]> Git Repo - qemu.git/blame - target-arm/helper.c
cputlb: Add functions for flushing TLB for a single MMU index
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31 1#include "cpu.h"
ccd38087 2#include "internals.h"
022c62cb 3#include "exec/gdbstub.h"
2ef6175a 4#include "exec/helper-proto.h"
1de7afc9 5#include "qemu/host-utils.h"
78027bb6 6#include "sysemu/arch_init.h"
9c17d615 7#include "sysemu/sysemu.h"
1de7afc9 8#include "qemu/bitops.h"
eb0ecd5a 9#include "qemu/crc32c.h"
f08b6170 10#include "exec/cpu_ldst.h"
1d854765 11#include "arm_ldst.h"
eb0ecd5a 12#include <zlib.h> /* For crc32 */
cfe67cef 13#include "exec/semihost.h"
0b03bdfc 14
4a501606 15#ifndef CONFIG_USER_ONLY
b7cc4e82
PC
16static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
17 int access_type, ARMMMUIdx mmu_idx,
18 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
19 target_ulong *page_size, uint32_t *fsr);
7c2cb42b
AF
20
21/* Definitions for the PMCCNTR and PMCR registers */
22#define PMCRD 0x8
23#define PMCRC 0x4
24#define PMCRE 0x1
4a501606
PM
25#endif
26
0ecb72a5 27static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
28{
29 int nregs;
30
31 /* VFP data registers are always little-endian. */
32 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
33 if (reg < nregs) {
34 stfq_le_p(buf, env->vfp.regs[reg]);
35 return 8;
36 }
37 if (arm_feature(env, ARM_FEATURE_NEON)) {
38 /* Aliases for Q regs. */
39 nregs += 16;
40 if (reg < nregs) {
41 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
42 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
43 return 16;
44 }
45 }
46 switch (reg - nregs) {
47 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
48 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
49 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 }
51 return 0;
52}
53
0ecb72a5 54static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
55{
56 int nregs;
57
58 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
59 if (reg < nregs) {
60 env->vfp.regs[reg] = ldfq_le_p(buf);
61 return 8;
62 }
63 if (arm_feature(env, ARM_FEATURE_NEON)) {
64 nregs += 16;
65 if (reg < nregs) {
66 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
67 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
68 return 16;
69 }
70 }
71 switch (reg - nregs) {
72 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
73 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 74 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
75 }
76 return 0;
77}
78
6a669427
PM
79static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80{
81 switch (reg) {
82 case 0 ... 31:
83 /* 128 bit FP register */
84 stfq_le_p(buf, env->vfp.regs[reg * 2]);
85 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
86 return 16;
87 case 32:
88 /* FPSR */
89 stl_p(buf, vfp_get_fpsr(env));
90 return 4;
91 case 33:
92 /* FPCR */
93 stl_p(buf, vfp_get_fpcr(env));
94 return 4;
95 default:
96 return 0;
97 }
98}
99
100static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101{
102 switch (reg) {
103 case 0 ... 31:
104 /* 128 bit FP register */
105 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
106 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
107 return 16;
108 case 32:
109 /* FPSR */
110 vfp_set_fpsr(env, ldl_p(buf));
111 return 4;
112 case 33:
113 /* FPCR */
114 vfp_set_fpcr(env, ldl_p(buf));
115 return 4;
116 default:
117 return 0;
118 }
119}
120
c4241c7d 121static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 122{
375421cc 123 assert(ri->fieldoffset);
67ed771d 124 if (cpreg_field_is_64bit(ri)) {
c4241c7d 125 return CPREG_FIELD64(env, ri);
22d9e1a9 126 } else {
c4241c7d 127 return CPREG_FIELD32(env, ri);
22d9e1a9 128 }
d4e6df63
PM
129}
130
c4241c7d
PM
131static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
132 uint64_t value)
d4e6df63 133{
375421cc 134 assert(ri->fieldoffset);
67ed771d 135 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
136 CPREG_FIELD64(env, ri) = value;
137 } else {
138 CPREG_FIELD32(env, ri) = value;
139 }
d4e6df63
PM
140}
141
11f136ee
FA
142static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
143{
144 return (char *)env + ri->fieldoffset;
145}
146
49a66191 147uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 148{
59a1c327 149 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 150 if (ri->type & ARM_CP_CONST) {
59a1c327 151 return ri->resetvalue;
721fae12 152 } else if (ri->raw_readfn) {
59a1c327 153 return ri->raw_readfn(env, ri);
721fae12 154 } else if (ri->readfn) {
59a1c327 155 return ri->readfn(env, ri);
721fae12 156 } else {
59a1c327 157 return raw_read(env, ri);
721fae12 158 }
721fae12
PM
159}
160
59a1c327 161static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 162 uint64_t v)
721fae12
PM
163{
164 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
165 * Note that constant registers are treated as write-ignored; the
166 * caller should check for success by whether a readback gives the
167 * value written.
168 */
169 if (ri->type & ARM_CP_CONST) {
59a1c327 170 return;
721fae12 171 } else if (ri->raw_writefn) {
c4241c7d 172 ri->raw_writefn(env, ri, v);
721fae12 173 } else if (ri->writefn) {
c4241c7d 174 ri->writefn(env, ri, v);
721fae12 175 } else {
afb2530f 176 raw_write(env, ri, v);
721fae12 177 }
721fae12
PM
178}
179
375421cc
PM
180static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
181{
182 /* Return true if the regdef would cause an assertion if you called
183 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
184 * program bug for it not to have the NO_RAW flag).
185 * NB that returning false here doesn't necessarily mean that calling
186 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
187 * read/write access functions which are safe for raw use" from "has
188 * read/write access functions which have side effects but has forgotten
189 * to provide raw access functions".
190 * The tests here line up with the conditions in read/write_raw_cp_reg()
191 * and assertions in raw_read()/raw_write().
192 */
193 if ((ri->type & ARM_CP_CONST) ||
194 ri->fieldoffset ||
195 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
196 return false;
197 }
198 return true;
199}
200
721fae12
PM
201bool write_cpustate_to_list(ARMCPU *cpu)
202{
203 /* Write the coprocessor state from cpu->env to the (index,value) list. */
204 int i;
205 bool ok = true;
206
207 for (i = 0; i < cpu->cpreg_array_len; i++) {
208 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
209 const ARMCPRegInfo *ri;
59a1c327 210
60322b39 211 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
212 if (!ri) {
213 ok = false;
214 continue;
215 }
7a0e58fa 216 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
217 continue;
218 }
59a1c327 219 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
220 }
221 return ok;
222}
223
224bool write_list_to_cpustate(ARMCPU *cpu)
225{
226 int i;
227 bool ok = true;
228
229 for (i = 0; i < cpu->cpreg_array_len; i++) {
230 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
231 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
232 const ARMCPRegInfo *ri;
233
60322b39 234 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
235 if (!ri) {
236 ok = false;
237 continue;
238 }
7a0e58fa 239 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
240 continue;
241 }
242 /* Write value and confirm it reads back as written
243 * (to catch read-only registers and partially read-only
244 * registers where the incoming migration value doesn't match)
245 */
59a1c327
PM
246 write_raw_cp_reg(&cpu->env, ri, v);
247 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
248 ok = false;
249 }
250 }
251 return ok;
252}
253
254static void add_cpreg_to_list(gpointer key, gpointer opaque)
255{
256 ARMCPU *cpu = opaque;
257 uint64_t regidx;
258 const ARMCPRegInfo *ri;
259
260 regidx = *(uint32_t *)key;
60322b39 261 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 262
7a0e58fa 263 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
264 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
265 /* The value array need not be initialized at this point */
266 cpu->cpreg_array_len++;
267 }
268}
269
270static void count_cpreg(gpointer key, gpointer opaque)
271{
272 ARMCPU *cpu = opaque;
273 uint64_t regidx;
274 const ARMCPRegInfo *ri;
275
276 regidx = *(uint32_t *)key;
60322b39 277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 278
7a0e58fa 279 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
280 cpu->cpreg_array_len++;
281 }
282}
283
284static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
285{
cbf239b7
AR
286 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
287 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 288
cbf239b7
AR
289 if (aidx > bidx) {
290 return 1;
291 }
292 if (aidx < bidx) {
293 return -1;
294 }
295 return 0;
721fae12
PM
296}
297
298void init_cpreg_list(ARMCPU *cpu)
299{
300 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
301 * Note that we require cpreg_tuples[] to be sorted by key ID.
302 */
57b6d95e 303 GList *keys;
721fae12
PM
304 int arraylen;
305
57b6d95e 306 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
307 keys = g_list_sort(keys, cpreg_key_compare);
308
309 cpu->cpreg_array_len = 0;
310
311 g_list_foreach(keys, count_cpreg, cpu);
312
313 arraylen = cpu->cpreg_array_len;
314 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
315 cpu->cpreg_values = g_new(uint64_t, arraylen);
316 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
317 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
318 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
319 cpu->cpreg_array_len = 0;
320
321 g_list_foreach(keys, add_cpreg_to_list, cpu);
322
323 assert(cpu->cpreg_array_len == arraylen);
324
325 g_list_free(keys);
326}
327
c4241c7d 328static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 329{
00c8cb0a
AF
330 ARMCPU *cpu = arm_env_get_cpu(env);
331
8d5c773e 332 raw_write(env, ri, value);
00c8cb0a 333 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
334}
335
c4241c7d 336static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 337{
00c8cb0a
AF
338 ARMCPU *cpu = arm_env_get_cpu(env);
339
8d5c773e 340 if (raw_read(env, ri) != value) {
08de207b
PM
341 /* Unlike real hardware the qemu TLB uses virtual addresses,
342 * not modified virtual addresses, so this causes a TLB flush.
343 */
00c8cb0a 344 tlb_flush(CPU(cpu), 1);
8d5c773e 345 raw_write(env, ri, value);
08de207b 346 }
08de207b 347}
c4241c7d
PM
348
349static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
350 uint64_t value)
08de207b 351{
00c8cb0a
AF
352 ARMCPU *cpu = arm_env_get_cpu(env);
353
8d5c773e 354 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
014406b5 355 && !extended_addresses_enabled(env)) {
08de207b
PM
356 /* For VMSA (when not using the LPAE long descriptor page table
357 * format) this register includes the ASID, so do a TLB flush.
358 * For PMSA it is purely a process ID and no action is needed.
359 */
00c8cb0a 360 tlb_flush(CPU(cpu), 1);
08de207b 361 }
8d5c773e 362 raw_write(env, ri, value);
08de207b
PM
363}
364
c4241c7d
PM
365static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
366 uint64_t value)
d929823f
PM
367{
368 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
369 ARMCPU *cpu = arm_env_get_cpu(env);
370
371 tlb_flush(CPU(cpu), 1);
d929823f
PM
372}
373
c4241c7d
PM
374static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
375 uint64_t value)
d929823f
PM
376{
377 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
378 ARMCPU *cpu = arm_env_get_cpu(env);
379
380 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
381}
382
c4241c7d
PM
383static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
384 uint64_t value)
d929823f
PM
385{
386 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
387 ARMCPU *cpu = arm_env_get_cpu(env);
388
389 tlb_flush(CPU(cpu), value == 0);
d929823f
PM
390}
391
c4241c7d
PM
392static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
393 uint64_t value)
d929823f
PM
394{
395 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
396 ARMCPU *cpu = arm_env_get_cpu(env);
397
398 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
399}
400
fa439fc5
PM
401/* IS variants of TLB operations must affect all cores */
402static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
403 uint64_t value)
404{
405 CPUState *other_cs;
406
407 CPU_FOREACH(other_cs) {
408 tlb_flush(other_cs, 1);
409 }
410}
411
412static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
413 uint64_t value)
414{
415 CPUState *other_cs;
416
417 CPU_FOREACH(other_cs) {
418 tlb_flush(other_cs, value == 0);
419 }
420}
421
422static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
423 uint64_t value)
424{
425 CPUState *other_cs;
426
427 CPU_FOREACH(other_cs) {
428 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
429 }
430}
431
432static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
433 uint64_t value)
434{
435 CPUState *other_cs;
436
437 CPU_FOREACH(other_cs) {
438 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
439 }
440}
441
e9aa6c21 442static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
443 /* Define the secure and non-secure FCSE identifier CP registers
444 * separately because there is no secure bank in V8 (no _EL3). This allows
445 * the secure register to be properly reset and migrated. There is also no
446 * v8 EL1 version of the register so the non-secure instance stands alone.
447 */
448 { .name = "FCSEIDR(NS)",
449 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
450 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
451 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
452 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
453 { .name = "FCSEIDR(S)",
454 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
455 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
456 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 457 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
458 /* Define the secure and non-secure context identifier CP registers
459 * separately because there is no secure bank in V8 (no _EL3). This allows
460 * the secure register to be properly reset and migrated. In the
461 * non-secure case, the 32-bit register will have reset and migration
462 * disabled during registration as it is handled by the 64-bit instance.
463 */
464 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 465 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
466 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
467 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
468 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
469 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
470 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
471 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
472 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 473 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
474 REGINFO_SENTINEL
475};
476
477static const ARMCPRegInfo not_v8_cp_reginfo[] = {
478 /* NB: Some of these registers exist in v8 but with more precise
479 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
480 */
481 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
482 { .name = "DACR",
483 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
484 .access = PL1_RW, .resetvalue = 0,
485 .writefn = dacr_write, .raw_writefn = raw_write,
486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
487 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
488 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
489 * For v6 and v5, these mappings are overly broad.
4fdd17dd 490 */
a903c449
EI
491 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
492 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
493 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
494 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
495 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
496 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
497 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 498 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
499 /* Cache maintenance ops; some of this space may be overridden later. */
500 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
501 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
502 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
503 REGINFO_SENTINEL
504};
505
7d57f408
PM
506static const ARMCPRegInfo not_v6_cp_reginfo[] = {
507 /* Not all pre-v6 cores implemented this WFI, so this is slightly
508 * over-broad.
509 */
510 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
511 .access = PL1_W, .type = ARM_CP_WFI },
512 REGINFO_SENTINEL
513};
514
515static const ARMCPRegInfo not_v7_cp_reginfo[] = {
516 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
517 * is UNPREDICTABLE; we choose to NOP as most implementations do).
518 */
519 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
520 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
521 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
522 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
523 * OMAPCP will override this space.
524 */
525 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
526 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
527 .resetvalue = 0 },
528 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
529 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
530 .resetvalue = 0 },
776d4e5c
PM
531 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
532 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 533 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 534 .resetvalue = 0 },
50300698
PM
535 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
536 * implementing it as RAZ means the "debug architecture version" bits
537 * will read as a reserved value, which should cause Linux to not try
538 * to use the debug hardware.
539 */
540 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
541 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
542 /* MMU TLB control. Note that the wildcarding means we cover not just
543 * the unified TLB ops but also the dside/iside/inner-shareable variants.
544 */
545 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
546 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 547 .type = ARM_CP_NO_RAW },
995939a6
PM
548 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
549 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 550 .type = ARM_CP_NO_RAW },
995939a6
PM
551 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
552 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 553 .type = ARM_CP_NO_RAW },
995939a6
PM
554 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
555 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 556 .type = ARM_CP_NO_RAW },
a903c449
EI
557 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
558 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
559 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
560 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
561 REGINFO_SENTINEL
562};
563
c4241c7d
PM
564static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
2771db27 566{
f0aff255
FA
567 uint32_t mask = 0;
568
569 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
570 if (!arm_feature(env, ARM_FEATURE_V8)) {
571 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
572 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
573 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
574 */
575 if (arm_feature(env, ARM_FEATURE_VFP)) {
576 /* VFP coprocessor: cp10 & cp11 [23:20] */
577 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
578
579 if (!arm_feature(env, ARM_FEATURE_NEON)) {
580 /* ASEDIS [31] bit is RAO/WI */
581 value |= (1 << 31);
582 }
583
584 /* VFPv3 and upwards with NEON implement 32 double precision
585 * registers (D0-D31).
586 */
587 if (!arm_feature(env, ARM_FEATURE_NEON) ||
588 !arm_feature(env, ARM_FEATURE_VFP3)) {
589 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
590 value |= (1 << 30);
591 }
592 }
593 value &= mask;
2771db27 594 }
7ebd5f2e 595 env->cp15.cpacr_el1 = value;
2771db27
PM
596}
597
c6f19164
GB
598static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
599{
600 if (arm_feature(env, ARM_FEATURE_V8)) {
601 /* Check if CPACR accesses are to be trapped to EL2 */
602 if (arm_current_el(env) == 1 &&
603 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
604 return CP_ACCESS_TRAP_EL2;
605 /* Check if CPACR accesses are to be trapped to EL3 */
606 } else if (arm_current_el(env) < 3 &&
607 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
608 return CP_ACCESS_TRAP_EL3;
609 }
610 }
611
612 return CP_ACCESS_OK;
613}
614
615static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
616{
617 /* Check if CPTR accesses are set to trap to EL3 */
618 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
619 return CP_ACCESS_TRAP_EL3;
620 }
621
622 return CP_ACCESS_OK;
623}
624
7d57f408
PM
625static const ARMCPRegInfo v6_cp_reginfo[] = {
626 /* prefetch by MVA in v6, NOP in v7 */
627 { .name = "MVA_prefetch",
628 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
629 .access = PL1_W, .type = ARM_CP_NOP },
630 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
631 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 632 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 633 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 634 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 635 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 636 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 637 .access = PL1_RW,
b848ce2b
FA
638 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
639 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
640 .resetvalue = 0, },
641 /* Watchpoint Fault Address Register : should actually only be present
642 * for 1136, 1176, 11MPCore.
643 */
644 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
645 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 646 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 647 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 648 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 649 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
650 REGINFO_SENTINEL
651};
652
fcd25206 653static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
200ac0ef 654{
3b163b01 655 /* Performance monitor registers user accessibility is controlled
fcd25206 656 * by PMUSERENR.
200ac0ef 657 */
dcbff19b 658 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
fcd25206 659 return CP_ACCESS_TRAP;
200ac0ef 660 }
fcd25206 661 return CP_ACCESS_OK;
200ac0ef
PM
662}
663
7c2cb42b 664#ifndef CONFIG_USER_ONLY
87124fde
AF
665
666static inline bool arm_ccnt_enabled(CPUARMState *env)
667{
668 /* This does not support checking PMCCFILTR_EL0 register */
669
670 if (!(env->cp15.c9_pmcr & PMCRE)) {
671 return false;
672 }
673
674 return true;
675}
676
ec7b4ce4
AF
677void pmccntr_sync(CPUARMState *env)
678{
679 uint64_t temp_ticks;
680
681 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
682 get_ticks_per_sec(), 1000000);
683
684 if (env->cp15.c9_pmcr & PMCRD) {
685 /* Increment once every 64 processor clock cycles */
686 temp_ticks /= 64;
687 }
688
689 if (arm_ccnt_enabled(env)) {
690 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
691 }
692}
693
c4241c7d
PM
694static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
695 uint64_t value)
200ac0ef 696{
942a155b 697 pmccntr_sync(env);
7c2cb42b
AF
698
699 if (value & PMCRC) {
700 /* The counter has been reset */
701 env->cp15.c15_ccnt = 0;
702 }
703
200ac0ef
PM
704 /* only the DP, X, D and E bits are writable */
705 env->cp15.c9_pmcr &= ~0x39;
706 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 707
942a155b 708 pmccntr_sync(env);
7c2cb42b
AF
709}
710
711static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
712{
c92c0687 713 uint64_t total_ticks;
7c2cb42b 714
942a155b 715 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
716 /* Counter is disabled, do not change value */
717 return env->cp15.c15_ccnt;
718 }
719
c92c0687
AF
720 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
721 get_ticks_per_sec(), 1000000);
7c2cb42b
AF
722
723 if (env->cp15.c9_pmcr & PMCRD) {
724 /* Increment once every 64 processor clock cycles */
725 total_ticks /= 64;
726 }
727 return total_ticks - env->cp15.c15_ccnt;
728}
729
730static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
731 uint64_t value)
732{
c92c0687 733 uint64_t total_ticks;
7c2cb42b 734
942a155b 735 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
736 /* Counter is disabled, set the absolute value */
737 env->cp15.c15_ccnt = value;
738 return;
739 }
740
c92c0687
AF
741 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
742 get_ticks_per_sec(), 1000000);
7c2cb42b
AF
743
744 if (env->cp15.c9_pmcr & PMCRD) {
745 /* Increment once every 64 processor clock cycles */
746 total_ticks /= 64;
747 }
748 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 749}
421c7ebd
PC
750
751static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
752 uint64_t value)
753{
754 uint64_t cur_val = pmccntr_read(env, NULL);
755
756 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
757}
758
ec7b4ce4
AF
759#else /* CONFIG_USER_ONLY */
760
761void pmccntr_sync(CPUARMState *env)
762{
763}
764
7c2cb42b 765#endif
200ac0ef 766
0614601c
AF
767static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
768 uint64_t value)
769{
770 pmccntr_sync(env);
771 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
772 pmccntr_sync(env);
773}
774
c4241c7d 775static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
776 uint64_t value)
777{
200ac0ef
PM
778 value &= (1 << 31);
779 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
780}
781
c4241c7d
PM
782static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t value)
200ac0ef 784{
200ac0ef
PM
785 value &= (1 << 31);
786 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
787}
788
c4241c7d
PM
789static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
790 uint64_t value)
200ac0ef 791{
200ac0ef 792 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
793}
794
c4241c7d
PM
795static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t value)
200ac0ef 797{
200ac0ef 798 env->cp15.c9_pmxevtyper = value & 0xff;
200ac0ef
PM
799}
800
c4241c7d 801static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
802 uint64_t value)
803{
804 env->cp15.c9_pmuserenr = value & 1;
200ac0ef
PM
805}
806
c4241c7d
PM
807static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
808 uint64_t value)
200ac0ef
PM
809{
810 /* We have no event counters so only the C bit can be changed */
811 value &= (1 << 31);
812 env->cp15.c9_pminten |= value;
200ac0ef
PM
813}
814
c4241c7d
PM
815static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
816 uint64_t value)
200ac0ef
PM
817{
818 value &= (1 << 31);
819 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
820}
821
c4241c7d
PM
822static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
823 uint64_t value)
8641136c 824{
a505d7fe
PM
825 /* Note that even though the AArch64 view of this register has bits
826 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
827 * architectural requirements for bits which are RES0 only in some
828 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
829 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
830 */
855ea66d 831 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
832}
833
64e0e2de
EI
834static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
835{
836 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
837 * For bits that vary between AArch32/64, code needs to check the
838 * current execution mode before directly using the feature bit.
839 */
840 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
841
842 if (!arm_feature(env, ARM_FEATURE_EL2)) {
843 valid_mask &= ~SCR_HCE;
844
845 /* On ARMv7, SMD (or SCD as it is called in v7) is only
846 * supported if EL2 exists. The bit is UNK/SBZP when
847 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
848 * when EL2 is unavailable.
4eb27640 849 * On ARMv8, this bit is always available.
64e0e2de 850 */
4eb27640
GB
851 if (arm_feature(env, ARM_FEATURE_V7) &&
852 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
853 valid_mask &= ~SCR_SMD;
854 }
855 }
856
857 /* Clear all-context RES0 bits. */
858 value &= valid_mask;
859 raw_write(env, ri, value);
860}
861
c4241c7d 862static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
863{
864 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
865
866 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
867 * bank
868 */
869 uint32_t index = A32_BANKED_REG_GET(env, csselr,
870 ri->secure & ARM_CP_SECSTATE_S);
871
872 return cpu->ccsidr[index];
776d4e5c
PM
873}
874
c4241c7d
PM
875static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
876 uint64_t value)
776d4e5c 877{
8d5c773e 878 raw_write(env, ri, value & 0xf);
776d4e5c
PM
879}
880
1090b9c6
PM
881static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
882{
883 CPUState *cs = ENV_GET_CPU(env);
884 uint64_t ret = 0;
885
886 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
887 ret |= CPSR_I;
888 }
889 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
890 ret |= CPSR_F;
891 }
892 /* External aborts are not possible in QEMU so A bit is always clear */
893 return ret;
894}
895
e9aa6c21 896static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
897 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
898 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
899 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
900 /* Performance monitors are implementation defined in v7,
901 * but with an ARM recommended set of registers, which we
902 * follow (although we don't actually implement any counters)
903 *
904 * Performance registers fall into three categories:
905 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
906 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
907 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
908 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
909 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
910 */
911 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 912 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 913 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
914 .writefn = pmcntenset_write,
915 .accessfn = pmreg_access,
916 .raw_writefn = raw_write },
8521466b
AF
917 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
918 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
919 .access = PL0_RW, .accessfn = pmreg_access,
920 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
921 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 922 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
923 .access = PL0_RW,
924 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
925 .accessfn = pmreg_access,
926 .writefn = pmcntenclr_write,
7a0e58fa 927 .type = ARM_CP_ALIAS },
8521466b
AF
928 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
929 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
930 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 931 .type = ARM_CP_ALIAS,
8521466b
AF
932 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
933 .writefn = pmcntenclr_write },
200ac0ef
PM
934 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
935 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
936 .accessfn = pmreg_access,
937 .writefn = pmovsr_write,
938 .raw_writefn = raw_write },
939 /* Unimplemented so WI. */
200ac0ef 940 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
fcd25206 941 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
200ac0ef 942 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
fcd25206 943 * We choose to RAZ/WI.
200ac0ef
PM
944 */
945 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
fcd25206
PM
946 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
947 .accessfn = pmreg_access },
7c2cb42b 948#ifndef CONFIG_USER_ONLY
200ac0ef 949 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 950 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 951 .readfn = pmccntr_read, .writefn = pmccntr_write32,
fcd25206 952 .accessfn = pmreg_access },
8521466b
AF
953 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
955 .access = PL0_RW, .accessfn = pmreg_access,
956 .type = ARM_CP_IO,
957 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 958#endif
8521466b
AF
959 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
960 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 961 .writefn = pmccfiltr_write,
8521466b
AF
962 .access = PL0_RW, .accessfn = pmreg_access,
963 .type = ARM_CP_IO,
964 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
965 .resetvalue = 0, },
200ac0ef
PM
966 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
967 .access = PL0_RW,
968 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
fcd25206
PM
969 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
970 .raw_writefn = raw_write },
971 /* Unimplemented, RAZ/WI. */
200ac0ef 972 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206
PM
973 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
974 .accessfn = pmreg_access },
200ac0ef
PM
975 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
976 .access = PL0_R | PL1_RW,
977 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
978 .resetvalue = 0,
d4e6df63 979 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef
PM
980 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
981 .access = PL1_RW,
982 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
983 .resetvalue = 0,
d4e6df63 984 .writefn = pmintenset_write, .raw_writefn = raw_write },
200ac0ef 985 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
7a0e58fa 986 .access = PL1_RW, .type = ARM_CP_ALIAS,
200ac0ef 987 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 988 .writefn = pmintenclr_write, },
a505d7fe
PM
989 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
990 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8641136c 991 .access = PL1_RW, .writefn = vbar_write,
fb6c91ba
GB
992 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
993 offsetof(CPUARMState, cp15.vbar_ns) },
8641136c 994 .resetvalue = 0 },
7da845b0
PM
995 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
996 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 997 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
998 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
999 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1000 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1001 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1002 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1003 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1004 * just RAZ for all cores:
1005 */
0ff644a7
PM
1006 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1007 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1008 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1009 /* Auxiliary fault status registers: these also are IMPDEF, and we
1010 * choose to RAZ/WI for all cores.
1011 */
1012 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1013 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1014 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1015 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1016 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1017 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1018 /* MAIR can just read-as-written because we don't implement caches
1019 * and so don't need to care about memory attributes.
1020 */
1021 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1022 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1023 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1024 .resetvalue = 0 },
4cfb8ad8
PM
1025 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1026 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1027 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1028 .resetvalue = 0 },
b0fe2427
PM
1029 /* For non-long-descriptor page tables these are PRRR and NMRR;
1030 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1031 */
1281f8e3 1032 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1033 * allows them to assign the correct fieldoffset based on the endianness
1034 * handled in the field definitions.
1035 */
a903c449 1036 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1037 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1038 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1039 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1040 .resetfn = arm_cp_reset_ignore },
a903c449 1041 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1042 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1043 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1044 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1045 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1046 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1047 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1048 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1049 /* 32 bit ITLB invalidates */
1050 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1051 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1052 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1053 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1054 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1055 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1056 /* 32 bit DTLB invalidates */
1057 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1058 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1059 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1060 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1061 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1062 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1063 /* 32 bit TLB invalidates */
1064 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1065 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1066 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1067 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1068 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1069 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1070 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1071 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1072 REGINFO_SENTINEL
1073};
1074
1075static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1076 /* 32 bit TLB invalidates, Inner Shareable */
1077 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1078 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1079 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1080 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1081 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1082 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1083 .writefn = tlbiasid_is_write },
995939a6 1084 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1085 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1086 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1087 REGINFO_SENTINEL
1088};
1089
c4241c7d
PM
1090static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
c326b979
PM
1092{
1093 value &= 1;
1094 env->teecr = value;
c326b979
PM
1095}
1096
c4241c7d 1097static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
c326b979 1098{
dcbff19b 1099 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1100 return CP_ACCESS_TRAP;
c326b979 1101 }
92611c00 1102 return CP_ACCESS_OK;
c326b979
PM
1103}
1104
1105static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1106 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1107 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1108 .resetvalue = 0,
1109 .writefn = teecr_write },
1110 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1111 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1112 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1113 REGINFO_SENTINEL
1114};
1115
4d31c596 1116static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1117 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1118 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1119 .access = PL0_RW,
54bf36ed 1120 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1121 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1122 .access = PL0_RW,
54bf36ed
FA
1123 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1124 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1125 .resetfn = arm_cp_reset_ignore },
1126 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1127 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1128 .access = PL0_R|PL1_W,
54bf36ed
FA
1129 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1130 .resetvalue = 0},
4d31c596
PM
1131 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1132 .access = PL0_R|PL1_W,
54bf36ed
FA
1133 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1134 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1135 .resetfn = arm_cp_reset_ignore },
54bf36ed 1136 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1137 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1138 .access = PL1_RW,
54bf36ed
FA
1139 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1140 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1141 .access = PL1_RW,
1142 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1143 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1144 .resetvalue = 0 },
4d31c596
PM
1145 REGINFO_SENTINEL
1146};
1147
55d284af
PM
1148#ifndef CONFIG_USER_ONLY
1149
00108f2d
PM
1150static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1151{
1152 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
dcbff19b 1153 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
00108f2d
PM
1154 return CP_ACCESS_TRAP;
1155 }
1156 return CP_ACCESS_OK;
1157}
1158
1159static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1160{
0b6440af
EI
1161 unsigned int cur_el = arm_current_el(env);
1162 bool secure = arm_is_secure(env);
1163
00108f2d 1164 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1165 if (cur_el == 0 &&
00108f2d
PM
1166 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1167 return CP_ACCESS_TRAP;
1168 }
0b6440af
EI
1169
1170 if (arm_feature(env, ARM_FEATURE_EL2) &&
1171 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1172 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1173 return CP_ACCESS_TRAP_EL2;
1174 }
00108f2d
PM
1175 return CP_ACCESS_OK;
1176}
1177
1178static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1179{
0b6440af
EI
1180 unsigned int cur_el = arm_current_el(env);
1181 bool secure = arm_is_secure(env);
1182
00108f2d
PM
1183 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1184 * EL0[PV]TEN is zero.
1185 */
0b6440af 1186 if (cur_el == 0 &&
00108f2d
PM
1187 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1188 return CP_ACCESS_TRAP;
1189 }
0b6440af
EI
1190
1191 if (arm_feature(env, ARM_FEATURE_EL2) &&
1192 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1193 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1194 return CP_ACCESS_TRAP_EL2;
1195 }
00108f2d
PM
1196 return CP_ACCESS_OK;
1197}
1198
1199static CPAccessResult gt_pct_access(CPUARMState *env,
1200 const ARMCPRegInfo *ri)
1201{
1202 return gt_counter_access(env, GTIMER_PHYS);
1203}
1204
1205static CPAccessResult gt_vct_access(CPUARMState *env,
1206 const ARMCPRegInfo *ri)
1207{
1208 return gt_counter_access(env, GTIMER_VIRT);
1209}
1210
1211static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1212{
1213 return gt_timer_access(env, GTIMER_PHYS);
1214}
1215
1216static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1217{
1218 return gt_timer_access(env, GTIMER_VIRT);
1219}
1220
b4d3978c
PM
1221static CPAccessResult gt_stimer_access(CPUARMState *env,
1222 const ARMCPRegInfo *ri)
1223{
1224 /* The AArch64 register view of the secure physical timer is
1225 * always accessible from EL3, and configurably accessible from
1226 * Secure EL1.
1227 */
1228 switch (arm_current_el(env)) {
1229 case 1:
1230 if (!arm_is_secure(env)) {
1231 return CP_ACCESS_TRAP;
1232 }
1233 if (!(env->cp15.scr_el3 & SCR_ST)) {
1234 return CP_ACCESS_TRAP_EL3;
1235 }
1236 return CP_ACCESS_OK;
1237 case 0:
1238 case 2:
1239 return CP_ACCESS_TRAP;
1240 case 3:
1241 return CP_ACCESS_OK;
1242 default:
1243 g_assert_not_reached();
1244 }
1245}
1246
55d284af
PM
1247static uint64_t gt_get_countervalue(CPUARMState *env)
1248{
bc72ad67 1249 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1250}
1251
1252static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1253{
1254 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1255
1256 if (gt->ctl & 1) {
1257 /* Timer enabled: calculate and set current ISTATUS, irq, and
1258 * reset timer to when ISTATUS next has to change
1259 */
edac4d8a
EI
1260 uint64_t offset = timeridx == GTIMER_VIRT ?
1261 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1262 uint64_t count = gt_get_countervalue(&cpu->env);
1263 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1264 int istatus = count - offset >= gt->cval;
55d284af
PM
1265 uint64_t nexttick;
1266
1267 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1268 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1269 (istatus && !(gt->ctl & 2)));
1270 if (istatus) {
1271 /* Next transition is when count rolls back over to zero */
1272 nexttick = UINT64_MAX;
1273 } else {
1274 /* Next transition is when we hit cval */
edac4d8a 1275 nexttick = gt->cval + offset;
55d284af
PM
1276 }
1277 /* Note that the desired next expiry time might be beyond the
1278 * signed-64-bit range of a QEMUTimer -- in this case we just
1279 * set the timer for as far in the future as possible. When the
1280 * timer expires we will reset the timer for any remaining period.
1281 */
1282 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1283 nexttick = INT64_MAX / GTIMER_SCALE;
1284 }
bc72ad67 1285 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af
PM
1286 } else {
1287 /* Timer disabled: ISTATUS and timer output always clear */
1288 gt->ctl &= ~4;
1289 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1290 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1291 }
1292}
1293
0e3eca4c
EI
1294static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1295 int timeridx)
55d284af
PM
1296{
1297 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1298
bc72ad67 1299 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1300}
1301
c4241c7d 1302static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1303{
c4241c7d 1304 return gt_get_countervalue(env);
55d284af
PM
1305}
1306
edac4d8a
EI
1307static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1308{
1309 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1310}
1311
c4241c7d 1312static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1313 int timeridx,
c4241c7d 1314 uint64_t value)
55d284af 1315{
55d284af
PM
1316 env->cp15.c14_timer[timeridx].cval = value;
1317 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1318}
c4241c7d 1319
0e3eca4c
EI
1320static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1321 int timeridx)
55d284af 1322{
edac4d8a 1323 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1324
c4241c7d 1325 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1326 (gt_get_countervalue(env) - offset));
55d284af
PM
1327}
1328
c4241c7d 1329static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1330 int timeridx,
c4241c7d 1331 uint64_t value)
55d284af 1332{
edac4d8a 1333 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1334
edac4d8a 1335 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1336 sextract64(value, 0, 32);
55d284af 1337 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1338}
1339
c4241c7d 1340static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1341 int timeridx,
c4241c7d 1342 uint64_t value)
55d284af
PM
1343{
1344 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1345 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1346
d3afacc7 1347 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1348 if ((oldval ^ value) & 1) {
1349 /* Enable toggled */
1350 gt_recalc_timer(cpu, timeridx);
d3afacc7 1351 } else if ((oldval ^ value) & 2) {
55d284af
PM
1352 /* IMASK toggled: don't need to recalculate,
1353 * just set the interrupt line based on ISTATUS
1354 */
1355 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
d3afacc7 1356 (oldval & 4) && !(value & 2));
55d284af 1357 }
55d284af
PM
1358}
1359
0e3eca4c
EI
1360static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1361{
1362 gt_timer_reset(env, ri, GTIMER_PHYS);
1363}
1364
1365static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1366 uint64_t value)
1367{
1368 gt_cval_write(env, ri, GTIMER_PHYS, value);
1369}
1370
1371static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1372{
1373 return gt_tval_read(env, ri, GTIMER_PHYS);
1374}
1375
1376static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1377 uint64_t value)
1378{
1379 gt_tval_write(env, ri, GTIMER_PHYS, value);
1380}
1381
1382static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1383 uint64_t value)
1384{
1385 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1386}
1387
1388static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1389{
1390 gt_timer_reset(env, ri, GTIMER_VIRT);
1391}
1392
1393static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1394 uint64_t value)
1395{
1396 gt_cval_write(env, ri, GTIMER_VIRT, value);
1397}
1398
1399static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1400{
1401 return gt_tval_read(env, ri, GTIMER_VIRT);
1402}
1403
1404static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1405 uint64_t value)
1406{
1407 gt_tval_write(env, ri, GTIMER_VIRT, value);
1408}
1409
1410static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1411 uint64_t value)
1412{
1413 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1414}
1415
edac4d8a
EI
1416static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1417 uint64_t value)
1418{
1419 ARMCPU *cpu = arm_env_get_cpu(env);
1420
1421 raw_write(env, ri, value);
1422 gt_recalc_timer(cpu, GTIMER_VIRT);
1423}
1424
b0e66d95
EI
1425static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1426{
1427 gt_timer_reset(env, ri, GTIMER_HYP);
1428}
1429
1430static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1431 uint64_t value)
1432{
1433 gt_cval_write(env, ri, GTIMER_HYP, value);
1434}
1435
1436static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1437{
1438 return gt_tval_read(env, ri, GTIMER_HYP);
1439}
1440
1441static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1442 uint64_t value)
1443{
1444 gt_tval_write(env, ri, GTIMER_HYP, value);
1445}
1446
1447static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1448 uint64_t value)
1449{
1450 gt_ctl_write(env, ri, GTIMER_HYP, value);
1451}
1452
b4d3978c
PM
1453static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1454{
1455 gt_timer_reset(env, ri, GTIMER_SEC);
1456}
1457
1458static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1459 uint64_t value)
1460{
1461 gt_cval_write(env, ri, GTIMER_SEC, value);
1462}
1463
1464static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1465{
1466 return gt_tval_read(env, ri, GTIMER_SEC);
1467}
1468
1469static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1470 uint64_t value)
1471{
1472 gt_tval_write(env, ri, GTIMER_SEC, value);
1473}
1474
1475static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1476 uint64_t value)
1477{
1478 gt_ctl_write(env, ri, GTIMER_SEC, value);
1479}
1480
55d284af
PM
1481void arm_gt_ptimer_cb(void *opaque)
1482{
1483 ARMCPU *cpu = opaque;
1484
1485 gt_recalc_timer(cpu, GTIMER_PHYS);
1486}
1487
1488void arm_gt_vtimer_cb(void *opaque)
1489{
1490 ARMCPU *cpu = opaque;
1491
1492 gt_recalc_timer(cpu, GTIMER_VIRT);
1493}
1494
b0e66d95
EI
1495void arm_gt_htimer_cb(void *opaque)
1496{
1497 ARMCPU *cpu = opaque;
1498
1499 gt_recalc_timer(cpu, GTIMER_HYP);
1500}
1501
b4d3978c
PM
1502void arm_gt_stimer_cb(void *opaque)
1503{
1504 ARMCPU *cpu = opaque;
1505
1506 gt_recalc_timer(cpu, GTIMER_SEC);
1507}
1508
55d284af
PM
1509static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1510 /* Note that CNTFRQ is purely reads-as-written for the benefit
1511 * of software; writing it doesn't actually change the timer frequency.
1512 * Our reset value matches the fixed frequency we implement the timer at.
1513 */
1514 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1515 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1516 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1517 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1518 },
1519 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1520 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1521 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1522 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1523 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1524 },
1525 /* overall control: mostly access permissions */
a7adc4b7
PM
1526 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1527 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1528 .access = PL1_RW,
1529 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1530 .resetvalue = 0,
1531 },
1532 /* per-timer control */
1533 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1534 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1535 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1536 .accessfn = gt_ptimer_access,
1537 .fieldoffset = offsetoflow32(CPUARMState,
1538 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1539 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1540 },
9ff9dd3c
PM
1541 { .name = "CNTP_CTL(S)",
1542 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1543 .secure = ARM_CP_SECSTATE_S,
1544 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1545 .accessfn = gt_ptimer_access,
1546 .fieldoffset = offsetoflow32(CPUARMState,
1547 cp15.c14_timer[GTIMER_SEC].ctl),
1548 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1549 },
a7adc4b7
PM
1550 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1551 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1552 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1553 .accessfn = gt_ptimer_access,
55d284af
PM
1554 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1555 .resetvalue = 0,
0e3eca4c 1556 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1557 },
1558 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1559 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1560 .accessfn = gt_vtimer_access,
1561 .fieldoffset = offsetoflow32(CPUARMState,
1562 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1563 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1564 },
1565 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1566 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1567 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1568 .accessfn = gt_vtimer_access,
55d284af
PM
1569 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1570 .resetvalue = 0,
0e3eca4c 1571 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1572 },
1573 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1574 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1575 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1576 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1577 .accessfn = gt_ptimer_access,
0e3eca4c 1578 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1579 },
9ff9dd3c
PM
1580 { .name = "CNTP_TVAL(S)",
1581 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1582 .secure = ARM_CP_SECSTATE_S,
1583 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1584 .accessfn = gt_ptimer_access,
1585 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1586 },
a7adc4b7
PM
1587 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1588 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1589 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1590 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1591 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1592 },
55d284af 1593 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1594 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1595 .accessfn = gt_vtimer_access,
0e3eca4c 1596 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1597 },
a7adc4b7
PM
1598 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1599 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1600 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1601 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1602 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 1603 },
55d284af
PM
1604 /* The counter itself */
1605 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 1606 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1607 .accessfn = gt_pct_access,
a7adc4b7
PM
1608 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1609 },
1610 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1611 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 1612 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1613 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
1614 },
1615 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 1616 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1617 .accessfn = gt_vct_access,
edac4d8a 1618 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
1619 },
1620 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1621 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 1622 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1623 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
1624 },
1625 /* Comparison value, indicating when the timer goes off */
1626 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 1627 .secure = ARM_CP_SECSTATE_NS,
55d284af 1628 .access = PL1_RW | PL0_R,
7a0e58fa 1629 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1630 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 1631 .accessfn = gt_ptimer_access,
0e3eca4c 1632 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 1633 },
9ff9dd3c
PM
1634 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1635 .secure = ARM_CP_SECSTATE_S,
1636 .access = PL1_RW | PL0_R,
1637 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1638 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1639 .accessfn = gt_ptimer_access,
1640 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1641 },
a7adc4b7
PM
1642 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1643 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1644 .access = PL1_RW | PL0_R,
1645 .type = ARM_CP_IO,
1646 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 1647 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 1648 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
1649 },
1650 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1651 .access = PL1_RW | PL0_R,
7a0e58fa 1652 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1653 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 1654 .accessfn = gt_vtimer_access,
0e3eca4c 1655 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
1656 },
1657 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1658 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1659 .access = PL1_RW | PL0_R,
1660 .type = ARM_CP_IO,
1661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1662 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 1663 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 1664 },
b4d3978c
PM
1665 /* Secure timer -- this is actually restricted to only EL3
1666 * and configurably Secure-EL1 via the accessfn.
1667 */
1668 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1669 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1670 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1671 .accessfn = gt_stimer_access,
1672 .readfn = gt_sec_tval_read,
1673 .writefn = gt_sec_tval_write,
1674 .resetfn = gt_sec_timer_reset,
1675 },
1676 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1677 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1678 .type = ARM_CP_IO, .access = PL1_RW,
1679 .accessfn = gt_stimer_access,
1680 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1681 .resetvalue = 0,
1682 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1683 },
1684 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1685 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1686 .type = ARM_CP_IO, .access = PL1_RW,
1687 .accessfn = gt_stimer_access,
1688 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1689 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1690 },
55d284af
PM
1691 REGINFO_SENTINEL
1692};
1693
1694#else
1695/* In user-mode none of the generic timer registers are accessible,
bc72ad67 1696 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
1697 * so instead just don't register any of them.
1698 */
6cc7a3ae 1699static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
1700 REGINFO_SENTINEL
1701};
1702
55d284af
PM
1703#endif
1704
c4241c7d 1705static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1706{
891a2fe7 1707 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 1708 raw_write(env, ri, value);
891a2fe7 1709 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 1710 raw_write(env, ri, value & 0xfffff6ff);
4a501606 1711 } else {
8d5c773e 1712 raw_write(env, ri, value & 0xfffff1ff);
4a501606 1713 }
4a501606
PM
1714}
1715
1716#ifndef CONFIG_USER_ONLY
1717/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 1718
92611c00
PM
1719static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1720{
1721 if (ri->opc2 & 4) {
87562e4f
PM
1722 /* The ATS12NSO* operations must trap to EL3 if executed in
1723 * Secure EL1 (which can only happen if EL3 is AArch64).
1724 * They are simply UNDEF if executed from NS EL1.
1725 * They function normally from EL2 or EL3.
92611c00 1726 */
87562e4f
PM
1727 if (arm_current_el(env) == 1) {
1728 if (arm_is_secure_below_el3(env)) {
1729 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1730 }
1731 return CP_ACCESS_TRAP_UNCATEGORIZED;
1732 }
92611c00
PM
1733 }
1734 return CP_ACCESS_OK;
1735}
1736
060e8a48 1737static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
d3649702 1738 int access_type, ARMMMUIdx mmu_idx)
4a501606 1739{
a8170e5e 1740 hwaddr phys_addr;
4a501606
PM
1741 target_ulong page_size;
1742 int prot;
b7cc4e82
PC
1743 uint32_t fsr;
1744 bool ret;
01c097f7 1745 uint64_t par64;
8bf5b6a9 1746 MemTxAttrs attrs = {};
4a501606 1747
d3649702 1748 ret = get_phys_addr(env, value, access_type, mmu_idx,
b7cc4e82 1749 &phys_addr, &attrs, &prot, &page_size, &fsr);
702a9357 1750 if (extended_addresses_enabled(env)) {
b7cc4e82 1751 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
1752 * translation table format, but with WnR always clear.
1753 * Convert it to a 64-bit PAR.
1754 */
01c097f7 1755 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 1756 if (!ret) {
702a9357 1757 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
1758 if (!attrs.secure) {
1759 par64 |= (1 << 9); /* NS */
1760 }
702a9357 1761 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 1762 } else {
702a9357 1763 par64 |= 1; /* F */
b7cc4e82 1764 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
1765 /* Note that S2WLK and FSTAGE are always zero, because we don't
1766 * implement virtualization and therefore there can't be a stage 2
1767 * fault.
1768 */
4a501606
PM
1769 }
1770 } else {
b7cc4e82 1771 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
1772 * translation table format (with WnR always clear).
1773 * Convert it to a 32-bit PAR.
1774 */
b7cc4e82 1775 if (!ret) {
702a9357
PM
1776 /* We do not set any attribute bits in the PAR */
1777 if (page_size == (1 << 24)
1778 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 1779 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 1780 } else {
01c097f7 1781 par64 = phys_addr & 0xfffff000;
702a9357 1782 }
8bf5b6a9
PM
1783 if (!attrs.secure) {
1784 par64 |= (1 << 9); /* NS */
1785 }
702a9357 1786 } else {
b7cc4e82
PC
1787 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1788 ((fsr & 0xf) << 1) | 1;
702a9357 1789 }
4a501606 1790 }
060e8a48
PM
1791 return par64;
1792}
1793
1794static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1795{
060e8a48
PM
1796 int access_type = ri->opc2 & 1;
1797 uint64_t par64;
d3649702
PM
1798 ARMMMUIdx mmu_idx;
1799 int el = arm_current_el(env);
1800 bool secure = arm_is_secure_below_el3(env);
060e8a48 1801
d3649702
PM
1802 switch (ri->opc2 & 6) {
1803 case 0:
1804 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1805 switch (el) {
1806 case 3:
1807 mmu_idx = ARMMMUIdx_S1E3;
1808 break;
1809 case 2:
1810 mmu_idx = ARMMMUIdx_S1NSE1;
1811 break;
1812 case 1:
1813 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1814 break;
1815 default:
1816 g_assert_not_reached();
1817 }
1818 break;
1819 case 2:
1820 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1821 switch (el) {
1822 case 3:
1823 mmu_idx = ARMMMUIdx_S1SE0;
1824 break;
1825 case 2:
1826 mmu_idx = ARMMMUIdx_S1NSE0;
1827 break;
1828 case 1:
1829 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1830 break;
1831 default:
1832 g_assert_not_reached();
1833 }
1834 break;
1835 case 4:
1836 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1837 mmu_idx = ARMMMUIdx_S12NSE1;
1838 break;
1839 case 6:
1840 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1841 mmu_idx = ARMMMUIdx_S12NSE0;
1842 break;
1843 default:
1844 g_assert_not_reached();
1845 }
1846
1847 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
1848
1849 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 1850}
060e8a48 1851
14db7fe0
PM
1852static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1854{
1855 int access_type = ri->opc2 & 1;
1856 uint64_t par64;
1857
1858 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
1859
1860 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1861}
1862
2a47df95
PM
1863static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
1864{
1865 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
1866 return CP_ACCESS_TRAP;
1867 }
1868 return CP_ACCESS_OK;
1869}
1870
060e8a48
PM
1871static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1872 uint64_t value)
1873{
060e8a48 1874 int access_type = ri->opc2 & 1;
d3649702
PM
1875 ARMMMUIdx mmu_idx;
1876 int secure = arm_is_secure_below_el3(env);
1877
1878 switch (ri->opc2 & 6) {
1879 case 0:
1880 switch (ri->opc1) {
1881 case 0: /* AT S1E1R, AT S1E1W */
1882 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1883 break;
1884 case 4: /* AT S1E2R, AT S1E2W */
1885 mmu_idx = ARMMMUIdx_S1E2;
1886 break;
1887 case 6: /* AT S1E3R, AT S1E3W */
1888 mmu_idx = ARMMMUIdx_S1E3;
1889 break;
1890 default:
1891 g_assert_not_reached();
1892 }
1893 break;
1894 case 2: /* AT S1E0R, AT S1E0W */
1895 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1896 break;
1897 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 1898 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
1899 break;
1900 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 1901 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
1902 break;
1903 default:
1904 g_assert_not_reached();
1905 }
060e8a48 1906
d3649702 1907 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 1908}
4a501606
PM
1909#endif
1910
1911static const ARMCPRegInfo vapa_cp_reginfo[] = {
1912 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1913 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
1914 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1915 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
1916 .writefn = par_write },
1917#ifndef CONFIG_USER_ONLY
87562e4f 1918 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 1919 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 1920 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 1921 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
1922#endif
1923 REGINFO_SENTINEL
1924};
1925
18032bec
PM
1926/* Return basic MPU access permission bits. */
1927static uint32_t simple_mpu_ap_bits(uint32_t val)
1928{
1929 uint32_t ret;
1930 uint32_t mask;
1931 int i;
1932 ret = 0;
1933 mask = 3;
1934 for (i = 0; i < 16; i += 2) {
1935 ret |= (val >> i) & mask;
1936 mask <<= 2;
1937 }
1938 return ret;
1939}
1940
1941/* Pad basic MPU access permission bits to extended format. */
1942static uint32_t extended_mpu_ap_bits(uint32_t val)
1943{
1944 uint32_t ret;
1945 uint32_t mask;
1946 int i;
1947 ret = 0;
1948 mask = 3;
1949 for (i = 0; i < 16; i += 2) {
1950 ret |= (val & mask) << i;
1951 mask <<= 2;
1952 }
1953 return ret;
1954}
1955
c4241c7d
PM
1956static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1957 uint64_t value)
18032bec 1958{
7e09797c 1959 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
1960}
1961
c4241c7d 1962static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 1963{
7e09797c 1964 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
1965}
1966
c4241c7d
PM
1967static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1968 uint64_t value)
18032bec 1969{
7e09797c 1970 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
1971}
1972
c4241c7d 1973static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 1974{
7e09797c 1975 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
1976}
1977
6cb0b013
PC
1978static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979{
1980 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
1981
1982 if (!u32p) {
1983 return 0;
1984 }
1985
1986 u32p += env->cp15.c6_rgnr;
1987 return *u32p;
1988}
1989
1990static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
1991 uint64_t value)
1992{
1993 ARMCPU *cpu = arm_env_get_cpu(env);
1994 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
1995
1996 if (!u32p) {
1997 return;
1998 }
1999
2000 u32p += env->cp15.c6_rgnr;
2001 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2002 *u32p = value;
2003}
2004
2005static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2006{
2007 ARMCPU *cpu = arm_env_get_cpu(env);
2008 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2009
2010 if (!u32p) {
2011 return;
2012 }
2013
2014 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2015}
2016
2017static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2018 uint64_t value)
2019{
2020 ARMCPU *cpu = arm_env_get_cpu(env);
2021 uint32_t nrgs = cpu->pmsav7_dregion;
2022
2023 if (value >= nrgs) {
2024 qemu_log_mask(LOG_GUEST_ERROR,
2025 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2026 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2027 return;
2028 }
2029
2030 raw_write(env, ri, value);
2031}
2032
2033static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2034 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2035 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2036 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2037 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2038 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2039 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2040 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2041 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2042 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2043 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2044 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2045 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2046 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2047 .access = PL1_RW,
2048 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2049 .writefn = pmsav7_rgnr_write },
2050 REGINFO_SENTINEL
2051};
2052
18032bec
PM
2053static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2054 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2055 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2056 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2057 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2058 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2059 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2060 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2061 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2062 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2063 .access = PL1_RW,
7e09797c
PM
2064 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2065 .resetvalue = 0, },
18032bec
PM
2066 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2067 .access = PL1_RW,
7e09797c
PM
2068 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2069 .resetvalue = 0, },
ecce5c3c
PM
2070 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2071 .access = PL1_RW,
2072 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2073 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2074 .access = PL1_RW,
2075 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2076 /* Protection region base and size registers */
e508a92b
PM
2077 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2078 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2080 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2081 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2082 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2083 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2084 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2085 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2086 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2087 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2088 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2089 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2090 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2091 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2092 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2093 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2094 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2095 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2096 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2097 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2098 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2099 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2100 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2101 REGINFO_SENTINEL
2102};
2103
c4241c7d
PM
2104static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2105 uint64_t value)
ecce5c3c 2106{
11f136ee 2107 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2108 int maskshift = extract32(value, 0, 3);
2109
e389be16
FA
2110 if (!arm_feature(env, ARM_FEATURE_V8)) {
2111 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2112 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2113 * using Long-desciptor translation table format */
2114 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2115 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2116 /* In an implementation that includes the Security Extensions
2117 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2118 * Short-descriptor translation table format.
2119 */
2120 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2121 } else {
2122 value &= TTBCR_N;
2123 }
e42c4db3 2124 }
e389be16 2125
11f136ee
FA
2126 /* Update the masks corresponding to the the TCR bank being written
2127 * Note that we always calculate mask and base_mask, but
e42c4db3 2128 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2129 * for long-descriptor tables the TCR fields are used differently
2130 * and the mask and base_mask values are meaningless.
e42c4db3 2131 */
11f136ee
FA
2132 tcr->raw_tcr = value;
2133 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2134 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2135}
2136
c4241c7d
PM
2137static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2138 uint64_t value)
d4e6df63 2139{
00c8cb0a
AF
2140 ARMCPU *cpu = arm_env_get_cpu(env);
2141
d4e6df63
PM
2142 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2143 /* With LPAE the TTBCR could result in a change of ASID
2144 * via the TTBCR.A1 bit, so do a TLB flush.
2145 */
00c8cb0a 2146 tlb_flush(CPU(cpu), 1);
d4e6df63 2147 }
c4241c7d 2148 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2149}
2150
ecce5c3c
PM
2151static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2152{
11f136ee
FA
2153 TCR *tcr = raw_ptr(env, ri);
2154
2155 /* Reset both the TCR as well as the masks corresponding to the bank of
2156 * the TCR being reset.
2157 */
2158 tcr->raw_tcr = 0;
2159 tcr->mask = 0;
2160 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2161}
2162
cb2e37df
PM
2163static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2164 uint64_t value)
2165{
00c8cb0a 2166 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2167 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2168
cb2e37df 2169 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
00c8cb0a 2170 tlb_flush(CPU(cpu), 1);
11f136ee 2171 tcr->raw_tcr = value;
cb2e37df
PM
2172}
2173
327ed10f
PM
2174static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2175 uint64_t value)
2176{
2177 /* 64 bit accesses to the TTBRs can change the ASID and so we
2178 * must flush the TLB.
2179 */
2180 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2181 ARMCPU *cpu = arm_env_get_cpu(env);
2182
2183 tlb_flush(CPU(cpu), 1);
327ed10f
PM
2184 }
2185 raw_write(env, ri, value);
2186}
2187
8e5d75c9 2188static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2189 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2190 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2191 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2192 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2193 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2194 .access = PL1_RW, .resetvalue = 0,
2195 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2196 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2197 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2198 .access = PL1_RW, .resetvalue = 0,
2199 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2200 offsetof(CPUARMState, cp15.dfar_ns) } },
2201 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2202 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2203 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2204 .resetvalue = 0, },
2205 REGINFO_SENTINEL
2206};
2207
2208static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2209 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2210 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2211 .access = PL1_RW,
d81c519c 2212 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2213 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2214 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2215 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2216 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2217 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2218 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2219 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2220 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2221 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2222 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2223 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2224 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2225 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2226 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2227 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2228 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2229 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2230 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2231 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2232 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2233 REGINFO_SENTINEL
2234};
2235
c4241c7d
PM
2236static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2237 uint64_t value)
1047b9d7
PM
2238{
2239 env->cp15.c15_ticonfig = value & 0xe7;
2240 /* The OS_TYPE bit in this register changes the reported CPUID! */
2241 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2242 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2243}
2244
c4241c7d
PM
2245static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2246 uint64_t value)
1047b9d7
PM
2247{
2248 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2249}
2250
c4241c7d
PM
2251static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2252 uint64_t value)
1047b9d7
PM
2253{
2254 /* Wait-for-interrupt (deprecated) */
c3affe56 2255 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2256}
2257
c4241c7d
PM
2258static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2259 uint64_t value)
c4804214
PM
2260{
2261 /* On OMAP there are registers indicating the max/min index of dcache lines
2262 * containing a dirty line; cache flush operations have to reset these.
2263 */
2264 env->cp15.c15_i_max = 0x000;
2265 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2266}
2267
18032bec
PM
2268static const ARMCPRegInfo omap_cp_reginfo[] = {
2269 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2270 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2271 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2272 .resetvalue = 0, },
1047b9d7
PM
2273 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2274 .access = PL1_RW, .type = ARM_CP_NOP },
2275 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2276 .access = PL1_RW,
2277 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2278 .writefn = omap_ticonfig_write },
2279 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2280 .access = PL1_RW,
2281 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2282 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2283 .access = PL1_RW, .resetvalue = 0xff0,
2284 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2285 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2286 .access = PL1_RW,
2287 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2288 .writefn = omap_threadid_write },
2289 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2290 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2291 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2292 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2293 /* TODO: Peripheral port remap register:
2294 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2295 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2296 * when MMU is off.
2297 */
c4804214 2298 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2299 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2300 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2301 .writefn = omap_cachemaint_write },
34f90529
PM
2302 { .name = "C9", .cp = 15, .crn = 9,
2303 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2304 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2305 REGINFO_SENTINEL
2306};
2307
c4241c7d
PM
2308static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2309 uint64_t value)
1047b9d7 2310{
c0f4af17 2311 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2312}
2313
2314static const ARMCPRegInfo xscale_cp_reginfo[] = {
2315 { .name = "XSCALE_CPAR",
2316 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2317 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2318 .writefn = xscale_cpar_write, },
2771db27
PM
2319 { .name = "XSCALE_AUXCR",
2320 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2321 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2322 .resetvalue = 0, },
3b771579
PM
2323 /* XScale specific cache-lockdown: since we have no cache we NOP these
2324 * and hope the guest does not really rely on cache behaviour.
2325 */
2326 { .name = "XSCALE_LOCK_ICACHE_LINE",
2327 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2328 .access = PL1_W, .type = ARM_CP_NOP },
2329 { .name = "XSCALE_UNLOCK_ICACHE",
2330 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2331 .access = PL1_W, .type = ARM_CP_NOP },
2332 { .name = "XSCALE_DCACHE_LOCK",
2333 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2334 .access = PL1_RW, .type = ARM_CP_NOP },
2335 { .name = "XSCALE_UNLOCK_DCACHE",
2336 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2337 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2338 REGINFO_SENTINEL
2339};
2340
2341static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2342 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2343 * implementation of this implementation-defined space.
2344 * Ideally this should eventually disappear in favour of actually
2345 * implementing the correct behaviour for all cores.
2346 */
2347 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2348 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2349 .access = PL1_RW,
7a0e58fa 2350 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2351 .resetvalue = 0 },
18032bec
PM
2352 REGINFO_SENTINEL
2353};
2354
c4804214
PM
2355static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2356 /* Cache status: RAZ because we have no cache so it's always clean */
2357 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2358 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2359 .resetvalue = 0 },
c4804214
PM
2360 REGINFO_SENTINEL
2361};
2362
2363static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2364 /* We never have a a block transfer operation in progress */
2365 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2366 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2367 .resetvalue = 0 },
30b05bba
PM
2368 /* The cache ops themselves: these all NOP for QEMU */
2369 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2370 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2371 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2372 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2373 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2374 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2375 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2376 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2377 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2378 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2379 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2380 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2381 REGINFO_SENTINEL
2382};
2383
2384static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2385 /* The cache test-and-clean instructions always return (1 << 30)
2386 * to indicate that there are no dirty cache lines.
2387 */
2388 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2389 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2390 .resetvalue = (1 << 30) },
c4804214 2391 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2392 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2393 .resetvalue = (1 << 30) },
c4804214
PM
2394 REGINFO_SENTINEL
2395};
2396
34f90529
PM
2397static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2398 /* Ignore ReadBuffer accesses */
2399 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2400 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2401 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2402 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2403 REGINFO_SENTINEL
2404};
2405
c4241c7d 2406static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
81bdde9d 2407{
eb5e1d3c
PF
2408 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2409 uint64_t mpidr = cpu->mp_affinity;
2410
81bdde9d 2411 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2412 mpidr |= (1U << 31);
81bdde9d
PM
2413 /* Cores which are uniprocessor (non-coherent)
2414 * but still implement the MP extensions set
a8e81b31 2415 * bit 30. (For instance, Cortex-R5).
81bdde9d 2416 */
a8e81b31
PC
2417 if (cpu->mp_is_up) {
2418 mpidr |= (1u << 30);
2419 }
81bdde9d 2420 }
c4241c7d 2421 return mpidr;
81bdde9d
PM
2422}
2423
2424static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2425 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2426 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2427 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2428 REGINFO_SENTINEL
2429};
2430
7ac681cf 2431static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2432 /* NOP AMAIR0/1 */
b0fe2427
PM
2433 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2434 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2435 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2436 .resetvalue = 0 },
b0fe2427 2437 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2438 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2439 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2440 .resetvalue = 0 },
891a2fe7 2441 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2442 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2443 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2444 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2445 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2446 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2447 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2448 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2449 .writefn = vmsa_ttbr_write, },
891a2fe7 2450 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2451 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2453 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2454 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2455 REGINFO_SENTINEL
2456};
2457
c4241c7d 2458static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2459{
c4241c7d 2460 return vfp_get_fpcr(env);
b0d2b7d0
PM
2461}
2462
c4241c7d
PM
2463static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2464 uint64_t value)
b0d2b7d0
PM
2465{
2466 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2467}
2468
c4241c7d 2469static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2470{
c4241c7d 2471 return vfp_get_fpsr(env);
b0d2b7d0
PM
2472}
2473
c4241c7d
PM
2474static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475 uint64_t value)
b0d2b7d0
PM
2476{
2477 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2478}
2479
c2b820fe
PM
2480static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2481{
137feaa9 2482 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2483 return CP_ACCESS_TRAP;
2484 }
2485 return CP_ACCESS_OK;
2486}
2487
2488static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2489 uint64_t value)
2490{
2491 env->daif = value & PSTATE_DAIF;
2492}
2493
8af35c37
PM
2494static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2495 const ARMCPRegInfo *ri)
2496{
2497 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2498 * SCTLR_EL1.UCI is set.
2499 */
137feaa9 2500 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2501 return CP_ACCESS_TRAP;
2502 }
2503 return CP_ACCESS_OK;
2504}
2505
dbb1fb27
AB
2506/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2507 * Page D4-1736 (DDI0487A.b)
2508 */
2509
168aa23b
PM
2510static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511 uint64_t value)
2512{
2513 /* Invalidate by VA (AArch64 version) */
31b030d4 2514 ARMCPU *cpu = arm_env_get_cpu(env);
dbb1fb27
AB
2515 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2516
31b030d4 2517 tlb_flush_page(CPU(cpu), pageaddr);
168aa23b
PM
2518}
2519
2520static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
2521 uint64_t value)
2522{
2523 /* Invalidate by VA, all ASIDs (AArch64 version) */
31b030d4 2524 ARMCPU *cpu = arm_env_get_cpu(env);
dbb1fb27
AB
2525 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2526
31b030d4 2527 tlb_flush_page(CPU(cpu), pageaddr);
168aa23b
PM
2528}
2529
2530static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2531 uint64_t value)
2532{
2533 /* Invalidate by ASID (AArch64 version) */
00c8cb0a 2534 ARMCPU *cpu = arm_env_get_cpu(env);
168aa23b 2535 int asid = extract64(value, 48, 16);
00c8cb0a 2536 tlb_flush(CPU(cpu), asid == 0);
168aa23b
PM
2537}
2538
fa439fc5
PM
2539static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2540 uint64_t value)
2541{
2542 CPUState *other_cs;
2543 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2544
2545 CPU_FOREACH(other_cs) {
2546 tlb_flush_page(other_cs, pageaddr);
2547 }
2548}
2549
2550static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2551 uint64_t value)
2552{
2553 CPUState *other_cs;
2554 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2555
2556 CPU_FOREACH(other_cs) {
2557 tlb_flush_page(other_cs, pageaddr);
2558 }
2559}
2560
2561static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562 uint64_t value)
2563{
2564 CPUState *other_cs;
2565 int asid = extract64(value, 48, 16);
2566
2567 CPU_FOREACH(other_cs) {
2568 tlb_flush(other_cs, asid == 0);
2569 }
2570}
2571
aca3f40b
PM
2572static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2573{
2574 /* We don't implement EL2, so the only control on DC ZVA is the
2575 * bit in the SCTLR which can prohibit access for EL0.
2576 */
137feaa9 2577 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
2578 return CP_ACCESS_TRAP;
2579 }
2580 return CP_ACCESS_OK;
2581}
2582
2583static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2584{
2585 ARMCPU *cpu = arm_env_get_cpu(env);
2586 int dzp_bit = 1 << 4;
2587
2588 /* DZP indicates whether DC ZVA access is allowed */
14e5f106 2589 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
aca3f40b
PM
2590 dzp_bit = 0;
2591 }
2592 return cpu->dcz_blocksize | dzp_bit;
2593}
2594
f502cfc2
PM
2595static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2596{
cdcf1405 2597 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
2598 /* Access to SP_EL0 is undefined if it's being used as
2599 * the stack pointer.
2600 */
2601 return CP_ACCESS_TRAP_UNCATEGORIZED;
2602 }
2603 return CP_ACCESS_OK;
2604}
2605
2606static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2607{
2608 return env->pstate & PSTATE_SP;
2609}
2610
2611static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2612{
2613 update_spsel(env, val);
2614}
2615
137feaa9
FA
2616static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2617 uint64_t value)
2618{
2619 ARMCPU *cpu = arm_env_get_cpu(env);
2620
2621 if (raw_read(env, ri) == value) {
2622 /* Skip the TLB flush if nothing actually changed; Linux likes
2623 * to do a lot of pointless SCTLR writes.
2624 */
2625 return;
2626 }
2627
2628 raw_write(env, ri, value);
2629 /* ??? Lots of these bits are not implemented. */
2630 /* This may enable/disable the MMU, so do a TLB flush. */
2631 tlb_flush(CPU(cpu), 1);
2632}
2633
b0d2b7d0
PM
2634static const ARMCPRegInfo v8_cp_reginfo[] = {
2635 /* Minimal set of EL0-visible registers. This will need to be expanded
2636 * significantly for system emulation of AArch64 CPUs.
2637 */
2638 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2639 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2640 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
2641 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2642 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 2643 .type = ARM_CP_NO_RAW,
c2b820fe
PM
2644 .access = PL0_RW, .accessfn = aa64_daif_access,
2645 .fieldoffset = offsetof(CPUARMState, daif),
2646 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
2647 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2648 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2649 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2650 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2651 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2652 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
2653 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2654 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 2655 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
2656 .readfn = aa64_dczid_read },
2657 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2658 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2659 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2660#ifndef CONFIG_USER_ONLY
2661 /* Avoid overhead of an access check that always passes in user-mode */
2662 .accessfn = aa64_zva_access,
2663#endif
2664 },
0eef9d98
PM
2665 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2666 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2667 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
2668 /* Cache ops: all NOPs since we don't emulate caches */
2669 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2670 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2671 .access = PL1_W, .type = ARM_CP_NOP },
2672 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2673 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2674 .access = PL1_W, .type = ARM_CP_NOP },
2675 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2676 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2677 .access = PL0_W, .type = ARM_CP_NOP,
2678 .accessfn = aa64_cacheop_access },
2679 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2680 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2681 .access = PL1_W, .type = ARM_CP_NOP },
2682 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2683 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2684 .access = PL1_W, .type = ARM_CP_NOP },
2685 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2686 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2687 .access = PL0_W, .type = ARM_CP_NOP,
2688 .accessfn = aa64_cacheop_access },
2689 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2690 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2691 .access = PL1_W, .type = ARM_CP_NOP },
2692 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2693 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2694 .access = PL0_W, .type = ARM_CP_NOP,
2695 .accessfn = aa64_cacheop_access },
2696 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2697 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2698 .access = PL0_W, .type = ARM_CP_NOP,
2699 .accessfn = aa64_cacheop_access },
2700 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2701 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2702 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b 2703 /* TLBI operations */
bdb9e2d6
EI
2704 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
2705 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
2706 .access = PL2_W, .type = ARM_CP_NO_RAW,
2707 .writefn = tlbiall_write },
2708 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
2709 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
2710 .access = PL2_W, .type = ARM_CP_NO_RAW,
2a6332d9 2711 .writefn = tlbiall_is_write },
168aa23b 2712 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2713 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 2714 .access = PL1_W, .type = ARM_CP_NO_RAW,
fa439fc5 2715 .writefn = tlbiall_is_write },
168aa23b 2716 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2717 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 2718 .access = PL1_W, .type = ARM_CP_NO_RAW,
fa439fc5 2719 .writefn = tlbi_aa64_va_is_write },
168aa23b 2720 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2721 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 2722 .access = PL1_W, .type = ARM_CP_NO_RAW,
fa439fc5 2723 .writefn = tlbi_aa64_asid_is_write },
168aa23b 2724 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2725 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 2726 .access = PL1_W, .type = ARM_CP_NO_RAW,
fa439fc5 2727 .writefn = tlbi_aa64_vaa_is_write },
168aa23b 2728 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2729 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 2730 .access = PL1_W, .type = ARM_CP_NO_RAW,
fa439fc5 2731 .writefn = tlbi_aa64_va_is_write },
168aa23b 2732 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2733 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 2734 .access = PL1_W, .type = ARM_CP_NO_RAW,
fa439fc5 2735 .writefn = tlbi_aa64_vaa_is_write },
168aa23b 2736 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2737 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 2738 .access = PL1_W, .type = ARM_CP_NO_RAW,
168aa23b
PM
2739 .writefn = tlbiall_write },
2740 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2741 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 2742 .access = PL1_W, .type = ARM_CP_NO_RAW,
168aa23b
PM
2743 .writefn = tlbi_aa64_va_write },
2744 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2745 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 2746 .access = PL1_W, .type = ARM_CP_NO_RAW,
168aa23b
PM
2747 .writefn = tlbi_aa64_asid_write },
2748 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2749 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 2750 .access = PL1_W, .type = ARM_CP_NO_RAW,
168aa23b
PM
2751 .writefn = tlbi_aa64_vaa_write },
2752 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2753 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 2754 .access = PL1_W, .type = ARM_CP_NO_RAW,
168aa23b
PM
2755 .writefn = tlbi_aa64_va_write },
2756 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2757 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 2758 .access = PL1_W, .type = ARM_CP_NO_RAW,
168aa23b 2759 .writefn = tlbi_aa64_vaa_write },
19525524
PM
2760#ifndef CONFIG_USER_ONLY
2761 /* 64 bit address translation operations */
2762 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2763 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 2764 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
2765 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2766 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 2767 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
2768 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 2770 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
2771 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2772 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 2773 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95
PM
2774 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
2775 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 4,
2776 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2777 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
2778 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 5,
2779 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2780 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
2781 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
2782 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2783 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
2784 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 7,
2785 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2786 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
2787 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
2788 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
2789 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2790 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
2791 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
2792 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524 2793#endif
995939a6 2794 /* TLB invalidate last level of translation table walk */
9449fdf6 2795 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 2796 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 2797 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 2798 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 2799 .writefn = tlbimvaa_is_write },
9449fdf6 2800 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 2801 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 2802 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 2803 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
9449fdf6
PM
2804 /* 32 bit cache operations */
2805 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2806 .type = ARM_CP_NOP, .access = PL1_W },
2807 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2808 .type = ARM_CP_NOP, .access = PL1_W },
2809 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2810 .type = ARM_CP_NOP, .access = PL1_W },
2811 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2812 .type = ARM_CP_NOP, .access = PL1_W },
2813 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2814 .type = ARM_CP_NOP, .access = PL1_W },
2815 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2816 .type = ARM_CP_NOP, .access = PL1_W },
2817 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2818 .type = ARM_CP_NOP, .access = PL1_W },
2819 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2820 .type = ARM_CP_NOP, .access = PL1_W },
2821 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2822 .type = ARM_CP_NOP, .access = PL1_W },
2823 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2824 .type = ARM_CP_NOP, .access = PL1_W },
2825 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2826 .type = ARM_CP_NOP, .access = PL1_W },
2827 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2828 .type = ARM_CP_NOP, .access = PL1_W },
2829 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2830 .type = ARM_CP_NOP, .access = PL1_W },
2831 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
2832 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2833 .access = PL1_RW, .resetvalue = 0,
2834 .writefn = dacr_write, .raw_writefn = raw_write,
2835 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
2836 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 2837 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 2838 .type = ARM_CP_ALIAS,
a0618a19 2839 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
2840 .access = PL1_RW,
2841 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 2842 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 2843 .type = ARM_CP_ALIAS,
a65f1de9 2844 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
7847f9ea 2845 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
f502cfc2
PM
2846 /* We rely on the access checks not allowing the guest to write to the
2847 * state field when SPSel indicates that it's being used as the stack
2848 * pointer.
2849 */
2850 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2851 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2852 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 2853 .type = ARM_CP_ALIAS,
f502cfc2 2854 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
2855 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
2856 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 2857 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 2858 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
2859 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2860 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 2861 .type = ARM_CP_NO_RAW,
f502cfc2 2862 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
b0d2b7d0
PM
2863 REGINFO_SENTINEL
2864};
2865
d42e3c26 2866/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 2867static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
2868 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2869 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2870 .access = PL2_RW,
2871 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 2872 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 2873 .type = ARM_CP_NO_RAW,
f149e3e8
EI
2874 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2875 .access = PL2_RW,
2876 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
2877 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
2878 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
2879 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
2880 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
2881 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
2882 .access = PL2_RW, .type = ARM_CP_CONST,
2883 .resetvalue = 0 },
2884 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2885 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
2886 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
2887 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
2888 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
2889 .access = PL2_RW, .type = ARM_CP_CONST,
2890 .resetvalue = 0 },
2891 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2892 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2893 .access = PL2_RW, .type = ARM_CP_CONST,
2894 .resetvalue = 0 },
37cd6c24
PM
2895 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
2896 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
2897 .access = PL2_RW, .type = ARM_CP_CONST,
2898 .resetvalue = 0 },
2899 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
2900 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
2901 .access = PL2_RW, .type = ARM_CP_CONST,
2902 .resetvalue = 0 },
06ec4c8c
EI
2903 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
2904 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
2905 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
2906 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
2907 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
2908 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
2909 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
2910 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
2911 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
2912 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
2913 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
2914 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2915 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
2916 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
2917 .resetvalue = 0 },
0b6440af
EI
2918 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
2919 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
2920 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
2921 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
2922 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
2923 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2924 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
2925 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
2926 .resetvalue = 0 },
b0e66d95
EI
2927 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
2928 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
2929 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2930 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
2931 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
2932 .resetvalue = 0 },
2933 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
2934 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
2935 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2936 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
2937 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
2938 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
2939 REGINFO_SENTINEL
2940};
2941
f149e3e8
EI
2942static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2943{
2944 ARMCPU *cpu = arm_env_get_cpu(env);
2945 uint64_t valid_mask = HCR_MASK;
2946
2947 if (arm_feature(env, ARM_FEATURE_EL3)) {
2948 valid_mask &= ~HCR_HCD;
2949 } else {
2950 valid_mask &= ~HCR_TSC;
2951 }
2952
2953 /* Clear RES0 bits. */
2954 value &= valid_mask;
2955
2956 /* These bits change the MMU setup:
2957 * HCR_VM enables stage 2 translation
2958 * HCR_PTW forbids certain page-table setups
2959 * HCR_DC Disables stage1 and enables stage2 translation
2960 */
2961 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
2962 tlb_flush(CPU(cpu), 1);
2963 }
2964 raw_write(env, ri, value);
2965}
2966
4771cd01 2967static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
2968 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2969 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2970 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
2971 .writefn = hcr_write },
0c17d68c
FA
2972 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
2973 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
2974 .access = PL2_RW, .resetvalue = 0,
2975 .writefn = dacr_write, .raw_writefn = raw_write,
2976 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3b685ba7 2977 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 2978 .type = ARM_CP_ALIAS,
3b685ba7
EI
2979 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2980 .access = PL2_RW,
2981 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 2982 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 2983 .type = ARM_CP_ALIAS,
f2c30f42
EI
2984 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2985 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
88ca1c2d
FA
2986 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
2987 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
2988 .access = PL2_RW, .resetvalue = 0,
2989 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
63b60551
EI
2990 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2991 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2992 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 2993 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 2994 .type = ARM_CP_ALIAS,
3b685ba7
EI
2995 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2996 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
d42e3c26
EI
2997 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2998 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2999 .access = PL2_RW, .writefn = vbar_write,
3000 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3001 .resetvalue = 0 },
884b4dee
GB
3002 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3003 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3004 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3005 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3006 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3007 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3008 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3009 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3010 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3011 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3012 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3013 .resetvalue = 0 },
3014 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3015 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3016 .access = PL2_RW, .type = ARM_CP_ALIAS,
3017 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3018 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3019 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3020 .access = PL2_RW, .type = ARM_CP_CONST,
3021 .resetvalue = 0 },
3022 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3023 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3024 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3025 .access = PL2_RW, .type = ARM_CP_CONST,
3026 .resetvalue = 0 },
37cd6c24
PM
3027 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3028 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3029 .access = PL2_RW, .type = ARM_CP_CONST,
3030 .resetvalue = 0 },
3031 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3032 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3033 .access = PL2_RW, .type = ARM_CP_CONST,
3034 .resetvalue = 0 },
06ec4c8c
EI
3035 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3036 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3037 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3038 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3039 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
b9cb5323
EI
3040 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3041 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3042 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3043 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3044 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3045 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3046 .access = PL2_RW, .resetvalue = 0,
3047 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3048 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3049 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3050 .access = PL2_RW, .resetvalue = 0,
3051 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3052 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3053 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3054 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
51da9014
EI
3055 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3056 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3057 .type = ARM_CP_NO_RAW, .access = PL2_W,
3058 .writefn = tlbiall_write },
8742d49d
EI
3059 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3060 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3061 .type = ARM_CP_NO_RAW, .access = PL2_W,
3062 .writefn = tlbi_aa64_vaa_write },
3063 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3064 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3065 .type = ARM_CP_NO_RAW, .access = PL2_W,
3066 .writefn = tlbi_aa64_vaa_write },
edac4d8a 3067#ifndef CONFIG_USER_ONLY
2a47df95
PM
3068 /* Unlike the other EL2-related AT operations, these must
3069 * UNDEF from EL3 if EL2 is not implemented, which is why we
3070 * define them here rather than with the rest of the AT ops.
3071 */
3072 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3073 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3074 .access = PL2_W, .accessfn = at_s1e2_access,
3075 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3076 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3077 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3078 .access = PL2_W, .accessfn = at_s1e2_access,
3079 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3080 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3081 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3082 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3083 * to behave as if SCR.NS was 1.
3084 */
3085 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3086 .access = PL2_W,
3087 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3088 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3089 .access = PL2_W,
3090 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3091 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3092 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3093 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3094 * reset values as IMPDEF. We choose to reset to 3 to comply with
3095 * both ARMv7 and ARMv8.
3096 */
3097 .access = PL2_RW, .resetvalue = 3,
3098 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3099 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3100 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3101 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3102 .writefn = gt_cntvoff_write,
3103 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3104 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3105 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3106 .writefn = gt_cntvoff_write,
3107 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3108 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3109 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3110 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3111 .type = ARM_CP_IO, .access = PL2_RW,
3112 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3113 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3114 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3115 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3116 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3117 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3118 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3119 .type = ARM_CP_IO, .access = PL2_RW,
3120 .resetfn = gt_hyp_timer_reset,
3121 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3122 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3123 .type = ARM_CP_IO,
3124 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3125 .access = PL2_RW,
3126 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3127 .resetvalue = 0,
3128 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3129#endif
3b685ba7
EI
3130 REGINFO_SENTINEL
3131};
3132
60fb1a87
GB
3133static const ARMCPRegInfo el3_cp_reginfo[] = {
3134 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3135 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3136 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3137 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 3138 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87
GB
3139 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3140 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 3141 .writefn = scr_write },
60fb1a87
GB
3142 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3143 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3144 .access = PL3_RW, .resetvalue = 0,
3145 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3146 { .name = "SDER",
3147 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3148 .access = PL3_RW, .resetvalue = 0,
3149 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3150 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3151 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
3152 .access = PL3_W | PL1_R, .resetvalue = 0,
3153 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
3154 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3155 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
3156 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
137feaa9 3157 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
e46e1a74 3158 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
137feaa9
FA
3159 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3160 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3161 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
7dd8c9af
FA
3162 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3163 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3164 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3165 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
3166 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3167 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3168 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3169 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3170 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 3171 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3172 .type = ARM_CP_ALIAS,
81547d66
EI
3173 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3174 .access = PL3_RW,
3175 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 3176 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3177 .type = ARM_CP_ALIAS,
f2c30f42
EI
3178 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3179 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
3180 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3181 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3182 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 3183 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3184 .type = ARM_CP_ALIAS,
81547d66
EI
3185 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3186 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
a1ba125c
EI
3187 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3188 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3189 .access = PL3_RW, .writefn = vbar_write,
3190 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3191 .resetvalue = 0 },
c6f19164
GB
3192 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3193 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3194 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3195 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
3196 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3197 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3198 .access = PL3_RW, .resetvalue = 0,
3199 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
3200 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3201 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3202 .access = PL3_RW, .type = ARM_CP_CONST,
3203 .resetvalue = 0 },
37cd6c24
PM
3204 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3205 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3206 .access = PL3_RW, .type = ARM_CP_CONST,
3207 .resetvalue = 0 },
3208 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3209 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3210 .access = PL3_RW, .type = ARM_CP_CONST,
3211 .resetvalue = 0 },
0f1a3b24
FA
3212 REGINFO_SENTINEL
3213};
3214
7da845b0
PM
3215static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
3216{
3217 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3218 * but the AArch32 CTR has its own reginfo struct)
3219 */
137feaa9 3220 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
3221 return CP_ACCESS_TRAP;
3222 }
3223 return CP_ACCESS_OK;
3224}
3225
50300698 3226static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 3227 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
3228 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3229 * unlike DBGDRAR it is never accessible from EL0.
3230 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3231 * accessor.
50300698
PM
3232 */
3233 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3234 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
3235 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3236 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3237 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
50300698
PM
3238 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3239 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 3240 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
3241 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3242 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
0e5e8935
PM
3243 .access = PL1_RW,
3244 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3245 .resetvalue = 0 },
5e8b12ff
PM
3246 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3247 * We don't implement the configurable EL0 access.
3248 */
3249 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3250 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 3251 .type = ARM_CP_ALIAS,
5e8b12ff 3252 .access = PL1_R,
b061a82b 3253 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
50300698 3254 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
10aae104
PM
3255 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3256 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
50300698 3257 .access = PL1_W, .type = ARM_CP_NOP },
5e8b12ff
PM
3258 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3259 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3260 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3261 .access = PL1_RW, .type = ARM_CP_NOP },
3262 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3263 * implement vector catch debug events yet.
3264 */
3265 { .name = "DBGVCR",
3266 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3267 .access = PL1_RW, .type = ARM_CP_NOP },
50300698
PM
3268 REGINFO_SENTINEL
3269};
3270
3271static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3272 /* 64 bit access versions of the (dummy) debug registers */
3273 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3274 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3275 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3276 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3277 REGINFO_SENTINEL
3278};
3279
9ee98ce8
PM
3280void hw_watchpoint_update(ARMCPU *cpu, int n)
3281{
3282 CPUARMState *env = &cpu->env;
3283 vaddr len = 0;
3284 vaddr wvr = env->cp15.dbgwvr[n];
3285 uint64_t wcr = env->cp15.dbgwcr[n];
3286 int mask;
3287 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3288
3289 if (env->cpu_watchpoint[n]) {
3290 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3291 env->cpu_watchpoint[n] = NULL;
3292 }
3293
3294 if (!extract64(wcr, 0, 1)) {
3295 /* E bit clear : watchpoint disabled */
3296 return;
3297 }
3298
3299 switch (extract64(wcr, 3, 2)) {
3300 case 0:
3301 /* LSC 00 is reserved and must behave as if the wp is disabled */
3302 return;
3303 case 1:
3304 flags |= BP_MEM_READ;
3305 break;
3306 case 2:
3307 flags |= BP_MEM_WRITE;
3308 break;
3309 case 3:
3310 flags |= BP_MEM_ACCESS;
3311 break;
3312 }
3313
3314 /* Attempts to use both MASK and BAS fields simultaneously are
3315 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3316 * thus generating a watchpoint for every byte in the masked region.
3317 */
3318 mask = extract64(wcr, 24, 4);
3319 if (mask == 1 || mask == 2) {
3320 /* Reserved values of MASK; we must act as if the mask value was
3321 * some non-reserved value, or as if the watchpoint were disabled.
3322 * We choose the latter.
3323 */
3324 return;
3325 } else if (mask) {
3326 /* Watchpoint covers an aligned area up to 2GB in size */
3327 len = 1ULL << mask;
3328 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3329 * whether the watchpoint fires when the unmasked bits match; we opt
3330 * to generate the exceptions.
3331 */
3332 wvr &= ~(len - 1);
3333 } else {
3334 /* Watchpoint covers bytes defined by the byte address select bits */
3335 int bas = extract64(wcr, 5, 8);
3336 int basstart;
3337
3338 if (bas == 0) {
3339 /* This must act as if the watchpoint is disabled */
3340 return;
3341 }
3342
3343 if (extract64(wvr, 2, 1)) {
3344 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3345 * ignored, and BAS[3:0] define which bytes to watch.
3346 */
3347 bas &= 0xf;
3348 }
3349 /* The BAS bits are supposed to be programmed to indicate a contiguous
3350 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3351 * we fire for each byte in the word/doubleword addressed by the WVR.
3352 * We choose to ignore any non-zero bits after the first range of 1s.
3353 */
3354 basstart = ctz32(bas);
3355 len = cto32(bas >> basstart);
3356 wvr += basstart;
3357 }
3358
3359 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3360 &env->cpu_watchpoint[n]);
3361}
3362
3363void hw_watchpoint_update_all(ARMCPU *cpu)
3364{
3365 int i;
3366 CPUARMState *env = &cpu->env;
3367
3368 /* Completely clear out existing QEMU watchpoints and our array, to
3369 * avoid possible stale entries following migration load.
3370 */
3371 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3372 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3373
3374 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3375 hw_watchpoint_update(cpu, i);
3376 }
3377}
3378
3379static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3380 uint64_t value)
3381{
3382 ARMCPU *cpu = arm_env_get_cpu(env);
3383 int i = ri->crm;
3384
3385 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3386 * register reads and behaves as if values written are sign extended.
3387 * Bits [1:0] are RES0.
3388 */
3389 value = sextract64(value, 0, 49) & ~3ULL;
3390
3391 raw_write(env, ri, value);
3392 hw_watchpoint_update(cpu, i);
3393}
3394
3395static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3396 uint64_t value)
3397{
3398 ARMCPU *cpu = arm_env_get_cpu(env);
3399 int i = ri->crm;
3400
3401 raw_write(env, ri, value);
3402 hw_watchpoint_update(cpu, i);
3403}
3404
46747d15
PM
3405void hw_breakpoint_update(ARMCPU *cpu, int n)
3406{
3407 CPUARMState *env = &cpu->env;
3408 uint64_t bvr = env->cp15.dbgbvr[n];
3409 uint64_t bcr = env->cp15.dbgbcr[n];
3410 vaddr addr;
3411 int bt;
3412 int flags = BP_CPU;
3413
3414 if (env->cpu_breakpoint[n]) {
3415 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
3416 env->cpu_breakpoint[n] = NULL;
3417 }
3418
3419 if (!extract64(bcr, 0, 1)) {
3420 /* E bit clear : watchpoint disabled */
3421 return;
3422 }
3423
3424 bt = extract64(bcr, 20, 4);
3425
3426 switch (bt) {
3427 case 4: /* unlinked address mismatch (reserved if AArch64) */
3428 case 5: /* linked address mismatch (reserved if AArch64) */
3429 qemu_log_mask(LOG_UNIMP,
3430 "arm: address mismatch breakpoint types not implemented");
3431 return;
3432 case 0: /* unlinked address match */
3433 case 1: /* linked address match */
3434 {
3435 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3436 * we behave as if the register was sign extended. Bits [1:0] are
3437 * RES0. The BAS field is used to allow setting breakpoints on 16
3438 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3439 * a bp will fire if the addresses covered by the bp and the addresses
3440 * covered by the insn overlap but the insn doesn't start at the
3441 * start of the bp address range. We choose to require the insn and
3442 * the bp to have the same address. The constraints on writing to
3443 * BAS enforced in dbgbcr_write mean we have only four cases:
3444 * 0b0000 => no breakpoint
3445 * 0b0011 => breakpoint on addr
3446 * 0b1100 => breakpoint on addr + 2
3447 * 0b1111 => breakpoint on addr
3448 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3449 */
3450 int bas = extract64(bcr, 5, 4);
3451 addr = sextract64(bvr, 0, 49) & ~3ULL;
3452 if (bas == 0) {
3453 return;
3454 }
3455 if (bas == 0xc) {
3456 addr += 2;
3457 }
3458 break;
3459 }
3460 case 2: /* unlinked context ID match */
3461 case 8: /* unlinked VMID match (reserved if no EL2) */
3462 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3463 qemu_log_mask(LOG_UNIMP,
3464 "arm: unlinked context breakpoint types not implemented");
3465 return;
3466 case 9: /* linked VMID match (reserved if no EL2) */
3467 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3468 case 3: /* linked context ID match */
3469 default:
3470 /* We must generate no events for Linked context matches (unless
3471 * they are linked to by some other bp/wp, which is handled in
3472 * updates for the linking bp/wp). We choose to also generate no events
3473 * for reserved values.
3474 */
3475 return;
3476 }
3477
3478 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3479}
3480
3481void hw_breakpoint_update_all(ARMCPU *cpu)
3482{
3483 int i;
3484 CPUARMState *env = &cpu->env;
3485
3486 /* Completely clear out existing QEMU breakpoints and our array, to
3487 * avoid possible stale entries following migration load.
3488 */
3489 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3490 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3491
3492 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3493 hw_breakpoint_update(cpu, i);
3494 }
3495}
3496
3497static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3498 uint64_t value)
3499{
3500 ARMCPU *cpu = arm_env_get_cpu(env);
3501 int i = ri->crm;
3502
3503 raw_write(env, ri, value);
3504 hw_breakpoint_update(cpu, i);
3505}
3506
3507static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3508 uint64_t value)
3509{
3510 ARMCPU *cpu = arm_env_get_cpu(env);
3511 int i = ri->crm;
3512
3513 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3514 * copy of BAS[0].
3515 */
3516 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3517 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3518
3519 raw_write(env, ri, value);
3520 hw_breakpoint_update(cpu, i);
3521}
3522
50300698 3523static void define_debug_regs(ARMCPU *cpu)
0b45451e 3524{
50300698
PM
3525 /* Define v7 and v8 architectural debug registers.
3526 * These are just dummy implementations for now.
0b45451e
PM
3527 */
3528 int i;
3ff6fc91 3529 int wrps, brps, ctx_cmps;
48eb3ae6
PM
3530 ARMCPRegInfo dbgdidr = {
3531 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3532 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3533 };
3534
3ff6fc91 3535 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
3536 brps = extract32(cpu->dbgdidr, 24, 4);
3537 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
3538 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3539
3540 assert(ctx_cmps <= brps);
48eb3ae6
PM
3541
3542 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3543 * of the debug registers such as number of breakpoints;
3544 * check that if they both exist then they agree.
3545 */
3546 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3547 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3548 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 3549 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 3550 }
0b45451e 3551
48eb3ae6 3552 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
3553 define_arm_cp_regs(cpu, debug_cp_reginfo);
3554
3555 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3556 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3557 }
3558
48eb3ae6 3559 for (i = 0; i < brps + 1; i++) {
0b45451e 3560 ARMCPRegInfo dbgregs[] = {
10aae104
PM
3561 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3562 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
0b45451e 3563 .access = PL1_RW,
46747d15
PM
3564 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3565 .writefn = dbgbvr_write, .raw_writefn = raw_write
3566 },
10aae104
PM
3567 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3568 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
0b45451e 3569 .access = PL1_RW,
46747d15
PM
3570 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3571 .writefn = dbgbcr_write, .raw_writefn = raw_write
3572 },
48eb3ae6
PM
3573 REGINFO_SENTINEL
3574 };
3575 define_arm_cp_regs(cpu, dbgregs);
3576 }
3577
3578 for (i = 0; i < wrps + 1; i++) {
3579 ARMCPRegInfo dbgregs[] = {
10aae104
PM
3580 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3581 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
0b45451e 3582 .access = PL1_RW,
9ee98ce8
PM
3583 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3584 .writefn = dbgwvr_write, .raw_writefn = raw_write
3585 },
10aae104
PM
3586 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3587 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
0b45451e 3588 .access = PL1_RW,
9ee98ce8
PM
3589 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3590 .writefn = dbgwcr_write, .raw_writefn = raw_write
3591 },
3592 REGINFO_SENTINEL
0b45451e
PM
3593 };
3594 define_arm_cp_regs(cpu, dbgregs);
3595 }
3596}
3597
2ceb98c0
PM
3598void register_cp_regs_for_features(ARMCPU *cpu)
3599{
3600 /* Register all the coprocessor registers based on feature bits */
3601 CPUARMState *env = &cpu->env;
3602 if (arm_feature(env, ARM_FEATURE_M)) {
3603 /* M profile has no coprocessor registers */
3604 return;
3605 }
3606
e9aa6c21 3607 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
3608 if (!arm_feature(env, ARM_FEATURE_V8)) {
3609 /* Must go early as it is full of wildcards that may be
3610 * overridden by later definitions.
3611 */
3612 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3613 }
3614
7d57f408 3615 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
3616 /* The ID registers all have impdef reset values */
3617 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
3618 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3620 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3621 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
3622 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3624 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3625 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
3626 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3628 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3629 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
3630 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3632 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3633 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
3634 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3636 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3637 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
3638 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3640 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3641 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
3642 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3644 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3645 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
3646 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3648 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3649 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
3650 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3652 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3653 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
3654 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3656 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3657 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
3658 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3660 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3661 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
3662 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3663 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3664 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3665 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
3666 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3668 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 3669 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
3670 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3672 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
3673 .resetvalue = cpu->id_isar5 },
3674 /* 6..7 are as yet unallocated and must RAZ */
3675 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3676 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3677 .resetvalue = 0 },
3678 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3679 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3680 .resetvalue = 0 },
3681 REGINFO_SENTINEL
3682 };
3683 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
3684 define_arm_cp_regs(cpu, v6_cp_reginfo);
3685 } else {
3686 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3687 }
4d31c596
PM
3688 if (arm_feature(env, ARM_FEATURE_V6K)) {
3689 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3690 }
5e5cf9e3
PC
3691 if (arm_feature(env, ARM_FEATURE_V7MP) &&
3692 !arm_feature(env, ARM_FEATURE_MPU)) {
995939a6
PM
3693 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3694 }
e9aa6c21 3695 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 3696 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
3697 * field as main ID register, and we implement only the cycle
3698 * count register.
200ac0ef 3699 */
7c2cb42b 3700#ifndef CONFIG_USER_ONLY
200ac0ef
PM
3701 ARMCPRegInfo pmcr = {
3702 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 3703 .access = PL0_RW,
7a0e58fa 3704 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 3705 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
3706 .accessfn = pmreg_access, .writefn = pmcr_write,
3707 .raw_writefn = raw_write,
200ac0ef 3708 };
8521466b
AF
3709 ARMCPRegInfo pmcr64 = {
3710 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3711 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3712 .access = PL0_RW, .accessfn = pmreg_access,
3713 .type = ARM_CP_IO,
3714 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3715 .resetvalue = cpu->midr & 0xff000000,
3716 .writefn = pmcr_write, .raw_writefn = raw_write,
3717 };
7c2cb42b 3718 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 3719 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 3720#endif
776d4e5c 3721 ARMCPRegInfo clidr = {
7da845b0
PM
3722 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3723 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
3724 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3725 };
776d4e5c 3726 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 3727 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 3728 define_debug_regs(cpu);
7d57f408
PM
3729 } else {
3730 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 3731 }
b0d2b7d0 3732 if (arm_feature(env, ARM_FEATURE_V8)) {
e60cef86
PM
3733 /* AArch64 ID registers, which all have impdef reset values */
3734 ARMCPRegInfo v8_idregs[] = {
3735 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3737 .access = PL1_R, .type = ARM_CP_CONST,
3738 .resetvalue = cpu->id_aa64pfr0 },
3739 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3741 .access = PL1_R, .type = ARM_CP_CONST,
3742 .resetvalue = cpu->id_aa64pfr1},
3743 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3745 .access = PL1_R, .type = ARM_CP_CONST,
5d831be2 3746 /* We mask out the PMUVer field, because we don't currently
9225d739
PM
3747 * implement the PMU. Not advertising it prevents the guest
3748 * from trying to use it and getting UNDEFs on registers we
3749 * don't implement.
3750 */
3751 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
e60cef86
PM
3752 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3753 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3754 .access = PL1_R, .type = ARM_CP_CONST,
3755 .resetvalue = cpu->id_aa64dfr1 },
3756 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3758 .access = PL1_R, .type = ARM_CP_CONST,
3759 .resetvalue = cpu->id_aa64afr0 },
3760 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
3761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
3762 .access = PL1_R, .type = ARM_CP_CONST,
3763 .resetvalue = cpu->id_aa64afr1 },
3764 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
3765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
3766 .access = PL1_R, .type = ARM_CP_CONST,
3767 .resetvalue = cpu->id_aa64isar0 },
3768 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
3769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
3770 .access = PL1_R, .type = ARM_CP_CONST,
3771 .resetvalue = cpu->id_aa64isar1 },
3772 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
3773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3774 .access = PL1_R, .type = ARM_CP_CONST,
3775 .resetvalue = cpu->id_aa64mmfr0 },
3776 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
3777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
3778 .access = PL1_R, .type = ARM_CP_CONST,
3779 .resetvalue = cpu->id_aa64mmfr1 },
a50c0f51
PM
3780 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
3781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
3782 .access = PL1_R, .type = ARM_CP_CONST,
3783 .resetvalue = cpu->mvfr0 },
3784 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
3785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
3786 .access = PL1_R, .type = ARM_CP_CONST,
3787 .resetvalue = cpu->mvfr1 },
3788 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
3789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
3790 .access = PL1_R, .type = ARM_CP_CONST,
3791 .resetvalue = cpu->mvfr2 },
e60cef86
PM
3792 REGINFO_SENTINEL
3793 };
be8e8128
GB
3794 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3795 if (!arm_feature(env, ARM_FEATURE_EL3) &&
3796 !arm_feature(env, ARM_FEATURE_EL2)) {
3797 ARMCPRegInfo rvbar = {
3798 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
3799 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3800 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
3801 };
3802 define_one_arm_cp_reg(cpu, &rvbar);
3803 }
e60cef86 3804 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
3805 define_arm_cp_regs(cpu, v8_cp_reginfo);
3806 }
3b685ba7 3807 if (arm_feature(env, ARM_FEATURE_EL2)) {
4771cd01 3808 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
3809 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3810 if (!arm_feature(env, ARM_FEATURE_EL3)) {
3811 ARMCPRegInfo rvbar = {
3812 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
3813 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
3814 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
3815 };
3816 define_one_arm_cp_reg(cpu, &rvbar);
3817 }
d42e3c26
EI
3818 } else {
3819 /* If EL2 is missing but higher ELs are enabled, we need to
3820 * register the no_el2 reginfos.
3821 */
3822 if (arm_feature(env, ARM_FEATURE_EL3)) {
4771cd01 3823 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 3824 }
3b685ba7 3825 }
81547d66 3826 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 3827 define_arm_cp_regs(cpu, el3_cp_reginfo);
be8e8128
GB
3828 ARMCPRegInfo rvbar = {
3829 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
3830 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
3831 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
3832 };
3833 define_one_arm_cp_reg(cpu, &rvbar);
81547d66 3834 }
18032bec 3835 if (arm_feature(env, ARM_FEATURE_MPU)) {
6cb0b013
PC
3836 if (arm_feature(env, ARM_FEATURE_V6)) {
3837 /* PMSAv6 not implemented */
3838 assert(arm_feature(env, ARM_FEATURE_V7));
3839 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
3840 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
3841 } else {
3842 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
3843 }
18032bec 3844 } else {
8e5d75c9 3845 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
3846 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
3847 }
c326b979
PM
3848 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
3849 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
3850 }
6cc7a3ae
PM
3851 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
3852 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
3853 }
4a501606
PM
3854 if (arm_feature(env, ARM_FEATURE_VAPA)) {
3855 define_arm_cp_regs(cpu, vapa_cp_reginfo);
3856 }
c4804214
PM
3857 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
3858 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
3859 }
3860 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
3861 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
3862 }
3863 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
3864 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
3865 }
18032bec
PM
3866 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
3867 define_arm_cp_regs(cpu, omap_cp_reginfo);
3868 }
34f90529
PM
3869 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
3870 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
3871 }
1047b9d7
PM
3872 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3873 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3874 }
3875 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3876 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3877 }
7ac681cf
PM
3878 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3879 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3880 }
7884849c
PM
3881 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3882 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3883 * be read-only (ie write causes UNDEF exception).
3884 */
3885 {
00a29f3d
PM
3886 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3887 /* Pre-v8 MIDR space.
3888 * Note that the MIDR isn't a simple constant register because
7884849c
PM
3889 * of the TI925 behaviour where writes to another register can
3890 * cause the MIDR value to change.
97ce8d61
PC
3891 *
3892 * Unimplemented registers in the c15 0 0 0 space default to
3893 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3894 * and friends override accordingly.
7884849c
PM
3895 */
3896 { .name = "MIDR",
97ce8d61 3897 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 3898 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 3899 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
97ce8d61
PC
3900 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
3901 .type = ARM_CP_OVERRIDE },
7884849c
PM
3902 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3903 { .name = "DUMMY",
3904 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
3905 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3906 { .name = "DUMMY",
3907 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
3908 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3909 { .name = "DUMMY",
3910 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
3911 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3912 { .name = "DUMMY",
3913 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
3914 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3915 { .name = "DUMMY",
3916 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
3917 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3918 REGINFO_SENTINEL
3919 };
00a29f3d 3920 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
3921 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
3922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
3923 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
ac00c79f
SF
3924 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
3925 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
3926 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
3927 .access = PL1_R, .resetvalue = cpu->midr },
3928 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
3929 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
3930 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
3931 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
3932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 3933 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
3934 REGINFO_SENTINEL
3935 };
3936 ARMCPRegInfo id_cp_reginfo[] = {
3937 /* These are common to v8 and pre-v8 */
3938 { .name = "CTR",
3939 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
3940 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3941 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
3942 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
3943 .access = PL0_R, .accessfn = ctr_el0_access,
3944 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3945 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3946 { .name = "TCMTR",
3947 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
3948 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
3949 REGINFO_SENTINEL
3950 };
8085ce63
PC
3951 /* TLBTR is specific to VMSA */
3952 ARMCPRegInfo id_tlbtr_reginfo = {
3953 .name = "TLBTR",
3954 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
3955 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
3956 };
3281af81
PC
3957 /* MPUIR is specific to PMSA V6+ */
3958 ARMCPRegInfo id_mpuir_reginfo = {
3959 .name = "MPUIR",
3960 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
3961 .access = PL1_R, .type = ARM_CP_CONST,
3962 .resetvalue = cpu->pmsav7_dregion << 8
3963 };
7884849c
PM
3964 ARMCPRegInfo crn0_wi_reginfo = {
3965 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
3966 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
3967 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
3968 };
3969 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
3970 arm_feature(env, ARM_FEATURE_STRONGARM)) {
3971 ARMCPRegInfo *r;
3972 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
3973 * whole space. Then update the specific ID registers to allow write
3974 * access, so that they ignore writes rather than causing them to
3975 * UNDEF.
7884849c
PM
3976 */
3977 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
3978 for (r = id_pre_v8_midr_cp_reginfo;
3979 r->type != ARM_CP_SENTINEL; r++) {
3980 r->access = PL1_RW;
3981 }
7884849c
PM
3982 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
3983 r->access = PL1_RW;
7884849c 3984 }
8085ce63 3985 id_tlbtr_reginfo.access = PL1_RW;
3281af81 3986 id_tlbtr_reginfo.access = PL1_RW;
7884849c 3987 }
00a29f3d
PM
3988 if (arm_feature(env, ARM_FEATURE_V8)) {
3989 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
3990 } else {
3991 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
3992 }
a703eda1 3993 define_arm_cp_regs(cpu, id_cp_reginfo);
8085ce63
PC
3994 if (!arm_feature(env, ARM_FEATURE_MPU)) {
3995 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
3996 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3997 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 3998 }
7884849c
PM
3999 }
4000
97ce8d61
PC
4001 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4002 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4003 }
4004
2771db27 4005 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
4006 ARMCPRegInfo auxcr_reginfo[] = {
4007 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4008 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4009 .access = PL1_RW, .type = ARM_CP_CONST,
4010 .resetvalue = cpu->reset_auxcr },
4011 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4012 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4013 .access = PL2_RW, .type = ARM_CP_CONST,
4014 .resetvalue = 0 },
4015 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4016 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4017 .access = PL3_RW, .type = ARM_CP_CONST,
4018 .resetvalue = 0 },
4019 REGINFO_SENTINEL
2771db27 4020 };
834a6c69 4021 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
4022 }
4023
d8ba780b 4024 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
4025 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4026 /* 32 bit view is [31:18] 0...0 [43:32]. */
4027 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4028 | extract64(cpu->reset_cbar, 32, 12);
4029 ARMCPRegInfo cbar_reginfo[] = {
4030 { .name = "CBAR",
4031 .type = ARM_CP_CONST,
4032 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4033 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4034 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4035 .type = ARM_CP_CONST,
4036 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4037 .access = PL1_R, .resetvalue = cbar32 },
4038 REGINFO_SENTINEL
4039 };
4040 /* We don't implement a r/w 64 bit CBAR currently */
4041 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4042 define_arm_cp_regs(cpu, cbar_reginfo);
4043 } else {
4044 ARMCPRegInfo cbar = {
4045 .name = "CBAR",
4046 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4047 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4048 .fieldoffset = offsetof(CPUARMState,
4049 cp15.c15_config_base_address)
4050 };
4051 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4052 cbar.access = PL1_R;
4053 cbar.fieldoffset = 0;
4054 cbar.type = ARM_CP_CONST;
4055 }
4056 define_one_arm_cp_reg(cpu, &cbar);
4057 }
d8ba780b
PC
4058 }
4059
2771db27
PM
4060 /* Generic registers whose values depend on the implementation */
4061 {
4062 ARMCPRegInfo sctlr = {
5ebafdf3 4063 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
4064 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4065 .access = PL1_RW,
4066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4067 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
4068 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4069 .raw_writefn = raw_write,
2771db27
PM
4070 };
4071 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4072 /* Normally we would always end the TB on an SCTLR write, but Linux
4073 * arch/arm/mach-pxa/sleep.S expects two instructions following
4074 * an MMU enable to execute from cache. Imitate this behaviour.
4075 */
4076 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4077 }
4078 define_one_arm_cp_reg(cpu, &sctlr);
4079 }
2ceb98c0
PM
4080}
4081
778c3a06 4082ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 4083{
9262685b 4084 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
14969266
AF
4085}
4086
4087void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4088{
22169d41 4089 CPUState *cs = CPU(cpu);
14969266
AF
4090 CPUARMState *env = &cpu->env;
4091
6a669427
PM
4092 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4093 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4094 aarch64_fpu_gdb_set_reg,
4095 34, "aarch64-fpu.xml", 0);
4096 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 4097 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4098 51, "arm-neon.xml", 0);
4099 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 4100 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4101 35, "arm-vfp3.xml", 0);
4102 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 4103 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4104 19, "arm-vfp.xml", 0);
4105 }
40f137e1
PB
4106}
4107
777dc784
PM
4108/* Sort alphabetically by type name, except for "any". */
4109static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 4110{
777dc784
PM
4111 ObjectClass *class_a = (ObjectClass *)a;
4112 ObjectClass *class_b = (ObjectClass *)b;
4113 const char *name_a, *name_b;
5adb4839 4114
777dc784
PM
4115 name_a = object_class_get_name(class_a);
4116 name_b = object_class_get_name(class_b);
51492fd1 4117 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 4118 return 1;
51492fd1 4119 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
4120 return -1;
4121 } else {
4122 return strcmp(name_a, name_b);
5adb4839
PB
4123 }
4124}
4125
777dc784 4126static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 4127{
777dc784 4128 ObjectClass *oc = data;
92a31361 4129 CPUListState *s = user_data;
51492fd1
AF
4130 const char *typename;
4131 char *name;
3371d272 4132
51492fd1
AF
4133 typename = object_class_get_name(oc);
4134 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 4135 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
4136 name);
4137 g_free(name);
777dc784
PM
4138}
4139
4140void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4141{
92a31361 4142 CPUListState s = {
777dc784
PM
4143 .file = f,
4144 .cpu_fprintf = cpu_fprintf,
4145 };
4146 GSList *list;
4147
4148 list = object_class_get_list(TYPE_ARM_CPU, false);
4149 list = g_slist_sort(list, arm_cpu_list_compare);
4150 (*cpu_fprintf)(f, "Available CPUs:\n");
4151 g_slist_foreach(list, arm_cpu_list_entry, &s);
4152 g_slist_free(list);
a96c0514
PM
4153#ifdef CONFIG_KVM
4154 /* The 'host' CPU type is dynamically registered only if KVM is
4155 * enabled, so we have to special-case it here:
4156 */
4157 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4158#endif
40f137e1
PB
4159}
4160
78027bb6
CR
4161static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4162{
4163 ObjectClass *oc = data;
4164 CpuDefinitionInfoList **cpu_list = user_data;
4165 CpuDefinitionInfoList *entry;
4166 CpuDefinitionInfo *info;
4167 const char *typename;
4168
4169 typename = object_class_get_name(oc);
4170 info = g_malloc0(sizeof(*info));
4171 info->name = g_strndup(typename,
4172 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4173
4174 entry = g_malloc0(sizeof(*entry));
4175 entry->value = info;
4176 entry->next = *cpu_list;
4177 *cpu_list = entry;
4178}
4179
4180CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4181{
4182 CpuDefinitionInfoList *cpu_list = NULL;
4183 GSList *list;
4184
4185 list = object_class_get_list(TYPE_ARM_CPU, false);
4186 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4187 g_slist_free(list);
4188
4189 return cpu_list;
4190}
4191
6e6efd61 4192static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 4193 void *opaque, int state, int secstate,
f5a0a5a5 4194 int crm, int opc1, int opc2)
6e6efd61
PM
4195{
4196 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4197 * add a single reginfo struct to the hash table.
4198 */
4199 uint32_t *key = g_new(uint32_t, 1);
4200 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4201 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
4202 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4203
4204 /* Reset the secure state to the specific incoming state. This is
4205 * necessary as the register may have been defined with both states.
4206 */
4207 r2->secure = secstate;
4208
4209 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4210 /* Register is banked (using both entries in array).
4211 * Overwriting fieldoffset as the array is only used to define
4212 * banked registers but later only fieldoffset is used.
f5a0a5a5 4213 */
3f3c82a5
FA
4214 r2->fieldoffset = r->bank_fieldoffsets[ns];
4215 }
4216
4217 if (state == ARM_CP_STATE_AA32) {
4218 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4219 /* If the register is banked then we don't need to migrate or
4220 * reset the 32-bit instance in certain cases:
4221 *
4222 * 1) If the register has both 32-bit and 64-bit instances then we
4223 * can count on the 64-bit instance taking care of the
4224 * non-secure bank.
4225 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4226 * taking care of the secure bank. This requires that separate
4227 * 32 and 64-bit definitions are provided.
4228 */
4229 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4230 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 4231 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
4232 }
4233 } else if ((secstate != r->secure) && !ns) {
4234 /* The register is not banked so we only want to allow migration of
4235 * the non-secure instance.
4236 */
7a0e58fa 4237 r2->type |= ARM_CP_ALIAS;
58a1d8ce 4238 }
3f3c82a5
FA
4239
4240 if (r->state == ARM_CP_STATE_BOTH) {
4241 /* We assume it is a cp15 register if the .cp field is left unset.
4242 */
4243 if (r2->cp == 0) {
4244 r2->cp = 15;
4245 }
4246
f5a0a5a5 4247#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
4248 if (r2->fieldoffset) {
4249 r2->fieldoffset += sizeof(uint32_t);
4250 }
f5a0a5a5 4251#endif
3f3c82a5 4252 }
f5a0a5a5
PM
4253 }
4254 if (state == ARM_CP_STATE_AA64) {
4255 /* To allow abbreviation of ARMCPRegInfo
4256 * definitions, we treat cp == 0 as equivalent to
4257 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
4258 * STATE_BOTH definitions are also always "standard
4259 * sysreg" in their AArch64 view (the .cp value may
4260 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 4261 */
58a1d8ce 4262 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
4263 r2->cp = CP_REG_ARM64_SYSREG_CP;
4264 }
4265 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4266 r2->opc0, opc1, opc2);
4267 } else {
51a79b03 4268 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 4269 }
6e6efd61
PM
4270 if (opaque) {
4271 r2->opaque = opaque;
4272 }
67ed771d
PM
4273 /* reginfo passed to helpers is correct for the actual access,
4274 * and is never ARM_CP_STATE_BOTH:
4275 */
4276 r2->state = state;
6e6efd61
PM
4277 /* Make sure reginfo passed to helpers for wildcarded regs
4278 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4279 */
4280 r2->crm = crm;
4281 r2->opc1 = opc1;
4282 r2->opc2 = opc2;
4283 /* By convention, for wildcarded registers only the first
4284 * entry is used for migration; the others are marked as
7a0e58fa 4285 * ALIAS so we don't try to transfer the register
6e6efd61 4286 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 4287 * never migratable and not even raw-accessible.
6e6efd61 4288 */
7a0e58fa
PM
4289 if ((r->type & ARM_CP_SPECIAL)) {
4290 r2->type |= ARM_CP_NO_RAW;
4291 }
4292 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
4293 ((r->opc1 == CP_ANY) && opc1 != 0) ||
4294 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 4295 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
4296 }
4297
375421cc
PM
4298 /* Check that raw accesses are either forbidden or handled. Note that
4299 * we can't assert this earlier because the setup of fieldoffset for
4300 * banked registers has to be done first.
4301 */
4302 if (!(r2->type & ARM_CP_NO_RAW)) {
4303 assert(!raw_accessors_invalid(r2));
4304 }
4305
6e6efd61
PM
4306 /* Overriding of an existing definition must be explicitly
4307 * requested.
4308 */
4309 if (!(r->type & ARM_CP_OVERRIDE)) {
4310 ARMCPRegInfo *oldreg;
4311 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
4312 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
4313 fprintf(stderr, "Register redefined: cp=%d %d bit "
4314 "crn=%d crm=%d opc1=%d opc2=%d, "
4315 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
4316 r2->crn, r2->crm, r2->opc1, r2->opc2,
4317 oldreg->name, r2->name);
4318 g_assert_not_reached();
4319 }
4320 }
4321 g_hash_table_insert(cpu->cp_regs, key, r2);
4322}
4323
4324
4b6a83fb
PM
4325void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
4326 const ARMCPRegInfo *r, void *opaque)
4327{
4328 /* Define implementations of coprocessor registers.
4329 * We store these in a hashtable because typically
4330 * there are less than 150 registers in a space which
4331 * is 16*16*16*8*8 = 262144 in size.
4332 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4333 * If a register is defined twice then the second definition is
4334 * used, so this can be used to define some generic registers and
4335 * then override them with implementation specific variations.
4336 * At least one of the original and the second definition should
4337 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4338 * against accidental use.
f5a0a5a5
PM
4339 *
4340 * The state field defines whether the register is to be
4341 * visible in the AArch32 or AArch64 execution state. If the
4342 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4343 * reginfo structure for the AArch32 view, which sees the lower
4344 * 32 bits of the 64 bit register.
4345 *
4346 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4347 * be wildcarded. AArch64 registers are always considered to be 64
4348 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4349 * the register, if any.
4b6a83fb 4350 */
f5a0a5a5 4351 int crm, opc1, opc2, state;
4b6a83fb
PM
4352 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
4353 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
4354 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
4355 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
4356 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
4357 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
4358 /* 64 bit registers have only CRm and Opc1 fields */
4359 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
4360 /* op0 only exists in the AArch64 encodings */
4361 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
4362 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4363 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
4364 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4365 * encodes a minimum access level for the register. We roll this
4366 * runtime check into our general permission check code, so check
4367 * here that the reginfo's specified permissions are strict enough
4368 * to encompass the generic architectural permission check.
4369 */
4370 if (r->state != ARM_CP_STATE_AA32) {
4371 int mask = 0;
4372 switch (r->opc1) {
4373 case 0: case 1: case 2:
4374 /* min_EL EL1 */
4375 mask = PL1_RW;
4376 break;
4377 case 3:
4378 /* min_EL EL0 */
4379 mask = PL0_RW;
4380 break;
4381 case 4:
4382 /* min_EL EL2 */
4383 mask = PL2_RW;
4384 break;
4385 case 5:
4386 /* unallocated encoding, so not possible */
4387 assert(false);
4388 break;
4389 case 6:
4390 /* min_EL EL3 */
4391 mask = PL3_RW;
4392 break;
4393 case 7:
4394 /* min_EL EL1, secure mode only (we don't check the latter) */
4395 mask = PL1_RW;
4396 break;
4397 default:
4398 /* broken reginfo with out-of-range opc1 */
4399 assert(false);
4400 break;
4401 }
4402 /* assert our permissions are not too lax (stricter is fine) */
4403 assert((r->access & ~mask) == 0);
4404 }
4405
4b6a83fb
PM
4406 /* Check that the register definition has enough info to handle
4407 * reads and writes if they are permitted.
4408 */
4409 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
4410 if (r->access & PL3_R) {
3f3c82a5
FA
4411 assert((r->fieldoffset ||
4412 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4413 r->readfn);
4b6a83fb
PM
4414 }
4415 if (r->access & PL3_W) {
3f3c82a5
FA
4416 assert((r->fieldoffset ||
4417 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4418 r->writefn);
4b6a83fb
PM
4419 }
4420 }
4421 /* Bad type field probably means missing sentinel at end of reg list */
4422 assert(cptype_valid(r->type));
4423 for (crm = crmmin; crm <= crmmax; crm++) {
4424 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
4425 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
4426 for (state = ARM_CP_STATE_AA32;
4427 state <= ARM_CP_STATE_AA64; state++) {
4428 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4429 continue;
4430 }
3f3c82a5
FA
4431 if (state == ARM_CP_STATE_AA32) {
4432 /* Under AArch32 CP registers can be common
4433 * (same for secure and non-secure world) or banked.
4434 */
4435 switch (r->secure) {
4436 case ARM_CP_SECSTATE_S:
4437 case ARM_CP_SECSTATE_NS:
4438 add_cpreg_to_hashtable(cpu, r, opaque, state,
4439 r->secure, crm, opc1, opc2);
4440 break;
4441 default:
4442 add_cpreg_to_hashtable(cpu, r, opaque, state,
4443 ARM_CP_SECSTATE_S,
4444 crm, opc1, opc2);
4445 add_cpreg_to_hashtable(cpu, r, opaque, state,
4446 ARM_CP_SECSTATE_NS,
4447 crm, opc1, opc2);
4448 break;
4449 }
4450 } else {
4451 /* AArch64 registers get mapped to non-secure instance
4452 * of AArch32 */
4453 add_cpreg_to_hashtable(cpu, r, opaque, state,
4454 ARM_CP_SECSTATE_NS,
4455 crm, opc1, opc2);
4456 }
f5a0a5a5 4457 }
4b6a83fb
PM
4458 }
4459 }
4460 }
4461}
4462
4463void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4464 const ARMCPRegInfo *regs, void *opaque)
4465{
4466 /* Define a whole list of registers */
4467 const ARMCPRegInfo *r;
4468 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4469 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4470 }
4471}
4472
60322b39 4473const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 4474{
60322b39 4475 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
4476}
4477
c4241c7d
PM
4478void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4479 uint64_t value)
4b6a83fb
PM
4480{
4481 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
4482}
4483
c4241c7d 4484uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
4485{
4486 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
4487 return 0;
4488}
4489
f5a0a5a5
PM
4490void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4491{
4492 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4493}
4494
0ecb72a5 4495static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
4496{
4497 /* Return true if it is not valid for us to switch to
4498 * this CPU mode (ie all the UNPREDICTABLE cases in
4499 * the ARM ARM CPSRWriteByInstr pseudocode).
4500 */
4501 switch (mode) {
4502 case ARM_CPU_MODE_USR:
4503 case ARM_CPU_MODE_SYS:
4504 case ARM_CPU_MODE_SVC:
4505 case ARM_CPU_MODE_ABT:
4506 case ARM_CPU_MODE_UND:
4507 case ARM_CPU_MODE_IRQ:
4508 case ARM_CPU_MODE_FIQ:
4509 return 0;
027fc527
SF
4510 case ARM_CPU_MODE_MON:
4511 return !arm_is_secure(env);
37064a8b
PM
4512 default:
4513 return 1;
4514 }
4515}
4516
2f4a40e5
AZ
4517uint32_t cpsr_read(CPUARMState *env)
4518{
4519 int ZF;
6fbe23d5
PB
4520 ZF = (env->ZF == 0);
4521 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
4522 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4523 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4524 | ((env->condexec_bits & 0xfc) << 8)
af519934 4525 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
4526}
4527
4528void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4529{
6e8801f9
FA
4530 uint32_t changed_daif;
4531
2f4a40e5 4532 if (mask & CPSR_NZCV) {
6fbe23d5
PB
4533 env->ZF = (~val) & CPSR_Z;
4534 env->NF = val;
2f4a40e5
AZ
4535 env->CF = (val >> 29) & 1;
4536 env->VF = (val << 3) & 0x80000000;
4537 }
4538 if (mask & CPSR_Q)
4539 env->QF = ((val & CPSR_Q) != 0);
4540 if (mask & CPSR_T)
4541 env->thumb = ((val & CPSR_T) != 0);
4542 if (mask & CPSR_IT_0_1) {
4543 env->condexec_bits &= ~3;
4544 env->condexec_bits |= (val >> 25) & 3;
4545 }
4546 if (mask & CPSR_IT_2_7) {
4547 env->condexec_bits &= 3;
4548 env->condexec_bits |= (val >> 8) & 0xfc;
4549 }
4550 if (mask & CPSR_GE) {
4551 env->GE = (val >> 16) & 0xf;
4552 }
4553
6e8801f9
FA
4554 /* In a V7 implementation that includes the security extensions but does
4555 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4556 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4557 * bits respectively.
4558 *
4559 * In a V8 implementation, it is permitted for privileged software to
4560 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4561 */
4562 if (!arm_feature(env, ARM_FEATURE_V8) &&
4563 arm_feature(env, ARM_FEATURE_EL3) &&
4564 !arm_feature(env, ARM_FEATURE_EL2) &&
4565 !arm_is_secure(env)) {
4566
4567 changed_daif = (env->daif ^ val) & mask;
4568
4569 if (changed_daif & CPSR_A) {
4570 /* Check to see if we are allowed to change the masking of async
4571 * abort exceptions from a non-secure state.
4572 */
4573 if (!(env->cp15.scr_el3 & SCR_AW)) {
4574 qemu_log_mask(LOG_GUEST_ERROR,
4575 "Ignoring attempt to switch CPSR_A flag from "
4576 "non-secure world with SCR.AW bit clear\n");
4577 mask &= ~CPSR_A;
4578 }
4579 }
4580
4581 if (changed_daif & CPSR_F) {
4582 /* Check to see if we are allowed to change the masking of FIQ
4583 * exceptions from a non-secure state.
4584 */
4585 if (!(env->cp15.scr_el3 & SCR_FW)) {
4586 qemu_log_mask(LOG_GUEST_ERROR,
4587 "Ignoring attempt to switch CPSR_F flag from "
4588 "non-secure world with SCR.FW bit clear\n");
4589 mask &= ~CPSR_F;
4590 }
4591
4592 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4593 * If this bit is set software is not allowed to mask
4594 * FIQs, but is allowed to set CPSR_F to 0.
4595 */
4596 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4597 (val & CPSR_F)) {
4598 qemu_log_mask(LOG_GUEST_ERROR,
4599 "Ignoring attempt to enable CPSR_F flag "
4600 "(non-maskable FIQ [NMFI] support enabled)\n");
4601 mask &= ~CPSR_F;
4602 }
4603 }
4604 }
4605
4cc35614
PM
4606 env->daif &= ~(CPSR_AIF & mask);
4607 env->daif |= val & CPSR_AIF & mask;
4608
2f4a40e5 4609 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
37064a8b
PM
4610 if (bad_mode_switch(env, val & CPSR_M)) {
4611 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4612 * We choose to ignore the attempt and leave the CPSR M field
4613 * untouched.
4614 */
4615 mask &= ~CPSR_M;
4616 } else {
4617 switch_mode(env, val & CPSR_M);
4618 }
2f4a40e5
AZ
4619 }
4620 mask &= ~CACHED_CPSR_BITS;
4621 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
4622}
4623
b26eefb6
PB
4624/* Sign/zero extend */
4625uint32_t HELPER(sxtb16)(uint32_t x)
4626{
4627 uint32_t res;
4628 res = (uint16_t)(int8_t)x;
4629 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4630 return res;
4631}
4632
4633uint32_t HELPER(uxtb16)(uint32_t x)
4634{
4635 uint32_t res;
4636 res = (uint16_t)(uint8_t)x;
4637 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4638 return res;
4639}
4640
f51bbbfe
PB
4641uint32_t HELPER(clz)(uint32_t x)
4642{
7bbcb0af 4643 return clz32(x);
f51bbbfe
PB
4644}
4645
3670669c
PB
4646int32_t HELPER(sdiv)(int32_t num, int32_t den)
4647{
4648 if (den == 0)
4649 return 0;
686eeb93
AJ
4650 if (num == INT_MIN && den == -1)
4651 return INT_MIN;
3670669c
PB
4652 return num / den;
4653}
4654
4655uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4656{
4657 if (den == 0)
4658 return 0;
4659 return num / den;
4660}
4661
4662uint32_t HELPER(rbit)(uint32_t x)
4663{
4664 x = ((x & 0xff000000) >> 24)
4665 | ((x & 0x00ff0000) >> 8)
4666 | ((x & 0x0000ff00) << 8)
4667 | ((x & 0x000000ff) << 24);
4668 x = ((x & 0xf0f0f0f0) >> 4)
4669 | ((x & 0x0f0f0f0f) << 4);
4670 x = ((x & 0x88888888) >> 3)
4671 | ((x & 0x44444444) >> 1)
4672 | ((x & 0x22222222) << 1)
4673 | ((x & 0x11111111) << 3);
4674 return x;
4675}
4676
5fafdf24 4677#if defined(CONFIG_USER_ONLY)
b5ff1b31 4678
9ee6e8bb 4679/* These should probably raise undefined insn exceptions. */
0ecb72a5 4680void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 4681{
a47dddd7
AF
4682 ARMCPU *cpu = arm_env_get_cpu(env);
4683
4684 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
4685}
4686
0ecb72a5 4687uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 4688{
a47dddd7
AF
4689 ARMCPU *cpu = arm_env_get_cpu(env);
4690
4691 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
4692 return 0;
4693}
4694
0ecb72a5 4695void switch_mode(CPUARMState *env, int mode)
b5ff1b31 4696{
a47dddd7
AF
4697 ARMCPU *cpu = arm_env_get_cpu(env);
4698
4699 if (mode != ARM_CPU_MODE_USR) {
4700 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4701 }
b5ff1b31
FB
4702}
4703
0ecb72a5 4704void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 4705{
a47dddd7
AF
4706 ARMCPU *cpu = arm_env_get_cpu(env);
4707
4708 cpu_abort(CPU(cpu), "banked r13 write\n");
9ee6e8bb
PB
4709}
4710
0ecb72a5 4711uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 4712{
a47dddd7
AF
4713 ARMCPU *cpu = arm_env_get_cpu(env);
4714
4715 cpu_abort(CPU(cpu), "banked r13 read\n");
9ee6e8bb
PB
4716 return 0;
4717}
4718
012a906b
GB
4719uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4720 uint32_t cur_el, bool secure)
9e729b57
EI
4721{
4722 return 1;
4723}
4724
ce02049d
GB
4725void aarch64_sync_64_to_32(CPUARMState *env)
4726{
4727 g_assert_not_reached();
4728}
4729
b5ff1b31
FB
4730#else
4731
4732/* Map CPU modes onto saved register banks. */
494b00c7 4733int bank_number(int mode)
b5ff1b31
FB
4734{
4735 switch (mode) {
4736 case ARM_CPU_MODE_USR:
4737 case ARM_CPU_MODE_SYS:
4738 return 0;
4739 case ARM_CPU_MODE_SVC:
4740 return 1;
4741 case ARM_CPU_MODE_ABT:
4742 return 2;
4743 case ARM_CPU_MODE_UND:
4744 return 3;
4745 case ARM_CPU_MODE_IRQ:
4746 return 4;
4747 case ARM_CPU_MODE_FIQ:
4748 return 5;
28c9457d
EI
4749 case ARM_CPU_MODE_HYP:
4750 return 6;
4751 case ARM_CPU_MODE_MON:
4752 return 7;
b5ff1b31 4753 }
f5206413 4754 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
b5ff1b31
FB
4755}
4756
0ecb72a5 4757void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
4758{
4759 int old_mode;
4760 int i;
4761
4762 old_mode = env->uncached_cpsr & CPSR_M;
4763 if (mode == old_mode)
4764 return;
4765
4766 if (old_mode == ARM_CPU_MODE_FIQ) {
4767 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 4768 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
4769 } else if (mode == ARM_CPU_MODE_FIQ) {
4770 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 4771 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
4772 }
4773
f5206413 4774 i = bank_number(old_mode);
b5ff1b31
FB
4775 env->banked_r13[i] = env->regs[13];
4776 env->banked_r14[i] = env->regs[14];
4777 env->banked_spsr[i] = env->spsr;
4778
f5206413 4779 i = bank_number(mode);
b5ff1b31
FB
4780 env->regs[13] = env->banked_r13[i];
4781 env->regs[14] = env->banked_r14[i];
4782 env->spsr = env->banked_spsr[i];
4783}
4784
0eeb17d6
GB
4785/* Physical Interrupt Target EL Lookup Table
4786 *
4787 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4788 *
4789 * The below multi-dimensional table is used for looking up the target
4790 * exception level given numerous condition criteria. Specifically, the
4791 * target EL is based on SCR and HCR routing controls as well as the
4792 * currently executing EL and secure state.
4793 *
4794 * Dimensions:
4795 * target_el_table[2][2][2][2][2][4]
4796 * | | | | | +--- Current EL
4797 * | | | | +------ Non-secure(0)/Secure(1)
4798 * | | | +--------- HCR mask override
4799 * | | +------------ SCR exec state control
4800 * | +--------------- SCR mask override
4801 * +------------------ 32-bit(0)/64-bit(1) EL3
4802 *
4803 * The table values are as such:
4804 * 0-3 = EL0-EL3
4805 * -1 = Cannot occur
4806 *
4807 * The ARM ARM target EL table includes entries indicating that an "exception
4808 * is not taken". The two cases where this is applicable are:
4809 * 1) An exception is taken from EL3 but the SCR does not have the exception
4810 * routed to EL3.
4811 * 2) An exception is taken from EL2 but the HCR does not have the exception
4812 * routed to EL2.
4813 * In these two cases, the below table contain a target of EL1. This value is
4814 * returned as it is expected that the consumer of the table data will check
4815 * for "target EL >= current EL" to ensure the exception is not taken.
4816 *
4817 * SCR HCR
4818 * 64 EA AMO From
4819 * BIT IRQ IMO Non-secure Secure
4820 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4821 */
4822const int8_t target_el_table[2][2][2][2][2][4] = {
4823 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4824 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4825 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4826 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4827 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4828 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4829 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4830 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4831 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4832 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4833 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4834 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4835 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4836 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4837 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4838 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4839};
4840
4841/*
4842 * Determine the target EL for physical exceptions
4843 */
012a906b
GB
4844uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4845 uint32_t cur_el, bool secure)
0eeb17d6
GB
4846{
4847 CPUARMState *env = cs->env_ptr;
4848 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
4849 int scr;
4850 int hcr;
4851 int target_el;
4852 int is64 = arm_el_is_aa64(env, 3);
4853
4854 switch (excp_idx) {
4855 case EXCP_IRQ:
4856 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
4857 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
4858 break;
4859 case EXCP_FIQ:
4860 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
4861 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
4862 break;
4863 default:
4864 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
4865 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
4866 break;
4867 };
4868
4869 /* If HCR.TGE is set then HCR is treated as being 1 */
4870 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
4871
4872 /* Perform a table-lookup for the target EL given the current state */
4873 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
4874
4875 assert(target_el > 0);
4876
4877 return target_el;
4878}
4879
9ee6e8bb
PB
4880static void v7m_push(CPUARMState *env, uint32_t val)
4881{
70d74660
AF
4882 CPUState *cs = CPU(arm_env_get_cpu(env));
4883
9ee6e8bb 4884 env->regs[13] -= 4;
ab1da857 4885 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
4886}
4887
4888static uint32_t v7m_pop(CPUARMState *env)
4889{
70d74660 4890 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 4891 uint32_t val;
70d74660 4892
fdfba1a2 4893 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
4894 env->regs[13] += 4;
4895 return val;
4896}
4897
4898/* Switch to V7M main or process stack pointer. */
4899static void switch_v7m_sp(CPUARMState *env, int process)
4900{
4901 uint32_t tmp;
4902 if (env->v7m.current_sp != process) {
4903 tmp = env->v7m.other_sp;
4904 env->v7m.other_sp = env->regs[13];
4905 env->regs[13] = tmp;
4906 env->v7m.current_sp = process;
4907 }
4908}
4909
4910static void do_v7m_exception_exit(CPUARMState *env)
4911{
4912 uint32_t type;
4913 uint32_t xpsr;
4914
4915 type = env->regs[15];
4916 if (env->v7m.exception != 0)
983fe826 4917 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
4918
4919 /* Switch to the target stack. */
4920 switch_v7m_sp(env, (type & 4) != 0);
4921 /* Pop registers. */
4922 env->regs[0] = v7m_pop(env);
4923 env->regs[1] = v7m_pop(env);
4924 env->regs[2] = v7m_pop(env);
4925 env->regs[3] = v7m_pop(env);
4926 env->regs[12] = v7m_pop(env);
4927 env->regs[14] = v7m_pop(env);
4928 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
4929 if (env->regs[15] & 1) {
4930 qemu_log_mask(LOG_GUEST_ERROR,
4931 "M profile return from interrupt with misaligned "
4932 "PC is UNPREDICTABLE\n");
4933 /* Actual hardware seems to ignore the lsbit, and there are several
4934 * RTOSes out there which incorrectly assume the r15 in the stack
4935 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
4936 */
4937 env->regs[15] &= ~1U;
4938 }
9ee6e8bb
PB
4939 xpsr = v7m_pop(env);
4940 xpsr_write(env, xpsr, 0xfffffdff);
4941 /* Undo stack alignment. */
4942 if (xpsr & 0x200)
4943 env->regs[13] |= 4;
4944 /* ??? The exception return type specifies Thread/Handler mode. However
4945 this is also implied by the xPSR value. Not sure what to do
4946 if there is a mismatch. */
4947 /* ??? Likewise for mismatches between the CONTROL register and the stack
4948 pointer. */
4949}
4950
e6f010cc 4951void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 4952{
e6f010cc
AF
4953 ARMCPU *cpu = ARM_CPU(cs);
4954 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
4955 uint32_t xpsr = xpsr_read(env);
4956 uint32_t lr;
4957 uint32_t addr;
4958
27103424 4959 arm_log_exception(cs->exception_index);
3f1beaca 4960
9ee6e8bb
PB
4961 lr = 0xfffffff1;
4962 if (env->v7m.current_sp)
4963 lr |= 4;
4964 if (env->v7m.exception == 0)
4965 lr |= 8;
4966
4967 /* For exceptions we just mark as pending on the NVIC, and let that
4968 handle it. */
4969 /* TODO: Need to escalate if the current priority is higher than the
4970 one we're raising. */
27103424 4971 switch (cs->exception_index) {
9ee6e8bb 4972 case EXCP_UDEF:
983fe826 4973 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
4974 return;
4975 case EXCP_SWI:
314e2296 4976 /* The PC already points to the next instruction. */
983fe826 4977 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
4978 return;
4979 case EXCP_PREFETCH_ABORT:
4980 case EXCP_DATA_ABORT:
abf1172f
PM
4981 /* TODO: if we implemented the MPU registers, this is where we
4982 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4983 */
983fe826 4984 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
4985 return;
4986 case EXCP_BKPT:
cfe67cef 4987 if (semihosting_enabled()) {
2ad207d4 4988 int nr;
d31dd73e 4989 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
4990 if (nr == 0xab) {
4991 env->regs[15] += 2;
4992 env->regs[0] = do_arm_semihosting(env);
3f1beaca 4993 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2ad207d4
PB
4994 return;
4995 }
4996 }
983fe826 4997 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
4998 return;
4999 case EXCP_IRQ:
983fe826 5000 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
5001 break;
5002 case EXCP_EXCEPTION_EXIT:
5003 do_v7m_exception_exit(env);
5004 return;
5005 default:
a47dddd7 5006 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
5007 return; /* Never happens. Keep compiler happy. */
5008 }
5009
5010 /* Align stack pointer. */
5011 /* ??? Should only do this if Configuration Control Register
5012 STACKALIGN bit is set. */
5013 if (env->regs[13] & 4) {
ab19b0ec 5014 env->regs[13] -= 4;
9ee6e8bb
PB
5015 xpsr |= 0x200;
5016 }
6c95676b 5017 /* Switch to the handler mode. */
9ee6e8bb
PB
5018 v7m_push(env, xpsr);
5019 v7m_push(env, env->regs[15]);
5020 v7m_push(env, env->regs[14]);
5021 v7m_push(env, env->regs[12]);
5022 v7m_push(env, env->regs[3]);
5023 v7m_push(env, env->regs[2]);
5024 v7m_push(env, env->regs[1]);
5025 v7m_push(env, env->regs[0]);
5026 switch_v7m_sp(env, 0);
c98d174c
PM
5027 /* Clear IT bits */
5028 env->condexec_bits = 0;
9ee6e8bb 5029 env->regs[14] = lr;
fdfba1a2 5030 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
9ee6e8bb
PB
5031 env->regs[15] = addr & 0xfffffffe;
5032 env->thumb = addr & 1;
5033}
5034
ce02049d
GB
5035/* Function used to synchronize QEMU's AArch64 register set with AArch32
5036 * register set. This is necessary when switching between AArch32 and AArch64
5037 * execution state.
5038 */
5039void aarch64_sync_32_to_64(CPUARMState *env)
5040{
5041 int i;
5042 uint32_t mode = env->uncached_cpsr & CPSR_M;
5043
5044 /* We can blanket copy R[0:7] to X[0:7] */
5045 for (i = 0; i < 8; i++) {
5046 env->xregs[i] = env->regs[i];
5047 }
5048
5049 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5050 * Otherwise, they come from the banked user regs.
5051 */
5052 if (mode == ARM_CPU_MODE_FIQ) {
5053 for (i = 8; i < 13; i++) {
5054 env->xregs[i] = env->usr_regs[i - 8];
5055 }
5056 } else {
5057 for (i = 8; i < 13; i++) {
5058 env->xregs[i] = env->regs[i];
5059 }
5060 }
5061
5062 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5063 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5064 * from the mode banked register.
5065 */
5066 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5067 env->xregs[13] = env->regs[13];
5068 env->xregs[14] = env->regs[14];
5069 } else {
5070 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5071 /* HYP is an exception in that it is copied from r14 */
5072 if (mode == ARM_CPU_MODE_HYP) {
5073 env->xregs[14] = env->regs[14];
5074 } else {
5075 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5076 }
5077 }
5078
5079 if (mode == ARM_CPU_MODE_HYP) {
5080 env->xregs[15] = env->regs[13];
5081 } else {
5082 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5083 }
5084
5085 if (mode == ARM_CPU_MODE_IRQ) {
5086 env->xregs[16] = env->regs[13];
5087 env->xregs[17] = env->regs[14];
5088 } else {
5089 env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5090 env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5091 }
5092
5093 if (mode == ARM_CPU_MODE_SVC) {
5094 env->xregs[18] = env->regs[13];
5095 env->xregs[19] = env->regs[14];
5096 } else {
5097 env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5098 env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5099 }
5100
5101 if (mode == ARM_CPU_MODE_ABT) {
5102 env->xregs[20] = env->regs[13];
5103 env->xregs[21] = env->regs[14];
5104 } else {
5105 env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5106 env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5107 }
5108
5109 if (mode == ARM_CPU_MODE_UND) {
5110 env->xregs[22] = env->regs[13];
5111 env->xregs[23] = env->regs[14];
5112 } else {
5113 env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5114 env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5115 }
5116
5117 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5118 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5119 * FIQ bank for r8-r14.
5120 */
5121 if (mode == ARM_CPU_MODE_FIQ) {
5122 for (i = 24; i < 31; i++) {
5123 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5124 }
5125 } else {
5126 for (i = 24; i < 29; i++) {
5127 env->xregs[i] = env->fiq_regs[i - 24];
5128 }
5129 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5130 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5131 }
5132
5133 env->pc = env->regs[15];
5134}
5135
5136/* Function used to synchronize QEMU's AArch32 register set with AArch64
5137 * register set. This is necessary when switching between AArch32 and AArch64
5138 * execution state.
5139 */
5140void aarch64_sync_64_to_32(CPUARMState *env)
5141{
5142 int i;
5143 uint32_t mode = env->uncached_cpsr & CPSR_M;
5144
5145 /* We can blanket copy X[0:7] to R[0:7] */
5146 for (i = 0; i < 8; i++) {
5147 env->regs[i] = env->xregs[i];
5148 }
5149
5150 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5151 * Otherwise, we copy x8-x12 into the banked user regs.
5152 */
5153 if (mode == ARM_CPU_MODE_FIQ) {
5154 for (i = 8; i < 13; i++) {
5155 env->usr_regs[i - 8] = env->xregs[i];
5156 }
5157 } else {
5158 for (i = 8; i < 13; i++) {
5159 env->regs[i] = env->xregs[i];
5160 }
5161 }
5162
5163 /* Registers r13 & r14 depend on the current mode.
5164 * If we are in a given mode, we copy the corresponding x registers to r13
5165 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5166 * for the mode.
5167 */
5168 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5169 env->regs[13] = env->xregs[13];
5170 env->regs[14] = env->xregs[14];
5171 } else {
5172 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5173
5174 /* HYP is an exception in that it does not have its own banked r14 but
5175 * shares the USR r14
5176 */
5177 if (mode == ARM_CPU_MODE_HYP) {
5178 env->regs[14] = env->xregs[14];
5179 } else {
5180 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5181 }
5182 }
5183
5184 if (mode == ARM_CPU_MODE_HYP) {
5185 env->regs[13] = env->xregs[15];
5186 } else {
5187 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5188 }
5189
5190 if (mode == ARM_CPU_MODE_IRQ) {
5191 env->regs[13] = env->xregs[16];
5192 env->regs[14] = env->xregs[17];
5193 } else {
5194 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5195 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
5196 }
5197
5198 if (mode == ARM_CPU_MODE_SVC) {
5199 env->regs[13] = env->xregs[18];
5200 env->regs[14] = env->xregs[19];
5201 } else {
5202 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5203 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
5204 }
5205
5206 if (mode == ARM_CPU_MODE_ABT) {
5207 env->regs[13] = env->xregs[20];
5208 env->regs[14] = env->xregs[21];
5209 } else {
5210 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5211 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
5212 }
5213
5214 if (mode == ARM_CPU_MODE_UND) {
5215 env->regs[13] = env->xregs[22];
5216 env->regs[14] = env->xregs[23];
5217 } else {
5218 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5219 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
5220 }
5221
5222 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5223 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5224 * FIQ bank for r8-r14.
5225 */
5226 if (mode == ARM_CPU_MODE_FIQ) {
5227 for (i = 24; i < 31; i++) {
5228 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5229 }
5230 } else {
5231 for (i = 24; i < 29; i++) {
5232 env->fiq_regs[i - 24] = env->xregs[i];
5233 }
5234 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5235 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5236 }
5237
5238 env->regs[15] = env->pc;
5239}
5240
b5ff1b31 5241/* Handle a CPU exception. */
97a8ea5a 5242void arm_cpu_do_interrupt(CPUState *cs)
b5ff1b31 5243{
97a8ea5a
AF
5244 ARMCPU *cpu = ARM_CPU(cs);
5245 CPUARMState *env = &cpu->env;
b5ff1b31
FB
5246 uint32_t addr;
5247 uint32_t mask;
5248 int new_mode;
5249 uint32_t offset;
16a906fd 5250 uint32_t moe;
b5ff1b31 5251
e6f010cc
AF
5252 assert(!IS_M(env));
5253
27103424 5254 arm_log_exception(cs->exception_index);
3f1beaca 5255
98128601
RH
5256 if (arm_is_psci_call(cpu, cs->exception_index)) {
5257 arm_handle_psci_call(cpu);
5258 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
5259 return;
5260 }
5261
16a906fd
PM
5262 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5263 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5264 case EC_BREAKPOINT:
5265 case EC_BREAKPOINT_SAME_EL:
5266 moe = 1;
5267 break;
5268 case EC_WATCHPOINT:
5269 case EC_WATCHPOINT_SAME_EL:
5270 moe = 10;
5271 break;
5272 case EC_AA32_BKPT:
5273 moe = 3;
5274 break;
5275 case EC_VECTORCATCH:
5276 moe = 5;
5277 break;
5278 default:
5279 moe = 0;
5280 break;
5281 }
5282
5283 if (moe) {
5284 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5285 }
5286
b5ff1b31 5287 /* TODO: Vectored interrupt controller. */
27103424 5288 switch (cs->exception_index) {
b5ff1b31
FB
5289 case EXCP_UDEF:
5290 new_mode = ARM_CPU_MODE_UND;
5291 addr = 0x04;
5292 mask = CPSR_I;
5293 if (env->thumb)
5294 offset = 2;
5295 else
5296 offset = 4;
5297 break;
5298 case EXCP_SWI:
cfe67cef 5299 if (semihosting_enabled()) {
8e71621f
PB
5300 /* Check for semihosting interrupt. */
5301 if (env->thumb) {
d31dd73e
BS
5302 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
5303 & 0xff;
8e71621f 5304 } else {
d31dd73e 5305 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
d8fd2954 5306 & 0xffffff;
8e71621f
PB
5307 }
5308 /* Only intercept calls from privileged modes, to provide some
5309 semblance of security. */
5310 if (((mask == 0x123456 && !env->thumb)
5311 || (mask == 0xab && env->thumb))
5312 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5313 env->regs[0] = do_arm_semihosting(env);
3f1beaca 5314 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
8e71621f
PB
5315 return;
5316 }
5317 }
b5ff1b31
FB
5318 new_mode = ARM_CPU_MODE_SVC;
5319 addr = 0x08;
5320 mask = CPSR_I;
601d70b9 5321 /* The PC already points to the next instruction. */
b5ff1b31
FB
5322 offset = 0;
5323 break;
06c949e6 5324 case EXCP_BKPT:
9ee6e8bb 5325 /* See if this is a semihosting syscall. */
cfe67cef 5326 if (env->thumb && semihosting_enabled()) {
d31dd73e 5327 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
9ee6e8bb
PB
5328 if (mask == 0xab
5329 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5330 env->regs[15] += 2;
5331 env->regs[0] = do_arm_semihosting(env);
3f1beaca 5332 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
9ee6e8bb
PB
5333 return;
5334 }
5335 }
abf1172f 5336 env->exception.fsr = 2;
9ee6e8bb
PB
5337 /* Fall through to prefetch abort. */
5338 case EXCP_PREFETCH_ABORT:
88ca1c2d 5339 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 5340 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 5341 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 5342 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
5343 new_mode = ARM_CPU_MODE_ABT;
5344 addr = 0x0c;
5345 mask = CPSR_A | CPSR_I;
5346 offset = 4;
5347 break;
5348 case EXCP_DATA_ABORT:
4a7e2d73 5349 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 5350 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 5351 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 5352 env->exception.fsr,
6cd8a264 5353 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
5354 new_mode = ARM_CPU_MODE_ABT;
5355 addr = 0x10;
5356 mask = CPSR_A | CPSR_I;
5357 offset = 8;
5358 break;
5359 case EXCP_IRQ:
5360 new_mode = ARM_CPU_MODE_IRQ;
5361 addr = 0x18;
5362 /* Disable IRQ and imprecise data aborts. */
5363 mask = CPSR_A | CPSR_I;
5364 offset = 4;
de38d23b
FA
5365 if (env->cp15.scr_el3 & SCR_IRQ) {
5366 /* IRQ routed to monitor mode */
5367 new_mode = ARM_CPU_MODE_MON;
5368 mask |= CPSR_F;
5369 }
b5ff1b31
FB
5370 break;
5371 case EXCP_FIQ:
5372 new_mode = ARM_CPU_MODE_FIQ;
5373 addr = 0x1c;
5374 /* Disable FIQ, IRQ and imprecise data aborts. */
5375 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
5376 if (env->cp15.scr_el3 & SCR_FIQ) {
5377 /* FIQ routed to monitor mode */
5378 new_mode = ARM_CPU_MODE_MON;
5379 }
b5ff1b31
FB
5380 offset = 4;
5381 break;
dbe9d163
FA
5382 case EXCP_SMC:
5383 new_mode = ARM_CPU_MODE_MON;
5384 addr = 0x08;
5385 mask = CPSR_A | CPSR_I | CPSR_F;
5386 offset = 0;
5387 break;
b5ff1b31 5388 default:
a47dddd7 5389 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
5390 return; /* Never happens. Keep compiler happy. */
5391 }
e89e51a1
FA
5392
5393 if (new_mode == ARM_CPU_MODE_MON) {
5394 addr += env->cp15.mvbar;
137feaa9 5395 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 5396 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 5397 addr += 0xffff0000;
8641136c
NR
5398 } else {
5399 /* ARM v7 architectures provide a vector base address register to remap
5400 * the interrupt vector table.
e89e51a1 5401 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
5402 * Note: only bits 31:5 are valid.
5403 */
fb6c91ba 5404 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 5405 }
dbe9d163
FA
5406
5407 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
5408 env->cp15.scr_el3 &= ~SCR_NS;
5409 }
5410
b5ff1b31 5411 switch_mode (env, new_mode);
662cefb7
PM
5412 /* For exceptions taken to AArch32 we must clear the SS bit in both
5413 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5414 */
5415 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 5416 env->spsr = cpsr_read(env);
9ee6e8bb
PB
5417 /* Clear IT bits. */
5418 env->condexec_bits = 0;
30a8cac1 5419 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 5420 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4cc35614 5421 env->daif |= mask;
be5e7a76
DES
5422 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5423 * and we should just guard the thumb mode on V4 */
5424 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 5425 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 5426 }
b5ff1b31
FB
5427 env->regs[14] = env->regs[15] + offset;
5428 env->regs[15] = addr;
259186a7 5429 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
b5ff1b31
FB
5430}
5431
0480f69a
PM
5432
5433/* Return the exception level which controls this address translation regime */
5434static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
5435{
5436 switch (mmu_idx) {
5437 case ARMMMUIdx_S2NS:
5438 case ARMMMUIdx_S1E2:
5439 return 2;
5440 case ARMMMUIdx_S1E3:
5441 return 3;
5442 case ARMMMUIdx_S1SE0:
5443 return arm_el_is_aa64(env, 3) ? 1 : 3;
5444 case ARMMMUIdx_S1SE1:
5445 case ARMMMUIdx_S1NSE0:
5446 case ARMMMUIdx_S1NSE1:
5447 return 1;
5448 default:
5449 g_assert_not_reached();
5450 }
5451}
5452
8bf5b6a9
PM
5453/* Return true if this address translation regime is secure */
5454static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
5455{
5456 switch (mmu_idx) {
5457 case ARMMMUIdx_S12NSE0:
5458 case ARMMMUIdx_S12NSE1:
5459 case ARMMMUIdx_S1NSE0:
5460 case ARMMMUIdx_S1NSE1:
5461 case ARMMMUIdx_S1E2:
5462 case ARMMMUIdx_S2NS:
5463 return false;
5464 case ARMMMUIdx_S1E3:
5465 case ARMMMUIdx_S1SE0:
5466 case ARMMMUIdx_S1SE1:
5467 return true;
5468 default:
5469 g_assert_not_reached();
5470 }
5471}
5472
0480f69a
PM
5473/* Return the SCTLR value which controls this address translation regime */
5474static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
5475{
5476 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
5477}
5478
5479/* Return true if the specified stage of address translation is disabled */
5480static inline bool regime_translation_disabled(CPUARMState *env,
5481 ARMMMUIdx mmu_idx)
5482{
5483 if (mmu_idx == ARMMMUIdx_S2NS) {
5484 return (env->cp15.hcr_el2 & HCR_VM) == 0;
5485 }
5486 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
5487}
5488
5489/* Return the TCR controlling this translation regime */
5490static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
5491{
5492 if (mmu_idx == ARMMMUIdx_S2NS) {
5493 /* TODO: return VTCR_EL2 */
5494 g_assert_not_reached();
5495 }
5496 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
5497}
5498
aef878be
GB
5499/* Return the TTBR associated with this translation regime */
5500static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
5501 int ttbrn)
5502{
5503 if (mmu_idx == ARMMMUIdx_S2NS) {
5504 /* TODO: return VTTBR_EL2 */
5505 g_assert_not_reached();
5506 }
5507 if (ttbrn == 0) {
5508 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
5509 } else {
5510 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5511 }
5512}
5513
0480f69a
PM
5514/* Return true if the translation regime is using LPAE format page tables */
5515static inline bool regime_using_lpae_format(CPUARMState *env,
5516 ARMMMUIdx mmu_idx)
5517{
5518 int el = regime_el(env, mmu_idx);
5519 if (el == 2 || arm_el_is_aa64(env, el)) {
5520 return true;
5521 }
5522 if (arm_feature(env, ARM_FEATURE_LPAE)
5523 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5524 return true;
5525 }
5526 return false;
5527}
5528
5529static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5530{
5531 switch (mmu_idx) {
5532 case ARMMMUIdx_S1SE0:
5533 case ARMMMUIdx_S1NSE0:
5534 return true;
5535 default:
5536 return false;
5537 case ARMMMUIdx_S12NSE0:
5538 case ARMMMUIdx_S12NSE1:
5539 g_assert_not_reached();
5540 }
5541}
5542
0fbf5238
AJ
5543/* Translate section/page access permissions to page
5544 * R/W protection flags
d76951b6
AJ
5545 *
5546 * @env: CPUARMState
5547 * @mmu_idx: MMU index indicating required translation regime
5548 * @ap: The 3-bit access permissions (AP[2:0])
5549 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
5550 */
5551static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5552 int ap, int domain_prot)
5553{
554b0b09
PM
5554 bool is_user = regime_is_user(env, mmu_idx);
5555
5556 if (domain_prot == 3) {
5557 return PAGE_READ | PAGE_WRITE;
5558 }
5559
554b0b09
PM
5560 switch (ap) {
5561 case 0:
5562 if (arm_feature(env, ARM_FEATURE_V7)) {
5563 return 0;
5564 }
554b0b09
PM
5565 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5566 case SCTLR_S:
5567 return is_user ? 0 : PAGE_READ;
5568 case SCTLR_R:
5569 return PAGE_READ;
5570 default:
5571 return 0;
5572 }
5573 case 1:
5574 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5575 case 2:
87c3d486 5576 if (is_user) {
0fbf5238 5577 return PAGE_READ;
87c3d486 5578 } else {
554b0b09 5579 return PAGE_READ | PAGE_WRITE;
87c3d486 5580 }
554b0b09
PM
5581 case 3:
5582 return PAGE_READ | PAGE_WRITE;
5583 case 4: /* Reserved. */
5584 return 0;
5585 case 5:
0fbf5238 5586 return is_user ? 0 : PAGE_READ;
554b0b09 5587 case 6:
0fbf5238 5588 return PAGE_READ;
554b0b09 5589 case 7:
87c3d486 5590 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 5591 return 0;
87c3d486 5592 }
0fbf5238 5593 return PAGE_READ;
554b0b09 5594 default:
0fbf5238 5595 g_assert_not_reached();
554b0b09 5596 }
b5ff1b31
FB
5597}
5598
d76951b6
AJ
5599/* Translate section/page access permissions to page
5600 * R/W protection flags.
5601 *
d76951b6 5602 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 5603 * @is_user: TRUE if accessing from PL0
d76951b6 5604 */
d8e052b3 5605static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 5606{
d76951b6
AJ
5607 switch (ap) {
5608 case 0:
5609 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5610 case 1:
5611 return PAGE_READ | PAGE_WRITE;
5612 case 2:
5613 return is_user ? 0 : PAGE_READ;
5614 case 3:
5615 return PAGE_READ;
5616 default:
5617 g_assert_not_reached();
5618 }
5619}
5620
d8e052b3
AJ
5621static inline int
5622simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5623{
5624 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5625}
5626
5627/* Translate section/page access permissions to protection flags
5628 *
5629 * @env: CPUARMState
5630 * @mmu_idx: MMU index indicating required translation regime
5631 * @is_aa64: TRUE if AArch64
5632 * @ap: The 2-bit simple AP (AP[2:1])
5633 * @ns: NS (non-secure) bit
5634 * @xn: XN (execute-never) bit
5635 * @pxn: PXN (privileged execute-never) bit
5636 */
5637static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5638 int ap, int ns, int xn, int pxn)
5639{
5640 bool is_user = regime_is_user(env, mmu_idx);
5641 int prot_rw, user_rw;
5642 bool have_wxn;
5643 int wxn = 0;
5644
5645 assert(mmu_idx != ARMMMUIdx_S2NS);
5646
5647 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5648 if (is_user) {
5649 prot_rw = user_rw;
5650 } else {
5651 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5652 }
5653
5654 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5655 return prot_rw;
5656 }
5657
5658 /* TODO have_wxn should be replaced with
5659 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5660 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5661 * compatible processors have EL2, which is required for [U]WXN.
5662 */
5663 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5664
5665 if (have_wxn) {
5666 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5667 }
5668
5669 if (is_aa64) {
5670 switch (regime_el(env, mmu_idx)) {
5671 case 1:
5672 if (!is_user) {
5673 xn = pxn || (user_rw & PAGE_WRITE);
5674 }
5675 break;
5676 case 2:
5677 case 3:
5678 break;
5679 }
5680 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5681 switch (regime_el(env, mmu_idx)) {
5682 case 1:
5683 case 3:
5684 if (is_user) {
5685 xn = xn || !(user_rw & PAGE_READ);
5686 } else {
5687 int uwxn = 0;
5688 if (have_wxn) {
5689 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
5690 }
5691 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
5692 (uwxn && (user_rw & PAGE_WRITE));
5693 }
5694 break;
5695 case 2:
5696 break;
5697 }
5698 } else {
5699 xn = wxn = 0;
5700 }
5701
5702 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
5703 return prot_rw;
5704 }
5705 return prot_rw | PAGE_EXEC;
5706}
5707
0480f69a
PM
5708static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
5709 uint32_t *table, uint32_t address)
b2fa1797 5710{
0480f69a 5711 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 5712 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 5713
11f136ee
FA
5714 if (address & tcr->mask) {
5715 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
5716 /* Translation table walk disabled for TTBR1 */
5717 return false;
5718 }
aef878be 5719 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 5720 } else {
11f136ee 5721 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
5722 /* Translation table walk disabled for TTBR0 */
5723 return false;
5724 }
aef878be 5725 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
5726 }
5727 *table |= (address >> 18) & 0x3ffc;
5728 return true;
b2fa1797
PB
5729}
5730
ebca90e4
PM
5731/* All loads done in the course of a page table walk go through here.
5732 * TODO: rather than ignoring errors from physical memory reads (which
5733 * are external aborts in ARM terminology) we should propagate this
5734 * error out so that we can turn it into a Data Abort if this walk
5735 * was being done for a CPU load/store or an address translation instruction
5736 * (but not if it was for a debug access).
5737 */
5738static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5739{
5740 MemTxAttrs attrs = {};
5741
5742 attrs.secure = is_secure;
5743 return address_space_ldl(cs->as, addr, attrs, NULL);
5744}
5745
5746static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5747{
5748 MemTxAttrs attrs = {};
5749
5750 attrs.secure = is_secure;
5751 return address_space_ldq(cs->as, addr, attrs, NULL);
5752}
5753
b7cc4e82
PC
5754static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
5755 int access_type, ARMMMUIdx mmu_idx,
5756 hwaddr *phys_ptr, int *prot,
5757 target_ulong *page_size, uint32_t *fsr)
b5ff1b31 5758{
70d74660 5759 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
5760 int code;
5761 uint32_t table;
5762 uint32_t desc;
5763 int type;
5764 int ap;
e389be16 5765 int domain = 0;
dd4ebc2e 5766 int domain_prot;
a8170e5e 5767 hwaddr phys_addr;
0480f69a 5768 uint32_t dacr;
b5ff1b31 5769
9ee6e8bb
PB
5770 /* Pagetable walk. */
5771 /* Lookup l1 descriptor. */
0480f69a 5772 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
5773 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5774 code = 5;
5775 goto do_fault;
5776 }
ebca90e4 5777 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
9ee6e8bb 5778 type = (desc & 3);
dd4ebc2e 5779 domain = (desc >> 5) & 0x0f;
0480f69a
PM
5780 if (regime_el(env, mmu_idx) == 1) {
5781 dacr = env->cp15.dacr_ns;
5782 } else {
5783 dacr = env->cp15.dacr_s;
5784 }
5785 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 5786 if (type == 0) {
601d70b9 5787 /* Section translation fault. */
9ee6e8bb
PB
5788 code = 5;
5789 goto do_fault;
5790 }
dd4ebc2e 5791 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
5792 if (type == 2)
5793 code = 9; /* Section domain fault. */
5794 else
5795 code = 11; /* Page domain fault. */
5796 goto do_fault;
5797 }
5798 if (type == 2) {
5799 /* 1Mb section. */
5800 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5801 ap = (desc >> 10) & 3;
5802 code = 13;
d4c430a8 5803 *page_size = 1024 * 1024;
9ee6e8bb
PB
5804 } else {
5805 /* Lookup l2 entry. */
554b0b09
PM
5806 if (type == 1) {
5807 /* Coarse pagetable. */
5808 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5809 } else {
5810 /* Fine pagetable. */
5811 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
5812 }
ebca90e4 5813 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
9ee6e8bb
PB
5814 switch (desc & 3) {
5815 case 0: /* Page translation fault. */
5816 code = 7;
5817 goto do_fault;
5818 case 1: /* 64k page. */
5819 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5820 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 5821 *page_size = 0x10000;
ce819861 5822 break;
9ee6e8bb
PB
5823 case 2: /* 4k page. */
5824 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 5825 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 5826 *page_size = 0x1000;
ce819861 5827 break;
fc1891c7 5828 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 5829 if (type == 1) {
fc1891c7
PM
5830 /* ARMv6/XScale extended small page format */
5831 if (arm_feature(env, ARM_FEATURE_XSCALE)
5832 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 5833 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 5834 *page_size = 0x1000;
554b0b09 5835 } else {
fc1891c7
PM
5836 /* UNPREDICTABLE in ARMv5; we choose to take a
5837 * page translation fault.
5838 */
554b0b09
PM
5839 code = 7;
5840 goto do_fault;
5841 }
5842 } else {
5843 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 5844 *page_size = 0x400;
554b0b09 5845 }
9ee6e8bb 5846 ap = (desc >> 4) & 3;
ce819861
PB
5847 break;
5848 default:
9ee6e8bb
PB
5849 /* Never happens, but compiler isn't smart enough to tell. */
5850 abort();
ce819861 5851 }
9ee6e8bb
PB
5852 code = 15;
5853 }
0fbf5238
AJ
5854 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5855 *prot |= *prot ? PAGE_EXEC : 0;
5856 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
5857 /* Access permission fault. */
5858 goto do_fault;
5859 }
5860 *phys_ptr = phys_addr;
b7cc4e82 5861 return false;
9ee6e8bb 5862do_fault:
b7cc4e82
PC
5863 *fsr = code | (domain << 4);
5864 return true;
9ee6e8bb
PB
5865}
5866
b7cc4e82
PC
5867static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
5868 int access_type, ARMMMUIdx mmu_idx,
5869 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
5870 target_ulong *page_size, uint32_t *fsr)
9ee6e8bb 5871{
70d74660 5872 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
5873 int code;
5874 uint32_t table;
5875 uint32_t desc;
5876 uint32_t xn;
de9b05b8 5877 uint32_t pxn = 0;
9ee6e8bb
PB
5878 int type;
5879 int ap;
de9b05b8 5880 int domain = 0;
dd4ebc2e 5881 int domain_prot;
a8170e5e 5882 hwaddr phys_addr;
0480f69a 5883 uint32_t dacr;
8bf5b6a9 5884 bool ns;
9ee6e8bb
PB
5885
5886 /* Pagetable walk. */
5887 /* Lookup l1 descriptor. */
0480f69a 5888 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
5889 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5890 code = 5;
5891 goto do_fault;
5892 }
ebca90e4 5893 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
9ee6e8bb 5894 type = (desc & 3);
de9b05b8
PM
5895 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
5896 /* Section translation fault, or attempt to use the encoding
5897 * which is Reserved on implementations without PXN.
5898 */
9ee6e8bb 5899 code = 5;
9ee6e8bb 5900 goto do_fault;
de9b05b8
PM
5901 }
5902 if ((type == 1) || !(desc & (1 << 18))) {
5903 /* Page or Section. */
dd4ebc2e 5904 domain = (desc >> 5) & 0x0f;
9ee6e8bb 5905 }
0480f69a
PM
5906 if (regime_el(env, mmu_idx) == 1) {
5907 dacr = env->cp15.dacr_ns;
5908 } else {
5909 dacr = env->cp15.dacr_s;
5910 }
5911 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 5912 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 5913 if (type != 1) {
9ee6e8bb 5914 code = 9; /* Section domain fault. */
de9b05b8 5915 } else {
9ee6e8bb 5916 code = 11; /* Page domain fault. */
de9b05b8 5917 }
9ee6e8bb
PB
5918 goto do_fault;
5919 }
de9b05b8 5920 if (type != 1) {
9ee6e8bb
PB
5921 if (desc & (1 << 18)) {
5922 /* Supersection. */
5923 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
5924 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
5925 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 5926 *page_size = 0x1000000;
b5ff1b31 5927 } else {
9ee6e8bb
PB
5928 /* Section. */
5929 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 5930 *page_size = 0x100000;
b5ff1b31 5931 }
9ee6e8bb
PB
5932 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
5933 xn = desc & (1 << 4);
de9b05b8 5934 pxn = desc & 1;
9ee6e8bb 5935 code = 13;
8bf5b6a9 5936 ns = extract32(desc, 19, 1);
9ee6e8bb 5937 } else {
de9b05b8
PM
5938 if (arm_feature(env, ARM_FEATURE_PXN)) {
5939 pxn = (desc >> 2) & 1;
5940 }
8bf5b6a9 5941 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
5942 /* Lookup l2 entry. */
5943 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
ebca90e4 5944 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
9ee6e8bb
PB
5945 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
5946 switch (desc & 3) {
5947 case 0: /* Page translation fault. */
5948 code = 7;
b5ff1b31 5949 goto do_fault;
9ee6e8bb
PB
5950 case 1: /* 64k page. */
5951 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5952 xn = desc & (1 << 15);
d4c430a8 5953 *page_size = 0x10000;
9ee6e8bb
PB
5954 break;
5955 case 2: case 3: /* 4k page. */
5956 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5957 xn = desc & 1;
d4c430a8 5958 *page_size = 0x1000;
9ee6e8bb
PB
5959 break;
5960 default:
5961 /* Never happens, but compiler isn't smart enough to tell. */
5962 abort();
b5ff1b31 5963 }
9ee6e8bb
PB
5964 code = 15;
5965 }
dd4ebc2e 5966 if (domain_prot == 3) {
c0034328
JR
5967 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5968 } else {
0480f69a 5969 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
5970 xn = 1;
5971 }
c0034328
JR
5972 if (xn && access_type == 2)
5973 goto do_fault;
9ee6e8bb 5974
d76951b6
AJ
5975 if (arm_feature(env, ARM_FEATURE_V6K) &&
5976 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
5977 /* The simplified model uses AP[0] as an access control bit. */
5978 if ((ap & 1) == 0) {
5979 /* Access flag fault. */
5980 code = (code == 15) ? 6 : 3;
5981 goto do_fault;
5982 }
5983 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
5984 } else {
5985 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 5986 }
0fbf5238
AJ
5987 if (*prot && !xn) {
5988 *prot |= PAGE_EXEC;
5989 }
5990 if (!(*prot & (1 << access_type))) {
c0034328
JR
5991 /* Access permission fault. */
5992 goto do_fault;
5993 }
3ad493fc 5994 }
8bf5b6a9
PM
5995 if (ns) {
5996 /* The NS bit will (as required by the architecture) have no effect if
5997 * the CPU doesn't support TZ or this is a non-secure translation
5998 * regime, because the attribute will already be non-secure.
5999 */
6000 attrs->secure = false;
6001 }
9ee6e8bb 6002 *phys_ptr = phys_addr;
b7cc4e82 6003 return false;
b5ff1b31 6004do_fault:
b7cc4e82
PC
6005 *fsr = code | (domain << 4);
6006 return true;
b5ff1b31
FB
6007}
6008
3dde962f
PM
6009/* Fault type for long-descriptor MMU fault reporting; this corresponds
6010 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6011 */
6012typedef enum {
6013 translation_fault = 1,
6014 access_fault = 2,
6015 permission_fault = 3,
6016} MMUFaultType;
6017
b7cc4e82
PC
6018static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
6019 int access_type, ARMMMUIdx mmu_idx,
6020 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
6021 target_ulong *page_size_ptr, uint32_t *fsr)
3dde962f 6022{
70d74660 6023 CPUState *cs = CPU(arm_env_get_cpu(env));
3dde962f
PM
6024 /* Read an LPAE long-descriptor translation table. */
6025 MMUFaultType fault_type = translation_fault;
6026 uint32_t level = 1;
6027 uint32_t epd;
2c8dd318
RH
6028 int32_t tsz;
6029 uint32_t tg;
3dde962f
PM
6030 uint64_t ttbr;
6031 int ttbr_select;
2c8dd318 6032 hwaddr descaddr, descmask;
3dde962f
PM
6033 uint32_t tableattrs;
6034 target_ulong page_size;
6035 uint32_t attrs;
2c8dd318
RH
6036 int32_t granule_sz = 9;
6037 int32_t va_size = 32;
6038 int32_t tbi = 0;
0480f69a 6039 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 6040 int ap, ns, xn, pxn;
88e8add8
GB
6041 uint32_t el = regime_el(env, mmu_idx);
6042 bool ttbr1_valid = true;
0480f69a
PM
6043
6044 /* TODO:
88e8add8
GB
6045 * This code does not handle the different format TCR for VTCR_EL2.
6046 * This code also does not support shareability levels.
6047 * Attribute and permission bit handling should also be checked when adding
6048 * support for those page table walks.
0480f69a 6049 */
88e8add8 6050 if (arm_el_is_aa64(env, el)) {
2c8dd318 6051 va_size = 64;
88e8add8
GB
6052 if (el > 1) {
6053 tbi = extract64(tcr->raw_tcr, 20, 1);
6054 } else {
6055 if (extract64(address, 55, 1)) {
6056 tbi = extract64(tcr->raw_tcr, 38, 1);
6057 } else {
6058 tbi = extract64(tcr->raw_tcr, 37, 1);
6059 }
6060 }
2c8dd318 6061 tbi *= 8;
88e8add8
GB
6062
6063 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6064 * invalid.
6065 */
6066 if (el > 1) {
6067 ttbr1_valid = false;
6068 }
d0a2cbce
PM
6069 } else {
6070 /* There is no TTBR1 for EL2 */
6071 if (el == 2) {
6072 ttbr1_valid = false;
6073 }
2c8dd318 6074 }
3dde962f
PM
6075
6076 /* Determine whether this address is in the region controlled by
6077 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6078 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6079 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6080 */
11f136ee 6081 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
0480f69a 6082 if (va_size == 64) {
2c8dd318
RH
6083 t0sz = MIN(t0sz, 39);
6084 t0sz = MAX(t0sz, 16);
6085 }
11f136ee 6086 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
0480f69a 6087 if (va_size == 64) {
2c8dd318
RH
6088 t1sz = MIN(t1sz, 39);
6089 t1sz = MAX(t1sz, 16);
6090 }
6091 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3dde962f
PM
6092 /* there is a ttbr0 region and we are in it (high bits all zero) */
6093 ttbr_select = 0;
88e8add8
GB
6094 } else if (ttbr1_valid && t1sz &&
6095 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3dde962f
PM
6096 /* there is a ttbr1 region and we are in it (high bits all one) */
6097 ttbr_select = 1;
6098 } else if (!t0sz) {
6099 /* ttbr0 region is "everything not in the ttbr1 region" */
6100 ttbr_select = 0;
88e8add8 6101 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
6102 /* ttbr1 region is "everything not in the ttbr0 region" */
6103 ttbr_select = 1;
6104 } else {
6105 /* in the gap between the two regions, this is a Translation fault */
6106 fault_type = translation_fault;
6107 goto do_fault;
6108 }
6109
6110 /* Note that QEMU ignores shareability and cacheability attributes,
6111 * so we don't need to do anything with the SH, ORGN, IRGN fields
6112 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6113 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6114 * implement any ASID-like capability so we can ignore it (instead
6115 * we will always flush the TLB any time the ASID is changed).
6116 */
6117 if (ttbr_select == 0) {
aef878be 6118 ttbr = regime_ttbr(env, mmu_idx, 0);
11f136ee 6119 epd = extract32(tcr->raw_tcr, 7, 1);
3dde962f 6120 tsz = t0sz;
2c8dd318 6121
11f136ee 6122 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318
RH
6123 if (tg == 1) { /* 64KB pages */
6124 granule_sz = 13;
6125 }
6126 if (tg == 2) { /* 16KB pages */
6127 granule_sz = 11;
6128 }
3dde962f 6129 } else {
88e8add8
GB
6130 /* We should only be here if TTBR1 is valid */
6131 assert(ttbr1_valid);
6132
aef878be 6133 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 6134 epd = extract32(tcr->raw_tcr, 23, 1);
3dde962f 6135 tsz = t1sz;
2c8dd318 6136
11f136ee 6137 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318
RH
6138 if (tg == 3) { /* 64KB pages */
6139 granule_sz = 13;
6140 }
6141 if (tg == 1) { /* 16KB pages */
6142 granule_sz = 11;
6143 }
3dde962f
PM
6144 }
6145
0480f69a
PM
6146 /* Here we should have set up all the parameters for the translation:
6147 * va_size, ttbr, epd, tsz, granule_sz, tbi
6148 */
6149
3dde962f 6150 if (epd) {
88e8add8
GB
6151 /* Translation table walk disabled => Translation fault on TLB miss
6152 * Note: This is always 0 on 64-bit EL2 and EL3.
6153 */
3dde962f
PM
6154 goto do_fault;
6155 }
6156
d6be29e3
PM
6157 /* The starting level depends on the virtual address size (which can be
6158 * up to 48 bits) and the translation granule size. It indicates the number
6159 * of strides (granule_sz bits at a time) needed to consume the bits
6160 * of the input address. In the pseudocode this is:
6161 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6162 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6163 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6164 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6165 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6166 * = 4 - (va_size - tsz - 4) / granule_sz;
3dde962f 6167 */
d6be29e3 6168 level = 4 - (va_size - tsz - 4) / granule_sz;
3dde962f
PM
6169
6170 /* Clear the vaddr bits which aren't part of the within-region address,
6171 * so that we don't have to special case things when calculating the
6172 * first descriptor address.
6173 */
2c8dd318
RH
6174 if (tsz) {
6175 address &= (1ULL << (va_size - tsz)) - 1;
6176 }
6177
6178 descmask = (1ULL << (granule_sz + 3)) - 1;
3dde962f
PM
6179
6180 /* Now we can extract the actual base address from the TTBR */
2c8dd318
RH
6181 descaddr = extract64(ttbr, 0, 48);
6182 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
3dde962f 6183
ebca90e4
PM
6184 /* Secure accesses start with the page table in secure memory and
6185 * can be downgraded to non-secure at any step. Non-secure accesses
6186 * remain non-secure. We implement this by just ORing in the NSTable/NS
6187 * bits at each step.
6188 */
6189 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
6190 for (;;) {
6191 uint64_t descriptor;
ebca90e4 6192 bool nstable;
3dde962f 6193
2c8dd318
RH
6194 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
6195 descaddr &= ~7ULL;
ebca90e4
PM
6196 nstable = extract32(tableattrs, 4, 1);
6197 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
3dde962f
PM
6198 if (!(descriptor & 1) ||
6199 (!(descriptor & 2) && (level == 3))) {
6200 /* Invalid, or the Reserved level 3 encoding */
6201 goto do_fault;
6202 }
6203 descaddr = descriptor & 0xfffffff000ULL;
6204
6205 if ((descriptor & 2) && (level < 3)) {
6206 /* Table entry. The top five bits are attributes which may
6207 * propagate down through lower levels of the table (and
6208 * which are all arranged so that 0 means "no effect", so
6209 * we can gather them up by ORing in the bits at each level).
6210 */
6211 tableattrs |= extract64(descriptor, 59, 5);
6212 level++;
6213 continue;
6214 }
6215 /* Block entry at level 1 or 2, or page entry at level 3.
6216 * These are basically the same thing, although the number
6217 * of bits we pull in from the vaddr varies.
6218 */
5661ae6b 6219 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
3dde962f
PM
6220 descaddr |= (address & (page_size - 1));
6221 /* Extract attributes from the descriptor and merge with table attrs */
d615efac
IC
6222 attrs = extract64(descriptor, 2, 10)
6223 | (extract64(descriptor, 52, 12) << 10);
3dde962f
PM
6224 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
6225 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
6226 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6227 * means "force PL1 access only", which means forcing AP[1] to 0.
6228 */
6229 if (extract32(tableattrs, 2, 1)) {
6230 attrs &= ~(1 << 4);
6231 }
ebca90e4 6232 attrs |= nstable << 3; /* NS */
3dde962f
PM
6233 break;
6234 }
6235 /* Here descaddr is the final physical address, and attributes
6236 * are all in attrs.
6237 */
6238 fault_type = access_fault;
6239 if ((attrs & (1 << 8)) == 0) {
6240 /* Access flag */
6241 goto do_fault;
6242 }
d8e052b3
AJ
6243
6244 ap = extract32(attrs, 4, 2);
6245 ns = extract32(attrs, 3, 1);
6246 xn = extract32(attrs, 12, 1);
6247 pxn = extract32(attrs, 11, 1);
6248
6249 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
6250
3dde962f 6251 fault_type = permission_fault;
d8e052b3 6252 if (!(*prot & (1 << access_type))) {
3dde962f
PM
6253 goto do_fault;
6254 }
3dde962f 6255
8bf5b6a9
PM
6256 if (ns) {
6257 /* The NS bit will (as required by the architecture) have no effect if
6258 * the CPU doesn't support TZ or this is a non-secure translation
6259 * regime, because the attribute will already be non-secure.
6260 */
6261 txattrs->secure = false;
6262 }
3dde962f
PM
6263 *phys_ptr = descaddr;
6264 *page_size_ptr = page_size;
b7cc4e82 6265 return false;
3dde962f
PM
6266
6267do_fault:
6268 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82
PC
6269 *fsr = (1 << 9) | (fault_type << 2) | level;
6270 return true;
3dde962f
PM
6271}
6272
f6bda88f
PC
6273static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
6274 ARMMMUIdx mmu_idx,
6275 int32_t address, int *prot)
6276{
6277 *prot = PAGE_READ | PAGE_WRITE;
6278 switch (address) {
6279 case 0xF0000000 ... 0xFFFFFFFF:
6280 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
6281 *prot |= PAGE_EXEC;
6282 }
6283 break;
6284 case 0x00000000 ... 0x7FFFFFFF:
6285 *prot |= PAGE_EXEC;
6286 break;
6287 }
6288
6289}
6290
6291static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
6292 int access_type, ARMMMUIdx mmu_idx,
6293 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6294{
6295 ARMCPU *cpu = arm_env_get_cpu(env);
6296 int n;
6297 bool is_user = regime_is_user(env, mmu_idx);
6298
6299 *phys_ptr = address;
6300 *prot = 0;
6301
6302 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
6303 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6304 } else { /* MPU enabled */
6305 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
6306 /* region search */
6307 uint32_t base = env->pmsav7.drbar[n];
6308 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
6309 uint32_t rmask;
6310 bool srdis = false;
6311
6312 if (!(env->pmsav7.drsr[n] & 0x1)) {
6313 continue;
6314 }
6315
6316 if (!rsize) {
6317 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
6318 continue;
6319 }
6320 rsize++;
6321 rmask = (1ull << rsize) - 1;
6322
6323 if (base & rmask) {
6324 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
6325 "to DRSR region size, mask = %" PRIx32,
6326 base, rmask);
6327 continue;
6328 }
6329
6330 if (address < base || address > base + rmask) {
6331 continue;
6332 }
6333
6334 /* Region matched */
6335
6336 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
6337 int i, snd;
6338 uint32_t srdis_mask;
6339
6340 rsize -= 3; /* sub region size (power of 2) */
6341 snd = ((address - base) >> rsize) & 0x7;
6342 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
6343
6344 srdis_mask = srdis ? 0x3 : 0x0;
6345 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
6346 /* This will check in groups of 2, 4 and then 8, whether
6347 * the subregion bits are consistent. rsize is incremented
6348 * back up to give the region size, considering consistent
6349 * adjacent subregions as one region. Stop testing if rsize
6350 * is already big enough for an entire QEMU page.
6351 */
6352 int snd_rounded = snd & ~(i - 1);
6353 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
6354 snd_rounded + 8, i);
6355 if (srdis_mask ^ srdis_multi) {
6356 break;
6357 }
6358 srdis_mask = (srdis_mask << i) | srdis_mask;
6359 rsize++;
6360 }
6361 }
6362 if (rsize < TARGET_PAGE_BITS) {
6363 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
6364 "alignment of %" PRIu32 " bits. Minimum is %d\n",
6365 rsize, TARGET_PAGE_BITS);
6366 continue;
6367 }
6368 if (srdis) {
6369 continue;
6370 }
6371 break;
6372 }
6373
6374 if (n == -1) { /* no hits */
6375 if (cpu->pmsav7_dregion &&
6376 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
6377 /* background fault */
6378 *fsr = 0;
6379 return true;
6380 }
6381 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6382 } else { /* a MPU hit! */
6383 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
6384
6385 if (is_user) { /* User mode AP bit decoding */
6386 switch (ap) {
6387 case 0:
6388 case 1:
6389 case 5:
6390 break; /* no access */
6391 case 3:
6392 *prot |= PAGE_WRITE;
6393 /* fall through */
6394 case 2:
6395 case 6:
6396 *prot |= PAGE_READ | PAGE_EXEC;
6397 break;
6398 default:
6399 qemu_log_mask(LOG_GUEST_ERROR,
6400 "Bad value for AP bits in DRACR %"
6401 PRIx32 "\n", ap);
6402 }
6403 } else { /* Priv. mode AP bits decoding */
6404 switch (ap) {
6405 case 0:
6406 break; /* no access */
6407 case 1:
6408 case 2:
6409 case 3:
6410 *prot |= PAGE_WRITE;
6411 /* fall through */
6412 case 5:
6413 case 6:
6414 *prot |= PAGE_READ | PAGE_EXEC;
6415 break;
6416 default:
6417 qemu_log_mask(LOG_GUEST_ERROR,
6418 "Bad value for AP bits in DRACR %"
6419 PRIx32 "\n", ap);
6420 }
6421 }
6422
6423 /* execute never */
6424 if (env->pmsav7.dracr[n] & (1 << 12)) {
6425 *prot &= ~PAGE_EXEC;
6426 }
6427 }
6428 }
6429
6430 *fsr = 0x00d; /* Permission fault */
6431 return !(*prot & (1 << access_type));
6432}
6433
13689d43
PC
6434static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
6435 int access_type, ARMMMUIdx mmu_idx,
6436 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
6437{
6438 int n;
6439 uint32_t mask;
6440 uint32_t base;
0480f69a 6441 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb
PB
6442
6443 *phys_ptr = address;
6444 for (n = 7; n >= 0; n--) {
554b0b09 6445 base = env->cp15.c6_region[n];
87c3d486 6446 if ((base & 1) == 0) {
554b0b09 6447 continue;
87c3d486 6448 }
554b0b09
PM
6449 mask = 1 << ((base >> 1) & 0x1f);
6450 /* Keep this shift separate from the above to avoid an
6451 (undefined) << 32. */
6452 mask = (mask << 1) - 1;
87c3d486 6453 if (((base ^ address) & ~mask) == 0) {
554b0b09 6454 break;
87c3d486 6455 }
9ee6e8bb 6456 }
87c3d486 6457 if (n < 0) {
b7cc4e82
PC
6458 *fsr = 2;
6459 return true;
87c3d486 6460 }
9ee6e8bb
PB
6461
6462 if (access_type == 2) {
7e09797c 6463 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 6464 } else {
7e09797c 6465 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
6466 }
6467 mask = (mask >> (n * 4)) & 0xf;
6468 switch (mask) {
6469 case 0:
b7cc4e82
PC
6470 *fsr = 1;
6471 return true;
9ee6e8bb 6472 case 1:
87c3d486 6473 if (is_user) {
b7cc4e82
PC
6474 *fsr = 1;
6475 return true;
87c3d486 6476 }
554b0b09
PM
6477 *prot = PAGE_READ | PAGE_WRITE;
6478 break;
9ee6e8bb 6479 case 2:
554b0b09 6480 *prot = PAGE_READ;
87c3d486 6481 if (!is_user) {
554b0b09 6482 *prot |= PAGE_WRITE;
87c3d486 6483 }
554b0b09 6484 break;
9ee6e8bb 6485 case 3:
554b0b09
PM
6486 *prot = PAGE_READ | PAGE_WRITE;
6487 break;
9ee6e8bb 6488 case 5:
87c3d486 6489 if (is_user) {
b7cc4e82
PC
6490 *fsr = 1;
6491 return true;
87c3d486 6492 }
554b0b09
PM
6493 *prot = PAGE_READ;
6494 break;
9ee6e8bb 6495 case 6:
554b0b09
PM
6496 *prot = PAGE_READ;
6497 break;
9ee6e8bb 6498 default:
554b0b09 6499 /* Bad permission. */
b7cc4e82
PC
6500 *fsr = 1;
6501 return true;
9ee6e8bb 6502 }
3ad493fc 6503 *prot |= PAGE_EXEC;
b7cc4e82 6504 return false;
9ee6e8bb
PB
6505}
6506
702a9357
PM
6507/* get_phys_addr - get the physical address for this virtual address
6508 *
6509 * Find the physical address corresponding to the given virtual address,
6510 * by doing a translation table walk on MMU based systems or using the
6511 * MPU state on MPU based systems.
6512 *
b7cc4e82
PC
6513 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6514 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
6515 * information on why the translation aborted, in the format of a
6516 * DFSR/IFSR fault register, with the following caveats:
6517 * * we honour the short vs long DFSR format differences.
6518 * * the WnR bit is never set (the caller must do this).
f6bda88f 6519 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
6520 * value.
6521 *
6522 * @env: CPUARMState
6523 * @address: virtual address to get physical address for
6524 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 6525 * @mmu_idx: MMU index indicating required translation regime
702a9357 6526 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 6527 * @attrs: set to the memory transaction attributes to use
702a9357
PM
6528 * @prot: set to the permissions for the page containing phys_ptr
6529 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 6530 * @fsr: set to the DFSR/IFSR value on failure
702a9357 6531 */
b7cc4e82
PC
6532static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
6533 int access_type, ARMMMUIdx mmu_idx,
6534 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6535 target_ulong *page_size, uint32_t *fsr)
9ee6e8bb 6536{
0480f69a
PM
6537 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6538 /* TODO: when we support EL2 we should here call ourselves recursively
ebca90e4
PM
6539 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6540 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6541 * rather than direct physical memory loads when appropriate.
0480f69a
PM
6542 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6543 */
6544 assert(!arm_feature(env, ARM_FEATURE_EL2));
6545 mmu_idx += ARMMMUIdx_S1NSE0;
6546 }
d3649702 6547
8bf5b6a9
PM
6548 /* The page table entries may downgrade secure to non-secure, but
6549 * cannot upgrade an non-secure translation regime's attributes
6550 * to secure.
6551 */
6552 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 6553 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 6554
0480f69a
PM
6555 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6556 * In v7 and earlier it affects all stage 1 translations.
6557 */
6558 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
6559 && !arm_feature(env, ARM_FEATURE_V8)) {
6560 if (regime_el(env, mmu_idx) == 3) {
6561 address += env->cp15.fcseidr_s;
6562 } else {
6563 address += env->cp15.fcseidr_ns;
6564 }
54bf36ed 6565 }
9ee6e8bb 6566
f6bda88f
PC
6567 /* pmsav7 has special handling for when MPU is disabled so call it before
6568 * the common MMU/MPU disabled check below.
6569 */
6570 if (arm_feature(env, ARM_FEATURE_MPU) &&
6571 arm_feature(env, ARM_FEATURE_V7)) {
6572 *page_size = TARGET_PAGE_SIZE;
6573 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
6574 phys_ptr, prot, fsr);
6575 }
6576
0480f69a 6577 if (regime_translation_disabled(env, mmu_idx)) {
9ee6e8bb
PB
6578 /* MMU/MPU disabled. */
6579 *phys_ptr = address;
3ad493fc 6580 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 6581 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 6582 return 0;
0480f69a
PM
6583 }
6584
6585 if (arm_feature(env, ARM_FEATURE_MPU)) {
f6bda88f 6586 /* Pre-v7 MPU */
d4c430a8 6587 *page_size = TARGET_PAGE_SIZE;
13689d43
PC
6588 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
6589 phys_ptr, prot, fsr);
0480f69a
PM
6590 }
6591
6592 if (regime_using_lpae_format(env, mmu_idx)) {
6593 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
b7cc4e82 6594 attrs, prot, page_size, fsr);
0480f69a
PM
6595 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
6596 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
b7cc4e82 6597 attrs, prot, page_size, fsr);
9ee6e8bb 6598 } else {
0480f69a 6599 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
b7cc4e82 6600 prot, page_size, fsr);
9ee6e8bb
PB
6601 }
6602}
6603
8c6084bf 6604/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
6605 * to the TLB. Return false on success, or true on failure. Populate
6606 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 6607 */
b7cc4e82
PC
6608bool arm_tlb_fill(CPUState *cs, vaddr address,
6609 int access_type, int mmu_idx, uint32_t *fsr)
b5ff1b31 6610{
7510454e
AF
6611 ARMCPU *cpu = ARM_CPU(cs);
6612 CPUARMState *env = &cpu->env;
a8170e5e 6613 hwaddr phys_addr;
d4c430a8 6614 target_ulong page_size;
b5ff1b31 6615 int prot;
d3649702 6616 int ret;
8bf5b6a9 6617 MemTxAttrs attrs = {};
b5ff1b31 6618
8bf5b6a9 6619 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
b7cc4e82
PC
6620 &attrs, &prot, &page_size, fsr);
6621 if (!ret) {
b5ff1b31 6622 /* Map a single [sub]page. */
dcd82c11
AB
6623 phys_addr &= TARGET_PAGE_MASK;
6624 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
6625 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
6626 prot, mmu_idx, page_size);
d4c430a8 6627 return 0;
b5ff1b31
FB
6628 }
6629
8c6084bf 6630 return ret;
b5ff1b31
FB
6631}
6632
00b941e5 6633hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
b5ff1b31 6634{
00b941e5 6635 ARMCPU *cpu = ARM_CPU(cs);
d3649702 6636 CPUARMState *env = &cpu->env;
a8170e5e 6637 hwaddr phys_addr;
d4c430a8 6638 target_ulong page_size;
b5ff1b31 6639 int prot;
b7cc4e82
PC
6640 bool ret;
6641 uint32_t fsr;
8bf5b6a9 6642 MemTxAttrs attrs = {};
b5ff1b31 6643
d3649702 6644 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
b7cc4e82 6645 &attrs, &prot, &page_size, &fsr);
b5ff1b31 6646
b7cc4e82 6647 if (ret) {
b5ff1b31 6648 return -1;
00b941e5 6649 }
b5ff1b31
FB
6650
6651 return phys_addr;
6652}
6653
0ecb72a5 6654void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 6655{
39ea3d4e
PM
6656 if ((env->uncached_cpsr & CPSR_M) == mode) {
6657 env->regs[13] = val;
6658 } else {
f5206413 6659 env->banked_r13[bank_number(mode)] = val;
39ea3d4e 6660 }
9ee6e8bb
PB
6661}
6662
0ecb72a5 6663uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 6664{
39ea3d4e
PM
6665 if ((env->uncached_cpsr & CPSR_M) == mode) {
6666 return env->regs[13];
6667 } else {
f5206413 6668 return env->banked_r13[bank_number(mode)];
39ea3d4e 6669 }
9ee6e8bb
PB
6670}
6671
0ecb72a5 6672uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 6673{
a47dddd7
AF
6674 ARMCPU *cpu = arm_env_get_cpu(env);
6675
9ee6e8bb
PB
6676 switch (reg) {
6677 case 0: /* APSR */
6678 return xpsr_read(env) & 0xf8000000;
6679 case 1: /* IAPSR */
6680 return xpsr_read(env) & 0xf80001ff;
6681 case 2: /* EAPSR */
6682 return xpsr_read(env) & 0xff00fc00;
6683 case 3: /* xPSR */
6684 return xpsr_read(env) & 0xff00fdff;
6685 case 5: /* IPSR */
6686 return xpsr_read(env) & 0x000001ff;
6687 case 6: /* EPSR */
6688 return xpsr_read(env) & 0x0700fc00;
6689 case 7: /* IEPSR */
6690 return xpsr_read(env) & 0x0700edff;
6691 case 8: /* MSP */
6692 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
6693 case 9: /* PSP */
6694 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
6695 case 16: /* PRIMASK */
4cc35614 6696 return (env->daif & PSTATE_I) != 0;
82845826
SH
6697 case 17: /* BASEPRI */
6698 case 18: /* BASEPRI_MAX */
9ee6e8bb 6699 return env->v7m.basepri;
82845826 6700 case 19: /* FAULTMASK */
4cc35614 6701 return (env->daif & PSTATE_F) != 0;
9ee6e8bb
PB
6702 case 20: /* CONTROL */
6703 return env->v7m.control;
6704 default:
6705 /* ??? For debugging only. */
a47dddd7 6706 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
9ee6e8bb
PB
6707 return 0;
6708 }
6709}
6710
0ecb72a5 6711void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 6712{
a47dddd7
AF
6713 ARMCPU *cpu = arm_env_get_cpu(env);
6714
9ee6e8bb
PB
6715 switch (reg) {
6716 case 0: /* APSR */
6717 xpsr_write(env, val, 0xf8000000);
6718 break;
6719 case 1: /* IAPSR */
6720 xpsr_write(env, val, 0xf8000000);
6721 break;
6722 case 2: /* EAPSR */
6723 xpsr_write(env, val, 0xfe00fc00);
6724 break;
6725 case 3: /* xPSR */
6726 xpsr_write(env, val, 0xfe00fc00);
6727 break;
6728 case 5: /* IPSR */
6729 /* IPSR bits are readonly. */
6730 break;
6731 case 6: /* EPSR */
6732 xpsr_write(env, val, 0x0600fc00);
6733 break;
6734 case 7: /* IEPSR */
6735 xpsr_write(env, val, 0x0600fc00);
6736 break;
6737 case 8: /* MSP */
6738 if (env->v7m.current_sp)
6739 env->v7m.other_sp = val;
6740 else
6741 env->regs[13] = val;
6742 break;
6743 case 9: /* PSP */
6744 if (env->v7m.current_sp)
6745 env->regs[13] = val;
6746 else
6747 env->v7m.other_sp = val;
6748 break;
6749 case 16: /* PRIMASK */
4cc35614
PM
6750 if (val & 1) {
6751 env->daif |= PSTATE_I;
6752 } else {
6753 env->daif &= ~PSTATE_I;
6754 }
9ee6e8bb 6755 break;
82845826 6756 case 17: /* BASEPRI */
9ee6e8bb
PB
6757 env->v7m.basepri = val & 0xff;
6758 break;
82845826 6759 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
6760 val &= 0xff;
6761 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
6762 env->v7m.basepri = val;
6763 break;
82845826 6764 case 19: /* FAULTMASK */
4cc35614
PM
6765 if (val & 1) {
6766 env->daif |= PSTATE_F;
6767 } else {
6768 env->daif &= ~PSTATE_F;
6769 }
82845826 6770 break;
9ee6e8bb
PB
6771 case 20: /* CONTROL */
6772 env->v7m.control = val & 3;
6773 switch_v7m_sp(env, (val & 2) != 0);
6774 break;
6775 default:
6776 /* ??? For debugging only. */
a47dddd7 6777 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
9ee6e8bb
PB
6778 return;
6779 }
6780}
6781
b5ff1b31 6782#endif
6ddbc6e4 6783
aca3f40b
PM
6784void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
6785{
6786 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
6787 * Note that we do not implement the (architecturally mandated)
6788 * alignment fault for attempts to use this on Device memory
6789 * (which matches the usual QEMU behaviour of not implementing either
6790 * alignment faults or any memory attribute handling).
6791 */
6792
6793 ARMCPU *cpu = arm_env_get_cpu(env);
6794 uint64_t blocklen = 4 << cpu->dcz_blocksize;
6795 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
6796
6797#ifndef CONFIG_USER_ONLY
6798 {
6799 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6800 * the block size so we might have to do more than one TLB lookup.
6801 * We know that in fact for any v8 CPU the page size is at least 4K
6802 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6803 * 1K as an artefact of legacy v5 subpage support being present in the
6804 * same QEMU executable.
6805 */
6806 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
6807 void *hostaddr[maxidx];
6808 int try, i;
3972ef6f
RH
6809 unsigned mmu_idx = cpu_mmu_index(env);
6810 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
6811
6812 for (try = 0; try < 2; try++) {
6813
6814 for (i = 0; i < maxidx; i++) {
6815 hostaddr[i] = tlb_vaddr_to_host(env,
6816 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 6817 1, mmu_idx);
aca3f40b
PM
6818 if (!hostaddr[i]) {
6819 break;
6820 }
6821 }
6822 if (i == maxidx) {
6823 /* If it's all in the TLB it's fair game for just writing to;
6824 * we know we don't need to update dirty status, etc.
6825 */
6826 for (i = 0; i < maxidx - 1; i++) {
6827 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
6828 }
6829 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
6830 return;
6831 }
6832 /* OK, try a store and see if we can populate the tlb. This
6833 * might cause an exception if the memory isn't writable,
6834 * in which case we will longjmp out of here. We must for
6835 * this purpose use the actual register value passed to us
6836 * so that we get the fault address right.
6837 */
3972ef6f 6838 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
aca3f40b
PM
6839 /* Now we can populate the other TLB entries, if any */
6840 for (i = 0; i < maxidx; i++) {
6841 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
6842 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
3972ef6f 6843 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
aca3f40b
PM
6844 }
6845 }
6846 }
6847
6848 /* Slow path (probably attempt to do this to an I/O device or
6849 * similar, or clearing of a block of code we have translations
6850 * cached for). Just do a series of byte writes as the architecture
6851 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6852 * memset(), unmap() sequence here because:
6853 * + we'd need to account for the blocksize being larger than a page
6854 * + the direct-RAM access case is almost always going to be dealt
6855 * with in the fastpath code above, so there's no speed benefit
6856 * + we would have to deal with the map returning NULL because the
6857 * bounce buffer was in use
6858 */
6859 for (i = 0; i < blocklen; i++) {
3972ef6f 6860 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
aca3f40b
PM
6861 }
6862 }
6863#else
6864 memset(g2h(vaddr), 0, blocklen);
6865#endif
6866}
6867
6ddbc6e4
PB
6868/* Note that signed overflow is undefined in C. The following routines are
6869 careful to use unsigned types where modulo arithmetic is required.
6870 Failure to do so _will_ break on newer gcc. */
6871
6872/* Signed saturating arithmetic. */
6873
1654b2d6 6874/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
6875static inline uint16_t add16_sat(uint16_t a, uint16_t b)
6876{
6877 uint16_t res;
6878
6879 res = a + b;
6880 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
6881 if (a & 0x8000)
6882 res = 0x8000;
6883 else
6884 res = 0x7fff;
6885 }
6886 return res;
6887}
6888
1654b2d6 6889/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
6890static inline uint8_t add8_sat(uint8_t a, uint8_t b)
6891{
6892 uint8_t res;
6893
6894 res = a + b;
6895 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
6896 if (a & 0x80)
6897 res = 0x80;
6898 else
6899 res = 0x7f;
6900 }
6901 return res;
6902}
6903
1654b2d6 6904/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
6905static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
6906{
6907 uint16_t res;
6908
6909 res = a - b;
6910 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
6911 if (a & 0x8000)
6912 res = 0x8000;
6913 else
6914 res = 0x7fff;
6915 }
6916 return res;
6917}
6918
1654b2d6 6919/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
6920static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
6921{
6922 uint8_t res;
6923
6924 res = a - b;
6925 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
6926 if (a & 0x80)
6927 res = 0x80;
6928 else
6929 res = 0x7f;
6930 }
6931 return res;
6932}
6933
6934#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
6935#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
6936#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
6937#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
6938#define PFX q
6939
6940#include "op_addsub.h"
6941
6942/* Unsigned saturating arithmetic. */
460a09c1 6943static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
6944{
6945 uint16_t res;
6946 res = a + b;
6947 if (res < a)
6948 res = 0xffff;
6949 return res;
6950}
6951
460a09c1 6952static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 6953{
4c4fd3f8 6954 if (a > b)
6ddbc6e4
PB
6955 return a - b;
6956 else
6957 return 0;
6958}
6959
6960static inline uint8_t add8_usat(uint8_t a, uint8_t b)
6961{
6962 uint8_t res;
6963 res = a + b;
6964 if (res < a)
6965 res = 0xff;
6966 return res;
6967}
6968
6969static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
6970{
4c4fd3f8 6971 if (a > b)
6ddbc6e4
PB
6972 return a - b;
6973 else
6974 return 0;
6975}
6976
6977#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
6978#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
6979#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
6980#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
6981#define PFX uq
6982
6983#include "op_addsub.h"
6984
6985/* Signed modulo arithmetic. */
6986#define SARITH16(a, b, n, op) do { \
6987 int32_t sum; \
db6e2e65 6988 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
6989 RESULT(sum, n, 16); \
6990 if (sum >= 0) \
6991 ge |= 3 << (n * 2); \
6992 } while(0)
6993
6994#define SARITH8(a, b, n, op) do { \
6995 int32_t sum; \
db6e2e65 6996 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
6997 RESULT(sum, n, 8); \
6998 if (sum >= 0) \
6999 ge |= 1 << n; \
7000 } while(0)
7001
7002
7003#define ADD16(a, b, n) SARITH16(a, b, n, +)
7004#define SUB16(a, b, n) SARITH16(a, b, n, -)
7005#define ADD8(a, b, n) SARITH8(a, b, n, +)
7006#define SUB8(a, b, n) SARITH8(a, b, n, -)
7007#define PFX s
7008#define ARITH_GE
7009
7010#include "op_addsub.h"
7011
7012/* Unsigned modulo arithmetic. */
7013#define ADD16(a, b, n) do { \
7014 uint32_t sum; \
7015 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7016 RESULT(sum, n, 16); \
a87aa10b 7017 if ((sum >> 16) == 1) \
6ddbc6e4
PB
7018 ge |= 3 << (n * 2); \
7019 } while(0)
7020
7021#define ADD8(a, b, n) do { \
7022 uint32_t sum; \
7023 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7024 RESULT(sum, n, 8); \
a87aa10b
AZ
7025 if ((sum >> 8) == 1) \
7026 ge |= 1 << n; \
6ddbc6e4
PB
7027 } while(0)
7028
7029#define SUB16(a, b, n) do { \
7030 uint32_t sum; \
7031 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7032 RESULT(sum, n, 16); \
7033 if ((sum >> 16) == 0) \
7034 ge |= 3 << (n * 2); \
7035 } while(0)
7036
7037#define SUB8(a, b, n) do { \
7038 uint32_t sum; \
7039 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7040 RESULT(sum, n, 8); \
7041 if ((sum >> 8) == 0) \
a87aa10b 7042 ge |= 1 << n; \
6ddbc6e4
PB
7043 } while(0)
7044
7045#define PFX u
7046#define ARITH_GE
7047
7048#include "op_addsub.h"
7049
7050/* Halved signed arithmetic. */
7051#define ADD16(a, b, n) \
7052 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7053#define SUB16(a, b, n) \
7054 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7055#define ADD8(a, b, n) \
7056 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7057#define SUB8(a, b, n) \
7058 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7059#define PFX sh
7060
7061#include "op_addsub.h"
7062
7063/* Halved unsigned arithmetic. */
7064#define ADD16(a, b, n) \
7065 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7066#define SUB16(a, b, n) \
7067 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7068#define ADD8(a, b, n) \
7069 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7070#define SUB8(a, b, n) \
7071 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7072#define PFX uh
7073
7074#include "op_addsub.h"
7075
7076static inline uint8_t do_usad(uint8_t a, uint8_t b)
7077{
7078 if (a > b)
7079 return a - b;
7080 else
7081 return b - a;
7082}
7083
7084/* Unsigned sum of absolute byte differences. */
7085uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
7086{
7087 uint32_t sum;
7088 sum = do_usad(a, b);
7089 sum += do_usad(a >> 8, b >> 8);
7090 sum += do_usad(a >> 16, b >>16);
7091 sum += do_usad(a >> 24, b >> 24);
7092 return sum;
7093}
7094
7095/* For ARMv6 SEL instruction. */
7096uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
7097{
7098 uint32_t mask;
7099
7100 mask = 0;
7101 if (flags & 1)
7102 mask |= 0xff;
7103 if (flags & 2)
7104 mask |= 0xff00;
7105 if (flags & 4)
7106 mask |= 0xff0000;
7107 if (flags & 8)
7108 mask |= 0xff000000;
7109 return (a & mask) | (b & ~mask);
7110}
7111
b90372ad
PM
7112/* VFP support. We follow the convention used for VFP instructions:
7113 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
7114 "d" suffix. */
7115
7116/* Convert host exception flags to vfp form. */
7117static inline int vfp_exceptbits_from_host(int host_bits)
7118{
7119 int target_bits = 0;
7120
7121 if (host_bits & float_flag_invalid)
7122 target_bits |= 1;
7123 if (host_bits & float_flag_divbyzero)
7124 target_bits |= 2;
7125 if (host_bits & float_flag_overflow)
7126 target_bits |= 4;
36802b6b 7127 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
7128 target_bits |= 8;
7129 if (host_bits & float_flag_inexact)
7130 target_bits |= 0x10;
cecd8504
PM
7131 if (host_bits & float_flag_input_denormal)
7132 target_bits |= 0x80;
4373f3ce
PB
7133 return target_bits;
7134}
7135
0ecb72a5 7136uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
7137{
7138 int i;
7139 uint32_t fpscr;
7140
7141 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
7142 | (env->vfp.vec_len << 16)
7143 | (env->vfp.vec_stride << 20);
7144 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 7145 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
7146 fpscr |= vfp_exceptbits_from_host(i);
7147 return fpscr;
7148}
7149
0ecb72a5 7150uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
7151{
7152 return HELPER(vfp_get_fpscr)(env);
7153}
7154
4373f3ce
PB
7155/* Convert vfp exception flags to target form. */
7156static inline int vfp_exceptbits_to_host(int target_bits)
7157{
7158 int host_bits = 0;
7159
7160 if (target_bits & 1)
7161 host_bits |= float_flag_invalid;
7162 if (target_bits & 2)
7163 host_bits |= float_flag_divbyzero;
7164 if (target_bits & 4)
7165 host_bits |= float_flag_overflow;
7166 if (target_bits & 8)
7167 host_bits |= float_flag_underflow;
7168 if (target_bits & 0x10)
7169 host_bits |= float_flag_inexact;
cecd8504
PM
7170 if (target_bits & 0x80)
7171 host_bits |= float_flag_input_denormal;
4373f3ce
PB
7172 return host_bits;
7173}
7174
0ecb72a5 7175void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
7176{
7177 int i;
7178 uint32_t changed;
7179
7180 changed = env->vfp.xregs[ARM_VFP_FPSCR];
7181 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
7182 env->vfp.vec_len = (val >> 16) & 7;
7183 env->vfp.vec_stride = (val >> 20) & 3;
7184
7185 changed ^= val;
7186 if (changed & (3 << 22)) {
7187 i = (val >> 22) & 3;
7188 switch (i) {
4d3da0f3 7189 case FPROUNDING_TIEEVEN:
4373f3ce
PB
7190 i = float_round_nearest_even;
7191 break;
4d3da0f3 7192 case FPROUNDING_POSINF:
4373f3ce
PB
7193 i = float_round_up;
7194 break;
4d3da0f3 7195 case FPROUNDING_NEGINF:
4373f3ce
PB
7196 i = float_round_down;
7197 break;
4d3da0f3 7198 case FPROUNDING_ZERO:
4373f3ce
PB
7199 i = float_round_to_zero;
7200 break;
7201 }
7202 set_float_rounding_mode(i, &env->vfp.fp_status);
7203 }
cecd8504 7204 if (changed & (1 << 24)) {
fe76d976 7205 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
7206 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7207 }
5c7908ed
PB
7208 if (changed & (1 << 25))
7209 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 7210
b12c390b 7211 i = vfp_exceptbits_to_host(val);
4373f3ce 7212 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 7213 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
7214}
7215
0ecb72a5 7216void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
7217{
7218 HELPER(vfp_set_fpscr)(env, val);
7219}
7220
4373f3ce
PB
7221#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7222
7223#define VFP_BINOP(name) \
ae1857ec 7224float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 7225{ \
ae1857ec
PM
7226 float_status *fpst = fpstp; \
7227 return float32_ ## name(a, b, fpst); \
4373f3ce 7228} \
ae1857ec 7229float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 7230{ \
ae1857ec
PM
7231 float_status *fpst = fpstp; \
7232 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
7233}
7234VFP_BINOP(add)
7235VFP_BINOP(sub)
7236VFP_BINOP(mul)
7237VFP_BINOP(div)
f71a2ae5
PM
7238VFP_BINOP(min)
7239VFP_BINOP(max)
7240VFP_BINOP(minnum)
7241VFP_BINOP(maxnum)
4373f3ce
PB
7242#undef VFP_BINOP
7243
7244float32 VFP_HELPER(neg, s)(float32 a)
7245{
7246 return float32_chs(a);
7247}
7248
7249float64 VFP_HELPER(neg, d)(float64 a)
7250{
66230e0d 7251 return float64_chs(a);
4373f3ce
PB
7252}
7253
7254float32 VFP_HELPER(abs, s)(float32 a)
7255{
7256 return float32_abs(a);
7257}
7258
7259float64 VFP_HELPER(abs, d)(float64 a)
7260{
66230e0d 7261 return float64_abs(a);
4373f3ce
PB
7262}
7263
0ecb72a5 7264float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
7265{
7266 return float32_sqrt(a, &env->vfp.fp_status);
7267}
7268
0ecb72a5 7269float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
7270{
7271 return float64_sqrt(a, &env->vfp.fp_status);
7272}
7273
7274/* XXX: check quiet/signaling case */
7275#define DO_VFP_cmp(p, type) \
0ecb72a5 7276void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
7277{ \
7278 uint32_t flags; \
7279 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7280 case 0: flags = 0x6; break; \
7281 case -1: flags = 0x8; break; \
7282 case 1: flags = 0x2; break; \
7283 default: case 2: flags = 0x3; break; \
7284 } \
7285 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7286 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7287} \
0ecb72a5 7288void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
7289{ \
7290 uint32_t flags; \
7291 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7292 case 0: flags = 0x6; break; \
7293 case -1: flags = 0x8; break; \
7294 case 1: flags = 0x2; break; \
7295 default: case 2: flags = 0x3; break; \
7296 } \
7297 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7298 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7299}
7300DO_VFP_cmp(s, float32)
7301DO_VFP_cmp(d, float64)
7302#undef DO_VFP_cmp
7303
5500b06c 7304/* Integer to float and float to integer conversions */
4373f3ce 7305
5500b06c
PM
7306#define CONV_ITOF(name, fsz, sign) \
7307 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7308{ \
7309 float_status *fpst = fpstp; \
85836979 7310 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
7311}
7312
5500b06c
PM
7313#define CONV_FTOI(name, fsz, sign, round) \
7314uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7315{ \
7316 float_status *fpst = fpstp; \
7317 if (float##fsz##_is_any_nan(x)) { \
7318 float_raise(float_flag_invalid, fpst); \
7319 return 0; \
7320 } \
7321 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
7322}
7323
5500b06c
PM
7324#define FLOAT_CONVS(name, p, fsz, sign) \
7325CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7326CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7327CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 7328
5500b06c
PM
7329FLOAT_CONVS(si, s, 32, )
7330FLOAT_CONVS(si, d, 64, )
7331FLOAT_CONVS(ui, s, 32, u)
7332FLOAT_CONVS(ui, d, 64, u)
4373f3ce 7333
5500b06c
PM
7334#undef CONV_ITOF
7335#undef CONV_FTOI
7336#undef FLOAT_CONVS
4373f3ce
PB
7337
7338/* floating point conversion */
0ecb72a5 7339float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 7340{
2d627737
PM
7341 float64 r = float32_to_float64(x, &env->vfp.fp_status);
7342 /* ARM requires that S<->D conversion of any kind of NaN generates
7343 * a quiet NaN by forcing the most significant frac bit to 1.
7344 */
7345 return float64_maybe_silence_nan(r);
4373f3ce
PB
7346}
7347
0ecb72a5 7348float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 7349{
2d627737
PM
7350 float32 r = float64_to_float32(x, &env->vfp.fp_status);
7351 /* ARM requires that S<->D conversion of any kind of NaN generates
7352 * a quiet NaN by forcing the most significant frac bit to 1.
7353 */
7354 return float32_maybe_silence_nan(r);
4373f3ce
PB
7355}
7356
7357/* VFP3 fixed point conversion. */
16d5b3ca 7358#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
7359float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7360 void *fpstp) \
4373f3ce 7361{ \
5500b06c 7362 float_status *fpst = fpstp; \
622465e1 7363 float##fsz tmp; \
8ed697e8 7364 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 7365 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
7366}
7367
abe66f70
PM
7368/* Notice that we want only input-denormal exception flags from the
7369 * scalbn operation: the other possible flags (overflow+inexact if
7370 * we overflow to infinity, output-denormal) aren't correct for the
7371 * complete scale-and-convert operation.
7372 */
16d5b3ca
WN
7373#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7374uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7375 uint32_t shift, \
7376 void *fpstp) \
4373f3ce 7377{ \
5500b06c 7378 float_status *fpst = fpstp; \
abe66f70 7379 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
7380 float##fsz tmp; \
7381 if (float##fsz##_is_any_nan(x)) { \
5500b06c 7382 float_raise(float_flag_invalid, fpst); \
622465e1 7383 return 0; \
09d9487f 7384 } \
5500b06c 7385 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
7386 old_exc_flags |= get_float_exception_flags(fpst) \
7387 & float_flag_input_denormal; \
7388 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 7389 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
7390}
7391
16d5b3ca
WN
7392#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7393VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
7394VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7395VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7396
7397#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7398VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7399VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 7400
8ed697e8
WN
7401VFP_CONV_FIX(sh, d, 64, 64, int16)
7402VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 7403VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
7404VFP_CONV_FIX(uh, d, 64, 64, uint16)
7405VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 7406VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
7407VFP_CONV_FIX(sh, s, 32, 32, int16)
7408VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 7409VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
7410VFP_CONV_FIX(uh, s, 32, 32, uint16)
7411VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 7412VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 7413#undef VFP_CONV_FIX
16d5b3ca
WN
7414#undef VFP_CONV_FIX_FLOAT
7415#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 7416
52a1f6a3
AG
7417/* Set the current fp rounding mode and return the old one.
7418 * The argument is a softfloat float_round_ value.
7419 */
7420uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
7421{
7422 float_status *fp_status = &env->vfp.fp_status;
7423
7424 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7425 set_float_rounding_mode(rmode, fp_status);
7426
7427 return prev_rmode;
7428}
7429
43630e58
WN
7430/* Set the current fp rounding mode in the standard fp status and return
7431 * the old one. This is for NEON instructions that need to change the
7432 * rounding mode but wish to use the standard FPSCR values for everything
7433 * else. Always set the rounding mode back to the correct value after
7434 * modifying it.
7435 * The argument is a softfloat float_round_ value.
7436 */
7437uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
7438{
7439 float_status *fp_status = &env->vfp.standard_fp_status;
7440
7441 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7442 set_float_rounding_mode(rmode, fp_status);
7443
7444 return prev_rmode;
7445}
7446
60011498 7447/* Half precision conversions. */
0ecb72a5 7448static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 7449{
60011498 7450 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
7451 float32 r = float16_to_float32(make_float16(a), ieee, s);
7452 if (ieee) {
7453 return float32_maybe_silence_nan(r);
7454 }
7455 return r;
60011498
PB
7456}
7457
0ecb72a5 7458static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 7459{
60011498 7460 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
7461 float16 r = float32_to_float16(a, ieee, s);
7462 if (ieee) {
7463 r = float16_maybe_silence_nan(r);
7464 }
7465 return float16_val(r);
60011498
PB
7466}
7467
0ecb72a5 7468float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
7469{
7470 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
7471}
7472
0ecb72a5 7473uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
7474{
7475 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
7476}
7477
0ecb72a5 7478float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
7479{
7480 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
7481}
7482
0ecb72a5 7483uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
7484{
7485 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
7486}
7487
8900aad2
PM
7488float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
7489{
7490 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7491 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
7492 if (ieee) {
7493 return float64_maybe_silence_nan(r);
7494 }
7495 return r;
7496}
7497
7498uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
7499{
7500 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7501 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
7502 if (ieee) {
7503 r = float16_maybe_silence_nan(r);
7504 }
7505 return float16_val(r);
7506}
7507
dda3ec49 7508#define float32_two make_float32(0x40000000)
6aae3df1
PM
7509#define float32_three make_float32(0x40400000)
7510#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 7511
0ecb72a5 7512float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 7513{
dda3ec49
PM
7514 float_status *s = &env->vfp.standard_fp_status;
7515 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7516 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
7517 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7518 float_raise(float_flag_input_denormal, s);
7519 }
dda3ec49
PM
7520 return float32_two;
7521 }
7522 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
7523}
7524
0ecb72a5 7525float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 7526{
71826966 7527 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
7528 float32 product;
7529 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7530 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
7531 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7532 float_raise(float_flag_input_denormal, s);
7533 }
6aae3df1 7534 return float32_one_point_five;
9ea62f57 7535 }
6aae3df1
PM
7536 product = float32_mul(a, b, s);
7537 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
7538}
7539
8f8e3aa4
PB
7540/* NEON helpers. */
7541
56bf4fe2
CL
7542/* Constants 256 and 512 are used in some helpers; we avoid relying on
7543 * int->float conversions at run-time. */
7544#define float64_256 make_float64(0x4070000000000000LL)
7545#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
7546#define float32_maxnorm make_float32(0x7f7fffff)
7547#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 7548
b6d4443a
AB
7549/* Reciprocal functions
7550 *
7551 * The algorithm that must be used to calculate the estimate
7552 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 7553 */
b6d4443a
AB
7554
7555static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 7556{
1146a817
PM
7557 /* These calculations mustn't set any fp exception flags,
7558 * so we use a local copy of the fp_status.
7559 */
b6d4443a 7560 float_status dummy_status = *real_fp_status;
1146a817 7561 float_status *s = &dummy_status;
fe0e4872
CL
7562 /* q = (int)(a * 512.0) */
7563 float64 q = float64_mul(float64_512, a, s);
7564 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7565
7566 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7567 q = int64_to_float64(q_int, s);
7568 q = float64_add(q, float64_half, s);
7569 q = float64_div(q, float64_512, s);
7570 q = float64_div(float64_one, q, s);
7571
7572 /* s = (int)(256.0 * r + 0.5) */
7573 q = float64_mul(q, float64_256, s);
7574 q = float64_add(q, float64_half, s);
7575 q_int = float64_to_int64_round_to_zero(q, s);
7576
7577 /* return (double)s / 256.0 */
7578 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7579}
7580
b6d4443a
AB
7581/* Common wrapper to call recip_estimate */
7582static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 7583{
b6d4443a
AB
7584 uint64_t val64 = float64_val(num);
7585 uint64_t frac = extract64(val64, 0, 52);
7586 int64_t exp = extract64(val64, 52, 11);
7587 uint64_t sbit;
7588 float64 scaled, estimate;
fe0e4872 7589
b6d4443a
AB
7590 /* Generate the scaled number for the estimate function */
7591 if (exp == 0) {
7592 if (extract64(frac, 51, 1) == 0) {
7593 exp = -1;
7594 frac = extract64(frac, 0, 50) << 2;
7595 } else {
7596 frac = extract64(frac, 0, 51) << 1;
7597 }
7598 }
fe0e4872 7599
b6d4443a
AB
7600 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7601 scaled = make_float64((0x3feULL << 52)
7602 | extract64(frac, 44, 8) << 44);
7603
7604 estimate = recip_estimate(scaled, fpst);
7605
7606 /* Build new result */
7607 val64 = float64_val(estimate);
7608 sbit = 0x8000000000000000ULL & val64;
7609 exp = off - exp;
7610 frac = extract64(val64, 0, 52);
7611
7612 if (exp == 0) {
7613 frac = 1ULL << 51 | extract64(frac, 1, 51);
7614 } else if (exp == -1) {
7615 frac = 1ULL << 50 | extract64(frac, 2, 50);
7616 exp = 0;
7617 }
7618
7619 return make_float64(sbit | (exp << 52) | frac);
7620}
7621
7622static bool round_to_inf(float_status *fpst, bool sign_bit)
7623{
7624 switch (fpst->float_rounding_mode) {
7625 case float_round_nearest_even: /* Round to Nearest */
7626 return true;
7627 case float_round_up: /* Round to +Inf */
7628 return !sign_bit;
7629 case float_round_down: /* Round to -Inf */
7630 return sign_bit;
7631 case float_round_to_zero: /* Round to Zero */
7632 return false;
7633 }
7634
7635 g_assert_not_reached();
7636}
7637
7638float32 HELPER(recpe_f32)(float32 input, void *fpstp)
7639{
7640 float_status *fpst = fpstp;
7641 float32 f32 = float32_squash_input_denormal(input, fpst);
7642 uint32_t f32_val = float32_val(f32);
7643 uint32_t f32_sbit = 0x80000000ULL & f32_val;
7644 int32_t f32_exp = extract32(f32_val, 23, 8);
7645 uint32_t f32_frac = extract32(f32_val, 0, 23);
7646 float64 f64, r64;
7647 uint64_t r64_val;
7648 int64_t r64_exp;
7649 uint64_t r64_frac;
7650
7651 if (float32_is_any_nan(f32)) {
7652 float32 nan = f32;
7653 if (float32_is_signaling_nan(f32)) {
7654 float_raise(float_flag_invalid, fpst);
7655 nan = float32_maybe_silence_nan(f32);
fe0e4872 7656 }
b6d4443a
AB
7657 if (fpst->default_nan_mode) {
7658 nan = float32_default_nan;
43fe9bdb 7659 }
b6d4443a
AB
7660 return nan;
7661 } else if (float32_is_infinity(f32)) {
7662 return float32_set_sign(float32_zero, float32_is_neg(f32));
7663 } else if (float32_is_zero(f32)) {
7664 float_raise(float_flag_divbyzero, fpst);
7665 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7666 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
7667 /* Abs(value) < 2.0^-128 */
7668 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7669 if (round_to_inf(fpst, f32_sbit)) {
7670 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7671 } else {
7672 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
7673 }
7674 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
7675 float_raise(float_flag_underflow, fpst);
7676 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
7677 }
7678
fe0e4872 7679
b6d4443a
AB
7680 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
7681 r64 = call_recip_estimate(f64, 253, fpst);
7682 r64_val = float64_val(r64);
7683 r64_exp = extract64(r64_val, 52, 11);
7684 r64_frac = extract64(r64_val, 0, 52);
7685
7686 /* result = sign : result_exp<7:0> : fraction<51:29>; */
7687 return make_float32(f32_sbit |
7688 (r64_exp & 0xff) << 23 |
7689 extract64(r64_frac, 29, 24));
7690}
7691
7692float64 HELPER(recpe_f64)(float64 input, void *fpstp)
7693{
7694 float_status *fpst = fpstp;
7695 float64 f64 = float64_squash_input_denormal(input, fpst);
7696 uint64_t f64_val = float64_val(f64);
7697 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
7698 int64_t f64_exp = extract64(f64_val, 52, 11);
7699 float64 r64;
7700 uint64_t r64_val;
7701 int64_t r64_exp;
7702 uint64_t r64_frac;
7703
7704 /* Deal with any special cases */
7705 if (float64_is_any_nan(f64)) {
7706 float64 nan = f64;
7707 if (float64_is_signaling_nan(f64)) {
7708 float_raise(float_flag_invalid, fpst);
7709 nan = float64_maybe_silence_nan(f64);
7710 }
7711 if (fpst->default_nan_mode) {
7712 nan = float64_default_nan;
7713 }
7714 return nan;
7715 } else if (float64_is_infinity(f64)) {
7716 return float64_set_sign(float64_zero, float64_is_neg(f64));
7717 } else if (float64_is_zero(f64)) {
7718 float_raise(float_flag_divbyzero, fpst);
7719 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7720 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
7721 /* Abs(value) < 2.0^-1024 */
7722 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7723 if (round_to_inf(fpst, f64_sbit)) {
7724 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7725 } else {
7726 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
7727 }
fc1792e9 7728 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
7729 float_raise(float_flag_underflow, fpst);
7730 return float64_set_sign(float64_zero, float64_is_neg(f64));
7731 }
fe0e4872 7732
b6d4443a
AB
7733 r64 = call_recip_estimate(f64, 2045, fpst);
7734 r64_val = float64_val(r64);
7735 r64_exp = extract64(r64_val, 52, 11);
7736 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 7737
b6d4443a
AB
7738 /* result = sign : result_exp<10:0> : fraction<51:0> */
7739 return make_float64(f64_sbit |
7740 ((r64_exp & 0x7ff) << 52) |
7741 r64_frac);
4373f3ce
PB
7742}
7743
e07be5d2
CL
7744/* The algorithm that must be used to calculate the estimate
7745 * is specified by the ARM ARM.
7746 */
c2fb418e 7747static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 7748{
1146a817
PM
7749 /* These calculations mustn't set any fp exception flags,
7750 * so we use a local copy of the fp_status.
7751 */
c2fb418e 7752 float_status dummy_status = *real_fp_status;
1146a817 7753 float_status *s = &dummy_status;
e07be5d2
CL
7754 float64 q;
7755 int64_t q_int;
7756
7757 if (float64_lt(a, float64_half, s)) {
7758 /* range 0.25 <= a < 0.5 */
7759
7760 /* a in units of 1/512 rounded down */
7761 /* q0 = (int)(a * 512.0); */
7762 q = float64_mul(float64_512, a, s);
7763 q_int = float64_to_int64_round_to_zero(q, s);
7764
7765 /* reciprocal root r */
7766 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
7767 q = int64_to_float64(q_int, s);
7768 q = float64_add(q, float64_half, s);
7769 q = float64_div(q, float64_512, s);
7770 q = float64_sqrt(q, s);
7771 q = float64_div(float64_one, q, s);
7772 } else {
7773 /* range 0.5 <= a < 1.0 */
7774
7775 /* a in units of 1/256 rounded down */
7776 /* q1 = (int)(a * 256.0); */
7777 q = float64_mul(float64_256, a, s);
7778 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7779
7780 /* reciprocal root r */
7781 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
7782 q = int64_to_float64(q_int, s);
7783 q = float64_add(q, float64_half, s);
7784 q = float64_div(q, float64_256, s);
7785 q = float64_sqrt(q, s);
7786 q = float64_div(float64_one, q, s);
7787 }
7788 /* r in units of 1/256 rounded to nearest */
7789 /* s = (int)(256.0 * r + 0.5); */
7790
7791 q = float64_mul(q, float64_256,s );
7792 q = float64_add(q, float64_half, s);
7793 q_int = float64_to_int64_round_to_zero(q, s);
7794
7795 /* return (double)s / 256.0;*/
7796 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7797}
7798
c2fb418e 7799float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 7800{
c2fb418e
AB
7801 float_status *s = fpstp;
7802 float32 f32 = float32_squash_input_denormal(input, s);
7803 uint32_t val = float32_val(f32);
7804 uint32_t f32_sbit = 0x80000000 & val;
7805 int32_t f32_exp = extract32(val, 23, 8);
7806 uint32_t f32_frac = extract32(val, 0, 23);
7807 uint64_t f64_frac;
7808 uint64_t val64;
e07be5d2
CL
7809 int result_exp;
7810 float64 f64;
e07be5d2 7811
c2fb418e
AB
7812 if (float32_is_any_nan(f32)) {
7813 float32 nan = f32;
7814 if (float32_is_signaling_nan(f32)) {
e07be5d2 7815 float_raise(float_flag_invalid, s);
c2fb418e 7816 nan = float32_maybe_silence_nan(f32);
e07be5d2 7817 }
c2fb418e
AB
7818 if (s->default_nan_mode) {
7819 nan = float32_default_nan;
43fe9bdb 7820 }
c2fb418e
AB
7821 return nan;
7822 } else if (float32_is_zero(f32)) {
e07be5d2 7823 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
7824 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7825 } else if (float32_is_neg(f32)) {
e07be5d2
CL
7826 float_raise(float_flag_invalid, s);
7827 return float32_default_nan;
c2fb418e 7828 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
7829 return float32_zero;
7830 }
7831
c2fb418e 7832 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 7833 * preserving the parity of the exponent. */
c2fb418e
AB
7834
7835 f64_frac = ((uint64_t) f32_frac) << 29;
7836 if (f32_exp == 0) {
7837 while (extract64(f64_frac, 51, 1) == 0) {
7838 f64_frac = f64_frac << 1;
7839 f32_exp = f32_exp-1;
7840 }
7841 f64_frac = extract64(f64_frac, 0, 51) << 1;
7842 }
7843
7844 if (extract64(f32_exp, 0, 1) == 0) {
7845 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 7846 | (0x3feULL << 52)
c2fb418e 7847 | f64_frac);
e07be5d2 7848 } else {
c2fb418e 7849 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 7850 | (0x3fdULL << 52)
c2fb418e 7851 | f64_frac);
e07be5d2
CL
7852 }
7853
c2fb418e 7854 result_exp = (380 - f32_exp) / 2;
e07be5d2 7855
c2fb418e 7856 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
7857
7858 val64 = float64_val(f64);
7859
26cc6abf 7860 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
7861 | ((val64 >> 29) & 0x7fffff);
7862 return make_float32(val);
4373f3ce
PB
7863}
7864
c2fb418e
AB
7865float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
7866{
7867 float_status *s = fpstp;
7868 float64 f64 = float64_squash_input_denormal(input, s);
7869 uint64_t val = float64_val(f64);
7870 uint64_t f64_sbit = 0x8000000000000000ULL & val;
7871 int64_t f64_exp = extract64(val, 52, 11);
7872 uint64_t f64_frac = extract64(val, 0, 52);
7873 int64_t result_exp;
7874 uint64_t result_frac;
7875
7876 if (float64_is_any_nan(f64)) {
7877 float64 nan = f64;
7878 if (float64_is_signaling_nan(f64)) {
7879 float_raise(float_flag_invalid, s);
7880 nan = float64_maybe_silence_nan(f64);
7881 }
7882 if (s->default_nan_mode) {
7883 nan = float64_default_nan;
7884 }
7885 return nan;
7886 } else if (float64_is_zero(f64)) {
7887 float_raise(float_flag_divbyzero, s);
7888 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7889 } else if (float64_is_neg(f64)) {
7890 float_raise(float_flag_invalid, s);
7891 return float64_default_nan;
7892 } else if (float64_is_infinity(f64)) {
7893 return float64_zero;
7894 }
7895
7896 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7897 * preserving the parity of the exponent. */
7898
7899 if (f64_exp == 0) {
7900 while (extract64(f64_frac, 51, 1) == 0) {
7901 f64_frac = f64_frac << 1;
7902 f64_exp = f64_exp - 1;
7903 }
7904 f64_frac = extract64(f64_frac, 0, 51) << 1;
7905 }
7906
7907 if (extract64(f64_exp, 0, 1) == 0) {
7908 f64 = make_float64(f64_sbit
7909 | (0x3feULL << 52)
7910 | f64_frac);
7911 } else {
7912 f64 = make_float64(f64_sbit
7913 | (0x3fdULL << 52)
7914 | f64_frac);
7915 }
7916
7917 result_exp = (3068 - f64_exp) / 2;
7918
7919 f64 = recip_sqrt_estimate(f64, s);
7920
7921 result_frac = extract64(float64_val(f64), 0, 52);
7922
7923 return make_float64(f64_sbit |
7924 ((result_exp & 0x7ff) << 52) |
7925 result_frac);
7926}
7927
b6d4443a 7928uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 7929{
b6d4443a 7930 float_status *s = fpstp;
fe0e4872
CL
7931 float64 f64;
7932
7933 if ((a & 0x80000000) == 0) {
7934 return 0xffffffff;
7935 }
7936
7937 f64 = make_float64((0x3feULL << 52)
7938 | ((int64_t)(a & 0x7fffffff) << 21));
7939
b6d4443a 7940 f64 = recip_estimate(f64, s);
fe0e4872
CL
7941
7942 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
7943}
7944
c2fb418e 7945uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 7946{
c2fb418e 7947 float_status *fpst = fpstp;
e07be5d2
CL
7948 float64 f64;
7949
7950 if ((a & 0xc0000000) == 0) {
7951 return 0xffffffff;
7952 }
7953
7954 if (a & 0x80000000) {
7955 f64 = make_float64((0x3feULL << 52)
7956 | ((uint64_t)(a & 0x7fffffff) << 21));
7957 } else { /* bits 31-30 == '01' */
7958 f64 = make_float64((0x3fdULL << 52)
7959 | ((uint64_t)(a & 0x3fffffff) << 22));
7960 }
7961
c2fb418e 7962 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
7963
7964 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 7965}
fe1479c3 7966
da97f52c
PM
7967/* VFPv4 fused multiply-accumulate */
7968float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
7969{
7970 float_status *fpst = fpstp;
7971 return float32_muladd(a, b, c, 0, fpst);
7972}
7973
7974float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
7975{
7976 float_status *fpst = fpstp;
7977 return float64_muladd(a, b, c, 0, fpst);
7978}
d9b0848d
PM
7979
7980/* ARMv8 round to integral */
7981float32 HELPER(rints_exact)(float32 x, void *fp_status)
7982{
7983 return float32_round_to_int(x, fp_status);
7984}
7985
7986float64 HELPER(rintd_exact)(float64 x, void *fp_status)
7987{
7988 return float64_round_to_int(x, fp_status);
7989}
7990
7991float32 HELPER(rints)(float32 x, void *fp_status)
7992{
7993 int old_flags = get_float_exception_flags(fp_status), new_flags;
7994 float32 ret;
7995
7996 ret = float32_round_to_int(x, fp_status);
7997
7998 /* Suppress any inexact exceptions the conversion produced */
7999 if (!(old_flags & float_flag_inexact)) {
8000 new_flags = get_float_exception_flags(fp_status);
8001 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8002 }
8003
8004 return ret;
8005}
8006
8007float64 HELPER(rintd)(float64 x, void *fp_status)
8008{
8009 int old_flags = get_float_exception_flags(fp_status), new_flags;
8010 float64 ret;
8011
8012 ret = float64_round_to_int(x, fp_status);
8013
8014 new_flags = get_float_exception_flags(fp_status);
8015
8016 /* Suppress any inexact exceptions the conversion produced */
8017 if (!(old_flags & float_flag_inexact)) {
8018 new_flags = get_float_exception_flags(fp_status);
8019 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8020 }
8021
8022 return ret;
8023}
9972da66
WN
8024
8025/* Convert ARM rounding mode to softfloat */
8026int arm_rmode_to_sf(int rmode)
8027{
8028 switch (rmode) {
8029 case FPROUNDING_TIEAWAY:
8030 rmode = float_round_ties_away;
8031 break;
8032 case FPROUNDING_ODD:
8033 /* FIXME: add support for TIEAWAY and ODD */
8034 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
8035 rmode);
8036 case FPROUNDING_TIEEVEN:
8037 default:
8038 rmode = float_round_nearest_even;
8039 break;
8040 case FPROUNDING_POSINF:
8041 rmode = float_round_up;
8042 break;
8043 case FPROUNDING_NEGINF:
8044 rmode = float_round_down;
8045 break;
8046 case FPROUNDING_ZERO:
8047 rmode = float_round_to_zero;
8048 break;
8049 }
8050 return rmode;
8051}
eb0ecd5a 8052
aa633469
PM
8053/* CRC helpers.
8054 * The upper bytes of val (above the number specified by 'bytes') must have
8055 * been zeroed out by the caller.
8056 */
eb0ecd5a
WN
8057uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
8058{
8059 uint8_t buf[4];
8060
aa633469 8061 stl_le_p(buf, val);
eb0ecd5a
WN
8062
8063 /* zlib crc32 converts the accumulator and output to one's complement. */
8064 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
8065}
8066
8067uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
8068{
8069 uint8_t buf[4];
8070
aa633469 8071 stl_le_p(buf, val);
eb0ecd5a
WN
8072
8073 /* Linux crc32c converts the output to one's complement. */
8074 return crc32c(acc, buf, bytes) ^ 0xffffffff;
8075}
This page took 2.070737 seconds and 4 git commands to generate.