tmp; \ |
7133 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 7134 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 7135 | return 0; \ |
09d9487f | 7136 | } \ |
5500b06c | 7137 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
7138 | old_exc_flags |= get_float_exception_flags(fpst) \ |
7139 | & float_flag_input_denormal; \ | |
7140 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 7141 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
7142 | } |
7143 | ||
16d5b3ca WN |
7144 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
7145 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
7146 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
7147 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
7148 | ||
7149 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
7150 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
7151 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 7152 | |
8ed697e8 WN |
7153 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
7154 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 7155 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
7156 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
7157 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 7158 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
7159 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
7160 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 7161 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
7162 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
7163 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 7164 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 7165 | #undef VFP_CONV_FIX |
16d5b3ca WN |
7166 | #undef VFP_CONV_FIX_FLOAT |
7167 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 7168 | |
52a1f6a3 AG |
7169 | /* Set the current fp rounding mode and return the old one. |
7170 | * The argument is a softfloat float_round_ value. | |
7171 | */ | |
7172 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
7173 | { | |
7174 | float_status *fp_status = &env->vfp.fp_status; | |
7175 | ||
7176 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
7177 | set_float_rounding_mode(rmode, fp_status); | |
7178 | ||
7179 | return prev_rmode; | |
7180 | } | |
7181 | ||
43630e58 WN |
7182 | /* Set the current fp rounding mode in the standard fp status and return |
7183 | * the old one. This is for NEON instructions that need to change the | |
7184 | * rounding mode but wish to use the standard FPSCR values for everything | |
7185 | * else. Always set the rounding mode back to the correct value after | |
7186 | * modifying it. | |
7187 | * The argument is a softfloat float_round_ value. | |
7188 | */ | |
7189 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
7190 | { | |
7191 | float_status *fp_status = &env->vfp.standard_fp_status; | |
7192 | ||
7193 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
7194 | set_float_rounding_mode(rmode, fp_status); | |
7195 | ||
7196 | return prev_rmode; | |
7197 | } | |
7198 | ||
60011498 | 7199 | /* Half precision conversions. */ |
0ecb72a5 | 7200 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 7201 | { |
60011498 | 7202 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
7203 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
7204 | if (ieee) { | |
7205 | return float32_maybe_silence_nan(r); | |
7206 | } | |
7207 | return r; | |
60011498 PB |
7208 | } |
7209 | ||
0ecb72a5 | 7210 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 7211 | { |
60011498 | 7212 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
7213 | float16 r = float32_to_float16(a, ieee, s); |
7214 | if (ieee) { | |
7215 | r = float16_maybe_silence_nan(r); | |
7216 | } | |
7217 | return float16_val(r); | |
60011498 PB |
7218 | } |
7219 | ||
0ecb72a5 | 7220 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
7221 | { |
7222 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
7223 | } | |
7224 | ||
0ecb72a5 | 7225 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
7226 | { |
7227 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
7228 | } | |
7229 | ||
0ecb72a5 | 7230 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
7231 | { |
7232 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
7233 | } | |
7234 | ||
0ecb72a5 | 7235 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
7236 | { |
7237 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
7238 | } | |
7239 | ||
8900aad2 PM |
7240 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
7241 | { | |
7242 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
7243 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
7244 | if (ieee) { | |
7245 | return float64_maybe_silence_nan(r); | |
7246 | } | |
7247 | return r; | |
7248 | } | |
7249 | ||
7250 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
7251 | { | |
7252 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
7253 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
7254 | if (ieee) { | |
7255 | r = float16_maybe_silence_nan(r); | |
7256 | } | |
7257 | return float16_val(r); | |
7258 | } | |
7259 | ||
dda3ec49 | 7260 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
7261 | #define float32_three make_float32(0x40400000) |
7262 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 7263 | |
0ecb72a5 | 7264 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 7265 | { |
dda3ec49 PM |
7266 | float_status *s = &env->vfp.standard_fp_status; |
7267 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
7268 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
7269 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
7270 | float_raise(float_flag_input_denormal, s); | |
7271 | } | |
dda3ec49 PM |
7272 | return float32_two; |
7273 | } | |
7274 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
7275 | } |
7276 | ||
0ecb72a5 | 7277 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 7278 | { |
71826966 | 7279 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
7280 | float32 product; |
7281 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
7282 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
7283 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
7284 | float_raise(float_flag_input_denormal, s); | |
7285 | } | |
6aae3df1 | 7286 | return float32_one_point_five; |
9ea62f57 | 7287 | } |
6aae3df1 PM |
7288 | product = float32_mul(a, b, s); |
7289 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
7290 | } |
7291 | ||
8f8e3aa4 PB |
7292 | /* NEON helpers. */ |
7293 | ||
56bf4fe2 CL |
7294 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
7295 | * int->float conversions at run-time. */ | |
7296 | #define float64_256 make_float64(0x4070000000000000LL) | |
7297 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
7298 | #define float32_maxnorm make_float32(0x7f7fffff) |
7299 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 7300 | |
b6d4443a AB |
7301 | /* Reciprocal functions |
7302 | * | |
7303 | * The algorithm that must be used to calculate the estimate | |
7304 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 7305 | */ |
b6d4443a AB |
7306 | |
7307 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 7308 | { |
1146a817 PM |
7309 | /* These calculations mustn't set any fp exception flags, |
7310 | * so we use a local copy of the fp_status. | |
7311 | */ | |
b6d4443a | 7312 | float_status dummy_status = *real_fp_status; |
1146a817 | 7313 | float_status *s = &dummy_status; |
fe0e4872 CL |
7314 | /* q = (int)(a * 512.0) */ |
7315 | float64 q = float64_mul(float64_512, a, s); | |
7316 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
7317 | ||
7318 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
7319 | q = int64_to_float64(q_int, s); | |
7320 | q = float64_add(q, float64_half, s); | |
7321 | q = float64_div(q, float64_512, s); | |
7322 | q = float64_div(float64_one, q, s); | |
7323 | ||
7324 | /* s = (int)(256.0 * r + 0.5) */ | |
7325 | q = float64_mul(q, float64_256, s); | |
7326 | q = float64_add(q, float64_half, s); | |
7327 | q_int = float64_to_int64_round_to_zero(q, s); | |
7328 | ||
7329 | /* return (double)s / 256.0 */ | |
7330 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
7331 | } | |
7332 | ||
b6d4443a AB |
7333 | /* Common wrapper to call recip_estimate */ |
7334 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 7335 | { |
b6d4443a AB |
7336 | uint64_t val64 = float64_val(num); |
7337 | uint64_t frac = extract64(val64, 0, 52); | |
7338 | int64_t exp = extract64(val64, 52, 11); | |
7339 | uint64_t sbit; | |
7340 | float64 scaled, estimate; | |
fe0e4872 | 7341 | |
b6d4443a AB |
7342 | /* Generate the scaled number for the estimate function */ |
7343 | if (exp == 0) { | |
7344 | if (extract64(frac, 51, 1) == 0) { | |
7345 | exp = -1; | |
7346 | frac = extract64(frac, 0, 50) << 2; | |
7347 | } else { | |
7348 | frac = extract64(frac, 0, 51) << 1; | |
7349 | } | |
7350 | } | |
fe0e4872 | 7351 | |
b6d4443a AB |
7352 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
7353 | scaled = make_float64((0x3feULL << 52) | |
7354 | | extract64(frac, 44, 8) << 44); | |
7355 | ||
7356 | estimate = recip_estimate(scaled, fpst); | |
7357 | ||
7358 | /* Build new result */ | |
7359 | val64 = float64_val(estimate); | |
7360 | sbit = 0x8000000000000000ULL & val64; | |
7361 | exp = off - exp; | |
7362 | frac = extract64(val64, 0, 52); | |
7363 | ||
7364 | if (exp == 0) { | |
7365 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
7366 | } else if (exp == -1) { | |
7367 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
7368 | exp = 0; | |
7369 | } | |
7370 | ||
7371 | return make_float64(sbit | (exp << 52) | frac); | |
7372 | } | |
7373 | ||
7374 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
7375 | { | |
7376 | switch (fpst->float_rounding_mode) { | |
7377 | case float_round_nearest_even: /* Round to Nearest */ | |
7378 | return true; | |
7379 | case float_round_up: /* Round to +Inf */ | |
7380 | return !sign_bit; | |
7381 | case float_round_down: /* Round to -Inf */ | |
7382 | return sign_bit; | |
7383 | case float_round_to_zero: /* Round to Zero */ | |
7384 | return false; | |
7385 | } | |
7386 | ||
7387 | g_assert_not_reached(); | |
7388 | } | |
7389 | ||
7390 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
7391 | { | |
7392 | float_status *fpst = fpstp; | |
7393 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
7394 | uint32_t f32_val = float32_val(f32); | |
7395 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
7396 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
7397 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
7398 | float64 f64, r64; | |
7399 | uint64_t r64_val; | |
7400 | int64_t r64_exp; | |
7401 | uint64_t r64_frac; | |
7402 | ||
7403 | if (float32_is_any_nan(f32)) { | |
7404 | float32 nan = f32; | |
7405 | if (float32_is_signaling_nan(f32)) { | |
7406 | float_raise(float_flag_invalid, fpst); | |
7407 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 7408 | } |
b6d4443a AB |
7409 | if (fpst->default_nan_mode) { |
7410 | nan = float32_default_nan; | |
43fe9bdb | 7411 | } |
b6d4443a AB |
7412 | return nan; |
7413 | } else if (float32_is_infinity(f32)) { | |
7414 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
7415 | } else if (float32_is_zero(f32)) { | |
7416 | float_raise(float_flag_divbyzero, fpst); | |
7417 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
7418 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
7419 | /* Abs(value) < 2.0^-128 */ | |
7420 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
7421 | if (round_to_inf(fpst, f32_sbit)) { | |
7422 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
7423 | } else { | |
7424 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
7425 | } | |
7426 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
7427 | float_raise(float_flag_underflow, fpst); | |
7428 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
7429 | } |
7430 | ||
fe0e4872 | 7431 | |
b6d4443a AB |
7432 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
7433 | r64 = call_recip_estimate(f64, 253, fpst); | |
7434 | r64_val = float64_val(r64); | |
7435 | r64_exp = extract64(r64_val, 52, 11); | |
7436 | r64_frac = extract64(r64_val, 0, 52); | |
7437 | ||
7438 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
7439 | return make_float32(f32_sbit | | |
7440 | (r64_exp & 0xff) << 23 | | |
7441 | extract64(r64_frac, 29, 24)); | |
7442 | } | |
7443 | ||
7444 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
7445 | { | |
7446 | float_status *fpst = fpstp; | |
7447 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
7448 | uint64_t f64_val = float64_val(f64); | |
7449 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
7450 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
7451 | float64 r64; | |
7452 | uint64_t r64_val; | |
7453 | int64_t r64_exp; | |
7454 | uint64_t r64_frac; | |
7455 | ||
7456 | /* Deal with any special cases */ | |
7457 | if (float64_is_any_nan(f64)) { | |
7458 | float64 nan = f64; | |
7459 | if (float64_is_signaling_nan(f64)) { | |
7460 | float_raise(float_flag_invalid, fpst); | |
7461 | nan = float64_maybe_silence_nan(f64); | |
7462 | } | |
7463 | if (fpst->default_nan_mode) { | |
7464 | nan = float64_default_nan; | |
7465 | } | |
7466 | return nan; | |
7467 | } else if (float64_is_infinity(f64)) { | |
7468 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
7469 | } else if (float64_is_zero(f64)) { | |
7470 | float_raise(float_flag_divbyzero, fpst); | |
7471 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7472 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
7473 | /* Abs(value) < 2.0^-1024 */ | |
7474 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
7475 | if (round_to_inf(fpst, f64_sbit)) { | |
7476 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7477 | } else { | |
7478 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
7479 | } | |
fc1792e9 | 7480 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
7481 | float_raise(float_flag_underflow, fpst); |
7482 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
7483 | } | |
fe0e4872 | 7484 | |
b6d4443a AB |
7485 | r64 = call_recip_estimate(f64, 2045, fpst); |
7486 | r64_val = float64_val(r64); | |
7487 | r64_exp = extract64(r64_val, 52, 11); | |
7488 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 7489 | |
b6d4443a AB |
7490 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
7491 | return make_float64(f64_sbit | | |
7492 | ((r64_exp & 0x7ff) << 52) | | |
7493 | r64_frac); | |
4373f3ce PB |
7494 | } |
7495 | ||
e07be5d2 CL |
7496 | /* The algorithm that must be used to calculate the estimate |
7497 | * is specified by the ARM ARM. | |
7498 | */ | |
c2fb418e | 7499 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 7500 | { |
1146a817 PM |
7501 | /* These calculations mustn't set any fp exception flags, |
7502 | * so we use a local copy of the fp_status. | |
7503 | */ | |
c2fb418e | 7504 | float_status dummy_status = *real_fp_status; |
1146a817 | 7505 | float_status *s = &dummy_status; |
e07be5d2 CL |
7506 | float64 q; |
7507 | int64_t q_int; | |
7508 | ||
7509 | if (float64_lt(a, float64_half, s)) { | |
7510 | /* range 0.25 <= a < 0.5 */ | |
7511 | ||
7512 | /* a in units of 1/512 rounded down */ | |
7513 | /* q0 = (int)(a * 512.0); */ | |
7514 | q = float64_mul(float64_512, a, s); | |
7515 | q_int = float64_to_int64_round_to_zero(q, s); | |
7516 | ||
7517 | /* reciprocal root r */ | |
7518 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
7519 | q = int64_to_float64(q_int, s); | |
7520 | q = float64_add(q, float64_half, s); | |
7521 | q = float64_div(q, float64_512, s); | |
7522 | q = float64_sqrt(q, s); | |
7523 | q = float64_div(float64_one, q, s); | |
7524 | } else { | |
7525 | /* range 0.5 <= a < 1.0 */ | |
7526 | ||
7527 | /* a in units of 1/256 rounded down */ | |
7528 | /* q1 = (int)(a * 256.0); */ | |
7529 | q = float64_mul(float64_256, a, s); | |
7530 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
7531 | ||
7532 | /* reciprocal root r */ | |
7533 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
7534 | q = int64_to_float64(q_int, s); | |
7535 | q = float64_add(q, float64_half, s); | |
7536 | q = float64_div(q, float64_256, s); | |
7537 | q = float64_sqrt(q, s); | |
7538 | q = float64_div(float64_one, q, s); | |
7539 | } | |
7540 | /* r in units of 1/256 rounded to nearest */ | |
7541 | /* s = (int)(256.0 * r + 0.5); */ | |
7542 | ||
7543 | q = float64_mul(q, float64_256,s ); | |
7544 | q = float64_add(q, float64_half, s); | |
7545 | q_int = float64_to_int64_round_to_zero(q, s); | |
7546 | ||
7547 | /* return (double)s / 256.0;*/ | |
7548 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
7549 | } | |
7550 | ||
c2fb418e | 7551 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 7552 | { |
c2fb418e AB |
7553 | float_status *s = fpstp; |
7554 | float32 f32 = float32_squash_input_denormal(input, s); | |
7555 | uint32_t val = float32_val(f32); | |
7556 | uint32_t f32_sbit = 0x80000000 & val; | |
7557 | int32_t f32_exp = extract32(val, 23, 8); | |
7558 | uint32_t f32_frac = extract32(val, 0, 23); | |
7559 | uint64_t f64_frac; | |
7560 | uint64_t val64; | |
e07be5d2 CL |
7561 | int result_exp; |
7562 | float64 f64; | |
e07be5d2 | 7563 | |
c2fb418e AB |
7564 | if (float32_is_any_nan(f32)) { |
7565 | float32 nan = f32; | |
7566 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 7567 | float_raise(float_flag_invalid, s); |
c2fb418e | 7568 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 7569 | } |
c2fb418e AB |
7570 | if (s->default_nan_mode) { |
7571 | nan = float32_default_nan; | |
43fe9bdb | 7572 | } |
c2fb418e AB |
7573 | return nan; |
7574 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 7575 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
7576 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
7577 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
7578 | float_raise(float_flag_invalid, s); |
7579 | return float32_default_nan; | |
c2fb418e | 7580 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
7581 | return float32_zero; |
7582 | } | |
7583 | ||
c2fb418e | 7584 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 7585 | * preserving the parity of the exponent. */ |
c2fb418e AB |
7586 | |
7587 | f64_frac = ((uint64_t) f32_frac) << 29; | |
7588 | if (f32_exp == 0) { | |
7589 | while (extract64(f64_frac, 51, 1) == 0) { | |
7590 | f64_frac = f64_frac << 1; | |
7591 | f32_exp = f32_exp-1; | |
7592 | } | |
7593 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
7594 | } | |
7595 | ||
7596 | if (extract64(f32_exp, 0, 1) == 0) { | |
7597 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 7598 | | (0x3feULL << 52) |
c2fb418e | 7599 | | f64_frac); |
e07be5d2 | 7600 | } else { |
c2fb418e | 7601 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 7602 | | (0x3fdULL << 52) |
c2fb418e | 7603 | | f64_frac); |
e07be5d2 CL |
7604 | } |
7605 | ||
c2fb418e | 7606 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 7607 | |
c2fb418e | 7608 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
7609 | |
7610 | val64 = float64_val(f64); | |
7611 | ||
26cc6abf | 7612 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
7613 | | ((val64 >> 29) & 0x7fffff); |
7614 | return make_float32(val); | |
4373f3ce PB |
7615 | } |
7616 | ||
c2fb418e AB |
7617 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
7618 | { | |
7619 | float_status *s = fpstp; | |
7620 | float64 f64 = float64_squash_input_denormal(input, s); | |
7621 | uint64_t val = float64_val(f64); | |
7622 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
7623 | int64_t f64_exp = extract64(val, 52, 11); | |
7624 | uint64_t f64_frac = extract64(val, 0, 52); | |
7625 | int64_t result_exp; | |
7626 | uint64_t result_frac; | |
7627 | ||
7628 | if (float64_is_any_nan(f64)) { | |
7629 | float64 nan = f64; | |
7630 | if (float64_is_signaling_nan(f64)) { | |
7631 | float_raise(float_flag_invalid, s); | |
7632 | nan = float64_maybe_silence_nan(f64); | |
7633 | } | |
7634 | if (s->default_nan_mode) { | |
7635 | nan = float64_default_nan; | |
7636 | } | |
7637 | return nan; | |
7638 | } else if (float64_is_zero(f64)) { | |
7639 | float_raise(float_flag_divbyzero, s); | |
7640 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7641 | } else if (float64_is_neg(f64)) { | |
7642 | float_raise(float_flag_invalid, s); | |
7643 | return float64_default_nan; | |
7644 | } else if (float64_is_infinity(f64)) { | |
7645 | return float64_zero; | |
7646 | } | |
7647 | ||
7648 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
7649 | * preserving the parity of the exponent. */ | |
7650 | ||
7651 | if (f64_exp == 0) { | |
7652 | while (extract64(f64_frac, 51, 1) == 0) { | |
7653 | f64_frac = f64_frac << 1; | |
7654 | f64_exp = f64_exp - 1; | |
7655 | } | |
7656 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
7657 | } | |
7658 | ||
7659 | if (extract64(f64_exp, 0, 1) == 0) { | |
7660 | f64 = make_float64(f64_sbit | |
7661 | | (0x3feULL << 52) | |
7662 | | f64_frac); | |
7663 | } else { | |
7664 | f64 = make_float64(f64_sbit | |
7665 | | (0x3fdULL << 52) | |
7666 | | f64_frac); | |
7667 | } | |
7668 | ||
7669 | result_exp = (3068 - f64_exp) / 2; | |
7670 | ||
7671 | f64 = recip_sqrt_estimate(f64, s); | |
7672 | ||
7673 | result_frac = extract64(float64_val(f64), 0, 52); | |
7674 | ||
7675 | return make_float64(f64_sbit | | |
7676 | ((result_exp & 0x7ff) << 52) | | |
7677 | result_frac); | |
7678 | } | |
7679 | ||
b6d4443a | 7680 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 7681 | { |
b6d4443a | 7682 | float_status *s = fpstp; |
fe0e4872 CL |
7683 | float64 f64; |
7684 | ||
7685 | if ((a & 0x80000000) == 0) { | |
7686 | return 0xffffffff; | |
7687 | } | |
7688 | ||
7689 | f64 = make_float64((0x3feULL << 52) | |
7690 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
7691 | ||
b6d4443a | 7692 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
7693 | |
7694 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
7695 | } |
7696 | ||
c2fb418e | 7697 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 7698 | { |
c2fb418e | 7699 | float_status *fpst = fpstp; |
e07be5d2 CL |
7700 | float64 f64; |
7701 | ||
7702 | if ((a & 0xc0000000) == 0) { | |
7703 | return 0xffffffff; | |
7704 | } | |
7705 | ||
7706 | if (a & 0x80000000) { | |
7707 | f64 = make_float64((0x3feULL << 52) | |
7708 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
7709 | } else { /* bits 31-30 == '01' */ | |
7710 | f64 = make_float64((0x3fdULL << 52) | |
7711 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
7712 | } | |
7713 | ||
c2fb418e | 7714 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
7715 | |
7716 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 7717 | } |
fe1479c3 | 7718 | |
da97f52c PM |
7719 | /* VFPv4 fused multiply-accumulate */ |
7720 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
7721 | { | |
7722 | float_status *fpst = fpstp; | |
7723 | return float32_muladd(a, b, c, 0, fpst); | |
7724 | } | |
7725 | ||
7726 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
7727 | { | |
7728 | float_status *fpst = fpstp; | |
7729 | return float64_muladd(a, b, c, 0, fpst); | |
7730 | } | |
d9b0848d PM |
7731 | |
7732 | /* ARMv8 round to integral */ | |
7733 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
7734 | { | |
7735 | return float32_round_to_int(x, fp_status); | |
7736 | } | |
7737 | ||
7738 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
7739 | { | |
7740 | return float64_round_to_int(x, fp_status); | |
7741 | } | |
7742 | ||
7743 | float32 HELPER(rints)(float32 x, void *fp_status) | |
7744 | { | |
7745 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
7746 | float32 ret; | |
7747 | ||
7748 | ret = float32_round_to_int(x, fp_status); | |
7749 | ||
7750 | /* Suppress any inexact exceptions the conversion produced */ | |
7751 | if (!(old_flags & float_flag_inexact)) { | |
7752 | new_flags = get_float_exception_flags(fp_status); | |
7753 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
7754 | } | |
7755 | ||
7756 | return ret; | |
7757 | } | |
7758 | ||
7759 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
7760 | { | |
7761 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
7762 | float64 ret; | |
7763 | ||
7764 | ret = float64_round_to_int(x, fp_status); | |
7765 | ||
7766 | new_flags = get_float_exception_flags(fp_status); | |
7767 | ||
7768 | /* Suppress any inexact exceptions the conversion produced */ | |
7769 | if (!(old_flags & float_flag_inexact)) { | |
7770 | new_flags = get_float_exception_flags(fp_status); | |
7771 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
7772 | } | |
7773 | ||
7774 | return ret; | |
7775 | } | |
9972da66 WN |
7776 | |
7777 | /* Convert ARM rounding mode to softfloat */ | |
7778 | int arm_rmode_to_sf(int rmode) | |
7779 | { | |
7780 | switch (rmode) { | |
7781 | case FPROUNDING_TIEAWAY: | |
7782 | rmode = float_round_ties_away; | |
7783 | break; | |
7784 | case FPROUNDING_ODD: | |
7785 | /* FIXME: add support for TIEAWAY and ODD */ | |
7786 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
7787 | rmode); | |
7788 | case FPROUNDING_TIEEVEN: | |
7789 | default: | |
7790 | rmode = float_round_nearest_even; | |
7791 | break; | |
7792 | case FPROUNDING_POSINF: | |
7793 | rmode = float_round_up; | |
7794 | break; | |
7795 | case FPROUNDING_NEGINF: | |
7796 | rmode = float_round_down; | |
7797 | break; | |
7798 | case FPROUNDING_ZERO: | |
7799 | rmode = float_round_to_zero; | |
7800 | break; | |
7801 | } | |
7802 | return rmode; | |
7803 | } | |
eb0ecd5a | 7804 | |
aa633469 PM |
7805 | /* CRC helpers. |
7806 | * The upper bytes of val (above the number specified by 'bytes') must have | |
7807 | * been zeroed out by the caller. | |
7808 | */ | |
eb0ecd5a WN |
7809 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
7810 | { | |
7811 | uint8_t buf[4]; | |
7812 | ||
aa633469 | 7813 | stl_le_p(buf, val); |
eb0ecd5a WN |
7814 | |
7815 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
7816 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
7817 | } | |
7818 | ||
7819 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
7820 | { | |
7821 | uint8_t buf[4]; | |
7822 | ||
aa633469 | 7823 | stl_le_p(buf, val); |
eb0ecd5a WN |
7824 | |
7825 | /* Linux crc32c converts the output to one's complement. */ | |
7826 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
7827 | } |