]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
ccd38087 | 2 | #include "internals.h" |
022c62cb | 3 | #include "exec/gdbstub.h" |
2ef6175a | 4 | #include "exec/helper-proto.h" |
1de7afc9 | 5 | #include "qemu/host-utils.h" |
78027bb6 | 6 | #include "sysemu/arch_init.h" |
9c17d615 | 7 | #include "sysemu/sysemu.h" |
1de7afc9 | 8 | #include "qemu/bitops.h" |
eb0ecd5a | 9 | #include "qemu/crc32c.h" |
f08b6170 | 10 | #include "exec/cpu_ldst.h" |
1d854765 | 11 | #include "arm_ldst.h" |
eb0ecd5a | 12 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 13 | #include "exec/semihost.h" |
0b03bdfc | 14 | |
4a501606 | 15 | #ifndef CONFIG_USER_ONLY |
b7cc4e82 PC |
16 | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, |
17 | int access_type, ARMMMUIdx mmu_idx, | |
18 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
19 | target_ulong *page_size, uint32_t *fsr); | |
7c2cb42b AF |
20 | |
21 | /* Definitions for the PMCCNTR and PMCR registers */ | |
22 | #define PMCRD 0x8 | |
23 | #define PMCRC 0x4 | |
24 | #define PMCRE 0x1 | |
4a501606 PM |
25 | #endif |
26 | ||
0ecb72a5 | 27 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
28 | { |
29 | int nregs; | |
30 | ||
31 | /* VFP data registers are always little-endian. */ | |
32 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
33 | if (reg < nregs) { | |
34 | stfq_le_p(buf, env->vfp.regs[reg]); | |
35 | return 8; | |
36 | } | |
37 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
38 | /* Aliases for Q regs. */ | |
39 | nregs += 16; | |
40 | if (reg < nregs) { | |
41 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
42 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
43 | return 16; | |
44 | } | |
45 | } | |
46 | switch (reg - nregs) { | |
47 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
48 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
49 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
50 | } | |
51 | return 0; | |
52 | } | |
53 | ||
0ecb72a5 | 54 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
55 | { |
56 | int nregs; | |
57 | ||
58 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
59 | if (reg < nregs) { | |
60 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
61 | return 8; | |
62 | } | |
63 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
64 | nregs += 16; | |
65 | if (reg < nregs) { | |
66 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
67 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
68 | return 16; | |
69 | } | |
70 | } | |
71 | switch (reg - nregs) { | |
72 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
73 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 74 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
75 | } |
76 | return 0; | |
77 | } | |
78 | ||
6a669427 PM |
79 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
80 | { | |
81 | switch (reg) { | |
82 | case 0 ... 31: | |
83 | /* 128 bit FP register */ | |
84 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
85 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
86 | return 16; | |
87 | case 32: | |
88 | /* FPSR */ | |
89 | stl_p(buf, vfp_get_fpsr(env)); | |
90 | return 4; | |
91 | case 33: | |
92 | /* FPCR */ | |
93 | stl_p(buf, vfp_get_fpcr(env)); | |
94 | return 4; | |
95 | default: | |
96 | return 0; | |
97 | } | |
98 | } | |
99 | ||
100 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
101 | { | |
102 | switch (reg) { | |
103 | case 0 ... 31: | |
104 | /* 128 bit FP register */ | |
105 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
106 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
107 | return 16; | |
108 | case 32: | |
109 | /* FPSR */ | |
110 | vfp_set_fpsr(env, ldl_p(buf)); | |
111 | return 4; | |
112 | case 33: | |
113 | /* FPCR */ | |
114 | vfp_set_fpcr(env, ldl_p(buf)); | |
115 | return 4; | |
116 | default: | |
117 | return 0; | |
118 | } | |
119 | } | |
120 | ||
c4241c7d | 121 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 122 | { |
375421cc | 123 | assert(ri->fieldoffset); |
67ed771d | 124 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 125 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 126 | } else { |
c4241c7d | 127 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 128 | } |
d4e6df63 PM |
129 | } |
130 | ||
c4241c7d PM |
131 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
132 | uint64_t value) | |
d4e6df63 | 133 | { |
375421cc | 134 | assert(ri->fieldoffset); |
67ed771d | 135 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
136 | CPREG_FIELD64(env, ri) = value; |
137 | } else { | |
138 | CPREG_FIELD32(env, ri) = value; | |
139 | } | |
d4e6df63 PM |
140 | } |
141 | ||
11f136ee FA |
142 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
143 | { | |
144 | return (char *)env + ri->fieldoffset; | |
145 | } | |
146 | ||
49a66191 | 147 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 148 | { |
59a1c327 | 149 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 150 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 151 | return ri->resetvalue; |
721fae12 | 152 | } else if (ri->raw_readfn) { |
59a1c327 | 153 | return ri->raw_readfn(env, ri); |
721fae12 | 154 | } else if (ri->readfn) { |
59a1c327 | 155 | return ri->readfn(env, ri); |
721fae12 | 156 | } else { |
59a1c327 | 157 | return raw_read(env, ri); |
721fae12 | 158 | } |
721fae12 PM |
159 | } |
160 | ||
59a1c327 | 161 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 162 | uint64_t v) |
721fae12 PM |
163 | { |
164 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
165 | * Note that constant registers are treated as write-ignored; the |
166 | * caller should check for success by whether a readback gives the | |
167 | * value written. | |
168 | */ | |
169 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 170 | return; |
721fae12 | 171 | } else if (ri->raw_writefn) { |
c4241c7d | 172 | ri->raw_writefn(env, ri, v); |
721fae12 | 173 | } else if (ri->writefn) { |
c4241c7d | 174 | ri->writefn(env, ri, v); |
721fae12 | 175 | } else { |
afb2530f | 176 | raw_write(env, ri, v); |
721fae12 | 177 | } |
721fae12 PM |
178 | } |
179 | ||
375421cc PM |
180 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
181 | { | |
182 | /* Return true if the regdef would cause an assertion if you called | |
183 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
184 | * program bug for it not to have the NO_RAW flag). | |
185 | * NB that returning false here doesn't necessarily mean that calling | |
186 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
187 | * read/write access functions which are safe for raw use" from "has | |
188 | * read/write access functions which have side effects but has forgotten | |
189 | * to provide raw access functions". | |
190 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
191 | * and assertions in raw_read()/raw_write(). | |
192 | */ | |
193 | if ((ri->type & ARM_CP_CONST) || | |
194 | ri->fieldoffset || | |
195 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
196 | return false; | |
197 | } | |
198 | return true; | |
199 | } | |
200 | ||
721fae12 PM |
201 | bool write_cpustate_to_list(ARMCPU *cpu) |
202 | { | |
203 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
204 | int i; | |
205 | bool ok = true; | |
206 | ||
207 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
208 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
209 | const ARMCPRegInfo *ri; | |
59a1c327 | 210 | |
60322b39 | 211 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
212 | if (!ri) { |
213 | ok = false; | |
214 | continue; | |
215 | } | |
7a0e58fa | 216 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
217 | continue; |
218 | } | |
59a1c327 | 219 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
220 | } |
221 | return ok; | |
222 | } | |
223 | ||
224 | bool write_list_to_cpustate(ARMCPU *cpu) | |
225 | { | |
226 | int i; | |
227 | bool ok = true; | |
228 | ||
229 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
230 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
231 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
232 | const ARMCPRegInfo *ri; |
233 | ||
60322b39 | 234 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
235 | if (!ri) { |
236 | ok = false; | |
237 | continue; | |
238 | } | |
7a0e58fa | 239 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
240 | continue; |
241 | } | |
242 | /* Write value and confirm it reads back as written | |
243 | * (to catch read-only registers and partially read-only | |
244 | * registers where the incoming migration value doesn't match) | |
245 | */ | |
59a1c327 PM |
246 | write_raw_cp_reg(&cpu->env, ri, v); |
247 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
248 | ok = false; |
249 | } | |
250 | } | |
251 | return ok; | |
252 | } | |
253 | ||
254 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
255 | { | |
256 | ARMCPU *cpu = opaque; | |
257 | uint64_t regidx; | |
258 | const ARMCPRegInfo *ri; | |
259 | ||
260 | regidx = *(uint32_t *)key; | |
60322b39 | 261 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 262 | |
7a0e58fa | 263 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
264 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
265 | /* The value array need not be initialized at this point */ | |
266 | cpu->cpreg_array_len++; | |
267 | } | |
268 | } | |
269 | ||
270 | static void count_cpreg(gpointer key, gpointer opaque) | |
271 | { | |
272 | ARMCPU *cpu = opaque; | |
273 | uint64_t regidx; | |
274 | const ARMCPRegInfo *ri; | |
275 | ||
276 | regidx = *(uint32_t *)key; | |
60322b39 | 277 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 278 | |
7a0e58fa | 279 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
280 | cpu->cpreg_array_len++; |
281 | } | |
282 | } | |
283 | ||
284 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
285 | { | |
cbf239b7 AR |
286 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
287 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 288 | |
cbf239b7 AR |
289 | if (aidx > bidx) { |
290 | return 1; | |
291 | } | |
292 | if (aidx < bidx) { | |
293 | return -1; | |
294 | } | |
295 | return 0; | |
721fae12 PM |
296 | } |
297 | ||
298 | void init_cpreg_list(ARMCPU *cpu) | |
299 | { | |
300 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
301 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
302 | */ | |
57b6d95e | 303 | GList *keys; |
721fae12 PM |
304 | int arraylen; |
305 | ||
57b6d95e | 306 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
307 | keys = g_list_sort(keys, cpreg_key_compare); |
308 | ||
309 | cpu->cpreg_array_len = 0; | |
310 | ||
311 | g_list_foreach(keys, count_cpreg, cpu); | |
312 | ||
313 | arraylen = cpu->cpreg_array_len; | |
314 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
315 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
316 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
317 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
318 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
319 | cpu->cpreg_array_len = 0; | |
320 | ||
321 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
322 | ||
323 | assert(cpu->cpreg_array_len == arraylen); | |
324 | ||
325 | g_list_free(keys); | |
326 | } | |
327 | ||
c4241c7d | 328 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 329 | { |
00c8cb0a AF |
330 | ARMCPU *cpu = arm_env_get_cpu(env); |
331 | ||
8d5c773e | 332 | raw_write(env, ri, value); |
00c8cb0a | 333 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
334 | } |
335 | ||
c4241c7d | 336 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 337 | { |
00c8cb0a AF |
338 | ARMCPU *cpu = arm_env_get_cpu(env); |
339 | ||
8d5c773e | 340 | if (raw_read(env, ri) != value) { |
08de207b PM |
341 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
342 | * not modified virtual addresses, so this causes a TLB flush. | |
343 | */ | |
00c8cb0a | 344 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 345 | raw_write(env, ri, value); |
08de207b | 346 | } |
08de207b | 347 | } |
c4241c7d PM |
348 | |
349 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
350 | uint64_t value) | |
08de207b | 351 | { |
00c8cb0a AF |
352 | ARMCPU *cpu = arm_env_get_cpu(env); |
353 | ||
8d5c773e | 354 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 355 | && !extended_addresses_enabled(env)) { |
08de207b PM |
356 | /* For VMSA (when not using the LPAE long descriptor page table |
357 | * format) this register includes the ASID, so do a TLB flush. | |
358 | * For PMSA it is purely a process ID and no action is needed. | |
359 | */ | |
00c8cb0a | 360 | tlb_flush(CPU(cpu), 1); |
08de207b | 361 | } |
8d5c773e | 362 | raw_write(env, ri, value); |
08de207b PM |
363 | } |
364 | ||
c4241c7d PM |
365 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
366 | uint64_t value) | |
d929823f PM |
367 | { |
368 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
369 | ARMCPU *cpu = arm_env_get_cpu(env); |
370 | ||
371 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
372 | } |
373 | ||
c4241c7d PM |
374 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
375 | uint64_t value) | |
d929823f PM |
376 | { |
377 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
378 | ARMCPU *cpu = arm_env_get_cpu(env); |
379 | ||
380 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
381 | } |
382 | ||
c4241c7d PM |
383 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
384 | uint64_t value) | |
d929823f PM |
385 | { |
386 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
387 | ARMCPU *cpu = arm_env_get_cpu(env); |
388 | ||
389 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
390 | } |
391 | ||
c4241c7d PM |
392 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
393 | uint64_t value) | |
d929823f PM |
394 | { |
395 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
396 | ARMCPU *cpu = arm_env_get_cpu(env); |
397 | ||
398 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
399 | } |
400 | ||
fa439fc5 PM |
401 | /* IS variants of TLB operations must affect all cores */ |
402 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
403 | uint64_t value) | |
404 | { | |
405 | CPUState *other_cs; | |
406 | ||
407 | CPU_FOREACH(other_cs) { | |
408 | tlb_flush(other_cs, 1); | |
409 | } | |
410 | } | |
411 | ||
412 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
413 | uint64_t value) | |
414 | { | |
415 | CPUState *other_cs; | |
416 | ||
417 | CPU_FOREACH(other_cs) { | |
418 | tlb_flush(other_cs, value == 0); | |
419 | } | |
420 | } | |
421 | ||
422 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
423 | uint64_t value) | |
424 | { | |
425 | CPUState *other_cs; | |
426 | ||
427 | CPU_FOREACH(other_cs) { | |
428 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
429 | } | |
430 | } | |
431 | ||
432 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
433 | uint64_t value) | |
434 | { | |
435 | CPUState *other_cs; | |
436 | ||
437 | CPU_FOREACH(other_cs) { | |
438 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
439 | } | |
440 | } | |
441 | ||
e9aa6c21 | 442 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
443 | /* Define the secure and non-secure FCSE identifier CP registers |
444 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
445 | * the secure register to be properly reset and migrated. There is also no | |
446 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
447 | */ | |
448 | { .name = "FCSEIDR(NS)", | |
449 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
450 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
451 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
452 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
453 | { .name = "FCSEIDR(S)", | |
454 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
455 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
456 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 457 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
458 | /* Define the secure and non-secure context identifier CP registers |
459 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
460 | * the secure register to be properly reset and migrated. In the | |
461 | * non-secure case, the 32-bit register will have reset and migration | |
462 | * disabled during registration as it is handled by the 64-bit instance. | |
463 | */ | |
464 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 465 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
466 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
467 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
468 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
469 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
470 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
471 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
472 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 473 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
474 | REGINFO_SENTINEL |
475 | }; | |
476 | ||
477 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
478 | /* NB: Some of these registers exist in v8 but with more precise | |
479 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
480 | */ | |
481 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
482 | { .name = "DACR", |
483 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
484 | .access = PL1_RW, .resetvalue = 0, | |
485 | .writefn = dacr_write, .raw_writefn = raw_write, | |
486 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
487 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
488 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
489 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 490 | */ |
a903c449 EI |
491 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
492 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
493 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
494 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
495 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
496 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
497 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 498 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
499 | /* Cache maintenance ops; some of this space may be overridden later. */ |
500 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
501 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
502 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
503 | REGINFO_SENTINEL |
504 | }; | |
505 | ||
7d57f408 PM |
506 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
507 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
508 | * over-broad. | |
509 | */ | |
510 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
511 | .access = PL1_W, .type = ARM_CP_WFI }, | |
512 | REGINFO_SENTINEL | |
513 | }; | |
514 | ||
515 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
516 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
517 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
518 | */ | |
519 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
520 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
521 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
522 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
523 | * OMAPCP will override this space. | |
524 | */ | |
525 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
526 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
527 | .resetvalue = 0 }, | |
528 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
529 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
530 | .resetvalue = 0 }, | |
776d4e5c PM |
531 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
532 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 533 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 534 | .resetvalue = 0 }, |
50300698 PM |
535 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
536 | * implementing it as RAZ means the "debug architecture version" bits | |
537 | * will read as a reserved value, which should cause Linux to not try | |
538 | * to use the debug hardware. | |
539 | */ | |
540 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
541 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
542 | /* MMU TLB control. Note that the wildcarding means we cover not just |
543 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
544 | */ | |
545 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
546 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 547 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
548 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
549 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 550 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
551 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
552 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 553 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
554 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
555 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 556 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
557 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
558 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
559 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
560 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
561 | REGINFO_SENTINEL |
562 | }; | |
563 | ||
c4241c7d PM |
564 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
565 | uint64_t value) | |
2771db27 | 566 | { |
f0aff255 FA |
567 | uint32_t mask = 0; |
568 | ||
569 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
570 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
571 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
572 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
573 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
574 | */ | |
575 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
576 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
577 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
578 | ||
579 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
580 | /* ASEDIS [31] bit is RAO/WI */ | |
581 | value |= (1 << 31); | |
582 | } | |
583 | ||
584 | /* VFPv3 and upwards with NEON implement 32 double precision | |
585 | * registers (D0-D31). | |
586 | */ | |
587 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
588 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
589 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
590 | value |= (1 << 30); | |
591 | } | |
592 | } | |
593 | value &= mask; | |
2771db27 | 594 | } |
7ebd5f2e | 595 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
596 | } |
597 | ||
c6f19164 GB |
598 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
599 | { | |
600 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
601 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
602 | if (arm_current_el(env) == 1 && | |
603 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
604 | return CP_ACCESS_TRAP_EL2; | |
605 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
606 | } else if (arm_current_el(env) < 3 && | |
607 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
608 | return CP_ACCESS_TRAP_EL3; | |
609 | } | |
610 | } | |
611 | ||
612 | return CP_ACCESS_OK; | |
613 | } | |
614 | ||
615 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
616 | { | |
617 | /* Check if CPTR accesses are set to trap to EL3 */ | |
618 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
619 | return CP_ACCESS_TRAP_EL3; | |
620 | } | |
621 | ||
622 | return CP_ACCESS_OK; | |
623 | } | |
624 | ||
7d57f408 PM |
625 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
626 | /* prefetch by MVA in v6, NOP in v7 */ | |
627 | { .name = "MVA_prefetch", | |
628 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
629 | .access = PL1_W, .type = ARM_CP_NOP }, | |
630 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
631 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 632 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 633 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 634 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 635 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 636 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 637 | .access = PL1_RW, |
b848ce2b FA |
638 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
639 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
640 | .resetvalue = 0, }, |
641 | /* Watchpoint Fault Address Register : should actually only be present | |
642 | * for 1136, 1176, 11MPCore. | |
643 | */ | |
644 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
645 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 646 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 647 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 648 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 649 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
650 | REGINFO_SENTINEL |
651 | }; | |
652 | ||
fcd25206 | 653 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 654 | { |
3b163b01 | 655 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 656 | * by PMUSERENR. |
200ac0ef | 657 | */ |
dcbff19b | 658 | if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { |
fcd25206 | 659 | return CP_ACCESS_TRAP; |
200ac0ef | 660 | } |
fcd25206 | 661 | return CP_ACCESS_OK; |
200ac0ef PM |
662 | } |
663 | ||
7c2cb42b | 664 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
665 | |
666 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
667 | { | |
668 | /* This does not support checking PMCCFILTR_EL0 register */ | |
669 | ||
670 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
671 | return false; | |
672 | } | |
673 | ||
674 | return true; | |
675 | } | |
676 | ||
ec7b4ce4 AF |
677 | void pmccntr_sync(CPUARMState *env) |
678 | { | |
679 | uint64_t temp_ticks; | |
680 | ||
681 | temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | |
682 | get_ticks_per_sec(), 1000000); | |
683 | ||
684 | if (env->cp15.c9_pmcr & PMCRD) { | |
685 | /* Increment once every 64 processor clock cycles */ | |
686 | temp_ticks /= 64; | |
687 | } | |
688 | ||
689 | if (arm_ccnt_enabled(env)) { | |
690 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
691 | } | |
692 | } | |
693 | ||
c4241c7d PM |
694 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
695 | uint64_t value) | |
200ac0ef | 696 | { |
942a155b | 697 | pmccntr_sync(env); |
7c2cb42b AF |
698 | |
699 | if (value & PMCRC) { | |
700 | /* The counter has been reset */ | |
701 | env->cp15.c15_ccnt = 0; | |
702 | } | |
703 | ||
200ac0ef PM |
704 | /* only the DP, X, D and E bits are writable */ |
705 | env->cp15.c9_pmcr &= ~0x39; | |
706 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 707 | |
942a155b | 708 | pmccntr_sync(env); |
7c2cb42b AF |
709 | } |
710 | ||
711 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
712 | { | |
c92c0687 | 713 | uint64_t total_ticks; |
7c2cb42b | 714 | |
942a155b | 715 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
716 | /* Counter is disabled, do not change value */ |
717 | return env->cp15.c15_ccnt; | |
718 | } | |
719 | ||
c92c0687 AF |
720 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
721 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
722 | |
723 | if (env->cp15.c9_pmcr & PMCRD) { | |
724 | /* Increment once every 64 processor clock cycles */ | |
725 | total_ticks /= 64; | |
726 | } | |
727 | return total_ticks - env->cp15.c15_ccnt; | |
728 | } | |
729 | ||
730 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
731 | uint64_t value) | |
732 | { | |
c92c0687 | 733 | uint64_t total_ticks; |
7c2cb42b | 734 | |
942a155b | 735 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
736 | /* Counter is disabled, set the absolute value */ |
737 | env->cp15.c15_ccnt = value; | |
738 | return; | |
739 | } | |
740 | ||
c92c0687 AF |
741 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
742 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
743 | |
744 | if (env->cp15.c9_pmcr & PMCRD) { | |
745 | /* Increment once every 64 processor clock cycles */ | |
746 | total_ticks /= 64; | |
747 | } | |
748 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 749 | } |
421c7ebd PC |
750 | |
751 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
752 | uint64_t value) | |
753 | { | |
754 | uint64_t cur_val = pmccntr_read(env, NULL); | |
755 | ||
756 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
757 | } | |
758 | ||
ec7b4ce4 AF |
759 | #else /* CONFIG_USER_ONLY */ |
760 | ||
761 | void pmccntr_sync(CPUARMState *env) | |
762 | { | |
763 | } | |
764 | ||
7c2cb42b | 765 | #endif |
200ac0ef | 766 | |
0614601c AF |
767 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
768 | uint64_t value) | |
769 | { | |
770 | pmccntr_sync(env); | |
771 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
772 | pmccntr_sync(env); | |
773 | } | |
774 | ||
c4241c7d | 775 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
776 | uint64_t value) |
777 | { | |
200ac0ef PM |
778 | value &= (1 << 31); |
779 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
780 | } |
781 | ||
c4241c7d PM |
782 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
783 | uint64_t value) | |
200ac0ef | 784 | { |
200ac0ef PM |
785 | value &= (1 << 31); |
786 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
787 | } |
788 | ||
c4241c7d PM |
789 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
790 | uint64_t value) | |
200ac0ef | 791 | { |
200ac0ef | 792 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
793 | } |
794 | ||
c4241c7d PM |
795 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
796 | uint64_t value) | |
200ac0ef | 797 | { |
200ac0ef | 798 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
799 | } |
800 | ||
c4241c7d | 801 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
802 | uint64_t value) |
803 | { | |
804 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
805 | } |
806 | ||
c4241c7d PM |
807 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
808 | uint64_t value) | |
200ac0ef PM |
809 | { |
810 | /* We have no event counters so only the C bit can be changed */ | |
811 | value &= (1 << 31); | |
812 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
813 | } |
814 | ||
c4241c7d PM |
815 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
816 | uint64_t value) | |
200ac0ef PM |
817 | { |
818 | value &= (1 << 31); | |
819 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
820 | } |
821 | ||
c4241c7d PM |
822 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
823 | uint64_t value) | |
8641136c | 824 | { |
a505d7fe PM |
825 | /* Note that even though the AArch64 view of this register has bits |
826 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
827 | * architectural requirements for bits which are RES0 only in some | |
828 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
829 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
830 | */ | |
855ea66d | 831 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
832 | } |
833 | ||
64e0e2de EI |
834 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
835 | { | |
836 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
837 | * For bits that vary between AArch32/64, code needs to check the | |
838 | * current execution mode before directly using the feature bit. | |
839 | */ | |
840 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
841 | ||
842 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
843 | valid_mask &= ~SCR_HCE; | |
844 | ||
845 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
846 | * supported if EL2 exists. The bit is UNK/SBZP when | |
847 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
848 | * when EL2 is unavailable. | |
4eb27640 | 849 | * On ARMv8, this bit is always available. |
64e0e2de | 850 | */ |
4eb27640 GB |
851 | if (arm_feature(env, ARM_FEATURE_V7) && |
852 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
853 | valid_mask &= ~SCR_SMD; |
854 | } | |
855 | } | |
856 | ||
857 | /* Clear all-context RES0 bits. */ | |
858 | value &= valid_mask; | |
859 | raw_write(env, ri, value); | |
860 | } | |
861 | ||
c4241c7d | 862 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
863 | { |
864 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
865 | |
866 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
867 | * bank | |
868 | */ | |
869 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
870 | ri->secure & ARM_CP_SECSTATE_S); | |
871 | ||
872 | return cpu->ccsidr[index]; | |
776d4e5c PM |
873 | } |
874 | ||
c4241c7d PM |
875 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
876 | uint64_t value) | |
776d4e5c | 877 | { |
8d5c773e | 878 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
879 | } |
880 | ||
1090b9c6 PM |
881 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
882 | { | |
883 | CPUState *cs = ENV_GET_CPU(env); | |
884 | uint64_t ret = 0; | |
885 | ||
886 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
887 | ret |= CPSR_I; | |
888 | } | |
889 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
890 | ret |= CPSR_F; | |
891 | } | |
892 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
893 | return ret; | |
894 | } | |
895 | ||
e9aa6c21 | 896 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
897 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
898 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
899 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
900 | /* Performance monitors are implementation defined in v7, |
901 | * but with an ARM recommended set of registers, which we | |
902 | * follow (although we don't actually implement any counters) | |
903 | * | |
904 | * Performance registers fall into three categories: | |
905 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
906 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
907 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
908 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
909 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
910 | */ | |
911 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 912 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 913 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
914 | .writefn = pmcntenset_write, |
915 | .accessfn = pmreg_access, | |
916 | .raw_writefn = raw_write }, | |
8521466b AF |
917 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
918 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
919 | .access = PL0_RW, .accessfn = pmreg_access, | |
920 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
921 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 922 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
923 | .access = PL0_RW, |
924 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
925 | .accessfn = pmreg_access, |
926 | .writefn = pmcntenclr_write, | |
7a0e58fa | 927 | .type = ARM_CP_ALIAS }, |
8521466b AF |
928 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
929 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
930 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 931 | .type = ARM_CP_ALIAS, |
8521466b AF |
932 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
933 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
934 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
935 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
936 | .accessfn = pmreg_access, |
937 | .writefn = pmovsr_write, | |
938 | .raw_writefn = raw_write }, | |
939 | /* Unimplemented so WI. */ | |
200ac0ef | 940 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 941 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 942 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 943 | * We choose to RAZ/WI. |
200ac0ef PM |
944 | */ |
945 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
946 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
947 | .accessfn = pmreg_access }, | |
7c2cb42b | 948 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 949 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 950 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 951 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 952 | .accessfn = pmreg_access }, |
8521466b AF |
953 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
954 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
955 | .access = PL0_RW, .accessfn = pmreg_access, | |
956 | .type = ARM_CP_IO, | |
957 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 958 | #endif |
8521466b AF |
959 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
960 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 961 | .writefn = pmccfiltr_write, |
8521466b AF |
962 | .access = PL0_RW, .accessfn = pmreg_access, |
963 | .type = ARM_CP_IO, | |
964 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
965 | .resetvalue = 0, }, | |
200ac0ef PM |
966 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
967 | .access = PL0_RW, | |
968 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
969 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
970 | .raw_writefn = raw_write }, | |
971 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 972 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
973 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
974 | .accessfn = pmreg_access }, | |
200ac0ef PM |
975 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
976 | .access = PL0_R | PL1_RW, | |
977 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
978 | .resetvalue = 0, | |
d4e6df63 | 979 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
980 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
981 | .access = PL1_RW, | |
982 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
983 | .resetvalue = 0, | |
d4e6df63 | 984 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 985 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 986 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
200ac0ef | 987 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 988 | .writefn = pmintenclr_write, }, |
a505d7fe PM |
989 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
990 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 991 | .access = PL1_RW, .writefn = vbar_write, |
fb6c91ba GB |
992 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
993 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8641136c | 994 | .resetvalue = 0 }, |
7da845b0 PM |
995 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
996 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 997 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
998 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
999 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1000 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1001 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1002 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1003 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1004 | * just RAZ for all cores: | |
1005 | */ | |
0ff644a7 PM |
1006 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1007 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1008 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1009 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1010 | * choose to RAZ/WI for all cores. | |
1011 | */ | |
1012 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1013 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1014 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1015 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1016 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1017 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1018 | /* MAIR can just read-as-written because we don't implement caches |
1019 | * and so don't need to care about memory attributes. | |
1020 | */ | |
1021 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1022 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1023 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 | 1024 | .resetvalue = 0 }, |
4cfb8ad8 PM |
1025 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
1026 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
1027 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
1028 | .resetvalue = 0 }, | |
b0fe2427 PM |
1029 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
1030 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1031 | */ |
1281f8e3 | 1032 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1033 | * allows them to assign the correct fieldoffset based on the endianness |
1034 | * handled in the field definitions. | |
1035 | */ | |
a903c449 | 1036 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1037 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1038 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1039 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1040 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1041 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1042 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1043 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1044 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1045 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1046 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1047 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1048 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1049 | /* 32 bit ITLB invalidates */ |
1050 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1051 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1052 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1053 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1054 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1055 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1056 | /* 32 bit DTLB invalidates */ |
1057 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1058 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1059 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1060 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1061 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1062 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1063 | /* 32 bit TLB invalidates */ |
1064 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1065 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1066 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1067 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1068 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1069 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1070 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1071 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1072 | REGINFO_SENTINEL |
1073 | }; | |
1074 | ||
1075 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1076 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1077 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1078 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1079 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1080 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1081 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1082 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1083 | .writefn = tlbiasid_is_write }, |
995939a6 | 1084 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1085 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1086 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1087 | REGINFO_SENTINEL |
1088 | }; | |
1089 | ||
c4241c7d PM |
1090 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1091 | uint64_t value) | |
c326b979 PM |
1092 | { |
1093 | value &= 1; | |
1094 | env->teecr = value; | |
c326b979 PM |
1095 | } |
1096 | ||
c4241c7d | 1097 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 1098 | { |
dcbff19b | 1099 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1100 | return CP_ACCESS_TRAP; |
c326b979 | 1101 | } |
92611c00 | 1102 | return CP_ACCESS_OK; |
c326b979 PM |
1103 | } |
1104 | ||
1105 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1106 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1107 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1108 | .resetvalue = 0, | |
1109 | .writefn = teecr_write }, | |
1110 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1111 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1112 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1113 | REGINFO_SENTINEL |
1114 | }; | |
1115 | ||
4d31c596 | 1116 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1117 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1118 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1119 | .access = PL0_RW, | |
54bf36ed | 1120 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1121 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1122 | .access = PL0_RW, | |
54bf36ed FA |
1123 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1124 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1125 | .resetfn = arm_cp_reset_ignore }, |
1126 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1127 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1128 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1129 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1130 | .resetvalue = 0}, | |
4d31c596 PM |
1131 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1132 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1133 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1134 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1135 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1136 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1137 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1138 | .access = PL1_RW, |
54bf36ed FA |
1139 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1140 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1141 | .access = PL1_RW, | |
1142 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1143 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1144 | .resetvalue = 0 }, | |
4d31c596 PM |
1145 | REGINFO_SENTINEL |
1146 | }; | |
1147 | ||
55d284af PM |
1148 | #ifndef CONFIG_USER_ONLY |
1149 | ||
00108f2d PM |
1150 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1151 | { | |
1152 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
dcbff19b | 1153 | if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
00108f2d PM |
1154 | return CP_ACCESS_TRAP; |
1155 | } | |
1156 | return CP_ACCESS_OK; | |
1157 | } | |
1158 | ||
1159 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
1160 | { | |
0b6440af EI |
1161 | unsigned int cur_el = arm_current_el(env); |
1162 | bool secure = arm_is_secure(env); | |
1163 | ||
00108f2d | 1164 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1165 | if (cur_el == 0 && |
00108f2d PM |
1166 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1167 | return CP_ACCESS_TRAP; | |
1168 | } | |
0b6440af EI |
1169 | |
1170 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1171 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1172 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1173 | return CP_ACCESS_TRAP_EL2; | |
1174 | } | |
00108f2d PM |
1175 | return CP_ACCESS_OK; |
1176 | } | |
1177 | ||
1178 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
1179 | { | |
0b6440af EI |
1180 | unsigned int cur_el = arm_current_el(env); |
1181 | bool secure = arm_is_secure(env); | |
1182 | ||
00108f2d PM |
1183 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1184 | * EL0[PV]TEN is zero. | |
1185 | */ | |
0b6440af | 1186 | if (cur_el == 0 && |
00108f2d PM |
1187 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1188 | return CP_ACCESS_TRAP; | |
1189 | } | |
0b6440af EI |
1190 | |
1191 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1192 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1193 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1194 | return CP_ACCESS_TRAP_EL2; | |
1195 | } | |
00108f2d PM |
1196 | return CP_ACCESS_OK; |
1197 | } | |
1198 | ||
1199 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
1200 | const ARMCPRegInfo *ri) | |
1201 | { | |
1202 | return gt_counter_access(env, GTIMER_PHYS); | |
1203 | } | |
1204 | ||
1205 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
1206 | const ARMCPRegInfo *ri) | |
1207 | { | |
1208 | return gt_counter_access(env, GTIMER_VIRT); | |
1209 | } | |
1210 | ||
1211 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1212 | { | |
1213 | return gt_timer_access(env, GTIMER_PHYS); | |
1214 | } | |
1215 | ||
1216 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1217 | { | |
1218 | return gt_timer_access(env, GTIMER_VIRT); | |
1219 | } | |
1220 | ||
b4d3978c PM |
1221 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
1222 | const ARMCPRegInfo *ri) | |
1223 | { | |
1224 | /* The AArch64 register view of the secure physical timer is | |
1225 | * always accessible from EL3, and configurably accessible from | |
1226 | * Secure EL1. | |
1227 | */ | |
1228 | switch (arm_current_el(env)) { | |
1229 | case 1: | |
1230 | if (!arm_is_secure(env)) { | |
1231 | return CP_ACCESS_TRAP; | |
1232 | } | |
1233 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
1234 | return CP_ACCESS_TRAP_EL3; | |
1235 | } | |
1236 | return CP_ACCESS_OK; | |
1237 | case 0: | |
1238 | case 2: | |
1239 | return CP_ACCESS_TRAP; | |
1240 | case 3: | |
1241 | return CP_ACCESS_OK; | |
1242 | default: | |
1243 | g_assert_not_reached(); | |
1244 | } | |
1245 | } | |
1246 | ||
55d284af PM |
1247 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1248 | { | |
bc72ad67 | 1249 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1250 | } |
1251 | ||
1252 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1253 | { | |
1254 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1255 | ||
1256 | if (gt->ctl & 1) { | |
1257 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1258 | * reset timer to when ISTATUS next has to change | |
1259 | */ | |
edac4d8a EI |
1260 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1261 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1262 | uint64_t count = gt_get_countervalue(&cpu->env); |
1263 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1264 | int istatus = count - offset >= gt->cval; |
55d284af PM |
1265 | uint64_t nexttick; |
1266 | ||
1267 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1268 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1269 | (istatus && !(gt->ctl & 2))); | |
1270 | if (istatus) { | |
1271 | /* Next transition is when count rolls back over to zero */ | |
1272 | nexttick = UINT64_MAX; | |
1273 | } else { | |
1274 | /* Next transition is when we hit cval */ | |
edac4d8a | 1275 | nexttick = gt->cval + offset; |
55d284af PM |
1276 | } |
1277 | /* Note that the desired next expiry time might be beyond the | |
1278 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1279 | * set the timer for as far in the future as possible. When the | |
1280 | * timer expires we will reset the timer for any remaining period. | |
1281 | */ | |
1282 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1283 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1284 | } | |
bc72ad67 | 1285 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1286 | } else { |
1287 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1288 | gt->ctl &= ~4; | |
1289 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1290 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1291 | } |
1292 | } | |
1293 | ||
0e3eca4c EI |
1294 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1295 | int timeridx) | |
55d284af PM |
1296 | { |
1297 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1298 | |
bc72ad67 | 1299 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1300 | } |
1301 | ||
c4241c7d | 1302 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1303 | { |
c4241c7d | 1304 | return gt_get_countervalue(env); |
55d284af PM |
1305 | } |
1306 | ||
edac4d8a EI |
1307 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1308 | { | |
1309 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1310 | } | |
1311 | ||
c4241c7d | 1312 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1313 | int timeridx, |
c4241c7d | 1314 | uint64_t value) |
55d284af | 1315 | { |
55d284af PM |
1316 | env->cp15.c14_timer[timeridx].cval = value; |
1317 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1318 | } |
c4241c7d | 1319 | |
0e3eca4c EI |
1320 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1321 | int timeridx) | |
55d284af | 1322 | { |
edac4d8a | 1323 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1324 | |
c4241c7d | 1325 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1326 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1327 | } |
1328 | ||
c4241c7d | 1329 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1330 | int timeridx, |
c4241c7d | 1331 | uint64_t value) |
55d284af | 1332 | { |
edac4d8a | 1333 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1334 | |
edac4d8a | 1335 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1336 | sextract64(value, 0, 32); |
55d284af | 1337 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1338 | } |
1339 | ||
c4241c7d | 1340 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1341 | int timeridx, |
c4241c7d | 1342 | uint64_t value) |
55d284af PM |
1343 | { |
1344 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1345 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1346 | ||
d3afacc7 | 1347 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1348 | if ((oldval ^ value) & 1) { |
1349 | /* Enable toggled */ | |
1350 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1351 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1352 | /* IMASK toggled: don't need to recalculate, |
1353 | * just set the interrupt line based on ISTATUS | |
1354 | */ | |
1355 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1356 | (oldval & 4) && !(value & 2)); |
55d284af | 1357 | } |
55d284af PM |
1358 | } |
1359 | ||
0e3eca4c EI |
1360 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1361 | { | |
1362 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1363 | } | |
1364 | ||
1365 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1366 | uint64_t value) | |
1367 | { | |
1368 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1369 | } | |
1370 | ||
1371 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1372 | { | |
1373 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1374 | } | |
1375 | ||
1376 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1377 | uint64_t value) | |
1378 | { | |
1379 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1380 | } | |
1381 | ||
1382 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1383 | uint64_t value) | |
1384 | { | |
1385 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1386 | } | |
1387 | ||
1388 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1389 | { | |
1390 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1391 | } | |
1392 | ||
1393 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1394 | uint64_t value) | |
1395 | { | |
1396 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1397 | } | |
1398 | ||
1399 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1400 | { | |
1401 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1402 | } | |
1403 | ||
1404 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1405 | uint64_t value) | |
1406 | { | |
1407 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1408 | } | |
1409 | ||
1410 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1411 | uint64_t value) | |
1412 | { | |
1413 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1414 | } | |
1415 | ||
edac4d8a EI |
1416 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1417 | uint64_t value) | |
1418 | { | |
1419 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1420 | ||
1421 | raw_write(env, ri, value); | |
1422 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1423 | } | |
1424 | ||
b0e66d95 EI |
1425 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1426 | { | |
1427 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1428 | } | |
1429 | ||
1430 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1431 | uint64_t value) | |
1432 | { | |
1433 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1434 | } | |
1435 | ||
1436 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1437 | { | |
1438 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1439 | } | |
1440 | ||
1441 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1442 | uint64_t value) | |
1443 | { | |
1444 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1445 | } | |
1446 | ||
1447 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1448 | uint64_t value) | |
1449 | { | |
1450 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1451 | } | |
1452 | ||
b4d3978c PM |
1453 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1454 | { | |
1455 | gt_timer_reset(env, ri, GTIMER_SEC); | |
1456 | } | |
1457 | ||
1458 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1459 | uint64_t value) | |
1460 | { | |
1461 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
1462 | } | |
1463 | ||
1464 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1465 | { | |
1466 | return gt_tval_read(env, ri, GTIMER_SEC); | |
1467 | } | |
1468 | ||
1469 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1470 | uint64_t value) | |
1471 | { | |
1472 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
1473 | } | |
1474 | ||
1475 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1476 | uint64_t value) | |
1477 | { | |
1478 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
1479 | } | |
1480 | ||
55d284af PM |
1481 | void arm_gt_ptimer_cb(void *opaque) |
1482 | { | |
1483 | ARMCPU *cpu = opaque; | |
1484 | ||
1485 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1486 | } | |
1487 | ||
1488 | void arm_gt_vtimer_cb(void *opaque) | |
1489 | { | |
1490 | ARMCPU *cpu = opaque; | |
1491 | ||
1492 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1493 | } | |
1494 | ||
b0e66d95 EI |
1495 | void arm_gt_htimer_cb(void *opaque) |
1496 | { | |
1497 | ARMCPU *cpu = opaque; | |
1498 | ||
1499 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1500 | } | |
1501 | ||
b4d3978c PM |
1502 | void arm_gt_stimer_cb(void *opaque) |
1503 | { | |
1504 | ARMCPU *cpu = opaque; | |
1505 | ||
1506 | gt_recalc_timer(cpu, GTIMER_SEC); | |
1507 | } | |
1508 | ||
55d284af PM |
1509 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1510 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1511 | * of software; writing it doesn't actually change the timer frequency. | |
1512 | * Our reset value matches the fixed frequency we implement the timer at. | |
1513 | */ | |
1514 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1515 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1516 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1517 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1518 | }, |
1519 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1520 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1521 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1522 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1523 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1524 | }, |
1525 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1526 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1527 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1528 | .access = PL1_RW, |
1529 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1530 | .resetvalue = 0, | |
1531 | }, | |
1532 | /* per-timer control */ | |
1533 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 1534 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1535 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1536 | .accessfn = gt_ptimer_access, |
1537 | .fieldoffset = offsetoflow32(CPUARMState, | |
1538 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1539 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 | 1540 | }, |
9ff9dd3c PM |
1541 | { .name = "CNTP_CTL(S)", |
1542 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1543 | .secure = ARM_CP_SECSTATE_S, | |
1544 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | |
1545 | .accessfn = gt_ptimer_access, | |
1546 | .fieldoffset = offsetoflow32(CPUARMState, | |
1547 | cp15.c14_timer[GTIMER_SEC].ctl), | |
1548 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1549 | }, | |
a7adc4b7 PM |
1550 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
1551 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1552 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1553 | .accessfn = gt_ptimer_access, |
55d284af PM |
1554 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1555 | .resetvalue = 0, | |
0e3eca4c | 1556 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1557 | }, |
1558 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1559 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1560 | .accessfn = gt_vtimer_access, |
1561 | .fieldoffset = offsetoflow32(CPUARMState, | |
1562 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1563 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1564 | }, |
1565 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1566 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1567 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1568 | .accessfn = gt_vtimer_access, |
55d284af PM |
1569 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1570 | .resetvalue = 0, | |
0e3eca4c | 1571 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1572 | }, |
1573 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1574 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 1575 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1576 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1577 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1578 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 1579 | }, |
9ff9dd3c PM |
1580 | { .name = "CNTP_TVAL(S)", |
1581 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1582 | .secure = ARM_CP_SECSTATE_S, | |
1583 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1584 | .accessfn = gt_ptimer_access, | |
1585 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
1586 | }, | |
a7adc4b7 PM |
1587 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1588 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 1589 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1590 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
1591 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 1592 | }, |
55d284af | 1593 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 1594 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1595 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1596 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 1597 | }, |
a7adc4b7 PM |
1598 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1599 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1600 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1601 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
1602 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 1603 | }, |
55d284af PM |
1604 | /* The counter itself */ |
1605 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 1606 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1607 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1608 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1609 | }, | |
1610 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1611 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 1612 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1613 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
1614 | }, |
1615 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 1616 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1617 | .accessfn = gt_vct_access, |
edac4d8a | 1618 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
1619 | }, |
1620 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1621 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 1622 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1623 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
1624 | }, |
1625 | /* Comparison value, indicating when the timer goes off */ | |
1626 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 1627 | .secure = ARM_CP_SECSTATE_NS, |
55d284af | 1628 | .access = PL1_RW | PL0_R, |
7a0e58fa | 1629 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1630 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 1631 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1632 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 | 1633 | }, |
9ff9dd3c PM |
1634 | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
1635 | .secure = ARM_CP_SECSTATE_S, | |
1636 | .access = PL1_RW | PL0_R, | |
1637 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | |
1638 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1639 | .accessfn = gt_ptimer_access, | |
1640 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1641 | }, | |
a7adc4b7 PM |
1642 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
1643 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1644 | .access = PL1_RW | PL0_R, | |
1645 | .type = ARM_CP_IO, | |
1646 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 1647 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 1648 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1649 | }, |
1650 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1651 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1652 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1653 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 1654 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1655 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1656 | }, |
1657 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1658 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1659 | .access = PL1_RW | PL0_R, | |
1660 | .type = ARM_CP_IO, | |
1661 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1662 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 1663 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af | 1664 | }, |
b4d3978c PM |
1665 | /* Secure timer -- this is actually restricted to only EL3 |
1666 | * and configurably Secure-EL1 via the accessfn. | |
1667 | */ | |
1668 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1669 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
1670 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
1671 | .accessfn = gt_stimer_access, | |
1672 | .readfn = gt_sec_tval_read, | |
1673 | .writefn = gt_sec_tval_write, | |
1674 | .resetfn = gt_sec_timer_reset, | |
1675 | }, | |
1676 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
1677 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
1678 | .type = ARM_CP_IO, .access = PL1_RW, | |
1679 | .accessfn = gt_stimer_access, | |
1680 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
1681 | .resetvalue = 0, | |
1682 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1683 | }, | |
1684 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1685 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
1686 | .type = ARM_CP_IO, .access = PL1_RW, | |
1687 | .accessfn = gt_stimer_access, | |
1688 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1689 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1690 | }, | |
55d284af PM |
1691 | REGINFO_SENTINEL |
1692 | }; | |
1693 | ||
1694 | #else | |
1695 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1696 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1697 | * so instead just don't register any of them. |
1698 | */ | |
6cc7a3ae | 1699 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1700 | REGINFO_SENTINEL |
1701 | }; | |
1702 | ||
55d284af PM |
1703 | #endif |
1704 | ||
c4241c7d | 1705 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1706 | { |
891a2fe7 | 1707 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 1708 | raw_write(env, ri, value); |
891a2fe7 | 1709 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 1710 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 1711 | } else { |
8d5c773e | 1712 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 1713 | } |
4a501606 PM |
1714 | } |
1715 | ||
1716 | #ifndef CONFIG_USER_ONLY | |
1717 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1718 | |
92611c00 PM |
1719 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1720 | { | |
1721 | if (ri->opc2 & 4) { | |
87562e4f PM |
1722 | /* The ATS12NSO* operations must trap to EL3 if executed in |
1723 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
1724 | * They are simply UNDEF if executed from NS EL1. | |
1725 | * They function normally from EL2 or EL3. | |
92611c00 | 1726 | */ |
87562e4f PM |
1727 | if (arm_current_el(env) == 1) { |
1728 | if (arm_is_secure_below_el3(env)) { | |
1729 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
1730 | } | |
1731 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1732 | } | |
92611c00 PM |
1733 | } |
1734 | return CP_ACCESS_OK; | |
1735 | } | |
1736 | ||
060e8a48 | 1737 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
d3649702 | 1738 | int access_type, ARMMMUIdx mmu_idx) |
4a501606 | 1739 | { |
a8170e5e | 1740 | hwaddr phys_addr; |
4a501606 PM |
1741 | target_ulong page_size; |
1742 | int prot; | |
b7cc4e82 PC |
1743 | uint32_t fsr; |
1744 | bool ret; | |
01c097f7 | 1745 | uint64_t par64; |
8bf5b6a9 | 1746 | MemTxAttrs attrs = {}; |
4a501606 | 1747 | |
d3649702 | 1748 | ret = get_phys_addr(env, value, access_type, mmu_idx, |
b7cc4e82 | 1749 | &phys_addr, &attrs, &prot, &page_size, &fsr); |
702a9357 | 1750 | if (extended_addresses_enabled(env)) { |
b7cc4e82 | 1751 | /* fsr is a DFSR/IFSR value for the long descriptor |
702a9357 PM |
1752 | * translation table format, but with WnR always clear. |
1753 | * Convert it to a 64-bit PAR. | |
1754 | */ | |
01c097f7 | 1755 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 1756 | if (!ret) { |
702a9357 | 1757 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
1758 | if (!attrs.secure) { |
1759 | par64 |= (1 << 9); /* NS */ | |
1760 | } | |
702a9357 | 1761 | /* We don't set the ATTR or SH fields in the PAR. */ |
4a501606 | 1762 | } else { |
702a9357 | 1763 | par64 |= 1; /* F */ |
b7cc4e82 | 1764 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
1765 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
1766 | * implement virtualization and therefore there can't be a stage 2 | |
1767 | * fault. | |
1768 | */ | |
4a501606 PM |
1769 | } |
1770 | } else { | |
b7cc4e82 | 1771 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
1772 | * translation table format (with WnR always clear). |
1773 | * Convert it to a 32-bit PAR. | |
1774 | */ | |
b7cc4e82 | 1775 | if (!ret) { |
702a9357 PM |
1776 | /* We do not set any attribute bits in the PAR */ |
1777 | if (page_size == (1 << 24) | |
1778 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 1779 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 1780 | } else { |
01c097f7 | 1781 | par64 = phys_addr & 0xfffff000; |
702a9357 | 1782 | } |
8bf5b6a9 PM |
1783 | if (!attrs.secure) { |
1784 | par64 |= (1 << 9); /* NS */ | |
1785 | } | |
702a9357 | 1786 | } else { |
b7cc4e82 PC |
1787 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
1788 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 1789 | } |
4a501606 | 1790 | } |
060e8a48 PM |
1791 | return par64; |
1792 | } | |
1793 | ||
1794 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1795 | { | |
060e8a48 PM |
1796 | int access_type = ri->opc2 & 1; |
1797 | uint64_t par64; | |
d3649702 PM |
1798 | ARMMMUIdx mmu_idx; |
1799 | int el = arm_current_el(env); | |
1800 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 1801 | |
d3649702 PM |
1802 | switch (ri->opc2 & 6) { |
1803 | case 0: | |
1804 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
1805 | switch (el) { | |
1806 | case 3: | |
1807 | mmu_idx = ARMMMUIdx_S1E3; | |
1808 | break; | |
1809 | case 2: | |
1810 | mmu_idx = ARMMMUIdx_S1NSE1; | |
1811 | break; | |
1812 | case 1: | |
1813 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1814 | break; | |
1815 | default: | |
1816 | g_assert_not_reached(); | |
1817 | } | |
1818 | break; | |
1819 | case 2: | |
1820 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
1821 | switch (el) { | |
1822 | case 3: | |
1823 | mmu_idx = ARMMMUIdx_S1SE0; | |
1824 | break; | |
1825 | case 2: | |
1826 | mmu_idx = ARMMMUIdx_S1NSE0; | |
1827 | break; | |
1828 | case 1: | |
1829 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1830 | break; | |
1831 | default: | |
1832 | g_assert_not_reached(); | |
1833 | } | |
1834 | break; | |
1835 | case 4: | |
1836 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
1837 | mmu_idx = ARMMMUIdx_S12NSE1; | |
1838 | break; | |
1839 | case 6: | |
1840 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
1841 | mmu_idx = ARMMMUIdx_S12NSE0; | |
1842 | break; | |
1843 | default: | |
1844 | g_assert_not_reached(); | |
1845 | } | |
1846 | ||
1847 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
1848 | |
1849 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 1850 | } |
060e8a48 | 1851 | |
14db7fe0 PM |
1852 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1853 | uint64_t value) | |
1854 | { | |
1855 | int access_type = ri->opc2 & 1; | |
1856 | uint64_t par64; | |
1857 | ||
1858 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | |
1859 | ||
1860 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
1861 | } | |
1862 | ||
2a47df95 PM |
1863 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1864 | { | |
1865 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
1866 | return CP_ACCESS_TRAP; | |
1867 | } | |
1868 | return CP_ACCESS_OK; | |
1869 | } | |
1870 | ||
060e8a48 PM |
1871 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
1872 | uint64_t value) | |
1873 | { | |
060e8a48 | 1874 | int access_type = ri->opc2 & 1; |
d3649702 PM |
1875 | ARMMMUIdx mmu_idx; |
1876 | int secure = arm_is_secure_below_el3(env); | |
1877 | ||
1878 | switch (ri->opc2 & 6) { | |
1879 | case 0: | |
1880 | switch (ri->opc1) { | |
1881 | case 0: /* AT S1E1R, AT S1E1W */ | |
1882 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1883 | break; | |
1884 | case 4: /* AT S1E2R, AT S1E2W */ | |
1885 | mmu_idx = ARMMMUIdx_S1E2; | |
1886 | break; | |
1887 | case 6: /* AT S1E3R, AT S1E3W */ | |
1888 | mmu_idx = ARMMMUIdx_S1E3; | |
1889 | break; | |
1890 | default: | |
1891 | g_assert_not_reached(); | |
1892 | } | |
1893 | break; | |
1894 | case 2: /* AT S1E0R, AT S1E0W */ | |
1895 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1896 | break; | |
1897 | case 4: /* AT S12E1R, AT S12E1W */ | |
2a47df95 | 1898 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
d3649702 PM |
1899 | break; |
1900 | case 6: /* AT S12E0R, AT S12E0W */ | |
2a47df95 | 1901 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
d3649702 PM |
1902 | break; |
1903 | default: | |
1904 | g_assert_not_reached(); | |
1905 | } | |
060e8a48 | 1906 | |
d3649702 | 1907 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 1908 | } |
4a501606 PM |
1909 | #endif |
1910 | ||
1911 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1912 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1913 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
1914 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
1915 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
1916 | .writefn = par_write }, |
1917 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 1918 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 1919 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 1920 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 1921 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
1922 | #endif |
1923 | REGINFO_SENTINEL | |
1924 | }; | |
1925 | ||
18032bec PM |
1926 | /* Return basic MPU access permission bits. */ |
1927 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1928 | { | |
1929 | uint32_t ret; | |
1930 | uint32_t mask; | |
1931 | int i; | |
1932 | ret = 0; | |
1933 | mask = 3; | |
1934 | for (i = 0; i < 16; i += 2) { | |
1935 | ret |= (val >> i) & mask; | |
1936 | mask <<= 2; | |
1937 | } | |
1938 | return ret; | |
1939 | } | |
1940 | ||
1941 | /* Pad basic MPU access permission bits to extended format. */ | |
1942 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1943 | { | |
1944 | uint32_t ret; | |
1945 | uint32_t mask; | |
1946 | int i; | |
1947 | ret = 0; | |
1948 | mask = 3; | |
1949 | for (i = 0; i < 16; i += 2) { | |
1950 | ret |= (val & mask) << i; | |
1951 | mask <<= 2; | |
1952 | } | |
1953 | return ret; | |
1954 | } | |
1955 | ||
c4241c7d PM |
1956 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1957 | uint64_t value) | |
18032bec | 1958 | { |
7e09797c | 1959 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1960 | } |
1961 | ||
c4241c7d | 1962 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1963 | { |
7e09797c | 1964 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
1965 | } |
1966 | ||
c4241c7d PM |
1967 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1968 | uint64_t value) | |
18032bec | 1969 | { |
7e09797c | 1970 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1971 | } |
1972 | ||
c4241c7d | 1973 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1974 | { |
7e09797c | 1975 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
1976 | } |
1977 | ||
6cb0b013 PC |
1978 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1979 | { | |
1980 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
1981 | ||
1982 | if (!u32p) { | |
1983 | return 0; | |
1984 | } | |
1985 | ||
1986 | u32p += env->cp15.c6_rgnr; | |
1987 | return *u32p; | |
1988 | } | |
1989 | ||
1990 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1991 | uint64_t value) | |
1992 | { | |
1993 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1994 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
1995 | ||
1996 | if (!u32p) { | |
1997 | return; | |
1998 | } | |
1999 | ||
2000 | u32p += env->cp15.c6_rgnr; | |
2001 | tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ | |
2002 | *u32p = value; | |
2003 | } | |
2004 | ||
2005 | static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
2006 | { | |
2007 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2008 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2009 | ||
2010 | if (!u32p) { | |
2011 | return; | |
2012 | } | |
2013 | ||
2014 | memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); | |
2015 | } | |
2016 | ||
2017 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2018 | uint64_t value) | |
2019 | { | |
2020 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2021 | uint32_t nrgs = cpu->pmsav7_dregion; | |
2022 | ||
2023 | if (value >= nrgs) { | |
2024 | qemu_log_mask(LOG_GUEST_ERROR, | |
2025 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
2026 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
2027 | return; | |
2028 | } | |
2029 | ||
2030 | raw_write(env, ri, value); | |
2031 | } | |
2032 | ||
2033 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
2034 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, | |
2035 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2036 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
2037 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2038 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, | |
2039 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2040 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
2041 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2042 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, | |
2043 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2044 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
2045 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2046 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, | |
2047 | .access = PL1_RW, | |
2048 | .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), | |
2049 | .writefn = pmsav7_rgnr_write }, | |
2050 | REGINFO_SENTINEL | |
2051 | }; | |
2052 | ||
18032bec PM |
2053 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
2054 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2055 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2056 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
2057 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
2058 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2059 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2060 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
2061 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
2062 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2063 | .access = PL1_RW, | |
7e09797c PM |
2064 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
2065 | .resetvalue = 0, }, | |
18032bec PM |
2066 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
2067 | .access = PL1_RW, | |
7e09797c PM |
2068 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
2069 | .resetvalue = 0, }, | |
ecce5c3c PM |
2070 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2071 | .access = PL1_RW, | |
2072 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
2073 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2074 | .access = PL1_RW, | |
2075 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 2076 | /* Protection region base and size registers */ |
e508a92b PM |
2077 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
2078 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2079 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
2080 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
2081 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2082 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
2083 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
2084 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2085 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
2086 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
2087 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2088 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
2089 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
2090 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2091 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
2092 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
2093 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2094 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
2095 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
2096 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2097 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
2098 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
2099 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2100 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
2101 | REGINFO_SENTINEL |
2102 | }; | |
2103 | ||
c4241c7d PM |
2104 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2105 | uint64_t value) | |
ecce5c3c | 2106 | { |
11f136ee | 2107 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
2108 | int maskshift = extract32(value, 0, 3); |
2109 | ||
e389be16 FA |
2110 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2111 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
2112 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
2113 | * using Long-desciptor translation table format */ | |
2114 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
2115 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2116 | /* In an implementation that includes the Security Extensions | |
2117 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
2118 | * Short-descriptor translation table format. | |
2119 | */ | |
2120 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
2121 | } else { | |
2122 | value &= TTBCR_N; | |
2123 | } | |
e42c4db3 | 2124 | } |
e389be16 | 2125 | |
11f136ee FA |
2126 | /* Update the masks corresponding to the the TCR bank being written |
2127 | * Note that we always calculate mask and base_mask, but | |
e42c4db3 | 2128 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
2129 | * for long-descriptor tables the TCR fields are used differently |
2130 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 2131 | */ |
11f136ee FA |
2132 | tcr->raw_tcr = value; |
2133 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
2134 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
2135 | } |
2136 | ||
c4241c7d PM |
2137 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2138 | uint64_t value) | |
d4e6df63 | 2139 | { |
00c8cb0a AF |
2140 | ARMCPU *cpu = arm_env_get_cpu(env); |
2141 | ||
d4e6df63 PM |
2142 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2143 | /* With LPAE the TTBCR could result in a change of ASID | |
2144 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2145 | */ | |
00c8cb0a | 2146 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 2147 | } |
c4241c7d | 2148 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2149 | } |
2150 | ||
ecce5c3c PM |
2151 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2152 | { | |
11f136ee FA |
2153 | TCR *tcr = raw_ptr(env, ri); |
2154 | ||
2155 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2156 | * the TCR being reset. | |
2157 | */ | |
2158 | tcr->raw_tcr = 0; | |
2159 | tcr->mask = 0; | |
2160 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2161 | } |
2162 | ||
cb2e37df PM |
2163 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2164 | uint64_t value) | |
2165 | { | |
00c8cb0a | 2166 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2167 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2168 | |
cb2e37df | 2169 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 2170 | tlb_flush(CPU(cpu), 1); |
11f136ee | 2171 | tcr->raw_tcr = value; |
cb2e37df PM |
2172 | } |
2173 | ||
327ed10f PM |
2174 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2175 | uint64_t value) | |
2176 | { | |
2177 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2178 | * must flush the TLB. | |
2179 | */ | |
2180 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2181 | ARMCPU *cpu = arm_env_get_cpu(env); |
2182 | ||
2183 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
2184 | } |
2185 | raw_write(env, ri, value); | |
2186 | } | |
2187 | ||
8e5d75c9 | 2188 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2189 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2190 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2191 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2192 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2193 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2194 | .access = PL1_RW, .resetvalue = 0, |
2195 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2196 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2197 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2198 | .access = PL1_RW, .resetvalue = 0, | |
2199 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2200 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2201 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2202 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2203 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2204 | .resetvalue = 0, }, | |
2205 | REGINFO_SENTINEL | |
2206 | }; | |
2207 | ||
2208 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2209 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2210 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2211 | .access = PL1_RW, | |
d81c519c | 2212 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2213 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2214 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2215 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2216 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2217 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2218 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2219 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2220 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2221 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2222 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2223 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2224 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2225 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2226 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2227 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2228 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2229 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2230 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2231 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2232 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2233 | REGINFO_SENTINEL |
2234 | }; | |
2235 | ||
c4241c7d PM |
2236 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2237 | uint64_t value) | |
1047b9d7 PM |
2238 | { |
2239 | env->cp15.c15_ticonfig = value & 0xe7; | |
2240 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2241 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2242 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2243 | } |
2244 | ||
c4241c7d PM |
2245 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2246 | uint64_t value) | |
1047b9d7 PM |
2247 | { |
2248 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2249 | } |
2250 | ||
c4241c7d PM |
2251 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2252 | uint64_t value) | |
1047b9d7 PM |
2253 | { |
2254 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2255 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2256 | } |
2257 | ||
c4241c7d PM |
2258 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2259 | uint64_t value) | |
c4804214 PM |
2260 | { |
2261 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2262 | * containing a dirty line; cache flush operations have to reset these. | |
2263 | */ | |
2264 | env->cp15.c15_i_max = 0x000; | |
2265 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2266 | } |
2267 | ||
18032bec PM |
2268 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2269 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2270 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2271 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2272 | .resetvalue = 0, }, |
1047b9d7 PM |
2273 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2274 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2275 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2276 | .access = PL1_RW, | |
2277 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2278 | .writefn = omap_ticonfig_write }, | |
2279 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2280 | .access = PL1_RW, | |
2281 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2282 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2283 | .access = PL1_RW, .resetvalue = 0xff0, | |
2284 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2285 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2286 | .access = PL1_RW, | |
2287 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2288 | .writefn = omap_threadid_write }, | |
2289 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2290 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2291 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2292 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2293 | /* TODO: Peripheral port remap register: | |
2294 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2295 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2296 | * when MMU is off. | |
2297 | */ | |
c4804214 | 2298 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2299 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2300 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2301 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2302 | { .name = "C9", .cp = 15, .crn = 9, |
2303 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2304 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2305 | REGINFO_SENTINEL |
2306 | }; | |
2307 | ||
c4241c7d PM |
2308 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2309 | uint64_t value) | |
1047b9d7 | 2310 | { |
c0f4af17 | 2311 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2312 | } |
2313 | ||
2314 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2315 | { .name = "XSCALE_CPAR", | |
2316 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2317 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2318 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2319 | { .name = "XSCALE_AUXCR", |
2320 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2321 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2322 | .resetvalue = 0, }, | |
3b771579 PM |
2323 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2324 | * and hope the guest does not really rely on cache behaviour. | |
2325 | */ | |
2326 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2327 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2328 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2329 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2330 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2331 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2332 | { .name = "XSCALE_DCACHE_LOCK", | |
2333 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2334 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2335 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2336 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2337 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2338 | REGINFO_SENTINEL |
2339 | }; | |
2340 | ||
2341 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2342 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2343 | * implementation of this implementation-defined space. | |
2344 | * Ideally this should eventually disappear in favour of actually | |
2345 | * implementing the correct behaviour for all cores. | |
2346 | */ | |
2347 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2348 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2349 | .access = PL1_RW, |
7a0e58fa | 2350 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2351 | .resetvalue = 0 }, |
18032bec PM |
2352 | REGINFO_SENTINEL |
2353 | }; | |
2354 | ||
c4804214 PM |
2355 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2356 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2357 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2358 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2359 | .resetvalue = 0 }, |
c4804214 PM |
2360 | REGINFO_SENTINEL |
2361 | }; | |
2362 | ||
2363 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2364 | /* We never have a a block transfer operation in progress */ | |
2365 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2366 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2367 | .resetvalue = 0 }, |
30b05bba PM |
2368 | /* The cache ops themselves: these all NOP for QEMU */ |
2369 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2370 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2371 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2372 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2373 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2374 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2375 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2376 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2377 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2378 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2379 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2380 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2381 | REGINFO_SENTINEL |
2382 | }; | |
2383 | ||
2384 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2385 | /* The cache test-and-clean instructions always return (1 << 30) | |
2386 | * to indicate that there are no dirty cache lines. | |
2387 | */ | |
2388 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2389 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2390 | .resetvalue = (1 << 30) }, |
c4804214 | 2391 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2392 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2393 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2394 | REGINFO_SENTINEL |
2395 | }; | |
2396 | ||
34f90529 PM |
2397 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2398 | /* Ignore ReadBuffer accesses */ | |
2399 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2400 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2401 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2402 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2403 | REGINFO_SENTINEL |
2404 | }; | |
2405 | ||
c4241c7d | 2406 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 2407 | { |
eb5e1d3c PF |
2408 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2409 | uint64_t mpidr = cpu->mp_affinity; | |
2410 | ||
81bdde9d | 2411 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2412 | mpidr |= (1U << 31); |
81bdde9d PM |
2413 | /* Cores which are uniprocessor (non-coherent) |
2414 | * but still implement the MP extensions set | |
a8e81b31 | 2415 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2416 | */ |
a8e81b31 PC |
2417 | if (cpu->mp_is_up) { |
2418 | mpidr |= (1u << 30); | |
2419 | } | |
81bdde9d | 2420 | } |
c4241c7d | 2421 | return mpidr; |
81bdde9d PM |
2422 | } |
2423 | ||
2424 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
2425 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2426 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2427 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2428 | REGINFO_SENTINEL |
2429 | }; | |
2430 | ||
7ac681cf | 2431 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2432 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2433 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2434 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2435 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2436 | .resetvalue = 0 }, |
b0fe2427 | 2437 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2438 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2439 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2440 | .resetvalue = 0 }, |
891a2fe7 | 2441 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2442 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2443 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2444 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2445 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2446 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2447 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2448 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2449 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2450 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2451 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2452 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2453 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2454 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2455 | REGINFO_SENTINEL |
2456 | }; | |
2457 | ||
c4241c7d | 2458 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2459 | { |
c4241c7d | 2460 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2461 | } |
2462 | ||
c4241c7d PM |
2463 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2464 | uint64_t value) | |
b0d2b7d0 PM |
2465 | { |
2466 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2467 | } |
2468 | ||
c4241c7d | 2469 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2470 | { |
c4241c7d | 2471 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2472 | } |
2473 | ||
c4241c7d PM |
2474 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2475 | uint64_t value) | |
b0d2b7d0 PM |
2476 | { |
2477 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2478 | } |
2479 | ||
c2b820fe PM |
2480 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2481 | { | |
137feaa9 | 2482 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2483 | return CP_ACCESS_TRAP; |
2484 | } | |
2485 | return CP_ACCESS_OK; | |
2486 | } | |
2487 | ||
2488 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2489 | uint64_t value) | |
2490 | { | |
2491 | env->daif = value & PSTATE_DAIF; | |
2492 | } | |
2493 | ||
8af35c37 PM |
2494 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
2495 | const ARMCPRegInfo *ri) | |
2496 | { | |
2497 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2498 | * SCTLR_EL1.UCI is set. | |
2499 | */ | |
137feaa9 | 2500 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2501 | return CP_ACCESS_TRAP; |
2502 | } | |
2503 | return CP_ACCESS_OK; | |
2504 | } | |
2505 | ||
dbb1fb27 AB |
2506 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2507 | * Page D4-1736 (DDI0487A.b) | |
2508 | */ | |
2509 | ||
fd3ed969 PM |
2510 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2511 | uint64_t value) | |
168aa23b | 2512 | { |
31b030d4 | 2513 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 | 2514 | CPUState *cs = CPU(cpu); |
dbb1fb27 | 2515 | |
fd3ed969 PM |
2516 | if (arm_is_secure_below_el3(env)) { |
2517 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2518 | } else { | |
2519 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | |
2520 | } | |
168aa23b PM |
2521 | } |
2522 | ||
fd3ed969 PM |
2523 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2524 | uint64_t value) | |
168aa23b | 2525 | { |
fd3ed969 PM |
2526 | bool sec = arm_is_secure_below_el3(env); |
2527 | CPUState *other_cs; | |
dbb1fb27 | 2528 | |
fd3ed969 PM |
2529 | CPU_FOREACH(other_cs) { |
2530 | if (sec) { | |
2531 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2532 | } else { | |
2533 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2534 | ARMMMUIdx_S12NSE0, -1); | |
2535 | } | |
2536 | } | |
168aa23b PM |
2537 | } |
2538 | ||
fd3ed969 PM |
2539 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2540 | uint64_t value) | |
168aa23b | 2541 | { |
fd3ed969 PM |
2542 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
2543 | * stage 2 translations, whereas most other scopes only invalidate | |
2544 | * stage 1 translations. | |
2545 | */ | |
00c8cb0a | 2546 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 PM |
2547 | CPUState *cs = CPU(cpu); |
2548 | ||
2549 | if (arm_is_secure_below_el3(env)) { | |
2550 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2551 | } else { | |
2552 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
2553 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | |
2554 | ARMMMUIdx_S2NS, -1); | |
2555 | } else { | |
2556 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | |
2557 | } | |
2558 | } | |
168aa23b PM |
2559 | } |
2560 | ||
fd3ed969 | 2561 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
2562 | uint64_t value) |
2563 | { | |
fd3ed969 PM |
2564 | ARMCPU *cpu = arm_env_get_cpu(env); |
2565 | CPUState *cs = CPU(cpu); | |
2566 | ||
2567 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); | |
2568 | } | |
2569 | ||
43efaa33 PM |
2570 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2571 | uint64_t value) | |
2572 | { | |
2573 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2574 | CPUState *cs = CPU(cpu); | |
2575 | ||
2576 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); | |
2577 | } | |
2578 | ||
fd3ed969 PM |
2579 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2580 | uint64_t value) | |
2581 | { | |
2582 | /* Note that the 'ALL' scope must invalidate both stage 1 and | |
2583 | * stage 2 translations, whereas most other scopes only invalidate | |
2584 | * stage 1 translations. | |
2585 | */ | |
2586 | bool sec = arm_is_secure_below_el3(env); | |
2587 | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); | |
fa439fc5 | 2588 | CPUState *other_cs; |
fa439fc5 PM |
2589 | |
2590 | CPU_FOREACH(other_cs) { | |
fd3ed969 PM |
2591 | if (sec) { |
2592 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2593 | } else if (has_el2) { | |
2594 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2595 | ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); | |
2596 | } else { | |
2597 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2598 | ARMMMUIdx_S12NSE0, -1); | |
2599 | } | |
fa439fc5 PM |
2600 | } |
2601 | } | |
2602 | ||
2bfb9d75 PM |
2603 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2604 | uint64_t value) | |
2605 | { | |
2606 | CPUState *other_cs; | |
2607 | ||
2608 | CPU_FOREACH(other_cs) { | |
2609 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); | |
2610 | } | |
2611 | } | |
2612 | ||
43efaa33 PM |
2613 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2614 | uint64_t value) | |
2615 | { | |
2616 | CPUState *other_cs; | |
2617 | ||
2618 | CPU_FOREACH(other_cs) { | |
2619 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); | |
2620 | } | |
2621 | } | |
2622 | ||
fd3ed969 PM |
2623 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2624 | uint64_t value) | |
2625 | { | |
2626 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
2627 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
2628 | * since we don't support flush-for-specific-ASID-only or | |
2629 | * flush-last-level-only. | |
2630 | */ | |
2631 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2632 | CPUState *cs = CPU(cpu); | |
2633 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2634 | ||
2635 | if (arm_is_secure_below_el3(env)) { | |
2636 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, | |
2637 | ARMMMUIdx_S1SE0, -1); | |
2638 | } else { | |
2639 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, | |
2640 | ARMMMUIdx_S12NSE0, -1); | |
2641 | } | |
2642 | } | |
2643 | ||
2644 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2645 | uint64_t value) | |
fa439fc5 | 2646 | { |
fd3ed969 PM |
2647 | /* Invalidate by VA, EL2 |
2648 | * Currently handles both VAE2 and VALE2, since we don't support | |
2649 | * flush-last-level-only. | |
2650 | */ | |
2651 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2652 | CPUState *cs = CPU(cpu); | |
2653 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2654 | ||
2655 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); | |
2656 | } | |
2657 | ||
43efaa33 PM |
2658 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2659 | uint64_t value) | |
2660 | { | |
2661 | /* Invalidate by VA, EL3 | |
2662 | * Currently handles both VAE3 and VALE3, since we don't support | |
2663 | * flush-last-level-only. | |
2664 | */ | |
2665 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2666 | CPUState *cs = CPU(cpu); | |
2667 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2668 | ||
2669 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); | |
2670 | } | |
2671 | ||
fd3ed969 PM |
2672 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2673 | uint64_t value) | |
2674 | { | |
2675 | bool sec = arm_is_secure_below_el3(env); | |
fa439fc5 PM |
2676 | CPUState *other_cs; |
2677 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2678 | ||
2679 | CPU_FOREACH(other_cs) { | |
fd3ed969 PM |
2680 | if (sec) { |
2681 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, | |
2682 | ARMMMUIdx_S1SE0, -1); | |
2683 | } else { | |
2684 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, | |
2685 | ARMMMUIdx_S12NSE0, -1); | |
2686 | } | |
fa439fc5 PM |
2687 | } |
2688 | } | |
2689 | ||
fd3ed969 PM |
2690 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2691 | uint64_t value) | |
fa439fc5 PM |
2692 | { |
2693 | CPUState *other_cs; | |
fd3ed969 | 2694 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
fa439fc5 PM |
2695 | |
2696 | CPU_FOREACH(other_cs) { | |
fd3ed969 | 2697 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); |
fa439fc5 PM |
2698 | } |
2699 | } | |
2700 | ||
43efaa33 PM |
2701 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2702 | uint64_t value) | |
2703 | { | |
2704 | CPUState *other_cs; | |
2705 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2706 | ||
2707 | CPU_FOREACH(other_cs) { | |
2708 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); | |
2709 | } | |
2710 | } | |
2711 | ||
cea66e91 PM |
2712 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2713 | uint64_t value) | |
2714 | { | |
2715 | /* Invalidate by IPA. This has to invalidate any structures that | |
2716 | * contain only stage 2 translation information, but does not need | |
2717 | * to apply to structures that contain combined stage 1 and stage 2 | |
2718 | * translation information. | |
2719 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
2720 | */ | |
2721 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2722 | CPUState *cs = CPU(cpu); | |
2723 | uint64_t pageaddr; | |
2724 | ||
2725 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
2726 | return; | |
2727 | } | |
2728 | ||
2729 | pageaddr = sextract64(value << 12, 0, 48); | |
2730 | ||
2731 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
2732 | } | |
2733 | ||
2734 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2735 | uint64_t value) | |
2736 | { | |
2737 | CPUState *other_cs; | |
2738 | uint64_t pageaddr; | |
2739 | ||
2740 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
2741 | return; | |
2742 | } | |
2743 | ||
2744 | pageaddr = sextract64(value << 12, 0, 48); | |
2745 | ||
2746 | CPU_FOREACH(other_cs) { | |
2747 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
2748 | } | |
2749 | } | |
2750 | ||
aca3f40b PM |
2751 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2752 | { | |
2753 | /* We don't implement EL2, so the only control on DC ZVA is the | |
2754 | * bit in the SCTLR which can prohibit access for EL0. | |
2755 | */ | |
137feaa9 | 2756 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
2757 | return CP_ACCESS_TRAP; |
2758 | } | |
2759 | return CP_ACCESS_OK; | |
2760 | } | |
2761 | ||
2762 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2763 | { | |
2764 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2765 | int dzp_bit = 1 << 4; | |
2766 | ||
2767 | /* DZP indicates whether DC ZVA access is allowed */ | |
14e5f106 | 2768 | if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { |
aca3f40b PM |
2769 | dzp_bit = 0; |
2770 | } | |
2771 | return cpu->dcz_blocksize | dzp_bit; | |
2772 | } | |
2773 | ||
f502cfc2 PM |
2774 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2775 | { | |
cdcf1405 | 2776 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
2777 | /* Access to SP_EL0 is undefined if it's being used as |
2778 | * the stack pointer. | |
2779 | */ | |
2780 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2781 | } | |
2782 | return CP_ACCESS_OK; | |
2783 | } | |
2784 | ||
2785 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2786 | { | |
2787 | return env->pstate & PSTATE_SP; | |
2788 | } | |
2789 | ||
2790 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
2791 | { | |
2792 | update_spsel(env, val); | |
2793 | } | |
2794 | ||
137feaa9 FA |
2795 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2796 | uint64_t value) | |
2797 | { | |
2798 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2799 | ||
2800 | if (raw_read(env, ri) == value) { | |
2801 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
2802 | * to do a lot of pointless SCTLR writes. | |
2803 | */ | |
2804 | return; | |
2805 | } | |
2806 | ||
2807 | raw_write(env, ri, value); | |
2808 | /* ??? Lots of these bits are not implemented. */ | |
2809 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
2810 | tlb_flush(CPU(cpu), 1); | |
2811 | } | |
2812 | ||
b0d2b7d0 PM |
2813 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
2814 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
2815 | * significantly for system emulation of AArch64 CPUs. | |
2816 | */ | |
2817 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
2818 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
2819 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
2820 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
2821 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 2822 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
2823 | .access = PL0_RW, .accessfn = aa64_daif_access, |
2824 | .fieldoffset = offsetof(CPUARMState, daif), | |
2825 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
2826 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
2827 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
2828 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
2829 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
2830 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
2831 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
2832 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
2833 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 2834 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
2835 | .readfn = aa64_dczid_read }, |
2836 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
2837 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
2838 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
2839 | #ifndef CONFIG_USER_ONLY | |
2840 | /* Avoid overhead of an access check that always passes in user-mode */ | |
2841 | .accessfn = aa64_zva_access, | |
2842 | #endif | |
2843 | }, | |
0eef9d98 PM |
2844 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
2845 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
2846 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
2847 | /* Cache ops: all NOPs since we don't emulate caches */ |
2848 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
2849 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2850 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2851 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
2852 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2853 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2854 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
2855 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
2856 | .access = PL0_W, .type = ARM_CP_NOP, | |
2857 | .accessfn = aa64_cacheop_access }, | |
2858 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
2859 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2860 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2861 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
2862 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2863 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2864 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
2865 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
2866 | .access = PL0_W, .type = ARM_CP_NOP, | |
2867 | .accessfn = aa64_cacheop_access }, | |
2868 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
2869 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2870 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2871 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
2872 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
2873 | .access = PL0_W, .type = ARM_CP_NOP, | |
2874 | .accessfn = aa64_cacheop_access }, | |
2875 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
2876 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
2877 | .access = PL0_W, .type = ARM_CP_NOP, | |
2878 | .accessfn = aa64_cacheop_access }, | |
2879 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
2880 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2881 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
2882 | /* TLBI operations */ |
2883 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2884 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 2885 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2886 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 2887 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2888 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 2889 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2890 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 2891 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2892 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 2893 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2894 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 2895 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2896 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 2897 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2898 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 2899 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2900 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2901 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2902 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 2903 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2904 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 2905 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2906 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 2907 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2908 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 2909 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2910 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 2911 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2912 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 2913 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2914 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 2915 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2916 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 2917 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2918 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 2919 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2920 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 2921 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2922 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 2923 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2924 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 2925 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2926 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 2927 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2928 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 2929 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 2930 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
2931 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
2932 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
2933 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2934 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
2935 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
2936 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
2937 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2938 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
83ddf975 PM |
2939 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
2940 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
2941 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 2942 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
2943 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
2944 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
2945 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2946 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
2947 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
2948 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
2949 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2950 | .writefn = tlbi_aa64_ipas2e1_write }, | |
2951 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | |
2952 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
2953 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2954 | .writefn = tlbi_aa64_ipas2e1_write }, | |
83ddf975 PM |
2955 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
2956 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
2957 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 2958 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
2959 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
2960 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
2961 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2962 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
2963 | #ifndef CONFIG_USER_ONLY |
2964 | /* 64 bit address translation operations */ | |
2965 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
2966 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 2967 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2968 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
2969 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 2970 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2971 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
2972 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 2973 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2974 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
2975 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 2976 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2a47df95 | 2977 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 2978 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
2a47df95 PM |
2979 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2980 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 2981 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
2a47df95 PM |
2982 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2983 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 2984 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
2a47df95 PM |
2985 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2986 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 2987 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
2a47df95 PM |
2988 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2989 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | |
2990 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
2991 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
2992 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
2993 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | |
2994 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
2995 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
19525524 | 2996 | #endif |
995939a6 | 2997 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 2998 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2999 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 3000 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3001 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 3002 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 3003 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3004 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 3005 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3006 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
9449fdf6 PM |
3007 | /* 32 bit cache operations */ |
3008 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3009 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3010 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
3011 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3012 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3013 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3014 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
3015 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3016 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
3017 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3018 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
3019 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3020 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3021 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3022 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3023 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3024 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
3025 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3026 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3027 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3028 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
3029 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3030 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
3031 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3032 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3033 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3034 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
3035 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
3036 | .access = PL1_RW, .resetvalue = 0, | |
3037 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3038 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
3039 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 3040 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3041 | .type = ARM_CP_ALIAS, |
a0618a19 | 3042 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
3043 | .access = PL1_RW, |
3044 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 3045 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3046 | .type = ARM_CP_ALIAS, |
a65f1de9 | 3047 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
7847f9ea | 3048 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) }, |
f502cfc2 PM |
3049 | /* We rely on the access checks not allowing the guest to write to the |
3050 | * state field when SPSel indicates that it's being used as the stack | |
3051 | * pointer. | |
3052 | */ | |
3053 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
3054 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
3055 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 3056 | .type = ARM_CP_ALIAS, |
f502cfc2 | 3057 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
3058 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
3059 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3060 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3061 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
3062 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
3063 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 3064 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 3065 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
b0d2b7d0 PM |
3066 | REGINFO_SENTINEL |
3067 | }; | |
3068 | ||
d42e3c26 | 3069 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 3070 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
3071 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3072 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3073 | .access = PL2_RW, | |
3074 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 3075 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3076 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
3077 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
3078 | .access = PL2_RW, | |
3079 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
3080 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3081 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3082 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
3083 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3084 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3085 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3086 | .resetvalue = 0 }, | |
3087 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3088 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3089 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2179ef95 PM |
3090 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3091 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3092 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3093 | .resetvalue = 0 }, | |
3094 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3095 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3096 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3097 | .resetvalue = 0 }, | |
37cd6c24 PM |
3098 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3099 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3100 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3101 | .resetvalue = 0 }, | |
3102 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3103 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3104 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3105 | .resetvalue = 0 }, | |
06ec4c8c EI |
3106 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3107 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3108 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
3109 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3110 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3111 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
3112 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3113 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3114 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
3115 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3116 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3117 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3118 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3119 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3120 | .resetvalue = 0 }, | |
0b6440af EI |
3121 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3122 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3123 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
3124 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3125 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3126 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3127 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3128 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3129 | .resetvalue = 0 }, | |
b0e66d95 EI |
3130 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3131 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3132 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3133 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3134 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3135 | .resetvalue = 0 }, | |
3136 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3137 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3138 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3139 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3140 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3141 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
3142 | REGINFO_SENTINEL |
3143 | }; | |
3144 | ||
f149e3e8 EI |
3145 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
3146 | { | |
3147 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3148 | uint64_t valid_mask = HCR_MASK; | |
3149 | ||
3150 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3151 | valid_mask &= ~HCR_HCD; | |
3152 | } else { | |
3153 | valid_mask &= ~HCR_TSC; | |
3154 | } | |
3155 | ||
3156 | /* Clear RES0 bits. */ | |
3157 | value &= valid_mask; | |
3158 | ||
3159 | /* These bits change the MMU setup: | |
3160 | * HCR_VM enables stage 2 translation | |
3161 | * HCR_PTW forbids certain page-table setups | |
3162 | * HCR_DC Disables stage1 and enables stage2 translation | |
3163 | */ | |
3164 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
3165 | tlb_flush(CPU(cpu), 1); | |
3166 | } | |
3167 | raw_write(env, ri, value); | |
3168 | } | |
3169 | ||
4771cd01 | 3170 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
3171 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
3172 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
3173 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
3174 | .writefn = hcr_write }, | |
0c17d68c FA |
3175 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
3176 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
3177 | .access = PL2_RW, .resetvalue = 0, | |
3178 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3179 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3b685ba7 | 3180 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3181 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3182 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
3183 | .access = PL2_RW, | |
3184 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 3185 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3186 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
3187 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
3188 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
88ca1c2d FA |
3189 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, |
3190 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
3191 | .access = PL2_RW, .resetvalue = 0, | |
3192 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
63b60551 EI |
3193 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
3194 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
3195 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 3196 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3197 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3198 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
3199 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, | |
d42e3c26 EI |
3200 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3201 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3202 | .access = PL2_RW, .writefn = vbar_write, | |
3203 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
3204 | .resetvalue = 0 }, | |
884b4dee GB |
3205 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
3206 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3207 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3208 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
3209 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3210 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3211 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3212 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
3213 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3214 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3215 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
3216 | .resetvalue = 0 }, | |
3217 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3218 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3219 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3220 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
3221 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3222 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3223 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3224 | .resetvalue = 0 }, | |
3225 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
3226 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3227 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3228 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3229 | .resetvalue = 0 }, | |
37cd6c24 PM |
3230 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3231 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3232 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3233 | .resetvalue = 0 }, | |
3234 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3235 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3236 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3237 | .resetvalue = 0 }, | |
06ec4c8c EI |
3238 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3239 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3240 | .access = PL2_RW, .writefn = vmsa_tcr_el1_write, | |
3241 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
3242 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, | |
b9cb5323 EI |
3243 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3244 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3245 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3246 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
3247 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3248 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3249 | .access = PL2_RW, .resetvalue = 0, | |
3250 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
3251 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3252 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3253 | .access = PL2_RW, .resetvalue = 0, | |
3254 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
3255 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3256 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 3257 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
51da9014 EI |
3258 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
3259 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3260 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3261 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
3262 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
3263 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3264 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3265 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
3266 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
3267 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
3268 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3269 | .writefn = tlbi_aa64_vae2_write }, | |
3270 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
3271 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3272 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3273 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
3274 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
3275 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3276 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3277 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
3278 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
3279 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3280 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3281 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 3282 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
3283 | /* Unlike the other EL2-related AT operations, these must |
3284 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
3285 | * define them here rather than with the rest of the AT ops. | |
3286 | */ | |
3287 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
3288 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3289 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3290 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3291 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | |
3292 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3293 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3294 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
14db7fe0 PM |
3295 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
3296 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
3297 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
3298 | * to behave as if SCR.NS was 1. | |
3299 | */ | |
3300 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3301 | .access = PL2_W, | |
3302 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
3303 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3304 | .access = PL2_W, | |
3305 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
0b6440af EI |
3306 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3307 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3308 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
3309 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
3310 | * both ARMv7 and ARMv8. | |
3311 | */ | |
3312 | .access = PL2_RW, .resetvalue = 3, | |
3313 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
3314 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3315 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3316 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
3317 | .writefn = gt_cntvoff_write, | |
3318 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
3319 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3320 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
3321 | .writefn = gt_cntvoff_write, | |
3322 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
3323 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3324 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3325 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3326 | .type = ARM_CP_IO, .access = PL2_RW, | |
3327 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3328 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3329 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3330 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
3331 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3332 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3333 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3334 | .type = ARM_CP_IO, .access = PL2_RW, | |
3335 | .resetfn = gt_hyp_timer_reset, | |
3336 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
3337 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3338 | .type = ARM_CP_IO, | |
3339 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3340 | .access = PL2_RW, | |
3341 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
3342 | .resetvalue = 0, | |
3343 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 3344 | #endif |
3b685ba7 EI |
3345 | REGINFO_SENTINEL |
3346 | }; | |
3347 | ||
60fb1a87 GB |
3348 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
3349 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
3350 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
3351 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
3352 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 3353 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 GB |
3354 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
3355 | .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 3356 | .writefn = scr_write }, |
60fb1a87 GB |
3357 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
3358 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
3359 | .access = PL3_RW, .resetvalue = 0, | |
3360 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
3361 | { .name = "SDER", | |
3362 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
3363 | .access = PL3_RW, .resetvalue = 0, | |
3364 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
3365 | /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ | |
3366 | { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
3367 | .access = PL3_W | PL1_R, .resetvalue = 0, | |
3368 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, | |
3369 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
3370 | .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, | |
3371 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, | |
137feaa9 | 3372 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
e46e1a74 | 3373 | .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */ |
137feaa9 FA |
3374 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, |
3375 | .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3376 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, | |
7dd8c9af FA |
3377 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
3378 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
3379 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
3380 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
3381 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
3382 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
3383 | .access = PL3_RW, .writefn = vmsa_tcr_el1_write, | |
3384 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
3385 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, | |
81547d66 | 3386 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3387 | .type = ARM_CP_ALIAS, |
81547d66 EI |
3388 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
3389 | .access = PL3_RW, | |
3390 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 3391 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3392 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
3393 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
3394 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
3395 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
3396 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
3397 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 3398 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3399 | .type = ARM_CP_ALIAS, |
81547d66 EI |
3400 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
3401 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, | |
a1ba125c EI |
3402 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
3403 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
3404 | .access = PL3_RW, .writefn = vbar_write, | |
3405 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
3406 | .resetvalue = 0 }, | |
c6f19164 GB |
3407 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
3408 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
3409 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3410 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
3411 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
3412 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
3413 | .access = PL3_RW, .resetvalue = 0, | |
3414 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
3415 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
3416 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
3417 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3418 | .resetvalue = 0 }, | |
37cd6c24 PM |
3419 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
3420 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
3421 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3422 | .resetvalue = 0 }, | |
3423 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
3424 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
3425 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3426 | .resetvalue = 0 }, | |
43efaa33 PM |
3427 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
3428 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
3429 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3430 | .writefn = tlbi_aa64_alle3is_write }, | |
3431 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
3432 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
3433 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3434 | .writefn = tlbi_aa64_vae3is_write }, | |
3435 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
3436 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
3437 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3438 | .writefn = tlbi_aa64_vae3is_write }, | |
3439 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
3440 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
3441 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3442 | .writefn = tlbi_aa64_alle3_write }, | |
3443 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
3444 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
3445 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3446 | .writefn = tlbi_aa64_vae3_write }, | |
3447 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
3448 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
3449 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3450 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
3451 | REGINFO_SENTINEL |
3452 | }; | |
3453 | ||
7da845b0 PM |
3454 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
3455 | { | |
3456 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
3457 | * but the AArch32 CTR has its own reginfo struct) | |
3458 | */ | |
137feaa9 | 3459 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
3460 | return CP_ACCESS_TRAP; |
3461 | } | |
3462 | return CP_ACCESS_OK; | |
3463 | } | |
3464 | ||
50300698 | 3465 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 3466 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
3467 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
3468 | * unlike DBGDRAR it is never accessible from EL0. | |
3469 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
3470 | * accessor. | |
50300698 PM |
3471 | */ |
3472 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
3473 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
3474 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
3475 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
3476 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 PM |
3477 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
3478 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 3479 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
3480 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
3481 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
0e5e8935 PM |
3482 | .access = PL1_RW, |
3483 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
3484 | .resetvalue = 0 }, | |
5e8b12ff PM |
3485 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
3486 | * We don't implement the configurable EL0 access. | |
3487 | */ | |
3488 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
3489 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3490 | .type = ARM_CP_ALIAS, |
5e8b12ff | 3491 | .access = PL1_R, |
b061a82b | 3492 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
50300698 | 3493 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
10aae104 PM |
3494 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
3495 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
50300698 | 3496 | .access = PL1_W, .type = ARM_CP_NOP }, |
5e8b12ff PM |
3497 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
3498 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
3499 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
3500 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
3501 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't | |
3502 | * implement vector catch debug events yet. | |
3503 | */ | |
3504 | { .name = "DBGVCR", | |
3505 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
3506 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
50300698 PM |
3507 | REGINFO_SENTINEL |
3508 | }; | |
3509 | ||
3510 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
3511 | /* 64 bit access versions of the (dummy) debug registers */ | |
3512 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
3513 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3514 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
3515 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3516 | REGINFO_SENTINEL | |
3517 | }; | |
3518 | ||
9ee98ce8 PM |
3519 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
3520 | { | |
3521 | CPUARMState *env = &cpu->env; | |
3522 | vaddr len = 0; | |
3523 | vaddr wvr = env->cp15.dbgwvr[n]; | |
3524 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
3525 | int mask; | |
3526 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
3527 | ||
3528 | if (env->cpu_watchpoint[n]) { | |
3529 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
3530 | env->cpu_watchpoint[n] = NULL; | |
3531 | } | |
3532 | ||
3533 | if (!extract64(wcr, 0, 1)) { | |
3534 | /* E bit clear : watchpoint disabled */ | |
3535 | return; | |
3536 | } | |
3537 | ||
3538 | switch (extract64(wcr, 3, 2)) { | |
3539 | case 0: | |
3540 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
3541 | return; | |
3542 | case 1: | |
3543 | flags |= BP_MEM_READ; | |
3544 | break; | |
3545 | case 2: | |
3546 | flags |= BP_MEM_WRITE; | |
3547 | break; | |
3548 | case 3: | |
3549 | flags |= BP_MEM_ACCESS; | |
3550 | break; | |
3551 | } | |
3552 | ||
3553 | /* Attempts to use both MASK and BAS fields simultaneously are | |
3554 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
3555 | * thus generating a watchpoint for every byte in the masked region. | |
3556 | */ | |
3557 | mask = extract64(wcr, 24, 4); | |
3558 | if (mask == 1 || mask == 2) { | |
3559 | /* Reserved values of MASK; we must act as if the mask value was | |
3560 | * some non-reserved value, or as if the watchpoint were disabled. | |
3561 | * We choose the latter. | |
3562 | */ | |
3563 | return; | |
3564 | } else if (mask) { | |
3565 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
3566 | len = 1ULL << mask; | |
3567 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
3568 | * whether the watchpoint fires when the unmasked bits match; we opt | |
3569 | * to generate the exceptions. | |
3570 | */ | |
3571 | wvr &= ~(len - 1); | |
3572 | } else { | |
3573 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
3574 | int bas = extract64(wcr, 5, 8); | |
3575 | int basstart; | |
3576 | ||
3577 | if (bas == 0) { | |
3578 | /* This must act as if the watchpoint is disabled */ | |
3579 | return; | |
3580 | } | |
3581 | ||
3582 | if (extract64(wvr, 2, 1)) { | |
3583 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
3584 | * ignored, and BAS[3:0] define which bytes to watch. | |
3585 | */ | |
3586 | bas &= 0xf; | |
3587 | } | |
3588 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
3589 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
3590 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
3591 | * We choose to ignore any non-zero bits after the first range of 1s. | |
3592 | */ | |
3593 | basstart = ctz32(bas); | |
3594 | len = cto32(bas >> basstart); | |
3595 | wvr += basstart; | |
3596 | } | |
3597 | ||
3598 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
3599 | &env->cpu_watchpoint[n]); | |
3600 | } | |
3601 | ||
3602 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
3603 | { | |
3604 | int i; | |
3605 | CPUARMState *env = &cpu->env; | |
3606 | ||
3607 | /* Completely clear out existing QEMU watchpoints and our array, to | |
3608 | * avoid possible stale entries following migration load. | |
3609 | */ | |
3610 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
3611 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
3612 | ||
3613 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
3614 | hw_watchpoint_update(cpu, i); | |
3615 | } | |
3616 | } | |
3617 | ||
3618 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3619 | uint64_t value) | |
3620 | { | |
3621 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3622 | int i = ri->crm; | |
3623 | ||
3624 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
3625 | * register reads and behaves as if values written are sign extended. | |
3626 | * Bits [1:0] are RES0. | |
3627 | */ | |
3628 | value = sextract64(value, 0, 49) & ~3ULL; | |
3629 | ||
3630 | raw_write(env, ri, value); | |
3631 | hw_watchpoint_update(cpu, i); | |
3632 | } | |
3633 | ||
3634 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3635 | uint64_t value) | |
3636 | { | |
3637 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3638 | int i = ri->crm; | |
3639 | ||
3640 | raw_write(env, ri, value); | |
3641 | hw_watchpoint_update(cpu, i); | |
3642 | } | |
3643 | ||
46747d15 PM |
3644 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
3645 | { | |
3646 | CPUARMState *env = &cpu->env; | |
3647 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
3648 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
3649 | vaddr addr; | |
3650 | int bt; | |
3651 | int flags = BP_CPU; | |
3652 | ||
3653 | if (env->cpu_breakpoint[n]) { | |
3654 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
3655 | env->cpu_breakpoint[n] = NULL; | |
3656 | } | |
3657 | ||
3658 | if (!extract64(bcr, 0, 1)) { | |
3659 | /* E bit clear : watchpoint disabled */ | |
3660 | return; | |
3661 | } | |
3662 | ||
3663 | bt = extract64(bcr, 20, 4); | |
3664 | ||
3665 | switch (bt) { | |
3666 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
3667 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
3668 | qemu_log_mask(LOG_UNIMP, | |
3669 | "arm: address mismatch breakpoint types not implemented"); | |
3670 | return; | |
3671 | case 0: /* unlinked address match */ | |
3672 | case 1: /* linked address match */ | |
3673 | { | |
3674 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
3675 | * we behave as if the register was sign extended. Bits [1:0] are | |
3676 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
3677 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
3678 | * a bp will fire if the addresses covered by the bp and the addresses | |
3679 | * covered by the insn overlap but the insn doesn't start at the | |
3680 | * start of the bp address range. We choose to require the insn and | |
3681 | * the bp to have the same address. The constraints on writing to | |
3682 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
3683 | * 0b0000 => no breakpoint | |
3684 | * 0b0011 => breakpoint on addr | |
3685 | * 0b1100 => breakpoint on addr + 2 | |
3686 | * 0b1111 => breakpoint on addr | |
3687 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
3688 | */ | |
3689 | int bas = extract64(bcr, 5, 4); | |
3690 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
3691 | if (bas == 0) { | |
3692 | return; | |
3693 | } | |
3694 | if (bas == 0xc) { | |
3695 | addr += 2; | |
3696 | } | |
3697 | break; | |
3698 | } | |
3699 | case 2: /* unlinked context ID match */ | |
3700 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
3701 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
3702 | qemu_log_mask(LOG_UNIMP, | |
3703 | "arm: unlinked context breakpoint types not implemented"); | |
3704 | return; | |
3705 | case 9: /* linked VMID match (reserved if no EL2) */ | |
3706 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
3707 | case 3: /* linked context ID match */ | |
3708 | default: | |
3709 | /* We must generate no events for Linked context matches (unless | |
3710 | * they are linked to by some other bp/wp, which is handled in | |
3711 | * updates for the linking bp/wp). We choose to also generate no events | |
3712 | * for reserved values. | |
3713 | */ | |
3714 | return; | |
3715 | } | |
3716 | ||
3717 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
3718 | } | |
3719 | ||
3720 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
3721 | { | |
3722 | int i; | |
3723 | CPUARMState *env = &cpu->env; | |
3724 | ||
3725 | /* Completely clear out existing QEMU breakpoints and our array, to | |
3726 | * avoid possible stale entries following migration load. | |
3727 | */ | |
3728 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
3729 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
3730 | ||
3731 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
3732 | hw_breakpoint_update(cpu, i); | |
3733 | } | |
3734 | } | |
3735 | ||
3736 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3737 | uint64_t value) | |
3738 | { | |
3739 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3740 | int i = ri->crm; | |
3741 | ||
3742 | raw_write(env, ri, value); | |
3743 | hw_breakpoint_update(cpu, i); | |
3744 | } | |
3745 | ||
3746 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3747 | uint64_t value) | |
3748 | { | |
3749 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3750 | int i = ri->crm; | |
3751 | ||
3752 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
3753 | * copy of BAS[0]. | |
3754 | */ | |
3755 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
3756 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
3757 | ||
3758 | raw_write(env, ri, value); | |
3759 | hw_breakpoint_update(cpu, i); | |
3760 | } | |
3761 | ||
50300698 | 3762 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 3763 | { |
50300698 PM |
3764 | /* Define v7 and v8 architectural debug registers. |
3765 | * These are just dummy implementations for now. | |
0b45451e PM |
3766 | */ |
3767 | int i; | |
3ff6fc91 | 3768 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
3769 | ARMCPRegInfo dbgdidr = { |
3770 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
3771 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
3772 | }; | |
3773 | ||
3ff6fc91 | 3774 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
3775 | brps = extract32(cpu->dbgdidr, 24, 4); |
3776 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
3777 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
3778 | ||
3779 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
3780 | |
3781 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
3782 | * of the debug registers such as number of breakpoints; | |
3783 | * check that if they both exist then they agree. | |
3784 | */ | |
3785 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
3786 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
3787 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 3788 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 3789 | } |
0b45451e | 3790 | |
48eb3ae6 | 3791 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
3792 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
3793 | ||
3794 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
3795 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
3796 | } | |
3797 | ||
48eb3ae6 | 3798 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 3799 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
3800 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
3801 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
0b45451e | 3802 | .access = PL1_RW, |
46747d15 PM |
3803 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
3804 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
3805 | }, | |
10aae104 PM |
3806 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
3807 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
0b45451e | 3808 | .access = PL1_RW, |
46747d15 PM |
3809 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
3810 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
3811 | }, | |
48eb3ae6 PM |
3812 | REGINFO_SENTINEL |
3813 | }; | |
3814 | define_arm_cp_regs(cpu, dbgregs); | |
3815 | } | |
3816 | ||
3817 | for (i = 0; i < wrps + 1; i++) { | |
3818 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
3819 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
3820 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
0b45451e | 3821 | .access = PL1_RW, |
9ee98ce8 PM |
3822 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
3823 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
3824 | }, | |
10aae104 PM |
3825 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
3826 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
0b45451e | 3827 | .access = PL1_RW, |
9ee98ce8 PM |
3828 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
3829 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
3830 | }, | |
3831 | REGINFO_SENTINEL | |
0b45451e PM |
3832 | }; |
3833 | define_arm_cp_regs(cpu, dbgregs); | |
3834 | } | |
3835 | } | |
3836 | ||
2ceb98c0 PM |
3837 | void register_cp_regs_for_features(ARMCPU *cpu) |
3838 | { | |
3839 | /* Register all the coprocessor registers based on feature bits */ | |
3840 | CPUARMState *env = &cpu->env; | |
3841 | if (arm_feature(env, ARM_FEATURE_M)) { | |
3842 | /* M profile has no coprocessor registers */ | |
3843 | return; | |
3844 | } | |
3845 | ||
e9aa6c21 | 3846 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
3847 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
3848 | /* Must go early as it is full of wildcards that may be | |
3849 | * overridden by later definitions. | |
3850 | */ | |
3851 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
3852 | } | |
3853 | ||
7d57f408 | 3854 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
3855 | /* The ID registers all have impdef reset values */ |
3856 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
3857 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
3858 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
3859 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3860 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
3861 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
3862 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
3863 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3864 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
3865 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
3866 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
3867 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3868 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
3869 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
3870 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
3871 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3872 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
3873 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
3874 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
3875 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3876 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
3877 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
3878 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
3879 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3880 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
3881 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
3882 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
3883 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3884 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
3885 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
3886 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
3887 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3888 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
3889 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
3890 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
3891 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3892 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
3893 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
3894 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
3895 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3896 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
3897 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
3898 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
3899 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3900 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
3901 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
3902 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
3903 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3904 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
3905 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
3906 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
3907 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3908 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
3909 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
3910 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
3911 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
3912 | .resetvalue = cpu->id_isar5 }, |
3913 | /* 6..7 are as yet unallocated and must RAZ */ | |
3914 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
3915 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
3916 | .resetvalue = 0 }, | |
3917 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
3918 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
3919 | .resetvalue = 0 }, | |
3920 | REGINFO_SENTINEL | |
3921 | }; | |
3922 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
3923 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
3924 | } else { | |
3925 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
3926 | } | |
4d31c596 PM |
3927 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
3928 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
3929 | } | |
5e5cf9e3 PC |
3930 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
3931 | !arm_feature(env, ARM_FEATURE_MPU)) { | |
995939a6 PM |
3932 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
3933 | } | |
e9aa6c21 | 3934 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 3935 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
3936 | * field as main ID register, and we implement only the cycle |
3937 | * count register. | |
200ac0ef | 3938 | */ |
7c2cb42b | 3939 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
3940 | ARMCPRegInfo pmcr = { |
3941 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 3942 | .access = PL0_RW, |
7a0e58fa | 3943 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 3944 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
3945 | .accessfn = pmreg_access, .writefn = pmcr_write, |
3946 | .raw_writefn = raw_write, | |
200ac0ef | 3947 | }; |
8521466b AF |
3948 | ARMCPRegInfo pmcr64 = { |
3949 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
3950 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
3951 | .access = PL0_RW, .accessfn = pmreg_access, | |
3952 | .type = ARM_CP_IO, | |
3953 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
3954 | .resetvalue = cpu->midr & 0xff000000, | |
3955 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
3956 | }; | |
7c2cb42b | 3957 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 3958 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 3959 | #endif |
776d4e5c | 3960 | ARMCPRegInfo clidr = { |
7da845b0 PM |
3961 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
3962 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
3963 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
3964 | }; | |
776d4e5c | 3965 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 3966 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 3967 | define_debug_regs(cpu); |
7d57f408 PM |
3968 | } else { |
3969 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 3970 | } |
b0d2b7d0 | 3971 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
3972 | /* AArch64 ID registers, which all have impdef reset values */ |
3973 | ARMCPRegInfo v8_idregs[] = { | |
3974 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3975 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
3976 | .access = PL1_R, .type = ARM_CP_CONST, | |
3977 | .resetvalue = cpu->id_aa64pfr0 }, | |
3978 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3979 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
3980 | .access = PL1_R, .type = ARM_CP_CONST, | |
3981 | .resetvalue = cpu->id_aa64pfr1}, | |
3982 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3983 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
3984 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 3985 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
3986 | * implement the PMU. Not advertising it prevents the guest |
3987 | * from trying to use it and getting UNDEFs on registers we | |
3988 | * don't implement. | |
3989 | */ | |
3990 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
3991 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
3992 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
3993 | .access = PL1_R, .type = ARM_CP_CONST, | |
3994 | .resetvalue = cpu->id_aa64dfr1 }, | |
3995 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3996 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
3997 | .access = PL1_R, .type = ARM_CP_CONST, | |
3998 | .resetvalue = cpu->id_aa64afr0 }, | |
3999 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4000 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
4001 | .access = PL1_R, .type = ARM_CP_CONST, | |
4002 | .resetvalue = cpu->id_aa64afr1 }, | |
4003 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
4004 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
4005 | .access = PL1_R, .type = ARM_CP_CONST, | |
4006 | .resetvalue = cpu->id_aa64isar0 }, | |
4007 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
4008 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
4009 | .access = PL1_R, .type = ARM_CP_CONST, | |
4010 | .resetvalue = cpu->id_aa64isar1 }, | |
4011 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4012 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
4013 | .access = PL1_R, .type = ARM_CP_CONST, | |
4014 | .resetvalue = cpu->id_aa64mmfr0 }, | |
4015 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4016 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
4017 | .access = PL1_R, .type = ARM_CP_CONST, | |
4018 | .resetvalue = cpu->id_aa64mmfr1 }, | |
a50c0f51 PM |
4019 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
4020 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
4021 | .access = PL1_R, .type = ARM_CP_CONST, | |
4022 | .resetvalue = cpu->mvfr0 }, | |
4023 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4024 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
4025 | .access = PL1_R, .type = ARM_CP_CONST, | |
4026 | .resetvalue = cpu->mvfr1 }, | |
4027 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
4028 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
4029 | .access = PL1_R, .type = ARM_CP_CONST, | |
4030 | .resetvalue = cpu->mvfr2 }, | |
e60cef86 PM |
4031 | REGINFO_SENTINEL |
4032 | }; | |
be8e8128 GB |
4033 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
4034 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
4035 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
4036 | ARMCPRegInfo rvbar = { | |
4037 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4038 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
4039 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
4040 | }; | |
4041 | define_one_arm_cp_reg(cpu, &rvbar); | |
4042 | } | |
e60cef86 | 4043 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
4044 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
4045 | } | |
3b685ba7 | 4046 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
4771cd01 | 4047 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
4048 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
4049 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
4050 | ARMCPRegInfo rvbar = { | |
4051 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
4052 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
4053 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
4054 | }; | |
4055 | define_one_arm_cp_reg(cpu, &rvbar); | |
4056 | } | |
d42e3c26 EI |
4057 | } else { |
4058 | /* If EL2 is missing but higher ELs are enabled, we need to | |
4059 | * register the no_el2 reginfos. | |
4060 | */ | |
4061 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
4771cd01 | 4062 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 4063 | } |
3b685ba7 | 4064 | } |
81547d66 | 4065 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 4066 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
be8e8128 GB |
4067 | ARMCPRegInfo rvbar = { |
4068 | .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
4069 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
4070 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar | |
4071 | }; | |
4072 | define_one_arm_cp_reg(cpu, &rvbar); | |
81547d66 | 4073 | } |
18032bec | 4074 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
6cb0b013 PC |
4075 | if (arm_feature(env, ARM_FEATURE_V6)) { |
4076 | /* PMSAv6 not implemented */ | |
4077 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
4078 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
4079 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
4080 | } else { | |
4081 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
4082 | } | |
18032bec | 4083 | } else { |
8e5d75c9 | 4084 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
4085 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
4086 | } | |
c326b979 PM |
4087 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
4088 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
4089 | } | |
6cc7a3ae PM |
4090 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
4091 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
4092 | } | |
4a501606 PM |
4093 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
4094 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
4095 | } | |
c4804214 PM |
4096 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
4097 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
4098 | } | |
4099 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
4100 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
4101 | } | |
4102 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
4103 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
4104 | } | |
18032bec PM |
4105 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
4106 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
4107 | } | |
34f90529 PM |
4108 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
4109 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
4110 | } | |
1047b9d7 PM |
4111 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
4112 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
4113 | } | |
4114 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
4115 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
4116 | } | |
7ac681cf PM |
4117 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
4118 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
4119 | } | |
7884849c PM |
4120 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
4121 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
4122 | * be read-only (ie write causes UNDEF exception). | |
4123 | */ | |
4124 | { | |
00a29f3d PM |
4125 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
4126 | /* Pre-v8 MIDR space. | |
4127 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
4128 | * of the TI925 behaviour where writes to another register can |
4129 | * cause the MIDR value to change. | |
97ce8d61 PC |
4130 | * |
4131 | * Unimplemented registers in the c15 0 0 0 space default to | |
4132 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
4133 | * and friends override accordingly. | |
7884849c PM |
4134 | */ |
4135 | { .name = "MIDR", | |
97ce8d61 | 4136 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 4137 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 4138 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
4139 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
4140 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
4141 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
4142 | { .name = "DUMMY", | |
4143 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
4144 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4145 | { .name = "DUMMY", | |
4146 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
4147 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4148 | { .name = "DUMMY", | |
4149 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
4150 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4151 | { .name = "DUMMY", | |
4152 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
4153 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4154 | { .name = "DUMMY", | |
4155 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
4156 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4157 | REGINFO_SENTINEL | |
4158 | }; | |
00a29f3d | 4159 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
4160 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
4161 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
4162 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
ac00c79f SF |
4163 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
4164 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
4165 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
4166 | .access = PL1_R, .resetvalue = cpu->midr }, | |
4167 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
4168 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
4169 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
4170 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
4171 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 4172 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
4173 | REGINFO_SENTINEL |
4174 | }; | |
4175 | ARMCPRegInfo id_cp_reginfo[] = { | |
4176 | /* These are common to v8 and pre-v8 */ | |
4177 | { .name = "CTR", | |
4178 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
4179 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
4180 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
4181 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
4182 | .access = PL0_R, .accessfn = ctr_el0_access, | |
4183 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
4184 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
4185 | { .name = "TCMTR", | |
4186 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
4187 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
4188 | REGINFO_SENTINEL |
4189 | }; | |
8085ce63 PC |
4190 | /* TLBTR is specific to VMSA */ |
4191 | ARMCPRegInfo id_tlbtr_reginfo = { | |
4192 | .name = "TLBTR", | |
4193 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
4194 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
4195 | }; | |
3281af81 PC |
4196 | /* MPUIR is specific to PMSA V6+ */ |
4197 | ARMCPRegInfo id_mpuir_reginfo = { | |
4198 | .name = "MPUIR", | |
4199 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
4200 | .access = PL1_R, .type = ARM_CP_CONST, | |
4201 | .resetvalue = cpu->pmsav7_dregion << 8 | |
4202 | }; | |
7884849c PM |
4203 | ARMCPRegInfo crn0_wi_reginfo = { |
4204 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
4205 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
4206 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
4207 | }; | |
4208 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
4209 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
4210 | ARMCPRegInfo *r; | |
4211 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
4212 | * whole space. Then update the specific ID registers to allow write |
4213 | * access, so that they ignore writes rather than causing them to | |
4214 | * UNDEF. | |
7884849c PM |
4215 | */ |
4216 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
4217 | for (r = id_pre_v8_midr_cp_reginfo; |
4218 | r->type != ARM_CP_SENTINEL; r++) { | |
4219 | r->access = PL1_RW; | |
4220 | } | |
7884849c PM |
4221 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
4222 | r->access = PL1_RW; | |
7884849c | 4223 | } |
8085ce63 | 4224 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 4225 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 4226 | } |
00a29f3d PM |
4227 | if (arm_feature(env, ARM_FEATURE_V8)) { |
4228 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
4229 | } else { | |
4230 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
4231 | } | |
a703eda1 | 4232 | define_arm_cp_regs(cpu, id_cp_reginfo); |
8085ce63 PC |
4233 | if (!arm_feature(env, ARM_FEATURE_MPU)) { |
4234 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); | |
3281af81 PC |
4235 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
4236 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 4237 | } |
7884849c PM |
4238 | } |
4239 | ||
97ce8d61 PC |
4240 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
4241 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
4242 | } | |
4243 | ||
2771db27 | 4244 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
4245 | ARMCPRegInfo auxcr_reginfo[] = { |
4246 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
4247 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
4248 | .access = PL1_RW, .type = ARM_CP_CONST, | |
4249 | .resetvalue = cpu->reset_auxcr }, | |
4250 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | |
4251 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
4252 | .access = PL2_RW, .type = ARM_CP_CONST, | |
4253 | .resetvalue = 0 }, | |
4254 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
4255 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
4256 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4257 | .resetvalue = 0 }, | |
4258 | REGINFO_SENTINEL | |
2771db27 | 4259 | }; |
834a6c69 | 4260 | define_arm_cp_regs(cpu, auxcr_reginfo); |
2771db27 PM |
4261 | } |
4262 | ||
d8ba780b | 4263 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
4264 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
4265 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
4266 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
4267 | | extract64(cpu->reset_cbar, 32, 12); | |
4268 | ARMCPRegInfo cbar_reginfo[] = { | |
4269 | { .name = "CBAR", | |
4270 | .type = ARM_CP_CONST, | |
4271 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
4272 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
4273 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4274 | .type = ARM_CP_CONST, | |
4275 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
4276 | .access = PL1_R, .resetvalue = cbar32 }, | |
4277 | REGINFO_SENTINEL | |
4278 | }; | |
4279 | /* We don't implement a r/w 64 bit CBAR currently */ | |
4280 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
4281 | define_arm_cp_regs(cpu, cbar_reginfo); | |
4282 | } else { | |
4283 | ARMCPRegInfo cbar = { | |
4284 | .name = "CBAR", | |
4285 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
4286 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
4287 | .fieldoffset = offsetof(CPUARMState, | |
4288 | cp15.c15_config_base_address) | |
4289 | }; | |
4290 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
4291 | cbar.access = PL1_R; | |
4292 | cbar.fieldoffset = 0; | |
4293 | cbar.type = ARM_CP_CONST; | |
4294 | } | |
4295 | define_one_arm_cp_reg(cpu, &cbar); | |
4296 | } | |
d8ba780b PC |
4297 | } |
4298 | ||
2771db27 PM |
4299 | /* Generic registers whose values depend on the implementation */ |
4300 | { | |
4301 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 4302 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
4303 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
4304 | .access = PL1_RW, | |
4305 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
4306 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
4307 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
4308 | .raw_writefn = raw_write, | |
2771db27 PM |
4309 | }; |
4310 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
4311 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
4312 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
4313 | * an MMU enable to execute from cache. Imitate this behaviour. | |
4314 | */ | |
4315 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
4316 | } | |
4317 | define_one_arm_cp_reg(cpu, &sctlr); | |
4318 | } | |
2ceb98c0 PM |
4319 | } |
4320 | ||
778c3a06 | 4321 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 4322 | { |
9262685b | 4323 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
4324 | } |
4325 | ||
4326 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
4327 | { | |
22169d41 | 4328 | CPUState *cs = CPU(cpu); |
14969266 AF |
4329 | CPUARMState *env = &cpu->env; |
4330 | ||
6a669427 PM |
4331 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
4332 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
4333 | aarch64_fpu_gdb_set_reg, | |
4334 | 34, "aarch64-fpu.xml", 0); | |
4335 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 4336 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4337 | 51, "arm-neon.xml", 0); |
4338 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 4339 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4340 | 35, "arm-vfp3.xml", 0); |
4341 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 4342 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4343 | 19, "arm-vfp.xml", 0); |
4344 | } | |
40f137e1 PB |
4345 | } |
4346 | ||
777dc784 PM |
4347 | /* Sort alphabetically by type name, except for "any". */ |
4348 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 4349 | { |
777dc784 PM |
4350 | ObjectClass *class_a = (ObjectClass *)a; |
4351 | ObjectClass *class_b = (ObjectClass *)b; | |
4352 | const char *name_a, *name_b; | |
5adb4839 | 4353 | |
777dc784 PM |
4354 | name_a = object_class_get_name(class_a); |
4355 | name_b = object_class_get_name(class_b); | |
51492fd1 | 4356 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 4357 | return 1; |
51492fd1 | 4358 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
4359 | return -1; |
4360 | } else { | |
4361 | return strcmp(name_a, name_b); | |
5adb4839 PB |
4362 | } |
4363 | } | |
4364 | ||
777dc784 | 4365 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 4366 | { |
777dc784 | 4367 | ObjectClass *oc = data; |
92a31361 | 4368 | CPUListState *s = user_data; |
51492fd1 AF |
4369 | const char *typename; |
4370 | char *name; | |
3371d272 | 4371 | |
51492fd1 AF |
4372 | typename = object_class_get_name(oc); |
4373 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 4374 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
4375 | name); |
4376 | g_free(name); | |
777dc784 PM |
4377 | } |
4378 | ||
4379 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
4380 | { | |
92a31361 | 4381 | CPUListState s = { |
777dc784 PM |
4382 | .file = f, |
4383 | .cpu_fprintf = cpu_fprintf, | |
4384 | }; | |
4385 | GSList *list; | |
4386 | ||
4387 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
4388 | list = g_slist_sort(list, arm_cpu_list_compare); | |
4389 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
4390 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
4391 | g_slist_free(list); | |
a96c0514 PM |
4392 | #ifdef CONFIG_KVM |
4393 | /* The 'host' CPU type is dynamically registered only if KVM is | |
4394 | * enabled, so we have to special-case it here: | |
4395 | */ | |
4396 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
4397 | #endif | |
40f137e1 PB |
4398 | } |
4399 | ||
78027bb6 CR |
4400 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
4401 | { | |
4402 | ObjectClass *oc = data; | |
4403 | CpuDefinitionInfoList **cpu_list = user_data; | |
4404 | CpuDefinitionInfoList *entry; | |
4405 | CpuDefinitionInfo *info; | |
4406 | const char *typename; | |
4407 | ||
4408 | typename = object_class_get_name(oc); | |
4409 | info = g_malloc0(sizeof(*info)); | |
4410 | info->name = g_strndup(typename, | |
4411 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
4412 | ||
4413 | entry = g_malloc0(sizeof(*entry)); | |
4414 | entry->value = info; | |
4415 | entry->next = *cpu_list; | |
4416 | *cpu_list = entry; | |
4417 | } | |
4418 | ||
4419 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
4420 | { | |
4421 | CpuDefinitionInfoList *cpu_list = NULL; | |
4422 | GSList *list; | |
4423 | ||
4424 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
4425 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
4426 | g_slist_free(list); | |
4427 | ||
4428 | return cpu_list; | |
4429 | } | |
4430 | ||
6e6efd61 | 4431 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 4432 | void *opaque, int state, int secstate, |
f5a0a5a5 | 4433 | int crm, int opc1, int opc2) |
6e6efd61 PM |
4434 | { |
4435 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
4436 | * add a single reginfo struct to the hash table. | |
4437 | */ | |
4438 | uint32_t *key = g_new(uint32_t, 1); | |
4439 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
4440 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
4441 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
4442 | ||
4443 | /* Reset the secure state to the specific incoming state. This is | |
4444 | * necessary as the register may have been defined with both states. | |
4445 | */ | |
4446 | r2->secure = secstate; | |
4447 | ||
4448 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
4449 | /* Register is banked (using both entries in array). | |
4450 | * Overwriting fieldoffset as the array is only used to define | |
4451 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 4452 | */ |
3f3c82a5 FA |
4453 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
4454 | } | |
4455 | ||
4456 | if (state == ARM_CP_STATE_AA32) { | |
4457 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
4458 | /* If the register is banked then we don't need to migrate or | |
4459 | * reset the 32-bit instance in certain cases: | |
4460 | * | |
4461 | * 1) If the register has both 32-bit and 64-bit instances then we | |
4462 | * can count on the 64-bit instance taking care of the | |
4463 | * non-secure bank. | |
4464 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
4465 | * taking care of the secure bank. This requires that separate | |
4466 | * 32 and 64-bit definitions are provided. | |
4467 | */ | |
4468 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
4469 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 4470 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
4471 | } |
4472 | } else if ((secstate != r->secure) && !ns) { | |
4473 | /* The register is not banked so we only want to allow migration of | |
4474 | * the non-secure instance. | |
4475 | */ | |
7a0e58fa | 4476 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 4477 | } |
3f3c82a5 FA |
4478 | |
4479 | if (r->state == ARM_CP_STATE_BOTH) { | |
4480 | /* We assume it is a cp15 register if the .cp field is left unset. | |
4481 | */ | |
4482 | if (r2->cp == 0) { | |
4483 | r2->cp = 15; | |
4484 | } | |
4485 | ||
f5a0a5a5 | 4486 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
4487 | if (r2->fieldoffset) { |
4488 | r2->fieldoffset += sizeof(uint32_t); | |
4489 | } | |
f5a0a5a5 | 4490 | #endif |
3f3c82a5 | 4491 | } |
f5a0a5a5 PM |
4492 | } |
4493 | if (state == ARM_CP_STATE_AA64) { | |
4494 | /* To allow abbreviation of ARMCPRegInfo | |
4495 | * definitions, we treat cp == 0 as equivalent to | |
4496 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
4497 | * STATE_BOTH definitions are also always "standard |
4498 | * sysreg" in their AArch64 view (the .cp value may | |
4499 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 4500 | */ |
58a1d8ce | 4501 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
4502 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
4503 | } | |
4504 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
4505 | r2->opc0, opc1, opc2); | |
4506 | } else { | |
51a79b03 | 4507 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 4508 | } |
6e6efd61 PM |
4509 | if (opaque) { |
4510 | r2->opaque = opaque; | |
4511 | } | |
67ed771d PM |
4512 | /* reginfo passed to helpers is correct for the actual access, |
4513 | * and is never ARM_CP_STATE_BOTH: | |
4514 | */ | |
4515 | r2->state = state; | |
6e6efd61 PM |
4516 | /* Make sure reginfo passed to helpers for wildcarded regs |
4517 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
4518 | */ | |
4519 | r2->crm = crm; | |
4520 | r2->opc1 = opc1; | |
4521 | r2->opc2 = opc2; | |
4522 | /* By convention, for wildcarded registers only the first | |
4523 | * entry is used for migration; the others are marked as | |
7a0e58fa | 4524 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 4525 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 4526 | * never migratable and not even raw-accessible. |
6e6efd61 | 4527 | */ |
7a0e58fa PM |
4528 | if ((r->type & ARM_CP_SPECIAL)) { |
4529 | r2->type |= ARM_CP_NO_RAW; | |
4530 | } | |
4531 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
4532 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
4533 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 4534 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
4535 | } |
4536 | ||
375421cc PM |
4537 | /* Check that raw accesses are either forbidden or handled. Note that |
4538 | * we can't assert this earlier because the setup of fieldoffset for | |
4539 | * banked registers has to be done first. | |
4540 | */ | |
4541 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
4542 | assert(!raw_accessors_invalid(r2)); | |
4543 | } | |
4544 | ||
6e6efd61 PM |
4545 | /* Overriding of an existing definition must be explicitly |
4546 | * requested. | |
4547 | */ | |
4548 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
4549 | ARMCPRegInfo *oldreg; | |
4550 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
4551 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
4552 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
4553 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
4554 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
4555 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
4556 | oldreg->name, r2->name); | |
4557 | g_assert_not_reached(); | |
4558 | } | |
4559 | } | |
4560 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
4561 | } | |
4562 | ||
4563 | ||
4b6a83fb PM |
4564 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
4565 | const ARMCPRegInfo *r, void *opaque) | |
4566 | { | |
4567 | /* Define implementations of coprocessor registers. | |
4568 | * We store these in a hashtable because typically | |
4569 | * there are less than 150 registers in a space which | |
4570 | * is 16*16*16*8*8 = 262144 in size. | |
4571 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
4572 | * If a register is defined twice then the second definition is | |
4573 | * used, so this can be used to define some generic registers and | |
4574 | * then override them with implementation specific variations. | |
4575 | * At least one of the original and the second definition should | |
4576 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
4577 | * against accidental use. | |
f5a0a5a5 PM |
4578 | * |
4579 | * The state field defines whether the register is to be | |
4580 | * visible in the AArch32 or AArch64 execution state. If the | |
4581 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
4582 | * reginfo structure for the AArch32 view, which sees the lower | |
4583 | * 32 bits of the 64 bit register. | |
4584 | * | |
4585 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
4586 | * be wildcarded. AArch64 registers are always considered to be 64 | |
4587 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
4588 | * the register, if any. | |
4b6a83fb | 4589 | */ |
f5a0a5a5 | 4590 | int crm, opc1, opc2, state; |
4b6a83fb PM |
4591 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
4592 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
4593 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
4594 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
4595 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
4596 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
4597 | /* 64 bit registers have only CRm and Opc1 fields */ | |
4598 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
4599 | /* op0 only exists in the AArch64 encodings */ |
4600 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
4601 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
4602 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
4603 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
4604 | * encodes a minimum access level for the register. We roll this | |
4605 | * runtime check into our general permission check code, so check | |
4606 | * here that the reginfo's specified permissions are strict enough | |
4607 | * to encompass the generic architectural permission check. | |
4608 | */ | |
4609 | if (r->state != ARM_CP_STATE_AA32) { | |
4610 | int mask = 0; | |
4611 | switch (r->opc1) { | |
4612 | case 0: case 1: case 2: | |
4613 | /* min_EL EL1 */ | |
4614 | mask = PL1_RW; | |
4615 | break; | |
4616 | case 3: | |
4617 | /* min_EL EL0 */ | |
4618 | mask = PL0_RW; | |
4619 | break; | |
4620 | case 4: | |
4621 | /* min_EL EL2 */ | |
4622 | mask = PL2_RW; | |
4623 | break; | |
4624 | case 5: | |
4625 | /* unallocated encoding, so not possible */ | |
4626 | assert(false); | |
4627 | break; | |
4628 | case 6: | |
4629 | /* min_EL EL3 */ | |
4630 | mask = PL3_RW; | |
4631 | break; | |
4632 | case 7: | |
4633 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
4634 | mask = PL1_RW; | |
4635 | break; | |
4636 | default: | |
4637 | /* broken reginfo with out-of-range opc1 */ | |
4638 | assert(false); | |
4639 | break; | |
4640 | } | |
4641 | /* assert our permissions are not too lax (stricter is fine) */ | |
4642 | assert((r->access & ~mask) == 0); | |
4643 | } | |
4644 | ||
4b6a83fb PM |
4645 | /* Check that the register definition has enough info to handle |
4646 | * reads and writes if they are permitted. | |
4647 | */ | |
4648 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
4649 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
4650 | assert((r->fieldoffset || |
4651 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
4652 | r->readfn); | |
4b6a83fb PM |
4653 | } |
4654 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
4655 | assert((r->fieldoffset || |
4656 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
4657 | r->writefn); | |
4b6a83fb PM |
4658 | } |
4659 | } | |
4660 | /* Bad type field probably means missing sentinel at end of reg list */ | |
4661 | assert(cptype_valid(r->type)); | |
4662 | for (crm = crmmin; crm <= crmmax; crm++) { | |
4663 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
4664 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
4665 | for (state = ARM_CP_STATE_AA32; |
4666 | state <= ARM_CP_STATE_AA64; state++) { | |
4667 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
4668 | continue; | |
4669 | } | |
3f3c82a5 FA |
4670 | if (state == ARM_CP_STATE_AA32) { |
4671 | /* Under AArch32 CP registers can be common | |
4672 | * (same for secure and non-secure world) or banked. | |
4673 | */ | |
4674 | switch (r->secure) { | |
4675 | case ARM_CP_SECSTATE_S: | |
4676 | case ARM_CP_SECSTATE_NS: | |
4677 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4678 | r->secure, crm, opc1, opc2); | |
4679 | break; | |
4680 | default: | |
4681 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4682 | ARM_CP_SECSTATE_S, | |
4683 | crm, opc1, opc2); | |
4684 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4685 | ARM_CP_SECSTATE_NS, | |
4686 | crm, opc1, opc2); | |
4687 | break; | |
4688 | } | |
4689 | } else { | |
4690 | /* AArch64 registers get mapped to non-secure instance | |
4691 | * of AArch32 */ | |
4692 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4693 | ARM_CP_SECSTATE_NS, | |
4694 | crm, opc1, opc2); | |
4695 | } | |
f5a0a5a5 | 4696 | } |
4b6a83fb PM |
4697 | } |
4698 | } | |
4699 | } | |
4700 | } | |
4701 | ||
4702 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
4703 | const ARMCPRegInfo *regs, void *opaque) | |
4704 | { | |
4705 | /* Define a whole list of registers */ | |
4706 | const ARMCPRegInfo *r; | |
4707 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
4708 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
4709 | } | |
4710 | } | |
4711 | ||
60322b39 | 4712 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 4713 | { |
60322b39 | 4714 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
4715 | } |
4716 | ||
c4241c7d PM |
4717 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
4718 | uint64_t value) | |
4b6a83fb PM |
4719 | { |
4720 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
4721 | } |
4722 | ||
c4241c7d | 4723 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
4724 | { |
4725 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
4726 | return 0; |
4727 | } | |
4728 | ||
f5a0a5a5 PM |
4729 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
4730 | { | |
4731 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
4732 | } | |
4733 | ||
0ecb72a5 | 4734 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
4735 | { |
4736 | /* Return true if it is not valid for us to switch to | |
4737 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
4738 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
4739 | */ | |
4740 | switch (mode) { | |
4741 | case ARM_CPU_MODE_USR: | |
4742 | case ARM_CPU_MODE_SYS: | |
4743 | case ARM_CPU_MODE_SVC: | |
4744 | case ARM_CPU_MODE_ABT: | |
4745 | case ARM_CPU_MODE_UND: | |
4746 | case ARM_CPU_MODE_IRQ: | |
4747 | case ARM_CPU_MODE_FIQ: | |
4748 | return 0; | |
027fc527 SF |
4749 | case ARM_CPU_MODE_MON: |
4750 | return !arm_is_secure(env); | |
37064a8b PM |
4751 | default: |
4752 | return 1; | |
4753 | } | |
4754 | } | |
4755 | ||
2f4a40e5 AZ |
4756 | uint32_t cpsr_read(CPUARMState *env) |
4757 | { | |
4758 | int ZF; | |
6fbe23d5 PB |
4759 | ZF = (env->ZF == 0); |
4760 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
4761 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
4762 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
4763 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 4764 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
4765 | } |
4766 | ||
4767 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
4768 | { | |
6e8801f9 FA |
4769 | uint32_t changed_daif; |
4770 | ||
2f4a40e5 | 4771 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
4772 | env->ZF = (~val) & CPSR_Z; |
4773 | env->NF = val; | |
2f4a40e5 AZ |
4774 | env->CF = (val >> 29) & 1; |
4775 | env->VF = (val << 3) & 0x80000000; | |
4776 | } | |
4777 | if (mask & CPSR_Q) | |
4778 | env->QF = ((val & CPSR_Q) != 0); | |
4779 | if (mask & CPSR_T) | |
4780 | env->thumb = ((val & CPSR_T) != 0); | |
4781 | if (mask & CPSR_IT_0_1) { | |
4782 | env->condexec_bits &= ~3; | |
4783 | env->condexec_bits |= (val >> 25) & 3; | |
4784 | } | |
4785 | if (mask & CPSR_IT_2_7) { | |
4786 | env->condexec_bits &= 3; | |
4787 | env->condexec_bits |= (val >> 8) & 0xfc; | |
4788 | } | |
4789 | if (mask & CPSR_GE) { | |
4790 | env->GE = (val >> 16) & 0xf; | |
4791 | } | |
4792 | ||
6e8801f9 FA |
4793 | /* In a V7 implementation that includes the security extensions but does |
4794 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
4795 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
4796 | * bits respectively. | |
4797 | * | |
4798 | * In a V8 implementation, it is permitted for privileged software to | |
4799 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
4800 | */ | |
4801 | if (!arm_feature(env, ARM_FEATURE_V8) && | |
4802 | arm_feature(env, ARM_FEATURE_EL3) && | |
4803 | !arm_feature(env, ARM_FEATURE_EL2) && | |
4804 | !arm_is_secure(env)) { | |
4805 | ||
4806 | changed_daif = (env->daif ^ val) & mask; | |
4807 | ||
4808 | if (changed_daif & CPSR_A) { | |
4809 | /* Check to see if we are allowed to change the masking of async | |
4810 | * abort exceptions from a non-secure state. | |
4811 | */ | |
4812 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
4813 | qemu_log_mask(LOG_GUEST_ERROR, | |
4814 | "Ignoring attempt to switch CPSR_A flag from " | |
4815 | "non-secure world with SCR.AW bit clear\n"); | |
4816 | mask &= ~CPSR_A; | |
4817 | } | |
4818 | } | |
4819 | ||
4820 | if (changed_daif & CPSR_F) { | |
4821 | /* Check to see if we are allowed to change the masking of FIQ | |
4822 | * exceptions from a non-secure state. | |
4823 | */ | |
4824 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
4825 | qemu_log_mask(LOG_GUEST_ERROR, | |
4826 | "Ignoring attempt to switch CPSR_F flag from " | |
4827 | "non-secure world with SCR.FW bit clear\n"); | |
4828 | mask &= ~CPSR_F; | |
4829 | } | |
4830 | ||
4831 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
4832 | * If this bit is set software is not allowed to mask | |
4833 | * FIQs, but is allowed to set CPSR_F to 0. | |
4834 | */ | |
4835 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
4836 | (val & CPSR_F)) { | |
4837 | qemu_log_mask(LOG_GUEST_ERROR, | |
4838 | "Ignoring attempt to enable CPSR_F flag " | |
4839 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
4840 | mask &= ~CPSR_F; | |
4841 | } | |
4842 | } | |
4843 | } | |
4844 | ||
4cc35614 PM |
4845 | env->daif &= ~(CPSR_AIF & mask); |
4846 | env->daif |= val & CPSR_AIF & mask; | |
4847 | ||
2f4a40e5 | 4848 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
4849 | if (bad_mode_switch(env, val & CPSR_M)) { |
4850 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
4851 | * We choose to ignore the attempt and leave the CPSR M field | |
4852 | * untouched. | |
4853 | */ | |
4854 | mask &= ~CPSR_M; | |
4855 | } else { | |
4856 | switch_mode(env, val & CPSR_M); | |
4857 | } | |
2f4a40e5 AZ |
4858 | } |
4859 | mask &= ~CACHED_CPSR_BITS; | |
4860 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
4861 | } | |
4862 | ||
b26eefb6 PB |
4863 | /* Sign/zero extend */ |
4864 | uint32_t HELPER(sxtb16)(uint32_t x) | |
4865 | { | |
4866 | uint32_t res; | |
4867 | res = (uint16_t)(int8_t)x; | |
4868 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
4869 | return res; | |
4870 | } | |
4871 | ||
4872 | uint32_t HELPER(uxtb16)(uint32_t x) | |
4873 | { | |
4874 | uint32_t res; | |
4875 | res = (uint16_t)(uint8_t)x; | |
4876 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
4877 | return res; | |
4878 | } | |
4879 | ||
f51bbbfe PB |
4880 | uint32_t HELPER(clz)(uint32_t x) |
4881 | { | |
7bbcb0af | 4882 | return clz32(x); |
f51bbbfe PB |
4883 | } |
4884 | ||
3670669c PB |
4885 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
4886 | { | |
4887 | if (den == 0) | |
4888 | return 0; | |
686eeb93 AJ |
4889 | if (num == INT_MIN && den == -1) |
4890 | return INT_MIN; | |
3670669c PB |
4891 | return num / den; |
4892 | } | |
4893 | ||
4894 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
4895 | { | |
4896 | if (den == 0) | |
4897 | return 0; | |
4898 | return num / den; | |
4899 | } | |
4900 | ||
4901 | uint32_t HELPER(rbit)(uint32_t x) | |
4902 | { | |
4903 | x = ((x & 0xff000000) >> 24) | |
4904 | | ((x & 0x00ff0000) >> 8) | |
4905 | | ((x & 0x0000ff00) << 8) | |
4906 | | ((x & 0x000000ff) << 24); | |
4907 | x = ((x & 0xf0f0f0f0) >> 4) | |
4908 | | ((x & 0x0f0f0f0f) << 4); | |
4909 | x = ((x & 0x88888888) >> 3) | |
4910 | | ((x & 0x44444444) >> 1) | |
4911 | | ((x & 0x22222222) << 1) | |
4912 | | ((x & 0x11111111) << 3); | |
4913 | return x; | |
4914 | } | |
4915 | ||
5fafdf24 | 4916 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 4917 | |
9ee6e8bb | 4918 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 4919 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 4920 | { |
a47dddd7 AF |
4921 | ARMCPU *cpu = arm_env_get_cpu(env); |
4922 | ||
4923 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
4924 | } |
4925 | ||
0ecb72a5 | 4926 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 4927 | { |
a47dddd7 AF |
4928 | ARMCPU *cpu = arm_env_get_cpu(env); |
4929 | ||
4930 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
4931 | return 0; |
4932 | } | |
4933 | ||
0ecb72a5 | 4934 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 4935 | { |
a47dddd7 AF |
4936 | ARMCPU *cpu = arm_env_get_cpu(env); |
4937 | ||
4938 | if (mode != ARM_CPU_MODE_USR) { | |
4939 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
4940 | } | |
b5ff1b31 FB |
4941 | } |
4942 | ||
0ecb72a5 | 4943 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 4944 | { |
a47dddd7 AF |
4945 | ARMCPU *cpu = arm_env_get_cpu(env); |
4946 | ||
4947 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
4948 | } |
4949 | ||
0ecb72a5 | 4950 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 4951 | { |
a47dddd7 AF |
4952 | ARMCPU *cpu = arm_env_get_cpu(env); |
4953 | ||
4954 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
4955 | return 0; |
4956 | } | |
4957 | ||
012a906b GB |
4958 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
4959 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
4960 | { |
4961 | return 1; | |
4962 | } | |
4963 | ||
ce02049d GB |
4964 | void aarch64_sync_64_to_32(CPUARMState *env) |
4965 | { | |
4966 | g_assert_not_reached(); | |
4967 | } | |
4968 | ||
b5ff1b31 FB |
4969 | #else |
4970 | ||
4971 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 4972 | int bank_number(int mode) |
b5ff1b31 FB |
4973 | { |
4974 | switch (mode) { | |
4975 | case ARM_CPU_MODE_USR: | |
4976 | case ARM_CPU_MODE_SYS: | |
4977 | return 0; | |
4978 | case ARM_CPU_MODE_SVC: | |
4979 | return 1; | |
4980 | case ARM_CPU_MODE_ABT: | |
4981 | return 2; | |
4982 | case ARM_CPU_MODE_UND: | |
4983 | return 3; | |
4984 | case ARM_CPU_MODE_IRQ: | |
4985 | return 4; | |
4986 | case ARM_CPU_MODE_FIQ: | |
4987 | return 5; | |
28c9457d EI |
4988 | case ARM_CPU_MODE_HYP: |
4989 | return 6; | |
4990 | case ARM_CPU_MODE_MON: | |
4991 | return 7; | |
b5ff1b31 | 4992 | } |
8f6fd322 | 4993 | g_assert_not_reached(); |
b5ff1b31 FB |
4994 | } |
4995 | ||
0ecb72a5 | 4996 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
4997 | { |
4998 | int old_mode; | |
4999 | int i; | |
5000 | ||
5001 | old_mode = env->uncached_cpsr & CPSR_M; | |
5002 | if (mode == old_mode) | |
5003 | return; | |
5004 | ||
5005 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
5006 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5007 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5008 | } else if (mode == ARM_CPU_MODE_FIQ) { |
5009 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5010 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5011 | } |
5012 | ||
f5206413 | 5013 | i = bank_number(old_mode); |
b5ff1b31 FB |
5014 | env->banked_r13[i] = env->regs[13]; |
5015 | env->banked_r14[i] = env->regs[14]; | |
5016 | env->banked_spsr[i] = env->spsr; | |
5017 | ||
f5206413 | 5018 | i = bank_number(mode); |
b5ff1b31 FB |
5019 | env->regs[13] = env->banked_r13[i]; |
5020 | env->regs[14] = env->banked_r14[i]; | |
5021 | env->spsr = env->banked_spsr[i]; | |
5022 | } | |
5023 | ||
0eeb17d6 GB |
5024 | /* Physical Interrupt Target EL Lookup Table |
5025 | * | |
5026 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
5027 | * | |
5028 | * The below multi-dimensional table is used for looking up the target | |
5029 | * exception level given numerous condition criteria. Specifically, the | |
5030 | * target EL is based on SCR and HCR routing controls as well as the | |
5031 | * currently executing EL and secure state. | |
5032 | * | |
5033 | * Dimensions: | |
5034 | * target_el_table[2][2][2][2][2][4] | |
5035 | * | | | | | +--- Current EL | |
5036 | * | | | | +------ Non-secure(0)/Secure(1) | |
5037 | * | | | +--------- HCR mask override | |
5038 | * | | +------------ SCR exec state control | |
5039 | * | +--------------- SCR mask override | |
5040 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
5041 | * | |
5042 | * The table values are as such: | |
5043 | * 0-3 = EL0-EL3 | |
5044 | * -1 = Cannot occur | |
5045 | * | |
5046 | * The ARM ARM target EL table includes entries indicating that an "exception | |
5047 | * is not taken". The two cases where this is applicable are: | |
5048 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
5049 | * routed to EL3. | |
5050 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
5051 | * routed to EL2. | |
5052 | * In these two cases, the below table contain a target of EL1. This value is | |
5053 | * returned as it is expected that the consumer of the table data will check | |
5054 | * for "target EL >= current EL" to ensure the exception is not taken. | |
5055 | * | |
5056 | * SCR HCR | |
5057 | * 64 EA AMO From | |
5058 | * BIT IRQ IMO Non-secure Secure | |
5059 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
5060 | */ | |
5061 | const int8_t target_el_table[2][2][2][2][2][4] = { | |
5062 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
5063 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
5064 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
5065 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
5066 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5067 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
5068 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5069 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
5070 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
5071 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
5072 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
5073 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
5074 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
5075 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
5076 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
5077 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
5078 | }; | |
5079 | ||
5080 | /* | |
5081 | * Determine the target EL for physical exceptions | |
5082 | */ | |
012a906b GB |
5083 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5084 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
5085 | { |
5086 | CPUARMState *env = cs->env_ptr; | |
5087 | int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
5088 | int scr; | |
5089 | int hcr; | |
5090 | int target_el; | |
5091 | int is64 = arm_el_is_aa64(env, 3); | |
5092 | ||
5093 | switch (excp_idx) { | |
5094 | case EXCP_IRQ: | |
5095 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
5096 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
5097 | break; | |
5098 | case EXCP_FIQ: | |
5099 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
5100 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
5101 | break; | |
5102 | default: | |
5103 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
5104 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
5105 | break; | |
5106 | }; | |
5107 | ||
5108 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
5109 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
5110 | ||
5111 | /* Perform a table-lookup for the target EL given the current state */ | |
5112 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
5113 | ||
5114 | assert(target_el > 0); | |
5115 | ||
5116 | return target_el; | |
5117 | } | |
5118 | ||
9ee6e8bb PB |
5119 | static void v7m_push(CPUARMState *env, uint32_t val) |
5120 | { | |
70d74660 AF |
5121 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
5122 | ||
9ee6e8bb | 5123 | env->regs[13] -= 4; |
ab1da857 | 5124 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
5125 | } |
5126 | ||
5127 | static uint32_t v7m_pop(CPUARMState *env) | |
5128 | { | |
70d74660 | 5129 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 5130 | uint32_t val; |
70d74660 | 5131 | |
fdfba1a2 | 5132 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
5133 | env->regs[13] += 4; |
5134 | return val; | |
5135 | } | |
5136 | ||
5137 | /* Switch to V7M main or process stack pointer. */ | |
5138 | static void switch_v7m_sp(CPUARMState *env, int process) | |
5139 | { | |
5140 | uint32_t tmp; | |
5141 | if (env->v7m.current_sp != process) { | |
5142 | tmp = env->v7m.other_sp; | |
5143 | env->v7m.other_sp = env->regs[13]; | |
5144 | env->regs[13] = tmp; | |
5145 | env->v7m.current_sp = process; | |
5146 | } | |
5147 | } | |
5148 | ||
5149 | static void do_v7m_exception_exit(CPUARMState *env) | |
5150 | { | |
5151 | uint32_t type; | |
5152 | uint32_t xpsr; | |
5153 | ||
5154 | type = env->regs[15]; | |
5155 | if (env->v7m.exception != 0) | |
983fe826 | 5156 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
5157 | |
5158 | /* Switch to the target stack. */ | |
5159 | switch_v7m_sp(env, (type & 4) != 0); | |
5160 | /* Pop registers. */ | |
5161 | env->regs[0] = v7m_pop(env); | |
5162 | env->regs[1] = v7m_pop(env); | |
5163 | env->regs[2] = v7m_pop(env); | |
5164 | env->regs[3] = v7m_pop(env); | |
5165 | env->regs[12] = v7m_pop(env); | |
5166 | env->regs[14] = v7m_pop(env); | |
5167 | env->regs[15] = v7m_pop(env); | |
fcf83ab1 PM |
5168 | if (env->regs[15] & 1) { |
5169 | qemu_log_mask(LOG_GUEST_ERROR, | |
5170 | "M profile return from interrupt with misaligned " | |
5171 | "PC is UNPREDICTABLE\n"); | |
5172 | /* Actual hardware seems to ignore the lsbit, and there are several | |
5173 | * RTOSes out there which incorrectly assume the r15 in the stack | |
5174 | * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. | |
5175 | */ | |
5176 | env->regs[15] &= ~1U; | |
5177 | } | |
9ee6e8bb PB |
5178 | xpsr = v7m_pop(env); |
5179 | xpsr_write(env, xpsr, 0xfffffdff); | |
5180 | /* Undo stack alignment. */ | |
5181 | if (xpsr & 0x200) | |
5182 | env->regs[13] |= 4; | |
5183 | /* ??? The exception return type specifies Thread/Handler mode. However | |
5184 | this is also implied by the xPSR value. Not sure what to do | |
5185 | if there is a mismatch. */ | |
5186 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
5187 | pointer. */ | |
5188 | } | |
5189 | ||
e6f010cc | 5190 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 5191 | { |
e6f010cc AF |
5192 | ARMCPU *cpu = ARM_CPU(cs); |
5193 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
5194 | uint32_t xpsr = xpsr_read(env); |
5195 | uint32_t lr; | |
5196 | uint32_t addr; | |
5197 | ||
27103424 | 5198 | arm_log_exception(cs->exception_index); |
3f1beaca | 5199 | |
9ee6e8bb PB |
5200 | lr = 0xfffffff1; |
5201 | if (env->v7m.current_sp) | |
5202 | lr |= 4; | |
5203 | if (env->v7m.exception == 0) | |
5204 | lr |= 8; | |
5205 | ||
5206 | /* For exceptions we just mark as pending on the NVIC, and let that | |
5207 | handle it. */ | |
5208 | /* TODO: Need to escalate if the current priority is higher than the | |
5209 | one we're raising. */ | |
27103424 | 5210 | switch (cs->exception_index) { |
9ee6e8bb | 5211 | case EXCP_UDEF: |
983fe826 | 5212 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
5213 | return; |
5214 | case EXCP_SWI: | |
314e2296 | 5215 | /* The PC already points to the next instruction. */ |
983fe826 | 5216 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
5217 | return; |
5218 | case EXCP_PREFETCH_ABORT: | |
5219 | case EXCP_DATA_ABORT: | |
abf1172f PM |
5220 | /* TODO: if we implemented the MPU registers, this is where we |
5221 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
5222 | */ | |
983fe826 | 5223 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
5224 | return; |
5225 | case EXCP_BKPT: | |
cfe67cef | 5226 | if (semihosting_enabled()) { |
2ad207d4 | 5227 | int nr; |
d31dd73e | 5228 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
5229 | if (nr == 0xab) { |
5230 | env->regs[15] += 2; | |
205ace55 CC |
5231 | qemu_log_mask(CPU_LOG_INT, |
5232 | "...handling as semihosting call 0x%x\n", | |
5233 | env->regs[0]); | |
2ad207d4 PB |
5234 | env->regs[0] = do_arm_semihosting(env); |
5235 | return; | |
5236 | } | |
5237 | } | |
983fe826 | 5238 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
5239 | return; |
5240 | case EXCP_IRQ: | |
983fe826 | 5241 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
5242 | break; |
5243 | case EXCP_EXCEPTION_EXIT: | |
5244 | do_v7m_exception_exit(env); | |
5245 | return; | |
5246 | default: | |
a47dddd7 | 5247 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
5248 | return; /* Never happens. Keep compiler happy. */ |
5249 | } | |
5250 | ||
5251 | /* Align stack pointer. */ | |
5252 | /* ??? Should only do this if Configuration Control Register | |
5253 | STACKALIGN bit is set. */ | |
5254 | if (env->regs[13] & 4) { | |
ab19b0ec | 5255 | env->regs[13] -= 4; |
9ee6e8bb PB |
5256 | xpsr |= 0x200; |
5257 | } | |
6c95676b | 5258 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
5259 | v7m_push(env, xpsr); |
5260 | v7m_push(env, env->regs[15]); | |
5261 | v7m_push(env, env->regs[14]); | |
5262 | v7m_push(env, env->regs[12]); | |
5263 | v7m_push(env, env->regs[3]); | |
5264 | v7m_push(env, env->regs[2]); | |
5265 | v7m_push(env, env->regs[1]); | |
5266 | v7m_push(env, env->regs[0]); | |
5267 | switch_v7m_sp(env, 0); | |
c98d174c PM |
5268 | /* Clear IT bits */ |
5269 | env->condexec_bits = 0; | |
9ee6e8bb | 5270 | env->regs[14] = lr; |
fdfba1a2 | 5271 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
5272 | env->regs[15] = addr & 0xfffffffe; |
5273 | env->thumb = addr & 1; | |
5274 | } | |
5275 | ||
ce02049d GB |
5276 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
5277 | * register set. This is necessary when switching between AArch32 and AArch64 | |
5278 | * execution state. | |
5279 | */ | |
5280 | void aarch64_sync_32_to_64(CPUARMState *env) | |
5281 | { | |
5282 | int i; | |
5283 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
5284 | ||
5285 | /* We can blanket copy R[0:7] to X[0:7] */ | |
5286 | for (i = 0; i < 8; i++) { | |
5287 | env->xregs[i] = env->regs[i]; | |
5288 | } | |
5289 | ||
5290 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
5291 | * Otherwise, they come from the banked user regs. | |
5292 | */ | |
5293 | if (mode == ARM_CPU_MODE_FIQ) { | |
5294 | for (i = 8; i < 13; i++) { | |
5295 | env->xregs[i] = env->usr_regs[i - 8]; | |
5296 | } | |
5297 | } else { | |
5298 | for (i = 8; i < 13; i++) { | |
5299 | env->xregs[i] = env->regs[i]; | |
5300 | } | |
5301 | } | |
5302 | ||
5303 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
5304 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
5305 | * from the mode banked register. | |
5306 | */ | |
5307 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
5308 | env->xregs[13] = env->regs[13]; | |
5309 | env->xregs[14] = env->regs[14]; | |
5310 | } else { | |
5311 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
5312 | /* HYP is an exception in that it is copied from r14 */ | |
5313 | if (mode == ARM_CPU_MODE_HYP) { | |
5314 | env->xregs[14] = env->regs[14]; | |
5315 | } else { | |
5316 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
5317 | } | |
5318 | } | |
5319 | ||
5320 | if (mode == ARM_CPU_MODE_HYP) { | |
5321 | env->xregs[15] = env->regs[13]; | |
5322 | } else { | |
5323 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
5324 | } | |
5325 | ||
5326 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
5327 | env->xregs[16] = env->regs[14]; |
5328 | env->xregs[17] = env->regs[13]; | |
ce02049d | 5329 | } else { |
3a9148d0 SS |
5330 | env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; |
5331 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
ce02049d GB |
5332 | } |
5333 | ||
5334 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
5335 | env->xregs[18] = env->regs[14]; |
5336 | env->xregs[19] = env->regs[13]; | |
ce02049d | 5337 | } else { |
3a9148d0 SS |
5338 | env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; |
5339 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
ce02049d GB |
5340 | } |
5341 | ||
5342 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
5343 | env->xregs[20] = env->regs[14]; |
5344 | env->xregs[21] = env->regs[13]; | |
ce02049d | 5345 | } else { |
3a9148d0 SS |
5346 | env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; |
5347 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
ce02049d GB |
5348 | } |
5349 | ||
5350 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
5351 | env->xregs[22] = env->regs[14]; |
5352 | env->xregs[23] = env->regs[13]; | |
ce02049d | 5353 | } else { |
3a9148d0 SS |
5354 | env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; |
5355 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
ce02049d GB |
5356 | } |
5357 | ||
5358 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
5359 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
5360 | * FIQ bank for r8-r14. | |
5361 | */ | |
5362 | if (mode == ARM_CPU_MODE_FIQ) { | |
5363 | for (i = 24; i < 31; i++) { | |
5364 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
5365 | } | |
5366 | } else { | |
5367 | for (i = 24; i < 29; i++) { | |
5368 | env->xregs[i] = env->fiq_regs[i - 24]; | |
5369 | } | |
5370 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
5371 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
5372 | } | |
5373 | ||
5374 | env->pc = env->regs[15]; | |
5375 | } | |
5376 | ||
5377 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
5378 | * register set. This is necessary when switching between AArch32 and AArch64 | |
5379 | * execution state. | |
5380 | */ | |
5381 | void aarch64_sync_64_to_32(CPUARMState *env) | |
5382 | { | |
5383 | int i; | |
5384 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
5385 | ||
5386 | /* We can blanket copy X[0:7] to R[0:7] */ | |
5387 | for (i = 0; i < 8; i++) { | |
5388 | env->regs[i] = env->xregs[i]; | |
5389 | } | |
5390 | ||
5391 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
5392 | * Otherwise, we copy x8-x12 into the banked user regs. | |
5393 | */ | |
5394 | if (mode == ARM_CPU_MODE_FIQ) { | |
5395 | for (i = 8; i < 13; i++) { | |
5396 | env->usr_regs[i - 8] = env->xregs[i]; | |
5397 | } | |
5398 | } else { | |
5399 | for (i = 8; i < 13; i++) { | |
5400 | env->regs[i] = env->xregs[i]; | |
5401 | } | |
5402 | } | |
5403 | ||
5404 | /* Registers r13 & r14 depend on the current mode. | |
5405 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
5406 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
5407 | * for the mode. | |
5408 | */ | |
5409 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
5410 | env->regs[13] = env->xregs[13]; | |
5411 | env->regs[14] = env->xregs[14]; | |
5412 | } else { | |
5413 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
5414 | ||
5415 | /* HYP is an exception in that it does not have its own banked r14 but | |
5416 | * shares the USR r14 | |
5417 | */ | |
5418 | if (mode == ARM_CPU_MODE_HYP) { | |
5419 | env->regs[14] = env->xregs[14]; | |
5420 | } else { | |
5421 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
5422 | } | |
5423 | } | |
5424 | ||
5425 | if (mode == ARM_CPU_MODE_HYP) { | |
5426 | env->regs[13] = env->xregs[15]; | |
5427 | } else { | |
5428 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
5429 | } | |
5430 | ||
5431 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
5432 | env->regs[14] = env->xregs[16]; |
5433 | env->regs[13] = env->xregs[17]; | |
ce02049d | 5434 | } else { |
3a9148d0 SS |
5435 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
5436 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
ce02049d GB |
5437 | } |
5438 | ||
5439 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
5440 | env->regs[14] = env->xregs[18]; |
5441 | env->regs[13] = env->xregs[19]; | |
ce02049d | 5442 | } else { |
3a9148d0 SS |
5443 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
5444 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
ce02049d GB |
5445 | } |
5446 | ||
5447 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
5448 | env->regs[14] = env->xregs[20]; |
5449 | env->regs[13] = env->xregs[21]; | |
ce02049d | 5450 | } else { |
3a9148d0 SS |
5451 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
5452 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
5453 | } |
5454 | ||
5455 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
5456 | env->regs[14] = env->xregs[22]; |
5457 | env->regs[13] = env->xregs[23]; | |
ce02049d | 5458 | } else { |
3a9148d0 SS |
5459 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
5460 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
ce02049d GB |
5461 | } |
5462 | ||
5463 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
5464 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
5465 | * FIQ bank for r8-r14. | |
5466 | */ | |
5467 | if (mode == ARM_CPU_MODE_FIQ) { | |
5468 | for (i = 24; i < 31; i++) { | |
5469 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
5470 | } | |
5471 | } else { | |
5472 | for (i = 24; i < 29; i++) { | |
5473 | env->fiq_regs[i - 24] = env->xregs[i]; | |
5474 | } | |
5475 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
5476 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
5477 | } | |
5478 | ||
5479 | env->regs[15] = env->pc; | |
5480 | } | |
5481 | ||
b5ff1b31 | 5482 | /* Handle a CPU exception. */ |
97a8ea5a | 5483 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 5484 | { |
97a8ea5a AF |
5485 | ARMCPU *cpu = ARM_CPU(cs); |
5486 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
5487 | uint32_t addr; |
5488 | uint32_t mask; | |
5489 | int new_mode; | |
5490 | uint32_t offset; | |
16a906fd | 5491 | uint32_t moe; |
b5ff1b31 | 5492 | |
e6f010cc AF |
5493 | assert(!IS_M(env)); |
5494 | ||
27103424 | 5495 | arm_log_exception(cs->exception_index); |
3f1beaca | 5496 | |
98128601 RH |
5497 | if (arm_is_psci_call(cpu, cs->exception_index)) { |
5498 | arm_handle_psci_call(cpu); | |
5499 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
5500 | return; | |
5501 | } | |
5502 | ||
16a906fd PM |
5503 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
5504 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
5505 | case EC_BREAKPOINT: | |
5506 | case EC_BREAKPOINT_SAME_EL: | |
5507 | moe = 1; | |
5508 | break; | |
5509 | case EC_WATCHPOINT: | |
5510 | case EC_WATCHPOINT_SAME_EL: | |
5511 | moe = 10; | |
5512 | break; | |
5513 | case EC_AA32_BKPT: | |
5514 | moe = 3; | |
5515 | break; | |
5516 | case EC_VECTORCATCH: | |
5517 | moe = 5; | |
5518 | break; | |
5519 | default: | |
5520 | moe = 0; | |
5521 | break; | |
5522 | } | |
5523 | ||
5524 | if (moe) { | |
5525 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
5526 | } | |
5527 | ||
b5ff1b31 | 5528 | /* TODO: Vectored interrupt controller. */ |
27103424 | 5529 | switch (cs->exception_index) { |
b5ff1b31 FB |
5530 | case EXCP_UDEF: |
5531 | new_mode = ARM_CPU_MODE_UND; | |
5532 | addr = 0x04; | |
5533 | mask = CPSR_I; | |
5534 | if (env->thumb) | |
5535 | offset = 2; | |
5536 | else | |
5537 | offset = 4; | |
5538 | break; | |
5539 | case EXCP_SWI: | |
cfe67cef | 5540 | if (semihosting_enabled()) { |
8e71621f PB |
5541 | /* Check for semihosting interrupt. */ |
5542 | if (env->thumb) { | |
d31dd73e BS |
5543 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
5544 | & 0xff; | |
8e71621f | 5545 | } else { |
d31dd73e | 5546 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 5547 | & 0xffffff; |
8e71621f PB |
5548 | } |
5549 | /* Only intercept calls from privileged modes, to provide some | |
5550 | semblance of security. */ | |
5551 | if (((mask == 0x123456 && !env->thumb) | |
5552 | || (mask == 0xab && env->thumb)) | |
5553 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
205ace55 CC |
5554 | qemu_log_mask(CPU_LOG_INT, |
5555 | "...handling as semihosting call 0x%x\n", | |
5556 | env->regs[0]); | |
8e71621f PB |
5557 | env->regs[0] = do_arm_semihosting(env); |
5558 | return; | |
5559 | } | |
5560 | } | |
b5ff1b31 FB |
5561 | new_mode = ARM_CPU_MODE_SVC; |
5562 | addr = 0x08; | |
5563 | mask = CPSR_I; | |
601d70b9 | 5564 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
5565 | offset = 0; |
5566 | break; | |
06c949e6 | 5567 | case EXCP_BKPT: |
9ee6e8bb | 5568 | /* See if this is a semihosting syscall. */ |
cfe67cef | 5569 | if (env->thumb && semihosting_enabled()) { |
d31dd73e | 5570 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
5571 | if (mask == 0xab |
5572 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
5573 | env->regs[15] += 2; | |
205ace55 CC |
5574 | qemu_log_mask(CPU_LOG_INT, |
5575 | "...handling as semihosting call 0x%x\n", | |
5576 | env->regs[0]); | |
9ee6e8bb PB |
5577 | env->regs[0] = do_arm_semihosting(env); |
5578 | return; | |
5579 | } | |
5580 | } | |
abf1172f | 5581 | env->exception.fsr = 2; |
9ee6e8bb PB |
5582 | /* Fall through to prefetch abort. */ |
5583 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 5584 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 5585 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 5586 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 5587 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
5588 | new_mode = ARM_CPU_MODE_ABT; |
5589 | addr = 0x0c; | |
5590 | mask = CPSR_A | CPSR_I; | |
5591 | offset = 4; | |
5592 | break; | |
5593 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 5594 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 5595 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 5596 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 5597 | env->exception.fsr, |
6cd8a264 | 5598 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
5599 | new_mode = ARM_CPU_MODE_ABT; |
5600 | addr = 0x10; | |
5601 | mask = CPSR_A | CPSR_I; | |
5602 | offset = 8; | |
5603 | break; | |
5604 | case EXCP_IRQ: | |
5605 | new_mode = ARM_CPU_MODE_IRQ; | |
5606 | addr = 0x18; | |
5607 | /* Disable IRQ and imprecise data aborts. */ | |
5608 | mask = CPSR_A | CPSR_I; | |
5609 | offset = 4; | |
de38d23b FA |
5610 | if (env->cp15.scr_el3 & SCR_IRQ) { |
5611 | /* IRQ routed to monitor mode */ | |
5612 | new_mode = ARM_CPU_MODE_MON; | |
5613 | mask |= CPSR_F; | |
5614 | } | |
b5ff1b31 FB |
5615 | break; |
5616 | case EXCP_FIQ: | |
5617 | new_mode = ARM_CPU_MODE_FIQ; | |
5618 | addr = 0x1c; | |
5619 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
5620 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
5621 | if (env->cp15.scr_el3 & SCR_FIQ) { |
5622 | /* FIQ routed to monitor mode */ | |
5623 | new_mode = ARM_CPU_MODE_MON; | |
5624 | } | |
b5ff1b31 FB |
5625 | offset = 4; |
5626 | break; | |
dbe9d163 FA |
5627 | case EXCP_SMC: |
5628 | new_mode = ARM_CPU_MODE_MON; | |
5629 | addr = 0x08; | |
5630 | mask = CPSR_A | CPSR_I | CPSR_F; | |
5631 | offset = 0; | |
5632 | break; | |
b5ff1b31 | 5633 | default: |
a47dddd7 | 5634 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
5635 | return; /* Never happens. Keep compiler happy. */ |
5636 | } | |
e89e51a1 FA |
5637 | |
5638 | if (new_mode == ARM_CPU_MODE_MON) { | |
5639 | addr += env->cp15.mvbar; | |
137feaa9 | 5640 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 5641 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 5642 | addr += 0xffff0000; |
8641136c NR |
5643 | } else { |
5644 | /* ARM v7 architectures provide a vector base address register to remap | |
5645 | * the interrupt vector table. | |
e89e51a1 | 5646 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
5647 | * Note: only bits 31:5 are valid. |
5648 | */ | |
fb6c91ba | 5649 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 5650 | } |
dbe9d163 FA |
5651 | |
5652 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
5653 | env->cp15.scr_el3 &= ~SCR_NS; | |
5654 | } | |
5655 | ||
b5ff1b31 | 5656 | switch_mode (env, new_mode); |
662cefb7 PM |
5657 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
5658 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
5659 | */ | |
5660 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 5661 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
5662 | /* Clear IT bits. */ |
5663 | env->condexec_bits = 0; | |
30a8cac1 | 5664 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 5665 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 5666 | env->daif |= mask; |
be5e7a76 DES |
5667 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
5668 | * and we should just guard the thumb mode on V4 */ | |
5669 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 5670 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 5671 | } |
b5ff1b31 FB |
5672 | env->regs[14] = env->regs[15] + offset; |
5673 | env->regs[15] = addr; | |
259186a7 | 5674 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
5675 | } |
5676 | ||
0480f69a PM |
5677 | |
5678 | /* Return the exception level which controls this address translation regime */ | |
5679 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5680 | { | |
5681 | switch (mmu_idx) { | |
5682 | case ARMMMUIdx_S2NS: | |
5683 | case ARMMMUIdx_S1E2: | |
5684 | return 2; | |
5685 | case ARMMMUIdx_S1E3: | |
5686 | return 3; | |
5687 | case ARMMMUIdx_S1SE0: | |
5688 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
5689 | case ARMMMUIdx_S1SE1: | |
5690 | case ARMMMUIdx_S1NSE0: | |
5691 | case ARMMMUIdx_S1NSE1: | |
5692 | return 1; | |
5693 | default: | |
5694 | g_assert_not_reached(); | |
5695 | } | |
5696 | } | |
5697 | ||
8bf5b6a9 PM |
5698 | /* Return true if this address translation regime is secure */ |
5699 | static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5700 | { | |
5701 | switch (mmu_idx) { | |
5702 | case ARMMMUIdx_S12NSE0: | |
5703 | case ARMMMUIdx_S12NSE1: | |
5704 | case ARMMMUIdx_S1NSE0: | |
5705 | case ARMMMUIdx_S1NSE1: | |
5706 | case ARMMMUIdx_S1E2: | |
5707 | case ARMMMUIdx_S2NS: | |
5708 | return false; | |
5709 | case ARMMMUIdx_S1E3: | |
5710 | case ARMMMUIdx_S1SE0: | |
5711 | case ARMMMUIdx_S1SE1: | |
5712 | return true; | |
5713 | default: | |
5714 | g_assert_not_reached(); | |
5715 | } | |
5716 | } | |
5717 | ||
0480f69a PM |
5718 | /* Return the SCTLR value which controls this address translation regime */ |
5719 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5720 | { | |
5721 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
5722 | } | |
5723 | ||
5724 | /* Return true if the specified stage of address translation is disabled */ | |
5725 | static inline bool regime_translation_disabled(CPUARMState *env, | |
5726 | ARMMMUIdx mmu_idx) | |
5727 | { | |
5728 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5729 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
5730 | } | |
5731 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
5732 | } | |
5733 | ||
5734 | /* Return the TCR controlling this translation regime */ | |
5735 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5736 | { | |
5737 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5738 | /* TODO: return VTCR_EL2 */ | |
5739 | g_assert_not_reached(); | |
5740 | } | |
5741 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
5742 | } | |
5743 | ||
aef878be GB |
5744 | /* Return the TTBR associated with this translation regime */ |
5745 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
5746 | int ttbrn) | |
5747 | { | |
5748 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5749 | /* TODO: return VTTBR_EL2 */ | |
5750 | g_assert_not_reached(); | |
5751 | } | |
5752 | if (ttbrn == 0) { | |
5753 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
5754 | } else { | |
5755 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
5756 | } | |
5757 | } | |
5758 | ||
0480f69a PM |
5759 | /* Return true if the translation regime is using LPAE format page tables */ |
5760 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
5761 | ARMMMUIdx mmu_idx) | |
5762 | { | |
5763 | int el = regime_el(env, mmu_idx); | |
5764 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
5765 | return true; | |
5766 | } | |
5767 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
5768 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
5769 | return true; | |
5770 | } | |
5771 | return false; | |
5772 | } | |
5773 | ||
5774 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5775 | { | |
5776 | switch (mmu_idx) { | |
5777 | case ARMMMUIdx_S1SE0: | |
5778 | case ARMMMUIdx_S1NSE0: | |
5779 | return true; | |
5780 | default: | |
5781 | return false; | |
5782 | case ARMMMUIdx_S12NSE0: | |
5783 | case ARMMMUIdx_S12NSE1: | |
5784 | g_assert_not_reached(); | |
5785 | } | |
5786 | } | |
5787 | ||
0fbf5238 AJ |
5788 | /* Translate section/page access permissions to page |
5789 | * R/W protection flags | |
d76951b6 AJ |
5790 | * |
5791 | * @env: CPUARMState | |
5792 | * @mmu_idx: MMU index indicating required translation regime | |
5793 | * @ap: The 3-bit access permissions (AP[2:0]) | |
5794 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
5795 | */ |
5796 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
5797 | int ap, int domain_prot) | |
5798 | { | |
554b0b09 PM |
5799 | bool is_user = regime_is_user(env, mmu_idx); |
5800 | ||
5801 | if (domain_prot == 3) { | |
5802 | return PAGE_READ | PAGE_WRITE; | |
5803 | } | |
5804 | ||
554b0b09 PM |
5805 | switch (ap) { |
5806 | case 0: | |
5807 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
5808 | return 0; | |
5809 | } | |
554b0b09 PM |
5810 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
5811 | case SCTLR_S: | |
5812 | return is_user ? 0 : PAGE_READ; | |
5813 | case SCTLR_R: | |
5814 | return PAGE_READ; | |
5815 | default: | |
5816 | return 0; | |
5817 | } | |
5818 | case 1: | |
5819 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
5820 | case 2: | |
87c3d486 | 5821 | if (is_user) { |
0fbf5238 | 5822 | return PAGE_READ; |
87c3d486 | 5823 | } else { |
554b0b09 | 5824 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 5825 | } |
554b0b09 PM |
5826 | case 3: |
5827 | return PAGE_READ | PAGE_WRITE; | |
5828 | case 4: /* Reserved. */ | |
5829 | return 0; | |
5830 | case 5: | |
0fbf5238 | 5831 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 5832 | case 6: |
0fbf5238 | 5833 | return PAGE_READ; |
554b0b09 | 5834 | case 7: |
87c3d486 | 5835 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 5836 | return 0; |
87c3d486 | 5837 | } |
0fbf5238 | 5838 | return PAGE_READ; |
554b0b09 | 5839 | default: |
0fbf5238 | 5840 | g_assert_not_reached(); |
554b0b09 | 5841 | } |
b5ff1b31 FB |
5842 | } |
5843 | ||
d76951b6 AJ |
5844 | /* Translate section/page access permissions to page |
5845 | * R/W protection flags. | |
5846 | * | |
d76951b6 | 5847 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 5848 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 5849 | */ |
d8e052b3 | 5850 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 5851 | { |
d76951b6 AJ |
5852 | switch (ap) { |
5853 | case 0: | |
5854 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
5855 | case 1: | |
5856 | return PAGE_READ | PAGE_WRITE; | |
5857 | case 2: | |
5858 | return is_user ? 0 : PAGE_READ; | |
5859 | case 3: | |
5860 | return PAGE_READ; | |
5861 | default: | |
5862 | g_assert_not_reached(); | |
5863 | } | |
5864 | } | |
5865 | ||
d8e052b3 AJ |
5866 | static inline int |
5867 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
5868 | { | |
5869 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
5870 | } | |
5871 | ||
5872 | /* Translate section/page access permissions to protection flags | |
5873 | * | |
5874 | * @env: CPUARMState | |
5875 | * @mmu_idx: MMU index indicating required translation regime | |
5876 | * @is_aa64: TRUE if AArch64 | |
5877 | * @ap: The 2-bit simple AP (AP[2:1]) | |
5878 | * @ns: NS (non-secure) bit | |
5879 | * @xn: XN (execute-never) bit | |
5880 | * @pxn: PXN (privileged execute-never) bit | |
5881 | */ | |
5882 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
5883 | int ap, int ns, int xn, int pxn) | |
5884 | { | |
5885 | bool is_user = regime_is_user(env, mmu_idx); | |
5886 | int prot_rw, user_rw; | |
5887 | bool have_wxn; | |
5888 | int wxn = 0; | |
5889 | ||
5890 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
5891 | ||
5892 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
5893 | if (is_user) { | |
5894 | prot_rw = user_rw; | |
5895 | } else { | |
5896 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
5897 | } | |
5898 | ||
5899 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
5900 | return prot_rw; | |
5901 | } | |
5902 | ||
5903 | /* TODO have_wxn should be replaced with | |
5904 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
5905 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
5906 | * compatible processors have EL2, which is required for [U]WXN. | |
5907 | */ | |
5908 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
5909 | ||
5910 | if (have_wxn) { | |
5911 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
5912 | } | |
5913 | ||
5914 | if (is_aa64) { | |
5915 | switch (regime_el(env, mmu_idx)) { | |
5916 | case 1: | |
5917 | if (!is_user) { | |
5918 | xn = pxn || (user_rw & PAGE_WRITE); | |
5919 | } | |
5920 | break; | |
5921 | case 2: | |
5922 | case 3: | |
5923 | break; | |
5924 | } | |
5925 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
5926 | switch (regime_el(env, mmu_idx)) { | |
5927 | case 1: | |
5928 | case 3: | |
5929 | if (is_user) { | |
5930 | xn = xn || !(user_rw & PAGE_READ); | |
5931 | } else { | |
5932 | int uwxn = 0; | |
5933 | if (have_wxn) { | |
5934 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
5935 | } | |
5936 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
5937 | (uwxn && (user_rw & PAGE_WRITE)); | |
5938 | } | |
5939 | break; | |
5940 | case 2: | |
5941 | break; | |
5942 | } | |
5943 | } else { | |
5944 | xn = wxn = 0; | |
5945 | } | |
5946 | ||
5947 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
5948 | return prot_rw; | |
5949 | } | |
5950 | return prot_rw | PAGE_EXEC; | |
5951 | } | |
5952 | ||
0480f69a PM |
5953 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
5954 | uint32_t *table, uint32_t address) | |
b2fa1797 | 5955 | { |
0480f69a | 5956 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 5957 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 5958 | |
11f136ee FA |
5959 | if (address & tcr->mask) { |
5960 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
5961 | /* Translation table walk disabled for TTBR1 */ |
5962 | return false; | |
5963 | } | |
aef878be | 5964 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 5965 | } else { |
11f136ee | 5966 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
5967 | /* Translation table walk disabled for TTBR0 */ |
5968 | return false; | |
5969 | } | |
aef878be | 5970 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
5971 | } |
5972 | *table |= (address >> 18) & 0x3ffc; | |
5973 | return true; | |
b2fa1797 PB |
5974 | } |
5975 | ||
ebca90e4 PM |
5976 | /* All loads done in the course of a page table walk go through here. |
5977 | * TODO: rather than ignoring errors from physical memory reads (which | |
5978 | * are external aborts in ARM terminology) we should propagate this | |
5979 | * error out so that we can turn it into a Data Abort if this walk | |
5980 | * was being done for a CPU load/store or an address translation instruction | |
5981 | * (but not if it was for a debug access). | |
5982 | */ | |
5983 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
5984 | { | |
5985 | MemTxAttrs attrs = {}; | |
5986 | ||
5987 | attrs.secure = is_secure; | |
5988 | return address_space_ldl(cs->as, addr, attrs, NULL); | |
5989 | } | |
5990 | ||
5991 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
5992 | { | |
5993 | MemTxAttrs attrs = {}; | |
5994 | ||
5995 | attrs.secure = is_secure; | |
5996 | return address_space_ldq(cs->as, addr, attrs, NULL); | |
5997 | } | |
5998 | ||
b7cc4e82 PC |
5999 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
6000 | int access_type, ARMMMUIdx mmu_idx, | |
6001 | hwaddr *phys_ptr, int *prot, | |
6002 | target_ulong *page_size, uint32_t *fsr) | |
b5ff1b31 | 6003 | { |
70d74660 | 6004 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
6005 | int code; |
6006 | uint32_t table; | |
6007 | uint32_t desc; | |
6008 | int type; | |
6009 | int ap; | |
e389be16 | 6010 | int domain = 0; |
dd4ebc2e | 6011 | int domain_prot; |
a8170e5e | 6012 | hwaddr phys_addr; |
0480f69a | 6013 | uint32_t dacr; |
b5ff1b31 | 6014 | |
9ee6e8bb PB |
6015 | /* Pagetable walk. */ |
6016 | /* Lookup l1 descriptor. */ | |
0480f69a | 6017 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
6018 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
6019 | code = 5; | |
6020 | goto do_fault; | |
6021 | } | |
ebca90e4 | 6022 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 6023 | type = (desc & 3); |
dd4ebc2e | 6024 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
6025 | if (regime_el(env, mmu_idx) == 1) { |
6026 | dacr = env->cp15.dacr_ns; | |
6027 | } else { | |
6028 | dacr = env->cp15.dacr_s; | |
6029 | } | |
6030 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 6031 | if (type == 0) { |
601d70b9 | 6032 | /* Section translation fault. */ |
9ee6e8bb PB |
6033 | code = 5; |
6034 | goto do_fault; | |
6035 | } | |
dd4ebc2e | 6036 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
6037 | if (type == 2) |
6038 | code = 9; /* Section domain fault. */ | |
6039 | else | |
6040 | code = 11; /* Page domain fault. */ | |
6041 | goto do_fault; | |
6042 | } | |
6043 | if (type == 2) { | |
6044 | /* 1Mb section. */ | |
6045 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
6046 | ap = (desc >> 10) & 3; | |
6047 | code = 13; | |
d4c430a8 | 6048 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
6049 | } else { |
6050 | /* Lookup l2 entry. */ | |
554b0b09 PM |
6051 | if (type == 1) { |
6052 | /* Coarse pagetable. */ | |
6053 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
6054 | } else { | |
6055 | /* Fine pagetable. */ | |
6056 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
6057 | } | |
ebca90e4 | 6058 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
6059 | switch (desc & 3) { |
6060 | case 0: /* Page translation fault. */ | |
6061 | code = 7; | |
6062 | goto do_fault; | |
6063 | case 1: /* 64k page. */ | |
6064 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
6065 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 6066 | *page_size = 0x10000; |
ce819861 | 6067 | break; |
9ee6e8bb PB |
6068 | case 2: /* 4k page. */ |
6069 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 6070 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 6071 | *page_size = 0x1000; |
ce819861 | 6072 | break; |
fc1891c7 | 6073 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 6074 | if (type == 1) { |
fc1891c7 PM |
6075 | /* ARMv6/XScale extended small page format */ |
6076 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
6077 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 6078 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 6079 | *page_size = 0x1000; |
554b0b09 | 6080 | } else { |
fc1891c7 PM |
6081 | /* UNPREDICTABLE in ARMv5; we choose to take a |
6082 | * page translation fault. | |
6083 | */ | |
554b0b09 PM |
6084 | code = 7; |
6085 | goto do_fault; | |
6086 | } | |
6087 | } else { | |
6088 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 6089 | *page_size = 0x400; |
554b0b09 | 6090 | } |
9ee6e8bb | 6091 | ap = (desc >> 4) & 3; |
ce819861 PB |
6092 | break; |
6093 | default: | |
9ee6e8bb PB |
6094 | /* Never happens, but compiler isn't smart enough to tell. */ |
6095 | abort(); | |
ce819861 | 6096 | } |
9ee6e8bb PB |
6097 | code = 15; |
6098 | } | |
0fbf5238 AJ |
6099 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
6100 | *prot |= *prot ? PAGE_EXEC : 0; | |
6101 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
6102 | /* Access permission fault. */ |
6103 | goto do_fault; | |
6104 | } | |
6105 | *phys_ptr = phys_addr; | |
b7cc4e82 | 6106 | return false; |
9ee6e8bb | 6107 | do_fault: |
b7cc4e82 PC |
6108 | *fsr = code | (domain << 4); |
6109 | return true; | |
9ee6e8bb PB |
6110 | } |
6111 | ||
b7cc4e82 PC |
6112 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
6113 | int access_type, ARMMMUIdx mmu_idx, | |
6114 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
6115 | target_ulong *page_size, uint32_t *fsr) | |
9ee6e8bb | 6116 | { |
70d74660 | 6117 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
6118 | int code; |
6119 | uint32_t table; | |
6120 | uint32_t desc; | |
6121 | uint32_t xn; | |
de9b05b8 | 6122 | uint32_t pxn = 0; |
9ee6e8bb PB |
6123 | int type; |
6124 | int ap; | |
de9b05b8 | 6125 | int domain = 0; |
dd4ebc2e | 6126 | int domain_prot; |
a8170e5e | 6127 | hwaddr phys_addr; |
0480f69a | 6128 | uint32_t dacr; |
8bf5b6a9 | 6129 | bool ns; |
9ee6e8bb PB |
6130 | |
6131 | /* Pagetable walk. */ | |
6132 | /* Lookup l1 descriptor. */ | |
0480f69a | 6133 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
6134 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
6135 | code = 5; | |
6136 | goto do_fault; | |
6137 | } | |
ebca90e4 | 6138 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 6139 | type = (desc & 3); |
de9b05b8 PM |
6140 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
6141 | /* Section translation fault, or attempt to use the encoding | |
6142 | * which is Reserved on implementations without PXN. | |
6143 | */ | |
9ee6e8bb | 6144 | code = 5; |
9ee6e8bb | 6145 | goto do_fault; |
de9b05b8 PM |
6146 | } |
6147 | if ((type == 1) || !(desc & (1 << 18))) { | |
6148 | /* Page or Section. */ | |
dd4ebc2e | 6149 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 6150 | } |
0480f69a PM |
6151 | if (regime_el(env, mmu_idx) == 1) { |
6152 | dacr = env->cp15.dacr_ns; | |
6153 | } else { | |
6154 | dacr = env->cp15.dacr_s; | |
6155 | } | |
6156 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 6157 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 6158 | if (type != 1) { |
9ee6e8bb | 6159 | code = 9; /* Section domain fault. */ |
de9b05b8 | 6160 | } else { |
9ee6e8bb | 6161 | code = 11; /* Page domain fault. */ |
de9b05b8 | 6162 | } |
9ee6e8bb PB |
6163 | goto do_fault; |
6164 | } | |
de9b05b8 | 6165 | if (type != 1) { |
9ee6e8bb PB |
6166 | if (desc & (1 << 18)) { |
6167 | /* Supersection. */ | |
6168 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
6169 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
6170 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 6171 | *page_size = 0x1000000; |
b5ff1b31 | 6172 | } else { |
9ee6e8bb PB |
6173 | /* Section. */ |
6174 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 6175 | *page_size = 0x100000; |
b5ff1b31 | 6176 | } |
9ee6e8bb PB |
6177 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
6178 | xn = desc & (1 << 4); | |
de9b05b8 | 6179 | pxn = desc & 1; |
9ee6e8bb | 6180 | code = 13; |
8bf5b6a9 | 6181 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 6182 | } else { |
de9b05b8 PM |
6183 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
6184 | pxn = (desc >> 2) & 1; | |
6185 | } | |
8bf5b6a9 | 6186 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
6187 | /* Lookup l2 entry. */ |
6188 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
ebca90e4 | 6189 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
6190 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
6191 | switch (desc & 3) { | |
6192 | case 0: /* Page translation fault. */ | |
6193 | code = 7; | |
b5ff1b31 | 6194 | goto do_fault; |
9ee6e8bb PB |
6195 | case 1: /* 64k page. */ |
6196 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
6197 | xn = desc & (1 << 15); | |
d4c430a8 | 6198 | *page_size = 0x10000; |
9ee6e8bb PB |
6199 | break; |
6200 | case 2: case 3: /* 4k page. */ | |
6201 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
6202 | xn = desc & 1; | |
d4c430a8 | 6203 | *page_size = 0x1000; |
9ee6e8bb PB |
6204 | break; |
6205 | default: | |
6206 | /* Never happens, but compiler isn't smart enough to tell. */ | |
6207 | abort(); | |
b5ff1b31 | 6208 | } |
9ee6e8bb PB |
6209 | code = 15; |
6210 | } | |
dd4ebc2e | 6211 | if (domain_prot == 3) { |
c0034328 JR |
6212 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
6213 | } else { | |
0480f69a | 6214 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
6215 | xn = 1; |
6216 | } | |
c0034328 JR |
6217 | if (xn && access_type == 2) |
6218 | goto do_fault; | |
9ee6e8bb | 6219 | |
d76951b6 AJ |
6220 | if (arm_feature(env, ARM_FEATURE_V6K) && |
6221 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
6222 | /* The simplified model uses AP[0] as an access control bit. */ | |
6223 | if ((ap & 1) == 0) { | |
6224 | /* Access flag fault. */ | |
6225 | code = (code == 15) ? 6 : 3; | |
6226 | goto do_fault; | |
6227 | } | |
6228 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
6229 | } else { | |
6230 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 6231 | } |
0fbf5238 AJ |
6232 | if (*prot && !xn) { |
6233 | *prot |= PAGE_EXEC; | |
6234 | } | |
6235 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
6236 | /* Access permission fault. */ |
6237 | goto do_fault; | |
6238 | } | |
3ad493fc | 6239 | } |
8bf5b6a9 PM |
6240 | if (ns) { |
6241 | /* The NS bit will (as required by the architecture) have no effect if | |
6242 | * the CPU doesn't support TZ or this is a non-secure translation | |
6243 | * regime, because the attribute will already be non-secure. | |
6244 | */ | |
6245 | attrs->secure = false; | |
6246 | } | |
9ee6e8bb | 6247 | *phys_ptr = phys_addr; |
b7cc4e82 | 6248 | return false; |
b5ff1b31 | 6249 | do_fault: |
b7cc4e82 PC |
6250 | *fsr = code | (domain << 4); |
6251 | return true; | |
b5ff1b31 FB |
6252 | } |
6253 | ||
3dde962f PM |
6254 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
6255 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
6256 | */ | |
6257 | typedef enum { | |
6258 | translation_fault = 1, | |
6259 | access_fault = 2, | |
6260 | permission_fault = 3, | |
6261 | } MMUFaultType; | |
6262 | ||
b7cc4e82 PC |
6263 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
6264 | int access_type, ARMMMUIdx mmu_idx, | |
6265 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | |
6266 | target_ulong *page_size_ptr, uint32_t *fsr) | |
3dde962f | 6267 | { |
70d74660 | 6268 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
6269 | /* Read an LPAE long-descriptor translation table. */ |
6270 | MMUFaultType fault_type = translation_fault; | |
6271 | uint32_t level = 1; | |
6272 | uint32_t epd; | |
2c8dd318 RH |
6273 | int32_t tsz; |
6274 | uint32_t tg; | |
3dde962f PM |
6275 | uint64_t ttbr; |
6276 | int ttbr_select; | |
2c8dd318 | 6277 | hwaddr descaddr, descmask; |
3dde962f PM |
6278 | uint32_t tableattrs; |
6279 | target_ulong page_size; | |
6280 | uint32_t attrs; | |
2c8dd318 RH |
6281 | int32_t granule_sz = 9; |
6282 | int32_t va_size = 32; | |
6283 | int32_t tbi = 0; | |
0480f69a | 6284 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 6285 | int ap, ns, xn, pxn; |
88e8add8 GB |
6286 | uint32_t el = regime_el(env, mmu_idx); |
6287 | bool ttbr1_valid = true; | |
0480f69a PM |
6288 | |
6289 | /* TODO: | |
88e8add8 GB |
6290 | * This code does not handle the different format TCR for VTCR_EL2. |
6291 | * This code also does not support shareability levels. | |
6292 | * Attribute and permission bit handling should also be checked when adding | |
6293 | * support for those page table walks. | |
0480f69a | 6294 | */ |
88e8add8 | 6295 | if (arm_el_is_aa64(env, el)) { |
2c8dd318 | 6296 | va_size = 64; |
88e8add8 GB |
6297 | if (el > 1) { |
6298 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
6299 | } else { | |
6300 | if (extract64(address, 55, 1)) { | |
6301 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
6302 | } else { | |
6303 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
6304 | } | |
6305 | } | |
2c8dd318 | 6306 | tbi *= 8; |
88e8add8 GB |
6307 | |
6308 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
6309 | * invalid. | |
6310 | */ | |
6311 | if (el > 1) { | |
6312 | ttbr1_valid = false; | |
6313 | } | |
d0a2cbce PM |
6314 | } else { |
6315 | /* There is no TTBR1 for EL2 */ | |
6316 | if (el == 2) { | |
6317 | ttbr1_valid = false; | |
6318 | } | |
2c8dd318 | 6319 | } |
3dde962f PM |
6320 | |
6321 | /* Determine whether this address is in the region controlled by | |
6322 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
6323 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
6324 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
6325 | */ | |
11f136ee | 6326 | uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); |
0480f69a | 6327 | if (va_size == 64) { |
2c8dd318 RH |
6328 | t0sz = MIN(t0sz, 39); |
6329 | t0sz = MAX(t0sz, 16); | |
6330 | } | |
11f136ee | 6331 | uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); |
0480f69a | 6332 | if (va_size == 64) { |
2c8dd318 RH |
6333 | t1sz = MIN(t1sz, 39); |
6334 | t1sz = MAX(t1sz, 16); | |
6335 | } | |
6336 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
6337 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
6338 | ttbr_select = 0; | |
88e8add8 GB |
6339 | } else if (ttbr1_valid && t1sz && |
6340 | !extract64(~address, va_size - t1sz, t1sz - tbi)) { | |
3dde962f PM |
6341 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
6342 | ttbr_select = 1; | |
6343 | } else if (!t0sz) { | |
6344 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
6345 | ttbr_select = 0; | |
88e8add8 | 6346 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
6347 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
6348 | ttbr_select = 1; | |
6349 | } else { | |
6350 | /* in the gap between the two regions, this is a Translation fault */ | |
6351 | fault_type = translation_fault; | |
6352 | goto do_fault; | |
6353 | } | |
6354 | ||
6355 | /* Note that QEMU ignores shareability and cacheability attributes, | |
6356 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
6357 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
6358 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
6359 | * implement any ASID-like capability so we can ignore it (instead | |
6360 | * we will always flush the TLB any time the ASID is changed). | |
6361 | */ | |
6362 | if (ttbr_select == 0) { | |
aef878be | 6363 | ttbr = regime_ttbr(env, mmu_idx, 0); |
11f136ee | 6364 | epd = extract32(tcr->raw_tcr, 7, 1); |
3dde962f | 6365 | tsz = t0sz; |
2c8dd318 | 6366 | |
11f136ee | 6367 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 RH |
6368 | if (tg == 1) { /* 64KB pages */ |
6369 | granule_sz = 13; | |
6370 | } | |
6371 | if (tg == 2) { /* 16KB pages */ | |
6372 | granule_sz = 11; | |
6373 | } | |
3dde962f | 6374 | } else { |
88e8add8 GB |
6375 | /* We should only be here if TTBR1 is valid */ |
6376 | assert(ttbr1_valid); | |
6377 | ||
aef878be | 6378 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 6379 | epd = extract32(tcr->raw_tcr, 23, 1); |
3dde962f | 6380 | tsz = t1sz; |
2c8dd318 | 6381 | |
11f136ee | 6382 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 RH |
6383 | if (tg == 3) { /* 64KB pages */ |
6384 | granule_sz = 13; | |
6385 | } | |
6386 | if (tg == 1) { /* 16KB pages */ | |
6387 | granule_sz = 11; | |
6388 | } | |
3dde962f PM |
6389 | } |
6390 | ||
0480f69a PM |
6391 | /* Here we should have set up all the parameters for the translation: |
6392 | * va_size, ttbr, epd, tsz, granule_sz, tbi | |
6393 | */ | |
6394 | ||
3dde962f | 6395 | if (epd) { |
88e8add8 GB |
6396 | /* Translation table walk disabled => Translation fault on TLB miss |
6397 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
6398 | */ | |
3dde962f PM |
6399 | goto do_fault; |
6400 | } | |
6401 | ||
d6be29e3 PM |
6402 | /* The starting level depends on the virtual address size (which can be |
6403 | * up to 48 bits) and the translation granule size. It indicates the number | |
6404 | * of strides (granule_sz bits at a time) needed to consume the bits | |
6405 | * of the input address. In the pseudocode this is: | |
6406 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
6407 | * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is | |
6408 | * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. | |
6409 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
6410 | * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz | |
6411 | * = 4 - (va_size - tsz - 4) / granule_sz; | |
3dde962f | 6412 | */ |
d6be29e3 | 6413 | level = 4 - (va_size - tsz - 4) / granule_sz; |
3dde962f PM |
6414 | |
6415 | /* Clear the vaddr bits which aren't part of the within-region address, | |
6416 | * so that we don't have to special case things when calculating the | |
6417 | * first descriptor address. | |
6418 | */ | |
2c8dd318 RH |
6419 | if (tsz) { |
6420 | address &= (1ULL << (va_size - tsz)) - 1; | |
6421 | } | |
6422 | ||
6423 | descmask = (1ULL << (granule_sz + 3)) - 1; | |
3dde962f PM |
6424 | |
6425 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 RH |
6426 | descaddr = extract64(ttbr, 0, 48); |
6427 | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | |
3dde962f | 6428 | |
ebca90e4 PM |
6429 | /* Secure accesses start with the page table in secure memory and |
6430 | * can be downgraded to non-secure at any step. Non-secure accesses | |
6431 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
6432 | * bits at each step. | |
6433 | */ | |
6434 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
6435 | for (;;) { |
6436 | uint64_t descriptor; | |
ebca90e4 | 6437 | bool nstable; |
3dde962f | 6438 | |
2c8dd318 RH |
6439 | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; |
6440 | descaddr &= ~7ULL; | |
ebca90e4 PM |
6441 | nstable = extract32(tableattrs, 4, 1); |
6442 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable); | |
3dde962f PM |
6443 | if (!(descriptor & 1) || |
6444 | (!(descriptor & 2) && (level == 3))) { | |
6445 | /* Invalid, or the Reserved level 3 encoding */ | |
6446 | goto do_fault; | |
6447 | } | |
6448 | descaddr = descriptor & 0xfffffff000ULL; | |
6449 | ||
6450 | if ((descriptor & 2) && (level < 3)) { | |
6451 | /* Table entry. The top five bits are attributes which may | |
6452 | * propagate down through lower levels of the table (and | |
6453 | * which are all arranged so that 0 means "no effect", so | |
6454 | * we can gather them up by ORing in the bits at each level). | |
6455 | */ | |
6456 | tableattrs |= extract64(descriptor, 59, 5); | |
6457 | level++; | |
6458 | continue; | |
6459 | } | |
6460 | /* Block entry at level 1 or 2, or page entry at level 3. | |
6461 | * These are basically the same thing, although the number | |
6462 | * of bits we pull in from the vaddr varies. | |
6463 | */ | |
5661ae6b | 6464 | page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); |
3dde962f PM |
6465 | descaddr |= (address & (page_size - 1)); |
6466 | /* Extract attributes from the descriptor and merge with table attrs */ | |
d615efac IC |
6467 | attrs = extract64(descriptor, 2, 10) |
6468 | | (extract64(descriptor, 52, 12) << 10); | |
3dde962f PM |
6469 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
6470 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
6471 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
6472 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
6473 | */ | |
6474 | if (extract32(tableattrs, 2, 1)) { | |
6475 | attrs &= ~(1 << 4); | |
6476 | } | |
ebca90e4 | 6477 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
6478 | break; |
6479 | } | |
6480 | /* Here descaddr is the final physical address, and attributes | |
6481 | * are all in attrs. | |
6482 | */ | |
6483 | fault_type = access_fault; | |
6484 | if ((attrs & (1 << 8)) == 0) { | |
6485 | /* Access flag */ | |
6486 | goto do_fault; | |
6487 | } | |
d8e052b3 AJ |
6488 | |
6489 | ap = extract32(attrs, 4, 2); | |
6490 | ns = extract32(attrs, 3, 1); | |
6491 | xn = extract32(attrs, 12, 1); | |
6492 | pxn = extract32(attrs, 11, 1); | |
6493 | ||
6494 | *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); | |
6495 | ||
3dde962f | 6496 | fault_type = permission_fault; |
d8e052b3 | 6497 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
6498 | goto do_fault; |
6499 | } | |
3dde962f | 6500 | |
8bf5b6a9 PM |
6501 | if (ns) { |
6502 | /* The NS bit will (as required by the architecture) have no effect if | |
6503 | * the CPU doesn't support TZ or this is a non-secure translation | |
6504 | * regime, because the attribute will already be non-secure. | |
6505 | */ | |
6506 | txattrs->secure = false; | |
6507 | } | |
3dde962f PM |
6508 | *phys_ptr = descaddr; |
6509 | *page_size_ptr = page_size; | |
b7cc4e82 | 6510 | return false; |
3dde962f PM |
6511 | |
6512 | do_fault: | |
6513 | /* Long-descriptor format IFSR/DFSR value */ | |
b7cc4e82 PC |
6514 | *fsr = (1 << 9) | (fault_type << 2) | level; |
6515 | return true; | |
3dde962f PM |
6516 | } |
6517 | ||
f6bda88f PC |
6518 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
6519 | ARMMMUIdx mmu_idx, | |
6520 | int32_t address, int *prot) | |
6521 | { | |
6522 | *prot = PAGE_READ | PAGE_WRITE; | |
6523 | switch (address) { | |
6524 | case 0xF0000000 ... 0xFFFFFFFF: | |
6525 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ | |
6526 | *prot |= PAGE_EXEC; | |
6527 | } | |
6528 | break; | |
6529 | case 0x00000000 ... 0x7FFFFFFF: | |
6530 | *prot |= PAGE_EXEC; | |
6531 | break; | |
6532 | } | |
6533 | ||
6534 | } | |
6535 | ||
6536 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, | |
6537 | int access_type, ARMMMUIdx mmu_idx, | |
6538 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
6539 | { | |
6540 | ARMCPU *cpu = arm_env_get_cpu(env); | |
6541 | int n; | |
6542 | bool is_user = regime_is_user(env, mmu_idx); | |
6543 | ||
6544 | *phys_ptr = address; | |
6545 | *prot = 0; | |
6546 | ||
6547 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
6548 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
6549 | } else { /* MPU enabled */ | |
6550 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
6551 | /* region search */ | |
6552 | uint32_t base = env->pmsav7.drbar[n]; | |
6553 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
6554 | uint32_t rmask; | |
6555 | bool srdis = false; | |
6556 | ||
6557 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
6558 | continue; | |
6559 | } | |
6560 | ||
6561 | if (!rsize) { | |
6562 | qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); | |
6563 | continue; | |
6564 | } | |
6565 | rsize++; | |
6566 | rmask = (1ull << rsize) - 1; | |
6567 | ||
6568 | if (base & rmask) { | |
6569 | qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " | |
6570 | "to DRSR region size, mask = %" PRIx32, | |
6571 | base, rmask); | |
6572 | continue; | |
6573 | } | |
6574 | ||
6575 | if (address < base || address > base + rmask) { | |
6576 | continue; | |
6577 | } | |
6578 | ||
6579 | /* Region matched */ | |
6580 | ||
6581 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
6582 | int i, snd; | |
6583 | uint32_t srdis_mask; | |
6584 | ||
6585 | rsize -= 3; /* sub region size (power of 2) */ | |
6586 | snd = ((address - base) >> rsize) & 0x7; | |
6587 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
6588 | ||
6589 | srdis_mask = srdis ? 0x3 : 0x0; | |
6590 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
6591 | /* This will check in groups of 2, 4 and then 8, whether | |
6592 | * the subregion bits are consistent. rsize is incremented | |
6593 | * back up to give the region size, considering consistent | |
6594 | * adjacent subregions as one region. Stop testing if rsize | |
6595 | * is already big enough for an entire QEMU page. | |
6596 | */ | |
6597 | int snd_rounded = snd & ~(i - 1); | |
6598 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
6599 | snd_rounded + 8, i); | |
6600 | if (srdis_mask ^ srdis_multi) { | |
6601 | break; | |
6602 | } | |
6603 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
6604 | rsize++; | |
6605 | } | |
6606 | } | |
6607 | if (rsize < TARGET_PAGE_BITS) { | |
6608 | qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" | |
6609 | "alignment of %" PRIu32 " bits. Minimum is %d\n", | |
6610 | rsize, TARGET_PAGE_BITS); | |
6611 | continue; | |
6612 | } | |
6613 | if (srdis) { | |
6614 | continue; | |
6615 | } | |
6616 | break; | |
6617 | } | |
6618 | ||
6619 | if (n == -1) { /* no hits */ | |
6620 | if (cpu->pmsav7_dregion && | |
6621 | (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { | |
6622 | /* background fault */ | |
6623 | *fsr = 0; | |
6624 | return true; | |
6625 | } | |
6626 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
6627 | } else { /* a MPU hit! */ | |
6628 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
6629 | ||
6630 | if (is_user) { /* User mode AP bit decoding */ | |
6631 | switch (ap) { | |
6632 | case 0: | |
6633 | case 1: | |
6634 | case 5: | |
6635 | break; /* no access */ | |
6636 | case 3: | |
6637 | *prot |= PAGE_WRITE; | |
6638 | /* fall through */ | |
6639 | case 2: | |
6640 | case 6: | |
6641 | *prot |= PAGE_READ | PAGE_EXEC; | |
6642 | break; | |
6643 | default: | |
6644 | qemu_log_mask(LOG_GUEST_ERROR, | |
6645 | "Bad value for AP bits in DRACR %" | |
6646 | PRIx32 "\n", ap); | |
6647 | } | |
6648 | } else { /* Priv. mode AP bits decoding */ | |
6649 | switch (ap) { | |
6650 | case 0: | |
6651 | break; /* no access */ | |
6652 | case 1: | |
6653 | case 2: | |
6654 | case 3: | |
6655 | *prot |= PAGE_WRITE; | |
6656 | /* fall through */ | |
6657 | case 5: | |
6658 | case 6: | |
6659 | *prot |= PAGE_READ | PAGE_EXEC; | |
6660 | break; | |
6661 | default: | |
6662 | qemu_log_mask(LOG_GUEST_ERROR, | |
6663 | "Bad value for AP bits in DRACR %" | |
6664 | PRIx32 "\n", ap); | |
6665 | } | |
6666 | } | |
6667 | ||
6668 | /* execute never */ | |
6669 | if (env->pmsav7.dracr[n] & (1 << 12)) { | |
6670 | *prot &= ~PAGE_EXEC; | |
6671 | } | |
6672 | } | |
6673 | } | |
6674 | ||
6675 | *fsr = 0x00d; /* Permission fault */ | |
6676 | return !(*prot & (1 << access_type)); | |
6677 | } | |
6678 | ||
13689d43 PC |
6679 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
6680 | int access_type, ARMMMUIdx mmu_idx, | |
6681 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
9ee6e8bb PB |
6682 | { |
6683 | int n; | |
6684 | uint32_t mask; | |
6685 | uint32_t base; | |
0480f69a | 6686 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb PB |
6687 | |
6688 | *phys_ptr = address; | |
6689 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 6690 | base = env->cp15.c6_region[n]; |
87c3d486 | 6691 | if ((base & 1) == 0) { |
554b0b09 | 6692 | continue; |
87c3d486 | 6693 | } |
554b0b09 PM |
6694 | mask = 1 << ((base >> 1) & 0x1f); |
6695 | /* Keep this shift separate from the above to avoid an | |
6696 | (undefined) << 32. */ | |
6697 | mask = (mask << 1) - 1; | |
87c3d486 | 6698 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 6699 | break; |
87c3d486 | 6700 | } |
9ee6e8bb | 6701 | } |
87c3d486 | 6702 | if (n < 0) { |
b7cc4e82 PC |
6703 | *fsr = 2; |
6704 | return true; | |
87c3d486 | 6705 | } |
9ee6e8bb PB |
6706 | |
6707 | if (access_type == 2) { | |
7e09797c | 6708 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 6709 | } else { |
7e09797c | 6710 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
6711 | } |
6712 | mask = (mask >> (n * 4)) & 0xf; | |
6713 | switch (mask) { | |
6714 | case 0: | |
b7cc4e82 PC |
6715 | *fsr = 1; |
6716 | return true; | |
9ee6e8bb | 6717 | case 1: |
87c3d486 | 6718 | if (is_user) { |
b7cc4e82 PC |
6719 | *fsr = 1; |
6720 | return true; | |
87c3d486 | 6721 | } |
554b0b09 PM |
6722 | *prot = PAGE_READ | PAGE_WRITE; |
6723 | break; | |
9ee6e8bb | 6724 | case 2: |
554b0b09 | 6725 | *prot = PAGE_READ; |
87c3d486 | 6726 | if (!is_user) { |
554b0b09 | 6727 | *prot |= PAGE_WRITE; |
87c3d486 | 6728 | } |
554b0b09 | 6729 | break; |
9ee6e8bb | 6730 | case 3: |
554b0b09 PM |
6731 | *prot = PAGE_READ | PAGE_WRITE; |
6732 | break; | |
9ee6e8bb | 6733 | case 5: |
87c3d486 | 6734 | if (is_user) { |
b7cc4e82 PC |
6735 | *fsr = 1; |
6736 | return true; | |
87c3d486 | 6737 | } |
554b0b09 PM |
6738 | *prot = PAGE_READ; |
6739 | break; | |
9ee6e8bb | 6740 | case 6: |
554b0b09 PM |
6741 | *prot = PAGE_READ; |
6742 | break; | |
9ee6e8bb | 6743 | default: |
554b0b09 | 6744 | /* Bad permission. */ |
b7cc4e82 PC |
6745 | *fsr = 1; |
6746 | return true; | |
9ee6e8bb | 6747 | } |
3ad493fc | 6748 | *prot |= PAGE_EXEC; |
b7cc4e82 | 6749 | return false; |
9ee6e8bb PB |
6750 | } |
6751 | ||
702a9357 PM |
6752 | /* get_phys_addr - get the physical address for this virtual address |
6753 | * | |
6754 | * Find the physical address corresponding to the given virtual address, | |
6755 | * by doing a translation table walk on MMU based systems or using the | |
6756 | * MPU state on MPU based systems. | |
6757 | * | |
b7cc4e82 PC |
6758 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
6759 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
6760 | * information on why the translation aborted, in the format of a |
6761 | * DFSR/IFSR fault register, with the following caveats: | |
6762 | * * we honour the short vs long DFSR format differences. | |
6763 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 6764 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
6765 | * value. |
6766 | * | |
6767 | * @env: CPUARMState | |
6768 | * @address: virtual address to get physical address for | |
6769 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 6770 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 6771 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 6772 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
6773 | * @prot: set to the permissions for the page containing phys_ptr |
6774 | * @page_size: set to the size of the page containing phys_ptr | |
b7cc4e82 | 6775 | * @fsr: set to the DFSR/IFSR value on failure |
702a9357 | 6776 | */ |
b7cc4e82 PC |
6777 | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, |
6778 | int access_type, ARMMMUIdx mmu_idx, | |
6779 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
6780 | target_ulong *page_size, uint32_t *fsr) | |
9ee6e8bb | 6781 | { |
0480f69a PM |
6782 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
6783 | /* TODO: when we support EL2 we should here call ourselves recursively | |
ebca90e4 PM |
6784 | * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw |
6785 | * functions will also need changing to perform ARMMMUIdx_S2NS loads | |
6786 | * rather than direct physical memory loads when appropriate. | |
0480f69a PM |
6787 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. |
6788 | */ | |
6789 | assert(!arm_feature(env, ARM_FEATURE_EL2)); | |
6790 | mmu_idx += ARMMMUIdx_S1NSE0; | |
6791 | } | |
d3649702 | 6792 | |
8bf5b6a9 PM |
6793 | /* The page table entries may downgrade secure to non-secure, but |
6794 | * cannot upgrade an non-secure translation regime's attributes | |
6795 | * to secure. | |
6796 | */ | |
6797 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 6798 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 6799 | |
0480f69a PM |
6800 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
6801 | * In v7 and earlier it affects all stage 1 translations. | |
6802 | */ | |
6803 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
6804 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
6805 | if (regime_el(env, mmu_idx) == 3) { | |
6806 | address += env->cp15.fcseidr_s; | |
6807 | } else { | |
6808 | address += env->cp15.fcseidr_ns; | |
6809 | } | |
54bf36ed | 6810 | } |
9ee6e8bb | 6811 | |
f6bda88f PC |
6812 | /* pmsav7 has special handling for when MPU is disabled so call it before |
6813 | * the common MMU/MPU disabled check below. | |
6814 | */ | |
6815 | if (arm_feature(env, ARM_FEATURE_MPU) && | |
6816 | arm_feature(env, ARM_FEATURE_V7)) { | |
6817 | *page_size = TARGET_PAGE_SIZE; | |
6818 | return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
6819 | phys_ptr, prot, fsr); | |
6820 | } | |
6821 | ||
0480f69a | 6822 | if (regime_translation_disabled(env, mmu_idx)) { |
9ee6e8bb PB |
6823 | /* MMU/MPU disabled. */ |
6824 | *phys_ptr = address; | |
3ad493fc | 6825 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 6826 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 6827 | return 0; |
0480f69a PM |
6828 | } |
6829 | ||
6830 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |
f6bda88f | 6831 | /* Pre-v7 MPU */ |
d4c430a8 | 6832 | *page_size = TARGET_PAGE_SIZE; |
13689d43 PC |
6833 | return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
6834 | phys_ptr, prot, fsr); | |
0480f69a PM |
6835 | } |
6836 | ||
6837 | if (regime_using_lpae_format(env, mmu_idx)) { | |
6838 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
b7cc4e82 | 6839 | attrs, prot, page_size, fsr); |
0480f69a PM |
6840 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
6841 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
b7cc4e82 | 6842 | attrs, prot, page_size, fsr); |
9ee6e8bb | 6843 | } else { |
0480f69a | 6844 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
b7cc4e82 | 6845 | prot, page_size, fsr); |
9ee6e8bb PB |
6846 | } |
6847 | } | |
6848 | ||
8c6084bf | 6849 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
6850 | * to the TLB. Return false on success, or true on failure. Populate |
6851 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 6852 | */ |
b7cc4e82 PC |
6853 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
6854 | int access_type, int mmu_idx, uint32_t *fsr) | |
b5ff1b31 | 6855 | { |
7510454e AF |
6856 | ARMCPU *cpu = ARM_CPU(cs); |
6857 | CPUARMState *env = &cpu->env; | |
a8170e5e | 6858 | hwaddr phys_addr; |
d4c430a8 | 6859 | target_ulong page_size; |
b5ff1b31 | 6860 | int prot; |
d3649702 | 6861 | int ret; |
8bf5b6a9 | 6862 | MemTxAttrs attrs = {}; |
b5ff1b31 | 6863 | |
8bf5b6a9 | 6864 | ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, |
b7cc4e82 PC |
6865 | &attrs, &prot, &page_size, fsr); |
6866 | if (!ret) { | |
b5ff1b31 | 6867 | /* Map a single [sub]page. */ |
dcd82c11 AB |
6868 | phys_addr &= TARGET_PAGE_MASK; |
6869 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
6870 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
6871 | prot, mmu_idx, page_size); | |
d4c430a8 | 6872 | return 0; |
b5ff1b31 FB |
6873 | } |
6874 | ||
8c6084bf | 6875 | return ret; |
b5ff1b31 FB |
6876 | } |
6877 | ||
00b941e5 | 6878 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 6879 | { |
00b941e5 | 6880 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 6881 | CPUARMState *env = &cpu->env; |
a8170e5e | 6882 | hwaddr phys_addr; |
d4c430a8 | 6883 | target_ulong page_size; |
b5ff1b31 | 6884 | int prot; |
b7cc4e82 PC |
6885 | bool ret; |
6886 | uint32_t fsr; | |
8bf5b6a9 | 6887 | MemTxAttrs attrs = {}; |
b5ff1b31 | 6888 | |
d3649702 | 6889 | ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr, |
b7cc4e82 | 6890 | &attrs, &prot, &page_size, &fsr); |
b5ff1b31 | 6891 | |
b7cc4e82 | 6892 | if (ret) { |
b5ff1b31 | 6893 | return -1; |
00b941e5 | 6894 | } |
b5ff1b31 FB |
6895 | |
6896 | return phys_addr; | |
6897 | } | |
6898 | ||
0ecb72a5 | 6899 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 6900 | { |
39ea3d4e PM |
6901 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
6902 | env->regs[13] = val; | |
6903 | } else { | |
f5206413 | 6904 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 6905 | } |
9ee6e8bb PB |
6906 | } |
6907 | ||
0ecb72a5 | 6908 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 6909 | { |
39ea3d4e PM |
6910 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
6911 | return env->regs[13]; | |
6912 | } else { | |
f5206413 | 6913 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 6914 | } |
9ee6e8bb PB |
6915 | } |
6916 | ||
0ecb72a5 | 6917 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 6918 | { |
a47dddd7 AF |
6919 | ARMCPU *cpu = arm_env_get_cpu(env); |
6920 | ||
9ee6e8bb PB |
6921 | switch (reg) { |
6922 | case 0: /* APSR */ | |
6923 | return xpsr_read(env) & 0xf8000000; | |
6924 | case 1: /* IAPSR */ | |
6925 | return xpsr_read(env) & 0xf80001ff; | |
6926 | case 2: /* EAPSR */ | |
6927 | return xpsr_read(env) & 0xff00fc00; | |
6928 | case 3: /* xPSR */ | |
6929 | return xpsr_read(env) & 0xff00fdff; | |
6930 | case 5: /* IPSR */ | |
6931 | return xpsr_read(env) & 0x000001ff; | |
6932 | case 6: /* EPSR */ | |
6933 | return xpsr_read(env) & 0x0700fc00; | |
6934 | case 7: /* IEPSR */ | |
6935 | return xpsr_read(env) & 0x0700edff; | |
6936 | case 8: /* MSP */ | |
6937 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
6938 | case 9: /* PSP */ | |
6939 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
6940 | case 16: /* PRIMASK */ | |
4cc35614 | 6941 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
6942 | case 17: /* BASEPRI */ |
6943 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 6944 | return env->v7m.basepri; |
82845826 | 6945 | case 19: /* FAULTMASK */ |
4cc35614 | 6946 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
6947 | case 20: /* CONTROL */ |
6948 | return env->v7m.control; | |
6949 | default: | |
6950 | /* ??? For debugging only. */ | |
a47dddd7 | 6951 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
6952 | return 0; |
6953 | } | |
6954 | } | |
6955 | ||
0ecb72a5 | 6956 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 6957 | { |
a47dddd7 AF |
6958 | ARMCPU *cpu = arm_env_get_cpu(env); |
6959 | ||
9ee6e8bb PB |
6960 | switch (reg) { |
6961 | case 0: /* APSR */ | |
6962 | xpsr_write(env, val, 0xf8000000); | |
6963 | break; | |
6964 | case 1: /* IAPSR */ | |
6965 | xpsr_write(env, val, 0xf8000000); | |
6966 | break; | |
6967 | case 2: /* EAPSR */ | |
6968 | xpsr_write(env, val, 0xfe00fc00); | |
6969 | break; | |
6970 | case 3: /* xPSR */ | |
6971 | xpsr_write(env, val, 0xfe00fc00); | |
6972 | break; | |
6973 | case 5: /* IPSR */ | |
6974 | /* IPSR bits are readonly. */ | |
6975 | break; | |
6976 | case 6: /* EPSR */ | |
6977 | xpsr_write(env, val, 0x0600fc00); | |
6978 | break; | |
6979 | case 7: /* IEPSR */ | |
6980 | xpsr_write(env, val, 0x0600fc00); | |
6981 | break; | |
6982 | case 8: /* MSP */ | |
6983 | if (env->v7m.current_sp) | |
6984 | env->v7m.other_sp = val; | |
6985 | else | |
6986 | env->regs[13] = val; | |
6987 | break; | |
6988 | case 9: /* PSP */ | |
6989 | if (env->v7m.current_sp) | |
6990 | env->regs[13] = val; | |
6991 | else | |
6992 | env->v7m.other_sp = val; | |
6993 | break; | |
6994 | case 16: /* PRIMASK */ | |
4cc35614 PM |
6995 | if (val & 1) { |
6996 | env->daif |= PSTATE_I; | |
6997 | } else { | |
6998 | env->daif &= ~PSTATE_I; | |
6999 | } | |
9ee6e8bb | 7000 | break; |
82845826 | 7001 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
7002 | env->v7m.basepri = val & 0xff; |
7003 | break; | |
82845826 | 7004 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
7005 | val &= 0xff; |
7006 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
7007 | env->v7m.basepri = val; | |
7008 | break; | |
82845826 | 7009 | case 19: /* FAULTMASK */ |
4cc35614 PM |
7010 | if (val & 1) { |
7011 | env->daif |= PSTATE_F; | |
7012 | } else { | |
7013 | env->daif &= ~PSTATE_F; | |
7014 | } | |
82845826 | 7015 | break; |
9ee6e8bb PB |
7016 | case 20: /* CONTROL */ |
7017 | env->v7m.control = val & 3; | |
7018 | switch_v7m_sp(env, (val & 2) != 0); | |
7019 | break; | |
7020 | default: | |
7021 | /* ??? For debugging only. */ | |
a47dddd7 | 7022 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
7023 | return; |
7024 | } | |
7025 | } | |
7026 | ||
b5ff1b31 | 7027 | #endif |
6ddbc6e4 | 7028 | |
aca3f40b PM |
7029 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
7030 | { | |
7031 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
7032 | * Note that we do not implement the (architecturally mandated) | |
7033 | * alignment fault for attempts to use this on Device memory | |
7034 | * (which matches the usual QEMU behaviour of not implementing either | |
7035 | * alignment faults or any memory attribute handling). | |
7036 | */ | |
7037 | ||
7038 | ARMCPU *cpu = arm_env_get_cpu(env); | |
7039 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
7040 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
7041 | ||
7042 | #ifndef CONFIG_USER_ONLY | |
7043 | { | |
7044 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
7045 | * the block size so we might have to do more than one TLB lookup. | |
7046 | * We know that in fact for any v8 CPU the page size is at least 4K | |
7047 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
7048 | * 1K as an artefact of legacy v5 subpage support being present in the | |
7049 | * same QEMU executable. | |
7050 | */ | |
7051 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
7052 | void *hostaddr[maxidx]; | |
7053 | int try, i; | |
3972ef6f RH |
7054 | unsigned mmu_idx = cpu_mmu_index(env); |
7055 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); | |
aca3f40b PM |
7056 | |
7057 | for (try = 0; try < 2; try++) { | |
7058 | ||
7059 | for (i = 0; i < maxidx; i++) { | |
7060 | hostaddr[i] = tlb_vaddr_to_host(env, | |
7061 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 7062 | 1, mmu_idx); |
aca3f40b PM |
7063 | if (!hostaddr[i]) { |
7064 | break; | |
7065 | } | |
7066 | } | |
7067 | if (i == maxidx) { | |
7068 | /* If it's all in the TLB it's fair game for just writing to; | |
7069 | * we know we don't need to update dirty status, etc. | |
7070 | */ | |
7071 | for (i = 0; i < maxidx - 1; i++) { | |
7072 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
7073 | } | |
7074 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
7075 | return; | |
7076 | } | |
7077 | /* OK, try a store and see if we can populate the tlb. This | |
7078 | * might cause an exception if the memory isn't writable, | |
7079 | * in which case we will longjmp out of here. We must for | |
7080 | * this purpose use the actual register value passed to us | |
7081 | * so that we get the fault address right. | |
7082 | */ | |
3972ef6f | 7083 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA()); |
aca3f40b PM |
7084 | /* Now we can populate the other TLB entries, if any */ |
7085 | for (i = 0; i < maxidx; i++) { | |
7086 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
7087 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
3972ef6f | 7088 | helper_ret_stb_mmu(env, va, 0, oi, GETRA()); |
aca3f40b PM |
7089 | } |
7090 | } | |
7091 | } | |
7092 | ||
7093 | /* Slow path (probably attempt to do this to an I/O device or | |
7094 | * similar, or clearing of a block of code we have translations | |
7095 | * cached for). Just do a series of byte writes as the architecture | |
7096 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
7097 | * memset(), unmap() sequence here because: | |
7098 | * + we'd need to account for the blocksize being larger than a page | |
7099 | * + the direct-RAM access case is almost always going to be dealt | |
7100 | * with in the fastpath code above, so there's no speed benefit | |
7101 | * + we would have to deal with the map returning NULL because the | |
7102 | * bounce buffer was in use | |
7103 | */ | |
7104 | for (i = 0; i < blocklen; i++) { | |
3972ef6f | 7105 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA()); |
aca3f40b PM |
7106 | } |
7107 | } | |
7108 | #else | |
7109 | memset(g2h(vaddr), 0, blocklen); | |
7110 | #endif | |
7111 | } | |
7112 | ||
6ddbc6e4 PB |
7113 | /* Note that signed overflow is undefined in C. The following routines are |
7114 | careful to use unsigned types where modulo arithmetic is required. | |
7115 | Failure to do so _will_ break on newer gcc. */ | |
7116 | ||
7117 | /* Signed saturating arithmetic. */ | |
7118 | ||
1654b2d6 | 7119 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
7120 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
7121 | { | |
7122 | uint16_t res; | |
7123 | ||
7124 | res = a + b; | |
7125 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
7126 | if (a & 0x8000) | |
7127 | res = 0x8000; | |
7128 | else | |
7129 | res = 0x7fff; | |
7130 | } | |
7131 | return res; | |
7132 | } | |
7133 | ||
1654b2d6 | 7134 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
7135 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
7136 | { | |
7137 | uint8_t res; | |
7138 | ||
7139 | res = a + b; | |
7140 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
7141 | if (a & 0x80) | |
7142 | res = 0x80; | |
7143 | else | |
7144 | res = 0x7f; | |
7145 | } | |
7146 | return res; | |
7147 | } | |
7148 | ||
1654b2d6 | 7149 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
7150 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
7151 | { | |
7152 | uint16_t res; | |
7153 | ||
7154 | res = a - b; | |
7155 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
7156 | if (a & 0x8000) | |
7157 | res = 0x8000; | |
7158 | else | |
7159 | res = 0x7fff; | |
7160 | } | |
7161 | return res; | |
7162 | } | |
7163 | ||
1654b2d6 | 7164 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
7165 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
7166 | { | |
7167 | uint8_t res; | |
7168 | ||
7169 | res = a - b; | |
7170 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
7171 | if (a & 0x80) | |
7172 | res = 0x80; | |
7173 | else | |
7174 | res = 0x7f; | |
7175 | } | |
7176 | return res; | |
7177 | } | |
7178 | ||
7179 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
7180 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
7181 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
7182 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
7183 | #define PFX q | |
7184 | ||
7185 | #include "op_addsub.h" | |
7186 | ||
7187 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 7188 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
7189 | { |
7190 | uint16_t res; | |
7191 | res = a + b; | |
7192 | if (res < a) | |
7193 | res = 0xffff; | |
7194 | return res; | |
7195 | } | |
7196 | ||
460a09c1 | 7197 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 7198 | { |
4c4fd3f8 | 7199 | if (a > b) |
6ddbc6e4 PB |
7200 | return a - b; |
7201 | else | |
7202 | return 0; | |
7203 | } | |
7204 | ||
7205 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
7206 | { | |
7207 | uint8_t res; | |
7208 | res = a + b; | |
7209 | if (res < a) | |
7210 | res = 0xff; | |
7211 | return res; | |
7212 | } | |
7213 | ||
7214 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
7215 | { | |
4c4fd3f8 | 7216 | if (a > b) |
6ddbc6e4 PB |
7217 | return a - b; |
7218 | else | |
7219 | return 0; | |
7220 | } | |
7221 | ||
7222 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
7223 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
7224 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
7225 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
7226 | #define PFX uq | |
7227 | ||
7228 | #include "op_addsub.h" | |
7229 | ||
7230 | /* Signed modulo arithmetic. */ | |
7231 | #define SARITH16(a, b, n, op) do { \ | |
7232 | int32_t sum; \ | |
db6e2e65 | 7233 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
7234 | RESULT(sum, n, 16); \ |
7235 | if (sum >= 0) \ | |
7236 | ge |= 3 << (n * 2); \ | |
7237 | } while(0) | |
7238 | ||
7239 | #define SARITH8(a, b, n, op) do { \ | |
7240 | int32_t sum; \ | |
db6e2e65 | 7241 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
7242 | RESULT(sum, n, 8); \ |
7243 | if (sum >= 0) \ | |
7244 | ge |= 1 << n; \ | |
7245 | } while(0) | |
7246 | ||
7247 | ||
7248 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
7249 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
7250 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
7251 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
7252 | #define PFX s | |
7253 | #define ARITH_GE | |
7254 | ||
7255 | #include "op_addsub.h" | |
7256 | ||
7257 | /* Unsigned modulo arithmetic. */ | |
7258 | #define ADD16(a, b, n) do { \ | |
7259 | uint32_t sum; \ | |
7260 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
7261 | RESULT(sum, n, 16); \ | |
a87aa10b | 7262 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
7263 | ge |= 3 << (n * 2); \ |
7264 | } while(0) | |
7265 | ||
7266 | #define ADD8(a, b, n) do { \ | |
7267 | uint32_t sum; \ | |
7268 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
7269 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
7270 | if ((sum >> 8) == 1) \ |
7271 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
7272 | } while(0) |
7273 | ||
7274 | #define SUB16(a, b, n) do { \ | |
7275 | uint32_t sum; \ | |
7276 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
7277 | RESULT(sum, n, 16); \ | |
7278 | if ((sum >> 16) == 0) \ | |
7279 | ge |= 3 << (n * 2); \ | |
7280 | } while(0) | |
7281 | ||
7282 | #define SUB8(a, b, n) do { \ | |
7283 | uint32_t sum; \ | |
7284 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
7285 | RESULT(sum, n, 8); \ | |
7286 | if ((sum >> 8) == 0) \ | |
a87aa10b | 7287 | ge |= 1 << n; \ |
6ddbc6e4 PB |
7288 | } while(0) |
7289 | ||
7290 | #define PFX u | |
7291 | #define ARITH_GE | |
7292 | ||
7293 | #include "op_addsub.h" | |
7294 | ||
7295 | /* Halved signed arithmetic. */ | |
7296 | #define ADD16(a, b, n) \ | |
7297 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
7298 | #define SUB16(a, b, n) \ | |
7299 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
7300 | #define ADD8(a, b, n) \ | |
7301 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
7302 | #define SUB8(a, b, n) \ | |
7303 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
7304 | #define PFX sh | |
7305 | ||
7306 | #include "op_addsub.h" | |
7307 | ||
7308 | /* Halved unsigned arithmetic. */ | |
7309 | #define ADD16(a, b, n) \ | |
7310 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
7311 | #define SUB16(a, b, n) \ | |
7312 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
7313 | #define ADD8(a, b, n) \ | |
7314 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
7315 | #define SUB8(a, b, n) \ | |
7316 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
7317 | #define PFX uh | |
7318 | ||
7319 | #include "op_addsub.h" | |
7320 | ||
7321 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
7322 | { | |
7323 | if (a > b) | |
7324 | return a - b; | |
7325 | else | |
7326 | return b - a; | |
7327 | } | |
7328 | ||
7329 | /* Unsigned sum of absolute byte differences. */ | |
7330 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
7331 | { | |
7332 | uint32_t sum; | |
7333 | sum = do_usad(a, b); | |
7334 | sum += do_usad(a >> 8, b >> 8); | |
7335 | sum += do_usad(a >> 16, b >>16); | |
7336 | sum += do_usad(a >> 24, b >> 24); | |
7337 | return sum; | |
7338 | } | |
7339 | ||
7340 | /* For ARMv6 SEL instruction. */ | |
7341 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
7342 | { | |
7343 | uint32_t mask; | |
7344 | ||
7345 | mask = 0; | |
7346 | if (flags & 1) | |
7347 | mask |= 0xff; | |
7348 | if (flags & 2) | |
7349 | mask |= 0xff00; | |
7350 | if (flags & 4) | |
7351 | mask |= 0xff0000; | |
7352 | if (flags & 8) | |
7353 | mask |= 0xff000000; | |
7354 | return (a & mask) | (b & ~mask); | |
7355 | } | |
7356 | ||
b90372ad PM |
7357 | /* VFP support. We follow the convention used for VFP instructions: |
7358 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
7359 | "d" suffix. */ |
7360 | ||
7361 | /* Convert host exception flags to vfp form. */ | |
7362 | static inline int vfp_exceptbits_from_host(int host_bits) | |
7363 | { | |
7364 | int target_bits = 0; | |
7365 | ||
7366 | if (host_bits & float_flag_invalid) | |
7367 | target_bits |= 1; | |
7368 | if (host_bits & float_flag_divbyzero) | |
7369 | target_bits |= 2; | |
7370 | if (host_bits & float_flag_overflow) | |
7371 | target_bits |= 4; | |
36802b6b | 7372 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
7373 | target_bits |= 8; |
7374 | if (host_bits & float_flag_inexact) | |
7375 | target_bits |= 0x10; | |
cecd8504 PM |
7376 | if (host_bits & float_flag_input_denormal) |
7377 | target_bits |= 0x80; | |
4373f3ce PB |
7378 | return target_bits; |
7379 | } | |
7380 | ||
0ecb72a5 | 7381 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
7382 | { |
7383 | int i; | |
7384 | uint32_t fpscr; | |
7385 | ||
7386 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
7387 | | (env->vfp.vec_len << 16) | |
7388 | | (env->vfp.vec_stride << 20); | |
7389 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 7390 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
7391 | fpscr |= vfp_exceptbits_from_host(i); |
7392 | return fpscr; | |
7393 | } | |
7394 | ||
0ecb72a5 | 7395 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
7396 | { |
7397 | return HELPER(vfp_get_fpscr)(env); | |
7398 | } | |
7399 | ||
4373f3ce PB |
7400 | /* Convert vfp exception flags to target form. */ |
7401 | static inline int vfp_exceptbits_to_host(int target_bits) | |
7402 | { | |
7403 | int host_bits = 0; | |
7404 | ||
7405 | if (target_bits & 1) | |
7406 | host_bits |= float_flag_invalid; | |
7407 | if (target_bits & 2) | |
7408 | host_bits |= float_flag_divbyzero; | |
7409 | if (target_bits & 4) | |
7410 | host_bits |= float_flag_overflow; | |
7411 | if (target_bits & 8) | |
7412 | host_bits |= float_flag_underflow; | |
7413 | if (target_bits & 0x10) | |
7414 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
7415 | if (target_bits & 0x80) |
7416 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
7417 | return host_bits; |
7418 | } | |
7419 | ||
0ecb72a5 | 7420 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
7421 | { |
7422 | int i; | |
7423 | uint32_t changed; | |
7424 | ||
7425 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
7426 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
7427 | env->vfp.vec_len = (val >> 16) & 7; | |
7428 | env->vfp.vec_stride = (val >> 20) & 3; | |
7429 | ||
7430 | changed ^= val; | |
7431 | if (changed & (3 << 22)) { | |
7432 | i = (val >> 22) & 3; | |
7433 | switch (i) { | |
4d3da0f3 | 7434 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
7435 | i = float_round_nearest_even; |
7436 | break; | |
4d3da0f3 | 7437 | case FPROUNDING_POSINF: |
4373f3ce PB |
7438 | i = float_round_up; |
7439 | break; | |
4d3da0f3 | 7440 | case FPROUNDING_NEGINF: |
4373f3ce PB |
7441 | i = float_round_down; |
7442 | break; | |
4d3da0f3 | 7443 | case FPROUNDING_ZERO: |
4373f3ce PB |
7444 | i = float_round_to_zero; |
7445 | break; | |
7446 | } | |
7447 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
7448 | } | |
cecd8504 | 7449 | if (changed & (1 << 24)) { |
fe76d976 | 7450 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
7451 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
7452 | } | |
5c7908ed PB |
7453 | if (changed & (1 << 25)) |
7454 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 7455 | |
b12c390b | 7456 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 7457 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 7458 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
7459 | } |
7460 | ||
0ecb72a5 | 7461 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
7462 | { |
7463 | HELPER(vfp_set_fpscr)(env, val); | |
7464 | } | |
7465 | ||
4373f3ce PB |
7466 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
7467 | ||
7468 | #define VFP_BINOP(name) \ | |
ae1857ec | 7469 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 7470 | { \ |
ae1857ec PM |
7471 | float_status *fpst = fpstp; \ |
7472 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 7473 | } \ |
ae1857ec | 7474 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 7475 | { \ |
ae1857ec PM |
7476 | float_status *fpst = fpstp; \ |
7477 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
7478 | } |
7479 | VFP_BINOP(add) | |
7480 | VFP_BINOP(sub) | |
7481 | VFP_BINOP(mul) | |
7482 | VFP_BINOP(div) | |
f71a2ae5 PM |
7483 | VFP_BINOP(min) |
7484 | VFP_BINOP(max) | |
7485 | VFP_BINOP(minnum) | |
7486 | VFP_BINOP(maxnum) | |
4373f3ce PB |
7487 | #undef VFP_BINOP |
7488 | ||
7489 | float32 VFP_HELPER(neg, s)(float32 a) | |
7490 | { | |
7491 | return float32_chs(a); | |
7492 | } | |
7493 | ||
7494 | float64 VFP_HELPER(neg, d)(float64 a) | |
7495 | { | |
66230e0d | 7496 | return float64_chs(a); |
4373f3ce PB |
7497 | } |
7498 | ||
7499 | float32 VFP_HELPER(abs, s)(float32 a) | |
7500 | { | |
7501 | return float32_abs(a); | |
7502 | } | |
7503 | ||
7504 | float64 VFP_HELPER(abs, d)(float64 a) | |
7505 | { | |
66230e0d | 7506 | return float64_abs(a); |
4373f3ce PB |
7507 | } |
7508 | ||
0ecb72a5 | 7509 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
7510 | { |
7511 | return float32_sqrt(a, &env->vfp.fp_status); | |
7512 | } | |
7513 | ||
0ecb72a5 | 7514 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
7515 | { |
7516 | return float64_sqrt(a, &env->vfp.fp_status); | |
7517 | } | |
7518 | ||
7519 | /* XXX: check quiet/signaling case */ | |
7520 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 7521 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
7522 | { \ |
7523 | uint32_t flags; \ | |
7524 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
7525 | case 0: flags = 0x6; break; \ | |
7526 | case -1: flags = 0x8; break; \ | |
7527 | case 1: flags = 0x2; break; \ | |
7528 | default: case 2: flags = 0x3; break; \ | |
7529 | } \ | |
7530 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
7531 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
7532 | } \ | |
0ecb72a5 | 7533 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
7534 | { \ |
7535 | uint32_t flags; \ | |
7536 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
7537 | case 0: flags = 0x6; break; \ | |
7538 | case -1: flags = 0x8; break; \ | |
7539 | case 1: flags = 0x2; break; \ | |
7540 | default: case 2: flags = 0x3; break; \ | |
7541 | } \ | |
7542 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
7543 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
7544 | } | |
7545 | DO_VFP_cmp(s, float32) | |
7546 | DO_VFP_cmp(d, float64) | |
7547 | #undef DO_VFP_cmp | |
7548 | ||
5500b06c | 7549 | /* Integer to float and float to integer conversions */ |
4373f3ce | 7550 | |
5500b06c PM |
7551 | #define CONV_ITOF(name, fsz, sign) \ |
7552 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
7553 | { \ | |
7554 | float_status *fpst = fpstp; \ | |
85836979 | 7555 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
7556 | } |
7557 | ||
5500b06c PM |
7558 | #define CONV_FTOI(name, fsz, sign, round) \ |
7559 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
7560 | { \ | |
7561 | float_status *fpst = fpstp; \ | |
7562 | if (float##fsz##_is_any_nan(x)) { \ | |
7563 | float_raise(float_flag_invalid, fpst); \ | |
7564 | return 0; \ | |
7565 | } \ | |
7566 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
7567 | } |
7568 | ||
5500b06c PM |
7569 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
7570 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
7571 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
7572 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 7573 | |
5500b06c PM |
7574 | FLOAT_CONVS(si, s, 32, ) |
7575 | FLOAT_CONVS(si, d, 64, ) | |
7576 | FLOAT_CONVS(ui, s, 32, u) | |
7577 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 7578 | |
5500b06c PM |
7579 | #undef CONV_ITOF |
7580 | #undef CONV_FTOI | |
7581 | #undef FLOAT_CONVS | |
4373f3ce PB |
7582 | |
7583 | /* floating point conversion */ | |
0ecb72a5 | 7584 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 7585 | { |
2d627737 PM |
7586 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
7587 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
7588 | * a quiet NaN by forcing the most significant frac bit to 1. | |
7589 | */ | |
7590 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
7591 | } |
7592 | ||
0ecb72a5 | 7593 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 7594 | { |
2d627737 PM |
7595 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
7596 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
7597 | * a quiet NaN by forcing the most significant frac bit to 1. | |
7598 | */ | |
7599 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
7600 | } |
7601 | ||
7602 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 7603 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
7604 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
7605 | void *fpstp) \ | |
4373f3ce | 7606 | { \ |
5500b06c | 7607 | float_status *fpst = fpstp; \ |
622465e1 | 7608 | float##fsz tmp; \ |
8ed697e8 | 7609 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 7610 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
7611 | } |
7612 | ||
abe66f70 PM |
7613 | /* Notice that we want only input-denormal exception flags from the |
7614 | * scalbn operation: the other possible flags (overflow+inexact if | |
7615 | * we overflow to infinity, output-denormal) aren't correct for the | |
7616 | * complete scale-and-convert operation. | |
7617 | */ | |
16d5b3ca WN |
7618 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
7619 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
7620 | uint32_t shift, \ | |
7621 | void *fpstp) \ | |
4373f3ce | 7622 | { \ |
5500b06c | 7623 | float_status *fpst = fpstp; \ |
abe66f70 | 7624 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
7625 | float##fsz tmp; \ |
7626 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 7627 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 7628 | return 0; \ |
09d9487f | 7629 | } \ |
5500b06c | 7630 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
7631 | old_exc_flags |= get_float_exception_flags(fpst) \ |
7632 | & float_flag_input_denormal; \ | |
7633 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 7634 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
7635 | } |
7636 | ||
16d5b3ca WN |
7637 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
7638 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
7639 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
7640 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
7641 | ||
7642 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
7643 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
7644 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 7645 | |
8ed697e8 WN |
7646 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
7647 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 7648 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
7649 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
7650 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 7651 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
7652 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
7653 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 7654 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
7655 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
7656 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 7657 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 7658 | #undef VFP_CONV_FIX |
16d5b3ca WN |
7659 | #undef VFP_CONV_FIX_FLOAT |
7660 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 7661 | |
52a1f6a3 AG |
7662 | /* Set the current fp rounding mode and return the old one. |
7663 | * The argument is a softfloat float_round_ value. | |
7664 | */ | |
7665 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
7666 | { | |
7667 | float_status *fp_status = &env->vfp.fp_status; | |
7668 | ||
7669 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
7670 | set_float_rounding_mode(rmode, fp_status); | |
7671 | ||
7672 | return prev_rmode; | |
7673 | } | |
7674 | ||
43630e58 WN |
7675 | /* Set the current fp rounding mode in the standard fp status and return |
7676 | * the old one. This is for NEON instructions that need to change the | |
7677 | * rounding mode but wish to use the standard FPSCR values for everything | |
7678 | * else. Always set the rounding mode back to the correct value after | |
7679 | * modifying it. | |
7680 | * The argument is a softfloat float_round_ value. | |
7681 | */ | |
7682 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
7683 | { | |
7684 | float_status *fp_status = &env->vfp.standard_fp_status; | |
7685 | ||
7686 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
7687 | set_float_rounding_mode(rmode, fp_status); | |
7688 | ||
7689 | return prev_rmode; | |
7690 | } | |
7691 | ||
60011498 | 7692 | /* Half precision conversions. */ |
0ecb72a5 | 7693 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 7694 | { |
60011498 | 7695 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
7696 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
7697 | if (ieee) { | |
7698 | return float32_maybe_silence_nan(r); | |
7699 | } | |
7700 | return r; | |
60011498 PB |
7701 | } |
7702 | ||
0ecb72a5 | 7703 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 7704 | { |
60011498 | 7705 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
7706 | float16 r = float32_to_float16(a, ieee, s); |
7707 | if (ieee) { | |
7708 | r = float16_maybe_silence_nan(r); | |
7709 | } | |
7710 | return float16_val(r); | |
60011498 PB |
7711 | } |
7712 | ||
0ecb72a5 | 7713 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
7714 | { |
7715 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
7716 | } | |
7717 | ||
0ecb72a5 | 7718 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
7719 | { |
7720 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
7721 | } | |
7722 | ||
0ecb72a5 | 7723 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
7724 | { |
7725 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
7726 | } | |
7727 | ||
0ecb72a5 | 7728 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
7729 | { |
7730 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
7731 | } | |
7732 | ||
8900aad2 PM |
7733 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
7734 | { | |
7735 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
7736 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
7737 | if (ieee) { | |
7738 | return float64_maybe_silence_nan(r); | |
7739 | } | |
7740 | return r; | |
7741 | } | |
7742 | ||
7743 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
7744 | { | |
7745 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
7746 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
7747 | if (ieee) { | |
7748 | r = float16_maybe_silence_nan(r); | |
7749 | } | |
7750 | return float16_val(r); | |
7751 | } | |
7752 | ||
dda3ec49 | 7753 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
7754 | #define float32_three make_float32(0x40400000) |
7755 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 7756 | |
0ecb72a5 | 7757 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 7758 | { |
dda3ec49 PM |
7759 | float_status *s = &env->vfp.standard_fp_status; |
7760 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
7761 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
7762 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
7763 | float_raise(float_flag_input_denormal, s); | |
7764 | } | |
dda3ec49 PM |
7765 | return float32_two; |
7766 | } | |
7767 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
7768 | } |
7769 | ||
0ecb72a5 | 7770 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 7771 | { |
71826966 | 7772 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
7773 | float32 product; |
7774 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
7775 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
7776 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
7777 | float_raise(float_flag_input_denormal, s); | |
7778 | } | |
6aae3df1 | 7779 | return float32_one_point_five; |
9ea62f57 | 7780 | } |
6aae3df1 PM |
7781 | product = float32_mul(a, b, s); |
7782 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
7783 | } |
7784 | ||
8f8e3aa4 PB |
7785 | /* NEON helpers. */ |
7786 | ||
56bf4fe2 CL |
7787 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
7788 | * int->float conversions at run-time. */ | |
7789 | #define float64_256 make_float64(0x4070000000000000LL) | |
7790 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
7791 | #define float32_maxnorm make_float32(0x7f7fffff) |
7792 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 7793 | |
b6d4443a AB |
7794 | /* Reciprocal functions |
7795 | * | |
7796 | * The algorithm that must be used to calculate the estimate | |
7797 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 7798 | */ |
b6d4443a AB |
7799 | |
7800 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 7801 | { |
1146a817 PM |
7802 | /* These calculations mustn't set any fp exception flags, |
7803 | * so we use a local copy of the fp_status. | |
7804 | */ | |
b6d4443a | 7805 | float_status dummy_status = *real_fp_status; |
1146a817 | 7806 | float_status *s = &dummy_status; |
fe0e4872 CL |
7807 | /* q = (int)(a * 512.0) */ |
7808 | float64 q = float64_mul(float64_512, a, s); | |
7809 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
7810 | ||
7811 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
7812 | q = int64_to_float64(q_int, s); | |
7813 | q = float64_add(q, float64_half, s); | |
7814 | q = float64_div(q, float64_512, s); | |
7815 | q = float64_div(float64_one, q, s); | |
7816 | ||
7817 | /* s = (int)(256.0 * r + 0.5) */ | |
7818 | q = float64_mul(q, float64_256, s); | |
7819 | q = float64_add(q, float64_half, s); | |
7820 | q_int = float64_to_int64_round_to_zero(q, s); | |
7821 | ||
7822 | /* return (double)s / 256.0 */ | |
7823 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
7824 | } | |
7825 | ||
b6d4443a AB |
7826 | /* Common wrapper to call recip_estimate */ |
7827 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 7828 | { |
b6d4443a AB |
7829 | uint64_t val64 = float64_val(num); |
7830 | uint64_t frac = extract64(val64, 0, 52); | |
7831 | int64_t exp = extract64(val64, 52, 11); | |
7832 | uint64_t sbit; | |
7833 | float64 scaled, estimate; | |
fe0e4872 | 7834 | |
b6d4443a AB |
7835 | /* Generate the scaled number for the estimate function */ |
7836 | if (exp == 0) { | |
7837 | if (extract64(frac, 51, 1) == 0) { | |
7838 | exp = -1; | |
7839 | frac = extract64(frac, 0, 50) << 2; | |
7840 | } else { | |
7841 | frac = extract64(frac, 0, 51) << 1; | |
7842 | } | |
7843 | } | |
fe0e4872 | 7844 | |
b6d4443a AB |
7845 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
7846 | scaled = make_float64((0x3feULL << 52) | |
7847 | | extract64(frac, 44, 8) << 44); | |
7848 | ||
7849 | estimate = recip_estimate(scaled, fpst); | |
7850 | ||
7851 | /* Build new result */ | |
7852 | val64 = float64_val(estimate); | |
7853 | sbit = 0x8000000000000000ULL & val64; | |
7854 | exp = off - exp; | |
7855 | frac = extract64(val64, 0, 52); | |
7856 | ||
7857 | if (exp == 0) { | |
7858 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
7859 | } else if (exp == -1) { | |
7860 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
7861 | exp = 0; | |
7862 | } | |
7863 | ||
7864 | return make_float64(sbit | (exp << 52) | frac); | |
7865 | } | |
7866 | ||
7867 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
7868 | { | |
7869 | switch (fpst->float_rounding_mode) { | |
7870 | case float_round_nearest_even: /* Round to Nearest */ | |
7871 | return true; | |
7872 | case float_round_up: /* Round to +Inf */ | |
7873 | return !sign_bit; | |
7874 | case float_round_down: /* Round to -Inf */ | |
7875 | return sign_bit; | |
7876 | case float_round_to_zero: /* Round to Zero */ | |
7877 | return false; | |
7878 | } | |
7879 | ||
7880 | g_assert_not_reached(); | |
7881 | } | |
7882 | ||
7883 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
7884 | { | |
7885 | float_status *fpst = fpstp; | |
7886 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
7887 | uint32_t f32_val = float32_val(f32); | |
7888 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
7889 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
7890 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
7891 | float64 f64, r64; | |
7892 | uint64_t r64_val; | |
7893 | int64_t r64_exp; | |
7894 | uint64_t r64_frac; | |
7895 | ||
7896 | if (float32_is_any_nan(f32)) { | |
7897 | float32 nan = f32; | |
7898 | if (float32_is_signaling_nan(f32)) { | |
7899 | float_raise(float_flag_invalid, fpst); | |
7900 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 7901 | } |
b6d4443a AB |
7902 | if (fpst->default_nan_mode) { |
7903 | nan = float32_default_nan; | |
43fe9bdb | 7904 | } |
b6d4443a AB |
7905 | return nan; |
7906 | } else if (float32_is_infinity(f32)) { | |
7907 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
7908 | } else if (float32_is_zero(f32)) { | |
7909 | float_raise(float_flag_divbyzero, fpst); | |
7910 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
7911 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
7912 | /* Abs(value) < 2.0^-128 */ | |
7913 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
7914 | if (round_to_inf(fpst, f32_sbit)) { | |
7915 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
7916 | } else { | |
7917 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
7918 | } | |
7919 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
7920 | float_raise(float_flag_underflow, fpst); | |
7921 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
7922 | } |
7923 | ||
fe0e4872 | 7924 | |
b6d4443a AB |
7925 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
7926 | r64 = call_recip_estimate(f64, 253, fpst); | |
7927 | r64_val = float64_val(r64); | |
7928 | r64_exp = extract64(r64_val, 52, 11); | |
7929 | r64_frac = extract64(r64_val, 0, 52); | |
7930 | ||
7931 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
7932 | return make_float32(f32_sbit | | |
7933 | (r64_exp & 0xff) << 23 | | |
7934 | extract64(r64_frac, 29, 24)); | |
7935 | } | |
7936 | ||
7937 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
7938 | { | |
7939 | float_status *fpst = fpstp; | |
7940 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
7941 | uint64_t f64_val = float64_val(f64); | |
7942 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
7943 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
7944 | float64 r64; | |
7945 | uint64_t r64_val; | |
7946 | int64_t r64_exp; | |
7947 | uint64_t r64_frac; | |
7948 | ||
7949 | /* Deal with any special cases */ | |
7950 | if (float64_is_any_nan(f64)) { | |
7951 | float64 nan = f64; | |
7952 | if (float64_is_signaling_nan(f64)) { | |
7953 | float_raise(float_flag_invalid, fpst); | |
7954 | nan = float64_maybe_silence_nan(f64); | |
7955 | } | |
7956 | if (fpst->default_nan_mode) { | |
7957 | nan = float64_default_nan; | |
7958 | } | |
7959 | return nan; | |
7960 | } else if (float64_is_infinity(f64)) { | |
7961 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
7962 | } else if (float64_is_zero(f64)) { | |
7963 | float_raise(float_flag_divbyzero, fpst); | |
7964 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7965 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
7966 | /* Abs(value) < 2.0^-1024 */ | |
7967 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
7968 | if (round_to_inf(fpst, f64_sbit)) { | |
7969 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7970 | } else { | |
7971 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
7972 | } | |
fc1792e9 | 7973 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
7974 | float_raise(float_flag_underflow, fpst); |
7975 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
7976 | } | |
fe0e4872 | 7977 | |
b6d4443a AB |
7978 | r64 = call_recip_estimate(f64, 2045, fpst); |
7979 | r64_val = float64_val(r64); | |
7980 | r64_exp = extract64(r64_val, 52, 11); | |
7981 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 7982 | |
b6d4443a AB |
7983 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
7984 | return make_float64(f64_sbit | | |
7985 | ((r64_exp & 0x7ff) << 52) | | |
7986 | r64_frac); | |
4373f3ce PB |
7987 | } |
7988 | ||
e07be5d2 CL |
7989 | /* The algorithm that must be used to calculate the estimate |
7990 | * is specified by the ARM ARM. | |
7991 | */ | |
c2fb418e | 7992 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 7993 | { |
1146a817 PM |
7994 | /* These calculations mustn't set any fp exception flags, |
7995 | * so we use a local copy of the fp_status. | |
7996 | */ | |
c2fb418e | 7997 | float_status dummy_status = *real_fp_status; |
1146a817 | 7998 | float_status *s = &dummy_status; |
e07be5d2 CL |
7999 | float64 q; |
8000 | int64_t q_int; | |
8001 | ||
8002 | if (float64_lt(a, float64_half, s)) { | |
8003 | /* range 0.25 <= a < 0.5 */ | |
8004 | ||
8005 | /* a in units of 1/512 rounded down */ | |
8006 | /* q0 = (int)(a * 512.0); */ | |
8007 | q = float64_mul(float64_512, a, s); | |
8008 | q_int = float64_to_int64_round_to_zero(q, s); | |
8009 | ||
8010 | /* reciprocal root r */ | |
8011 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
8012 | q = int64_to_float64(q_int, s); | |
8013 | q = float64_add(q, float64_half, s); | |
8014 | q = float64_div(q, float64_512, s); | |
8015 | q = float64_sqrt(q, s); | |
8016 | q = float64_div(float64_one, q, s); | |
8017 | } else { | |
8018 | /* range 0.5 <= a < 1.0 */ | |
8019 | ||
8020 | /* a in units of 1/256 rounded down */ | |
8021 | /* q1 = (int)(a * 256.0); */ | |
8022 | q = float64_mul(float64_256, a, s); | |
8023 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
8024 | ||
8025 | /* reciprocal root r */ | |
8026 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
8027 | q = int64_to_float64(q_int, s); | |
8028 | q = float64_add(q, float64_half, s); | |
8029 | q = float64_div(q, float64_256, s); | |
8030 | q = float64_sqrt(q, s); | |
8031 | q = float64_div(float64_one, q, s); | |
8032 | } | |
8033 | /* r in units of 1/256 rounded to nearest */ | |
8034 | /* s = (int)(256.0 * r + 0.5); */ | |
8035 | ||
8036 | q = float64_mul(q, float64_256,s ); | |
8037 | q = float64_add(q, float64_half, s); | |
8038 | q_int = float64_to_int64_round_to_zero(q, s); | |
8039 | ||
8040 | /* return (double)s / 256.0;*/ | |
8041 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
8042 | } | |
8043 | ||
c2fb418e | 8044 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 8045 | { |
c2fb418e AB |
8046 | float_status *s = fpstp; |
8047 | float32 f32 = float32_squash_input_denormal(input, s); | |
8048 | uint32_t val = float32_val(f32); | |
8049 | uint32_t f32_sbit = 0x80000000 & val; | |
8050 | int32_t f32_exp = extract32(val, 23, 8); | |
8051 | uint32_t f32_frac = extract32(val, 0, 23); | |
8052 | uint64_t f64_frac; | |
8053 | uint64_t val64; | |
e07be5d2 CL |
8054 | int result_exp; |
8055 | float64 f64; | |
e07be5d2 | 8056 | |
c2fb418e AB |
8057 | if (float32_is_any_nan(f32)) { |
8058 | float32 nan = f32; | |
8059 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 8060 | float_raise(float_flag_invalid, s); |
c2fb418e | 8061 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 8062 | } |
c2fb418e AB |
8063 | if (s->default_nan_mode) { |
8064 | nan = float32_default_nan; | |
43fe9bdb | 8065 | } |
c2fb418e AB |
8066 | return nan; |
8067 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 8068 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
8069 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
8070 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
8071 | float_raise(float_flag_invalid, s); |
8072 | return float32_default_nan; | |
c2fb418e | 8073 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
8074 | return float32_zero; |
8075 | } | |
8076 | ||
c2fb418e | 8077 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 8078 | * preserving the parity of the exponent. */ |
c2fb418e AB |
8079 | |
8080 | f64_frac = ((uint64_t) f32_frac) << 29; | |
8081 | if (f32_exp == 0) { | |
8082 | while (extract64(f64_frac, 51, 1) == 0) { | |
8083 | f64_frac = f64_frac << 1; | |
8084 | f32_exp = f32_exp-1; | |
8085 | } | |
8086 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
8087 | } | |
8088 | ||
8089 | if (extract64(f32_exp, 0, 1) == 0) { | |
8090 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 8091 | | (0x3feULL << 52) |
c2fb418e | 8092 | | f64_frac); |
e07be5d2 | 8093 | } else { |
c2fb418e | 8094 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 8095 | | (0x3fdULL << 52) |
c2fb418e | 8096 | | f64_frac); |
e07be5d2 CL |
8097 | } |
8098 | ||
c2fb418e | 8099 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 8100 | |
c2fb418e | 8101 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
8102 | |
8103 | val64 = float64_val(f64); | |
8104 | ||
26cc6abf | 8105 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
8106 | | ((val64 >> 29) & 0x7fffff); |
8107 | return make_float32(val); | |
4373f3ce PB |
8108 | } |
8109 | ||
c2fb418e AB |
8110 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
8111 | { | |
8112 | float_status *s = fpstp; | |
8113 | float64 f64 = float64_squash_input_denormal(input, s); | |
8114 | uint64_t val = float64_val(f64); | |
8115 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
8116 | int64_t f64_exp = extract64(val, 52, 11); | |
8117 | uint64_t f64_frac = extract64(val, 0, 52); | |
8118 | int64_t result_exp; | |
8119 | uint64_t result_frac; | |
8120 | ||
8121 | if (float64_is_any_nan(f64)) { | |
8122 | float64 nan = f64; | |
8123 | if (float64_is_signaling_nan(f64)) { | |
8124 | float_raise(float_flag_invalid, s); | |
8125 | nan = float64_maybe_silence_nan(f64); | |
8126 | } | |
8127 | if (s->default_nan_mode) { | |
8128 | nan = float64_default_nan; | |
8129 | } | |
8130 | return nan; | |
8131 | } else if (float64_is_zero(f64)) { | |
8132 | float_raise(float_flag_divbyzero, s); | |
8133 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
8134 | } else if (float64_is_neg(f64)) { | |
8135 | float_raise(float_flag_invalid, s); | |
8136 | return float64_default_nan; | |
8137 | } else if (float64_is_infinity(f64)) { | |
8138 | return float64_zero; | |
8139 | } | |
8140 | ||
8141 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
8142 | * preserving the parity of the exponent. */ | |
8143 | ||
8144 | if (f64_exp == 0) { | |
8145 | while (extract64(f64_frac, 51, 1) == 0) { | |
8146 | f64_frac = f64_frac << 1; | |
8147 | f64_exp = f64_exp - 1; | |
8148 | } | |
8149 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
8150 | } | |
8151 | ||
8152 | if (extract64(f64_exp, 0, 1) == 0) { | |
8153 | f64 = make_float64(f64_sbit | |
8154 | | (0x3feULL << 52) | |
8155 | | f64_frac); | |
8156 | } else { | |
8157 | f64 = make_float64(f64_sbit | |
8158 | | (0x3fdULL << 52) | |
8159 | | f64_frac); | |
8160 | } | |
8161 | ||
8162 | result_exp = (3068 - f64_exp) / 2; | |
8163 | ||
8164 | f64 = recip_sqrt_estimate(f64, s); | |
8165 | ||
8166 | result_frac = extract64(float64_val(f64), 0, 52); | |
8167 | ||
8168 | return make_float64(f64_sbit | | |
8169 | ((result_exp & 0x7ff) << 52) | | |
8170 | result_frac); | |
8171 | } | |
8172 | ||
b6d4443a | 8173 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 8174 | { |
b6d4443a | 8175 | float_status *s = fpstp; |
fe0e4872 CL |
8176 | float64 f64; |
8177 | ||
8178 | if ((a & 0x80000000) == 0) { | |
8179 | return 0xffffffff; | |
8180 | } | |
8181 | ||
8182 | f64 = make_float64((0x3feULL << 52) | |
8183 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
8184 | ||
b6d4443a | 8185 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
8186 | |
8187 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
8188 | } |
8189 | ||
c2fb418e | 8190 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 8191 | { |
c2fb418e | 8192 | float_status *fpst = fpstp; |
e07be5d2 CL |
8193 | float64 f64; |
8194 | ||
8195 | if ((a & 0xc0000000) == 0) { | |
8196 | return 0xffffffff; | |
8197 | } | |
8198 | ||
8199 | if (a & 0x80000000) { | |
8200 | f64 = make_float64((0x3feULL << 52) | |
8201 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
8202 | } else { /* bits 31-30 == '01' */ | |
8203 | f64 = make_float64((0x3fdULL << 52) | |
8204 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
8205 | } | |
8206 | ||
c2fb418e | 8207 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
8208 | |
8209 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 8210 | } |
fe1479c3 | 8211 | |
da97f52c PM |
8212 | /* VFPv4 fused multiply-accumulate */ |
8213 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
8214 | { | |
8215 | float_status *fpst = fpstp; | |
8216 | return float32_muladd(a, b, c, 0, fpst); | |
8217 | } | |
8218 | ||
8219 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
8220 | { | |
8221 | float_status *fpst = fpstp; | |
8222 | return float64_muladd(a, b, c, 0, fpst); | |
8223 | } | |
d9b0848d PM |
8224 | |
8225 | /* ARMv8 round to integral */ | |
8226 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
8227 | { | |
8228 | return float32_round_to_int(x, fp_status); | |
8229 | } | |
8230 | ||
8231 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
8232 | { | |
8233 | return float64_round_to_int(x, fp_status); | |
8234 | } | |
8235 | ||
8236 | float32 HELPER(rints)(float32 x, void *fp_status) | |
8237 | { | |
8238 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
8239 | float32 ret; | |
8240 | ||
8241 | ret = float32_round_to_int(x, fp_status); | |
8242 | ||
8243 | /* Suppress any inexact exceptions the conversion produced */ | |
8244 | if (!(old_flags & float_flag_inexact)) { | |
8245 | new_flags = get_float_exception_flags(fp_status); | |
8246 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
8247 | } | |
8248 | ||
8249 | return ret; | |
8250 | } | |
8251 | ||
8252 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
8253 | { | |
8254 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
8255 | float64 ret; | |
8256 | ||
8257 | ret = float64_round_to_int(x, fp_status); | |
8258 | ||
8259 | new_flags = get_float_exception_flags(fp_status); | |
8260 | ||
8261 | /* Suppress any inexact exceptions the conversion produced */ | |
8262 | if (!(old_flags & float_flag_inexact)) { | |
8263 | new_flags = get_float_exception_flags(fp_status); | |
8264 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
8265 | } | |
8266 | ||
8267 | return ret; | |
8268 | } | |
9972da66 WN |
8269 | |
8270 | /* Convert ARM rounding mode to softfloat */ | |
8271 | int arm_rmode_to_sf(int rmode) | |
8272 | { | |
8273 | switch (rmode) { | |
8274 | case FPROUNDING_TIEAWAY: | |
8275 | rmode = float_round_ties_away; | |
8276 | break; | |
8277 | case FPROUNDING_ODD: | |
8278 | /* FIXME: add support for TIEAWAY and ODD */ | |
8279 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
8280 | rmode); | |
8281 | case FPROUNDING_TIEEVEN: | |
8282 | default: | |
8283 | rmode = float_round_nearest_even; | |
8284 | break; | |
8285 | case FPROUNDING_POSINF: | |
8286 | rmode = float_round_up; | |
8287 | break; | |
8288 | case FPROUNDING_NEGINF: | |
8289 | rmode = float_round_down; | |
8290 | break; | |
8291 | case FPROUNDING_ZERO: | |
8292 | rmode = float_round_to_zero; | |
8293 | break; | |
8294 | } | |
8295 | return rmode; | |
8296 | } | |
eb0ecd5a | 8297 | |
aa633469 PM |
8298 | /* CRC helpers. |
8299 | * The upper bytes of val (above the number specified by 'bytes') must have | |
8300 | * been zeroed out by the caller. | |
8301 | */ | |
eb0ecd5a WN |
8302 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
8303 | { | |
8304 | uint8_t buf[4]; | |
8305 | ||
aa633469 | 8306 | stl_le_p(buf, val); |
eb0ecd5a WN |
8307 | |
8308 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
8309 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
8310 | } | |
8311 | ||
8312 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
8313 | { | |
8314 | uint8_t buf[4]; | |
8315 | ||
aa633469 | 8316 | stl_le_p(buf, val); |
eb0ecd5a WN |
8317 | |
8318 | /* Linux crc32c converts the output to one's complement. */ | |
8319 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
8320 | } |