]>
Commit | Line | Data |
---|---|---|
74c21bd0 | 1 | #include "qemu/osdep.h" |
194cbc49 | 2 | #include "trace.h" |
b5ff1b31 | 3 | #include "cpu.h" |
ccd38087 | 4 | #include "internals.h" |
022c62cb | 5 | #include "exec/gdbstub.h" |
2ef6175a | 6 | #include "exec/helper-proto.h" |
1de7afc9 | 7 | #include "qemu/host-utils.h" |
78027bb6 | 8 | #include "sysemu/arch_init.h" |
9c17d615 | 9 | #include "sysemu/sysemu.h" |
1de7afc9 | 10 | #include "qemu/bitops.h" |
eb0ecd5a | 11 | #include "qemu/crc32c.h" |
63c91552 | 12 | #include "exec/exec-all.h" |
f08b6170 | 13 | #include "exec/cpu_ldst.h" |
1d854765 | 14 | #include "arm_ldst.h" |
eb0ecd5a | 15 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 16 | #include "exec/semihost.h" |
f3a9b694 | 17 | #include "sysemu/kvm.h" |
0b03bdfc | 18 | |
352c98e5 LV |
19 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
20 | ||
4a501606 | 21 | #ifndef CONFIG_USER_ONLY |
af51f566 | 22 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
03ae85f8 | 23 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
af51f566 | 24 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
e14b5a23 EI |
25 | target_ulong *page_size, uint32_t *fsr, |
26 | ARMMMUFaultInfo *fi); | |
7c2cb42b | 27 | |
37785977 | 28 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
03ae85f8 | 29 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
37785977 EI |
30 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
31 | target_ulong *page_size_ptr, uint32_t *fsr, | |
32 | ARMMMUFaultInfo *fi); | |
33 | ||
35337cc3 PM |
34 | /* Security attributes for an address, as returned by v8m_security_lookup. */ |
35 | typedef struct V8M_SAttributes { | |
36 | bool ns; | |
37 | bool nsc; | |
38 | uint8_t sregion; | |
39 | bool srvalid; | |
40 | uint8_t iregion; | |
41 | bool irvalid; | |
42 | } V8M_SAttributes; | |
43 | ||
333e10c5 PM |
44 | static void v8m_security_lookup(CPUARMState *env, uint32_t address, |
45 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
46 | V8M_SAttributes *sattrs); | |
47 | ||
7c2cb42b AF |
48 | /* Definitions for the PMCCNTR and PMCR registers */ |
49 | #define PMCRD 0x8 | |
50 | #define PMCRC 0x4 | |
51 | #define PMCRE 0x1 | |
4a501606 PM |
52 | #endif |
53 | ||
0ecb72a5 | 54 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
55 | { |
56 | int nregs; | |
57 | ||
58 | /* VFP data registers are always little-endian. */ | |
59 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
60 | if (reg < nregs) { | |
61 | stfq_le_p(buf, env->vfp.regs[reg]); | |
62 | return 8; | |
63 | } | |
64 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
65 | /* Aliases for Q regs. */ | |
66 | nregs += 16; | |
67 | if (reg < nregs) { | |
68 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
69 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
70 | return 16; | |
71 | } | |
72 | } | |
73 | switch (reg - nregs) { | |
74 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
75 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
76 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
77 | } | |
78 | return 0; | |
79 | } | |
80 | ||
0ecb72a5 | 81 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
82 | { |
83 | int nregs; | |
84 | ||
85 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
86 | if (reg < nregs) { | |
87 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
88 | return 8; | |
89 | } | |
90 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
91 | nregs += 16; | |
92 | if (reg < nregs) { | |
93 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
94 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
95 | return 16; | |
96 | } | |
97 | } | |
98 | switch (reg - nregs) { | |
99 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
100 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 101 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
102 | } |
103 | return 0; | |
104 | } | |
105 | ||
6a669427 PM |
106 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
107 | { | |
108 | switch (reg) { | |
109 | case 0 ... 31: | |
110 | /* 128 bit FP register */ | |
111 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
112 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
113 | return 16; | |
114 | case 32: | |
115 | /* FPSR */ | |
116 | stl_p(buf, vfp_get_fpsr(env)); | |
117 | return 4; | |
118 | case 33: | |
119 | /* FPCR */ | |
120 | stl_p(buf, vfp_get_fpcr(env)); | |
121 | return 4; | |
122 | default: | |
123 | return 0; | |
124 | } | |
125 | } | |
126 | ||
127 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
128 | { | |
129 | switch (reg) { | |
130 | case 0 ... 31: | |
131 | /* 128 bit FP register */ | |
132 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
133 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
134 | return 16; | |
135 | case 32: | |
136 | /* FPSR */ | |
137 | vfp_set_fpsr(env, ldl_p(buf)); | |
138 | return 4; | |
139 | case 33: | |
140 | /* FPCR */ | |
141 | vfp_set_fpcr(env, ldl_p(buf)); | |
142 | return 4; | |
143 | default: | |
144 | return 0; | |
145 | } | |
146 | } | |
147 | ||
c4241c7d | 148 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 149 | { |
375421cc | 150 | assert(ri->fieldoffset); |
67ed771d | 151 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 152 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 153 | } else { |
c4241c7d | 154 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 155 | } |
d4e6df63 PM |
156 | } |
157 | ||
c4241c7d PM |
158 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
159 | uint64_t value) | |
d4e6df63 | 160 | { |
375421cc | 161 | assert(ri->fieldoffset); |
67ed771d | 162 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
163 | CPREG_FIELD64(env, ri) = value; |
164 | } else { | |
165 | CPREG_FIELD32(env, ri) = value; | |
166 | } | |
d4e6df63 PM |
167 | } |
168 | ||
11f136ee FA |
169 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
170 | { | |
171 | return (char *)env + ri->fieldoffset; | |
172 | } | |
173 | ||
49a66191 | 174 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 175 | { |
59a1c327 | 176 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 177 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 178 | return ri->resetvalue; |
721fae12 | 179 | } else if (ri->raw_readfn) { |
59a1c327 | 180 | return ri->raw_readfn(env, ri); |
721fae12 | 181 | } else if (ri->readfn) { |
59a1c327 | 182 | return ri->readfn(env, ri); |
721fae12 | 183 | } else { |
59a1c327 | 184 | return raw_read(env, ri); |
721fae12 | 185 | } |
721fae12 PM |
186 | } |
187 | ||
59a1c327 | 188 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 189 | uint64_t v) |
721fae12 PM |
190 | { |
191 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
192 | * Note that constant registers are treated as write-ignored; the |
193 | * caller should check for success by whether a readback gives the | |
194 | * value written. | |
195 | */ | |
196 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 197 | return; |
721fae12 | 198 | } else if (ri->raw_writefn) { |
c4241c7d | 199 | ri->raw_writefn(env, ri, v); |
721fae12 | 200 | } else if (ri->writefn) { |
c4241c7d | 201 | ri->writefn(env, ri, v); |
721fae12 | 202 | } else { |
afb2530f | 203 | raw_write(env, ri, v); |
721fae12 | 204 | } |
721fae12 PM |
205 | } |
206 | ||
375421cc PM |
207 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
208 | { | |
209 | /* Return true if the regdef would cause an assertion if you called | |
210 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
211 | * program bug for it not to have the NO_RAW flag). | |
212 | * NB that returning false here doesn't necessarily mean that calling | |
213 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
214 | * read/write access functions which are safe for raw use" from "has | |
215 | * read/write access functions which have side effects but has forgotten | |
216 | * to provide raw access functions". | |
217 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
218 | * and assertions in raw_read()/raw_write(). | |
219 | */ | |
220 | if ((ri->type & ARM_CP_CONST) || | |
221 | ri->fieldoffset || | |
222 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
223 | return false; | |
224 | } | |
225 | return true; | |
226 | } | |
227 | ||
721fae12 PM |
228 | bool write_cpustate_to_list(ARMCPU *cpu) |
229 | { | |
230 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
231 | int i; | |
232 | bool ok = true; | |
233 | ||
234 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
235 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
236 | const ARMCPRegInfo *ri; | |
59a1c327 | 237 | |
60322b39 | 238 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
239 | if (!ri) { |
240 | ok = false; | |
241 | continue; | |
242 | } | |
7a0e58fa | 243 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
244 | continue; |
245 | } | |
59a1c327 | 246 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
247 | } |
248 | return ok; | |
249 | } | |
250 | ||
251 | bool write_list_to_cpustate(ARMCPU *cpu) | |
252 | { | |
253 | int i; | |
254 | bool ok = true; | |
255 | ||
256 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
257 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
258 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
259 | const ARMCPRegInfo *ri; |
260 | ||
60322b39 | 261 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
262 | if (!ri) { |
263 | ok = false; | |
264 | continue; | |
265 | } | |
7a0e58fa | 266 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
267 | continue; |
268 | } | |
269 | /* Write value and confirm it reads back as written | |
270 | * (to catch read-only registers and partially read-only | |
271 | * registers where the incoming migration value doesn't match) | |
272 | */ | |
59a1c327 PM |
273 | write_raw_cp_reg(&cpu->env, ri, v); |
274 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
275 | ok = false; |
276 | } | |
277 | } | |
278 | return ok; | |
279 | } | |
280 | ||
281 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
282 | { | |
283 | ARMCPU *cpu = opaque; | |
284 | uint64_t regidx; | |
285 | const ARMCPRegInfo *ri; | |
286 | ||
287 | regidx = *(uint32_t *)key; | |
60322b39 | 288 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 289 | |
7a0e58fa | 290 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
291 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
292 | /* The value array need not be initialized at this point */ | |
293 | cpu->cpreg_array_len++; | |
294 | } | |
295 | } | |
296 | ||
297 | static void count_cpreg(gpointer key, gpointer opaque) | |
298 | { | |
299 | ARMCPU *cpu = opaque; | |
300 | uint64_t regidx; | |
301 | const ARMCPRegInfo *ri; | |
302 | ||
303 | regidx = *(uint32_t *)key; | |
60322b39 | 304 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 305 | |
7a0e58fa | 306 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
307 | cpu->cpreg_array_len++; |
308 | } | |
309 | } | |
310 | ||
311 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
312 | { | |
cbf239b7 AR |
313 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
314 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 315 | |
cbf239b7 AR |
316 | if (aidx > bidx) { |
317 | return 1; | |
318 | } | |
319 | if (aidx < bidx) { | |
320 | return -1; | |
321 | } | |
322 | return 0; | |
721fae12 PM |
323 | } |
324 | ||
325 | void init_cpreg_list(ARMCPU *cpu) | |
326 | { | |
327 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
328 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
329 | */ | |
57b6d95e | 330 | GList *keys; |
721fae12 PM |
331 | int arraylen; |
332 | ||
57b6d95e | 333 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
334 | keys = g_list_sort(keys, cpreg_key_compare); |
335 | ||
336 | cpu->cpreg_array_len = 0; | |
337 | ||
338 | g_list_foreach(keys, count_cpreg, cpu); | |
339 | ||
340 | arraylen = cpu->cpreg_array_len; | |
341 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
342 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
343 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
344 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
345 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
346 | cpu->cpreg_array_len = 0; | |
347 | ||
348 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
349 | ||
350 | assert(cpu->cpreg_array_len == arraylen); | |
351 | ||
352 | g_list_free(keys); | |
353 | } | |
354 | ||
68e9c2fe EI |
355 | /* |
356 | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but | |
357 | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. | |
358 | * | |
359 | * access_el3_aa32ns: Used to check AArch32 register views. | |
360 | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. | |
361 | */ | |
362 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
3f208fd7 PM |
363 | const ARMCPRegInfo *ri, |
364 | bool isread) | |
68e9c2fe EI |
365 | { |
366 | bool secure = arm_is_secure_below_el3(env); | |
367 | ||
368 | assert(!arm_el_is_aa64(env, 3)); | |
369 | if (secure) { | |
370 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
371 | } | |
372 | return CP_ACCESS_OK; | |
373 | } | |
374 | ||
375 | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, | |
3f208fd7 PM |
376 | const ARMCPRegInfo *ri, |
377 | bool isread) | |
68e9c2fe EI |
378 | { |
379 | if (!arm_el_is_aa64(env, 3)) { | |
3f208fd7 | 380 | return access_el3_aa32ns(env, ri, isread); |
68e9c2fe EI |
381 | } |
382 | return CP_ACCESS_OK; | |
383 | } | |
384 | ||
5513c3ab PM |
385 | /* Some secure-only AArch32 registers trap to EL3 if used from |
386 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). | |
387 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. | |
388 | * We assume that the .access field is set to PL1_RW. | |
389 | */ | |
390 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, | |
3f208fd7 PM |
391 | const ARMCPRegInfo *ri, |
392 | bool isread) | |
5513c3ab PM |
393 | { |
394 | if (arm_current_el(env) == 3) { | |
395 | return CP_ACCESS_OK; | |
396 | } | |
397 | if (arm_is_secure_below_el3(env)) { | |
398 | return CP_ACCESS_TRAP_EL3; | |
399 | } | |
400 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ | |
401 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
402 | } | |
403 | ||
187f678d PM |
404 | /* Check for traps to "powerdown debug" registers, which are controlled |
405 | * by MDCR.TDOSA | |
406 | */ | |
407 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, | |
408 | bool isread) | |
409 | { | |
410 | int el = arm_current_el(env); | |
411 | ||
412 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) | |
413 | && !arm_is_secure_below_el3(env)) { | |
414 | return CP_ACCESS_TRAP_EL2; | |
415 | } | |
416 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { | |
417 | return CP_ACCESS_TRAP_EL3; | |
418 | } | |
419 | return CP_ACCESS_OK; | |
420 | } | |
421 | ||
91b0a238 PM |
422 | /* Check for traps to "debug ROM" registers, which are controlled |
423 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. | |
424 | */ | |
425 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, | |
426 | bool isread) | |
427 | { | |
428 | int el = arm_current_el(env); | |
429 | ||
430 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) | |
431 | && !arm_is_secure_below_el3(env)) { | |
432 | return CP_ACCESS_TRAP_EL2; | |
433 | } | |
434 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
435 | return CP_ACCESS_TRAP_EL3; | |
436 | } | |
437 | return CP_ACCESS_OK; | |
438 | } | |
439 | ||
d6c8cf81 PM |
440 | /* Check for traps to general debug registers, which are controlled |
441 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. | |
442 | */ | |
443 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, | |
444 | bool isread) | |
445 | { | |
446 | int el = arm_current_el(env); | |
447 | ||
448 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) | |
449 | && !arm_is_secure_below_el3(env)) { | |
450 | return CP_ACCESS_TRAP_EL2; | |
451 | } | |
452 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
453 | return CP_ACCESS_TRAP_EL3; | |
454 | } | |
455 | return CP_ACCESS_OK; | |
456 | } | |
457 | ||
1fce1ba9 PM |
458 | /* Check for traps to performance monitor registers, which are controlled |
459 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. | |
460 | */ | |
461 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, | |
462 | bool isread) | |
463 | { | |
464 | int el = arm_current_el(env); | |
465 | ||
466 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) | |
467 | && !arm_is_secure_below_el3(env)) { | |
468 | return CP_ACCESS_TRAP_EL2; | |
469 | } | |
470 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
471 | return CP_ACCESS_TRAP_EL3; | |
472 | } | |
473 | return CP_ACCESS_OK; | |
474 | } | |
475 | ||
c4241c7d | 476 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 477 | { |
00c8cb0a AF |
478 | ARMCPU *cpu = arm_env_get_cpu(env); |
479 | ||
8d5c773e | 480 | raw_write(env, ri, value); |
d10eb08f | 481 | tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
482 | } |
483 | ||
c4241c7d | 484 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 485 | { |
00c8cb0a AF |
486 | ARMCPU *cpu = arm_env_get_cpu(env); |
487 | ||
8d5c773e | 488 | if (raw_read(env, ri) != value) { |
08de207b PM |
489 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
490 | * not modified virtual addresses, so this causes a TLB flush. | |
491 | */ | |
d10eb08f | 492 | tlb_flush(CPU(cpu)); |
8d5c773e | 493 | raw_write(env, ri, value); |
08de207b | 494 | } |
08de207b | 495 | } |
c4241c7d PM |
496 | |
497 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
498 | uint64_t value) | |
08de207b | 499 | { |
00c8cb0a AF |
500 | ARMCPU *cpu = arm_env_get_cpu(env); |
501 | ||
452a0955 | 502 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) |
014406b5 | 503 | && !extended_addresses_enabled(env)) { |
08de207b PM |
504 | /* For VMSA (when not using the LPAE long descriptor page table |
505 | * format) this register includes the ASID, so do a TLB flush. | |
506 | * For PMSA it is purely a process ID and no action is needed. | |
507 | */ | |
d10eb08f | 508 | tlb_flush(CPU(cpu)); |
08de207b | 509 | } |
8d5c773e | 510 | raw_write(env, ri, value); |
08de207b PM |
511 | } |
512 | ||
c4241c7d PM |
513 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
514 | uint64_t value) | |
d929823f PM |
515 | { |
516 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
517 | ARMCPU *cpu = arm_env_get_cpu(env); |
518 | ||
d10eb08f | 519 | tlb_flush(CPU(cpu)); |
d929823f PM |
520 | } |
521 | ||
c4241c7d PM |
522 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
523 | uint64_t value) | |
d929823f PM |
524 | { |
525 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
526 | ARMCPU *cpu = arm_env_get_cpu(env); |
527 | ||
528 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
529 | } |
530 | ||
c4241c7d PM |
531 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
532 | uint64_t value) | |
d929823f PM |
533 | { |
534 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
535 | ARMCPU *cpu = arm_env_get_cpu(env); |
536 | ||
d10eb08f | 537 | tlb_flush(CPU(cpu)); |
d929823f PM |
538 | } |
539 | ||
c4241c7d PM |
540 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
541 | uint64_t value) | |
d929823f PM |
542 | { |
543 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
544 | ARMCPU *cpu = arm_env_get_cpu(env); |
545 | ||
546 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
547 | } |
548 | ||
fa439fc5 PM |
549 | /* IS variants of TLB operations must affect all cores */ |
550 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
551 | uint64_t value) | |
552 | { | |
a67cf277 | 553 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 554 | |
a67cf277 | 555 | tlb_flush_all_cpus_synced(cs); |
fa439fc5 PM |
556 | } |
557 | ||
558 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
559 | uint64_t value) | |
560 | { | |
a67cf277 | 561 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 562 | |
a67cf277 | 563 | tlb_flush_all_cpus_synced(cs); |
fa439fc5 PM |
564 | } |
565 | ||
566 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
567 | uint64_t value) | |
568 | { | |
a67cf277 | 569 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 570 | |
a67cf277 | 571 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
fa439fc5 PM |
572 | } |
573 | ||
574 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
575 | uint64_t value) | |
576 | { | |
a67cf277 | 577 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 578 | |
a67cf277 | 579 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
fa439fc5 PM |
580 | } |
581 | ||
541ef8c2 SS |
582 | static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
583 | uint64_t value) | |
584 | { | |
585 | CPUState *cs = ENV_GET_CPU(env); | |
586 | ||
0336cbf8 | 587 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
588 | ARMMMUIdxBit_S12NSE1 | |
589 | ARMMMUIdxBit_S12NSE0 | | |
590 | ARMMMUIdxBit_S2NS); | |
541ef8c2 SS |
591 | } |
592 | ||
593 | static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
594 | uint64_t value) | |
595 | { | |
a67cf277 | 596 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 | 597 | |
a67cf277 | 598 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
8bd5c820 PM |
599 | ARMMMUIdxBit_S12NSE1 | |
600 | ARMMMUIdxBit_S12NSE0 | | |
601 | ARMMMUIdxBit_S2NS); | |
541ef8c2 SS |
602 | } |
603 | ||
604 | static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
605 | uint64_t value) | |
606 | { | |
607 | /* Invalidate by IPA. This has to invalidate any structures that | |
608 | * contain only stage 2 translation information, but does not need | |
609 | * to apply to structures that contain combined stage 1 and stage 2 | |
610 | * translation information. | |
611 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
612 | */ | |
613 | CPUState *cs = ENV_GET_CPU(env); | |
614 | uint64_t pageaddr; | |
615 | ||
616 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
617 | return; | |
618 | } | |
619 | ||
620 | pageaddr = sextract64(value << 12, 0, 40); | |
621 | ||
8bd5c820 | 622 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
541ef8c2 SS |
623 | } |
624 | ||
625 | static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
626 | uint64_t value) | |
627 | { | |
a67cf277 | 628 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 SS |
629 | uint64_t pageaddr; |
630 | ||
631 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
632 | return; | |
633 | } | |
634 | ||
635 | pageaddr = sextract64(value << 12, 0, 40); | |
636 | ||
a67cf277 | 637 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 638 | ARMMMUIdxBit_S2NS); |
541ef8c2 SS |
639 | } |
640 | ||
641 | static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
642 | uint64_t value) | |
643 | { | |
644 | CPUState *cs = ENV_GET_CPU(env); | |
645 | ||
8bd5c820 | 646 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
647 | } |
648 | ||
649 | static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
650 | uint64_t value) | |
651 | { | |
a67cf277 | 652 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 | 653 | |
8bd5c820 | 654 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
655 | } |
656 | ||
657 | static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
658 | uint64_t value) | |
659 | { | |
660 | CPUState *cs = ENV_GET_CPU(env); | |
661 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); | |
662 | ||
8bd5c820 | 663 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
664 | } |
665 | ||
666 | static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
667 | uint64_t value) | |
668 | { | |
a67cf277 | 669 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 SS |
670 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
671 | ||
a67cf277 | 672 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 673 | ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
674 | } |
675 | ||
e9aa6c21 | 676 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
677 | /* Define the secure and non-secure FCSE identifier CP registers |
678 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
679 | * the secure register to be properly reset and migrated. There is also no | |
680 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
681 | */ | |
682 | { .name = "FCSEIDR(NS)", | |
683 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
684 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
685 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
686 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
687 | { .name = "FCSEIDR(S)", | |
688 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
689 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
690 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 691 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
692 | /* Define the secure and non-secure context identifier CP registers |
693 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
694 | * the secure register to be properly reset and migrated. In the | |
695 | * non-secure case, the 32-bit register will have reset and migration | |
696 | * disabled during registration as it is handled by the 64-bit instance. | |
697 | */ | |
698 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 699 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
700 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
701 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
702 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
703 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
704 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
705 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
706 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 707 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
708 | REGINFO_SENTINEL |
709 | }; | |
710 | ||
711 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
712 | /* NB: Some of these registers exist in v8 but with more precise | |
713 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
714 | */ | |
715 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
716 | { .name = "DACR", |
717 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
718 | .access = PL1_RW, .resetvalue = 0, | |
719 | .writefn = dacr_write, .raw_writefn = raw_write, | |
720 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
721 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
722 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
723 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 724 | */ |
a903c449 EI |
725 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
726 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
727 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
728 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
729 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
730 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
731 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 732 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
733 | /* Cache maintenance ops; some of this space may be overridden later. */ |
734 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
735 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
736 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
737 | REGINFO_SENTINEL |
738 | }; | |
739 | ||
7d57f408 PM |
740 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
741 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
742 | * over-broad. | |
743 | */ | |
744 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
745 | .access = PL1_W, .type = ARM_CP_WFI }, | |
746 | REGINFO_SENTINEL | |
747 | }; | |
748 | ||
749 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
750 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
751 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
752 | */ | |
753 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
754 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
755 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
756 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
757 | * OMAPCP will override this space. | |
758 | */ | |
759 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
760 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
761 | .resetvalue = 0 }, | |
762 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
763 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
764 | .resetvalue = 0 }, | |
776d4e5c PM |
765 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
766 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 767 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 768 | .resetvalue = 0 }, |
50300698 PM |
769 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
770 | * implementing it as RAZ means the "debug architecture version" bits | |
771 | * will read as a reserved value, which should cause Linux to not try | |
772 | * to use the debug hardware. | |
773 | */ | |
774 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
775 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
776 | /* MMU TLB control. Note that the wildcarding means we cover not just |
777 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
778 | */ | |
779 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
780 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 781 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
782 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
783 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 784 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
785 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
786 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 787 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
788 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
789 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 790 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
791 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
792 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
793 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
794 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
795 | REGINFO_SENTINEL |
796 | }; | |
797 | ||
c4241c7d PM |
798 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
799 | uint64_t value) | |
2771db27 | 800 | { |
f0aff255 FA |
801 | uint32_t mask = 0; |
802 | ||
803 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
804 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
805 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
806 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
807 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
808 | */ | |
809 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
810 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
811 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
812 | ||
813 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
814 | /* ASEDIS [31] bit is RAO/WI */ | |
815 | value |= (1 << 31); | |
816 | } | |
817 | ||
818 | /* VFPv3 and upwards with NEON implement 32 double precision | |
819 | * registers (D0-D31). | |
820 | */ | |
821 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
822 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
823 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
824 | value |= (1 << 30); | |
825 | } | |
826 | } | |
827 | value &= mask; | |
2771db27 | 828 | } |
7ebd5f2e | 829 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
830 | } |
831 | ||
3f208fd7 PM |
832 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
833 | bool isread) | |
c6f19164 GB |
834 | { |
835 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
836 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
837 | if (arm_current_el(env) == 1 && | |
838 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
839 | return CP_ACCESS_TRAP_EL2; | |
840 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
841 | } else if (arm_current_el(env) < 3 && | |
842 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
843 | return CP_ACCESS_TRAP_EL3; | |
844 | } | |
845 | } | |
846 | ||
847 | return CP_ACCESS_OK; | |
848 | } | |
849 | ||
3f208fd7 PM |
850 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
851 | bool isread) | |
c6f19164 GB |
852 | { |
853 | /* Check if CPTR accesses are set to trap to EL3 */ | |
854 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
855 | return CP_ACCESS_TRAP_EL3; | |
856 | } | |
857 | ||
858 | return CP_ACCESS_OK; | |
859 | } | |
860 | ||
7d57f408 PM |
861 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
862 | /* prefetch by MVA in v6, NOP in v7 */ | |
863 | { .name = "MVA_prefetch", | |
864 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
865 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
866 | /* We need to break the TB after ISB to execute self-modifying code |
867 | * correctly and also to take any pending interrupts immediately. | |
868 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
869 | */ | |
7d57f408 | 870 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 871 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 872 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 873 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 874 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 875 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 876 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 877 | .access = PL1_RW, |
b848ce2b FA |
878 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
879 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
880 | .resetvalue = 0, }, |
881 | /* Watchpoint Fault Address Register : should actually only be present | |
882 | * for 1136, 1176, 11MPCore. | |
883 | */ | |
884 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
885 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 886 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 887 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 888 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 889 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
890 | REGINFO_SENTINEL |
891 | }; | |
892 | ||
3f208fd7 PM |
893 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
894 | bool isread) | |
200ac0ef | 895 | { |
3b163b01 | 896 | /* Performance monitor registers user accessibility is controlled |
1fce1ba9 PM |
897 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
898 | * trapping to EL2 or EL3 for other accesses. | |
200ac0ef | 899 | */ |
1fce1ba9 PM |
900 | int el = arm_current_el(env); |
901 | ||
6ecd0b6b | 902 | if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { |
fcd25206 | 903 | return CP_ACCESS_TRAP; |
200ac0ef | 904 | } |
1fce1ba9 PM |
905 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
906 | && !arm_is_secure_below_el3(env)) { | |
907 | return CP_ACCESS_TRAP_EL2; | |
908 | } | |
909 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
910 | return CP_ACCESS_TRAP_EL3; | |
911 | } | |
912 | ||
fcd25206 | 913 | return CP_ACCESS_OK; |
200ac0ef PM |
914 | } |
915 | ||
6ecd0b6b AB |
916 | static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, |
917 | const ARMCPRegInfo *ri, | |
918 | bool isread) | |
919 | { | |
920 | /* ER: event counter read trap control */ | |
921 | if (arm_feature(env, ARM_FEATURE_V8) | |
922 | && arm_current_el(env) == 0 | |
923 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 | |
924 | && isread) { | |
925 | return CP_ACCESS_OK; | |
926 | } | |
927 | ||
928 | return pmreg_access(env, ri, isread); | |
929 | } | |
930 | ||
931 | static CPAccessResult pmreg_access_swinc(CPUARMState *env, | |
932 | const ARMCPRegInfo *ri, | |
933 | bool isread) | |
934 | { | |
935 | /* SW: software increment write trap control */ | |
936 | if (arm_feature(env, ARM_FEATURE_V8) | |
937 | && arm_current_el(env) == 0 | |
938 | && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 | |
939 | && !isread) { | |
940 | return CP_ACCESS_OK; | |
941 | } | |
942 | ||
943 | return pmreg_access(env, ri, isread); | |
944 | } | |
945 | ||
7c2cb42b | 946 | #ifndef CONFIG_USER_ONLY |
87124fde | 947 | |
6ecd0b6b AB |
948 | static CPAccessResult pmreg_access_selr(CPUARMState *env, |
949 | const ARMCPRegInfo *ri, | |
950 | bool isread) | |
951 | { | |
952 | /* ER: event counter read trap control */ | |
953 | if (arm_feature(env, ARM_FEATURE_V8) | |
954 | && arm_current_el(env) == 0 | |
955 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { | |
956 | return CP_ACCESS_OK; | |
957 | } | |
958 | ||
959 | return pmreg_access(env, ri, isread); | |
960 | } | |
961 | ||
962 | static CPAccessResult pmreg_access_ccntr(CPUARMState *env, | |
963 | const ARMCPRegInfo *ri, | |
964 | bool isread) | |
965 | { | |
966 | /* CR: cycle counter read trap control */ | |
967 | if (arm_feature(env, ARM_FEATURE_V8) | |
968 | && arm_current_el(env) == 0 | |
969 | && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 | |
970 | && isread) { | |
971 | return CP_ACCESS_OK; | |
972 | } | |
973 | ||
974 | return pmreg_access(env, ri, isread); | |
975 | } | |
976 | ||
87124fde AF |
977 | static inline bool arm_ccnt_enabled(CPUARMState *env) |
978 | { | |
979 | /* This does not support checking PMCCFILTR_EL0 register */ | |
980 | ||
981 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
982 | return false; | |
983 | } | |
984 | ||
985 | return true; | |
986 | } | |
987 | ||
ec7b4ce4 AF |
988 | void pmccntr_sync(CPUARMState *env) |
989 | { | |
990 | uint64_t temp_ticks; | |
991 | ||
352c98e5 LV |
992 | temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
993 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
ec7b4ce4 AF |
994 | |
995 | if (env->cp15.c9_pmcr & PMCRD) { | |
996 | /* Increment once every 64 processor clock cycles */ | |
997 | temp_ticks /= 64; | |
998 | } | |
999 | ||
1000 | if (arm_ccnt_enabled(env)) { | |
1001 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
1002 | } | |
1003 | } | |
1004 | ||
c4241c7d PM |
1005 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1006 | uint64_t value) | |
200ac0ef | 1007 | { |
942a155b | 1008 | pmccntr_sync(env); |
7c2cb42b AF |
1009 | |
1010 | if (value & PMCRC) { | |
1011 | /* The counter has been reset */ | |
1012 | env->cp15.c15_ccnt = 0; | |
1013 | } | |
1014 | ||
200ac0ef PM |
1015 | /* only the DP, X, D and E bits are writable */ |
1016 | env->cp15.c9_pmcr &= ~0x39; | |
1017 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 1018 | |
942a155b | 1019 | pmccntr_sync(env); |
7c2cb42b AF |
1020 | } |
1021 | ||
1022 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1023 | { | |
c92c0687 | 1024 | uint64_t total_ticks; |
7c2cb42b | 1025 | |
942a155b | 1026 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
1027 | /* Counter is disabled, do not change value */ |
1028 | return env->cp15.c15_ccnt; | |
1029 | } | |
1030 | ||
352c98e5 LV |
1031 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
1032 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
1033 | |
1034 | if (env->cp15.c9_pmcr & PMCRD) { | |
1035 | /* Increment once every 64 processor clock cycles */ | |
1036 | total_ticks /= 64; | |
1037 | } | |
1038 | return total_ticks - env->cp15.c15_ccnt; | |
1039 | } | |
1040 | ||
6b040780 WH |
1041 | static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1042 | uint64_t value) | |
1043 | { | |
1044 | /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and | |
1045 | * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the | |
1046 | * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are | |
1047 | * accessed. | |
1048 | */ | |
1049 | env->cp15.c9_pmselr = value & 0x1f; | |
1050 | } | |
1051 | ||
7c2cb42b AF |
1052 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1053 | uint64_t value) | |
1054 | { | |
c92c0687 | 1055 | uint64_t total_ticks; |
7c2cb42b | 1056 | |
942a155b | 1057 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
1058 | /* Counter is disabled, set the absolute value */ |
1059 | env->cp15.c15_ccnt = value; | |
1060 | return; | |
1061 | } | |
1062 | ||
352c98e5 LV |
1063 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
1064 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
1065 | |
1066 | if (env->cp15.c9_pmcr & PMCRD) { | |
1067 | /* Increment once every 64 processor clock cycles */ | |
1068 | total_ticks /= 64; | |
1069 | } | |
1070 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 1071 | } |
421c7ebd PC |
1072 | |
1073 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1074 | uint64_t value) | |
1075 | { | |
1076 | uint64_t cur_val = pmccntr_read(env, NULL); | |
1077 | ||
1078 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
1079 | } | |
1080 | ||
ec7b4ce4 AF |
1081 | #else /* CONFIG_USER_ONLY */ |
1082 | ||
1083 | void pmccntr_sync(CPUARMState *env) | |
1084 | { | |
1085 | } | |
1086 | ||
7c2cb42b | 1087 | #endif |
200ac0ef | 1088 | |
0614601c AF |
1089 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1090 | uint64_t value) | |
1091 | { | |
1092 | pmccntr_sync(env); | |
1093 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
1094 | pmccntr_sync(env); | |
1095 | } | |
1096 | ||
c4241c7d | 1097 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1098 | uint64_t value) |
1099 | { | |
200ac0ef PM |
1100 | value &= (1 << 31); |
1101 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
1102 | } |
1103 | ||
c4241c7d PM |
1104 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1105 | uint64_t value) | |
200ac0ef | 1106 | { |
200ac0ef PM |
1107 | value &= (1 << 31); |
1108 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
1109 | } |
1110 | ||
c4241c7d PM |
1111 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1112 | uint64_t value) | |
200ac0ef | 1113 | { |
200ac0ef | 1114 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
1115 | } |
1116 | ||
c4241c7d PM |
1117 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1118 | uint64_t value) | |
200ac0ef | 1119 | { |
fdb86656 WH |
1120 | /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when |
1121 | * PMSELR value is equal to or greater than the number of implemented | |
1122 | * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. | |
1123 | */ | |
1124 | if (env->cp15.c9_pmselr == 0x1f) { | |
1125 | pmccfiltr_write(env, ri, value); | |
1126 | } | |
1127 | } | |
1128 | ||
1129 | static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1130 | { | |
1131 | /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER | |
1132 | * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). | |
1133 | */ | |
1134 | if (env->cp15.c9_pmselr == 0x1f) { | |
1135 | return env->cp15.pmccfiltr_el0; | |
1136 | } else { | |
1137 | return 0; | |
1138 | } | |
200ac0ef PM |
1139 | } |
1140 | ||
c4241c7d | 1141 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1142 | uint64_t value) |
1143 | { | |
6ecd0b6b AB |
1144 | if (arm_feature(env, ARM_FEATURE_V8)) { |
1145 | env->cp15.c9_pmuserenr = value & 0xf; | |
1146 | } else { | |
1147 | env->cp15.c9_pmuserenr = value & 1; | |
1148 | } | |
200ac0ef PM |
1149 | } |
1150 | ||
c4241c7d PM |
1151 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1152 | uint64_t value) | |
200ac0ef PM |
1153 | { |
1154 | /* We have no event counters so only the C bit can be changed */ | |
1155 | value &= (1 << 31); | |
1156 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
1157 | } |
1158 | ||
c4241c7d PM |
1159 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1160 | uint64_t value) | |
200ac0ef PM |
1161 | { |
1162 | value &= (1 << 31); | |
1163 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
1164 | } |
1165 | ||
c4241c7d PM |
1166 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1167 | uint64_t value) | |
8641136c | 1168 | { |
a505d7fe PM |
1169 | /* Note that even though the AArch64 view of this register has bits |
1170 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
1171 | * architectural requirements for bits which are RES0 only in some | |
1172 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
1173 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
1174 | */ | |
855ea66d | 1175 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
1176 | } |
1177 | ||
64e0e2de EI |
1178 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1179 | { | |
1180 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
1181 | * For bits that vary between AArch32/64, code needs to check the | |
1182 | * current execution mode before directly using the feature bit. | |
1183 | */ | |
1184 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
1185 | ||
1186 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
1187 | valid_mask &= ~SCR_HCE; | |
1188 | ||
1189 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
1190 | * supported if EL2 exists. The bit is UNK/SBZP when | |
1191 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
1192 | * when EL2 is unavailable. | |
4eb27640 | 1193 | * On ARMv8, this bit is always available. |
64e0e2de | 1194 | */ |
4eb27640 GB |
1195 | if (arm_feature(env, ARM_FEATURE_V7) && |
1196 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
1197 | valid_mask &= ~SCR_SMD; |
1198 | } | |
1199 | } | |
1200 | ||
1201 | /* Clear all-context RES0 bits. */ | |
1202 | value &= valid_mask; | |
1203 | raw_write(env, ri, value); | |
1204 | } | |
1205 | ||
c4241c7d | 1206 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
1207 | { |
1208 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
1209 | |
1210 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
1211 | * bank | |
1212 | */ | |
1213 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
1214 | ri->secure & ARM_CP_SECSTATE_S); | |
1215 | ||
1216 | return cpu->ccsidr[index]; | |
776d4e5c PM |
1217 | } |
1218 | ||
c4241c7d PM |
1219 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1220 | uint64_t value) | |
776d4e5c | 1221 | { |
8d5c773e | 1222 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
1223 | } |
1224 | ||
1090b9c6 PM |
1225 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1226 | { | |
1227 | CPUState *cs = ENV_GET_CPU(env); | |
1228 | uint64_t ret = 0; | |
1229 | ||
1230 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
1231 | ret |= CPSR_I; | |
1232 | } | |
1233 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
1234 | ret |= CPSR_F; | |
1235 | } | |
1236 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
1237 | return ret; | |
1238 | } | |
1239 | ||
e9aa6c21 | 1240 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
1241 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
1242 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
1243 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
1244 | /* Performance monitors are implementation defined in v7, |
1245 | * but with an ARM recommended set of registers, which we | |
1246 | * follow (although we don't actually implement any counters) | |
1247 | * | |
1248 | * Performance registers fall into three categories: | |
1249 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
1250 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
1251 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
1252 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
1253 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
1254 | */ | |
1255 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1256 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 1257 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
1258 | .writefn = pmcntenset_write, |
1259 | .accessfn = pmreg_access, | |
1260 | .raw_writefn = raw_write }, | |
8521466b AF |
1261 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
1262 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
1263 | .access = PL0_RW, .accessfn = pmreg_access, | |
1264 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
1265 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 1266 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
1267 | .access = PL0_RW, |
1268 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
1269 | .accessfn = pmreg_access, |
1270 | .writefn = pmcntenclr_write, | |
7a0e58fa | 1271 | .type = ARM_CP_ALIAS }, |
8521466b AF |
1272 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
1273 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
1274 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 1275 | .type = ARM_CP_ALIAS, |
8521466b AF |
1276 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
1277 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
1278 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
1279 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
1280 | .accessfn = pmreg_access, |
1281 | .writefn = pmovsr_write, | |
1282 | .raw_writefn = raw_write }, | |
978364f1 AF |
1283 | { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
1284 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, | |
1285 | .access = PL0_RW, .accessfn = pmreg_access, | |
1286 | .type = ARM_CP_ALIAS, | |
1287 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
1288 | .writefn = pmovsr_write, | |
1289 | .raw_writefn = raw_write }, | |
fcd25206 | 1290 | /* Unimplemented so WI. */ |
200ac0ef | 1291 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
6ecd0b6b | 1292 | .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, |
7c2cb42b | 1293 | #ifndef CONFIG_USER_ONLY |
6b040780 WH |
1294 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
1295 | .access = PL0_RW, .type = ARM_CP_ALIAS, | |
1296 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), | |
6ecd0b6b | 1297 | .accessfn = pmreg_access_selr, .writefn = pmselr_write, |
6b040780 WH |
1298 | .raw_writefn = raw_write}, |
1299 | { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, | |
1300 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, | |
6ecd0b6b | 1301 | .access = PL0_RW, .accessfn = pmreg_access_selr, |
6b040780 WH |
1302 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), |
1303 | .writefn = pmselr_write, .raw_writefn = raw_write, }, | |
200ac0ef | 1304 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 1305 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 1306 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
6ecd0b6b | 1307 | .accessfn = pmreg_access_ccntr }, |
8521466b AF |
1308 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
1309 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
6ecd0b6b | 1310 | .access = PL0_RW, .accessfn = pmreg_access_ccntr, |
8521466b AF |
1311 | .type = ARM_CP_IO, |
1312 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 1313 | #endif |
8521466b AF |
1314 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
1315 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 1316 | .writefn = pmccfiltr_write, |
8521466b AF |
1317 | .access = PL0_RW, .accessfn = pmreg_access, |
1318 | .type = ARM_CP_IO, | |
1319 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
1320 | .resetvalue = 0, }, | |
200ac0ef | 1321 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
fdb86656 WH |
1322 | .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, |
1323 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, | |
1324 | { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, | |
1325 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, | |
1326 | .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, | |
1327 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, | |
fcd25206 | 1328 | /* Unimplemented, RAZ/WI. */ |
200ac0ef | 1329 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 | 1330 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
6ecd0b6b | 1331 | .accessfn = pmreg_access_xevcntr }, |
200ac0ef | 1332 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1fce1ba9 | 1333 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
200ac0ef PM |
1334 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1335 | .resetvalue = 0, | |
d4e6df63 | 1336 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
8a83ffc2 AF |
1337 | { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
1338 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, | |
1fce1ba9 | 1339 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
8a83ffc2 AF |
1340 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1341 | .resetvalue = 0, | |
1342 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
200ac0ef | 1343 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1fce1ba9 | 1344 | .access = PL1_RW, .accessfn = access_tpm, |
e6ec5457 WH |
1345 | .type = ARM_CP_ALIAS, |
1346 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), | |
200ac0ef | 1347 | .resetvalue = 0, |
d4e6df63 | 1348 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
e6ec5457 WH |
1349 | { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, |
1350 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, | |
1351 | .access = PL1_RW, .accessfn = access_tpm, | |
1352 | .type = ARM_CP_IO, | |
1353 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
1354 | .writefn = pmintenset_write, .raw_writefn = raw_write, | |
1355 | .resetvalue = 0x0 }, | |
200ac0ef | 1356 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
1fce1ba9 | 1357 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
200ac0ef | 1358 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 1359 | .writefn = pmintenclr_write, }, |
978364f1 AF |
1360 | { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
1361 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, | |
1fce1ba9 | 1362 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
978364f1 AF |
1363 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
1364 | .writefn = pmintenclr_write }, | |
7da845b0 PM |
1365 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
1366 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 1367 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
1368 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
1369 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1370 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1371 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1372 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1373 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1374 | * just RAZ for all cores: | |
1375 | */ | |
0ff644a7 PM |
1376 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1377 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1378 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1379 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1380 | * choose to RAZ/WI for all cores. | |
1381 | */ | |
1382 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1383 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1384 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1385 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1386 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1387 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1388 | /* MAIR can just read-as-written because we don't implement caches |
1389 | * and so don't need to care about memory attributes. | |
1390 | */ | |
1391 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1392 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1393 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 | 1394 | .resetvalue = 0 }, |
4cfb8ad8 PM |
1395 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
1396 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
1397 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
1398 | .resetvalue = 0 }, | |
b0fe2427 PM |
1399 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
1400 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1401 | */ |
1281f8e3 | 1402 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1403 | * allows them to assign the correct fieldoffset based on the endianness |
1404 | * handled in the field definitions. | |
1405 | */ | |
a903c449 | 1406 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1407 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1408 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1409 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1410 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1411 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1412 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1413 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1414 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1415 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1416 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1417 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1418 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1419 | /* 32 bit ITLB invalidates */ |
1420 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1421 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1422 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1423 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1424 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1425 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1426 | /* 32 bit DTLB invalidates */ |
1427 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1428 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1429 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1430 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1431 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1432 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1433 | /* 32 bit TLB invalidates */ |
1434 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1435 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1436 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1437 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1438 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1439 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1440 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1441 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1442 | REGINFO_SENTINEL |
1443 | }; | |
1444 | ||
1445 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1446 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1447 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1448 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1449 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1450 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1451 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1452 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1453 | .writefn = tlbiasid_is_write }, |
995939a6 | 1454 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1455 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1456 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1457 | REGINFO_SENTINEL |
1458 | }; | |
1459 | ||
c4241c7d PM |
1460 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1461 | uint64_t value) | |
c326b979 PM |
1462 | { |
1463 | value &= 1; | |
1464 | env->teecr = value; | |
c326b979 PM |
1465 | } |
1466 | ||
3f208fd7 PM |
1467 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1468 | bool isread) | |
c326b979 | 1469 | { |
dcbff19b | 1470 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1471 | return CP_ACCESS_TRAP; |
c326b979 | 1472 | } |
92611c00 | 1473 | return CP_ACCESS_OK; |
c326b979 PM |
1474 | } |
1475 | ||
1476 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1477 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1478 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1479 | .resetvalue = 0, | |
1480 | .writefn = teecr_write }, | |
1481 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1482 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1483 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1484 | REGINFO_SENTINEL |
1485 | }; | |
1486 | ||
4d31c596 | 1487 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1488 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1489 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1490 | .access = PL0_RW, | |
54bf36ed | 1491 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1492 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1493 | .access = PL0_RW, | |
54bf36ed FA |
1494 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1495 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1496 | .resetfn = arm_cp_reset_ignore }, |
1497 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1498 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1499 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1500 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1501 | .resetvalue = 0}, | |
4d31c596 PM |
1502 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1503 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1504 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1505 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1506 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1507 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1508 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1509 | .access = PL1_RW, |
54bf36ed FA |
1510 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1511 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1512 | .access = PL1_RW, | |
1513 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1514 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1515 | .resetvalue = 0 }, | |
4d31c596 PM |
1516 | REGINFO_SENTINEL |
1517 | }; | |
1518 | ||
55d284af PM |
1519 | #ifndef CONFIG_USER_ONLY |
1520 | ||
3f208fd7 PM |
1521 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1522 | bool isread) | |
00108f2d | 1523 | { |
75502672 PM |
1524 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
1525 | * Writable only at the highest implemented exception level. | |
1526 | */ | |
1527 | int el = arm_current_el(env); | |
1528 | ||
1529 | switch (el) { | |
1530 | case 0: | |
1531 | if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
1532 | return CP_ACCESS_TRAP; | |
1533 | } | |
1534 | break; | |
1535 | case 1: | |
1536 | if (!isread && ri->state == ARM_CP_STATE_AA32 && | |
1537 | arm_is_secure_below_el3(env)) { | |
1538 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ | |
1539 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1540 | } | |
1541 | break; | |
1542 | case 2: | |
1543 | case 3: | |
1544 | break; | |
00108f2d | 1545 | } |
75502672 PM |
1546 | |
1547 | if (!isread && el < arm_highest_el(env)) { | |
1548 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1549 | } | |
1550 | ||
00108f2d PM |
1551 | return CP_ACCESS_OK; |
1552 | } | |
1553 | ||
3f208fd7 PM |
1554 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
1555 | bool isread) | |
00108f2d | 1556 | { |
0b6440af EI |
1557 | unsigned int cur_el = arm_current_el(env); |
1558 | bool secure = arm_is_secure(env); | |
1559 | ||
00108f2d | 1560 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1561 | if (cur_el == 0 && |
00108f2d PM |
1562 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1563 | return CP_ACCESS_TRAP; | |
1564 | } | |
0b6440af EI |
1565 | |
1566 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1567 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1568 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1569 | return CP_ACCESS_TRAP_EL2; | |
1570 | } | |
00108f2d PM |
1571 | return CP_ACCESS_OK; |
1572 | } | |
1573 | ||
3f208fd7 PM |
1574 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
1575 | bool isread) | |
00108f2d | 1576 | { |
0b6440af EI |
1577 | unsigned int cur_el = arm_current_el(env); |
1578 | bool secure = arm_is_secure(env); | |
1579 | ||
00108f2d PM |
1580 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1581 | * EL0[PV]TEN is zero. | |
1582 | */ | |
0b6440af | 1583 | if (cur_el == 0 && |
00108f2d PM |
1584 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1585 | return CP_ACCESS_TRAP; | |
1586 | } | |
0b6440af EI |
1587 | |
1588 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1589 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1590 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1591 | return CP_ACCESS_TRAP_EL2; | |
1592 | } | |
00108f2d PM |
1593 | return CP_ACCESS_OK; |
1594 | } | |
1595 | ||
1596 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
3f208fd7 PM |
1597 | const ARMCPRegInfo *ri, |
1598 | bool isread) | |
00108f2d | 1599 | { |
3f208fd7 | 1600 | return gt_counter_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1601 | } |
1602 | ||
1603 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
3f208fd7 PM |
1604 | const ARMCPRegInfo *ri, |
1605 | bool isread) | |
00108f2d | 1606 | { |
3f208fd7 | 1607 | return gt_counter_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1608 | } |
1609 | ||
3f208fd7 PM |
1610 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1611 | bool isread) | |
00108f2d | 1612 | { |
3f208fd7 | 1613 | return gt_timer_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1614 | } |
1615 | ||
3f208fd7 PM |
1616 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1617 | bool isread) | |
00108f2d | 1618 | { |
3f208fd7 | 1619 | return gt_timer_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1620 | } |
1621 | ||
b4d3978c | 1622 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
3f208fd7 PM |
1623 | const ARMCPRegInfo *ri, |
1624 | bool isread) | |
b4d3978c PM |
1625 | { |
1626 | /* The AArch64 register view of the secure physical timer is | |
1627 | * always accessible from EL3, and configurably accessible from | |
1628 | * Secure EL1. | |
1629 | */ | |
1630 | switch (arm_current_el(env)) { | |
1631 | case 1: | |
1632 | if (!arm_is_secure(env)) { | |
1633 | return CP_ACCESS_TRAP; | |
1634 | } | |
1635 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
1636 | return CP_ACCESS_TRAP_EL3; | |
1637 | } | |
1638 | return CP_ACCESS_OK; | |
1639 | case 0: | |
1640 | case 2: | |
1641 | return CP_ACCESS_TRAP; | |
1642 | case 3: | |
1643 | return CP_ACCESS_OK; | |
1644 | default: | |
1645 | g_assert_not_reached(); | |
1646 | } | |
1647 | } | |
1648 | ||
55d284af PM |
1649 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1650 | { | |
bc72ad67 | 1651 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1652 | } |
1653 | ||
1654 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1655 | { | |
1656 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1657 | ||
1658 | if (gt->ctl & 1) { | |
1659 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1660 | * reset timer to when ISTATUS next has to change | |
1661 | */ | |
edac4d8a EI |
1662 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1663 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1664 | uint64_t count = gt_get_countervalue(&cpu->env); |
1665 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1666 | int istatus = count - offset >= gt->cval; |
55d284af | 1667 | uint64_t nexttick; |
194cbc49 | 1668 | int irqstate; |
55d284af PM |
1669 | |
1670 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
194cbc49 PM |
1671 | |
1672 | irqstate = (istatus && !(gt->ctl & 2)); | |
1673 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
1674 | ||
55d284af PM |
1675 | if (istatus) { |
1676 | /* Next transition is when count rolls back over to zero */ | |
1677 | nexttick = UINT64_MAX; | |
1678 | } else { | |
1679 | /* Next transition is when we hit cval */ | |
edac4d8a | 1680 | nexttick = gt->cval + offset; |
55d284af PM |
1681 | } |
1682 | /* Note that the desired next expiry time might be beyond the | |
1683 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1684 | * set the timer for as far in the future as possible. When the | |
1685 | * timer expires we will reset the timer for any remaining period. | |
1686 | */ | |
1687 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1688 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1689 | } | |
bc72ad67 | 1690 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
194cbc49 | 1691 | trace_arm_gt_recalc(timeridx, irqstate, nexttick); |
55d284af PM |
1692 | } else { |
1693 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1694 | gt->ctl &= ~4; | |
1695 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1696 | timer_del(cpu->gt_timer[timeridx]); |
194cbc49 | 1697 | trace_arm_gt_recalc_disabled(timeridx); |
55d284af PM |
1698 | } |
1699 | } | |
1700 | ||
0e3eca4c EI |
1701 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1702 | int timeridx) | |
55d284af PM |
1703 | { |
1704 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1705 | |
bc72ad67 | 1706 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1707 | } |
1708 | ||
c4241c7d | 1709 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1710 | { |
c4241c7d | 1711 | return gt_get_countervalue(env); |
55d284af PM |
1712 | } |
1713 | ||
edac4d8a EI |
1714 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1715 | { | |
1716 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1717 | } | |
1718 | ||
c4241c7d | 1719 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1720 | int timeridx, |
c4241c7d | 1721 | uint64_t value) |
55d284af | 1722 | { |
194cbc49 | 1723 | trace_arm_gt_cval_write(timeridx, value); |
55d284af PM |
1724 | env->cp15.c14_timer[timeridx].cval = value; |
1725 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1726 | } |
c4241c7d | 1727 | |
0e3eca4c EI |
1728 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1729 | int timeridx) | |
55d284af | 1730 | { |
edac4d8a | 1731 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1732 | |
c4241c7d | 1733 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1734 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1735 | } |
1736 | ||
c4241c7d | 1737 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1738 | int timeridx, |
c4241c7d | 1739 | uint64_t value) |
55d284af | 1740 | { |
edac4d8a | 1741 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1742 | |
194cbc49 | 1743 | trace_arm_gt_tval_write(timeridx, value); |
edac4d8a | 1744 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1745 | sextract64(value, 0, 32); |
55d284af | 1746 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1747 | } |
1748 | ||
c4241c7d | 1749 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1750 | int timeridx, |
c4241c7d | 1751 | uint64_t value) |
55d284af PM |
1752 | { |
1753 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1754 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1755 | ||
194cbc49 | 1756 | trace_arm_gt_ctl_write(timeridx, value); |
d3afacc7 | 1757 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1758 | if ((oldval ^ value) & 1) { |
1759 | /* Enable toggled */ | |
1760 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1761 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1762 | /* IMASK toggled: don't need to recalculate, |
1763 | * just set the interrupt line based on ISTATUS | |
1764 | */ | |
194cbc49 PM |
1765 | int irqstate = (oldval & 4) && !(value & 2); |
1766 | ||
1767 | trace_arm_gt_imask_toggle(timeridx, irqstate); | |
1768 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
55d284af | 1769 | } |
55d284af PM |
1770 | } |
1771 | ||
0e3eca4c EI |
1772 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1773 | { | |
1774 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1775 | } | |
1776 | ||
1777 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1778 | uint64_t value) | |
1779 | { | |
1780 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1781 | } | |
1782 | ||
1783 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1784 | { | |
1785 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1786 | } | |
1787 | ||
1788 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1789 | uint64_t value) | |
1790 | { | |
1791 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1792 | } | |
1793 | ||
1794 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1795 | uint64_t value) | |
1796 | { | |
1797 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1798 | } | |
1799 | ||
1800 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1801 | { | |
1802 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1803 | } | |
1804 | ||
1805 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1806 | uint64_t value) | |
1807 | { | |
1808 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1809 | } | |
1810 | ||
1811 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1812 | { | |
1813 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1814 | } | |
1815 | ||
1816 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1817 | uint64_t value) | |
1818 | { | |
1819 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1820 | } | |
1821 | ||
1822 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1823 | uint64_t value) | |
1824 | { | |
1825 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1826 | } | |
1827 | ||
edac4d8a EI |
1828 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1829 | uint64_t value) | |
1830 | { | |
1831 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1832 | ||
194cbc49 | 1833 | trace_arm_gt_cntvoff_write(value); |
edac4d8a EI |
1834 | raw_write(env, ri, value); |
1835 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1836 | } | |
1837 | ||
b0e66d95 EI |
1838 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1839 | { | |
1840 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1841 | } | |
1842 | ||
1843 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1844 | uint64_t value) | |
1845 | { | |
1846 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1847 | } | |
1848 | ||
1849 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1850 | { | |
1851 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1852 | } | |
1853 | ||
1854 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1855 | uint64_t value) | |
1856 | { | |
1857 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1858 | } | |
1859 | ||
1860 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1861 | uint64_t value) | |
1862 | { | |
1863 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1864 | } | |
1865 | ||
b4d3978c PM |
1866 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1867 | { | |
1868 | gt_timer_reset(env, ri, GTIMER_SEC); | |
1869 | } | |
1870 | ||
1871 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1872 | uint64_t value) | |
1873 | { | |
1874 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
1875 | } | |
1876 | ||
1877 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1878 | { | |
1879 | return gt_tval_read(env, ri, GTIMER_SEC); | |
1880 | } | |
1881 | ||
1882 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1883 | uint64_t value) | |
1884 | { | |
1885 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
1886 | } | |
1887 | ||
1888 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1889 | uint64_t value) | |
1890 | { | |
1891 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
1892 | } | |
1893 | ||
55d284af PM |
1894 | void arm_gt_ptimer_cb(void *opaque) |
1895 | { | |
1896 | ARMCPU *cpu = opaque; | |
1897 | ||
1898 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1899 | } | |
1900 | ||
1901 | void arm_gt_vtimer_cb(void *opaque) | |
1902 | { | |
1903 | ARMCPU *cpu = opaque; | |
1904 | ||
1905 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1906 | } | |
1907 | ||
b0e66d95 EI |
1908 | void arm_gt_htimer_cb(void *opaque) |
1909 | { | |
1910 | ARMCPU *cpu = opaque; | |
1911 | ||
1912 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1913 | } | |
1914 | ||
b4d3978c PM |
1915 | void arm_gt_stimer_cb(void *opaque) |
1916 | { | |
1917 | ARMCPU *cpu = opaque; | |
1918 | ||
1919 | gt_recalc_timer(cpu, GTIMER_SEC); | |
1920 | } | |
1921 | ||
55d284af PM |
1922 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1923 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1924 | * of software; writing it doesn't actually change the timer frequency. | |
1925 | * Our reset value matches the fixed frequency we implement the timer at. | |
1926 | */ | |
1927 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1928 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1929 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1930 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1931 | }, |
1932 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1933 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1934 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1935 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1936 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1937 | }, |
1938 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1939 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1940 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1941 | .access = PL1_RW, |
1942 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1943 | .resetvalue = 0, | |
1944 | }, | |
1945 | /* per-timer control */ | |
1946 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 1947 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1948 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1949 | .accessfn = gt_ptimer_access, |
1950 | .fieldoffset = offsetoflow32(CPUARMState, | |
1951 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1952 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 | 1953 | }, |
9ff9dd3c PM |
1954 | { .name = "CNTP_CTL(S)", |
1955 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1956 | .secure = ARM_CP_SECSTATE_S, | |
1957 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | |
1958 | .accessfn = gt_ptimer_access, | |
1959 | .fieldoffset = offsetoflow32(CPUARMState, | |
1960 | cp15.c14_timer[GTIMER_SEC].ctl), | |
1961 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1962 | }, | |
a7adc4b7 PM |
1963 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
1964 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1965 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1966 | .accessfn = gt_ptimer_access, |
55d284af PM |
1967 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1968 | .resetvalue = 0, | |
0e3eca4c | 1969 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1970 | }, |
1971 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1972 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1973 | .accessfn = gt_vtimer_access, |
1974 | .fieldoffset = offsetoflow32(CPUARMState, | |
1975 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1976 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1977 | }, |
1978 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1979 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1980 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1981 | .accessfn = gt_vtimer_access, |
55d284af PM |
1982 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1983 | .resetvalue = 0, | |
0e3eca4c | 1984 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1985 | }, |
1986 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1987 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 1988 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1989 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1990 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1991 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 1992 | }, |
9ff9dd3c PM |
1993 | { .name = "CNTP_TVAL(S)", |
1994 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1995 | .secure = ARM_CP_SECSTATE_S, | |
1996 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1997 | .accessfn = gt_ptimer_access, | |
1998 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
1999 | }, | |
a7adc4b7 PM |
2000 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
2001 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 2002 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
2003 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
2004 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 2005 | }, |
55d284af | 2006 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2007 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 2008 | .accessfn = gt_vtimer_access, |
0e3eca4c | 2009 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 2010 | }, |
a7adc4b7 PM |
2011 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
2012 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 2013 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
2014 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
2015 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 2016 | }, |
55d284af PM |
2017 | /* The counter itself */ |
2018 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 2019 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 2020 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
2021 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
2022 | }, | |
2023 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
2024 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 2025 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 2026 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
2027 | }, |
2028 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 2029 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 2030 | .accessfn = gt_vct_access, |
edac4d8a | 2031 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
2032 | }, |
2033 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
2034 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 2035 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 2036 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
2037 | }, |
2038 | /* Comparison value, indicating when the timer goes off */ | |
2039 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 2040 | .secure = ARM_CP_SECSTATE_NS, |
55d284af | 2041 | .access = PL1_RW | PL0_R, |
7a0e58fa | 2042 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 2043 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 2044 | .accessfn = gt_ptimer_access, |
0e3eca4c | 2045 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 | 2046 | }, |
9ff9dd3c PM |
2047 | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
2048 | .secure = ARM_CP_SECSTATE_S, | |
2049 | .access = PL1_RW | PL0_R, | |
2050 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | |
2051 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
2052 | .accessfn = gt_ptimer_access, | |
2053 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
2054 | }, | |
a7adc4b7 PM |
2055 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
2056 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
2057 | .access = PL1_RW | PL0_R, | |
2058 | .type = ARM_CP_IO, | |
2059 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 2060 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 2061 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
2062 | }, |
2063 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
2064 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 2065 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 2066 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 2067 | .accessfn = gt_vtimer_access, |
0e3eca4c | 2068 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
2069 | }, |
2070 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
2071 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
2072 | .access = PL1_RW | PL0_R, | |
2073 | .type = ARM_CP_IO, | |
2074 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
2075 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 2076 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af | 2077 | }, |
b4d3978c PM |
2078 | /* Secure timer -- this is actually restricted to only EL3 |
2079 | * and configurably Secure-EL1 via the accessfn. | |
2080 | */ | |
2081 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
2082 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
2083 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
2084 | .accessfn = gt_stimer_access, | |
2085 | .readfn = gt_sec_tval_read, | |
2086 | .writefn = gt_sec_tval_write, | |
2087 | .resetfn = gt_sec_timer_reset, | |
2088 | }, | |
2089 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
2090 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
2091 | .type = ARM_CP_IO, .access = PL1_RW, | |
2092 | .accessfn = gt_stimer_access, | |
2093 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
2094 | .resetvalue = 0, | |
2095 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
2096 | }, | |
2097 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
2098 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
2099 | .type = ARM_CP_IO, .access = PL1_RW, | |
2100 | .accessfn = gt_stimer_access, | |
2101 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
2102 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
2103 | }, | |
55d284af PM |
2104 | REGINFO_SENTINEL |
2105 | }; | |
2106 | ||
2107 | #else | |
2108 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 2109 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
2110 | * so instead just don't register any of them. |
2111 | */ | |
6cc7a3ae | 2112 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
2113 | REGINFO_SENTINEL |
2114 | }; | |
2115 | ||
55d284af PM |
2116 | #endif |
2117 | ||
c4241c7d | 2118 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 2119 | { |
891a2fe7 | 2120 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 2121 | raw_write(env, ri, value); |
891a2fe7 | 2122 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 2123 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 2124 | } else { |
8d5c773e | 2125 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 2126 | } |
4a501606 PM |
2127 | } |
2128 | ||
2129 | #ifndef CONFIG_USER_ONLY | |
2130 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 2131 | |
3f208fd7 PM |
2132 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2133 | bool isread) | |
92611c00 PM |
2134 | { |
2135 | if (ri->opc2 & 4) { | |
87562e4f PM |
2136 | /* The ATS12NSO* operations must trap to EL3 if executed in |
2137 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
2138 | * They are simply UNDEF if executed from NS EL1. | |
2139 | * They function normally from EL2 or EL3. | |
92611c00 | 2140 | */ |
87562e4f PM |
2141 | if (arm_current_el(env) == 1) { |
2142 | if (arm_is_secure_below_el3(env)) { | |
2143 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
2144 | } | |
2145 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2146 | } | |
92611c00 PM |
2147 | } |
2148 | return CP_ACCESS_OK; | |
2149 | } | |
2150 | ||
060e8a48 | 2151 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
03ae85f8 | 2152 | MMUAccessType access_type, ARMMMUIdx mmu_idx) |
4a501606 | 2153 | { |
a8170e5e | 2154 | hwaddr phys_addr; |
4a501606 PM |
2155 | target_ulong page_size; |
2156 | int prot; | |
b7cc4e82 PC |
2157 | uint32_t fsr; |
2158 | bool ret; | |
01c097f7 | 2159 | uint64_t par64; |
8bf5b6a9 | 2160 | MemTxAttrs attrs = {}; |
e14b5a23 | 2161 | ARMMMUFaultInfo fi = {}; |
4a501606 | 2162 | |
d3649702 | 2163 | ret = get_phys_addr(env, value, access_type, mmu_idx, |
e14b5a23 | 2164 | &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); |
702a9357 | 2165 | if (extended_addresses_enabled(env)) { |
b7cc4e82 | 2166 | /* fsr is a DFSR/IFSR value for the long descriptor |
702a9357 PM |
2167 | * translation table format, but with WnR always clear. |
2168 | * Convert it to a 64-bit PAR. | |
2169 | */ | |
01c097f7 | 2170 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 2171 | if (!ret) { |
702a9357 | 2172 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
2173 | if (!attrs.secure) { |
2174 | par64 |= (1 << 9); /* NS */ | |
2175 | } | |
702a9357 | 2176 | /* We don't set the ATTR or SH fields in the PAR. */ |
4a501606 | 2177 | } else { |
702a9357 | 2178 | par64 |= 1; /* F */ |
b7cc4e82 | 2179 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
2180 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
2181 | * implement virtualization and therefore there can't be a stage 2 | |
2182 | * fault. | |
2183 | */ | |
4a501606 PM |
2184 | } |
2185 | } else { | |
b7cc4e82 | 2186 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
2187 | * translation table format (with WnR always clear). |
2188 | * Convert it to a 32-bit PAR. | |
2189 | */ | |
b7cc4e82 | 2190 | if (!ret) { |
702a9357 PM |
2191 | /* We do not set any attribute bits in the PAR */ |
2192 | if (page_size == (1 << 24) | |
2193 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 2194 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 2195 | } else { |
01c097f7 | 2196 | par64 = phys_addr & 0xfffff000; |
702a9357 | 2197 | } |
8bf5b6a9 PM |
2198 | if (!attrs.secure) { |
2199 | par64 |= (1 << 9); /* NS */ | |
2200 | } | |
702a9357 | 2201 | } else { |
b7cc4e82 PC |
2202 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
2203 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 2204 | } |
4a501606 | 2205 | } |
060e8a48 PM |
2206 | return par64; |
2207 | } | |
2208 | ||
2209 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
2210 | { | |
03ae85f8 | 2211 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
060e8a48 | 2212 | uint64_t par64; |
d3649702 PM |
2213 | ARMMMUIdx mmu_idx; |
2214 | int el = arm_current_el(env); | |
2215 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 2216 | |
d3649702 PM |
2217 | switch (ri->opc2 & 6) { |
2218 | case 0: | |
2219 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
2220 | switch (el) { | |
2221 | case 3: | |
2222 | mmu_idx = ARMMMUIdx_S1E3; | |
2223 | break; | |
2224 | case 2: | |
2225 | mmu_idx = ARMMMUIdx_S1NSE1; | |
2226 | break; | |
2227 | case 1: | |
2228 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2229 | break; | |
2230 | default: | |
2231 | g_assert_not_reached(); | |
2232 | } | |
2233 | break; | |
2234 | case 2: | |
2235 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
2236 | switch (el) { | |
2237 | case 3: | |
2238 | mmu_idx = ARMMMUIdx_S1SE0; | |
2239 | break; | |
2240 | case 2: | |
2241 | mmu_idx = ARMMMUIdx_S1NSE0; | |
2242 | break; | |
2243 | case 1: | |
2244 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2245 | break; | |
2246 | default: | |
2247 | g_assert_not_reached(); | |
2248 | } | |
2249 | break; | |
2250 | case 4: | |
2251 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
2252 | mmu_idx = ARMMMUIdx_S12NSE1; | |
2253 | break; | |
2254 | case 6: | |
2255 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
2256 | mmu_idx = ARMMMUIdx_S12NSE0; | |
2257 | break; | |
2258 | default: | |
2259 | g_assert_not_reached(); | |
2260 | } | |
2261 | ||
2262 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
2263 | |
2264 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 2265 | } |
060e8a48 | 2266 | |
14db7fe0 PM |
2267 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2268 | uint64_t value) | |
2269 | { | |
03ae85f8 | 2270 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
14db7fe0 PM |
2271 | uint64_t par64; |
2272 | ||
2273 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | |
2274 | ||
2275 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
2276 | } | |
2277 | ||
3f208fd7 PM |
2278 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2279 | bool isread) | |
2a47df95 PM |
2280 | { |
2281 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
2282 | return CP_ACCESS_TRAP; | |
2283 | } | |
2284 | return CP_ACCESS_OK; | |
2285 | } | |
2286 | ||
060e8a48 PM |
2287 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
2288 | uint64_t value) | |
2289 | { | |
03ae85f8 | 2290 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
d3649702 PM |
2291 | ARMMMUIdx mmu_idx; |
2292 | int secure = arm_is_secure_below_el3(env); | |
2293 | ||
2294 | switch (ri->opc2 & 6) { | |
2295 | case 0: | |
2296 | switch (ri->opc1) { | |
2297 | case 0: /* AT S1E1R, AT S1E1W */ | |
2298 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2299 | break; | |
2300 | case 4: /* AT S1E2R, AT S1E2W */ | |
2301 | mmu_idx = ARMMMUIdx_S1E2; | |
2302 | break; | |
2303 | case 6: /* AT S1E3R, AT S1E3W */ | |
2304 | mmu_idx = ARMMMUIdx_S1E3; | |
2305 | break; | |
2306 | default: | |
2307 | g_assert_not_reached(); | |
2308 | } | |
2309 | break; | |
2310 | case 2: /* AT S1E0R, AT S1E0W */ | |
2311 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2312 | break; | |
2313 | case 4: /* AT S12E1R, AT S12E1W */ | |
2a47df95 | 2314 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
d3649702 PM |
2315 | break; |
2316 | case 6: /* AT S12E0R, AT S12E0W */ | |
2a47df95 | 2317 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
d3649702 PM |
2318 | break; |
2319 | default: | |
2320 | g_assert_not_reached(); | |
2321 | } | |
060e8a48 | 2322 | |
d3649702 | 2323 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 2324 | } |
4a501606 PM |
2325 | #endif |
2326 | ||
2327 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
2328 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2329 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
2330 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
2331 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
2332 | .writefn = par_write }, |
2333 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 2334 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 2335 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 2336 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 2337 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
2338 | #endif |
2339 | REGINFO_SENTINEL | |
2340 | }; | |
2341 | ||
18032bec PM |
2342 | /* Return basic MPU access permission bits. */ |
2343 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
2344 | { | |
2345 | uint32_t ret; | |
2346 | uint32_t mask; | |
2347 | int i; | |
2348 | ret = 0; | |
2349 | mask = 3; | |
2350 | for (i = 0; i < 16; i += 2) { | |
2351 | ret |= (val >> i) & mask; | |
2352 | mask <<= 2; | |
2353 | } | |
2354 | return ret; | |
2355 | } | |
2356 | ||
2357 | /* Pad basic MPU access permission bits to extended format. */ | |
2358 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
2359 | { | |
2360 | uint32_t ret; | |
2361 | uint32_t mask; | |
2362 | int i; | |
2363 | ret = 0; | |
2364 | mask = 3; | |
2365 | for (i = 0; i < 16; i += 2) { | |
2366 | ret |= (val & mask) << i; | |
2367 | mask <<= 2; | |
2368 | } | |
2369 | return ret; | |
2370 | } | |
2371 | ||
c4241c7d PM |
2372 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2373 | uint64_t value) | |
18032bec | 2374 | { |
7e09797c | 2375 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2376 | } |
2377 | ||
c4241c7d | 2378 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2379 | { |
7e09797c | 2380 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
2381 | } |
2382 | ||
c4241c7d PM |
2383 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2384 | uint64_t value) | |
18032bec | 2385 | { |
7e09797c | 2386 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2387 | } |
2388 | ||
c4241c7d | 2389 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2390 | { |
7e09797c | 2391 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
2392 | } |
2393 | ||
6cb0b013 PC |
2394 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2395 | { | |
2396 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2397 | ||
2398 | if (!u32p) { | |
2399 | return 0; | |
2400 | } | |
2401 | ||
1bc04a88 | 2402 | u32p += env->pmsav7.rnr[M_REG_NS]; |
6cb0b013 PC |
2403 | return *u32p; |
2404 | } | |
2405 | ||
2406 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2407 | uint64_t value) | |
2408 | { | |
2409 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2410 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2411 | ||
2412 | if (!u32p) { | |
2413 | return; | |
2414 | } | |
2415 | ||
1bc04a88 | 2416 | u32p += env->pmsav7.rnr[M_REG_NS]; |
d10eb08f | 2417 | tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ |
6cb0b013 PC |
2418 | *u32p = value; |
2419 | } | |
2420 | ||
6cb0b013 PC |
2421 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2422 | uint64_t value) | |
2423 | { | |
2424 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2425 | uint32_t nrgs = cpu->pmsav7_dregion; | |
2426 | ||
2427 | if (value >= nrgs) { | |
2428 | qemu_log_mask(LOG_GUEST_ERROR, | |
2429 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
2430 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
2431 | return; | |
2432 | } | |
2433 | ||
2434 | raw_write(env, ri, value); | |
2435 | } | |
2436 | ||
2437 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
69ceea64 PM |
2438 | /* Reset for all these registers is handled in arm_cpu_reset(), |
2439 | * because the PMSAv7 is also used by M-profile CPUs, which do | |
2440 | * not register cpregs but still need the state to be reset. | |
2441 | */ | |
6cb0b013 PC |
2442 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
2443 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2444 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
69ceea64 PM |
2445 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2446 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2447 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
2448 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2449 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
69ceea64 PM |
2450 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2451 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2452 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
2453 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2454 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
69ceea64 PM |
2455 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2456 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2457 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
2458 | .access = PL1_RW, | |
1bc04a88 | 2459 | .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), |
69ceea64 PM |
2460 | .writefn = pmsav7_rgnr_write, |
2461 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2462 | REGINFO_SENTINEL |
2463 | }; | |
2464 | ||
18032bec PM |
2465 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
2466 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2467 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2468 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
2469 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
2470 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2471 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2472 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
2473 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
2474 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2475 | .access = PL1_RW, | |
7e09797c PM |
2476 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
2477 | .resetvalue = 0, }, | |
18032bec PM |
2478 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
2479 | .access = PL1_RW, | |
7e09797c PM |
2480 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
2481 | .resetvalue = 0, }, | |
ecce5c3c PM |
2482 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2483 | .access = PL1_RW, | |
2484 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
2485 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2486 | .access = PL1_RW, | |
2487 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 2488 | /* Protection region base and size registers */ |
e508a92b PM |
2489 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
2490 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2491 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
2492 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
2493 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2494 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
2495 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
2496 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2497 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
2498 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
2499 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2500 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
2501 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
2502 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2503 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
2504 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
2505 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2506 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
2507 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
2508 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2509 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
2510 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
2511 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2512 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
2513 | REGINFO_SENTINEL |
2514 | }; | |
2515 | ||
c4241c7d PM |
2516 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2517 | uint64_t value) | |
ecce5c3c | 2518 | { |
11f136ee | 2519 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
2520 | int maskshift = extract32(value, 0, 3); |
2521 | ||
e389be16 FA |
2522 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2523 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
2524 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
2525 | * using Long-desciptor translation table format */ | |
2526 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
2527 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2528 | /* In an implementation that includes the Security Extensions | |
2529 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
2530 | * Short-descriptor translation table format. | |
2531 | */ | |
2532 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
2533 | } else { | |
2534 | value &= TTBCR_N; | |
2535 | } | |
e42c4db3 | 2536 | } |
e389be16 | 2537 | |
b6af0975 | 2538 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 2539 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 2540 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
2541 | * for long-descriptor tables the TCR fields are used differently |
2542 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 2543 | */ |
11f136ee FA |
2544 | tcr->raw_tcr = value; |
2545 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
2546 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
2547 | } |
2548 | ||
c4241c7d PM |
2549 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2550 | uint64_t value) | |
d4e6df63 | 2551 | { |
00c8cb0a AF |
2552 | ARMCPU *cpu = arm_env_get_cpu(env); |
2553 | ||
d4e6df63 PM |
2554 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2555 | /* With LPAE the TTBCR could result in a change of ASID | |
2556 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2557 | */ | |
d10eb08f | 2558 | tlb_flush(CPU(cpu)); |
d4e6df63 | 2559 | } |
c4241c7d | 2560 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2561 | } |
2562 | ||
ecce5c3c PM |
2563 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2564 | { | |
11f136ee FA |
2565 | TCR *tcr = raw_ptr(env, ri); |
2566 | ||
2567 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2568 | * the TCR being reset. | |
2569 | */ | |
2570 | tcr->raw_tcr = 0; | |
2571 | tcr->mask = 0; | |
2572 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2573 | } |
2574 | ||
cb2e37df PM |
2575 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2576 | uint64_t value) | |
2577 | { | |
00c8cb0a | 2578 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2579 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2580 | |
cb2e37df | 2581 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
d10eb08f | 2582 | tlb_flush(CPU(cpu)); |
11f136ee | 2583 | tcr->raw_tcr = value; |
cb2e37df PM |
2584 | } |
2585 | ||
327ed10f PM |
2586 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2587 | uint64_t value) | |
2588 | { | |
2589 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2590 | * must flush the TLB. | |
2591 | */ | |
2592 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2593 | ARMCPU *cpu = arm_env_get_cpu(env); |
2594 | ||
d10eb08f | 2595 | tlb_flush(CPU(cpu)); |
327ed10f PM |
2596 | } |
2597 | raw_write(env, ri, value); | |
2598 | } | |
2599 | ||
b698e9cf EI |
2600 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2601 | uint64_t value) | |
2602 | { | |
2603 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2604 | CPUState *cs = CPU(cpu); | |
2605 | ||
2606 | /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ | |
2607 | if (raw_read(env, ri) != value) { | |
0336cbf8 | 2608 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
2609 | ARMMMUIdxBit_S12NSE1 | |
2610 | ARMMMUIdxBit_S12NSE0 | | |
2611 | ARMMMUIdxBit_S2NS); | |
b698e9cf EI |
2612 | raw_write(env, ri, value); |
2613 | } | |
2614 | } | |
2615 | ||
8e5d75c9 | 2616 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2617 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2618 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2619 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2620 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2621 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2622 | .access = PL1_RW, .resetvalue = 0, |
2623 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2624 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2625 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2626 | .access = PL1_RW, .resetvalue = 0, | |
2627 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2628 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2629 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2630 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2631 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2632 | .resetvalue = 0, }, | |
2633 | REGINFO_SENTINEL | |
2634 | }; | |
2635 | ||
2636 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2637 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2638 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2639 | .access = PL1_RW, | |
d81c519c | 2640 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2641 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2642 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2643 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2644 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2645 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2646 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2647 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2648 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2649 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2650 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2651 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2652 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2653 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2654 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2655 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2656 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2657 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2658 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2659 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2660 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2661 | REGINFO_SENTINEL |
2662 | }; | |
2663 | ||
c4241c7d PM |
2664 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2665 | uint64_t value) | |
1047b9d7 PM |
2666 | { |
2667 | env->cp15.c15_ticonfig = value & 0xe7; | |
2668 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2669 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2670 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2671 | } |
2672 | ||
c4241c7d PM |
2673 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2674 | uint64_t value) | |
1047b9d7 PM |
2675 | { |
2676 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2677 | } |
2678 | ||
c4241c7d PM |
2679 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2680 | uint64_t value) | |
1047b9d7 PM |
2681 | { |
2682 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2683 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2684 | } |
2685 | ||
c4241c7d PM |
2686 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2687 | uint64_t value) | |
c4804214 PM |
2688 | { |
2689 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2690 | * containing a dirty line; cache flush operations have to reset these. | |
2691 | */ | |
2692 | env->cp15.c15_i_max = 0x000; | |
2693 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2694 | } |
2695 | ||
18032bec PM |
2696 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2697 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2698 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2699 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2700 | .resetvalue = 0, }, |
1047b9d7 PM |
2701 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2702 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2703 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2704 | .access = PL1_RW, | |
2705 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2706 | .writefn = omap_ticonfig_write }, | |
2707 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2708 | .access = PL1_RW, | |
2709 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2710 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2711 | .access = PL1_RW, .resetvalue = 0xff0, | |
2712 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2713 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2714 | .access = PL1_RW, | |
2715 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2716 | .writefn = omap_threadid_write }, | |
2717 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2718 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2719 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2720 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2721 | /* TODO: Peripheral port remap register: | |
2722 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2723 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2724 | * when MMU is off. | |
2725 | */ | |
c4804214 | 2726 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2727 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2728 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2729 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2730 | { .name = "C9", .cp = 15, .crn = 9, |
2731 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2732 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2733 | REGINFO_SENTINEL |
2734 | }; | |
2735 | ||
c4241c7d PM |
2736 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2737 | uint64_t value) | |
1047b9d7 | 2738 | { |
c0f4af17 | 2739 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2740 | } |
2741 | ||
2742 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2743 | { .name = "XSCALE_CPAR", | |
2744 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2745 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2746 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2747 | { .name = "XSCALE_AUXCR", |
2748 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2749 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2750 | .resetvalue = 0, }, | |
3b771579 PM |
2751 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2752 | * and hope the guest does not really rely on cache behaviour. | |
2753 | */ | |
2754 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2755 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2756 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2757 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2758 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2759 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2760 | { .name = "XSCALE_DCACHE_LOCK", | |
2761 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2762 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2763 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2764 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2765 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2766 | REGINFO_SENTINEL |
2767 | }; | |
2768 | ||
2769 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2770 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2771 | * implementation of this implementation-defined space. | |
2772 | * Ideally this should eventually disappear in favour of actually | |
2773 | * implementing the correct behaviour for all cores. | |
2774 | */ | |
2775 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2776 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2777 | .access = PL1_RW, |
7a0e58fa | 2778 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2779 | .resetvalue = 0 }, |
18032bec PM |
2780 | REGINFO_SENTINEL |
2781 | }; | |
2782 | ||
c4804214 PM |
2783 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2784 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2785 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2786 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2787 | .resetvalue = 0 }, |
c4804214 PM |
2788 | REGINFO_SENTINEL |
2789 | }; | |
2790 | ||
2791 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2792 | /* We never have a a block transfer operation in progress */ | |
2793 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2794 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2795 | .resetvalue = 0 }, |
30b05bba PM |
2796 | /* The cache ops themselves: these all NOP for QEMU */ |
2797 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2798 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2799 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2800 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2801 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2802 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2803 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2804 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2805 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2806 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2807 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2808 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2809 | REGINFO_SENTINEL |
2810 | }; | |
2811 | ||
2812 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2813 | /* The cache test-and-clean instructions always return (1 << 30) | |
2814 | * to indicate that there are no dirty cache lines. | |
2815 | */ | |
2816 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2817 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2818 | .resetvalue = (1 << 30) }, |
c4804214 | 2819 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2820 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2821 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2822 | REGINFO_SENTINEL |
2823 | }; | |
2824 | ||
34f90529 PM |
2825 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2826 | /* Ignore ReadBuffer accesses */ | |
2827 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2828 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2829 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2830 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2831 | REGINFO_SENTINEL |
2832 | }; | |
2833 | ||
731de9e6 EI |
2834 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2835 | { | |
2836 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2837 | unsigned int cur_el = arm_current_el(env); | |
2838 | bool secure = arm_is_secure(env); | |
2839 | ||
2840 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2841 | return env->cp15.vpidr_el2; | |
2842 | } | |
2843 | return raw_read(env, ri); | |
2844 | } | |
2845 | ||
06a7e647 | 2846 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 2847 | { |
eb5e1d3c PF |
2848 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2849 | uint64_t mpidr = cpu->mp_affinity; | |
2850 | ||
81bdde9d | 2851 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2852 | mpidr |= (1U << 31); |
81bdde9d PM |
2853 | /* Cores which are uniprocessor (non-coherent) |
2854 | * but still implement the MP extensions set | |
a8e81b31 | 2855 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2856 | */ |
a8e81b31 PC |
2857 | if (cpu->mp_is_up) { |
2858 | mpidr |= (1u << 30); | |
2859 | } | |
81bdde9d | 2860 | } |
c4241c7d | 2861 | return mpidr; |
81bdde9d PM |
2862 | } |
2863 | ||
06a7e647 EI |
2864 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2865 | { | |
f0d574d6 EI |
2866 | unsigned int cur_el = arm_current_el(env); |
2867 | bool secure = arm_is_secure(env); | |
2868 | ||
2869 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2870 | return env->cp15.vmpidr_el2; | |
2871 | } | |
06a7e647 EI |
2872 | return mpidr_read_val(env); |
2873 | } | |
2874 | ||
81bdde9d | 2875 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
4b7fff2f PM |
2876 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2877 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2878 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2879 | REGINFO_SENTINEL |
2880 | }; | |
2881 | ||
7ac681cf | 2882 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2883 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2884 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2885 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2886 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2887 | .resetvalue = 0 }, |
b0fe2427 | 2888 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2889 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2890 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2891 | .resetvalue = 0 }, |
891a2fe7 | 2892 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2893 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2894 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2895 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2896 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2897 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2898 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2899 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2900 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2901 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2902 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2903 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2904 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2905 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2906 | REGINFO_SENTINEL |
2907 | }; | |
2908 | ||
c4241c7d | 2909 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2910 | { |
c4241c7d | 2911 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2912 | } |
2913 | ||
c4241c7d PM |
2914 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2915 | uint64_t value) | |
b0d2b7d0 PM |
2916 | { |
2917 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2918 | } |
2919 | ||
c4241c7d | 2920 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2921 | { |
c4241c7d | 2922 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2923 | } |
2924 | ||
c4241c7d PM |
2925 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2926 | uint64_t value) | |
b0d2b7d0 PM |
2927 | { |
2928 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2929 | } |
2930 | ||
3f208fd7 PM |
2931 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2932 | bool isread) | |
c2b820fe | 2933 | { |
137feaa9 | 2934 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2935 | return CP_ACCESS_TRAP; |
2936 | } | |
2937 | return CP_ACCESS_OK; | |
2938 | } | |
2939 | ||
2940 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2941 | uint64_t value) | |
2942 | { | |
2943 | env->daif = value & PSTATE_DAIF; | |
2944 | } | |
2945 | ||
8af35c37 | 2946 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
3f208fd7 PM |
2947 | const ARMCPRegInfo *ri, |
2948 | bool isread) | |
8af35c37 PM |
2949 | { |
2950 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2951 | * SCTLR_EL1.UCI is set. | |
2952 | */ | |
137feaa9 | 2953 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2954 | return CP_ACCESS_TRAP; |
2955 | } | |
2956 | return CP_ACCESS_OK; | |
2957 | } | |
2958 | ||
dbb1fb27 AB |
2959 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2960 | * Page D4-1736 (DDI0487A.b) | |
2961 | */ | |
2962 | ||
fd3ed969 PM |
2963 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2964 | uint64_t value) | |
168aa23b | 2965 | { |
a67cf277 | 2966 | CPUState *cs = ENV_GET_CPU(env); |
dbb1fb27 | 2967 | |
fd3ed969 | 2968 | if (arm_is_secure_below_el3(env)) { |
0336cbf8 | 2969 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
2970 | ARMMMUIdxBit_S1SE1 | |
2971 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 | 2972 | } else { |
0336cbf8 | 2973 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
2974 | ARMMMUIdxBit_S12NSE1 | |
2975 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 | 2976 | } |
168aa23b PM |
2977 | } |
2978 | ||
fd3ed969 PM |
2979 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2980 | uint64_t value) | |
168aa23b | 2981 | { |
a67cf277 | 2982 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 | 2983 | bool sec = arm_is_secure_below_el3(env); |
dbb1fb27 | 2984 | |
a67cf277 AB |
2985 | if (sec) { |
2986 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
2987 | ARMMMUIdxBit_S1SE1 | |
2988 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
2989 | } else { |
2990 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
2991 | ARMMMUIdxBit_S12NSE1 | |
2992 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 | 2993 | } |
168aa23b PM |
2994 | } |
2995 | ||
fd3ed969 PM |
2996 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2997 | uint64_t value) | |
168aa23b | 2998 | { |
fd3ed969 PM |
2999 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
3000 | * stage 2 translations, whereas most other scopes only invalidate | |
3001 | * stage 1 translations. | |
3002 | */ | |
00c8cb0a | 3003 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 PM |
3004 | CPUState *cs = CPU(cpu); |
3005 | ||
3006 | if (arm_is_secure_below_el3(env)) { | |
0336cbf8 | 3007 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3008 | ARMMMUIdxBit_S1SE1 | |
3009 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 PM |
3010 | } else { |
3011 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
0336cbf8 | 3012 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3013 | ARMMMUIdxBit_S12NSE1 | |
3014 | ARMMMUIdxBit_S12NSE0 | | |
3015 | ARMMMUIdxBit_S2NS); | |
fd3ed969 | 3016 | } else { |
0336cbf8 | 3017 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3018 | ARMMMUIdxBit_S12NSE1 | |
3019 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 PM |
3020 | } |
3021 | } | |
168aa23b PM |
3022 | } |
3023 | ||
fd3ed969 | 3024 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
3025 | uint64_t value) |
3026 | { | |
fd3ed969 PM |
3027 | ARMCPU *cpu = arm_env_get_cpu(env); |
3028 | CPUState *cs = CPU(cpu); | |
3029 | ||
8bd5c820 | 3030 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
fd3ed969 PM |
3031 | } |
3032 | ||
43efaa33 PM |
3033 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3034 | uint64_t value) | |
3035 | { | |
3036 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3037 | CPUState *cs = CPU(cpu); | |
3038 | ||
8bd5c820 | 3039 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3040 | } |
3041 | ||
fd3ed969 PM |
3042 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3043 | uint64_t value) | |
3044 | { | |
3045 | /* Note that the 'ALL' scope must invalidate both stage 1 and | |
3046 | * stage 2 translations, whereas most other scopes only invalidate | |
3047 | * stage 1 translations. | |
3048 | */ | |
a67cf277 | 3049 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 PM |
3050 | bool sec = arm_is_secure_below_el3(env); |
3051 | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); | |
a67cf277 AB |
3052 | |
3053 | if (sec) { | |
3054 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3055 | ARMMMUIdxBit_S1SE1 | |
3056 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
3057 | } else if (has_el2) { |
3058 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3059 | ARMMMUIdxBit_S12NSE1 | |
3060 | ARMMMUIdxBit_S12NSE0 | | |
3061 | ARMMMUIdxBit_S2NS); | |
a67cf277 AB |
3062 | } else { |
3063 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3064 | ARMMMUIdxBit_S12NSE1 | |
3065 | ARMMMUIdxBit_S12NSE0); | |
fa439fc5 PM |
3066 | } |
3067 | } | |
3068 | ||
2bfb9d75 PM |
3069 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3070 | uint64_t value) | |
3071 | { | |
a67cf277 | 3072 | CPUState *cs = ENV_GET_CPU(env); |
2bfb9d75 | 3073 | |
8bd5c820 | 3074 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
2bfb9d75 PM |
3075 | } |
3076 | ||
43efaa33 PM |
3077 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3078 | uint64_t value) | |
3079 | { | |
a67cf277 | 3080 | CPUState *cs = ENV_GET_CPU(env); |
43efaa33 | 3081 | |
8bd5c820 | 3082 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3083 | } |
3084 | ||
fd3ed969 PM |
3085 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3086 | uint64_t value) | |
3087 | { | |
3088 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
3089 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
3090 | * since we don't support flush-for-specific-ASID-only or | |
3091 | * flush-last-level-only. | |
3092 | */ | |
3093 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3094 | CPUState *cs = CPU(cpu); | |
3095 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3096 | ||
3097 | if (arm_is_secure_below_el3(env)) { | |
0336cbf8 | 3098 | tlb_flush_page_by_mmuidx(cs, pageaddr, |
8bd5c820 PM |
3099 | ARMMMUIdxBit_S1SE1 | |
3100 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 | 3101 | } else { |
0336cbf8 | 3102 | tlb_flush_page_by_mmuidx(cs, pageaddr, |
8bd5c820 PM |
3103 | ARMMMUIdxBit_S12NSE1 | |
3104 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 PM |
3105 | } |
3106 | } | |
3107 | ||
3108 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3109 | uint64_t value) | |
fa439fc5 | 3110 | { |
fd3ed969 PM |
3111 | /* Invalidate by VA, EL2 |
3112 | * Currently handles both VAE2 and VALE2, since we don't support | |
3113 | * flush-last-level-only. | |
3114 | */ | |
3115 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3116 | CPUState *cs = CPU(cpu); | |
3117 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3118 | ||
8bd5c820 | 3119 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
fd3ed969 PM |
3120 | } |
3121 | ||
43efaa33 PM |
3122 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3123 | uint64_t value) | |
3124 | { | |
3125 | /* Invalidate by VA, EL3 | |
3126 | * Currently handles both VAE3 and VALE3, since we don't support | |
3127 | * flush-last-level-only. | |
3128 | */ | |
3129 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3130 | CPUState *cs = CPU(cpu); | |
3131 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3132 | ||
8bd5c820 | 3133 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3134 | } |
3135 | ||
fd3ed969 PM |
3136 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3137 | uint64_t value) | |
3138 | { | |
a67cf277 AB |
3139 | ARMCPU *cpu = arm_env_get_cpu(env); |
3140 | CPUState *cs = CPU(cpu); | |
fd3ed969 | 3141 | bool sec = arm_is_secure_below_el3(env); |
fa439fc5 PM |
3142 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
3143 | ||
a67cf277 AB |
3144 | if (sec) { |
3145 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, | |
8bd5c820 PM |
3146 | ARMMMUIdxBit_S1SE1 | |
3147 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
3148 | } else { |
3149 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, | |
8bd5c820 PM |
3150 | ARMMMUIdxBit_S12NSE1 | |
3151 | ARMMMUIdxBit_S12NSE0); | |
fa439fc5 PM |
3152 | } |
3153 | } | |
3154 | ||
fd3ed969 PM |
3155 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3156 | uint64_t value) | |
fa439fc5 | 3157 | { |
a67cf277 | 3158 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 | 3159 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
fa439fc5 | 3160 | |
a67cf277 | 3161 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3162 | ARMMMUIdxBit_S1E2); |
fa439fc5 PM |
3163 | } |
3164 | ||
43efaa33 PM |
3165 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3166 | uint64_t value) | |
3167 | { | |
a67cf277 | 3168 | CPUState *cs = ENV_GET_CPU(env); |
43efaa33 PM |
3169 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
3170 | ||
a67cf277 | 3171 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3172 | ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3173 | } |
3174 | ||
cea66e91 PM |
3175 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3176 | uint64_t value) | |
3177 | { | |
3178 | /* Invalidate by IPA. This has to invalidate any structures that | |
3179 | * contain only stage 2 translation information, but does not need | |
3180 | * to apply to structures that contain combined stage 1 and stage 2 | |
3181 | * translation information. | |
3182 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
3183 | */ | |
3184 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3185 | CPUState *cs = CPU(cpu); | |
3186 | uint64_t pageaddr; | |
3187 | ||
3188 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
3189 | return; | |
3190 | } | |
3191 | ||
3192 | pageaddr = sextract64(value << 12, 0, 48); | |
3193 | ||
8bd5c820 | 3194 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
cea66e91 PM |
3195 | } |
3196 | ||
3197 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3198 | uint64_t value) | |
3199 | { | |
a67cf277 | 3200 | CPUState *cs = ENV_GET_CPU(env); |
cea66e91 PM |
3201 | uint64_t pageaddr; |
3202 | ||
3203 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
3204 | return; | |
3205 | } | |
3206 | ||
3207 | pageaddr = sextract64(value << 12, 0, 48); | |
3208 | ||
a67cf277 | 3209 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3210 | ARMMMUIdxBit_S2NS); |
cea66e91 PM |
3211 | } |
3212 | ||
3f208fd7 PM |
3213 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3214 | bool isread) | |
aca3f40b PM |
3215 | { |
3216 | /* We don't implement EL2, so the only control on DC ZVA is the | |
3217 | * bit in the SCTLR which can prohibit access for EL0. | |
3218 | */ | |
137feaa9 | 3219 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
3220 | return CP_ACCESS_TRAP; |
3221 | } | |
3222 | return CP_ACCESS_OK; | |
3223 | } | |
3224 | ||
3225 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3226 | { | |
3227 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3228 | int dzp_bit = 1 << 4; | |
3229 | ||
3230 | /* DZP indicates whether DC ZVA access is allowed */ | |
3f208fd7 | 3231 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
aca3f40b PM |
3232 | dzp_bit = 0; |
3233 | } | |
3234 | return cpu->dcz_blocksize | dzp_bit; | |
3235 | } | |
3236 | ||
3f208fd7 PM |
3237 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3238 | bool isread) | |
f502cfc2 | 3239 | { |
cdcf1405 | 3240 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
3241 | /* Access to SP_EL0 is undefined if it's being used as |
3242 | * the stack pointer. | |
3243 | */ | |
3244 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3245 | } | |
3246 | return CP_ACCESS_OK; | |
3247 | } | |
3248 | ||
3249 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3250 | { | |
3251 | return env->pstate & PSTATE_SP; | |
3252 | } | |
3253 | ||
3254 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
3255 | { | |
3256 | update_spsel(env, val); | |
3257 | } | |
3258 | ||
137feaa9 FA |
3259 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3260 | uint64_t value) | |
3261 | { | |
3262 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3263 | ||
3264 | if (raw_read(env, ri) == value) { | |
3265 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
3266 | * to do a lot of pointless SCTLR writes. | |
3267 | */ | |
3268 | return; | |
3269 | } | |
3270 | ||
06312feb PM |
3271 | if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { |
3272 | /* M bit is RAZ/WI for PMSA with no MPU implemented */ | |
3273 | value &= ~SCTLR_M; | |
3274 | } | |
3275 | ||
137feaa9 FA |
3276 | raw_write(env, ri, value); |
3277 | /* ??? Lots of these bits are not implemented. */ | |
3278 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
d10eb08f | 3279 | tlb_flush(CPU(cpu)); |
137feaa9 FA |
3280 | } |
3281 | ||
3f208fd7 PM |
3282 | static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3283 | bool isread) | |
03fbf20f PM |
3284 | { |
3285 | if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { | |
f2cae609 | 3286 | return CP_ACCESS_TRAP_FP_EL2; |
03fbf20f PM |
3287 | } |
3288 | if (env->cp15.cptr_el[3] & CPTR_TFP) { | |
f2cae609 | 3289 | return CP_ACCESS_TRAP_FP_EL3; |
03fbf20f PM |
3290 | } |
3291 | return CP_ACCESS_OK; | |
3292 | } | |
3293 | ||
a8d64e73 PM |
3294 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3295 | uint64_t value) | |
3296 | { | |
3297 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; | |
3298 | } | |
3299 | ||
b0d2b7d0 PM |
3300 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
3301 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
3302 | * significantly for system emulation of AArch64 CPUs. | |
3303 | */ | |
3304 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
3305 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
3306 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
3307 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
3308 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 3309 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
3310 | .access = PL0_RW, .accessfn = aa64_daif_access, |
3311 | .fieldoffset = offsetof(CPUARMState, daif), | |
3312 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
3313 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
3314 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
3315 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
3316 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
3317 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
3318 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
3319 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
3320 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 3321 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
3322 | .readfn = aa64_dczid_read }, |
3323 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
3324 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
3325 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
3326 | #ifndef CONFIG_USER_ONLY | |
3327 | /* Avoid overhead of an access check that always passes in user-mode */ | |
3328 | .accessfn = aa64_zva_access, | |
3329 | #endif | |
3330 | }, | |
0eef9d98 PM |
3331 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
3332 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
3333 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
3334 | /* Cache ops: all NOPs since we don't emulate caches */ |
3335 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
3336 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3337 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3338 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
3339 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3340 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3341 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
3342 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
3343 | .access = PL0_W, .type = ARM_CP_NOP, | |
3344 | .accessfn = aa64_cacheop_access }, | |
3345 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
3346 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3347 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3348 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
3349 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3350 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3351 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
3352 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
3353 | .access = PL0_W, .type = ARM_CP_NOP, | |
3354 | .accessfn = aa64_cacheop_access }, | |
3355 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
3356 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3357 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3358 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
3359 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
3360 | .access = PL0_W, .type = ARM_CP_NOP, | |
3361 | .accessfn = aa64_cacheop_access }, | |
3362 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
3363 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
3364 | .access = PL0_W, .type = ARM_CP_NOP, | |
3365 | .accessfn = aa64_cacheop_access }, | |
3366 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
3367 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3368 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
3369 | /* TLBI operations */ |
3370 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 3371 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 3372 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3373 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3374 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3375 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 3376 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3377 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3378 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3379 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 3380 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3381 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3382 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3383 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 3384 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3385 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3386 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3387 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3388 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3389 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3390 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3391 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3392 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3393 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3394 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3395 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 3396 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3397 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3398 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3399 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 3400 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3401 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3402 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3403 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 3404 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3405 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3406 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3407 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 3408 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3409 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3410 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3411 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3412 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3413 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3414 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3415 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3416 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3417 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
3418 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
3419 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3420 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3421 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
3422 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
3423 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3424 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3425 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
83ddf975 PM |
3426 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
3427 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3428 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3429 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
3430 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
3431 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
3432 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3433 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
3434 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
3435 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3436 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3437 | .writefn = tlbi_aa64_ipas2e1_write }, | |
3438 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | |
3439 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3440 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3441 | .writefn = tlbi_aa64_ipas2e1_write }, | |
83ddf975 PM |
3442 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
3443 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3444 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3445 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
3446 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
3447 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
3448 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3449 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
3450 | #ifndef CONFIG_USER_ONLY |
3451 | /* 64 bit address translation operations */ | |
3452 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
3453 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 3454 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3455 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
3456 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 3457 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3458 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
3459 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 3460 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3461 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
3462 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 3463 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2a47df95 | 3464 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 3465 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
2a47df95 PM |
3466 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3467 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3468 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
2a47df95 PM |
3469 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3470 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3471 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
2a47df95 PM |
3472 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3473 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3474 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
2a47df95 PM |
3475 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3476 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | |
3477 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
3478 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
3479 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3480 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | |
3481 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
3482 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
c96fc9b5 EI |
3483 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
3484 | .type = ARM_CP_ALIAS, | |
3485 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
3486 | .access = PL1_RW, .resetvalue = 0, | |
3487 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
3488 | .writefn = par_write }, | |
19525524 | 3489 | #endif |
995939a6 | 3490 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 3491 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3492 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 3493 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3494 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 3495 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 3496 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3497 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 3498 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3499 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
541ef8c2 SS |
3500 | { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
3501 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3502 | .writefn = tlbimva_hyp_write }, | |
3503 | { .name = "TLBIMVALHIS", | |
3504 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3505 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3506 | .writefn = tlbimva_hyp_is_write }, | |
3507 | { .name = "TLBIIPAS2", | |
3508 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3509 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3510 | .writefn = tlbiipas2_write }, | |
3511 | { .name = "TLBIIPAS2IS", | |
3512 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3513 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3514 | .writefn = tlbiipas2_is_write }, | |
3515 | { .name = "TLBIIPAS2L", | |
3516 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3517 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3518 | .writefn = tlbiipas2_write }, | |
3519 | { .name = "TLBIIPAS2LIS", | |
3520 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3521 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3522 | .writefn = tlbiipas2_is_write }, | |
9449fdf6 PM |
3523 | /* 32 bit cache operations */ |
3524 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3525 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3526 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
3527 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3528 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3529 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3530 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
3531 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3532 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
3533 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3534 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
3535 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3536 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3537 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3538 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3539 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3540 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
3541 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3542 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3543 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3544 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
3545 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3546 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
3547 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3548 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3549 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3550 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
3551 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
3552 | .access = PL1_RW, .resetvalue = 0, | |
3553 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3554 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
3555 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 3556 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3557 | .type = ARM_CP_ALIAS, |
a0618a19 | 3558 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
3559 | .access = PL1_RW, |
3560 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 3561 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3562 | .type = ARM_CP_ALIAS, |
a65f1de9 | 3563 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3564 | .access = PL1_RW, |
3565 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, | |
f502cfc2 PM |
3566 | /* We rely on the access checks not allowing the guest to write to the |
3567 | * state field when SPSel indicates that it's being used as the stack | |
3568 | * pointer. | |
3569 | */ | |
3570 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
3571 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
3572 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 3573 | .type = ARM_CP_ALIAS, |
f502cfc2 | 3574 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
3575 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
3576 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3577 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3578 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
3579 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
3580 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 3581 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 3582 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
03fbf20f PM |
3583 | { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
3584 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, | |
3585 | .type = ARM_CP_ALIAS, | |
3586 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), | |
3587 | .access = PL2_RW, .accessfn = fpexc32_access }, | |
6a43e0b6 PM |
3588 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
3589 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
3590 | .access = PL2_RW, .resetvalue = 0, | |
3591 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3592 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3593 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | |
3594 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
3595 | .access = PL2_RW, .resetvalue = 0, | |
3596 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
3597 | { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, | |
3598 | .type = ARM_CP_ALIAS, | |
3599 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, | |
3600 | .access = PL2_RW, | |
3601 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, | |
3602 | { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, | |
3603 | .type = ARM_CP_ALIAS, | |
3604 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, | |
3605 | .access = PL2_RW, | |
3606 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, | |
3607 | { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, | |
3608 | .type = ARM_CP_ALIAS, | |
3609 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, | |
3610 | .access = PL2_RW, | |
3611 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, | |
3612 | { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, | |
3613 | .type = ARM_CP_ALIAS, | |
3614 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, | |
3615 | .access = PL2_RW, | |
3616 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, | |
a8d64e73 PM |
3617 | { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
3618 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, | |
3619 | .resetvalue = 0, | |
3620 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, | |
3621 | { .name = "SDCR", .type = ARM_CP_ALIAS, | |
3622 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, | |
3623 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, | |
3624 | .writefn = sdcr_write, | |
3625 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, | |
b0d2b7d0 PM |
3626 | REGINFO_SENTINEL |
3627 | }; | |
3628 | ||
d42e3c26 | 3629 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 3630 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
3631 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3632 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3633 | .access = PL2_RW, | |
3634 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 3635 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3636 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
3637 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
3638 | .access = PL2_RW, | |
3639 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
3640 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3641 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3642 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
3643 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3644 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3645 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3646 | .resetvalue = 0 }, | |
3647 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3648 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3649 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2179ef95 PM |
3650 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3651 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3652 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3653 | .resetvalue = 0 }, | |
3654 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3655 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3656 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3657 | .resetvalue = 0 }, | |
37cd6c24 PM |
3658 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3659 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3660 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3661 | .resetvalue = 0 }, | |
3662 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3663 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3664 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3665 | .resetvalue = 0 }, | |
06ec4c8c EI |
3666 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3667 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3668 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e9c2fe EI |
3669 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
3670 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3671 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3672 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b698e9cf EI |
3673 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3674 | .cp = 15, .opc1 = 6, .crm = 2, | |
3675 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3676 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | |
3677 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3678 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3679 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
3680 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3681 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3682 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
3683 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3684 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3685 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
3686 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3687 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3688 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3689 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3690 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3691 | .resetvalue = 0 }, | |
0b6440af EI |
3692 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3693 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3694 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
3695 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3696 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3697 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3698 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3699 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3700 | .resetvalue = 0 }, | |
b0e66d95 EI |
3701 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3702 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3703 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3704 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3705 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3706 | .resetvalue = 0 }, | |
3707 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3708 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3709 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3710 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3711 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3712 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
14cc7b54 SF |
3713 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
3714 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
d6c8cf81 PM |
3715 | .access = PL2_RW, .accessfn = access_tda, |
3716 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
59e05530 EI |
3717 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
3718 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3719 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3720 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2a5a9abd AF |
3721 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
3722 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
3723 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
3724 | REGINFO_SENTINEL |
3725 | }; | |
3726 | ||
f149e3e8 EI |
3727 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
3728 | { | |
3729 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3730 | uint64_t valid_mask = HCR_MASK; | |
3731 | ||
3732 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3733 | valid_mask &= ~HCR_HCD; | |
77077a83 JK |
3734 | } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
3735 | /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. | |
3736 | * However, if we're using the SMC PSCI conduit then QEMU is | |
3737 | * effectively acting like EL3 firmware and so the guest at | |
3738 | * EL2 should retain the ability to prevent EL1 from being | |
3739 | * able to make SMC calls into the ersatz firmware, so in | |
3740 | * that case HCR.TSC should be read/write. | |
3741 | */ | |
f149e3e8 EI |
3742 | valid_mask &= ~HCR_TSC; |
3743 | } | |
3744 | ||
3745 | /* Clear RES0 bits. */ | |
3746 | value &= valid_mask; | |
3747 | ||
3748 | /* These bits change the MMU setup: | |
3749 | * HCR_VM enables stage 2 translation | |
3750 | * HCR_PTW forbids certain page-table setups | |
3751 | * HCR_DC Disables stage1 and enables stage2 translation | |
3752 | */ | |
3753 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
d10eb08f | 3754 | tlb_flush(CPU(cpu)); |
f149e3e8 EI |
3755 | } |
3756 | raw_write(env, ri, value); | |
3757 | } | |
3758 | ||
4771cd01 | 3759 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
3760 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
3761 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
3762 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
3763 | .writefn = hcr_write }, | |
3b685ba7 | 3764 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3765 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3766 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
3767 | .access = PL2_RW, | |
3768 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 3769 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
3770 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
3771 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
63b60551 EI |
3772 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
3773 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
3774 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 3775 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3776 | .type = ARM_CP_ALIAS, |
3b685ba7 | 3777 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3778 | .access = PL2_RW, |
3779 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, | |
d42e3c26 EI |
3780 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3781 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3782 | .access = PL2_RW, .writefn = vbar_write, | |
3783 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
3784 | .resetvalue = 0 }, | |
884b4dee GB |
3785 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
3786 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3787 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3788 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
3789 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3790 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3791 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3792 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
3793 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3794 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3795 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
3796 | .resetvalue = 0 }, | |
3797 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3798 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3799 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3800 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
3801 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3802 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3803 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3804 | .resetvalue = 0 }, | |
3805 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
3806 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3807 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3808 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3809 | .resetvalue = 0 }, | |
37cd6c24 PM |
3810 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3811 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3812 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3813 | .resetvalue = 0 }, | |
3814 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3815 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3816 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3817 | .resetvalue = 0 }, | |
06ec4c8c EI |
3818 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3819 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
3820 | .access = PL2_RW, |
3821 | /* no .writefn needed as this can't cause an ASID change; | |
3822 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
3823 | */ | |
06ec4c8c | 3824 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
68e9c2fe EI |
3825 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
3826 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 | 3827 | .type = ARM_CP_ALIAS, |
68e9c2fe EI |
3828 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
3829 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
3830 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
3831 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 PM |
3832 | .access = PL2_RW, |
3833 | /* no .writefn needed as this can't cause an ASID change; | |
3834 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
3835 | */ | |
68e9c2fe | 3836 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
b698e9cf EI |
3837 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3838 | .cp = 15, .opc1 = 6, .crm = 2, | |
3839 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
3840 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3841 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
3842 | .writefn = vttbr_write }, | |
3843 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3844 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3845 | .access = PL2_RW, .writefn = vttbr_write, | |
3846 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
3847 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3848 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3849 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3850 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
3851 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3852 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3853 | .access = PL2_RW, .resetvalue = 0, | |
3854 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
3855 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3856 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3857 | .access = PL2_RW, .resetvalue = 0, | |
3858 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
3859 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3860 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 3861 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
541ef8c2 SS |
3862 | { .name = "TLBIALLNSNH", |
3863 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3864 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3865 | .writefn = tlbiall_nsnh_write }, | |
3866 | { .name = "TLBIALLNSNHIS", | |
3867 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3868 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3869 | .writefn = tlbiall_nsnh_is_write }, | |
3870 | { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3871 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3872 | .writefn = tlbiall_hyp_write }, | |
3873 | { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3874 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3875 | .writefn = tlbiall_hyp_is_write }, | |
3876 | { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3877 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3878 | .writefn = tlbimva_hyp_write }, | |
3879 | { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3880 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3881 | .writefn = tlbimva_hyp_is_write }, | |
51da9014 EI |
3882 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
3883 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3884 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3885 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
3886 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
3887 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3888 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3889 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
3890 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
3891 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
3892 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3893 | .writefn = tlbi_aa64_vae2_write }, | |
3894 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
3895 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3896 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3897 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
3898 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
3899 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3900 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3901 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
3902 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
3903 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3904 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3905 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 3906 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
3907 | /* Unlike the other EL2-related AT operations, these must |
3908 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
3909 | * define them here rather than with the rest of the AT ops. | |
3910 | */ | |
3911 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
3912 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3913 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3914 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3915 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | |
3916 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3917 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3918 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
14db7fe0 PM |
3919 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
3920 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
3921 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
3922 | * to behave as if SCR.NS was 1. | |
3923 | */ | |
3924 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3925 | .access = PL2_W, | |
3926 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
3927 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3928 | .access = PL2_W, | |
3929 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
0b6440af EI |
3930 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3931 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3932 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
3933 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
3934 | * both ARMv7 and ARMv8. | |
3935 | */ | |
3936 | .access = PL2_RW, .resetvalue = 3, | |
3937 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
3938 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3939 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3940 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
3941 | .writefn = gt_cntvoff_write, | |
3942 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
3943 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3944 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
3945 | .writefn = gt_cntvoff_write, | |
3946 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
3947 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3948 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3949 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3950 | .type = ARM_CP_IO, .access = PL2_RW, | |
3951 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3952 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3953 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3954 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
3955 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3956 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3957 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
d44ec156 | 3958 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
b0e66d95 EI |
3959 | .resetfn = gt_hyp_timer_reset, |
3960 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
3961 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3962 | .type = ARM_CP_IO, | |
3963 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3964 | .access = PL2_RW, | |
3965 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
3966 | .resetvalue = 0, | |
3967 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 3968 | #endif |
14cc7b54 SF |
3969 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
3970 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we | |
3971 | * don't impelment any PMU event counters, so using zero as a reset | |
3972 | * value for MDCR_EL2 is okay | |
3973 | */ | |
3974 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, | |
3975 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
3976 | .access = PL2_RW, .resetvalue = 0, | |
3977 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, | |
59e05530 EI |
3978 | { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
3979 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3980 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3981 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
3982 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, | |
3983 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3984 | .access = PL2_RW, | |
3985 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
2a5a9abd AF |
3986 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
3987 | .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
3988 | .access = PL2_RW, | |
3989 | .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, | |
3b685ba7 EI |
3990 | REGINFO_SENTINEL |
3991 | }; | |
3992 | ||
2f027fc5 PM |
3993 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3994 | bool isread) | |
3995 | { | |
3996 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. | |
3997 | * At Secure EL1 it traps to EL3. | |
3998 | */ | |
3999 | if (arm_current_el(env) == 3) { | |
4000 | return CP_ACCESS_OK; | |
4001 | } | |
4002 | if (arm_is_secure_below_el3(env)) { | |
4003 | return CP_ACCESS_TRAP_EL3; | |
4004 | } | |
4005 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ | |
4006 | if (isread) { | |
4007 | return CP_ACCESS_OK; | |
4008 | } | |
4009 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
4010 | } | |
4011 | ||
60fb1a87 GB |
4012 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
4013 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
4014 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
4015 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
4016 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 4017 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 | 4018 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
efe4a274 PM |
4019 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
4020 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 4021 | .writefn = scr_write }, |
60fb1a87 GB |
4022 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
4023 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
4024 | .access = PL3_RW, .resetvalue = 0, | |
4025 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
4026 | { .name = "SDER", | |
4027 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
4028 | .access = PL3_RW, .resetvalue = 0, | |
4029 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
60fb1a87 | 4030 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
efe4a274 PM |
4031 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
4032 | .writefn = vbar_write, .resetvalue = 0, | |
60fb1a87 | 4033 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
7dd8c9af FA |
4034 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
4035 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
4036 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
4037 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
4038 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
4039 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
4040 | .access = PL3_RW, |
4041 | /* no .writefn needed as this can't cause an ASID change; | |
811595a2 PM |
4042 | * we must provide a .raw_writefn and .resetfn because we handle |
4043 | * reset and migration for the AArch32 TTBCR(S), which might be | |
4044 | * using mask and base_mask. | |
6459b94c | 4045 | */ |
811595a2 | 4046 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee | 4047 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
81547d66 | 4048 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 4049 | .type = ARM_CP_ALIAS, |
81547d66 EI |
4050 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
4051 | .access = PL3_RW, | |
4052 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 4053 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
4054 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
4055 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
4056 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
4057 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
4058 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 4059 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 4060 | .type = ARM_CP_ALIAS, |
81547d66 | 4061 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
4062 | .access = PL3_RW, |
4063 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, | |
a1ba125c EI |
4064 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
4065 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
4066 | .access = PL3_RW, .writefn = vbar_write, | |
4067 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
4068 | .resetvalue = 0 }, | |
c6f19164 GB |
4069 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
4070 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
4071 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
4072 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
4073 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
4074 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
4075 | .access = PL3_RW, .resetvalue = 0, | |
4076 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
4077 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
4078 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
4079 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4080 | .resetvalue = 0 }, | |
37cd6c24 PM |
4081 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
4082 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
4083 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4084 | .resetvalue = 0 }, | |
4085 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
4086 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
4087 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4088 | .resetvalue = 0 }, | |
43efaa33 PM |
4089 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
4090 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
4091 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4092 | .writefn = tlbi_aa64_alle3is_write }, | |
4093 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
4094 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
4095 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4096 | .writefn = tlbi_aa64_vae3is_write }, | |
4097 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
4098 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
4099 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4100 | .writefn = tlbi_aa64_vae3is_write }, | |
4101 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
4102 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
4103 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4104 | .writefn = tlbi_aa64_alle3_write }, | |
4105 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
4106 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
4107 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4108 | .writefn = tlbi_aa64_vae3_write }, | |
4109 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
4110 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
4111 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4112 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
4113 | REGINFO_SENTINEL |
4114 | }; | |
4115 | ||
3f208fd7 PM |
4116 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4117 | bool isread) | |
7da845b0 PM |
4118 | { |
4119 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
4120 | * but the AArch32 CTR has its own reginfo struct) | |
4121 | */ | |
137feaa9 | 4122 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
4123 | return CP_ACCESS_TRAP; |
4124 | } | |
4125 | return CP_ACCESS_OK; | |
4126 | } | |
4127 | ||
1424ca8d DM |
4128 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4129 | uint64_t value) | |
4130 | { | |
4131 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be | |
4132 | * read via a bit in OSLSR_EL1. | |
4133 | */ | |
4134 | int oslock; | |
4135 | ||
4136 | if (ri->state == ARM_CP_STATE_AA32) { | |
4137 | oslock = (value == 0xC5ACCE55); | |
4138 | } else { | |
4139 | oslock = value & 1; | |
4140 | } | |
4141 | ||
4142 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); | |
4143 | } | |
4144 | ||
50300698 | 4145 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 4146 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
4147 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
4148 | * unlike DBGDRAR it is never accessible from EL0. | |
4149 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
4150 | * accessor. | |
50300698 PM |
4151 | */ |
4152 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
91b0a238 PM |
4153 | .access = PL0_R, .accessfn = access_tdra, |
4154 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
4155 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
4156 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
91b0a238 PM |
4157 | .access = PL1_R, .accessfn = access_tdra, |
4158 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 | 4159 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
91b0a238 PM |
4160 | .access = PL0_R, .accessfn = access_tdra, |
4161 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 4162 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
4163 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
4164 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
d6c8cf81 | 4165 | .access = PL1_RW, .accessfn = access_tda, |
0e5e8935 PM |
4166 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
4167 | .resetvalue = 0 }, | |
5e8b12ff PM |
4168 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
4169 | * We don't implement the configurable EL0 access. | |
4170 | */ | |
4171 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
4172 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 4173 | .type = ARM_CP_ALIAS, |
d6c8cf81 | 4174 | .access = PL1_R, .accessfn = access_tda, |
b061a82b | 4175 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
10aae104 PM |
4176 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
4177 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1424ca8d | 4178 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
187f678d | 4179 | .accessfn = access_tdosa, |
1424ca8d DM |
4180 | .writefn = oslar_write }, |
4181 | { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, | |
4182 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, | |
4183 | .access = PL1_R, .resetvalue = 10, | |
187f678d | 4184 | .accessfn = access_tdosa, |
1424ca8d | 4185 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
5e8b12ff PM |
4186 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
4187 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
4188 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
187f678d PM |
4189 | .access = PL1_RW, .accessfn = access_tdosa, |
4190 | .type = ARM_CP_NOP }, | |
5e8b12ff PM |
4191 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
4192 | * implement vector catch debug events yet. | |
4193 | */ | |
4194 | { .name = "DBGVCR", | |
4195 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
d6c8cf81 PM |
4196 | .access = PL1_RW, .accessfn = access_tda, |
4197 | .type = ARM_CP_NOP }, | |
4d2ec4da PM |
4198 | /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor |
4199 | * to save and restore a 32-bit guest's DBGVCR) | |
4200 | */ | |
4201 | { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, | |
4202 | .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, | |
4203 | .access = PL2_RW, .accessfn = access_tda, | |
4204 | .type = ARM_CP_NOP }, | |
5dbdc434 PM |
4205 | /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications |
4206 | * Channel but Linux may try to access this register. The 32-bit | |
4207 | * alias is DBGDCCINT. | |
4208 | */ | |
4209 | { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, | |
4210 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
4211 | .access = PL1_RW, .accessfn = access_tda, | |
4212 | .type = ARM_CP_NOP }, | |
50300698 PM |
4213 | REGINFO_SENTINEL |
4214 | }; | |
4215 | ||
4216 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
4217 | /* 64 bit access versions of the (dummy) debug registers */ | |
4218 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
4219 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
4220 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
4221 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
4222 | REGINFO_SENTINEL | |
4223 | }; | |
4224 | ||
9ee98ce8 PM |
4225 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
4226 | { | |
4227 | CPUARMState *env = &cpu->env; | |
4228 | vaddr len = 0; | |
4229 | vaddr wvr = env->cp15.dbgwvr[n]; | |
4230 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
4231 | int mask; | |
4232 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
4233 | ||
4234 | if (env->cpu_watchpoint[n]) { | |
4235 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
4236 | env->cpu_watchpoint[n] = NULL; | |
4237 | } | |
4238 | ||
4239 | if (!extract64(wcr, 0, 1)) { | |
4240 | /* E bit clear : watchpoint disabled */ | |
4241 | return; | |
4242 | } | |
4243 | ||
4244 | switch (extract64(wcr, 3, 2)) { | |
4245 | case 0: | |
4246 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
4247 | return; | |
4248 | case 1: | |
4249 | flags |= BP_MEM_READ; | |
4250 | break; | |
4251 | case 2: | |
4252 | flags |= BP_MEM_WRITE; | |
4253 | break; | |
4254 | case 3: | |
4255 | flags |= BP_MEM_ACCESS; | |
4256 | break; | |
4257 | } | |
4258 | ||
4259 | /* Attempts to use both MASK and BAS fields simultaneously are | |
4260 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
4261 | * thus generating a watchpoint for every byte in the masked region. | |
4262 | */ | |
4263 | mask = extract64(wcr, 24, 4); | |
4264 | if (mask == 1 || mask == 2) { | |
4265 | /* Reserved values of MASK; we must act as if the mask value was | |
4266 | * some non-reserved value, or as if the watchpoint were disabled. | |
4267 | * We choose the latter. | |
4268 | */ | |
4269 | return; | |
4270 | } else if (mask) { | |
4271 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
4272 | len = 1ULL << mask; | |
4273 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
4274 | * whether the watchpoint fires when the unmasked bits match; we opt | |
4275 | * to generate the exceptions. | |
4276 | */ | |
4277 | wvr &= ~(len - 1); | |
4278 | } else { | |
4279 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
4280 | int bas = extract64(wcr, 5, 8); | |
4281 | int basstart; | |
4282 | ||
4283 | if (bas == 0) { | |
4284 | /* This must act as if the watchpoint is disabled */ | |
4285 | return; | |
4286 | } | |
4287 | ||
4288 | if (extract64(wvr, 2, 1)) { | |
4289 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
4290 | * ignored, and BAS[3:0] define which bytes to watch. | |
4291 | */ | |
4292 | bas &= 0xf; | |
4293 | } | |
4294 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
4295 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
4296 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
4297 | * We choose to ignore any non-zero bits after the first range of 1s. | |
4298 | */ | |
4299 | basstart = ctz32(bas); | |
4300 | len = cto32(bas >> basstart); | |
4301 | wvr += basstart; | |
4302 | } | |
4303 | ||
4304 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
4305 | &env->cpu_watchpoint[n]); | |
4306 | } | |
4307 | ||
4308 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
4309 | { | |
4310 | int i; | |
4311 | CPUARMState *env = &cpu->env; | |
4312 | ||
4313 | /* Completely clear out existing QEMU watchpoints and our array, to | |
4314 | * avoid possible stale entries following migration load. | |
4315 | */ | |
4316 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
4317 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
4318 | ||
4319 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
4320 | hw_watchpoint_update(cpu, i); | |
4321 | } | |
4322 | } | |
4323 | ||
4324 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4325 | uint64_t value) | |
4326 | { | |
4327 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4328 | int i = ri->crm; | |
4329 | ||
4330 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
4331 | * register reads and behaves as if values written are sign extended. | |
4332 | * Bits [1:0] are RES0. | |
4333 | */ | |
4334 | value = sextract64(value, 0, 49) & ~3ULL; | |
4335 | ||
4336 | raw_write(env, ri, value); | |
4337 | hw_watchpoint_update(cpu, i); | |
4338 | } | |
4339 | ||
4340 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4341 | uint64_t value) | |
4342 | { | |
4343 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4344 | int i = ri->crm; | |
4345 | ||
4346 | raw_write(env, ri, value); | |
4347 | hw_watchpoint_update(cpu, i); | |
4348 | } | |
4349 | ||
46747d15 PM |
4350 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
4351 | { | |
4352 | CPUARMState *env = &cpu->env; | |
4353 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
4354 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
4355 | vaddr addr; | |
4356 | int bt; | |
4357 | int flags = BP_CPU; | |
4358 | ||
4359 | if (env->cpu_breakpoint[n]) { | |
4360 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
4361 | env->cpu_breakpoint[n] = NULL; | |
4362 | } | |
4363 | ||
4364 | if (!extract64(bcr, 0, 1)) { | |
4365 | /* E bit clear : watchpoint disabled */ | |
4366 | return; | |
4367 | } | |
4368 | ||
4369 | bt = extract64(bcr, 20, 4); | |
4370 | ||
4371 | switch (bt) { | |
4372 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
4373 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
4374 | qemu_log_mask(LOG_UNIMP, | |
4375 | "arm: address mismatch breakpoint types not implemented"); | |
4376 | return; | |
4377 | case 0: /* unlinked address match */ | |
4378 | case 1: /* linked address match */ | |
4379 | { | |
4380 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
4381 | * we behave as if the register was sign extended. Bits [1:0] are | |
4382 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
4383 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
4384 | * a bp will fire if the addresses covered by the bp and the addresses | |
4385 | * covered by the insn overlap but the insn doesn't start at the | |
4386 | * start of the bp address range. We choose to require the insn and | |
4387 | * the bp to have the same address. The constraints on writing to | |
4388 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
4389 | * 0b0000 => no breakpoint | |
4390 | * 0b0011 => breakpoint on addr | |
4391 | * 0b1100 => breakpoint on addr + 2 | |
4392 | * 0b1111 => breakpoint on addr | |
4393 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
4394 | */ | |
4395 | int bas = extract64(bcr, 5, 4); | |
4396 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
4397 | if (bas == 0) { | |
4398 | return; | |
4399 | } | |
4400 | if (bas == 0xc) { | |
4401 | addr += 2; | |
4402 | } | |
4403 | break; | |
4404 | } | |
4405 | case 2: /* unlinked context ID match */ | |
4406 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
4407 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
4408 | qemu_log_mask(LOG_UNIMP, | |
4409 | "arm: unlinked context breakpoint types not implemented"); | |
4410 | return; | |
4411 | case 9: /* linked VMID match (reserved if no EL2) */ | |
4412 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
4413 | case 3: /* linked context ID match */ | |
4414 | default: | |
4415 | /* We must generate no events for Linked context matches (unless | |
4416 | * they are linked to by some other bp/wp, which is handled in | |
4417 | * updates for the linking bp/wp). We choose to also generate no events | |
4418 | * for reserved values. | |
4419 | */ | |
4420 | return; | |
4421 | } | |
4422 | ||
4423 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
4424 | } | |
4425 | ||
4426 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
4427 | { | |
4428 | int i; | |
4429 | CPUARMState *env = &cpu->env; | |
4430 | ||
4431 | /* Completely clear out existing QEMU breakpoints and our array, to | |
4432 | * avoid possible stale entries following migration load. | |
4433 | */ | |
4434 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
4435 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
4436 | ||
4437 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
4438 | hw_breakpoint_update(cpu, i); | |
4439 | } | |
4440 | } | |
4441 | ||
4442 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4443 | uint64_t value) | |
4444 | { | |
4445 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4446 | int i = ri->crm; | |
4447 | ||
4448 | raw_write(env, ri, value); | |
4449 | hw_breakpoint_update(cpu, i); | |
4450 | } | |
4451 | ||
4452 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4453 | uint64_t value) | |
4454 | { | |
4455 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4456 | int i = ri->crm; | |
4457 | ||
4458 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
4459 | * copy of BAS[0]. | |
4460 | */ | |
4461 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
4462 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
4463 | ||
4464 | raw_write(env, ri, value); | |
4465 | hw_breakpoint_update(cpu, i); | |
4466 | } | |
4467 | ||
50300698 | 4468 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 4469 | { |
50300698 PM |
4470 | /* Define v7 and v8 architectural debug registers. |
4471 | * These are just dummy implementations for now. | |
0b45451e PM |
4472 | */ |
4473 | int i; | |
3ff6fc91 | 4474 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
4475 | ARMCPRegInfo dbgdidr = { |
4476 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d6c8cf81 PM |
4477 | .access = PL0_R, .accessfn = access_tda, |
4478 | .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
48eb3ae6 PM |
4479 | }; |
4480 | ||
3ff6fc91 | 4481 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
4482 | brps = extract32(cpu->dbgdidr, 24, 4); |
4483 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
4484 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
4485 | ||
4486 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
4487 | |
4488 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
4489 | * of the debug registers such as number of breakpoints; | |
4490 | * check that if they both exist then they agree. | |
4491 | */ | |
4492 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
4493 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
4494 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 4495 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 4496 | } |
0b45451e | 4497 | |
48eb3ae6 | 4498 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
4499 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
4500 | ||
4501 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
4502 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
4503 | } | |
4504 | ||
48eb3ae6 | 4505 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 4506 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
4507 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
4508 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
d6c8cf81 | 4509 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4510 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
4511 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
4512 | }, | |
10aae104 PM |
4513 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
4514 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
d6c8cf81 | 4515 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4516 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
4517 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
4518 | }, | |
48eb3ae6 PM |
4519 | REGINFO_SENTINEL |
4520 | }; | |
4521 | define_arm_cp_regs(cpu, dbgregs); | |
4522 | } | |
4523 | ||
4524 | for (i = 0; i < wrps + 1; i++) { | |
4525 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
4526 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
4527 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
d6c8cf81 | 4528 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4529 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
4530 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
4531 | }, | |
10aae104 PM |
4532 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
4533 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
d6c8cf81 | 4534 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4535 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
4536 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
4537 | }, | |
4538 | REGINFO_SENTINEL | |
0b45451e PM |
4539 | }; |
4540 | define_arm_cp_regs(cpu, dbgregs); | |
4541 | } | |
4542 | } | |
4543 | ||
2ceb98c0 PM |
4544 | void register_cp_regs_for_features(ARMCPU *cpu) |
4545 | { | |
4546 | /* Register all the coprocessor registers based on feature bits */ | |
4547 | CPUARMState *env = &cpu->env; | |
4548 | if (arm_feature(env, ARM_FEATURE_M)) { | |
4549 | /* M profile has no coprocessor registers */ | |
4550 | return; | |
4551 | } | |
4552 | ||
e9aa6c21 | 4553 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
4554 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
4555 | /* Must go early as it is full of wildcards that may be | |
4556 | * overridden by later definitions. | |
4557 | */ | |
4558 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
4559 | } | |
4560 | ||
7d57f408 | 4561 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
4562 | /* The ID registers all have impdef reset values */ |
4563 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
4564 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
4565 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
4566 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4567 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
4568 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
4569 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
4570 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4571 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
4572 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
4573 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
4574 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4575 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
4576 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
4577 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
4578 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4579 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
4580 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
4581 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
4582 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4583 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
4584 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
4585 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
4586 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4587 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
4588 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
4589 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
4590 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4591 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
4592 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
4593 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
4594 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4595 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
4596 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
4597 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
4598 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4599 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
4600 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
4601 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
4602 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4603 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
4604 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
4605 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
4606 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4607 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
4608 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
4609 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
4610 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4611 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
4612 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
4613 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
4614 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4615 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
4616 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
4617 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
4618 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4619 | .resetvalue = cpu->id_isar5 }, |
e20d84c1 PM |
4620 | { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
4621 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, | |
4622 | .access = PL1_R, .type = ARM_CP_CONST, | |
4623 | .resetvalue = cpu->id_mmfr4 }, | |
4624 | /* 7 is as yet unallocated and must RAZ */ | |
4625 | { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, | |
4626 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, | |
4627 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
4628 | .resetvalue = 0 }, |
4629 | REGINFO_SENTINEL | |
4630 | }; | |
4631 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
4632 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
4633 | } else { | |
4634 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
4635 | } | |
4d31c596 PM |
4636 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
4637 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
4638 | } | |
5e5cf9e3 | 4639 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
452a0955 | 4640 | !arm_feature(env, ARM_FEATURE_PMSA)) { |
995939a6 PM |
4641 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
4642 | } | |
e9aa6c21 | 4643 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 4644 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
4645 | * field as main ID register, and we implement only the cycle |
4646 | * count register. | |
200ac0ef | 4647 | */ |
7c2cb42b | 4648 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
4649 | ARMCPRegInfo pmcr = { |
4650 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 4651 | .access = PL0_RW, |
7a0e58fa | 4652 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 4653 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
4654 | .accessfn = pmreg_access, .writefn = pmcr_write, |
4655 | .raw_writefn = raw_write, | |
200ac0ef | 4656 | }; |
8521466b AF |
4657 | ARMCPRegInfo pmcr64 = { |
4658 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
4659 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
4660 | .access = PL0_RW, .accessfn = pmreg_access, | |
4661 | .type = ARM_CP_IO, | |
4662 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
4663 | .resetvalue = cpu->midr & 0xff000000, | |
4664 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
4665 | }; | |
7c2cb42b | 4666 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 4667 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 4668 | #endif |
776d4e5c | 4669 | ARMCPRegInfo clidr = { |
7da845b0 PM |
4670 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
4671 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
4672 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
4673 | }; | |
776d4e5c | 4674 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 4675 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 4676 | define_debug_regs(cpu); |
7d57f408 PM |
4677 | } else { |
4678 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 4679 | } |
b0d2b7d0 | 4680 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e20d84c1 PM |
4681 | /* AArch64 ID registers, which all have impdef reset values. |
4682 | * Note that within the ID register ranges the unused slots | |
4683 | * must all RAZ, not UNDEF; future architecture versions may | |
4684 | * define new registers here. | |
4685 | */ | |
e60cef86 PM |
4686 | ARMCPRegInfo v8_idregs[] = { |
4687 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4688 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
4689 | .access = PL1_R, .type = ARM_CP_CONST, | |
4690 | .resetvalue = cpu->id_aa64pfr0 }, | |
4691 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4692 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
4693 | .access = PL1_R, .type = ARM_CP_CONST, | |
4694 | .resetvalue = cpu->id_aa64pfr1}, | |
e20d84c1 PM |
4695 | { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4696 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, | |
4697 | .access = PL1_R, .type = ARM_CP_CONST, | |
4698 | .resetvalue = 0 }, | |
4699 | { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4700 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, | |
4701 | .access = PL1_R, .type = ARM_CP_CONST, | |
4702 | .resetvalue = 0 }, | |
4703 | { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4704 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, | |
4705 | .access = PL1_R, .type = ARM_CP_CONST, | |
4706 | .resetvalue = 0 }, | |
4707 | { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4708 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, | |
4709 | .access = PL1_R, .type = ARM_CP_CONST, | |
4710 | .resetvalue = 0 }, | |
4711 | { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4712 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, | |
4713 | .access = PL1_R, .type = ARM_CP_CONST, | |
4714 | .resetvalue = 0 }, | |
4715 | { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4716 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, | |
4717 | .access = PL1_R, .type = ARM_CP_CONST, | |
4718 | .resetvalue = 0 }, | |
e60cef86 PM |
4719 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
4720 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
4721 | .access = PL1_R, .type = ARM_CP_CONST, | |
d6f02ce3 | 4722 | .resetvalue = cpu->id_aa64dfr0 }, |
e60cef86 PM |
4723 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
4724 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
4725 | .access = PL1_R, .type = ARM_CP_CONST, | |
4726 | .resetvalue = cpu->id_aa64dfr1 }, | |
e20d84c1 PM |
4727 | { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4728 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, | |
4729 | .access = PL1_R, .type = ARM_CP_CONST, | |
4730 | .resetvalue = 0 }, | |
4731 | { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4732 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, | |
4733 | .access = PL1_R, .type = ARM_CP_CONST, | |
4734 | .resetvalue = 0 }, | |
e60cef86 PM |
4735 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
4736 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
4737 | .access = PL1_R, .type = ARM_CP_CONST, | |
4738 | .resetvalue = cpu->id_aa64afr0 }, | |
4739 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4740 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
4741 | .access = PL1_R, .type = ARM_CP_CONST, | |
4742 | .resetvalue = cpu->id_aa64afr1 }, | |
e20d84c1 PM |
4743 | { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4744 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, | |
4745 | .access = PL1_R, .type = ARM_CP_CONST, | |
4746 | .resetvalue = 0 }, | |
4747 | { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4748 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, | |
4749 | .access = PL1_R, .type = ARM_CP_CONST, | |
4750 | .resetvalue = 0 }, | |
e60cef86 PM |
4751 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
4752 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
4753 | .access = PL1_R, .type = ARM_CP_CONST, | |
4754 | .resetvalue = cpu->id_aa64isar0 }, | |
4755 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
4756 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
4757 | .access = PL1_R, .type = ARM_CP_CONST, | |
4758 | .resetvalue = cpu->id_aa64isar1 }, | |
e20d84c1 PM |
4759 | { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4760 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, | |
4761 | .access = PL1_R, .type = ARM_CP_CONST, | |
4762 | .resetvalue = 0 }, | |
4763 | { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4764 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, | |
4765 | .access = PL1_R, .type = ARM_CP_CONST, | |
4766 | .resetvalue = 0 }, | |
4767 | { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4768 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, | |
4769 | .access = PL1_R, .type = ARM_CP_CONST, | |
4770 | .resetvalue = 0 }, | |
4771 | { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4772 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, | |
4773 | .access = PL1_R, .type = ARM_CP_CONST, | |
4774 | .resetvalue = 0 }, | |
4775 | { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4776 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, | |
4777 | .access = PL1_R, .type = ARM_CP_CONST, | |
4778 | .resetvalue = 0 }, | |
4779 | { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4780 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, | |
4781 | .access = PL1_R, .type = ARM_CP_CONST, | |
4782 | .resetvalue = 0 }, | |
e60cef86 PM |
4783 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
4784 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
4785 | .access = PL1_R, .type = ARM_CP_CONST, | |
4786 | .resetvalue = cpu->id_aa64mmfr0 }, | |
4787 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4788 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
4789 | .access = PL1_R, .type = ARM_CP_CONST, | |
4790 | .resetvalue = cpu->id_aa64mmfr1 }, | |
e20d84c1 PM |
4791 | { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4792 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, | |
4793 | .access = PL1_R, .type = ARM_CP_CONST, | |
4794 | .resetvalue = 0 }, | |
4795 | { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4796 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, | |
4797 | .access = PL1_R, .type = ARM_CP_CONST, | |
4798 | .resetvalue = 0 }, | |
4799 | { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4800 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, | |
4801 | .access = PL1_R, .type = ARM_CP_CONST, | |
4802 | .resetvalue = 0 }, | |
4803 | { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4804 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, | |
4805 | .access = PL1_R, .type = ARM_CP_CONST, | |
4806 | .resetvalue = 0 }, | |
4807 | { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4808 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, | |
4809 | .access = PL1_R, .type = ARM_CP_CONST, | |
4810 | .resetvalue = 0 }, | |
4811 | { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4812 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, | |
4813 | .access = PL1_R, .type = ARM_CP_CONST, | |
4814 | .resetvalue = 0 }, | |
a50c0f51 PM |
4815 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
4816 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
4817 | .access = PL1_R, .type = ARM_CP_CONST, | |
4818 | .resetvalue = cpu->mvfr0 }, | |
4819 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4820 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
4821 | .access = PL1_R, .type = ARM_CP_CONST, | |
4822 | .resetvalue = cpu->mvfr1 }, | |
4823 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
4824 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
4825 | .access = PL1_R, .type = ARM_CP_CONST, | |
4826 | .resetvalue = cpu->mvfr2 }, | |
e20d84c1 PM |
4827 | { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4828 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, | |
4829 | .access = PL1_R, .type = ARM_CP_CONST, | |
4830 | .resetvalue = 0 }, | |
4831 | { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4832 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, | |
4833 | .access = PL1_R, .type = ARM_CP_CONST, | |
4834 | .resetvalue = 0 }, | |
4835 | { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4836 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, | |
4837 | .access = PL1_R, .type = ARM_CP_CONST, | |
4838 | .resetvalue = 0 }, | |
4839 | { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4840 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, | |
4841 | .access = PL1_R, .type = ARM_CP_CONST, | |
4842 | .resetvalue = 0 }, | |
4843 | { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4844 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, | |
4845 | .access = PL1_R, .type = ARM_CP_CONST, | |
4846 | .resetvalue = 0 }, | |
4054bfa9 AF |
4847 | { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
4848 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, | |
4849 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4850 | .resetvalue = cpu->pmceid0 }, | |
4851 | { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, | |
4852 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, | |
4853 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4854 | .resetvalue = cpu->pmceid0 }, | |
4855 | { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, | |
4856 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, | |
4857 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4858 | .resetvalue = cpu->pmceid1 }, | |
4859 | { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, | |
4860 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, | |
4861 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4862 | .resetvalue = cpu->pmceid1 }, | |
e60cef86 PM |
4863 | REGINFO_SENTINEL |
4864 | }; | |
be8e8128 GB |
4865 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
4866 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
4867 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
4868 | ARMCPRegInfo rvbar = { | |
4869 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4870 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
4871 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
4872 | }; | |
4873 | define_one_arm_cp_reg(cpu, &rvbar); | |
4874 | } | |
e60cef86 | 4875 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
4876 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
4877 | } | |
3b685ba7 | 4878 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
f0d574d6 | 4879 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
4880 | ARMCPRegInfo vpidr_regs[] = { |
4881 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
4882 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4883 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4884 | .resetvalue = cpu->midr, | |
4885 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
4886 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4887 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4888 | .access = PL2_RW, .resetvalue = cpu->midr, | |
4889 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4890 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
4891 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4892 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4893 | .resetvalue = vmpidr_def, | |
4894 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
4895 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4896 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4897 | .access = PL2_RW, | |
4898 | .resetvalue = vmpidr_def, | |
4899 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
731de9e6 EI |
4900 | REGINFO_SENTINEL |
4901 | }; | |
4902 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4903 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
4904 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
4905 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
4906 | ARMCPRegInfo rvbar = { | |
4907 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
4908 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
4909 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
4910 | }; | |
4911 | define_one_arm_cp_reg(cpu, &rvbar); | |
4912 | } | |
d42e3c26 EI |
4913 | } else { |
4914 | /* If EL2 is missing but higher ELs are enabled, we need to | |
4915 | * register the no_el2 reginfos. | |
4916 | */ | |
4917 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
f0d574d6 EI |
4918 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
4919 | * of MIDR_EL1 and MPIDR_EL1. | |
731de9e6 EI |
4920 | */ |
4921 | ARMCPRegInfo vpidr_regs[] = { | |
4922 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | |
4923 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4924 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4925 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, | |
4926 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4927 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
4928 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4929 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4930 | .type = ARM_CP_NO_RAW, | |
4931 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | |
731de9e6 EI |
4932 | REGINFO_SENTINEL |
4933 | }; | |
4934 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4935 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 4936 | } |
3b685ba7 | 4937 | } |
81547d66 | 4938 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 4939 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
e24fdd23 PM |
4940 | ARMCPRegInfo el3_regs[] = { |
4941 | { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
4942 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
4943 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, | |
4944 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, | |
4945 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
4946 | .access = PL3_RW, | |
4947 | .raw_writefn = raw_write, .writefn = sctlr_write, | |
4948 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), | |
4949 | .resetvalue = cpu->reset_sctlr }, | |
4950 | REGINFO_SENTINEL | |
be8e8128 | 4951 | }; |
e24fdd23 PM |
4952 | |
4953 | define_arm_cp_regs(cpu, el3_regs); | |
81547d66 | 4954 | } |
2f027fc5 PM |
4955 | /* The behaviour of NSACR is sufficiently various that we don't |
4956 | * try to describe it in a single reginfo: | |
4957 | * if EL3 is 64 bit, then trap to EL3 from S EL1, | |
4958 | * reads as constant 0xc00 from NS EL1 and NS EL2 | |
4959 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 | |
4960 | * if v7 without EL3, register doesn't exist | |
4961 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 | |
4962 | */ | |
4963 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
4964 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
4965 | ARMCPRegInfo nsacr = { | |
4966 | .name = "NSACR", .type = ARM_CP_CONST, | |
4967 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4968 | .access = PL1_RW, .accessfn = nsacr_access, | |
4969 | .resetvalue = 0xc00 | |
4970 | }; | |
4971 | define_one_arm_cp_reg(cpu, &nsacr); | |
4972 | } else { | |
4973 | ARMCPRegInfo nsacr = { | |
4974 | .name = "NSACR", | |
4975 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4976 | .access = PL3_RW | PL1_R, | |
4977 | .resetvalue = 0, | |
4978 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) | |
4979 | }; | |
4980 | define_one_arm_cp_reg(cpu, &nsacr); | |
4981 | } | |
4982 | } else { | |
4983 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
4984 | ARMCPRegInfo nsacr = { | |
4985 | .name = "NSACR", .type = ARM_CP_CONST, | |
4986 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4987 | .access = PL1_R, | |
4988 | .resetvalue = 0xc00 | |
4989 | }; | |
4990 | define_one_arm_cp_reg(cpu, &nsacr); | |
4991 | } | |
4992 | } | |
4993 | ||
452a0955 | 4994 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
6cb0b013 PC |
4995 | if (arm_feature(env, ARM_FEATURE_V6)) { |
4996 | /* PMSAv6 not implemented */ | |
4997 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
4998 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
4999 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
5000 | } else { | |
5001 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
5002 | } | |
18032bec | 5003 | } else { |
8e5d75c9 | 5004 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
5005 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
5006 | } | |
c326b979 PM |
5007 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
5008 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
5009 | } | |
6cc7a3ae PM |
5010 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
5011 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
5012 | } | |
4a501606 PM |
5013 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
5014 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
5015 | } | |
c4804214 PM |
5016 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
5017 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
5018 | } | |
5019 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
5020 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
5021 | } | |
5022 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
5023 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
5024 | } | |
18032bec PM |
5025 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
5026 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
5027 | } | |
34f90529 PM |
5028 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
5029 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
5030 | } | |
1047b9d7 PM |
5031 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
5032 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
5033 | } | |
5034 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
5035 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
5036 | } | |
7ac681cf PM |
5037 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
5038 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
5039 | } | |
7884849c PM |
5040 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
5041 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
5042 | * be read-only (ie write causes UNDEF exception). | |
5043 | */ | |
5044 | { | |
00a29f3d PM |
5045 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
5046 | /* Pre-v8 MIDR space. | |
5047 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
5048 | * of the TI925 behaviour where writes to another register can |
5049 | * cause the MIDR value to change. | |
97ce8d61 PC |
5050 | * |
5051 | * Unimplemented registers in the c15 0 0 0 space default to | |
5052 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
5053 | * and friends override accordingly. | |
7884849c PM |
5054 | */ |
5055 | { .name = "MIDR", | |
97ce8d61 | 5056 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 5057 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 5058 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 5059 | .readfn = midr_read, |
97ce8d61 PC |
5060 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
5061 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
5062 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
5063 | { .name = "DUMMY", | |
5064 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
5065 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5066 | { .name = "DUMMY", | |
5067 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
5068 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5069 | { .name = "DUMMY", | |
5070 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
5071 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5072 | { .name = "DUMMY", | |
5073 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
5074 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5075 | { .name = "DUMMY", | |
5076 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
5077 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5078 | REGINFO_SENTINEL | |
5079 | }; | |
00a29f3d | 5080 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
5081 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
5082 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
5083 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
5084 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
5085 | .readfn = midr_read }, | |
ac00c79f SF |
5086 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
5087 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
5088 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
5089 | .access = PL1_R, .resetvalue = cpu->midr }, | |
5090 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
5091 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
5092 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
5093 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
5094 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 5095 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
5096 | REGINFO_SENTINEL |
5097 | }; | |
5098 | ARMCPRegInfo id_cp_reginfo[] = { | |
5099 | /* These are common to v8 and pre-v8 */ | |
5100 | { .name = "CTR", | |
5101 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
5102 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
5103 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
5104 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
5105 | .access = PL0_R, .accessfn = ctr_el0_access, | |
5106 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
5107 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
5108 | { .name = "TCMTR", | |
5109 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
5110 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
5111 | REGINFO_SENTINEL |
5112 | }; | |
8085ce63 PC |
5113 | /* TLBTR is specific to VMSA */ |
5114 | ARMCPRegInfo id_tlbtr_reginfo = { | |
5115 | .name = "TLBTR", | |
5116 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
5117 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
5118 | }; | |
3281af81 PC |
5119 | /* MPUIR is specific to PMSA V6+ */ |
5120 | ARMCPRegInfo id_mpuir_reginfo = { | |
5121 | .name = "MPUIR", | |
5122 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
5123 | .access = PL1_R, .type = ARM_CP_CONST, | |
5124 | .resetvalue = cpu->pmsav7_dregion << 8 | |
5125 | }; | |
7884849c PM |
5126 | ARMCPRegInfo crn0_wi_reginfo = { |
5127 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
5128 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
5129 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
5130 | }; | |
5131 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
5132 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
5133 | ARMCPRegInfo *r; | |
5134 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
5135 | * whole space. Then update the specific ID registers to allow write |
5136 | * access, so that they ignore writes rather than causing them to | |
5137 | * UNDEF. | |
7884849c PM |
5138 | */ |
5139 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
5140 | for (r = id_pre_v8_midr_cp_reginfo; |
5141 | r->type != ARM_CP_SENTINEL; r++) { | |
5142 | r->access = PL1_RW; | |
5143 | } | |
7884849c PM |
5144 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
5145 | r->access = PL1_RW; | |
7884849c | 5146 | } |
8085ce63 | 5147 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 5148 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 5149 | } |
00a29f3d PM |
5150 | if (arm_feature(env, ARM_FEATURE_V8)) { |
5151 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
5152 | } else { | |
5153 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
5154 | } | |
a703eda1 | 5155 | define_arm_cp_regs(cpu, id_cp_reginfo); |
452a0955 | 5156 | if (!arm_feature(env, ARM_FEATURE_PMSA)) { |
8085ce63 | 5157 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
3281af81 PC |
5158 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
5159 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 5160 | } |
7884849c PM |
5161 | } |
5162 | ||
97ce8d61 PC |
5163 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
5164 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
5165 | } | |
5166 | ||
2771db27 | 5167 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
5168 | ARMCPRegInfo auxcr_reginfo[] = { |
5169 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
5170 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
5171 | .access = PL1_RW, .type = ARM_CP_CONST, | |
5172 | .resetvalue = cpu->reset_auxcr }, | |
5173 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | |
5174 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
5175 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5176 | .resetvalue = 0 }, | |
5177 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
5178 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
5179 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5180 | .resetvalue = 0 }, | |
5181 | REGINFO_SENTINEL | |
2771db27 | 5182 | }; |
834a6c69 | 5183 | define_arm_cp_regs(cpu, auxcr_reginfo); |
2771db27 PM |
5184 | } |
5185 | ||
d8ba780b | 5186 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
5187 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
5188 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
5189 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
5190 | | extract64(cpu->reset_cbar, 32, 12); | |
5191 | ARMCPRegInfo cbar_reginfo[] = { | |
5192 | { .name = "CBAR", | |
5193 | .type = ARM_CP_CONST, | |
5194 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
5195 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
5196 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
5197 | .type = ARM_CP_CONST, | |
5198 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
5199 | .access = PL1_R, .resetvalue = cbar32 }, | |
5200 | REGINFO_SENTINEL | |
5201 | }; | |
5202 | /* We don't implement a r/w 64 bit CBAR currently */ | |
5203 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
5204 | define_arm_cp_regs(cpu, cbar_reginfo); | |
5205 | } else { | |
5206 | ARMCPRegInfo cbar = { | |
5207 | .name = "CBAR", | |
5208 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
5209 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
5210 | .fieldoffset = offsetof(CPUARMState, | |
5211 | cp15.c15_config_base_address) | |
5212 | }; | |
5213 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
5214 | cbar.access = PL1_R; | |
5215 | cbar.fieldoffset = 0; | |
5216 | cbar.type = ARM_CP_CONST; | |
5217 | } | |
5218 | define_one_arm_cp_reg(cpu, &cbar); | |
5219 | } | |
d8ba780b PC |
5220 | } |
5221 | ||
91db4642 CLG |
5222 | if (arm_feature(env, ARM_FEATURE_VBAR)) { |
5223 | ARMCPRegInfo vbar_cp_reginfo[] = { | |
5224 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, | |
5225 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
5226 | .access = PL1_RW, .writefn = vbar_write, | |
5227 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), | |
5228 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
5229 | .resetvalue = 0 }, | |
5230 | REGINFO_SENTINEL | |
5231 | }; | |
5232 | define_arm_cp_regs(cpu, vbar_cp_reginfo); | |
5233 | } | |
5234 | ||
2771db27 PM |
5235 | /* Generic registers whose values depend on the implementation */ |
5236 | { | |
5237 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 5238 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
5239 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
5240 | .access = PL1_RW, | |
5241 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
5242 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
5243 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
5244 | .raw_writefn = raw_write, | |
2771db27 PM |
5245 | }; |
5246 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
5247 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
5248 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
5249 | * an MMU enable to execute from cache. Imitate this behaviour. | |
5250 | */ | |
5251 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
5252 | } | |
5253 | define_one_arm_cp_reg(cpu, &sctlr); | |
5254 | } | |
2ceb98c0 PM |
5255 | } |
5256 | ||
14969266 AF |
5257 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
5258 | { | |
22169d41 | 5259 | CPUState *cs = CPU(cpu); |
14969266 AF |
5260 | CPUARMState *env = &cpu->env; |
5261 | ||
6a669427 PM |
5262 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
5263 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
5264 | aarch64_fpu_gdb_set_reg, | |
5265 | 34, "aarch64-fpu.xml", 0); | |
5266 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 5267 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5268 | 51, "arm-neon.xml", 0); |
5269 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 5270 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5271 | 35, "arm-vfp3.xml", 0); |
5272 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 5273 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5274 | 19, "arm-vfp.xml", 0); |
5275 | } | |
40f137e1 PB |
5276 | } |
5277 | ||
777dc784 PM |
5278 | /* Sort alphabetically by type name, except for "any". */ |
5279 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 5280 | { |
777dc784 PM |
5281 | ObjectClass *class_a = (ObjectClass *)a; |
5282 | ObjectClass *class_b = (ObjectClass *)b; | |
5283 | const char *name_a, *name_b; | |
5adb4839 | 5284 | |
777dc784 PM |
5285 | name_a = object_class_get_name(class_a); |
5286 | name_b = object_class_get_name(class_b); | |
51492fd1 | 5287 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 5288 | return 1; |
51492fd1 | 5289 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
5290 | return -1; |
5291 | } else { | |
5292 | return strcmp(name_a, name_b); | |
5adb4839 PB |
5293 | } |
5294 | } | |
5295 | ||
777dc784 | 5296 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 5297 | { |
777dc784 | 5298 | ObjectClass *oc = data; |
92a31361 | 5299 | CPUListState *s = user_data; |
51492fd1 AF |
5300 | const char *typename; |
5301 | char *name; | |
3371d272 | 5302 | |
51492fd1 AF |
5303 | typename = object_class_get_name(oc); |
5304 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 5305 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
5306 | name); |
5307 | g_free(name); | |
777dc784 PM |
5308 | } |
5309 | ||
5310 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
5311 | { | |
92a31361 | 5312 | CPUListState s = { |
777dc784 PM |
5313 | .file = f, |
5314 | .cpu_fprintf = cpu_fprintf, | |
5315 | }; | |
5316 | GSList *list; | |
5317 | ||
5318 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5319 | list = g_slist_sort(list, arm_cpu_list_compare); | |
5320 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
5321 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
5322 | g_slist_free(list); | |
a96c0514 PM |
5323 | #ifdef CONFIG_KVM |
5324 | /* The 'host' CPU type is dynamically registered only if KVM is | |
5325 | * enabled, so we have to special-case it here: | |
5326 | */ | |
5327 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
5328 | #endif | |
40f137e1 PB |
5329 | } |
5330 | ||
78027bb6 CR |
5331 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
5332 | { | |
5333 | ObjectClass *oc = data; | |
5334 | CpuDefinitionInfoList **cpu_list = user_data; | |
5335 | CpuDefinitionInfoList *entry; | |
5336 | CpuDefinitionInfo *info; | |
5337 | const char *typename; | |
5338 | ||
5339 | typename = object_class_get_name(oc); | |
5340 | info = g_malloc0(sizeof(*info)); | |
5341 | info->name = g_strndup(typename, | |
5342 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
8ed877b7 | 5343 | info->q_typename = g_strdup(typename); |
78027bb6 CR |
5344 | |
5345 | entry = g_malloc0(sizeof(*entry)); | |
5346 | entry->value = info; | |
5347 | entry->next = *cpu_list; | |
5348 | *cpu_list = entry; | |
5349 | } | |
5350 | ||
5351 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
5352 | { | |
5353 | CpuDefinitionInfoList *cpu_list = NULL; | |
5354 | GSList *list; | |
5355 | ||
5356 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5357 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
5358 | g_slist_free(list); | |
5359 | ||
5360 | return cpu_list; | |
5361 | } | |
5362 | ||
6e6efd61 | 5363 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 5364 | void *opaque, int state, int secstate, |
f5a0a5a5 | 5365 | int crm, int opc1, int opc2) |
6e6efd61 PM |
5366 | { |
5367 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
5368 | * add a single reginfo struct to the hash table. | |
5369 | */ | |
5370 | uint32_t *key = g_new(uint32_t, 1); | |
5371 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
5372 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
5373 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
5374 | ||
5375 | /* Reset the secure state to the specific incoming state. This is | |
5376 | * necessary as the register may have been defined with both states. | |
5377 | */ | |
5378 | r2->secure = secstate; | |
5379 | ||
5380 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5381 | /* Register is banked (using both entries in array). | |
5382 | * Overwriting fieldoffset as the array is only used to define | |
5383 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 5384 | */ |
3f3c82a5 FA |
5385 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
5386 | } | |
5387 | ||
5388 | if (state == ARM_CP_STATE_AA32) { | |
5389 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5390 | /* If the register is banked then we don't need to migrate or | |
5391 | * reset the 32-bit instance in certain cases: | |
5392 | * | |
5393 | * 1) If the register has both 32-bit and 64-bit instances then we | |
5394 | * can count on the 64-bit instance taking care of the | |
5395 | * non-secure bank. | |
5396 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
5397 | * taking care of the secure bank. This requires that separate | |
5398 | * 32 and 64-bit definitions are provided. | |
5399 | */ | |
5400 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
5401 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 5402 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
5403 | } |
5404 | } else if ((secstate != r->secure) && !ns) { | |
5405 | /* The register is not banked so we only want to allow migration of | |
5406 | * the non-secure instance. | |
5407 | */ | |
7a0e58fa | 5408 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 5409 | } |
3f3c82a5 FA |
5410 | |
5411 | if (r->state == ARM_CP_STATE_BOTH) { | |
5412 | /* We assume it is a cp15 register if the .cp field is left unset. | |
5413 | */ | |
5414 | if (r2->cp == 0) { | |
5415 | r2->cp = 15; | |
5416 | } | |
5417 | ||
f5a0a5a5 | 5418 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
5419 | if (r2->fieldoffset) { |
5420 | r2->fieldoffset += sizeof(uint32_t); | |
5421 | } | |
f5a0a5a5 | 5422 | #endif |
3f3c82a5 | 5423 | } |
f5a0a5a5 PM |
5424 | } |
5425 | if (state == ARM_CP_STATE_AA64) { | |
5426 | /* To allow abbreviation of ARMCPRegInfo | |
5427 | * definitions, we treat cp == 0 as equivalent to | |
5428 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
5429 | * STATE_BOTH definitions are also always "standard |
5430 | * sysreg" in their AArch64 view (the .cp value may | |
5431 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 5432 | */ |
58a1d8ce | 5433 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
5434 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
5435 | } | |
5436 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
5437 | r2->opc0, opc1, opc2); | |
5438 | } else { | |
51a79b03 | 5439 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 5440 | } |
6e6efd61 PM |
5441 | if (opaque) { |
5442 | r2->opaque = opaque; | |
5443 | } | |
67ed771d PM |
5444 | /* reginfo passed to helpers is correct for the actual access, |
5445 | * and is never ARM_CP_STATE_BOTH: | |
5446 | */ | |
5447 | r2->state = state; | |
6e6efd61 PM |
5448 | /* Make sure reginfo passed to helpers for wildcarded regs |
5449 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
5450 | */ | |
5451 | r2->crm = crm; | |
5452 | r2->opc1 = opc1; | |
5453 | r2->opc2 = opc2; | |
5454 | /* By convention, for wildcarded registers only the first | |
5455 | * entry is used for migration; the others are marked as | |
7a0e58fa | 5456 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 5457 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 5458 | * never migratable and not even raw-accessible. |
6e6efd61 | 5459 | */ |
7a0e58fa PM |
5460 | if ((r->type & ARM_CP_SPECIAL)) { |
5461 | r2->type |= ARM_CP_NO_RAW; | |
5462 | } | |
5463 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
5464 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
5465 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 5466 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
5467 | } |
5468 | ||
375421cc PM |
5469 | /* Check that raw accesses are either forbidden or handled. Note that |
5470 | * we can't assert this earlier because the setup of fieldoffset for | |
5471 | * banked registers has to be done first. | |
5472 | */ | |
5473 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
5474 | assert(!raw_accessors_invalid(r2)); | |
5475 | } | |
5476 | ||
6e6efd61 PM |
5477 | /* Overriding of an existing definition must be explicitly |
5478 | * requested. | |
5479 | */ | |
5480 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
5481 | ARMCPRegInfo *oldreg; | |
5482 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
5483 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
5484 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
5485 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
5486 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
5487 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
5488 | oldreg->name, r2->name); | |
5489 | g_assert_not_reached(); | |
5490 | } | |
5491 | } | |
5492 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
5493 | } | |
5494 | ||
5495 | ||
4b6a83fb PM |
5496 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
5497 | const ARMCPRegInfo *r, void *opaque) | |
5498 | { | |
5499 | /* Define implementations of coprocessor registers. | |
5500 | * We store these in a hashtable because typically | |
5501 | * there are less than 150 registers in a space which | |
5502 | * is 16*16*16*8*8 = 262144 in size. | |
5503 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
5504 | * If a register is defined twice then the second definition is | |
5505 | * used, so this can be used to define some generic registers and | |
5506 | * then override them with implementation specific variations. | |
5507 | * At least one of the original and the second definition should | |
5508 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
5509 | * against accidental use. | |
f5a0a5a5 PM |
5510 | * |
5511 | * The state field defines whether the register is to be | |
5512 | * visible in the AArch32 or AArch64 execution state. If the | |
5513 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
5514 | * reginfo structure for the AArch32 view, which sees the lower | |
5515 | * 32 bits of the 64 bit register. | |
5516 | * | |
5517 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
5518 | * be wildcarded. AArch64 registers are always considered to be 64 | |
5519 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
5520 | * the register, if any. | |
4b6a83fb | 5521 | */ |
f5a0a5a5 | 5522 | int crm, opc1, opc2, state; |
4b6a83fb PM |
5523 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
5524 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
5525 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
5526 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
5527 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
5528 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
5529 | /* 64 bit registers have only CRm and Opc1 fields */ | |
5530 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
5531 | /* op0 only exists in the AArch64 encodings */ |
5532 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
5533 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
5534 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
5535 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
5536 | * encodes a minimum access level for the register. We roll this | |
5537 | * runtime check into our general permission check code, so check | |
5538 | * here that the reginfo's specified permissions are strict enough | |
5539 | * to encompass the generic architectural permission check. | |
5540 | */ | |
5541 | if (r->state != ARM_CP_STATE_AA32) { | |
5542 | int mask = 0; | |
5543 | switch (r->opc1) { | |
5544 | case 0: case 1: case 2: | |
5545 | /* min_EL EL1 */ | |
5546 | mask = PL1_RW; | |
5547 | break; | |
5548 | case 3: | |
5549 | /* min_EL EL0 */ | |
5550 | mask = PL0_RW; | |
5551 | break; | |
5552 | case 4: | |
5553 | /* min_EL EL2 */ | |
5554 | mask = PL2_RW; | |
5555 | break; | |
5556 | case 5: | |
5557 | /* unallocated encoding, so not possible */ | |
5558 | assert(false); | |
5559 | break; | |
5560 | case 6: | |
5561 | /* min_EL EL3 */ | |
5562 | mask = PL3_RW; | |
5563 | break; | |
5564 | case 7: | |
5565 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
5566 | mask = PL1_RW; | |
5567 | break; | |
5568 | default: | |
5569 | /* broken reginfo with out-of-range opc1 */ | |
5570 | assert(false); | |
5571 | break; | |
5572 | } | |
5573 | /* assert our permissions are not too lax (stricter is fine) */ | |
5574 | assert((r->access & ~mask) == 0); | |
5575 | } | |
5576 | ||
4b6a83fb PM |
5577 | /* Check that the register definition has enough info to handle |
5578 | * reads and writes if they are permitted. | |
5579 | */ | |
5580 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
5581 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
5582 | assert((r->fieldoffset || |
5583 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5584 | r->readfn); | |
4b6a83fb PM |
5585 | } |
5586 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
5587 | assert((r->fieldoffset || |
5588 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5589 | r->writefn); | |
4b6a83fb PM |
5590 | } |
5591 | } | |
5592 | /* Bad type field probably means missing sentinel at end of reg list */ | |
5593 | assert(cptype_valid(r->type)); | |
5594 | for (crm = crmmin; crm <= crmmax; crm++) { | |
5595 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
5596 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
5597 | for (state = ARM_CP_STATE_AA32; |
5598 | state <= ARM_CP_STATE_AA64; state++) { | |
5599 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
5600 | continue; | |
5601 | } | |
3f3c82a5 FA |
5602 | if (state == ARM_CP_STATE_AA32) { |
5603 | /* Under AArch32 CP registers can be common | |
5604 | * (same for secure and non-secure world) or banked. | |
5605 | */ | |
5606 | switch (r->secure) { | |
5607 | case ARM_CP_SECSTATE_S: | |
5608 | case ARM_CP_SECSTATE_NS: | |
5609 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5610 | r->secure, crm, opc1, opc2); | |
5611 | break; | |
5612 | default: | |
5613 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5614 | ARM_CP_SECSTATE_S, | |
5615 | crm, opc1, opc2); | |
5616 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5617 | ARM_CP_SECSTATE_NS, | |
5618 | crm, opc1, opc2); | |
5619 | break; | |
5620 | } | |
5621 | } else { | |
5622 | /* AArch64 registers get mapped to non-secure instance | |
5623 | * of AArch32 */ | |
5624 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5625 | ARM_CP_SECSTATE_NS, | |
5626 | crm, opc1, opc2); | |
5627 | } | |
f5a0a5a5 | 5628 | } |
4b6a83fb PM |
5629 | } |
5630 | } | |
5631 | } | |
5632 | } | |
5633 | ||
5634 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
5635 | const ARMCPRegInfo *regs, void *opaque) | |
5636 | { | |
5637 | /* Define a whole list of registers */ | |
5638 | const ARMCPRegInfo *r; | |
5639 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
5640 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
5641 | } | |
5642 | } | |
5643 | ||
60322b39 | 5644 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 5645 | { |
60322b39 | 5646 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
5647 | } |
5648 | ||
c4241c7d PM |
5649 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
5650 | uint64_t value) | |
4b6a83fb PM |
5651 | { |
5652 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
5653 | } |
5654 | ||
c4241c7d | 5655 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
5656 | { |
5657 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
5658 | return 0; |
5659 | } | |
5660 | ||
f5a0a5a5 PM |
5661 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
5662 | { | |
5663 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
5664 | } | |
5665 | ||
af393ffc | 5666 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
37064a8b PM |
5667 | { |
5668 | /* Return true if it is not valid for us to switch to | |
5669 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
5670 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
5671 | */ | |
af393ffc PM |
5672 | |
5673 | /* Changes to or from Hyp via MSR and CPS are illegal. */ | |
5674 | if (write_type == CPSRWriteByInstr && | |
5675 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || | |
5676 | mode == ARM_CPU_MODE_HYP)) { | |
5677 | return 1; | |
5678 | } | |
5679 | ||
37064a8b PM |
5680 | switch (mode) { |
5681 | case ARM_CPU_MODE_USR: | |
10eacda7 | 5682 | return 0; |
37064a8b PM |
5683 | case ARM_CPU_MODE_SYS: |
5684 | case ARM_CPU_MODE_SVC: | |
5685 | case ARM_CPU_MODE_ABT: | |
5686 | case ARM_CPU_MODE_UND: | |
5687 | case ARM_CPU_MODE_IRQ: | |
5688 | case ARM_CPU_MODE_FIQ: | |
52ff951b PM |
5689 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
5690 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) | |
5691 | */ | |
10eacda7 PM |
5692 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
5693 | * and CPS are treated as illegal mode changes. | |
5694 | */ | |
5695 | if (write_type == CPSRWriteByInstr && | |
5696 | (env->cp15.hcr_el2 & HCR_TGE) && | |
5697 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && | |
5698 | !arm_is_secure_below_el3(env)) { | |
5699 | return 1; | |
5700 | } | |
37064a8b | 5701 | return 0; |
e6c8fc07 PM |
5702 | case ARM_CPU_MODE_HYP: |
5703 | return !arm_feature(env, ARM_FEATURE_EL2) | |
5704 | || arm_current_el(env) < 2 || arm_is_secure(env); | |
027fc527 | 5705 | case ARM_CPU_MODE_MON: |
58ae2d1f | 5706 | return arm_current_el(env) < 3; |
37064a8b PM |
5707 | default: |
5708 | return 1; | |
5709 | } | |
5710 | } | |
5711 | ||
2f4a40e5 AZ |
5712 | uint32_t cpsr_read(CPUARMState *env) |
5713 | { | |
5714 | int ZF; | |
6fbe23d5 PB |
5715 | ZF = (env->ZF == 0); |
5716 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
5717 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
5718 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
5719 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 5720 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
5721 | } |
5722 | ||
50866ba5 PM |
5723 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
5724 | CPSRWriteType write_type) | |
2f4a40e5 | 5725 | { |
6e8801f9 FA |
5726 | uint32_t changed_daif; |
5727 | ||
2f4a40e5 | 5728 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
5729 | env->ZF = (~val) & CPSR_Z; |
5730 | env->NF = val; | |
2f4a40e5 AZ |
5731 | env->CF = (val >> 29) & 1; |
5732 | env->VF = (val << 3) & 0x80000000; | |
5733 | } | |
5734 | if (mask & CPSR_Q) | |
5735 | env->QF = ((val & CPSR_Q) != 0); | |
5736 | if (mask & CPSR_T) | |
5737 | env->thumb = ((val & CPSR_T) != 0); | |
5738 | if (mask & CPSR_IT_0_1) { | |
5739 | env->condexec_bits &= ~3; | |
5740 | env->condexec_bits |= (val >> 25) & 3; | |
5741 | } | |
5742 | if (mask & CPSR_IT_2_7) { | |
5743 | env->condexec_bits &= 3; | |
5744 | env->condexec_bits |= (val >> 8) & 0xfc; | |
5745 | } | |
5746 | if (mask & CPSR_GE) { | |
5747 | env->GE = (val >> 16) & 0xf; | |
5748 | } | |
5749 | ||
6e8801f9 FA |
5750 | /* In a V7 implementation that includes the security extensions but does |
5751 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
5752 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
5753 | * bits respectively. | |
5754 | * | |
5755 | * In a V8 implementation, it is permitted for privileged software to | |
5756 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
5757 | */ | |
f8c88bbc | 5758 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
6e8801f9 FA |
5759 | arm_feature(env, ARM_FEATURE_EL3) && |
5760 | !arm_feature(env, ARM_FEATURE_EL2) && | |
5761 | !arm_is_secure(env)) { | |
5762 | ||
5763 | changed_daif = (env->daif ^ val) & mask; | |
5764 | ||
5765 | if (changed_daif & CPSR_A) { | |
5766 | /* Check to see if we are allowed to change the masking of async | |
5767 | * abort exceptions from a non-secure state. | |
5768 | */ | |
5769 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
5770 | qemu_log_mask(LOG_GUEST_ERROR, | |
5771 | "Ignoring attempt to switch CPSR_A flag from " | |
5772 | "non-secure world with SCR.AW bit clear\n"); | |
5773 | mask &= ~CPSR_A; | |
5774 | } | |
5775 | } | |
5776 | ||
5777 | if (changed_daif & CPSR_F) { | |
5778 | /* Check to see if we are allowed to change the masking of FIQ | |
5779 | * exceptions from a non-secure state. | |
5780 | */ | |
5781 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
5782 | qemu_log_mask(LOG_GUEST_ERROR, | |
5783 | "Ignoring attempt to switch CPSR_F flag from " | |
5784 | "non-secure world with SCR.FW bit clear\n"); | |
5785 | mask &= ~CPSR_F; | |
5786 | } | |
5787 | ||
5788 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
5789 | * If this bit is set software is not allowed to mask | |
5790 | * FIQs, but is allowed to set CPSR_F to 0. | |
5791 | */ | |
5792 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
5793 | (val & CPSR_F)) { | |
5794 | qemu_log_mask(LOG_GUEST_ERROR, | |
5795 | "Ignoring attempt to enable CPSR_F flag " | |
5796 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
5797 | mask &= ~CPSR_F; | |
5798 | } | |
5799 | } | |
5800 | } | |
5801 | ||
4cc35614 PM |
5802 | env->daif &= ~(CPSR_AIF & mask); |
5803 | env->daif |= val & CPSR_AIF & mask; | |
5804 | ||
f8c88bbc PM |
5805 | if (write_type != CPSRWriteRaw && |
5806 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { | |
8c4f0eb9 PM |
5807 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
5808 | /* Note that we can only get here in USR mode if this is a | |
5809 | * gdb stub write; for this case we follow the architectural | |
5810 | * behaviour for guest writes in USR mode of ignoring an attempt | |
5811 | * to switch mode. (Those are caught by translate.c for writes | |
5812 | * triggered by guest instructions.) | |
5813 | */ | |
5814 | mask &= ~CPSR_M; | |
5815 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { | |
81907a58 PM |
5816 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
5817 | * v7, and has defined behaviour in v8: | |
5818 | * + leave CPSR.M untouched | |
5819 | * + allow changes to the other CPSR fields | |
5820 | * + set PSTATE.IL | |
5821 | * For user changes via the GDB stub, we don't set PSTATE.IL, | |
5822 | * as this would be unnecessarily harsh for a user error. | |
37064a8b PM |
5823 | */ |
5824 | mask &= ~CPSR_M; | |
81907a58 PM |
5825 | if (write_type != CPSRWriteByGDBStub && |
5826 | arm_feature(env, ARM_FEATURE_V8)) { | |
5827 | mask |= CPSR_IL; | |
5828 | val |= CPSR_IL; | |
5829 | } | |
37064a8b PM |
5830 | } else { |
5831 | switch_mode(env, val & CPSR_M); | |
5832 | } | |
2f4a40e5 AZ |
5833 | } |
5834 | mask &= ~CACHED_CPSR_BITS; | |
5835 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
5836 | } | |
5837 | ||
b26eefb6 PB |
5838 | /* Sign/zero extend */ |
5839 | uint32_t HELPER(sxtb16)(uint32_t x) | |
5840 | { | |
5841 | uint32_t res; | |
5842 | res = (uint16_t)(int8_t)x; | |
5843 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
5844 | return res; | |
5845 | } | |
5846 | ||
5847 | uint32_t HELPER(uxtb16)(uint32_t x) | |
5848 | { | |
5849 | uint32_t res; | |
5850 | res = (uint16_t)(uint8_t)x; | |
5851 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
5852 | return res; | |
5853 | } | |
5854 | ||
3670669c PB |
5855 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
5856 | { | |
5857 | if (den == 0) | |
5858 | return 0; | |
686eeb93 AJ |
5859 | if (num == INT_MIN && den == -1) |
5860 | return INT_MIN; | |
3670669c PB |
5861 | return num / den; |
5862 | } | |
5863 | ||
5864 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
5865 | { | |
5866 | if (den == 0) | |
5867 | return 0; | |
5868 | return num / den; | |
5869 | } | |
5870 | ||
5871 | uint32_t HELPER(rbit)(uint32_t x) | |
5872 | { | |
42fedbca | 5873 | return revbit32(x); |
3670669c PB |
5874 | } |
5875 | ||
5fafdf24 | 5876 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 5877 | |
9ee6e8bb | 5878 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 5879 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 5880 | { |
a47dddd7 AF |
5881 | ARMCPU *cpu = arm_env_get_cpu(env); |
5882 | ||
5883 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
5884 | } |
5885 | ||
0ecb72a5 | 5886 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 5887 | { |
a47dddd7 AF |
5888 | ARMCPU *cpu = arm_env_get_cpu(env); |
5889 | ||
5890 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
5891 | return 0; |
5892 | } | |
5893 | ||
fb602cb7 PM |
5894 | void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) |
5895 | { | |
5896 | /* translate.c should never generate calls here in user-only mode */ | |
5897 | g_assert_not_reached(); | |
5898 | } | |
5899 | ||
3e3fa230 PM |
5900 | void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) |
5901 | { | |
5902 | /* translate.c should never generate calls here in user-only mode */ | |
5903 | g_assert_not_reached(); | |
5904 | } | |
5905 | ||
0ecb72a5 | 5906 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 5907 | { |
a47dddd7 AF |
5908 | ARMCPU *cpu = arm_env_get_cpu(env); |
5909 | ||
5910 | if (mode != ARM_CPU_MODE_USR) { | |
5911 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
5912 | } | |
b5ff1b31 FB |
5913 | } |
5914 | ||
012a906b GB |
5915 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5916 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
5917 | { |
5918 | return 1; | |
5919 | } | |
5920 | ||
ce02049d GB |
5921 | void aarch64_sync_64_to_32(CPUARMState *env) |
5922 | { | |
5923 | g_assert_not_reached(); | |
5924 | } | |
5925 | ||
b5ff1b31 FB |
5926 | #else |
5927 | ||
0ecb72a5 | 5928 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
5929 | { |
5930 | int old_mode; | |
5931 | int i; | |
5932 | ||
5933 | old_mode = env->uncached_cpsr & CPSR_M; | |
5934 | if (mode == old_mode) | |
5935 | return; | |
5936 | ||
5937 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
5938 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5939 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5940 | } else if (mode == ARM_CPU_MODE_FIQ) { |
5941 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5942 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5943 | } |
5944 | ||
f5206413 | 5945 | i = bank_number(old_mode); |
b5ff1b31 FB |
5946 | env->banked_r13[i] = env->regs[13]; |
5947 | env->banked_r14[i] = env->regs[14]; | |
5948 | env->banked_spsr[i] = env->spsr; | |
5949 | ||
f5206413 | 5950 | i = bank_number(mode); |
b5ff1b31 FB |
5951 | env->regs[13] = env->banked_r13[i]; |
5952 | env->regs[14] = env->banked_r14[i]; | |
5953 | env->spsr = env->banked_spsr[i]; | |
5954 | } | |
5955 | ||
0eeb17d6 GB |
5956 | /* Physical Interrupt Target EL Lookup Table |
5957 | * | |
5958 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
5959 | * | |
5960 | * The below multi-dimensional table is used for looking up the target | |
5961 | * exception level given numerous condition criteria. Specifically, the | |
5962 | * target EL is based on SCR and HCR routing controls as well as the | |
5963 | * currently executing EL and secure state. | |
5964 | * | |
5965 | * Dimensions: | |
5966 | * target_el_table[2][2][2][2][2][4] | |
5967 | * | | | | | +--- Current EL | |
5968 | * | | | | +------ Non-secure(0)/Secure(1) | |
5969 | * | | | +--------- HCR mask override | |
5970 | * | | +------------ SCR exec state control | |
5971 | * | +--------------- SCR mask override | |
5972 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
5973 | * | |
5974 | * The table values are as such: | |
5975 | * 0-3 = EL0-EL3 | |
5976 | * -1 = Cannot occur | |
5977 | * | |
5978 | * The ARM ARM target EL table includes entries indicating that an "exception | |
5979 | * is not taken". The two cases where this is applicable are: | |
5980 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
5981 | * routed to EL3. | |
5982 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
5983 | * routed to EL2. | |
5984 | * In these two cases, the below table contain a target of EL1. This value is | |
5985 | * returned as it is expected that the consumer of the table data will check | |
5986 | * for "target EL >= current EL" to ensure the exception is not taken. | |
5987 | * | |
5988 | * SCR HCR | |
5989 | * 64 EA AMO From | |
5990 | * BIT IRQ IMO Non-secure Secure | |
5991 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
5992 | */ | |
82c39f6a | 5993 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
5994 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
5995 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
5996 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
5997 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
5998 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5999 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
6000 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
6001 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
6002 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
6003 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
6004 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
6005 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
6006 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
6007 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
6008 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
6009 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
6010 | }; | |
6011 | ||
6012 | /* | |
6013 | * Determine the target EL for physical exceptions | |
6014 | */ | |
012a906b GB |
6015 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
6016 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
6017 | { |
6018 | CPUARMState *env = cs->env_ptr; | |
2cde031f | 6019 | int rw; |
0eeb17d6 GB |
6020 | int scr; |
6021 | int hcr; | |
6022 | int target_el; | |
2cde031f SS |
6023 | /* Is the highest EL AArch64? */ |
6024 | int is64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
6025 | ||
6026 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
6027 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
6028 | } else { | |
6029 | /* Either EL2 is the highest EL (and so the EL2 register width | |
6030 | * is given by is64); or there is no EL2 or EL3, in which case | |
6031 | * the value of 'rw' does not affect the table lookup anyway. | |
6032 | */ | |
6033 | rw = is64; | |
6034 | } | |
0eeb17d6 GB |
6035 | |
6036 | switch (excp_idx) { | |
6037 | case EXCP_IRQ: | |
6038 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
6039 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
6040 | break; | |
6041 | case EXCP_FIQ: | |
6042 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
6043 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
6044 | break; | |
6045 | default: | |
6046 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
6047 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
6048 | break; | |
6049 | }; | |
6050 | ||
6051 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
6052 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
6053 | ||
6054 | /* Perform a table-lookup for the target EL given the current state */ | |
6055 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
6056 | ||
6057 | assert(target_el > 0); | |
6058 | ||
6059 | return target_el; | |
6060 | } | |
6061 | ||
9ee6e8bb PB |
6062 | static void v7m_push(CPUARMState *env, uint32_t val) |
6063 | { | |
70d74660 AF |
6064 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
6065 | ||
9ee6e8bb | 6066 | env->regs[13] -= 4; |
ab1da857 | 6067 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
6068 | } |
6069 | ||
fb602cb7 PM |
6070 | /* Return true if we're using the process stack pointer (not the MSP) */ |
6071 | static bool v7m_using_psp(CPUARMState *env) | |
6072 | { | |
6073 | /* Handler mode always uses the main stack; for thread mode | |
6074 | * the CONTROL.SPSEL bit determines the answer. | |
6075 | * Note that in v7M it is not possible to be in Handler mode with | |
6076 | * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. | |
6077 | */ | |
6078 | return !arm_v7m_is_handler_mode(env) && | |
6079 | env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; | |
6080 | } | |
6081 | ||
3f0cddee PM |
6082 | /* Write to v7M CONTROL.SPSEL bit for the specified security bank. |
6083 | * This may change the current stack pointer between Main and Process | |
6084 | * stack pointers if it is done for the CONTROL register for the current | |
6085 | * security state. | |
de2db7ec | 6086 | */ |
3f0cddee PM |
6087 | static void write_v7m_control_spsel_for_secstate(CPUARMState *env, |
6088 | bool new_spsel, | |
6089 | bool secstate) | |
9ee6e8bb | 6090 | { |
3f0cddee | 6091 | bool old_is_psp = v7m_using_psp(env); |
de2db7ec | 6092 | |
3f0cddee PM |
6093 | env->v7m.control[secstate] = |
6094 | deposit32(env->v7m.control[secstate], | |
de2db7ec PM |
6095 | R_V7M_CONTROL_SPSEL_SHIFT, |
6096 | R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); | |
6097 | ||
3f0cddee PM |
6098 | if (secstate == env->v7m.secure) { |
6099 | bool new_is_psp = v7m_using_psp(env); | |
6100 | uint32_t tmp; | |
abc24d86 | 6101 | |
3f0cddee PM |
6102 | if (old_is_psp != new_is_psp) { |
6103 | tmp = env->v7m.other_sp; | |
6104 | env->v7m.other_sp = env->regs[13]; | |
6105 | env->regs[13] = tmp; | |
6106 | } | |
de2db7ec PM |
6107 | } |
6108 | } | |
6109 | ||
3f0cddee PM |
6110 | /* Write to v7M CONTROL.SPSEL bit. This may change the current |
6111 | * stack pointer between Main and Process stack pointers. | |
6112 | */ | |
6113 | static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) | |
6114 | { | |
6115 | write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); | |
6116 | } | |
6117 | ||
de2db7ec PM |
6118 | void write_v7m_exception(CPUARMState *env, uint32_t new_exc) |
6119 | { | |
6120 | /* Write a new value to v7m.exception, thus transitioning into or out | |
6121 | * of Handler mode; this may result in a change of active stack pointer. | |
6122 | */ | |
6123 | bool new_is_psp, old_is_psp = v7m_using_psp(env); | |
6124 | uint32_t tmp; | |
abc24d86 | 6125 | |
de2db7ec PM |
6126 | env->v7m.exception = new_exc; |
6127 | ||
6128 | new_is_psp = v7m_using_psp(env); | |
6129 | ||
6130 | if (old_is_psp != new_is_psp) { | |
6131 | tmp = env->v7m.other_sp; | |
6132 | env->v7m.other_sp = env->regs[13]; | |
6133 | env->regs[13] = tmp; | |
9ee6e8bb PB |
6134 | } |
6135 | } | |
6136 | ||
fb602cb7 PM |
6137 | /* Switch M profile security state between NS and S */ |
6138 | static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) | |
6139 | { | |
6140 | uint32_t new_ss_msp, new_ss_psp; | |
6141 | ||
6142 | if (env->v7m.secure == new_secstate) { | |
6143 | return; | |
6144 | } | |
6145 | ||
6146 | /* All the banked state is accessed by looking at env->v7m.secure | |
6147 | * except for the stack pointer; rearrange the SP appropriately. | |
6148 | */ | |
6149 | new_ss_msp = env->v7m.other_ss_msp; | |
6150 | new_ss_psp = env->v7m.other_ss_psp; | |
6151 | ||
6152 | if (v7m_using_psp(env)) { | |
6153 | env->v7m.other_ss_psp = env->regs[13]; | |
6154 | env->v7m.other_ss_msp = env->v7m.other_sp; | |
6155 | } else { | |
6156 | env->v7m.other_ss_msp = env->regs[13]; | |
6157 | env->v7m.other_ss_psp = env->v7m.other_sp; | |
6158 | } | |
6159 | ||
6160 | env->v7m.secure = new_secstate; | |
6161 | ||
6162 | if (v7m_using_psp(env)) { | |
6163 | env->regs[13] = new_ss_psp; | |
6164 | env->v7m.other_sp = new_ss_msp; | |
6165 | } else { | |
6166 | env->regs[13] = new_ss_msp; | |
6167 | env->v7m.other_sp = new_ss_psp; | |
6168 | } | |
6169 | } | |
6170 | ||
6171 | void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) | |
6172 | { | |
6173 | /* Handle v7M BXNS: | |
6174 | * - if the return value is a magic value, do exception return (like BX) | |
6175 | * - otherwise bit 0 of the return value is the target security state | |
6176 | */ | |
6177 | if (dest >= 0xff000000) { | |
6178 | /* This is an exception return magic value; put it where | |
6179 | * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. | |
6180 | * Note that if we ever add gen_ss_advance() singlestep support to | |
6181 | * M profile this should count as an "instruction execution complete" | |
6182 | * event (compare gen_bx_excret_final_code()). | |
6183 | */ | |
6184 | env->regs[15] = dest & ~1; | |
6185 | env->thumb = dest & 1; | |
6186 | HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); | |
6187 | /* notreached */ | |
6188 | } | |
6189 | ||
6190 | /* translate.c should have made BXNS UNDEF unless we're secure */ | |
6191 | assert(env->v7m.secure); | |
6192 | ||
6193 | switch_v7m_security_state(env, dest & 1); | |
6194 | env->thumb = 1; | |
6195 | env->regs[15] = dest & ~1; | |
6196 | } | |
6197 | ||
3e3fa230 PM |
6198 | void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) |
6199 | { | |
6200 | /* Handle v7M BLXNS: | |
6201 | * - bit 0 of the destination address is the target security state | |
6202 | */ | |
6203 | ||
6204 | /* At this point regs[15] is the address just after the BLXNS */ | |
6205 | uint32_t nextinst = env->regs[15] | 1; | |
6206 | uint32_t sp = env->regs[13] - 8; | |
6207 | uint32_t saved_psr; | |
6208 | ||
6209 | /* translate.c will have made BLXNS UNDEF unless we're secure */ | |
6210 | assert(env->v7m.secure); | |
6211 | ||
6212 | if (dest & 1) { | |
6213 | /* target is Secure, so this is just a normal BLX, | |
6214 | * except that the low bit doesn't indicate Thumb/not. | |
6215 | */ | |
6216 | env->regs[14] = nextinst; | |
6217 | env->thumb = 1; | |
6218 | env->regs[15] = dest & ~1; | |
6219 | return; | |
6220 | } | |
6221 | ||
6222 | /* Target is non-secure: first push a stack frame */ | |
6223 | if (!QEMU_IS_ALIGNED(sp, 8)) { | |
6224 | qemu_log_mask(LOG_GUEST_ERROR, | |
6225 | "BLXNS with misaligned SP is UNPREDICTABLE\n"); | |
6226 | } | |
6227 | ||
6228 | saved_psr = env->v7m.exception; | |
6229 | if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { | |
6230 | saved_psr |= XPSR_SFPA; | |
6231 | } | |
6232 | ||
6233 | /* Note that these stores can throw exceptions on MPU faults */ | |
6234 | cpu_stl_data(env, sp, nextinst); | |
6235 | cpu_stl_data(env, sp + 4, saved_psr); | |
6236 | ||
6237 | env->regs[13] = sp; | |
6238 | env->regs[14] = 0xfeffffff; | |
6239 | if (arm_v7m_is_handler_mode(env)) { | |
6240 | /* Write a dummy value to IPSR, to avoid leaking the current secure | |
6241 | * exception number to non-secure code. This is guaranteed not | |
6242 | * to cause write_v7m_exception() to actually change stacks. | |
6243 | */ | |
6244 | write_v7m_exception(env, 1); | |
6245 | } | |
6246 | switch_v7m_security_state(env, 0); | |
6247 | env->thumb = 1; | |
6248 | env->regs[15] = dest; | |
6249 | } | |
6250 | ||
5b522399 PM |
6251 | static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, |
6252 | bool spsel) | |
6253 | { | |
6254 | /* Return a pointer to the location where we currently store the | |
6255 | * stack pointer for the requested security state and thread mode. | |
6256 | * This pointer will become invalid if the CPU state is updated | |
6257 | * such that the stack pointers are switched around (eg changing | |
6258 | * the SPSEL control bit). | |
6259 | * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). | |
6260 | * Unlike that pseudocode, we require the caller to pass us in the | |
6261 | * SPSEL control bit value; this is because we also use this | |
6262 | * function in handling of pushing of the callee-saves registers | |
6263 | * part of the v8M stack frame (pseudocode PushCalleeStack()), | |
6264 | * and in the tailchain codepath the SPSEL bit comes from the exception | |
6265 | * return magic LR value from the previous exception. The pseudocode | |
6266 | * opencodes the stack-selection in PushCalleeStack(), but we prefer | |
6267 | * to make this utility function generic enough to do the job. | |
6268 | */ | |
6269 | bool want_psp = threadmode && spsel; | |
6270 | ||
6271 | if (secure == env->v7m.secure) { | |
de2db7ec PM |
6272 | if (want_psp == v7m_using_psp(env)) { |
6273 | return &env->regs[13]; | |
6274 | } else { | |
6275 | return &env->v7m.other_sp; | |
6276 | } | |
5b522399 PM |
6277 | } else { |
6278 | if (want_psp) { | |
6279 | return &env->v7m.other_ss_psp; | |
6280 | } else { | |
6281 | return &env->v7m.other_ss_msp; | |
6282 | } | |
6283 | } | |
6284 | } | |
6285 | ||
d3392718 | 6286 | static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure) |
39ae2474 PM |
6287 | { |
6288 | CPUState *cs = CPU(cpu); | |
6289 | CPUARMState *env = &cpu->env; | |
6290 | MemTxResult result; | |
d3392718 | 6291 | hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4; |
39ae2474 PM |
6292 | uint32_t addr; |
6293 | ||
6294 | addr = address_space_ldl(cs->as, vec, | |
6295 | MEMTXATTRS_UNSPECIFIED, &result); | |
6296 | if (result != MEMTX_OK) { | |
6297 | /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, | |
6298 | * which would then be immediately followed by our failing to load | |
6299 | * the entry vector for that HardFault, which is a Lockup case. | |
6300 | * Since we don't model Lockup, we just report this guest error | |
6301 | * via cpu_abort(). | |
6302 | */ | |
d3392718 PM |
6303 | cpu_abort(cs, "Failed to read from %s exception vector table " |
6304 | "entry %08x\n", targets_secure ? "secure" : "nonsecure", | |
6305 | (unsigned)vec); | |
39ae2474 PM |
6306 | } |
6307 | return addr; | |
6308 | } | |
6309 | ||
d3392718 PM |
6310 | static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain) |
6311 | { | |
6312 | /* For v8M, push the callee-saves register part of the stack frame. | |
6313 | * Compare the v8M pseudocode PushCalleeStack(). | |
6314 | * In the tailchaining case this may not be the current stack. | |
6315 | */ | |
6316 | CPUARMState *env = &cpu->env; | |
6317 | CPUState *cs = CPU(cpu); | |
6318 | uint32_t *frame_sp_p; | |
6319 | uint32_t frameptr; | |
6320 | ||
6321 | if (dotailchain) { | |
6322 | frame_sp_p = get_v7m_sp_ptr(env, true, | |
6323 | lr & R_V7M_EXCRET_MODE_MASK, | |
6324 | lr & R_V7M_EXCRET_SPSEL_MASK); | |
6325 | } else { | |
6326 | frame_sp_p = &env->regs[13]; | |
6327 | } | |
6328 | ||
6329 | frameptr = *frame_sp_p - 0x28; | |
6330 | ||
6331 | stl_phys(cs->as, frameptr, 0xfefa125b); | |
6332 | stl_phys(cs->as, frameptr + 0x8, env->regs[4]); | |
6333 | stl_phys(cs->as, frameptr + 0xc, env->regs[5]); | |
6334 | stl_phys(cs->as, frameptr + 0x10, env->regs[6]); | |
6335 | stl_phys(cs->as, frameptr + 0x14, env->regs[7]); | |
6336 | stl_phys(cs->as, frameptr + 0x18, env->regs[8]); | |
6337 | stl_phys(cs->as, frameptr + 0x1c, env->regs[9]); | |
6338 | stl_phys(cs->as, frameptr + 0x20, env->regs[10]); | |
6339 | stl_phys(cs->as, frameptr + 0x24, env->regs[11]); | |
6340 | ||
6341 | *frame_sp_p = frameptr; | |
6342 | } | |
6343 | ||
6344 | static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain) | |
39ae2474 PM |
6345 | { |
6346 | /* Do the "take the exception" parts of exception entry, | |
6347 | * but not the pushing of state to the stack. This is | |
6348 | * similar to the pseudocode ExceptionTaken() function. | |
6349 | */ | |
6350 | CPUARMState *env = &cpu->env; | |
6351 | uint32_t addr; | |
d3392718 PM |
6352 | bool targets_secure; |
6353 | ||
6354 | targets_secure = armv7m_nvic_acknowledge_irq(env->nvic); | |
6355 | ||
6356 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
6357 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && | |
6358 | (lr & R_V7M_EXCRET_S_MASK)) { | |
6359 | /* The background code (the owner of the registers in the | |
6360 | * exception frame) is Secure. This means it may either already | |
6361 | * have or now needs to push callee-saves registers. | |
6362 | */ | |
6363 | if (targets_secure) { | |
6364 | if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { | |
6365 | /* We took an exception from Secure to NonSecure | |
6366 | * (which means the callee-saved registers got stacked) | |
6367 | * and are now tailchaining to a Secure exception. | |
6368 | * Clear DCRS so eventual return from this Secure | |
6369 | * exception unstacks the callee-saved registers. | |
6370 | */ | |
6371 | lr &= ~R_V7M_EXCRET_DCRS_MASK; | |
6372 | } | |
6373 | } else { | |
6374 | /* We're going to a non-secure exception; push the | |
6375 | * callee-saves registers to the stack now, if they're | |
6376 | * not already saved. | |
6377 | */ | |
6378 | if (lr & R_V7M_EXCRET_DCRS_MASK && | |
6379 | !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { | |
6380 | v7m_push_callee_stack(cpu, lr, dotailchain); | |
6381 | } | |
6382 | lr |= R_V7M_EXCRET_DCRS_MASK; | |
6383 | } | |
6384 | } | |
6385 | ||
6386 | lr &= ~R_V7M_EXCRET_ES_MASK; | |
6387 | if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6388 | lr |= R_V7M_EXCRET_ES_MASK; | |
6389 | } | |
6390 | lr &= ~R_V7M_EXCRET_SPSEL_MASK; | |
6391 | if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { | |
6392 | lr |= R_V7M_EXCRET_SPSEL_MASK; | |
6393 | } | |
6394 | ||
6395 | /* Clear registers if necessary to prevent non-secure exception | |
6396 | * code being able to see register values from secure code. | |
6397 | * Where register values become architecturally UNKNOWN we leave | |
6398 | * them with their previous values. | |
6399 | */ | |
6400 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6401 | if (!targets_secure) { | |
6402 | /* Always clear the caller-saved registers (they have been | |
6403 | * pushed to the stack earlier in v7m_push_stack()). | |
6404 | * Clear callee-saved registers if the background code is | |
6405 | * Secure (in which case these regs were saved in | |
6406 | * v7m_push_callee_stack()). | |
6407 | */ | |
6408 | int i; | |
6409 | ||
6410 | for (i = 0; i < 13; i++) { | |
6411 | /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ | |
6412 | if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { | |
6413 | env->regs[i] = 0; | |
6414 | } | |
6415 | } | |
6416 | /* Clear EAPSR */ | |
6417 | xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); | |
6418 | } | |
6419 | } | |
6420 | } | |
39ae2474 | 6421 | |
d3392718 PM |
6422 | /* Switch to target security state -- must do this before writing SPSEL */ |
6423 | switch_v7m_security_state(env, targets_secure); | |
de2db7ec | 6424 | write_v7m_control_spsel(env, 0); |
dc3c4c14 | 6425 | arm_clear_exclusive(env); |
39ae2474 PM |
6426 | /* Clear IT bits */ |
6427 | env->condexec_bits = 0; | |
6428 | env->regs[14] = lr; | |
d3392718 | 6429 | addr = arm_v7m_load_vector(cpu, targets_secure); |
39ae2474 PM |
6430 | env->regs[15] = addr & 0xfffffffe; |
6431 | env->thumb = addr & 1; | |
6432 | } | |
6433 | ||
6434 | static void v7m_push_stack(ARMCPU *cpu) | |
6435 | { | |
6436 | /* Do the "set up stack frame" part of exception entry, | |
6437 | * similar to pseudocode PushStack(). | |
6438 | */ | |
6439 | CPUARMState *env = &cpu->env; | |
6440 | uint32_t xpsr = xpsr_read(env); | |
6441 | ||
6442 | /* Align stack pointer if the guest wants that */ | |
9d40cd8a PM |
6443 | if ((env->regs[13] & 4) && |
6444 | (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { | |
39ae2474 | 6445 | env->regs[13] -= 4; |
987ab45e | 6446 | xpsr |= XPSR_SPREALIGN; |
39ae2474 PM |
6447 | } |
6448 | /* Switch to the handler mode. */ | |
6449 | v7m_push(env, xpsr); | |
6450 | v7m_push(env, env->regs[15]); | |
6451 | v7m_push(env, env->regs[14]); | |
6452 | v7m_push(env, env->regs[12]); | |
6453 | v7m_push(env, env->regs[3]); | |
6454 | v7m_push(env, env->regs[2]); | |
6455 | v7m_push(env, env->regs[1]); | |
6456 | v7m_push(env, env->regs[0]); | |
6457 | } | |
6458 | ||
aa488fe3 | 6459 | static void do_v7m_exception_exit(ARMCPU *cpu) |
9ee6e8bb | 6460 | { |
aa488fe3 | 6461 | CPUARMState *env = &cpu->env; |
5b522399 | 6462 | CPUState *cs = CPU(cpu); |
351e527a | 6463 | uint32_t excret; |
9ee6e8bb | 6464 | uint32_t xpsr; |
aa488fe3 | 6465 | bool ufault = false; |
bfb2eb52 PM |
6466 | bool sfault = false; |
6467 | bool return_to_sp_process; | |
6468 | bool return_to_handler; | |
aa488fe3 | 6469 | bool rettobase = false; |
5cb18069 | 6470 | bool exc_secure = false; |
5b522399 | 6471 | bool return_to_secure; |
aa488fe3 PM |
6472 | |
6473 | /* We can only get here from an EXCP_EXCEPTION_EXIT, and | |
9d17da4b | 6474 | * gen_bx_excret() enforces the architectural rule |
aa488fe3 PM |
6475 | * that jumps to magic addresses don't have magic behaviour unless |
6476 | * we're in Handler mode (compare pseudocode BXWritePC()). | |
6477 | */ | |
15b3f556 | 6478 | assert(arm_v7m_is_handler_mode(env)); |
aa488fe3 PM |
6479 | |
6480 | /* In the spec pseudocode ExceptionReturn() is called directly | |
6481 | * from BXWritePC() and gets the full target PC value including | |
6482 | * bit zero. In QEMU's implementation we treat it as a normal | |
6483 | * jump-to-register (which is then caught later on), and so split | |
6484 | * the target value up between env->regs[15] and env->thumb in | |
6485 | * gen_bx(). Reconstitute it. | |
6486 | */ | |
351e527a | 6487 | excret = env->regs[15]; |
aa488fe3 | 6488 | if (env->thumb) { |
351e527a | 6489 | excret |= 1; |
aa488fe3 PM |
6490 | } |
6491 | ||
6492 | qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 | |
6493 | " previous exception %d\n", | |
351e527a | 6494 | excret, env->v7m.exception); |
aa488fe3 | 6495 | |
351e527a | 6496 | if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { |
aa488fe3 | 6497 | qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " |
351e527a PM |
6498 | "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", |
6499 | excret); | |
aa488fe3 PM |
6500 | } |
6501 | ||
bfb2eb52 PM |
6502 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
6503 | /* EXC_RETURN.ES validation check (R_SMFL). We must do this before | |
6504 | * we pick which FAULTMASK to clear. | |
6505 | */ | |
6506 | if (!env->v7m.secure && | |
6507 | ((excret & R_V7M_EXCRET_ES_MASK) || | |
6508 | !(excret & R_V7M_EXCRET_DCRS_MASK))) { | |
6509 | sfault = 1; | |
6510 | /* For all other purposes, treat ES as 0 (R_HXSR) */ | |
6511 | excret &= ~R_V7M_EXCRET_ES_MASK; | |
6512 | } | |
6513 | } | |
6514 | ||
a20ee600 | 6515 | if (env->v7m.exception != ARMV7M_EXCP_NMI) { |
42a6686b PM |
6516 | /* Auto-clear FAULTMASK on return from other than NMI. |
6517 | * If the security extension is implemented then this only | |
6518 | * happens if the raw execution priority is >= 0; the | |
6519 | * value of the ES bit in the exception return value indicates | |
6520 | * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) | |
6521 | */ | |
6522 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
5cb18069 | 6523 | exc_secure = excret & R_V7M_EXCRET_ES_MASK; |
42a6686b | 6524 | if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { |
5cb18069 | 6525 | env->v7m.faultmask[exc_secure] = 0; |
42a6686b PM |
6526 | } |
6527 | } else { | |
6528 | env->v7m.faultmask[M_REG_NS] = 0; | |
6529 | } | |
a20ee600 | 6530 | } |
aa488fe3 | 6531 | |
5cb18069 PM |
6532 | switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, |
6533 | exc_secure)) { | |
aa488fe3 PM |
6534 | case -1: |
6535 | /* attempt to exit an exception that isn't active */ | |
6536 | ufault = true; | |
6537 | break; | |
6538 | case 0: | |
6539 | /* still an irq active now */ | |
6540 | break; | |
6541 | case 1: | |
6542 | /* we returned to base exception level, no nesting. | |
6543 | * (In the pseudocode this is written using "NestedActivation != 1" | |
6544 | * where we have 'rettobase == false'.) | |
6545 | */ | |
6546 | rettobase = true; | |
6547 | break; | |
6548 | default: | |
6549 | g_assert_not_reached(); | |
6550 | } | |
6551 | ||
bfb2eb52 PM |
6552 | return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); |
6553 | return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; | |
5b522399 PM |
6554 | return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && |
6555 | (excret & R_V7M_EXCRET_S_MASK); | |
6556 | ||
bfb2eb52 PM |
6557 | if (arm_feature(env, ARM_FEATURE_V8)) { |
6558 | if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6559 | /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); | |
6560 | * we choose to take the UsageFault. | |
6561 | */ | |
6562 | if ((excret & R_V7M_EXCRET_S_MASK) || | |
6563 | (excret & R_V7M_EXCRET_ES_MASK) || | |
6564 | !(excret & R_V7M_EXCRET_DCRS_MASK)) { | |
6565 | ufault = true; | |
6566 | } | |
6567 | } | |
6568 | if (excret & R_V7M_EXCRET_RES0_MASK) { | |
aa488fe3 PM |
6569 | ufault = true; |
6570 | } | |
bfb2eb52 PM |
6571 | } else { |
6572 | /* For v7M we only recognize certain combinations of the low bits */ | |
6573 | switch (excret & 0xf) { | |
6574 | case 1: /* Return to Handler */ | |
6575 | break; | |
6576 | case 13: /* Return to Thread using Process stack */ | |
6577 | case 9: /* Return to Thread using Main stack */ | |
6578 | /* We only need to check NONBASETHRDENA for v7M, because in | |
6579 | * v8M this bit does not exist (it is RES1). | |
6580 | */ | |
6581 | if (!rettobase && | |
6582 | !(env->v7m.ccr[env->v7m.secure] & | |
6583 | R_V7M_CCR_NONBASETHRDENA_MASK)) { | |
6584 | ufault = true; | |
6585 | } | |
6586 | break; | |
6587 | default: | |
6588 | ufault = true; | |
6589 | } | |
6590 | } | |
6591 | ||
6592 | if (sfault) { | |
6593 | env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; | |
6594 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
d3392718 | 6595 | v7m_exception_taken(cpu, excret, true); |
bfb2eb52 PM |
6596 | qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
6597 | "stackframe: failed EXC_RETURN.ES validity check\n"); | |
6598 | return; | |
aa488fe3 PM |
6599 | } |
6600 | ||
6601 | if (ufault) { | |
6602 | /* Bad exception return: instead of popping the exception | |
6603 | * stack, directly take a usage fault on the current stack. | |
6604 | */ | |
334e8dad | 6605 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
2fb50a33 | 6606 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
d3392718 | 6607 | v7m_exception_taken(cpu, excret, true); |
aa488fe3 PM |
6608 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " |
6609 | "stackframe: failed exception return integrity check\n"); | |
6610 | return; | |
a20ee600 | 6611 | } |
9ee6e8bb | 6612 | |
de2db7ec PM |
6613 | /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in |
6614 | * Handler mode (and will be until we write the new XPSR.Interrupt | |
6615 | * field) this does not switch around the current stack pointer. | |
5b522399 | 6616 | */ |
3f0cddee | 6617 | write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); |
5b522399 | 6618 | |
3919e60b PM |
6619 | switch_v7m_security_state(env, return_to_secure); |
6620 | ||
5b522399 PM |
6621 | { |
6622 | /* The stack pointer we should be reading the exception frame from | |
6623 | * depends on bits in the magic exception return type value (and | |
6624 | * for v8M isn't necessarily the stack pointer we will eventually | |
6625 | * end up resuming execution with). Get a pointer to the location | |
6626 | * in the CPU state struct where the SP we need is currently being | |
6627 | * stored; we will use and modify it in place. | |
6628 | * We use this limited C variable scope so we don't accidentally | |
6629 | * use 'frame_sp_p' after we do something that makes it invalid. | |
fcf83ab1 | 6630 | */ |
5b522399 PM |
6631 | uint32_t *frame_sp_p = get_v7m_sp_ptr(env, |
6632 | return_to_secure, | |
6633 | !return_to_handler, | |
6634 | return_to_sp_process); | |
6635 | uint32_t frameptr = *frame_sp_p; | |
6636 | ||
cb484f9a PM |
6637 | if (!QEMU_IS_ALIGNED(frameptr, 8) && |
6638 | arm_feature(env, ARM_FEATURE_V8)) { | |
6639 | qemu_log_mask(LOG_GUEST_ERROR, | |
6640 | "M profile exception return with non-8-aligned SP " | |
6641 | "for destination state is UNPREDICTABLE\n"); | |
6642 | } | |
6643 | ||
907bedb3 PM |
6644 | /* Do we need to pop callee-saved registers? */ |
6645 | if (return_to_secure && | |
6646 | ((excret & R_V7M_EXCRET_ES_MASK) == 0 || | |
6647 | (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { | |
6648 | uint32_t expected_sig = 0xfefa125b; | |
6649 | uint32_t actual_sig = ldl_phys(cs->as, frameptr); | |
6650 | ||
6651 | if (expected_sig != actual_sig) { | |
6652 | /* Take a SecureFault on the current stack */ | |
6653 | env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; | |
6654 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
d3392718 | 6655 | v7m_exception_taken(cpu, excret, true); |
907bedb3 PM |
6656 | qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
6657 | "stackframe: failed exception return integrity " | |
6658 | "signature check\n"); | |
6659 | return; | |
6660 | } | |
6661 | ||
6662 | env->regs[4] = ldl_phys(cs->as, frameptr + 0x8); | |
6663 | env->regs[5] = ldl_phys(cs->as, frameptr + 0xc); | |
6664 | env->regs[6] = ldl_phys(cs->as, frameptr + 0x10); | |
6665 | env->regs[7] = ldl_phys(cs->as, frameptr + 0x14); | |
6666 | env->regs[8] = ldl_phys(cs->as, frameptr + 0x18); | |
6667 | env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c); | |
6668 | env->regs[10] = ldl_phys(cs->as, frameptr + 0x20); | |
6669 | env->regs[11] = ldl_phys(cs->as, frameptr + 0x24); | |
6670 | ||
6671 | frameptr += 0x28; | |
6672 | } | |
6673 | ||
5b522399 PM |
6674 | /* Pop registers. TODO: make these accesses use the correct |
6675 | * attributes and address space (S/NS, priv/unpriv) and handle | |
6676 | * memory transaction failures. | |
6677 | */ | |
6678 | env->regs[0] = ldl_phys(cs->as, frameptr); | |
6679 | env->regs[1] = ldl_phys(cs->as, frameptr + 0x4); | |
6680 | env->regs[2] = ldl_phys(cs->as, frameptr + 0x8); | |
6681 | env->regs[3] = ldl_phys(cs->as, frameptr + 0xc); | |
6682 | env->regs[12] = ldl_phys(cs->as, frameptr + 0x10); | |
6683 | env->regs[14] = ldl_phys(cs->as, frameptr + 0x14); | |
6684 | env->regs[15] = ldl_phys(cs->as, frameptr + 0x18); | |
4e4259d3 PM |
6685 | |
6686 | /* Returning from an exception with a PC with bit 0 set is defined | |
6687 | * behaviour on v8M (bit 0 is ignored), but for v7M it was specified | |
6688 | * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore | |
6689 | * the lsbit, and there are several RTOSes out there which incorrectly | |
6690 | * assume the r15 in the stack frame should be a Thumb-style "lsbit | |
6691 | * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but | |
6692 | * complain about the badly behaved guest. | |
6693 | */ | |
5b522399 | 6694 | if (env->regs[15] & 1) { |
5b522399 | 6695 | env->regs[15] &= ~1U; |
4e4259d3 PM |
6696 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
6697 | qemu_log_mask(LOG_GUEST_ERROR, | |
6698 | "M profile return from interrupt with misaligned " | |
6699 | "PC is UNPREDICTABLE on v7M\n"); | |
6700 | } | |
5b522399 | 6701 | } |
4e4259d3 | 6702 | |
5b522399 PM |
6703 | xpsr = ldl_phys(cs->as, frameptr + 0x1c); |
6704 | ||
224e0c30 PM |
6705 | if (arm_feature(env, ARM_FEATURE_V8)) { |
6706 | /* For v8M we have to check whether the xPSR exception field | |
6707 | * matches the EXCRET value for return to handler/thread | |
6708 | * before we commit to changing the SP and xPSR. | |
6709 | */ | |
6710 | bool will_be_handler = (xpsr & XPSR_EXCP) != 0; | |
6711 | if (return_to_handler != will_be_handler) { | |
6712 | /* Take an INVPC UsageFault on the current stack. | |
6713 | * By this point we will have switched to the security state | |
6714 | * for the background state, so this UsageFault will target | |
6715 | * that state. | |
6716 | */ | |
6717 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, | |
6718 | env->v7m.secure); | |
6719 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; | |
d3392718 | 6720 | v7m_exception_taken(cpu, excret, true); |
224e0c30 PM |
6721 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " |
6722 | "stackframe: failed exception return integrity " | |
6723 | "check\n"); | |
6724 | return; | |
6725 | } | |
6726 | } | |
6727 | ||
5b522399 PM |
6728 | /* Commit to consuming the stack frame */ |
6729 | frameptr += 0x20; | |
6730 | /* Undo stack alignment (the SPREALIGN bit indicates that the original | |
6731 | * pre-exception SP was not 8-aligned and we added a padding word to | |
6732 | * align it, so we undo this by ORing in the bit that increases it | |
6733 | * from the current 8-aligned value to the 8-unaligned value. (Adding 4 | |
6734 | * would work too but a logical OR is how the pseudocode specifies it.) | |
6735 | */ | |
6736 | if (xpsr & XPSR_SPREALIGN) { | |
6737 | frameptr |= 4; | |
6738 | } | |
6739 | *frame_sp_p = frameptr; | |
fcf83ab1 | 6740 | } |
5b522399 | 6741 | /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ |
987ab45e | 6742 | xpsr_write(env, xpsr, ~XPSR_SPREALIGN); |
aa488fe3 PM |
6743 | |
6744 | /* The restored xPSR exception field will be zero if we're | |
6745 | * resuming in Thread mode. If that doesn't match what the | |
351e527a | 6746 | * exception return excret specified then this is a UsageFault. |
224e0c30 | 6747 | * v7M requires we make this check here; v8M did it earlier. |
aa488fe3 | 6748 | */ |
15b3f556 | 6749 | if (return_to_handler != arm_v7m_is_handler_mode(env)) { |
224e0c30 PM |
6750 | /* Take an INVPC UsageFault by pushing the stack again; |
6751 | * we know we're v7M so this is never a Secure UsageFault. | |
2fb50a33 | 6752 | */ |
224e0c30 | 6753 | assert(!arm_feature(env, ARM_FEATURE_V8)); |
2fb50a33 | 6754 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); |
334e8dad | 6755 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
aa488fe3 | 6756 | v7m_push_stack(cpu); |
d3392718 | 6757 | v7m_exception_taken(cpu, excret, false); |
aa488fe3 PM |
6758 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " |
6759 | "failed exception return integrity check\n"); | |
6760 | return; | |
6761 | } | |
6762 | ||
6763 | /* Otherwise, we have a successful exception exit. */ | |
dc3c4c14 | 6764 | arm_clear_exclusive(env); |
aa488fe3 | 6765 | qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); |
9ee6e8bb PB |
6766 | } |
6767 | ||
27a7ea8a PB |
6768 | static void arm_log_exception(int idx) |
6769 | { | |
6770 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
6771 | const char *exc = NULL; | |
2c4a7cc5 PM |
6772 | static const char * const excnames[] = { |
6773 | [EXCP_UDEF] = "Undefined Instruction", | |
6774 | [EXCP_SWI] = "SVC", | |
6775 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
6776 | [EXCP_DATA_ABORT] = "Data Abort", | |
6777 | [EXCP_IRQ] = "IRQ", | |
6778 | [EXCP_FIQ] = "FIQ", | |
6779 | [EXCP_BKPT] = "Breakpoint", | |
6780 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
6781 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
6782 | [EXCP_HVC] = "Hypervisor Call", | |
6783 | [EXCP_HYP_TRAP] = "Hypervisor Trap", | |
6784 | [EXCP_SMC] = "Secure Monitor Call", | |
6785 | [EXCP_VIRQ] = "Virtual IRQ", | |
6786 | [EXCP_VFIQ] = "Virtual FIQ", | |
6787 | [EXCP_SEMIHOST] = "Semihosting call", | |
6788 | [EXCP_NOCP] = "v7M NOCP UsageFault", | |
6789 | [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", | |
6790 | }; | |
27a7ea8a PB |
6791 | |
6792 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
6793 | exc = excnames[idx]; | |
6794 | } | |
6795 | if (!exc) { | |
6796 | exc = "unknown"; | |
6797 | } | |
6798 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
6799 | } | |
6800 | } | |
6801 | ||
333e10c5 PM |
6802 | static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, |
6803 | uint32_t addr, uint16_t *insn) | |
6804 | { | |
6805 | /* Load a 16-bit portion of a v7M instruction, returning true on success, | |
6806 | * or false on failure (in which case we will have pended the appropriate | |
6807 | * exception). | |
6808 | * We need to do the instruction fetch's MPU and SAU checks | |
6809 | * like this because there is no MMU index that would allow | |
6810 | * doing the load with a single function call. Instead we must | |
6811 | * first check that the security attributes permit the load | |
6812 | * and that they don't mismatch on the two halves of the instruction, | |
6813 | * and then we do the load as a secure load (ie using the security | |
6814 | * attributes of the address, not the CPU, as architecturally required). | |
6815 | */ | |
6816 | CPUState *cs = CPU(cpu); | |
6817 | CPUARMState *env = &cpu->env; | |
6818 | V8M_SAttributes sattrs = {}; | |
6819 | MemTxAttrs attrs = {}; | |
6820 | ARMMMUFaultInfo fi = {}; | |
6821 | MemTxResult txres; | |
6822 | target_ulong page_size; | |
6823 | hwaddr physaddr; | |
6824 | int prot; | |
6825 | uint32_t fsr; | |
6826 | ||
6827 | v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); | |
6828 | if (!sattrs.nsc || sattrs.ns) { | |
6829 | /* This must be the second half of the insn, and it straddles a | |
6830 | * region boundary with the second half not being S&NSC. | |
6831 | */ | |
6832 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
6833 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
6834 | qemu_log_mask(CPU_LOG_INT, | |
6835 | "...really SecureFault with SFSR.INVEP\n"); | |
6836 | return false; | |
6837 | } | |
6838 | if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, | |
6839 | &physaddr, &attrs, &prot, &page_size, &fsr, &fi)) { | |
6840 | /* the MPU lookup failed */ | |
6841 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; | |
6842 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); | |
6843 | qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); | |
6844 | return false; | |
6845 | } | |
6846 | *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, | |
6847 | attrs, &txres); | |
6848 | if (txres != MEMTX_OK) { | |
6849 | env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; | |
6850 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); | |
6851 | qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); | |
6852 | return false; | |
6853 | } | |
6854 | return true; | |
6855 | } | |
6856 | ||
6857 | static bool v7m_handle_execute_nsc(ARMCPU *cpu) | |
6858 | { | |
6859 | /* Check whether this attempt to execute code in a Secure & NS-Callable | |
6860 | * memory region is for an SG instruction; if so, then emulate the | |
6861 | * effect of the SG instruction and return true. Otherwise pend | |
6862 | * the correct kind of exception and return false. | |
6863 | */ | |
6864 | CPUARMState *env = &cpu->env; | |
6865 | ARMMMUIdx mmu_idx; | |
6866 | uint16_t insn; | |
6867 | ||
6868 | /* We should never get here unless get_phys_addr_pmsav8() caused | |
6869 | * an exception for NS executing in S&NSC memory. | |
6870 | */ | |
6871 | assert(!env->v7m.secure); | |
6872 | assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); | |
6873 | ||
6874 | /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ | |
6875 | mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); | |
6876 | ||
6877 | if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { | |
6878 | return false; | |
6879 | } | |
6880 | ||
6881 | if (!env->thumb) { | |
6882 | goto gen_invep; | |
6883 | } | |
6884 | ||
6885 | if (insn != 0xe97f) { | |
6886 | /* Not an SG instruction first half (we choose the IMPDEF | |
6887 | * early-SG-check option). | |
6888 | */ | |
6889 | goto gen_invep; | |
6890 | } | |
6891 | ||
6892 | if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { | |
6893 | return false; | |
6894 | } | |
6895 | ||
6896 | if (insn != 0xe97f) { | |
6897 | /* Not an SG instruction second half (yes, both halves of the SG | |
6898 | * insn have the same hex value) | |
6899 | */ | |
6900 | goto gen_invep; | |
6901 | } | |
6902 | ||
6903 | /* OK, we have confirmed that we really have an SG instruction. | |
6904 | * We know we're NS in S memory so don't need to repeat those checks. | |
6905 | */ | |
6906 | qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 | |
6907 | ", executing it\n", env->regs[15]); | |
6908 | env->regs[14] &= ~1; | |
6909 | switch_v7m_security_state(env, true); | |
6910 | xpsr_write(env, 0, XPSR_IT); | |
6911 | env->regs[15] += 4; | |
6912 | return true; | |
6913 | ||
6914 | gen_invep: | |
6915 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
6916 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
6917 | qemu_log_mask(CPU_LOG_INT, | |
6918 | "...really SecureFault with SFSR.INVEP\n"); | |
6919 | return false; | |
6920 | } | |
6921 | ||
e6f010cc | 6922 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 6923 | { |
e6f010cc AF |
6924 | ARMCPU *cpu = ARM_CPU(cs); |
6925 | CPUARMState *env = &cpu->env; | |
9ee6e8bb | 6926 | uint32_t lr; |
9ee6e8bb | 6927 | |
27103424 | 6928 | arm_log_exception(cs->exception_index); |
3f1beaca | 6929 | |
9ee6e8bb PB |
6930 | /* For exceptions we just mark as pending on the NVIC, and let that |
6931 | handle it. */ | |
27103424 | 6932 | switch (cs->exception_index) { |
9ee6e8bb | 6933 | case EXCP_UDEF: |
2fb50a33 | 6934 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 6935 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; |
a25dc805 | 6936 | break; |
7517748e | 6937 | case EXCP_NOCP: |
2fb50a33 | 6938 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 6939 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; |
a25dc805 | 6940 | break; |
e13886e3 | 6941 | case EXCP_INVSTATE: |
2fb50a33 | 6942 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 6943 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; |
e13886e3 | 6944 | break; |
9ee6e8bb | 6945 | case EXCP_SWI: |
314e2296 | 6946 | /* The PC already points to the next instruction. */ |
2fb50a33 | 6947 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); |
a25dc805 | 6948 | break; |
9ee6e8bb PB |
6949 | case EXCP_PREFETCH_ABORT: |
6950 | case EXCP_DATA_ABORT: | |
5dd0641d MD |
6951 | /* Note that for M profile we don't have a guest facing FSR, but |
6952 | * the env->exception.fsr will be populated by the code that | |
6953 | * raises the fault, in the A profile short-descriptor format. | |
abf1172f | 6954 | */ |
5dd0641d | 6955 | switch (env->exception.fsr & 0xf) { |
35337cc3 PM |
6956 | case M_FAKE_FSR_NSC_EXEC: |
6957 | /* Exception generated when we try to execute code at an address | |
6958 | * which is marked as Secure & Non-Secure Callable and the CPU | |
6959 | * is in the Non-Secure state. The only instruction which can | |
6960 | * be executed like this is SG (and that only if both halves of | |
6961 | * the SG instruction have the same security attributes.) | |
6962 | * Everything else must generate an INVEP SecureFault, so we | |
6963 | * emulate the SG instruction here. | |
35337cc3 | 6964 | */ |
333e10c5 PM |
6965 | if (v7m_handle_execute_nsc(cpu)) { |
6966 | return; | |
6967 | } | |
35337cc3 PM |
6968 | break; |
6969 | case M_FAKE_FSR_SFAULT: | |
6970 | /* Various flavours of SecureFault for attempts to execute or | |
6971 | * access data in the wrong security state. | |
6972 | */ | |
6973 | switch (cs->exception_index) { | |
6974 | case EXCP_PREFETCH_ABORT: | |
6975 | if (env->v7m.secure) { | |
6976 | env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; | |
6977 | qemu_log_mask(CPU_LOG_INT, | |
6978 | "...really SecureFault with SFSR.INVTRAN\n"); | |
6979 | } else { | |
6980 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
6981 | qemu_log_mask(CPU_LOG_INT, | |
6982 | "...really SecureFault with SFSR.INVEP\n"); | |
6983 | } | |
6984 | break; | |
6985 | case EXCP_DATA_ABORT: | |
6986 | /* This must be an NS access to S memory */ | |
6987 | env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; | |
6988 | qemu_log_mask(CPU_LOG_INT, | |
6989 | "...really SecureFault with SFSR.AUVIOL\n"); | |
6990 | break; | |
6991 | } | |
6992 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
6993 | break; | |
5dd0641d MD |
6994 | case 0x8: /* External Abort */ |
6995 | switch (cs->exception_index) { | |
6996 | case EXCP_PREFETCH_ABORT: | |
c6158878 PM |
6997 | env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; |
6998 | qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); | |
5dd0641d MD |
6999 | break; |
7000 | case EXCP_DATA_ABORT: | |
334e8dad | 7001 | env->v7m.cfsr[M_REG_NS] |= |
c6158878 | 7002 | (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); |
5dd0641d MD |
7003 | env->v7m.bfar = env->exception.vaddress; |
7004 | qemu_log_mask(CPU_LOG_INT, | |
c6158878 | 7005 | "...with CFSR.PRECISERR and BFAR 0x%x\n", |
5dd0641d MD |
7006 | env->v7m.bfar); |
7007 | break; | |
7008 | } | |
2fb50a33 | 7009 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); |
5dd0641d MD |
7010 | break; |
7011 | default: | |
7012 | /* All other FSR values are either MPU faults or "can't happen | |
7013 | * for M profile" cases. | |
7014 | */ | |
7015 | switch (cs->exception_index) { | |
7016 | case EXCP_PREFETCH_ABORT: | |
334e8dad | 7017 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; |
5dd0641d MD |
7018 | qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); |
7019 | break; | |
7020 | case EXCP_DATA_ABORT: | |
334e8dad | 7021 | env->v7m.cfsr[env->v7m.secure] |= |
5dd0641d | 7022 | (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); |
c51a5cfc | 7023 | env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; |
5dd0641d MD |
7024 | qemu_log_mask(CPU_LOG_INT, |
7025 | "...with CFSR.DACCVIOL and MMFAR 0x%x\n", | |
c51a5cfc | 7026 | env->v7m.mmfar[env->v7m.secure]); |
5dd0641d MD |
7027 | break; |
7028 | } | |
2fb50a33 PM |
7029 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, |
7030 | env->v7m.secure); | |
5dd0641d MD |
7031 | break; |
7032 | } | |
a25dc805 | 7033 | break; |
9ee6e8bb | 7034 | case EXCP_BKPT: |
cfe67cef | 7035 | if (semihosting_enabled()) { |
2ad207d4 | 7036 | int nr; |
f9fd40eb | 7037 | nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; |
2ad207d4 PB |
7038 | if (nr == 0xab) { |
7039 | env->regs[15] += 2; | |
205ace55 CC |
7040 | qemu_log_mask(CPU_LOG_INT, |
7041 | "...handling as semihosting call 0x%x\n", | |
7042 | env->regs[0]); | |
2ad207d4 PB |
7043 | env->regs[0] = do_arm_semihosting(env); |
7044 | return; | |
7045 | } | |
7046 | } | |
2fb50a33 | 7047 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); |
a25dc805 | 7048 | break; |
9ee6e8bb | 7049 | case EXCP_IRQ: |
9ee6e8bb PB |
7050 | break; |
7051 | case EXCP_EXCEPTION_EXIT: | |
aa488fe3 | 7052 | do_v7m_exception_exit(cpu); |
9ee6e8bb PB |
7053 | return; |
7054 | default: | |
a47dddd7 | 7055 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
7056 | return; /* Never happens. Keep compiler happy. */ |
7057 | } | |
7058 | ||
d3392718 PM |
7059 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7060 | lr = R_V7M_EXCRET_RES1_MASK | | |
7061 | R_V7M_EXCRET_DCRS_MASK | | |
7062 | R_V7M_EXCRET_FTYPE_MASK; | |
7063 | /* The S bit indicates whether we should return to Secure | |
7064 | * or NonSecure (ie our current state). | |
7065 | * The ES bit indicates whether we're taking this exception | |
7066 | * to Secure or NonSecure (ie our target state). We set it | |
7067 | * later, in v7m_exception_taken(). | |
7068 | * The SPSEL bit is also set in v7m_exception_taken() for v8M. | |
7069 | * This corresponds to the ARM ARM pseudocode for v8M setting | |
7070 | * some LR bits in PushStack() and some in ExceptionTaken(); | |
7071 | * the distinction matters for the tailchain cases where we | |
7072 | * can take an exception without pushing the stack. | |
7073 | */ | |
7074 | if (env->v7m.secure) { | |
7075 | lr |= R_V7M_EXCRET_S_MASK; | |
7076 | } | |
7077 | } else { | |
7078 | lr = R_V7M_EXCRET_RES1_MASK | | |
7079 | R_V7M_EXCRET_S_MASK | | |
7080 | R_V7M_EXCRET_DCRS_MASK | | |
7081 | R_V7M_EXCRET_FTYPE_MASK | | |
7082 | R_V7M_EXCRET_ES_MASK; | |
7083 | if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { | |
7084 | lr |= R_V7M_EXCRET_SPSEL_MASK; | |
7085 | } | |
bd70b29b | 7086 | } |
15b3f556 | 7087 | if (!arm_v7m_is_handler_mode(env)) { |
4d1e7a47 | 7088 | lr |= R_V7M_EXCRET_MODE_MASK; |
bd70b29b PM |
7089 | } |
7090 | ||
39ae2474 | 7091 | v7m_push_stack(cpu); |
d3392718 | 7092 | v7m_exception_taken(cpu, lr, false); |
a25dc805 | 7093 | qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); |
9ee6e8bb PB |
7094 | } |
7095 | ||
ce02049d GB |
7096 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
7097 | * register set. This is necessary when switching between AArch32 and AArch64 | |
7098 | * execution state. | |
7099 | */ | |
7100 | void aarch64_sync_32_to_64(CPUARMState *env) | |
7101 | { | |
7102 | int i; | |
7103 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
7104 | ||
7105 | /* We can blanket copy R[0:7] to X[0:7] */ | |
7106 | for (i = 0; i < 8; i++) { | |
7107 | env->xregs[i] = env->regs[i]; | |
7108 | } | |
7109 | ||
7110 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
7111 | * Otherwise, they come from the banked user regs. | |
7112 | */ | |
7113 | if (mode == ARM_CPU_MODE_FIQ) { | |
7114 | for (i = 8; i < 13; i++) { | |
7115 | env->xregs[i] = env->usr_regs[i - 8]; | |
7116 | } | |
7117 | } else { | |
7118 | for (i = 8; i < 13; i++) { | |
7119 | env->xregs[i] = env->regs[i]; | |
7120 | } | |
7121 | } | |
7122 | ||
7123 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
7124 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
7125 | * from the mode banked register. | |
7126 | */ | |
7127 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
7128 | env->xregs[13] = env->regs[13]; | |
7129 | env->xregs[14] = env->regs[14]; | |
7130 | } else { | |
7131 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
7132 | /* HYP is an exception in that it is copied from r14 */ | |
7133 | if (mode == ARM_CPU_MODE_HYP) { | |
7134 | env->xregs[14] = env->regs[14]; | |
7135 | } else { | |
7136 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
7137 | } | |
7138 | } | |
7139 | ||
7140 | if (mode == ARM_CPU_MODE_HYP) { | |
7141 | env->xregs[15] = env->regs[13]; | |
7142 | } else { | |
7143 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
7144 | } | |
7145 | ||
7146 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
7147 | env->xregs[16] = env->regs[14]; |
7148 | env->xregs[17] = env->regs[13]; | |
ce02049d | 7149 | } else { |
3a9148d0 SS |
7150 | env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; |
7151 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
ce02049d GB |
7152 | } |
7153 | ||
7154 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
7155 | env->xregs[18] = env->regs[14]; |
7156 | env->xregs[19] = env->regs[13]; | |
ce02049d | 7157 | } else { |
3a9148d0 SS |
7158 | env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; |
7159 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
ce02049d GB |
7160 | } |
7161 | ||
7162 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
7163 | env->xregs[20] = env->regs[14]; |
7164 | env->xregs[21] = env->regs[13]; | |
ce02049d | 7165 | } else { |
3a9148d0 SS |
7166 | env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; |
7167 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
ce02049d GB |
7168 | } |
7169 | ||
7170 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
7171 | env->xregs[22] = env->regs[14]; |
7172 | env->xregs[23] = env->regs[13]; | |
ce02049d | 7173 | } else { |
3a9148d0 SS |
7174 | env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; |
7175 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
ce02049d GB |
7176 | } |
7177 | ||
7178 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
7179 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
7180 | * FIQ bank for r8-r14. | |
7181 | */ | |
7182 | if (mode == ARM_CPU_MODE_FIQ) { | |
7183 | for (i = 24; i < 31; i++) { | |
7184 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
7185 | } | |
7186 | } else { | |
7187 | for (i = 24; i < 29; i++) { | |
7188 | env->xregs[i] = env->fiq_regs[i - 24]; | |
7189 | } | |
7190 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
7191 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
7192 | } | |
7193 | ||
7194 | env->pc = env->regs[15]; | |
7195 | } | |
7196 | ||
7197 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
7198 | * register set. This is necessary when switching between AArch32 and AArch64 | |
7199 | * execution state. | |
7200 | */ | |
7201 | void aarch64_sync_64_to_32(CPUARMState *env) | |
7202 | { | |
7203 | int i; | |
7204 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
7205 | ||
7206 | /* We can blanket copy X[0:7] to R[0:7] */ | |
7207 | for (i = 0; i < 8; i++) { | |
7208 | env->regs[i] = env->xregs[i]; | |
7209 | } | |
7210 | ||
7211 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
7212 | * Otherwise, we copy x8-x12 into the banked user regs. | |
7213 | */ | |
7214 | if (mode == ARM_CPU_MODE_FIQ) { | |
7215 | for (i = 8; i < 13; i++) { | |
7216 | env->usr_regs[i - 8] = env->xregs[i]; | |
7217 | } | |
7218 | } else { | |
7219 | for (i = 8; i < 13; i++) { | |
7220 | env->regs[i] = env->xregs[i]; | |
7221 | } | |
7222 | } | |
7223 | ||
7224 | /* Registers r13 & r14 depend on the current mode. | |
7225 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
7226 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
7227 | * for the mode. | |
7228 | */ | |
7229 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
7230 | env->regs[13] = env->xregs[13]; | |
7231 | env->regs[14] = env->xregs[14]; | |
7232 | } else { | |
7233 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
7234 | ||
7235 | /* HYP is an exception in that it does not have its own banked r14 but | |
7236 | * shares the USR r14 | |
7237 | */ | |
7238 | if (mode == ARM_CPU_MODE_HYP) { | |
7239 | env->regs[14] = env->xregs[14]; | |
7240 | } else { | |
7241 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
7242 | } | |
7243 | } | |
7244 | ||
7245 | if (mode == ARM_CPU_MODE_HYP) { | |
7246 | env->regs[13] = env->xregs[15]; | |
7247 | } else { | |
7248 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
7249 | } | |
7250 | ||
7251 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
7252 | env->regs[14] = env->xregs[16]; |
7253 | env->regs[13] = env->xregs[17]; | |
ce02049d | 7254 | } else { |
3a9148d0 SS |
7255 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
7256 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
ce02049d GB |
7257 | } |
7258 | ||
7259 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
7260 | env->regs[14] = env->xregs[18]; |
7261 | env->regs[13] = env->xregs[19]; | |
ce02049d | 7262 | } else { |
3a9148d0 SS |
7263 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
7264 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
ce02049d GB |
7265 | } |
7266 | ||
7267 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
7268 | env->regs[14] = env->xregs[20]; |
7269 | env->regs[13] = env->xregs[21]; | |
ce02049d | 7270 | } else { |
3a9148d0 SS |
7271 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
7272 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
7273 | } |
7274 | ||
7275 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
7276 | env->regs[14] = env->xregs[22]; |
7277 | env->regs[13] = env->xregs[23]; | |
ce02049d | 7278 | } else { |
3a9148d0 SS |
7279 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
7280 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
ce02049d GB |
7281 | } |
7282 | ||
7283 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
7284 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
7285 | * FIQ bank for r8-r14. | |
7286 | */ | |
7287 | if (mode == ARM_CPU_MODE_FIQ) { | |
7288 | for (i = 24; i < 31; i++) { | |
7289 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
7290 | } | |
7291 | } else { | |
7292 | for (i = 24; i < 29; i++) { | |
7293 | env->fiq_regs[i - 24] = env->xregs[i]; | |
7294 | } | |
7295 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
7296 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
7297 | } | |
7298 | ||
7299 | env->regs[15] = env->pc; | |
7300 | } | |
7301 | ||
966f758c | 7302 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
b5ff1b31 | 7303 | { |
97a8ea5a AF |
7304 | ARMCPU *cpu = ARM_CPU(cs); |
7305 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
7306 | uint32_t addr; |
7307 | uint32_t mask; | |
7308 | int new_mode; | |
7309 | uint32_t offset; | |
16a906fd | 7310 | uint32_t moe; |
b5ff1b31 | 7311 | |
16a906fd PM |
7312 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
7313 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
7314 | case EC_BREAKPOINT: | |
7315 | case EC_BREAKPOINT_SAME_EL: | |
7316 | moe = 1; | |
7317 | break; | |
7318 | case EC_WATCHPOINT: | |
7319 | case EC_WATCHPOINT_SAME_EL: | |
7320 | moe = 10; | |
7321 | break; | |
7322 | case EC_AA32_BKPT: | |
7323 | moe = 3; | |
7324 | break; | |
7325 | case EC_VECTORCATCH: | |
7326 | moe = 5; | |
7327 | break; | |
7328 | default: | |
7329 | moe = 0; | |
7330 | break; | |
7331 | } | |
7332 | ||
7333 | if (moe) { | |
7334 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
7335 | } | |
7336 | ||
b5ff1b31 | 7337 | /* TODO: Vectored interrupt controller. */ |
27103424 | 7338 | switch (cs->exception_index) { |
b5ff1b31 FB |
7339 | case EXCP_UDEF: |
7340 | new_mode = ARM_CPU_MODE_UND; | |
7341 | addr = 0x04; | |
7342 | mask = CPSR_I; | |
7343 | if (env->thumb) | |
7344 | offset = 2; | |
7345 | else | |
7346 | offset = 4; | |
7347 | break; | |
7348 | case EXCP_SWI: | |
7349 | new_mode = ARM_CPU_MODE_SVC; | |
7350 | addr = 0x08; | |
7351 | mask = CPSR_I; | |
601d70b9 | 7352 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
7353 | offset = 0; |
7354 | break; | |
06c949e6 | 7355 | case EXCP_BKPT: |
abf1172f | 7356 | env->exception.fsr = 2; |
9ee6e8bb PB |
7357 | /* Fall through to prefetch abort. */ |
7358 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 7359 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 7360 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 7361 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 7362 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
7363 | new_mode = ARM_CPU_MODE_ABT; |
7364 | addr = 0x0c; | |
7365 | mask = CPSR_A | CPSR_I; | |
7366 | offset = 4; | |
7367 | break; | |
7368 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 7369 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 7370 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 7371 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 7372 | env->exception.fsr, |
6cd8a264 | 7373 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
7374 | new_mode = ARM_CPU_MODE_ABT; |
7375 | addr = 0x10; | |
7376 | mask = CPSR_A | CPSR_I; | |
7377 | offset = 8; | |
7378 | break; | |
7379 | case EXCP_IRQ: | |
7380 | new_mode = ARM_CPU_MODE_IRQ; | |
7381 | addr = 0x18; | |
7382 | /* Disable IRQ and imprecise data aborts. */ | |
7383 | mask = CPSR_A | CPSR_I; | |
7384 | offset = 4; | |
de38d23b FA |
7385 | if (env->cp15.scr_el3 & SCR_IRQ) { |
7386 | /* IRQ routed to monitor mode */ | |
7387 | new_mode = ARM_CPU_MODE_MON; | |
7388 | mask |= CPSR_F; | |
7389 | } | |
b5ff1b31 FB |
7390 | break; |
7391 | case EXCP_FIQ: | |
7392 | new_mode = ARM_CPU_MODE_FIQ; | |
7393 | addr = 0x1c; | |
7394 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
7395 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
7396 | if (env->cp15.scr_el3 & SCR_FIQ) { |
7397 | /* FIQ routed to monitor mode */ | |
7398 | new_mode = ARM_CPU_MODE_MON; | |
7399 | } | |
b5ff1b31 FB |
7400 | offset = 4; |
7401 | break; | |
87a4b270 PM |
7402 | case EXCP_VIRQ: |
7403 | new_mode = ARM_CPU_MODE_IRQ; | |
7404 | addr = 0x18; | |
7405 | /* Disable IRQ and imprecise data aborts. */ | |
7406 | mask = CPSR_A | CPSR_I; | |
7407 | offset = 4; | |
7408 | break; | |
7409 | case EXCP_VFIQ: | |
7410 | new_mode = ARM_CPU_MODE_FIQ; | |
7411 | addr = 0x1c; | |
7412 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
7413 | mask = CPSR_A | CPSR_I | CPSR_F; | |
7414 | offset = 4; | |
7415 | break; | |
dbe9d163 FA |
7416 | case EXCP_SMC: |
7417 | new_mode = ARM_CPU_MODE_MON; | |
7418 | addr = 0x08; | |
7419 | mask = CPSR_A | CPSR_I | CPSR_F; | |
7420 | offset = 0; | |
7421 | break; | |
b5ff1b31 | 7422 | default: |
a47dddd7 | 7423 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
7424 | return; /* Never happens. Keep compiler happy. */ |
7425 | } | |
e89e51a1 FA |
7426 | |
7427 | if (new_mode == ARM_CPU_MODE_MON) { | |
7428 | addr += env->cp15.mvbar; | |
137feaa9 | 7429 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 7430 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 7431 | addr += 0xffff0000; |
8641136c NR |
7432 | } else { |
7433 | /* ARM v7 architectures provide a vector base address register to remap | |
7434 | * the interrupt vector table. | |
e89e51a1 | 7435 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
7436 | * Note: only bits 31:5 are valid. |
7437 | */ | |
fb6c91ba | 7438 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 7439 | } |
dbe9d163 FA |
7440 | |
7441 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
7442 | env->cp15.scr_el3 &= ~SCR_NS; | |
7443 | } | |
7444 | ||
b5ff1b31 | 7445 | switch_mode (env, new_mode); |
662cefb7 PM |
7446 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
7447 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
7448 | */ | |
7449 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 7450 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
7451 | /* Clear IT bits. */ |
7452 | env->condexec_bits = 0; | |
30a8cac1 | 7453 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 7454 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
73462ddd PC |
7455 | /* Set new mode endianness */ |
7456 | env->uncached_cpsr &= ~CPSR_E; | |
7457 | if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { | |
3823b9db | 7458 | env->uncached_cpsr |= CPSR_E; |
73462ddd | 7459 | } |
4cc35614 | 7460 | env->daif |= mask; |
be5e7a76 DES |
7461 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
7462 | * and we should just guard the thumb mode on V4 */ | |
7463 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 7464 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 7465 | } |
b5ff1b31 FB |
7466 | env->regs[14] = env->regs[15] + offset; |
7467 | env->regs[15] = addr; | |
b5ff1b31 FB |
7468 | } |
7469 | ||
966f758c PM |
7470 | /* Handle exception entry to a target EL which is using AArch64 */ |
7471 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) | |
f3a9b694 PM |
7472 | { |
7473 | ARMCPU *cpu = ARM_CPU(cs); | |
7474 | CPUARMState *env = &cpu->env; | |
7475 | unsigned int new_el = env->exception.target_el; | |
7476 | target_ulong addr = env->cp15.vbar_el[new_el]; | |
7477 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | |
7478 | ||
7479 | if (arm_current_el(env) < new_el) { | |
3d6f7617 PM |
7480 | /* Entry vector offset depends on whether the implemented EL |
7481 | * immediately lower than the target level is using AArch32 or AArch64 | |
7482 | */ | |
7483 | bool is_aa64; | |
7484 | ||
7485 | switch (new_el) { | |
7486 | case 3: | |
7487 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; | |
7488 | break; | |
7489 | case 2: | |
7490 | is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; | |
7491 | break; | |
7492 | case 1: | |
7493 | is_aa64 = is_a64(env); | |
7494 | break; | |
7495 | default: | |
7496 | g_assert_not_reached(); | |
7497 | } | |
7498 | ||
7499 | if (is_aa64) { | |
f3a9b694 PM |
7500 | addr += 0x400; |
7501 | } else { | |
7502 | addr += 0x600; | |
7503 | } | |
7504 | } else if (pstate_read(env) & PSTATE_SP) { | |
7505 | addr += 0x200; | |
7506 | } | |
7507 | ||
f3a9b694 PM |
7508 | switch (cs->exception_index) { |
7509 | case EXCP_PREFETCH_ABORT: | |
7510 | case EXCP_DATA_ABORT: | |
7511 | env->cp15.far_el[new_el] = env->exception.vaddress; | |
7512 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
7513 | env->cp15.far_el[new_el]); | |
7514 | /* fall through */ | |
7515 | case EXCP_BKPT: | |
7516 | case EXCP_UDEF: | |
7517 | case EXCP_SWI: | |
7518 | case EXCP_HVC: | |
7519 | case EXCP_HYP_TRAP: | |
7520 | case EXCP_SMC: | |
7521 | env->cp15.esr_el[new_el] = env->exception.syndrome; | |
7522 | break; | |
7523 | case EXCP_IRQ: | |
7524 | case EXCP_VIRQ: | |
7525 | addr += 0x80; | |
7526 | break; | |
7527 | case EXCP_FIQ: | |
7528 | case EXCP_VFIQ: | |
7529 | addr += 0x100; | |
7530 | break; | |
7531 | case EXCP_SEMIHOST: | |
7532 | qemu_log_mask(CPU_LOG_INT, | |
7533 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
7534 | env->xregs[0]); | |
7535 | env->xregs[0] = do_arm_semihosting(env); | |
7536 | return; | |
7537 | default: | |
7538 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
7539 | } | |
7540 | ||
7541 | if (is_a64(env)) { | |
7542 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); | |
7543 | aarch64_save_sp(env, arm_current_el(env)); | |
7544 | env->elr_el[new_el] = env->pc; | |
7545 | } else { | |
7546 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); | |
f3a9b694 PM |
7547 | env->elr_el[new_el] = env->regs[15]; |
7548 | ||
7549 | aarch64_sync_32_to_64(env); | |
7550 | ||
7551 | env->condexec_bits = 0; | |
7552 | } | |
7553 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", | |
7554 | env->elr_el[new_el]); | |
7555 | ||
7556 | pstate_write(env, PSTATE_DAIF | new_mode); | |
7557 | env->aarch64 = 1; | |
7558 | aarch64_restore_sp(env, new_el); | |
7559 | ||
7560 | env->pc = addr; | |
7561 | ||
7562 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", | |
7563 | new_el, env->pc, pstate_read(env)); | |
966f758c PM |
7564 | } |
7565 | ||
904c04de PM |
7566 | static inline bool check_for_semihosting(CPUState *cs) |
7567 | { | |
7568 | /* Check whether this exception is a semihosting call; if so | |
7569 | * then handle it and return true; otherwise return false. | |
7570 | */ | |
7571 | ARMCPU *cpu = ARM_CPU(cs); | |
7572 | CPUARMState *env = &cpu->env; | |
7573 | ||
7574 | if (is_a64(env)) { | |
7575 | if (cs->exception_index == EXCP_SEMIHOST) { | |
7576 | /* This is always the 64-bit semihosting exception. | |
7577 | * The "is this usermode" and "is semihosting enabled" | |
7578 | * checks have been done at translate time. | |
7579 | */ | |
7580 | qemu_log_mask(CPU_LOG_INT, | |
7581 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
7582 | env->xregs[0]); | |
7583 | env->xregs[0] = do_arm_semihosting(env); | |
7584 | return true; | |
7585 | } | |
7586 | return false; | |
7587 | } else { | |
7588 | uint32_t imm; | |
7589 | ||
7590 | /* Only intercept calls from privileged modes, to provide some | |
7591 | * semblance of security. | |
7592 | */ | |
19a6e31c PM |
7593 | if (cs->exception_index != EXCP_SEMIHOST && |
7594 | (!semihosting_enabled() || | |
7595 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { | |
904c04de PM |
7596 | return false; |
7597 | } | |
7598 | ||
7599 | switch (cs->exception_index) { | |
19a6e31c PM |
7600 | case EXCP_SEMIHOST: |
7601 | /* This is always a semihosting call; the "is this usermode" | |
7602 | * and "is semihosting enabled" checks have been done at | |
7603 | * translate time. | |
7604 | */ | |
7605 | break; | |
904c04de PM |
7606 | case EXCP_SWI: |
7607 | /* Check for semihosting interrupt. */ | |
7608 | if (env->thumb) { | |
f9fd40eb | 7609 | imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) |
904c04de PM |
7610 | & 0xff; |
7611 | if (imm == 0xab) { | |
7612 | break; | |
7613 | } | |
7614 | } else { | |
f9fd40eb | 7615 | imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) |
904c04de PM |
7616 | & 0xffffff; |
7617 | if (imm == 0x123456) { | |
7618 | break; | |
7619 | } | |
7620 | } | |
7621 | return false; | |
7622 | case EXCP_BKPT: | |
7623 | /* See if this is a semihosting syscall. */ | |
7624 | if (env->thumb) { | |
f9fd40eb | 7625 | imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) |
904c04de PM |
7626 | & 0xff; |
7627 | if (imm == 0xab) { | |
7628 | env->regs[15] += 2; | |
7629 | break; | |
7630 | } | |
7631 | } | |
7632 | return false; | |
7633 | default: | |
7634 | return false; | |
7635 | } | |
7636 | ||
7637 | qemu_log_mask(CPU_LOG_INT, | |
7638 | "...handling as semihosting call 0x%x\n", | |
7639 | env->regs[0]); | |
7640 | env->regs[0] = do_arm_semihosting(env); | |
7641 | return true; | |
7642 | } | |
7643 | } | |
7644 | ||
966f758c PM |
7645 | /* Handle a CPU exception for A and R profile CPUs. |
7646 | * Do any appropriate logging, handle PSCI calls, and then hand off | |
7647 | * to the AArch64-entry or AArch32-entry function depending on the | |
7648 | * target exception level's register width. | |
7649 | */ | |
7650 | void arm_cpu_do_interrupt(CPUState *cs) | |
7651 | { | |
7652 | ARMCPU *cpu = ARM_CPU(cs); | |
7653 | CPUARMState *env = &cpu->env; | |
7654 | unsigned int new_el = env->exception.target_el; | |
7655 | ||
531c60a9 | 7656 | assert(!arm_feature(env, ARM_FEATURE_M)); |
966f758c PM |
7657 | |
7658 | arm_log_exception(cs->exception_index); | |
7659 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), | |
7660 | new_el); | |
7661 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
7662 | && !excp_is_internal(cs->exception_index)) { | |
6568da45 | 7663 | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", |
966f758c PM |
7664 | env->exception.syndrome >> ARM_EL_EC_SHIFT, |
7665 | env->exception.syndrome); | |
7666 | } | |
7667 | ||
7668 | if (arm_is_psci_call(cpu, cs->exception_index)) { | |
7669 | arm_handle_psci_call(cpu); | |
7670 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
7671 | return; | |
7672 | } | |
7673 | ||
904c04de PM |
7674 | /* Semihosting semantics depend on the register width of the |
7675 | * code that caused the exception, not the target exception level, | |
7676 | * so must be handled here. | |
966f758c | 7677 | */ |
904c04de PM |
7678 | if (check_for_semihosting(cs)) { |
7679 | return; | |
7680 | } | |
7681 | ||
7682 | assert(!excp_is_internal(cs->exception_index)); | |
7683 | if (arm_el_is_aa64(env, new_el)) { | |
966f758c PM |
7684 | arm_cpu_do_interrupt_aarch64(cs); |
7685 | } else { | |
7686 | arm_cpu_do_interrupt_aarch32(cs); | |
7687 | } | |
f3a9b694 | 7688 | |
8d04fb55 JK |
7689 | /* Hooks may change global state so BQL should be held, also the |
7690 | * BQL needs to be held for any modification of | |
7691 | * cs->interrupt_request. | |
7692 | */ | |
7693 | g_assert(qemu_mutex_iothread_locked()); | |
7694 | ||
bd7d00fc PM |
7695 | arm_call_el_change_hook(cpu); |
7696 | ||
f3a9b694 PM |
7697 | if (!kvm_enabled()) { |
7698 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
7699 | } | |
7700 | } | |
0480f69a PM |
7701 | |
7702 | /* Return the exception level which controls this address translation regime */ | |
7703 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7704 | { | |
7705 | switch (mmu_idx) { | |
7706 | case ARMMMUIdx_S2NS: | |
7707 | case ARMMMUIdx_S1E2: | |
7708 | return 2; | |
7709 | case ARMMMUIdx_S1E3: | |
7710 | return 3; | |
7711 | case ARMMMUIdx_S1SE0: | |
7712 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
7713 | case ARMMMUIdx_S1SE1: | |
7714 | case ARMMMUIdx_S1NSE0: | |
7715 | case ARMMMUIdx_S1NSE1: | |
e7b921c2 | 7716 | case ARMMMUIdx_MPriv: |
3bef7012 | 7717 | case ARMMMUIdx_MNegPri: |
e7b921c2 | 7718 | case ARMMMUIdx_MUser: |
66787c78 PM |
7719 | case ARMMMUIdx_MSPriv: |
7720 | case ARMMMUIdx_MSNegPri: | |
7721 | case ARMMMUIdx_MSUser: | |
0480f69a PM |
7722 | return 1; |
7723 | default: | |
7724 | g_assert_not_reached(); | |
7725 | } | |
7726 | } | |
7727 | ||
7728 | /* Return the SCTLR value which controls this address translation regime */ | |
7729 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7730 | { | |
7731 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
7732 | } | |
7733 | ||
7734 | /* Return true if the specified stage of address translation is disabled */ | |
7735 | static inline bool regime_translation_disabled(CPUARMState *env, | |
7736 | ARMMMUIdx mmu_idx) | |
7737 | { | |
29c483a5 | 7738 | if (arm_feature(env, ARM_FEATURE_M)) { |
ecf5e8ea | 7739 | switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & |
3bef7012 PM |
7740 | (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
7741 | case R_V7M_MPU_CTRL_ENABLE_MASK: | |
7742 | /* Enabled, but not for HardFault and NMI */ | |
66787c78 PM |
7743 | return mmu_idx == ARMMMUIdx_MNegPri || |
7744 | mmu_idx == ARMMMUIdx_MSNegPri; | |
3bef7012 PM |
7745 | case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
7746 | /* Enabled for all cases */ | |
7747 | return false; | |
7748 | case 0: | |
7749 | default: | |
7750 | /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but | |
7751 | * we warned about that in armv7m_nvic.c when the guest set it. | |
7752 | */ | |
7753 | return true; | |
7754 | } | |
29c483a5 MD |
7755 | } |
7756 | ||
0480f69a PM |
7757 | if (mmu_idx == ARMMMUIdx_S2NS) { |
7758 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
7759 | } | |
7760 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
7761 | } | |
7762 | ||
73462ddd PC |
7763 | static inline bool regime_translation_big_endian(CPUARMState *env, |
7764 | ARMMMUIdx mmu_idx) | |
7765 | { | |
7766 | return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; | |
7767 | } | |
7768 | ||
0480f69a PM |
7769 | /* Return the TCR controlling this translation regime */ |
7770 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7771 | { | |
7772 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
68e9c2fe | 7773 | return &env->cp15.vtcr_el2; |
0480f69a PM |
7774 | } |
7775 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
7776 | } | |
7777 | ||
8bd5c820 PM |
7778 | /* Convert a possible stage1+2 MMU index into the appropriate |
7779 | * stage 1 MMU index | |
7780 | */ | |
7781 | static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) | |
7782 | { | |
7783 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { | |
7784 | mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); | |
7785 | } | |
7786 | return mmu_idx; | |
7787 | } | |
7788 | ||
86fb3fa4 TH |
7789 | /* Returns TBI0 value for current regime el */ |
7790 | uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7791 | { | |
7792 | TCR *tcr; | |
7793 | uint32_t el; | |
7794 | ||
7795 | /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert | |
8bd5c820 PM |
7796 | * a stage 1+2 mmu index into the appropriate stage 1 mmu index. |
7797 | */ | |
7798 | mmu_idx = stage_1_mmu_idx(mmu_idx); | |
86fb3fa4 TH |
7799 | |
7800 | tcr = regime_tcr(env, mmu_idx); | |
7801 | el = regime_el(env, mmu_idx); | |
7802 | ||
7803 | if (el > 1) { | |
7804 | return extract64(tcr->raw_tcr, 20, 1); | |
7805 | } else { | |
7806 | return extract64(tcr->raw_tcr, 37, 1); | |
7807 | } | |
7808 | } | |
7809 | ||
7810 | /* Returns TBI1 value for current regime el */ | |
7811 | uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7812 | { | |
7813 | TCR *tcr; | |
7814 | uint32_t el; | |
7815 | ||
7816 | /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert | |
8bd5c820 PM |
7817 | * a stage 1+2 mmu index into the appropriate stage 1 mmu index. |
7818 | */ | |
7819 | mmu_idx = stage_1_mmu_idx(mmu_idx); | |
86fb3fa4 TH |
7820 | |
7821 | tcr = regime_tcr(env, mmu_idx); | |
7822 | el = regime_el(env, mmu_idx); | |
7823 | ||
7824 | if (el > 1) { | |
7825 | return 0; | |
7826 | } else { | |
7827 | return extract64(tcr->raw_tcr, 38, 1); | |
7828 | } | |
7829 | } | |
7830 | ||
aef878be GB |
7831 | /* Return the TTBR associated with this translation regime */ |
7832 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
7833 | int ttbrn) | |
7834 | { | |
7835 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
b698e9cf | 7836 | return env->cp15.vttbr_el2; |
aef878be GB |
7837 | } |
7838 | if (ttbrn == 0) { | |
7839 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
7840 | } else { | |
7841 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
7842 | } | |
7843 | } | |
7844 | ||
0480f69a PM |
7845 | /* Return true if the translation regime is using LPAE format page tables */ |
7846 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
7847 | ARMMMUIdx mmu_idx) | |
7848 | { | |
7849 | int el = regime_el(env, mmu_idx); | |
7850 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
7851 | return true; | |
7852 | } | |
7853 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
7854 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
7855 | return true; | |
7856 | } | |
7857 | return false; | |
7858 | } | |
7859 | ||
deb2db99 AR |
7860 | /* Returns true if the stage 1 translation regime is using LPAE format page |
7861 | * tables. Used when raising alignment exceptions, whose FSR changes depending | |
7862 | * on whether the long or short descriptor format is in use. */ | |
7863 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) | |
30901475 | 7864 | { |
8bd5c820 | 7865 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
deb2db99 | 7866 | |
30901475 AB |
7867 | return regime_using_lpae_format(env, mmu_idx); |
7868 | } | |
7869 | ||
0480f69a PM |
7870 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
7871 | { | |
7872 | switch (mmu_idx) { | |
7873 | case ARMMMUIdx_S1SE0: | |
7874 | case ARMMMUIdx_S1NSE0: | |
e7b921c2 | 7875 | case ARMMMUIdx_MUser: |
0480f69a PM |
7876 | return true; |
7877 | default: | |
7878 | return false; | |
7879 | case ARMMMUIdx_S12NSE0: | |
7880 | case ARMMMUIdx_S12NSE1: | |
7881 | g_assert_not_reached(); | |
7882 | } | |
7883 | } | |
7884 | ||
0fbf5238 AJ |
7885 | /* Translate section/page access permissions to page |
7886 | * R/W protection flags | |
d76951b6 AJ |
7887 | * |
7888 | * @env: CPUARMState | |
7889 | * @mmu_idx: MMU index indicating required translation regime | |
7890 | * @ap: The 3-bit access permissions (AP[2:0]) | |
7891 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
7892 | */ |
7893 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
7894 | int ap, int domain_prot) | |
7895 | { | |
554b0b09 PM |
7896 | bool is_user = regime_is_user(env, mmu_idx); |
7897 | ||
7898 | if (domain_prot == 3) { | |
7899 | return PAGE_READ | PAGE_WRITE; | |
7900 | } | |
7901 | ||
554b0b09 PM |
7902 | switch (ap) { |
7903 | case 0: | |
7904 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
7905 | return 0; | |
7906 | } | |
554b0b09 PM |
7907 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
7908 | case SCTLR_S: | |
7909 | return is_user ? 0 : PAGE_READ; | |
7910 | case SCTLR_R: | |
7911 | return PAGE_READ; | |
7912 | default: | |
7913 | return 0; | |
7914 | } | |
7915 | case 1: | |
7916 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
7917 | case 2: | |
87c3d486 | 7918 | if (is_user) { |
0fbf5238 | 7919 | return PAGE_READ; |
87c3d486 | 7920 | } else { |
554b0b09 | 7921 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 7922 | } |
554b0b09 PM |
7923 | case 3: |
7924 | return PAGE_READ | PAGE_WRITE; | |
7925 | case 4: /* Reserved. */ | |
7926 | return 0; | |
7927 | case 5: | |
0fbf5238 | 7928 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 7929 | case 6: |
0fbf5238 | 7930 | return PAGE_READ; |
554b0b09 | 7931 | case 7: |
87c3d486 | 7932 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 7933 | return 0; |
87c3d486 | 7934 | } |
0fbf5238 | 7935 | return PAGE_READ; |
554b0b09 | 7936 | default: |
0fbf5238 | 7937 | g_assert_not_reached(); |
554b0b09 | 7938 | } |
b5ff1b31 FB |
7939 | } |
7940 | ||
d76951b6 AJ |
7941 | /* Translate section/page access permissions to page |
7942 | * R/W protection flags. | |
7943 | * | |
d76951b6 | 7944 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 7945 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 7946 | */ |
d8e052b3 | 7947 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 7948 | { |
d76951b6 AJ |
7949 | switch (ap) { |
7950 | case 0: | |
7951 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
7952 | case 1: | |
7953 | return PAGE_READ | PAGE_WRITE; | |
7954 | case 2: | |
7955 | return is_user ? 0 : PAGE_READ; | |
7956 | case 3: | |
7957 | return PAGE_READ; | |
7958 | default: | |
7959 | g_assert_not_reached(); | |
7960 | } | |
7961 | } | |
7962 | ||
d8e052b3 AJ |
7963 | static inline int |
7964 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
7965 | { | |
7966 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
7967 | } | |
7968 | ||
6ab1a5ee EI |
7969 | /* Translate S2 section/page access permissions to protection flags |
7970 | * | |
7971 | * @env: CPUARMState | |
7972 | * @s2ap: The 2-bit stage2 access permissions (S2AP) | |
7973 | * @xn: XN (execute-never) bit | |
7974 | */ | |
7975 | static int get_S2prot(CPUARMState *env, int s2ap, int xn) | |
7976 | { | |
7977 | int prot = 0; | |
7978 | ||
7979 | if (s2ap & 1) { | |
7980 | prot |= PAGE_READ; | |
7981 | } | |
7982 | if (s2ap & 2) { | |
7983 | prot |= PAGE_WRITE; | |
7984 | } | |
7985 | if (!xn) { | |
dfda6837 SS |
7986 | if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
7987 | prot |= PAGE_EXEC; | |
7988 | } | |
6ab1a5ee EI |
7989 | } |
7990 | return prot; | |
7991 | } | |
7992 | ||
d8e052b3 AJ |
7993 | /* Translate section/page access permissions to protection flags |
7994 | * | |
7995 | * @env: CPUARMState | |
7996 | * @mmu_idx: MMU index indicating required translation regime | |
7997 | * @is_aa64: TRUE if AArch64 | |
7998 | * @ap: The 2-bit simple AP (AP[2:1]) | |
7999 | * @ns: NS (non-secure) bit | |
8000 | * @xn: XN (execute-never) bit | |
8001 | * @pxn: PXN (privileged execute-never) bit | |
8002 | */ | |
8003 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
8004 | int ap, int ns, int xn, int pxn) | |
8005 | { | |
8006 | bool is_user = regime_is_user(env, mmu_idx); | |
8007 | int prot_rw, user_rw; | |
8008 | bool have_wxn; | |
8009 | int wxn = 0; | |
8010 | ||
8011 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
8012 | ||
8013 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
8014 | if (is_user) { | |
8015 | prot_rw = user_rw; | |
8016 | } else { | |
8017 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
8018 | } | |
8019 | ||
8020 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
8021 | return prot_rw; | |
8022 | } | |
8023 | ||
8024 | /* TODO have_wxn should be replaced with | |
8025 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
8026 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
8027 | * compatible processors have EL2, which is required for [U]WXN. | |
8028 | */ | |
8029 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
8030 | ||
8031 | if (have_wxn) { | |
8032 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
8033 | } | |
8034 | ||
8035 | if (is_aa64) { | |
8036 | switch (regime_el(env, mmu_idx)) { | |
8037 | case 1: | |
8038 | if (!is_user) { | |
8039 | xn = pxn || (user_rw & PAGE_WRITE); | |
8040 | } | |
8041 | break; | |
8042 | case 2: | |
8043 | case 3: | |
8044 | break; | |
8045 | } | |
8046 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
8047 | switch (regime_el(env, mmu_idx)) { | |
8048 | case 1: | |
8049 | case 3: | |
8050 | if (is_user) { | |
8051 | xn = xn || !(user_rw & PAGE_READ); | |
8052 | } else { | |
8053 | int uwxn = 0; | |
8054 | if (have_wxn) { | |
8055 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
8056 | } | |
8057 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
8058 | (uwxn && (user_rw & PAGE_WRITE)); | |
8059 | } | |
8060 | break; | |
8061 | case 2: | |
8062 | break; | |
8063 | } | |
8064 | } else { | |
8065 | xn = wxn = 0; | |
8066 | } | |
8067 | ||
8068 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
8069 | return prot_rw; | |
8070 | } | |
8071 | return prot_rw | PAGE_EXEC; | |
8072 | } | |
8073 | ||
0480f69a PM |
8074 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
8075 | uint32_t *table, uint32_t address) | |
b2fa1797 | 8076 | { |
0480f69a | 8077 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 8078 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 8079 | |
11f136ee FA |
8080 | if (address & tcr->mask) { |
8081 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
8082 | /* Translation table walk disabled for TTBR1 */ |
8083 | return false; | |
8084 | } | |
aef878be | 8085 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 8086 | } else { |
11f136ee | 8087 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
8088 | /* Translation table walk disabled for TTBR0 */ |
8089 | return false; | |
8090 | } | |
aef878be | 8091 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
8092 | } |
8093 | *table |= (address >> 18) & 0x3ffc; | |
8094 | return true; | |
b2fa1797 PB |
8095 | } |
8096 | ||
37785977 EI |
8097 | /* Translate a S1 pagetable walk through S2 if needed. */ |
8098 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, | |
8099 | hwaddr addr, MemTxAttrs txattrs, | |
8100 | uint32_t *fsr, | |
8101 | ARMMMUFaultInfo *fi) | |
8102 | { | |
8103 | if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && | |
8104 | !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
8105 | target_ulong s2size; | |
8106 | hwaddr s2pa; | |
8107 | int s2prot; | |
8108 | int ret; | |
8109 | ||
8110 | ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, | |
8111 | &txattrs, &s2prot, &s2size, fsr, fi); | |
8112 | if (ret) { | |
8113 | fi->s2addr = addr; | |
8114 | fi->stage2 = true; | |
8115 | fi->s1ptw = true; | |
8116 | return ~0; | |
8117 | } | |
8118 | addr = s2pa; | |
8119 | } | |
8120 | return addr; | |
8121 | } | |
8122 | ||
ebca90e4 PM |
8123 | /* All loads done in the course of a page table walk go through here. |
8124 | * TODO: rather than ignoring errors from physical memory reads (which | |
8125 | * are external aborts in ARM terminology) we should propagate this | |
8126 | * error out so that we can turn it into a Data Abort if this walk | |
8127 | * was being done for a CPU load/store or an address translation instruction | |
8128 | * (but not if it was for a debug access). | |
8129 | */ | |
a614e698 EI |
8130 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
8131 | ARMMMUIdx mmu_idx, uint32_t *fsr, | |
8132 | ARMMMUFaultInfo *fi) | |
ebca90e4 | 8133 | { |
a614e698 EI |
8134 | ARMCPU *cpu = ARM_CPU(cs); |
8135 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 8136 | MemTxAttrs attrs = {}; |
5ce4ff65 | 8137 | AddressSpace *as; |
ebca90e4 PM |
8138 | |
8139 | attrs.secure = is_secure; | |
5ce4ff65 | 8140 | as = arm_addressspace(cs, attrs); |
a614e698 EI |
8141 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
8142 | if (fi->s1ptw) { | |
8143 | return 0; | |
8144 | } | |
73462ddd PC |
8145 | if (regime_translation_big_endian(env, mmu_idx)) { |
8146 | return address_space_ldl_be(as, addr, attrs, NULL); | |
8147 | } else { | |
8148 | return address_space_ldl_le(as, addr, attrs, NULL); | |
8149 | } | |
ebca90e4 PM |
8150 | } |
8151 | ||
37785977 EI |
8152 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
8153 | ARMMMUIdx mmu_idx, uint32_t *fsr, | |
8154 | ARMMMUFaultInfo *fi) | |
ebca90e4 | 8155 | { |
37785977 EI |
8156 | ARMCPU *cpu = ARM_CPU(cs); |
8157 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 8158 | MemTxAttrs attrs = {}; |
5ce4ff65 | 8159 | AddressSpace *as; |
ebca90e4 PM |
8160 | |
8161 | attrs.secure = is_secure; | |
5ce4ff65 | 8162 | as = arm_addressspace(cs, attrs); |
37785977 EI |
8163 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
8164 | if (fi->s1ptw) { | |
8165 | return 0; | |
8166 | } | |
73462ddd PC |
8167 | if (regime_translation_big_endian(env, mmu_idx)) { |
8168 | return address_space_ldq_be(as, addr, attrs, NULL); | |
8169 | } else { | |
8170 | return address_space_ldq_le(as, addr, attrs, NULL); | |
8171 | } | |
ebca90e4 PM |
8172 | } |
8173 | ||
b7cc4e82 | 8174 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
03ae85f8 | 8175 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8176 | hwaddr *phys_ptr, int *prot, |
e14b5a23 EI |
8177 | target_ulong *page_size, uint32_t *fsr, |
8178 | ARMMMUFaultInfo *fi) | |
b5ff1b31 | 8179 | { |
70d74660 | 8180 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
8181 | int code; |
8182 | uint32_t table; | |
8183 | uint32_t desc; | |
8184 | int type; | |
8185 | int ap; | |
e389be16 | 8186 | int domain = 0; |
dd4ebc2e | 8187 | int domain_prot; |
a8170e5e | 8188 | hwaddr phys_addr; |
0480f69a | 8189 | uint32_t dacr; |
b5ff1b31 | 8190 | |
9ee6e8bb PB |
8191 | /* Pagetable walk. */ |
8192 | /* Lookup l1 descriptor. */ | |
0480f69a | 8193 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
8194 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
8195 | code = 5; | |
8196 | goto do_fault; | |
8197 | } | |
a614e698 EI |
8198 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
8199 | mmu_idx, fsr, fi); | |
9ee6e8bb | 8200 | type = (desc & 3); |
dd4ebc2e | 8201 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
8202 | if (regime_el(env, mmu_idx) == 1) { |
8203 | dacr = env->cp15.dacr_ns; | |
8204 | } else { | |
8205 | dacr = env->cp15.dacr_s; | |
8206 | } | |
8207 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 8208 | if (type == 0) { |
601d70b9 | 8209 | /* Section translation fault. */ |
9ee6e8bb PB |
8210 | code = 5; |
8211 | goto do_fault; | |
8212 | } | |
dd4ebc2e | 8213 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
8214 | if (type == 2) |
8215 | code = 9; /* Section domain fault. */ | |
8216 | else | |
8217 | code = 11; /* Page domain fault. */ | |
8218 | goto do_fault; | |
8219 | } | |
8220 | if (type == 2) { | |
8221 | /* 1Mb section. */ | |
8222 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
8223 | ap = (desc >> 10) & 3; | |
8224 | code = 13; | |
d4c430a8 | 8225 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
8226 | } else { |
8227 | /* Lookup l2 entry. */ | |
554b0b09 PM |
8228 | if (type == 1) { |
8229 | /* Coarse pagetable. */ | |
8230 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
8231 | } else { | |
8232 | /* Fine pagetable. */ | |
8233 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
8234 | } | |
a614e698 EI |
8235 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
8236 | mmu_idx, fsr, fi); | |
9ee6e8bb PB |
8237 | switch (desc & 3) { |
8238 | case 0: /* Page translation fault. */ | |
8239 | code = 7; | |
8240 | goto do_fault; | |
8241 | case 1: /* 64k page. */ | |
8242 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
8243 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 8244 | *page_size = 0x10000; |
ce819861 | 8245 | break; |
9ee6e8bb PB |
8246 | case 2: /* 4k page. */ |
8247 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 8248 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 8249 | *page_size = 0x1000; |
ce819861 | 8250 | break; |
fc1891c7 | 8251 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 8252 | if (type == 1) { |
fc1891c7 PM |
8253 | /* ARMv6/XScale extended small page format */ |
8254 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
8255 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 8256 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 8257 | *page_size = 0x1000; |
554b0b09 | 8258 | } else { |
fc1891c7 PM |
8259 | /* UNPREDICTABLE in ARMv5; we choose to take a |
8260 | * page translation fault. | |
8261 | */ | |
554b0b09 PM |
8262 | code = 7; |
8263 | goto do_fault; | |
8264 | } | |
8265 | } else { | |
8266 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 8267 | *page_size = 0x400; |
554b0b09 | 8268 | } |
9ee6e8bb | 8269 | ap = (desc >> 4) & 3; |
ce819861 PB |
8270 | break; |
8271 | default: | |
9ee6e8bb PB |
8272 | /* Never happens, but compiler isn't smart enough to tell. */ |
8273 | abort(); | |
ce819861 | 8274 | } |
9ee6e8bb PB |
8275 | code = 15; |
8276 | } | |
0fbf5238 AJ |
8277 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
8278 | *prot |= *prot ? PAGE_EXEC : 0; | |
8279 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
8280 | /* Access permission fault. */ |
8281 | goto do_fault; | |
8282 | } | |
8283 | *phys_ptr = phys_addr; | |
b7cc4e82 | 8284 | return false; |
9ee6e8bb | 8285 | do_fault: |
b7cc4e82 PC |
8286 | *fsr = code | (domain << 4); |
8287 | return true; | |
9ee6e8bb PB |
8288 | } |
8289 | ||
b7cc4e82 | 8290 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
03ae85f8 | 8291 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8292 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
e14b5a23 EI |
8293 | target_ulong *page_size, uint32_t *fsr, |
8294 | ARMMMUFaultInfo *fi) | |
9ee6e8bb | 8295 | { |
70d74660 | 8296 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
8297 | int code; |
8298 | uint32_t table; | |
8299 | uint32_t desc; | |
8300 | uint32_t xn; | |
de9b05b8 | 8301 | uint32_t pxn = 0; |
9ee6e8bb PB |
8302 | int type; |
8303 | int ap; | |
de9b05b8 | 8304 | int domain = 0; |
dd4ebc2e | 8305 | int domain_prot; |
a8170e5e | 8306 | hwaddr phys_addr; |
0480f69a | 8307 | uint32_t dacr; |
8bf5b6a9 | 8308 | bool ns; |
9ee6e8bb PB |
8309 | |
8310 | /* Pagetable walk. */ | |
8311 | /* Lookup l1 descriptor. */ | |
0480f69a | 8312 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
8313 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
8314 | code = 5; | |
8315 | goto do_fault; | |
8316 | } | |
a614e698 EI |
8317 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
8318 | mmu_idx, fsr, fi); | |
9ee6e8bb | 8319 | type = (desc & 3); |
de9b05b8 PM |
8320 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
8321 | /* Section translation fault, or attempt to use the encoding | |
8322 | * which is Reserved on implementations without PXN. | |
8323 | */ | |
9ee6e8bb | 8324 | code = 5; |
9ee6e8bb | 8325 | goto do_fault; |
de9b05b8 PM |
8326 | } |
8327 | if ((type == 1) || !(desc & (1 << 18))) { | |
8328 | /* Page or Section. */ | |
dd4ebc2e | 8329 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 8330 | } |
0480f69a PM |
8331 | if (regime_el(env, mmu_idx) == 1) { |
8332 | dacr = env->cp15.dacr_ns; | |
8333 | } else { | |
8334 | dacr = env->cp15.dacr_s; | |
8335 | } | |
8336 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 8337 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 8338 | if (type != 1) { |
9ee6e8bb | 8339 | code = 9; /* Section domain fault. */ |
de9b05b8 | 8340 | } else { |
9ee6e8bb | 8341 | code = 11; /* Page domain fault. */ |
de9b05b8 | 8342 | } |
9ee6e8bb PB |
8343 | goto do_fault; |
8344 | } | |
de9b05b8 | 8345 | if (type != 1) { |
9ee6e8bb PB |
8346 | if (desc & (1 << 18)) { |
8347 | /* Supersection. */ | |
8348 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
8349 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
8350 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 8351 | *page_size = 0x1000000; |
b5ff1b31 | 8352 | } else { |
9ee6e8bb PB |
8353 | /* Section. */ |
8354 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 8355 | *page_size = 0x100000; |
b5ff1b31 | 8356 | } |
9ee6e8bb PB |
8357 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
8358 | xn = desc & (1 << 4); | |
de9b05b8 | 8359 | pxn = desc & 1; |
9ee6e8bb | 8360 | code = 13; |
8bf5b6a9 | 8361 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 8362 | } else { |
de9b05b8 PM |
8363 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
8364 | pxn = (desc >> 2) & 1; | |
8365 | } | |
8bf5b6a9 | 8366 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
8367 | /* Lookup l2 entry. */ |
8368 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
a614e698 EI |
8369 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
8370 | mmu_idx, fsr, fi); | |
9ee6e8bb PB |
8371 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
8372 | switch (desc & 3) { | |
8373 | case 0: /* Page translation fault. */ | |
8374 | code = 7; | |
b5ff1b31 | 8375 | goto do_fault; |
9ee6e8bb PB |
8376 | case 1: /* 64k page. */ |
8377 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
8378 | xn = desc & (1 << 15); | |
d4c430a8 | 8379 | *page_size = 0x10000; |
9ee6e8bb PB |
8380 | break; |
8381 | case 2: case 3: /* 4k page. */ | |
8382 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
8383 | xn = desc & 1; | |
d4c430a8 | 8384 | *page_size = 0x1000; |
9ee6e8bb PB |
8385 | break; |
8386 | default: | |
8387 | /* Never happens, but compiler isn't smart enough to tell. */ | |
8388 | abort(); | |
b5ff1b31 | 8389 | } |
9ee6e8bb PB |
8390 | code = 15; |
8391 | } | |
dd4ebc2e | 8392 | if (domain_prot == 3) { |
c0034328 JR |
8393 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
8394 | } else { | |
0480f69a | 8395 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
8396 | xn = 1; |
8397 | } | |
03ae85f8 | 8398 | if (xn && access_type == MMU_INST_FETCH) |
c0034328 | 8399 | goto do_fault; |
9ee6e8bb | 8400 | |
d76951b6 AJ |
8401 | if (arm_feature(env, ARM_FEATURE_V6K) && |
8402 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
8403 | /* The simplified model uses AP[0] as an access control bit. */ | |
8404 | if ((ap & 1) == 0) { | |
8405 | /* Access flag fault. */ | |
8406 | code = (code == 15) ? 6 : 3; | |
8407 | goto do_fault; | |
8408 | } | |
8409 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
8410 | } else { | |
8411 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 8412 | } |
0fbf5238 AJ |
8413 | if (*prot && !xn) { |
8414 | *prot |= PAGE_EXEC; | |
8415 | } | |
8416 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
8417 | /* Access permission fault. */ |
8418 | goto do_fault; | |
8419 | } | |
3ad493fc | 8420 | } |
8bf5b6a9 PM |
8421 | if (ns) { |
8422 | /* The NS bit will (as required by the architecture) have no effect if | |
8423 | * the CPU doesn't support TZ or this is a non-secure translation | |
8424 | * regime, because the attribute will already be non-secure. | |
8425 | */ | |
8426 | attrs->secure = false; | |
8427 | } | |
9ee6e8bb | 8428 | *phys_ptr = phys_addr; |
b7cc4e82 | 8429 | return false; |
b5ff1b31 | 8430 | do_fault: |
b7cc4e82 PC |
8431 | *fsr = code | (domain << 4); |
8432 | return true; | |
b5ff1b31 FB |
8433 | } |
8434 | ||
3dde962f PM |
8435 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
8436 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
8437 | */ | |
8438 | typedef enum { | |
8439 | translation_fault = 1, | |
8440 | access_fault = 2, | |
8441 | permission_fault = 3, | |
8442 | } MMUFaultType; | |
8443 | ||
1853d5a9 | 8444 | /* |
a0e966c9 | 8445 | * check_s2_mmu_setup |
1853d5a9 EI |
8446 | * @cpu: ARMCPU |
8447 | * @is_aa64: True if the translation regime is in AArch64 state | |
8448 | * @startlevel: Suggested starting level | |
8449 | * @inputsize: Bitsize of IPAs | |
8450 | * @stride: Page-table stride (See the ARM ARM) | |
8451 | * | |
a0e966c9 EI |
8452 | * Returns true if the suggested S2 translation parameters are OK and |
8453 | * false otherwise. | |
1853d5a9 | 8454 | */ |
a0e966c9 EI |
8455 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
8456 | int inputsize, int stride) | |
1853d5a9 | 8457 | { |
98d68ec2 EI |
8458 | const int grainsize = stride + 3; |
8459 | int startsizecheck; | |
8460 | ||
1853d5a9 EI |
8461 | /* Negative levels are never allowed. */ |
8462 | if (level < 0) { | |
8463 | return false; | |
8464 | } | |
8465 | ||
98d68ec2 EI |
8466 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
8467 | if (startsizecheck < 1 || startsizecheck > stride + 4) { | |
8468 | return false; | |
8469 | } | |
8470 | ||
1853d5a9 | 8471 | if (is_aa64) { |
3526423e | 8472 | CPUARMState *env = &cpu->env; |
1853d5a9 EI |
8473 | unsigned int pamax = arm_pamax(cpu); |
8474 | ||
8475 | switch (stride) { | |
8476 | case 13: /* 64KB Pages. */ | |
8477 | if (level == 0 || (level == 1 && pamax <= 42)) { | |
8478 | return false; | |
8479 | } | |
8480 | break; | |
8481 | case 11: /* 16KB Pages. */ | |
8482 | if (level == 0 || (level == 1 && pamax <= 40)) { | |
8483 | return false; | |
8484 | } | |
8485 | break; | |
8486 | case 9: /* 4KB Pages. */ | |
8487 | if (level == 0 && pamax <= 42) { | |
8488 | return false; | |
8489 | } | |
8490 | break; | |
8491 | default: | |
8492 | g_assert_not_reached(); | |
8493 | } | |
3526423e EI |
8494 | |
8495 | /* Inputsize checks. */ | |
8496 | if (inputsize > pamax && | |
8497 | (arm_el_is_aa64(env, 1) || inputsize > 40)) { | |
8498 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ | |
8499 | return false; | |
8500 | } | |
1853d5a9 | 8501 | } else { |
1853d5a9 EI |
8502 | /* AArch32 only supports 4KB pages. Assert on that. */ |
8503 | assert(stride == 9); | |
8504 | ||
8505 | if (level == 0) { | |
8506 | return false; | |
8507 | } | |
1853d5a9 EI |
8508 | } |
8509 | return true; | |
8510 | } | |
8511 | ||
b7cc4e82 | 8512 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
03ae85f8 | 8513 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8514 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
e14b5a23 EI |
8515 | target_ulong *page_size_ptr, uint32_t *fsr, |
8516 | ARMMMUFaultInfo *fi) | |
3dde962f | 8517 | { |
1853d5a9 EI |
8518 | ARMCPU *cpu = arm_env_get_cpu(env); |
8519 | CPUState *cs = CPU(cpu); | |
3dde962f PM |
8520 | /* Read an LPAE long-descriptor translation table. */ |
8521 | MMUFaultType fault_type = translation_fault; | |
1b4093ea | 8522 | uint32_t level; |
0c5fbf3b | 8523 | uint32_t epd = 0; |
1f4c8c18 | 8524 | int32_t t0sz, t1sz; |
2c8dd318 | 8525 | uint32_t tg; |
3dde962f PM |
8526 | uint64_t ttbr; |
8527 | int ttbr_select; | |
dddb5223 | 8528 | hwaddr descaddr, indexmask, indexmask_grainsize; |
3dde962f PM |
8529 | uint32_t tableattrs; |
8530 | target_ulong page_size; | |
8531 | uint32_t attrs; | |
973a5434 | 8532 | int32_t stride = 9; |
6e99f762 | 8533 | int32_t addrsize; |
4ca6a051 | 8534 | int inputsize; |
2c8dd318 | 8535 | int32_t tbi = 0; |
0480f69a | 8536 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 8537 | int ap, ns, xn, pxn; |
88e8add8 GB |
8538 | uint32_t el = regime_el(env, mmu_idx); |
8539 | bool ttbr1_valid = true; | |
6109769a | 8540 | uint64_t descaddrmask; |
6e99f762 | 8541 | bool aarch64 = arm_el_is_aa64(env, el); |
0480f69a PM |
8542 | |
8543 | /* TODO: | |
88e8add8 GB |
8544 | * This code does not handle the different format TCR for VTCR_EL2. |
8545 | * This code also does not support shareability levels. | |
8546 | * Attribute and permission bit handling should also be checked when adding | |
8547 | * support for those page table walks. | |
0480f69a | 8548 | */ |
6e99f762 | 8549 | if (aarch64) { |
1b4093ea | 8550 | level = 0; |
6e99f762 | 8551 | addrsize = 64; |
88e8add8 | 8552 | if (el > 1) { |
1edee470 EI |
8553 | if (mmu_idx != ARMMMUIdx_S2NS) { |
8554 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
8555 | } | |
88e8add8 GB |
8556 | } else { |
8557 | if (extract64(address, 55, 1)) { | |
8558 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
8559 | } else { | |
8560 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
8561 | } | |
8562 | } | |
2c8dd318 | 8563 | tbi *= 8; |
88e8add8 GB |
8564 | |
8565 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
8566 | * invalid. | |
8567 | */ | |
8568 | if (el > 1) { | |
8569 | ttbr1_valid = false; | |
8570 | } | |
d0a2cbce | 8571 | } else { |
1b4093ea | 8572 | level = 1; |
6e99f762 | 8573 | addrsize = 32; |
d0a2cbce PM |
8574 | /* There is no TTBR1 for EL2 */ |
8575 | if (el == 2) { | |
8576 | ttbr1_valid = false; | |
8577 | } | |
2c8dd318 | 8578 | } |
3dde962f PM |
8579 | |
8580 | /* Determine whether this address is in the region controlled by | |
8581 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
8582 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
8583 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
8584 | */ | |
6e99f762 | 8585 | if (aarch64) { |
4ee38098 EI |
8586 | /* AArch64 translation. */ |
8587 | t0sz = extract32(tcr->raw_tcr, 0, 6); | |
2c8dd318 RH |
8588 | t0sz = MIN(t0sz, 39); |
8589 | t0sz = MAX(t0sz, 16); | |
4ee38098 EI |
8590 | } else if (mmu_idx != ARMMMUIdx_S2NS) { |
8591 | /* AArch32 stage 1 translation. */ | |
8592 | t0sz = extract32(tcr->raw_tcr, 0, 3); | |
8593 | } else { | |
8594 | /* AArch32 stage 2 translation. */ | |
8595 | bool sext = extract32(tcr->raw_tcr, 4, 1); | |
8596 | bool sign = extract32(tcr->raw_tcr, 3, 1); | |
6e99f762 SS |
8597 | /* Address size is 40-bit for a stage 2 translation, |
8598 | * and t0sz can be negative (from -8 to 7), | |
8599 | * so we need to adjust it to use the TTBR selecting logic below. | |
8600 | */ | |
8601 | addrsize = 40; | |
8602 | t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; | |
4ee38098 EI |
8603 | |
8604 | /* If the sign-extend bit is not the same as t0sz[3], the result | |
8605 | * is unpredictable. Flag this as a guest error. */ | |
8606 | if (sign != sext) { | |
8607 | qemu_log_mask(LOG_GUEST_ERROR, | |
39cba610 | 8608 | "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); |
4ee38098 | 8609 | } |
2c8dd318 | 8610 | } |
1f4c8c18 | 8611 | t1sz = extract32(tcr->raw_tcr, 16, 6); |
6e99f762 | 8612 | if (aarch64) { |
2c8dd318 RH |
8613 | t1sz = MIN(t1sz, 39); |
8614 | t1sz = MAX(t1sz, 16); | |
8615 | } | |
6e99f762 | 8616 | if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { |
3dde962f PM |
8617 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
8618 | ttbr_select = 0; | |
88e8add8 | 8619 | } else if (ttbr1_valid && t1sz && |
6e99f762 | 8620 | !extract64(~address, addrsize - t1sz, t1sz - tbi)) { |
3dde962f PM |
8621 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
8622 | ttbr_select = 1; | |
8623 | } else if (!t0sz) { | |
8624 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
8625 | ttbr_select = 0; | |
88e8add8 | 8626 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
8627 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
8628 | ttbr_select = 1; | |
8629 | } else { | |
8630 | /* in the gap between the two regions, this is a Translation fault */ | |
8631 | fault_type = translation_fault; | |
8632 | goto do_fault; | |
8633 | } | |
8634 | ||
8635 | /* Note that QEMU ignores shareability and cacheability attributes, | |
8636 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
8637 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
8638 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
8639 | * implement any ASID-like capability so we can ignore it (instead | |
8640 | * we will always flush the TLB any time the ASID is changed). | |
8641 | */ | |
8642 | if (ttbr_select == 0) { | |
aef878be | 8643 | ttbr = regime_ttbr(env, mmu_idx, 0); |
0c5fbf3b EI |
8644 | if (el < 2) { |
8645 | epd = extract32(tcr->raw_tcr, 7, 1); | |
8646 | } | |
6e99f762 | 8647 | inputsize = addrsize - t0sz; |
2c8dd318 | 8648 | |
11f136ee | 8649 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 | 8650 | if (tg == 1) { /* 64KB pages */ |
973a5434 | 8651 | stride = 13; |
2c8dd318 RH |
8652 | } |
8653 | if (tg == 2) { /* 16KB pages */ | |
973a5434 | 8654 | stride = 11; |
2c8dd318 | 8655 | } |
3dde962f | 8656 | } else { |
88e8add8 GB |
8657 | /* We should only be here if TTBR1 is valid */ |
8658 | assert(ttbr1_valid); | |
8659 | ||
aef878be | 8660 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 8661 | epd = extract32(tcr->raw_tcr, 23, 1); |
6e99f762 | 8662 | inputsize = addrsize - t1sz; |
2c8dd318 | 8663 | |
11f136ee | 8664 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 | 8665 | if (tg == 3) { /* 64KB pages */ |
973a5434 | 8666 | stride = 13; |
2c8dd318 RH |
8667 | } |
8668 | if (tg == 1) { /* 16KB pages */ | |
973a5434 | 8669 | stride = 11; |
2c8dd318 | 8670 | } |
3dde962f PM |
8671 | } |
8672 | ||
0480f69a | 8673 | /* Here we should have set up all the parameters for the translation: |
6e99f762 | 8674 | * inputsize, ttbr, epd, stride, tbi |
0480f69a PM |
8675 | */ |
8676 | ||
3dde962f | 8677 | if (epd) { |
88e8add8 GB |
8678 | /* Translation table walk disabled => Translation fault on TLB miss |
8679 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
8680 | */ | |
3dde962f PM |
8681 | goto do_fault; |
8682 | } | |
8683 | ||
1853d5a9 EI |
8684 | if (mmu_idx != ARMMMUIdx_S2NS) { |
8685 | /* The starting level depends on the virtual address size (which can | |
8686 | * be up to 48 bits) and the translation granule size. It indicates | |
8687 | * the number of strides (stride bits at a time) needed to | |
8688 | * consume the bits of the input address. In the pseudocode this is: | |
8689 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
8690 | * where their 'inputsize' is our 'inputsize', 'grainsize' is | |
8691 | * our 'stride + 3' and 'stride' is our 'stride'. | |
8692 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
8693 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride | |
8694 | * = 4 - (inputsize - 4) / stride; | |
8695 | */ | |
8696 | level = 4 - (inputsize - 4) / stride; | |
8697 | } else { | |
8698 | /* For stage 2 translations the starting level is specified by the | |
8699 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) | |
8700 | */ | |
1b4093ea SS |
8701 | uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
8702 | uint32_t startlevel; | |
1853d5a9 EI |
8703 | bool ok; |
8704 | ||
6e99f762 | 8705 | if (!aarch64 || stride == 9) { |
1853d5a9 | 8706 | /* AArch32 or 4KB pages */ |
1b4093ea | 8707 | startlevel = 2 - sl0; |
1853d5a9 EI |
8708 | } else { |
8709 | /* 16KB or 64KB pages */ | |
1b4093ea | 8710 | startlevel = 3 - sl0; |
1853d5a9 EI |
8711 | } |
8712 | ||
8713 | /* Check that the starting level is valid. */ | |
6e99f762 | 8714 | ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
1b4093ea | 8715 | inputsize, stride); |
1853d5a9 | 8716 | if (!ok) { |
1853d5a9 EI |
8717 | fault_type = translation_fault; |
8718 | goto do_fault; | |
8719 | } | |
1b4093ea | 8720 | level = startlevel; |
1853d5a9 | 8721 | } |
3dde962f | 8722 | |
dddb5223 SS |
8723 | indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
8724 | indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; | |
3dde962f PM |
8725 | |
8726 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 | 8727 | descaddr = extract64(ttbr, 0, 48); |
dddb5223 | 8728 | descaddr &= ~indexmask; |
3dde962f | 8729 | |
6109769a | 8730 | /* The address field in the descriptor goes up to bit 39 for ARMv7 |
dddb5223 SS |
8731 | * but up to bit 47 for ARMv8, but we use the descaddrmask |
8732 | * up to bit 39 for AArch32, because we don't need other bits in that case | |
8733 | * to construct next descriptor address (anyway they should be all zeroes). | |
6109769a | 8734 | */ |
6e99f762 | 8735 | descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
dddb5223 | 8736 | ~indexmask_grainsize; |
6109769a | 8737 | |
ebca90e4 PM |
8738 | /* Secure accesses start with the page table in secure memory and |
8739 | * can be downgraded to non-secure at any step. Non-secure accesses | |
8740 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
8741 | * bits at each step. | |
8742 | */ | |
8743 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
8744 | for (;;) { |
8745 | uint64_t descriptor; | |
ebca90e4 | 8746 | bool nstable; |
3dde962f | 8747 | |
dddb5223 | 8748 | descaddr |= (address >> (stride * (4 - level))) & indexmask; |
2c8dd318 | 8749 | descaddr &= ~7ULL; |
ebca90e4 | 8750 | nstable = extract32(tableattrs, 4, 1); |
37785977 EI |
8751 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); |
8752 | if (fi->s1ptw) { | |
8753 | goto do_fault; | |
8754 | } | |
8755 | ||
3dde962f PM |
8756 | if (!(descriptor & 1) || |
8757 | (!(descriptor & 2) && (level == 3))) { | |
8758 | /* Invalid, or the Reserved level 3 encoding */ | |
8759 | goto do_fault; | |
8760 | } | |
6109769a | 8761 | descaddr = descriptor & descaddrmask; |
3dde962f PM |
8762 | |
8763 | if ((descriptor & 2) && (level < 3)) { | |
8764 | /* Table entry. The top five bits are attributes which may | |
8765 | * propagate down through lower levels of the table (and | |
8766 | * which are all arranged so that 0 means "no effect", so | |
8767 | * we can gather them up by ORing in the bits at each level). | |
8768 | */ | |
8769 | tableattrs |= extract64(descriptor, 59, 5); | |
8770 | level++; | |
dddb5223 | 8771 | indexmask = indexmask_grainsize; |
3dde962f PM |
8772 | continue; |
8773 | } | |
8774 | /* Block entry at level 1 or 2, or page entry at level 3. | |
8775 | * These are basically the same thing, although the number | |
8776 | * of bits we pull in from the vaddr varies. | |
8777 | */ | |
973a5434 | 8778 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
3dde962f | 8779 | descaddr |= (address & (page_size - 1)); |
6ab1a5ee | 8780 | /* Extract attributes from the descriptor */ |
d615efac IC |
8781 | attrs = extract64(descriptor, 2, 10) |
8782 | | (extract64(descriptor, 52, 12) << 10); | |
6ab1a5ee EI |
8783 | |
8784 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
8785 | /* Stage 2 table descriptors do not include any attribute fields */ | |
8786 | break; | |
8787 | } | |
8788 | /* Merge in attributes from table descriptors */ | |
3dde962f PM |
8789 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
8790 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
8791 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
8792 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
8793 | */ | |
8794 | if (extract32(tableattrs, 2, 1)) { | |
8795 | attrs &= ~(1 << 4); | |
8796 | } | |
ebca90e4 | 8797 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
8798 | break; |
8799 | } | |
8800 | /* Here descaddr is the final physical address, and attributes | |
8801 | * are all in attrs. | |
8802 | */ | |
8803 | fault_type = access_fault; | |
8804 | if ((attrs & (1 << 8)) == 0) { | |
8805 | /* Access flag */ | |
8806 | goto do_fault; | |
8807 | } | |
d8e052b3 AJ |
8808 | |
8809 | ap = extract32(attrs, 4, 2); | |
d8e052b3 | 8810 | xn = extract32(attrs, 12, 1); |
d8e052b3 | 8811 | |
6ab1a5ee EI |
8812 | if (mmu_idx == ARMMMUIdx_S2NS) { |
8813 | ns = true; | |
8814 | *prot = get_S2prot(env, ap, xn); | |
8815 | } else { | |
8816 | ns = extract32(attrs, 3, 1); | |
8817 | pxn = extract32(attrs, 11, 1); | |
6e99f762 | 8818 | *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
6ab1a5ee | 8819 | } |
d8e052b3 | 8820 | |
3dde962f | 8821 | fault_type = permission_fault; |
d8e052b3 | 8822 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
8823 | goto do_fault; |
8824 | } | |
3dde962f | 8825 | |
8bf5b6a9 PM |
8826 | if (ns) { |
8827 | /* The NS bit will (as required by the architecture) have no effect if | |
8828 | * the CPU doesn't support TZ or this is a non-secure translation | |
8829 | * regime, because the attribute will already be non-secure. | |
8830 | */ | |
8831 | txattrs->secure = false; | |
8832 | } | |
3dde962f PM |
8833 | *phys_ptr = descaddr; |
8834 | *page_size_ptr = page_size; | |
b7cc4e82 | 8835 | return false; |
3dde962f PM |
8836 | |
8837 | do_fault: | |
8838 | /* Long-descriptor format IFSR/DFSR value */ | |
b7cc4e82 | 8839 | *fsr = (1 << 9) | (fault_type << 2) | level; |
37785977 EI |
8840 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
8841 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); | |
b7cc4e82 | 8842 | return true; |
3dde962f PM |
8843 | } |
8844 | ||
f6bda88f PC |
8845 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
8846 | ARMMMUIdx mmu_idx, | |
8847 | int32_t address, int *prot) | |
8848 | { | |
3a00d560 MD |
8849 | if (!arm_feature(env, ARM_FEATURE_M)) { |
8850 | *prot = PAGE_READ | PAGE_WRITE; | |
8851 | switch (address) { | |
8852 | case 0xF0000000 ... 0xFFFFFFFF: | |
8853 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { | |
8854 | /* hivecs execing is ok */ | |
8855 | *prot |= PAGE_EXEC; | |
8856 | } | |
8857 | break; | |
8858 | case 0x00000000 ... 0x7FFFFFFF: | |
f6bda88f | 8859 | *prot |= PAGE_EXEC; |
3a00d560 MD |
8860 | break; |
8861 | } | |
8862 | } else { | |
8863 | /* Default system address map for M profile cores. | |
8864 | * The architecture specifies which regions are execute-never; | |
8865 | * at the MPU level no other checks are defined. | |
8866 | */ | |
8867 | switch (address) { | |
8868 | case 0x00000000 ... 0x1fffffff: /* ROM */ | |
8869 | case 0x20000000 ... 0x3fffffff: /* SRAM */ | |
8870 | case 0x60000000 ... 0x7fffffff: /* RAM */ | |
8871 | case 0x80000000 ... 0x9fffffff: /* RAM */ | |
8872 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
8873 | break; | |
8874 | case 0x40000000 ... 0x5fffffff: /* Peripheral */ | |
8875 | case 0xa0000000 ... 0xbfffffff: /* Device */ | |
8876 | case 0xc0000000 ... 0xdfffffff: /* Device */ | |
8877 | case 0xe0000000 ... 0xffffffff: /* System */ | |
8878 | *prot = PAGE_READ | PAGE_WRITE; | |
8879 | break; | |
8880 | default: | |
8881 | g_assert_not_reached(); | |
f6bda88f | 8882 | } |
f6bda88f | 8883 | } |
f6bda88f PC |
8884 | } |
8885 | ||
29c483a5 MD |
8886 | static bool pmsav7_use_background_region(ARMCPU *cpu, |
8887 | ARMMMUIdx mmu_idx, bool is_user) | |
8888 | { | |
8889 | /* Return true if we should use the default memory map as a | |
8890 | * "background" region if there are no hits against any MPU regions. | |
8891 | */ | |
8892 | CPUARMState *env = &cpu->env; | |
8893 | ||
8894 | if (is_user) { | |
8895 | return false; | |
8896 | } | |
8897 | ||
8898 | if (arm_feature(env, ARM_FEATURE_M)) { | |
ecf5e8ea PM |
8899 | return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] |
8900 | & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; | |
29c483a5 MD |
8901 | } else { |
8902 | return regime_sctlr(env, mmu_idx) & SCTLR_BR; | |
8903 | } | |
8904 | } | |
8905 | ||
38aaa60c PM |
8906 | static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
8907 | { | |
8908 | /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ | |
8909 | return arm_feature(env, ARM_FEATURE_M) && | |
8910 | extract32(address, 20, 12) == 0xe00; | |
8911 | } | |
8912 | ||
bf446a11 PM |
8913 | static inline bool m_is_system_region(CPUARMState *env, uint32_t address) |
8914 | { | |
8915 | /* True if address is in the M profile system region | |
8916 | * 0xe0000000 - 0xffffffff | |
8917 | */ | |
8918 | return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; | |
8919 | } | |
8920 | ||
f6bda88f | 8921 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
03ae85f8 | 8922 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
f6bda88f PC |
8923 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) |
8924 | { | |
8925 | ARMCPU *cpu = arm_env_get_cpu(env); | |
8926 | int n; | |
8927 | bool is_user = regime_is_user(env, mmu_idx); | |
8928 | ||
8929 | *phys_ptr = address; | |
8930 | *prot = 0; | |
8931 | ||
38aaa60c PM |
8932 | if (regime_translation_disabled(env, mmu_idx) || |
8933 | m_is_ppb_region(env, address)) { | |
8934 | /* MPU disabled or M profile PPB access: use default memory map. | |
8935 | * The other case which uses the default memory map in the | |
8936 | * v7M ARM ARM pseudocode is exception vector reads from the vector | |
8937 | * table. In QEMU those accesses are done in arm_v7m_load_vector(), | |
8938 | * which always does a direct read using address_space_ldl(), rather | |
8939 | * than going via this function, so we don't need to check that here. | |
8940 | */ | |
f6bda88f PC |
8941 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
8942 | } else { /* MPU enabled */ | |
8943 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
8944 | /* region search */ | |
8945 | uint32_t base = env->pmsav7.drbar[n]; | |
8946 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
8947 | uint32_t rmask; | |
8948 | bool srdis = false; | |
8949 | ||
8950 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
8951 | continue; | |
8952 | } | |
8953 | ||
8954 | if (!rsize) { | |
c9f9f124 MD |
8955 | qemu_log_mask(LOG_GUEST_ERROR, |
8956 | "DRSR[%d]: Rsize field cannot be 0\n", n); | |
f6bda88f PC |
8957 | continue; |
8958 | } | |
8959 | rsize++; | |
8960 | rmask = (1ull << rsize) - 1; | |
8961 | ||
8962 | if (base & rmask) { | |
c9f9f124 MD |
8963 | qemu_log_mask(LOG_GUEST_ERROR, |
8964 | "DRBAR[%d]: 0x%" PRIx32 " misaligned " | |
8965 | "to DRSR region size, mask = 0x%" PRIx32 "\n", | |
8966 | n, base, rmask); | |
f6bda88f PC |
8967 | continue; |
8968 | } | |
8969 | ||
8970 | if (address < base || address > base + rmask) { | |
8971 | continue; | |
8972 | } | |
8973 | ||
8974 | /* Region matched */ | |
8975 | ||
8976 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
8977 | int i, snd; | |
8978 | uint32_t srdis_mask; | |
8979 | ||
8980 | rsize -= 3; /* sub region size (power of 2) */ | |
8981 | snd = ((address - base) >> rsize) & 0x7; | |
8982 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
8983 | ||
8984 | srdis_mask = srdis ? 0x3 : 0x0; | |
8985 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
8986 | /* This will check in groups of 2, 4 and then 8, whether | |
8987 | * the subregion bits are consistent. rsize is incremented | |
8988 | * back up to give the region size, considering consistent | |
8989 | * adjacent subregions as one region. Stop testing if rsize | |
8990 | * is already big enough for an entire QEMU page. | |
8991 | */ | |
8992 | int snd_rounded = snd & ~(i - 1); | |
8993 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
8994 | snd_rounded + 8, i); | |
8995 | if (srdis_mask ^ srdis_multi) { | |
8996 | break; | |
8997 | } | |
8998 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
8999 | rsize++; | |
9000 | } | |
9001 | } | |
9002 | if (rsize < TARGET_PAGE_BITS) { | |
c9f9f124 MD |
9003 | qemu_log_mask(LOG_UNIMP, |
9004 | "DRSR[%d]: No support for MPU (sub)region " | |
f6bda88f | 9005 | "alignment of %" PRIu32 " bits. Minimum is %d\n", |
c9f9f124 | 9006 | n, rsize, TARGET_PAGE_BITS); |
f6bda88f PC |
9007 | continue; |
9008 | } | |
9009 | if (srdis) { | |
9010 | continue; | |
9011 | } | |
9012 | break; | |
9013 | } | |
9014 | ||
9015 | if (n == -1) { /* no hits */ | |
29c483a5 | 9016 | if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
f6bda88f PC |
9017 | /* background fault */ |
9018 | *fsr = 0; | |
9019 | return true; | |
9020 | } | |
9021 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
9022 | } else { /* a MPU hit! */ | |
9023 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
bf446a11 PM |
9024 | uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
9025 | ||
9026 | if (m_is_system_region(env, address)) { | |
9027 | /* System space is always execute never */ | |
9028 | xn = 1; | |
9029 | } | |
f6bda88f PC |
9030 | |
9031 | if (is_user) { /* User mode AP bit decoding */ | |
9032 | switch (ap) { | |
9033 | case 0: | |
9034 | case 1: | |
9035 | case 5: | |
9036 | break; /* no access */ | |
9037 | case 3: | |
9038 | *prot |= PAGE_WRITE; | |
9039 | /* fall through */ | |
9040 | case 2: | |
9041 | case 6: | |
9042 | *prot |= PAGE_READ | PAGE_EXEC; | |
9043 | break; | |
9044 | default: | |
9045 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
9046 | "DRACR[%d]: Bad value for AP bits: 0x%" |
9047 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
9048 | } |
9049 | } else { /* Priv. mode AP bits decoding */ | |
9050 | switch (ap) { | |
9051 | case 0: | |
9052 | break; /* no access */ | |
9053 | case 1: | |
9054 | case 2: | |
9055 | case 3: | |
9056 | *prot |= PAGE_WRITE; | |
9057 | /* fall through */ | |
9058 | case 5: | |
9059 | case 6: | |
9060 | *prot |= PAGE_READ | PAGE_EXEC; | |
9061 | break; | |
9062 | default: | |
9063 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
9064 | "DRACR[%d]: Bad value for AP bits: 0x%" |
9065 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
9066 | } |
9067 | } | |
9068 | ||
9069 | /* execute never */ | |
bf446a11 | 9070 | if (xn) { |
f6bda88f PC |
9071 | *prot &= ~PAGE_EXEC; |
9072 | } | |
9073 | } | |
9074 | } | |
9075 | ||
9076 | *fsr = 0x00d; /* Permission fault */ | |
9077 | return !(*prot & (1 << access_type)); | |
9078 | } | |
9079 | ||
35337cc3 PM |
9080 | static bool v8m_is_sau_exempt(CPUARMState *env, |
9081 | uint32_t address, MMUAccessType access_type) | |
9082 | { | |
9083 | /* The architecture specifies that certain address ranges are | |
9084 | * exempt from v8M SAU/IDAU checks. | |
9085 | */ | |
9086 | return | |
9087 | (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || | |
9088 | (address >= 0xe0000000 && address <= 0xe0002fff) || | |
9089 | (address >= 0xe000e000 && address <= 0xe000efff) || | |
9090 | (address >= 0xe002e000 && address <= 0xe002efff) || | |
9091 | (address >= 0xe0040000 && address <= 0xe0041fff) || | |
9092 | (address >= 0xe00ff000 && address <= 0xe00fffff); | |
9093 | } | |
9094 | ||
9095 | static void v8m_security_lookup(CPUARMState *env, uint32_t address, | |
9096 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
9097 | V8M_SAttributes *sattrs) | |
9098 | { | |
9099 | /* Look up the security attributes for this address. Compare the | |
9100 | * pseudocode SecurityCheck() function. | |
9101 | * We assume the caller has zero-initialized *sattrs. | |
9102 | */ | |
9103 | ARMCPU *cpu = arm_env_get_cpu(env); | |
9104 | int r; | |
9105 | ||
9106 | /* TODO: implement IDAU */ | |
9107 | ||
9108 | if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { | |
9109 | /* 0xf0000000..0xffffffff is always S for insn fetches */ | |
9110 | return; | |
9111 | } | |
9112 | ||
9113 | if (v8m_is_sau_exempt(env, address, access_type)) { | |
9114 | sattrs->ns = !regime_is_secure(env, mmu_idx); | |
9115 | return; | |
9116 | } | |
9117 | ||
9118 | switch (env->sau.ctrl & 3) { | |
9119 | case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ | |
9120 | break; | |
9121 | case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ | |
9122 | sattrs->ns = true; | |
9123 | break; | |
9124 | default: /* SAU.ENABLE == 1 */ | |
9125 | for (r = 0; r < cpu->sau_sregion; r++) { | |
9126 | if (env->sau.rlar[r] & 1) { | |
9127 | uint32_t base = env->sau.rbar[r] & ~0x1f; | |
9128 | uint32_t limit = env->sau.rlar[r] | 0x1f; | |
9129 | ||
9130 | if (base <= address && limit >= address) { | |
9131 | if (sattrs->srvalid) { | |
9132 | /* If we hit in more than one region then we must report | |
9133 | * as Secure, not NS-Callable, with no valid region | |
9134 | * number info. | |
9135 | */ | |
9136 | sattrs->ns = false; | |
9137 | sattrs->nsc = false; | |
9138 | sattrs->sregion = 0; | |
9139 | sattrs->srvalid = false; | |
9140 | break; | |
9141 | } else { | |
9142 | if (env->sau.rlar[r] & 2) { | |
9143 | sattrs->nsc = true; | |
9144 | } else { | |
9145 | sattrs->ns = true; | |
9146 | } | |
9147 | sattrs->srvalid = true; | |
9148 | sattrs->sregion = r; | |
9149 | } | |
9150 | } | |
9151 | } | |
9152 | } | |
9153 | ||
9154 | /* TODO when we support the IDAU then it may override the result here */ | |
9155 | break; | |
9156 | } | |
9157 | } | |
9158 | ||
504e3cc3 PM |
9159 | static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, |
9160 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
35337cc3 PM |
9161 | hwaddr *phys_ptr, MemTxAttrs *txattrs, |
9162 | int *prot, uint32_t *fsr) | |
504e3cc3 PM |
9163 | { |
9164 | ARMCPU *cpu = arm_env_get_cpu(env); | |
9165 | bool is_user = regime_is_user(env, mmu_idx); | |
62c58ee0 | 9166 | uint32_t secure = regime_is_secure(env, mmu_idx); |
504e3cc3 PM |
9167 | int n; |
9168 | int matchregion = -1; | |
9169 | bool hit = false; | |
35337cc3 | 9170 | V8M_SAttributes sattrs = {}; |
504e3cc3 PM |
9171 | |
9172 | *phys_ptr = address; | |
9173 | *prot = 0; | |
9174 | ||
35337cc3 PM |
9175 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
9176 | v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); | |
9177 | if (access_type == MMU_INST_FETCH) { | |
9178 | /* Instruction fetches always use the MMU bank and the | |
9179 | * transaction attribute determined by the fetch address, | |
9180 | * regardless of CPU state. This is painful for QEMU | |
9181 | * to handle, because it would mean we need to encode | |
9182 | * into the mmu_idx not just the (user, negpri) information | |
9183 | * for the current security state but also that for the | |
9184 | * other security state, which would balloon the number | |
9185 | * of mmu_idx values needed alarmingly. | |
9186 | * Fortunately we can avoid this because it's not actually | |
9187 | * possible to arbitrarily execute code from memory with | |
9188 | * the wrong security attribute: it will always generate | |
9189 | * an exception of some kind or another, apart from the | |
9190 | * special case of an NS CPU executing an SG instruction | |
9191 | * in S&NSC memory. So we always just fail the translation | |
9192 | * here and sort things out in the exception handler | |
9193 | * (including possibly emulating an SG instruction). | |
9194 | */ | |
9195 | if (sattrs.ns != !secure) { | |
9196 | *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT; | |
9197 | return true; | |
9198 | } | |
9199 | } else { | |
9200 | /* For data accesses we always use the MMU bank indicated | |
9201 | * by the current CPU state, but the security attributes | |
9202 | * might downgrade a secure access to nonsecure. | |
9203 | */ | |
9204 | if (sattrs.ns) { | |
9205 | txattrs->secure = false; | |
9206 | } else if (!secure) { | |
9207 | /* NS access to S memory must fault. | |
9208 | * Architecturally we should first check whether the | |
9209 | * MPU information for this address indicates that we | |
9210 | * are doing an unaligned access to Device memory, which | |
9211 | * should generate a UsageFault instead. QEMU does not | |
9212 | * currently check for that kind of unaligned access though. | |
9213 | * If we added it we would need to do so as a special case | |
9214 | * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). | |
9215 | */ | |
9216 | *fsr = M_FAKE_FSR_SFAULT; | |
9217 | return true; | |
9218 | } | |
9219 | } | |
9220 | } | |
9221 | ||
504e3cc3 PM |
9222 | /* Unlike the ARM ARM pseudocode, we don't need to check whether this |
9223 | * was an exception vector read from the vector table (which is always | |
9224 | * done using the default system address map), because those accesses | |
9225 | * are done in arm_v7m_load_vector(), which always does a direct | |
9226 | * read using address_space_ldl(), rather than going via this function. | |
9227 | */ | |
9228 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
9229 | hit = true; | |
9230 | } else if (m_is_ppb_region(env, address)) { | |
9231 | hit = true; | |
9232 | } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { | |
9233 | hit = true; | |
9234 | } else { | |
9235 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
9236 | /* region search */ | |
9237 | /* Note that the base address is bits [31:5] from the register | |
9238 | * with bits [4:0] all zeroes, but the limit address is bits | |
9239 | * [31:5] from the register with bits [4:0] all ones. | |
9240 | */ | |
62c58ee0 PM |
9241 | uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; |
9242 | uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; | |
504e3cc3 | 9243 | |
62c58ee0 | 9244 | if (!(env->pmsav8.rlar[secure][n] & 0x1)) { |
504e3cc3 PM |
9245 | /* Region disabled */ |
9246 | continue; | |
9247 | } | |
9248 | ||
9249 | if (address < base || address > limit) { | |
9250 | continue; | |
9251 | } | |
9252 | ||
9253 | if (hit) { | |
9254 | /* Multiple regions match -- always a failure (unlike | |
9255 | * PMSAv7 where highest-numbered-region wins) | |
9256 | */ | |
9257 | *fsr = 0x00d; /* permission fault */ | |
9258 | return true; | |
9259 | } | |
9260 | ||
9261 | matchregion = n; | |
9262 | hit = true; | |
9263 | ||
9264 | if (base & ~TARGET_PAGE_MASK) { | |
9265 | qemu_log_mask(LOG_UNIMP, | |
9266 | "MPU_RBAR[%d]: No support for MPU region base" | |
9267 | "address of 0x%" PRIx32 ". Minimum alignment is " | |
9268 | "%d\n", | |
9269 | n, base, TARGET_PAGE_BITS); | |
9270 | continue; | |
9271 | } | |
9272 | if ((limit + 1) & ~TARGET_PAGE_MASK) { | |
9273 | qemu_log_mask(LOG_UNIMP, | |
9274 | "MPU_RBAR[%d]: No support for MPU region limit" | |
9275 | "address of 0x%" PRIx32 ". Minimum alignment is " | |
9276 | "%d\n", | |
9277 | n, limit, TARGET_PAGE_BITS); | |
9278 | continue; | |
9279 | } | |
9280 | } | |
9281 | } | |
9282 | ||
9283 | if (!hit) { | |
9284 | /* background fault */ | |
9285 | *fsr = 0; | |
9286 | return true; | |
9287 | } | |
9288 | ||
9289 | if (matchregion == -1) { | |
9290 | /* hit using the background region */ | |
9291 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
9292 | } else { | |
62c58ee0 PM |
9293 | uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); |
9294 | uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); | |
504e3cc3 PM |
9295 | |
9296 | if (m_is_system_region(env, address)) { | |
9297 | /* System space is always execute never */ | |
9298 | xn = 1; | |
9299 | } | |
9300 | ||
9301 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); | |
9302 | if (*prot && !xn) { | |
9303 | *prot |= PAGE_EXEC; | |
9304 | } | |
9305 | /* We don't need to look the attribute up in the MAIR0/MAIR1 | |
9306 | * registers because that only tells us about cacheability. | |
9307 | */ | |
9308 | } | |
9309 | ||
9310 | *fsr = 0x00d; /* Permission fault */ | |
9311 | return !(*prot & (1 << access_type)); | |
9312 | } | |
9313 | ||
13689d43 | 9314 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
03ae85f8 | 9315 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
13689d43 | 9316 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) |
9ee6e8bb PB |
9317 | { |
9318 | int n; | |
9319 | uint32_t mask; | |
9320 | uint32_t base; | |
0480f69a | 9321 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb | 9322 | |
3279adb9 PM |
9323 | if (regime_translation_disabled(env, mmu_idx)) { |
9324 | /* MPU disabled. */ | |
9325 | *phys_ptr = address; | |
9326 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
9327 | return false; | |
9328 | } | |
9329 | ||
9ee6e8bb PB |
9330 | *phys_ptr = address; |
9331 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 9332 | base = env->cp15.c6_region[n]; |
87c3d486 | 9333 | if ((base & 1) == 0) { |
554b0b09 | 9334 | continue; |
87c3d486 | 9335 | } |
554b0b09 PM |
9336 | mask = 1 << ((base >> 1) & 0x1f); |
9337 | /* Keep this shift separate from the above to avoid an | |
9338 | (undefined) << 32. */ | |
9339 | mask = (mask << 1) - 1; | |
87c3d486 | 9340 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 9341 | break; |
87c3d486 | 9342 | } |
9ee6e8bb | 9343 | } |
87c3d486 | 9344 | if (n < 0) { |
b7cc4e82 PC |
9345 | *fsr = 2; |
9346 | return true; | |
87c3d486 | 9347 | } |
9ee6e8bb | 9348 | |
03ae85f8 | 9349 | if (access_type == MMU_INST_FETCH) { |
7e09797c | 9350 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 9351 | } else { |
7e09797c | 9352 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
9353 | } |
9354 | mask = (mask >> (n * 4)) & 0xf; | |
9355 | switch (mask) { | |
9356 | case 0: | |
b7cc4e82 PC |
9357 | *fsr = 1; |
9358 | return true; | |
9ee6e8bb | 9359 | case 1: |
87c3d486 | 9360 | if (is_user) { |
b7cc4e82 PC |
9361 | *fsr = 1; |
9362 | return true; | |
87c3d486 | 9363 | } |
554b0b09 PM |
9364 | *prot = PAGE_READ | PAGE_WRITE; |
9365 | break; | |
9ee6e8bb | 9366 | case 2: |
554b0b09 | 9367 | *prot = PAGE_READ; |
87c3d486 | 9368 | if (!is_user) { |
554b0b09 | 9369 | *prot |= PAGE_WRITE; |
87c3d486 | 9370 | } |
554b0b09 | 9371 | break; |
9ee6e8bb | 9372 | case 3: |
554b0b09 PM |
9373 | *prot = PAGE_READ | PAGE_WRITE; |
9374 | break; | |
9ee6e8bb | 9375 | case 5: |
87c3d486 | 9376 | if (is_user) { |
b7cc4e82 PC |
9377 | *fsr = 1; |
9378 | return true; | |
87c3d486 | 9379 | } |
554b0b09 PM |
9380 | *prot = PAGE_READ; |
9381 | break; | |
9ee6e8bb | 9382 | case 6: |
554b0b09 PM |
9383 | *prot = PAGE_READ; |
9384 | break; | |
9ee6e8bb | 9385 | default: |
554b0b09 | 9386 | /* Bad permission. */ |
b7cc4e82 PC |
9387 | *fsr = 1; |
9388 | return true; | |
9ee6e8bb | 9389 | } |
3ad493fc | 9390 | *prot |= PAGE_EXEC; |
b7cc4e82 | 9391 | return false; |
9ee6e8bb PB |
9392 | } |
9393 | ||
702a9357 PM |
9394 | /* get_phys_addr - get the physical address for this virtual address |
9395 | * | |
9396 | * Find the physical address corresponding to the given virtual address, | |
9397 | * by doing a translation table walk on MMU based systems or using the | |
9398 | * MPU state on MPU based systems. | |
9399 | * | |
b7cc4e82 PC |
9400 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
9401 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
9402 | * information on why the translation aborted, in the format of a |
9403 | * DFSR/IFSR fault register, with the following caveats: | |
9404 | * * we honour the short vs long DFSR format differences. | |
9405 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 9406 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
9407 | * value. |
9408 | * | |
9409 | * @env: CPUARMState | |
9410 | * @address: virtual address to get physical address for | |
9411 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 9412 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 9413 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 9414 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
9415 | * @prot: set to the permissions for the page containing phys_ptr |
9416 | * @page_size: set to the size of the page containing phys_ptr | |
b7cc4e82 | 9417 | * @fsr: set to the DFSR/IFSR value on failure |
702a9357 | 9418 | */ |
af51f566 | 9419 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
03ae85f8 | 9420 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
af51f566 | 9421 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
e14b5a23 EI |
9422 | target_ulong *page_size, uint32_t *fsr, |
9423 | ARMMMUFaultInfo *fi) | |
9ee6e8bb | 9424 | { |
0480f69a | 9425 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
9b539263 EI |
9426 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
9427 | * translations. | |
0480f69a | 9428 | */ |
9b539263 EI |
9429 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
9430 | hwaddr ipa; | |
9431 | int s2_prot; | |
9432 | int ret; | |
9433 | ||
9434 | ret = get_phys_addr(env, address, access_type, | |
8bd5c820 | 9435 | stage_1_mmu_idx(mmu_idx), &ipa, attrs, |
9b539263 EI |
9436 | prot, page_size, fsr, fi); |
9437 | ||
9438 | /* If S1 fails or S2 is disabled, return early. */ | |
9439 | if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
9440 | *phys_ptr = ipa; | |
9441 | return ret; | |
9442 | } | |
9443 | ||
9444 | /* S1 is done. Now do S2 translation. */ | |
9445 | ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, | |
9446 | phys_ptr, attrs, &s2_prot, | |
9447 | page_size, fsr, fi); | |
9448 | fi->s2addr = ipa; | |
9449 | /* Combine the S1 and S2 perms. */ | |
9450 | *prot &= s2_prot; | |
9451 | return ret; | |
9452 | } else { | |
9453 | /* | |
9454 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | |
9455 | */ | |
8bd5c820 | 9456 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
9b539263 | 9457 | } |
0480f69a | 9458 | } |
d3649702 | 9459 | |
8bf5b6a9 PM |
9460 | /* The page table entries may downgrade secure to non-secure, but |
9461 | * cannot upgrade an non-secure translation regime's attributes | |
9462 | * to secure. | |
9463 | */ | |
9464 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 9465 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 9466 | |
0480f69a PM |
9467 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
9468 | * In v7 and earlier it affects all stage 1 translations. | |
9469 | */ | |
9470 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
9471 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
9472 | if (regime_el(env, mmu_idx) == 3) { | |
9473 | address += env->cp15.fcseidr_s; | |
9474 | } else { | |
9475 | address += env->cp15.fcseidr_ns; | |
9476 | } | |
54bf36ed | 9477 | } |
9ee6e8bb | 9478 | |
3279adb9 | 9479 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
c9f9f124 | 9480 | bool ret; |
f6bda88f | 9481 | *page_size = TARGET_PAGE_SIZE; |
3279adb9 | 9482 | |
504e3cc3 PM |
9483 | if (arm_feature(env, ARM_FEATURE_V8)) { |
9484 | /* PMSAv8 */ | |
9485 | ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, | |
35337cc3 | 9486 | phys_ptr, attrs, prot, fsr); |
504e3cc3 | 9487 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
3279adb9 PM |
9488 | /* PMSAv7 */ |
9489 | ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
9490 | phys_ptr, prot, fsr); | |
9491 | } else { | |
9492 | /* Pre-v7 MPU */ | |
9493 | ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, | |
9494 | phys_ptr, prot, fsr); | |
9495 | } | |
9496 | qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 | |
c9f9f124 | 9497 | " mmu_idx %u -> %s (prot %c%c%c)\n", |
709e4407 PM |
9498 | access_type == MMU_DATA_LOAD ? "reading" : |
9499 | (access_type == MMU_DATA_STORE ? "writing" : "execute"), | |
c9f9f124 MD |
9500 | (uint32_t)address, mmu_idx, |
9501 | ret ? "Miss" : "Hit", | |
9502 | *prot & PAGE_READ ? 'r' : '-', | |
9503 | *prot & PAGE_WRITE ? 'w' : '-', | |
9504 | *prot & PAGE_EXEC ? 'x' : '-'); | |
9505 | ||
9506 | return ret; | |
f6bda88f PC |
9507 | } |
9508 | ||
3279adb9 PM |
9509 | /* Definitely a real MMU, not an MPU */ |
9510 | ||
0480f69a | 9511 | if (regime_translation_disabled(env, mmu_idx)) { |
3279adb9 | 9512 | /* MMU disabled. */ |
9ee6e8bb | 9513 | *phys_ptr = address; |
3ad493fc | 9514 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 9515 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 9516 | return 0; |
0480f69a PM |
9517 | } |
9518 | ||
0480f69a PM |
9519 | if (regime_using_lpae_format(env, mmu_idx)) { |
9520 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
e14b5a23 | 9521 | attrs, prot, page_size, fsr, fi); |
0480f69a PM |
9522 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
9523 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
e14b5a23 | 9524 | attrs, prot, page_size, fsr, fi); |
9ee6e8bb | 9525 | } else { |
0480f69a | 9526 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
e14b5a23 | 9527 | prot, page_size, fsr, fi); |
9ee6e8bb PB |
9528 | } |
9529 | } | |
9530 | ||
8c6084bf | 9531 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
9532 | * to the TLB. Return false on success, or true on failure. Populate |
9533 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 9534 | */ |
b7cc4e82 | 9535 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
03ae85f8 | 9536 | MMUAccessType access_type, int mmu_idx, uint32_t *fsr, |
e14b5a23 | 9537 | ARMMMUFaultInfo *fi) |
b5ff1b31 | 9538 | { |
7510454e AF |
9539 | ARMCPU *cpu = ARM_CPU(cs); |
9540 | CPUARMState *env = &cpu->env; | |
a8170e5e | 9541 | hwaddr phys_addr; |
d4c430a8 | 9542 | target_ulong page_size; |
b5ff1b31 | 9543 | int prot; |
d3649702 | 9544 | int ret; |
8bf5b6a9 | 9545 | MemTxAttrs attrs = {}; |
b5ff1b31 | 9546 | |
8bd5c820 PM |
9547 | ret = get_phys_addr(env, address, access_type, |
9548 | core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, | |
e14b5a23 | 9549 | &attrs, &prot, &page_size, fsr, fi); |
b7cc4e82 | 9550 | if (!ret) { |
b5ff1b31 | 9551 | /* Map a single [sub]page. */ |
dcd82c11 AB |
9552 | phys_addr &= TARGET_PAGE_MASK; |
9553 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
9554 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
9555 | prot, mmu_idx, page_size); | |
d4c430a8 | 9556 | return 0; |
b5ff1b31 FB |
9557 | } |
9558 | ||
8c6084bf | 9559 | return ret; |
b5ff1b31 FB |
9560 | } |
9561 | ||
0faea0c7 PM |
9562 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
9563 | MemTxAttrs *attrs) | |
b5ff1b31 | 9564 | { |
00b941e5 | 9565 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 9566 | CPUARMState *env = &cpu->env; |
a8170e5e | 9567 | hwaddr phys_addr; |
d4c430a8 | 9568 | target_ulong page_size; |
b5ff1b31 | 9569 | int prot; |
b7cc4e82 PC |
9570 | bool ret; |
9571 | uint32_t fsr; | |
e14b5a23 | 9572 | ARMMMUFaultInfo fi = {}; |
8bd5c820 | 9573 | ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); |
b5ff1b31 | 9574 | |
0faea0c7 PM |
9575 | *attrs = (MemTxAttrs) {}; |
9576 | ||
8bd5c820 | 9577 | ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, |
0faea0c7 | 9578 | attrs, &prot, &page_size, &fsr, &fi); |
b5ff1b31 | 9579 | |
b7cc4e82 | 9580 | if (ret) { |
b5ff1b31 | 9581 | return -1; |
00b941e5 | 9582 | } |
b5ff1b31 FB |
9583 | return phys_addr; |
9584 | } | |
9585 | ||
0ecb72a5 | 9586 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 9587 | { |
58117c9b MD |
9588 | uint32_t mask; |
9589 | unsigned el = arm_current_el(env); | |
9590 | ||
9591 | /* First handle registers which unprivileged can read */ | |
9592 | ||
9593 | switch (reg) { | |
9594 | case 0 ... 7: /* xPSR sub-fields */ | |
9595 | mask = 0; | |
9596 | if ((reg & 1) && el) { | |
987ab45e | 9597 | mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ |
58117c9b MD |
9598 | } |
9599 | if (!(reg & 4)) { | |
987ab45e | 9600 | mask |= XPSR_NZCV | XPSR_Q; /* APSR */ |
58117c9b MD |
9601 | } |
9602 | /* EPSR reads as zero */ | |
9603 | return xpsr_read(env) & mask; | |
9604 | break; | |
9605 | case 20: /* CONTROL */ | |
8bfc26ea | 9606 | return env->v7m.control[env->v7m.secure]; |
50f11062 PM |
9607 | case 0x94: /* CONTROL_NS */ |
9608 | /* We have to handle this here because unprivileged Secure code | |
9609 | * can read the NS CONTROL register. | |
9610 | */ | |
9611 | if (!env->v7m.secure) { | |
9612 | return 0; | |
9613 | } | |
9614 | return env->v7m.control[M_REG_NS]; | |
58117c9b MD |
9615 | } |
9616 | ||
9617 | if (el == 0) { | |
9618 | return 0; /* unprivileged reads others as zero */ | |
9619 | } | |
a47dddd7 | 9620 | |
50f11062 PM |
9621 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
9622 | switch (reg) { | |
9623 | case 0x88: /* MSP_NS */ | |
9624 | if (!env->v7m.secure) { | |
9625 | return 0; | |
9626 | } | |
9627 | return env->v7m.other_ss_msp; | |
9628 | case 0x89: /* PSP_NS */ | |
9629 | if (!env->v7m.secure) { | |
9630 | return 0; | |
9631 | } | |
9632 | return env->v7m.other_ss_psp; | |
9633 | case 0x90: /* PRIMASK_NS */ | |
9634 | if (!env->v7m.secure) { | |
9635 | return 0; | |
9636 | } | |
9637 | return env->v7m.primask[M_REG_NS]; | |
9638 | case 0x91: /* BASEPRI_NS */ | |
9639 | if (!env->v7m.secure) { | |
9640 | return 0; | |
9641 | } | |
9642 | return env->v7m.basepri[M_REG_NS]; | |
9643 | case 0x93: /* FAULTMASK_NS */ | |
9644 | if (!env->v7m.secure) { | |
9645 | return 0; | |
9646 | } | |
9647 | return env->v7m.faultmask[M_REG_NS]; | |
9648 | case 0x98: /* SP_NS */ | |
9649 | { | |
9650 | /* This gives the non-secure SP selected based on whether we're | |
9651 | * currently in handler mode or not, using the NS CONTROL.SPSEL. | |
9652 | */ | |
9653 | bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; | |
9654 | ||
9655 | if (!env->v7m.secure) { | |
9656 | return 0; | |
9657 | } | |
9658 | if (!arm_v7m_is_handler_mode(env) && spsel) { | |
9659 | return env->v7m.other_ss_psp; | |
9660 | } else { | |
9661 | return env->v7m.other_ss_msp; | |
9662 | } | |
9663 | } | |
9664 | default: | |
9665 | break; | |
9666 | } | |
9667 | } | |
9668 | ||
9ee6e8bb | 9669 | switch (reg) { |
9ee6e8bb | 9670 | case 8: /* MSP */ |
8bfc26ea | 9671 | return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? |
abc24d86 | 9672 | env->v7m.other_sp : env->regs[13]; |
9ee6e8bb | 9673 | case 9: /* PSP */ |
8bfc26ea | 9674 | return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? |
abc24d86 | 9675 | env->regs[13] : env->v7m.other_sp; |
9ee6e8bb | 9676 | case 16: /* PRIMASK */ |
6d804834 | 9677 | return env->v7m.primask[env->v7m.secure]; |
82845826 SH |
9678 | case 17: /* BASEPRI */ |
9679 | case 18: /* BASEPRI_MAX */ | |
acf94941 | 9680 | return env->v7m.basepri[env->v7m.secure]; |
82845826 | 9681 | case 19: /* FAULTMASK */ |
42a6686b | 9682 | return env->v7m.faultmask[env->v7m.secure]; |
9ee6e8bb | 9683 | default: |
58117c9b MD |
9684 | qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" |
9685 | " register %d\n", reg); | |
9ee6e8bb PB |
9686 | return 0; |
9687 | } | |
9688 | } | |
9689 | ||
b28b3377 PM |
9690 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) |
9691 | { | |
9692 | /* We're passed bits [11..0] of the instruction; extract | |
9693 | * SYSm and the mask bits. | |
9694 | * Invalid combinations of SYSm and mask are UNPREDICTABLE; | |
9695 | * we choose to treat them as if the mask bits were valid. | |
9696 | * NB that the pseudocode 'mask' variable is bits [11..10], | |
9697 | * whereas ours is [11..8]. | |
9698 | */ | |
9699 | uint32_t mask = extract32(maskreg, 8, 4); | |
9700 | uint32_t reg = extract32(maskreg, 0, 8); | |
9701 | ||
58117c9b MD |
9702 | if (arm_current_el(env) == 0 && reg > 7) { |
9703 | /* only xPSR sub-fields may be written by unprivileged */ | |
9704 | return; | |
9705 | } | |
a47dddd7 | 9706 | |
50f11062 PM |
9707 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
9708 | switch (reg) { | |
9709 | case 0x88: /* MSP_NS */ | |
9710 | if (!env->v7m.secure) { | |
9711 | return; | |
9712 | } | |
9713 | env->v7m.other_ss_msp = val; | |
9714 | return; | |
9715 | case 0x89: /* PSP_NS */ | |
9716 | if (!env->v7m.secure) { | |
9717 | return; | |
9718 | } | |
9719 | env->v7m.other_ss_psp = val; | |
9720 | return; | |
9721 | case 0x90: /* PRIMASK_NS */ | |
9722 | if (!env->v7m.secure) { | |
9723 | return; | |
9724 | } | |
9725 | env->v7m.primask[M_REG_NS] = val & 1; | |
9726 | return; | |
9727 | case 0x91: /* BASEPRI_NS */ | |
9728 | if (!env->v7m.secure) { | |
9729 | return; | |
9730 | } | |
9731 | env->v7m.basepri[M_REG_NS] = val & 0xff; | |
9732 | return; | |
9733 | case 0x93: /* FAULTMASK_NS */ | |
9734 | if (!env->v7m.secure) { | |
9735 | return; | |
9736 | } | |
9737 | env->v7m.faultmask[M_REG_NS] = val & 1; | |
9738 | return; | |
9739 | case 0x98: /* SP_NS */ | |
9740 | { | |
9741 | /* This gives the non-secure SP selected based on whether we're | |
9742 | * currently in handler mode or not, using the NS CONTROL.SPSEL. | |
9743 | */ | |
9744 | bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; | |
9745 | ||
9746 | if (!env->v7m.secure) { | |
9747 | return; | |
9748 | } | |
9749 | if (!arm_v7m_is_handler_mode(env) && spsel) { | |
9750 | env->v7m.other_ss_psp = val; | |
9751 | } else { | |
9752 | env->v7m.other_ss_msp = val; | |
9753 | } | |
9754 | return; | |
9755 | } | |
9756 | default: | |
9757 | break; | |
9758 | } | |
9759 | } | |
9760 | ||
9ee6e8bb | 9761 | switch (reg) { |
58117c9b MD |
9762 | case 0 ... 7: /* xPSR sub-fields */ |
9763 | /* only APSR is actually writable */ | |
b28b3377 PM |
9764 | if (!(reg & 4)) { |
9765 | uint32_t apsrmask = 0; | |
9766 | ||
9767 | if (mask & 8) { | |
987ab45e | 9768 | apsrmask |= XPSR_NZCV | XPSR_Q; |
b28b3377 PM |
9769 | } |
9770 | if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { | |
987ab45e | 9771 | apsrmask |= XPSR_GE; |
b28b3377 PM |
9772 | } |
9773 | xpsr_write(env, val, apsrmask); | |
58117c9b | 9774 | } |
9ee6e8bb PB |
9775 | break; |
9776 | case 8: /* MSP */ | |
8bfc26ea | 9777 | if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { |
9ee6e8bb | 9778 | env->v7m.other_sp = val; |
abc24d86 | 9779 | } else { |
9ee6e8bb | 9780 | env->regs[13] = val; |
abc24d86 | 9781 | } |
9ee6e8bb PB |
9782 | break; |
9783 | case 9: /* PSP */ | |
8bfc26ea | 9784 | if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { |
9ee6e8bb | 9785 | env->regs[13] = val; |
abc24d86 | 9786 | } else { |
9ee6e8bb | 9787 | env->v7m.other_sp = val; |
abc24d86 | 9788 | } |
9ee6e8bb PB |
9789 | break; |
9790 | case 16: /* PRIMASK */ | |
6d804834 | 9791 | env->v7m.primask[env->v7m.secure] = val & 1; |
9ee6e8bb | 9792 | break; |
82845826 | 9793 | case 17: /* BASEPRI */ |
acf94941 | 9794 | env->v7m.basepri[env->v7m.secure] = val & 0xff; |
9ee6e8bb | 9795 | break; |
82845826 | 9796 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb | 9797 | val &= 0xff; |
acf94941 PM |
9798 | if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] |
9799 | || env->v7m.basepri[env->v7m.secure] == 0)) { | |
9800 | env->v7m.basepri[env->v7m.secure] = val; | |
9801 | } | |
9ee6e8bb | 9802 | break; |
82845826 | 9803 | case 19: /* FAULTMASK */ |
42a6686b | 9804 | env->v7m.faultmask[env->v7m.secure] = val & 1; |
82845826 | 9805 | break; |
9ee6e8bb | 9806 | case 20: /* CONTROL */ |
792dac30 PM |
9807 | /* Writing to the SPSEL bit only has an effect if we are in |
9808 | * thread mode; other bits can be updated by any privileged code. | |
de2db7ec | 9809 | * write_v7m_control_spsel() deals with updating the SPSEL bit in |
792dac30 PM |
9810 | * env->v7m.control, so we only need update the others. |
9811 | */ | |
15b3f556 | 9812 | if (!arm_v7m_is_handler_mode(env)) { |
de2db7ec | 9813 | write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); |
792dac30 | 9814 | } |
8bfc26ea PM |
9815 | env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; |
9816 | env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; | |
9ee6e8bb PB |
9817 | break; |
9818 | default: | |
58117c9b MD |
9819 | qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" |
9820 | " register %d\n", reg); | |
9ee6e8bb PB |
9821 | return; |
9822 | } | |
9823 | } | |
9824 | ||
b5ff1b31 | 9825 | #endif |
6ddbc6e4 | 9826 | |
aca3f40b PM |
9827 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
9828 | { | |
9829 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
9830 | * Note that we do not implement the (architecturally mandated) | |
9831 | * alignment fault for attempts to use this on Device memory | |
9832 | * (which matches the usual QEMU behaviour of not implementing either | |
9833 | * alignment faults or any memory attribute handling). | |
9834 | */ | |
9835 | ||
9836 | ARMCPU *cpu = arm_env_get_cpu(env); | |
9837 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
9838 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
9839 | ||
9840 | #ifndef CONFIG_USER_ONLY | |
9841 | { | |
9842 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
9843 | * the block size so we might have to do more than one TLB lookup. | |
9844 | * We know that in fact for any v8 CPU the page size is at least 4K | |
9845 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
9846 | * 1K as an artefact of legacy v5 subpage support being present in the | |
9847 | * same QEMU executable. | |
9848 | */ | |
9849 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
9850 | void *hostaddr[maxidx]; | |
9851 | int try, i; | |
97ed5ccd | 9852 | unsigned mmu_idx = cpu_mmu_index(env, false); |
3972ef6f | 9853 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
aca3f40b PM |
9854 | |
9855 | for (try = 0; try < 2; try++) { | |
9856 | ||
9857 | for (i = 0; i < maxidx; i++) { | |
9858 | hostaddr[i] = tlb_vaddr_to_host(env, | |
9859 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 9860 | 1, mmu_idx); |
aca3f40b PM |
9861 | if (!hostaddr[i]) { |
9862 | break; | |
9863 | } | |
9864 | } | |
9865 | if (i == maxidx) { | |
9866 | /* If it's all in the TLB it's fair game for just writing to; | |
9867 | * we know we don't need to update dirty status, etc. | |
9868 | */ | |
9869 | for (i = 0; i < maxidx - 1; i++) { | |
9870 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
9871 | } | |
9872 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
9873 | return; | |
9874 | } | |
9875 | /* OK, try a store and see if we can populate the tlb. This | |
9876 | * might cause an exception if the memory isn't writable, | |
9877 | * in which case we will longjmp out of here. We must for | |
9878 | * this purpose use the actual register value passed to us | |
9879 | * so that we get the fault address right. | |
9880 | */ | |
01ecaf43 | 9881 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); |
aca3f40b PM |
9882 | /* Now we can populate the other TLB entries, if any */ |
9883 | for (i = 0; i < maxidx; i++) { | |
9884 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
9885 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
01ecaf43 | 9886 | helper_ret_stb_mmu(env, va, 0, oi, GETPC()); |
aca3f40b PM |
9887 | } |
9888 | } | |
9889 | } | |
9890 | ||
9891 | /* Slow path (probably attempt to do this to an I/O device or | |
9892 | * similar, or clearing of a block of code we have translations | |
9893 | * cached for). Just do a series of byte writes as the architecture | |
9894 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
9895 | * memset(), unmap() sequence here because: | |
9896 | * + we'd need to account for the blocksize being larger than a page | |
9897 | * + the direct-RAM access case is almost always going to be dealt | |
9898 | * with in the fastpath code above, so there's no speed benefit | |
9899 | * + we would have to deal with the map returning NULL because the | |
9900 | * bounce buffer was in use | |
9901 | */ | |
9902 | for (i = 0; i < blocklen; i++) { | |
01ecaf43 | 9903 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); |
aca3f40b PM |
9904 | } |
9905 | } | |
9906 | #else | |
9907 | memset(g2h(vaddr), 0, blocklen); | |
9908 | #endif | |
9909 | } | |
9910 | ||
6ddbc6e4 PB |
9911 | /* Note that signed overflow is undefined in C. The following routines are |
9912 | careful to use unsigned types where modulo arithmetic is required. | |
9913 | Failure to do so _will_ break on newer gcc. */ | |
9914 | ||
9915 | /* Signed saturating arithmetic. */ | |
9916 | ||
1654b2d6 | 9917 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
9918 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
9919 | { | |
9920 | uint16_t res; | |
9921 | ||
9922 | res = a + b; | |
9923 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
9924 | if (a & 0x8000) | |
9925 | res = 0x8000; | |
9926 | else | |
9927 | res = 0x7fff; | |
9928 | } | |
9929 | return res; | |
9930 | } | |
9931 | ||
1654b2d6 | 9932 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
9933 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
9934 | { | |
9935 | uint8_t res; | |
9936 | ||
9937 | res = a + b; | |
9938 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
9939 | if (a & 0x80) | |
9940 | res = 0x80; | |
9941 | else | |
9942 | res = 0x7f; | |
9943 | } | |
9944 | return res; | |
9945 | } | |
9946 | ||
1654b2d6 | 9947 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
9948 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
9949 | { | |
9950 | uint16_t res; | |
9951 | ||
9952 | res = a - b; | |
9953 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
9954 | if (a & 0x8000) | |
9955 | res = 0x8000; | |
9956 | else | |
9957 | res = 0x7fff; | |
9958 | } | |
9959 | return res; | |
9960 | } | |
9961 | ||
1654b2d6 | 9962 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
9963 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
9964 | { | |
9965 | uint8_t res; | |
9966 | ||
9967 | res = a - b; | |
9968 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
9969 | if (a & 0x80) | |
9970 | res = 0x80; | |
9971 | else | |
9972 | res = 0x7f; | |
9973 | } | |
9974 | return res; | |
9975 | } | |
9976 | ||
9977 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
9978 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
9979 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
9980 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
9981 | #define PFX q | |
9982 | ||
9983 | #include "op_addsub.h" | |
9984 | ||
9985 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 9986 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
9987 | { |
9988 | uint16_t res; | |
9989 | res = a + b; | |
9990 | if (res < a) | |
9991 | res = 0xffff; | |
9992 | return res; | |
9993 | } | |
9994 | ||
460a09c1 | 9995 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 9996 | { |
4c4fd3f8 | 9997 | if (a > b) |
6ddbc6e4 PB |
9998 | return a - b; |
9999 | else | |
10000 | return 0; | |
10001 | } | |
10002 | ||
10003 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
10004 | { | |
10005 | uint8_t res; | |
10006 | res = a + b; | |
10007 | if (res < a) | |
10008 | res = 0xff; | |
10009 | return res; | |
10010 | } | |
10011 | ||
10012 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
10013 | { | |
4c4fd3f8 | 10014 | if (a > b) |
6ddbc6e4 PB |
10015 | return a - b; |
10016 | else | |
10017 | return 0; | |
10018 | } | |
10019 | ||
10020 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
10021 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
10022 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
10023 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
10024 | #define PFX uq | |
10025 | ||
10026 | #include "op_addsub.h" | |
10027 | ||
10028 | /* Signed modulo arithmetic. */ | |
10029 | #define SARITH16(a, b, n, op) do { \ | |
10030 | int32_t sum; \ | |
db6e2e65 | 10031 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
10032 | RESULT(sum, n, 16); \ |
10033 | if (sum >= 0) \ | |
10034 | ge |= 3 << (n * 2); \ | |
10035 | } while(0) | |
10036 | ||
10037 | #define SARITH8(a, b, n, op) do { \ | |
10038 | int32_t sum; \ | |
db6e2e65 | 10039 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
10040 | RESULT(sum, n, 8); \ |
10041 | if (sum >= 0) \ | |
10042 | ge |= 1 << n; \ | |
10043 | } while(0) | |
10044 | ||
10045 | ||
10046 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
10047 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
10048 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
10049 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
10050 | #define PFX s | |
10051 | #define ARITH_GE | |
10052 | ||
10053 | #include "op_addsub.h" | |
10054 | ||
10055 | /* Unsigned modulo arithmetic. */ | |
10056 | #define ADD16(a, b, n) do { \ | |
10057 | uint32_t sum; \ | |
10058 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
10059 | RESULT(sum, n, 16); \ | |
a87aa10b | 10060 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
10061 | ge |= 3 << (n * 2); \ |
10062 | } while(0) | |
10063 | ||
10064 | #define ADD8(a, b, n) do { \ | |
10065 | uint32_t sum; \ | |
10066 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
10067 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
10068 | if ((sum >> 8) == 1) \ |
10069 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
10070 | } while(0) |
10071 | ||
10072 | #define SUB16(a, b, n) do { \ | |
10073 | uint32_t sum; \ | |
10074 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
10075 | RESULT(sum, n, 16); \ | |
10076 | if ((sum >> 16) == 0) \ | |
10077 | ge |= 3 << (n * 2); \ | |
10078 | } while(0) | |
10079 | ||
10080 | #define SUB8(a, b, n) do { \ | |
10081 | uint32_t sum; \ | |
10082 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
10083 | RESULT(sum, n, 8); \ | |
10084 | if ((sum >> 8) == 0) \ | |
a87aa10b | 10085 | ge |= 1 << n; \ |
6ddbc6e4 PB |
10086 | } while(0) |
10087 | ||
10088 | #define PFX u | |
10089 | #define ARITH_GE | |
10090 | ||
10091 | #include "op_addsub.h" | |
10092 | ||
10093 | /* Halved signed arithmetic. */ | |
10094 | #define ADD16(a, b, n) \ | |
10095 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
10096 | #define SUB16(a, b, n) \ | |
10097 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
10098 | #define ADD8(a, b, n) \ | |
10099 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
10100 | #define SUB8(a, b, n) \ | |
10101 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
10102 | #define PFX sh | |
10103 | ||
10104 | #include "op_addsub.h" | |
10105 | ||
10106 | /* Halved unsigned arithmetic. */ | |
10107 | #define ADD16(a, b, n) \ | |
10108 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
10109 | #define SUB16(a, b, n) \ | |
10110 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
10111 | #define ADD8(a, b, n) \ | |
10112 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
10113 | #define SUB8(a, b, n) \ | |
10114 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
10115 | #define PFX uh | |
10116 | ||
10117 | #include "op_addsub.h" | |
10118 | ||
10119 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
10120 | { | |
10121 | if (a > b) | |
10122 | return a - b; | |
10123 | else | |
10124 | return b - a; | |
10125 | } | |
10126 | ||
10127 | /* Unsigned sum of absolute byte differences. */ | |
10128 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
10129 | { | |
10130 | uint32_t sum; | |
10131 | sum = do_usad(a, b); | |
10132 | sum += do_usad(a >> 8, b >> 8); | |
10133 | sum += do_usad(a >> 16, b >>16); | |
10134 | sum += do_usad(a >> 24, b >> 24); | |
10135 | return sum; | |
10136 | } | |
10137 | ||
10138 | /* For ARMv6 SEL instruction. */ | |
10139 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
10140 | { | |
10141 | uint32_t mask; | |
10142 | ||
10143 | mask = 0; | |
10144 | if (flags & 1) | |
10145 | mask |= 0xff; | |
10146 | if (flags & 2) | |
10147 | mask |= 0xff00; | |
10148 | if (flags & 4) | |
10149 | mask |= 0xff0000; | |
10150 | if (flags & 8) | |
10151 | mask |= 0xff000000; | |
10152 | return (a & mask) | (b & ~mask); | |
10153 | } | |
10154 | ||
b90372ad PM |
10155 | /* VFP support. We follow the convention used for VFP instructions: |
10156 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
10157 | "d" suffix. */ |
10158 | ||
10159 | /* Convert host exception flags to vfp form. */ | |
10160 | static inline int vfp_exceptbits_from_host(int host_bits) | |
10161 | { | |
10162 | int target_bits = 0; | |
10163 | ||
10164 | if (host_bits & float_flag_invalid) | |
10165 | target_bits |= 1; | |
10166 | if (host_bits & float_flag_divbyzero) | |
10167 | target_bits |= 2; | |
10168 | if (host_bits & float_flag_overflow) | |
10169 | target_bits |= 4; | |
36802b6b | 10170 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
10171 | target_bits |= 8; |
10172 | if (host_bits & float_flag_inexact) | |
10173 | target_bits |= 0x10; | |
cecd8504 PM |
10174 | if (host_bits & float_flag_input_denormal) |
10175 | target_bits |= 0x80; | |
4373f3ce PB |
10176 | return target_bits; |
10177 | } | |
10178 | ||
0ecb72a5 | 10179 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
10180 | { |
10181 | int i; | |
10182 | uint32_t fpscr; | |
10183 | ||
10184 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
10185 | | (env->vfp.vec_len << 16) | |
10186 | | (env->vfp.vec_stride << 20); | |
10187 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 10188 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
10189 | fpscr |= vfp_exceptbits_from_host(i); |
10190 | return fpscr; | |
10191 | } | |
10192 | ||
0ecb72a5 | 10193 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
10194 | { |
10195 | return HELPER(vfp_get_fpscr)(env); | |
10196 | } | |
10197 | ||
4373f3ce PB |
10198 | /* Convert vfp exception flags to target form. */ |
10199 | static inline int vfp_exceptbits_to_host(int target_bits) | |
10200 | { | |
10201 | int host_bits = 0; | |
10202 | ||
10203 | if (target_bits & 1) | |
10204 | host_bits |= float_flag_invalid; | |
10205 | if (target_bits & 2) | |
10206 | host_bits |= float_flag_divbyzero; | |
10207 | if (target_bits & 4) | |
10208 | host_bits |= float_flag_overflow; | |
10209 | if (target_bits & 8) | |
10210 | host_bits |= float_flag_underflow; | |
10211 | if (target_bits & 0x10) | |
10212 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
10213 | if (target_bits & 0x80) |
10214 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
10215 | return host_bits; |
10216 | } | |
10217 | ||
0ecb72a5 | 10218 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
10219 | { |
10220 | int i; | |
10221 | uint32_t changed; | |
10222 | ||
10223 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
10224 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
10225 | env->vfp.vec_len = (val >> 16) & 7; | |
10226 | env->vfp.vec_stride = (val >> 20) & 3; | |
10227 | ||
10228 | changed ^= val; | |
10229 | if (changed & (3 << 22)) { | |
10230 | i = (val >> 22) & 3; | |
10231 | switch (i) { | |
4d3da0f3 | 10232 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
10233 | i = float_round_nearest_even; |
10234 | break; | |
4d3da0f3 | 10235 | case FPROUNDING_POSINF: |
4373f3ce PB |
10236 | i = float_round_up; |
10237 | break; | |
4d3da0f3 | 10238 | case FPROUNDING_NEGINF: |
4373f3ce PB |
10239 | i = float_round_down; |
10240 | break; | |
4d3da0f3 | 10241 | case FPROUNDING_ZERO: |
4373f3ce PB |
10242 | i = float_round_to_zero; |
10243 | break; | |
10244 | } | |
10245 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
10246 | } | |
cecd8504 | 10247 | if (changed & (1 << 24)) { |
fe76d976 | 10248 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
10249 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
10250 | } | |
5c7908ed PB |
10251 | if (changed & (1 << 25)) |
10252 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 10253 | |
b12c390b | 10254 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 10255 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 10256 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
10257 | } |
10258 | ||
0ecb72a5 | 10259 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
10260 | { |
10261 | HELPER(vfp_set_fpscr)(env, val); | |
10262 | } | |
10263 | ||
4373f3ce PB |
10264 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
10265 | ||
10266 | #define VFP_BINOP(name) \ | |
ae1857ec | 10267 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 10268 | { \ |
ae1857ec PM |
10269 | float_status *fpst = fpstp; \ |
10270 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 10271 | } \ |
ae1857ec | 10272 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 10273 | { \ |
ae1857ec PM |
10274 | float_status *fpst = fpstp; \ |
10275 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
10276 | } |
10277 | VFP_BINOP(add) | |
10278 | VFP_BINOP(sub) | |
10279 | VFP_BINOP(mul) | |
10280 | VFP_BINOP(div) | |
f71a2ae5 PM |
10281 | VFP_BINOP(min) |
10282 | VFP_BINOP(max) | |
10283 | VFP_BINOP(minnum) | |
10284 | VFP_BINOP(maxnum) | |
4373f3ce PB |
10285 | #undef VFP_BINOP |
10286 | ||
10287 | float32 VFP_HELPER(neg, s)(float32 a) | |
10288 | { | |
10289 | return float32_chs(a); | |
10290 | } | |
10291 | ||
10292 | float64 VFP_HELPER(neg, d)(float64 a) | |
10293 | { | |
66230e0d | 10294 | return float64_chs(a); |
4373f3ce PB |
10295 | } |
10296 | ||
10297 | float32 VFP_HELPER(abs, s)(float32 a) | |
10298 | { | |
10299 | return float32_abs(a); | |
10300 | } | |
10301 | ||
10302 | float64 VFP_HELPER(abs, d)(float64 a) | |
10303 | { | |
66230e0d | 10304 | return float64_abs(a); |
4373f3ce PB |
10305 | } |
10306 | ||
0ecb72a5 | 10307 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
10308 | { |
10309 | return float32_sqrt(a, &env->vfp.fp_status); | |
10310 | } | |
10311 | ||
0ecb72a5 | 10312 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
10313 | { |
10314 | return float64_sqrt(a, &env->vfp.fp_status); | |
10315 | } | |
10316 | ||
10317 | /* XXX: check quiet/signaling case */ | |
10318 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 10319 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
10320 | { \ |
10321 | uint32_t flags; \ | |
10322 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
10323 | case 0: flags = 0x6; break; \ | |
10324 | case -1: flags = 0x8; break; \ | |
10325 | case 1: flags = 0x2; break; \ | |
10326 | default: case 2: flags = 0x3; break; \ | |
10327 | } \ | |
10328 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
10329 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
10330 | } \ | |
0ecb72a5 | 10331 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
10332 | { \ |
10333 | uint32_t flags; \ | |
10334 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
10335 | case 0: flags = 0x6; break; \ | |
10336 | case -1: flags = 0x8; break; \ | |
10337 | case 1: flags = 0x2; break; \ | |
10338 | default: case 2: flags = 0x3; break; \ | |
10339 | } \ | |
10340 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
10341 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
10342 | } | |
10343 | DO_VFP_cmp(s, float32) | |
10344 | DO_VFP_cmp(d, float64) | |
10345 | #undef DO_VFP_cmp | |
10346 | ||
5500b06c | 10347 | /* Integer to float and float to integer conversions */ |
4373f3ce | 10348 | |
5500b06c PM |
10349 | #define CONV_ITOF(name, fsz, sign) \ |
10350 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
10351 | { \ | |
10352 | float_status *fpst = fpstp; \ | |
85836979 | 10353 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
10354 | } |
10355 | ||
5500b06c PM |
10356 | #define CONV_FTOI(name, fsz, sign, round) \ |
10357 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
10358 | { \ | |
10359 | float_status *fpst = fpstp; \ | |
10360 | if (float##fsz##_is_any_nan(x)) { \ | |
10361 | float_raise(float_flag_invalid, fpst); \ | |
10362 | return 0; \ | |
10363 | } \ | |
10364 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
10365 | } |
10366 | ||
5500b06c PM |
10367 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
10368 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
10369 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
10370 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 10371 | |
5500b06c PM |
10372 | FLOAT_CONVS(si, s, 32, ) |
10373 | FLOAT_CONVS(si, d, 64, ) | |
10374 | FLOAT_CONVS(ui, s, 32, u) | |
10375 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 10376 | |
5500b06c PM |
10377 | #undef CONV_ITOF |
10378 | #undef CONV_FTOI | |
10379 | #undef FLOAT_CONVS | |
4373f3ce PB |
10380 | |
10381 | /* floating point conversion */ | |
0ecb72a5 | 10382 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 10383 | { |
2d627737 PM |
10384 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
10385 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
10386 | * a quiet NaN by forcing the most significant frac bit to 1. | |
10387 | */ | |
af39bc8c | 10388 | return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
4373f3ce PB |
10389 | } |
10390 | ||
0ecb72a5 | 10391 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 10392 | { |
2d627737 PM |
10393 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
10394 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
10395 | * a quiet NaN by forcing the most significant frac bit to 1. | |
10396 | */ | |
af39bc8c | 10397 | return float32_maybe_silence_nan(r, &env->vfp.fp_status); |
4373f3ce PB |
10398 | } |
10399 | ||
10400 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 10401 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
10402 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
10403 | void *fpstp) \ | |
4373f3ce | 10404 | { \ |
5500b06c | 10405 | float_status *fpst = fpstp; \ |
622465e1 | 10406 | float##fsz tmp; \ |
8ed697e8 | 10407 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 10408 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
10409 | } |
10410 | ||
abe66f70 PM |
10411 | /* Notice that we want only input-denormal exception flags from the |
10412 | * scalbn operation: the other possible flags (overflow+inexact if | |
10413 | * we overflow to infinity, output-denormal) aren't correct for the | |
10414 | * complete scale-and-convert operation. | |
10415 | */ | |
16d5b3ca WN |
10416 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
10417 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
10418 | uint32_t shift, \ | |
10419 | void *fpstp) \ | |
4373f3ce | 10420 | { \ |
5500b06c | 10421 | float_status *fpst = fpstp; \ |
abe66f70 | 10422 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
10423 | float##fsz tmp; \ |
10424 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 10425 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 10426 | return 0; \ |
09d9487f | 10427 | } \ |
5500b06c | 10428 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
10429 | old_exc_flags |= get_float_exception_flags(fpst) \ |
10430 | & float_flag_input_denormal; \ | |
10431 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 10432 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
10433 | } |
10434 | ||
16d5b3ca WN |
10435 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
10436 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
10437 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
10438 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
10439 | ||
10440 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
10441 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
10442 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 10443 | |
8ed697e8 WN |
10444 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
10445 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 10446 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
10447 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
10448 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 10449 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
10450 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
10451 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 10452 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
10453 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
10454 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 10455 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 10456 | #undef VFP_CONV_FIX |
16d5b3ca WN |
10457 | #undef VFP_CONV_FIX_FLOAT |
10458 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 10459 | |
52a1f6a3 AG |
10460 | /* Set the current fp rounding mode and return the old one. |
10461 | * The argument is a softfloat float_round_ value. | |
10462 | */ | |
10463 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
10464 | { | |
10465 | float_status *fp_status = &env->vfp.fp_status; | |
10466 | ||
10467 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
10468 | set_float_rounding_mode(rmode, fp_status); | |
10469 | ||
10470 | return prev_rmode; | |
10471 | } | |
10472 | ||
43630e58 WN |
10473 | /* Set the current fp rounding mode in the standard fp status and return |
10474 | * the old one. This is for NEON instructions that need to change the | |
10475 | * rounding mode but wish to use the standard FPSCR values for everything | |
10476 | * else. Always set the rounding mode back to the correct value after | |
10477 | * modifying it. | |
10478 | * The argument is a softfloat float_round_ value. | |
10479 | */ | |
10480 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
10481 | { | |
10482 | float_status *fp_status = &env->vfp.standard_fp_status; | |
10483 | ||
10484 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
10485 | set_float_rounding_mode(rmode, fp_status); | |
10486 | ||
10487 | return prev_rmode; | |
10488 | } | |
10489 | ||
60011498 | 10490 | /* Half precision conversions. */ |
0ecb72a5 | 10491 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 10492 | { |
60011498 | 10493 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
10494 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
10495 | if (ieee) { | |
af39bc8c | 10496 | return float32_maybe_silence_nan(r, s); |
fb91678d PM |
10497 | } |
10498 | return r; | |
60011498 PB |
10499 | } |
10500 | ||
0ecb72a5 | 10501 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 10502 | { |
60011498 | 10503 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
10504 | float16 r = float32_to_float16(a, ieee, s); |
10505 | if (ieee) { | |
af39bc8c | 10506 | r = float16_maybe_silence_nan(r, s); |
fb91678d PM |
10507 | } |
10508 | return float16_val(r); | |
60011498 PB |
10509 | } |
10510 | ||
0ecb72a5 | 10511 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
10512 | { |
10513 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
10514 | } | |
10515 | ||
0ecb72a5 | 10516 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
10517 | { |
10518 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
10519 | } | |
10520 | ||
0ecb72a5 | 10521 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
10522 | { |
10523 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
10524 | } | |
10525 | ||
0ecb72a5 | 10526 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
10527 | { |
10528 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
10529 | } | |
10530 | ||
8900aad2 PM |
10531 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
10532 | { | |
10533 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
10534 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
10535 | if (ieee) { | |
af39bc8c | 10536 | return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
8900aad2 PM |
10537 | } |
10538 | return r; | |
10539 | } | |
10540 | ||
10541 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
10542 | { | |
10543 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
10544 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
10545 | if (ieee) { | |
af39bc8c | 10546 | r = float16_maybe_silence_nan(r, &env->vfp.fp_status); |
8900aad2 PM |
10547 | } |
10548 | return float16_val(r); | |
10549 | } | |
10550 | ||
dda3ec49 | 10551 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
10552 | #define float32_three make_float32(0x40400000) |
10553 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 10554 | |
0ecb72a5 | 10555 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 10556 | { |
dda3ec49 PM |
10557 | float_status *s = &env->vfp.standard_fp_status; |
10558 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
10559 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
10560 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
10561 | float_raise(float_flag_input_denormal, s); | |
10562 | } | |
dda3ec49 PM |
10563 | return float32_two; |
10564 | } | |
10565 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
10566 | } |
10567 | ||
0ecb72a5 | 10568 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 10569 | { |
71826966 | 10570 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
10571 | float32 product; |
10572 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
10573 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
10574 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
10575 | float_raise(float_flag_input_denormal, s); | |
10576 | } | |
6aae3df1 | 10577 | return float32_one_point_five; |
9ea62f57 | 10578 | } |
6aae3df1 PM |
10579 | product = float32_mul(a, b, s); |
10580 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
10581 | } |
10582 | ||
8f8e3aa4 PB |
10583 | /* NEON helpers. */ |
10584 | ||
56bf4fe2 CL |
10585 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
10586 | * int->float conversions at run-time. */ | |
10587 | #define float64_256 make_float64(0x4070000000000000LL) | |
10588 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
10589 | #define float32_maxnorm make_float32(0x7f7fffff) |
10590 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 10591 | |
b6d4443a AB |
10592 | /* Reciprocal functions |
10593 | * | |
10594 | * The algorithm that must be used to calculate the estimate | |
10595 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 10596 | */ |
b6d4443a AB |
10597 | |
10598 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 10599 | { |
1146a817 PM |
10600 | /* These calculations mustn't set any fp exception flags, |
10601 | * so we use a local copy of the fp_status. | |
10602 | */ | |
b6d4443a | 10603 | float_status dummy_status = *real_fp_status; |
1146a817 | 10604 | float_status *s = &dummy_status; |
fe0e4872 CL |
10605 | /* q = (int)(a * 512.0) */ |
10606 | float64 q = float64_mul(float64_512, a, s); | |
10607 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
10608 | ||
10609 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
10610 | q = int64_to_float64(q_int, s); | |
10611 | q = float64_add(q, float64_half, s); | |
10612 | q = float64_div(q, float64_512, s); | |
10613 | q = float64_div(float64_one, q, s); | |
10614 | ||
10615 | /* s = (int)(256.0 * r + 0.5) */ | |
10616 | q = float64_mul(q, float64_256, s); | |
10617 | q = float64_add(q, float64_half, s); | |
10618 | q_int = float64_to_int64_round_to_zero(q, s); | |
10619 | ||
10620 | /* return (double)s / 256.0 */ | |
10621 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
10622 | } | |
10623 | ||
b6d4443a AB |
10624 | /* Common wrapper to call recip_estimate */ |
10625 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 10626 | { |
b6d4443a AB |
10627 | uint64_t val64 = float64_val(num); |
10628 | uint64_t frac = extract64(val64, 0, 52); | |
10629 | int64_t exp = extract64(val64, 52, 11); | |
10630 | uint64_t sbit; | |
10631 | float64 scaled, estimate; | |
fe0e4872 | 10632 | |
b6d4443a AB |
10633 | /* Generate the scaled number for the estimate function */ |
10634 | if (exp == 0) { | |
10635 | if (extract64(frac, 51, 1) == 0) { | |
10636 | exp = -1; | |
10637 | frac = extract64(frac, 0, 50) << 2; | |
10638 | } else { | |
10639 | frac = extract64(frac, 0, 51) << 1; | |
10640 | } | |
10641 | } | |
fe0e4872 | 10642 | |
b6d4443a AB |
10643 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
10644 | scaled = make_float64((0x3feULL << 52) | |
10645 | | extract64(frac, 44, 8) << 44); | |
10646 | ||
10647 | estimate = recip_estimate(scaled, fpst); | |
10648 | ||
10649 | /* Build new result */ | |
10650 | val64 = float64_val(estimate); | |
10651 | sbit = 0x8000000000000000ULL & val64; | |
10652 | exp = off - exp; | |
10653 | frac = extract64(val64, 0, 52); | |
10654 | ||
10655 | if (exp == 0) { | |
10656 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
10657 | } else if (exp == -1) { | |
10658 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
10659 | exp = 0; | |
10660 | } | |
10661 | ||
10662 | return make_float64(sbit | (exp << 52) | frac); | |
10663 | } | |
10664 | ||
10665 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
10666 | { | |
10667 | switch (fpst->float_rounding_mode) { | |
10668 | case float_round_nearest_even: /* Round to Nearest */ | |
10669 | return true; | |
10670 | case float_round_up: /* Round to +Inf */ | |
10671 | return !sign_bit; | |
10672 | case float_round_down: /* Round to -Inf */ | |
10673 | return sign_bit; | |
10674 | case float_round_to_zero: /* Round to Zero */ | |
10675 | return false; | |
10676 | } | |
10677 | ||
10678 | g_assert_not_reached(); | |
10679 | } | |
10680 | ||
10681 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
10682 | { | |
10683 | float_status *fpst = fpstp; | |
10684 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
10685 | uint32_t f32_val = float32_val(f32); | |
10686 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
10687 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
10688 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
10689 | float64 f64, r64; | |
10690 | uint64_t r64_val; | |
10691 | int64_t r64_exp; | |
10692 | uint64_t r64_frac; | |
10693 | ||
10694 | if (float32_is_any_nan(f32)) { | |
10695 | float32 nan = f32; | |
af39bc8c | 10696 | if (float32_is_signaling_nan(f32, fpst)) { |
b6d4443a | 10697 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 10698 | nan = float32_maybe_silence_nan(f32, fpst); |
fe0e4872 | 10699 | } |
b6d4443a | 10700 | if (fpst->default_nan_mode) { |
af39bc8c | 10701 | nan = float32_default_nan(fpst); |
43fe9bdb | 10702 | } |
b6d4443a AB |
10703 | return nan; |
10704 | } else if (float32_is_infinity(f32)) { | |
10705 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
10706 | } else if (float32_is_zero(f32)) { | |
10707 | float_raise(float_flag_divbyzero, fpst); | |
10708 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
10709 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
10710 | /* Abs(value) < 2.0^-128 */ | |
10711 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
10712 | if (round_to_inf(fpst, f32_sbit)) { | |
10713 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
10714 | } else { | |
10715 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
10716 | } | |
10717 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
10718 | float_raise(float_flag_underflow, fpst); | |
10719 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
10720 | } |
10721 | ||
fe0e4872 | 10722 | |
b6d4443a AB |
10723 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
10724 | r64 = call_recip_estimate(f64, 253, fpst); | |
10725 | r64_val = float64_val(r64); | |
10726 | r64_exp = extract64(r64_val, 52, 11); | |
10727 | r64_frac = extract64(r64_val, 0, 52); | |
10728 | ||
10729 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
10730 | return make_float32(f32_sbit | | |
10731 | (r64_exp & 0xff) << 23 | | |
10732 | extract64(r64_frac, 29, 24)); | |
10733 | } | |
10734 | ||
10735 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
10736 | { | |
10737 | float_status *fpst = fpstp; | |
10738 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
10739 | uint64_t f64_val = float64_val(f64); | |
10740 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
10741 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
10742 | float64 r64; | |
10743 | uint64_t r64_val; | |
10744 | int64_t r64_exp; | |
10745 | uint64_t r64_frac; | |
10746 | ||
10747 | /* Deal with any special cases */ | |
10748 | if (float64_is_any_nan(f64)) { | |
10749 | float64 nan = f64; | |
af39bc8c | 10750 | if (float64_is_signaling_nan(f64, fpst)) { |
b6d4443a | 10751 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 10752 | nan = float64_maybe_silence_nan(f64, fpst); |
b6d4443a AB |
10753 | } |
10754 | if (fpst->default_nan_mode) { | |
af39bc8c | 10755 | nan = float64_default_nan(fpst); |
b6d4443a AB |
10756 | } |
10757 | return nan; | |
10758 | } else if (float64_is_infinity(f64)) { | |
10759 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
10760 | } else if (float64_is_zero(f64)) { | |
10761 | float_raise(float_flag_divbyzero, fpst); | |
10762 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
10763 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
10764 | /* Abs(value) < 2.0^-1024 */ | |
10765 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
10766 | if (round_to_inf(fpst, f64_sbit)) { | |
10767 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
10768 | } else { | |
10769 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
10770 | } | |
fc1792e9 | 10771 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
10772 | float_raise(float_flag_underflow, fpst); |
10773 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
10774 | } | |
fe0e4872 | 10775 | |
b6d4443a AB |
10776 | r64 = call_recip_estimate(f64, 2045, fpst); |
10777 | r64_val = float64_val(r64); | |
10778 | r64_exp = extract64(r64_val, 52, 11); | |
10779 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 10780 | |
b6d4443a AB |
10781 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
10782 | return make_float64(f64_sbit | | |
10783 | ((r64_exp & 0x7ff) << 52) | | |
10784 | r64_frac); | |
4373f3ce PB |
10785 | } |
10786 | ||
e07be5d2 CL |
10787 | /* The algorithm that must be used to calculate the estimate |
10788 | * is specified by the ARM ARM. | |
10789 | */ | |
c2fb418e | 10790 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 10791 | { |
1146a817 PM |
10792 | /* These calculations mustn't set any fp exception flags, |
10793 | * so we use a local copy of the fp_status. | |
10794 | */ | |
c2fb418e | 10795 | float_status dummy_status = *real_fp_status; |
1146a817 | 10796 | float_status *s = &dummy_status; |
e07be5d2 CL |
10797 | float64 q; |
10798 | int64_t q_int; | |
10799 | ||
10800 | if (float64_lt(a, float64_half, s)) { | |
10801 | /* range 0.25 <= a < 0.5 */ | |
10802 | ||
10803 | /* a in units of 1/512 rounded down */ | |
10804 | /* q0 = (int)(a * 512.0); */ | |
10805 | q = float64_mul(float64_512, a, s); | |
10806 | q_int = float64_to_int64_round_to_zero(q, s); | |
10807 | ||
10808 | /* reciprocal root r */ | |
10809 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
10810 | q = int64_to_float64(q_int, s); | |
10811 | q = float64_add(q, float64_half, s); | |
10812 | q = float64_div(q, float64_512, s); | |
10813 | q = float64_sqrt(q, s); | |
10814 | q = float64_div(float64_one, q, s); | |
10815 | } else { | |
10816 | /* range 0.5 <= a < 1.0 */ | |
10817 | ||
10818 | /* a in units of 1/256 rounded down */ | |
10819 | /* q1 = (int)(a * 256.0); */ | |
10820 | q = float64_mul(float64_256, a, s); | |
10821 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
10822 | ||
10823 | /* reciprocal root r */ | |
10824 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
10825 | q = int64_to_float64(q_int, s); | |
10826 | q = float64_add(q, float64_half, s); | |
10827 | q = float64_div(q, float64_256, s); | |
10828 | q = float64_sqrt(q, s); | |
10829 | q = float64_div(float64_one, q, s); | |
10830 | } | |
10831 | /* r in units of 1/256 rounded to nearest */ | |
10832 | /* s = (int)(256.0 * r + 0.5); */ | |
10833 | ||
10834 | q = float64_mul(q, float64_256,s ); | |
10835 | q = float64_add(q, float64_half, s); | |
10836 | q_int = float64_to_int64_round_to_zero(q, s); | |
10837 | ||
10838 | /* return (double)s / 256.0;*/ | |
10839 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
10840 | } | |
10841 | ||
c2fb418e | 10842 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 10843 | { |
c2fb418e AB |
10844 | float_status *s = fpstp; |
10845 | float32 f32 = float32_squash_input_denormal(input, s); | |
10846 | uint32_t val = float32_val(f32); | |
10847 | uint32_t f32_sbit = 0x80000000 & val; | |
10848 | int32_t f32_exp = extract32(val, 23, 8); | |
10849 | uint32_t f32_frac = extract32(val, 0, 23); | |
10850 | uint64_t f64_frac; | |
10851 | uint64_t val64; | |
e07be5d2 CL |
10852 | int result_exp; |
10853 | float64 f64; | |
e07be5d2 | 10854 | |
c2fb418e AB |
10855 | if (float32_is_any_nan(f32)) { |
10856 | float32 nan = f32; | |
af39bc8c | 10857 | if (float32_is_signaling_nan(f32, s)) { |
e07be5d2 | 10858 | float_raise(float_flag_invalid, s); |
af39bc8c | 10859 | nan = float32_maybe_silence_nan(f32, s); |
e07be5d2 | 10860 | } |
c2fb418e | 10861 | if (s->default_nan_mode) { |
af39bc8c | 10862 | nan = float32_default_nan(s); |
43fe9bdb | 10863 | } |
c2fb418e AB |
10864 | return nan; |
10865 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 10866 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
10867 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
10868 | } else if (float32_is_neg(f32)) { | |
e07be5d2 | 10869 | float_raise(float_flag_invalid, s); |
af39bc8c | 10870 | return float32_default_nan(s); |
c2fb418e | 10871 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
10872 | return float32_zero; |
10873 | } | |
10874 | ||
c2fb418e | 10875 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 10876 | * preserving the parity of the exponent. */ |
c2fb418e AB |
10877 | |
10878 | f64_frac = ((uint64_t) f32_frac) << 29; | |
10879 | if (f32_exp == 0) { | |
10880 | while (extract64(f64_frac, 51, 1) == 0) { | |
10881 | f64_frac = f64_frac << 1; | |
10882 | f32_exp = f32_exp-1; | |
10883 | } | |
10884 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
10885 | } | |
10886 | ||
10887 | if (extract64(f32_exp, 0, 1) == 0) { | |
10888 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 10889 | | (0x3feULL << 52) |
c2fb418e | 10890 | | f64_frac); |
e07be5d2 | 10891 | } else { |
c2fb418e | 10892 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 10893 | | (0x3fdULL << 52) |
c2fb418e | 10894 | | f64_frac); |
e07be5d2 CL |
10895 | } |
10896 | ||
c2fb418e | 10897 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 10898 | |
c2fb418e | 10899 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
10900 | |
10901 | val64 = float64_val(f64); | |
10902 | ||
26cc6abf | 10903 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
10904 | | ((val64 >> 29) & 0x7fffff); |
10905 | return make_float32(val); | |
4373f3ce PB |
10906 | } |
10907 | ||
c2fb418e AB |
10908 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
10909 | { | |
10910 | float_status *s = fpstp; | |
10911 | float64 f64 = float64_squash_input_denormal(input, s); | |
10912 | uint64_t val = float64_val(f64); | |
10913 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
10914 | int64_t f64_exp = extract64(val, 52, 11); | |
10915 | uint64_t f64_frac = extract64(val, 0, 52); | |
10916 | int64_t result_exp; | |
10917 | uint64_t result_frac; | |
10918 | ||
10919 | if (float64_is_any_nan(f64)) { | |
10920 | float64 nan = f64; | |
af39bc8c | 10921 | if (float64_is_signaling_nan(f64, s)) { |
c2fb418e | 10922 | float_raise(float_flag_invalid, s); |
af39bc8c | 10923 | nan = float64_maybe_silence_nan(f64, s); |
c2fb418e AB |
10924 | } |
10925 | if (s->default_nan_mode) { | |
af39bc8c | 10926 | nan = float64_default_nan(s); |
c2fb418e AB |
10927 | } |
10928 | return nan; | |
10929 | } else if (float64_is_zero(f64)) { | |
10930 | float_raise(float_flag_divbyzero, s); | |
10931 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
10932 | } else if (float64_is_neg(f64)) { | |
10933 | float_raise(float_flag_invalid, s); | |
af39bc8c | 10934 | return float64_default_nan(s); |
c2fb418e AB |
10935 | } else if (float64_is_infinity(f64)) { |
10936 | return float64_zero; | |
10937 | } | |
10938 | ||
10939 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
10940 | * preserving the parity of the exponent. */ | |
10941 | ||
10942 | if (f64_exp == 0) { | |
10943 | while (extract64(f64_frac, 51, 1) == 0) { | |
10944 | f64_frac = f64_frac << 1; | |
10945 | f64_exp = f64_exp - 1; | |
10946 | } | |
10947 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
10948 | } | |
10949 | ||
10950 | if (extract64(f64_exp, 0, 1) == 0) { | |
10951 | f64 = make_float64(f64_sbit | |
10952 | | (0x3feULL << 52) | |
10953 | | f64_frac); | |
10954 | } else { | |
10955 | f64 = make_float64(f64_sbit | |
10956 | | (0x3fdULL << 52) | |
10957 | | f64_frac); | |
10958 | } | |
10959 | ||
10960 | result_exp = (3068 - f64_exp) / 2; | |
10961 | ||
10962 | f64 = recip_sqrt_estimate(f64, s); | |
10963 | ||
10964 | result_frac = extract64(float64_val(f64), 0, 52); | |
10965 | ||
10966 | return make_float64(f64_sbit | | |
10967 | ((result_exp & 0x7ff) << 52) | | |
10968 | result_frac); | |
10969 | } | |
10970 | ||
b6d4443a | 10971 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 10972 | { |
b6d4443a | 10973 | float_status *s = fpstp; |
fe0e4872 CL |
10974 | float64 f64; |
10975 | ||
10976 | if ((a & 0x80000000) == 0) { | |
10977 | return 0xffffffff; | |
10978 | } | |
10979 | ||
10980 | f64 = make_float64((0x3feULL << 52) | |
10981 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
10982 | ||
b6d4443a | 10983 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
10984 | |
10985 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
10986 | } |
10987 | ||
c2fb418e | 10988 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 10989 | { |
c2fb418e | 10990 | float_status *fpst = fpstp; |
e07be5d2 CL |
10991 | float64 f64; |
10992 | ||
10993 | if ((a & 0xc0000000) == 0) { | |
10994 | return 0xffffffff; | |
10995 | } | |
10996 | ||
10997 | if (a & 0x80000000) { | |
10998 | f64 = make_float64((0x3feULL << 52) | |
10999 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
11000 | } else { /* bits 31-30 == '01' */ | |
11001 | f64 = make_float64((0x3fdULL << 52) | |
11002 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
11003 | } | |
11004 | ||
c2fb418e | 11005 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
11006 | |
11007 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 11008 | } |
fe1479c3 | 11009 | |
da97f52c PM |
11010 | /* VFPv4 fused multiply-accumulate */ |
11011 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
11012 | { | |
11013 | float_status *fpst = fpstp; | |
11014 | return float32_muladd(a, b, c, 0, fpst); | |
11015 | } | |
11016 | ||
11017 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
11018 | { | |
11019 | float_status *fpst = fpstp; | |
11020 | return float64_muladd(a, b, c, 0, fpst); | |
11021 | } | |
d9b0848d PM |
11022 | |
11023 | /* ARMv8 round to integral */ | |
11024 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
11025 | { | |
11026 | return float32_round_to_int(x, fp_status); | |
11027 | } | |
11028 | ||
11029 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
11030 | { | |
11031 | return float64_round_to_int(x, fp_status); | |
11032 | } | |
11033 | ||
11034 | float32 HELPER(rints)(float32 x, void *fp_status) | |
11035 | { | |
11036 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
11037 | float32 ret; | |
11038 | ||
11039 | ret = float32_round_to_int(x, fp_status); | |
11040 | ||
11041 | /* Suppress any inexact exceptions the conversion produced */ | |
11042 | if (!(old_flags & float_flag_inexact)) { | |
11043 | new_flags = get_float_exception_flags(fp_status); | |
11044 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
11045 | } | |
11046 | ||
11047 | return ret; | |
11048 | } | |
11049 | ||
11050 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
11051 | { | |
11052 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
11053 | float64 ret; | |
11054 | ||
11055 | ret = float64_round_to_int(x, fp_status); | |
11056 | ||
11057 | new_flags = get_float_exception_flags(fp_status); | |
11058 | ||
11059 | /* Suppress any inexact exceptions the conversion produced */ | |
11060 | if (!(old_flags & float_flag_inexact)) { | |
11061 | new_flags = get_float_exception_flags(fp_status); | |
11062 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
11063 | } | |
11064 | ||
11065 | return ret; | |
11066 | } | |
9972da66 WN |
11067 | |
11068 | /* Convert ARM rounding mode to softfloat */ | |
11069 | int arm_rmode_to_sf(int rmode) | |
11070 | { | |
11071 | switch (rmode) { | |
11072 | case FPROUNDING_TIEAWAY: | |
11073 | rmode = float_round_ties_away; | |
11074 | break; | |
11075 | case FPROUNDING_ODD: | |
11076 | /* FIXME: add support for TIEAWAY and ODD */ | |
11077 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
11078 | rmode); | |
11079 | case FPROUNDING_TIEEVEN: | |
11080 | default: | |
11081 | rmode = float_round_nearest_even; | |
11082 | break; | |
11083 | case FPROUNDING_POSINF: | |
11084 | rmode = float_round_up; | |
11085 | break; | |
11086 | case FPROUNDING_NEGINF: | |
11087 | rmode = float_round_down; | |
11088 | break; | |
11089 | case FPROUNDING_ZERO: | |
11090 | rmode = float_round_to_zero; | |
11091 | break; | |
11092 | } | |
11093 | return rmode; | |
11094 | } | |
eb0ecd5a | 11095 | |
aa633469 PM |
11096 | /* CRC helpers. |
11097 | * The upper bytes of val (above the number specified by 'bytes') must have | |
11098 | * been zeroed out by the caller. | |
11099 | */ | |
eb0ecd5a WN |
11100 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
11101 | { | |
11102 | uint8_t buf[4]; | |
11103 | ||
aa633469 | 11104 | stl_le_p(buf, val); |
eb0ecd5a WN |
11105 | |
11106 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
11107 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
11108 | } | |
11109 | ||
11110 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
11111 | { | |
11112 | uint8_t buf[4]; | |
11113 | ||
aa633469 | 11114 | stl_le_p(buf, val); |
eb0ecd5a WN |
11115 | |
11116 | /* Linux crc32c converts the output to one's complement. */ | |
11117 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
11118 | } |