]> Git Repo - qemu.git/blame - target-arm/helper.c
target-arm: Correct opc1 for AT_S12Exx
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31 1#include "cpu.h"
ccd38087 2#include "internals.h"
022c62cb 3#include "exec/gdbstub.h"
2ef6175a 4#include "exec/helper-proto.h"
1de7afc9 5#include "qemu/host-utils.h"
78027bb6 6#include "sysemu/arch_init.h"
9c17d615 7#include "sysemu/sysemu.h"
1de7afc9 8#include "qemu/bitops.h"
eb0ecd5a 9#include "qemu/crc32c.h"
f08b6170 10#include "exec/cpu_ldst.h"
1d854765 11#include "arm_ldst.h"
eb0ecd5a 12#include <zlib.h> /* For crc32 */
cfe67cef 13#include "exec/semihost.h"
0b03bdfc 14
4a501606 15#ifndef CONFIG_USER_ONLY
b7cc4e82
PC
16static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
17 int access_type, ARMMMUIdx mmu_idx,
18 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
19 target_ulong *page_size, uint32_t *fsr);
7c2cb42b
AF
20
21/* Definitions for the PMCCNTR and PMCR registers */
22#define PMCRD 0x8
23#define PMCRC 0x4
24#define PMCRE 0x1
4a501606
PM
25#endif
26
0ecb72a5 27static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
28{
29 int nregs;
30
31 /* VFP data registers are always little-endian. */
32 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
33 if (reg < nregs) {
34 stfq_le_p(buf, env->vfp.regs[reg]);
35 return 8;
36 }
37 if (arm_feature(env, ARM_FEATURE_NEON)) {
38 /* Aliases for Q regs. */
39 nregs += 16;
40 if (reg < nregs) {
41 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
42 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
43 return 16;
44 }
45 }
46 switch (reg - nregs) {
47 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
48 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
49 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 }
51 return 0;
52}
53
0ecb72a5 54static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
55{
56 int nregs;
57
58 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
59 if (reg < nregs) {
60 env->vfp.regs[reg] = ldfq_le_p(buf);
61 return 8;
62 }
63 if (arm_feature(env, ARM_FEATURE_NEON)) {
64 nregs += 16;
65 if (reg < nregs) {
66 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
67 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
68 return 16;
69 }
70 }
71 switch (reg - nregs) {
72 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
73 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 74 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
75 }
76 return 0;
77}
78
6a669427
PM
79static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80{
81 switch (reg) {
82 case 0 ... 31:
83 /* 128 bit FP register */
84 stfq_le_p(buf, env->vfp.regs[reg * 2]);
85 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
86 return 16;
87 case 32:
88 /* FPSR */
89 stl_p(buf, vfp_get_fpsr(env));
90 return 4;
91 case 33:
92 /* FPCR */
93 stl_p(buf, vfp_get_fpcr(env));
94 return 4;
95 default:
96 return 0;
97 }
98}
99
100static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101{
102 switch (reg) {
103 case 0 ... 31:
104 /* 128 bit FP register */
105 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
106 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
107 return 16;
108 case 32:
109 /* FPSR */
110 vfp_set_fpsr(env, ldl_p(buf));
111 return 4;
112 case 33:
113 /* FPCR */
114 vfp_set_fpcr(env, ldl_p(buf));
115 return 4;
116 default:
117 return 0;
118 }
119}
120
c4241c7d 121static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 122{
375421cc 123 assert(ri->fieldoffset);
67ed771d 124 if (cpreg_field_is_64bit(ri)) {
c4241c7d 125 return CPREG_FIELD64(env, ri);
22d9e1a9 126 } else {
c4241c7d 127 return CPREG_FIELD32(env, ri);
22d9e1a9 128 }
d4e6df63
PM
129}
130
c4241c7d
PM
131static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
132 uint64_t value)
d4e6df63 133{
375421cc 134 assert(ri->fieldoffset);
67ed771d 135 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
136 CPREG_FIELD64(env, ri) = value;
137 } else {
138 CPREG_FIELD32(env, ri) = value;
139 }
d4e6df63
PM
140}
141
11f136ee
FA
142static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
143{
144 return (char *)env + ri->fieldoffset;
145}
146
49a66191 147uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 148{
59a1c327 149 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 150 if (ri->type & ARM_CP_CONST) {
59a1c327 151 return ri->resetvalue;
721fae12 152 } else if (ri->raw_readfn) {
59a1c327 153 return ri->raw_readfn(env, ri);
721fae12 154 } else if (ri->readfn) {
59a1c327 155 return ri->readfn(env, ri);
721fae12 156 } else {
59a1c327 157 return raw_read(env, ri);
721fae12 158 }
721fae12
PM
159}
160
59a1c327 161static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 162 uint64_t v)
721fae12
PM
163{
164 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
165 * Note that constant registers are treated as write-ignored; the
166 * caller should check for success by whether a readback gives the
167 * value written.
168 */
169 if (ri->type & ARM_CP_CONST) {
59a1c327 170 return;
721fae12 171 } else if (ri->raw_writefn) {
c4241c7d 172 ri->raw_writefn(env, ri, v);
721fae12 173 } else if (ri->writefn) {
c4241c7d 174 ri->writefn(env, ri, v);
721fae12 175 } else {
afb2530f 176 raw_write(env, ri, v);
721fae12 177 }
721fae12
PM
178}
179
375421cc
PM
180static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
181{
182 /* Return true if the regdef would cause an assertion if you called
183 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
184 * program bug for it not to have the NO_RAW flag).
185 * NB that returning false here doesn't necessarily mean that calling
186 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
187 * read/write access functions which are safe for raw use" from "has
188 * read/write access functions which have side effects but has forgotten
189 * to provide raw access functions".
190 * The tests here line up with the conditions in read/write_raw_cp_reg()
191 * and assertions in raw_read()/raw_write().
192 */
193 if ((ri->type & ARM_CP_CONST) ||
194 ri->fieldoffset ||
195 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
196 return false;
197 }
198 return true;
199}
200
721fae12
PM
201bool write_cpustate_to_list(ARMCPU *cpu)
202{
203 /* Write the coprocessor state from cpu->env to the (index,value) list. */
204 int i;
205 bool ok = true;
206
207 for (i = 0; i < cpu->cpreg_array_len; i++) {
208 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
209 const ARMCPRegInfo *ri;
59a1c327 210
60322b39 211 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
212 if (!ri) {
213 ok = false;
214 continue;
215 }
7a0e58fa 216 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
217 continue;
218 }
59a1c327 219 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
220 }
221 return ok;
222}
223
224bool write_list_to_cpustate(ARMCPU *cpu)
225{
226 int i;
227 bool ok = true;
228
229 for (i = 0; i < cpu->cpreg_array_len; i++) {
230 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
231 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
232 const ARMCPRegInfo *ri;
233
60322b39 234 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
235 if (!ri) {
236 ok = false;
237 continue;
238 }
7a0e58fa 239 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
240 continue;
241 }
242 /* Write value and confirm it reads back as written
243 * (to catch read-only registers and partially read-only
244 * registers where the incoming migration value doesn't match)
245 */
59a1c327
PM
246 write_raw_cp_reg(&cpu->env, ri, v);
247 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
248 ok = false;
249 }
250 }
251 return ok;
252}
253
254static void add_cpreg_to_list(gpointer key, gpointer opaque)
255{
256 ARMCPU *cpu = opaque;
257 uint64_t regidx;
258 const ARMCPRegInfo *ri;
259
260 regidx = *(uint32_t *)key;
60322b39 261 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 262
7a0e58fa 263 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
264 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
265 /* The value array need not be initialized at this point */
266 cpu->cpreg_array_len++;
267 }
268}
269
270static void count_cpreg(gpointer key, gpointer opaque)
271{
272 ARMCPU *cpu = opaque;
273 uint64_t regidx;
274 const ARMCPRegInfo *ri;
275
276 regidx = *(uint32_t *)key;
60322b39 277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 278
7a0e58fa 279 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
280 cpu->cpreg_array_len++;
281 }
282}
283
284static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
285{
cbf239b7
AR
286 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
287 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 288
cbf239b7
AR
289 if (aidx > bidx) {
290 return 1;
291 }
292 if (aidx < bidx) {
293 return -1;
294 }
295 return 0;
721fae12
PM
296}
297
298void init_cpreg_list(ARMCPU *cpu)
299{
300 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
301 * Note that we require cpreg_tuples[] to be sorted by key ID.
302 */
57b6d95e 303 GList *keys;
721fae12
PM
304 int arraylen;
305
57b6d95e 306 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
307 keys = g_list_sort(keys, cpreg_key_compare);
308
309 cpu->cpreg_array_len = 0;
310
311 g_list_foreach(keys, count_cpreg, cpu);
312
313 arraylen = cpu->cpreg_array_len;
314 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
315 cpu->cpreg_values = g_new(uint64_t, arraylen);
316 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
317 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
318 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
319 cpu->cpreg_array_len = 0;
320
321 g_list_foreach(keys, add_cpreg_to_list, cpu);
322
323 assert(cpu->cpreg_array_len == arraylen);
324
325 g_list_free(keys);
326}
327
c4241c7d 328static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 329{
00c8cb0a
AF
330 ARMCPU *cpu = arm_env_get_cpu(env);
331
8d5c773e 332 raw_write(env, ri, value);
00c8cb0a 333 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
334}
335
c4241c7d 336static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 337{
00c8cb0a
AF
338 ARMCPU *cpu = arm_env_get_cpu(env);
339
8d5c773e 340 if (raw_read(env, ri) != value) {
08de207b
PM
341 /* Unlike real hardware the qemu TLB uses virtual addresses,
342 * not modified virtual addresses, so this causes a TLB flush.
343 */
00c8cb0a 344 tlb_flush(CPU(cpu), 1);
8d5c773e 345 raw_write(env, ri, value);
08de207b 346 }
08de207b 347}
c4241c7d
PM
348
349static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
350 uint64_t value)
08de207b 351{
00c8cb0a
AF
352 ARMCPU *cpu = arm_env_get_cpu(env);
353
8d5c773e 354 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
014406b5 355 && !extended_addresses_enabled(env)) {
08de207b
PM
356 /* For VMSA (when not using the LPAE long descriptor page table
357 * format) this register includes the ASID, so do a TLB flush.
358 * For PMSA it is purely a process ID and no action is needed.
359 */
00c8cb0a 360 tlb_flush(CPU(cpu), 1);
08de207b 361 }
8d5c773e 362 raw_write(env, ri, value);
08de207b
PM
363}
364
c4241c7d
PM
365static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
366 uint64_t value)
d929823f
PM
367{
368 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
369 ARMCPU *cpu = arm_env_get_cpu(env);
370
371 tlb_flush(CPU(cpu), 1);
d929823f
PM
372}
373
c4241c7d
PM
374static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
375 uint64_t value)
d929823f
PM
376{
377 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
378 ARMCPU *cpu = arm_env_get_cpu(env);
379
380 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
381}
382
c4241c7d
PM
383static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
384 uint64_t value)
d929823f
PM
385{
386 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
387 ARMCPU *cpu = arm_env_get_cpu(env);
388
389 tlb_flush(CPU(cpu), value == 0);
d929823f
PM
390}
391
c4241c7d
PM
392static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
393 uint64_t value)
d929823f
PM
394{
395 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
396 ARMCPU *cpu = arm_env_get_cpu(env);
397
398 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
399}
400
fa439fc5
PM
401/* IS variants of TLB operations must affect all cores */
402static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
403 uint64_t value)
404{
405 CPUState *other_cs;
406
407 CPU_FOREACH(other_cs) {
408 tlb_flush(other_cs, 1);
409 }
410}
411
412static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
413 uint64_t value)
414{
415 CPUState *other_cs;
416
417 CPU_FOREACH(other_cs) {
418 tlb_flush(other_cs, value == 0);
419 }
420}
421
422static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
423 uint64_t value)
424{
425 CPUState *other_cs;
426
427 CPU_FOREACH(other_cs) {
428 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
429 }
430}
431
432static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
433 uint64_t value)
434{
435 CPUState *other_cs;
436
437 CPU_FOREACH(other_cs) {
438 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
439 }
440}
441
e9aa6c21 442static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
443 /* Define the secure and non-secure FCSE identifier CP registers
444 * separately because there is no secure bank in V8 (no _EL3). This allows
445 * the secure register to be properly reset and migrated. There is also no
446 * v8 EL1 version of the register so the non-secure instance stands alone.
447 */
448 { .name = "FCSEIDR(NS)",
449 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
450 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
451 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
452 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
453 { .name = "FCSEIDR(S)",
454 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
455 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
456 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 457 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
458 /* Define the secure and non-secure context identifier CP registers
459 * separately because there is no secure bank in V8 (no _EL3). This allows
460 * the secure register to be properly reset and migrated. In the
461 * non-secure case, the 32-bit register will have reset and migration
462 * disabled during registration as it is handled by the 64-bit instance.
463 */
464 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 465 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
466 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
467 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
468 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
469 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
470 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
471 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
472 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 473 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
474 REGINFO_SENTINEL
475};
476
477static const ARMCPRegInfo not_v8_cp_reginfo[] = {
478 /* NB: Some of these registers exist in v8 but with more precise
479 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
480 */
481 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
482 { .name = "DACR",
483 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
484 .access = PL1_RW, .resetvalue = 0,
485 .writefn = dacr_write, .raw_writefn = raw_write,
486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
487 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
488 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
489 * For v6 and v5, these mappings are overly broad.
4fdd17dd 490 */
a903c449
EI
491 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
492 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
493 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
494 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
495 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
496 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
497 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 498 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
499 /* Cache maintenance ops; some of this space may be overridden later. */
500 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
501 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
502 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
503 REGINFO_SENTINEL
504};
505
7d57f408
PM
506static const ARMCPRegInfo not_v6_cp_reginfo[] = {
507 /* Not all pre-v6 cores implemented this WFI, so this is slightly
508 * over-broad.
509 */
510 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
511 .access = PL1_W, .type = ARM_CP_WFI },
512 REGINFO_SENTINEL
513};
514
515static const ARMCPRegInfo not_v7_cp_reginfo[] = {
516 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
517 * is UNPREDICTABLE; we choose to NOP as most implementations do).
518 */
519 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
520 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
521 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
522 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
523 * OMAPCP will override this space.
524 */
525 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
526 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
527 .resetvalue = 0 },
528 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
529 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
530 .resetvalue = 0 },
776d4e5c
PM
531 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
532 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 533 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 534 .resetvalue = 0 },
50300698
PM
535 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
536 * implementing it as RAZ means the "debug architecture version" bits
537 * will read as a reserved value, which should cause Linux to not try
538 * to use the debug hardware.
539 */
540 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
541 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
542 /* MMU TLB control. Note that the wildcarding means we cover not just
543 * the unified TLB ops but also the dside/iside/inner-shareable variants.
544 */
545 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
546 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 547 .type = ARM_CP_NO_RAW },
995939a6
PM
548 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
549 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 550 .type = ARM_CP_NO_RAW },
995939a6
PM
551 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
552 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 553 .type = ARM_CP_NO_RAW },
995939a6
PM
554 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
555 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 556 .type = ARM_CP_NO_RAW },
a903c449
EI
557 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
558 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
559 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
560 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
561 REGINFO_SENTINEL
562};
563
c4241c7d
PM
564static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
2771db27 566{
f0aff255
FA
567 uint32_t mask = 0;
568
569 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
570 if (!arm_feature(env, ARM_FEATURE_V8)) {
571 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
572 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
573 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
574 */
575 if (arm_feature(env, ARM_FEATURE_VFP)) {
576 /* VFP coprocessor: cp10 & cp11 [23:20] */
577 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
578
579 if (!arm_feature(env, ARM_FEATURE_NEON)) {
580 /* ASEDIS [31] bit is RAO/WI */
581 value |= (1 << 31);
582 }
583
584 /* VFPv3 and upwards with NEON implement 32 double precision
585 * registers (D0-D31).
586 */
587 if (!arm_feature(env, ARM_FEATURE_NEON) ||
588 !arm_feature(env, ARM_FEATURE_VFP3)) {
589 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
590 value |= (1 << 30);
591 }
592 }
593 value &= mask;
2771db27 594 }
7ebd5f2e 595 env->cp15.cpacr_el1 = value;
2771db27
PM
596}
597
c6f19164
GB
598static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
599{
600 if (arm_feature(env, ARM_FEATURE_V8)) {
601 /* Check if CPACR accesses are to be trapped to EL2 */
602 if (arm_current_el(env) == 1 &&
603 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
604 return CP_ACCESS_TRAP_EL2;
605 /* Check if CPACR accesses are to be trapped to EL3 */
606 } else if (arm_current_el(env) < 3 &&
607 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
608 return CP_ACCESS_TRAP_EL3;
609 }
610 }
611
612 return CP_ACCESS_OK;
613}
614
615static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
616{
617 /* Check if CPTR accesses are set to trap to EL3 */
618 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
619 return CP_ACCESS_TRAP_EL3;
620 }
621
622 return CP_ACCESS_OK;
623}
624
7d57f408
PM
625static const ARMCPRegInfo v6_cp_reginfo[] = {
626 /* prefetch by MVA in v6, NOP in v7 */
627 { .name = "MVA_prefetch",
628 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
629 .access = PL1_W, .type = ARM_CP_NOP },
630 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
631 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 632 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 633 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 634 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 635 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 636 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 637 .access = PL1_RW,
b848ce2b
FA
638 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
639 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
640 .resetvalue = 0, },
641 /* Watchpoint Fault Address Register : should actually only be present
642 * for 1136, 1176, 11MPCore.
643 */
644 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
645 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 646 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 647 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 648 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 649 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
650 REGINFO_SENTINEL
651};
652
fcd25206 653static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
200ac0ef 654{
3b163b01 655 /* Performance monitor registers user accessibility is controlled
fcd25206 656 * by PMUSERENR.
200ac0ef 657 */
dcbff19b 658 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
fcd25206 659 return CP_ACCESS_TRAP;
200ac0ef 660 }
fcd25206 661 return CP_ACCESS_OK;
200ac0ef
PM
662}
663
7c2cb42b 664#ifndef CONFIG_USER_ONLY
87124fde
AF
665
666static inline bool arm_ccnt_enabled(CPUARMState *env)
667{
668 /* This does not support checking PMCCFILTR_EL0 register */
669
670 if (!(env->cp15.c9_pmcr & PMCRE)) {
671 return false;
672 }
673
674 return true;
675}
676
ec7b4ce4
AF
677void pmccntr_sync(CPUARMState *env)
678{
679 uint64_t temp_ticks;
680
681 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
682 get_ticks_per_sec(), 1000000);
683
684 if (env->cp15.c9_pmcr & PMCRD) {
685 /* Increment once every 64 processor clock cycles */
686 temp_ticks /= 64;
687 }
688
689 if (arm_ccnt_enabled(env)) {
690 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
691 }
692}
693
c4241c7d
PM
694static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
695 uint64_t value)
200ac0ef 696{
942a155b 697 pmccntr_sync(env);
7c2cb42b
AF
698
699 if (value & PMCRC) {
700 /* The counter has been reset */
701 env->cp15.c15_ccnt = 0;
702 }
703
200ac0ef
PM
704 /* only the DP, X, D and E bits are writable */
705 env->cp15.c9_pmcr &= ~0x39;
706 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 707
942a155b 708 pmccntr_sync(env);
7c2cb42b
AF
709}
710
711static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
712{
c92c0687 713 uint64_t total_ticks;
7c2cb42b 714
942a155b 715 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
716 /* Counter is disabled, do not change value */
717 return env->cp15.c15_ccnt;
718 }
719
c92c0687
AF
720 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
721 get_ticks_per_sec(), 1000000);
7c2cb42b
AF
722
723 if (env->cp15.c9_pmcr & PMCRD) {
724 /* Increment once every 64 processor clock cycles */
725 total_ticks /= 64;
726 }
727 return total_ticks - env->cp15.c15_ccnt;
728}
729
730static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
731 uint64_t value)
732{
c92c0687 733 uint64_t total_ticks;
7c2cb42b 734
942a155b 735 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
736 /* Counter is disabled, set the absolute value */
737 env->cp15.c15_ccnt = value;
738 return;
739 }
740
c92c0687
AF
741 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
742 get_ticks_per_sec(), 1000000);
7c2cb42b
AF
743
744 if (env->cp15.c9_pmcr & PMCRD) {
745 /* Increment once every 64 processor clock cycles */
746 total_ticks /= 64;
747 }
748 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 749}
421c7ebd
PC
750
751static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
752 uint64_t value)
753{
754 uint64_t cur_val = pmccntr_read(env, NULL);
755
756 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
757}
758
ec7b4ce4
AF
759#else /* CONFIG_USER_ONLY */
760
761void pmccntr_sync(CPUARMState *env)
762{
763}
764
7c2cb42b 765#endif
200ac0ef 766
0614601c
AF
767static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
768 uint64_t value)
769{
770 pmccntr_sync(env);
771 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
772 pmccntr_sync(env);
773}
774
c4241c7d 775static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
776 uint64_t value)
777{
200ac0ef
PM
778 value &= (1 << 31);
779 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
780}
781
c4241c7d
PM
782static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t value)
200ac0ef 784{
200ac0ef
PM
785 value &= (1 << 31);
786 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
787}
788
c4241c7d
PM
789static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
790 uint64_t value)
200ac0ef 791{
200ac0ef 792 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
793}
794
c4241c7d
PM
795static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t value)
200ac0ef 797{
200ac0ef 798 env->cp15.c9_pmxevtyper = value & 0xff;
200ac0ef
PM
799}
800
c4241c7d 801static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
802 uint64_t value)
803{
804 env->cp15.c9_pmuserenr = value & 1;
200ac0ef
PM
805}
806
c4241c7d
PM
807static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
808 uint64_t value)
200ac0ef
PM
809{
810 /* We have no event counters so only the C bit can be changed */
811 value &= (1 << 31);
812 env->cp15.c9_pminten |= value;
200ac0ef
PM
813}
814
c4241c7d
PM
815static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
816 uint64_t value)
200ac0ef
PM
817{
818 value &= (1 << 31);
819 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
820}
821
c4241c7d
PM
822static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
823 uint64_t value)
8641136c 824{
a505d7fe
PM
825 /* Note that even though the AArch64 view of this register has bits
826 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
827 * architectural requirements for bits which are RES0 only in some
828 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
829 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
830 */
855ea66d 831 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
832}
833
64e0e2de
EI
834static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
835{
836 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
837 * For bits that vary between AArch32/64, code needs to check the
838 * current execution mode before directly using the feature bit.
839 */
840 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
841
842 if (!arm_feature(env, ARM_FEATURE_EL2)) {
843 valid_mask &= ~SCR_HCE;
844
845 /* On ARMv7, SMD (or SCD as it is called in v7) is only
846 * supported if EL2 exists. The bit is UNK/SBZP when
847 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
848 * when EL2 is unavailable.
4eb27640 849 * On ARMv8, this bit is always available.
64e0e2de 850 */
4eb27640
GB
851 if (arm_feature(env, ARM_FEATURE_V7) &&
852 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
853 valid_mask &= ~SCR_SMD;
854 }
855 }
856
857 /* Clear all-context RES0 bits. */
858 value &= valid_mask;
859 raw_write(env, ri, value);
860}
861
c4241c7d 862static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
863{
864 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
865
866 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
867 * bank
868 */
869 uint32_t index = A32_BANKED_REG_GET(env, csselr,
870 ri->secure & ARM_CP_SECSTATE_S);
871
872 return cpu->ccsidr[index];
776d4e5c
PM
873}
874
c4241c7d
PM
875static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
876 uint64_t value)
776d4e5c 877{
8d5c773e 878 raw_write(env, ri, value & 0xf);
776d4e5c
PM
879}
880
1090b9c6
PM
881static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
882{
883 CPUState *cs = ENV_GET_CPU(env);
884 uint64_t ret = 0;
885
886 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
887 ret |= CPSR_I;
888 }
889 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
890 ret |= CPSR_F;
891 }
892 /* External aborts are not possible in QEMU so A bit is always clear */
893 return ret;
894}
895
e9aa6c21 896static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
897 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
898 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
899 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
900 /* Performance monitors are implementation defined in v7,
901 * but with an ARM recommended set of registers, which we
902 * follow (although we don't actually implement any counters)
903 *
904 * Performance registers fall into three categories:
905 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
906 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
907 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
908 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
909 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
910 */
911 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 912 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 913 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
914 .writefn = pmcntenset_write,
915 .accessfn = pmreg_access,
916 .raw_writefn = raw_write },
8521466b
AF
917 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
918 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
919 .access = PL0_RW, .accessfn = pmreg_access,
920 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
921 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 922 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
923 .access = PL0_RW,
924 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
925 .accessfn = pmreg_access,
926 .writefn = pmcntenclr_write,
7a0e58fa 927 .type = ARM_CP_ALIAS },
8521466b
AF
928 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
929 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
930 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 931 .type = ARM_CP_ALIAS,
8521466b
AF
932 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
933 .writefn = pmcntenclr_write },
200ac0ef
PM
934 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
935 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
936 .accessfn = pmreg_access,
937 .writefn = pmovsr_write,
938 .raw_writefn = raw_write },
939 /* Unimplemented so WI. */
200ac0ef 940 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
fcd25206 941 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
200ac0ef 942 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
fcd25206 943 * We choose to RAZ/WI.
200ac0ef
PM
944 */
945 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
fcd25206
PM
946 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
947 .accessfn = pmreg_access },
7c2cb42b 948#ifndef CONFIG_USER_ONLY
200ac0ef 949 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 950 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 951 .readfn = pmccntr_read, .writefn = pmccntr_write32,
fcd25206 952 .accessfn = pmreg_access },
8521466b
AF
953 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
955 .access = PL0_RW, .accessfn = pmreg_access,
956 .type = ARM_CP_IO,
957 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 958#endif
8521466b
AF
959 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
960 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 961 .writefn = pmccfiltr_write,
8521466b
AF
962 .access = PL0_RW, .accessfn = pmreg_access,
963 .type = ARM_CP_IO,
964 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
965 .resetvalue = 0, },
200ac0ef
PM
966 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
967 .access = PL0_RW,
968 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
fcd25206
PM
969 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
970 .raw_writefn = raw_write },
971 /* Unimplemented, RAZ/WI. */
200ac0ef 972 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206
PM
973 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
974 .accessfn = pmreg_access },
200ac0ef
PM
975 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
976 .access = PL0_R | PL1_RW,
977 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
978 .resetvalue = 0,
d4e6df63 979 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef
PM
980 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
981 .access = PL1_RW,
982 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
983 .resetvalue = 0,
d4e6df63 984 .writefn = pmintenset_write, .raw_writefn = raw_write },
200ac0ef 985 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
7a0e58fa 986 .access = PL1_RW, .type = ARM_CP_ALIAS,
200ac0ef 987 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 988 .writefn = pmintenclr_write, },
a505d7fe
PM
989 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
990 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8641136c 991 .access = PL1_RW, .writefn = vbar_write,
fb6c91ba
GB
992 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
993 offsetof(CPUARMState, cp15.vbar_ns) },
8641136c 994 .resetvalue = 0 },
7da845b0
PM
995 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
996 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 997 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
998 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
999 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1000 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1001 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1002 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1003 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1004 * just RAZ for all cores:
1005 */
0ff644a7
PM
1006 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1007 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1008 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1009 /* Auxiliary fault status registers: these also are IMPDEF, and we
1010 * choose to RAZ/WI for all cores.
1011 */
1012 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1013 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1014 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1015 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1016 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1017 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1018 /* MAIR can just read-as-written because we don't implement caches
1019 * and so don't need to care about memory attributes.
1020 */
1021 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1022 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1023 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1024 .resetvalue = 0 },
4cfb8ad8
PM
1025 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1026 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1027 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1028 .resetvalue = 0 },
b0fe2427
PM
1029 /* For non-long-descriptor page tables these are PRRR and NMRR;
1030 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1031 */
1281f8e3 1032 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1033 * allows them to assign the correct fieldoffset based on the endianness
1034 * handled in the field definitions.
1035 */
a903c449 1036 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1037 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1038 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1039 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1040 .resetfn = arm_cp_reset_ignore },
a903c449 1041 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1042 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1043 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1044 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1045 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1046 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1047 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1048 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1049 /* 32 bit ITLB invalidates */
1050 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1051 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1052 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1053 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1054 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1055 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1056 /* 32 bit DTLB invalidates */
1057 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1058 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1059 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1060 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1061 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1062 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1063 /* 32 bit TLB invalidates */
1064 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1065 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1066 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1067 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1068 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1069 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1070 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1071 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1072 REGINFO_SENTINEL
1073};
1074
1075static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1076 /* 32 bit TLB invalidates, Inner Shareable */
1077 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1078 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1079 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1080 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1081 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1082 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1083 .writefn = tlbiasid_is_write },
995939a6 1084 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1085 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1086 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1087 REGINFO_SENTINEL
1088};
1089
c4241c7d
PM
1090static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
c326b979
PM
1092{
1093 value &= 1;
1094 env->teecr = value;
c326b979
PM
1095}
1096
c4241c7d 1097static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
c326b979 1098{
dcbff19b 1099 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1100 return CP_ACCESS_TRAP;
c326b979 1101 }
92611c00 1102 return CP_ACCESS_OK;
c326b979
PM
1103}
1104
1105static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1106 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1107 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1108 .resetvalue = 0,
1109 .writefn = teecr_write },
1110 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1111 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1112 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1113 REGINFO_SENTINEL
1114};
1115
4d31c596 1116static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1117 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1118 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1119 .access = PL0_RW,
54bf36ed 1120 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1121 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1122 .access = PL0_RW,
54bf36ed
FA
1123 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1124 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1125 .resetfn = arm_cp_reset_ignore },
1126 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1127 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1128 .access = PL0_R|PL1_W,
54bf36ed
FA
1129 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1130 .resetvalue = 0},
4d31c596
PM
1131 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1132 .access = PL0_R|PL1_W,
54bf36ed
FA
1133 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1134 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1135 .resetfn = arm_cp_reset_ignore },
54bf36ed 1136 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1137 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1138 .access = PL1_RW,
54bf36ed
FA
1139 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1140 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1141 .access = PL1_RW,
1142 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1143 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1144 .resetvalue = 0 },
4d31c596
PM
1145 REGINFO_SENTINEL
1146};
1147
55d284af
PM
1148#ifndef CONFIG_USER_ONLY
1149
00108f2d
PM
1150static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1151{
1152 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
dcbff19b 1153 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
00108f2d
PM
1154 return CP_ACCESS_TRAP;
1155 }
1156 return CP_ACCESS_OK;
1157}
1158
1159static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1160{
0b6440af
EI
1161 unsigned int cur_el = arm_current_el(env);
1162 bool secure = arm_is_secure(env);
1163
00108f2d 1164 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1165 if (cur_el == 0 &&
00108f2d
PM
1166 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1167 return CP_ACCESS_TRAP;
1168 }
0b6440af
EI
1169
1170 if (arm_feature(env, ARM_FEATURE_EL2) &&
1171 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1172 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1173 return CP_ACCESS_TRAP_EL2;
1174 }
00108f2d
PM
1175 return CP_ACCESS_OK;
1176}
1177
1178static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1179{
0b6440af
EI
1180 unsigned int cur_el = arm_current_el(env);
1181 bool secure = arm_is_secure(env);
1182
00108f2d
PM
1183 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1184 * EL0[PV]TEN is zero.
1185 */
0b6440af 1186 if (cur_el == 0 &&
00108f2d
PM
1187 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1188 return CP_ACCESS_TRAP;
1189 }
0b6440af
EI
1190
1191 if (arm_feature(env, ARM_FEATURE_EL2) &&
1192 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1193 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1194 return CP_ACCESS_TRAP_EL2;
1195 }
00108f2d
PM
1196 return CP_ACCESS_OK;
1197}
1198
1199static CPAccessResult gt_pct_access(CPUARMState *env,
1200 const ARMCPRegInfo *ri)
1201{
1202 return gt_counter_access(env, GTIMER_PHYS);
1203}
1204
1205static CPAccessResult gt_vct_access(CPUARMState *env,
1206 const ARMCPRegInfo *ri)
1207{
1208 return gt_counter_access(env, GTIMER_VIRT);
1209}
1210
1211static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1212{
1213 return gt_timer_access(env, GTIMER_PHYS);
1214}
1215
1216static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1217{
1218 return gt_timer_access(env, GTIMER_VIRT);
1219}
1220
b4d3978c
PM
1221static CPAccessResult gt_stimer_access(CPUARMState *env,
1222 const ARMCPRegInfo *ri)
1223{
1224 /* The AArch64 register view of the secure physical timer is
1225 * always accessible from EL3, and configurably accessible from
1226 * Secure EL1.
1227 */
1228 switch (arm_current_el(env)) {
1229 case 1:
1230 if (!arm_is_secure(env)) {
1231 return CP_ACCESS_TRAP;
1232 }
1233 if (!(env->cp15.scr_el3 & SCR_ST)) {
1234 return CP_ACCESS_TRAP_EL3;
1235 }
1236 return CP_ACCESS_OK;
1237 case 0:
1238 case 2:
1239 return CP_ACCESS_TRAP;
1240 case 3:
1241 return CP_ACCESS_OK;
1242 default:
1243 g_assert_not_reached();
1244 }
1245}
1246
55d284af
PM
1247static uint64_t gt_get_countervalue(CPUARMState *env)
1248{
bc72ad67 1249 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1250}
1251
1252static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1253{
1254 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1255
1256 if (gt->ctl & 1) {
1257 /* Timer enabled: calculate and set current ISTATUS, irq, and
1258 * reset timer to when ISTATUS next has to change
1259 */
edac4d8a
EI
1260 uint64_t offset = timeridx == GTIMER_VIRT ?
1261 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1262 uint64_t count = gt_get_countervalue(&cpu->env);
1263 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1264 int istatus = count - offset >= gt->cval;
55d284af
PM
1265 uint64_t nexttick;
1266
1267 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1268 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1269 (istatus && !(gt->ctl & 2)));
1270 if (istatus) {
1271 /* Next transition is when count rolls back over to zero */
1272 nexttick = UINT64_MAX;
1273 } else {
1274 /* Next transition is when we hit cval */
edac4d8a 1275 nexttick = gt->cval + offset;
55d284af
PM
1276 }
1277 /* Note that the desired next expiry time might be beyond the
1278 * signed-64-bit range of a QEMUTimer -- in this case we just
1279 * set the timer for as far in the future as possible. When the
1280 * timer expires we will reset the timer for any remaining period.
1281 */
1282 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1283 nexttick = INT64_MAX / GTIMER_SCALE;
1284 }
bc72ad67 1285 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af
PM
1286 } else {
1287 /* Timer disabled: ISTATUS and timer output always clear */
1288 gt->ctl &= ~4;
1289 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1290 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1291 }
1292}
1293
0e3eca4c
EI
1294static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1295 int timeridx)
55d284af
PM
1296{
1297 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1298
bc72ad67 1299 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1300}
1301
c4241c7d 1302static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1303{
c4241c7d 1304 return gt_get_countervalue(env);
55d284af
PM
1305}
1306
edac4d8a
EI
1307static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1308{
1309 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1310}
1311
c4241c7d 1312static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1313 int timeridx,
c4241c7d 1314 uint64_t value)
55d284af 1315{
55d284af
PM
1316 env->cp15.c14_timer[timeridx].cval = value;
1317 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1318}
c4241c7d 1319
0e3eca4c
EI
1320static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1321 int timeridx)
55d284af 1322{
edac4d8a 1323 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1324
c4241c7d 1325 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1326 (gt_get_countervalue(env) - offset));
55d284af
PM
1327}
1328
c4241c7d 1329static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1330 int timeridx,
c4241c7d 1331 uint64_t value)
55d284af 1332{
edac4d8a 1333 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1334
edac4d8a 1335 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1336 sextract64(value, 0, 32);
55d284af 1337 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1338}
1339
c4241c7d 1340static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1341 int timeridx,
c4241c7d 1342 uint64_t value)
55d284af
PM
1343{
1344 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1345 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1346
d3afacc7 1347 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1348 if ((oldval ^ value) & 1) {
1349 /* Enable toggled */
1350 gt_recalc_timer(cpu, timeridx);
d3afacc7 1351 } else if ((oldval ^ value) & 2) {
55d284af
PM
1352 /* IMASK toggled: don't need to recalculate,
1353 * just set the interrupt line based on ISTATUS
1354 */
1355 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
d3afacc7 1356 (oldval & 4) && !(value & 2));
55d284af 1357 }
55d284af
PM
1358}
1359
0e3eca4c
EI
1360static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1361{
1362 gt_timer_reset(env, ri, GTIMER_PHYS);
1363}
1364
1365static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1366 uint64_t value)
1367{
1368 gt_cval_write(env, ri, GTIMER_PHYS, value);
1369}
1370
1371static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1372{
1373 return gt_tval_read(env, ri, GTIMER_PHYS);
1374}
1375
1376static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1377 uint64_t value)
1378{
1379 gt_tval_write(env, ri, GTIMER_PHYS, value);
1380}
1381
1382static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1383 uint64_t value)
1384{
1385 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1386}
1387
1388static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1389{
1390 gt_timer_reset(env, ri, GTIMER_VIRT);
1391}
1392
1393static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1394 uint64_t value)
1395{
1396 gt_cval_write(env, ri, GTIMER_VIRT, value);
1397}
1398
1399static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1400{
1401 return gt_tval_read(env, ri, GTIMER_VIRT);
1402}
1403
1404static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1405 uint64_t value)
1406{
1407 gt_tval_write(env, ri, GTIMER_VIRT, value);
1408}
1409
1410static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1411 uint64_t value)
1412{
1413 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1414}
1415
edac4d8a
EI
1416static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1417 uint64_t value)
1418{
1419 ARMCPU *cpu = arm_env_get_cpu(env);
1420
1421 raw_write(env, ri, value);
1422 gt_recalc_timer(cpu, GTIMER_VIRT);
1423}
1424
b0e66d95
EI
1425static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1426{
1427 gt_timer_reset(env, ri, GTIMER_HYP);
1428}
1429
1430static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1431 uint64_t value)
1432{
1433 gt_cval_write(env, ri, GTIMER_HYP, value);
1434}
1435
1436static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1437{
1438 return gt_tval_read(env, ri, GTIMER_HYP);
1439}
1440
1441static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1442 uint64_t value)
1443{
1444 gt_tval_write(env, ri, GTIMER_HYP, value);
1445}
1446
1447static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1448 uint64_t value)
1449{
1450 gt_ctl_write(env, ri, GTIMER_HYP, value);
1451}
1452
b4d3978c
PM
1453static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1454{
1455 gt_timer_reset(env, ri, GTIMER_SEC);
1456}
1457
1458static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1459 uint64_t value)
1460{
1461 gt_cval_write(env, ri, GTIMER_SEC, value);
1462}
1463
1464static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1465{
1466 return gt_tval_read(env, ri, GTIMER_SEC);
1467}
1468
1469static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1470 uint64_t value)
1471{
1472 gt_tval_write(env, ri, GTIMER_SEC, value);
1473}
1474
1475static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1476 uint64_t value)
1477{
1478 gt_ctl_write(env, ri, GTIMER_SEC, value);
1479}
1480
55d284af
PM
1481void arm_gt_ptimer_cb(void *opaque)
1482{
1483 ARMCPU *cpu = opaque;
1484
1485 gt_recalc_timer(cpu, GTIMER_PHYS);
1486}
1487
1488void arm_gt_vtimer_cb(void *opaque)
1489{
1490 ARMCPU *cpu = opaque;
1491
1492 gt_recalc_timer(cpu, GTIMER_VIRT);
1493}
1494
b0e66d95
EI
1495void arm_gt_htimer_cb(void *opaque)
1496{
1497 ARMCPU *cpu = opaque;
1498
1499 gt_recalc_timer(cpu, GTIMER_HYP);
1500}
1501
b4d3978c
PM
1502void arm_gt_stimer_cb(void *opaque)
1503{
1504 ARMCPU *cpu = opaque;
1505
1506 gt_recalc_timer(cpu, GTIMER_SEC);
1507}
1508
55d284af
PM
1509static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1510 /* Note that CNTFRQ is purely reads-as-written for the benefit
1511 * of software; writing it doesn't actually change the timer frequency.
1512 * Our reset value matches the fixed frequency we implement the timer at.
1513 */
1514 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1515 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1516 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1517 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1518 },
1519 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1520 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1521 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1522 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1523 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1524 },
1525 /* overall control: mostly access permissions */
a7adc4b7
PM
1526 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1527 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1528 .access = PL1_RW,
1529 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1530 .resetvalue = 0,
1531 },
1532 /* per-timer control */
1533 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1534 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1535 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1536 .accessfn = gt_ptimer_access,
1537 .fieldoffset = offsetoflow32(CPUARMState,
1538 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1539 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1540 },
9ff9dd3c
PM
1541 { .name = "CNTP_CTL(S)",
1542 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1543 .secure = ARM_CP_SECSTATE_S,
1544 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1545 .accessfn = gt_ptimer_access,
1546 .fieldoffset = offsetoflow32(CPUARMState,
1547 cp15.c14_timer[GTIMER_SEC].ctl),
1548 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1549 },
a7adc4b7
PM
1550 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1551 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1552 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1553 .accessfn = gt_ptimer_access,
55d284af
PM
1554 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1555 .resetvalue = 0,
0e3eca4c 1556 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1557 },
1558 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1559 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1560 .accessfn = gt_vtimer_access,
1561 .fieldoffset = offsetoflow32(CPUARMState,
1562 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1563 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1564 },
1565 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1566 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1567 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1568 .accessfn = gt_vtimer_access,
55d284af
PM
1569 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1570 .resetvalue = 0,
0e3eca4c 1571 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1572 },
1573 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1574 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1575 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1576 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1577 .accessfn = gt_ptimer_access,
0e3eca4c 1578 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1579 },
9ff9dd3c
PM
1580 { .name = "CNTP_TVAL(S)",
1581 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1582 .secure = ARM_CP_SECSTATE_S,
1583 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1584 .accessfn = gt_ptimer_access,
1585 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1586 },
a7adc4b7
PM
1587 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1588 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1589 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1590 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1591 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1592 },
55d284af 1593 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1594 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1595 .accessfn = gt_vtimer_access,
0e3eca4c 1596 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1597 },
a7adc4b7
PM
1598 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1599 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1600 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1601 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1602 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 1603 },
55d284af
PM
1604 /* The counter itself */
1605 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 1606 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1607 .accessfn = gt_pct_access,
a7adc4b7
PM
1608 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1609 },
1610 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1611 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 1612 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1613 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
1614 },
1615 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 1616 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1617 .accessfn = gt_vct_access,
edac4d8a 1618 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
1619 },
1620 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1621 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 1622 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1623 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
1624 },
1625 /* Comparison value, indicating when the timer goes off */
1626 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 1627 .secure = ARM_CP_SECSTATE_NS,
55d284af 1628 .access = PL1_RW | PL0_R,
7a0e58fa 1629 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1630 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 1631 .accessfn = gt_ptimer_access,
0e3eca4c 1632 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 1633 },
9ff9dd3c
PM
1634 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1635 .secure = ARM_CP_SECSTATE_S,
1636 .access = PL1_RW | PL0_R,
1637 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1638 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1639 .accessfn = gt_ptimer_access,
1640 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1641 },
a7adc4b7
PM
1642 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1643 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1644 .access = PL1_RW | PL0_R,
1645 .type = ARM_CP_IO,
1646 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 1647 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 1648 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
1649 },
1650 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1651 .access = PL1_RW | PL0_R,
7a0e58fa 1652 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1653 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 1654 .accessfn = gt_vtimer_access,
0e3eca4c 1655 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
1656 },
1657 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1658 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1659 .access = PL1_RW | PL0_R,
1660 .type = ARM_CP_IO,
1661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1662 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 1663 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 1664 },
b4d3978c
PM
1665 /* Secure timer -- this is actually restricted to only EL3
1666 * and configurably Secure-EL1 via the accessfn.
1667 */
1668 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1669 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1670 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1671 .accessfn = gt_stimer_access,
1672 .readfn = gt_sec_tval_read,
1673 .writefn = gt_sec_tval_write,
1674 .resetfn = gt_sec_timer_reset,
1675 },
1676 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1677 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1678 .type = ARM_CP_IO, .access = PL1_RW,
1679 .accessfn = gt_stimer_access,
1680 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1681 .resetvalue = 0,
1682 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1683 },
1684 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1685 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1686 .type = ARM_CP_IO, .access = PL1_RW,
1687 .accessfn = gt_stimer_access,
1688 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1689 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1690 },
55d284af
PM
1691 REGINFO_SENTINEL
1692};
1693
1694#else
1695/* In user-mode none of the generic timer registers are accessible,
bc72ad67 1696 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
1697 * so instead just don't register any of them.
1698 */
6cc7a3ae 1699static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
1700 REGINFO_SENTINEL
1701};
1702
55d284af
PM
1703#endif
1704
c4241c7d 1705static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1706{
891a2fe7 1707 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 1708 raw_write(env, ri, value);
891a2fe7 1709 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 1710 raw_write(env, ri, value & 0xfffff6ff);
4a501606 1711 } else {
8d5c773e 1712 raw_write(env, ri, value & 0xfffff1ff);
4a501606 1713 }
4a501606
PM
1714}
1715
1716#ifndef CONFIG_USER_ONLY
1717/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 1718
92611c00
PM
1719static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1720{
1721 if (ri->opc2 & 4) {
87562e4f
PM
1722 /* The ATS12NSO* operations must trap to EL3 if executed in
1723 * Secure EL1 (which can only happen if EL3 is AArch64).
1724 * They are simply UNDEF if executed from NS EL1.
1725 * They function normally from EL2 or EL3.
92611c00 1726 */
87562e4f
PM
1727 if (arm_current_el(env) == 1) {
1728 if (arm_is_secure_below_el3(env)) {
1729 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1730 }
1731 return CP_ACCESS_TRAP_UNCATEGORIZED;
1732 }
92611c00
PM
1733 }
1734 return CP_ACCESS_OK;
1735}
1736
060e8a48 1737static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
d3649702 1738 int access_type, ARMMMUIdx mmu_idx)
4a501606 1739{
a8170e5e 1740 hwaddr phys_addr;
4a501606
PM
1741 target_ulong page_size;
1742 int prot;
b7cc4e82
PC
1743 uint32_t fsr;
1744 bool ret;
01c097f7 1745 uint64_t par64;
8bf5b6a9 1746 MemTxAttrs attrs = {};
4a501606 1747
d3649702 1748 ret = get_phys_addr(env, value, access_type, mmu_idx,
b7cc4e82 1749 &phys_addr, &attrs, &prot, &page_size, &fsr);
702a9357 1750 if (extended_addresses_enabled(env)) {
b7cc4e82 1751 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
1752 * translation table format, but with WnR always clear.
1753 * Convert it to a 64-bit PAR.
1754 */
01c097f7 1755 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 1756 if (!ret) {
702a9357 1757 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
1758 if (!attrs.secure) {
1759 par64 |= (1 << 9); /* NS */
1760 }
702a9357 1761 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 1762 } else {
702a9357 1763 par64 |= 1; /* F */
b7cc4e82 1764 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
1765 /* Note that S2WLK and FSTAGE are always zero, because we don't
1766 * implement virtualization and therefore there can't be a stage 2
1767 * fault.
1768 */
4a501606
PM
1769 }
1770 } else {
b7cc4e82 1771 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
1772 * translation table format (with WnR always clear).
1773 * Convert it to a 32-bit PAR.
1774 */
b7cc4e82 1775 if (!ret) {
702a9357
PM
1776 /* We do not set any attribute bits in the PAR */
1777 if (page_size == (1 << 24)
1778 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 1779 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 1780 } else {
01c097f7 1781 par64 = phys_addr & 0xfffff000;
702a9357 1782 }
8bf5b6a9
PM
1783 if (!attrs.secure) {
1784 par64 |= (1 << 9); /* NS */
1785 }
702a9357 1786 } else {
b7cc4e82
PC
1787 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1788 ((fsr & 0xf) << 1) | 1;
702a9357 1789 }
4a501606 1790 }
060e8a48
PM
1791 return par64;
1792}
1793
1794static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1795{
060e8a48
PM
1796 int access_type = ri->opc2 & 1;
1797 uint64_t par64;
d3649702
PM
1798 ARMMMUIdx mmu_idx;
1799 int el = arm_current_el(env);
1800 bool secure = arm_is_secure_below_el3(env);
060e8a48 1801
d3649702
PM
1802 switch (ri->opc2 & 6) {
1803 case 0:
1804 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1805 switch (el) {
1806 case 3:
1807 mmu_idx = ARMMMUIdx_S1E3;
1808 break;
1809 case 2:
1810 mmu_idx = ARMMMUIdx_S1NSE1;
1811 break;
1812 case 1:
1813 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1814 break;
1815 default:
1816 g_assert_not_reached();
1817 }
1818 break;
1819 case 2:
1820 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1821 switch (el) {
1822 case 3:
1823 mmu_idx = ARMMMUIdx_S1SE0;
1824 break;
1825 case 2:
1826 mmu_idx = ARMMMUIdx_S1NSE0;
1827 break;
1828 case 1:
1829 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1830 break;
1831 default:
1832 g_assert_not_reached();
1833 }
1834 break;
1835 case 4:
1836 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1837 mmu_idx = ARMMMUIdx_S12NSE1;
1838 break;
1839 case 6:
1840 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1841 mmu_idx = ARMMMUIdx_S12NSE0;
1842 break;
1843 default:
1844 g_assert_not_reached();
1845 }
1846
1847 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
1848
1849 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 1850}
060e8a48 1851
14db7fe0
PM
1852static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1854{
1855 int access_type = ri->opc2 & 1;
1856 uint64_t par64;
1857
1858 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
1859
1860 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1861}
1862
2a47df95
PM
1863static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
1864{
1865 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
1866 return CP_ACCESS_TRAP;
1867 }
1868 return CP_ACCESS_OK;
1869}
1870
060e8a48
PM
1871static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1872 uint64_t value)
1873{
060e8a48 1874 int access_type = ri->opc2 & 1;
d3649702
PM
1875 ARMMMUIdx mmu_idx;
1876 int secure = arm_is_secure_below_el3(env);
1877
1878 switch (ri->opc2 & 6) {
1879 case 0:
1880 switch (ri->opc1) {
1881 case 0: /* AT S1E1R, AT S1E1W */
1882 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1883 break;
1884 case 4: /* AT S1E2R, AT S1E2W */
1885 mmu_idx = ARMMMUIdx_S1E2;
1886 break;
1887 case 6: /* AT S1E3R, AT S1E3W */
1888 mmu_idx = ARMMMUIdx_S1E3;
1889 break;
1890 default:
1891 g_assert_not_reached();
1892 }
1893 break;
1894 case 2: /* AT S1E0R, AT S1E0W */
1895 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1896 break;
1897 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 1898 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
1899 break;
1900 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 1901 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
1902 break;
1903 default:
1904 g_assert_not_reached();
1905 }
060e8a48 1906
d3649702 1907 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 1908}
4a501606
PM
1909#endif
1910
1911static const ARMCPRegInfo vapa_cp_reginfo[] = {
1912 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1913 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
1914 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1915 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
1916 .writefn = par_write },
1917#ifndef CONFIG_USER_ONLY
87562e4f 1918 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 1919 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 1920 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 1921 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
1922#endif
1923 REGINFO_SENTINEL
1924};
1925
18032bec
PM
1926/* Return basic MPU access permission bits. */
1927static uint32_t simple_mpu_ap_bits(uint32_t val)
1928{
1929 uint32_t ret;
1930 uint32_t mask;
1931 int i;
1932 ret = 0;
1933 mask = 3;
1934 for (i = 0; i < 16; i += 2) {
1935 ret |= (val >> i) & mask;
1936 mask <<= 2;
1937 }
1938 return ret;
1939}
1940
1941/* Pad basic MPU access permission bits to extended format. */
1942static uint32_t extended_mpu_ap_bits(uint32_t val)
1943{
1944 uint32_t ret;
1945 uint32_t mask;
1946 int i;
1947 ret = 0;
1948 mask = 3;
1949 for (i = 0; i < 16; i += 2) {
1950 ret |= (val & mask) << i;
1951 mask <<= 2;
1952 }
1953 return ret;
1954}
1955
c4241c7d
PM
1956static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1957 uint64_t value)
18032bec 1958{
7e09797c 1959 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
1960}
1961
c4241c7d 1962static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 1963{
7e09797c 1964 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
1965}
1966
c4241c7d
PM
1967static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1968 uint64_t value)
18032bec 1969{
7e09797c 1970 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
1971}
1972
c4241c7d 1973static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 1974{
7e09797c 1975 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
1976}
1977
6cb0b013
PC
1978static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979{
1980 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
1981
1982 if (!u32p) {
1983 return 0;
1984 }
1985
1986 u32p += env->cp15.c6_rgnr;
1987 return *u32p;
1988}
1989
1990static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
1991 uint64_t value)
1992{
1993 ARMCPU *cpu = arm_env_get_cpu(env);
1994 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
1995
1996 if (!u32p) {
1997 return;
1998 }
1999
2000 u32p += env->cp15.c6_rgnr;
2001 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2002 *u32p = value;
2003}
2004
2005static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2006{
2007 ARMCPU *cpu = arm_env_get_cpu(env);
2008 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2009
2010 if (!u32p) {
2011 return;
2012 }
2013
2014 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2015}
2016
2017static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2018 uint64_t value)
2019{
2020 ARMCPU *cpu = arm_env_get_cpu(env);
2021 uint32_t nrgs = cpu->pmsav7_dregion;
2022
2023 if (value >= nrgs) {
2024 qemu_log_mask(LOG_GUEST_ERROR,
2025 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2026 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2027 return;
2028 }
2029
2030 raw_write(env, ri, value);
2031}
2032
2033static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2034 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2035 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2036 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2037 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2038 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2039 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2040 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2041 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2042 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2043 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2044 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2045 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2046 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2047 .access = PL1_RW,
2048 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2049 .writefn = pmsav7_rgnr_write },
2050 REGINFO_SENTINEL
2051};
2052
18032bec
PM
2053static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2054 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2055 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2056 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2057 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2058 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2059 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2060 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2061 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2062 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2063 .access = PL1_RW,
7e09797c
PM
2064 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2065 .resetvalue = 0, },
18032bec
PM
2066 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2067 .access = PL1_RW,
7e09797c
PM
2068 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2069 .resetvalue = 0, },
ecce5c3c
PM
2070 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2071 .access = PL1_RW,
2072 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2073 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2074 .access = PL1_RW,
2075 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2076 /* Protection region base and size registers */
e508a92b
PM
2077 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2078 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2080 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2081 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2082 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2083 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2084 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2085 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2086 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2087 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2088 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2089 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2090 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2091 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2092 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2093 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2094 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2095 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2096 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2097 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2098 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2099 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2100 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2101 REGINFO_SENTINEL
2102};
2103
c4241c7d
PM
2104static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2105 uint64_t value)
ecce5c3c 2106{
11f136ee 2107 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2108 int maskshift = extract32(value, 0, 3);
2109
e389be16
FA
2110 if (!arm_feature(env, ARM_FEATURE_V8)) {
2111 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2112 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2113 * using Long-desciptor translation table format */
2114 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2115 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2116 /* In an implementation that includes the Security Extensions
2117 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2118 * Short-descriptor translation table format.
2119 */
2120 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2121 } else {
2122 value &= TTBCR_N;
2123 }
e42c4db3 2124 }
e389be16 2125
11f136ee
FA
2126 /* Update the masks corresponding to the the TCR bank being written
2127 * Note that we always calculate mask and base_mask, but
e42c4db3 2128 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2129 * for long-descriptor tables the TCR fields are used differently
2130 * and the mask and base_mask values are meaningless.
e42c4db3 2131 */
11f136ee
FA
2132 tcr->raw_tcr = value;
2133 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2134 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2135}
2136
c4241c7d
PM
2137static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2138 uint64_t value)
d4e6df63 2139{
00c8cb0a
AF
2140 ARMCPU *cpu = arm_env_get_cpu(env);
2141
d4e6df63
PM
2142 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2143 /* With LPAE the TTBCR could result in a change of ASID
2144 * via the TTBCR.A1 bit, so do a TLB flush.
2145 */
00c8cb0a 2146 tlb_flush(CPU(cpu), 1);
d4e6df63 2147 }
c4241c7d 2148 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2149}
2150
ecce5c3c
PM
2151static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2152{
11f136ee
FA
2153 TCR *tcr = raw_ptr(env, ri);
2154
2155 /* Reset both the TCR as well as the masks corresponding to the bank of
2156 * the TCR being reset.
2157 */
2158 tcr->raw_tcr = 0;
2159 tcr->mask = 0;
2160 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2161}
2162
cb2e37df
PM
2163static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2164 uint64_t value)
2165{
00c8cb0a 2166 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2167 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2168
cb2e37df 2169 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
00c8cb0a 2170 tlb_flush(CPU(cpu), 1);
11f136ee 2171 tcr->raw_tcr = value;
cb2e37df
PM
2172}
2173
327ed10f
PM
2174static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2175 uint64_t value)
2176{
2177 /* 64 bit accesses to the TTBRs can change the ASID and so we
2178 * must flush the TLB.
2179 */
2180 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2181 ARMCPU *cpu = arm_env_get_cpu(env);
2182
2183 tlb_flush(CPU(cpu), 1);
327ed10f
PM
2184 }
2185 raw_write(env, ri, value);
2186}
2187
8e5d75c9 2188static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2189 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2190 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2191 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2192 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2193 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2194 .access = PL1_RW, .resetvalue = 0,
2195 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2196 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2197 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2198 .access = PL1_RW, .resetvalue = 0,
2199 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2200 offsetof(CPUARMState, cp15.dfar_ns) } },
2201 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2202 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2203 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2204 .resetvalue = 0, },
2205 REGINFO_SENTINEL
2206};
2207
2208static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2209 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2210 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2211 .access = PL1_RW,
d81c519c 2212 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2213 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2214 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2215 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2216 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2217 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2218 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2219 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2220 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2221 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2222 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2223 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2224 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2225 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2226 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2227 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2228 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2229 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2230 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2231 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2232 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2233 REGINFO_SENTINEL
2234};
2235
c4241c7d
PM
2236static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2237 uint64_t value)
1047b9d7
PM
2238{
2239 env->cp15.c15_ticonfig = value & 0xe7;
2240 /* The OS_TYPE bit in this register changes the reported CPUID! */
2241 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2242 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2243}
2244
c4241c7d
PM
2245static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2246 uint64_t value)
1047b9d7
PM
2247{
2248 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2249}
2250
c4241c7d
PM
2251static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2252 uint64_t value)
1047b9d7
PM
2253{
2254 /* Wait-for-interrupt (deprecated) */
c3affe56 2255 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2256}
2257
c4241c7d
PM
2258static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2259 uint64_t value)
c4804214
PM
2260{
2261 /* On OMAP there are registers indicating the max/min index of dcache lines
2262 * containing a dirty line; cache flush operations have to reset these.
2263 */
2264 env->cp15.c15_i_max = 0x000;
2265 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2266}
2267
18032bec
PM
2268static const ARMCPRegInfo omap_cp_reginfo[] = {
2269 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2270 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2271 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2272 .resetvalue = 0, },
1047b9d7
PM
2273 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2274 .access = PL1_RW, .type = ARM_CP_NOP },
2275 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2276 .access = PL1_RW,
2277 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2278 .writefn = omap_ticonfig_write },
2279 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2280 .access = PL1_RW,
2281 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2282 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2283 .access = PL1_RW, .resetvalue = 0xff0,
2284 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2285 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2286 .access = PL1_RW,
2287 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2288 .writefn = omap_threadid_write },
2289 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2290 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2291 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2292 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2293 /* TODO: Peripheral port remap register:
2294 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2295 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2296 * when MMU is off.
2297 */
c4804214 2298 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2299 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2300 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2301 .writefn = omap_cachemaint_write },
34f90529
PM
2302 { .name = "C9", .cp = 15, .crn = 9,
2303 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2304 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2305 REGINFO_SENTINEL
2306};
2307
c4241c7d
PM
2308static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2309 uint64_t value)
1047b9d7 2310{
c0f4af17 2311 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2312}
2313
2314static const ARMCPRegInfo xscale_cp_reginfo[] = {
2315 { .name = "XSCALE_CPAR",
2316 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2317 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2318 .writefn = xscale_cpar_write, },
2771db27
PM
2319 { .name = "XSCALE_AUXCR",
2320 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2321 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2322 .resetvalue = 0, },
3b771579
PM
2323 /* XScale specific cache-lockdown: since we have no cache we NOP these
2324 * and hope the guest does not really rely on cache behaviour.
2325 */
2326 { .name = "XSCALE_LOCK_ICACHE_LINE",
2327 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2328 .access = PL1_W, .type = ARM_CP_NOP },
2329 { .name = "XSCALE_UNLOCK_ICACHE",
2330 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2331 .access = PL1_W, .type = ARM_CP_NOP },
2332 { .name = "XSCALE_DCACHE_LOCK",
2333 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2334 .access = PL1_RW, .type = ARM_CP_NOP },
2335 { .name = "XSCALE_UNLOCK_DCACHE",
2336 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2337 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2338 REGINFO_SENTINEL
2339};
2340
2341static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2342 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2343 * implementation of this implementation-defined space.
2344 * Ideally this should eventually disappear in favour of actually
2345 * implementing the correct behaviour for all cores.
2346 */
2347 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2348 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2349 .access = PL1_RW,
7a0e58fa 2350 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2351 .resetvalue = 0 },
18032bec
PM
2352 REGINFO_SENTINEL
2353};
2354
c4804214
PM
2355static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2356 /* Cache status: RAZ because we have no cache so it's always clean */
2357 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2358 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2359 .resetvalue = 0 },
c4804214
PM
2360 REGINFO_SENTINEL
2361};
2362
2363static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2364 /* We never have a a block transfer operation in progress */
2365 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2366 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2367 .resetvalue = 0 },
30b05bba
PM
2368 /* The cache ops themselves: these all NOP for QEMU */
2369 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2370 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2371 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2372 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2373 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2374 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2375 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2376 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2377 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2378 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2379 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2380 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2381 REGINFO_SENTINEL
2382};
2383
2384static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2385 /* The cache test-and-clean instructions always return (1 << 30)
2386 * to indicate that there are no dirty cache lines.
2387 */
2388 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2389 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2390 .resetvalue = (1 << 30) },
c4804214 2391 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2392 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2393 .resetvalue = (1 << 30) },
c4804214
PM
2394 REGINFO_SENTINEL
2395};
2396
34f90529
PM
2397static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2398 /* Ignore ReadBuffer accesses */
2399 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2400 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2401 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2402 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2403 REGINFO_SENTINEL
2404};
2405
c4241c7d 2406static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
81bdde9d 2407{
eb5e1d3c
PF
2408 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2409 uint64_t mpidr = cpu->mp_affinity;
2410
81bdde9d 2411 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2412 mpidr |= (1U << 31);
81bdde9d
PM
2413 /* Cores which are uniprocessor (non-coherent)
2414 * but still implement the MP extensions set
a8e81b31 2415 * bit 30. (For instance, Cortex-R5).
81bdde9d 2416 */
a8e81b31
PC
2417 if (cpu->mp_is_up) {
2418 mpidr |= (1u << 30);
2419 }
81bdde9d 2420 }
c4241c7d 2421 return mpidr;
81bdde9d
PM
2422}
2423
2424static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2425 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2426 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2427 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2428 REGINFO_SENTINEL
2429};
2430
7ac681cf 2431static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2432 /* NOP AMAIR0/1 */
b0fe2427
PM
2433 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2434 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2435 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2436 .resetvalue = 0 },
b0fe2427 2437 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2438 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2439 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2440 .resetvalue = 0 },
891a2fe7 2441 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2442 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2443 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2444 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2445 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2446 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2447 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2448 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2449 .writefn = vmsa_ttbr_write, },
891a2fe7 2450 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2451 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2453 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2454 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2455 REGINFO_SENTINEL
2456};
2457
c4241c7d 2458static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2459{
c4241c7d 2460 return vfp_get_fpcr(env);
b0d2b7d0
PM
2461}
2462
c4241c7d
PM
2463static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2464 uint64_t value)
b0d2b7d0
PM
2465{
2466 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2467}
2468
c4241c7d 2469static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2470{
c4241c7d 2471 return vfp_get_fpsr(env);
b0d2b7d0
PM
2472}
2473
c4241c7d
PM
2474static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475 uint64_t value)
b0d2b7d0
PM
2476{
2477 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2478}
2479
c2b820fe
PM
2480static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2481{
137feaa9 2482 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2483 return CP_ACCESS_TRAP;
2484 }
2485 return CP_ACCESS_OK;
2486}
2487
2488static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2489 uint64_t value)
2490{
2491 env->daif = value & PSTATE_DAIF;
2492}
2493
8af35c37
PM
2494static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2495 const ARMCPRegInfo *ri)
2496{
2497 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2498 * SCTLR_EL1.UCI is set.
2499 */
137feaa9 2500 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2501 return CP_ACCESS_TRAP;
2502 }
2503 return CP_ACCESS_OK;
2504}
2505
dbb1fb27
AB
2506/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2507 * Page D4-1736 (DDI0487A.b)
2508 */
2509
fd3ed969
PM
2510static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511 uint64_t value)
168aa23b 2512{
31b030d4 2513 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969 2514 CPUState *cs = CPU(cpu);
dbb1fb27 2515
fd3ed969
PM
2516 if (arm_is_secure_below_el3(env)) {
2517 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2518 } else {
2519 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2520 }
168aa23b
PM
2521}
2522
fd3ed969
PM
2523static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2524 uint64_t value)
168aa23b 2525{
fd3ed969
PM
2526 bool sec = arm_is_secure_below_el3(env);
2527 CPUState *other_cs;
dbb1fb27 2528
fd3ed969
PM
2529 CPU_FOREACH(other_cs) {
2530 if (sec) {
2531 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2532 } else {
2533 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2534 ARMMMUIdx_S12NSE0, -1);
2535 }
2536 }
168aa23b
PM
2537}
2538
fd3ed969
PM
2539static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2540 uint64_t value)
168aa23b 2541{
fd3ed969
PM
2542 /* Note that the 'ALL' scope must invalidate both stage 1 and
2543 * stage 2 translations, whereas most other scopes only invalidate
2544 * stage 1 translations.
2545 */
00c8cb0a 2546 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
2547 CPUState *cs = CPU(cpu);
2548
2549 if (arm_is_secure_below_el3(env)) {
2550 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2551 } else {
2552 if (arm_feature(env, ARM_FEATURE_EL2)) {
2553 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2554 ARMMMUIdx_S2NS, -1);
2555 } else {
2556 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2557 }
2558 }
168aa23b
PM
2559}
2560
fd3ed969 2561static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
2562 uint64_t value)
2563{
fd3ed969
PM
2564 ARMCPU *cpu = arm_env_get_cpu(env);
2565 CPUState *cs = CPU(cpu);
2566
2567 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2568}
2569
43efaa33
PM
2570static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2571 uint64_t value)
2572{
2573 ARMCPU *cpu = arm_env_get_cpu(env);
2574 CPUState *cs = CPU(cpu);
2575
2576 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2577}
2578
fd3ed969
PM
2579static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2580 uint64_t value)
2581{
2582 /* Note that the 'ALL' scope must invalidate both stage 1 and
2583 * stage 2 translations, whereas most other scopes only invalidate
2584 * stage 1 translations.
2585 */
2586 bool sec = arm_is_secure_below_el3(env);
2587 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
fa439fc5 2588 CPUState *other_cs;
fa439fc5
PM
2589
2590 CPU_FOREACH(other_cs) {
fd3ed969
PM
2591 if (sec) {
2592 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2593 } else if (has_el2) {
2594 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2595 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2596 } else {
2597 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2598 ARMMMUIdx_S12NSE0, -1);
2599 }
fa439fc5
PM
2600 }
2601}
2602
2bfb9d75
PM
2603static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2604 uint64_t value)
2605{
2606 CPUState *other_cs;
2607
2608 CPU_FOREACH(other_cs) {
2609 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2610 }
2611}
2612
43efaa33
PM
2613static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614 uint64_t value)
2615{
2616 CPUState *other_cs;
2617
2618 CPU_FOREACH(other_cs) {
2619 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2620 }
2621}
2622
fd3ed969
PM
2623static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2624 uint64_t value)
2625{
2626 /* Invalidate by VA, EL1&0 (AArch64 version).
2627 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2628 * since we don't support flush-for-specific-ASID-only or
2629 * flush-last-level-only.
2630 */
2631 ARMCPU *cpu = arm_env_get_cpu(env);
2632 CPUState *cs = CPU(cpu);
2633 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2634
2635 if (arm_is_secure_below_el3(env)) {
2636 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2637 ARMMMUIdx_S1SE0, -1);
2638 } else {
2639 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2640 ARMMMUIdx_S12NSE0, -1);
2641 }
2642}
2643
2644static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2645 uint64_t value)
fa439fc5 2646{
fd3ed969
PM
2647 /* Invalidate by VA, EL2
2648 * Currently handles both VAE2 and VALE2, since we don't support
2649 * flush-last-level-only.
2650 */
2651 ARMCPU *cpu = arm_env_get_cpu(env);
2652 CPUState *cs = CPU(cpu);
2653 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2654
2655 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2656}
2657
43efaa33
PM
2658static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2659 uint64_t value)
2660{
2661 /* Invalidate by VA, EL3
2662 * Currently handles both VAE3 and VALE3, since we don't support
2663 * flush-last-level-only.
2664 */
2665 ARMCPU *cpu = arm_env_get_cpu(env);
2666 CPUState *cs = CPU(cpu);
2667 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2668
2669 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2670}
2671
fd3ed969
PM
2672static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673 uint64_t value)
2674{
2675 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
2676 CPUState *other_cs;
2677 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2678
2679 CPU_FOREACH(other_cs) {
fd3ed969
PM
2680 if (sec) {
2681 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2682 ARMMMUIdx_S1SE0, -1);
2683 } else {
2684 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2685 ARMMMUIdx_S12NSE0, -1);
2686 }
fa439fc5
PM
2687 }
2688}
2689
fd3ed969
PM
2690static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2691 uint64_t value)
fa439fc5
PM
2692{
2693 CPUState *other_cs;
fd3ed969 2694 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5
PM
2695
2696 CPU_FOREACH(other_cs) {
fd3ed969 2697 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
fa439fc5
PM
2698 }
2699}
2700
43efaa33
PM
2701static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702 uint64_t value)
2703{
2704 CPUState *other_cs;
2705 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2706
2707 CPU_FOREACH(other_cs) {
2708 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2709 }
2710}
2711
cea66e91
PM
2712static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2713 uint64_t value)
2714{
2715 /* Invalidate by IPA. This has to invalidate any structures that
2716 * contain only stage 2 translation information, but does not need
2717 * to apply to structures that contain combined stage 1 and stage 2
2718 * translation information.
2719 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2720 */
2721 ARMCPU *cpu = arm_env_get_cpu(env);
2722 CPUState *cs = CPU(cpu);
2723 uint64_t pageaddr;
2724
2725 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2726 return;
2727 }
2728
2729 pageaddr = sextract64(value << 12, 0, 48);
2730
2731 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2732}
2733
2734static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2735 uint64_t value)
2736{
2737 CPUState *other_cs;
2738 uint64_t pageaddr;
2739
2740 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2741 return;
2742 }
2743
2744 pageaddr = sextract64(value << 12, 0, 48);
2745
2746 CPU_FOREACH(other_cs) {
2747 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2748 }
2749}
2750
aca3f40b
PM
2751static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2752{
2753 /* We don't implement EL2, so the only control on DC ZVA is the
2754 * bit in the SCTLR which can prohibit access for EL0.
2755 */
137feaa9 2756 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
2757 return CP_ACCESS_TRAP;
2758 }
2759 return CP_ACCESS_OK;
2760}
2761
2762static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2763{
2764 ARMCPU *cpu = arm_env_get_cpu(env);
2765 int dzp_bit = 1 << 4;
2766
2767 /* DZP indicates whether DC ZVA access is allowed */
14e5f106 2768 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
aca3f40b
PM
2769 dzp_bit = 0;
2770 }
2771 return cpu->dcz_blocksize | dzp_bit;
2772}
2773
f502cfc2
PM
2774static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2775{
cdcf1405 2776 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
2777 /* Access to SP_EL0 is undefined if it's being used as
2778 * the stack pointer.
2779 */
2780 return CP_ACCESS_TRAP_UNCATEGORIZED;
2781 }
2782 return CP_ACCESS_OK;
2783}
2784
2785static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2786{
2787 return env->pstate & PSTATE_SP;
2788}
2789
2790static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2791{
2792 update_spsel(env, val);
2793}
2794
137feaa9
FA
2795static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2796 uint64_t value)
2797{
2798 ARMCPU *cpu = arm_env_get_cpu(env);
2799
2800 if (raw_read(env, ri) == value) {
2801 /* Skip the TLB flush if nothing actually changed; Linux likes
2802 * to do a lot of pointless SCTLR writes.
2803 */
2804 return;
2805 }
2806
2807 raw_write(env, ri, value);
2808 /* ??? Lots of these bits are not implemented. */
2809 /* This may enable/disable the MMU, so do a TLB flush. */
2810 tlb_flush(CPU(cpu), 1);
2811}
2812
b0d2b7d0
PM
2813static const ARMCPRegInfo v8_cp_reginfo[] = {
2814 /* Minimal set of EL0-visible registers. This will need to be expanded
2815 * significantly for system emulation of AArch64 CPUs.
2816 */
2817 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2818 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2819 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
2820 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2821 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 2822 .type = ARM_CP_NO_RAW,
c2b820fe
PM
2823 .access = PL0_RW, .accessfn = aa64_daif_access,
2824 .fieldoffset = offsetof(CPUARMState, daif),
2825 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
2826 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2827 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2828 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2829 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2830 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2831 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
2832 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2833 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 2834 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
2835 .readfn = aa64_dczid_read },
2836 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2837 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2838 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2839#ifndef CONFIG_USER_ONLY
2840 /* Avoid overhead of an access check that always passes in user-mode */
2841 .accessfn = aa64_zva_access,
2842#endif
2843 },
0eef9d98
PM
2844 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2845 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2846 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
2847 /* Cache ops: all NOPs since we don't emulate caches */
2848 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2849 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2850 .access = PL1_W, .type = ARM_CP_NOP },
2851 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2852 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2853 .access = PL1_W, .type = ARM_CP_NOP },
2854 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2856 .access = PL0_W, .type = ARM_CP_NOP,
2857 .accessfn = aa64_cacheop_access },
2858 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2859 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2860 .access = PL1_W, .type = ARM_CP_NOP },
2861 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2862 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2863 .access = PL1_W, .type = ARM_CP_NOP },
2864 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2865 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2866 .access = PL0_W, .type = ARM_CP_NOP,
2867 .accessfn = aa64_cacheop_access },
2868 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2869 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2870 .access = PL1_W, .type = ARM_CP_NOP },
2871 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2872 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2873 .access = PL0_W, .type = ARM_CP_NOP,
2874 .accessfn = aa64_cacheop_access },
2875 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2876 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2877 .access = PL0_W, .type = ARM_CP_NOP,
2878 .accessfn = aa64_cacheop_access },
2879 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2880 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2881 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
2882 /* TLBI operations */
2883 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 2885 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2886 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 2887 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 2889 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2890 .writefn = tlbi_aa64_vae1is_write },
168aa23b 2891 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2892 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 2893 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2894 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 2895 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 2897 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2898 .writefn = tlbi_aa64_vae1is_write },
168aa23b 2899 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2900 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 2901 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2902 .writefn = tlbi_aa64_vae1is_write },
168aa23b 2903 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2904 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 2905 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2906 .writefn = tlbi_aa64_vae1is_write },
168aa23b 2907 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2908 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 2909 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2910 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 2911 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2912 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 2913 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2914 .writefn = tlbi_aa64_vae1_write },
168aa23b 2915 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2916 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 2917 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2918 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 2919 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2920 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 2921 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2922 .writefn = tlbi_aa64_vae1_write },
168aa23b 2923 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2924 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 2925 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2926 .writefn = tlbi_aa64_vae1_write },
168aa23b 2927 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2928 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 2929 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 2930 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
2931 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
2932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
2933 .access = PL2_W, .type = ARM_CP_NO_RAW,
2934 .writefn = tlbi_aa64_ipas2e1is_write },
2935 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
2936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
2937 .access = PL2_W, .type = ARM_CP_NO_RAW,
2938 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
2939 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
2940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
2941 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 2942 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
2943 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
2944 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
2945 .access = PL2_W, .type = ARM_CP_NO_RAW,
2946 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
2947 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
2948 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
2949 .access = PL2_W, .type = ARM_CP_NO_RAW,
2950 .writefn = tlbi_aa64_ipas2e1_write },
2951 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
2952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
2953 .access = PL2_W, .type = ARM_CP_NO_RAW,
2954 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
2955 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
2956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
2957 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 2958 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
2959 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
2960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
2961 .access = PL2_W, .type = ARM_CP_NO_RAW,
2962 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
2963#ifndef CONFIG_USER_ONLY
2964 /* 64 bit address translation operations */
2965 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2966 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 2967 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
2968 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2969 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 2970 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
2971 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2972 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 2973 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
2974 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2975 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 2976 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 2977 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 2978 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
2979 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2980 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 2981 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
2982 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2983 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 2984 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
2985 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2986 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 2987 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
2988 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2989 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
2990 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
2991 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
2992 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2993 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
2994 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
2995 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524 2996#endif
995939a6 2997 /* TLB invalidate last level of translation table walk */
9449fdf6 2998 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 2999 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3000 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3001 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3002 .writefn = tlbimvaa_is_write },
9449fdf6 3003 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3004 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3005 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3006 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
9449fdf6
PM
3007 /* 32 bit cache operations */
3008 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3009 .type = ARM_CP_NOP, .access = PL1_W },
3010 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3011 .type = ARM_CP_NOP, .access = PL1_W },
3012 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3013 .type = ARM_CP_NOP, .access = PL1_W },
3014 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3015 .type = ARM_CP_NOP, .access = PL1_W },
3016 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3017 .type = ARM_CP_NOP, .access = PL1_W },
3018 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3019 .type = ARM_CP_NOP, .access = PL1_W },
3020 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3021 .type = ARM_CP_NOP, .access = PL1_W },
3022 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3023 .type = ARM_CP_NOP, .access = PL1_W },
3024 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3025 .type = ARM_CP_NOP, .access = PL1_W },
3026 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3027 .type = ARM_CP_NOP, .access = PL1_W },
3028 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3029 .type = ARM_CP_NOP, .access = PL1_W },
3030 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3031 .type = ARM_CP_NOP, .access = PL1_W },
3032 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3033 .type = ARM_CP_NOP, .access = PL1_W },
3034 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3035 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3036 .access = PL1_RW, .resetvalue = 0,
3037 .writefn = dacr_write, .raw_writefn = raw_write,
3038 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3039 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3040 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3041 .type = ARM_CP_ALIAS,
a0618a19 3042 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3043 .access = PL1_RW,
3044 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3045 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3046 .type = ARM_CP_ALIAS,
a65f1de9 3047 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
7847f9ea 3048 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
f502cfc2
PM
3049 /* We rely on the access checks not allowing the guest to write to the
3050 * state field when SPSel indicates that it's being used as the stack
3051 * pointer.
3052 */
3053 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3054 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3055 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3056 .type = ARM_CP_ALIAS,
f502cfc2 3057 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3058 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3059 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3060 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3061 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3062 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3063 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3064 .type = ARM_CP_NO_RAW,
f502cfc2 3065 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
b0d2b7d0
PM
3066 REGINFO_SENTINEL
3067};
3068
d42e3c26 3069/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3070static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3071 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3072 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3073 .access = PL2_RW,
3074 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3075 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3076 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3077 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3078 .access = PL2_RW,
3079 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3080 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3081 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3082 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3083 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3084 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3085 .access = PL2_RW, .type = ARM_CP_CONST,
3086 .resetvalue = 0 },
3087 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3088 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3089 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3090 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3091 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3092 .access = PL2_RW, .type = ARM_CP_CONST,
3093 .resetvalue = 0 },
3094 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3095 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3096 .access = PL2_RW, .type = ARM_CP_CONST,
3097 .resetvalue = 0 },
37cd6c24
PM
3098 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3099 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3100 .access = PL2_RW, .type = ARM_CP_CONST,
3101 .resetvalue = 0 },
3102 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3103 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3104 .access = PL2_RW, .type = ARM_CP_CONST,
3105 .resetvalue = 0 },
06ec4c8c
EI
3106 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3107 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3108 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3109 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3110 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3111 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3112 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3113 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3114 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3115 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3116 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3117 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3118 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3119 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3120 .resetvalue = 0 },
0b6440af
EI
3121 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3122 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3123 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3124 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3125 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3126 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3127 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3128 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3129 .resetvalue = 0 },
b0e66d95
EI
3130 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3131 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3132 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3133 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3134 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3135 .resetvalue = 0 },
3136 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3137 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3138 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3139 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3140 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3141 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3142 REGINFO_SENTINEL
3143};
3144
f149e3e8
EI
3145static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3146{
3147 ARMCPU *cpu = arm_env_get_cpu(env);
3148 uint64_t valid_mask = HCR_MASK;
3149
3150 if (arm_feature(env, ARM_FEATURE_EL3)) {
3151 valid_mask &= ~HCR_HCD;
3152 } else {
3153 valid_mask &= ~HCR_TSC;
3154 }
3155
3156 /* Clear RES0 bits. */
3157 value &= valid_mask;
3158
3159 /* These bits change the MMU setup:
3160 * HCR_VM enables stage 2 translation
3161 * HCR_PTW forbids certain page-table setups
3162 * HCR_DC Disables stage1 and enables stage2 translation
3163 */
3164 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3165 tlb_flush(CPU(cpu), 1);
3166 }
3167 raw_write(env, ri, value);
3168}
3169
4771cd01 3170static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3171 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3172 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3173 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3174 .writefn = hcr_write },
0c17d68c
FA
3175 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3176 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3177 .access = PL2_RW, .resetvalue = 0,
3178 .writefn = dacr_write, .raw_writefn = raw_write,
3179 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3b685ba7 3180 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3181 .type = ARM_CP_ALIAS,
3b685ba7
EI
3182 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3183 .access = PL2_RW,
3184 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3185 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3186 .type = ARM_CP_ALIAS,
f2c30f42
EI
3187 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3188 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
88ca1c2d
FA
3189 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3190 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3191 .access = PL2_RW, .resetvalue = 0,
3192 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
63b60551
EI
3193 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3194 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3195 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3196 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3197 .type = ARM_CP_ALIAS,
3b685ba7
EI
3198 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3199 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
d42e3c26
EI
3200 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3201 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3202 .access = PL2_RW, .writefn = vbar_write,
3203 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3204 .resetvalue = 0 },
884b4dee
GB
3205 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3206 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3207 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3208 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3209 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3210 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3211 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3212 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3213 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3214 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3215 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3216 .resetvalue = 0 },
3217 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3218 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3219 .access = PL2_RW, .type = ARM_CP_ALIAS,
3220 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3221 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3222 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3223 .access = PL2_RW, .type = ARM_CP_CONST,
3224 .resetvalue = 0 },
3225 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3226 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3227 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3228 .access = PL2_RW, .type = ARM_CP_CONST,
3229 .resetvalue = 0 },
37cd6c24
PM
3230 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3231 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3232 .access = PL2_RW, .type = ARM_CP_CONST,
3233 .resetvalue = 0 },
3234 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3235 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3236 .access = PL2_RW, .type = ARM_CP_CONST,
3237 .resetvalue = 0 },
06ec4c8c
EI
3238 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3239 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3240 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3241 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3242 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
b9cb5323
EI
3243 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3244 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3245 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3246 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3247 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3248 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3249 .access = PL2_RW, .resetvalue = 0,
3250 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3251 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3252 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3253 .access = PL2_RW, .resetvalue = 0,
3254 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3255 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3256 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3257 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
51da9014
EI
3258 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3259 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3260 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3261 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3262 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3263 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3264 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3265 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3266 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3267 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3268 .access = PL2_W, .type = ARM_CP_NO_RAW,
3269 .writefn = tlbi_aa64_vae2_write },
3270 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3271 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3272 .access = PL2_W, .type = ARM_CP_NO_RAW,
3273 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3274 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3275 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3276 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3277 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3278 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3279 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3280 .access = PL2_W, .type = ARM_CP_NO_RAW,
3281 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3282#ifndef CONFIG_USER_ONLY
2a47df95
PM
3283 /* Unlike the other EL2-related AT operations, these must
3284 * UNDEF from EL3 if EL2 is not implemented, which is why we
3285 * define them here rather than with the rest of the AT ops.
3286 */
3287 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3288 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3289 .access = PL2_W, .accessfn = at_s1e2_access,
3290 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3291 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3292 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3293 .access = PL2_W, .accessfn = at_s1e2_access,
3294 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3295 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3296 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3297 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3298 * to behave as if SCR.NS was 1.
3299 */
3300 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3301 .access = PL2_W,
3302 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3303 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3304 .access = PL2_W,
3305 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3306 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3307 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3308 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3309 * reset values as IMPDEF. We choose to reset to 3 to comply with
3310 * both ARMv7 and ARMv8.
3311 */
3312 .access = PL2_RW, .resetvalue = 3,
3313 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3314 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3315 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3316 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3317 .writefn = gt_cntvoff_write,
3318 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3319 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3320 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3321 .writefn = gt_cntvoff_write,
3322 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3323 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3325 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3326 .type = ARM_CP_IO, .access = PL2_RW,
3327 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3328 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3329 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3330 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3331 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3332 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3333 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3334 .type = ARM_CP_IO, .access = PL2_RW,
3335 .resetfn = gt_hyp_timer_reset,
3336 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3337 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3338 .type = ARM_CP_IO,
3339 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3340 .access = PL2_RW,
3341 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3342 .resetvalue = 0,
3343 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3344#endif
3b685ba7
EI
3345 REGINFO_SENTINEL
3346};
3347
60fb1a87
GB
3348static const ARMCPRegInfo el3_cp_reginfo[] = {
3349 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3351 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3352 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 3353 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87
GB
3354 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3355 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 3356 .writefn = scr_write },
60fb1a87
GB
3357 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3358 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3359 .access = PL3_RW, .resetvalue = 0,
3360 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3361 { .name = "SDER",
3362 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3363 .access = PL3_RW, .resetvalue = 0,
3364 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3365 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3366 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
3367 .access = PL3_W | PL1_R, .resetvalue = 0,
3368 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
3369 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3370 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
3371 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
137feaa9 3372 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
e46e1a74 3373 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
137feaa9
FA
3374 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3375 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3376 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
7dd8c9af
FA
3377 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3378 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3379 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3380 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
3381 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3382 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3383 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3384 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3385 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 3386 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3387 .type = ARM_CP_ALIAS,
81547d66
EI
3388 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3389 .access = PL3_RW,
3390 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 3391 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3392 .type = ARM_CP_ALIAS,
f2c30f42
EI
3393 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3394 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
3395 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3396 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3397 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 3398 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3399 .type = ARM_CP_ALIAS,
81547d66
EI
3400 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3401 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
a1ba125c
EI
3402 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3403 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3404 .access = PL3_RW, .writefn = vbar_write,
3405 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3406 .resetvalue = 0 },
c6f19164
GB
3407 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3408 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3409 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3410 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
3411 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3412 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3413 .access = PL3_RW, .resetvalue = 0,
3414 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
3415 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3416 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3417 .access = PL3_RW, .type = ARM_CP_CONST,
3418 .resetvalue = 0 },
37cd6c24
PM
3419 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3420 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3421 .access = PL3_RW, .type = ARM_CP_CONST,
3422 .resetvalue = 0 },
3423 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3424 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3425 .access = PL3_RW, .type = ARM_CP_CONST,
3426 .resetvalue = 0 },
43efaa33
PM
3427 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3429 .access = PL3_W, .type = ARM_CP_NO_RAW,
3430 .writefn = tlbi_aa64_alle3is_write },
3431 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3432 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3433 .access = PL3_W, .type = ARM_CP_NO_RAW,
3434 .writefn = tlbi_aa64_vae3is_write },
3435 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3436 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3437 .access = PL3_W, .type = ARM_CP_NO_RAW,
3438 .writefn = tlbi_aa64_vae3is_write },
3439 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3440 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3441 .access = PL3_W, .type = ARM_CP_NO_RAW,
3442 .writefn = tlbi_aa64_alle3_write },
3443 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3444 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3445 .access = PL3_W, .type = ARM_CP_NO_RAW,
3446 .writefn = tlbi_aa64_vae3_write },
3447 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3449 .access = PL3_W, .type = ARM_CP_NO_RAW,
3450 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
3451 REGINFO_SENTINEL
3452};
3453
7da845b0
PM
3454static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
3455{
3456 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3457 * but the AArch32 CTR has its own reginfo struct)
3458 */
137feaa9 3459 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
3460 return CP_ACCESS_TRAP;
3461 }
3462 return CP_ACCESS_OK;
3463}
3464
50300698 3465static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 3466 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
3467 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3468 * unlike DBGDRAR it is never accessible from EL0.
3469 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3470 * accessor.
50300698
PM
3471 */
3472 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3473 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
3474 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3475 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3476 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
50300698
PM
3477 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3478 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 3479 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
3480 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3481 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
0e5e8935
PM
3482 .access = PL1_RW,
3483 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3484 .resetvalue = 0 },
5e8b12ff
PM
3485 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3486 * We don't implement the configurable EL0 access.
3487 */
3488 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3489 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 3490 .type = ARM_CP_ALIAS,
5e8b12ff 3491 .access = PL1_R,
b061a82b 3492 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
50300698 3493 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
10aae104
PM
3494 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3495 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
50300698 3496 .access = PL1_W, .type = ARM_CP_NOP },
5e8b12ff
PM
3497 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3498 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3499 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3500 .access = PL1_RW, .type = ARM_CP_NOP },
3501 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3502 * implement vector catch debug events yet.
3503 */
3504 { .name = "DBGVCR",
3505 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3506 .access = PL1_RW, .type = ARM_CP_NOP },
50300698
PM
3507 REGINFO_SENTINEL
3508};
3509
3510static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3511 /* 64 bit access versions of the (dummy) debug registers */
3512 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3513 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3514 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3515 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3516 REGINFO_SENTINEL
3517};
3518
9ee98ce8
PM
3519void hw_watchpoint_update(ARMCPU *cpu, int n)
3520{
3521 CPUARMState *env = &cpu->env;
3522 vaddr len = 0;
3523 vaddr wvr = env->cp15.dbgwvr[n];
3524 uint64_t wcr = env->cp15.dbgwcr[n];
3525 int mask;
3526 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3527
3528 if (env->cpu_watchpoint[n]) {
3529 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3530 env->cpu_watchpoint[n] = NULL;
3531 }
3532
3533 if (!extract64(wcr, 0, 1)) {
3534 /* E bit clear : watchpoint disabled */
3535 return;
3536 }
3537
3538 switch (extract64(wcr, 3, 2)) {
3539 case 0:
3540 /* LSC 00 is reserved and must behave as if the wp is disabled */
3541 return;
3542 case 1:
3543 flags |= BP_MEM_READ;
3544 break;
3545 case 2:
3546 flags |= BP_MEM_WRITE;
3547 break;
3548 case 3:
3549 flags |= BP_MEM_ACCESS;
3550 break;
3551 }
3552
3553 /* Attempts to use both MASK and BAS fields simultaneously are
3554 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3555 * thus generating a watchpoint for every byte in the masked region.
3556 */
3557 mask = extract64(wcr, 24, 4);
3558 if (mask == 1 || mask == 2) {
3559 /* Reserved values of MASK; we must act as if the mask value was
3560 * some non-reserved value, or as if the watchpoint were disabled.
3561 * We choose the latter.
3562 */
3563 return;
3564 } else if (mask) {
3565 /* Watchpoint covers an aligned area up to 2GB in size */
3566 len = 1ULL << mask;
3567 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3568 * whether the watchpoint fires when the unmasked bits match; we opt
3569 * to generate the exceptions.
3570 */
3571 wvr &= ~(len - 1);
3572 } else {
3573 /* Watchpoint covers bytes defined by the byte address select bits */
3574 int bas = extract64(wcr, 5, 8);
3575 int basstart;
3576
3577 if (bas == 0) {
3578 /* This must act as if the watchpoint is disabled */
3579 return;
3580 }
3581
3582 if (extract64(wvr, 2, 1)) {
3583 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3584 * ignored, and BAS[3:0] define which bytes to watch.
3585 */
3586 bas &= 0xf;
3587 }
3588 /* The BAS bits are supposed to be programmed to indicate a contiguous
3589 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3590 * we fire for each byte in the word/doubleword addressed by the WVR.
3591 * We choose to ignore any non-zero bits after the first range of 1s.
3592 */
3593 basstart = ctz32(bas);
3594 len = cto32(bas >> basstart);
3595 wvr += basstart;
3596 }
3597
3598 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3599 &env->cpu_watchpoint[n]);
3600}
3601
3602void hw_watchpoint_update_all(ARMCPU *cpu)
3603{
3604 int i;
3605 CPUARMState *env = &cpu->env;
3606
3607 /* Completely clear out existing QEMU watchpoints and our array, to
3608 * avoid possible stale entries following migration load.
3609 */
3610 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3611 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3612
3613 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3614 hw_watchpoint_update(cpu, i);
3615 }
3616}
3617
3618static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3619 uint64_t value)
3620{
3621 ARMCPU *cpu = arm_env_get_cpu(env);
3622 int i = ri->crm;
3623
3624 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3625 * register reads and behaves as if values written are sign extended.
3626 * Bits [1:0] are RES0.
3627 */
3628 value = sextract64(value, 0, 49) & ~3ULL;
3629
3630 raw_write(env, ri, value);
3631 hw_watchpoint_update(cpu, i);
3632}
3633
3634static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3635 uint64_t value)
3636{
3637 ARMCPU *cpu = arm_env_get_cpu(env);
3638 int i = ri->crm;
3639
3640 raw_write(env, ri, value);
3641 hw_watchpoint_update(cpu, i);
3642}
3643
46747d15
PM
3644void hw_breakpoint_update(ARMCPU *cpu, int n)
3645{
3646 CPUARMState *env = &cpu->env;
3647 uint64_t bvr = env->cp15.dbgbvr[n];
3648 uint64_t bcr = env->cp15.dbgbcr[n];
3649 vaddr addr;
3650 int bt;
3651 int flags = BP_CPU;
3652
3653 if (env->cpu_breakpoint[n]) {
3654 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
3655 env->cpu_breakpoint[n] = NULL;
3656 }
3657
3658 if (!extract64(bcr, 0, 1)) {
3659 /* E bit clear : watchpoint disabled */
3660 return;
3661 }
3662
3663 bt = extract64(bcr, 20, 4);
3664
3665 switch (bt) {
3666 case 4: /* unlinked address mismatch (reserved if AArch64) */
3667 case 5: /* linked address mismatch (reserved if AArch64) */
3668 qemu_log_mask(LOG_UNIMP,
3669 "arm: address mismatch breakpoint types not implemented");
3670 return;
3671 case 0: /* unlinked address match */
3672 case 1: /* linked address match */
3673 {
3674 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3675 * we behave as if the register was sign extended. Bits [1:0] are
3676 * RES0. The BAS field is used to allow setting breakpoints on 16
3677 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3678 * a bp will fire if the addresses covered by the bp and the addresses
3679 * covered by the insn overlap but the insn doesn't start at the
3680 * start of the bp address range. We choose to require the insn and
3681 * the bp to have the same address. The constraints on writing to
3682 * BAS enforced in dbgbcr_write mean we have only four cases:
3683 * 0b0000 => no breakpoint
3684 * 0b0011 => breakpoint on addr
3685 * 0b1100 => breakpoint on addr + 2
3686 * 0b1111 => breakpoint on addr
3687 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3688 */
3689 int bas = extract64(bcr, 5, 4);
3690 addr = sextract64(bvr, 0, 49) & ~3ULL;
3691 if (bas == 0) {
3692 return;
3693 }
3694 if (bas == 0xc) {
3695 addr += 2;
3696 }
3697 break;
3698 }
3699 case 2: /* unlinked context ID match */
3700 case 8: /* unlinked VMID match (reserved if no EL2) */
3701 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3702 qemu_log_mask(LOG_UNIMP,
3703 "arm: unlinked context breakpoint types not implemented");
3704 return;
3705 case 9: /* linked VMID match (reserved if no EL2) */
3706 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3707 case 3: /* linked context ID match */
3708 default:
3709 /* We must generate no events for Linked context matches (unless
3710 * they are linked to by some other bp/wp, which is handled in
3711 * updates for the linking bp/wp). We choose to also generate no events
3712 * for reserved values.
3713 */
3714 return;
3715 }
3716
3717 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3718}
3719
3720void hw_breakpoint_update_all(ARMCPU *cpu)
3721{
3722 int i;
3723 CPUARMState *env = &cpu->env;
3724
3725 /* Completely clear out existing QEMU breakpoints and our array, to
3726 * avoid possible stale entries following migration load.
3727 */
3728 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3729 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3730
3731 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3732 hw_breakpoint_update(cpu, i);
3733 }
3734}
3735
3736static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3737 uint64_t value)
3738{
3739 ARMCPU *cpu = arm_env_get_cpu(env);
3740 int i = ri->crm;
3741
3742 raw_write(env, ri, value);
3743 hw_breakpoint_update(cpu, i);
3744}
3745
3746static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3747 uint64_t value)
3748{
3749 ARMCPU *cpu = arm_env_get_cpu(env);
3750 int i = ri->crm;
3751
3752 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3753 * copy of BAS[0].
3754 */
3755 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3756 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3757
3758 raw_write(env, ri, value);
3759 hw_breakpoint_update(cpu, i);
3760}
3761
50300698 3762static void define_debug_regs(ARMCPU *cpu)
0b45451e 3763{
50300698
PM
3764 /* Define v7 and v8 architectural debug registers.
3765 * These are just dummy implementations for now.
0b45451e
PM
3766 */
3767 int i;
3ff6fc91 3768 int wrps, brps, ctx_cmps;
48eb3ae6
PM
3769 ARMCPRegInfo dbgdidr = {
3770 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3772 };
3773
3ff6fc91 3774 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
3775 brps = extract32(cpu->dbgdidr, 24, 4);
3776 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
3777 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3778
3779 assert(ctx_cmps <= brps);
48eb3ae6
PM
3780
3781 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3782 * of the debug registers such as number of breakpoints;
3783 * check that if they both exist then they agree.
3784 */
3785 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3786 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3787 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 3788 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 3789 }
0b45451e 3790
48eb3ae6 3791 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
3792 define_arm_cp_regs(cpu, debug_cp_reginfo);
3793
3794 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3795 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3796 }
3797
48eb3ae6 3798 for (i = 0; i < brps + 1; i++) {
0b45451e 3799 ARMCPRegInfo dbgregs[] = {
10aae104
PM
3800 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3801 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
0b45451e 3802 .access = PL1_RW,
46747d15
PM
3803 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3804 .writefn = dbgbvr_write, .raw_writefn = raw_write
3805 },
10aae104
PM
3806 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3807 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
0b45451e 3808 .access = PL1_RW,
46747d15
PM
3809 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3810 .writefn = dbgbcr_write, .raw_writefn = raw_write
3811 },
48eb3ae6
PM
3812 REGINFO_SENTINEL
3813 };
3814 define_arm_cp_regs(cpu, dbgregs);
3815 }
3816
3817 for (i = 0; i < wrps + 1; i++) {
3818 ARMCPRegInfo dbgregs[] = {
10aae104
PM
3819 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3820 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
0b45451e 3821 .access = PL1_RW,
9ee98ce8
PM
3822 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3823 .writefn = dbgwvr_write, .raw_writefn = raw_write
3824 },
10aae104
PM
3825 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3826 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
0b45451e 3827 .access = PL1_RW,
9ee98ce8
PM
3828 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3829 .writefn = dbgwcr_write, .raw_writefn = raw_write
3830 },
3831 REGINFO_SENTINEL
0b45451e
PM
3832 };
3833 define_arm_cp_regs(cpu, dbgregs);
3834 }
3835}
3836
2ceb98c0
PM
3837void register_cp_regs_for_features(ARMCPU *cpu)
3838{
3839 /* Register all the coprocessor registers based on feature bits */
3840 CPUARMState *env = &cpu->env;
3841 if (arm_feature(env, ARM_FEATURE_M)) {
3842 /* M profile has no coprocessor registers */
3843 return;
3844 }
3845
e9aa6c21 3846 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
3847 if (!arm_feature(env, ARM_FEATURE_V8)) {
3848 /* Must go early as it is full of wildcards that may be
3849 * overridden by later definitions.
3850 */
3851 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3852 }
3853
7d57f408 3854 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
3855 /* The ID registers all have impdef reset values */
3856 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
3857 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3858 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3859 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3860 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
3861 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3863 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3864 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
3865 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3867 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3868 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
3869 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3870 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3871 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3872 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
3873 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3875 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3876 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
3877 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3878 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3879 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3880 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
3881 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3883 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3884 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
3885 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3887 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3888 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
3889 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3890 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3891 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3892 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
3893 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3895 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3896 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
3897 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3898 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3899 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3900 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
3901 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3903 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3904 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
3905 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3907 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3908 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
3909 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3911 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
3912 .resetvalue = cpu->id_isar5 },
3913 /* 6..7 are as yet unallocated and must RAZ */
3914 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3915 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3916 .resetvalue = 0 },
3917 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3918 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3919 .resetvalue = 0 },
3920 REGINFO_SENTINEL
3921 };
3922 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
3923 define_arm_cp_regs(cpu, v6_cp_reginfo);
3924 } else {
3925 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3926 }
4d31c596
PM
3927 if (arm_feature(env, ARM_FEATURE_V6K)) {
3928 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3929 }
5e5cf9e3
PC
3930 if (arm_feature(env, ARM_FEATURE_V7MP) &&
3931 !arm_feature(env, ARM_FEATURE_MPU)) {
995939a6
PM
3932 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3933 }
e9aa6c21 3934 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 3935 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
3936 * field as main ID register, and we implement only the cycle
3937 * count register.
200ac0ef 3938 */
7c2cb42b 3939#ifndef CONFIG_USER_ONLY
200ac0ef
PM
3940 ARMCPRegInfo pmcr = {
3941 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 3942 .access = PL0_RW,
7a0e58fa 3943 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 3944 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
3945 .accessfn = pmreg_access, .writefn = pmcr_write,
3946 .raw_writefn = raw_write,
200ac0ef 3947 };
8521466b
AF
3948 ARMCPRegInfo pmcr64 = {
3949 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3950 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3951 .access = PL0_RW, .accessfn = pmreg_access,
3952 .type = ARM_CP_IO,
3953 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3954 .resetvalue = cpu->midr & 0xff000000,
3955 .writefn = pmcr_write, .raw_writefn = raw_write,
3956 };
7c2cb42b 3957 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 3958 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 3959#endif
776d4e5c 3960 ARMCPRegInfo clidr = {
7da845b0
PM
3961 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3962 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
3963 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3964 };
776d4e5c 3965 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 3966 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 3967 define_debug_regs(cpu);
7d57f408
PM
3968 } else {
3969 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 3970 }
b0d2b7d0 3971 if (arm_feature(env, ARM_FEATURE_V8)) {
e60cef86
PM
3972 /* AArch64 ID registers, which all have impdef reset values */
3973 ARMCPRegInfo v8_idregs[] = {
3974 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3976 .access = PL1_R, .type = ARM_CP_CONST,
3977 .resetvalue = cpu->id_aa64pfr0 },
3978 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3980 .access = PL1_R, .type = ARM_CP_CONST,
3981 .resetvalue = cpu->id_aa64pfr1},
3982 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3984 .access = PL1_R, .type = ARM_CP_CONST,
5d831be2 3985 /* We mask out the PMUVer field, because we don't currently
9225d739
PM
3986 * implement the PMU. Not advertising it prevents the guest
3987 * from trying to use it and getting UNDEFs on registers we
3988 * don't implement.
3989 */
3990 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
e60cef86
PM
3991 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3993 .access = PL1_R, .type = ARM_CP_CONST,
3994 .resetvalue = cpu->id_aa64dfr1 },
3995 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3997 .access = PL1_R, .type = ARM_CP_CONST,
3998 .resetvalue = cpu->id_aa64afr0 },
3999 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4001 .access = PL1_R, .type = ARM_CP_CONST,
4002 .resetvalue = cpu->id_aa64afr1 },
4003 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4005 .access = PL1_R, .type = ARM_CP_CONST,
4006 .resetvalue = cpu->id_aa64isar0 },
4007 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4009 .access = PL1_R, .type = ARM_CP_CONST,
4010 .resetvalue = cpu->id_aa64isar1 },
4011 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4013 .access = PL1_R, .type = ARM_CP_CONST,
4014 .resetvalue = cpu->id_aa64mmfr0 },
4015 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4017 .access = PL1_R, .type = ARM_CP_CONST,
4018 .resetvalue = cpu->id_aa64mmfr1 },
a50c0f51
PM
4019 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4021 .access = PL1_R, .type = ARM_CP_CONST,
4022 .resetvalue = cpu->mvfr0 },
4023 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4025 .access = PL1_R, .type = ARM_CP_CONST,
4026 .resetvalue = cpu->mvfr1 },
4027 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4029 .access = PL1_R, .type = ARM_CP_CONST,
4030 .resetvalue = cpu->mvfr2 },
e60cef86
PM
4031 REGINFO_SENTINEL
4032 };
be8e8128
GB
4033 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4034 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4035 !arm_feature(env, ARM_FEATURE_EL2)) {
4036 ARMCPRegInfo rvbar = {
4037 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4038 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4039 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4040 };
4041 define_one_arm_cp_reg(cpu, &rvbar);
4042 }
e60cef86 4043 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4044 define_arm_cp_regs(cpu, v8_cp_reginfo);
4045 }
3b685ba7 4046 if (arm_feature(env, ARM_FEATURE_EL2)) {
4771cd01 4047 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4048 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4049 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4050 ARMCPRegInfo rvbar = {
4051 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4052 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4053 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4054 };
4055 define_one_arm_cp_reg(cpu, &rvbar);
4056 }
d42e3c26
EI
4057 } else {
4058 /* If EL2 is missing but higher ELs are enabled, we need to
4059 * register the no_el2 reginfos.
4060 */
4061 if (arm_feature(env, ARM_FEATURE_EL3)) {
4771cd01 4062 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4063 }
3b685ba7 4064 }
81547d66 4065 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4066 define_arm_cp_regs(cpu, el3_cp_reginfo);
be8e8128
GB
4067 ARMCPRegInfo rvbar = {
4068 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4069 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4070 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
4071 };
4072 define_one_arm_cp_reg(cpu, &rvbar);
81547d66 4073 }
18032bec 4074 if (arm_feature(env, ARM_FEATURE_MPU)) {
6cb0b013
PC
4075 if (arm_feature(env, ARM_FEATURE_V6)) {
4076 /* PMSAv6 not implemented */
4077 assert(arm_feature(env, ARM_FEATURE_V7));
4078 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4079 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4080 } else {
4081 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4082 }
18032bec 4083 } else {
8e5d75c9 4084 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
4085 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4086 }
c326b979
PM
4087 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4088 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4089 }
6cc7a3ae
PM
4090 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4091 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4092 }
4a501606
PM
4093 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4094 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4095 }
c4804214
PM
4096 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4097 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4098 }
4099 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4100 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4101 }
4102 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4103 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4104 }
18032bec
PM
4105 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4106 define_arm_cp_regs(cpu, omap_cp_reginfo);
4107 }
34f90529
PM
4108 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4109 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4110 }
1047b9d7
PM
4111 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4112 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4113 }
4114 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4115 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4116 }
7ac681cf
PM
4117 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4118 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4119 }
7884849c
PM
4120 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4121 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4122 * be read-only (ie write causes UNDEF exception).
4123 */
4124 {
00a29f3d
PM
4125 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4126 /* Pre-v8 MIDR space.
4127 * Note that the MIDR isn't a simple constant register because
7884849c
PM
4128 * of the TI925 behaviour where writes to another register can
4129 * cause the MIDR value to change.
97ce8d61
PC
4130 *
4131 * Unimplemented registers in the c15 0 0 0 space default to
4132 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4133 * and friends override accordingly.
7884849c
PM
4134 */
4135 { .name = "MIDR",
97ce8d61 4136 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 4137 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 4138 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
97ce8d61
PC
4139 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4140 .type = ARM_CP_OVERRIDE },
7884849c
PM
4141 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4142 { .name = "DUMMY",
4143 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4144 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4145 { .name = "DUMMY",
4146 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4147 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4148 { .name = "DUMMY",
4149 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4150 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4151 { .name = "DUMMY",
4152 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4153 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4154 { .name = "DUMMY",
4155 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4156 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4157 REGINFO_SENTINEL
4158 };
00a29f3d 4159 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
4160 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4161 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4162 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
ac00c79f
SF
4163 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4164 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4165 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4166 .access = PL1_R, .resetvalue = cpu->midr },
4167 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4168 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4169 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
4170 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 4172 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
4173 REGINFO_SENTINEL
4174 };
4175 ARMCPRegInfo id_cp_reginfo[] = {
4176 /* These are common to v8 and pre-v8 */
4177 { .name = "CTR",
4178 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4179 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4180 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4181 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4182 .access = PL0_R, .accessfn = ctr_el0_access,
4183 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4184 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4185 { .name = "TCMTR",
4186 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4187 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
4188 REGINFO_SENTINEL
4189 };
8085ce63
PC
4190 /* TLBTR is specific to VMSA */
4191 ARMCPRegInfo id_tlbtr_reginfo = {
4192 .name = "TLBTR",
4193 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4194 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4195 };
3281af81
PC
4196 /* MPUIR is specific to PMSA V6+ */
4197 ARMCPRegInfo id_mpuir_reginfo = {
4198 .name = "MPUIR",
4199 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4200 .access = PL1_R, .type = ARM_CP_CONST,
4201 .resetvalue = cpu->pmsav7_dregion << 8
4202 };
7884849c
PM
4203 ARMCPRegInfo crn0_wi_reginfo = {
4204 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4205 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4206 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4207 };
4208 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4209 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4210 ARMCPRegInfo *r;
4211 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
4212 * whole space. Then update the specific ID registers to allow write
4213 * access, so that they ignore writes rather than causing them to
4214 * UNDEF.
7884849c
PM
4215 */
4216 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
4217 for (r = id_pre_v8_midr_cp_reginfo;
4218 r->type != ARM_CP_SENTINEL; r++) {
4219 r->access = PL1_RW;
4220 }
7884849c
PM
4221 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4222 r->access = PL1_RW;
7884849c 4223 }
8085ce63 4224 id_tlbtr_reginfo.access = PL1_RW;
3281af81 4225 id_tlbtr_reginfo.access = PL1_RW;
7884849c 4226 }
00a29f3d
PM
4227 if (arm_feature(env, ARM_FEATURE_V8)) {
4228 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4229 } else {
4230 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4231 }
a703eda1 4232 define_arm_cp_regs(cpu, id_cp_reginfo);
8085ce63
PC
4233 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4234 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
4235 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4236 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 4237 }
7884849c
PM
4238 }
4239
97ce8d61
PC
4240 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4241 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4242 }
4243
2771db27 4244 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
4245 ARMCPRegInfo auxcr_reginfo[] = {
4246 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4247 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4248 .access = PL1_RW, .type = ARM_CP_CONST,
4249 .resetvalue = cpu->reset_auxcr },
4250 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4251 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4252 .access = PL2_RW, .type = ARM_CP_CONST,
4253 .resetvalue = 0 },
4254 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4255 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4256 .access = PL3_RW, .type = ARM_CP_CONST,
4257 .resetvalue = 0 },
4258 REGINFO_SENTINEL
2771db27 4259 };
834a6c69 4260 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
4261 }
4262
d8ba780b 4263 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
4264 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4265 /* 32 bit view is [31:18] 0...0 [43:32]. */
4266 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4267 | extract64(cpu->reset_cbar, 32, 12);
4268 ARMCPRegInfo cbar_reginfo[] = {
4269 { .name = "CBAR",
4270 .type = ARM_CP_CONST,
4271 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4272 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4273 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4274 .type = ARM_CP_CONST,
4275 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4276 .access = PL1_R, .resetvalue = cbar32 },
4277 REGINFO_SENTINEL
4278 };
4279 /* We don't implement a r/w 64 bit CBAR currently */
4280 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4281 define_arm_cp_regs(cpu, cbar_reginfo);
4282 } else {
4283 ARMCPRegInfo cbar = {
4284 .name = "CBAR",
4285 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4286 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4287 .fieldoffset = offsetof(CPUARMState,
4288 cp15.c15_config_base_address)
4289 };
4290 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4291 cbar.access = PL1_R;
4292 cbar.fieldoffset = 0;
4293 cbar.type = ARM_CP_CONST;
4294 }
4295 define_one_arm_cp_reg(cpu, &cbar);
4296 }
d8ba780b
PC
4297 }
4298
2771db27
PM
4299 /* Generic registers whose values depend on the implementation */
4300 {
4301 ARMCPRegInfo sctlr = {
5ebafdf3 4302 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
4303 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4304 .access = PL1_RW,
4305 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4306 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
4307 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4308 .raw_writefn = raw_write,
2771db27
PM
4309 };
4310 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4311 /* Normally we would always end the TB on an SCTLR write, but Linux
4312 * arch/arm/mach-pxa/sleep.S expects two instructions following
4313 * an MMU enable to execute from cache. Imitate this behaviour.
4314 */
4315 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4316 }
4317 define_one_arm_cp_reg(cpu, &sctlr);
4318 }
2ceb98c0
PM
4319}
4320
778c3a06 4321ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 4322{
9262685b 4323 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
14969266
AF
4324}
4325
4326void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4327{
22169d41 4328 CPUState *cs = CPU(cpu);
14969266
AF
4329 CPUARMState *env = &cpu->env;
4330
6a669427
PM
4331 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4332 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4333 aarch64_fpu_gdb_set_reg,
4334 34, "aarch64-fpu.xml", 0);
4335 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 4336 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4337 51, "arm-neon.xml", 0);
4338 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 4339 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4340 35, "arm-vfp3.xml", 0);
4341 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 4342 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4343 19, "arm-vfp.xml", 0);
4344 }
40f137e1
PB
4345}
4346
777dc784
PM
4347/* Sort alphabetically by type name, except for "any". */
4348static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 4349{
777dc784
PM
4350 ObjectClass *class_a = (ObjectClass *)a;
4351 ObjectClass *class_b = (ObjectClass *)b;
4352 const char *name_a, *name_b;
5adb4839 4353
777dc784
PM
4354 name_a = object_class_get_name(class_a);
4355 name_b = object_class_get_name(class_b);
51492fd1 4356 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 4357 return 1;
51492fd1 4358 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
4359 return -1;
4360 } else {
4361 return strcmp(name_a, name_b);
5adb4839
PB
4362 }
4363}
4364
777dc784 4365static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 4366{
777dc784 4367 ObjectClass *oc = data;
92a31361 4368 CPUListState *s = user_data;
51492fd1
AF
4369 const char *typename;
4370 char *name;
3371d272 4371
51492fd1
AF
4372 typename = object_class_get_name(oc);
4373 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 4374 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
4375 name);
4376 g_free(name);
777dc784
PM
4377}
4378
4379void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4380{
92a31361 4381 CPUListState s = {
777dc784
PM
4382 .file = f,
4383 .cpu_fprintf = cpu_fprintf,
4384 };
4385 GSList *list;
4386
4387 list = object_class_get_list(TYPE_ARM_CPU, false);
4388 list = g_slist_sort(list, arm_cpu_list_compare);
4389 (*cpu_fprintf)(f, "Available CPUs:\n");
4390 g_slist_foreach(list, arm_cpu_list_entry, &s);
4391 g_slist_free(list);
a96c0514
PM
4392#ifdef CONFIG_KVM
4393 /* The 'host' CPU type is dynamically registered only if KVM is
4394 * enabled, so we have to special-case it here:
4395 */
4396 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4397#endif
40f137e1
PB
4398}
4399
78027bb6
CR
4400static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4401{
4402 ObjectClass *oc = data;
4403 CpuDefinitionInfoList **cpu_list = user_data;
4404 CpuDefinitionInfoList *entry;
4405 CpuDefinitionInfo *info;
4406 const char *typename;
4407
4408 typename = object_class_get_name(oc);
4409 info = g_malloc0(sizeof(*info));
4410 info->name = g_strndup(typename,
4411 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4412
4413 entry = g_malloc0(sizeof(*entry));
4414 entry->value = info;
4415 entry->next = *cpu_list;
4416 *cpu_list = entry;
4417}
4418
4419CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4420{
4421 CpuDefinitionInfoList *cpu_list = NULL;
4422 GSList *list;
4423
4424 list = object_class_get_list(TYPE_ARM_CPU, false);
4425 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4426 g_slist_free(list);
4427
4428 return cpu_list;
4429}
4430
6e6efd61 4431static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 4432 void *opaque, int state, int secstate,
f5a0a5a5 4433 int crm, int opc1, int opc2)
6e6efd61
PM
4434{
4435 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4436 * add a single reginfo struct to the hash table.
4437 */
4438 uint32_t *key = g_new(uint32_t, 1);
4439 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4440 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
4441 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4442
4443 /* Reset the secure state to the specific incoming state. This is
4444 * necessary as the register may have been defined with both states.
4445 */
4446 r2->secure = secstate;
4447
4448 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4449 /* Register is banked (using both entries in array).
4450 * Overwriting fieldoffset as the array is only used to define
4451 * banked registers but later only fieldoffset is used.
f5a0a5a5 4452 */
3f3c82a5
FA
4453 r2->fieldoffset = r->bank_fieldoffsets[ns];
4454 }
4455
4456 if (state == ARM_CP_STATE_AA32) {
4457 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4458 /* If the register is banked then we don't need to migrate or
4459 * reset the 32-bit instance in certain cases:
4460 *
4461 * 1) If the register has both 32-bit and 64-bit instances then we
4462 * can count on the 64-bit instance taking care of the
4463 * non-secure bank.
4464 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4465 * taking care of the secure bank. This requires that separate
4466 * 32 and 64-bit definitions are provided.
4467 */
4468 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4469 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 4470 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
4471 }
4472 } else if ((secstate != r->secure) && !ns) {
4473 /* The register is not banked so we only want to allow migration of
4474 * the non-secure instance.
4475 */
7a0e58fa 4476 r2->type |= ARM_CP_ALIAS;
58a1d8ce 4477 }
3f3c82a5
FA
4478
4479 if (r->state == ARM_CP_STATE_BOTH) {
4480 /* We assume it is a cp15 register if the .cp field is left unset.
4481 */
4482 if (r2->cp == 0) {
4483 r2->cp = 15;
4484 }
4485
f5a0a5a5 4486#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
4487 if (r2->fieldoffset) {
4488 r2->fieldoffset += sizeof(uint32_t);
4489 }
f5a0a5a5 4490#endif
3f3c82a5 4491 }
f5a0a5a5
PM
4492 }
4493 if (state == ARM_CP_STATE_AA64) {
4494 /* To allow abbreviation of ARMCPRegInfo
4495 * definitions, we treat cp == 0 as equivalent to
4496 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
4497 * STATE_BOTH definitions are also always "standard
4498 * sysreg" in their AArch64 view (the .cp value may
4499 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 4500 */
58a1d8ce 4501 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
4502 r2->cp = CP_REG_ARM64_SYSREG_CP;
4503 }
4504 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4505 r2->opc0, opc1, opc2);
4506 } else {
51a79b03 4507 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 4508 }
6e6efd61
PM
4509 if (opaque) {
4510 r2->opaque = opaque;
4511 }
67ed771d
PM
4512 /* reginfo passed to helpers is correct for the actual access,
4513 * and is never ARM_CP_STATE_BOTH:
4514 */
4515 r2->state = state;
6e6efd61
PM
4516 /* Make sure reginfo passed to helpers for wildcarded regs
4517 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4518 */
4519 r2->crm = crm;
4520 r2->opc1 = opc1;
4521 r2->opc2 = opc2;
4522 /* By convention, for wildcarded registers only the first
4523 * entry is used for migration; the others are marked as
7a0e58fa 4524 * ALIAS so we don't try to transfer the register
6e6efd61 4525 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 4526 * never migratable and not even raw-accessible.
6e6efd61 4527 */
7a0e58fa
PM
4528 if ((r->type & ARM_CP_SPECIAL)) {
4529 r2->type |= ARM_CP_NO_RAW;
4530 }
4531 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
4532 ((r->opc1 == CP_ANY) && opc1 != 0) ||
4533 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 4534 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
4535 }
4536
375421cc
PM
4537 /* Check that raw accesses are either forbidden or handled. Note that
4538 * we can't assert this earlier because the setup of fieldoffset for
4539 * banked registers has to be done first.
4540 */
4541 if (!(r2->type & ARM_CP_NO_RAW)) {
4542 assert(!raw_accessors_invalid(r2));
4543 }
4544
6e6efd61
PM
4545 /* Overriding of an existing definition must be explicitly
4546 * requested.
4547 */
4548 if (!(r->type & ARM_CP_OVERRIDE)) {
4549 ARMCPRegInfo *oldreg;
4550 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
4551 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
4552 fprintf(stderr, "Register redefined: cp=%d %d bit "
4553 "crn=%d crm=%d opc1=%d opc2=%d, "
4554 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
4555 r2->crn, r2->crm, r2->opc1, r2->opc2,
4556 oldreg->name, r2->name);
4557 g_assert_not_reached();
4558 }
4559 }
4560 g_hash_table_insert(cpu->cp_regs, key, r2);
4561}
4562
4563
4b6a83fb
PM
4564void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
4565 const ARMCPRegInfo *r, void *opaque)
4566{
4567 /* Define implementations of coprocessor registers.
4568 * We store these in a hashtable because typically
4569 * there are less than 150 registers in a space which
4570 * is 16*16*16*8*8 = 262144 in size.
4571 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4572 * If a register is defined twice then the second definition is
4573 * used, so this can be used to define some generic registers and
4574 * then override them with implementation specific variations.
4575 * At least one of the original and the second definition should
4576 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4577 * against accidental use.
f5a0a5a5
PM
4578 *
4579 * The state field defines whether the register is to be
4580 * visible in the AArch32 or AArch64 execution state. If the
4581 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4582 * reginfo structure for the AArch32 view, which sees the lower
4583 * 32 bits of the 64 bit register.
4584 *
4585 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4586 * be wildcarded. AArch64 registers are always considered to be 64
4587 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4588 * the register, if any.
4b6a83fb 4589 */
f5a0a5a5 4590 int crm, opc1, opc2, state;
4b6a83fb
PM
4591 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
4592 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
4593 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
4594 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
4595 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
4596 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
4597 /* 64 bit registers have only CRm and Opc1 fields */
4598 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
4599 /* op0 only exists in the AArch64 encodings */
4600 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
4601 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4602 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
4603 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4604 * encodes a minimum access level for the register. We roll this
4605 * runtime check into our general permission check code, so check
4606 * here that the reginfo's specified permissions are strict enough
4607 * to encompass the generic architectural permission check.
4608 */
4609 if (r->state != ARM_CP_STATE_AA32) {
4610 int mask = 0;
4611 switch (r->opc1) {
4612 case 0: case 1: case 2:
4613 /* min_EL EL1 */
4614 mask = PL1_RW;
4615 break;
4616 case 3:
4617 /* min_EL EL0 */
4618 mask = PL0_RW;
4619 break;
4620 case 4:
4621 /* min_EL EL2 */
4622 mask = PL2_RW;
4623 break;
4624 case 5:
4625 /* unallocated encoding, so not possible */
4626 assert(false);
4627 break;
4628 case 6:
4629 /* min_EL EL3 */
4630 mask = PL3_RW;
4631 break;
4632 case 7:
4633 /* min_EL EL1, secure mode only (we don't check the latter) */
4634 mask = PL1_RW;
4635 break;
4636 default:
4637 /* broken reginfo with out-of-range opc1 */
4638 assert(false);
4639 break;
4640 }
4641 /* assert our permissions are not too lax (stricter is fine) */
4642 assert((r->access & ~mask) == 0);
4643 }
4644
4b6a83fb
PM
4645 /* Check that the register definition has enough info to handle
4646 * reads and writes if they are permitted.
4647 */
4648 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
4649 if (r->access & PL3_R) {
3f3c82a5
FA
4650 assert((r->fieldoffset ||
4651 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4652 r->readfn);
4b6a83fb
PM
4653 }
4654 if (r->access & PL3_W) {
3f3c82a5
FA
4655 assert((r->fieldoffset ||
4656 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4657 r->writefn);
4b6a83fb
PM
4658 }
4659 }
4660 /* Bad type field probably means missing sentinel at end of reg list */
4661 assert(cptype_valid(r->type));
4662 for (crm = crmmin; crm <= crmmax; crm++) {
4663 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
4664 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
4665 for (state = ARM_CP_STATE_AA32;
4666 state <= ARM_CP_STATE_AA64; state++) {
4667 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4668 continue;
4669 }
3f3c82a5
FA
4670 if (state == ARM_CP_STATE_AA32) {
4671 /* Under AArch32 CP registers can be common
4672 * (same for secure and non-secure world) or banked.
4673 */
4674 switch (r->secure) {
4675 case ARM_CP_SECSTATE_S:
4676 case ARM_CP_SECSTATE_NS:
4677 add_cpreg_to_hashtable(cpu, r, opaque, state,
4678 r->secure, crm, opc1, opc2);
4679 break;
4680 default:
4681 add_cpreg_to_hashtable(cpu, r, opaque, state,
4682 ARM_CP_SECSTATE_S,
4683 crm, opc1, opc2);
4684 add_cpreg_to_hashtable(cpu, r, opaque, state,
4685 ARM_CP_SECSTATE_NS,
4686 crm, opc1, opc2);
4687 break;
4688 }
4689 } else {
4690 /* AArch64 registers get mapped to non-secure instance
4691 * of AArch32 */
4692 add_cpreg_to_hashtable(cpu, r, opaque, state,
4693 ARM_CP_SECSTATE_NS,
4694 crm, opc1, opc2);
4695 }
f5a0a5a5 4696 }
4b6a83fb
PM
4697 }
4698 }
4699 }
4700}
4701
4702void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4703 const ARMCPRegInfo *regs, void *opaque)
4704{
4705 /* Define a whole list of registers */
4706 const ARMCPRegInfo *r;
4707 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4708 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4709 }
4710}
4711
60322b39 4712const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 4713{
60322b39 4714 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
4715}
4716
c4241c7d
PM
4717void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4718 uint64_t value)
4b6a83fb
PM
4719{
4720 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
4721}
4722
c4241c7d 4723uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
4724{
4725 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
4726 return 0;
4727}
4728
f5a0a5a5
PM
4729void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4730{
4731 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4732}
4733
0ecb72a5 4734static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
4735{
4736 /* Return true if it is not valid for us to switch to
4737 * this CPU mode (ie all the UNPREDICTABLE cases in
4738 * the ARM ARM CPSRWriteByInstr pseudocode).
4739 */
4740 switch (mode) {
4741 case ARM_CPU_MODE_USR:
4742 case ARM_CPU_MODE_SYS:
4743 case ARM_CPU_MODE_SVC:
4744 case ARM_CPU_MODE_ABT:
4745 case ARM_CPU_MODE_UND:
4746 case ARM_CPU_MODE_IRQ:
4747 case ARM_CPU_MODE_FIQ:
4748 return 0;
027fc527
SF
4749 case ARM_CPU_MODE_MON:
4750 return !arm_is_secure(env);
37064a8b
PM
4751 default:
4752 return 1;
4753 }
4754}
4755
2f4a40e5
AZ
4756uint32_t cpsr_read(CPUARMState *env)
4757{
4758 int ZF;
6fbe23d5
PB
4759 ZF = (env->ZF == 0);
4760 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
4761 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4762 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4763 | ((env->condexec_bits & 0xfc) << 8)
af519934 4764 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
4765}
4766
4767void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4768{
6e8801f9
FA
4769 uint32_t changed_daif;
4770
2f4a40e5 4771 if (mask & CPSR_NZCV) {
6fbe23d5
PB
4772 env->ZF = (~val) & CPSR_Z;
4773 env->NF = val;
2f4a40e5
AZ
4774 env->CF = (val >> 29) & 1;
4775 env->VF = (val << 3) & 0x80000000;
4776 }
4777 if (mask & CPSR_Q)
4778 env->QF = ((val & CPSR_Q) != 0);
4779 if (mask & CPSR_T)
4780 env->thumb = ((val & CPSR_T) != 0);
4781 if (mask & CPSR_IT_0_1) {
4782 env->condexec_bits &= ~3;
4783 env->condexec_bits |= (val >> 25) & 3;
4784 }
4785 if (mask & CPSR_IT_2_7) {
4786 env->condexec_bits &= 3;
4787 env->condexec_bits |= (val >> 8) & 0xfc;
4788 }
4789 if (mask & CPSR_GE) {
4790 env->GE = (val >> 16) & 0xf;
4791 }
4792
6e8801f9
FA
4793 /* In a V7 implementation that includes the security extensions but does
4794 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4795 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4796 * bits respectively.
4797 *
4798 * In a V8 implementation, it is permitted for privileged software to
4799 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4800 */
4801 if (!arm_feature(env, ARM_FEATURE_V8) &&
4802 arm_feature(env, ARM_FEATURE_EL3) &&
4803 !arm_feature(env, ARM_FEATURE_EL2) &&
4804 !arm_is_secure(env)) {
4805
4806 changed_daif = (env->daif ^ val) & mask;
4807
4808 if (changed_daif & CPSR_A) {
4809 /* Check to see if we are allowed to change the masking of async
4810 * abort exceptions from a non-secure state.
4811 */
4812 if (!(env->cp15.scr_el3 & SCR_AW)) {
4813 qemu_log_mask(LOG_GUEST_ERROR,
4814 "Ignoring attempt to switch CPSR_A flag from "
4815 "non-secure world with SCR.AW bit clear\n");
4816 mask &= ~CPSR_A;
4817 }
4818 }
4819
4820 if (changed_daif & CPSR_F) {
4821 /* Check to see if we are allowed to change the masking of FIQ
4822 * exceptions from a non-secure state.
4823 */
4824 if (!(env->cp15.scr_el3 & SCR_FW)) {
4825 qemu_log_mask(LOG_GUEST_ERROR,
4826 "Ignoring attempt to switch CPSR_F flag from "
4827 "non-secure world with SCR.FW bit clear\n");
4828 mask &= ~CPSR_F;
4829 }
4830
4831 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4832 * If this bit is set software is not allowed to mask
4833 * FIQs, but is allowed to set CPSR_F to 0.
4834 */
4835 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4836 (val & CPSR_F)) {
4837 qemu_log_mask(LOG_GUEST_ERROR,
4838 "Ignoring attempt to enable CPSR_F flag "
4839 "(non-maskable FIQ [NMFI] support enabled)\n");
4840 mask &= ~CPSR_F;
4841 }
4842 }
4843 }
4844
4cc35614
PM
4845 env->daif &= ~(CPSR_AIF & mask);
4846 env->daif |= val & CPSR_AIF & mask;
4847
2f4a40e5 4848 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
37064a8b
PM
4849 if (bad_mode_switch(env, val & CPSR_M)) {
4850 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4851 * We choose to ignore the attempt and leave the CPSR M field
4852 * untouched.
4853 */
4854 mask &= ~CPSR_M;
4855 } else {
4856 switch_mode(env, val & CPSR_M);
4857 }
2f4a40e5
AZ
4858 }
4859 mask &= ~CACHED_CPSR_BITS;
4860 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
4861}
4862
b26eefb6
PB
4863/* Sign/zero extend */
4864uint32_t HELPER(sxtb16)(uint32_t x)
4865{
4866 uint32_t res;
4867 res = (uint16_t)(int8_t)x;
4868 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4869 return res;
4870}
4871
4872uint32_t HELPER(uxtb16)(uint32_t x)
4873{
4874 uint32_t res;
4875 res = (uint16_t)(uint8_t)x;
4876 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4877 return res;
4878}
4879
f51bbbfe
PB
4880uint32_t HELPER(clz)(uint32_t x)
4881{
7bbcb0af 4882 return clz32(x);
f51bbbfe
PB
4883}
4884
3670669c
PB
4885int32_t HELPER(sdiv)(int32_t num, int32_t den)
4886{
4887 if (den == 0)
4888 return 0;
686eeb93
AJ
4889 if (num == INT_MIN && den == -1)
4890 return INT_MIN;
3670669c
PB
4891 return num / den;
4892}
4893
4894uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4895{
4896 if (den == 0)
4897 return 0;
4898 return num / den;
4899}
4900
4901uint32_t HELPER(rbit)(uint32_t x)
4902{
4903 x = ((x & 0xff000000) >> 24)
4904 | ((x & 0x00ff0000) >> 8)
4905 | ((x & 0x0000ff00) << 8)
4906 | ((x & 0x000000ff) << 24);
4907 x = ((x & 0xf0f0f0f0) >> 4)
4908 | ((x & 0x0f0f0f0f) << 4);
4909 x = ((x & 0x88888888) >> 3)
4910 | ((x & 0x44444444) >> 1)
4911 | ((x & 0x22222222) << 1)
4912 | ((x & 0x11111111) << 3);
4913 return x;
4914}
4915
5fafdf24 4916#if defined(CONFIG_USER_ONLY)
b5ff1b31 4917
9ee6e8bb 4918/* These should probably raise undefined insn exceptions. */
0ecb72a5 4919void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 4920{
a47dddd7
AF
4921 ARMCPU *cpu = arm_env_get_cpu(env);
4922
4923 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
4924}
4925
0ecb72a5 4926uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 4927{
a47dddd7
AF
4928 ARMCPU *cpu = arm_env_get_cpu(env);
4929
4930 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
4931 return 0;
4932}
4933
0ecb72a5 4934void switch_mode(CPUARMState *env, int mode)
b5ff1b31 4935{
a47dddd7
AF
4936 ARMCPU *cpu = arm_env_get_cpu(env);
4937
4938 if (mode != ARM_CPU_MODE_USR) {
4939 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4940 }
b5ff1b31
FB
4941}
4942
0ecb72a5 4943void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 4944{
a47dddd7
AF
4945 ARMCPU *cpu = arm_env_get_cpu(env);
4946
4947 cpu_abort(CPU(cpu), "banked r13 write\n");
9ee6e8bb
PB
4948}
4949
0ecb72a5 4950uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 4951{
a47dddd7
AF
4952 ARMCPU *cpu = arm_env_get_cpu(env);
4953
4954 cpu_abort(CPU(cpu), "banked r13 read\n");
9ee6e8bb
PB
4955 return 0;
4956}
4957
012a906b
GB
4958uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4959 uint32_t cur_el, bool secure)
9e729b57
EI
4960{
4961 return 1;
4962}
4963
ce02049d
GB
4964void aarch64_sync_64_to_32(CPUARMState *env)
4965{
4966 g_assert_not_reached();
4967}
4968
b5ff1b31
FB
4969#else
4970
4971/* Map CPU modes onto saved register banks. */
494b00c7 4972int bank_number(int mode)
b5ff1b31
FB
4973{
4974 switch (mode) {
4975 case ARM_CPU_MODE_USR:
4976 case ARM_CPU_MODE_SYS:
4977 return 0;
4978 case ARM_CPU_MODE_SVC:
4979 return 1;
4980 case ARM_CPU_MODE_ABT:
4981 return 2;
4982 case ARM_CPU_MODE_UND:
4983 return 3;
4984 case ARM_CPU_MODE_IRQ:
4985 return 4;
4986 case ARM_CPU_MODE_FIQ:
4987 return 5;
28c9457d
EI
4988 case ARM_CPU_MODE_HYP:
4989 return 6;
4990 case ARM_CPU_MODE_MON:
4991 return 7;
b5ff1b31 4992 }
8f6fd322 4993 g_assert_not_reached();
b5ff1b31
FB
4994}
4995
0ecb72a5 4996void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
4997{
4998 int old_mode;
4999 int i;
5000
5001 old_mode = env->uncached_cpsr & CPSR_M;
5002 if (mode == old_mode)
5003 return;
5004
5005 if (old_mode == ARM_CPU_MODE_FIQ) {
5006 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5007 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5008 } else if (mode == ARM_CPU_MODE_FIQ) {
5009 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5010 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5011 }
5012
f5206413 5013 i = bank_number(old_mode);
b5ff1b31
FB
5014 env->banked_r13[i] = env->regs[13];
5015 env->banked_r14[i] = env->regs[14];
5016 env->banked_spsr[i] = env->spsr;
5017
f5206413 5018 i = bank_number(mode);
b5ff1b31
FB
5019 env->regs[13] = env->banked_r13[i];
5020 env->regs[14] = env->banked_r14[i];
5021 env->spsr = env->banked_spsr[i];
5022}
5023
0eeb17d6
GB
5024/* Physical Interrupt Target EL Lookup Table
5025 *
5026 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5027 *
5028 * The below multi-dimensional table is used for looking up the target
5029 * exception level given numerous condition criteria. Specifically, the
5030 * target EL is based on SCR and HCR routing controls as well as the
5031 * currently executing EL and secure state.
5032 *
5033 * Dimensions:
5034 * target_el_table[2][2][2][2][2][4]
5035 * | | | | | +--- Current EL
5036 * | | | | +------ Non-secure(0)/Secure(1)
5037 * | | | +--------- HCR mask override
5038 * | | +------------ SCR exec state control
5039 * | +--------------- SCR mask override
5040 * +------------------ 32-bit(0)/64-bit(1) EL3
5041 *
5042 * The table values are as such:
5043 * 0-3 = EL0-EL3
5044 * -1 = Cannot occur
5045 *
5046 * The ARM ARM target EL table includes entries indicating that an "exception
5047 * is not taken". The two cases where this is applicable are:
5048 * 1) An exception is taken from EL3 but the SCR does not have the exception
5049 * routed to EL3.
5050 * 2) An exception is taken from EL2 but the HCR does not have the exception
5051 * routed to EL2.
5052 * In these two cases, the below table contain a target of EL1. This value is
5053 * returned as it is expected that the consumer of the table data will check
5054 * for "target EL >= current EL" to ensure the exception is not taken.
5055 *
5056 * SCR HCR
5057 * 64 EA AMO From
5058 * BIT IRQ IMO Non-secure Secure
5059 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5060 */
5061const int8_t target_el_table[2][2][2][2][2][4] = {
5062 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5063 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5064 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5065 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5066 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5067 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5068 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5069 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5070 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5071 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5072 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5073 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5074 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5075 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5076 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5077 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5078};
5079
5080/*
5081 * Determine the target EL for physical exceptions
5082 */
012a906b
GB
5083uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5084 uint32_t cur_el, bool secure)
0eeb17d6
GB
5085{
5086 CPUARMState *env = cs->env_ptr;
5087 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5088 int scr;
5089 int hcr;
5090 int target_el;
5091 int is64 = arm_el_is_aa64(env, 3);
5092
5093 switch (excp_idx) {
5094 case EXCP_IRQ:
5095 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5096 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5097 break;
5098 case EXCP_FIQ:
5099 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5100 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5101 break;
5102 default:
5103 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5104 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5105 break;
5106 };
5107
5108 /* If HCR.TGE is set then HCR is treated as being 1 */
5109 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5110
5111 /* Perform a table-lookup for the target EL given the current state */
5112 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5113
5114 assert(target_el > 0);
5115
5116 return target_el;
5117}
5118
9ee6e8bb
PB
5119static void v7m_push(CPUARMState *env, uint32_t val)
5120{
70d74660
AF
5121 CPUState *cs = CPU(arm_env_get_cpu(env));
5122
9ee6e8bb 5123 env->regs[13] -= 4;
ab1da857 5124 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
5125}
5126
5127static uint32_t v7m_pop(CPUARMState *env)
5128{
70d74660 5129 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 5130 uint32_t val;
70d74660 5131
fdfba1a2 5132 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
5133 env->regs[13] += 4;
5134 return val;
5135}
5136
5137/* Switch to V7M main or process stack pointer. */
5138static void switch_v7m_sp(CPUARMState *env, int process)
5139{
5140 uint32_t tmp;
5141 if (env->v7m.current_sp != process) {
5142 tmp = env->v7m.other_sp;
5143 env->v7m.other_sp = env->regs[13];
5144 env->regs[13] = tmp;
5145 env->v7m.current_sp = process;
5146 }
5147}
5148
5149static void do_v7m_exception_exit(CPUARMState *env)
5150{
5151 uint32_t type;
5152 uint32_t xpsr;
5153
5154 type = env->regs[15];
5155 if (env->v7m.exception != 0)
983fe826 5156 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
5157
5158 /* Switch to the target stack. */
5159 switch_v7m_sp(env, (type & 4) != 0);
5160 /* Pop registers. */
5161 env->regs[0] = v7m_pop(env);
5162 env->regs[1] = v7m_pop(env);
5163 env->regs[2] = v7m_pop(env);
5164 env->regs[3] = v7m_pop(env);
5165 env->regs[12] = v7m_pop(env);
5166 env->regs[14] = v7m_pop(env);
5167 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
5168 if (env->regs[15] & 1) {
5169 qemu_log_mask(LOG_GUEST_ERROR,
5170 "M profile return from interrupt with misaligned "
5171 "PC is UNPREDICTABLE\n");
5172 /* Actual hardware seems to ignore the lsbit, and there are several
5173 * RTOSes out there which incorrectly assume the r15 in the stack
5174 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5175 */
5176 env->regs[15] &= ~1U;
5177 }
9ee6e8bb
PB
5178 xpsr = v7m_pop(env);
5179 xpsr_write(env, xpsr, 0xfffffdff);
5180 /* Undo stack alignment. */
5181 if (xpsr & 0x200)
5182 env->regs[13] |= 4;
5183 /* ??? The exception return type specifies Thread/Handler mode. However
5184 this is also implied by the xPSR value. Not sure what to do
5185 if there is a mismatch. */
5186 /* ??? Likewise for mismatches between the CONTROL register and the stack
5187 pointer. */
5188}
5189
e6f010cc 5190void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 5191{
e6f010cc
AF
5192 ARMCPU *cpu = ARM_CPU(cs);
5193 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
5194 uint32_t xpsr = xpsr_read(env);
5195 uint32_t lr;
5196 uint32_t addr;
5197
27103424 5198 arm_log_exception(cs->exception_index);
3f1beaca 5199
9ee6e8bb
PB
5200 lr = 0xfffffff1;
5201 if (env->v7m.current_sp)
5202 lr |= 4;
5203 if (env->v7m.exception == 0)
5204 lr |= 8;
5205
5206 /* For exceptions we just mark as pending on the NVIC, and let that
5207 handle it. */
5208 /* TODO: Need to escalate if the current priority is higher than the
5209 one we're raising. */
27103424 5210 switch (cs->exception_index) {
9ee6e8bb 5211 case EXCP_UDEF:
983fe826 5212 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
5213 return;
5214 case EXCP_SWI:
314e2296 5215 /* The PC already points to the next instruction. */
983fe826 5216 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
5217 return;
5218 case EXCP_PREFETCH_ABORT:
5219 case EXCP_DATA_ABORT:
abf1172f
PM
5220 /* TODO: if we implemented the MPU registers, this is where we
5221 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5222 */
983fe826 5223 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
5224 return;
5225 case EXCP_BKPT:
cfe67cef 5226 if (semihosting_enabled()) {
2ad207d4 5227 int nr;
d31dd73e 5228 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
5229 if (nr == 0xab) {
5230 env->regs[15] += 2;
205ace55
CC
5231 qemu_log_mask(CPU_LOG_INT,
5232 "...handling as semihosting call 0x%x\n",
5233 env->regs[0]);
2ad207d4
PB
5234 env->regs[0] = do_arm_semihosting(env);
5235 return;
5236 }
5237 }
983fe826 5238 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
5239 return;
5240 case EXCP_IRQ:
983fe826 5241 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
5242 break;
5243 case EXCP_EXCEPTION_EXIT:
5244 do_v7m_exception_exit(env);
5245 return;
5246 default:
a47dddd7 5247 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
5248 return; /* Never happens. Keep compiler happy. */
5249 }
5250
5251 /* Align stack pointer. */
5252 /* ??? Should only do this if Configuration Control Register
5253 STACKALIGN bit is set. */
5254 if (env->regs[13] & 4) {
ab19b0ec 5255 env->regs[13] -= 4;
9ee6e8bb
PB
5256 xpsr |= 0x200;
5257 }
6c95676b 5258 /* Switch to the handler mode. */
9ee6e8bb
PB
5259 v7m_push(env, xpsr);
5260 v7m_push(env, env->regs[15]);
5261 v7m_push(env, env->regs[14]);
5262 v7m_push(env, env->regs[12]);
5263 v7m_push(env, env->regs[3]);
5264 v7m_push(env, env->regs[2]);
5265 v7m_push(env, env->regs[1]);
5266 v7m_push(env, env->regs[0]);
5267 switch_v7m_sp(env, 0);
c98d174c
PM
5268 /* Clear IT bits */
5269 env->condexec_bits = 0;
9ee6e8bb 5270 env->regs[14] = lr;
fdfba1a2 5271 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
9ee6e8bb
PB
5272 env->regs[15] = addr & 0xfffffffe;
5273 env->thumb = addr & 1;
5274}
5275
ce02049d
GB
5276/* Function used to synchronize QEMU's AArch64 register set with AArch32
5277 * register set. This is necessary when switching between AArch32 and AArch64
5278 * execution state.
5279 */
5280void aarch64_sync_32_to_64(CPUARMState *env)
5281{
5282 int i;
5283 uint32_t mode = env->uncached_cpsr & CPSR_M;
5284
5285 /* We can blanket copy R[0:7] to X[0:7] */
5286 for (i = 0; i < 8; i++) {
5287 env->xregs[i] = env->regs[i];
5288 }
5289
5290 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5291 * Otherwise, they come from the banked user regs.
5292 */
5293 if (mode == ARM_CPU_MODE_FIQ) {
5294 for (i = 8; i < 13; i++) {
5295 env->xregs[i] = env->usr_regs[i - 8];
5296 }
5297 } else {
5298 for (i = 8; i < 13; i++) {
5299 env->xregs[i] = env->regs[i];
5300 }
5301 }
5302
5303 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5304 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5305 * from the mode banked register.
5306 */
5307 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5308 env->xregs[13] = env->regs[13];
5309 env->xregs[14] = env->regs[14];
5310 } else {
5311 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5312 /* HYP is an exception in that it is copied from r14 */
5313 if (mode == ARM_CPU_MODE_HYP) {
5314 env->xregs[14] = env->regs[14];
5315 } else {
5316 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5317 }
5318 }
5319
5320 if (mode == ARM_CPU_MODE_HYP) {
5321 env->xregs[15] = env->regs[13];
5322 } else {
5323 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5324 }
5325
5326 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
5327 env->xregs[16] = env->regs[14];
5328 env->xregs[17] = env->regs[13];
ce02049d 5329 } else {
3a9148d0
SS
5330 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5331 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
5332 }
5333
5334 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
5335 env->xregs[18] = env->regs[14];
5336 env->xregs[19] = env->regs[13];
ce02049d 5337 } else {
3a9148d0
SS
5338 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5339 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
5340 }
5341
5342 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
5343 env->xregs[20] = env->regs[14];
5344 env->xregs[21] = env->regs[13];
ce02049d 5345 } else {
3a9148d0
SS
5346 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5347 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
5348 }
5349
5350 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
5351 env->xregs[22] = env->regs[14];
5352 env->xregs[23] = env->regs[13];
ce02049d 5353 } else {
3a9148d0
SS
5354 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5355 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
5356 }
5357
5358 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5359 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5360 * FIQ bank for r8-r14.
5361 */
5362 if (mode == ARM_CPU_MODE_FIQ) {
5363 for (i = 24; i < 31; i++) {
5364 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5365 }
5366 } else {
5367 for (i = 24; i < 29; i++) {
5368 env->xregs[i] = env->fiq_regs[i - 24];
5369 }
5370 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5371 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5372 }
5373
5374 env->pc = env->regs[15];
5375}
5376
5377/* Function used to synchronize QEMU's AArch32 register set with AArch64
5378 * register set. This is necessary when switching between AArch32 and AArch64
5379 * execution state.
5380 */
5381void aarch64_sync_64_to_32(CPUARMState *env)
5382{
5383 int i;
5384 uint32_t mode = env->uncached_cpsr & CPSR_M;
5385
5386 /* We can blanket copy X[0:7] to R[0:7] */
5387 for (i = 0; i < 8; i++) {
5388 env->regs[i] = env->xregs[i];
5389 }
5390
5391 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5392 * Otherwise, we copy x8-x12 into the banked user regs.
5393 */
5394 if (mode == ARM_CPU_MODE_FIQ) {
5395 for (i = 8; i < 13; i++) {
5396 env->usr_regs[i - 8] = env->xregs[i];
5397 }
5398 } else {
5399 for (i = 8; i < 13; i++) {
5400 env->regs[i] = env->xregs[i];
5401 }
5402 }
5403
5404 /* Registers r13 & r14 depend on the current mode.
5405 * If we are in a given mode, we copy the corresponding x registers to r13
5406 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5407 * for the mode.
5408 */
5409 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5410 env->regs[13] = env->xregs[13];
5411 env->regs[14] = env->xregs[14];
5412 } else {
5413 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5414
5415 /* HYP is an exception in that it does not have its own banked r14 but
5416 * shares the USR r14
5417 */
5418 if (mode == ARM_CPU_MODE_HYP) {
5419 env->regs[14] = env->xregs[14];
5420 } else {
5421 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5422 }
5423 }
5424
5425 if (mode == ARM_CPU_MODE_HYP) {
5426 env->regs[13] = env->xregs[15];
5427 } else {
5428 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5429 }
5430
5431 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
5432 env->regs[14] = env->xregs[16];
5433 env->regs[13] = env->xregs[17];
ce02049d 5434 } else {
3a9148d0
SS
5435 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5436 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
5437 }
5438
5439 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
5440 env->regs[14] = env->xregs[18];
5441 env->regs[13] = env->xregs[19];
ce02049d 5442 } else {
3a9148d0
SS
5443 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5444 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
5445 }
5446
5447 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
5448 env->regs[14] = env->xregs[20];
5449 env->regs[13] = env->xregs[21];
ce02049d 5450 } else {
3a9148d0
SS
5451 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5452 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
5453 }
5454
5455 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
5456 env->regs[14] = env->xregs[22];
5457 env->regs[13] = env->xregs[23];
ce02049d 5458 } else {
3a9148d0
SS
5459 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5460 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
5461 }
5462
5463 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5464 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5465 * FIQ bank for r8-r14.
5466 */
5467 if (mode == ARM_CPU_MODE_FIQ) {
5468 for (i = 24; i < 31; i++) {
5469 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5470 }
5471 } else {
5472 for (i = 24; i < 29; i++) {
5473 env->fiq_regs[i - 24] = env->xregs[i];
5474 }
5475 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5476 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5477 }
5478
5479 env->regs[15] = env->pc;
5480}
5481
b5ff1b31 5482/* Handle a CPU exception. */
97a8ea5a 5483void arm_cpu_do_interrupt(CPUState *cs)
b5ff1b31 5484{
97a8ea5a
AF
5485 ARMCPU *cpu = ARM_CPU(cs);
5486 CPUARMState *env = &cpu->env;
b5ff1b31
FB
5487 uint32_t addr;
5488 uint32_t mask;
5489 int new_mode;
5490 uint32_t offset;
16a906fd 5491 uint32_t moe;
b5ff1b31 5492
e6f010cc
AF
5493 assert(!IS_M(env));
5494
27103424 5495 arm_log_exception(cs->exception_index);
3f1beaca 5496
98128601
RH
5497 if (arm_is_psci_call(cpu, cs->exception_index)) {
5498 arm_handle_psci_call(cpu);
5499 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
5500 return;
5501 }
5502
16a906fd
PM
5503 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5504 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5505 case EC_BREAKPOINT:
5506 case EC_BREAKPOINT_SAME_EL:
5507 moe = 1;
5508 break;
5509 case EC_WATCHPOINT:
5510 case EC_WATCHPOINT_SAME_EL:
5511 moe = 10;
5512 break;
5513 case EC_AA32_BKPT:
5514 moe = 3;
5515 break;
5516 case EC_VECTORCATCH:
5517 moe = 5;
5518 break;
5519 default:
5520 moe = 0;
5521 break;
5522 }
5523
5524 if (moe) {
5525 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5526 }
5527
b5ff1b31 5528 /* TODO: Vectored interrupt controller. */
27103424 5529 switch (cs->exception_index) {
b5ff1b31
FB
5530 case EXCP_UDEF:
5531 new_mode = ARM_CPU_MODE_UND;
5532 addr = 0x04;
5533 mask = CPSR_I;
5534 if (env->thumb)
5535 offset = 2;
5536 else
5537 offset = 4;
5538 break;
5539 case EXCP_SWI:
cfe67cef 5540 if (semihosting_enabled()) {
8e71621f
PB
5541 /* Check for semihosting interrupt. */
5542 if (env->thumb) {
d31dd73e
BS
5543 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
5544 & 0xff;
8e71621f 5545 } else {
d31dd73e 5546 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
d8fd2954 5547 & 0xffffff;
8e71621f
PB
5548 }
5549 /* Only intercept calls from privileged modes, to provide some
5550 semblance of security. */
5551 if (((mask == 0x123456 && !env->thumb)
5552 || (mask == 0xab && env->thumb))
5553 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
205ace55
CC
5554 qemu_log_mask(CPU_LOG_INT,
5555 "...handling as semihosting call 0x%x\n",
5556 env->regs[0]);
8e71621f
PB
5557 env->regs[0] = do_arm_semihosting(env);
5558 return;
5559 }
5560 }
b5ff1b31
FB
5561 new_mode = ARM_CPU_MODE_SVC;
5562 addr = 0x08;
5563 mask = CPSR_I;
601d70b9 5564 /* The PC already points to the next instruction. */
b5ff1b31
FB
5565 offset = 0;
5566 break;
06c949e6 5567 case EXCP_BKPT:
9ee6e8bb 5568 /* See if this is a semihosting syscall. */
cfe67cef 5569 if (env->thumb && semihosting_enabled()) {
d31dd73e 5570 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
9ee6e8bb
PB
5571 if (mask == 0xab
5572 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5573 env->regs[15] += 2;
205ace55
CC
5574 qemu_log_mask(CPU_LOG_INT,
5575 "...handling as semihosting call 0x%x\n",
5576 env->regs[0]);
9ee6e8bb
PB
5577 env->regs[0] = do_arm_semihosting(env);
5578 return;
5579 }
5580 }
abf1172f 5581 env->exception.fsr = 2;
9ee6e8bb
PB
5582 /* Fall through to prefetch abort. */
5583 case EXCP_PREFETCH_ABORT:
88ca1c2d 5584 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 5585 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 5586 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 5587 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
5588 new_mode = ARM_CPU_MODE_ABT;
5589 addr = 0x0c;
5590 mask = CPSR_A | CPSR_I;
5591 offset = 4;
5592 break;
5593 case EXCP_DATA_ABORT:
4a7e2d73 5594 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 5595 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 5596 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 5597 env->exception.fsr,
6cd8a264 5598 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
5599 new_mode = ARM_CPU_MODE_ABT;
5600 addr = 0x10;
5601 mask = CPSR_A | CPSR_I;
5602 offset = 8;
5603 break;
5604 case EXCP_IRQ:
5605 new_mode = ARM_CPU_MODE_IRQ;
5606 addr = 0x18;
5607 /* Disable IRQ and imprecise data aborts. */
5608 mask = CPSR_A | CPSR_I;
5609 offset = 4;
de38d23b
FA
5610 if (env->cp15.scr_el3 & SCR_IRQ) {
5611 /* IRQ routed to monitor mode */
5612 new_mode = ARM_CPU_MODE_MON;
5613 mask |= CPSR_F;
5614 }
b5ff1b31
FB
5615 break;
5616 case EXCP_FIQ:
5617 new_mode = ARM_CPU_MODE_FIQ;
5618 addr = 0x1c;
5619 /* Disable FIQ, IRQ and imprecise data aborts. */
5620 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
5621 if (env->cp15.scr_el3 & SCR_FIQ) {
5622 /* FIQ routed to monitor mode */
5623 new_mode = ARM_CPU_MODE_MON;
5624 }
b5ff1b31
FB
5625 offset = 4;
5626 break;
dbe9d163
FA
5627 case EXCP_SMC:
5628 new_mode = ARM_CPU_MODE_MON;
5629 addr = 0x08;
5630 mask = CPSR_A | CPSR_I | CPSR_F;
5631 offset = 0;
5632 break;
b5ff1b31 5633 default:
a47dddd7 5634 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
5635 return; /* Never happens. Keep compiler happy. */
5636 }
e89e51a1
FA
5637
5638 if (new_mode == ARM_CPU_MODE_MON) {
5639 addr += env->cp15.mvbar;
137feaa9 5640 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 5641 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 5642 addr += 0xffff0000;
8641136c
NR
5643 } else {
5644 /* ARM v7 architectures provide a vector base address register to remap
5645 * the interrupt vector table.
e89e51a1 5646 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
5647 * Note: only bits 31:5 are valid.
5648 */
fb6c91ba 5649 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 5650 }
dbe9d163
FA
5651
5652 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
5653 env->cp15.scr_el3 &= ~SCR_NS;
5654 }
5655
b5ff1b31 5656 switch_mode (env, new_mode);
662cefb7
PM
5657 /* For exceptions taken to AArch32 we must clear the SS bit in both
5658 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5659 */
5660 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 5661 env->spsr = cpsr_read(env);
9ee6e8bb
PB
5662 /* Clear IT bits. */
5663 env->condexec_bits = 0;
30a8cac1 5664 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 5665 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4cc35614 5666 env->daif |= mask;
be5e7a76
DES
5667 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5668 * and we should just guard the thumb mode on V4 */
5669 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 5670 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 5671 }
b5ff1b31
FB
5672 env->regs[14] = env->regs[15] + offset;
5673 env->regs[15] = addr;
259186a7 5674 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
b5ff1b31
FB
5675}
5676
0480f69a
PM
5677
5678/* Return the exception level which controls this address translation regime */
5679static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
5680{
5681 switch (mmu_idx) {
5682 case ARMMMUIdx_S2NS:
5683 case ARMMMUIdx_S1E2:
5684 return 2;
5685 case ARMMMUIdx_S1E3:
5686 return 3;
5687 case ARMMMUIdx_S1SE0:
5688 return arm_el_is_aa64(env, 3) ? 1 : 3;
5689 case ARMMMUIdx_S1SE1:
5690 case ARMMMUIdx_S1NSE0:
5691 case ARMMMUIdx_S1NSE1:
5692 return 1;
5693 default:
5694 g_assert_not_reached();
5695 }
5696}
5697
8bf5b6a9
PM
5698/* Return true if this address translation regime is secure */
5699static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
5700{
5701 switch (mmu_idx) {
5702 case ARMMMUIdx_S12NSE0:
5703 case ARMMMUIdx_S12NSE1:
5704 case ARMMMUIdx_S1NSE0:
5705 case ARMMMUIdx_S1NSE1:
5706 case ARMMMUIdx_S1E2:
5707 case ARMMMUIdx_S2NS:
5708 return false;
5709 case ARMMMUIdx_S1E3:
5710 case ARMMMUIdx_S1SE0:
5711 case ARMMMUIdx_S1SE1:
5712 return true;
5713 default:
5714 g_assert_not_reached();
5715 }
5716}
5717
0480f69a
PM
5718/* Return the SCTLR value which controls this address translation regime */
5719static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
5720{
5721 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
5722}
5723
5724/* Return true if the specified stage of address translation is disabled */
5725static inline bool regime_translation_disabled(CPUARMState *env,
5726 ARMMMUIdx mmu_idx)
5727{
5728 if (mmu_idx == ARMMMUIdx_S2NS) {
5729 return (env->cp15.hcr_el2 & HCR_VM) == 0;
5730 }
5731 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
5732}
5733
5734/* Return the TCR controlling this translation regime */
5735static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
5736{
5737 if (mmu_idx == ARMMMUIdx_S2NS) {
5738 /* TODO: return VTCR_EL2 */
5739 g_assert_not_reached();
5740 }
5741 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
5742}
5743
aef878be
GB
5744/* Return the TTBR associated with this translation regime */
5745static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
5746 int ttbrn)
5747{
5748 if (mmu_idx == ARMMMUIdx_S2NS) {
5749 /* TODO: return VTTBR_EL2 */
5750 g_assert_not_reached();
5751 }
5752 if (ttbrn == 0) {
5753 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
5754 } else {
5755 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5756 }
5757}
5758
0480f69a
PM
5759/* Return true if the translation regime is using LPAE format page tables */
5760static inline bool regime_using_lpae_format(CPUARMState *env,
5761 ARMMMUIdx mmu_idx)
5762{
5763 int el = regime_el(env, mmu_idx);
5764 if (el == 2 || arm_el_is_aa64(env, el)) {
5765 return true;
5766 }
5767 if (arm_feature(env, ARM_FEATURE_LPAE)
5768 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5769 return true;
5770 }
5771 return false;
5772}
5773
5774static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5775{
5776 switch (mmu_idx) {
5777 case ARMMMUIdx_S1SE0:
5778 case ARMMMUIdx_S1NSE0:
5779 return true;
5780 default:
5781 return false;
5782 case ARMMMUIdx_S12NSE0:
5783 case ARMMMUIdx_S12NSE1:
5784 g_assert_not_reached();
5785 }
5786}
5787
0fbf5238
AJ
5788/* Translate section/page access permissions to page
5789 * R/W protection flags
d76951b6
AJ
5790 *
5791 * @env: CPUARMState
5792 * @mmu_idx: MMU index indicating required translation regime
5793 * @ap: The 3-bit access permissions (AP[2:0])
5794 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
5795 */
5796static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5797 int ap, int domain_prot)
5798{
554b0b09
PM
5799 bool is_user = regime_is_user(env, mmu_idx);
5800
5801 if (domain_prot == 3) {
5802 return PAGE_READ | PAGE_WRITE;
5803 }
5804
554b0b09
PM
5805 switch (ap) {
5806 case 0:
5807 if (arm_feature(env, ARM_FEATURE_V7)) {
5808 return 0;
5809 }
554b0b09
PM
5810 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5811 case SCTLR_S:
5812 return is_user ? 0 : PAGE_READ;
5813 case SCTLR_R:
5814 return PAGE_READ;
5815 default:
5816 return 0;
5817 }
5818 case 1:
5819 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5820 case 2:
87c3d486 5821 if (is_user) {
0fbf5238 5822 return PAGE_READ;
87c3d486 5823 } else {
554b0b09 5824 return PAGE_READ | PAGE_WRITE;
87c3d486 5825 }
554b0b09
PM
5826 case 3:
5827 return PAGE_READ | PAGE_WRITE;
5828 case 4: /* Reserved. */
5829 return 0;
5830 case 5:
0fbf5238 5831 return is_user ? 0 : PAGE_READ;
554b0b09 5832 case 6:
0fbf5238 5833 return PAGE_READ;
554b0b09 5834 case 7:
87c3d486 5835 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 5836 return 0;
87c3d486 5837 }
0fbf5238 5838 return PAGE_READ;
554b0b09 5839 default:
0fbf5238 5840 g_assert_not_reached();
554b0b09 5841 }
b5ff1b31
FB
5842}
5843
d76951b6
AJ
5844/* Translate section/page access permissions to page
5845 * R/W protection flags.
5846 *
d76951b6 5847 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 5848 * @is_user: TRUE if accessing from PL0
d76951b6 5849 */
d8e052b3 5850static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 5851{
d76951b6
AJ
5852 switch (ap) {
5853 case 0:
5854 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5855 case 1:
5856 return PAGE_READ | PAGE_WRITE;
5857 case 2:
5858 return is_user ? 0 : PAGE_READ;
5859 case 3:
5860 return PAGE_READ;
5861 default:
5862 g_assert_not_reached();
5863 }
5864}
5865
d8e052b3
AJ
5866static inline int
5867simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5868{
5869 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5870}
5871
5872/* Translate section/page access permissions to protection flags
5873 *
5874 * @env: CPUARMState
5875 * @mmu_idx: MMU index indicating required translation regime
5876 * @is_aa64: TRUE if AArch64
5877 * @ap: The 2-bit simple AP (AP[2:1])
5878 * @ns: NS (non-secure) bit
5879 * @xn: XN (execute-never) bit
5880 * @pxn: PXN (privileged execute-never) bit
5881 */
5882static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5883 int ap, int ns, int xn, int pxn)
5884{
5885 bool is_user = regime_is_user(env, mmu_idx);
5886 int prot_rw, user_rw;
5887 bool have_wxn;
5888 int wxn = 0;
5889
5890 assert(mmu_idx != ARMMMUIdx_S2NS);
5891
5892 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5893 if (is_user) {
5894 prot_rw = user_rw;
5895 } else {
5896 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5897 }
5898
5899 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5900 return prot_rw;
5901 }
5902
5903 /* TODO have_wxn should be replaced with
5904 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5905 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5906 * compatible processors have EL2, which is required for [U]WXN.
5907 */
5908 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5909
5910 if (have_wxn) {
5911 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5912 }
5913
5914 if (is_aa64) {
5915 switch (regime_el(env, mmu_idx)) {
5916 case 1:
5917 if (!is_user) {
5918 xn = pxn || (user_rw & PAGE_WRITE);
5919 }
5920 break;
5921 case 2:
5922 case 3:
5923 break;
5924 }
5925 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5926 switch (regime_el(env, mmu_idx)) {
5927 case 1:
5928 case 3:
5929 if (is_user) {
5930 xn = xn || !(user_rw & PAGE_READ);
5931 } else {
5932 int uwxn = 0;
5933 if (have_wxn) {
5934 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
5935 }
5936 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
5937 (uwxn && (user_rw & PAGE_WRITE));
5938 }
5939 break;
5940 case 2:
5941 break;
5942 }
5943 } else {
5944 xn = wxn = 0;
5945 }
5946
5947 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
5948 return prot_rw;
5949 }
5950 return prot_rw | PAGE_EXEC;
5951}
5952
0480f69a
PM
5953static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
5954 uint32_t *table, uint32_t address)
b2fa1797 5955{
0480f69a 5956 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 5957 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 5958
11f136ee
FA
5959 if (address & tcr->mask) {
5960 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
5961 /* Translation table walk disabled for TTBR1 */
5962 return false;
5963 }
aef878be 5964 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 5965 } else {
11f136ee 5966 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
5967 /* Translation table walk disabled for TTBR0 */
5968 return false;
5969 }
aef878be 5970 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
5971 }
5972 *table |= (address >> 18) & 0x3ffc;
5973 return true;
b2fa1797
PB
5974}
5975
ebca90e4
PM
5976/* All loads done in the course of a page table walk go through here.
5977 * TODO: rather than ignoring errors from physical memory reads (which
5978 * are external aborts in ARM terminology) we should propagate this
5979 * error out so that we can turn it into a Data Abort if this walk
5980 * was being done for a CPU load/store or an address translation instruction
5981 * (but not if it was for a debug access).
5982 */
5983static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5984{
5985 MemTxAttrs attrs = {};
5986
5987 attrs.secure = is_secure;
5988 return address_space_ldl(cs->as, addr, attrs, NULL);
5989}
5990
5991static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5992{
5993 MemTxAttrs attrs = {};
5994
5995 attrs.secure = is_secure;
5996 return address_space_ldq(cs->as, addr, attrs, NULL);
5997}
5998
b7cc4e82
PC
5999static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6000 int access_type, ARMMMUIdx mmu_idx,
6001 hwaddr *phys_ptr, int *prot,
6002 target_ulong *page_size, uint32_t *fsr)
b5ff1b31 6003{
70d74660 6004 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
6005 int code;
6006 uint32_t table;
6007 uint32_t desc;
6008 int type;
6009 int ap;
e389be16 6010 int domain = 0;
dd4ebc2e 6011 int domain_prot;
a8170e5e 6012 hwaddr phys_addr;
0480f69a 6013 uint32_t dacr;
b5ff1b31 6014
9ee6e8bb
PB
6015 /* Pagetable walk. */
6016 /* Lookup l1 descriptor. */
0480f69a 6017 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
6018 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6019 code = 5;
6020 goto do_fault;
6021 }
ebca90e4 6022 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
9ee6e8bb 6023 type = (desc & 3);
dd4ebc2e 6024 domain = (desc >> 5) & 0x0f;
0480f69a
PM
6025 if (regime_el(env, mmu_idx) == 1) {
6026 dacr = env->cp15.dacr_ns;
6027 } else {
6028 dacr = env->cp15.dacr_s;
6029 }
6030 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 6031 if (type == 0) {
601d70b9 6032 /* Section translation fault. */
9ee6e8bb
PB
6033 code = 5;
6034 goto do_fault;
6035 }
dd4ebc2e 6036 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
6037 if (type == 2)
6038 code = 9; /* Section domain fault. */
6039 else
6040 code = 11; /* Page domain fault. */
6041 goto do_fault;
6042 }
6043 if (type == 2) {
6044 /* 1Mb section. */
6045 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6046 ap = (desc >> 10) & 3;
6047 code = 13;
d4c430a8 6048 *page_size = 1024 * 1024;
9ee6e8bb
PB
6049 } else {
6050 /* Lookup l2 entry. */
554b0b09
PM
6051 if (type == 1) {
6052 /* Coarse pagetable. */
6053 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6054 } else {
6055 /* Fine pagetable. */
6056 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6057 }
ebca90e4 6058 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
9ee6e8bb
PB
6059 switch (desc & 3) {
6060 case 0: /* Page translation fault. */
6061 code = 7;
6062 goto do_fault;
6063 case 1: /* 64k page. */
6064 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6065 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 6066 *page_size = 0x10000;
ce819861 6067 break;
9ee6e8bb
PB
6068 case 2: /* 4k page. */
6069 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 6070 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 6071 *page_size = 0x1000;
ce819861 6072 break;
fc1891c7 6073 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 6074 if (type == 1) {
fc1891c7
PM
6075 /* ARMv6/XScale extended small page format */
6076 if (arm_feature(env, ARM_FEATURE_XSCALE)
6077 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 6078 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 6079 *page_size = 0x1000;
554b0b09 6080 } else {
fc1891c7
PM
6081 /* UNPREDICTABLE in ARMv5; we choose to take a
6082 * page translation fault.
6083 */
554b0b09
PM
6084 code = 7;
6085 goto do_fault;
6086 }
6087 } else {
6088 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 6089 *page_size = 0x400;
554b0b09 6090 }
9ee6e8bb 6091 ap = (desc >> 4) & 3;
ce819861
PB
6092 break;
6093 default:
9ee6e8bb
PB
6094 /* Never happens, but compiler isn't smart enough to tell. */
6095 abort();
ce819861 6096 }
9ee6e8bb
PB
6097 code = 15;
6098 }
0fbf5238
AJ
6099 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6100 *prot |= *prot ? PAGE_EXEC : 0;
6101 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
6102 /* Access permission fault. */
6103 goto do_fault;
6104 }
6105 *phys_ptr = phys_addr;
b7cc4e82 6106 return false;
9ee6e8bb 6107do_fault:
b7cc4e82
PC
6108 *fsr = code | (domain << 4);
6109 return true;
9ee6e8bb
PB
6110}
6111
b7cc4e82
PC
6112static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
6113 int access_type, ARMMMUIdx mmu_idx,
6114 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6115 target_ulong *page_size, uint32_t *fsr)
9ee6e8bb 6116{
70d74660 6117 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
6118 int code;
6119 uint32_t table;
6120 uint32_t desc;
6121 uint32_t xn;
de9b05b8 6122 uint32_t pxn = 0;
9ee6e8bb
PB
6123 int type;
6124 int ap;
de9b05b8 6125 int domain = 0;
dd4ebc2e 6126 int domain_prot;
a8170e5e 6127 hwaddr phys_addr;
0480f69a 6128 uint32_t dacr;
8bf5b6a9 6129 bool ns;
9ee6e8bb
PB
6130
6131 /* Pagetable walk. */
6132 /* Lookup l1 descriptor. */
0480f69a 6133 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
6134 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6135 code = 5;
6136 goto do_fault;
6137 }
ebca90e4 6138 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
9ee6e8bb 6139 type = (desc & 3);
de9b05b8
PM
6140 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
6141 /* Section translation fault, or attempt to use the encoding
6142 * which is Reserved on implementations without PXN.
6143 */
9ee6e8bb 6144 code = 5;
9ee6e8bb 6145 goto do_fault;
de9b05b8
PM
6146 }
6147 if ((type == 1) || !(desc & (1 << 18))) {
6148 /* Page or Section. */
dd4ebc2e 6149 domain = (desc >> 5) & 0x0f;
9ee6e8bb 6150 }
0480f69a
PM
6151 if (regime_el(env, mmu_idx) == 1) {
6152 dacr = env->cp15.dacr_ns;
6153 } else {
6154 dacr = env->cp15.dacr_s;
6155 }
6156 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 6157 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 6158 if (type != 1) {
9ee6e8bb 6159 code = 9; /* Section domain fault. */
de9b05b8 6160 } else {
9ee6e8bb 6161 code = 11; /* Page domain fault. */
de9b05b8 6162 }
9ee6e8bb
PB
6163 goto do_fault;
6164 }
de9b05b8 6165 if (type != 1) {
9ee6e8bb
PB
6166 if (desc & (1 << 18)) {
6167 /* Supersection. */
6168 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
6169 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
6170 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 6171 *page_size = 0x1000000;
b5ff1b31 6172 } else {
9ee6e8bb
PB
6173 /* Section. */
6174 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 6175 *page_size = 0x100000;
b5ff1b31 6176 }
9ee6e8bb
PB
6177 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
6178 xn = desc & (1 << 4);
de9b05b8 6179 pxn = desc & 1;
9ee6e8bb 6180 code = 13;
8bf5b6a9 6181 ns = extract32(desc, 19, 1);
9ee6e8bb 6182 } else {
de9b05b8
PM
6183 if (arm_feature(env, ARM_FEATURE_PXN)) {
6184 pxn = (desc >> 2) & 1;
6185 }
8bf5b6a9 6186 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
6187 /* Lookup l2 entry. */
6188 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
ebca90e4 6189 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
9ee6e8bb
PB
6190 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
6191 switch (desc & 3) {
6192 case 0: /* Page translation fault. */
6193 code = 7;
b5ff1b31 6194 goto do_fault;
9ee6e8bb
PB
6195 case 1: /* 64k page. */
6196 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6197 xn = desc & (1 << 15);
d4c430a8 6198 *page_size = 0x10000;
9ee6e8bb
PB
6199 break;
6200 case 2: case 3: /* 4k page. */
6201 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6202 xn = desc & 1;
d4c430a8 6203 *page_size = 0x1000;
9ee6e8bb
PB
6204 break;
6205 default:
6206 /* Never happens, but compiler isn't smart enough to tell. */
6207 abort();
b5ff1b31 6208 }
9ee6e8bb
PB
6209 code = 15;
6210 }
dd4ebc2e 6211 if (domain_prot == 3) {
c0034328
JR
6212 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6213 } else {
0480f69a 6214 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
6215 xn = 1;
6216 }
c0034328
JR
6217 if (xn && access_type == 2)
6218 goto do_fault;
9ee6e8bb 6219
d76951b6
AJ
6220 if (arm_feature(env, ARM_FEATURE_V6K) &&
6221 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
6222 /* The simplified model uses AP[0] as an access control bit. */
6223 if ((ap & 1) == 0) {
6224 /* Access flag fault. */
6225 code = (code == 15) ? 6 : 3;
6226 goto do_fault;
6227 }
6228 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6229 } else {
6230 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 6231 }
0fbf5238
AJ
6232 if (*prot && !xn) {
6233 *prot |= PAGE_EXEC;
6234 }
6235 if (!(*prot & (1 << access_type))) {
c0034328
JR
6236 /* Access permission fault. */
6237 goto do_fault;
6238 }
3ad493fc 6239 }
8bf5b6a9
PM
6240 if (ns) {
6241 /* The NS bit will (as required by the architecture) have no effect if
6242 * the CPU doesn't support TZ or this is a non-secure translation
6243 * regime, because the attribute will already be non-secure.
6244 */
6245 attrs->secure = false;
6246 }
9ee6e8bb 6247 *phys_ptr = phys_addr;
b7cc4e82 6248 return false;
b5ff1b31 6249do_fault:
b7cc4e82
PC
6250 *fsr = code | (domain << 4);
6251 return true;
b5ff1b31
FB
6252}
6253
3dde962f
PM
6254/* Fault type for long-descriptor MMU fault reporting; this corresponds
6255 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6256 */
6257typedef enum {
6258 translation_fault = 1,
6259 access_fault = 2,
6260 permission_fault = 3,
6261} MMUFaultType;
6262
b7cc4e82
PC
6263static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
6264 int access_type, ARMMMUIdx mmu_idx,
6265 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
6266 target_ulong *page_size_ptr, uint32_t *fsr)
3dde962f 6267{
70d74660 6268 CPUState *cs = CPU(arm_env_get_cpu(env));
3dde962f
PM
6269 /* Read an LPAE long-descriptor translation table. */
6270 MMUFaultType fault_type = translation_fault;
6271 uint32_t level = 1;
6272 uint32_t epd;
2c8dd318
RH
6273 int32_t tsz;
6274 uint32_t tg;
3dde962f
PM
6275 uint64_t ttbr;
6276 int ttbr_select;
2c8dd318 6277 hwaddr descaddr, descmask;
3dde962f
PM
6278 uint32_t tableattrs;
6279 target_ulong page_size;
6280 uint32_t attrs;
2c8dd318
RH
6281 int32_t granule_sz = 9;
6282 int32_t va_size = 32;
6283 int32_t tbi = 0;
0480f69a 6284 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 6285 int ap, ns, xn, pxn;
88e8add8
GB
6286 uint32_t el = regime_el(env, mmu_idx);
6287 bool ttbr1_valid = true;
0480f69a
PM
6288
6289 /* TODO:
88e8add8
GB
6290 * This code does not handle the different format TCR for VTCR_EL2.
6291 * This code also does not support shareability levels.
6292 * Attribute and permission bit handling should also be checked when adding
6293 * support for those page table walks.
0480f69a 6294 */
88e8add8 6295 if (arm_el_is_aa64(env, el)) {
2c8dd318 6296 va_size = 64;
88e8add8
GB
6297 if (el > 1) {
6298 tbi = extract64(tcr->raw_tcr, 20, 1);
6299 } else {
6300 if (extract64(address, 55, 1)) {
6301 tbi = extract64(tcr->raw_tcr, 38, 1);
6302 } else {
6303 tbi = extract64(tcr->raw_tcr, 37, 1);
6304 }
6305 }
2c8dd318 6306 tbi *= 8;
88e8add8
GB
6307
6308 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6309 * invalid.
6310 */
6311 if (el > 1) {
6312 ttbr1_valid = false;
6313 }
d0a2cbce
PM
6314 } else {
6315 /* There is no TTBR1 for EL2 */
6316 if (el == 2) {
6317 ttbr1_valid = false;
6318 }
2c8dd318 6319 }
3dde962f
PM
6320
6321 /* Determine whether this address is in the region controlled by
6322 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6323 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6324 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6325 */
11f136ee 6326 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
0480f69a 6327 if (va_size == 64) {
2c8dd318
RH
6328 t0sz = MIN(t0sz, 39);
6329 t0sz = MAX(t0sz, 16);
6330 }
11f136ee 6331 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
0480f69a 6332 if (va_size == 64) {
2c8dd318
RH
6333 t1sz = MIN(t1sz, 39);
6334 t1sz = MAX(t1sz, 16);
6335 }
6336 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3dde962f
PM
6337 /* there is a ttbr0 region and we are in it (high bits all zero) */
6338 ttbr_select = 0;
88e8add8
GB
6339 } else if (ttbr1_valid && t1sz &&
6340 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3dde962f
PM
6341 /* there is a ttbr1 region and we are in it (high bits all one) */
6342 ttbr_select = 1;
6343 } else if (!t0sz) {
6344 /* ttbr0 region is "everything not in the ttbr1 region" */
6345 ttbr_select = 0;
88e8add8 6346 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
6347 /* ttbr1 region is "everything not in the ttbr0 region" */
6348 ttbr_select = 1;
6349 } else {
6350 /* in the gap between the two regions, this is a Translation fault */
6351 fault_type = translation_fault;
6352 goto do_fault;
6353 }
6354
6355 /* Note that QEMU ignores shareability and cacheability attributes,
6356 * so we don't need to do anything with the SH, ORGN, IRGN fields
6357 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6358 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6359 * implement any ASID-like capability so we can ignore it (instead
6360 * we will always flush the TLB any time the ASID is changed).
6361 */
6362 if (ttbr_select == 0) {
aef878be 6363 ttbr = regime_ttbr(env, mmu_idx, 0);
11f136ee 6364 epd = extract32(tcr->raw_tcr, 7, 1);
3dde962f 6365 tsz = t0sz;
2c8dd318 6366
11f136ee 6367 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318
RH
6368 if (tg == 1) { /* 64KB pages */
6369 granule_sz = 13;
6370 }
6371 if (tg == 2) { /* 16KB pages */
6372 granule_sz = 11;
6373 }
3dde962f 6374 } else {
88e8add8
GB
6375 /* We should only be here if TTBR1 is valid */
6376 assert(ttbr1_valid);
6377
aef878be 6378 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 6379 epd = extract32(tcr->raw_tcr, 23, 1);
3dde962f 6380 tsz = t1sz;
2c8dd318 6381
11f136ee 6382 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318
RH
6383 if (tg == 3) { /* 64KB pages */
6384 granule_sz = 13;
6385 }
6386 if (tg == 1) { /* 16KB pages */
6387 granule_sz = 11;
6388 }
3dde962f
PM
6389 }
6390
0480f69a
PM
6391 /* Here we should have set up all the parameters for the translation:
6392 * va_size, ttbr, epd, tsz, granule_sz, tbi
6393 */
6394
3dde962f 6395 if (epd) {
88e8add8
GB
6396 /* Translation table walk disabled => Translation fault on TLB miss
6397 * Note: This is always 0 on 64-bit EL2 and EL3.
6398 */
3dde962f
PM
6399 goto do_fault;
6400 }
6401
d6be29e3
PM
6402 /* The starting level depends on the virtual address size (which can be
6403 * up to 48 bits) and the translation granule size. It indicates the number
6404 * of strides (granule_sz bits at a time) needed to consume the bits
6405 * of the input address. In the pseudocode this is:
6406 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6407 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6408 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6409 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6410 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6411 * = 4 - (va_size - tsz - 4) / granule_sz;
3dde962f 6412 */
d6be29e3 6413 level = 4 - (va_size - tsz - 4) / granule_sz;
3dde962f
PM
6414
6415 /* Clear the vaddr bits which aren't part of the within-region address,
6416 * so that we don't have to special case things when calculating the
6417 * first descriptor address.
6418 */
2c8dd318
RH
6419 if (tsz) {
6420 address &= (1ULL << (va_size - tsz)) - 1;
6421 }
6422
6423 descmask = (1ULL << (granule_sz + 3)) - 1;
3dde962f
PM
6424
6425 /* Now we can extract the actual base address from the TTBR */
2c8dd318
RH
6426 descaddr = extract64(ttbr, 0, 48);
6427 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
3dde962f 6428
ebca90e4
PM
6429 /* Secure accesses start with the page table in secure memory and
6430 * can be downgraded to non-secure at any step. Non-secure accesses
6431 * remain non-secure. We implement this by just ORing in the NSTable/NS
6432 * bits at each step.
6433 */
6434 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
6435 for (;;) {
6436 uint64_t descriptor;
ebca90e4 6437 bool nstable;
3dde962f 6438
2c8dd318
RH
6439 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
6440 descaddr &= ~7ULL;
ebca90e4
PM
6441 nstable = extract32(tableattrs, 4, 1);
6442 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
3dde962f
PM
6443 if (!(descriptor & 1) ||
6444 (!(descriptor & 2) && (level == 3))) {
6445 /* Invalid, or the Reserved level 3 encoding */
6446 goto do_fault;
6447 }
6448 descaddr = descriptor & 0xfffffff000ULL;
6449
6450 if ((descriptor & 2) && (level < 3)) {
6451 /* Table entry. The top five bits are attributes which may
6452 * propagate down through lower levels of the table (and
6453 * which are all arranged so that 0 means "no effect", so
6454 * we can gather them up by ORing in the bits at each level).
6455 */
6456 tableattrs |= extract64(descriptor, 59, 5);
6457 level++;
6458 continue;
6459 }
6460 /* Block entry at level 1 or 2, or page entry at level 3.
6461 * These are basically the same thing, although the number
6462 * of bits we pull in from the vaddr varies.
6463 */
5661ae6b 6464 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
3dde962f
PM
6465 descaddr |= (address & (page_size - 1));
6466 /* Extract attributes from the descriptor and merge with table attrs */
d615efac
IC
6467 attrs = extract64(descriptor, 2, 10)
6468 | (extract64(descriptor, 52, 12) << 10);
3dde962f
PM
6469 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
6470 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
6471 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6472 * means "force PL1 access only", which means forcing AP[1] to 0.
6473 */
6474 if (extract32(tableattrs, 2, 1)) {
6475 attrs &= ~(1 << 4);
6476 }
ebca90e4 6477 attrs |= nstable << 3; /* NS */
3dde962f
PM
6478 break;
6479 }
6480 /* Here descaddr is the final physical address, and attributes
6481 * are all in attrs.
6482 */
6483 fault_type = access_fault;
6484 if ((attrs & (1 << 8)) == 0) {
6485 /* Access flag */
6486 goto do_fault;
6487 }
d8e052b3
AJ
6488
6489 ap = extract32(attrs, 4, 2);
6490 ns = extract32(attrs, 3, 1);
6491 xn = extract32(attrs, 12, 1);
6492 pxn = extract32(attrs, 11, 1);
6493
6494 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
6495
3dde962f 6496 fault_type = permission_fault;
d8e052b3 6497 if (!(*prot & (1 << access_type))) {
3dde962f
PM
6498 goto do_fault;
6499 }
3dde962f 6500
8bf5b6a9
PM
6501 if (ns) {
6502 /* The NS bit will (as required by the architecture) have no effect if
6503 * the CPU doesn't support TZ or this is a non-secure translation
6504 * regime, because the attribute will already be non-secure.
6505 */
6506 txattrs->secure = false;
6507 }
3dde962f
PM
6508 *phys_ptr = descaddr;
6509 *page_size_ptr = page_size;
b7cc4e82 6510 return false;
3dde962f
PM
6511
6512do_fault:
6513 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82
PC
6514 *fsr = (1 << 9) | (fault_type << 2) | level;
6515 return true;
3dde962f
PM
6516}
6517
f6bda88f
PC
6518static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
6519 ARMMMUIdx mmu_idx,
6520 int32_t address, int *prot)
6521{
6522 *prot = PAGE_READ | PAGE_WRITE;
6523 switch (address) {
6524 case 0xF0000000 ... 0xFFFFFFFF:
6525 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
6526 *prot |= PAGE_EXEC;
6527 }
6528 break;
6529 case 0x00000000 ... 0x7FFFFFFF:
6530 *prot |= PAGE_EXEC;
6531 break;
6532 }
6533
6534}
6535
6536static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
6537 int access_type, ARMMMUIdx mmu_idx,
6538 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6539{
6540 ARMCPU *cpu = arm_env_get_cpu(env);
6541 int n;
6542 bool is_user = regime_is_user(env, mmu_idx);
6543
6544 *phys_ptr = address;
6545 *prot = 0;
6546
6547 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
6548 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6549 } else { /* MPU enabled */
6550 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
6551 /* region search */
6552 uint32_t base = env->pmsav7.drbar[n];
6553 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
6554 uint32_t rmask;
6555 bool srdis = false;
6556
6557 if (!(env->pmsav7.drsr[n] & 0x1)) {
6558 continue;
6559 }
6560
6561 if (!rsize) {
6562 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
6563 continue;
6564 }
6565 rsize++;
6566 rmask = (1ull << rsize) - 1;
6567
6568 if (base & rmask) {
6569 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
6570 "to DRSR region size, mask = %" PRIx32,
6571 base, rmask);
6572 continue;
6573 }
6574
6575 if (address < base || address > base + rmask) {
6576 continue;
6577 }
6578
6579 /* Region matched */
6580
6581 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
6582 int i, snd;
6583 uint32_t srdis_mask;
6584
6585 rsize -= 3; /* sub region size (power of 2) */
6586 snd = ((address - base) >> rsize) & 0x7;
6587 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
6588
6589 srdis_mask = srdis ? 0x3 : 0x0;
6590 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
6591 /* This will check in groups of 2, 4 and then 8, whether
6592 * the subregion bits are consistent. rsize is incremented
6593 * back up to give the region size, considering consistent
6594 * adjacent subregions as one region. Stop testing if rsize
6595 * is already big enough for an entire QEMU page.
6596 */
6597 int snd_rounded = snd & ~(i - 1);
6598 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
6599 snd_rounded + 8, i);
6600 if (srdis_mask ^ srdis_multi) {
6601 break;
6602 }
6603 srdis_mask = (srdis_mask << i) | srdis_mask;
6604 rsize++;
6605 }
6606 }
6607 if (rsize < TARGET_PAGE_BITS) {
6608 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
6609 "alignment of %" PRIu32 " bits. Minimum is %d\n",
6610 rsize, TARGET_PAGE_BITS);
6611 continue;
6612 }
6613 if (srdis) {
6614 continue;
6615 }
6616 break;
6617 }
6618
6619 if (n == -1) { /* no hits */
6620 if (cpu->pmsav7_dregion &&
6621 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
6622 /* background fault */
6623 *fsr = 0;
6624 return true;
6625 }
6626 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6627 } else { /* a MPU hit! */
6628 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
6629
6630 if (is_user) { /* User mode AP bit decoding */
6631 switch (ap) {
6632 case 0:
6633 case 1:
6634 case 5:
6635 break; /* no access */
6636 case 3:
6637 *prot |= PAGE_WRITE;
6638 /* fall through */
6639 case 2:
6640 case 6:
6641 *prot |= PAGE_READ | PAGE_EXEC;
6642 break;
6643 default:
6644 qemu_log_mask(LOG_GUEST_ERROR,
6645 "Bad value for AP bits in DRACR %"
6646 PRIx32 "\n", ap);
6647 }
6648 } else { /* Priv. mode AP bits decoding */
6649 switch (ap) {
6650 case 0:
6651 break; /* no access */
6652 case 1:
6653 case 2:
6654 case 3:
6655 *prot |= PAGE_WRITE;
6656 /* fall through */
6657 case 5:
6658 case 6:
6659 *prot |= PAGE_READ | PAGE_EXEC;
6660 break;
6661 default:
6662 qemu_log_mask(LOG_GUEST_ERROR,
6663 "Bad value for AP bits in DRACR %"
6664 PRIx32 "\n", ap);
6665 }
6666 }
6667
6668 /* execute never */
6669 if (env->pmsav7.dracr[n] & (1 << 12)) {
6670 *prot &= ~PAGE_EXEC;
6671 }
6672 }
6673 }
6674
6675 *fsr = 0x00d; /* Permission fault */
6676 return !(*prot & (1 << access_type));
6677}
6678
13689d43
PC
6679static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
6680 int access_type, ARMMMUIdx mmu_idx,
6681 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
6682{
6683 int n;
6684 uint32_t mask;
6685 uint32_t base;
0480f69a 6686 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb
PB
6687
6688 *phys_ptr = address;
6689 for (n = 7; n >= 0; n--) {
554b0b09 6690 base = env->cp15.c6_region[n];
87c3d486 6691 if ((base & 1) == 0) {
554b0b09 6692 continue;
87c3d486 6693 }
554b0b09
PM
6694 mask = 1 << ((base >> 1) & 0x1f);
6695 /* Keep this shift separate from the above to avoid an
6696 (undefined) << 32. */
6697 mask = (mask << 1) - 1;
87c3d486 6698 if (((base ^ address) & ~mask) == 0) {
554b0b09 6699 break;
87c3d486 6700 }
9ee6e8bb 6701 }
87c3d486 6702 if (n < 0) {
b7cc4e82
PC
6703 *fsr = 2;
6704 return true;
87c3d486 6705 }
9ee6e8bb
PB
6706
6707 if (access_type == 2) {
7e09797c 6708 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 6709 } else {
7e09797c 6710 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
6711 }
6712 mask = (mask >> (n * 4)) & 0xf;
6713 switch (mask) {
6714 case 0:
b7cc4e82
PC
6715 *fsr = 1;
6716 return true;
9ee6e8bb 6717 case 1:
87c3d486 6718 if (is_user) {
b7cc4e82
PC
6719 *fsr = 1;
6720 return true;
87c3d486 6721 }
554b0b09
PM
6722 *prot = PAGE_READ | PAGE_WRITE;
6723 break;
9ee6e8bb 6724 case 2:
554b0b09 6725 *prot = PAGE_READ;
87c3d486 6726 if (!is_user) {
554b0b09 6727 *prot |= PAGE_WRITE;
87c3d486 6728 }
554b0b09 6729 break;
9ee6e8bb 6730 case 3:
554b0b09
PM
6731 *prot = PAGE_READ | PAGE_WRITE;
6732 break;
9ee6e8bb 6733 case 5:
87c3d486 6734 if (is_user) {
b7cc4e82
PC
6735 *fsr = 1;
6736 return true;
87c3d486 6737 }
554b0b09
PM
6738 *prot = PAGE_READ;
6739 break;
9ee6e8bb 6740 case 6:
554b0b09
PM
6741 *prot = PAGE_READ;
6742 break;
9ee6e8bb 6743 default:
554b0b09 6744 /* Bad permission. */
b7cc4e82
PC
6745 *fsr = 1;
6746 return true;
9ee6e8bb 6747 }
3ad493fc 6748 *prot |= PAGE_EXEC;
b7cc4e82 6749 return false;
9ee6e8bb
PB
6750}
6751
702a9357
PM
6752/* get_phys_addr - get the physical address for this virtual address
6753 *
6754 * Find the physical address corresponding to the given virtual address,
6755 * by doing a translation table walk on MMU based systems or using the
6756 * MPU state on MPU based systems.
6757 *
b7cc4e82
PC
6758 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6759 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
6760 * information on why the translation aborted, in the format of a
6761 * DFSR/IFSR fault register, with the following caveats:
6762 * * we honour the short vs long DFSR format differences.
6763 * * the WnR bit is never set (the caller must do this).
f6bda88f 6764 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
6765 * value.
6766 *
6767 * @env: CPUARMState
6768 * @address: virtual address to get physical address for
6769 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 6770 * @mmu_idx: MMU index indicating required translation regime
702a9357 6771 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 6772 * @attrs: set to the memory transaction attributes to use
702a9357
PM
6773 * @prot: set to the permissions for the page containing phys_ptr
6774 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 6775 * @fsr: set to the DFSR/IFSR value on failure
702a9357 6776 */
b7cc4e82
PC
6777static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
6778 int access_type, ARMMMUIdx mmu_idx,
6779 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6780 target_ulong *page_size, uint32_t *fsr)
9ee6e8bb 6781{
0480f69a
PM
6782 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6783 /* TODO: when we support EL2 we should here call ourselves recursively
ebca90e4
PM
6784 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6785 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6786 * rather than direct physical memory loads when appropriate.
0480f69a
PM
6787 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6788 */
6789 assert(!arm_feature(env, ARM_FEATURE_EL2));
6790 mmu_idx += ARMMMUIdx_S1NSE0;
6791 }
d3649702 6792
8bf5b6a9
PM
6793 /* The page table entries may downgrade secure to non-secure, but
6794 * cannot upgrade an non-secure translation regime's attributes
6795 * to secure.
6796 */
6797 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 6798 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 6799
0480f69a
PM
6800 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6801 * In v7 and earlier it affects all stage 1 translations.
6802 */
6803 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
6804 && !arm_feature(env, ARM_FEATURE_V8)) {
6805 if (regime_el(env, mmu_idx) == 3) {
6806 address += env->cp15.fcseidr_s;
6807 } else {
6808 address += env->cp15.fcseidr_ns;
6809 }
54bf36ed 6810 }
9ee6e8bb 6811
f6bda88f
PC
6812 /* pmsav7 has special handling for when MPU is disabled so call it before
6813 * the common MMU/MPU disabled check below.
6814 */
6815 if (arm_feature(env, ARM_FEATURE_MPU) &&
6816 arm_feature(env, ARM_FEATURE_V7)) {
6817 *page_size = TARGET_PAGE_SIZE;
6818 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
6819 phys_ptr, prot, fsr);
6820 }
6821
0480f69a 6822 if (regime_translation_disabled(env, mmu_idx)) {
9ee6e8bb
PB
6823 /* MMU/MPU disabled. */
6824 *phys_ptr = address;
3ad493fc 6825 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 6826 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 6827 return 0;
0480f69a
PM
6828 }
6829
6830 if (arm_feature(env, ARM_FEATURE_MPU)) {
f6bda88f 6831 /* Pre-v7 MPU */
d4c430a8 6832 *page_size = TARGET_PAGE_SIZE;
13689d43
PC
6833 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
6834 phys_ptr, prot, fsr);
0480f69a
PM
6835 }
6836
6837 if (regime_using_lpae_format(env, mmu_idx)) {
6838 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
b7cc4e82 6839 attrs, prot, page_size, fsr);
0480f69a
PM
6840 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
6841 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
b7cc4e82 6842 attrs, prot, page_size, fsr);
9ee6e8bb 6843 } else {
0480f69a 6844 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
b7cc4e82 6845 prot, page_size, fsr);
9ee6e8bb
PB
6846 }
6847}
6848
8c6084bf 6849/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
6850 * to the TLB. Return false on success, or true on failure. Populate
6851 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 6852 */
b7cc4e82
PC
6853bool arm_tlb_fill(CPUState *cs, vaddr address,
6854 int access_type, int mmu_idx, uint32_t *fsr)
b5ff1b31 6855{
7510454e
AF
6856 ARMCPU *cpu = ARM_CPU(cs);
6857 CPUARMState *env = &cpu->env;
a8170e5e 6858 hwaddr phys_addr;
d4c430a8 6859 target_ulong page_size;
b5ff1b31 6860 int prot;
d3649702 6861 int ret;
8bf5b6a9 6862 MemTxAttrs attrs = {};
b5ff1b31 6863
8bf5b6a9 6864 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
b7cc4e82
PC
6865 &attrs, &prot, &page_size, fsr);
6866 if (!ret) {
b5ff1b31 6867 /* Map a single [sub]page. */
dcd82c11
AB
6868 phys_addr &= TARGET_PAGE_MASK;
6869 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
6870 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
6871 prot, mmu_idx, page_size);
d4c430a8 6872 return 0;
b5ff1b31
FB
6873 }
6874
8c6084bf 6875 return ret;
b5ff1b31
FB
6876}
6877
00b941e5 6878hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
b5ff1b31 6879{
00b941e5 6880 ARMCPU *cpu = ARM_CPU(cs);
d3649702 6881 CPUARMState *env = &cpu->env;
a8170e5e 6882 hwaddr phys_addr;
d4c430a8 6883 target_ulong page_size;
b5ff1b31 6884 int prot;
b7cc4e82
PC
6885 bool ret;
6886 uint32_t fsr;
8bf5b6a9 6887 MemTxAttrs attrs = {};
b5ff1b31 6888
d3649702 6889 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
b7cc4e82 6890 &attrs, &prot, &page_size, &fsr);
b5ff1b31 6891
b7cc4e82 6892 if (ret) {
b5ff1b31 6893 return -1;
00b941e5 6894 }
b5ff1b31
FB
6895
6896 return phys_addr;
6897}
6898
0ecb72a5 6899void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 6900{
39ea3d4e
PM
6901 if ((env->uncached_cpsr & CPSR_M) == mode) {
6902 env->regs[13] = val;
6903 } else {
f5206413 6904 env->banked_r13[bank_number(mode)] = val;
39ea3d4e 6905 }
9ee6e8bb
PB
6906}
6907
0ecb72a5 6908uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 6909{
39ea3d4e
PM
6910 if ((env->uncached_cpsr & CPSR_M) == mode) {
6911 return env->regs[13];
6912 } else {
f5206413 6913 return env->banked_r13[bank_number(mode)];
39ea3d4e 6914 }
9ee6e8bb
PB
6915}
6916
0ecb72a5 6917uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 6918{
a47dddd7
AF
6919 ARMCPU *cpu = arm_env_get_cpu(env);
6920
9ee6e8bb
PB
6921 switch (reg) {
6922 case 0: /* APSR */
6923 return xpsr_read(env) & 0xf8000000;
6924 case 1: /* IAPSR */
6925 return xpsr_read(env) & 0xf80001ff;
6926 case 2: /* EAPSR */
6927 return xpsr_read(env) & 0xff00fc00;
6928 case 3: /* xPSR */
6929 return xpsr_read(env) & 0xff00fdff;
6930 case 5: /* IPSR */
6931 return xpsr_read(env) & 0x000001ff;
6932 case 6: /* EPSR */
6933 return xpsr_read(env) & 0x0700fc00;
6934 case 7: /* IEPSR */
6935 return xpsr_read(env) & 0x0700edff;
6936 case 8: /* MSP */
6937 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
6938 case 9: /* PSP */
6939 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
6940 case 16: /* PRIMASK */
4cc35614 6941 return (env->daif & PSTATE_I) != 0;
82845826
SH
6942 case 17: /* BASEPRI */
6943 case 18: /* BASEPRI_MAX */
9ee6e8bb 6944 return env->v7m.basepri;
82845826 6945 case 19: /* FAULTMASK */
4cc35614 6946 return (env->daif & PSTATE_F) != 0;
9ee6e8bb
PB
6947 case 20: /* CONTROL */
6948 return env->v7m.control;
6949 default:
6950 /* ??? For debugging only. */
a47dddd7 6951 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
9ee6e8bb
PB
6952 return 0;
6953 }
6954}
6955
0ecb72a5 6956void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 6957{
a47dddd7
AF
6958 ARMCPU *cpu = arm_env_get_cpu(env);
6959
9ee6e8bb
PB
6960 switch (reg) {
6961 case 0: /* APSR */
6962 xpsr_write(env, val, 0xf8000000);
6963 break;
6964 case 1: /* IAPSR */
6965 xpsr_write(env, val, 0xf8000000);
6966 break;
6967 case 2: /* EAPSR */
6968 xpsr_write(env, val, 0xfe00fc00);
6969 break;
6970 case 3: /* xPSR */
6971 xpsr_write(env, val, 0xfe00fc00);
6972 break;
6973 case 5: /* IPSR */
6974 /* IPSR bits are readonly. */
6975 break;
6976 case 6: /* EPSR */
6977 xpsr_write(env, val, 0x0600fc00);
6978 break;
6979 case 7: /* IEPSR */
6980 xpsr_write(env, val, 0x0600fc00);
6981 break;
6982 case 8: /* MSP */
6983 if (env->v7m.current_sp)
6984 env->v7m.other_sp = val;
6985 else
6986 env->regs[13] = val;
6987 break;
6988 case 9: /* PSP */
6989 if (env->v7m.current_sp)
6990 env->regs[13] = val;
6991 else
6992 env->v7m.other_sp = val;
6993 break;
6994 case 16: /* PRIMASK */
4cc35614
PM
6995 if (val & 1) {
6996 env->daif |= PSTATE_I;
6997 } else {
6998 env->daif &= ~PSTATE_I;
6999 }
9ee6e8bb 7000 break;
82845826 7001 case 17: /* BASEPRI */
9ee6e8bb
PB
7002 env->v7m.basepri = val & 0xff;
7003 break;
82845826 7004 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
7005 val &= 0xff;
7006 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
7007 env->v7m.basepri = val;
7008 break;
82845826 7009 case 19: /* FAULTMASK */
4cc35614
PM
7010 if (val & 1) {
7011 env->daif |= PSTATE_F;
7012 } else {
7013 env->daif &= ~PSTATE_F;
7014 }
82845826 7015 break;
9ee6e8bb
PB
7016 case 20: /* CONTROL */
7017 env->v7m.control = val & 3;
7018 switch_v7m_sp(env, (val & 2) != 0);
7019 break;
7020 default:
7021 /* ??? For debugging only. */
a47dddd7 7022 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
9ee6e8bb
PB
7023 return;
7024 }
7025}
7026
b5ff1b31 7027#endif
6ddbc6e4 7028
aca3f40b
PM
7029void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
7030{
7031 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7032 * Note that we do not implement the (architecturally mandated)
7033 * alignment fault for attempts to use this on Device memory
7034 * (which matches the usual QEMU behaviour of not implementing either
7035 * alignment faults or any memory attribute handling).
7036 */
7037
7038 ARMCPU *cpu = arm_env_get_cpu(env);
7039 uint64_t blocklen = 4 << cpu->dcz_blocksize;
7040 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
7041
7042#ifndef CONFIG_USER_ONLY
7043 {
7044 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7045 * the block size so we might have to do more than one TLB lookup.
7046 * We know that in fact for any v8 CPU the page size is at least 4K
7047 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7048 * 1K as an artefact of legacy v5 subpage support being present in the
7049 * same QEMU executable.
7050 */
7051 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
7052 void *hostaddr[maxidx];
7053 int try, i;
3972ef6f
RH
7054 unsigned mmu_idx = cpu_mmu_index(env);
7055 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
7056
7057 for (try = 0; try < 2; try++) {
7058
7059 for (i = 0; i < maxidx; i++) {
7060 hostaddr[i] = tlb_vaddr_to_host(env,
7061 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 7062 1, mmu_idx);
aca3f40b
PM
7063 if (!hostaddr[i]) {
7064 break;
7065 }
7066 }
7067 if (i == maxidx) {
7068 /* If it's all in the TLB it's fair game for just writing to;
7069 * we know we don't need to update dirty status, etc.
7070 */
7071 for (i = 0; i < maxidx - 1; i++) {
7072 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
7073 }
7074 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
7075 return;
7076 }
7077 /* OK, try a store and see if we can populate the tlb. This
7078 * might cause an exception if the memory isn't writable,
7079 * in which case we will longjmp out of here. We must for
7080 * this purpose use the actual register value passed to us
7081 * so that we get the fault address right.
7082 */
3972ef6f 7083 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
aca3f40b
PM
7084 /* Now we can populate the other TLB entries, if any */
7085 for (i = 0; i < maxidx; i++) {
7086 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
7087 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
3972ef6f 7088 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
aca3f40b
PM
7089 }
7090 }
7091 }
7092
7093 /* Slow path (probably attempt to do this to an I/O device or
7094 * similar, or clearing of a block of code we have translations
7095 * cached for). Just do a series of byte writes as the architecture
7096 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7097 * memset(), unmap() sequence here because:
7098 * + we'd need to account for the blocksize being larger than a page
7099 * + the direct-RAM access case is almost always going to be dealt
7100 * with in the fastpath code above, so there's no speed benefit
7101 * + we would have to deal with the map returning NULL because the
7102 * bounce buffer was in use
7103 */
7104 for (i = 0; i < blocklen; i++) {
3972ef6f 7105 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
aca3f40b
PM
7106 }
7107 }
7108#else
7109 memset(g2h(vaddr), 0, blocklen);
7110#endif
7111}
7112
6ddbc6e4
PB
7113/* Note that signed overflow is undefined in C. The following routines are
7114 careful to use unsigned types where modulo arithmetic is required.
7115 Failure to do so _will_ break on newer gcc. */
7116
7117/* Signed saturating arithmetic. */
7118
1654b2d6 7119/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
7120static inline uint16_t add16_sat(uint16_t a, uint16_t b)
7121{
7122 uint16_t res;
7123
7124 res = a + b;
7125 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
7126 if (a & 0x8000)
7127 res = 0x8000;
7128 else
7129 res = 0x7fff;
7130 }
7131 return res;
7132}
7133
1654b2d6 7134/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
7135static inline uint8_t add8_sat(uint8_t a, uint8_t b)
7136{
7137 uint8_t res;
7138
7139 res = a + b;
7140 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
7141 if (a & 0x80)
7142 res = 0x80;
7143 else
7144 res = 0x7f;
7145 }
7146 return res;
7147}
7148
1654b2d6 7149/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
7150static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
7151{
7152 uint16_t res;
7153
7154 res = a - b;
7155 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
7156 if (a & 0x8000)
7157 res = 0x8000;
7158 else
7159 res = 0x7fff;
7160 }
7161 return res;
7162}
7163
1654b2d6 7164/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
7165static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
7166{
7167 uint8_t res;
7168
7169 res = a - b;
7170 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
7171 if (a & 0x80)
7172 res = 0x80;
7173 else
7174 res = 0x7f;
7175 }
7176 return res;
7177}
7178
7179#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7180#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7181#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7182#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7183#define PFX q
7184
7185#include "op_addsub.h"
7186
7187/* Unsigned saturating arithmetic. */
460a09c1 7188static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
7189{
7190 uint16_t res;
7191 res = a + b;
7192 if (res < a)
7193 res = 0xffff;
7194 return res;
7195}
7196
460a09c1 7197static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 7198{
4c4fd3f8 7199 if (a > b)
6ddbc6e4
PB
7200 return a - b;
7201 else
7202 return 0;
7203}
7204
7205static inline uint8_t add8_usat(uint8_t a, uint8_t b)
7206{
7207 uint8_t res;
7208 res = a + b;
7209 if (res < a)
7210 res = 0xff;
7211 return res;
7212}
7213
7214static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
7215{
4c4fd3f8 7216 if (a > b)
6ddbc6e4
PB
7217 return a - b;
7218 else
7219 return 0;
7220}
7221
7222#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7223#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7224#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7225#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7226#define PFX uq
7227
7228#include "op_addsub.h"
7229
7230/* Signed modulo arithmetic. */
7231#define SARITH16(a, b, n, op) do { \
7232 int32_t sum; \
db6e2e65 7233 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
7234 RESULT(sum, n, 16); \
7235 if (sum >= 0) \
7236 ge |= 3 << (n * 2); \
7237 } while(0)
7238
7239#define SARITH8(a, b, n, op) do { \
7240 int32_t sum; \
db6e2e65 7241 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
7242 RESULT(sum, n, 8); \
7243 if (sum >= 0) \
7244 ge |= 1 << n; \
7245 } while(0)
7246
7247
7248#define ADD16(a, b, n) SARITH16(a, b, n, +)
7249#define SUB16(a, b, n) SARITH16(a, b, n, -)
7250#define ADD8(a, b, n) SARITH8(a, b, n, +)
7251#define SUB8(a, b, n) SARITH8(a, b, n, -)
7252#define PFX s
7253#define ARITH_GE
7254
7255#include "op_addsub.h"
7256
7257/* Unsigned modulo arithmetic. */
7258#define ADD16(a, b, n) do { \
7259 uint32_t sum; \
7260 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7261 RESULT(sum, n, 16); \
a87aa10b 7262 if ((sum >> 16) == 1) \
6ddbc6e4
PB
7263 ge |= 3 << (n * 2); \
7264 } while(0)
7265
7266#define ADD8(a, b, n) do { \
7267 uint32_t sum; \
7268 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7269 RESULT(sum, n, 8); \
a87aa10b
AZ
7270 if ((sum >> 8) == 1) \
7271 ge |= 1 << n; \
6ddbc6e4
PB
7272 } while(0)
7273
7274#define SUB16(a, b, n) do { \
7275 uint32_t sum; \
7276 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7277 RESULT(sum, n, 16); \
7278 if ((sum >> 16) == 0) \
7279 ge |= 3 << (n * 2); \
7280 } while(0)
7281
7282#define SUB8(a, b, n) do { \
7283 uint32_t sum; \
7284 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7285 RESULT(sum, n, 8); \
7286 if ((sum >> 8) == 0) \
a87aa10b 7287 ge |= 1 << n; \
6ddbc6e4
PB
7288 } while(0)
7289
7290#define PFX u
7291#define ARITH_GE
7292
7293#include "op_addsub.h"
7294
7295/* Halved signed arithmetic. */
7296#define ADD16(a, b, n) \
7297 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7298#define SUB16(a, b, n) \
7299 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7300#define ADD8(a, b, n) \
7301 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7302#define SUB8(a, b, n) \
7303 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7304#define PFX sh
7305
7306#include "op_addsub.h"
7307
7308/* Halved unsigned arithmetic. */
7309#define ADD16(a, b, n) \
7310 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7311#define SUB16(a, b, n) \
7312 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7313#define ADD8(a, b, n) \
7314 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7315#define SUB8(a, b, n) \
7316 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7317#define PFX uh
7318
7319#include "op_addsub.h"
7320
7321static inline uint8_t do_usad(uint8_t a, uint8_t b)
7322{
7323 if (a > b)
7324 return a - b;
7325 else
7326 return b - a;
7327}
7328
7329/* Unsigned sum of absolute byte differences. */
7330uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
7331{
7332 uint32_t sum;
7333 sum = do_usad(a, b);
7334 sum += do_usad(a >> 8, b >> 8);
7335 sum += do_usad(a >> 16, b >>16);
7336 sum += do_usad(a >> 24, b >> 24);
7337 return sum;
7338}
7339
7340/* For ARMv6 SEL instruction. */
7341uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
7342{
7343 uint32_t mask;
7344
7345 mask = 0;
7346 if (flags & 1)
7347 mask |= 0xff;
7348 if (flags & 2)
7349 mask |= 0xff00;
7350 if (flags & 4)
7351 mask |= 0xff0000;
7352 if (flags & 8)
7353 mask |= 0xff000000;
7354 return (a & mask) | (b & ~mask);
7355}
7356
b90372ad
PM
7357/* VFP support. We follow the convention used for VFP instructions:
7358 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
7359 "d" suffix. */
7360
7361/* Convert host exception flags to vfp form. */
7362static inline int vfp_exceptbits_from_host(int host_bits)
7363{
7364 int target_bits = 0;
7365
7366 if (host_bits & float_flag_invalid)
7367 target_bits |= 1;
7368 if (host_bits & float_flag_divbyzero)
7369 target_bits |= 2;
7370 if (host_bits & float_flag_overflow)
7371 target_bits |= 4;
36802b6b 7372 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
7373 target_bits |= 8;
7374 if (host_bits & float_flag_inexact)
7375 target_bits |= 0x10;
cecd8504
PM
7376 if (host_bits & float_flag_input_denormal)
7377 target_bits |= 0x80;
4373f3ce
PB
7378 return target_bits;
7379}
7380
0ecb72a5 7381uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
7382{
7383 int i;
7384 uint32_t fpscr;
7385
7386 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
7387 | (env->vfp.vec_len << 16)
7388 | (env->vfp.vec_stride << 20);
7389 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 7390 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
7391 fpscr |= vfp_exceptbits_from_host(i);
7392 return fpscr;
7393}
7394
0ecb72a5 7395uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
7396{
7397 return HELPER(vfp_get_fpscr)(env);
7398}
7399
4373f3ce
PB
7400/* Convert vfp exception flags to target form. */
7401static inline int vfp_exceptbits_to_host(int target_bits)
7402{
7403 int host_bits = 0;
7404
7405 if (target_bits & 1)
7406 host_bits |= float_flag_invalid;
7407 if (target_bits & 2)
7408 host_bits |= float_flag_divbyzero;
7409 if (target_bits & 4)
7410 host_bits |= float_flag_overflow;
7411 if (target_bits & 8)
7412 host_bits |= float_flag_underflow;
7413 if (target_bits & 0x10)
7414 host_bits |= float_flag_inexact;
cecd8504
PM
7415 if (target_bits & 0x80)
7416 host_bits |= float_flag_input_denormal;
4373f3ce
PB
7417 return host_bits;
7418}
7419
0ecb72a5 7420void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
7421{
7422 int i;
7423 uint32_t changed;
7424
7425 changed = env->vfp.xregs[ARM_VFP_FPSCR];
7426 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
7427 env->vfp.vec_len = (val >> 16) & 7;
7428 env->vfp.vec_stride = (val >> 20) & 3;
7429
7430 changed ^= val;
7431 if (changed & (3 << 22)) {
7432 i = (val >> 22) & 3;
7433 switch (i) {
4d3da0f3 7434 case FPROUNDING_TIEEVEN:
4373f3ce
PB
7435 i = float_round_nearest_even;
7436 break;
4d3da0f3 7437 case FPROUNDING_POSINF:
4373f3ce
PB
7438 i = float_round_up;
7439 break;
4d3da0f3 7440 case FPROUNDING_NEGINF:
4373f3ce
PB
7441 i = float_round_down;
7442 break;
4d3da0f3 7443 case FPROUNDING_ZERO:
4373f3ce
PB
7444 i = float_round_to_zero;
7445 break;
7446 }
7447 set_float_rounding_mode(i, &env->vfp.fp_status);
7448 }
cecd8504 7449 if (changed & (1 << 24)) {
fe76d976 7450 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
7451 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7452 }
5c7908ed
PB
7453 if (changed & (1 << 25))
7454 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 7455
b12c390b 7456 i = vfp_exceptbits_to_host(val);
4373f3ce 7457 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 7458 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
7459}
7460
0ecb72a5 7461void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
7462{
7463 HELPER(vfp_set_fpscr)(env, val);
7464}
7465
4373f3ce
PB
7466#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7467
7468#define VFP_BINOP(name) \
ae1857ec 7469float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 7470{ \
ae1857ec
PM
7471 float_status *fpst = fpstp; \
7472 return float32_ ## name(a, b, fpst); \
4373f3ce 7473} \
ae1857ec 7474float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 7475{ \
ae1857ec
PM
7476 float_status *fpst = fpstp; \
7477 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
7478}
7479VFP_BINOP(add)
7480VFP_BINOP(sub)
7481VFP_BINOP(mul)
7482VFP_BINOP(div)
f71a2ae5
PM
7483VFP_BINOP(min)
7484VFP_BINOP(max)
7485VFP_BINOP(minnum)
7486VFP_BINOP(maxnum)
4373f3ce
PB
7487#undef VFP_BINOP
7488
7489float32 VFP_HELPER(neg, s)(float32 a)
7490{
7491 return float32_chs(a);
7492}
7493
7494float64 VFP_HELPER(neg, d)(float64 a)
7495{
66230e0d 7496 return float64_chs(a);
4373f3ce
PB
7497}
7498
7499float32 VFP_HELPER(abs, s)(float32 a)
7500{
7501 return float32_abs(a);
7502}
7503
7504float64 VFP_HELPER(abs, d)(float64 a)
7505{
66230e0d 7506 return float64_abs(a);
4373f3ce
PB
7507}
7508
0ecb72a5 7509float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
7510{
7511 return float32_sqrt(a, &env->vfp.fp_status);
7512}
7513
0ecb72a5 7514float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
7515{
7516 return float64_sqrt(a, &env->vfp.fp_status);
7517}
7518
7519/* XXX: check quiet/signaling case */
7520#define DO_VFP_cmp(p, type) \
0ecb72a5 7521void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
7522{ \
7523 uint32_t flags; \
7524 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7525 case 0: flags = 0x6; break; \
7526 case -1: flags = 0x8; break; \
7527 case 1: flags = 0x2; break; \
7528 default: case 2: flags = 0x3; break; \
7529 } \
7530 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7531 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7532} \
0ecb72a5 7533void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
7534{ \
7535 uint32_t flags; \
7536 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7537 case 0: flags = 0x6; break; \
7538 case -1: flags = 0x8; break; \
7539 case 1: flags = 0x2; break; \
7540 default: case 2: flags = 0x3; break; \
7541 } \
7542 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7543 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7544}
7545DO_VFP_cmp(s, float32)
7546DO_VFP_cmp(d, float64)
7547#undef DO_VFP_cmp
7548
5500b06c 7549/* Integer to float and float to integer conversions */
4373f3ce 7550
5500b06c
PM
7551#define CONV_ITOF(name, fsz, sign) \
7552 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7553{ \
7554 float_status *fpst = fpstp; \
85836979 7555 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
7556}
7557
5500b06c
PM
7558#define CONV_FTOI(name, fsz, sign, round) \
7559uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7560{ \
7561 float_status *fpst = fpstp; \
7562 if (float##fsz##_is_any_nan(x)) { \
7563 float_raise(float_flag_invalid, fpst); \
7564 return 0; \
7565 } \
7566 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
7567}
7568
5500b06c
PM
7569#define FLOAT_CONVS(name, p, fsz, sign) \
7570CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7571CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7572CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 7573
5500b06c
PM
7574FLOAT_CONVS(si, s, 32, )
7575FLOAT_CONVS(si, d, 64, )
7576FLOAT_CONVS(ui, s, 32, u)
7577FLOAT_CONVS(ui, d, 64, u)
4373f3ce 7578
5500b06c
PM
7579#undef CONV_ITOF
7580#undef CONV_FTOI
7581#undef FLOAT_CONVS
4373f3ce
PB
7582
7583/* floating point conversion */
0ecb72a5 7584float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 7585{
2d627737
PM
7586 float64 r = float32_to_float64(x, &env->vfp.fp_status);
7587 /* ARM requires that S<->D conversion of any kind of NaN generates
7588 * a quiet NaN by forcing the most significant frac bit to 1.
7589 */
7590 return float64_maybe_silence_nan(r);
4373f3ce
PB
7591}
7592
0ecb72a5 7593float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 7594{
2d627737
PM
7595 float32 r = float64_to_float32(x, &env->vfp.fp_status);
7596 /* ARM requires that S<->D conversion of any kind of NaN generates
7597 * a quiet NaN by forcing the most significant frac bit to 1.
7598 */
7599 return float32_maybe_silence_nan(r);
4373f3ce
PB
7600}
7601
7602/* VFP3 fixed point conversion. */
16d5b3ca 7603#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
7604float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7605 void *fpstp) \
4373f3ce 7606{ \
5500b06c 7607 float_status *fpst = fpstp; \
622465e1 7608 float##fsz tmp; \
8ed697e8 7609 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 7610 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
7611}
7612
abe66f70
PM
7613/* Notice that we want only input-denormal exception flags from the
7614 * scalbn operation: the other possible flags (overflow+inexact if
7615 * we overflow to infinity, output-denormal) aren't correct for the
7616 * complete scale-and-convert operation.
7617 */
16d5b3ca
WN
7618#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7619uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7620 uint32_t shift, \
7621 void *fpstp) \
4373f3ce 7622{ \
5500b06c 7623 float_status *fpst = fpstp; \
abe66f70 7624 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
7625 float##fsz tmp; \
7626 if (float##fsz##_is_any_nan(x)) { \
5500b06c 7627 float_raise(float_flag_invalid, fpst); \
622465e1 7628 return 0; \
09d9487f 7629 } \
5500b06c 7630 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
7631 old_exc_flags |= get_float_exception_flags(fpst) \
7632 & float_flag_input_denormal; \
7633 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 7634 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
7635}
7636
16d5b3ca
WN
7637#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7638VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
7639VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7640VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7641
7642#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7643VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7644VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 7645
8ed697e8
WN
7646VFP_CONV_FIX(sh, d, 64, 64, int16)
7647VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 7648VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
7649VFP_CONV_FIX(uh, d, 64, 64, uint16)
7650VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 7651VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
7652VFP_CONV_FIX(sh, s, 32, 32, int16)
7653VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 7654VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
7655VFP_CONV_FIX(uh, s, 32, 32, uint16)
7656VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 7657VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 7658#undef VFP_CONV_FIX
16d5b3ca
WN
7659#undef VFP_CONV_FIX_FLOAT
7660#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 7661
52a1f6a3
AG
7662/* Set the current fp rounding mode and return the old one.
7663 * The argument is a softfloat float_round_ value.
7664 */
7665uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
7666{
7667 float_status *fp_status = &env->vfp.fp_status;
7668
7669 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7670 set_float_rounding_mode(rmode, fp_status);
7671
7672 return prev_rmode;
7673}
7674
43630e58
WN
7675/* Set the current fp rounding mode in the standard fp status and return
7676 * the old one. This is for NEON instructions that need to change the
7677 * rounding mode but wish to use the standard FPSCR values for everything
7678 * else. Always set the rounding mode back to the correct value after
7679 * modifying it.
7680 * The argument is a softfloat float_round_ value.
7681 */
7682uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
7683{
7684 float_status *fp_status = &env->vfp.standard_fp_status;
7685
7686 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7687 set_float_rounding_mode(rmode, fp_status);
7688
7689 return prev_rmode;
7690}
7691
60011498 7692/* Half precision conversions. */
0ecb72a5 7693static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 7694{
60011498 7695 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
7696 float32 r = float16_to_float32(make_float16(a), ieee, s);
7697 if (ieee) {
7698 return float32_maybe_silence_nan(r);
7699 }
7700 return r;
60011498
PB
7701}
7702
0ecb72a5 7703static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 7704{
60011498 7705 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
7706 float16 r = float32_to_float16(a, ieee, s);
7707 if (ieee) {
7708 r = float16_maybe_silence_nan(r);
7709 }
7710 return float16_val(r);
60011498
PB
7711}
7712
0ecb72a5 7713float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
7714{
7715 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
7716}
7717
0ecb72a5 7718uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
7719{
7720 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
7721}
7722
0ecb72a5 7723float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
7724{
7725 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
7726}
7727
0ecb72a5 7728uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
7729{
7730 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
7731}
7732
8900aad2
PM
7733float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
7734{
7735 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7736 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
7737 if (ieee) {
7738 return float64_maybe_silence_nan(r);
7739 }
7740 return r;
7741}
7742
7743uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
7744{
7745 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7746 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
7747 if (ieee) {
7748 r = float16_maybe_silence_nan(r);
7749 }
7750 return float16_val(r);
7751}
7752
dda3ec49 7753#define float32_two make_float32(0x40000000)
6aae3df1
PM
7754#define float32_three make_float32(0x40400000)
7755#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 7756
0ecb72a5 7757float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 7758{
dda3ec49
PM
7759 float_status *s = &env->vfp.standard_fp_status;
7760 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7761 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
7762 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7763 float_raise(float_flag_input_denormal, s);
7764 }
dda3ec49
PM
7765 return float32_two;
7766 }
7767 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
7768}
7769
0ecb72a5 7770float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 7771{
71826966 7772 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
7773 float32 product;
7774 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7775 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
7776 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7777 float_raise(float_flag_input_denormal, s);
7778 }
6aae3df1 7779 return float32_one_point_five;
9ea62f57 7780 }
6aae3df1
PM
7781 product = float32_mul(a, b, s);
7782 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
7783}
7784
8f8e3aa4
PB
7785/* NEON helpers. */
7786
56bf4fe2
CL
7787/* Constants 256 and 512 are used in some helpers; we avoid relying on
7788 * int->float conversions at run-time. */
7789#define float64_256 make_float64(0x4070000000000000LL)
7790#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
7791#define float32_maxnorm make_float32(0x7f7fffff)
7792#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 7793
b6d4443a
AB
7794/* Reciprocal functions
7795 *
7796 * The algorithm that must be used to calculate the estimate
7797 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 7798 */
b6d4443a
AB
7799
7800static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 7801{
1146a817
PM
7802 /* These calculations mustn't set any fp exception flags,
7803 * so we use a local copy of the fp_status.
7804 */
b6d4443a 7805 float_status dummy_status = *real_fp_status;
1146a817 7806 float_status *s = &dummy_status;
fe0e4872
CL
7807 /* q = (int)(a * 512.0) */
7808 float64 q = float64_mul(float64_512, a, s);
7809 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7810
7811 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7812 q = int64_to_float64(q_int, s);
7813 q = float64_add(q, float64_half, s);
7814 q = float64_div(q, float64_512, s);
7815 q = float64_div(float64_one, q, s);
7816
7817 /* s = (int)(256.0 * r + 0.5) */
7818 q = float64_mul(q, float64_256, s);
7819 q = float64_add(q, float64_half, s);
7820 q_int = float64_to_int64_round_to_zero(q, s);
7821
7822 /* return (double)s / 256.0 */
7823 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7824}
7825
b6d4443a
AB
7826/* Common wrapper to call recip_estimate */
7827static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 7828{
b6d4443a
AB
7829 uint64_t val64 = float64_val(num);
7830 uint64_t frac = extract64(val64, 0, 52);
7831 int64_t exp = extract64(val64, 52, 11);
7832 uint64_t sbit;
7833 float64 scaled, estimate;
fe0e4872 7834
b6d4443a
AB
7835 /* Generate the scaled number for the estimate function */
7836 if (exp == 0) {
7837 if (extract64(frac, 51, 1) == 0) {
7838 exp = -1;
7839 frac = extract64(frac, 0, 50) << 2;
7840 } else {
7841 frac = extract64(frac, 0, 51) << 1;
7842 }
7843 }
fe0e4872 7844
b6d4443a
AB
7845 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7846 scaled = make_float64((0x3feULL << 52)
7847 | extract64(frac, 44, 8) << 44);
7848
7849 estimate = recip_estimate(scaled, fpst);
7850
7851 /* Build new result */
7852 val64 = float64_val(estimate);
7853 sbit = 0x8000000000000000ULL & val64;
7854 exp = off - exp;
7855 frac = extract64(val64, 0, 52);
7856
7857 if (exp == 0) {
7858 frac = 1ULL << 51 | extract64(frac, 1, 51);
7859 } else if (exp == -1) {
7860 frac = 1ULL << 50 | extract64(frac, 2, 50);
7861 exp = 0;
7862 }
7863
7864 return make_float64(sbit | (exp << 52) | frac);
7865}
7866
7867static bool round_to_inf(float_status *fpst, bool sign_bit)
7868{
7869 switch (fpst->float_rounding_mode) {
7870 case float_round_nearest_even: /* Round to Nearest */
7871 return true;
7872 case float_round_up: /* Round to +Inf */
7873 return !sign_bit;
7874 case float_round_down: /* Round to -Inf */
7875 return sign_bit;
7876 case float_round_to_zero: /* Round to Zero */
7877 return false;
7878 }
7879
7880 g_assert_not_reached();
7881}
7882
7883float32 HELPER(recpe_f32)(float32 input, void *fpstp)
7884{
7885 float_status *fpst = fpstp;
7886 float32 f32 = float32_squash_input_denormal(input, fpst);
7887 uint32_t f32_val = float32_val(f32);
7888 uint32_t f32_sbit = 0x80000000ULL & f32_val;
7889 int32_t f32_exp = extract32(f32_val, 23, 8);
7890 uint32_t f32_frac = extract32(f32_val, 0, 23);
7891 float64 f64, r64;
7892 uint64_t r64_val;
7893 int64_t r64_exp;
7894 uint64_t r64_frac;
7895
7896 if (float32_is_any_nan(f32)) {
7897 float32 nan = f32;
7898 if (float32_is_signaling_nan(f32)) {
7899 float_raise(float_flag_invalid, fpst);
7900 nan = float32_maybe_silence_nan(f32);
fe0e4872 7901 }
b6d4443a
AB
7902 if (fpst->default_nan_mode) {
7903 nan = float32_default_nan;
43fe9bdb 7904 }
b6d4443a
AB
7905 return nan;
7906 } else if (float32_is_infinity(f32)) {
7907 return float32_set_sign(float32_zero, float32_is_neg(f32));
7908 } else if (float32_is_zero(f32)) {
7909 float_raise(float_flag_divbyzero, fpst);
7910 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7911 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
7912 /* Abs(value) < 2.0^-128 */
7913 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7914 if (round_to_inf(fpst, f32_sbit)) {
7915 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7916 } else {
7917 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
7918 }
7919 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
7920 float_raise(float_flag_underflow, fpst);
7921 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
7922 }
7923
fe0e4872 7924
b6d4443a
AB
7925 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
7926 r64 = call_recip_estimate(f64, 253, fpst);
7927 r64_val = float64_val(r64);
7928 r64_exp = extract64(r64_val, 52, 11);
7929 r64_frac = extract64(r64_val, 0, 52);
7930
7931 /* result = sign : result_exp<7:0> : fraction<51:29>; */
7932 return make_float32(f32_sbit |
7933 (r64_exp & 0xff) << 23 |
7934 extract64(r64_frac, 29, 24));
7935}
7936
7937float64 HELPER(recpe_f64)(float64 input, void *fpstp)
7938{
7939 float_status *fpst = fpstp;
7940 float64 f64 = float64_squash_input_denormal(input, fpst);
7941 uint64_t f64_val = float64_val(f64);
7942 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
7943 int64_t f64_exp = extract64(f64_val, 52, 11);
7944 float64 r64;
7945 uint64_t r64_val;
7946 int64_t r64_exp;
7947 uint64_t r64_frac;
7948
7949 /* Deal with any special cases */
7950 if (float64_is_any_nan(f64)) {
7951 float64 nan = f64;
7952 if (float64_is_signaling_nan(f64)) {
7953 float_raise(float_flag_invalid, fpst);
7954 nan = float64_maybe_silence_nan(f64);
7955 }
7956 if (fpst->default_nan_mode) {
7957 nan = float64_default_nan;
7958 }
7959 return nan;
7960 } else if (float64_is_infinity(f64)) {
7961 return float64_set_sign(float64_zero, float64_is_neg(f64));
7962 } else if (float64_is_zero(f64)) {
7963 float_raise(float_flag_divbyzero, fpst);
7964 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7965 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
7966 /* Abs(value) < 2.0^-1024 */
7967 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7968 if (round_to_inf(fpst, f64_sbit)) {
7969 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7970 } else {
7971 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
7972 }
fc1792e9 7973 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
7974 float_raise(float_flag_underflow, fpst);
7975 return float64_set_sign(float64_zero, float64_is_neg(f64));
7976 }
fe0e4872 7977
b6d4443a
AB
7978 r64 = call_recip_estimate(f64, 2045, fpst);
7979 r64_val = float64_val(r64);
7980 r64_exp = extract64(r64_val, 52, 11);
7981 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 7982
b6d4443a
AB
7983 /* result = sign : result_exp<10:0> : fraction<51:0> */
7984 return make_float64(f64_sbit |
7985 ((r64_exp & 0x7ff) << 52) |
7986 r64_frac);
4373f3ce
PB
7987}
7988
e07be5d2
CL
7989/* The algorithm that must be used to calculate the estimate
7990 * is specified by the ARM ARM.
7991 */
c2fb418e 7992static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 7993{
1146a817
PM
7994 /* These calculations mustn't set any fp exception flags,
7995 * so we use a local copy of the fp_status.
7996 */
c2fb418e 7997 float_status dummy_status = *real_fp_status;
1146a817 7998 float_status *s = &dummy_status;
e07be5d2
CL
7999 float64 q;
8000 int64_t q_int;
8001
8002 if (float64_lt(a, float64_half, s)) {
8003 /* range 0.25 <= a < 0.5 */
8004
8005 /* a in units of 1/512 rounded down */
8006 /* q0 = (int)(a * 512.0); */
8007 q = float64_mul(float64_512, a, s);
8008 q_int = float64_to_int64_round_to_zero(q, s);
8009
8010 /* reciprocal root r */
8011 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8012 q = int64_to_float64(q_int, s);
8013 q = float64_add(q, float64_half, s);
8014 q = float64_div(q, float64_512, s);
8015 q = float64_sqrt(q, s);
8016 q = float64_div(float64_one, q, s);
8017 } else {
8018 /* range 0.5 <= a < 1.0 */
8019
8020 /* a in units of 1/256 rounded down */
8021 /* q1 = (int)(a * 256.0); */
8022 q = float64_mul(float64_256, a, s);
8023 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8024
8025 /* reciprocal root r */
8026 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8027 q = int64_to_float64(q_int, s);
8028 q = float64_add(q, float64_half, s);
8029 q = float64_div(q, float64_256, s);
8030 q = float64_sqrt(q, s);
8031 q = float64_div(float64_one, q, s);
8032 }
8033 /* r in units of 1/256 rounded to nearest */
8034 /* s = (int)(256.0 * r + 0.5); */
8035
8036 q = float64_mul(q, float64_256,s );
8037 q = float64_add(q, float64_half, s);
8038 q_int = float64_to_int64_round_to_zero(q, s);
8039
8040 /* return (double)s / 256.0;*/
8041 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8042}
8043
c2fb418e 8044float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 8045{
c2fb418e
AB
8046 float_status *s = fpstp;
8047 float32 f32 = float32_squash_input_denormal(input, s);
8048 uint32_t val = float32_val(f32);
8049 uint32_t f32_sbit = 0x80000000 & val;
8050 int32_t f32_exp = extract32(val, 23, 8);
8051 uint32_t f32_frac = extract32(val, 0, 23);
8052 uint64_t f64_frac;
8053 uint64_t val64;
e07be5d2
CL
8054 int result_exp;
8055 float64 f64;
e07be5d2 8056
c2fb418e
AB
8057 if (float32_is_any_nan(f32)) {
8058 float32 nan = f32;
8059 if (float32_is_signaling_nan(f32)) {
e07be5d2 8060 float_raise(float_flag_invalid, s);
c2fb418e 8061 nan = float32_maybe_silence_nan(f32);
e07be5d2 8062 }
c2fb418e
AB
8063 if (s->default_nan_mode) {
8064 nan = float32_default_nan;
43fe9bdb 8065 }
c2fb418e
AB
8066 return nan;
8067 } else if (float32_is_zero(f32)) {
e07be5d2 8068 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
8069 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8070 } else if (float32_is_neg(f32)) {
e07be5d2
CL
8071 float_raise(float_flag_invalid, s);
8072 return float32_default_nan;
c2fb418e 8073 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
8074 return float32_zero;
8075 }
8076
c2fb418e 8077 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 8078 * preserving the parity of the exponent. */
c2fb418e
AB
8079
8080 f64_frac = ((uint64_t) f32_frac) << 29;
8081 if (f32_exp == 0) {
8082 while (extract64(f64_frac, 51, 1) == 0) {
8083 f64_frac = f64_frac << 1;
8084 f32_exp = f32_exp-1;
8085 }
8086 f64_frac = extract64(f64_frac, 0, 51) << 1;
8087 }
8088
8089 if (extract64(f32_exp, 0, 1) == 0) {
8090 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 8091 | (0x3feULL << 52)
c2fb418e 8092 | f64_frac);
e07be5d2 8093 } else {
c2fb418e 8094 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 8095 | (0x3fdULL << 52)
c2fb418e 8096 | f64_frac);
e07be5d2
CL
8097 }
8098
c2fb418e 8099 result_exp = (380 - f32_exp) / 2;
e07be5d2 8100
c2fb418e 8101 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
8102
8103 val64 = float64_val(f64);
8104
26cc6abf 8105 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
8106 | ((val64 >> 29) & 0x7fffff);
8107 return make_float32(val);
4373f3ce
PB
8108}
8109
c2fb418e
AB
8110float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
8111{
8112 float_status *s = fpstp;
8113 float64 f64 = float64_squash_input_denormal(input, s);
8114 uint64_t val = float64_val(f64);
8115 uint64_t f64_sbit = 0x8000000000000000ULL & val;
8116 int64_t f64_exp = extract64(val, 52, 11);
8117 uint64_t f64_frac = extract64(val, 0, 52);
8118 int64_t result_exp;
8119 uint64_t result_frac;
8120
8121 if (float64_is_any_nan(f64)) {
8122 float64 nan = f64;
8123 if (float64_is_signaling_nan(f64)) {
8124 float_raise(float_flag_invalid, s);
8125 nan = float64_maybe_silence_nan(f64);
8126 }
8127 if (s->default_nan_mode) {
8128 nan = float64_default_nan;
8129 }
8130 return nan;
8131 } else if (float64_is_zero(f64)) {
8132 float_raise(float_flag_divbyzero, s);
8133 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8134 } else if (float64_is_neg(f64)) {
8135 float_raise(float_flag_invalid, s);
8136 return float64_default_nan;
8137 } else if (float64_is_infinity(f64)) {
8138 return float64_zero;
8139 }
8140
8141 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8142 * preserving the parity of the exponent. */
8143
8144 if (f64_exp == 0) {
8145 while (extract64(f64_frac, 51, 1) == 0) {
8146 f64_frac = f64_frac << 1;
8147 f64_exp = f64_exp - 1;
8148 }
8149 f64_frac = extract64(f64_frac, 0, 51) << 1;
8150 }
8151
8152 if (extract64(f64_exp, 0, 1) == 0) {
8153 f64 = make_float64(f64_sbit
8154 | (0x3feULL << 52)
8155 | f64_frac);
8156 } else {
8157 f64 = make_float64(f64_sbit
8158 | (0x3fdULL << 52)
8159 | f64_frac);
8160 }
8161
8162 result_exp = (3068 - f64_exp) / 2;
8163
8164 f64 = recip_sqrt_estimate(f64, s);
8165
8166 result_frac = extract64(float64_val(f64), 0, 52);
8167
8168 return make_float64(f64_sbit |
8169 ((result_exp & 0x7ff) << 52) |
8170 result_frac);
8171}
8172
b6d4443a 8173uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 8174{
b6d4443a 8175 float_status *s = fpstp;
fe0e4872
CL
8176 float64 f64;
8177
8178 if ((a & 0x80000000) == 0) {
8179 return 0xffffffff;
8180 }
8181
8182 f64 = make_float64((0x3feULL << 52)
8183 | ((int64_t)(a & 0x7fffffff) << 21));
8184
b6d4443a 8185 f64 = recip_estimate(f64, s);
fe0e4872
CL
8186
8187 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
8188}
8189
c2fb418e 8190uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 8191{
c2fb418e 8192 float_status *fpst = fpstp;
e07be5d2
CL
8193 float64 f64;
8194
8195 if ((a & 0xc0000000) == 0) {
8196 return 0xffffffff;
8197 }
8198
8199 if (a & 0x80000000) {
8200 f64 = make_float64((0x3feULL << 52)
8201 | ((uint64_t)(a & 0x7fffffff) << 21));
8202 } else { /* bits 31-30 == '01' */
8203 f64 = make_float64((0x3fdULL << 52)
8204 | ((uint64_t)(a & 0x3fffffff) << 22));
8205 }
8206
c2fb418e 8207 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
8208
8209 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 8210}
fe1479c3 8211
da97f52c
PM
8212/* VFPv4 fused multiply-accumulate */
8213float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
8214{
8215 float_status *fpst = fpstp;
8216 return float32_muladd(a, b, c, 0, fpst);
8217}
8218
8219float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
8220{
8221 float_status *fpst = fpstp;
8222 return float64_muladd(a, b, c, 0, fpst);
8223}
d9b0848d
PM
8224
8225/* ARMv8 round to integral */
8226float32 HELPER(rints_exact)(float32 x, void *fp_status)
8227{
8228 return float32_round_to_int(x, fp_status);
8229}
8230
8231float64 HELPER(rintd_exact)(float64 x, void *fp_status)
8232{
8233 return float64_round_to_int(x, fp_status);
8234}
8235
8236float32 HELPER(rints)(float32 x, void *fp_status)
8237{
8238 int old_flags = get_float_exception_flags(fp_status), new_flags;
8239 float32 ret;
8240
8241 ret = float32_round_to_int(x, fp_status);
8242
8243 /* Suppress any inexact exceptions the conversion produced */
8244 if (!(old_flags & float_flag_inexact)) {
8245 new_flags = get_float_exception_flags(fp_status);
8246 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8247 }
8248
8249 return ret;
8250}
8251
8252float64 HELPER(rintd)(float64 x, void *fp_status)
8253{
8254 int old_flags = get_float_exception_flags(fp_status), new_flags;
8255 float64 ret;
8256
8257 ret = float64_round_to_int(x, fp_status);
8258
8259 new_flags = get_float_exception_flags(fp_status);
8260
8261 /* Suppress any inexact exceptions the conversion produced */
8262 if (!(old_flags & float_flag_inexact)) {
8263 new_flags = get_float_exception_flags(fp_status);
8264 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8265 }
8266
8267 return ret;
8268}
9972da66
WN
8269
8270/* Convert ARM rounding mode to softfloat */
8271int arm_rmode_to_sf(int rmode)
8272{
8273 switch (rmode) {
8274 case FPROUNDING_TIEAWAY:
8275 rmode = float_round_ties_away;
8276 break;
8277 case FPROUNDING_ODD:
8278 /* FIXME: add support for TIEAWAY and ODD */
8279 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
8280 rmode);
8281 case FPROUNDING_TIEEVEN:
8282 default:
8283 rmode = float_round_nearest_even;
8284 break;
8285 case FPROUNDING_POSINF:
8286 rmode = float_round_up;
8287 break;
8288 case FPROUNDING_NEGINF:
8289 rmode = float_round_down;
8290 break;
8291 case FPROUNDING_ZERO:
8292 rmode = float_round_to_zero;
8293 break;
8294 }
8295 return rmode;
8296}
eb0ecd5a 8297
aa633469
PM
8298/* CRC helpers.
8299 * The upper bytes of val (above the number specified by 'bytes') must have
8300 * been zeroed out by the caller.
8301 */
eb0ecd5a
WN
8302uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
8303{
8304 uint8_t buf[4];
8305
aa633469 8306 stl_le_p(buf, val);
eb0ecd5a
WN
8307
8308 /* zlib crc32 converts the accumulator and output to one's complement. */
8309 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
8310}
8311
8312uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
8313{
8314 uint8_t buf[4];
8315
aa633469 8316 stl_le_p(buf, val);
eb0ecd5a
WN
8317
8318 /* Linux crc32c converts the output to one's complement. */
8319 return crc32c(acc, buf, bytes) ^ 0xffffffff;
8320}
This page took 2.139699 seconds and 4 git commands to generate.