]> Git Repo - qemu.git/blame - target-arm/helper.c
target-arm: Add register_cp_regs_for_features()
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31 1#include "cpu.h"
9ee6e8bb 2#include "gdbstub.h"
7b59220e 3#include "helper.h"
7bbcb0af 4#include "host-utils.h"
0b03bdfc
PM
5#include "sysemu.h"
6
0ecb72a5 7static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
8{
9 int nregs;
10
11 /* VFP data registers are always little-endian. */
12 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
13 if (reg < nregs) {
14 stfq_le_p(buf, env->vfp.regs[reg]);
15 return 8;
16 }
17 if (arm_feature(env, ARM_FEATURE_NEON)) {
18 /* Aliases for Q regs. */
19 nregs += 16;
20 if (reg < nregs) {
21 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
22 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
23 return 16;
24 }
25 }
26 switch (reg - nregs) {
27 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
28 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
29 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
30 }
31 return 0;
32}
33
0ecb72a5 34static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
35{
36 int nregs;
37
38 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
39 if (reg < nregs) {
40 env->vfp.regs[reg] = ldfq_le_p(buf);
41 return 8;
42 }
43 if (arm_feature(env, ARM_FEATURE_NEON)) {
44 nregs += 16;
45 if (reg < nregs) {
46 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
47 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
48 return 16;
49 }
50 }
51 switch (reg - nregs) {
52 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
53 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 54 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
55 }
56 return 0;
57}
58
2ceb98c0
PM
59void register_cp_regs_for_features(ARMCPU *cpu)
60{
61 /* Register all the coprocessor registers based on feature bits */
62 CPUARMState *env = &cpu->env;
63 if (arm_feature(env, ARM_FEATURE_M)) {
64 /* M profile has no coprocessor registers */
65 return;
66 }
67
68}
69
778c3a06 70ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 71{
dec9c2d4 72 ARMCPU *cpu;
40f137e1 73 CPUARMState *env;
b26eefb6 74 static int inited = 0;
40f137e1 75
777dc784 76 if (!object_class_by_name(cpu_model)) {
aaed909a 77 return NULL;
777dc784
PM
78 }
79 cpu = ARM_CPU(object_new(cpu_model));
dec9c2d4 80 env = &cpu->env;
777dc784 81 env->cpu_model_str = cpu_model;
581be094 82 arm_cpu_realize(cpu);
777dc784 83
f4fc247b 84 if (tcg_enabled() && !inited) {
b26eefb6
PB
85 inited = 1;
86 arm_translate_init();
87 }
88
df90dadb 89 cpu_reset(CPU(cpu));
56aebc89
PB
90 if (arm_feature(env, ARM_FEATURE_NEON)) {
91 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
92 51, "arm-neon.xml", 0);
93 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
94 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
95 35, "arm-vfp3.xml", 0);
96 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
97 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
98 19, "arm-vfp.xml", 0);
99 }
0bf46a40 100 qemu_init_vcpu(env);
778c3a06 101 return cpu;
40f137e1
PB
102}
103
777dc784
PM
104typedef struct ARMCPUListState {
105 fprintf_function cpu_fprintf;
106 FILE *file;
107} ARMCPUListState;
3371d272 108
777dc784
PM
109/* Sort alphabetically by type name, except for "any". */
110static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 111{
777dc784
PM
112 ObjectClass *class_a = (ObjectClass *)a;
113 ObjectClass *class_b = (ObjectClass *)b;
114 const char *name_a, *name_b;
5adb4839 115
777dc784
PM
116 name_a = object_class_get_name(class_a);
117 name_b = object_class_get_name(class_b);
118 if (strcmp(name_a, "any") == 0) {
119 return 1;
120 } else if (strcmp(name_b, "any") == 0) {
121 return -1;
122 } else {
123 return strcmp(name_a, name_b);
5adb4839
PB
124 }
125}
126
777dc784 127static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 128{
777dc784
PM
129 ObjectClass *oc = data;
130 ARMCPUListState *s = user_data;
3371d272 131
777dc784
PM
132 (*s->cpu_fprintf)(s->file, " %s\n",
133 object_class_get_name(oc));
134}
135
136void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
137{
138 ARMCPUListState s = {
139 .file = f,
140 .cpu_fprintf = cpu_fprintf,
141 };
142 GSList *list;
143
144 list = object_class_get_list(TYPE_ARM_CPU, false);
145 list = g_slist_sort(list, arm_cpu_list_compare);
146 (*cpu_fprintf)(f, "Available CPUs:\n");
147 g_slist_foreach(list, arm_cpu_list_entry, &s);
148 g_slist_free(list);
40f137e1
PB
149}
150
4b6a83fb
PM
151void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
152 const ARMCPRegInfo *r, void *opaque)
153{
154 /* Define implementations of coprocessor registers.
155 * We store these in a hashtable because typically
156 * there are less than 150 registers in a space which
157 * is 16*16*16*8*8 = 262144 in size.
158 * Wildcarding is supported for the crm, opc1 and opc2 fields.
159 * If a register is defined twice then the second definition is
160 * used, so this can be used to define some generic registers and
161 * then override them with implementation specific variations.
162 * At least one of the original and the second definition should
163 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
164 * against accidental use.
165 */
166 int crm, opc1, opc2;
167 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
168 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
169 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
170 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
171 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
172 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
173 /* 64 bit registers have only CRm and Opc1 fields */
174 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
175 /* Check that the register definition has enough info to handle
176 * reads and writes if they are permitted.
177 */
178 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
179 if (r->access & PL3_R) {
180 assert(r->fieldoffset || r->readfn);
181 }
182 if (r->access & PL3_W) {
183 assert(r->fieldoffset || r->writefn);
184 }
185 }
186 /* Bad type field probably means missing sentinel at end of reg list */
187 assert(cptype_valid(r->type));
188 for (crm = crmmin; crm <= crmmax; crm++) {
189 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
190 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
191 uint32_t *key = g_new(uint32_t, 1);
192 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
193 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
194 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
195 r2->opaque = opaque;
196 /* Make sure reginfo passed to helpers for wildcarded regs
197 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
198 */
199 r2->crm = crm;
200 r2->opc1 = opc1;
201 r2->opc2 = opc2;
202 /* Overriding of an existing definition must be explicitly
203 * requested.
204 */
205 if (!(r->type & ARM_CP_OVERRIDE)) {
206 ARMCPRegInfo *oldreg;
207 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
208 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
209 fprintf(stderr, "Register redefined: cp=%d %d bit "
210 "crn=%d crm=%d opc1=%d opc2=%d, "
211 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
212 r2->crn, r2->crm, r2->opc1, r2->opc2,
213 oldreg->name, r2->name);
214 assert(0);
215 }
216 }
217 g_hash_table_insert(cpu->cp_regs, key, r2);
218 }
219 }
220 }
221}
222
223void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
224 const ARMCPRegInfo *regs, void *opaque)
225{
226 /* Define a whole list of registers */
227 const ARMCPRegInfo *r;
228 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
229 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
230 }
231}
232
233const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
234{
235 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
236}
237
238int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
239 uint64_t value)
240{
241 /* Helper coprocessor write function for write-ignore registers */
242 return 0;
243}
244
245int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
246{
247 /* Helper coprocessor write function for read-as-zero registers */
248 *value = 0;
249 return 0;
250}
251
0ecb72a5 252static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
253{
254 /* Return true if it is not valid for us to switch to
255 * this CPU mode (ie all the UNPREDICTABLE cases in
256 * the ARM ARM CPSRWriteByInstr pseudocode).
257 */
258 switch (mode) {
259 case ARM_CPU_MODE_USR:
260 case ARM_CPU_MODE_SYS:
261 case ARM_CPU_MODE_SVC:
262 case ARM_CPU_MODE_ABT:
263 case ARM_CPU_MODE_UND:
264 case ARM_CPU_MODE_IRQ:
265 case ARM_CPU_MODE_FIQ:
266 return 0;
267 default:
268 return 1;
269 }
270}
271
2f4a40e5
AZ
272uint32_t cpsr_read(CPUARMState *env)
273{
274 int ZF;
6fbe23d5
PB
275 ZF = (env->ZF == 0);
276 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
277 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
278 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
279 | ((env->condexec_bits & 0xfc) << 8)
280 | (env->GE << 16);
281}
282
283void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
284{
2f4a40e5 285 if (mask & CPSR_NZCV) {
6fbe23d5
PB
286 env->ZF = (~val) & CPSR_Z;
287 env->NF = val;
2f4a40e5
AZ
288 env->CF = (val >> 29) & 1;
289 env->VF = (val << 3) & 0x80000000;
290 }
291 if (mask & CPSR_Q)
292 env->QF = ((val & CPSR_Q) != 0);
293 if (mask & CPSR_T)
294 env->thumb = ((val & CPSR_T) != 0);
295 if (mask & CPSR_IT_0_1) {
296 env->condexec_bits &= ~3;
297 env->condexec_bits |= (val >> 25) & 3;
298 }
299 if (mask & CPSR_IT_2_7) {
300 env->condexec_bits &= 3;
301 env->condexec_bits |= (val >> 8) & 0xfc;
302 }
303 if (mask & CPSR_GE) {
304 env->GE = (val >> 16) & 0xf;
305 }
306
307 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
37064a8b
PM
308 if (bad_mode_switch(env, val & CPSR_M)) {
309 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
310 * We choose to ignore the attempt and leave the CPSR M field
311 * untouched.
312 */
313 mask &= ~CPSR_M;
314 } else {
315 switch_mode(env, val & CPSR_M);
316 }
2f4a40e5
AZ
317 }
318 mask &= ~CACHED_CPSR_BITS;
319 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
320}
321
b26eefb6
PB
322/* Sign/zero extend */
323uint32_t HELPER(sxtb16)(uint32_t x)
324{
325 uint32_t res;
326 res = (uint16_t)(int8_t)x;
327 res |= (uint32_t)(int8_t)(x >> 16) << 16;
328 return res;
329}
330
331uint32_t HELPER(uxtb16)(uint32_t x)
332{
333 uint32_t res;
334 res = (uint16_t)(uint8_t)x;
335 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
336 return res;
337}
338
f51bbbfe
PB
339uint32_t HELPER(clz)(uint32_t x)
340{
7bbcb0af 341 return clz32(x);
f51bbbfe
PB
342}
343
3670669c
PB
344int32_t HELPER(sdiv)(int32_t num, int32_t den)
345{
346 if (den == 0)
347 return 0;
686eeb93
AJ
348 if (num == INT_MIN && den == -1)
349 return INT_MIN;
3670669c
PB
350 return num / den;
351}
352
353uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
354{
355 if (den == 0)
356 return 0;
357 return num / den;
358}
359
360uint32_t HELPER(rbit)(uint32_t x)
361{
362 x = ((x & 0xff000000) >> 24)
363 | ((x & 0x00ff0000) >> 8)
364 | ((x & 0x0000ff00) << 8)
365 | ((x & 0x000000ff) << 24);
366 x = ((x & 0xf0f0f0f0) >> 4)
367 | ((x & 0x0f0f0f0f) << 4);
368 x = ((x & 0x88888888) >> 3)
369 | ((x & 0x44444444) >> 1)
370 | ((x & 0x22222222) << 1)
371 | ((x & 0x11111111) << 3);
372 return x;
373}
374
ad69471c
PB
375uint32_t HELPER(abs)(uint32_t x)
376{
377 return ((int32_t)x < 0) ? -x : x;
378}
379
5fafdf24 380#if defined(CONFIG_USER_ONLY)
b5ff1b31 381
0ecb72a5 382void do_interrupt (CPUARMState *env)
b5ff1b31
FB
383{
384 env->exception_index = -1;
385}
386
0ecb72a5 387int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 388 int mmu_idx)
b5ff1b31
FB
389{
390 if (rw == 2) {
391 env->exception_index = EXCP_PREFETCH_ABORT;
392 env->cp15.c6_insn = address;
393 } else {
394 env->exception_index = EXCP_DATA_ABORT;
395 env->cp15.c6_data = address;
396 }
397 return 1;
398}
399
0ecb72a5 400void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
b5ff1b31
FB
401{
402 cpu_abort(env, "cp15 insn %08x\n", insn);
403}
404
0ecb72a5 405uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
b5ff1b31
FB
406{
407 cpu_abort(env, "cp15 insn %08x\n", insn);
b5ff1b31
FB
408}
409
9ee6e8bb 410/* These should probably raise undefined insn exceptions. */
0ecb72a5 411void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
412{
413 cpu_abort(env, "v7m_mrs %d\n", reg);
414}
415
0ecb72a5 416uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
417{
418 cpu_abort(env, "v7m_mrs %d\n", reg);
419 return 0;
420}
421
0ecb72a5 422void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
423{
424 if (mode != ARM_CPU_MODE_USR)
425 cpu_abort(env, "Tried to switch out of user mode\n");
426}
427
0ecb72a5 428void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
429{
430 cpu_abort(env, "banked r13 write\n");
431}
432
0ecb72a5 433uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb
PB
434{
435 cpu_abort(env, "banked r13 read\n");
436 return 0;
437}
438
b5ff1b31
FB
439#else
440
441/* Map CPU modes onto saved register banks. */
0ecb72a5 442static inline int bank_number(CPUARMState *env, int mode)
b5ff1b31
FB
443{
444 switch (mode) {
445 case ARM_CPU_MODE_USR:
446 case ARM_CPU_MODE_SYS:
447 return 0;
448 case ARM_CPU_MODE_SVC:
449 return 1;
450 case ARM_CPU_MODE_ABT:
451 return 2;
452 case ARM_CPU_MODE_UND:
453 return 3;
454 case ARM_CPU_MODE_IRQ:
455 return 4;
456 case ARM_CPU_MODE_FIQ:
457 return 5;
458 }
1b9e01c1 459 cpu_abort(env, "Bad mode %x\n", mode);
b5ff1b31
FB
460 return -1;
461}
462
0ecb72a5 463void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
464{
465 int old_mode;
466 int i;
467
468 old_mode = env->uncached_cpsr & CPSR_M;
469 if (mode == old_mode)
470 return;
471
472 if (old_mode == ARM_CPU_MODE_FIQ) {
473 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 474 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
475 } else if (mode == ARM_CPU_MODE_FIQ) {
476 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 477 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
478 }
479
1b9e01c1 480 i = bank_number(env, old_mode);
b5ff1b31
FB
481 env->banked_r13[i] = env->regs[13];
482 env->banked_r14[i] = env->regs[14];
483 env->banked_spsr[i] = env->spsr;
484
1b9e01c1 485 i = bank_number(env, mode);
b5ff1b31
FB
486 env->regs[13] = env->banked_r13[i];
487 env->regs[14] = env->banked_r14[i];
488 env->spsr = env->banked_spsr[i];
489}
490
9ee6e8bb
PB
491static void v7m_push(CPUARMState *env, uint32_t val)
492{
493 env->regs[13] -= 4;
494 stl_phys(env->regs[13], val);
495}
496
497static uint32_t v7m_pop(CPUARMState *env)
498{
499 uint32_t val;
500 val = ldl_phys(env->regs[13]);
501 env->regs[13] += 4;
502 return val;
503}
504
505/* Switch to V7M main or process stack pointer. */
506static void switch_v7m_sp(CPUARMState *env, int process)
507{
508 uint32_t tmp;
509 if (env->v7m.current_sp != process) {
510 tmp = env->v7m.other_sp;
511 env->v7m.other_sp = env->regs[13];
512 env->regs[13] = tmp;
513 env->v7m.current_sp = process;
514 }
515}
516
517static void do_v7m_exception_exit(CPUARMState *env)
518{
519 uint32_t type;
520 uint32_t xpsr;
521
522 type = env->regs[15];
523 if (env->v7m.exception != 0)
983fe826 524 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
525
526 /* Switch to the target stack. */
527 switch_v7m_sp(env, (type & 4) != 0);
528 /* Pop registers. */
529 env->regs[0] = v7m_pop(env);
530 env->regs[1] = v7m_pop(env);
531 env->regs[2] = v7m_pop(env);
532 env->regs[3] = v7m_pop(env);
533 env->regs[12] = v7m_pop(env);
534 env->regs[14] = v7m_pop(env);
535 env->regs[15] = v7m_pop(env);
536 xpsr = v7m_pop(env);
537 xpsr_write(env, xpsr, 0xfffffdff);
538 /* Undo stack alignment. */
539 if (xpsr & 0x200)
540 env->regs[13] |= 4;
541 /* ??? The exception return type specifies Thread/Handler mode. However
542 this is also implied by the xPSR value. Not sure what to do
543 if there is a mismatch. */
544 /* ??? Likewise for mismatches between the CONTROL register and the stack
545 pointer. */
546}
547
2b3ea315 548static void do_interrupt_v7m(CPUARMState *env)
9ee6e8bb
PB
549{
550 uint32_t xpsr = xpsr_read(env);
551 uint32_t lr;
552 uint32_t addr;
553
554 lr = 0xfffffff1;
555 if (env->v7m.current_sp)
556 lr |= 4;
557 if (env->v7m.exception == 0)
558 lr |= 8;
559
560 /* For exceptions we just mark as pending on the NVIC, and let that
561 handle it. */
562 /* TODO: Need to escalate if the current priority is higher than the
563 one we're raising. */
564 switch (env->exception_index) {
565 case EXCP_UDEF:
983fe826 566 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
567 return;
568 case EXCP_SWI:
569 env->regs[15] += 2;
983fe826 570 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
571 return;
572 case EXCP_PREFETCH_ABORT:
573 case EXCP_DATA_ABORT:
983fe826 574 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
575 return;
576 case EXCP_BKPT:
2ad207d4
PB
577 if (semihosting_enabled) {
578 int nr;
d8fd2954 579 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
580 if (nr == 0xab) {
581 env->regs[15] += 2;
582 env->regs[0] = do_arm_semihosting(env);
583 return;
584 }
585 }
983fe826 586 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
587 return;
588 case EXCP_IRQ:
983fe826 589 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
590 break;
591 case EXCP_EXCEPTION_EXIT:
592 do_v7m_exception_exit(env);
593 return;
594 default:
595 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
596 return; /* Never happens. Keep compiler happy. */
597 }
598
599 /* Align stack pointer. */
600 /* ??? Should only do this if Configuration Control Register
601 STACKALIGN bit is set. */
602 if (env->regs[13] & 4) {
ab19b0ec 603 env->regs[13] -= 4;
9ee6e8bb
PB
604 xpsr |= 0x200;
605 }
6c95676b 606 /* Switch to the handler mode. */
9ee6e8bb
PB
607 v7m_push(env, xpsr);
608 v7m_push(env, env->regs[15]);
609 v7m_push(env, env->regs[14]);
610 v7m_push(env, env->regs[12]);
611 v7m_push(env, env->regs[3]);
612 v7m_push(env, env->regs[2]);
613 v7m_push(env, env->regs[1]);
614 v7m_push(env, env->regs[0]);
615 switch_v7m_sp(env, 0);
c98d174c
PM
616 /* Clear IT bits */
617 env->condexec_bits = 0;
9ee6e8bb
PB
618 env->regs[14] = lr;
619 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
620 env->regs[15] = addr & 0xfffffffe;
621 env->thumb = addr & 1;
622}
623
b5ff1b31
FB
624/* Handle a CPU exception. */
625void do_interrupt(CPUARMState *env)
626{
627 uint32_t addr;
628 uint32_t mask;
629 int new_mode;
630 uint32_t offset;
631
9ee6e8bb
PB
632 if (IS_M(env)) {
633 do_interrupt_v7m(env);
634 return;
635 }
b5ff1b31
FB
636 /* TODO: Vectored interrupt controller. */
637 switch (env->exception_index) {
638 case EXCP_UDEF:
639 new_mode = ARM_CPU_MODE_UND;
640 addr = 0x04;
641 mask = CPSR_I;
642 if (env->thumb)
643 offset = 2;
644 else
645 offset = 4;
646 break;
647 case EXCP_SWI:
8e71621f
PB
648 if (semihosting_enabled) {
649 /* Check for semihosting interrupt. */
650 if (env->thumb) {
d8fd2954 651 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
8e71621f 652 } else {
d8fd2954
PB
653 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
654 & 0xffffff;
8e71621f
PB
655 }
656 /* Only intercept calls from privileged modes, to provide some
657 semblance of security. */
658 if (((mask == 0x123456 && !env->thumb)
659 || (mask == 0xab && env->thumb))
660 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
661 env->regs[0] = do_arm_semihosting(env);
662 return;
663 }
664 }
b5ff1b31
FB
665 new_mode = ARM_CPU_MODE_SVC;
666 addr = 0x08;
667 mask = CPSR_I;
601d70b9 668 /* The PC already points to the next instruction. */
b5ff1b31
FB
669 offset = 0;
670 break;
06c949e6 671 case EXCP_BKPT:
9ee6e8bb 672 /* See if this is a semihosting syscall. */
2ad207d4 673 if (env->thumb && semihosting_enabled) {
d8fd2954 674 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
9ee6e8bb
PB
675 if (mask == 0xab
676 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
677 env->regs[15] += 2;
678 env->regs[0] = do_arm_semihosting(env);
679 return;
680 }
681 }
81c05daf 682 env->cp15.c5_insn = 2;
9ee6e8bb
PB
683 /* Fall through to prefetch abort. */
684 case EXCP_PREFETCH_ABORT:
b5ff1b31
FB
685 new_mode = ARM_CPU_MODE_ABT;
686 addr = 0x0c;
687 mask = CPSR_A | CPSR_I;
688 offset = 4;
689 break;
690 case EXCP_DATA_ABORT:
691 new_mode = ARM_CPU_MODE_ABT;
692 addr = 0x10;
693 mask = CPSR_A | CPSR_I;
694 offset = 8;
695 break;
696 case EXCP_IRQ:
697 new_mode = ARM_CPU_MODE_IRQ;
698 addr = 0x18;
699 /* Disable IRQ and imprecise data aborts. */
700 mask = CPSR_A | CPSR_I;
701 offset = 4;
702 break;
703 case EXCP_FIQ:
704 new_mode = ARM_CPU_MODE_FIQ;
705 addr = 0x1c;
706 /* Disable FIQ, IRQ and imprecise data aborts. */
707 mask = CPSR_A | CPSR_I | CPSR_F;
708 offset = 4;
709 break;
710 default:
711 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
712 return; /* Never happens. Keep compiler happy. */
713 }
714 /* High vectors. */
715 if (env->cp15.c1_sys & (1 << 13)) {
716 addr += 0xffff0000;
717 }
718 switch_mode (env, new_mode);
719 env->spsr = cpsr_read(env);
9ee6e8bb
PB
720 /* Clear IT bits. */
721 env->condexec_bits = 0;
30a8cac1 722 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 723 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
b5ff1b31 724 env->uncached_cpsr |= mask;
be5e7a76
DES
725 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
726 * and we should just guard the thumb mode on V4 */
727 if (arm_feature(env, ARM_FEATURE_V4T)) {
728 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
729 }
b5ff1b31
FB
730 env->regs[14] = env->regs[15] + offset;
731 env->regs[15] = addr;
732 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
733}
734
735/* Check section/page access permissions.
736 Returns the page protection flags, or zero if the access is not
737 permitted. */
0ecb72a5 738static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
dd4ebc2e 739 int access_type, int is_user)
b5ff1b31 740{
9ee6e8bb
PB
741 int prot_ro;
742
dd4ebc2e 743 if (domain_prot == 3) {
b5ff1b31 744 return PAGE_READ | PAGE_WRITE;
dd4ebc2e 745 }
b5ff1b31 746
9ee6e8bb
PB
747 if (access_type == 1)
748 prot_ro = 0;
749 else
750 prot_ro = PAGE_READ;
751
b5ff1b31
FB
752 switch (ap) {
753 case 0:
78600320 754 if (access_type == 1)
b5ff1b31
FB
755 return 0;
756 switch ((env->cp15.c1_sys >> 8) & 3) {
757 case 1:
758 return is_user ? 0 : PAGE_READ;
759 case 2:
760 return PAGE_READ;
761 default:
762 return 0;
763 }
764 case 1:
765 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
766 case 2:
767 if (is_user)
9ee6e8bb 768 return prot_ro;
b5ff1b31
FB
769 else
770 return PAGE_READ | PAGE_WRITE;
771 case 3:
772 return PAGE_READ | PAGE_WRITE;
d4934d18 773 case 4: /* Reserved. */
9ee6e8bb
PB
774 return 0;
775 case 5:
776 return is_user ? 0 : prot_ro;
777 case 6:
778 return prot_ro;
d4934d18 779 case 7:
0ab06d83 780 if (!arm_feature (env, ARM_FEATURE_V6K))
d4934d18
PB
781 return 0;
782 return prot_ro;
b5ff1b31
FB
783 default:
784 abort();
785 }
786}
787
0ecb72a5 788static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
b2fa1797
PB
789{
790 uint32_t table;
791
792 if (address & env->cp15.c2_mask)
793 table = env->cp15.c2_base1 & 0xffffc000;
794 else
795 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
796
797 table |= (address >> 18) & 0x3ffc;
798 return table;
799}
800
0ecb72a5 801static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
d4c430a8
PB
802 int is_user, uint32_t *phys_ptr, int *prot,
803 target_ulong *page_size)
b5ff1b31
FB
804{
805 int code;
806 uint32_t table;
807 uint32_t desc;
808 int type;
809 int ap;
810 int domain;
dd4ebc2e 811 int domain_prot;
b5ff1b31
FB
812 uint32_t phys_addr;
813
9ee6e8bb
PB
814 /* Pagetable walk. */
815 /* Lookup l1 descriptor. */
b2fa1797 816 table = get_level1_table_address(env, address);
9ee6e8bb
PB
817 desc = ldl_phys(table);
818 type = (desc & 3);
dd4ebc2e
JCD
819 domain = (desc >> 5) & 0x0f;
820 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
9ee6e8bb 821 if (type == 0) {
601d70b9 822 /* Section translation fault. */
9ee6e8bb
PB
823 code = 5;
824 goto do_fault;
825 }
dd4ebc2e 826 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
827 if (type == 2)
828 code = 9; /* Section domain fault. */
829 else
830 code = 11; /* Page domain fault. */
831 goto do_fault;
832 }
833 if (type == 2) {
834 /* 1Mb section. */
835 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
836 ap = (desc >> 10) & 3;
837 code = 13;
d4c430a8 838 *page_size = 1024 * 1024;
9ee6e8bb
PB
839 } else {
840 /* Lookup l2 entry. */
841 if (type == 1) {
842 /* Coarse pagetable. */
843 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
844 } else {
845 /* Fine pagetable. */
846 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
847 }
848 desc = ldl_phys(table);
849 switch (desc & 3) {
850 case 0: /* Page translation fault. */
851 code = 7;
852 goto do_fault;
853 case 1: /* 64k page. */
854 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
855 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 856 *page_size = 0x10000;
ce819861 857 break;
9ee6e8bb
PB
858 case 2: /* 4k page. */
859 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
860 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 861 *page_size = 0x1000;
ce819861 862 break;
9ee6e8bb
PB
863 case 3: /* 1k page. */
864 if (type == 1) {
865 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
866 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
867 } else {
868 /* Page translation fault. */
869 code = 7;
870 goto do_fault;
871 }
872 } else {
873 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
874 }
875 ap = (desc >> 4) & 3;
d4c430a8 876 *page_size = 0x400;
ce819861
PB
877 break;
878 default:
9ee6e8bb
PB
879 /* Never happens, but compiler isn't smart enough to tell. */
880 abort();
ce819861 881 }
9ee6e8bb
PB
882 code = 15;
883 }
dd4ebc2e 884 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
9ee6e8bb
PB
885 if (!*prot) {
886 /* Access permission fault. */
887 goto do_fault;
888 }
3ad493fc 889 *prot |= PAGE_EXEC;
9ee6e8bb
PB
890 *phys_ptr = phys_addr;
891 return 0;
892do_fault:
893 return code | (domain << 4);
894}
895
0ecb72a5 896static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
d4c430a8
PB
897 int is_user, uint32_t *phys_ptr, int *prot,
898 target_ulong *page_size)
9ee6e8bb
PB
899{
900 int code;
901 uint32_t table;
902 uint32_t desc;
903 uint32_t xn;
904 int type;
905 int ap;
906 int domain;
dd4ebc2e 907 int domain_prot;
9ee6e8bb
PB
908 uint32_t phys_addr;
909
910 /* Pagetable walk. */
911 /* Lookup l1 descriptor. */
b2fa1797 912 table = get_level1_table_address(env, address);
9ee6e8bb
PB
913 desc = ldl_phys(table);
914 type = (desc & 3);
915 if (type == 0) {
601d70b9 916 /* Section translation fault. */
9ee6e8bb
PB
917 code = 5;
918 domain = 0;
919 goto do_fault;
920 } else if (type == 2 && (desc & (1 << 18))) {
921 /* Supersection. */
922 domain = 0;
b5ff1b31 923 } else {
9ee6e8bb 924 /* Section or page. */
dd4ebc2e 925 domain = (desc >> 5) & 0x0f;
9ee6e8bb 926 }
dd4ebc2e
JCD
927 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
928 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
929 if (type == 2)
930 code = 9; /* Section domain fault. */
931 else
932 code = 11; /* Page domain fault. */
933 goto do_fault;
934 }
935 if (type == 2) {
936 if (desc & (1 << 18)) {
937 /* Supersection. */
938 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
d4c430a8 939 *page_size = 0x1000000;
b5ff1b31 940 } else {
9ee6e8bb
PB
941 /* Section. */
942 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 943 *page_size = 0x100000;
b5ff1b31 944 }
9ee6e8bb
PB
945 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
946 xn = desc & (1 << 4);
947 code = 13;
948 } else {
949 /* Lookup l2 entry. */
950 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
951 desc = ldl_phys(table);
952 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
953 switch (desc & 3) {
954 case 0: /* Page translation fault. */
955 code = 7;
b5ff1b31 956 goto do_fault;
9ee6e8bb
PB
957 case 1: /* 64k page. */
958 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
959 xn = desc & (1 << 15);
d4c430a8 960 *page_size = 0x10000;
9ee6e8bb
PB
961 break;
962 case 2: case 3: /* 4k page. */
963 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
964 xn = desc & 1;
d4c430a8 965 *page_size = 0x1000;
9ee6e8bb
PB
966 break;
967 default:
968 /* Never happens, but compiler isn't smart enough to tell. */
969 abort();
b5ff1b31 970 }
9ee6e8bb
PB
971 code = 15;
972 }
dd4ebc2e 973 if (domain_prot == 3) {
c0034328
JR
974 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
975 } else {
976 if (xn && access_type == 2)
977 goto do_fault;
9ee6e8bb 978
c0034328
JR
979 /* The simplified model uses AP[0] as an access control bit. */
980 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
981 /* Access flag fault. */
982 code = (code == 15) ? 6 : 3;
983 goto do_fault;
984 }
dd4ebc2e 985 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
c0034328
JR
986 if (!*prot) {
987 /* Access permission fault. */
988 goto do_fault;
989 }
990 if (!xn) {
991 *prot |= PAGE_EXEC;
992 }
3ad493fc 993 }
9ee6e8bb 994 *phys_ptr = phys_addr;
b5ff1b31
FB
995 return 0;
996do_fault:
997 return code | (domain << 4);
998}
999
0ecb72a5 1000static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
9ee6e8bb
PB
1001 int is_user, uint32_t *phys_ptr, int *prot)
1002{
1003 int n;
1004 uint32_t mask;
1005 uint32_t base;
1006
1007 *phys_ptr = address;
1008 for (n = 7; n >= 0; n--) {
1009 base = env->cp15.c6_region[n];
1010 if ((base & 1) == 0)
1011 continue;
1012 mask = 1 << ((base >> 1) & 0x1f);
1013 /* Keep this shift separate from the above to avoid an
1014 (undefined) << 32. */
1015 mask = (mask << 1) - 1;
1016 if (((base ^ address) & ~mask) == 0)
1017 break;
1018 }
1019 if (n < 0)
1020 return 2;
1021
1022 if (access_type == 2) {
1023 mask = env->cp15.c5_insn;
1024 } else {
1025 mask = env->cp15.c5_data;
1026 }
1027 mask = (mask >> (n * 4)) & 0xf;
1028 switch (mask) {
1029 case 0:
1030 return 1;
1031 case 1:
1032 if (is_user)
1033 return 1;
1034 *prot = PAGE_READ | PAGE_WRITE;
1035 break;
1036 case 2:
1037 *prot = PAGE_READ;
1038 if (!is_user)
1039 *prot |= PAGE_WRITE;
1040 break;
1041 case 3:
1042 *prot = PAGE_READ | PAGE_WRITE;
1043 break;
1044 case 5:
1045 if (is_user)
1046 return 1;
1047 *prot = PAGE_READ;
1048 break;
1049 case 6:
1050 *prot = PAGE_READ;
1051 break;
1052 default:
1053 /* Bad permission. */
1054 return 1;
1055 }
3ad493fc 1056 *prot |= PAGE_EXEC;
9ee6e8bb
PB
1057 return 0;
1058}
1059
0ecb72a5 1060static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9ee6e8bb 1061 int access_type, int is_user,
d4c430a8
PB
1062 uint32_t *phys_ptr, int *prot,
1063 target_ulong *page_size)
9ee6e8bb
PB
1064{
1065 /* Fast Context Switch Extension. */
1066 if (address < 0x02000000)
1067 address += env->cp15.c13_fcse;
1068
1069 if ((env->cp15.c1_sys & 1) == 0) {
1070 /* MMU/MPU disabled. */
1071 *phys_ptr = address;
3ad493fc 1072 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 1073 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1074 return 0;
1075 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
d4c430a8 1076 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1077 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1078 prot);
1079 } else if (env->cp15.c1_sys & (1 << 23)) {
1080 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
d4c430a8 1081 prot, page_size);
9ee6e8bb
PB
1082 } else {
1083 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
d4c430a8 1084 prot, page_size);
9ee6e8bb
PB
1085 }
1086}
1087
0ecb72a5 1088int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
97b348e7 1089 int access_type, int mmu_idx)
b5ff1b31
FB
1090{
1091 uint32_t phys_addr;
d4c430a8 1092 target_ulong page_size;
b5ff1b31 1093 int prot;
6ebbf390 1094 int ret, is_user;
b5ff1b31 1095
6ebbf390 1096 is_user = mmu_idx == MMU_USER_IDX;
d4c430a8
PB
1097 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1098 &page_size);
b5ff1b31
FB
1099 if (ret == 0) {
1100 /* Map a single [sub]page. */
1101 phys_addr &= ~(uint32_t)0x3ff;
1102 address &= ~(uint32_t)0x3ff;
3ad493fc 1103 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
d4c430a8 1104 return 0;
b5ff1b31
FB
1105 }
1106
1107 if (access_type == 2) {
1108 env->cp15.c5_insn = ret;
1109 env->cp15.c6_insn = address;
1110 env->exception_index = EXCP_PREFETCH_ABORT;
1111 } else {
1112 env->cp15.c5_data = ret;
9ee6e8bb
PB
1113 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1114 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
1115 env->cp15.c6_data = address;
1116 env->exception_index = EXCP_DATA_ABORT;
1117 }
1118 return 1;
1119}
1120
0ecb72a5 1121target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
b5ff1b31
FB
1122{
1123 uint32_t phys_addr;
d4c430a8 1124 target_ulong page_size;
b5ff1b31
FB
1125 int prot;
1126 int ret;
1127
d4c430a8 1128 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
b5ff1b31
FB
1129
1130 if (ret != 0)
1131 return -1;
1132
1133 return phys_addr;
1134}
1135
ce819861
PB
1136/* Return basic MPU access permission bits. */
1137static uint32_t simple_mpu_ap_bits(uint32_t val)
1138{
1139 uint32_t ret;
1140 uint32_t mask;
1141 int i;
1142 ret = 0;
1143 mask = 3;
1144 for (i = 0; i < 16; i += 2) {
1145 ret |= (val >> i) & mask;
1146 mask <<= 2;
1147 }
1148 return ret;
1149}
1150
1151/* Pad basic MPU access permission bits to extended format. */
1152static uint32_t extended_mpu_ap_bits(uint32_t val)
1153{
1154 uint32_t ret;
1155 uint32_t mask;
1156 int i;
1157 ret = 0;
1158 mask = 3;
1159 for (i = 0; i < 16; i += 2) {
1160 ret |= (val & mask) << i;
1161 mask <<= 2;
1162 }
1163 return ret;
1164}
1165
0ecb72a5 1166void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
b5ff1b31 1167{
9ee6e8bb
PB
1168 int op1;
1169 int op2;
1170 int crm;
b5ff1b31 1171
9ee6e8bb 1172 op1 = (insn >> 21) & 7;
b5ff1b31 1173 op2 = (insn >> 5) & 7;
ce819861 1174 crm = insn & 0xf;
b5ff1b31 1175 switch ((insn >> 16) & 0xf) {
9ee6e8bb 1176 case 0:
9ee6e8bb 1177 /* ID codes. */
610c3c8a
AZ
1178 if (arm_feature(env, ARM_FEATURE_XSCALE))
1179 break;
c3d2689d
AZ
1180 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1181 break;
a49ea279
PB
1182 if (arm_feature(env, ARM_FEATURE_V7)
1183 && op1 == 2 && crm == 0 && op2 == 0) {
1184 env->cp15.c0_cssel = val & 0xf;
1185 break;
1186 }
b5ff1b31
FB
1187 goto bad_reg;
1188 case 1: /* System configuration. */
2be27624
RH
1189 if (arm_feature(env, ARM_FEATURE_V7)
1190 && op1 == 0 && crm == 1 && op2 == 0) {
1191 env->cp15.c1_scr = val;
1192 break;
1193 }
c3d2689d
AZ
1194 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1195 op2 = 0;
b5ff1b31
FB
1196 switch (op2) {
1197 case 0:
ce819861 1198 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
c1713132 1199 env->cp15.c1_sys = val;
b5ff1b31
FB
1200 /* ??? Lots of these bits are not implemented. */
1201 /* This may enable/disable the MMU, so do a TLB flush. */
1202 tlb_flush(env, 1);
1203 break;
61cc8701 1204 case 1: /* Auxiliary control register. */
610c3c8a
AZ
1205 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1206 env->cp15.c1_xscaleauxcr = val;
c1713132 1207 break;
610c3c8a 1208 }
9ee6e8bb
PB
1209 /* Not implemented. */
1210 break;
b5ff1b31 1211 case 2:
610c3c8a
AZ
1212 if (arm_feature(env, ARM_FEATURE_XSCALE))
1213 goto bad_reg;
4be27dbb
PB
1214 if (env->cp15.c1_coproc != val) {
1215 env->cp15.c1_coproc = val;
1216 /* ??? Is this safe when called from within a TB? */
1217 tb_flush(env);
1218 }
c1713132 1219 break;
b5ff1b31
FB
1220 default:
1221 goto bad_reg;
1222 }
1223 break;
ce819861
PB
1224 case 2: /* MMU Page table control / MPU cache control. */
1225 if (arm_feature(env, ARM_FEATURE_MPU)) {
1226 switch (op2) {
1227 case 0:
1228 env->cp15.c2_data = val;
1229 break;
1230 case 1:
1231 env->cp15.c2_insn = val;
1232 break;
1233 default:
1234 goto bad_reg;
1235 }
1236 } else {
9ee6e8bb
PB
1237 switch (op2) {
1238 case 0:
1239 env->cp15.c2_base0 = val;
1240 break;
1241 case 1:
1242 env->cp15.c2_base1 = val;
1243 break;
1244 case 2:
b2fa1797
PB
1245 val &= 7;
1246 env->cp15.c2_control = val;
9ee6e8bb 1247 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
b2fa1797 1248 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
9ee6e8bb
PB
1249 break;
1250 default:
1251 goto bad_reg;
1252 }
ce819861 1253 }
b5ff1b31 1254 break;
ce819861 1255 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31 1256 env->cp15.c3 = val;
405ee3ad 1257 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
b5ff1b31
FB
1258 break;
1259 case 4: /* Reserved. */
1260 goto bad_reg;
ce819861 1261 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1262 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1263 op2 = 0;
b5ff1b31
FB
1264 switch (op2) {
1265 case 0:
ce819861
PB
1266 if (arm_feature(env, ARM_FEATURE_MPU))
1267 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1268 env->cp15.c5_data = val;
1269 break;
1270 case 1:
ce819861
PB
1271 if (arm_feature(env, ARM_FEATURE_MPU))
1272 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1273 env->cp15.c5_insn = val;
1274 break;
ce819861
PB
1275 case 2:
1276 if (!arm_feature(env, ARM_FEATURE_MPU))
1277 goto bad_reg;
1278 env->cp15.c5_data = val;
b5ff1b31 1279 break;
ce819861
PB
1280 case 3:
1281 if (!arm_feature(env, ARM_FEATURE_MPU))
1282 goto bad_reg;
1283 env->cp15.c5_insn = val;
b5ff1b31
FB
1284 break;
1285 default:
1286 goto bad_reg;
1287 }
1288 break;
ce819861
PB
1289 case 6: /* MMU Fault address / MPU base/size. */
1290 if (arm_feature(env, ARM_FEATURE_MPU)) {
1291 if (crm >= 8)
1292 goto bad_reg;
1293 env->cp15.c6_region[crm] = val;
1294 } else {
c3d2689d
AZ
1295 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1296 op2 = 0;
ce819861
PB
1297 switch (op2) {
1298 case 0:
1299 env->cp15.c6_data = val;
1300 break;
9ee6e8bb
PB
1301 case 1: /* ??? This is WFAR on armv6 */
1302 case 2:
ce819861
PB
1303 env->cp15.c6_insn = val;
1304 break;
1305 default:
1306 goto bad_reg;
1307 }
1308 }
1309 break;
b5ff1b31 1310 case 7: /* Cache control. */
c3d2689d
AZ
1311 env->cp15.c15_i_max = 0x000;
1312 env->cp15.c15_i_min = 0xff0;
f8bf8606
AL
1313 if (op1 != 0) {
1314 goto bad_reg;
1315 }
1316 /* No cache, so nothing to do except VA->PA translations. */
906879a9 1317 if (arm_feature(env, ARM_FEATURE_VAPA)) {
f8bf8606
AL
1318 switch (crm) {
1319 case 4:
1320 if (arm_feature(env, ARM_FEATURE_V7)) {
1321 env->cp15.c7_par = val & 0xfffff6ff;
1322 } else {
1323 env->cp15.c7_par = val & 0xfffff1ff;
1324 }
1325 break;
1326 case 8: {
1327 uint32_t phys_addr;
1328 target_ulong page_size;
1329 int prot;
1330 int ret, is_user = op2 & 2;
1331 int access_type = op2 & 1;
1332
1333 if (op2 & 4) {
1334 /* Other states are only available with TrustZone */
1335 goto bad_reg;
1336 }
1337 ret = get_phys_addr(env, val, access_type, is_user,
1338 &phys_addr, &prot, &page_size);
1339 if (ret == 0) {
1340 /* We do not set any attribute bits in the PAR */
1341 if (page_size == (1 << 24)
1342 && arm_feature(env, ARM_FEATURE_V7)) {
1343 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1344 } else {
1345 env->cp15.c7_par = phys_addr & 0xfffff000;
1346 }
1347 } else {
1348 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1349 ((ret & (12 << 1)) >> 6) |
1350 ((ret & 0xf) << 1) | 1;
1351 }
1352 break;
1353 }
1354 }
1355 }
b5ff1b31
FB
1356 break;
1357 case 8: /* MMU TLB control. */
1358 switch (op2) {
dc8714ca
PM
1359 case 0: /* Invalidate all (TLBIALL) */
1360 tlb_flush(env, 1);
b5ff1b31 1361 break;
dc8714ca 1362 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
d4c430a8 1363 tlb_flush_page(env, val & TARGET_PAGE_MASK);
b5ff1b31 1364 break;
dc8714ca 1365 case 2: /* Invalidate by ASID (TLBIASID) */
9ee6e8bb
PB
1366 tlb_flush(env, val == 0);
1367 break;
dc8714ca
PM
1368 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1369 tlb_flush_page(env, val & TARGET_PAGE_MASK);
9ee6e8bb 1370 break;
b5ff1b31
FB
1371 default:
1372 goto bad_reg;
1373 }
1374 break;
ce819861 1375 case 9:
c3d2689d
AZ
1376 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1377 break;
5bc95aa2
DES
1378 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1379 break; /* Ignore ReadBuffer access */
ce819861
PB
1380 switch (crm) {
1381 case 0: /* Cache lockdown. */
9ee6e8bb
PB
1382 switch (op1) {
1383 case 0: /* L1 cache. */
1384 switch (op2) {
1385 case 0:
1386 env->cp15.c9_data = val;
1387 break;
1388 case 1:
1389 env->cp15.c9_insn = val;
1390 break;
1391 default:
1392 goto bad_reg;
1393 }
1394 break;
1395 case 1: /* L2 cache. */
1396 /* Ignore writes to L2 lockdown/auxiliary registers. */
1397 break;
1398 default:
1399 goto bad_reg;
1400 }
1401 break;
ce819861
PB
1402 case 1: /* TCM memory region registers. */
1403 /* Not implemented. */
1404 goto bad_reg;
74594c9d
PM
1405 case 12: /* Performance monitor control */
1406 /* Performance monitors are implementation defined in v7,
1407 * but with an ARM recommended set of registers, which we
1408 * follow (although we don't actually implement any counters)
1409 */
1410 if (!arm_feature(env, ARM_FEATURE_V7)) {
1411 goto bad_reg;
1412 }
1413 switch (op2) {
1414 case 0: /* performance monitor control register */
1415 /* only the DP, X, D and E bits are writable */
1416 env->cp15.c9_pmcr &= ~0x39;
1417 env->cp15.c9_pmcr |= (val & 0x39);
1418 break;
1419 case 1: /* Count enable set register */
1420 val &= (1 << 31);
1421 env->cp15.c9_pmcnten |= val;
1422 break;
1423 case 2: /* Count enable clear */
1424 val &= (1 << 31);
1425 env->cp15.c9_pmcnten &= ~val;
1426 break;
1427 case 3: /* Overflow flag status */
1428 env->cp15.c9_pmovsr &= ~val;
1429 break;
1430 case 4: /* Software increment */
1431 /* RAZ/WI since we don't implement the software-count event */
1432 break;
1433 case 5: /* Event counter selection register */
1434 /* Since we don't implement any events, writing to this register
1435 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1436 */
1437 break;
1438 default:
1439 goto bad_reg;
1440 }
1441 break;
1442 case 13: /* Performance counters */
1443 if (!arm_feature(env, ARM_FEATURE_V7)) {
1444 goto bad_reg;
1445 }
1446 switch (op2) {
1447 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1448 break;
1449 case 1: /* Event type select */
1450 env->cp15.c9_pmxevtyper = val & 0xff;
1451 break;
1452 case 2: /* Event count register */
1453 /* Unimplemented (we have no events), RAZ/WI */
1454 break;
1455 default:
1456 goto bad_reg;
1457 }
1458 break;
1459 case 14: /* Performance monitor control */
1460 if (!arm_feature(env, ARM_FEATURE_V7)) {
1461 goto bad_reg;
1462 }
1463 switch (op2) {
1464 case 0: /* user enable */
1465 env->cp15.c9_pmuserenr = val & 1;
1466 /* changes access rights for cp registers, so flush tbs */
1467 tb_flush(env);
1468 break;
1469 case 1: /* interrupt enable set */
1470 /* We have no event counters so only the C bit can be changed */
1471 val &= (1 << 31);
1472 env->cp15.c9_pminten |= val;
1473 break;
1474 case 2: /* interrupt enable clear */
1475 val &= (1 << 31);
1476 env->cp15.c9_pminten &= ~val;
1477 break;
1478 }
1479 break;
b5ff1b31
FB
1480 default:
1481 goto bad_reg;
1482 }
1483 break;
1484 case 10: /* MMU TLB lockdown. */
1485 /* ??? TLB lockdown not implemented. */
1486 break;
b5ff1b31
FB
1487 case 12: /* Reserved. */
1488 goto bad_reg;
1489 case 13: /* Process ID. */
1490 switch (op2) {
1491 case 0:
d07edbfa
PB
1492 /* Unlike real hardware the qemu TLB uses virtual addresses,
1493 not modified virtual addresses, so this causes a TLB flush.
1494 */
1495 if (env->cp15.c13_fcse != val)
1496 tlb_flush(env, 1);
1497 env->cp15.c13_fcse = val;
b5ff1b31
FB
1498 break;
1499 case 1:
d07edbfa 1500 /* This changes the ASID, so do a TLB flush. */
ce819861
PB
1501 if (env->cp15.c13_context != val
1502 && !arm_feature(env, ARM_FEATURE_MPU))
d07edbfa
PB
1503 tlb_flush(env, 0);
1504 env->cp15.c13_context = val;
b5ff1b31
FB
1505 break;
1506 default:
1507 goto bad_reg;
1508 }
1509 break;
0383ac00
PM
1510 case 14: /* Generic timer */
1511 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1512 /* Dummy implementation: RAZ/WI for all */
1513 break;
1514 }
b5ff1b31
FB
1515 goto bad_reg;
1516 case 15: /* Implementation specific. */
c1713132 1517 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
ce819861 1518 if (op2 == 0 && crm == 1) {
2e23213f
AZ
1519 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1520 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1521 tb_flush(env);
1522 env->cp15.c15_cpar = val & 0x3fff;
1523 }
c1713132
AZ
1524 break;
1525 }
1526 goto bad_reg;
1527 }
c3d2689d
AZ
1528 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1529 switch (crm) {
1530 case 0:
1531 break;
1532 case 1: /* Set TI925T configuration. */
1533 env->cp15.c15_ticonfig = val & 0xe7;
1534 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1535 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1536 break;
1537 case 2: /* Set I_max. */
1538 env->cp15.c15_i_max = val;
1539 break;
1540 case 3: /* Set I_min. */
1541 env->cp15.c15_i_min = val;
1542 break;
1543 case 4: /* Set thread-ID. */
1544 env->cp15.c15_threadid = val & 0xffff;
1545 break;
1546 case 8: /* Wait-for-interrupt (deprecated). */
1547 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1548 break;
1549 default:
1550 goto bad_reg;
1551 }
1552 }
7da362d0
ML
1553 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1554 switch (crm) {
1555 case 0:
1556 if ((op1 == 0) && (op2 == 0)) {
1557 env->cp15.c15_power_control = val;
1558 } else if ((op1 == 0) && (op2 == 1)) {
1559 env->cp15.c15_diagnostic = val;
1560 } else if ((op1 == 0) && (op2 == 2)) {
1561 env->cp15.c15_power_diagnostic = val;
1562 }
1563 default:
1564 break;
1565 }
1566 }
b5ff1b31
FB
1567 break;
1568 }
1569 return;
1570bad_reg:
1571 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1572 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1573 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1574}
1575
0ecb72a5 1576uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
b5ff1b31 1577{
9ee6e8bb
PB
1578 int op1;
1579 int op2;
1580 int crm;
b5ff1b31 1581
9ee6e8bb 1582 op1 = (insn >> 21) & 7;
b5ff1b31 1583 op2 = (insn >> 5) & 7;
c3d2689d 1584 crm = insn & 0xf;
b5ff1b31
FB
1585 switch ((insn >> 16) & 0xf) {
1586 case 0: /* ID codes. */
9ee6e8bb
PB
1587 switch (op1) {
1588 case 0:
1589 switch (crm) {
1590 case 0:
1591 switch (op2) {
1592 case 0: /* Device ID. */
1593 return env->cp15.c0_cpuid;
1594 case 1: /* Cache Type. */
1595 return env->cp15.c0_cachetype;
1596 case 2: /* TCM status. */
1597 return 0;
1598 case 3: /* TLB type register. */
1599 return 0; /* No lockable TLB entries. */
607b4b08
PM
1600 case 5: /* MPIDR */
1601 /* The MPIDR was standardised in v7; prior to
1602 * this it was implemented only in the 11MPCore.
1603 * For all other pre-v7 cores it does not exist.
1604 */
1605 if (arm_feature(env, ARM_FEATURE_V7) ||
1606 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1607 int mpidr = env->cpu_index;
1608 /* We don't support setting cluster ID ([8..11])
1609 * so these bits always RAZ.
1610 */
1611 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1612 mpidr |= (1 << 31);
1613 /* Cores which are uniprocessor (non-coherent)
1614 * but still implement the MP extensions set
1615 * bit 30. (For instance, A9UP.) However we do
1616 * not currently model any of those cores.
1617 */
1618 }
1619 return mpidr;
10055562 1620 }
607b4b08 1621 /* otherwise fall through to the unimplemented-reg case */
9ee6e8bb
PB
1622 default:
1623 goto bad_reg;
1624 }
1625 case 1:
1626 if (!arm_feature(env, ARM_FEATURE_V6))
1627 goto bad_reg;
1628 return env->cp15.c0_c1[op2];
1629 case 2:
1630 if (!arm_feature(env, ARM_FEATURE_V6))
1631 goto bad_reg;
1632 return env->cp15.c0_c2[op2];
1633 case 3: case 4: case 5: case 6: case 7:
1634 return 0;
1635 default:
1636 goto bad_reg;
1637 }
1638 case 1:
1639 /* These registers aren't documented on arm11 cores. However
1640 Linux looks at them anyway. */
1641 if (!arm_feature(env, ARM_FEATURE_V6))
1642 goto bad_reg;
1643 if (crm != 0)
1644 goto bad_reg;
a49ea279
PB
1645 if (!arm_feature(env, ARM_FEATURE_V7))
1646 return 0;
1647
1648 switch (op2) {
1649 case 0:
1650 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1651 case 1:
1652 return env->cp15.c0_clid;
1653 case 7:
1654 return 0;
1655 }
1656 goto bad_reg;
1657 case 2:
1658 if (op2 != 0 || crm != 0)
610c3c8a 1659 goto bad_reg;
a49ea279 1660 return env->cp15.c0_cssel;
9ee6e8bb
PB
1661 default:
1662 goto bad_reg;
b5ff1b31
FB
1663 }
1664 case 1: /* System configuration. */
2be27624
RH
1665 if (arm_feature(env, ARM_FEATURE_V7)
1666 && op1 == 0 && crm == 1 && op2 == 0) {
1667 return env->cp15.c1_scr;
1668 }
c3d2689d
AZ
1669 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1670 op2 = 0;
b5ff1b31
FB
1671 switch (op2) {
1672 case 0: /* Control register. */
1673 return env->cp15.c1_sys;
1674 case 1: /* Auxiliary control register. */
c1713132 1675 if (arm_feature(env, ARM_FEATURE_XSCALE))
610c3c8a 1676 return env->cp15.c1_xscaleauxcr;
9ee6e8bb
PB
1677 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1678 goto bad_reg;
1679 switch (ARM_CPUID(env)) {
1680 case ARM_CPUID_ARM1026:
1681 return 1;
1682 case ARM_CPUID_ARM1136:
827df9f3 1683 case ARM_CPUID_ARM1136_R2:
7807eed9 1684 case ARM_CPUID_ARM1176:
9ee6e8bb
PB
1685 return 7;
1686 case ARM_CPUID_ARM11MPCORE:
1687 return 1;
1688 case ARM_CPUID_CORTEXA8:
533d177a 1689 return 2;
10055562 1690 case ARM_CPUID_CORTEXA9:
0b03bdfc 1691 case ARM_CPUID_CORTEXA15:
10055562 1692 return 0;
9ee6e8bb
PB
1693 default:
1694 goto bad_reg;
1695 }
b5ff1b31 1696 case 2: /* Coprocessor access register. */
610c3c8a
AZ
1697 if (arm_feature(env, ARM_FEATURE_XSCALE))
1698 goto bad_reg;
b5ff1b31
FB
1699 return env->cp15.c1_coproc;
1700 default:
1701 goto bad_reg;
1702 }
ce819861
PB
1703 case 2: /* MMU Page table control / MPU cache control. */
1704 if (arm_feature(env, ARM_FEATURE_MPU)) {
1705 switch (op2) {
1706 case 0:
1707 return env->cp15.c2_data;
1708 break;
1709 case 1:
1710 return env->cp15.c2_insn;
1711 break;
1712 default:
1713 goto bad_reg;
1714 }
1715 } else {
9ee6e8bb
PB
1716 switch (op2) {
1717 case 0:
1718 return env->cp15.c2_base0;
1719 case 1:
1720 return env->cp15.c2_base1;
1721 case 2:
b2fa1797 1722 return env->cp15.c2_control;
9ee6e8bb
PB
1723 default:
1724 goto bad_reg;
1725 }
1726 }
ce819861 1727 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31
FB
1728 return env->cp15.c3;
1729 case 4: /* Reserved. */
1730 goto bad_reg;
ce819861 1731 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1732 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1733 op2 = 0;
b5ff1b31
FB
1734 switch (op2) {
1735 case 0:
ce819861
PB
1736 if (arm_feature(env, ARM_FEATURE_MPU))
1737 return simple_mpu_ap_bits(env->cp15.c5_data);
b5ff1b31
FB
1738 return env->cp15.c5_data;
1739 case 1:
ce819861 1740 if (arm_feature(env, ARM_FEATURE_MPU))
4de47793 1741 return simple_mpu_ap_bits(env->cp15.c5_insn);
ce819861
PB
1742 return env->cp15.c5_insn;
1743 case 2:
1744 if (!arm_feature(env, ARM_FEATURE_MPU))
1745 goto bad_reg;
1746 return env->cp15.c5_data;
1747 case 3:
1748 if (!arm_feature(env, ARM_FEATURE_MPU))
1749 goto bad_reg;
b5ff1b31
FB
1750 return env->cp15.c5_insn;
1751 default:
1752 goto bad_reg;
1753 }
9ee6e8bb 1754 case 6: /* MMU Fault address. */
ce819861 1755 if (arm_feature(env, ARM_FEATURE_MPU)) {
9ee6e8bb 1756 if (crm >= 8)
ce819861 1757 goto bad_reg;
9ee6e8bb 1758 return env->cp15.c6_region[crm];
ce819861 1759 } else {
c3d2689d
AZ
1760 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1761 op2 = 0;
9ee6e8bb
PB
1762 switch (op2) {
1763 case 0:
1764 return env->cp15.c6_data;
1765 case 1:
1766 if (arm_feature(env, ARM_FEATURE_V6)) {
1767 /* Watchpoint Fault Adrress. */
1768 return 0; /* Not implemented. */
1769 } else {
1770 /* Instruction Fault Adrress. */
1771 /* Arm9 doesn't have an IFAR, but implementing it anyway
1772 shouldn't do any harm. */
1773 return env->cp15.c6_insn;
1774 }
1775 case 2:
1776 if (arm_feature(env, ARM_FEATURE_V6)) {
1777 /* Instruction Fault Adrress. */
1778 return env->cp15.c6_insn;
1779 } else {
1780 goto bad_reg;
1781 }
1782 default:
1783 goto bad_reg;
1784 }
b5ff1b31
FB
1785 }
1786 case 7: /* Cache control. */
f8bf8606
AL
1787 if (crm == 4 && op1 == 0 && op2 == 0) {
1788 return env->cp15.c7_par;
1789 }
6fbe23d5
PB
1790 /* FIXME: Should only clear Z flag if destination is r15. */
1791 env->ZF = 0;
b5ff1b31
FB
1792 return 0;
1793 case 8: /* MMU TLB control. */
1794 goto bad_reg;
74594c9d
PM
1795 case 9:
1796 switch (crm) {
1797 case 0: /* Cache lockdown */
1798 switch (op1) {
1799 case 0: /* L1 cache. */
1800 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1801 return 0;
1802 }
1803 switch (op2) {
1804 case 0:
1805 return env->cp15.c9_data;
1806 case 1:
1807 return env->cp15.c9_insn;
1808 default:
1809 goto bad_reg;
1810 }
1811 case 1: /* L2 cache */
0b03bdfc
PM
1812 /* L2 Lockdown and Auxiliary control. */
1813 switch (op2) {
1814 case 0:
1815 /* L2 cache lockdown (A8 only) */
1816 return 0;
1817 case 2:
1818 /* L2 cache auxiliary control (A8) or control (A15) */
1819 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
1820 /* Linux wants the number of processors from here.
1821 * Might as well set the interrupt-controller bit too.
1822 */
1823 return ((smp_cpus - 1) << 24) | (1 << 23);
1824 }
1825 return 0;
1826 case 3:
1827 /* L2 cache extended control (A15) */
1828 return 0;
1829 default:
74594c9d
PM
1830 goto bad_reg;
1831 }
74594c9d
PM
1832 default:
1833 goto bad_reg;
1834 }
1835 break;
1836 case 12: /* Performance monitor control */
1837 if (!arm_feature(env, ARM_FEATURE_V7)) {
1838 goto bad_reg;
1839 }
9ee6e8bb 1840 switch (op2) {
74594c9d
PM
1841 case 0: /* performance monitor control register */
1842 return env->cp15.c9_pmcr;
1843 case 1: /* count enable set */
1844 case 2: /* count enable clear */
1845 return env->cp15.c9_pmcnten;
1846 case 3: /* overflow flag status */
1847 return env->cp15.c9_pmovsr;
1848 case 4: /* software increment */
1849 case 5: /* event counter selection register */
1850 return 0; /* Unimplemented, RAZ/WI */
9ee6e8bb
PB
1851 default:
1852 goto bad_reg;
1853 }
74594c9d
PM
1854 case 13: /* Performance counters */
1855 if (!arm_feature(env, ARM_FEATURE_V7)) {
1856 goto bad_reg;
1857 }
1858 switch (op2) {
1859 case 1: /* Event type select */
1860 return env->cp15.c9_pmxevtyper;
1861 case 0: /* Cycle count register */
1862 case 2: /* Event count register */
1863 /* Unimplemented, so RAZ/WI */
1864 return 0;
1865 default:
9ee6e8bb 1866 goto bad_reg;
74594c9d
PM
1867 }
1868 case 14: /* Performance monitor control */
1869 if (!arm_feature(env, ARM_FEATURE_V7)) {
1870 goto bad_reg;
1871 }
1872 switch (op2) {
1873 case 0: /* user enable */
1874 return env->cp15.c9_pmuserenr;
1875 case 1: /* interrupt enable set */
1876 case 2: /* interrupt enable clear */
1877 return env->cp15.c9_pminten;
1878 default:
1879 goto bad_reg;
1880 }
b5ff1b31
FB
1881 default:
1882 goto bad_reg;
1883 }
74594c9d 1884 break;
b5ff1b31
FB
1885 case 10: /* MMU TLB lockdown. */
1886 /* ??? TLB lockdown not implemented. */
1887 return 0;
1888 case 11: /* TCM DMA control. */
1889 case 12: /* Reserved. */
1890 goto bad_reg;
1891 case 13: /* Process ID. */
1892 switch (op2) {
1893 case 0:
1894 return env->cp15.c13_fcse;
1895 case 1:
1896 return env->cp15.c13_context;
1897 default:
1898 goto bad_reg;
1899 }
0383ac00
PM
1900 case 14: /* Generic timer */
1901 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1902 /* Dummy implementation: RAZ/WI for all */
1903 return 0;
1904 }
b5ff1b31
FB
1905 goto bad_reg;
1906 case 15: /* Implementation specific. */
c1713132 1907 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
c3d2689d 1908 if (op2 == 0 && crm == 1)
c1713132
AZ
1909 return env->cp15.c15_cpar;
1910
1911 goto bad_reg;
1912 }
c3d2689d
AZ
1913 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1914 switch (crm) {
1915 case 0:
1916 return 0;
1917 case 1: /* Read TI925T configuration. */
1918 return env->cp15.c15_ticonfig;
1919 case 2: /* Read I_max. */
1920 return env->cp15.c15_i_max;
1921 case 3: /* Read I_min. */
1922 return env->cp15.c15_i_min;
1923 case 4: /* Read thread-ID. */
1924 return env->cp15.c15_threadid;
1925 case 8: /* TI925T_status */
1926 return 0;
1927 }
827df9f3
AZ
1928 /* TODO: Peripheral port remap register:
1929 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1930 * controller base address at $rn & ~0xfff and map size of
1931 * 0x200 << ($rn & 0xfff), when MMU is off. */
c3d2689d
AZ
1932 goto bad_reg;
1933 }
7da362d0
ML
1934 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1935 switch (crm) {
1936 case 0:
1937 if ((op1 == 4) && (op2 == 0)) {
1938 /* The config_base_address should hold the value of
1939 * the peripheral base. ARM should get this from a CPU
1940 * object property, but that support isn't available in
1941 * December 2011. Default to 0 for now and board models
1942 * that care can set it by a private hook */
1943 return env->cp15.c15_config_base_address;
1944 } else if ((op1 == 0) && (op2 == 0)) {
1945 /* power_control should be set to maximum latency. Again,
1946 default to 0 and set by private hook */
1947 return env->cp15.c15_power_control;
1948 } else if ((op1 == 0) && (op2 == 1)) {
1949 return env->cp15.c15_diagnostic;
1950 } else if ((op1 == 0) && (op2 == 2)) {
1951 return env->cp15.c15_power_diagnostic;
1952 }
1953 break;
1954 case 1: /* NEON Busy */
1955 return 0;
1956 case 5: /* tlb lockdown */
1957 case 6:
1958 case 7:
1959 if ((op1 == 5) && (op2 == 2)) {
1960 return 0;
1961 }
1962 break;
1963 default:
1964 break;
1965 }
1966 goto bad_reg;
1967 }
b5ff1b31
FB
1968 return 0;
1969 }
1970bad_reg:
1971 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1972 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1973 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1974 return 0;
1975}
1976
0ecb72a5 1977void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 1978{
39ea3d4e
PM
1979 if ((env->uncached_cpsr & CPSR_M) == mode) {
1980 env->regs[13] = val;
1981 } else {
1b9e01c1 1982 env->banked_r13[bank_number(env, mode)] = val;
39ea3d4e 1983 }
9ee6e8bb
PB
1984}
1985
0ecb72a5 1986uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 1987{
39ea3d4e
PM
1988 if ((env->uncached_cpsr & CPSR_M) == mode) {
1989 return env->regs[13];
1990 } else {
1b9e01c1 1991 return env->banked_r13[bank_number(env, mode)];
39ea3d4e 1992 }
9ee6e8bb
PB
1993}
1994
0ecb72a5 1995uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
1996{
1997 switch (reg) {
1998 case 0: /* APSR */
1999 return xpsr_read(env) & 0xf8000000;
2000 case 1: /* IAPSR */
2001 return xpsr_read(env) & 0xf80001ff;
2002 case 2: /* EAPSR */
2003 return xpsr_read(env) & 0xff00fc00;
2004 case 3: /* xPSR */
2005 return xpsr_read(env) & 0xff00fdff;
2006 case 5: /* IPSR */
2007 return xpsr_read(env) & 0x000001ff;
2008 case 6: /* EPSR */
2009 return xpsr_read(env) & 0x0700fc00;
2010 case 7: /* IEPSR */
2011 return xpsr_read(env) & 0x0700edff;
2012 case 8: /* MSP */
2013 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2014 case 9: /* PSP */
2015 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2016 case 16: /* PRIMASK */
2017 return (env->uncached_cpsr & CPSR_I) != 0;
82845826
SH
2018 case 17: /* BASEPRI */
2019 case 18: /* BASEPRI_MAX */
9ee6e8bb 2020 return env->v7m.basepri;
82845826
SH
2021 case 19: /* FAULTMASK */
2022 return (env->uncached_cpsr & CPSR_F) != 0;
9ee6e8bb
PB
2023 case 20: /* CONTROL */
2024 return env->v7m.control;
2025 default:
2026 /* ??? For debugging only. */
2027 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2028 return 0;
2029 }
2030}
2031
0ecb72a5 2032void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
2033{
2034 switch (reg) {
2035 case 0: /* APSR */
2036 xpsr_write(env, val, 0xf8000000);
2037 break;
2038 case 1: /* IAPSR */
2039 xpsr_write(env, val, 0xf8000000);
2040 break;
2041 case 2: /* EAPSR */
2042 xpsr_write(env, val, 0xfe00fc00);
2043 break;
2044 case 3: /* xPSR */
2045 xpsr_write(env, val, 0xfe00fc00);
2046 break;
2047 case 5: /* IPSR */
2048 /* IPSR bits are readonly. */
2049 break;
2050 case 6: /* EPSR */
2051 xpsr_write(env, val, 0x0600fc00);
2052 break;
2053 case 7: /* IEPSR */
2054 xpsr_write(env, val, 0x0600fc00);
2055 break;
2056 case 8: /* MSP */
2057 if (env->v7m.current_sp)
2058 env->v7m.other_sp = val;
2059 else
2060 env->regs[13] = val;
2061 break;
2062 case 9: /* PSP */
2063 if (env->v7m.current_sp)
2064 env->regs[13] = val;
2065 else
2066 env->v7m.other_sp = val;
2067 break;
2068 case 16: /* PRIMASK */
2069 if (val & 1)
2070 env->uncached_cpsr |= CPSR_I;
2071 else
2072 env->uncached_cpsr &= ~CPSR_I;
2073 break;
82845826 2074 case 17: /* BASEPRI */
9ee6e8bb
PB
2075 env->v7m.basepri = val & 0xff;
2076 break;
82845826 2077 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
2078 val &= 0xff;
2079 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2080 env->v7m.basepri = val;
2081 break;
82845826
SH
2082 case 19: /* FAULTMASK */
2083 if (val & 1)
2084 env->uncached_cpsr |= CPSR_F;
2085 else
2086 env->uncached_cpsr &= ~CPSR_F;
2087 break;
9ee6e8bb
PB
2088 case 20: /* CONTROL */
2089 env->v7m.control = val & 3;
2090 switch_v7m_sp(env, (val & 2) != 0);
2091 break;
2092 default:
2093 /* ??? For debugging only. */
2094 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2095 return;
2096 }
2097}
2098
b5ff1b31 2099#endif
6ddbc6e4
PB
2100
2101/* Note that signed overflow is undefined in C. The following routines are
2102 careful to use unsigned types where modulo arithmetic is required.
2103 Failure to do so _will_ break on newer gcc. */
2104
2105/* Signed saturating arithmetic. */
2106
1654b2d6 2107/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
2108static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2109{
2110 uint16_t res;
2111
2112 res = a + b;
2113 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2114 if (a & 0x8000)
2115 res = 0x8000;
2116 else
2117 res = 0x7fff;
2118 }
2119 return res;
2120}
2121
1654b2d6 2122/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
2123static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2124{
2125 uint8_t res;
2126
2127 res = a + b;
2128 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2129 if (a & 0x80)
2130 res = 0x80;
2131 else
2132 res = 0x7f;
2133 }
2134 return res;
2135}
2136
1654b2d6 2137/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
2138static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2139{
2140 uint16_t res;
2141
2142 res = a - b;
2143 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2144 if (a & 0x8000)
2145 res = 0x8000;
2146 else
2147 res = 0x7fff;
2148 }
2149 return res;
2150}
2151
1654b2d6 2152/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
2153static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2154{
2155 uint8_t res;
2156
2157 res = a - b;
2158 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2159 if (a & 0x80)
2160 res = 0x80;
2161 else
2162 res = 0x7f;
2163 }
2164 return res;
2165}
2166
2167#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2168#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2169#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2170#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2171#define PFX q
2172
2173#include "op_addsub.h"
2174
2175/* Unsigned saturating arithmetic. */
460a09c1 2176static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
2177{
2178 uint16_t res;
2179 res = a + b;
2180 if (res < a)
2181 res = 0xffff;
2182 return res;
2183}
2184
460a09c1 2185static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 2186{
4c4fd3f8 2187 if (a > b)
6ddbc6e4
PB
2188 return a - b;
2189 else
2190 return 0;
2191}
2192
2193static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2194{
2195 uint8_t res;
2196 res = a + b;
2197 if (res < a)
2198 res = 0xff;
2199 return res;
2200}
2201
2202static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2203{
4c4fd3f8 2204 if (a > b)
6ddbc6e4
PB
2205 return a - b;
2206 else
2207 return 0;
2208}
2209
2210#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2211#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2212#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2213#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2214#define PFX uq
2215
2216#include "op_addsub.h"
2217
2218/* Signed modulo arithmetic. */
2219#define SARITH16(a, b, n, op) do { \
2220 int32_t sum; \
db6e2e65 2221 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
2222 RESULT(sum, n, 16); \
2223 if (sum >= 0) \
2224 ge |= 3 << (n * 2); \
2225 } while(0)
2226
2227#define SARITH8(a, b, n, op) do { \
2228 int32_t sum; \
db6e2e65 2229 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
2230 RESULT(sum, n, 8); \
2231 if (sum >= 0) \
2232 ge |= 1 << n; \
2233 } while(0)
2234
2235
2236#define ADD16(a, b, n) SARITH16(a, b, n, +)
2237#define SUB16(a, b, n) SARITH16(a, b, n, -)
2238#define ADD8(a, b, n) SARITH8(a, b, n, +)
2239#define SUB8(a, b, n) SARITH8(a, b, n, -)
2240#define PFX s
2241#define ARITH_GE
2242
2243#include "op_addsub.h"
2244
2245/* Unsigned modulo arithmetic. */
2246#define ADD16(a, b, n) do { \
2247 uint32_t sum; \
2248 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2249 RESULT(sum, n, 16); \
a87aa10b 2250 if ((sum >> 16) == 1) \
6ddbc6e4
PB
2251 ge |= 3 << (n * 2); \
2252 } while(0)
2253
2254#define ADD8(a, b, n) do { \
2255 uint32_t sum; \
2256 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2257 RESULT(sum, n, 8); \
a87aa10b
AZ
2258 if ((sum >> 8) == 1) \
2259 ge |= 1 << n; \
6ddbc6e4
PB
2260 } while(0)
2261
2262#define SUB16(a, b, n) do { \
2263 uint32_t sum; \
2264 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2265 RESULT(sum, n, 16); \
2266 if ((sum >> 16) == 0) \
2267 ge |= 3 << (n * 2); \
2268 } while(0)
2269
2270#define SUB8(a, b, n) do { \
2271 uint32_t sum; \
2272 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2273 RESULT(sum, n, 8); \
2274 if ((sum >> 8) == 0) \
a87aa10b 2275 ge |= 1 << n; \
6ddbc6e4
PB
2276 } while(0)
2277
2278#define PFX u
2279#define ARITH_GE
2280
2281#include "op_addsub.h"
2282
2283/* Halved signed arithmetic. */
2284#define ADD16(a, b, n) \
2285 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2286#define SUB16(a, b, n) \
2287 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2288#define ADD8(a, b, n) \
2289 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2290#define SUB8(a, b, n) \
2291 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2292#define PFX sh
2293
2294#include "op_addsub.h"
2295
2296/* Halved unsigned arithmetic. */
2297#define ADD16(a, b, n) \
2298 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2299#define SUB16(a, b, n) \
2300 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2301#define ADD8(a, b, n) \
2302 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2303#define SUB8(a, b, n) \
2304 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2305#define PFX uh
2306
2307#include "op_addsub.h"
2308
2309static inline uint8_t do_usad(uint8_t a, uint8_t b)
2310{
2311 if (a > b)
2312 return a - b;
2313 else
2314 return b - a;
2315}
2316
2317/* Unsigned sum of absolute byte differences. */
2318uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2319{
2320 uint32_t sum;
2321 sum = do_usad(a, b);
2322 sum += do_usad(a >> 8, b >> 8);
2323 sum += do_usad(a >> 16, b >>16);
2324 sum += do_usad(a >> 24, b >> 24);
2325 return sum;
2326}
2327
2328/* For ARMv6 SEL instruction. */
2329uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2330{
2331 uint32_t mask;
2332
2333 mask = 0;
2334 if (flags & 1)
2335 mask |= 0xff;
2336 if (flags & 2)
2337 mask |= 0xff00;
2338 if (flags & 4)
2339 mask |= 0xff0000;
2340 if (flags & 8)
2341 mask |= 0xff000000;
2342 return (a & mask) | (b & ~mask);
2343}
2344
5e3f878a
PB
2345uint32_t HELPER(logicq_cc)(uint64_t val)
2346{
2347 return (val >> 32) | (val != 0);
2348}
4373f3ce
PB
2349
2350/* VFP support. We follow the convention used for VFP instrunctions:
2351 Single precition routines have a "s" suffix, double precision a
2352 "d" suffix. */
2353
2354/* Convert host exception flags to vfp form. */
2355static inline int vfp_exceptbits_from_host(int host_bits)
2356{
2357 int target_bits = 0;
2358
2359 if (host_bits & float_flag_invalid)
2360 target_bits |= 1;
2361 if (host_bits & float_flag_divbyzero)
2362 target_bits |= 2;
2363 if (host_bits & float_flag_overflow)
2364 target_bits |= 4;
36802b6b 2365 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
2366 target_bits |= 8;
2367 if (host_bits & float_flag_inexact)
2368 target_bits |= 0x10;
cecd8504
PM
2369 if (host_bits & float_flag_input_denormal)
2370 target_bits |= 0x80;
4373f3ce
PB
2371 return target_bits;
2372}
2373
0ecb72a5 2374uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
2375{
2376 int i;
2377 uint32_t fpscr;
2378
2379 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2380 | (env->vfp.vec_len << 16)
2381 | (env->vfp.vec_stride << 20);
2382 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 2383 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
2384 fpscr |= vfp_exceptbits_from_host(i);
2385 return fpscr;
2386}
2387
0ecb72a5 2388uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
2389{
2390 return HELPER(vfp_get_fpscr)(env);
2391}
2392
4373f3ce
PB
2393/* Convert vfp exception flags to target form. */
2394static inline int vfp_exceptbits_to_host(int target_bits)
2395{
2396 int host_bits = 0;
2397
2398 if (target_bits & 1)
2399 host_bits |= float_flag_invalid;
2400 if (target_bits & 2)
2401 host_bits |= float_flag_divbyzero;
2402 if (target_bits & 4)
2403 host_bits |= float_flag_overflow;
2404 if (target_bits & 8)
2405 host_bits |= float_flag_underflow;
2406 if (target_bits & 0x10)
2407 host_bits |= float_flag_inexact;
cecd8504
PM
2408 if (target_bits & 0x80)
2409 host_bits |= float_flag_input_denormal;
4373f3ce
PB
2410 return host_bits;
2411}
2412
0ecb72a5 2413void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
2414{
2415 int i;
2416 uint32_t changed;
2417
2418 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2419 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2420 env->vfp.vec_len = (val >> 16) & 7;
2421 env->vfp.vec_stride = (val >> 20) & 3;
2422
2423 changed ^= val;
2424 if (changed & (3 << 22)) {
2425 i = (val >> 22) & 3;
2426 switch (i) {
2427 case 0:
2428 i = float_round_nearest_even;
2429 break;
2430 case 1:
2431 i = float_round_up;
2432 break;
2433 case 2:
2434 i = float_round_down;
2435 break;
2436 case 3:
2437 i = float_round_to_zero;
2438 break;
2439 }
2440 set_float_rounding_mode(i, &env->vfp.fp_status);
2441 }
cecd8504 2442 if (changed & (1 << 24)) {
fe76d976 2443 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
2444 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2445 }
5c7908ed
PB
2446 if (changed & (1 << 25))
2447 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 2448
b12c390b 2449 i = vfp_exceptbits_to_host(val);
4373f3ce 2450 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 2451 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
2452}
2453
0ecb72a5 2454void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
2455{
2456 HELPER(vfp_set_fpscr)(env, val);
2457}
2458
4373f3ce
PB
2459#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2460
2461#define VFP_BINOP(name) \
ae1857ec 2462float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 2463{ \
ae1857ec
PM
2464 float_status *fpst = fpstp; \
2465 return float32_ ## name(a, b, fpst); \
4373f3ce 2466} \
ae1857ec 2467float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 2468{ \
ae1857ec
PM
2469 float_status *fpst = fpstp; \
2470 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
2471}
2472VFP_BINOP(add)
2473VFP_BINOP(sub)
2474VFP_BINOP(mul)
2475VFP_BINOP(div)
2476#undef VFP_BINOP
2477
2478float32 VFP_HELPER(neg, s)(float32 a)
2479{
2480 return float32_chs(a);
2481}
2482
2483float64 VFP_HELPER(neg, d)(float64 a)
2484{
66230e0d 2485 return float64_chs(a);
4373f3ce
PB
2486}
2487
2488float32 VFP_HELPER(abs, s)(float32 a)
2489{
2490 return float32_abs(a);
2491}
2492
2493float64 VFP_HELPER(abs, d)(float64 a)
2494{
66230e0d 2495 return float64_abs(a);
4373f3ce
PB
2496}
2497
0ecb72a5 2498float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
2499{
2500 return float32_sqrt(a, &env->vfp.fp_status);
2501}
2502
0ecb72a5 2503float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
2504{
2505 return float64_sqrt(a, &env->vfp.fp_status);
2506}
2507
2508/* XXX: check quiet/signaling case */
2509#define DO_VFP_cmp(p, type) \
0ecb72a5 2510void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
2511{ \
2512 uint32_t flags; \
2513 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2514 case 0: flags = 0x6; break; \
2515 case -1: flags = 0x8; break; \
2516 case 1: flags = 0x2; break; \
2517 default: case 2: flags = 0x3; break; \
2518 } \
2519 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2520 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2521} \
0ecb72a5 2522void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
2523{ \
2524 uint32_t flags; \
2525 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2526 case 0: flags = 0x6; break; \
2527 case -1: flags = 0x8; break; \
2528 case 1: flags = 0x2; break; \
2529 default: case 2: flags = 0x3; break; \
2530 } \
2531 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2532 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2533}
2534DO_VFP_cmp(s, float32)
2535DO_VFP_cmp(d, float64)
2536#undef DO_VFP_cmp
2537
5500b06c 2538/* Integer to float and float to integer conversions */
4373f3ce 2539
5500b06c
PM
2540#define CONV_ITOF(name, fsz, sign) \
2541 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2542{ \
2543 float_status *fpst = fpstp; \
85836979 2544 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
2545}
2546
5500b06c
PM
2547#define CONV_FTOI(name, fsz, sign, round) \
2548uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2549{ \
2550 float_status *fpst = fpstp; \
2551 if (float##fsz##_is_any_nan(x)) { \
2552 float_raise(float_flag_invalid, fpst); \
2553 return 0; \
2554 } \
2555 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
2556}
2557
5500b06c
PM
2558#define FLOAT_CONVS(name, p, fsz, sign) \
2559CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2560CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2561CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 2562
5500b06c
PM
2563FLOAT_CONVS(si, s, 32, )
2564FLOAT_CONVS(si, d, 64, )
2565FLOAT_CONVS(ui, s, 32, u)
2566FLOAT_CONVS(ui, d, 64, u)
4373f3ce 2567
5500b06c
PM
2568#undef CONV_ITOF
2569#undef CONV_FTOI
2570#undef FLOAT_CONVS
4373f3ce
PB
2571
2572/* floating point conversion */
0ecb72a5 2573float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 2574{
2d627737
PM
2575 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2576 /* ARM requires that S<->D conversion of any kind of NaN generates
2577 * a quiet NaN by forcing the most significant frac bit to 1.
2578 */
2579 return float64_maybe_silence_nan(r);
4373f3ce
PB
2580}
2581
0ecb72a5 2582float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 2583{
2d627737
PM
2584 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2585 /* ARM requires that S<->D conversion of any kind of NaN generates
2586 * a quiet NaN by forcing the most significant frac bit to 1.
2587 */
2588 return float32_maybe_silence_nan(r);
4373f3ce
PB
2589}
2590
2591/* VFP3 fixed point conversion. */
622465e1 2592#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
5500b06c
PM
2593float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2594 void *fpstp) \
4373f3ce 2595{ \
5500b06c 2596 float_status *fpst = fpstp; \
622465e1 2597 float##fsz tmp; \
5500b06c
PM
2598 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2599 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4373f3ce 2600} \
5500b06c
PM
2601uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2602 void *fpstp) \
4373f3ce 2603{ \
5500b06c 2604 float_status *fpst = fpstp; \
622465e1
PM
2605 float##fsz tmp; \
2606 if (float##fsz##_is_any_nan(x)) { \
5500b06c 2607 float_raise(float_flag_invalid, fpst); \
622465e1 2608 return 0; \
09d9487f 2609 } \
5500b06c
PM
2610 tmp = float##fsz##_scalbn(x, shift, fpst); \
2611 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
622465e1
PM
2612}
2613
2614VFP_CONV_FIX(sh, d, 64, int16, )
2615VFP_CONV_FIX(sl, d, 64, int32, )
2616VFP_CONV_FIX(uh, d, 64, uint16, u)
2617VFP_CONV_FIX(ul, d, 64, uint32, u)
2618VFP_CONV_FIX(sh, s, 32, int16, )
2619VFP_CONV_FIX(sl, s, 32, int32, )
2620VFP_CONV_FIX(uh, s, 32, uint16, u)
2621VFP_CONV_FIX(ul, s, 32, uint32, u)
4373f3ce
PB
2622#undef VFP_CONV_FIX
2623
60011498 2624/* Half precision conversions. */
0ecb72a5 2625static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 2626{
60011498 2627 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
2628 float32 r = float16_to_float32(make_float16(a), ieee, s);
2629 if (ieee) {
2630 return float32_maybe_silence_nan(r);
2631 }
2632 return r;
60011498
PB
2633}
2634
0ecb72a5 2635static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 2636{
60011498 2637 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
2638 float16 r = float32_to_float16(a, ieee, s);
2639 if (ieee) {
2640 r = float16_maybe_silence_nan(r);
2641 }
2642 return float16_val(r);
60011498
PB
2643}
2644
0ecb72a5 2645float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
2646{
2647 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2648}
2649
0ecb72a5 2650uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
2651{
2652 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2653}
2654
0ecb72a5 2655float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
2656{
2657 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2658}
2659
0ecb72a5 2660uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
2661{
2662 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2663}
2664
dda3ec49 2665#define float32_two make_float32(0x40000000)
6aae3df1
PM
2666#define float32_three make_float32(0x40400000)
2667#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 2668
0ecb72a5 2669float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 2670{
dda3ec49
PM
2671 float_status *s = &env->vfp.standard_fp_status;
2672 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2673 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
2674 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2675 float_raise(float_flag_input_denormal, s);
2676 }
dda3ec49
PM
2677 return float32_two;
2678 }
2679 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
2680}
2681
0ecb72a5 2682float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 2683{
71826966 2684 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
2685 float32 product;
2686 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2687 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
2688 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2689 float_raise(float_flag_input_denormal, s);
2690 }
6aae3df1 2691 return float32_one_point_five;
9ea62f57 2692 }
6aae3df1
PM
2693 product = float32_mul(a, b, s);
2694 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
2695}
2696
8f8e3aa4
PB
2697/* NEON helpers. */
2698
56bf4fe2
CL
2699/* Constants 256 and 512 are used in some helpers; we avoid relying on
2700 * int->float conversions at run-time. */
2701#define float64_256 make_float64(0x4070000000000000LL)
2702#define float64_512 make_float64(0x4080000000000000LL)
2703
fe0e4872
CL
2704/* The algorithm that must be used to calculate the estimate
2705 * is specified by the ARM ARM.
2706 */
0ecb72a5 2707static float64 recip_estimate(float64 a, CPUARMState *env)
fe0e4872 2708{
1146a817
PM
2709 /* These calculations mustn't set any fp exception flags,
2710 * so we use a local copy of the fp_status.
2711 */
2712 float_status dummy_status = env->vfp.standard_fp_status;
2713 float_status *s = &dummy_status;
fe0e4872
CL
2714 /* q = (int)(a * 512.0) */
2715 float64 q = float64_mul(float64_512, a, s);
2716 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2717
2718 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2719 q = int64_to_float64(q_int, s);
2720 q = float64_add(q, float64_half, s);
2721 q = float64_div(q, float64_512, s);
2722 q = float64_div(float64_one, q, s);
2723
2724 /* s = (int)(256.0 * r + 0.5) */
2725 q = float64_mul(q, float64_256, s);
2726 q = float64_add(q, float64_half, s);
2727 q_int = float64_to_int64_round_to_zero(q, s);
2728
2729 /* return (double)s / 256.0 */
2730 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2731}
2732
0ecb72a5 2733float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
4373f3ce 2734{
fe0e4872
CL
2735 float_status *s = &env->vfp.standard_fp_status;
2736 float64 f64;
2737 uint32_t val32 = float32_val(a);
2738
2739 int result_exp;
2740 int a_exp = (val32 & 0x7f800000) >> 23;
2741 int sign = val32 & 0x80000000;
2742
2743 if (float32_is_any_nan(a)) {
2744 if (float32_is_signaling_nan(a)) {
2745 float_raise(float_flag_invalid, s);
2746 }
2747 return float32_default_nan;
2748 } else if (float32_is_infinity(a)) {
2749 return float32_set_sign(float32_zero, float32_is_neg(a));
2750 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
2751 if (!float32_is_zero(a)) {
2752 float_raise(float_flag_input_denormal, s);
2753 }
fe0e4872
CL
2754 float_raise(float_flag_divbyzero, s);
2755 return float32_set_sign(float32_infinity, float32_is_neg(a));
2756 } else if (a_exp >= 253) {
2757 float_raise(float_flag_underflow, s);
2758 return float32_set_sign(float32_zero, float32_is_neg(a));
2759 }
2760
2761 f64 = make_float64((0x3feULL << 52)
2762 | ((int64_t)(val32 & 0x7fffff) << 29));
2763
2764 result_exp = 253 - a_exp;
2765
2766 f64 = recip_estimate(f64, env);
2767
2768 val32 = sign
2769 | ((result_exp & 0xff) << 23)
2770 | ((float64_val(f64) >> 29) & 0x7fffff);
2771 return make_float32(val32);
4373f3ce
PB
2772}
2773
e07be5d2
CL
2774/* The algorithm that must be used to calculate the estimate
2775 * is specified by the ARM ARM.
2776 */
0ecb72a5 2777static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
e07be5d2 2778{
1146a817
PM
2779 /* These calculations mustn't set any fp exception flags,
2780 * so we use a local copy of the fp_status.
2781 */
2782 float_status dummy_status = env->vfp.standard_fp_status;
2783 float_status *s = &dummy_status;
e07be5d2
CL
2784 float64 q;
2785 int64_t q_int;
2786
2787 if (float64_lt(a, float64_half, s)) {
2788 /* range 0.25 <= a < 0.5 */
2789
2790 /* a in units of 1/512 rounded down */
2791 /* q0 = (int)(a * 512.0); */
2792 q = float64_mul(float64_512, a, s);
2793 q_int = float64_to_int64_round_to_zero(q, s);
2794
2795 /* reciprocal root r */
2796 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2797 q = int64_to_float64(q_int, s);
2798 q = float64_add(q, float64_half, s);
2799 q = float64_div(q, float64_512, s);
2800 q = float64_sqrt(q, s);
2801 q = float64_div(float64_one, q, s);
2802 } else {
2803 /* range 0.5 <= a < 1.0 */
2804
2805 /* a in units of 1/256 rounded down */
2806 /* q1 = (int)(a * 256.0); */
2807 q = float64_mul(float64_256, a, s);
2808 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2809
2810 /* reciprocal root r */
2811 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2812 q = int64_to_float64(q_int, s);
2813 q = float64_add(q, float64_half, s);
2814 q = float64_div(q, float64_256, s);
2815 q = float64_sqrt(q, s);
2816 q = float64_div(float64_one, q, s);
2817 }
2818 /* r in units of 1/256 rounded to nearest */
2819 /* s = (int)(256.0 * r + 0.5); */
2820
2821 q = float64_mul(q, float64_256,s );
2822 q = float64_add(q, float64_half, s);
2823 q_int = float64_to_int64_round_to_zero(q, s);
2824
2825 /* return (double)s / 256.0;*/
2826 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2827}
2828
0ecb72a5 2829float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4373f3ce 2830{
e07be5d2
CL
2831 float_status *s = &env->vfp.standard_fp_status;
2832 int result_exp;
2833 float64 f64;
2834 uint32_t val;
2835 uint64_t val64;
2836
2837 val = float32_val(a);
2838
2839 if (float32_is_any_nan(a)) {
2840 if (float32_is_signaling_nan(a)) {
2841 float_raise(float_flag_invalid, s);
2842 }
2843 return float32_default_nan;
2844 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
2845 if (!float32_is_zero(a)) {
2846 float_raise(float_flag_input_denormal, s);
2847 }
e07be5d2
CL
2848 float_raise(float_flag_divbyzero, s);
2849 return float32_set_sign(float32_infinity, float32_is_neg(a));
2850 } else if (float32_is_neg(a)) {
2851 float_raise(float_flag_invalid, s);
2852 return float32_default_nan;
2853 } else if (float32_is_infinity(a)) {
2854 return float32_zero;
2855 }
2856
2857 /* Normalize to a double-precision value between 0.25 and 1.0,
2858 * preserving the parity of the exponent. */
2859 if ((val & 0x800000) == 0) {
2860 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2861 | (0x3feULL << 52)
2862 | ((uint64_t)(val & 0x7fffff) << 29));
2863 } else {
2864 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2865 | (0x3fdULL << 52)
2866 | ((uint64_t)(val & 0x7fffff) << 29));
2867 }
2868
2869 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
2870
2871 f64 = recip_sqrt_estimate(f64, env);
2872
2873 val64 = float64_val(f64);
2874
26cc6abf 2875 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
2876 | ((val64 >> 29) & 0x7fffff);
2877 return make_float32(val);
4373f3ce
PB
2878}
2879
0ecb72a5 2880uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4373f3ce 2881{
fe0e4872
CL
2882 float64 f64;
2883
2884 if ((a & 0x80000000) == 0) {
2885 return 0xffffffff;
2886 }
2887
2888 f64 = make_float64((0x3feULL << 52)
2889 | ((int64_t)(a & 0x7fffffff) << 21));
2890
2891 f64 = recip_estimate (f64, env);
2892
2893 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
2894}
2895
0ecb72a5 2896uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4373f3ce 2897{
e07be5d2
CL
2898 float64 f64;
2899
2900 if ((a & 0xc0000000) == 0) {
2901 return 0xffffffff;
2902 }
2903
2904 if (a & 0x80000000) {
2905 f64 = make_float64((0x3feULL << 52)
2906 | ((uint64_t)(a & 0x7fffffff) << 21));
2907 } else { /* bits 31-30 == '01' */
2908 f64 = make_float64((0x3fdULL << 52)
2909 | ((uint64_t)(a & 0x3fffffff) << 22));
2910 }
2911
2912 f64 = recip_sqrt_estimate(f64, env);
2913
2914 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 2915}
fe1479c3 2916
da97f52c
PM
2917/* VFPv4 fused multiply-accumulate */
2918float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
2919{
2920 float_status *fpst = fpstp;
2921 return float32_muladd(a, b, c, 0, fpst);
2922}
2923
2924float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
2925{
2926 float_status *fpst = fpstp;
2927 return float64_muladd(a, b, c, 0, fpst);
2928}
2929
0ecb72a5 2930void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
fe1479c3
PB
2931{
2932 val &= 1;
2933 if (env->teecr != val) {
2934 env->teecr = val;
2935 tb_flush(env);
2936 }
2937}
This page took 1.047315 seconds and 4 git commands to generate.