]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
022c62cb | 2 | #include "exec/gdbstub.h" |
7b59220e | 3 | #include "helper.h" |
1de7afc9 | 4 | #include "qemu/host-utils.h" |
9c17d615 | 5 | #include "sysemu/sysemu.h" |
1de7afc9 | 6 | #include "qemu/bitops.h" |
0b03bdfc | 7 | |
4a501606 PM |
8 | #ifndef CONFIG_USER_ONLY |
9 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |
10 | int access_type, int is_user, | |
a8170e5e | 11 | hwaddr *phys_ptr, int *prot, |
4a501606 PM |
12 | target_ulong *page_size); |
13 | #endif | |
14 | ||
0ecb72a5 | 15 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
16 | { |
17 | int nregs; | |
18 | ||
19 | /* VFP data registers are always little-endian. */ | |
20 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
21 | if (reg < nregs) { | |
22 | stfq_le_p(buf, env->vfp.regs[reg]); | |
23 | return 8; | |
24 | } | |
25 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
26 | /* Aliases for Q regs. */ | |
27 | nregs += 16; | |
28 | if (reg < nregs) { | |
29 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
30 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
31 | return 16; | |
32 | } | |
33 | } | |
34 | switch (reg - nregs) { | |
35 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
36 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
37 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
38 | } | |
39 | return 0; | |
40 | } | |
41 | ||
0ecb72a5 | 42 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
43 | { |
44 | int nregs; | |
45 | ||
46 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
47 | if (reg < nregs) { | |
48 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
49 | return 8; | |
50 | } | |
51 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
52 | nregs += 16; | |
53 | if (reg < nregs) { | |
54 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
55 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
56 | return 16; | |
57 | } | |
58 | } | |
59 | switch (reg - nregs) { | |
60 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
61 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 62 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
63 | } |
64 | return 0; | |
65 | } | |
66 | ||
c983fe6c PM |
67 | static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
68 | { | |
69 | env->cp15.c3 = value; | |
70 | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ | |
71 | return 0; | |
72 | } | |
73 | ||
08de207b PM |
74 | static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
75 | { | |
76 | if (env->cp15.c13_fcse != value) { | |
77 | /* Unlike real hardware the qemu TLB uses virtual addresses, | |
78 | * not modified virtual addresses, so this causes a TLB flush. | |
79 | */ | |
80 | tlb_flush(env, 1); | |
81 | env->cp15.c13_fcse = value; | |
82 | } | |
83 | return 0; | |
84 | } | |
85 | static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
86 | uint64_t value) | |
87 | { | |
88 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { | |
89 | /* For VMSA (when not using the LPAE long descriptor page table | |
90 | * format) this register includes the ASID, so do a TLB flush. | |
91 | * For PMSA it is purely a process ID and no action is needed. | |
92 | */ | |
93 | tlb_flush(env, 1); | |
94 | } | |
95 | env->cp15.c13_context = value; | |
96 | return 0; | |
97 | } | |
98 | ||
d929823f PM |
99 | static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
100 | uint64_t value) | |
101 | { | |
102 | /* Invalidate all (TLBIALL) */ | |
103 | tlb_flush(env, 1); | |
104 | return 0; | |
105 | } | |
106 | ||
107 | static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
108 | uint64_t value) | |
109 | { | |
110 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
111 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
112 | return 0; | |
113 | } | |
114 | ||
115 | static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
116 | uint64_t value) | |
117 | { | |
118 | /* Invalidate by ASID (TLBIASID) */ | |
119 | tlb_flush(env, value == 0); | |
120 | return 0; | |
121 | } | |
122 | ||
123 | static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
124 | uint64_t value) | |
125 | { | |
126 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
127 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
128 | return 0; | |
129 | } | |
130 | ||
e9aa6c21 PM |
131 | static const ARMCPRegInfo cp_reginfo[] = { |
132 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture | |
133 | * version" bits will read as a reserved value, which should cause | |
134 | * Linux to not try to use the debug hardware. | |
135 | */ | |
136 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
137 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
c983fe6c PM |
138 | /* MMU Domain access control / MPU write buffer control */ |
139 | { .name = "DACR", .cp = 15, | |
140 | .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
141 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
142 | .resetvalue = 0, .writefn = dacr_write }, | |
08de207b PM |
143 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
144 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
145 | .resetvalue = 0, .writefn = fcse_write }, | |
146 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, | |
147 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
148 | .resetvalue = 0, .writefn = contextidr_write }, | |
4fdd17dd PM |
149 | /* ??? This covers not just the impdef TLB lockdown registers but also |
150 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
151 | */ | |
152 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
153 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
d929823f PM |
154 | /* MMU TLB control. Note that the wildcarding means we cover not just |
155 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
156 | */ | |
157 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
158 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, }, | |
159 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, | |
160 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, }, | |
161 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, | |
162 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, }, | |
163 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, | |
164 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, }, | |
c4804214 PM |
165 | /* Cache maintenance ops; some of this space may be overridden later. */ |
166 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
167 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
168 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
169 | REGINFO_SENTINEL |
170 | }; | |
171 | ||
7d57f408 PM |
172 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
173 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
174 | * over-broad. | |
175 | */ | |
176 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
177 | .access = PL1_W, .type = ARM_CP_WFI }, | |
178 | REGINFO_SENTINEL | |
179 | }; | |
180 | ||
181 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
182 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
183 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
184 | */ | |
185 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
186 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
187 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
188 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
189 | * OMAPCP will override this space. | |
190 | */ | |
191 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
192 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
193 | .resetvalue = 0 }, | |
194 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
195 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
196 | .resetvalue = 0 }, | |
776d4e5c PM |
197 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
198 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
199 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7d57f408 PM |
200 | REGINFO_SENTINEL |
201 | }; | |
202 | ||
2771db27 PM |
203 | static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
204 | { | |
205 | if (env->cp15.c1_coproc != value) { | |
206 | env->cp15.c1_coproc = value; | |
207 | /* ??? Is this safe when called from within a TB? */ | |
208 | tb_flush(env); | |
209 | } | |
210 | return 0; | |
211 | } | |
212 | ||
7d57f408 PM |
213 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
214 | /* prefetch by MVA in v6, NOP in v7 */ | |
215 | { .name = "MVA_prefetch", | |
216 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
217 | .access = PL1_W, .type = ARM_CP_NOP }, | |
218 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
219 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 220 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 221 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 222 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 223 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 PM |
224 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
225 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), | |
226 | .resetvalue = 0, }, | |
227 | /* Watchpoint Fault Address Register : should actually only be present | |
228 | * for 1136, 1176, 11MPCore. | |
229 | */ | |
230 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
231 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
2771db27 PM |
232 | { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, |
233 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), | |
234 | .resetvalue = 0, .writefn = cpacr_write }, | |
7d57f408 PM |
235 | REGINFO_SENTINEL |
236 | }; | |
237 | ||
200ac0ef PM |
238 | static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri, |
239 | uint64_t *value) | |
240 | { | |
241 | /* Generic performance monitor register read function for where | |
242 | * user access may be allowed by PMUSERENR. | |
243 | */ | |
244 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
245 | return EXCP_UDEF; | |
246 | } | |
247 | *value = CPREG_FIELD32(env, ri); | |
248 | return 0; | |
249 | } | |
250 | ||
251 | static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
252 | uint64_t value) | |
253 | { | |
254 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
255 | return EXCP_UDEF; | |
256 | } | |
257 | /* only the DP, X, D and E bits are writable */ | |
258 | env->cp15.c9_pmcr &= ~0x39; | |
259 | env->cp15.c9_pmcr |= (value & 0x39); | |
260 | return 0; | |
261 | } | |
262 | ||
263 | static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
264 | uint64_t value) | |
265 | { | |
266 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
267 | return EXCP_UDEF; | |
268 | } | |
269 | value &= (1 << 31); | |
270 | env->cp15.c9_pmcnten |= value; | |
271 | return 0; | |
272 | } | |
273 | ||
274 | static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
275 | uint64_t value) | |
276 | { | |
277 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
278 | return EXCP_UDEF; | |
279 | } | |
280 | value &= (1 << 31); | |
281 | env->cp15.c9_pmcnten &= ~value; | |
282 | return 0; | |
283 | } | |
284 | ||
285 | static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
286 | uint64_t value) | |
287 | { | |
288 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
289 | return EXCP_UDEF; | |
290 | } | |
291 | env->cp15.c9_pmovsr &= ~value; | |
292 | return 0; | |
293 | } | |
294 | ||
295 | static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
296 | uint64_t value) | |
297 | { | |
298 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
299 | return EXCP_UDEF; | |
300 | } | |
301 | env->cp15.c9_pmxevtyper = value & 0xff; | |
302 | return 0; | |
303 | } | |
304 | ||
305 | static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
306 | uint64_t value) | |
307 | { | |
308 | env->cp15.c9_pmuserenr = value & 1; | |
309 | return 0; | |
310 | } | |
311 | ||
312 | static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
313 | uint64_t value) | |
314 | { | |
315 | /* We have no event counters so only the C bit can be changed */ | |
316 | value &= (1 << 31); | |
317 | env->cp15.c9_pminten |= value; | |
318 | return 0; | |
319 | } | |
320 | ||
321 | static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
322 | uint64_t value) | |
323 | { | |
324 | value &= (1 << 31); | |
325 | env->cp15.c9_pminten &= ~value; | |
326 | return 0; | |
327 | } | |
328 | ||
776d4e5c PM |
329 | static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
330 | uint64_t *value) | |
331 | { | |
332 | ARMCPU *cpu = arm_env_get_cpu(env); | |
333 | *value = cpu->ccsidr[env->cp15.c0_cssel]; | |
334 | return 0; | |
335 | } | |
336 | ||
337 | static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
338 | uint64_t value) | |
339 | { | |
340 | env->cp15.c0_cssel = value & 0xf; | |
341 | return 0; | |
342 | } | |
343 | ||
e9aa6c21 PM |
344 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
345 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | |
346 | * debug components | |
347 | */ | |
348 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
349 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
091fd17c | 350 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
e9aa6c21 | 351 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
7d57f408 PM |
352 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
353 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
354 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
355 | /* Performance monitors are implementation defined in v7, |
356 | * but with an ARM recommended set of registers, which we | |
357 | * follow (although we don't actually implement any counters) | |
358 | * | |
359 | * Performance registers fall into three categories: | |
360 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
361 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
362 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
363 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
364 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
365 | */ | |
366 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
367 | .access = PL0_RW, .resetvalue = 0, | |
368 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
369 | .readfn = pmreg_read, .writefn = pmcntenset_write }, | |
370 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, | |
371 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
372 | .readfn = pmreg_read, .writefn = pmcntenclr_write }, | |
373 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, | |
374 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
375 | .readfn = pmreg_read, .writefn = pmovsr_write }, | |
376 | /* Unimplemented so WI. Strictly speaking write accesses in PL0 should | |
377 | * respect PMUSERENR. | |
378 | */ | |
379 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, | |
380 | .access = PL0_W, .type = ARM_CP_NOP }, | |
381 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. | |
382 | * We choose to RAZ/WI. XXX should respect PMUSERENR. | |
383 | */ | |
384 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
385 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
386 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ | |
387 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, | |
388 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
389 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, | |
390 | .access = PL0_RW, | |
391 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
392 | .readfn = pmreg_read, .writefn = pmxevtyper_write }, | |
393 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ | |
394 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, | |
395 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
396 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, | |
397 | .access = PL0_R | PL1_RW, | |
398 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
399 | .resetvalue = 0, | |
400 | .writefn = pmuserenr_write }, | |
401 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, | |
402 | .access = PL1_RW, | |
403 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
404 | .resetvalue = 0, | |
405 | .writefn = pmintenset_write }, | |
406 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, | |
407 | .access = PL1_RW, | |
408 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
409 | .resetvalue = 0, | |
410 | .writefn = pmintenclr_write }, | |
2771db27 PM |
411 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
412 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), | |
413 | .resetvalue = 0, }, | |
776d4e5c PM |
414 | { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
415 | .access = PL1_R, .readfn = ccsidr_read }, | |
416 | { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
417 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), | |
418 | .writefn = csselr_write, .resetvalue = 0 }, | |
419 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |
420 | * just RAZ for all cores: | |
421 | */ | |
422 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, | |
423 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
e9aa6c21 PM |
424 | REGINFO_SENTINEL |
425 | }; | |
426 | ||
c326b979 PM |
427 | static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
428 | { | |
429 | value &= 1; | |
430 | env->teecr = value; | |
431 | return 0; | |
432 | } | |
433 | ||
434 | static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
435 | uint64_t *value) | |
436 | { | |
437 | /* This is a helper function because the user access rights | |
438 | * depend on the value of the TEECR. | |
439 | */ | |
440 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |
441 | return EXCP_UDEF; | |
442 | } | |
443 | *value = env->teehbr; | |
444 | return 0; | |
445 | } | |
446 | ||
447 | static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
448 | uint64_t value) | |
449 | { | |
450 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |
451 | return EXCP_UDEF; | |
452 | } | |
453 | env->teehbr = value; | |
454 | return 0; | |
455 | } | |
456 | ||
457 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
458 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
459 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
460 | .resetvalue = 0, | |
461 | .writefn = teecr_write }, | |
462 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
463 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
464 | .resetvalue = 0, | |
465 | .readfn = teehbr_read, .writefn = teehbr_write }, | |
466 | REGINFO_SENTINEL | |
467 | }; | |
468 | ||
4d31c596 PM |
469 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
470 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, | |
471 | .access = PL0_RW, | |
472 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1), | |
473 | .resetvalue = 0 }, | |
474 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, | |
475 | .access = PL0_R|PL1_W, | |
476 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2), | |
477 | .resetvalue = 0 }, | |
478 | { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4, | |
479 | .access = PL1_RW, | |
480 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3), | |
481 | .resetvalue = 0 }, | |
482 | REGINFO_SENTINEL | |
483 | }; | |
484 | ||
6cc7a3ae PM |
485 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
486 | /* Dummy implementation: RAZ/WI the whole crn=14 space */ | |
487 | { .name = "GENERIC_TIMER", .cp = 15, .crn = 14, | |
488 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
489 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
490 | REGINFO_SENTINEL | |
491 | }; | |
492 | ||
4a501606 PM |
493 | static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
494 | { | |
891a2fe7 PM |
495 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
496 | env->cp15.c7_par = value; | |
497 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
4a501606 PM |
498 | env->cp15.c7_par = value & 0xfffff6ff; |
499 | } else { | |
500 | env->cp15.c7_par = value & 0xfffff1ff; | |
501 | } | |
502 | return 0; | |
503 | } | |
504 | ||
505 | #ifndef CONFIG_USER_ONLY | |
506 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 PM |
507 | |
508 | /* Return true if extended addresses are enabled, ie this is an | |
509 | * LPAE implementation and we are using the long-descriptor translation | |
510 | * table format because the TTBCR EAE bit is set. | |
511 | */ | |
512 | static inline bool extended_addresses_enabled(CPUARMState *env) | |
513 | { | |
514 | return arm_feature(env, ARM_FEATURE_LPAE) | |
515 | && (env->cp15.c2_control & (1 << 31)); | |
516 | } | |
517 | ||
4a501606 PM |
518 | static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
519 | { | |
a8170e5e | 520 | hwaddr phys_addr; |
4a501606 PM |
521 | target_ulong page_size; |
522 | int prot; | |
523 | int ret, is_user = ri->opc2 & 2; | |
524 | int access_type = ri->opc2 & 1; | |
525 | ||
526 | if (ri->opc2 & 4) { | |
527 | /* Other states are only available with TrustZone */ | |
528 | return EXCP_UDEF; | |
529 | } | |
530 | ret = get_phys_addr(env, value, access_type, is_user, | |
531 | &phys_addr, &prot, &page_size); | |
702a9357 PM |
532 | if (extended_addresses_enabled(env)) { |
533 | /* ret is a DFSR/IFSR value for the long descriptor | |
534 | * translation table format, but with WnR always clear. | |
535 | * Convert it to a 64-bit PAR. | |
536 | */ | |
537 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
538 | if (ret == 0) { | |
539 | par64 |= phys_addr & ~0xfffULL; | |
540 | /* We don't set the ATTR or SH fields in the PAR. */ | |
4a501606 | 541 | } else { |
702a9357 PM |
542 | par64 |= 1; /* F */ |
543 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
544 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
545 | * implement virtualization and therefore there can't be a stage 2 | |
546 | * fault. | |
547 | */ | |
4a501606 | 548 | } |
702a9357 PM |
549 | env->cp15.c7_par = par64; |
550 | env->cp15.c7_par_hi = par64 >> 32; | |
4a501606 | 551 | } else { |
702a9357 PM |
552 | /* ret is a DFSR/IFSR value for the short descriptor |
553 | * translation table format (with WnR always clear). | |
554 | * Convert it to a 32-bit PAR. | |
555 | */ | |
556 | if (ret == 0) { | |
557 | /* We do not set any attribute bits in the PAR */ | |
558 | if (page_size == (1 << 24) | |
559 | && arm_feature(env, ARM_FEATURE_V7)) { | |
560 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; | |
561 | } else { | |
562 | env->cp15.c7_par = phys_addr & 0xfffff000; | |
563 | } | |
564 | } else { | |
565 | env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | | |
566 | ((ret & (12 << 1)) >> 6) | | |
567 | ((ret & 0xf) << 1) | 1; | |
568 | } | |
569 | env->cp15.c7_par_hi = 0; | |
4a501606 PM |
570 | } |
571 | return 0; | |
572 | } | |
573 | #endif | |
574 | ||
575 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
576 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
577 | .access = PL1_RW, .resetvalue = 0, | |
578 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par), | |
579 | .writefn = par_write }, | |
580 | #ifndef CONFIG_USER_ONLY | |
581 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
582 | .access = PL1_W, .writefn = ats_write }, | |
583 | #endif | |
584 | REGINFO_SENTINEL | |
585 | }; | |
586 | ||
18032bec PM |
587 | /* Return basic MPU access permission bits. */ |
588 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
589 | { | |
590 | uint32_t ret; | |
591 | uint32_t mask; | |
592 | int i; | |
593 | ret = 0; | |
594 | mask = 3; | |
595 | for (i = 0; i < 16; i += 2) { | |
596 | ret |= (val >> i) & mask; | |
597 | mask <<= 2; | |
598 | } | |
599 | return ret; | |
600 | } | |
601 | ||
602 | /* Pad basic MPU access permission bits to extended format. */ | |
603 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
604 | { | |
605 | uint32_t ret; | |
606 | uint32_t mask; | |
607 | int i; | |
608 | ret = 0; | |
609 | mask = 3; | |
610 | for (i = 0; i < 16; i += 2) { | |
611 | ret |= (val & mask) << i; | |
612 | mask <<= 2; | |
613 | } | |
614 | return ret; | |
615 | } | |
616 | ||
617 | static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
618 | uint64_t value) | |
619 | { | |
620 | env->cp15.c5_data = extended_mpu_ap_bits(value); | |
621 | return 0; | |
622 | } | |
623 | ||
624 | static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
625 | uint64_t *value) | |
626 | { | |
627 | *value = simple_mpu_ap_bits(env->cp15.c5_data); | |
628 | return 0; | |
629 | } | |
630 | ||
631 | static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
632 | uint64_t value) | |
633 | { | |
634 | env->cp15.c5_insn = extended_mpu_ap_bits(value); | |
635 | return 0; | |
636 | } | |
637 | ||
638 | static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
639 | uint64_t *value) | |
640 | { | |
641 | *value = simple_mpu_ap_bits(env->cp15.c5_insn); | |
642 | return 0; | |
643 | } | |
644 | ||
06d76f31 PM |
645 | static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri, |
646 | uint64_t *value) | |
647 | { | |
599d64f6 | 648 | if (ri->crm >= 8) { |
06d76f31 PM |
649 | return EXCP_UDEF; |
650 | } | |
651 | *value = env->cp15.c6_region[ri->crm]; | |
652 | return 0; | |
653 | } | |
654 | ||
655 | static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
656 | uint64_t value) | |
657 | { | |
599d64f6 | 658 | if (ri->crm >= 8) { |
06d76f31 PM |
659 | return EXCP_UDEF; |
660 | } | |
661 | env->cp15.c6_region[ri->crm] = value; | |
662 | return 0; | |
663 | } | |
664 | ||
18032bec PM |
665 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
666 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
667 | .access = PL1_RW, | |
668 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, | |
669 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, | |
670 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
671 | .access = PL1_RW, | |
672 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, | |
673 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, | |
674 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
675 | .access = PL1_RW, | |
676 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
677 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, | |
678 | .access = PL1_RW, | |
679 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
ecce5c3c PM |
680 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
681 | .access = PL1_RW, | |
682 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
683 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
684 | .access = PL1_RW, | |
685 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 PM |
686 | /* Protection region base and size registers */ |
687 | { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0, | |
688 | .opc2 = CP_ANY, .access = PL1_RW, | |
689 | .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, }, | |
18032bec PM |
690 | REGINFO_SENTINEL |
691 | }; | |
692 | ||
ecce5c3c PM |
693 | static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
694 | uint64_t value) | |
695 | { | |
e42c4db3 PM |
696 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
697 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
698 | /* With LPAE the TTBCR could result in a change of ASID | |
699 | * via the TTBCR.A1 bit, so do a TLB flush. | |
700 | */ | |
701 | tlb_flush(env, 1); | |
702 | } else { | |
703 | value &= 7; | |
704 | } | |
705 | /* Note that we always calculate c2_mask and c2_base_mask, but | |
706 | * they are only used for short-descriptor tables (ie if EAE is 0); | |
707 | * for long-descriptor tables the TTBCR fields are used differently | |
708 | * and the c2_mask and c2_base_mask values are meaningless. | |
709 | */ | |
ecce5c3c PM |
710 | env->cp15.c2_control = value; |
711 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value); | |
712 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value); | |
713 | return 0; | |
714 | } | |
715 | ||
716 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
717 | { | |
718 | env->cp15.c2_base_mask = 0xffffc000u; | |
719 | env->cp15.c2_control = 0; | |
720 | env->cp15.c2_mask = 0; | |
721 | } | |
722 | ||
18032bec PM |
723 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
724 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
725 | .access = PL1_RW, | |
726 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
727 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
728 | .access = PL1_RW, | |
729 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
ecce5c3c PM |
730 | { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
731 | .access = PL1_RW, | |
732 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, | |
733 | { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
734 | .access = PL1_RW, | |
81a60ada | 735 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, }, |
ecce5c3c PM |
736 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
737 | .access = PL1_RW, .writefn = vmsa_ttbcr_write, | |
738 | .resetfn = vmsa_ttbcr_reset, | |
739 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, | |
06d76f31 PM |
740 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
741 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), | |
742 | .resetvalue = 0, }, | |
18032bec PM |
743 | REGINFO_SENTINEL |
744 | }; | |
745 | ||
1047b9d7 PM |
746 | static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
747 | uint64_t value) | |
748 | { | |
749 | env->cp15.c15_ticonfig = value & 0xe7; | |
750 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
751 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
752 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
753 | return 0; | |
754 | } | |
755 | ||
756 | static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
757 | uint64_t value) | |
758 | { | |
759 | env->cp15.c15_threadid = value & 0xffff; | |
760 | return 0; | |
761 | } | |
762 | ||
763 | static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
764 | uint64_t value) | |
765 | { | |
766 | /* Wait-for-interrupt (deprecated) */ | |
767 | cpu_interrupt(env, CPU_INTERRUPT_HALT); | |
768 | return 0; | |
769 | } | |
770 | ||
c4804214 PM |
771 | static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
772 | uint64_t value) | |
773 | { | |
774 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
775 | * containing a dirty line; cache flush operations have to reset these. | |
776 | */ | |
777 | env->cp15.c15_i_max = 0x000; | |
778 | env->cp15.c15_i_min = 0xff0; | |
779 | return 0; | |
780 | } | |
781 | ||
18032bec PM |
782 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
783 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
784 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
785 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1047b9d7 PM |
786 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
787 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
788 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
789 | .access = PL1_RW, | |
790 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
791 | .writefn = omap_ticonfig_write }, | |
792 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
793 | .access = PL1_RW, | |
794 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
795 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
796 | .access = PL1_RW, .resetvalue = 0xff0, | |
797 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
798 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
799 | .access = PL1_RW, | |
800 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
801 | .writefn = omap_threadid_write }, | |
802 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
803 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
804 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, | |
805 | /* TODO: Peripheral port remap register: | |
806 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
807 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
808 | * when MMU is off. | |
809 | */ | |
c4804214 PM |
810 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
811 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE, | |
812 | .writefn = omap_cachemaint_write }, | |
34f90529 PM |
813 | { .name = "C9", .cp = 15, .crn = 9, |
814 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
815 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
816 | REGINFO_SENTINEL |
817 | }; | |
818 | ||
819 | static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
820 | uint64_t value) | |
821 | { | |
822 | value &= 0x3fff; | |
823 | if (env->cp15.c15_cpar != value) { | |
824 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ | |
825 | tb_flush(env); | |
826 | env->cp15.c15_cpar = value; | |
827 | } | |
828 | return 0; | |
829 | } | |
830 | ||
831 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
832 | { .name = "XSCALE_CPAR", | |
833 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
834 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
835 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
836 | { .name = "XSCALE_AUXCR", |
837 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
838 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
839 | .resetvalue = 0, }, | |
1047b9d7 PM |
840 | REGINFO_SENTINEL |
841 | }; | |
842 | ||
843 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
844 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
845 | * implementation of this implementation-defined space. | |
846 | * Ideally this should eventually disappear in favour of actually | |
847 | * implementing the correct behaviour for all cores. | |
848 | */ | |
849 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
850 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
851 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
18032bec PM |
852 | REGINFO_SENTINEL |
853 | }; | |
854 | ||
c4804214 PM |
855 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
856 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
857 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
858 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
859 | REGINFO_SENTINEL | |
860 | }; | |
861 | ||
862 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
863 | /* We never have a a block transfer operation in progress */ | |
864 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
865 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
30b05bba PM |
866 | /* The cache ops themselves: these all NOP for QEMU */ |
867 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
868 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
869 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
870 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
871 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
872 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
873 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
874 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
875 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
876 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
877 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
878 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
879 | REGINFO_SENTINEL |
880 | }; | |
881 | ||
882 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
883 | /* The cache test-and-clean instructions always return (1 << 30) | |
884 | * to indicate that there are no dirty cache lines. | |
885 | */ | |
886 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
887 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) }, | |
888 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, | |
889 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) }, | |
890 | REGINFO_SENTINEL | |
891 | }; | |
892 | ||
34f90529 PM |
893 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
894 | /* Ignore ReadBuffer accesses */ | |
895 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
896 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
897 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
898 | .resetvalue = 0 }, | |
899 | REGINFO_SENTINEL | |
900 | }; | |
901 | ||
81bdde9d PM |
902 | static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
903 | uint64_t *value) | |
904 | { | |
55e5c285 AF |
905 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
906 | uint32_t mpidr = cs->cpu_index; | |
81bdde9d PM |
907 | /* We don't support setting cluster ID ([8..11]) |
908 | * so these bits always RAZ. | |
909 | */ | |
910 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
911 | mpidr |= (1 << 31); | |
912 | /* Cores which are uniprocessor (non-coherent) | |
913 | * but still implement the MP extensions set | |
914 | * bit 30. (For instance, A9UP.) However we do | |
915 | * not currently model any of those cores. | |
916 | */ | |
917 | } | |
918 | *value = mpidr; | |
919 | return 0; | |
920 | } | |
921 | ||
922 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
923 | { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
924 | .access = PL1_R, .readfn = mpidr_read }, | |
925 | REGINFO_SENTINEL | |
926 | }; | |
927 | ||
891a2fe7 PM |
928 | static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) |
929 | { | |
930 | *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; | |
931 | return 0; | |
932 | } | |
933 | ||
934 | static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
935 | { | |
936 | env->cp15.c7_par_hi = value >> 32; | |
937 | env->cp15.c7_par = value; | |
938 | return 0; | |
939 | } | |
940 | ||
941 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
942 | { | |
943 | env->cp15.c7_par_hi = 0; | |
944 | env->cp15.c7_par = 0; | |
945 | } | |
946 | ||
947 | static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
948 | uint64_t *value) | |
949 | { | |
950 | *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |
951 | return 0; | |
952 | } | |
953 | ||
954 | static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
955 | uint64_t value) | |
956 | { | |
957 | env->cp15.c2_base0_hi = value >> 32; | |
958 | env->cp15.c2_base0 = value; | |
959 | /* Writes to the 64 bit format TTBRs may change the ASID */ | |
960 | tlb_flush(env, 1); | |
961 | return 0; | |
962 | } | |
963 | ||
964 | static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
965 | { | |
966 | env->cp15.c2_base0_hi = 0; | |
967 | env->cp15.c2_base0 = 0; | |
968 | } | |
969 | ||
970 | static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
971 | uint64_t *value) | |
972 | { | |
973 | *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |
974 | return 0; | |
975 | } | |
976 | ||
977 | static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
978 | uint64_t value) | |
979 | { | |
980 | env->cp15.c2_base1_hi = value >> 32; | |
981 | env->cp15.c2_base1 = value; | |
982 | return 0; | |
983 | } | |
984 | ||
985 | static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
986 | { | |
987 | env->cp15.c2_base1_hi = 0; | |
988 | env->cp15.c2_base1 = 0; | |
989 | } | |
990 | ||
7ac681cf | 991 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 992 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
993 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
994 | */ | |
995 | { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
996 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
997 | .resetvalue = 0 }, | |
998 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, | |
999 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1000 | .resetvalue = 0 }, | |
f9fc619a PM |
1001 | /* 64 bit access versions of the (dummy) debug registers */ |
1002 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
1003 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
1004 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
1005 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
891a2fe7 PM |
1006 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1007 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
1008 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, | |
1009 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | |
1010 | .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read, | |
1011 | .writefn = ttbr064_write, .resetfn = ttbr064_reset }, | |
1012 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, | |
1013 | .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read, | |
1014 | .writefn = ttbr164_write, .resetfn = ttbr164_reset }, | |
7ac681cf PM |
1015 | REGINFO_SENTINEL |
1016 | }; | |
1017 | ||
2771db27 PM |
1018 | static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1019 | { | |
1020 | env->cp15.c1_sys = value; | |
1021 | /* ??? Lots of these bits are not implemented. */ | |
1022 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
1023 | tlb_flush(env, 1); | |
1024 | return 0; | |
1025 | } | |
1026 | ||
2ceb98c0 PM |
1027 | void register_cp_regs_for_features(ARMCPU *cpu) |
1028 | { | |
1029 | /* Register all the coprocessor registers based on feature bits */ | |
1030 | CPUARMState *env = &cpu->env; | |
1031 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1032 | /* M profile has no coprocessor registers */ | |
1033 | return; | |
1034 | } | |
1035 | ||
e9aa6c21 | 1036 | define_arm_cp_regs(cpu, cp_reginfo); |
7d57f408 | 1037 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
1038 | /* The ID registers all have impdef reset values */ |
1039 | ARMCPRegInfo v6_idregs[] = { | |
1040 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, | |
1041 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1042 | .resetvalue = cpu->id_pfr0 }, | |
1043 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, | |
1044 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1045 | .resetvalue = cpu->id_pfr1 }, | |
1046 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, | |
1047 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1048 | .resetvalue = cpu->id_dfr0 }, | |
1049 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, | |
1050 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1051 | .resetvalue = cpu->id_afr0 }, | |
1052 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, | |
1053 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1054 | .resetvalue = cpu->id_mmfr0 }, | |
1055 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, | |
1056 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1057 | .resetvalue = cpu->id_mmfr1 }, | |
1058 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, | |
1059 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1060 | .resetvalue = cpu->id_mmfr2 }, | |
1061 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, | |
1062 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1063 | .resetvalue = cpu->id_mmfr3 }, | |
1064 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, | |
1065 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1066 | .resetvalue = cpu->id_isar0 }, | |
1067 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, | |
1068 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1069 | .resetvalue = cpu->id_isar1 }, | |
1070 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, | |
1071 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1072 | .resetvalue = cpu->id_isar2 }, | |
1073 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, | |
1074 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1075 | .resetvalue = cpu->id_isar3 }, | |
1076 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, | |
1077 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1078 | .resetvalue = cpu->id_isar4 }, | |
1079 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, | |
1080 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1081 | .resetvalue = cpu->id_isar5 }, | |
1082 | /* 6..7 are as yet unallocated and must RAZ */ | |
1083 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
1084 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1085 | .resetvalue = 0 }, | |
1086 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
1087 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1088 | .resetvalue = 0 }, | |
1089 | REGINFO_SENTINEL | |
1090 | }; | |
1091 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
1092 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
1093 | } else { | |
1094 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
1095 | } | |
4d31c596 PM |
1096 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
1097 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
1098 | } | |
e9aa6c21 | 1099 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef PM |
1100 | /* v7 performance monitor control register: same implementor |
1101 | * field as main ID register, and we implement no event counters. | |
1102 | */ | |
1103 | ARMCPRegInfo pmcr = { | |
1104 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
1105 | .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, | |
1106 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
1107 | .readfn = pmreg_read, .writefn = pmcr_write | |
1108 | }; | |
776d4e5c PM |
1109 | ARMCPRegInfo clidr = { |
1110 | .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
1111 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr | |
1112 | }; | |
200ac0ef | 1113 | define_one_arm_cp_reg(cpu, &pmcr); |
776d4e5c | 1114 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 1115 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
7d57f408 PM |
1116 | } else { |
1117 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 1118 | } |
18032bec PM |
1119 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
1120 | /* These are the MPU registers prior to PMSAv6. Any new | |
1121 | * PMSA core later than the ARM946 will require that we | |
1122 | * implement the PMSAv6 or PMSAv7 registers, which are | |
1123 | * completely different. | |
1124 | */ | |
1125 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
1126 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
1127 | } else { | |
1128 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
1129 | } | |
c326b979 PM |
1130 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
1131 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
1132 | } | |
6cc7a3ae PM |
1133 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
1134 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
1135 | } | |
4a501606 PM |
1136 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
1137 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
1138 | } | |
c4804214 PM |
1139 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
1140 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
1141 | } | |
1142 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
1143 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
1144 | } | |
1145 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
1146 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
1147 | } | |
18032bec PM |
1148 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
1149 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
1150 | } | |
34f90529 PM |
1151 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
1152 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
1153 | } | |
1047b9d7 PM |
1154 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
1155 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
1156 | } | |
1157 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
1158 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
1159 | } | |
81bdde9d PM |
1160 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
1161 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
1162 | } | |
7ac681cf PM |
1163 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1164 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
1165 | } | |
7884849c PM |
1166 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
1167 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
1168 | * be read-only (ie write causes UNDEF exception). | |
1169 | */ | |
1170 | { | |
1171 | ARMCPRegInfo id_cp_reginfo[] = { | |
1172 | /* Note that the MIDR isn't a simple constant register because | |
1173 | * of the TI925 behaviour where writes to another register can | |
1174 | * cause the MIDR value to change. | |
1175 | */ | |
1176 | { .name = "MIDR", | |
1177 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1178 | .access = PL1_R, .resetvalue = cpu->midr, | |
1179 | .writefn = arm_cp_write_ignore, | |
1180 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) }, | |
1181 | { .name = "CTR", | |
1182 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1183 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
1184 | { .name = "TCMTR", | |
1185 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1186 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1187 | { .name = "TLBTR", | |
1188 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
1189 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1190 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | |
1191 | { .name = "DUMMY", | |
1192 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
1193 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1194 | { .name = "DUMMY", | |
1195 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
1196 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1197 | { .name = "DUMMY", | |
1198 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
1199 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1200 | { .name = "DUMMY", | |
1201 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
1202 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1203 | { .name = "DUMMY", | |
1204 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
1205 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1206 | REGINFO_SENTINEL | |
1207 | }; | |
1208 | ARMCPRegInfo crn0_wi_reginfo = { | |
1209 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
1210 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
1211 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
1212 | }; | |
1213 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
1214 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
1215 | ARMCPRegInfo *r; | |
1216 | /* Register the blanket "writes ignored" value first to cover the | |
1217 | * whole space. Then define the specific ID registers, but update | |
1218 | * their access field to allow write access, so that they ignore | |
1219 | * writes rather than causing them to UNDEF. | |
1220 | */ | |
1221 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
1222 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { | |
1223 | r->access = PL1_RW; | |
1224 | define_one_arm_cp_reg(cpu, r); | |
1225 | } | |
1226 | } else { | |
1227 | /* Just register the standard ID registers (read-only, meaning | |
1228 | * that writes will UNDEF). | |
1229 | */ | |
1230 | define_arm_cp_regs(cpu, id_cp_reginfo); | |
1231 | } | |
1232 | } | |
1233 | ||
2771db27 PM |
1234 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
1235 | ARMCPRegInfo auxcr = { | |
1236 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1237 | .access = PL1_RW, .type = ARM_CP_CONST, | |
1238 | .resetvalue = cpu->reset_auxcr | |
1239 | }; | |
1240 | define_one_arm_cp_reg(cpu, &auxcr); | |
1241 | } | |
1242 | ||
1243 | /* Generic registers whose values depend on the implementation */ | |
1244 | { | |
1245 | ARMCPRegInfo sctlr = { | |
1246 | .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1247 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), | |
1248 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr | |
1249 | }; | |
1250 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
1251 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
1252 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
1253 | * an MMU enable to execute from cache. Imitate this behaviour. | |
1254 | */ | |
1255 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
1256 | } | |
1257 | define_one_arm_cp_reg(cpu, &sctlr); | |
1258 | } | |
2ceb98c0 PM |
1259 | } |
1260 | ||
778c3a06 | 1261 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 1262 | { |
dec9c2d4 | 1263 | ARMCPU *cpu; |
40f137e1 | 1264 | CPUARMState *env; |
5900d6b2 | 1265 | ObjectClass *oc; |
40f137e1 | 1266 | |
5900d6b2 AF |
1267 | oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); |
1268 | if (!oc) { | |
aaed909a | 1269 | return NULL; |
777dc784 | 1270 | } |
5900d6b2 | 1271 | cpu = ARM_CPU(object_new(object_class_get_name(oc))); |
dec9c2d4 | 1272 | env = &cpu->env; |
777dc784 | 1273 | env->cpu_model_str = cpu_model; |
14969266 AF |
1274 | |
1275 | /* TODO this should be set centrally, once possible */ | |
1276 | object_property_set_bool(OBJECT(cpu), true, "realized", NULL); | |
777dc784 | 1277 | |
14969266 AF |
1278 | return cpu; |
1279 | } | |
1280 | ||
1281 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
1282 | { | |
1283 | CPUARMState *env = &cpu->env; | |
1284 | ||
56aebc89 PB |
1285 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
1286 | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
1287 | 51, "arm-neon.xml", 0); | |
1288 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
1289 | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
1290 | 35, "arm-vfp3.xml", 0); | |
1291 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
1292 | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
1293 | 19, "arm-vfp.xml", 0); | |
1294 | } | |
40f137e1 PB |
1295 | } |
1296 | ||
777dc784 PM |
1297 | /* Sort alphabetically by type name, except for "any". */ |
1298 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 1299 | { |
777dc784 PM |
1300 | ObjectClass *class_a = (ObjectClass *)a; |
1301 | ObjectClass *class_b = (ObjectClass *)b; | |
1302 | const char *name_a, *name_b; | |
5adb4839 | 1303 | |
777dc784 PM |
1304 | name_a = object_class_get_name(class_a); |
1305 | name_b = object_class_get_name(class_b); | |
51492fd1 | 1306 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 1307 | return 1; |
51492fd1 | 1308 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
1309 | return -1; |
1310 | } else { | |
1311 | return strcmp(name_a, name_b); | |
5adb4839 PB |
1312 | } |
1313 | } | |
1314 | ||
777dc784 | 1315 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 1316 | { |
777dc784 | 1317 | ObjectClass *oc = data; |
92a31361 | 1318 | CPUListState *s = user_data; |
51492fd1 AF |
1319 | const char *typename; |
1320 | char *name; | |
3371d272 | 1321 | |
51492fd1 AF |
1322 | typename = object_class_get_name(oc); |
1323 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 1324 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
1325 | name); |
1326 | g_free(name); | |
777dc784 PM |
1327 | } |
1328 | ||
1329 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
1330 | { | |
92a31361 | 1331 | CPUListState s = { |
777dc784 PM |
1332 | .file = f, |
1333 | .cpu_fprintf = cpu_fprintf, | |
1334 | }; | |
1335 | GSList *list; | |
1336 | ||
1337 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
1338 | list = g_slist_sort(list, arm_cpu_list_compare); | |
1339 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
1340 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
1341 | g_slist_free(list); | |
40f137e1 PB |
1342 | } |
1343 | ||
4b6a83fb PM |
1344 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
1345 | const ARMCPRegInfo *r, void *opaque) | |
1346 | { | |
1347 | /* Define implementations of coprocessor registers. | |
1348 | * We store these in a hashtable because typically | |
1349 | * there are less than 150 registers in a space which | |
1350 | * is 16*16*16*8*8 = 262144 in size. | |
1351 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
1352 | * If a register is defined twice then the second definition is | |
1353 | * used, so this can be used to define some generic registers and | |
1354 | * then override them with implementation specific variations. | |
1355 | * At least one of the original and the second definition should | |
1356 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
1357 | * against accidental use. | |
1358 | */ | |
1359 | int crm, opc1, opc2; | |
1360 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; | |
1361 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
1362 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
1363 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
1364 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
1365 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
1366 | /* 64 bit registers have only CRm and Opc1 fields */ | |
1367 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
1368 | /* Check that the register definition has enough info to handle | |
1369 | * reads and writes if they are permitted. | |
1370 | */ | |
1371 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
1372 | if (r->access & PL3_R) { | |
1373 | assert(r->fieldoffset || r->readfn); | |
1374 | } | |
1375 | if (r->access & PL3_W) { | |
1376 | assert(r->fieldoffset || r->writefn); | |
1377 | } | |
1378 | } | |
1379 | /* Bad type field probably means missing sentinel at end of reg list */ | |
1380 | assert(cptype_valid(r->type)); | |
1381 | for (crm = crmmin; crm <= crmmax; crm++) { | |
1382 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
1383 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
1384 | uint32_t *key = g_new(uint32_t, 1); | |
1385 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
1386 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
1387 | *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2); | |
1388 | r2->opaque = opaque; | |
1389 | /* Make sure reginfo passed to helpers for wildcarded regs | |
1390 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
1391 | */ | |
1392 | r2->crm = crm; | |
1393 | r2->opc1 = opc1; | |
1394 | r2->opc2 = opc2; | |
1395 | /* Overriding of an existing definition must be explicitly | |
1396 | * requested. | |
1397 | */ | |
1398 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
1399 | ARMCPRegInfo *oldreg; | |
1400 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
1401 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
1402 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
1403 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
1404 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
1405 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
1406 | oldreg->name, r2->name); | |
1407 | assert(0); | |
1408 | } | |
1409 | } | |
1410 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
1411 | } | |
1412 | } | |
1413 | } | |
1414 | } | |
1415 | ||
1416 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
1417 | const ARMCPRegInfo *regs, void *opaque) | |
1418 | { | |
1419 | /* Define a whole list of registers */ | |
1420 | const ARMCPRegInfo *r; | |
1421 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
1422 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
1423 | } | |
1424 | } | |
1425 | ||
1426 | const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp) | |
1427 | { | |
1428 | return g_hash_table_lookup(cpu->cp_regs, &encoded_cp); | |
1429 | } | |
1430 | ||
1431 | int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, | |
1432 | uint64_t value) | |
1433 | { | |
1434 | /* Helper coprocessor write function for write-ignore registers */ | |
1435 | return 0; | |
1436 | } | |
1437 | ||
1438 | int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) | |
1439 | { | |
1440 | /* Helper coprocessor write function for read-as-zero registers */ | |
1441 | *value = 0; | |
1442 | return 0; | |
1443 | } | |
1444 | ||
0ecb72a5 | 1445 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
1446 | { |
1447 | /* Return true if it is not valid for us to switch to | |
1448 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
1449 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
1450 | */ | |
1451 | switch (mode) { | |
1452 | case ARM_CPU_MODE_USR: | |
1453 | case ARM_CPU_MODE_SYS: | |
1454 | case ARM_CPU_MODE_SVC: | |
1455 | case ARM_CPU_MODE_ABT: | |
1456 | case ARM_CPU_MODE_UND: | |
1457 | case ARM_CPU_MODE_IRQ: | |
1458 | case ARM_CPU_MODE_FIQ: | |
1459 | return 0; | |
1460 | default: | |
1461 | return 1; | |
1462 | } | |
1463 | } | |
1464 | ||
2f4a40e5 AZ |
1465 | uint32_t cpsr_read(CPUARMState *env) |
1466 | { | |
1467 | int ZF; | |
6fbe23d5 PB |
1468 | ZF = (env->ZF == 0); |
1469 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
1470 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
1471 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
1472 | | ((env->condexec_bits & 0xfc) << 8) | |
1473 | | (env->GE << 16); | |
1474 | } | |
1475 | ||
1476 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
1477 | { | |
2f4a40e5 | 1478 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
1479 | env->ZF = (~val) & CPSR_Z; |
1480 | env->NF = val; | |
2f4a40e5 AZ |
1481 | env->CF = (val >> 29) & 1; |
1482 | env->VF = (val << 3) & 0x80000000; | |
1483 | } | |
1484 | if (mask & CPSR_Q) | |
1485 | env->QF = ((val & CPSR_Q) != 0); | |
1486 | if (mask & CPSR_T) | |
1487 | env->thumb = ((val & CPSR_T) != 0); | |
1488 | if (mask & CPSR_IT_0_1) { | |
1489 | env->condexec_bits &= ~3; | |
1490 | env->condexec_bits |= (val >> 25) & 3; | |
1491 | } | |
1492 | if (mask & CPSR_IT_2_7) { | |
1493 | env->condexec_bits &= 3; | |
1494 | env->condexec_bits |= (val >> 8) & 0xfc; | |
1495 | } | |
1496 | if (mask & CPSR_GE) { | |
1497 | env->GE = (val >> 16) & 0xf; | |
1498 | } | |
1499 | ||
1500 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { | |
37064a8b PM |
1501 | if (bad_mode_switch(env, val & CPSR_M)) { |
1502 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
1503 | * We choose to ignore the attempt and leave the CPSR M field | |
1504 | * untouched. | |
1505 | */ | |
1506 | mask &= ~CPSR_M; | |
1507 | } else { | |
1508 | switch_mode(env, val & CPSR_M); | |
1509 | } | |
2f4a40e5 AZ |
1510 | } |
1511 | mask &= ~CACHED_CPSR_BITS; | |
1512 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
1513 | } | |
1514 | ||
b26eefb6 PB |
1515 | /* Sign/zero extend */ |
1516 | uint32_t HELPER(sxtb16)(uint32_t x) | |
1517 | { | |
1518 | uint32_t res; | |
1519 | res = (uint16_t)(int8_t)x; | |
1520 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
1521 | return res; | |
1522 | } | |
1523 | ||
1524 | uint32_t HELPER(uxtb16)(uint32_t x) | |
1525 | { | |
1526 | uint32_t res; | |
1527 | res = (uint16_t)(uint8_t)x; | |
1528 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
1529 | return res; | |
1530 | } | |
1531 | ||
f51bbbfe PB |
1532 | uint32_t HELPER(clz)(uint32_t x) |
1533 | { | |
7bbcb0af | 1534 | return clz32(x); |
f51bbbfe PB |
1535 | } |
1536 | ||
3670669c PB |
1537 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
1538 | { | |
1539 | if (den == 0) | |
1540 | return 0; | |
686eeb93 AJ |
1541 | if (num == INT_MIN && den == -1) |
1542 | return INT_MIN; | |
3670669c PB |
1543 | return num / den; |
1544 | } | |
1545 | ||
1546 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
1547 | { | |
1548 | if (den == 0) | |
1549 | return 0; | |
1550 | return num / den; | |
1551 | } | |
1552 | ||
1553 | uint32_t HELPER(rbit)(uint32_t x) | |
1554 | { | |
1555 | x = ((x & 0xff000000) >> 24) | |
1556 | | ((x & 0x00ff0000) >> 8) | |
1557 | | ((x & 0x0000ff00) << 8) | |
1558 | | ((x & 0x000000ff) << 24); | |
1559 | x = ((x & 0xf0f0f0f0) >> 4) | |
1560 | | ((x & 0x0f0f0f0f) << 4); | |
1561 | x = ((x & 0x88888888) >> 3) | |
1562 | | ((x & 0x44444444) >> 1) | |
1563 | | ((x & 0x22222222) << 1) | |
1564 | | ((x & 0x11111111) << 3); | |
1565 | return x; | |
1566 | } | |
1567 | ||
5fafdf24 | 1568 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 1569 | |
0ecb72a5 | 1570 | void do_interrupt (CPUARMState *env) |
b5ff1b31 FB |
1571 | { |
1572 | env->exception_index = -1; | |
1573 | } | |
1574 | ||
0ecb72a5 | 1575 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
97b348e7 | 1576 | int mmu_idx) |
b5ff1b31 FB |
1577 | { |
1578 | if (rw == 2) { | |
1579 | env->exception_index = EXCP_PREFETCH_ABORT; | |
1580 | env->cp15.c6_insn = address; | |
1581 | } else { | |
1582 | env->exception_index = EXCP_DATA_ABORT; | |
1583 | env->cp15.c6_data = address; | |
1584 | } | |
1585 | return 1; | |
1586 | } | |
1587 | ||
9ee6e8bb | 1588 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 1589 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb PB |
1590 | { |
1591 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
1592 | } | |
1593 | ||
0ecb72a5 | 1594 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb PB |
1595 | { |
1596 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
1597 | return 0; | |
1598 | } | |
1599 | ||
0ecb72a5 | 1600 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
1601 | { |
1602 | if (mode != ARM_CPU_MODE_USR) | |
1603 | cpu_abort(env, "Tried to switch out of user mode\n"); | |
1604 | } | |
1605 | ||
0ecb72a5 | 1606 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb PB |
1607 | { |
1608 | cpu_abort(env, "banked r13 write\n"); | |
1609 | } | |
1610 | ||
0ecb72a5 | 1611 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb PB |
1612 | { |
1613 | cpu_abort(env, "banked r13 read\n"); | |
1614 | return 0; | |
1615 | } | |
1616 | ||
b5ff1b31 FB |
1617 | #else |
1618 | ||
1619 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 1620 | int bank_number(int mode) |
b5ff1b31 FB |
1621 | { |
1622 | switch (mode) { | |
1623 | case ARM_CPU_MODE_USR: | |
1624 | case ARM_CPU_MODE_SYS: | |
1625 | return 0; | |
1626 | case ARM_CPU_MODE_SVC: | |
1627 | return 1; | |
1628 | case ARM_CPU_MODE_ABT: | |
1629 | return 2; | |
1630 | case ARM_CPU_MODE_UND: | |
1631 | return 3; | |
1632 | case ARM_CPU_MODE_IRQ: | |
1633 | return 4; | |
1634 | case ARM_CPU_MODE_FIQ: | |
1635 | return 5; | |
1636 | } | |
f5206413 | 1637 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
1638 | } |
1639 | ||
0ecb72a5 | 1640 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
1641 | { |
1642 | int old_mode; | |
1643 | int i; | |
1644 | ||
1645 | old_mode = env->uncached_cpsr & CPSR_M; | |
1646 | if (mode == old_mode) | |
1647 | return; | |
1648 | ||
1649 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
1650 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 1651 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
1652 | } else if (mode == ARM_CPU_MODE_FIQ) { |
1653 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 1654 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
1655 | } |
1656 | ||
f5206413 | 1657 | i = bank_number(old_mode); |
b5ff1b31 FB |
1658 | env->banked_r13[i] = env->regs[13]; |
1659 | env->banked_r14[i] = env->regs[14]; | |
1660 | env->banked_spsr[i] = env->spsr; | |
1661 | ||
f5206413 | 1662 | i = bank_number(mode); |
b5ff1b31 FB |
1663 | env->regs[13] = env->banked_r13[i]; |
1664 | env->regs[14] = env->banked_r14[i]; | |
1665 | env->spsr = env->banked_spsr[i]; | |
1666 | } | |
1667 | ||
9ee6e8bb PB |
1668 | static void v7m_push(CPUARMState *env, uint32_t val) |
1669 | { | |
1670 | env->regs[13] -= 4; | |
1671 | stl_phys(env->regs[13], val); | |
1672 | } | |
1673 | ||
1674 | static uint32_t v7m_pop(CPUARMState *env) | |
1675 | { | |
1676 | uint32_t val; | |
1677 | val = ldl_phys(env->regs[13]); | |
1678 | env->regs[13] += 4; | |
1679 | return val; | |
1680 | } | |
1681 | ||
1682 | /* Switch to V7M main or process stack pointer. */ | |
1683 | static void switch_v7m_sp(CPUARMState *env, int process) | |
1684 | { | |
1685 | uint32_t tmp; | |
1686 | if (env->v7m.current_sp != process) { | |
1687 | tmp = env->v7m.other_sp; | |
1688 | env->v7m.other_sp = env->regs[13]; | |
1689 | env->regs[13] = tmp; | |
1690 | env->v7m.current_sp = process; | |
1691 | } | |
1692 | } | |
1693 | ||
1694 | static void do_v7m_exception_exit(CPUARMState *env) | |
1695 | { | |
1696 | uint32_t type; | |
1697 | uint32_t xpsr; | |
1698 | ||
1699 | type = env->regs[15]; | |
1700 | if (env->v7m.exception != 0) | |
983fe826 | 1701 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
1702 | |
1703 | /* Switch to the target stack. */ | |
1704 | switch_v7m_sp(env, (type & 4) != 0); | |
1705 | /* Pop registers. */ | |
1706 | env->regs[0] = v7m_pop(env); | |
1707 | env->regs[1] = v7m_pop(env); | |
1708 | env->regs[2] = v7m_pop(env); | |
1709 | env->regs[3] = v7m_pop(env); | |
1710 | env->regs[12] = v7m_pop(env); | |
1711 | env->regs[14] = v7m_pop(env); | |
1712 | env->regs[15] = v7m_pop(env); | |
1713 | xpsr = v7m_pop(env); | |
1714 | xpsr_write(env, xpsr, 0xfffffdff); | |
1715 | /* Undo stack alignment. */ | |
1716 | if (xpsr & 0x200) | |
1717 | env->regs[13] |= 4; | |
1718 | /* ??? The exception return type specifies Thread/Handler mode. However | |
1719 | this is also implied by the xPSR value. Not sure what to do | |
1720 | if there is a mismatch. */ | |
1721 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
1722 | pointer. */ | |
1723 | } | |
1724 | ||
2b3ea315 | 1725 | static void do_interrupt_v7m(CPUARMState *env) |
9ee6e8bb PB |
1726 | { |
1727 | uint32_t xpsr = xpsr_read(env); | |
1728 | uint32_t lr; | |
1729 | uint32_t addr; | |
1730 | ||
1731 | lr = 0xfffffff1; | |
1732 | if (env->v7m.current_sp) | |
1733 | lr |= 4; | |
1734 | if (env->v7m.exception == 0) | |
1735 | lr |= 8; | |
1736 | ||
1737 | /* For exceptions we just mark as pending on the NVIC, and let that | |
1738 | handle it. */ | |
1739 | /* TODO: Need to escalate if the current priority is higher than the | |
1740 | one we're raising. */ | |
1741 | switch (env->exception_index) { | |
1742 | case EXCP_UDEF: | |
983fe826 | 1743 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
1744 | return; |
1745 | case EXCP_SWI: | |
314e2296 | 1746 | /* The PC already points to the next instruction. */ |
983fe826 | 1747 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
1748 | return; |
1749 | case EXCP_PREFETCH_ABORT: | |
1750 | case EXCP_DATA_ABORT: | |
983fe826 | 1751 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
1752 | return; |
1753 | case EXCP_BKPT: | |
2ad207d4 PB |
1754 | if (semihosting_enabled) { |
1755 | int nr; | |
d31dd73e | 1756 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
1757 | if (nr == 0xab) { |
1758 | env->regs[15] += 2; | |
1759 | env->regs[0] = do_arm_semihosting(env); | |
1760 | return; | |
1761 | } | |
1762 | } | |
983fe826 | 1763 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
1764 | return; |
1765 | case EXCP_IRQ: | |
983fe826 | 1766 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
1767 | break; |
1768 | case EXCP_EXCEPTION_EXIT: | |
1769 | do_v7m_exception_exit(env); | |
1770 | return; | |
1771 | default: | |
1772 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
1773 | return; /* Never happens. Keep compiler happy. */ | |
1774 | } | |
1775 | ||
1776 | /* Align stack pointer. */ | |
1777 | /* ??? Should only do this if Configuration Control Register | |
1778 | STACKALIGN bit is set. */ | |
1779 | if (env->regs[13] & 4) { | |
ab19b0ec | 1780 | env->regs[13] -= 4; |
9ee6e8bb PB |
1781 | xpsr |= 0x200; |
1782 | } | |
6c95676b | 1783 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
1784 | v7m_push(env, xpsr); |
1785 | v7m_push(env, env->regs[15]); | |
1786 | v7m_push(env, env->regs[14]); | |
1787 | v7m_push(env, env->regs[12]); | |
1788 | v7m_push(env, env->regs[3]); | |
1789 | v7m_push(env, env->regs[2]); | |
1790 | v7m_push(env, env->regs[1]); | |
1791 | v7m_push(env, env->regs[0]); | |
1792 | switch_v7m_sp(env, 0); | |
c98d174c PM |
1793 | /* Clear IT bits */ |
1794 | env->condexec_bits = 0; | |
9ee6e8bb PB |
1795 | env->regs[14] = lr; |
1796 | addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); | |
1797 | env->regs[15] = addr & 0xfffffffe; | |
1798 | env->thumb = addr & 1; | |
1799 | } | |
1800 | ||
b5ff1b31 FB |
1801 | /* Handle a CPU exception. */ |
1802 | void do_interrupt(CPUARMState *env) | |
1803 | { | |
259186a7 | 1804 | CPUState *cs; |
b5ff1b31 FB |
1805 | uint32_t addr; |
1806 | uint32_t mask; | |
1807 | int new_mode; | |
1808 | uint32_t offset; | |
1809 | ||
9ee6e8bb PB |
1810 | if (IS_M(env)) { |
1811 | do_interrupt_v7m(env); | |
1812 | return; | |
1813 | } | |
b5ff1b31 FB |
1814 | /* TODO: Vectored interrupt controller. */ |
1815 | switch (env->exception_index) { | |
1816 | case EXCP_UDEF: | |
1817 | new_mode = ARM_CPU_MODE_UND; | |
1818 | addr = 0x04; | |
1819 | mask = CPSR_I; | |
1820 | if (env->thumb) | |
1821 | offset = 2; | |
1822 | else | |
1823 | offset = 4; | |
1824 | break; | |
1825 | case EXCP_SWI: | |
8e71621f PB |
1826 | if (semihosting_enabled) { |
1827 | /* Check for semihosting interrupt. */ | |
1828 | if (env->thumb) { | |
d31dd73e BS |
1829 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
1830 | & 0xff; | |
8e71621f | 1831 | } else { |
d31dd73e | 1832 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 1833 | & 0xffffff; |
8e71621f PB |
1834 | } |
1835 | /* Only intercept calls from privileged modes, to provide some | |
1836 | semblance of security. */ | |
1837 | if (((mask == 0x123456 && !env->thumb) | |
1838 | || (mask == 0xab && env->thumb)) | |
1839 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
1840 | env->regs[0] = do_arm_semihosting(env); | |
1841 | return; | |
1842 | } | |
1843 | } | |
b5ff1b31 FB |
1844 | new_mode = ARM_CPU_MODE_SVC; |
1845 | addr = 0x08; | |
1846 | mask = CPSR_I; | |
601d70b9 | 1847 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
1848 | offset = 0; |
1849 | break; | |
06c949e6 | 1850 | case EXCP_BKPT: |
9ee6e8bb | 1851 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 1852 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 1853 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
1854 | if (mask == 0xab |
1855 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
1856 | env->regs[15] += 2; | |
1857 | env->regs[0] = do_arm_semihosting(env); | |
1858 | return; | |
1859 | } | |
1860 | } | |
81c05daf | 1861 | env->cp15.c5_insn = 2; |
9ee6e8bb PB |
1862 | /* Fall through to prefetch abort. */ |
1863 | case EXCP_PREFETCH_ABORT: | |
b5ff1b31 FB |
1864 | new_mode = ARM_CPU_MODE_ABT; |
1865 | addr = 0x0c; | |
1866 | mask = CPSR_A | CPSR_I; | |
1867 | offset = 4; | |
1868 | break; | |
1869 | case EXCP_DATA_ABORT: | |
1870 | new_mode = ARM_CPU_MODE_ABT; | |
1871 | addr = 0x10; | |
1872 | mask = CPSR_A | CPSR_I; | |
1873 | offset = 8; | |
1874 | break; | |
1875 | case EXCP_IRQ: | |
1876 | new_mode = ARM_CPU_MODE_IRQ; | |
1877 | addr = 0x18; | |
1878 | /* Disable IRQ and imprecise data aborts. */ | |
1879 | mask = CPSR_A | CPSR_I; | |
1880 | offset = 4; | |
1881 | break; | |
1882 | case EXCP_FIQ: | |
1883 | new_mode = ARM_CPU_MODE_FIQ; | |
1884 | addr = 0x1c; | |
1885 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
1886 | mask = CPSR_A | CPSR_I | CPSR_F; | |
1887 | offset = 4; | |
1888 | break; | |
1889 | default: | |
1890 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
1891 | return; /* Never happens. Keep compiler happy. */ | |
1892 | } | |
1893 | /* High vectors. */ | |
1894 | if (env->cp15.c1_sys & (1 << 13)) { | |
1895 | addr += 0xffff0000; | |
1896 | } | |
1897 | switch_mode (env, new_mode); | |
1898 | env->spsr = cpsr_read(env); | |
9ee6e8bb PB |
1899 | /* Clear IT bits. */ |
1900 | env->condexec_bits = 0; | |
30a8cac1 | 1901 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 1902 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
b5ff1b31 | 1903 | env->uncached_cpsr |= mask; |
be5e7a76 DES |
1904 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
1905 | * and we should just guard the thumb mode on V4 */ | |
1906 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
1907 | env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; | |
1908 | } | |
b5ff1b31 FB |
1909 | env->regs[14] = env->regs[15] + offset; |
1910 | env->regs[15] = addr; | |
259186a7 AF |
1911 | cs = CPU(arm_env_get_cpu(env)); |
1912 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
b5ff1b31 FB |
1913 | } |
1914 | ||
1915 | /* Check section/page access permissions. | |
1916 | Returns the page protection flags, or zero if the access is not | |
1917 | permitted. */ | |
0ecb72a5 | 1918 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
dd4ebc2e | 1919 | int access_type, int is_user) |
b5ff1b31 | 1920 | { |
9ee6e8bb PB |
1921 | int prot_ro; |
1922 | ||
dd4ebc2e | 1923 | if (domain_prot == 3) { |
b5ff1b31 | 1924 | return PAGE_READ | PAGE_WRITE; |
dd4ebc2e | 1925 | } |
b5ff1b31 | 1926 | |
9ee6e8bb PB |
1927 | if (access_type == 1) |
1928 | prot_ro = 0; | |
1929 | else | |
1930 | prot_ro = PAGE_READ; | |
1931 | ||
b5ff1b31 FB |
1932 | switch (ap) { |
1933 | case 0: | |
78600320 | 1934 | if (access_type == 1) |
b5ff1b31 FB |
1935 | return 0; |
1936 | switch ((env->cp15.c1_sys >> 8) & 3) { | |
1937 | case 1: | |
1938 | return is_user ? 0 : PAGE_READ; | |
1939 | case 2: | |
1940 | return PAGE_READ; | |
1941 | default: | |
1942 | return 0; | |
1943 | } | |
1944 | case 1: | |
1945 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
1946 | case 2: | |
1947 | if (is_user) | |
9ee6e8bb | 1948 | return prot_ro; |
b5ff1b31 FB |
1949 | else |
1950 | return PAGE_READ | PAGE_WRITE; | |
1951 | case 3: | |
1952 | return PAGE_READ | PAGE_WRITE; | |
d4934d18 | 1953 | case 4: /* Reserved. */ |
9ee6e8bb PB |
1954 | return 0; |
1955 | case 5: | |
1956 | return is_user ? 0 : prot_ro; | |
1957 | case 6: | |
1958 | return prot_ro; | |
d4934d18 | 1959 | case 7: |
0ab06d83 | 1960 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
d4934d18 PB |
1961 | return 0; |
1962 | return prot_ro; | |
b5ff1b31 FB |
1963 | default: |
1964 | abort(); | |
1965 | } | |
1966 | } | |
1967 | ||
0ecb72a5 | 1968 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
b2fa1797 PB |
1969 | { |
1970 | uint32_t table; | |
1971 | ||
1972 | if (address & env->cp15.c2_mask) | |
1973 | table = env->cp15.c2_base1 & 0xffffc000; | |
1974 | else | |
1975 | table = env->cp15.c2_base0 & env->cp15.c2_base_mask; | |
1976 | ||
1977 | table |= (address >> 18) & 0x3ffc; | |
1978 | return table; | |
1979 | } | |
1980 | ||
0ecb72a5 | 1981 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 1982 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 1983 | int *prot, target_ulong *page_size) |
b5ff1b31 FB |
1984 | { |
1985 | int code; | |
1986 | uint32_t table; | |
1987 | uint32_t desc; | |
1988 | int type; | |
1989 | int ap; | |
1990 | int domain; | |
dd4ebc2e | 1991 | int domain_prot; |
a8170e5e | 1992 | hwaddr phys_addr; |
b5ff1b31 | 1993 | |
9ee6e8bb PB |
1994 | /* Pagetable walk. */ |
1995 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 1996 | table = get_level1_table_address(env, address); |
9ee6e8bb PB |
1997 | desc = ldl_phys(table); |
1998 | type = (desc & 3); | |
dd4ebc2e JCD |
1999 | domain = (desc >> 5) & 0x0f; |
2000 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
9ee6e8bb | 2001 | if (type == 0) { |
601d70b9 | 2002 | /* Section translation fault. */ |
9ee6e8bb PB |
2003 | code = 5; |
2004 | goto do_fault; | |
2005 | } | |
dd4ebc2e | 2006 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
2007 | if (type == 2) |
2008 | code = 9; /* Section domain fault. */ | |
2009 | else | |
2010 | code = 11; /* Page domain fault. */ | |
2011 | goto do_fault; | |
2012 | } | |
2013 | if (type == 2) { | |
2014 | /* 1Mb section. */ | |
2015 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
2016 | ap = (desc >> 10) & 3; | |
2017 | code = 13; | |
d4c430a8 | 2018 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
2019 | } else { |
2020 | /* Lookup l2 entry. */ | |
2021 | if (type == 1) { | |
2022 | /* Coarse pagetable. */ | |
2023 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
2024 | } else { | |
2025 | /* Fine pagetable. */ | |
2026 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
2027 | } | |
2028 | desc = ldl_phys(table); | |
2029 | switch (desc & 3) { | |
2030 | case 0: /* Page translation fault. */ | |
2031 | code = 7; | |
2032 | goto do_fault; | |
2033 | case 1: /* 64k page. */ | |
2034 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
2035 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 2036 | *page_size = 0x10000; |
ce819861 | 2037 | break; |
9ee6e8bb PB |
2038 | case 2: /* 4k page. */ |
2039 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2040 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 2041 | *page_size = 0x1000; |
ce819861 | 2042 | break; |
9ee6e8bb PB |
2043 | case 3: /* 1k page. */ |
2044 | if (type == 1) { | |
2045 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
2046 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2047 | } else { | |
2048 | /* Page translation fault. */ | |
2049 | code = 7; | |
2050 | goto do_fault; | |
2051 | } | |
2052 | } else { | |
2053 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
2054 | } | |
2055 | ap = (desc >> 4) & 3; | |
d4c430a8 | 2056 | *page_size = 0x400; |
ce819861 PB |
2057 | break; |
2058 | default: | |
9ee6e8bb PB |
2059 | /* Never happens, but compiler isn't smart enough to tell. */ |
2060 | abort(); | |
ce819861 | 2061 | } |
9ee6e8bb PB |
2062 | code = 15; |
2063 | } | |
dd4ebc2e | 2064 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
9ee6e8bb PB |
2065 | if (!*prot) { |
2066 | /* Access permission fault. */ | |
2067 | goto do_fault; | |
2068 | } | |
3ad493fc | 2069 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
2070 | *phys_ptr = phys_addr; |
2071 | return 0; | |
2072 | do_fault: | |
2073 | return code | (domain << 4); | |
2074 | } | |
2075 | ||
0ecb72a5 | 2076 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 2077 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 2078 | int *prot, target_ulong *page_size) |
9ee6e8bb PB |
2079 | { |
2080 | int code; | |
2081 | uint32_t table; | |
2082 | uint32_t desc; | |
2083 | uint32_t xn; | |
de9b05b8 | 2084 | uint32_t pxn = 0; |
9ee6e8bb PB |
2085 | int type; |
2086 | int ap; | |
de9b05b8 | 2087 | int domain = 0; |
dd4ebc2e | 2088 | int domain_prot; |
a8170e5e | 2089 | hwaddr phys_addr; |
9ee6e8bb PB |
2090 | |
2091 | /* Pagetable walk. */ | |
2092 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 2093 | table = get_level1_table_address(env, address); |
9ee6e8bb PB |
2094 | desc = ldl_phys(table); |
2095 | type = (desc & 3); | |
de9b05b8 PM |
2096 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
2097 | /* Section translation fault, or attempt to use the encoding | |
2098 | * which is Reserved on implementations without PXN. | |
2099 | */ | |
9ee6e8bb | 2100 | code = 5; |
9ee6e8bb | 2101 | goto do_fault; |
de9b05b8 PM |
2102 | } |
2103 | if ((type == 1) || !(desc & (1 << 18))) { | |
2104 | /* Page or Section. */ | |
dd4ebc2e | 2105 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 2106 | } |
dd4ebc2e JCD |
2107 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
2108 | if (domain_prot == 0 || domain_prot == 2) { | |
de9b05b8 | 2109 | if (type != 1) { |
9ee6e8bb | 2110 | code = 9; /* Section domain fault. */ |
de9b05b8 | 2111 | } else { |
9ee6e8bb | 2112 | code = 11; /* Page domain fault. */ |
de9b05b8 | 2113 | } |
9ee6e8bb PB |
2114 | goto do_fault; |
2115 | } | |
de9b05b8 | 2116 | if (type != 1) { |
9ee6e8bb PB |
2117 | if (desc & (1 << 18)) { |
2118 | /* Supersection. */ | |
2119 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 2120 | *page_size = 0x1000000; |
b5ff1b31 | 2121 | } else { |
9ee6e8bb PB |
2122 | /* Section. */ |
2123 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 2124 | *page_size = 0x100000; |
b5ff1b31 | 2125 | } |
9ee6e8bb PB |
2126 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
2127 | xn = desc & (1 << 4); | |
de9b05b8 | 2128 | pxn = desc & 1; |
9ee6e8bb PB |
2129 | code = 13; |
2130 | } else { | |
de9b05b8 PM |
2131 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
2132 | pxn = (desc >> 2) & 1; | |
2133 | } | |
9ee6e8bb PB |
2134 | /* Lookup l2 entry. */ |
2135 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
2136 | desc = ldl_phys(table); | |
2137 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); | |
2138 | switch (desc & 3) { | |
2139 | case 0: /* Page translation fault. */ | |
2140 | code = 7; | |
b5ff1b31 | 2141 | goto do_fault; |
9ee6e8bb PB |
2142 | case 1: /* 64k page. */ |
2143 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
2144 | xn = desc & (1 << 15); | |
d4c430a8 | 2145 | *page_size = 0x10000; |
9ee6e8bb PB |
2146 | break; |
2147 | case 2: case 3: /* 4k page. */ | |
2148 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2149 | xn = desc & 1; | |
d4c430a8 | 2150 | *page_size = 0x1000; |
9ee6e8bb PB |
2151 | break; |
2152 | default: | |
2153 | /* Never happens, but compiler isn't smart enough to tell. */ | |
2154 | abort(); | |
b5ff1b31 | 2155 | } |
9ee6e8bb PB |
2156 | code = 15; |
2157 | } | |
dd4ebc2e | 2158 | if (domain_prot == 3) { |
c0034328 JR |
2159 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
2160 | } else { | |
de9b05b8 PM |
2161 | if (pxn && !is_user) { |
2162 | xn = 1; | |
2163 | } | |
c0034328 JR |
2164 | if (xn && access_type == 2) |
2165 | goto do_fault; | |
9ee6e8bb | 2166 | |
c0034328 JR |
2167 | /* The simplified model uses AP[0] as an access control bit. */ |
2168 | if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { | |
2169 | /* Access flag fault. */ | |
2170 | code = (code == 15) ? 6 : 3; | |
2171 | goto do_fault; | |
2172 | } | |
dd4ebc2e | 2173 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
c0034328 JR |
2174 | if (!*prot) { |
2175 | /* Access permission fault. */ | |
2176 | goto do_fault; | |
2177 | } | |
2178 | if (!xn) { | |
2179 | *prot |= PAGE_EXEC; | |
2180 | } | |
3ad493fc | 2181 | } |
9ee6e8bb | 2182 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
2183 | return 0; |
2184 | do_fault: | |
2185 | return code | (domain << 4); | |
2186 | } | |
2187 | ||
3dde962f PM |
2188 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
2189 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
2190 | */ | |
2191 | typedef enum { | |
2192 | translation_fault = 1, | |
2193 | access_fault = 2, | |
2194 | permission_fault = 3, | |
2195 | } MMUFaultType; | |
2196 | ||
2197 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, | |
2198 | int access_type, int is_user, | |
a8170e5e | 2199 | hwaddr *phys_ptr, int *prot, |
3dde962f PM |
2200 | target_ulong *page_size_ptr) |
2201 | { | |
2202 | /* Read an LPAE long-descriptor translation table. */ | |
2203 | MMUFaultType fault_type = translation_fault; | |
2204 | uint32_t level = 1; | |
2205 | uint32_t epd; | |
2206 | uint32_t tsz; | |
2207 | uint64_t ttbr; | |
2208 | int ttbr_select; | |
2209 | int n; | |
a8170e5e | 2210 | hwaddr descaddr; |
3dde962f PM |
2211 | uint32_t tableattrs; |
2212 | target_ulong page_size; | |
2213 | uint32_t attrs; | |
2214 | ||
2215 | /* Determine whether this address is in the region controlled by | |
2216 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
2217 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
2218 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
2219 | */ | |
2220 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); | |
2221 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); | |
2222 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { | |
2223 | /* there is a ttbr0 region and we are in it (high bits all zero) */ | |
2224 | ttbr_select = 0; | |
2225 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { | |
2226 | /* there is a ttbr1 region and we are in it (high bits all one) */ | |
2227 | ttbr_select = 1; | |
2228 | } else if (!t0sz) { | |
2229 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
2230 | ttbr_select = 0; | |
2231 | } else if (!t1sz) { | |
2232 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
2233 | ttbr_select = 1; | |
2234 | } else { | |
2235 | /* in the gap between the two regions, this is a Translation fault */ | |
2236 | fault_type = translation_fault; | |
2237 | goto do_fault; | |
2238 | } | |
2239 | ||
2240 | /* Note that QEMU ignores shareability and cacheability attributes, | |
2241 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
2242 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
2243 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
2244 | * implement any ASID-like capability so we can ignore it (instead | |
2245 | * we will always flush the TLB any time the ASID is changed). | |
2246 | */ | |
2247 | if (ttbr_select == 0) { | |
2248 | ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |
2249 | epd = extract32(env->cp15.c2_control, 7, 1); | |
2250 | tsz = t0sz; | |
2251 | } else { | |
2252 | ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |
2253 | epd = extract32(env->cp15.c2_control, 23, 1); | |
2254 | tsz = t1sz; | |
2255 | } | |
2256 | ||
2257 | if (epd) { | |
2258 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
2259 | goto do_fault; | |
2260 | } | |
2261 | ||
2262 | /* If the region is small enough we will skip straight to a 2nd level | |
2263 | * lookup. This affects the number of bits of the address used in | |
2264 | * combination with the TTBR to find the first descriptor. ('n' here | |
2265 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are | |
2266 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). | |
2267 | */ | |
2268 | if (tsz > 1) { | |
2269 | level = 2; | |
2270 | n = 14 - tsz; | |
2271 | } else { | |
2272 | n = 5 - tsz; | |
2273 | } | |
2274 | ||
2275 | /* Clear the vaddr bits which aren't part of the within-region address, | |
2276 | * so that we don't have to special case things when calculating the | |
2277 | * first descriptor address. | |
2278 | */ | |
2279 | address &= (0xffffffffU >> tsz); | |
2280 | ||
2281 | /* Now we can extract the actual base address from the TTBR */ | |
2282 | descaddr = extract64(ttbr, 0, 40); | |
2283 | descaddr &= ~((1ULL << n) - 1); | |
2284 | ||
2285 | tableattrs = 0; | |
2286 | for (;;) { | |
2287 | uint64_t descriptor; | |
2288 | ||
2289 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); | |
2290 | descriptor = ldq_phys(descaddr); | |
2291 | if (!(descriptor & 1) || | |
2292 | (!(descriptor & 2) && (level == 3))) { | |
2293 | /* Invalid, or the Reserved level 3 encoding */ | |
2294 | goto do_fault; | |
2295 | } | |
2296 | descaddr = descriptor & 0xfffffff000ULL; | |
2297 | ||
2298 | if ((descriptor & 2) && (level < 3)) { | |
2299 | /* Table entry. The top five bits are attributes which may | |
2300 | * propagate down through lower levels of the table (and | |
2301 | * which are all arranged so that 0 means "no effect", so | |
2302 | * we can gather them up by ORing in the bits at each level). | |
2303 | */ | |
2304 | tableattrs |= extract64(descriptor, 59, 5); | |
2305 | level++; | |
2306 | continue; | |
2307 | } | |
2308 | /* Block entry at level 1 or 2, or page entry at level 3. | |
2309 | * These are basically the same thing, although the number | |
2310 | * of bits we pull in from the vaddr varies. | |
2311 | */ | |
2312 | page_size = (1 << (39 - (9 * level))); | |
2313 | descaddr |= (address & (page_size - 1)); | |
2314 | /* Extract attributes from the descriptor and merge with table attrs */ | |
2315 | attrs = extract64(descriptor, 2, 10) | |
2316 | | (extract64(descriptor, 52, 12) << 10); | |
2317 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
2318 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
2319 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
2320 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
2321 | */ | |
2322 | if (extract32(tableattrs, 2, 1)) { | |
2323 | attrs &= ~(1 << 4); | |
2324 | } | |
2325 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
2326 | break; | |
2327 | } | |
2328 | /* Here descaddr is the final physical address, and attributes | |
2329 | * are all in attrs. | |
2330 | */ | |
2331 | fault_type = access_fault; | |
2332 | if ((attrs & (1 << 8)) == 0) { | |
2333 | /* Access flag */ | |
2334 | goto do_fault; | |
2335 | } | |
2336 | fault_type = permission_fault; | |
2337 | if (is_user && !(attrs & (1 << 4))) { | |
2338 | /* Unprivileged access not enabled */ | |
2339 | goto do_fault; | |
2340 | } | |
2341 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
2342 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { | |
2343 | /* XN or PXN */ | |
2344 | if (access_type == 2) { | |
2345 | goto do_fault; | |
2346 | } | |
2347 | *prot &= ~PAGE_EXEC; | |
2348 | } | |
2349 | if (attrs & (1 << 5)) { | |
2350 | /* Write access forbidden */ | |
2351 | if (access_type == 1) { | |
2352 | goto do_fault; | |
2353 | } | |
2354 | *prot &= ~PAGE_WRITE; | |
2355 | } | |
2356 | ||
2357 | *phys_ptr = descaddr; | |
2358 | *page_size_ptr = page_size; | |
2359 | return 0; | |
2360 | ||
2361 | do_fault: | |
2362 | /* Long-descriptor format IFSR/DFSR value */ | |
2363 | return (1 << 9) | (fault_type << 2) | level; | |
2364 | } | |
2365 | ||
77a71dd1 PM |
2366 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
2367 | int access_type, int is_user, | |
a8170e5e | 2368 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
2369 | { |
2370 | int n; | |
2371 | uint32_t mask; | |
2372 | uint32_t base; | |
2373 | ||
2374 | *phys_ptr = address; | |
2375 | for (n = 7; n >= 0; n--) { | |
2376 | base = env->cp15.c6_region[n]; | |
2377 | if ((base & 1) == 0) | |
2378 | continue; | |
2379 | mask = 1 << ((base >> 1) & 0x1f); | |
2380 | /* Keep this shift separate from the above to avoid an | |
2381 | (undefined) << 32. */ | |
2382 | mask = (mask << 1) - 1; | |
2383 | if (((base ^ address) & ~mask) == 0) | |
2384 | break; | |
2385 | } | |
2386 | if (n < 0) | |
2387 | return 2; | |
2388 | ||
2389 | if (access_type == 2) { | |
2390 | mask = env->cp15.c5_insn; | |
2391 | } else { | |
2392 | mask = env->cp15.c5_data; | |
2393 | } | |
2394 | mask = (mask >> (n * 4)) & 0xf; | |
2395 | switch (mask) { | |
2396 | case 0: | |
2397 | return 1; | |
2398 | case 1: | |
2399 | if (is_user) | |
2400 | return 1; | |
2401 | *prot = PAGE_READ | PAGE_WRITE; | |
2402 | break; | |
2403 | case 2: | |
2404 | *prot = PAGE_READ; | |
2405 | if (!is_user) | |
2406 | *prot |= PAGE_WRITE; | |
2407 | break; | |
2408 | case 3: | |
2409 | *prot = PAGE_READ | PAGE_WRITE; | |
2410 | break; | |
2411 | case 5: | |
2412 | if (is_user) | |
2413 | return 1; | |
2414 | *prot = PAGE_READ; | |
2415 | break; | |
2416 | case 6: | |
2417 | *prot = PAGE_READ; | |
2418 | break; | |
2419 | default: | |
2420 | /* Bad permission. */ | |
2421 | return 1; | |
2422 | } | |
3ad493fc | 2423 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
2424 | return 0; |
2425 | } | |
2426 | ||
702a9357 PM |
2427 | /* get_phys_addr - get the physical address for this virtual address |
2428 | * | |
2429 | * Find the physical address corresponding to the given virtual address, | |
2430 | * by doing a translation table walk on MMU based systems or using the | |
2431 | * MPU state on MPU based systems. | |
2432 | * | |
2433 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
2434 | * prot and page_size are not filled in, and the return value provides | |
2435 | * information on why the translation aborted, in the format of a | |
2436 | * DFSR/IFSR fault register, with the following caveats: | |
2437 | * * we honour the short vs long DFSR format differences. | |
2438 | * * the WnR bit is never set (the caller must do this). | |
2439 | * * for MPU based systems we don't bother to return a full FSR format | |
2440 | * value. | |
2441 | * | |
2442 | * @env: CPUARMState | |
2443 | * @address: virtual address to get physical address for | |
2444 | * @access_type: 0 for read, 1 for write, 2 for execute | |
2445 | * @is_user: 0 for privileged access, 1 for user | |
2446 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
2447 | * @prot: set to the permissions for the page containing phys_ptr | |
2448 | * @page_size: set to the size of the page containing phys_ptr | |
2449 | */ | |
0ecb72a5 | 2450 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
9ee6e8bb | 2451 | int access_type, int is_user, |
a8170e5e | 2452 | hwaddr *phys_ptr, int *prot, |
d4c430a8 | 2453 | target_ulong *page_size) |
9ee6e8bb PB |
2454 | { |
2455 | /* Fast Context Switch Extension. */ | |
2456 | if (address < 0x02000000) | |
2457 | address += env->cp15.c13_fcse; | |
2458 | ||
2459 | if ((env->cp15.c1_sys & 1) == 0) { | |
2460 | /* MMU/MPU disabled. */ | |
2461 | *phys_ptr = address; | |
3ad493fc | 2462 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 2463 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
2464 | return 0; |
2465 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 2466 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
2467 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
2468 | prot); | |
3dde962f PM |
2469 | } else if (extended_addresses_enabled(env)) { |
2470 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
2471 | prot, page_size); | |
9ee6e8bb PB |
2472 | } else if (env->cp15.c1_sys & (1 << 23)) { |
2473 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 2474 | prot, page_size); |
9ee6e8bb PB |
2475 | } else { |
2476 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 2477 | prot, page_size); |
9ee6e8bb PB |
2478 | } |
2479 | } | |
2480 | ||
0ecb72a5 | 2481 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
97b348e7 | 2482 | int access_type, int mmu_idx) |
b5ff1b31 | 2483 | { |
a8170e5e | 2484 | hwaddr phys_addr; |
d4c430a8 | 2485 | target_ulong page_size; |
b5ff1b31 | 2486 | int prot; |
6ebbf390 | 2487 | int ret, is_user; |
b5ff1b31 | 2488 | |
6ebbf390 | 2489 | is_user = mmu_idx == MMU_USER_IDX; |
d4c430a8 PB |
2490 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
2491 | &page_size); | |
b5ff1b31 FB |
2492 | if (ret == 0) { |
2493 | /* Map a single [sub]page. */ | |
a8170e5e | 2494 | phys_addr &= ~(hwaddr)0x3ff; |
b5ff1b31 | 2495 | address &= ~(uint32_t)0x3ff; |
3ad493fc | 2496 | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
d4c430a8 | 2497 | return 0; |
b5ff1b31 FB |
2498 | } |
2499 | ||
2500 | if (access_type == 2) { | |
2501 | env->cp15.c5_insn = ret; | |
2502 | env->cp15.c6_insn = address; | |
2503 | env->exception_index = EXCP_PREFETCH_ABORT; | |
2504 | } else { | |
2505 | env->cp15.c5_data = ret; | |
9ee6e8bb PB |
2506 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
2507 | env->cp15.c5_data |= (1 << 11); | |
b5ff1b31 FB |
2508 | env->cp15.c6_data = address; |
2509 | env->exception_index = EXCP_DATA_ABORT; | |
2510 | } | |
2511 | return 1; | |
2512 | } | |
2513 | ||
a8170e5e | 2514 | hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr) |
b5ff1b31 | 2515 | { |
a8170e5e | 2516 | hwaddr phys_addr; |
d4c430a8 | 2517 | target_ulong page_size; |
b5ff1b31 FB |
2518 | int prot; |
2519 | int ret; | |
2520 | ||
d4c430a8 | 2521 | ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size); |
b5ff1b31 FB |
2522 | |
2523 | if (ret != 0) | |
2524 | return -1; | |
2525 | ||
2526 | return phys_addr; | |
2527 | } | |
2528 | ||
0ecb72a5 | 2529 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 2530 | { |
39ea3d4e PM |
2531 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
2532 | env->regs[13] = val; | |
2533 | } else { | |
f5206413 | 2534 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 2535 | } |
9ee6e8bb PB |
2536 | } |
2537 | ||
0ecb72a5 | 2538 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 2539 | { |
39ea3d4e PM |
2540 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
2541 | return env->regs[13]; | |
2542 | } else { | |
f5206413 | 2543 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 2544 | } |
9ee6e8bb PB |
2545 | } |
2546 | ||
0ecb72a5 | 2547 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb PB |
2548 | { |
2549 | switch (reg) { | |
2550 | case 0: /* APSR */ | |
2551 | return xpsr_read(env) & 0xf8000000; | |
2552 | case 1: /* IAPSR */ | |
2553 | return xpsr_read(env) & 0xf80001ff; | |
2554 | case 2: /* EAPSR */ | |
2555 | return xpsr_read(env) & 0xff00fc00; | |
2556 | case 3: /* xPSR */ | |
2557 | return xpsr_read(env) & 0xff00fdff; | |
2558 | case 5: /* IPSR */ | |
2559 | return xpsr_read(env) & 0x000001ff; | |
2560 | case 6: /* EPSR */ | |
2561 | return xpsr_read(env) & 0x0700fc00; | |
2562 | case 7: /* IEPSR */ | |
2563 | return xpsr_read(env) & 0x0700edff; | |
2564 | case 8: /* MSP */ | |
2565 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
2566 | case 9: /* PSP */ | |
2567 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
2568 | case 16: /* PRIMASK */ | |
2569 | return (env->uncached_cpsr & CPSR_I) != 0; | |
82845826 SH |
2570 | case 17: /* BASEPRI */ |
2571 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 2572 | return env->v7m.basepri; |
82845826 SH |
2573 | case 19: /* FAULTMASK */ |
2574 | return (env->uncached_cpsr & CPSR_F) != 0; | |
9ee6e8bb PB |
2575 | case 20: /* CONTROL */ |
2576 | return env->v7m.control; | |
2577 | default: | |
2578 | /* ??? For debugging only. */ | |
2579 | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); | |
2580 | return 0; | |
2581 | } | |
2582 | } | |
2583 | ||
0ecb72a5 | 2584 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb PB |
2585 | { |
2586 | switch (reg) { | |
2587 | case 0: /* APSR */ | |
2588 | xpsr_write(env, val, 0xf8000000); | |
2589 | break; | |
2590 | case 1: /* IAPSR */ | |
2591 | xpsr_write(env, val, 0xf8000000); | |
2592 | break; | |
2593 | case 2: /* EAPSR */ | |
2594 | xpsr_write(env, val, 0xfe00fc00); | |
2595 | break; | |
2596 | case 3: /* xPSR */ | |
2597 | xpsr_write(env, val, 0xfe00fc00); | |
2598 | break; | |
2599 | case 5: /* IPSR */ | |
2600 | /* IPSR bits are readonly. */ | |
2601 | break; | |
2602 | case 6: /* EPSR */ | |
2603 | xpsr_write(env, val, 0x0600fc00); | |
2604 | break; | |
2605 | case 7: /* IEPSR */ | |
2606 | xpsr_write(env, val, 0x0600fc00); | |
2607 | break; | |
2608 | case 8: /* MSP */ | |
2609 | if (env->v7m.current_sp) | |
2610 | env->v7m.other_sp = val; | |
2611 | else | |
2612 | env->regs[13] = val; | |
2613 | break; | |
2614 | case 9: /* PSP */ | |
2615 | if (env->v7m.current_sp) | |
2616 | env->regs[13] = val; | |
2617 | else | |
2618 | env->v7m.other_sp = val; | |
2619 | break; | |
2620 | case 16: /* PRIMASK */ | |
2621 | if (val & 1) | |
2622 | env->uncached_cpsr |= CPSR_I; | |
2623 | else | |
2624 | env->uncached_cpsr &= ~CPSR_I; | |
2625 | break; | |
82845826 | 2626 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
2627 | env->v7m.basepri = val & 0xff; |
2628 | break; | |
82845826 | 2629 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
2630 | val &= 0xff; |
2631 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
2632 | env->v7m.basepri = val; | |
2633 | break; | |
82845826 SH |
2634 | case 19: /* FAULTMASK */ |
2635 | if (val & 1) | |
2636 | env->uncached_cpsr |= CPSR_F; | |
2637 | else | |
2638 | env->uncached_cpsr &= ~CPSR_F; | |
2639 | break; | |
9ee6e8bb PB |
2640 | case 20: /* CONTROL */ |
2641 | env->v7m.control = val & 3; | |
2642 | switch_v7m_sp(env, (val & 2) != 0); | |
2643 | break; | |
2644 | default: | |
2645 | /* ??? For debugging only. */ | |
2646 | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); | |
2647 | return; | |
2648 | } | |
2649 | } | |
2650 | ||
b5ff1b31 | 2651 | #endif |
6ddbc6e4 PB |
2652 | |
2653 | /* Note that signed overflow is undefined in C. The following routines are | |
2654 | careful to use unsigned types where modulo arithmetic is required. | |
2655 | Failure to do so _will_ break on newer gcc. */ | |
2656 | ||
2657 | /* Signed saturating arithmetic. */ | |
2658 | ||
1654b2d6 | 2659 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
2660 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
2661 | { | |
2662 | uint16_t res; | |
2663 | ||
2664 | res = a + b; | |
2665 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
2666 | if (a & 0x8000) | |
2667 | res = 0x8000; | |
2668 | else | |
2669 | res = 0x7fff; | |
2670 | } | |
2671 | return res; | |
2672 | } | |
2673 | ||
1654b2d6 | 2674 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
2675 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
2676 | { | |
2677 | uint8_t res; | |
2678 | ||
2679 | res = a + b; | |
2680 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
2681 | if (a & 0x80) | |
2682 | res = 0x80; | |
2683 | else | |
2684 | res = 0x7f; | |
2685 | } | |
2686 | return res; | |
2687 | } | |
2688 | ||
1654b2d6 | 2689 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
2690 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
2691 | { | |
2692 | uint16_t res; | |
2693 | ||
2694 | res = a - b; | |
2695 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
2696 | if (a & 0x8000) | |
2697 | res = 0x8000; | |
2698 | else | |
2699 | res = 0x7fff; | |
2700 | } | |
2701 | return res; | |
2702 | } | |
2703 | ||
1654b2d6 | 2704 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
2705 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
2706 | { | |
2707 | uint8_t res; | |
2708 | ||
2709 | res = a - b; | |
2710 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
2711 | if (a & 0x80) | |
2712 | res = 0x80; | |
2713 | else | |
2714 | res = 0x7f; | |
2715 | } | |
2716 | return res; | |
2717 | } | |
2718 | ||
2719 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
2720 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
2721 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
2722 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
2723 | #define PFX q | |
2724 | ||
2725 | #include "op_addsub.h" | |
2726 | ||
2727 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 2728 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
2729 | { |
2730 | uint16_t res; | |
2731 | res = a + b; | |
2732 | if (res < a) | |
2733 | res = 0xffff; | |
2734 | return res; | |
2735 | } | |
2736 | ||
460a09c1 | 2737 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 2738 | { |
4c4fd3f8 | 2739 | if (a > b) |
6ddbc6e4 PB |
2740 | return a - b; |
2741 | else | |
2742 | return 0; | |
2743 | } | |
2744 | ||
2745 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
2746 | { | |
2747 | uint8_t res; | |
2748 | res = a + b; | |
2749 | if (res < a) | |
2750 | res = 0xff; | |
2751 | return res; | |
2752 | } | |
2753 | ||
2754 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
2755 | { | |
4c4fd3f8 | 2756 | if (a > b) |
6ddbc6e4 PB |
2757 | return a - b; |
2758 | else | |
2759 | return 0; | |
2760 | } | |
2761 | ||
2762 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
2763 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
2764 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
2765 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
2766 | #define PFX uq | |
2767 | ||
2768 | #include "op_addsub.h" | |
2769 | ||
2770 | /* Signed modulo arithmetic. */ | |
2771 | #define SARITH16(a, b, n, op) do { \ | |
2772 | int32_t sum; \ | |
db6e2e65 | 2773 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
2774 | RESULT(sum, n, 16); \ |
2775 | if (sum >= 0) \ | |
2776 | ge |= 3 << (n * 2); \ | |
2777 | } while(0) | |
2778 | ||
2779 | #define SARITH8(a, b, n, op) do { \ | |
2780 | int32_t sum; \ | |
db6e2e65 | 2781 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
2782 | RESULT(sum, n, 8); \ |
2783 | if (sum >= 0) \ | |
2784 | ge |= 1 << n; \ | |
2785 | } while(0) | |
2786 | ||
2787 | ||
2788 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
2789 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
2790 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
2791 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
2792 | #define PFX s | |
2793 | #define ARITH_GE | |
2794 | ||
2795 | #include "op_addsub.h" | |
2796 | ||
2797 | /* Unsigned modulo arithmetic. */ | |
2798 | #define ADD16(a, b, n) do { \ | |
2799 | uint32_t sum; \ | |
2800 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
2801 | RESULT(sum, n, 16); \ | |
a87aa10b | 2802 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
2803 | ge |= 3 << (n * 2); \ |
2804 | } while(0) | |
2805 | ||
2806 | #define ADD8(a, b, n) do { \ | |
2807 | uint32_t sum; \ | |
2808 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
2809 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
2810 | if ((sum >> 8) == 1) \ |
2811 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
2812 | } while(0) |
2813 | ||
2814 | #define SUB16(a, b, n) do { \ | |
2815 | uint32_t sum; \ | |
2816 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
2817 | RESULT(sum, n, 16); \ | |
2818 | if ((sum >> 16) == 0) \ | |
2819 | ge |= 3 << (n * 2); \ | |
2820 | } while(0) | |
2821 | ||
2822 | #define SUB8(a, b, n) do { \ | |
2823 | uint32_t sum; \ | |
2824 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
2825 | RESULT(sum, n, 8); \ | |
2826 | if ((sum >> 8) == 0) \ | |
a87aa10b | 2827 | ge |= 1 << n; \ |
6ddbc6e4 PB |
2828 | } while(0) |
2829 | ||
2830 | #define PFX u | |
2831 | #define ARITH_GE | |
2832 | ||
2833 | #include "op_addsub.h" | |
2834 | ||
2835 | /* Halved signed arithmetic. */ | |
2836 | #define ADD16(a, b, n) \ | |
2837 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
2838 | #define SUB16(a, b, n) \ | |
2839 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
2840 | #define ADD8(a, b, n) \ | |
2841 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
2842 | #define SUB8(a, b, n) \ | |
2843 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
2844 | #define PFX sh | |
2845 | ||
2846 | #include "op_addsub.h" | |
2847 | ||
2848 | /* Halved unsigned arithmetic. */ | |
2849 | #define ADD16(a, b, n) \ | |
2850 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
2851 | #define SUB16(a, b, n) \ | |
2852 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
2853 | #define ADD8(a, b, n) \ | |
2854 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
2855 | #define SUB8(a, b, n) \ | |
2856 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
2857 | #define PFX uh | |
2858 | ||
2859 | #include "op_addsub.h" | |
2860 | ||
2861 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
2862 | { | |
2863 | if (a > b) | |
2864 | return a - b; | |
2865 | else | |
2866 | return b - a; | |
2867 | } | |
2868 | ||
2869 | /* Unsigned sum of absolute byte differences. */ | |
2870 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
2871 | { | |
2872 | uint32_t sum; | |
2873 | sum = do_usad(a, b); | |
2874 | sum += do_usad(a >> 8, b >> 8); | |
2875 | sum += do_usad(a >> 16, b >>16); | |
2876 | sum += do_usad(a >> 24, b >> 24); | |
2877 | return sum; | |
2878 | } | |
2879 | ||
2880 | /* For ARMv6 SEL instruction. */ | |
2881 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
2882 | { | |
2883 | uint32_t mask; | |
2884 | ||
2885 | mask = 0; | |
2886 | if (flags & 1) | |
2887 | mask |= 0xff; | |
2888 | if (flags & 2) | |
2889 | mask |= 0xff00; | |
2890 | if (flags & 4) | |
2891 | mask |= 0xff0000; | |
2892 | if (flags & 8) | |
2893 | mask |= 0xff000000; | |
2894 | return (a & mask) | (b & ~mask); | |
2895 | } | |
2896 | ||
b90372ad PM |
2897 | /* VFP support. We follow the convention used for VFP instructions: |
2898 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
2899 | "d" suffix. */ |
2900 | ||
2901 | /* Convert host exception flags to vfp form. */ | |
2902 | static inline int vfp_exceptbits_from_host(int host_bits) | |
2903 | { | |
2904 | int target_bits = 0; | |
2905 | ||
2906 | if (host_bits & float_flag_invalid) | |
2907 | target_bits |= 1; | |
2908 | if (host_bits & float_flag_divbyzero) | |
2909 | target_bits |= 2; | |
2910 | if (host_bits & float_flag_overflow) | |
2911 | target_bits |= 4; | |
36802b6b | 2912 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
2913 | target_bits |= 8; |
2914 | if (host_bits & float_flag_inexact) | |
2915 | target_bits |= 0x10; | |
cecd8504 PM |
2916 | if (host_bits & float_flag_input_denormal) |
2917 | target_bits |= 0x80; | |
4373f3ce PB |
2918 | return target_bits; |
2919 | } | |
2920 | ||
0ecb72a5 | 2921 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
2922 | { |
2923 | int i; | |
2924 | uint32_t fpscr; | |
2925 | ||
2926 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
2927 | | (env->vfp.vec_len << 16) | |
2928 | | (env->vfp.vec_stride << 20); | |
2929 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 2930 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
2931 | fpscr |= vfp_exceptbits_from_host(i); |
2932 | return fpscr; | |
2933 | } | |
2934 | ||
0ecb72a5 | 2935 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
2936 | { |
2937 | return HELPER(vfp_get_fpscr)(env); | |
2938 | } | |
2939 | ||
4373f3ce PB |
2940 | /* Convert vfp exception flags to target form. */ |
2941 | static inline int vfp_exceptbits_to_host(int target_bits) | |
2942 | { | |
2943 | int host_bits = 0; | |
2944 | ||
2945 | if (target_bits & 1) | |
2946 | host_bits |= float_flag_invalid; | |
2947 | if (target_bits & 2) | |
2948 | host_bits |= float_flag_divbyzero; | |
2949 | if (target_bits & 4) | |
2950 | host_bits |= float_flag_overflow; | |
2951 | if (target_bits & 8) | |
2952 | host_bits |= float_flag_underflow; | |
2953 | if (target_bits & 0x10) | |
2954 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
2955 | if (target_bits & 0x80) |
2956 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
2957 | return host_bits; |
2958 | } | |
2959 | ||
0ecb72a5 | 2960 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
2961 | { |
2962 | int i; | |
2963 | uint32_t changed; | |
2964 | ||
2965 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
2966 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
2967 | env->vfp.vec_len = (val >> 16) & 7; | |
2968 | env->vfp.vec_stride = (val >> 20) & 3; | |
2969 | ||
2970 | changed ^= val; | |
2971 | if (changed & (3 << 22)) { | |
2972 | i = (val >> 22) & 3; | |
2973 | switch (i) { | |
2974 | case 0: | |
2975 | i = float_round_nearest_even; | |
2976 | break; | |
2977 | case 1: | |
2978 | i = float_round_up; | |
2979 | break; | |
2980 | case 2: | |
2981 | i = float_round_down; | |
2982 | break; | |
2983 | case 3: | |
2984 | i = float_round_to_zero; | |
2985 | break; | |
2986 | } | |
2987 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
2988 | } | |
cecd8504 | 2989 | if (changed & (1 << 24)) { |
fe76d976 | 2990 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
2991 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
2992 | } | |
5c7908ed PB |
2993 | if (changed & (1 << 25)) |
2994 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 2995 | |
b12c390b | 2996 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 2997 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 2998 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
2999 | } |
3000 | ||
0ecb72a5 | 3001 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
3002 | { |
3003 | HELPER(vfp_set_fpscr)(env, val); | |
3004 | } | |
3005 | ||
4373f3ce PB |
3006 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
3007 | ||
3008 | #define VFP_BINOP(name) \ | |
ae1857ec | 3009 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 3010 | { \ |
ae1857ec PM |
3011 | float_status *fpst = fpstp; \ |
3012 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 3013 | } \ |
ae1857ec | 3014 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 3015 | { \ |
ae1857ec PM |
3016 | float_status *fpst = fpstp; \ |
3017 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
3018 | } |
3019 | VFP_BINOP(add) | |
3020 | VFP_BINOP(sub) | |
3021 | VFP_BINOP(mul) | |
3022 | VFP_BINOP(div) | |
3023 | #undef VFP_BINOP | |
3024 | ||
3025 | float32 VFP_HELPER(neg, s)(float32 a) | |
3026 | { | |
3027 | return float32_chs(a); | |
3028 | } | |
3029 | ||
3030 | float64 VFP_HELPER(neg, d)(float64 a) | |
3031 | { | |
66230e0d | 3032 | return float64_chs(a); |
4373f3ce PB |
3033 | } |
3034 | ||
3035 | float32 VFP_HELPER(abs, s)(float32 a) | |
3036 | { | |
3037 | return float32_abs(a); | |
3038 | } | |
3039 | ||
3040 | float64 VFP_HELPER(abs, d)(float64 a) | |
3041 | { | |
66230e0d | 3042 | return float64_abs(a); |
4373f3ce PB |
3043 | } |
3044 | ||
0ecb72a5 | 3045 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
3046 | { |
3047 | return float32_sqrt(a, &env->vfp.fp_status); | |
3048 | } | |
3049 | ||
0ecb72a5 | 3050 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
3051 | { |
3052 | return float64_sqrt(a, &env->vfp.fp_status); | |
3053 | } | |
3054 | ||
3055 | /* XXX: check quiet/signaling case */ | |
3056 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 3057 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
3058 | { \ |
3059 | uint32_t flags; \ | |
3060 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
3061 | case 0: flags = 0x6; break; \ | |
3062 | case -1: flags = 0x8; break; \ | |
3063 | case 1: flags = 0x2; break; \ | |
3064 | default: case 2: flags = 0x3; break; \ | |
3065 | } \ | |
3066 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
3067 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
3068 | } \ | |
0ecb72a5 | 3069 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
3070 | { \ |
3071 | uint32_t flags; \ | |
3072 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
3073 | case 0: flags = 0x6; break; \ | |
3074 | case -1: flags = 0x8; break; \ | |
3075 | case 1: flags = 0x2; break; \ | |
3076 | default: case 2: flags = 0x3; break; \ | |
3077 | } \ | |
3078 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
3079 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
3080 | } | |
3081 | DO_VFP_cmp(s, float32) | |
3082 | DO_VFP_cmp(d, float64) | |
3083 | #undef DO_VFP_cmp | |
3084 | ||
5500b06c | 3085 | /* Integer to float and float to integer conversions */ |
4373f3ce | 3086 | |
5500b06c PM |
3087 | #define CONV_ITOF(name, fsz, sign) \ |
3088 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
3089 | { \ | |
3090 | float_status *fpst = fpstp; \ | |
85836979 | 3091 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
3092 | } |
3093 | ||
5500b06c PM |
3094 | #define CONV_FTOI(name, fsz, sign, round) \ |
3095 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
3096 | { \ | |
3097 | float_status *fpst = fpstp; \ | |
3098 | if (float##fsz##_is_any_nan(x)) { \ | |
3099 | float_raise(float_flag_invalid, fpst); \ | |
3100 | return 0; \ | |
3101 | } \ | |
3102 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
3103 | } |
3104 | ||
5500b06c PM |
3105 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
3106 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
3107 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
3108 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 3109 | |
5500b06c PM |
3110 | FLOAT_CONVS(si, s, 32, ) |
3111 | FLOAT_CONVS(si, d, 64, ) | |
3112 | FLOAT_CONVS(ui, s, 32, u) | |
3113 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 3114 | |
5500b06c PM |
3115 | #undef CONV_ITOF |
3116 | #undef CONV_FTOI | |
3117 | #undef FLOAT_CONVS | |
4373f3ce PB |
3118 | |
3119 | /* floating point conversion */ | |
0ecb72a5 | 3120 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 3121 | { |
2d627737 PM |
3122 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
3123 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
3124 | * a quiet NaN by forcing the most significant frac bit to 1. | |
3125 | */ | |
3126 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
3127 | } |
3128 | ||
0ecb72a5 | 3129 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 3130 | { |
2d627737 PM |
3131 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
3132 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
3133 | * a quiet NaN by forcing the most significant frac bit to 1. | |
3134 | */ | |
3135 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
3136 | } |
3137 | ||
3138 | /* VFP3 fixed point conversion. */ | |
622465e1 | 3139 | #define VFP_CONV_FIX(name, p, fsz, itype, sign) \ |
5500b06c PM |
3140 | float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \ |
3141 | void *fpstp) \ | |
4373f3ce | 3142 | { \ |
5500b06c | 3143 | float_status *fpst = fpstp; \ |
622465e1 | 3144 | float##fsz tmp; \ |
5500b06c PM |
3145 | tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \ |
3146 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ | |
4373f3ce | 3147 | } \ |
5500b06c PM |
3148 | uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \ |
3149 | void *fpstp) \ | |
4373f3ce | 3150 | { \ |
5500b06c | 3151 | float_status *fpst = fpstp; \ |
622465e1 PM |
3152 | float##fsz tmp; \ |
3153 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 3154 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 3155 | return 0; \ |
09d9487f | 3156 | } \ |
5500b06c PM |
3157 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
3158 | return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \ | |
622465e1 PM |
3159 | } |
3160 | ||
3161 | VFP_CONV_FIX(sh, d, 64, int16, ) | |
3162 | VFP_CONV_FIX(sl, d, 64, int32, ) | |
3163 | VFP_CONV_FIX(uh, d, 64, uint16, u) | |
3164 | VFP_CONV_FIX(ul, d, 64, uint32, u) | |
3165 | VFP_CONV_FIX(sh, s, 32, int16, ) | |
3166 | VFP_CONV_FIX(sl, s, 32, int32, ) | |
3167 | VFP_CONV_FIX(uh, s, 32, uint16, u) | |
3168 | VFP_CONV_FIX(ul, s, 32, uint32, u) | |
4373f3ce PB |
3169 | #undef VFP_CONV_FIX |
3170 | ||
60011498 | 3171 | /* Half precision conversions. */ |
0ecb72a5 | 3172 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 3173 | { |
60011498 | 3174 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
3175 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
3176 | if (ieee) { | |
3177 | return float32_maybe_silence_nan(r); | |
3178 | } | |
3179 | return r; | |
60011498 PB |
3180 | } |
3181 | ||
0ecb72a5 | 3182 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 3183 | { |
60011498 | 3184 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
3185 | float16 r = float32_to_float16(a, ieee, s); |
3186 | if (ieee) { | |
3187 | r = float16_maybe_silence_nan(r); | |
3188 | } | |
3189 | return float16_val(r); | |
60011498 PB |
3190 | } |
3191 | ||
0ecb72a5 | 3192 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
3193 | { |
3194 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
3195 | } | |
3196 | ||
0ecb72a5 | 3197 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
3198 | { |
3199 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
3200 | } | |
3201 | ||
0ecb72a5 | 3202 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
3203 | { |
3204 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
3205 | } | |
3206 | ||
0ecb72a5 | 3207 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
3208 | { |
3209 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
3210 | } | |
3211 | ||
dda3ec49 | 3212 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
3213 | #define float32_three make_float32(0x40400000) |
3214 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 3215 | |
0ecb72a5 | 3216 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 3217 | { |
dda3ec49 PM |
3218 | float_status *s = &env->vfp.standard_fp_status; |
3219 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
3220 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
3221 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
3222 | float_raise(float_flag_input_denormal, s); | |
3223 | } | |
dda3ec49 PM |
3224 | return float32_two; |
3225 | } | |
3226 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
3227 | } |
3228 | ||
0ecb72a5 | 3229 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 3230 | { |
71826966 | 3231 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
3232 | float32 product; |
3233 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
3234 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
3235 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
3236 | float_raise(float_flag_input_denormal, s); | |
3237 | } | |
6aae3df1 | 3238 | return float32_one_point_five; |
9ea62f57 | 3239 | } |
6aae3df1 PM |
3240 | product = float32_mul(a, b, s); |
3241 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
3242 | } |
3243 | ||
8f8e3aa4 PB |
3244 | /* NEON helpers. */ |
3245 | ||
56bf4fe2 CL |
3246 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
3247 | * int->float conversions at run-time. */ | |
3248 | #define float64_256 make_float64(0x4070000000000000LL) | |
3249 | #define float64_512 make_float64(0x4080000000000000LL) | |
3250 | ||
fe0e4872 CL |
3251 | /* The algorithm that must be used to calculate the estimate |
3252 | * is specified by the ARM ARM. | |
3253 | */ | |
0ecb72a5 | 3254 | static float64 recip_estimate(float64 a, CPUARMState *env) |
fe0e4872 | 3255 | { |
1146a817 PM |
3256 | /* These calculations mustn't set any fp exception flags, |
3257 | * so we use a local copy of the fp_status. | |
3258 | */ | |
3259 | float_status dummy_status = env->vfp.standard_fp_status; | |
3260 | float_status *s = &dummy_status; | |
fe0e4872 CL |
3261 | /* q = (int)(a * 512.0) */ |
3262 | float64 q = float64_mul(float64_512, a, s); | |
3263 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
3264 | ||
3265 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
3266 | q = int64_to_float64(q_int, s); | |
3267 | q = float64_add(q, float64_half, s); | |
3268 | q = float64_div(q, float64_512, s); | |
3269 | q = float64_div(float64_one, q, s); | |
3270 | ||
3271 | /* s = (int)(256.0 * r + 0.5) */ | |
3272 | q = float64_mul(q, float64_256, s); | |
3273 | q = float64_add(q, float64_half, s); | |
3274 | q_int = float64_to_int64_round_to_zero(q, s); | |
3275 | ||
3276 | /* return (double)s / 256.0 */ | |
3277 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
3278 | } | |
3279 | ||
0ecb72a5 | 3280 | float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) |
4373f3ce | 3281 | { |
fe0e4872 CL |
3282 | float_status *s = &env->vfp.standard_fp_status; |
3283 | float64 f64; | |
3284 | uint32_t val32 = float32_val(a); | |
3285 | ||
3286 | int result_exp; | |
3287 | int a_exp = (val32 & 0x7f800000) >> 23; | |
3288 | int sign = val32 & 0x80000000; | |
3289 | ||
3290 | if (float32_is_any_nan(a)) { | |
3291 | if (float32_is_signaling_nan(a)) { | |
3292 | float_raise(float_flag_invalid, s); | |
3293 | } | |
3294 | return float32_default_nan; | |
3295 | } else if (float32_is_infinity(a)) { | |
3296 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
3297 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
3298 | if (!float32_is_zero(a)) { |
3299 | float_raise(float_flag_input_denormal, s); | |
3300 | } | |
fe0e4872 CL |
3301 | float_raise(float_flag_divbyzero, s); |
3302 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
3303 | } else if (a_exp >= 253) { | |
3304 | float_raise(float_flag_underflow, s); | |
3305 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
3306 | } | |
3307 | ||
3308 | f64 = make_float64((0x3feULL << 52) | |
3309 | | ((int64_t)(val32 & 0x7fffff) << 29)); | |
3310 | ||
3311 | result_exp = 253 - a_exp; | |
3312 | ||
3313 | f64 = recip_estimate(f64, env); | |
3314 | ||
3315 | val32 = sign | |
3316 | | ((result_exp & 0xff) << 23) | |
3317 | | ((float64_val(f64) >> 29) & 0x7fffff); | |
3318 | return make_float32(val32); | |
4373f3ce PB |
3319 | } |
3320 | ||
e07be5d2 CL |
3321 | /* The algorithm that must be used to calculate the estimate |
3322 | * is specified by the ARM ARM. | |
3323 | */ | |
0ecb72a5 | 3324 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
e07be5d2 | 3325 | { |
1146a817 PM |
3326 | /* These calculations mustn't set any fp exception flags, |
3327 | * so we use a local copy of the fp_status. | |
3328 | */ | |
3329 | float_status dummy_status = env->vfp.standard_fp_status; | |
3330 | float_status *s = &dummy_status; | |
e07be5d2 CL |
3331 | float64 q; |
3332 | int64_t q_int; | |
3333 | ||
3334 | if (float64_lt(a, float64_half, s)) { | |
3335 | /* range 0.25 <= a < 0.5 */ | |
3336 | ||
3337 | /* a in units of 1/512 rounded down */ | |
3338 | /* q0 = (int)(a * 512.0); */ | |
3339 | q = float64_mul(float64_512, a, s); | |
3340 | q_int = float64_to_int64_round_to_zero(q, s); | |
3341 | ||
3342 | /* reciprocal root r */ | |
3343 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
3344 | q = int64_to_float64(q_int, s); | |
3345 | q = float64_add(q, float64_half, s); | |
3346 | q = float64_div(q, float64_512, s); | |
3347 | q = float64_sqrt(q, s); | |
3348 | q = float64_div(float64_one, q, s); | |
3349 | } else { | |
3350 | /* range 0.5 <= a < 1.0 */ | |
3351 | ||
3352 | /* a in units of 1/256 rounded down */ | |
3353 | /* q1 = (int)(a * 256.0); */ | |
3354 | q = float64_mul(float64_256, a, s); | |
3355 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
3356 | ||
3357 | /* reciprocal root r */ | |
3358 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
3359 | q = int64_to_float64(q_int, s); | |
3360 | q = float64_add(q, float64_half, s); | |
3361 | q = float64_div(q, float64_256, s); | |
3362 | q = float64_sqrt(q, s); | |
3363 | q = float64_div(float64_one, q, s); | |
3364 | } | |
3365 | /* r in units of 1/256 rounded to nearest */ | |
3366 | /* s = (int)(256.0 * r + 0.5); */ | |
3367 | ||
3368 | q = float64_mul(q, float64_256,s ); | |
3369 | q = float64_add(q, float64_half, s); | |
3370 | q_int = float64_to_int64_round_to_zero(q, s); | |
3371 | ||
3372 | /* return (double)s / 256.0;*/ | |
3373 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
3374 | } | |
3375 | ||
0ecb72a5 | 3376 | float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) |
4373f3ce | 3377 | { |
e07be5d2 CL |
3378 | float_status *s = &env->vfp.standard_fp_status; |
3379 | int result_exp; | |
3380 | float64 f64; | |
3381 | uint32_t val; | |
3382 | uint64_t val64; | |
3383 | ||
3384 | val = float32_val(a); | |
3385 | ||
3386 | if (float32_is_any_nan(a)) { | |
3387 | if (float32_is_signaling_nan(a)) { | |
3388 | float_raise(float_flag_invalid, s); | |
3389 | } | |
3390 | return float32_default_nan; | |
3391 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
3392 | if (!float32_is_zero(a)) { |
3393 | float_raise(float_flag_input_denormal, s); | |
3394 | } | |
e07be5d2 CL |
3395 | float_raise(float_flag_divbyzero, s); |
3396 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
3397 | } else if (float32_is_neg(a)) { | |
3398 | float_raise(float_flag_invalid, s); | |
3399 | return float32_default_nan; | |
3400 | } else if (float32_is_infinity(a)) { | |
3401 | return float32_zero; | |
3402 | } | |
3403 | ||
3404 | /* Normalize to a double-precision value between 0.25 and 1.0, | |
3405 | * preserving the parity of the exponent. */ | |
3406 | if ((val & 0x800000) == 0) { | |
3407 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
3408 | | (0x3feULL << 52) | |
3409 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
3410 | } else { | |
3411 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
3412 | | (0x3fdULL << 52) | |
3413 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
3414 | } | |
3415 | ||
3416 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; | |
3417 | ||
3418 | f64 = recip_sqrt_estimate(f64, env); | |
3419 | ||
3420 | val64 = float64_val(f64); | |
3421 | ||
26cc6abf | 3422 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
3423 | | ((val64 >> 29) & 0x7fffff); |
3424 | return make_float32(val); | |
4373f3ce PB |
3425 | } |
3426 | ||
0ecb72a5 | 3427 | uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 3428 | { |
fe0e4872 CL |
3429 | float64 f64; |
3430 | ||
3431 | if ((a & 0x80000000) == 0) { | |
3432 | return 0xffffffff; | |
3433 | } | |
3434 | ||
3435 | f64 = make_float64((0x3feULL << 52) | |
3436 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
3437 | ||
3438 | f64 = recip_estimate (f64, env); | |
3439 | ||
3440 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
3441 | } |
3442 | ||
0ecb72a5 | 3443 | uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 3444 | { |
e07be5d2 CL |
3445 | float64 f64; |
3446 | ||
3447 | if ((a & 0xc0000000) == 0) { | |
3448 | return 0xffffffff; | |
3449 | } | |
3450 | ||
3451 | if (a & 0x80000000) { | |
3452 | f64 = make_float64((0x3feULL << 52) | |
3453 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
3454 | } else { /* bits 31-30 == '01' */ | |
3455 | f64 = make_float64((0x3fdULL << 52) | |
3456 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
3457 | } | |
3458 | ||
3459 | f64 = recip_sqrt_estimate(f64, env); | |
3460 | ||
3461 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 3462 | } |
fe1479c3 | 3463 | |
da97f52c PM |
3464 | /* VFPv4 fused multiply-accumulate */ |
3465 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
3466 | { | |
3467 | float_status *fpst = fpstp; | |
3468 | return float32_muladd(a, b, c, 0, fpst); | |
3469 | } | |
3470 | ||
3471 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
3472 | { | |
3473 | float_status *fpst = fpstp; | |
3474 | return float64_muladd(a, b, c, 0, fpst); | |
3475 | } |