]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
ccd38087 | 2 | #include "internals.h" |
022c62cb | 3 | #include "exec/gdbstub.h" |
2ef6175a | 4 | #include "exec/helper-proto.h" |
1de7afc9 | 5 | #include "qemu/host-utils.h" |
78027bb6 | 6 | #include "sysemu/arch_init.h" |
9c17d615 | 7 | #include "sysemu/sysemu.h" |
1de7afc9 | 8 | #include "qemu/bitops.h" |
eb0ecd5a | 9 | #include "qemu/crc32c.h" |
f08b6170 | 10 | #include "exec/cpu_ldst.h" |
1d854765 | 11 | #include "arm_ldst.h" |
eb0ecd5a | 12 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 13 | #include "exec/semihost.h" |
0b03bdfc | 14 | |
4a501606 | 15 | #ifndef CONFIG_USER_ONLY |
b7cc4e82 PC |
16 | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, |
17 | int access_type, ARMMMUIdx mmu_idx, | |
18 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
19 | target_ulong *page_size, uint32_t *fsr); | |
7c2cb42b AF |
20 | |
21 | /* Definitions for the PMCCNTR and PMCR registers */ | |
22 | #define PMCRD 0x8 | |
23 | #define PMCRC 0x4 | |
24 | #define PMCRE 0x1 | |
4a501606 PM |
25 | #endif |
26 | ||
0ecb72a5 | 27 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
28 | { |
29 | int nregs; | |
30 | ||
31 | /* VFP data registers are always little-endian. */ | |
32 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
33 | if (reg < nregs) { | |
34 | stfq_le_p(buf, env->vfp.regs[reg]); | |
35 | return 8; | |
36 | } | |
37 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
38 | /* Aliases for Q regs. */ | |
39 | nregs += 16; | |
40 | if (reg < nregs) { | |
41 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
42 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
43 | return 16; | |
44 | } | |
45 | } | |
46 | switch (reg - nregs) { | |
47 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
48 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
49 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
50 | } | |
51 | return 0; | |
52 | } | |
53 | ||
0ecb72a5 | 54 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
55 | { |
56 | int nregs; | |
57 | ||
58 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
59 | if (reg < nregs) { | |
60 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
61 | return 8; | |
62 | } | |
63 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
64 | nregs += 16; | |
65 | if (reg < nregs) { | |
66 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
67 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
68 | return 16; | |
69 | } | |
70 | } | |
71 | switch (reg - nregs) { | |
72 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
73 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 74 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
75 | } |
76 | return 0; | |
77 | } | |
78 | ||
6a669427 PM |
79 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
80 | { | |
81 | switch (reg) { | |
82 | case 0 ... 31: | |
83 | /* 128 bit FP register */ | |
84 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
85 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
86 | return 16; | |
87 | case 32: | |
88 | /* FPSR */ | |
89 | stl_p(buf, vfp_get_fpsr(env)); | |
90 | return 4; | |
91 | case 33: | |
92 | /* FPCR */ | |
93 | stl_p(buf, vfp_get_fpcr(env)); | |
94 | return 4; | |
95 | default: | |
96 | return 0; | |
97 | } | |
98 | } | |
99 | ||
100 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
101 | { | |
102 | switch (reg) { | |
103 | case 0 ... 31: | |
104 | /* 128 bit FP register */ | |
105 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
106 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
107 | return 16; | |
108 | case 32: | |
109 | /* FPSR */ | |
110 | vfp_set_fpsr(env, ldl_p(buf)); | |
111 | return 4; | |
112 | case 33: | |
113 | /* FPCR */ | |
114 | vfp_set_fpcr(env, ldl_p(buf)); | |
115 | return 4; | |
116 | default: | |
117 | return 0; | |
118 | } | |
119 | } | |
120 | ||
c4241c7d | 121 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 122 | { |
375421cc | 123 | assert(ri->fieldoffset); |
67ed771d | 124 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 125 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 126 | } else { |
c4241c7d | 127 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 128 | } |
d4e6df63 PM |
129 | } |
130 | ||
c4241c7d PM |
131 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
132 | uint64_t value) | |
d4e6df63 | 133 | { |
375421cc | 134 | assert(ri->fieldoffset); |
67ed771d | 135 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
136 | CPREG_FIELD64(env, ri) = value; |
137 | } else { | |
138 | CPREG_FIELD32(env, ri) = value; | |
139 | } | |
d4e6df63 PM |
140 | } |
141 | ||
11f136ee FA |
142 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
143 | { | |
144 | return (char *)env + ri->fieldoffset; | |
145 | } | |
146 | ||
49a66191 | 147 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 148 | { |
59a1c327 | 149 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 150 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 151 | return ri->resetvalue; |
721fae12 | 152 | } else if (ri->raw_readfn) { |
59a1c327 | 153 | return ri->raw_readfn(env, ri); |
721fae12 | 154 | } else if (ri->readfn) { |
59a1c327 | 155 | return ri->readfn(env, ri); |
721fae12 | 156 | } else { |
59a1c327 | 157 | return raw_read(env, ri); |
721fae12 | 158 | } |
721fae12 PM |
159 | } |
160 | ||
59a1c327 | 161 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 162 | uint64_t v) |
721fae12 PM |
163 | { |
164 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
165 | * Note that constant registers are treated as write-ignored; the |
166 | * caller should check for success by whether a readback gives the | |
167 | * value written. | |
168 | */ | |
169 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 170 | return; |
721fae12 | 171 | } else if (ri->raw_writefn) { |
c4241c7d | 172 | ri->raw_writefn(env, ri, v); |
721fae12 | 173 | } else if (ri->writefn) { |
c4241c7d | 174 | ri->writefn(env, ri, v); |
721fae12 | 175 | } else { |
afb2530f | 176 | raw_write(env, ri, v); |
721fae12 | 177 | } |
721fae12 PM |
178 | } |
179 | ||
375421cc PM |
180 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
181 | { | |
182 | /* Return true if the regdef would cause an assertion if you called | |
183 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
184 | * program bug for it not to have the NO_RAW flag). | |
185 | * NB that returning false here doesn't necessarily mean that calling | |
186 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
187 | * read/write access functions which are safe for raw use" from "has | |
188 | * read/write access functions which have side effects but has forgotten | |
189 | * to provide raw access functions". | |
190 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
191 | * and assertions in raw_read()/raw_write(). | |
192 | */ | |
193 | if ((ri->type & ARM_CP_CONST) || | |
194 | ri->fieldoffset || | |
195 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
196 | return false; | |
197 | } | |
198 | return true; | |
199 | } | |
200 | ||
721fae12 PM |
201 | bool write_cpustate_to_list(ARMCPU *cpu) |
202 | { | |
203 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
204 | int i; | |
205 | bool ok = true; | |
206 | ||
207 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
208 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
209 | const ARMCPRegInfo *ri; | |
59a1c327 | 210 | |
60322b39 | 211 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
212 | if (!ri) { |
213 | ok = false; | |
214 | continue; | |
215 | } | |
7a0e58fa | 216 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
217 | continue; |
218 | } | |
59a1c327 | 219 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
220 | } |
221 | return ok; | |
222 | } | |
223 | ||
224 | bool write_list_to_cpustate(ARMCPU *cpu) | |
225 | { | |
226 | int i; | |
227 | bool ok = true; | |
228 | ||
229 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
230 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
231 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
232 | const ARMCPRegInfo *ri; |
233 | ||
60322b39 | 234 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
235 | if (!ri) { |
236 | ok = false; | |
237 | continue; | |
238 | } | |
7a0e58fa | 239 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
240 | continue; |
241 | } | |
242 | /* Write value and confirm it reads back as written | |
243 | * (to catch read-only registers and partially read-only | |
244 | * registers where the incoming migration value doesn't match) | |
245 | */ | |
59a1c327 PM |
246 | write_raw_cp_reg(&cpu->env, ri, v); |
247 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
248 | ok = false; |
249 | } | |
250 | } | |
251 | return ok; | |
252 | } | |
253 | ||
254 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
255 | { | |
256 | ARMCPU *cpu = opaque; | |
257 | uint64_t regidx; | |
258 | const ARMCPRegInfo *ri; | |
259 | ||
260 | regidx = *(uint32_t *)key; | |
60322b39 | 261 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 262 | |
7a0e58fa | 263 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
264 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
265 | /* The value array need not be initialized at this point */ | |
266 | cpu->cpreg_array_len++; | |
267 | } | |
268 | } | |
269 | ||
270 | static void count_cpreg(gpointer key, gpointer opaque) | |
271 | { | |
272 | ARMCPU *cpu = opaque; | |
273 | uint64_t regidx; | |
274 | const ARMCPRegInfo *ri; | |
275 | ||
276 | regidx = *(uint32_t *)key; | |
60322b39 | 277 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 278 | |
7a0e58fa | 279 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
280 | cpu->cpreg_array_len++; |
281 | } | |
282 | } | |
283 | ||
284 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
285 | { | |
cbf239b7 AR |
286 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
287 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 288 | |
cbf239b7 AR |
289 | if (aidx > bidx) { |
290 | return 1; | |
291 | } | |
292 | if (aidx < bidx) { | |
293 | return -1; | |
294 | } | |
295 | return 0; | |
721fae12 PM |
296 | } |
297 | ||
298 | void init_cpreg_list(ARMCPU *cpu) | |
299 | { | |
300 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
301 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
302 | */ | |
57b6d95e | 303 | GList *keys; |
721fae12 PM |
304 | int arraylen; |
305 | ||
57b6d95e | 306 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
307 | keys = g_list_sort(keys, cpreg_key_compare); |
308 | ||
309 | cpu->cpreg_array_len = 0; | |
310 | ||
311 | g_list_foreach(keys, count_cpreg, cpu); | |
312 | ||
313 | arraylen = cpu->cpreg_array_len; | |
314 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
315 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
316 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
317 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
318 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
319 | cpu->cpreg_array_len = 0; | |
320 | ||
321 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
322 | ||
323 | assert(cpu->cpreg_array_len == arraylen); | |
324 | ||
325 | g_list_free(keys); | |
326 | } | |
327 | ||
c4241c7d | 328 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 329 | { |
00c8cb0a AF |
330 | ARMCPU *cpu = arm_env_get_cpu(env); |
331 | ||
8d5c773e | 332 | raw_write(env, ri, value); |
00c8cb0a | 333 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
334 | } |
335 | ||
c4241c7d | 336 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 337 | { |
00c8cb0a AF |
338 | ARMCPU *cpu = arm_env_get_cpu(env); |
339 | ||
8d5c773e | 340 | if (raw_read(env, ri) != value) { |
08de207b PM |
341 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
342 | * not modified virtual addresses, so this causes a TLB flush. | |
343 | */ | |
00c8cb0a | 344 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 345 | raw_write(env, ri, value); |
08de207b | 346 | } |
08de207b | 347 | } |
c4241c7d PM |
348 | |
349 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
350 | uint64_t value) | |
08de207b | 351 | { |
00c8cb0a AF |
352 | ARMCPU *cpu = arm_env_get_cpu(env); |
353 | ||
8d5c773e | 354 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 355 | && !extended_addresses_enabled(env)) { |
08de207b PM |
356 | /* For VMSA (when not using the LPAE long descriptor page table |
357 | * format) this register includes the ASID, so do a TLB flush. | |
358 | * For PMSA it is purely a process ID and no action is needed. | |
359 | */ | |
00c8cb0a | 360 | tlb_flush(CPU(cpu), 1); |
08de207b | 361 | } |
8d5c773e | 362 | raw_write(env, ri, value); |
08de207b PM |
363 | } |
364 | ||
c4241c7d PM |
365 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
366 | uint64_t value) | |
d929823f PM |
367 | { |
368 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
369 | ARMCPU *cpu = arm_env_get_cpu(env); |
370 | ||
371 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
372 | } |
373 | ||
c4241c7d PM |
374 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
375 | uint64_t value) | |
d929823f PM |
376 | { |
377 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
378 | ARMCPU *cpu = arm_env_get_cpu(env); |
379 | ||
380 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
381 | } |
382 | ||
c4241c7d PM |
383 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
384 | uint64_t value) | |
d929823f PM |
385 | { |
386 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
387 | ARMCPU *cpu = arm_env_get_cpu(env); |
388 | ||
389 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
390 | } |
391 | ||
c4241c7d PM |
392 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
393 | uint64_t value) | |
d929823f PM |
394 | { |
395 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
396 | ARMCPU *cpu = arm_env_get_cpu(env); |
397 | ||
398 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
399 | } |
400 | ||
fa439fc5 PM |
401 | /* IS variants of TLB operations must affect all cores */ |
402 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
403 | uint64_t value) | |
404 | { | |
405 | CPUState *other_cs; | |
406 | ||
407 | CPU_FOREACH(other_cs) { | |
408 | tlb_flush(other_cs, 1); | |
409 | } | |
410 | } | |
411 | ||
412 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
413 | uint64_t value) | |
414 | { | |
415 | CPUState *other_cs; | |
416 | ||
417 | CPU_FOREACH(other_cs) { | |
418 | tlb_flush(other_cs, value == 0); | |
419 | } | |
420 | } | |
421 | ||
422 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
423 | uint64_t value) | |
424 | { | |
425 | CPUState *other_cs; | |
426 | ||
427 | CPU_FOREACH(other_cs) { | |
428 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
429 | } | |
430 | } | |
431 | ||
432 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
433 | uint64_t value) | |
434 | { | |
435 | CPUState *other_cs; | |
436 | ||
437 | CPU_FOREACH(other_cs) { | |
438 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
439 | } | |
440 | } | |
441 | ||
e9aa6c21 | 442 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
443 | /* Define the secure and non-secure FCSE identifier CP registers |
444 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
445 | * the secure register to be properly reset and migrated. There is also no | |
446 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
447 | */ | |
448 | { .name = "FCSEIDR(NS)", | |
449 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
450 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
451 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
452 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
453 | { .name = "FCSEIDR(S)", | |
454 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
455 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
456 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 457 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
458 | /* Define the secure and non-secure context identifier CP registers |
459 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
460 | * the secure register to be properly reset and migrated. In the | |
461 | * non-secure case, the 32-bit register will have reset and migration | |
462 | * disabled during registration as it is handled by the 64-bit instance. | |
463 | */ | |
464 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 465 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
466 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
467 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
468 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
469 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
470 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
471 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
472 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 473 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
474 | REGINFO_SENTINEL |
475 | }; | |
476 | ||
477 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
478 | /* NB: Some of these registers exist in v8 but with more precise | |
479 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
480 | */ | |
481 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
482 | { .name = "DACR", |
483 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
484 | .access = PL1_RW, .resetvalue = 0, | |
485 | .writefn = dacr_write, .raw_writefn = raw_write, | |
486 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
487 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
488 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
489 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 490 | */ |
a903c449 EI |
491 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
492 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
493 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
494 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
495 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
496 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
497 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 498 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
499 | /* Cache maintenance ops; some of this space may be overridden later. */ |
500 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
501 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
502 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
503 | REGINFO_SENTINEL |
504 | }; | |
505 | ||
7d57f408 PM |
506 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
507 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
508 | * over-broad. | |
509 | */ | |
510 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
511 | .access = PL1_W, .type = ARM_CP_WFI }, | |
512 | REGINFO_SENTINEL | |
513 | }; | |
514 | ||
515 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
516 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
517 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
518 | */ | |
519 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
520 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
521 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
522 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
523 | * OMAPCP will override this space. | |
524 | */ | |
525 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
526 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
527 | .resetvalue = 0 }, | |
528 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
529 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
530 | .resetvalue = 0 }, | |
776d4e5c PM |
531 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
532 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 533 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 534 | .resetvalue = 0 }, |
50300698 PM |
535 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
536 | * implementing it as RAZ means the "debug architecture version" bits | |
537 | * will read as a reserved value, which should cause Linux to not try | |
538 | * to use the debug hardware. | |
539 | */ | |
540 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
541 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
542 | /* MMU TLB control. Note that the wildcarding means we cover not just |
543 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
544 | */ | |
545 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
546 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 547 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
548 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
549 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 550 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
551 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
552 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 553 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
554 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
555 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 556 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
557 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
558 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
559 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
560 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
561 | REGINFO_SENTINEL |
562 | }; | |
563 | ||
c4241c7d PM |
564 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
565 | uint64_t value) | |
2771db27 | 566 | { |
f0aff255 FA |
567 | uint32_t mask = 0; |
568 | ||
569 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
570 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
571 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
572 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
573 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
574 | */ | |
575 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
576 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
577 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
578 | ||
579 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
580 | /* ASEDIS [31] bit is RAO/WI */ | |
581 | value |= (1 << 31); | |
582 | } | |
583 | ||
584 | /* VFPv3 and upwards with NEON implement 32 double precision | |
585 | * registers (D0-D31). | |
586 | */ | |
587 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
588 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
589 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
590 | value |= (1 << 30); | |
591 | } | |
592 | } | |
593 | value &= mask; | |
2771db27 | 594 | } |
7ebd5f2e | 595 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
596 | } |
597 | ||
c6f19164 GB |
598 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
599 | { | |
600 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
601 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
602 | if (arm_current_el(env) == 1 && | |
603 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
604 | return CP_ACCESS_TRAP_EL2; | |
605 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
606 | } else if (arm_current_el(env) < 3 && | |
607 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
608 | return CP_ACCESS_TRAP_EL3; | |
609 | } | |
610 | } | |
611 | ||
612 | return CP_ACCESS_OK; | |
613 | } | |
614 | ||
615 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
616 | { | |
617 | /* Check if CPTR accesses are set to trap to EL3 */ | |
618 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
619 | return CP_ACCESS_TRAP_EL3; | |
620 | } | |
621 | ||
622 | return CP_ACCESS_OK; | |
623 | } | |
624 | ||
7d57f408 PM |
625 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
626 | /* prefetch by MVA in v6, NOP in v7 */ | |
627 | { .name = "MVA_prefetch", | |
628 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
629 | .access = PL1_W, .type = ARM_CP_NOP }, | |
630 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
631 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 632 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 633 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 634 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 635 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 636 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 637 | .access = PL1_RW, |
b848ce2b FA |
638 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
639 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
640 | .resetvalue = 0, }, |
641 | /* Watchpoint Fault Address Register : should actually only be present | |
642 | * for 1136, 1176, 11MPCore. | |
643 | */ | |
644 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
645 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 646 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 647 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 648 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 649 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
650 | REGINFO_SENTINEL |
651 | }; | |
652 | ||
fcd25206 | 653 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 654 | { |
3b163b01 | 655 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 656 | * by PMUSERENR. |
200ac0ef | 657 | */ |
dcbff19b | 658 | if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { |
fcd25206 | 659 | return CP_ACCESS_TRAP; |
200ac0ef | 660 | } |
fcd25206 | 661 | return CP_ACCESS_OK; |
200ac0ef PM |
662 | } |
663 | ||
7c2cb42b | 664 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
665 | |
666 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
667 | { | |
668 | /* This does not support checking PMCCFILTR_EL0 register */ | |
669 | ||
670 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
671 | return false; | |
672 | } | |
673 | ||
674 | return true; | |
675 | } | |
676 | ||
ec7b4ce4 AF |
677 | void pmccntr_sync(CPUARMState *env) |
678 | { | |
679 | uint64_t temp_ticks; | |
680 | ||
681 | temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | |
682 | get_ticks_per_sec(), 1000000); | |
683 | ||
684 | if (env->cp15.c9_pmcr & PMCRD) { | |
685 | /* Increment once every 64 processor clock cycles */ | |
686 | temp_ticks /= 64; | |
687 | } | |
688 | ||
689 | if (arm_ccnt_enabled(env)) { | |
690 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
691 | } | |
692 | } | |
693 | ||
c4241c7d PM |
694 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
695 | uint64_t value) | |
200ac0ef | 696 | { |
942a155b | 697 | pmccntr_sync(env); |
7c2cb42b AF |
698 | |
699 | if (value & PMCRC) { | |
700 | /* The counter has been reset */ | |
701 | env->cp15.c15_ccnt = 0; | |
702 | } | |
703 | ||
200ac0ef PM |
704 | /* only the DP, X, D and E bits are writable */ |
705 | env->cp15.c9_pmcr &= ~0x39; | |
706 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 707 | |
942a155b | 708 | pmccntr_sync(env); |
7c2cb42b AF |
709 | } |
710 | ||
711 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
712 | { | |
c92c0687 | 713 | uint64_t total_ticks; |
7c2cb42b | 714 | |
942a155b | 715 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
716 | /* Counter is disabled, do not change value */ |
717 | return env->cp15.c15_ccnt; | |
718 | } | |
719 | ||
c92c0687 AF |
720 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
721 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
722 | |
723 | if (env->cp15.c9_pmcr & PMCRD) { | |
724 | /* Increment once every 64 processor clock cycles */ | |
725 | total_ticks /= 64; | |
726 | } | |
727 | return total_ticks - env->cp15.c15_ccnt; | |
728 | } | |
729 | ||
730 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
731 | uint64_t value) | |
732 | { | |
c92c0687 | 733 | uint64_t total_ticks; |
7c2cb42b | 734 | |
942a155b | 735 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
736 | /* Counter is disabled, set the absolute value */ |
737 | env->cp15.c15_ccnt = value; | |
738 | return; | |
739 | } | |
740 | ||
c92c0687 AF |
741 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
742 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
743 | |
744 | if (env->cp15.c9_pmcr & PMCRD) { | |
745 | /* Increment once every 64 processor clock cycles */ | |
746 | total_ticks /= 64; | |
747 | } | |
748 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 749 | } |
421c7ebd PC |
750 | |
751 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
752 | uint64_t value) | |
753 | { | |
754 | uint64_t cur_val = pmccntr_read(env, NULL); | |
755 | ||
756 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
757 | } | |
758 | ||
ec7b4ce4 AF |
759 | #else /* CONFIG_USER_ONLY */ |
760 | ||
761 | void pmccntr_sync(CPUARMState *env) | |
762 | { | |
763 | } | |
764 | ||
7c2cb42b | 765 | #endif |
200ac0ef | 766 | |
0614601c AF |
767 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
768 | uint64_t value) | |
769 | { | |
770 | pmccntr_sync(env); | |
771 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
772 | pmccntr_sync(env); | |
773 | } | |
774 | ||
c4241c7d | 775 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
776 | uint64_t value) |
777 | { | |
200ac0ef PM |
778 | value &= (1 << 31); |
779 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
780 | } |
781 | ||
c4241c7d PM |
782 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
783 | uint64_t value) | |
200ac0ef | 784 | { |
200ac0ef PM |
785 | value &= (1 << 31); |
786 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
787 | } |
788 | ||
c4241c7d PM |
789 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
790 | uint64_t value) | |
200ac0ef | 791 | { |
200ac0ef | 792 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
793 | } |
794 | ||
c4241c7d PM |
795 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
796 | uint64_t value) | |
200ac0ef | 797 | { |
200ac0ef | 798 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
799 | } |
800 | ||
c4241c7d | 801 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
802 | uint64_t value) |
803 | { | |
804 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
805 | } |
806 | ||
c4241c7d PM |
807 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
808 | uint64_t value) | |
200ac0ef PM |
809 | { |
810 | /* We have no event counters so only the C bit can be changed */ | |
811 | value &= (1 << 31); | |
812 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
813 | } |
814 | ||
c4241c7d PM |
815 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
816 | uint64_t value) | |
200ac0ef PM |
817 | { |
818 | value &= (1 << 31); | |
819 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
820 | } |
821 | ||
c4241c7d PM |
822 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
823 | uint64_t value) | |
8641136c | 824 | { |
a505d7fe PM |
825 | /* Note that even though the AArch64 view of this register has bits |
826 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
827 | * architectural requirements for bits which are RES0 only in some | |
828 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
829 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
830 | */ | |
855ea66d | 831 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
832 | } |
833 | ||
64e0e2de EI |
834 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
835 | { | |
836 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
837 | * For bits that vary between AArch32/64, code needs to check the | |
838 | * current execution mode before directly using the feature bit. | |
839 | */ | |
840 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
841 | ||
842 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
843 | valid_mask &= ~SCR_HCE; | |
844 | ||
845 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
846 | * supported if EL2 exists. The bit is UNK/SBZP when | |
847 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
848 | * when EL2 is unavailable. | |
4eb27640 | 849 | * On ARMv8, this bit is always available. |
64e0e2de | 850 | */ |
4eb27640 GB |
851 | if (arm_feature(env, ARM_FEATURE_V7) && |
852 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
853 | valid_mask &= ~SCR_SMD; |
854 | } | |
855 | } | |
856 | ||
857 | /* Clear all-context RES0 bits. */ | |
858 | value &= valid_mask; | |
859 | raw_write(env, ri, value); | |
860 | } | |
861 | ||
c4241c7d | 862 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
863 | { |
864 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
865 | |
866 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
867 | * bank | |
868 | */ | |
869 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
870 | ri->secure & ARM_CP_SECSTATE_S); | |
871 | ||
872 | return cpu->ccsidr[index]; | |
776d4e5c PM |
873 | } |
874 | ||
c4241c7d PM |
875 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
876 | uint64_t value) | |
776d4e5c | 877 | { |
8d5c773e | 878 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
879 | } |
880 | ||
1090b9c6 PM |
881 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
882 | { | |
883 | CPUState *cs = ENV_GET_CPU(env); | |
884 | uint64_t ret = 0; | |
885 | ||
886 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
887 | ret |= CPSR_I; | |
888 | } | |
889 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
890 | ret |= CPSR_F; | |
891 | } | |
892 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
893 | return ret; | |
894 | } | |
895 | ||
e9aa6c21 | 896 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
897 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
898 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
899 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
900 | /* Performance monitors are implementation defined in v7, |
901 | * but with an ARM recommended set of registers, which we | |
902 | * follow (although we don't actually implement any counters) | |
903 | * | |
904 | * Performance registers fall into three categories: | |
905 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
906 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
907 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
908 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
909 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
910 | */ | |
911 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 912 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 913 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
914 | .writefn = pmcntenset_write, |
915 | .accessfn = pmreg_access, | |
916 | .raw_writefn = raw_write }, | |
8521466b AF |
917 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
918 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
919 | .access = PL0_RW, .accessfn = pmreg_access, | |
920 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
921 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 922 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
923 | .access = PL0_RW, |
924 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
925 | .accessfn = pmreg_access, |
926 | .writefn = pmcntenclr_write, | |
7a0e58fa | 927 | .type = ARM_CP_ALIAS }, |
8521466b AF |
928 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
929 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
930 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 931 | .type = ARM_CP_ALIAS, |
8521466b AF |
932 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
933 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
934 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
935 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
936 | .accessfn = pmreg_access, |
937 | .writefn = pmovsr_write, | |
938 | .raw_writefn = raw_write }, | |
939 | /* Unimplemented so WI. */ | |
200ac0ef | 940 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 941 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 942 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 943 | * We choose to RAZ/WI. |
200ac0ef PM |
944 | */ |
945 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
946 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
947 | .accessfn = pmreg_access }, | |
7c2cb42b | 948 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 949 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 950 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 951 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 952 | .accessfn = pmreg_access }, |
8521466b AF |
953 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
954 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
955 | .access = PL0_RW, .accessfn = pmreg_access, | |
956 | .type = ARM_CP_IO, | |
957 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 958 | #endif |
8521466b AF |
959 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
960 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 961 | .writefn = pmccfiltr_write, |
8521466b AF |
962 | .access = PL0_RW, .accessfn = pmreg_access, |
963 | .type = ARM_CP_IO, | |
964 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
965 | .resetvalue = 0, }, | |
200ac0ef PM |
966 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
967 | .access = PL0_RW, | |
968 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
969 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
970 | .raw_writefn = raw_write }, | |
971 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 972 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
973 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
974 | .accessfn = pmreg_access }, | |
200ac0ef PM |
975 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
976 | .access = PL0_R | PL1_RW, | |
977 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
978 | .resetvalue = 0, | |
d4e6df63 | 979 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
980 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
981 | .access = PL1_RW, | |
982 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
983 | .resetvalue = 0, | |
d4e6df63 | 984 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 985 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 986 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
200ac0ef | 987 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 988 | .writefn = pmintenclr_write, }, |
a505d7fe PM |
989 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
990 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 991 | .access = PL1_RW, .writefn = vbar_write, |
fb6c91ba GB |
992 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
993 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8641136c | 994 | .resetvalue = 0 }, |
7da845b0 PM |
995 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
996 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 997 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
998 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
999 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1000 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1001 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1002 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1003 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1004 | * just RAZ for all cores: | |
1005 | */ | |
0ff644a7 PM |
1006 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1007 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1008 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1009 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1010 | * choose to RAZ/WI for all cores. | |
1011 | */ | |
1012 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1013 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1014 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1015 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1016 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1017 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1018 | /* MAIR can just read-as-written because we don't implement caches |
1019 | * and so don't need to care about memory attributes. | |
1020 | */ | |
1021 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1022 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1023 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 | 1024 | .resetvalue = 0 }, |
4cfb8ad8 PM |
1025 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
1026 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
1027 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
1028 | .resetvalue = 0 }, | |
b0fe2427 PM |
1029 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
1030 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1031 | */ |
1281f8e3 | 1032 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1033 | * allows them to assign the correct fieldoffset based on the endianness |
1034 | * handled in the field definitions. | |
1035 | */ | |
a903c449 | 1036 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1037 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1038 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1039 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1040 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1041 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1042 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1043 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1044 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1045 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1046 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1047 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1048 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1049 | /* 32 bit ITLB invalidates */ |
1050 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1051 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1052 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1053 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1054 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1055 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1056 | /* 32 bit DTLB invalidates */ |
1057 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1058 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1059 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1060 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1061 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1062 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1063 | /* 32 bit TLB invalidates */ |
1064 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1065 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1066 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1067 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1068 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1069 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1070 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1071 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1072 | REGINFO_SENTINEL |
1073 | }; | |
1074 | ||
1075 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1076 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1077 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1078 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1079 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1080 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1081 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1082 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1083 | .writefn = tlbiasid_is_write }, |
995939a6 | 1084 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1085 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1086 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1087 | REGINFO_SENTINEL |
1088 | }; | |
1089 | ||
c4241c7d PM |
1090 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1091 | uint64_t value) | |
c326b979 PM |
1092 | { |
1093 | value &= 1; | |
1094 | env->teecr = value; | |
c326b979 PM |
1095 | } |
1096 | ||
c4241c7d | 1097 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 1098 | { |
dcbff19b | 1099 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1100 | return CP_ACCESS_TRAP; |
c326b979 | 1101 | } |
92611c00 | 1102 | return CP_ACCESS_OK; |
c326b979 PM |
1103 | } |
1104 | ||
1105 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1106 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1107 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1108 | .resetvalue = 0, | |
1109 | .writefn = teecr_write }, | |
1110 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1111 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1112 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1113 | REGINFO_SENTINEL |
1114 | }; | |
1115 | ||
4d31c596 | 1116 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1117 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1118 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1119 | .access = PL0_RW, | |
54bf36ed | 1120 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1121 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1122 | .access = PL0_RW, | |
54bf36ed FA |
1123 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1124 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1125 | .resetfn = arm_cp_reset_ignore }, |
1126 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1127 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1128 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1129 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1130 | .resetvalue = 0}, | |
4d31c596 PM |
1131 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1132 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1133 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1134 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1135 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1136 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1137 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1138 | .access = PL1_RW, |
54bf36ed FA |
1139 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1140 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1141 | .access = PL1_RW, | |
1142 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1143 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1144 | .resetvalue = 0 }, | |
4d31c596 PM |
1145 | REGINFO_SENTINEL |
1146 | }; | |
1147 | ||
55d284af PM |
1148 | #ifndef CONFIG_USER_ONLY |
1149 | ||
00108f2d PM |
1150 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1151 | { | |
1152 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
dcbff19b | 1153 | if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
00108f2d PM |
1154 | return CP_ACCESS_TRAP; |
1155 | } | |
1156 | return CP_ACCESS_OK; | |
1157 | } | |
1158 | ||
1159 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
1160 | { | |
0b6440af EI |
1161 | unsigned int cur_el = arm_current_el(env); |
1162 | bool secure = arm_is_secure(env); | |
1163 | ||
00108f2d | 1164 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1165 | if (cur_el == 0 && |
00108f2d PM |
1166 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1167 | return CP_ACCESS_TRAP; | |
1168 | } | |
0b6440af EI |
1169 | |
1170 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1171 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1172 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1173 | return CP_ACCESS_TRAP_EL2; | |
1174 | } | |
00108f2d PM |
1175 | return CP_ACCESS_OK; |
1176 | } | |
1177 | ||
1178 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
1179 | { | |
0b6440af EI |
1180 | unsigned int cur_el = arm_current_el(env); |
1181 | bool secure = arm_is_secure(env); | |
1182 | ||
00108f2d PM |
1183 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1184 | * EL0[PV]TEN is zero. | |
1185 | */ | |
0b6440af | 1186 | if (cur_el == 0 && |
00108f2d PM |
1187 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1188 | return CP_ACCESS_TRAP; | |
1189 | } | |
0b6440af EI |
1190 | |
1191 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1192 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1193 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1194 | return CP_ACCESS_TRAP_EL2; | |
1195 | } | |
00108f2d PM |
1196 | return CP_ACCESS_OK; |
1197 | } | |
1198 | ||
1199 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
1200 | const ARMCPRegInfo *ri) | |
1201 | { | |
1202 | return gt_counter_access(env, GTIMER_PHYS); | |
1203 | } | |
1204 | ||
1205 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
1206 | const ARMCPRegInfo *ri) | |
1207 | { | |
1208 | return gt_counter_access(env, GTIMER_VIRT); | |
1209 | } | |
1210 | ||
1211 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1212 | { | |
1213 | return gt_timer_access(env, GTIMER_PHYS); | |
1214 | } | |
1215 | ||
1216 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1217 | { | |
1218 | return gt_timer_access(env, GTIMER_VIRT); | |
1219 | } | |
1220 | ||
b4d3978c PM |
1221 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
1222 | const ARMCPRegInfo *ri) | |
1223 | { | |
1224 | /* The AArch64 register view of the secure physical timer is | |
1225 | * always accessible from EL3, and configurably accessible from | |
1226 | * Secure EL1. | |
1227 | */ | |
1228 | switch (arm_current_el(env)) { | |
1229 | case 1: | |
1230 | if (!arm_is_secure(env)) { | |
1231 | return CP_ACCESS_TRAP; | |
1232 | } | |
1233 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
1234 | return CP_ACCESS_TRAP_EL3; | |
1235 | } | |
1236 | return CP_ACCESS_OK; | |
1237 | case 0: | |
1238 | case 2: | |
1239 | return CP_ACCESS_TRAP; | |
1240 | case 3: | |
1241 | return CP_ACCESS_OK; | |
1242 | default: | |
1243 | g_assert_not_reached(); | |
1244 | } | |
1245 | } | |
1246 | ||
55d284af PM |
1247 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1248 | { | |
bc72ad67 | 1249 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1250 | } |
1251 | ||
1252 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1253 | { | |
1254 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1255 | ||
1256 | if (gt->ctl & 1) { | |
1257 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1258 | * reset timer to when ISTATUS next has to change | |
1259 | */ | |
edac4d8a EI |
1260 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1261 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1262 | uint64_t count = gt_get_countervalue(&cpu->env); |
1263 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1264 | int istatus = count - offset >= gt->cval; |
55d284af PM |
1265 | uint64_t nexttick; |
1266 | ||
1267 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1268 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1269 | (istatus && !(gt->ctl & 2))); | |
1270 | if (istatus) { | |
1271 | /* Next transition is when count rolls back over to zero */ | |
1272 | nexttick = UINT64_MAX; | |
1273 | } else { | |
1274 | /* Next transition is when we hit cval */ | |
edac4d8a | 1275 | nexttick = gt->cval + offset; |
55d284af PM |
1276 | } |
1277 | /* Note that the desired next expiry time might be beyond the | |
1278 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1279 | * set the timer for as far in the future as possible. When the | |
1280 | * timer expires we will reset the timer for any remaining period. | |
1281 | */ | |
1282 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1283 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1284 | } | |
bc72ad67 | 1285 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1286 | } else { |
1287 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1288 | gt->ctl &= ~4; | |
1289 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1290 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1291 | } |
1292 | } | |
1293 | ||
0e3eca4c EI |
1294 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1295 | int timeridx) | |
55d284af PM |
1296 | { |
1297 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1298 | |
bc72ad67 | 1299 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1300 | } |
1301 | ||
c4241c7d | 1302 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1303 | { |
c4241c7d | 1304 | return gt_get_countervalue(env); |
55d284af PM |
1305 | } |
1306 | ||
edac4d8a EI |
1307 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1308 | { | |
1309 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1310 | } | |
1311 | ||
c4241c7d | 1312 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1313 | int timeridx, |
c4241c7d | 1314 | uint64_t value) |
55d284af | 1315 | { |
55d284af PM |
1316 | env->cp15.c14_timer[timeridx].cval = value; |
1317 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1318 | } |
c4241c7d | 1319 | |
0e3eca4c EI |
1320 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1321 | int timeridx) | |
55d284af | 1322 | { |
edac4d8a | 1323 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1324 | |
c4241c7d | 1325 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1326 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1327 | } |
1328 | ||
c4241c7d | 1329 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1330 | int timeridx, |
c4241c7d | 1331 | uint64_t value) |
55d284af | 1332 | { |
edac4d8a | 1333 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1334 | |
edac4d8a | 1335 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1336 | sextract64(value, 0, 32); |
55d284af | 1337 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1338 | } |
1339 | ||
c4241c7d | 1340 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1341 | int timeridx, |
c4241c7d | 1342 | uint64_t value) |
55d284af PM |
1343 | { |
1344 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1345 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1346 | ||
d3afacc7 | 1347 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1348 | if ((oldval ^ value) & 1) { |
1349 | /* Enable toggled */ | |
1350 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1351 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1352 | /* IMASK toggled: don't need to recalculate, |
1353 | * just set the interrupt line based on ISTATUS | |
1354 | */ | |
1355 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1356 | (oldval & 4) && !(value & 2)); |
55d284af | 1357 | } |
55d284af PM |
1358 | } |
1359 | ||
0e3eca4c EI |
1360 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1361 | { | |
1362 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1363 | } | |
1364 | ||
1365 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1366 | uint64_t value) | |
1367 | { | |
1368 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1369 | } | |
1370 | ||
1371 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1372 | { | |
1373 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1374 | } | |
1375 | ||
1376 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1377 | uint64_t value) | |
1378 | { | |
1379 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1380 | } | |
1381 | ||
1382 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1383 | uint64_t value) | |
1384 | { | |
1385 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1386 | } | |
1387 | ||
1388 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1389 | { | |
1390 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1391 | } | |
1392 | ||
1393 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1394 | uint64_t value) | |
1395 | { | |
1396 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1397 | } | |
1398 | ||
1399 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1400 | { | |
1401 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1402 | } | |
1403 | ||
1404 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1405 | uint64_t value) | |
1406 | { | |
1407 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1408 | } | |
1409 | ||
1410 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1411 | uint64_t value) | |
1412 | { | |
1413 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1414 | } | |
1415 | ||
edac4d8a EI |
1416 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1417 | uint64_t value) | |
1418 | { | |
1419 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1420 | ||
1421 | raw_write(env, ri, value); | |
1422 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1423 | } | |
1424 | ||
b0e66d95 EI |
1425 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1426 | { | |
1427 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1428 | } | |
1429 | ||
1430 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1431 | uint64_t value) | |
1432 | { | |
1433 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1434 | } | |
1435 | ||
1436 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1437 | { | |
1438 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1439 | } | |
1440 | ||
1441 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1442 | uint64_t value) | |
1443 | { | |
1444 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1445 | } | |
1446 | ||
1447 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1448 | uint64_t value) | |
1449 | { | |
1450 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1451 | } | |
1452 | ||
b4d3978c PM |
1453 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1454 | { | |
1455 | gt_timer_reset(env, ri, GTIMER_SEC); | |
1456 | } | |
1457 | ||
1458 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1459 | uint64_t value) | |
1460 | { | |
1461 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
1462 | } | |
1463 | ||
1464 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1465 | { | |
1466 | return gt_tval_read(env, ri, GTIMER_SEC); | |
1467 | } | |
1468 | ||
1469 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1470 | uint64_t value) | |
1471 | { | |
1472 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
1473 | } | |
1474 | ||
1475 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1476 | uint64_t value) | |
1477 | { | |
1478 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
1479 | } | |
1480 | ||
55d284af PM |
1481 | void arm_gt_ptimer_cb(void *opaque) |
1482 | { | |
1483 | ARMCPU *cpu = opaque; | |
1484 | ||
1485 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1486 | } | |
1487 | ||
1488 | void arm_gt_vtimer_cb(void *opaque) | |
1489 | { | |
1490 | ARMCPU *cpu = opaque; | |
1491 | ||
1492 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1493 | } | |
1494 | ||
b0e66d95 EI |
1495 | void arm_gt_htimer_cb(void *opaque) |
1496 | { | |
1497 | ARMCPU *cpu = opaque; | |
1498 | ||
1499 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1500 | } | |
1501 | ||
b4d3978c PM |
1502 | void arm_gt_stimer_cb(void *opaque) |
1503 | { | |
1504 | ARMCPU *cpu = opaque; | |
1505 | ||
1506 | gt_recalc_timer(cpu, GTIMER_SEC); | |
1507 | } | |
1508 | ||
55d284af PM |
1509 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1510 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1511 | * of software; writing it doesn't actually change the timer frequency. | |
1512 | * Our reset value matches the fixed frequency we implement the timer at. | |
1513 | */ | |
1514 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1515 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1516 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1517 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1518 | }, |
1519 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1520 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1521 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1522 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1523 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1524 | }, |
1525 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1526 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1527 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1528 | .access = PL1_RW, |
1529 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1530 | .resetvalue = 0, | |
1531 | }, | |
1532 | /* per-timer control */ | |
1533 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 1534 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1535 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1536 | .accessfn = gt_ptimer_access, |
1537 | .fieldoffset = offsetoflow32(CPUARMState, | |
1538 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1539 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 | 1540 | }, |
9ff9dd3c PM |
1541 | { .name = "CNTP_CTL(S)", |
1542 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1543 | .secure = ARM_CP_SECSTATE_S, | |
1544 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | |
1545 | .accessfn = gt_ptimer_access, | |
1546 | .fieldoffset = offsetoflow32(CPUARMState, | |
1547 | cp15.c14_timer[GTIMER_SEC].ctl), | |
1548 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1549 | }, | |
a7adc4b7 PM |
1550 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
1551 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1552 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1553 | .accessfn = gt_ptimer_access, |
55d284af PM |
1554 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1555 | .resetvalue = 0, | |
0e3eca4c | 1556 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1557 | }, |
1558 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1559 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1560 | .accessfn = gt_vtimer_access, |
1561 | .fieldoffset = offsetoflow32(CPUARMState, | |
1562 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1563 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1564 | }, |
1565 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1566 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1567 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1568 | .accessfn = gt_vtimer_access, |
55d284af PM |
1569 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1570 | .resetvalue = 0, | |
0e3eca4c | 1571 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1572 | }, |
1573 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1574 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 1575 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1576 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1577 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1578 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 1579 | }, |
9ff9dd3c PM |
1580 | { .name = "CNTP_TVAL(S)", |
1581 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1582 | .secure = ARM_CP_SECSTATE_S, | |
1583 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1584 | .accessfn = gt_ptimer_access, | |
1585 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
1586 | }, | |
a7adc4b7 PM |
1587 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1588 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 1589 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1590 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
1591 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 1592 | }, |
55d284af | 1593 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 1594 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1595 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1596 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 1597 | }, |
a7adc4b7 PM |
1598 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1599 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1600 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1601 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
1602 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 1603 | }, |
55d284af PM |
1604 | /* The counter itself */ |
1605 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 1606 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1607 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1608 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1609 | }, | |
1610 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1611 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 1612 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1613 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
1614 | }, |
1615 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 1616 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1617 | .accessfn = gt_vct_access, |
edac4d8a | 1618 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
1619 | }, |
1620 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1621 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 1622 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1623 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
1624 | }, |
1625 | /* Comparison value, indicating when the timer goes off */ | |
1626 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 1627 | .secure = ARM_CP_SECSTATE_NS, |
55d284af | 1628 | .access = PL1_RW | PL0_R, |
7a0e58fa | 1629 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1630 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 1631 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1632 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 | 1633 | }, |
9ff9dd3c PM |
1634 | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
1635 | .secure = ARM_CP_SECSTATE_S, | |
1636 | .access = PL1_RW | PL0_R, | |
1637 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | |
1638 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1639 | .accessfn = gt_ptimer_access, | |
1640 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1641 | }, | |
a7adc4b7 PM |
1642 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
1643 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1644 | .access = PL1_RW | PL0_R, | |
1645 | .type = ARM_CP_IO, | |
1646 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 1647 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 1648 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1649 | }, |
1650 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1651 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1652 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1653 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 1654 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1655 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1656 | }, |
1657 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1658 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1659 | .access = PL1_RW | PL0_R, | |
1660 | .type = ARM_CP_IO, | |
1661 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1662 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 1663 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af | 1664 | }, |
b4d3978c PM |
1665 | /* Secure timer -- this is actually restricted to only EL3 |
1666 | * and configurably Secure-EL1 via the accessfn. | |
1667 | */ | |
1668 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1669 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
1670 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
1671 | .accessfn = gt_stimer_access, | |
1672 | .readfn = gt_sec_tval_read, | |
1673 | .writefn = gt_sec_tval_write, | |
1674 | .resetfn = gt_sec_timer_reset, | |
1675 | }, | |
1676 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
1677 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
1678 | .type = ARM_CP_IO, .access = PL1_RW, | |
1679 | .accessfn = gt_stimer_access, | |
1680 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
1681 | .resetvalue = 0, | |
1682 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1683 | }, | |
1684 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1685 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
1686 | .type = ARM_CP_IO, .access = PL1_RW, | |
1687 | .accessfn = gt_stimer_access, | |
1688 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1689 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1690 | }, | |
55d284af PM |
1691 | REGINFO_SENTINEL |
1692 | }; | |
1693 | ||
1694 | #else | |
1695 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1696 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1697 | * so instead just don't register any of them. |
1698 | */ | |
6cc7a3ae | 1699 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1700 | REGINFO_SENTINEL |
1701 | }; | |
1702 | ||
55d284af PM |
1703 | #endif |
1704 | ||
c4241c7d | 1705 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1706 | { |
891a2fe7 | 1707 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 1708 | raw_write(env, ri, value); |
891a2fe7 | 1709 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 1710 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 1711 | } else { |
8d5c773e | 1712 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 1713 | } |
4a501606 PM |
1714 | } |
1715 | ||
1716 | #ifndef CONFIG_USER_ONLY | |
1717 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1718 | |
92611c00 PM |
1719 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1720 | { | |
1721 | if (ri->opc2 & 4) { | |
87562e4f PM |
1722 | /* The ATS12NSO* operations must trap to EL3 if executed in |
1723 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
1724 | * They are simply UNDEF if executed from NS EL1. | |
1725 | * They function normally from EL2 or EL3. | |
92611c00 | 1726 | */ |
87562e4f PM |
1727 | if (arm_current_el(env) == 1) { |
1728 | if (arm_is_secure_below_el3(env)) { | |
1729 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
1730 | } | |
1731 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1732 | } | |
92611c00 PM |
1733 | } |
1734 | return CP_ACCESS_OK; | |
1735 | } | |
1736 | ||
060e8a48 | 1737 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
d3649702 | 1738 | int access_type, ARMMMUIdx mmu_idx) |
4a501606 | 1739 | { |
a8170e5e | 1740 | hwaddr phys_addr; |
4a501606 PM |
1741 | target_ulong page_size; |
1742 | int prot; | |
b7cc4e82 PC |
1743 | uint32_t fsr; |
1744 | bool ret; | |
01c097f7 | 1745 | uint64_t par64; |
8bf5b6a9 | 1746 | MemTxAttrs attrs = {}; |
4a501606 | 1747 | |
d3649702 | 1748 | ret = get_phys_addr(env, value, access_type, mmu_idx, |
b7cc4e82 | 1749 | &phys_addr, &attrs, &prot, &page_size, &fsr); |
702a9357 | 1750 | if (extended_addresses_enabled(env)) { |
b7cc4e82 | 1751 | /* fsr is a DFSR/IFSR value for the long descriptor |
702a9357 PM |
1752 | * translation table format, but with WnR always clear. |
1753 | * Convert it to a 64-bit PAR. | |
1754 | */ | |
01c097f7 | 1755 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 1756 | if (!ret) { |
702a9357 | 1757 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
1758 | if (!attrs.secure) { |
1759 | par64 |= (1 << 9); /* NS */ | |
1760 | } | |
702a9357 | 1761 | /* We don't set the ATTR or SH fields in the PAR. */ |
4a501606 | 1762 | } else { |
702a9357 | 1763 | par64 |= 1; /* F */ |
b7cc4e82 | 1764 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
1765 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
1766 | * implement virtualization and therefore there can't be a stage 2 | |
1767 | * fault. | |
1768 | */ | |
4a501606 PM |
1769 | } |
1770 | } else { | |
b7cc4e82 | 1771 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
1772 | * translation table format (with WnR always clear). |
1773 | * Convert it to a 32-bit PAR. | |
1774 | */ | |
b7cc4e82 | 1775 | if (!ret) { |
702a9357 PM |
1776 | /* We do not set any attribute bits in the PAR */ |
1777 | if (page_size == (1 << 24) | |
1778 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 1779 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 1780 | } else { |
01c097f7 | 1781 | par64 = phys_addr & 0xfffff000; |
702a9357 | 1782 | } |
8bf5b6a9 PM |
1783 | if (!attrs.secure) { |
1784 | par64 |= (1 << 9); /* NS */ | |
1785 | } | |
702a9357 | 1786 | } else { |
b7cc4e82 PC |
1787 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
1788 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 1789 | } |
4a501606 | 1790 | } |
060e8a48 PM |
1791 | return par64; |
1792 | } | |
1793 | ||
1794 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1795 | { | |
060e8a48 PM |
1796 | int access_type = ri->opc2 & 1; |
1797 | uint64_t par64; | |
d3649702 PM |
1798 | ARMMMUIdx mmu_idx; |
1799 | int el = arm_current_el(env); | |
1800 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 1801 | |
d3649702 PM |
1802 | switch (ri->opc2 & 6) { |
1803 | case 0: | |
1804 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
1805 | switch (el) { | |
1806 | case 3: | |
1807 | mmu_idx = ARMMMUIdx_S1E3; | |
1808 | break; | |
1809 | case 2: | |
1810 | mmu_idx = ARMMMUIdx_S1NSE1; | |
1811 | break; | |
1812 | case 1: | |
1813 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1814 | break; | |
1815 | default: | |
1816 | g_assert_not_reached(); | |
1817 | } | |
1818 | break; | |
1819 | case 2: | |
1820 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
1821 | switch (el) { | |
1822 | case 3: | |
1823 | mmu_idx = ARMMMUIdx_S1SE0; | |
1824 | break; | |
1825 | case 2: | |
1826 | mmu_idx = ARMMMUIdx_S1NSE0; | |
1827 | break; | |
1828 | case 1: | |
1829 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1830 | break; | |
1831 | default: | |
1832 | g_assert_not_reached(); | |
1833 | } | |
1834 | break; | |
1835 | case 4: | |
1836 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
1837 | mmu_idx = ARMMMUIdx_S12NSE1; | |
1838 | break; | |
1839 | case 6: | |
1840 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
1841 | mmu_idx = ARMMMUIdx_S12NSE0; | |
1842 | break; | |
1843 | default: | |
1844 | g_assert_not_reached(); | |
1845 | } | |
1846 | ||
1847 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
1848 | |
1849 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 1850 | } |
060e8a48 | 1851 | |
14db7fe0 PM |
1852 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1853 | uint64_t value) | |
1854 | { | |
1855 | int access_type = ri->opc2 & 1; | |
1856 | uint64_t par64; | |
1857 | ||
1858 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | |
1859 | ||
1860 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
1861 | } | |
1862 | ||
2a47df95 PM |
1863 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1864 | { | |
1865 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
1866 | return CP_ACCESS_TRAP; | |
1867 | } | |
1868 | return CP_ACCESS_OK; | |
1869 | } | |
1870 | ||
060e8a48 PM |
1871 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
1872 | uint64_t value) | |
1873 | { | |
060e8a48 | 1874 | int access_type = ri->opc2 & 1; |
d3649702 PM |
1875 | ARMMMUIdx mmu_idx; |
1876 | int secure = arm_is_secure_below_el3(env); | |
1877 | ||
1878 | switch (ri->opc2 & 6) { | |
1879 | case 0: | |
1880 | switch (ri->opc1) { | |
1881 | case 0: /* AT S1E1R, AT S1E1W */ | |
1882 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1883 | break; | |
1884 | case 4: /* AT S1E2R, AT S1E2W */ | |
1885 | mmu_idx = ARMMMUIdx_S1E2; | |
1886 | break; | |
1887 | case 6: /* AT S1E3R, AT S1E3W */ | |
1888 | mmu_idx = ARMMMUIdx_S1E3; | |
1889 | break; | |
1890 | default: | |
1891 | g_assert_not_reached(); | |
1892 | } | |
1893 | break; | |
1894 | case 2: /* AT S1E0R, AT S1E0W */ | |
1895 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1896 | break; | |
1897 | case 4: /* AT S12E1R, AT S12E1W */ | |
2a47df95 | 1898 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
d3649702 PM |
1899 | break; |
1900 | case 6: /* AT S12E0R, AT S12E0W */ | |
2a47df95 | 1901 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
d3649702 PM |
1902 | break; |
1903 | default: | |
1904 | g_assert_not_reached(); | |
1905 | } | |
060e8a48 | 1906 | |
d3649702 | 1907 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 1908 | } |
4a501606 PM |
1909 | #endif |
1910 | ||
1911 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1912 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1913 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
1914 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
1915 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
1916 | .writefn = par_write }, |
1917 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 1918 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 1919 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 1920 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 1921 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
1922 | #endif |
1923 | REGINFO_SENTINEL | |
1924 | }; | |
1925 | ||
18032bec PM |
1926 | /* Return basic MPU access permission bits. */ |
1927 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1928 | { | |
1929 | uint32_t ret; | |
1930 | uint32_t mask; | |
1931 | int i; | |
1932 | ret = 0; | |
1933 | mask = 3; | |
1934 | for (i = 0; i < 16; i += 2) { | |
1935 | ret |= (val >> i) & mask; | |
1936 | mask <<= 2; | |
1937 | } | |
1938 | return ret; | |
1939 | } | |
1940 | ||
1941 | /* Pad basic MPU access permission bits to extended format. */ | |
1942 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1943 | { | |
1944 | uint32_t ret; | |
1945 | uint32_t mask; | |
1946 | int i; | |
1947 | ret = 0; | |
1948 | mask = 3; | |
1949 | for (i = 0; i < 16; i += 2) { | |
1950 | ret |= (val & mask) << i; | |
1951 | mask <<= 2; | |
1952 | } | |
1953 | return ret; | |
1954 | } | |
1955 | ||
c4241c7d PM |
1956 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1957 | uint64_t value) | |
18032bec | 1958 | { |
7e09797c | 1959 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1960 | } |
1961 | ||
c4241c7d | 1962 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1963 | { |
7e09797c | 1964 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
1965 | } |
1966 | ||
c4241c7d PM |
1967 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1968 | uint64_t value) | |
18032bec | 1969 | { |
7e09797c | 1970 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1971 | } |
1972 | ||
c4241c7d | 1973 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1974 | { |
7e09797c | 1975 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
1976 | } |
1977 | ||
6cb0b013 PC |
1978 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1979 | { | |
1980 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
1981 | ||
1982 | if (!u32p) { | |
1983 | return 0; | |
1984 | } | |
1985 | ||
1986 | u32p += env->cp15.c6_rgnr; | |
1987 | return *u32p; | |
1988 | } | |
1989 | ||
1990 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1991 | uint64_t value) | |
1992 | { | |
1993 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1994 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
1995 | ||
1996 | if (!u32p) { | |
1997 | return; | |
1998 | } | |
1999 | ||
2000 | u32p += env->cp15.c6_rgnr; | |
2001 | tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ | |
2002 | *u32p = value; | |
2003 | } | |
2004 | ||
2005 | static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
2006 | { | |
2007 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2008 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2009 | ||
2010 | if (!u32p) { | |
2011 | return; | |
2012 | } | |
2013 | ||
2014 | memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); | |
2015 | } | |
2016 | ||
2017 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2018 | uint64_t value) | |
2019 | { | |
2020 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2021 | uint32_t nrgs = cpu->pmsav7_dregion; | |
2022 | ||
2023 | if (value >= nrgs) { | |
2024 | qemu_log_mask(LOG_GUEST_ERROR, | |
2025 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
2026 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
2027 | return; | |
2028 | } | |
2029 | ||
2030 | raw_write(env, ri, value); | |
2031 | } | |
2032 | ||
2033 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
2034 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, | |
2035 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2036 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
2037 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2038 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, | |
2039 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2040 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
2041 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2042 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, | |
2043 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2044 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
2045 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2046 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, | |
2047 | .access = PL1_RW, | |
2048 | .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), | |
2049 | .writefn = pmsav7_rgnr_write }, | |
2050 | REGINFO_SENTINEL | |
2051 | }; | |
2052 | ||
18032bec PM |
2053 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
2054 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2055 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2056 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
2057 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
2058 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2059 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2060 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
2061 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
2062 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2063 | .access = PL1_RW, | |
7e09797c PM |
2064 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
2065 | .resetvalue = 0, }, | |
18032bec PM |
2066 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
2067 | .access = PL1_RW, | |
7e09797c PM |
2068 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
2069 | .resetvalue = 0, }, | |
ecce5c3c PM |
2070 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2071 | .access = PL1_RW, | |
2072 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
2073 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2074 | .access = PL1_RW, | |
2075 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 2076 | /* Protection region base and size registers */ |
e508a92b PM |
2077 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
2078 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2079 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
2080 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
2081 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2082 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
2083 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
2084 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2085 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
2086 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
2087 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2088 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
2089 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
2090 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2091 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
2092 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
2093 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2094 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
2095 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
2096 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2097 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
2098 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
2099 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2100 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
2101 | REGINFO_SENTINEL |
2102 | }; | |
2103 | ||
c4241c7d PM |
2104 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2105 | uint64_t value) | |
ecce5c3c | 2106 | { |
11f136ee | 2107 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
2108 | int maskshift = extract32(value, 0, 3); |
2109 | ||
e389be16 FA |
2110 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2111 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
2112 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
2113 | * using Long-desciptor translation table format */ | |
2114 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
2115 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2116 | /* In an implementation that includes the Security Extensions | |
2117 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
2118 | * Short-descriptor translation table format. | |
2119 | */ | |
2120 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
2121 | } else { | |
2122 | value &= TTBCR_N; | |
2123 | } | |
e42c4db3 | 2124 | } |
e389be16 | 2125 | |
11f136ee FA |
2126 | /* Update the masks corresponding to the the TCR bank being written |
2127 | * Note that we always calculate mask and base_mask, but | |
e42c4db3 | 2128 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
2129 | * for long-descriptor tables the TCR fields are used differently |
2130 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 2131 | */ |
11f136ee FA |
2132 | tcr->raw_tcr = value; |
2133 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
2134 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
2135 | } |
2136 | ||
c4241c7d PM |
2137 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2138 | uint64_t value) | |
d4e6df63 | 2139 | { |
00c8cb0a AF |
2140 | ARMCPU *cpu = arm_env_get_cpu(env); |
2141 | ||
d4e6df63 PM |
2142 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2143 | /* With LPAE the TTBCR could result in a change of ASID | |
2144 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2145 | */ | |
00c8cb0a | 2146 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 2147 | } |
c4241c7d | 2148 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2149 | } |
2150 | ||
ecce5c3c PM |
2151 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2152 | { | |
11f136ee FA |
2153 | TCR *tcr = raw_ptr(env, ri); |
2154 | ||
2155 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2156 | * the TCR being reset. | |
2157 | */ | |
2158 | tcr->raw_tcr = 0; | |
2159 | tcr->mask = 0; | |
2160 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2161 | } |
2162 | ||
cb2e37df PM |
2163 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2164 | uint64_t value) | |
2165 | { | |
00c8cb0a | 2166 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2167 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2168 | |
cb2e37df | 2169 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 2170 | tlb_flush(CPU(cpu), 1); |
11f136ee | 2171 | tcr->raw_tcr = value; |
cb2e37df PM |
2172 | } |
2173 | ||
327ed10f PM |
2174 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2175 | uint64_t value) | |
2176 | { | |
2177 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2178 | * must flush the TLB. | |
2179 | */ | |
2180 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2181 | ARMCPU *cpu = arm_env_get_cpu(env); |
2182 | ||
2183 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
2184 | } |
2185 | raw_write(env, ri, value); | |
2186 | } | |
2187 | ||
8e5d75c9 | 2188 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2189 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2190 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2191 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2192 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2193 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2194 | .access = PL1_RW, .resetvalue = 0, |
2195 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2196 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2197 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2198 | .access = PL1_RW, .resetvalue = 0, | |
2199 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2200 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2201 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2202 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2203 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2204 | .resetvalue = 0, }, | |
2205 | REGINFO_SENTINEL | |
2206 | }; | |
2207 | ||
2208 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2209 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2210 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2211 | .access = PL1_RW, | |
d81c519c | 2212 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2213 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2214 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2215 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2216 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2217 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2218 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2219 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2220 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2221 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2222 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2223 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2224 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2225 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2226 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2227 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2228 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2229 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2230 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2231 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2232 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2233 | REGINFO_SENTINEL |
2234 | }; | |
2235 | ||
c4241c7d PM |
2236 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2237 | uint64_t value) | |
1047b9d7 PM |
2238 | { |
2239 | env->cp15.c15_ticonfig = value & 0xe7; | |
2240 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2241 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2242 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2243 | } |
2244 | ||
c4241c7d PM |
2245 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2246 | uint64_t value) | |
1047b9d7 PM |
2247 | { |
2248 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2249 | } |
2250 | ||
c4241c7d PM |
2251 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2252 | uint64_t value) | |
1047b9d7 PM |
2253 | { |
2254 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2255 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2256 | } |
2257 | ||
c4241c7d PM |
2258 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2259 | uint64_t value) | |
c4804214 PM |
2260 | { |
2261 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2262 | * containing a dirty line; cache flush operations have to reset these. | |
2263 | */ | |
2264 | env->cp15.c15_i_max = 0x000; | |
2265 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2266 | } |
2267 | ||
18032bec PM |
2268 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2269 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2270 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2271 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2272 | .resetvalue = 0, }, |
1047b9d7 PM |
2273 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2274 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2275 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2276 | .access = PL1_RW, | |
2277 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2278 | .writefn = omap_ticonfig_write }, | |
2279 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2280 | .access = PL1_RW, | |
2281 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2282 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2283 | .access = PL1_RW, .resetvalue = 0xff0, | |
2284 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2285 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2286 | .access = PL1_RW, | |
2287 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2288 | .writefn = omap_threadid_write }, | |
2289 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2290 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2291 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2292 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2293 | /* TODO: Peripheral port remap register: | |
2294 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2295 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2296 | * when MMU is off. | |
2297 | */ | |
c4804214 | 2298 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2299 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2300 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2301 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2302 | { .name = "C9", .cp = 15, .crn = 9, |
2303 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2304 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2305 | REGINFO_SENTINEL |
2306 | }; | |
2307 | ||
c4241c7d PM |
2308 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2309 | uint64_t value) | |
1047b9d7 | 2310 | { |
c0f4af17 | 2311 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2312 | } |
2313 | ||
2314 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2315 | { .name = "XSCALE_CPAR", | |
2316 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2317 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2318 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2319 | { .name = "XSCALE_AUXCR", |
2320 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2321 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2322 | .resetvalue = 0, }, | |
3b771579 PM |
2323 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2324 | * and hope the guest does not really rely on cache behaviour. | |
2325 | */ | |
2326 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2327 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2328 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2329 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2330 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2331 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2332 | { .name = "XSCALE_DCACHE_LOCK", | |
2333 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2334 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2335 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2336 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2337 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2338 | REGINFO_SENTINEL |
2339 | }; | |
2340 | ||
2341 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2342 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2343 | * implementation of this implementation-defined space. | |
2344 | * Ideally this should eventually disappear in favour of actually | |
2345 | * implementing the correct behaviour for all cores. | |
2346 | */ | |
2347 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2348 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2349 | .access = PL1_RW, |
7a0e58fa | 2350 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2351 | .resetvalue = 0 }, |
18032bec PM |
2352 | REGINFO_SENTINEL |
2353 | }; | |
2354 | ||
c4804214 PM |
2355 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2356 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2357 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2358 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2359 | .resetvalue = 0 }, |
c4804214 PM |
2360 | REGINFO_SENTINEL |
2361 | }; | |
2362 | ||
2363 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2364 | /* We never have a a block transfer operation in progress */ | |
2365 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2366 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2367 | .resetvalue = 0 }, |
30b05bba PM |
2368 | /* The cache ops themselves: these all NOP for QEMU */ |
2369 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2370 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2371 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2372 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2373 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2374 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2375 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2376 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2377 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2378 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2379 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2380 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2381 | REGINFO_SENTINEL |
2382 | }; | |
2383 | ||
2384 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2385 | /* The cache test-and-clean instructions always return (1 << 30) | |
2386 | * to indicate that there are no dirty cache lines. | |
2387 | */ | |
2388 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2389 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2390 | .resetvalue = (1 << 30) }, |
c4804214 | 2391 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2392 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2393 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2394 | REGINFO_SENTINEL |
2395 | }; | |
2396 | ||
34f90529 PM |
2397 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2398 | /* Ignore ReadBuffer accesses */ | |
2399 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2400 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2401 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2402 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2403 | REGINFO_SENTINEL |
2404 | }; | |
2405 | ||
c4241c7d | 2406 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 2407 | { |
eb5e1d3c PF |
2408 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2409 | uint64_t mpidr = cpu->mp_affinity; | |
2410 | ||
81bdde9d | 2411 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2412 | mpidr |= (1U << 31); |
81bdde9d PM |
2413 | /* Cores which are uniprocessor (non-coherent) |
2414 | * but still implement the MP extensions set | |
a8e81b31 | 2415 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2416 | */ |
a8e81b31 PC |
2417 | if (cpu->mp_is_up) { |
2418 | mpidr |= (1u << 30); | |
2419 | } | |
81bdde9d | 2420 | } |
c4241c7d | 2421 | return mpidr; |
81bdde9d PM |
2422 | } |
2423 | ||
2424 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
2425 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2426 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2427 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2428 | REGINFO_SENTINEL |
2429 | }; | |
2430 | ||
7ac681cf | 2431 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2432 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2433 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2434 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2435 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2436 | .resetvalue = 0 }, |
b0fe2427 | 2437 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2438 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2439 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2440 | .resetvalue = 0 }, |
891a2fe7 | 2441 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2442 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2443 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2444 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2445 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2446 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2447 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2448 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2449 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2450 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2451 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2452 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2453 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2454 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2455 | REGINFO_SENTINEL |
2456 | }; | |
2457 | ||
c4241c7d | 2458 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2459 | { |
c4241c7d | 2460 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2461 | } |
2462 | ||
c4241c7d PM |
2463 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2464 | uint64_t value) | |
b0d2b7d0 PM |
2465 | { |
2466 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2467 | } |
2468 | ||
c4241c7d | 2469 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2470 | { |
c4241c7d | 2471 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2472 | } |
2473 | ||
c4241c7d PM |
2474 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2475 | uint64_t value) | |
b0d2b7d0 PM |
2476 | { |
2477 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2478 | } |
2479 | ||
c2b820fe PM |
2480 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2481 | { | |
137feaa9 | 2482 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2483 | return CP_ACCESS_TRAP; |
2484 | } | |
2485 | return CP_ACCESS_OK; | |
2486 | } | |
2487 | ||
2488 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2489 | uint64_t value) | |
2490 | { | |
2491 | env->daif = value & PSTATE_DAIF; | |
2492 | } | |
2493 | ||
8af35c37 PM |
2494 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
2495 | const ARMCPRegInfo *ri) | |
2496 | { | |
2497 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2498 | * SCTLR_EL1.UCI is set. | |
2499 | */ | |
137feaa9 | 2500 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2501 | return CP_ACCESS_TRAP; |
2502 | } | |
2503 | return CP_ACCESS_OK; | |
2504 | } | |
2505 | ||
dbb1fb27 AB |
2506 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2507 | * Page D4-1736 (DDI0487A.b) | |
2508 | */ | |
2509 | ||
168aa23b PM |
2510 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2511 | uint64_t value) | |
2512 | { | |
2513 | /* Invalidate by VA (AArch64 version) */ | |
31b030d4 | 2514 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
2515 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
2516 | ||
31b030d4 | 2517 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
2518 | } |
2519 | ||
2520 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2521 | uint64_t value) | |
2522 | { | |
2523 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
31b030d4 | 2524 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
2525 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
2526 | ||
31b030d4 | 2527 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
2528 | } |
2529 | ||
2530 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2531 | uint64_t value) | |
2532 | { | |
2533 | /* Invalidate by ASID (AArch64 version) */ | |
00c8cb0a | 2534 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 2535 | int asid = extract64(value, 48, 16); |
00c8cb0a | 2536 | tlb_flush(CPU(cpu), asid == 0); |
168aa23b PM |
2537 | } |
2538 | ||
fa439fc5 PM |
2539 | static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2540 | uint64_t value) | |
2541 | { | |
2542 | CPUState *other_cs; | |
2543 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2544 | ||
2545 | CPU_FOREACH(other_cs) { | |
2546 | tlb_flush_page(other_cs, pageaddr); | |
2547 | } | |
2548 | } | |
2549 | ||
2550 | static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2551 | uint64_t value) | |
2552 | { | |
2553 | CPUState *other_cs; | |
2554 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2555 | ||
2556 | CPU_FOREACH(other_cs) { | |
2557 | tlb_flush_page(other_cs, pageaddr); | |
2558 | } | |
2559 | } | |
2560 | ||
2561 | static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2562 | uint64_t value) | |
2563 | { | |
2564 | CPUState *other_cs; | |
2565 | int asid = extract64(value, 48, 16); | |
2566 | ||
2567 | CPU_FOREACH(other_cs) { | |
2568 | tlb_flush(other_cs, asid == 0); | |
2569 | } | |
2570 | } | |
2571 | ||
aca3f40b PM |
2572 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2573 | { | |
2574 | /* We don't implement EL2, so the only control on DC ZVA is the | |
2575 | * bit in the SCTLR which can prohibit access for EL0. | |
2576 | */ | |
137feaa9 | 2577 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
2578 | return CP_ACCESS_TRAP; |
2579 | } | |
2580 | return CP_ACCESS_OK; | |
2581 | } | |
2582 | ||
2583 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2584 | { | |
2585 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2586 | int dzp_bit = 1 << 4; | |
2587 | ||
2588 | /* DZP indicates whether DC ZVA access is allowed */ | |
14e5f106 | 2589 | if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { |
aca3f40b PM |
2590 | dzp_bit = 0; |
2591 | } | |
2592 | return cpu->dcz_blocksize | dzp_bit; | |
2593 | } | |
2594 | ||
f502cfc2 PM |
2595 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2596 | { | |
cdcf1405 | 2597 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
2598 | /* Access to SP_EL0 is undefined if it's being used as |
2599 | * the stack pointer. | |
2600 | */ | |
2601 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2602 | } | |
2603 | return CP_ACCESS_OK; | |
2604 | } | |
2605 | ||
2606 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2607 | { | |
2608 | return env->pstate & PSTATE_SP; | |
2609 | } | |
2610 | ||
2611 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
2612 | { | |
2613 | update_spsel(env, val); | |
2614 | } | |
2615 | ||
137feaa9 FA |
2616 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2617 | uint64_t value) | |
2618 | { | |
2619 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2620 | ||
2621 | if (raw_read(env, ri) == value) { | |
2622 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
2623 | * to do a lot of pointless SCTLR writes. | |
2624 | */ | |
2625 | return; | |
2626 | } | |
2627 | ||
2628 | raw_write(env, ri, value); | |
2629 | /* ??? Lots of these bits are not implemented. */ | |
2630 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
2631 | tlb_flush(CPU(cpu), 1); | |
2632 | } | |
2633 | ||
b0d2b7d0 PM |
2634 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
2635 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
2636 | * significantly for system emulation of AArch64 CPUs. | |
2637 | */ | |
2638 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
2639 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
2640 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
2641 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
2642 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 2643 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
2644 | .access = PL0_RW, .accessfn = aa64_daif_access, |
2645 | .fieldoffset = offsetof(CPUARMState, daif), | |
2646 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
2647 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
2648 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
2649 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
2650 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
2651 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
2652 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
2653 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
2654 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 2655 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
2656 | .readfn = aa64_dczid_read }, |
2657 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
2658 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
2659 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
2660 | #ifndef CONFIG_USER_ONLY | |
2661 | /* Avoid overhead of an access check that always passes in user-mode */ | |
2662 | .accessfn = aa64_zva_access, | |
2663 | #endif | |
2664 | }, | |
0eef9d98 PM |
2665 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
2666 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
2667 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
2668 | /* Cache ops: all NOPs since we don't emulate caches */ |
2669 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
2670 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2671 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2672 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
2673 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2674 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2675 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
2676 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
2677 | .access = PL0_W, .type = ARM_CP_NOP, | |
2678 | .accessfn = aa64_cacheop_access }, | |
2679 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
2680 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2681 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2682 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
2683 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2684 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2685 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
2686 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
2687 | .access = PL0_W, .type = ARM_CP_NOP, | |
2688 | .accessfn = aa64_cacheop_access }, | |
2689 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
2690 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2691 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2692 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
2693 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
2694 | .access = PL0_W, .type = ARM_CP_NOP, | |
2695 | .accessfn = aa64_cacheop_access }, | |
2696 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
2697 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
2698 | .access = PL0_W, .type = ARM_CP_NOP, | |
2699 | .accessfn = aa64_cacheop_access }, | |
2700 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
2701 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2702 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b | 2703 | /* TLBI operations */ |
bdb9e2d6 EI |
2704 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
2705 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
2706 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2707 | .writefn = tlbiall_write }, | |
2708 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, | |
2709 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
2710 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
2a6332d9 | 2711 | .writefn = tlbiall_is_write }, |
168aa23b | 2712 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2713 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 2714 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2715 | .writefn = tlbiall_is_write }, |
168aa23b | 2716 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2717 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 2718 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2719 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2720 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2721 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 2722 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2723 | .writefn = tlbi_aa64_asid_is_write }, |
168aa23b | 2724 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2725 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 2726 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2727 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2728 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2729 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2730 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2731 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2732 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2733 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 2734 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2735 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2736 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2737 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 2738 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2739 | .writefn = tlbiall_write }, |
2740 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2741 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 2742 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2743 | .writefn = tlbi_aa64_va_write }, |
2744 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2745 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 2746 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2747 | .writefn = tlbi_aa64_asid_write }, |
2748 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2749 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 2750 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2751 | .writefn = tlbi_aa64_vaa_write }, |
2752 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2753 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 2754 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2755 | .writefn = tlbi_aa64_va_write }, |
2756 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2757 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 2758 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b | 2759 | .writefn = tlbi_aa64_vaa_write }, |
19525524 PM |
2760 | #ifndef CONFIG_USER_ONLY |
2761 | /* 64 bit address translation operations */ | |
2762 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
2763 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 2764 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2765 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
2766 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 2767 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2768 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
2769 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 2770 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2771 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
2772 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 2773 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2a47df95 PM |
2774 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
2775 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 4, | |
2776 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
2777 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | |
2778 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 5, | |
2779 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
2780 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | |
2781 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6, | |
2782 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
2783 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | |
2784 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 7, | |
2785 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
2786 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | |
2787 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
2788 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
2789 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
2790 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | |
2791 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
2792 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
19525524 | 2793 | #endif |
995939a6 | 2794 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 2795 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2796 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 2797 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 2798 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 2799 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 2800 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 2801 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 2802 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 2803 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
9449fdf6 PM |
2804 | /* 32 bit cache operations */ |
2805 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2806 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2807 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
2808 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2809 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2810 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2811 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
2812 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2813 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
2814 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2815 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
2816 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2817 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2818 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2819 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2820 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2821 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
2822 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2823 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2824 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2825 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
2826 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2827 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
2828 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2829 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2830 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2831 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
2832 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
2833 | .access = PL1_RW, .resetvalue = 0, | |
2834 | .writefn = dacr_write, .raw_writefn = raw_write, | |
2835 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
2836 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 2837 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2838 | .type = ARM_CP_ALIAS, |
a0618a19 | 2839 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
2840 | .access = PL1_RW, |
2841 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 2842 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2843 | .type = ARM_CP_ALIAS, |
a65f1de9 | 2844 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
7847f9ea | 2845 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) }, |
f502cfc2 PM |
2846 | /* We rely on the access checks not allowing the guest to write to the |
2847 | * state field when SPSel indicates that it's being used as the stack | |
2848 | * pointer. | |
2849 | */ | |
2850 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
2851 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
2852 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 2853 | .type = ARM_CP_ALIAS, |
f502cfc2 | 2854 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
2855 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
2856 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2857 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 2858 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
2859 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
2860 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 2861 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 2862 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
b0d2b7d0 PM |
2863 | REGINFO_SENTINEL |
2864 | }; | |
2865 | ||
d42e3c26 | 2866 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 2867 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
2868 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
2869 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2870 | .access = PL2_RW, | |
2871 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 2872 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2873 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
2874 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
2875 | .access = PL2_RW, | |
2876 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
2877 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
2878 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
2879 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
2880 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
2881 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
2882 | .access = PL2_RW, .type = ARM_CP_CONST, | |
2883 | .resetvalue = 0 }, | |
2884 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
2885 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
2886 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2179ef95 PM |
2887 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
2888 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
2889 | .access = PL2_RW, .type = ARM_CP_CONST, | |
2890 | .resetvalue = 0 }, | |
2891 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
2892 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
2893 | .access = PL2_RW, .type = ARM_CP_CONST, | |
2894 | .resetvalue = 0 }, | |
37cd6c24 PM |
2895 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
2896 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
2897 | .access = PL2_RW, .type = ARM_CP_CONST, | |
2898 | .resetvalue = 0 }, | |
2899 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
2900 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
2901 | .access = PL2_RW, .type = ARM_CP_CONST, | |
2902 | .resetvalue = 0 }, | |
06ec4c8c EI |
2903 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
2904 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
2905 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
2906 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
2907 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
2908 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
2909 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
2910 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
2911 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
2912 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
2913 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
2914 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2915 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
2916 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
2917 | .resetvalue = 0 }, | |
0b6440af EI |
2918 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
2919 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
2920 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
2921 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
2922 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
2923 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2924 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
2925 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
2926 | .resetvalue = 0 }, | |
b0e66d95 EI |
2927 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
2928 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
2929 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2930 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
2931 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
2932 | .resetvalue = 0 }, | |
2933 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
2934 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
2935 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2936 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
2937 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
2938 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
2939 | REGINFO_SENTINEL |
2940 | }; | |
2941 | ||
f149e3e8 EI |
2942 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
2943 | { | |
2944 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2945 | uint64_t valid_mask = HCR_MASK; | |
2946 | ||
2947 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2948 | valid_mask &= ~HCR_HCD; | |
2949 | } else { | |
2950 | valid_mask &= ~HCR_TSC; | |
2951 | } | |
2952 | ||
2953 | /* Clear RES0 bits. */ | |
2954 | value &= valid_mask; | |
2955 | ||
2956 | /* These bits change the MMU setup: | |
2957 | * HCR_VM enables stage 2 translation | |
2958 | * HCR_PTW forbids certain page-table setups | |
2959 | * HCR_DC Disables stage1 and enables stage2 translation | |
2960 | */ | |
2961 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
2962 | tlb_flush(CPU(cpu), 1); | |
2963 | } | |
2964 | raw_write(env, ri, value); | |
2965 | } | |
2966 | ||
4771cd01 | 2967 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
2968 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
2969 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
2970 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
2971 | .writefn = hcr_write }, | |
0c17d68c FA |
2972 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
2973 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
2974 | .access = PL2_RW, .resetvalue = 0, | |
2975 | .writefn = dacr_write, .raw_writefn = raw_write, | |
2976 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3b685ba7 | 2977 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2978 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
2979 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
2980 | .access = PL2_RW, | |
2981 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 2982 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2983 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
2984 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
2985 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
88ca1c2d FA |
2986 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, |
2987 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
2988 | .access = PL2_RW, .resetvalue = 0, | |
2989 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
63b60551 EI |
2990 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
2991 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
2992 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 2993 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2994 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
2995 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
2996 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, | |
d42e3c26 EI |
2997 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
2998 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2999 | .access = PL2_RW, .writefn = vbar_write, | |
3000 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
3001 | .resetvalue = 0 }, | |
884b4dee GB |
3002 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
3003 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3004 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3005 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
3006 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3007 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3008 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3009 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
3010 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3011 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3012 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
3013 | .resetvalue = 0 }, | |
3014 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3015 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3016 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3017 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
3018 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3019 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3020 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3021 | .resetvalue = 0 }, | |
3022 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
3023 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3024 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3025 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3026 | .resetvalue = 0 }, | |
37cd6c24 PM |
3027 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3028 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3029 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3030 | .resetvalue = 0 }, | |
3031 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3032 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3033 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3034 | .resetvalue = 0 }, | |
06ec4c8c EI |
3035 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3036 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3037 | .access = PL2_RW, .writefn = vmsa_tcr_el1_write, | |
3038 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
3039 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, | |
b9cb5323 EI |
3040 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3041 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3042 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3043 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
3044 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3045 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3046 | .access = PL2_RW, .resetvalue = 0, | |
3047 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
3048 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3049 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3050 | .access = PL2_RW, .resetvalue = 0, | |
3051 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
3052 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3053 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 3054 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
51da9014 EI |
3055 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
3056 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3057 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3058 | .writefn = tlbiall_write }, | |
8742d49d EI |
3059 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
3060 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3061 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3062 | .writefn = tlbi_aa64_vaa_write }, | |
3063 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, | |
3064 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3065 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3066 | .writefn = tlbi_aa64_vaa_write }, | |
edac4d8a | 3067 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
3068 | /* Unlike the other EL2-related AT operations, these must |
3069 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
3070 | * define them here rather than with the rest of the AT ops. | |
3071 | */ | |
3072 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
3073 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3074 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3075 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3076 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | |
3077 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3078 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3079 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
14db7fe0 PM |
3080 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
3081 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
3082 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
3083 | * to behave as if SCR.NS was 1. | |
3084 | */ | |
3085 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3086 | .access = PL2_W, | |
3087 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
3088 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3089 | .access = PL2_W, | |
3090 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
0b6440af EI |
3091 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3092 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3093 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
3094 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
3095 | * both ARMv7 and ARMv8. | |
3096 | */ | |
3097 | .access = PL2_RW, .resetvalue = 3, | |
3098 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
3099 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3100 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3101 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
3102 | .writefn = gt_cntvoff_write, | |
3103 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
3104 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3105 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
3106 | .writefn = gt_cntvoff_write, | |
3107 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
3108 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3109 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3110 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3111 | .type = ARM_CP_IO, .access = PL2_RW, | |
3112 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3113 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3114 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3115 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
3116 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3117 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3118 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3119 | .type = ARM_CP_IO, .access = PL2_RW, | |
3120 | .resetfn = gt_hyp_timer_reset, | |
3121 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
3122 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3123 | .type = ARM_CP_IO, | |
3124 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3125 | .access = PL2_RW, | |
3126 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
3127 | .resetvalue = 0, | |
3128 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 3129 | #endif |
3b685ba7 EI |
3130 | REGINFO_SENTINEL |
3131 | }; | |
3132 | ||
60fb1a87 GB |
3133 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
3134 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
3135 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
3136 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
3137 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 3138 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 GB |
3139 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
3140 | .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 3141 | .writefn = scr_write }, |
60fb1a87 GB |
3142 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
3143 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
3144 | .access = PL3_RW, .resetvalue = 0, | |
3145 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
3146 | { .name = "SDER", | |
3147 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
3148 | .access = PL3_RW, .resetvalue = 0, | |
3149 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
3150 | /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ | |
3151 | { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
3152 | .access = PL3_W | PL1_R, .resetvalue = 0, | |
3153 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, | |
3154 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
3155 | .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, | |
3156 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, | |
137feaa9 | 3157 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
e46e1a74 | 3158 | .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */ |
137feaa9 FA |
3159 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, |
3160 | .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3161 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, | |
7dd8c9af FA |
3162 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
3163 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
3164 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
3165 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
3166 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
3167 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
3168 | .access = PL3_RW, .writefn = vmsa_tcr_el1_write, | |
3169 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
3170 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, | |
81547d66 | 3171 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3172 | .type = ARM_CP_ALIAS, |
81547d66 EI |
3173 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
3174 | .access = PL3_RW, | |
3175 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 3176 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3177 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
3178 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
3179 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
3180 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
3181 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
3182 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 3183 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3184 | .type = ARM_CP_ALIAS, |
81547d66 EI |
3185 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
3186 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, | |
a1ba125c EI |
3187 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
3188 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
3189 | .access = PL3_RW, .writefn = vbar_write, | |
3190 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
3191 | .resetvalue = 0 }, | |
c6f19164 GB |
3192 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
3193 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
3194 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3195 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
3196 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
3197 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
3198 | .access = PL3_RW, .resetvalue = 0, | |
3199 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
3200 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
3201 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
3202 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3203 | .resetvalue = 0 }, | |
37cd6c24 PM |
3204 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
3205 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
3206 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3207 | .resetvalue = 0 }, | |
3208 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
3209 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
3210 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3211 | .resetvalue = 0 }, | |
0f1a3b24 FA |
3212 | REGINFO_SENTINEL |
3213 | }; | |
3214 | ||
7da845b0 PM |
3215 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
3216 | { | |
3217 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
3218 | * but the AArch32 CTR has its own reginfo struct) | |
3219 | */ | |
137feaa9 | 3220 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
3221 | return CP_ACCESS_TRAP; |
3222 | } | |
3223 | return CP_ACCESS_OK; | |
3224 | } | |
3225 | ||
50300698 | 3226 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 3227 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
3228 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
3229 | * unlike DBGDRAR it is never accessible from EL0. | |
3230 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
3231 | * accessor. | |
50300698 PM |
3232 | */ |
3233 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
3234 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
3235 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
3236 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
3237 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 PM |
3238 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
3239 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 3240 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
3241 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
3242 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
0e5e8935 PM |
3243 | .access = PL1_RW, |
3244 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
3245 | .resetvalue = 0 }, | |
5e8b12ff PM |
3246 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
3247 | * We don't implement the configurable EL0 access. | |
3248 | */ | |
3249 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
3250 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3251 | .type = ARM_CP_ALIAS, |
5e8b12ff | 3252 | .access = PL1_R, |
b061a82b | 3253 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
50300698 | 3254 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
10aae104 PM |
3255 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
3256 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
50300698 | 3257 | .access = PL1_W, .type = ARM_CP_NOP }, |
5e8b12ff PM |
3258 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
3259 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
3260 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
3261 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
3262 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't | |
3263 | * implement vector catch debug events yet. | |
3264 | */ | |
3265 | { .name = "DBGVCR", | |
3266 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
3267 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
50300698 PM |
3268 | REGINFO_SENTINEL |
3269 | }; | |
3270 | ||
3271 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
3272 | /* 64 bit access versions of the (dummy) debug registers */ | |
3273 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
3274 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3275 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
3276 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3277 | REGINFO_SENTINEL | |
3278 | }; | |
3279 | ||
9ee98ce8 PM |
3280 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
3281 | { | |
3282 | CPUARMState *env = &cpu->env; | |
3283 | vaddr len = 0; | |
3284 | vaddr wvr = env->cp15.dbgwvr[n]; | |
3285 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
3286 | int mask; | |
3287 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
3288 | ||
3289 | if (env->cpu_watchpoint[n]) { | |
3290 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
3291 | env->cpu_watchpoint[n] = NULL; | |
3292 | } | |
3293 | ||
3294 | if (!extract64(wcr, 0, 1)) { | |
3295 | /* E bit clear : watchpoint disabled */ | |
3296 | return; | |
3297 | } | |
3298 | ||
3299 | switch (extract64(wcr, 3, 2)) { | |
3300 | case 0: | |
3301 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
3302 | return; | |
3303 | case 1: | |
3304 | flags |= BP_MEM_READ; | |
3305 | break; | |
3306 | case 2: | |
3307 | flags |= BP_MEM_WRITE; | |
3308 | break; | |
3309 | case 3: | |
3310 | flags |= BP_MEM_ACCESS; | |
3311 | break; | |
3312 | } | |
3313 | ||
3314 | /* Attempts to use both MASK and BAS fields simultaneously are | |
3315 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
3316 | * thus generating a watchpoint for every byte in the masked region. | |
3317 | */ | |
3318 | mask = extract64(wcr, 24, 4); | |
3319 | if (mask == 1 || mask == 2) { | |
3320 | /* Reserved values of MASK; we must act as if the mask value was | |
3321 | * some non-reserved value, or as if the watchpoint were disabled. | |
3322 | * We choose the latter. | |
3323 | */ | |
3324 | return; | |
3325 | } else if (mask) { | |
3326 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
3327 | len = 1ULL << mask; | |
3328 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
3329 | * whether the watchpoint fires when the unmasked bits match; we opt | |
3330 | * to generate the exceptions. | |
3331 | */ | |
3332 | wvr &= ~(len - 1); | |
3333 | } else { | |
3334 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
3335 | int bas = extract64(wcr, 5, 8); | |
3336 | int basstart; | |
3337 | ||
3338 | if (bas == 0) { | |
3339 | /* This must act as if the watchpoint is disabled */ | |
3340 | return; | |
3341 | } | |
3342 | ||
3343 | if (extract64(wvr, 2, 1)) { | |
3344 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
3345 | * ignored, and BAS[3:0] define which bytes to watch. | |
3346 | */ | |
3347 | bas &= 0xf; | |
3348 | } | |
3349 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
3350 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
3351 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
3352 | * We choose to ignore any non-zero bits after the first range of 1s. | |
3353 | */ | |
3354 | basstart = ctz32(bas); | |
3355 | len = cto32(bas >> basstart); | |
3356 | wvr += basstart; | |
3357 | } | |
3358 | ||
3359 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
3360 | &env->cpu_watchpoint[n]); | |
3361 | } | |
3362 | ||
3363 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
3364 | { | |
3365 | int i; | |
3366 | CPUARMState *env = &cpu->env; | |
3367 | ||
3368 | /* Completely clear out existing QEMU watchpoints and our array, to | |
3369 | * avoid possible stale entries following migration load. | |
3370 | */ | |
3371 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
3372 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
3373 | ||
3374 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
3375 | hw_watchpoint_update(cpu, i); | |
3376 | } | |
3377 | } | |
3378 | ||
3379 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3380 | uint64_t value) | |
3381 | { | |
3382 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3383 | int i = ri->crm; | |
3384 | ||
3385 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
3386 | * register reads and behaves as if values written are sign extended. | |
3387 | * Bits [1:0] are RES0. | |
3388 | */ | |
3389 | value = sextract64(value, 0, 49) & ~3ULL; | |
3390 | ||
3391 | raw_write(env, ri, value); | |
3392 | hw_watchpoint_update(cpu, i); | |
3393 | } | |
3394 | ||
3395 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3396 | uint64_t value) | |
3397 | { | |
3398 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3399 | int i = ri->crm; | |
3400 | ||
3401 | raw_write(env, ri, value); | |
3402 | hw_watchpoint_update(cpu, i); | |
3403 | } | |
3404 | ||
46747d15 PM |
3405 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
3406 | { | |
3407 | CPUARMState *env = &cpu->env; | |
3408 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
3409 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
3410 | vaddr addr; | |
3411 | int bt; | |
3412 | int flags = BP_CPU; | |
3413 | ||
3414 | if (env->cpu_breakpoint[n]) { | |
3415 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
3416 | env->cpu_breakpoint[n] = NULL; | |
3417 | } | |
3418 | ||
3419 | if (!extract64(bcr, 0, 1)) { | |
3420 | /* E bit clear : watchpoint disabled */ | |
3421 | return; | |
3422 | } | |
3423 | ||
3424 | bt = extract64(bcr, 20, 4); | |
3425 | ||
3426 | switch (bt) { | |
3427 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
3428 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
3429 | qemu_log_mask(LOG_UNIMP, | |
3430 | "arm: address mismatch breakpoint types not implemented"); | |
3431 | return; | |
3432 | case 0: /* unlinked address match */ | |
3433 | case 1: /* linked address match */ | |
3434 | { | |
3435 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
3436 | * we behave as if the register was sign extended. Bits [1:0] are | |
3437 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
3438 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
3439 | * a bp will fire if the addresses covered by the bp and the addresses | |
3440 | * covered by the insn overlap but the insn doesn't start at the | |
3441 | * start of the bp address range. We choose to require the insn and | |
3442 | * the bp to have the same address. The constraints on writing to | |
3443 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
3444 | * 0b0000 => no breakpoint | |
3445 | * 0b0011 => breakpoint on addr | |
3446 | * 0b1100 => breakpoint on addr + 2 | |
3447 | * 0b1111 => breakpoint on addr | |
3448 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
3449 | */ | |
3450 | int bas = extract64(bcr, 5, 4); | |
3451 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
3452 | if (bas == 0) { | |
3453 | return; | |
3454 | } | |
3455 | if (bas == 0xc) { | |
3456 | addr += 2; | |
3457 | } | |
3458 | break; | |
3459 | } | |
3460 | case 2: /* unlinked context ID match */ | |
3461 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
3462 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
3463 | qemu_log_mask(LOG_UNIMP, | |
3464 | "arm: unlinked context breakpoint types not implemented"); | |
3465 | return; | |
3466 | case 9: /* linked VMID match (reserved if no EL2) */ | |
3467 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
3468 | case 3: /* linked context ID match */ | |
3469 | default: | |
3470 | /* We must generate no events for Linked context matches (unless | |
3471 | * they are linked to by some other bp/wp, which is handled in | |
3472 | * updates for the linking bp/wp). We choose to also generate no events | |
3473 | * for reserved values. | |
3474 | */ | |
3475 | return; | |
3476 | } | |
3477 | ||
3478 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
3479 | } | |
3480 | ||
3481 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
3482 | { | |
3483 | int i; | |
3484 | CPUARMState *env = &cpu->env; | |
3485 | ||
3486 | /* Completely clear out existing QEMU breakpoints and our array, to | |
3487 | * avoid possible stale entries following migration load. | |
3488 | */ | |
3489 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
3490 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
3491 | ||
3492 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
3493 | hw_breakpoint_update(cpu, i); | |
3494 | } | |
3495 | } | |
3496 | ||
3497 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3498 | uint64_t value) | |
3499 | { | |
3500 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3501 | int i = ri->crm; | |
3502 | ||
3503 | raw_write(env, ri, value); | |
3504 | hw_breakpoint_update(cpu, i); | |
3505 | } | |
3506 | ||
3507 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3508 | uint64_t value) | |
3509 | { | |
3510 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3511 | int i = ri->crm; | |
3512 | ||
3513 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
3514 | * copy of BAS[0]. | |
3515 | */ | |
3516 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
3517 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
3518 | ||
3519 | raw_write(env, ri, value); | |
3520 | hw_breakpoint_update(cpu, i); | |
3521 | } | |
3522 | ||
50300698 | 3523 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 3524 | { |
50300698 PM |
3525 | /* Define v7 and v8 architectural debug registers. |
3526 | * These are just dummy implementations for now. | |
0b45451e PM |
3527 | */ |
3528 | int i; | |
3ff6fc91 | 3529 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
3530 | ARMCPRegInfo dbgdidr = { |
3531 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
3532 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
3533 | }; | |
3534 | ||
3ff6fc91 | 3535 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
3536 | brps = extract32(cpu->dbgdidr, 24, 4); |
3537 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
3538 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
3539 | ||
3540 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
3541 | |
3542 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
3543 | * of the debug registers such as number of breakpoints; | |
3544 | * check that if they both exist then they agree. | |
3545 | */ | |
3546 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
3547 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
3548 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 3549 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 3550 | } |
0b45451e | 3551 | |
48eb3ae6 | 3552 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
3553 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
3554 | ||
3555 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
3556 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
3557 | } | |
3558 | ||
48eb3ae6 | 3559 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 3560 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
3561 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
3562 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
0b45451e | 3563 | .access = PL1_RW, |
46747d15 PM |
3564 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
3565 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
3566 | }, | |
10aae104 PM |
3567 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
3568 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
0b45451e | 3569 | .access = PL1_RW, |
46747d15 PM |
3570 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
3571 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
3572 | }, | |
48eb3ae6 PM |
3573 | REGINFO_SENTINEL |
3574 | }; | |
3575 | define_arm_cp_regs(cpu, dbgregs); | |
3576 | } | |
3577 | ||
3578 | for (i = 0; i < wrps + 1; i++) { | |
3579 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
3580 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
3581 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
0b45451e | 3582 | .access = PL1_RW, |
9ee98ce8 PM |
3583 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
3584 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
3585 | }, | |
10aae104 PM |
3586 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
3587 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
0b45451e | 3588 | .access = PL1_RW, |
9ee98ce8 PM |
3589 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
3590 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
3591 | }, | |
3592 | REGINFO_SENTINEL | |
0b45451e PM |
3593 | }; |
3594 | define_arm_cp_regs(cpu, dbgregs); | |
3595 | } | |
3596 | } | |
3597 | ||
2ceb98c0 PM |
3598 | void register_cp_regs_for_features(ARMCPU *cpu) |
3599 | { | |
3600 | /* Register all the coprocessor registers based on feature bits */ | |
3601 | CPUARMState *env = &cpu->env; | |
3602 | if (arm_feature(env, ARM_FEATURE_M)) { | |
3603 | /* M profile has no coprocessor registers */ | |
3604 | return; | |
3605 | } | |
3606 | ||
e9aa6c21 | 3607 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
3608 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
3609 | /* Must go early as it is full of wildcards that may be | |
3610 | * overridden by later definitions. | |
3611 | */ | |
3612 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
3613 | } | |
3614 | ||
7d57f408 | 3615 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
3616 | /* The ID registers all have impdef reset values */ |
3617 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
3618 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
3619 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
3620 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3621 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
3622 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
3623 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
3624 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3625 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
3626 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
3627 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
3628 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3629 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
3630 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
3631 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
3632 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3633 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
3634 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
3635 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
3636 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3637 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
3638 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
3639 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
3640 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3641 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
3642 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
3643 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
3644 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3645 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
3646 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
3647 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
3648 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3649 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
3650 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
3651 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
3652 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3653 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
3654 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
3655 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
3656 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3657 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
3658 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
3659 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
3660 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3661 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
3662 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
3663 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
3664 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3665 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
3666 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
3667 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
3668 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3669 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
3670 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
3671 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
3672 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
3673 | .resetvalue = cpu->id_isar5 }, |
3674 | /* 6..7 are as yet unallocated and must RAZ */ | |
3675 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
3676 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
3677 | .resetvalue = 0 }, | |
3678 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
3679 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
3680 | .resetvalue = 0 }, | |
3681 | REGINFO_SENTINEL | |
3682 | }; | |
3683 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
3684 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
3685 | } else { | |
3686 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
3687 | } | |
4d31c596 PM |
3688 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
3689 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
3690 | } | |
5e5cf9e3 PC |
3691 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
3692 | !arm_feature(env, ARM_FEATURE_MPU)) { | |
995939a6 PM |
3693 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
3694 | } | |
e9aa6c21 | 3695 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 3696 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
3697 | * field as main ID register, and we implement only the cycle |
3698 | * count register. | |
200ac0ef | 3699 | */ |
7c2cb42b | 3700 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
3701 | ARMCPRegInfo pmcr = { |
3702 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 3703 | .access = PL0_RW, |
7a0e58fa | 3704 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 3705 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
3706 | .accessfn = pmreg_access, .writefn = pmcr_write, |
3707 | .raw_writefn = raw_write, | |
200ac0ef | 3708 | }; |
8521466b AF |
3709 | ARMCPRegInfo pmcr64 = { |
3710 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
3711 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
3712 | .access = PL0_RW, .accessfn = pmreg_access, | |
3713 | .type = ARM_CP_IO, | |
3714 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
3715 | .resetvalue = cpu->midr & 0xff000000, | |
3716 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
3717 | }; | |
7c2cb42b | 3718 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 3719 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 3720 | #endif |
776d4e5c | 3721 | ARMCPRegInfo clidr = { |
7da845b0 PM |
3722 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
3723 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
3724 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
3725 | }; | |
776d4e5c | 3726 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 3727 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 3728 | define_debug_regs(cpu); |
7d57f408 PM |
3729 | } else { |
3730 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 3731 | } |
b0d2b7d0 | 3732 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
3733 | /* AArch64 ID registers, which all have impdef reset values */ |
3734 | ARMCPRegInfo v8_idregs[] = { | |
3735 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3736 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
3737 | .access = PL1_R, .type = ARM_CP_CONST, | |
3738 | .resetvalue = cpu->id_aa64pfr0 }, | |
3739 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3740 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
3741 | .access = PL1_R, .type = ARM_CP_CONST, | |
3742 | .resetvalue = cpu->id_aa64pfr1}, | |
3743 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3744 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
3745 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 3746 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
3747 | * implement the PMU. Not advertising it prevents the guest |
3748 | * from trying to use it and getting UNDEFs on registers we | |
3749 | * don't implement. | |
3750 | */ | |
3751 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
3752 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
3753 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
3754 | .access = PL1_R, .type = ARM_CP_CONST, | |
3755 | .resetvalue = cpu->id_aa64dfr1 }, | |
3756 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3757 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
3758 | .access = PL1_R, .type = ARM_CP_CONST, | |
3759 | .resetvalue = cpu->id_aa64afr0 }, | |
3760 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3761 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
3762 | .access = PL1_R, .type = ARM_CP_CONST, | |
3763 | .resetvalue = cpu->id_aa64afr1 }, | |
3764 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
3765 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
3766 | .access = PL1_R, .type = ARM_CP_CONST, | |
3767 | .resetvalue = cpu->id_aa64isar0 }, | |
3768 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
3769 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
3770 | .access = PL1_R, .type = ARM_CP_CONST, | |
3771 | .resetvalue = cpu->id_aa64isar1 }, | |
3772 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3773 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
3774 | .access = PL1_R, .type = ARM_CP_CONST, | |
3775 | .resetvalue = cpu->id_aa64mmfr0 }, | |
3776 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3777 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
3778 | .access = PL1_R, .type = ARM_CP_CONST, | |
3779 | .resetvalue = cpu->id_aa64mmfr1 }, | |
a50c0f51 PM |
3780 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
3781 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
3782 | .access = PL1_R, .type = ARM_CP_CONST, | |
3783 | .resetvalue = cpu->mvfr0 }, | |
3784 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3785 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
3786 | .access = PL1_R, .type = ARM_CP_CONST, | |
3787 | .resetvalue = cpu->mvfr1 }, | |
3788 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
3789 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
3790 | .access = PL1_R, .type = ARM_CP_CONST, | |
3791 | .resetvalue = cpu->mvfr2 }, | |
e60cef86 PM |
3792 | REGINFO_SENTINEL |
3793 | }; | |
be8e8128 GB |
3794 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
3795 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
3796 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
3797 | ARMCPRegInfo rvbar = { | |
3798 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
3799 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
3800 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
3801 | }; | |
3802 | define_one_arm_cp_reg(cpu, &rvbar); | |
3803 | } | |
e60cef86 | 3804 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
3805 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
3806 | } | |
3b685ba7 | 3807 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
4771cd01 | 3808 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
3809 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
3810 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
3811 | ARMCPRegInfo rvbar = { | |
3812 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
3813 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
3814 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
3815 | }; | |
3816 | define_one_arm_cp_reg(cpu, &rvbar); | |
3817 | } | |
d42e3c26 EI |
3818 | } else { |
3819 | /* If EL2 is missing but higher ELs are enabled, we need to | |
3820 | * register the no_el2 reginfos. | |
3821 | */ | |
3822 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
4771cd01 | 3823 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 3824 | } |
3b685ba7 | 3825 | } |
81547d66 | 3826 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 3827 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
be8e8128 GB |
3828 | ARMCPRegInfo rvbar = { |
3829 | .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
3830 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
3831 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar | |
3832 | }; | |
3833 | define_one_arm_cp_reg(cpu, &rvbar); | |
81547d66 | 3834 | } |
18032bec | 3835 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
6cb0b013 PC |
3836 | if (arm_feature(env, ARM_FEATURE_V6)) { |
3837 | /* PMSAv6 not implemented */ | |
3838 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
3839 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
3840 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
3841 | } else { | |
3842 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
3843 | } | |
18032bec | 3844 | } else { |
8e5d75c9 | 3845 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
3846 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
3847 | } | |
c326b979 PM |
3848 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
3849 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
3850 | } | |
6cc7a3ae PM |
3851 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
3852 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
3853 | } | |
4a501606 PM |
3854 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
3855 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
3856 | } | |
c4804214 PM |
3857 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
3858 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
3859 | } | |
3860 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
3861 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
3862 | } | |
3863 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
3864 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
3865 | } | |
18032bec PM |
3866 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
3867 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
3868 | } | |
34f90529 PM |
3869 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
3870 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
3871 | } | |
1047b9d7 PM |
3872 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
3873 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
3874 | } | |
3875 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
3876 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
3877 | } | |
7ac681cf PM |
3878 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
3879 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
3880 | } | |
7884849c PM |
3881 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
3882 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
3883 | * be read-only (ie write causes UNDEF exception). | |
3884 | */ | |
3885 | { | |
00a29f3d PM |
3886 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
3887 | /* Pre-v8 MIDR space. | |
3888 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
3889 | * of the TI925 behaviour where writes to another register can |
3890 | * cause the MIDR value to change. | |
97ce8d61 PC |
3891 | * |
3892 | * Unimplemented registers in the c15 0 0 0 space default to | |
3893 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
3894 | * and friends override accordingly. | |
7884849c PM |
3895 | */ |
3896 | { .name = "MIDR", | |
97ce8d61 | 3897 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 3898 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 3899 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
3900 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
3901 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
3902 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
3903 | { .name = "DUMMY", | |
3904 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
3905 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3906 | { .name = "DUMMY", | |
3907 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
3908 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3909 | { .name = "DUMMY", | |
3910 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
3911 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3912 | { .name = "DUMMY", | |
3913 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
3914 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3915 | { .name = "DUMMY", | |
3916 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
3917 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3918 | REGINFO_SENTINEL | |
3919 | }; | |
00a29f3d | 3920 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
3921 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
3922 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
3923 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
ac00c79f SF |
3924 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
3925 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
3926 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
3927 | .access = PL1_R, .resetvalue = cpu->midr }, | |
3928 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
3929 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
3930 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
3931 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
3932 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 3933 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
3934 | REGINFO_SENTINEL |
3935 | }; | |
3936 | ARMCPRegInfo id_cp_reginfo[] = { | |
3937 | /* These are common to v8 and pre-v8 */ | |
3938 | { .name = "CTR", | |
3939 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
3940 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3941 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
3942 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
3943 | .access = PL0_R, .accessfn = ctr_el0_access, | |
3944 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3945 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
3946 | { .name = "TCMTR", | |
3947 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
3948 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
3949 | REGINFO_SENTINEL |
3950 | }; | |
8085ce63 PC |
3951 | /* TLBTR is specific to VMSA */ |
3952 | ARMCPRegInfo id_tlbtr_reginfo = { | |
3953 | .name = "TLBTR", | |
3954 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
3955 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
3956 | }; | |
3281af81 PC |
3957 | /* MPUIR is specific to PMSA V6+ */ |
3958 | ARMCPRegInfo id_mpuir_reginfo = { | |
3959 | .name = "MPUIR", | |
3960 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
3961 | .access = PL1_R, .type = ARM_CP_CONST, | |
3962 | .resetvalue = cpu->pmsav7_dregion << 8 | |
3963 | }; | |
7884849c PM |
3964 | ARMCPRegInfo crn0_wi_reginfo = { |
3965 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
3966 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
3967 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
3968 | }; | |
3969 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
3970 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
3971 | ARMCPRegInfo *r; | |
3972 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
3973 | * whole space. Then update the specific ID registers to allow write |
3974 | * access, so that they ignore writes rather than causing them to | |
3975 | * UNDEF. | |
7884849c PM |
3976 | */ |
3977 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
3978 | for (r = id_pre_v8_midr_cp_reginfo; |
3979 | r->type != ARM_CP_SENTINEL; r++) { | |
3980 | r->access = PL1_RW; | |
3981 | } | |
7884849c PM |
3982 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
3983 | r->access = PL1_RW; | |
7884849c | 3984 | } |
8085ce63 | 3985 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 3986 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 3987 | } |
00a29f3d PM |
3988 | if (arm_feature(env, ARM_FEATURE_V8)) { |
3989 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
3990 | } else { | |
3991 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
3992 | } | |
a703eda1 | 3993 | define_arm_cp_regs(cpu, id_cp_reginfo); |
8085ce63 PC |
3994 | if (!arm_feature(env, ARM_FEATURE_MPU)) { |
3995 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); | |
3281af81 PC |
3996 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
3997 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 3998 | } |
7884849c PM |
3999 | } |
4000 | ||
97ce8d61 PC |
4001 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
4002 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
4003 | } | |
4004 | ||
2771db27 | 4005 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
4006 | ARMCPRegInfo auxcr_reginfo[] = { |
4007 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
4008 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
4009 | .access = PL1_RW, .type = ARM_CP_CONST, | |
4010 | .resetvalue = cpu->reset_auxcr }, | |
4011 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | |
4012 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
4013 | .access = PL2_RW, .type = ARM_CP_CONST, | |
4014 | .resetvalue = 0 }, | |
4015 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
4016 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
4017 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4018 | .resetvalue = 0 }, | |
4019 | REGINFO_SENTINEL | |
2771db27 | 4020 | }; |
834a6c69 | 4021 | define_arm_cp_regs(cpu, auxcr_reginfo); |
2771db27 PM |
4022 | } |
4023 | ||
d8ba780b | 4024 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
4025 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
4026 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
4027 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
4028 | | extract64(cpu->reset_cbar, 32, 12); | |
4029 | ARMCPRegInfo cbar_reginfo[] = { | |
4030 | { .name = "CBAR", | |
4031 | .type = ARM_CP_CONST, | |
4032 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
4033 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
4034 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4035 | .type = ARM_CP_CONST, | |
4036 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
4037 | .access = PL1_R, .resetvalue = cbar32 }, | |
4038 | REGINFO_SENTINEL | |
4039 | }; | |
4040 | /* We don't implement a r/w 64 bit CBAR currently */ | |
4041 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
4042 | define_arm_cp_regs(cpu, cbar_reginfo); | |
4043 | } else { | |
4044 | ARMCPRegInfo cbar = { | |
4045 | .name = "CBAR", | |
4046 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
4047 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
4048 | .fieldoffset = offsetof(CPUARMState, | |
4049 | cp15.c15_config_base_address) | |
4050 | }; | |
4051 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
4052 | cbar.access = PL1_R; | |
4053 | cbar.fieldoffset = 0; | |
4054 | cbar.type = ARM_CP_CONST; | |
4055 | } | |
4056 | define_one_arm_cp_reg(cpu, &cbar); | |
4057 | } | |
d8ba780b PC |
4058 | } |
4059 | ||
2771db27 PM |
4060 | /* Generic registers whose values depend on the implementation */ |
4061 | { | |
4062 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 4063 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
4064 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
4065 | .access = PL1_RW, | |
4066 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
4067 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
4068 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
4069 | .raw_writefn = raw_write, | |
2771db27 PM |
4070 | }; |
4071 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
4072 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
4073 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
4074 | * an MMU enable to execute from cache. Imitate this behaviour. | |
4075 | */ | |
4076 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
4077 | } | |
4078 | define_one_arm_cp_reg(cpu, &sctlr); | |
4079 | } | |
2ceb98c0 PM |
4080 | } |
4081 | ||
778c3a06 | 4082 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 4083 | { |
9262685b | 4084 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
4085 | } |
4086 | ||
4087 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
4088 | { | |
22169d41 | 4089 | CPUState *cs = CPU(cpu); |
14969266 AF |
4090 | CPUARMState *env = &cpu->env; |
4091 | ||
6a669427 PM |
4092 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
4093 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
4094 | aarch64_fpu_gdb_set_reg, | |
4095 | 34, "aarch64-fpu.xml", 0); | |
4096 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 4097 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4098 | 51, "arm-neon.xml", 0); |
4099 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 4100 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4101 | 35, "arm-vfp3.xml", 0); |
4102 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 4103 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4104 | 19, "arm-vfp.xml", 0); |
4105 | } | |
40f137e1 PB |
4106 | } |
4107 | ||
777dc784 PM |
4108 | /* Sort alphabetically by type name, except for "any". */ |
4109 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 4110 | { |
777dc784 PM |
4111 | ObjectClass *class_a = (ObjectClass *)a; |
4112 | ObjectClass *class_b = (ObjectClass *)b; | |
4113 | const char *name_a, *name_b; | |
5adb4839 | 4114 | |
777dc784 PM |
4115 | name_a = object_class_get_name(class_a); |
4116 | name_b = object_class_get_name(class_b); | |
51492fd1 | 4117 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 4118 | return 1; |
51492fd1 | 4119 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
4120 | return -1; |
4121 | } else { | |
4122 | return strcmp(name_a, name_b); | |
5adb4839 PB |
4123 | } |
4124 | } | |
4125 | ||
777dc784 | 4126 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 4127 | { |
777dc784 | 4128 | ObjectClass *oc = data; |
92a31361 | 4129 | CPUListState *s = user_data; |
51492fd1 AF |
4130 | const char *typename; |
4131 | char *name; | |
3371d272 | 4132 | |
51492fd1 AF |
4133 | typename = object_class_get_name(oc); |
4134 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 4135 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
4136 | name); |
4137 | g_free(name); | |
777dc784 PM |
4138 | } |
4139 | ||
4140 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
4141 | { | |
92a31361 | 4142 | CPUListState s = { |
777dc784 PM |
4143 | .file = f, |
4144 | .cpu_fprintf = cpu_fprintf, | |
4145 | }; | |
4146 | GSList *list; | |
4147 | ||
4148 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
4149 | list = g_slist_sort(list, arm_cpu_list_compare); | |
4150 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
4151 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
4152 | g_slist_free(list); | |
a96c0514 PM |
4153 | #ifdef CONFIG_KVM |
4154 | /* The 'host' CPU type is dynamically registered only if KVM is | |
4155 | * enabled, so we have to special-case it here: | |
4156 | */ | |
4157 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
4158 | #endif | |
40f137e1 PB |
4159 | } |
4160 | ||
78027bb6 CR |
4161 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
4162 | { | |
4163 | ObjectClass *oc = data; | |
4164 | CpuDefinitionInfoList **cpu_list = user_data; | |
4165 | CpuDefinitionInfoList *entry; | |
4166 | CpuDefinitionInfo *info; | |
4167 | const char *typename; | |
4168 | ||
4169 | typename = object_class_get_name(oc); | |
4170 | info = g_malloc0(sizeof(*info)); | |
4171 | info->name = g_strndup(typename, | |
4172 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
4173 | ||
4174 | entry = g_malloc0(sizeof(*entry)); | |
4175 | entry->value = info; | |
4176 | entry->next = *cpu_list; | |
4177 | *cpu_list = entry; | |
4178 | } | |
4179 | ||
4180 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
4181 | { | |
4182 | CpuDefinitionInfoList *cpu_list = NULL; | |
4183 | GSList *list; | |
4184 | ||
4185 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
4186 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
4187 | g_slist_free(list); | |
4188 | ||
4189 | return cpu_list; | |
4190 | } | |
4191 | ||
6e6efd61 | 4192 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 4193 | void *opaque, int state, int secstate, |
f5a0a5a5 | 4194 | int crm, int opc1, int opc2) |
6e6efd61 PM |
4195 | { |
4196 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
4197 | * add a single reginfo struct to the hash table. | |
4198 | */ | |
4199 | uint32_t *key = g_new(uint32_t, 1); | |
4200 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
4201 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
4202 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
4203 | ||
4204 | /* Reset the secure state to the specific incoming state. This is | |
4205 | * necessary as the register may have been defined with both states. | |
4206 | */ | |
4207 | r2->secure = secstate; | |
4208 | ||
4209 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
4210 | /* Register is banked (using both entries in array). | |
4211 | * Overwriting fieldoffset as the array is only used to define | |
4212 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 4213 | */ |
3f3c82a5 FA |
4214 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
4215 | } | |
4216 | ||
4217 | if (state == ARM_CP_STATE_AA32) { | |
4218 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
4219 | /* If the register is banked then we don't need to migrate or | |
4220 | * reset the 32-bit instance in certain cases: | |
4221 | * | |
4222 | * 1) If the register has both 32-bit and 64-bit instances then we | |
4223 | * can count on the 64-bit instance taking care of the | |
4224 | * non-secure bank. | |
4225 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
4226 | * taking care of the secure bank. This requires that separate | |
4227 | * 32 and 64-bit definitions are provided. | |
4228 | */ | |
4229 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
4230 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 4231 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
4232 | } |
4233 | } else if ((secstate != r->secure) && !ns) { | |
4234 | /* The register is not banked so we only want to allow migration of | |
4235 | * the non-secure instance. | |
4236 | */ | |
7a0e58fa | 4237 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 4238 | } |
3f3c82a5 FA |
4239 | |
4240 | if (r->state == ARM_CP_STATE_BOTH) { | |
4241 | /* We assume it is a cp15 register if the .cp field is left unset. | |
4242 | */ | |
4243 | if (r2->cp == 0) { | |
4244 | r2->cp = 15; | |
4245 | } | |
4246 | ||
f5a0a5a5 | 4247 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
4248 | if (r2->fieldoffset) { |
4249 | r2->fieldoffset += sizeof(uint32_t); | |
4250 | } | |
f5a0a5a5 | 4251 | #endif |
3f3c82a5 | 4252 | } |
f5a0a5a5 PM |
4253 | } |
4254 | if (state == ARM_CP_STATE_AA64) { | |
4255 | /* To allow abbreviation of ARMCPRegInfo | |
4256 | * definitions, we treat cp == 0 as equivalent to | |
4257 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
4258 | * STATE_BOTH definitions are also always "standard |
4259 | * sysreg" in their AArch64 view (the .cp value may | |
4260 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 4261 | */ |
58a1d8ce | 4262 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
4263 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
4264 | } | |
4265 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
4266 | r2->opc0, opc1, opc2); | |
4267 | } else { | |
51a79b03 | 4268 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 4269 | } |
6e6efd61 PM |
4270 | if (opaque) { |
4271 | r2->opaque = opaque; | |
4272 | } | |
67ed771d PM |
4273 | /* reginfo passed to helpers is correct for the actual access, |
4274 | * and is never ARM_CP_STATE_BOTH: | |
4275 | */ | |
4276 | r2->state = state; | |
6e6efd61 PM |
4277 | /* Make sure reginfo passed to helpers for wildcarded regs |
4278 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
4279 | */ | |
4280 | r2->crm = crm; | |
4281 | r2->opc1 = opc1; | |
4282 | r2->opc2 = opc2; | |
4283 | /* By convention, for wildcarded registers only the first | |
4284 | * entry is used for migration; the others are marked as | |
7a0e58fa | 4285 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 4286 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 4287 | * never migratable and not even raw-accessible. |
6e6efd61 | 4288 | */ |
7a0e58fa PM |
4289 | if ((r->type & ARM_CP_SPECIAL)) { |
4290 | r2->type |= ARM_CP_NO_RAW; | |
4291 | } | |
4292 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
4293 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
4294 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 4295 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
4296 | } |
4297 | ||
375421cc PM |
4298 | /* Check that raw accesses are either forbidden or handled. Note that |
4299 | * we can't assert this earlier because the setup of fieldoffset for | |
4300 | * banked registers has to be done first. | |
4301 | */ | |
4302 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
4303 | assert(!raw_accessors_invalid(r2)); | |
4304 | } | |
4305 | ||
6e6efd61 PM |
4306 | /* Overriding of an existing definition must be explicitly |
4307 | * requested. | |
4308 | */ | |
4309 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
4310 | ARMCPRegInfo *oldreg; | |
4311 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
4312 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
4313 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
4314 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
4315 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
4316 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
4317 | oldreg->name, r2->name); | |
4318 | g_assert_not_reached(); | |
4319 | } | |
4320 | } | |
4321 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
4322 | } | |
4323 | ||
4324 | ||
4b6a83fb PM |
4325 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
4326 | const ARMCPRegInfo *r, void *opaque) | |
4327 | { | |
4328 | /* Define implementations of coprocessor registers. | |
4329 | * We store these in a hashtable because typically | |
4330 | * there are less than 150 registers in a space which | |
4331 | * is 16*16*16*8*8 = 262144 in size. | |
4332 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
4333 | * If a register is defined twice then the second definition is | |
4334 | * used, so this can be used to define some generic registers and | |
4335 | * then override them with implementation specific variations. | |
4336 | * At least one of the original and the second definition should | |
4337 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
4338 | * against accidental use. | |
f5a0a5a5 PM |
4339 | * |
4340 | * The state field defines whether the register is to be | |
4341 | * visible in the AArch32 or AArch64 execution state. If the | |
4342 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
4343 | * reginfo structure for the AArch32 view, which sees the lower | |
4344 | * 32 bits of the 64 bit register. | |
4345 | * | |
4346 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
4347 | * be wildcarded. AArch64 registers are always considered to be 64 | |
4348 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
4349 | * the register, if any. | |
4b6a83fb | 4350 | */ |
f5a0a5a5 | 4351 | int crm, opc1, opc2, state; |
4b6a83fb PM |
4352 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
4353 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
4354 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
4355 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
4356 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
4357 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
4358 | /* 64 bit registers have only CRm and Opc1 fields */ | |
4359 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
4360 | /* op0 only exists in the AArch64 encodings */ |
4361 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
4362 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
4363 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
4364 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
4365 | * encodes a minimum access level for the register. We roll this | |
4366 | * runtime check into our general permission check code, so check | |
4367 | * here that the reginfo's specified permissions are strict enough | |
4368 | * to encompass the generic architectural permission check. | |
4369 | */ | |
4370 | if (r->state != ARM_CP_STATE_AA32) { | |
4371 | int mask = 0; | |
4372 | switch (r->opc1) { | |
4373 | case 0: case 1: case 2: | |
4374 | /* min_EL EL1 */ | |
4375 | mask = PL1_RW; | |
4376 | break; | |
4377 | case 3: | |
4378 | /* min_EL EL0 */ | |
4379 | mask = PL0_RW; | |
4380 | break; | |
4381 | case 4: | |
4382 | /* min_EL EL2 */ | |
4383 | mask = PL2_RW; | |
4384 | break; | |
4385 | case 5: | |
4386 | /* unallocated encoding, so not possible */ | |
4387 | assert(false); | |
4388 | break; | |
4389 | case 6: | |
4390 | /* min_EL EL3 */ | |
4391 | mask = PL3_RW; | |
4392 | break; | |
4393 | case 7: | |
4394 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
4395 | mask = PL1_RW; | |
4396 | break; | |
4397 | default: | |
4398 | /* broken reginfo with out-of-range opc1 */ | |
4399 | assert(false); | |
4400 | break; | |
4401 | } | |
4402 | /* assert our permissions are not too lax (stricter is fine) */ | |
4403 | assert((r->access & ~mask) == 0); | |
4404 | } | |
4405 | ||
4b6a83fb PM |
4406 | /* Check that the register definition has enough info to handle |
4407 | * reads and writes if they are permitted. | |
4408 | */ | |
4409 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
4410 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
4411 | assert((r->fieldoffset || |
4412 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
4413 | r->readfn); | |
4b6a83fb PM |
4414 | } |
4415 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
4416 | assert((r->fieldoffset || |
4417 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
4418 | r->writefn); | |
4b6a83fb PM |
4419 | } |
4420 | } | |
4421 | /* Bad type field probably means missing sentinel at end of reg list */ | |
4422 | assert(cptype_valid(r->type)); | |
4423 | for (crm = crmmin; crm <= crmmax; crm++) { | |
4424 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
4425 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
4426 | for (state = ARM_CP_STATE_AA32; |
4427 | state <= ARM_CP_STATE_AA64; state++) { | |
4428 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
4429 | continue; | |
4430 | } | |
3f3c82a5 FA |
4431 | if (state == ARM_CP_STATE_AA32) { |
4432 | /* Under AArch32 CP registers can be common | |
4433 | * (same for secure and non-secure world) or banked. | |
4434 | */ | |
4435 | switch (r->secure) { | |
4436 | case ARM_CP_SECSTATE_S: | |
4437 | case ARM_CP_SECSTATE_NS: | |
4438 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4439 | r->secure, crm, opc1, opc2); | |
4440 | break; | |
4441 | default: | |
4442 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4443 | ARM_CP_SECSTATE_S, | |
4444 | crm, opc1, opc2); | |
4445 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4446 | ARM_CP_SECSTATE_NS, | |
4447 | crm, opc1, opc2); | |
4448 | break; | |
4449 | } | |
4450 | } else { | |
4451 | /* AArch64 registers get mapped to non-secure instance | |
4452 | * of AArch32 */ | |
4453 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
4454 | ARM_CP_SECSTATE_NS, | |
4455 | crm, opc1, opc2); | |
4456 | } | |
f5a0a5a5 | 4457 | } |
4b6a83fb PM |
4458 | } |
4459 | } | |
4460 | } | |
4461 | } | |
4462 | ||
4463 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
4464 | const ARMCPRegInfo *regs, void *opaque) | |
4465 | { | |
4466 | /* Define a whole list of registers */ | |
4467 | const ARMCPRegInfo *r; | |
4468 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
4469 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
4470 | } | |
4471 | } | |
4472 | ||
60322b39 | 4473 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 4474 | { |
60322b39 | 4475 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
4476 | } |
4477 | ||
c4241c7d PM |
4478 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
4479 | uint64_t value) | |
4b6a83fb PM |
4480 | { |
4481 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
4482 | } |
4483 | ||
c4241c7d | 4484 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
4485 | { |
4486 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
4487 | return 0; |
4488 | } | |
4489 | ||
f5a0a5a5 PM |
4490 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
4491 | { | |
4492 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
4493 | } | |
4494 | ||
0ecb72a5 | 4495 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
4496 | { |
4497 | /* Return true if it is not valid for us to switch to | |
4498 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
4499 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
4500 | */ | |
4501 | switch (mode) { | |
4502 | case ARM_CPU_MODE_USR: | |
4503 | case ARM_CPU_MODE_SYS: | |
4504 | case ARM_CPU_MODE_SVC: | |
4505 | case ARM_CPU_MODE_ABT: | |
4506 | case ARM_CPU_MODE_UND: | |
4507 | case ARM_CPU_MODE_IRQ: | |
4508 | case ARM_CPU_MODE_FIQ: | |
4509 | return 0; | |
027fc527 SF |
4510 | case ARM_CPU_MODE_MON: |
4511 | return !arm_is_secure(env); | |
37064a8b PM |
4512 | default: |
4513 | return 1; | |
4514 | } | |
4515 | } | |
4516 | ||
2f4a40e5 AZ |
4517 | uint32_t cpsr_read(CPUARMState *env) |
4518 | { | |
4519 | int ZF; | |
6fbe23d5 PB |
4520 | ZF = (env->ZF == 0); |
4521 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
4522 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
4523 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
4524 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 4525 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
4526 | } |
4527 | ||
4528 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
4529 | { | |
6e8801f9 FA |
4530 | uint32_t changed_daif; |
4531 | ||
2f4a40e5 | 4532 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
4533 | env->ZF = (~val) & CPSR_Z; |
4534 | env->NF = val; | |
2f4a40e5 AZ |
4535 | env->CF = (val >> 29) & 1; |
4536 | env->VF = (val << 3) & 0x80000000; | |
4537 | } | |
4538 | if (mask & CPSR_Q) | |
4539 | env->QF = ((val & CPSR_Q) != 0); | |
4540 | if (mask & CPSR_T) | |
4541 | env->thumb = ((val & CPSR_T) != 0); | |
4542 | if (mask & CPSR_IT_0_1) { | |
4543 | env->condexec_bits &= ~3; | |
4544 | env->condexec_bits |= (val >> 25) & 3; | |
4545 | } | |
4546 | if (mask & CPSR_IT_2_7) { | |
4547 | env->condexec_bits &= 3; | |
4548 | env->condexec_bits |= (val >> 8) & 0xfc; | |
4549 | } | |
4550 | if (mask & CPSR_GE) { | |
4551 | env->GE = (val >> 16) & 0xf; | |
4552 | } | |
4553 | ||
6e8801f9 FA |
4554 | /* In a V7 implementation that includes the security extensions but does |
4555 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
4556 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
4557 | * bits respectively. | |
4558 | * | |
4559 | * In a V8 implementation, it is permitted for privileged software to | |
4560 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
4561 | */ | |
4562 | if (!arm_feature(env, ARM_FEATURE_V8) && | |
4563 | arm_feature(env, ARM_FEATURE_EL3) && | |
4564 | !arm_feature(env, ARM_FEATURE_EL2) && | |
4565 | !arm_is_secure(env)) { | |
4566 | ||
4567 | changed_daif = (env->daif ^ val) & mask; | |
4568 | ||
4569 | if (changed_daif & CPSR_A) { | |
4570 | /* Check to see if we are allowed to change the masking of async | |
4571 | * abort exceptions from a non-secure state. | |
4572 | */ | |
4573 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
4574 | qemu_log_mask(LOG_GUEST_ERROR, | |
4575 | "Ignoring attempt to switch CPSR_A flag from " | |
4576 | "non-secure world with SCR.AW bit clear\n"); | |
4577 | mask &= ~CPSR_A; | |
4578 | } | |
4579 | } | |
4580 | ||
4581 | if (changed_daif & CPSR_F) { | |
4582 | /* Check to see if we are allowed to change the masking of FIQ | |
4583 | * exceptions from a non-secure state. | |
4584 | */ | |
4585 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
4586 | qemu_log_mask(LOG_GUEST_ERROR, | |
4587 | "Ignoring attempt to switch CPSR_F flag from " | |
4588 | "non-secure world with SCR.FW bit clear\n"); | |
4589 | mask &= ~CPSR_F; | |
4590 | } | |
4591 | ||
4592 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
4593 | * If this bit is set software is not allowed to mask | |
4594 | * FIQs, but is allowed to set CPSR_F to 0. | |
4595 | */ | |
4596 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
4597 | (val & CPSR_F)) { | |
4598 | qemu_log_mask(LOG_GUEST_ERROR, | |
4599 | "Ignoring attempt to enable CPSR_F flag " | |
4600 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
4601 | mask &= ~CPSR_F; | |
4602 | } | |
4603 | } | |
4604 | } | |
4605 | ||
4cc35614 PM |
4606 | env->daif &= ~(CPSR_AIF & mask); |
4607 | env->daif |= val & CPSR_AIF & mask; | |
4608 | ||
2f4a40e5 | 4609 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
4610 | if (bad_mode_switch(env, val & CPSR_M)) { |
4611 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
4612 | * We choose to ignore the attempt and leave the CPSR M field | |
4613 | * untouched. | |
4614 | */ | |
4615 | mask &= ~CPSR_M; | |
4616 | } else { | |
4617 | switch_mode(env, val & CPSR_M); | |
4618 | } | |
2f4a40e5 AZ |
4619 | } |
4620 | mask &= ~CACHED_CPSR_BITS; | |
4621 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
4622 | } | |
4623 | ||
b26eefb6 PB |
4624 | /* Sign/zero extend */ |
4625 | uint32_t HELPER(sxtb16)(uint32_t x) | |
4626 | { | |
4627 | uint32_t res; | |
4628 | res = (uint16_t)(int8_t)x; | |
4629 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
4630 | return res; | |
4631 | } | |
4632 | ||
4633 | uint32_t HELPER(uxtb16)(uint32_t x) | |
4634 | { | |
4635 | uint32_t res; | |
4636 | res = (uint16_t)(uint8_t)x; | |
4637 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
4638 | return res; | |
4639 | } | |
4640 | ||
f51bbbfe PB |
4641 | uint32_t HELPER(clz)(uint32_t x) |
4642 | { | |
7bbcb0af | 4643 | return clz32(x); |
f51bbbfe PB |
4644 | } |
4645 | ||
3670669c PB |
4646 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
4647 | { | |
4648 | if (den == 0) | |
4649 | return 0; | |
686eeb93 AJ |
4650 | if (num == INT_MIN && den == -1) |
4651 | return INT_MIN; | |
3670669c PB |
4652 | return num / den; |
4653 | } | |
4654 | ||
4655 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
4656 | { | |
4657 | if (den == 0) | |
4658 | return 0; | |
4659 | return num / den; | |
4660 | } | |
4661 | ||
4662 | uint32_t HELPER(rbit)(uint32_t x) | |
4663 | { | |
4664 | x = ((x & 0xff000000) >> 24) | |
4665 | | ((x & 0x00ff0000) >> 8) | |
4666 | | ((x & 0x0000ff00) << 8) | |
4667 | | ((x & 0x000000ff) << 24); | |
4668 | x = ((x & 0xf0f0f0f0) >> 4) | |
4669 | | ((x & 0x0f0f0f0f) << 4); | |
4670 | x = ((x & 0x88888888) >> 3) | |
4671 | | ((x & 0x44444444) >> 1) | |
4672 | | ((x & 0x22222222) << 1) | |
4673 | | ((x & 0x11111111) << 3); | |
4674 | return x; | |
4675 | } | |
4676 | ||
5fafdf24 | 4677 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 4678 | |
9ee6e8bb | 4679 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 4680 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 4681 | { |
a47dddd7 AF |
4682 | ARMCPU *cpu = arm_env_get_cpu(env); |
4683 | ||
4684 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
4685 | } |
4686 | ||
0ecb72a5 | 4687 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 4688 | { |
a47dddd7 AF |
4689 | ARMCPU *cpu = arm_env_get_cpu(env); |
4690 | ||
4691 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
4692 | return 0; |
4693 | } | |
4694 | ||
0ecb72a5 | 4695 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 4696 | { |
a47dddd7 AF |
4697 | ARMCPU *cpu = arm_env_get_cpu(env); |
4698 | ||
4699 | if (mode != ARM_CPU_MODE_USR) { | |
4700 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
4701 | } | |
b5ff1b31 FB |
4702 | } |
4703 | ||
0ecb72a5 | 4704 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 4705 | { |
a47dddd7 AF |
4706 | ARMCPU *cpu = arm_env_get_cpu(env); |
4707 | ||
4708 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
4709 | } |
4710 | ||
0ecb72a5 | 4711 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 4712 | { |
a47dddd7 AF |
4713 | ARMCPU *cpu = arm_env_get_cpu(env); |
4714 | ||
4715 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
4716 | return 0; |
4717 | } | |
4718 | ||
012a906b GB |
4719 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
4720 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
4721 | { |
4722 | return 1; | |
4723 | } | |
4724 | ||
ce02049d GB |
4725 | void aarch64_sync_64_to_32(CPUARMState *env) |
4726 | { | |
4727 | g_assert_not_reached(); | |
4728 | } | |
4729 | ||
b5ff1b31 FB |
4730 | #else |
4731 | ||
4732 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 4733 | int bank_number(int mode) |
b5ff1b31 FB |
4734 | { |
4735 | switch (mode) { | |
4736 | case ARM_CPU_MODE_USR: | |
4737 | case ARM_CPU_MODE_SYS: | |
4738 | return 0; | |
4739 | case ARM_CPU_MODE_SVC: | |
4740 | return 1; | |
4741 | case ARM_CPU_MODE_ABT: | |
4742 | return 2; | |
4743 | case ARM_CPU_MODE_UND: | |
4744 | return 3; | |
4745 | case ARM_CPU_MODE_IRQ: | |
4746 | return 4; | |
4747 | case ARM_CPU_MODE_FIQ: | |
4748 | return 5; | |
28c9457d EI |
4749 | case ARM_CPU_MODE_HYP: |
4750 | return 6; | |
4751 | case ARM_CPU_MODE_MON: | |
4752 | return 7; | |
b5ff1b31 | 4753 | } |
f5206413 | 4754 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
4755 | } |
4756 | ||
0ecb72a5 | 4757 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
4758 | { |
4759 | int old_mode; | |
4760 | int i; | |
4761 | ||
4762 | old_mode = env->uncached_cpsr & CPSR_M; | |
4763 | if (mode == old_mode) | |
4764 | return; | |
4765 | ||
4766 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
4767 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 4768 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
4769 | } else if (mode == ARM_CPU_MODE_FIQ) { |
4770 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 4771 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
4772 | } |
4773 | ||
f5206413 | 4774 | i = bank_number(old_mode); |
b5ff1b31 FB |
4775 | env->banked_r13[i] = env->regs[13]; |
4776 | env->banked_r14[i] = env->regs[14]; | |
4777 | env->banked_spsr[i] = env->spsr; | |
4778 | ||
f5206413 | 4779 | i = bank_number(mode); |
b5ff1b31 FB |
4780 | env->regs[13] = env->banked_r13[i]; |
4781 | env->regs[14] = env->banked_r14[i]; | |
4782 | env->spsr = env->banked_spsr[i]; | |
4783 | } | |
4784 | ||
0eeb17d6 GB |
4785 | /* Physical Interrupt Target EL Lookup Table |
4786 | * | |
4787 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
4788 | * | |
4789 | * The below multi-dimensional table is used for looking up the target | |
4790 | * exception level given numerous condition criteria. Specifically, the | |
4791 | * target EL is based on SCR and HCR routing controls as well as the | |
4792 | * currently executing EL and secure state. | |
4793 | * | |
4794 | * Dimensions: | |
4795 | * target_el_table[2][2][2][2][2][4] | |
4796 | * | | | | | +--- Current EL | |
4797 | * | | | | +------ Non-secure(0)/Secure(1) | |
4798 | * | | | +--------- HCR mask override | |
4799 | * | | +------------ SCR exec state control | |
4800 | * | +--------------- SCR mask override | |
4801 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
4802 | * | |
4803 | * The table values are as such: | |
4804 | * 0-3 = EL0-EL3 | |
4805 | * -1 = Cannot occur | |
4806 | * | |
4807 | * The ARM ARM target EL table includes entries indicating that an "exception | |
4808 | * is not taken". The two cases where this is applicable are: | |
4809 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
4810 | * routed to EL3. | |
4811 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
4812 | * routed to EL2. | |
4813 | * In these two cases, the below table contain a target of EL1. This value is | |
4814 | * returned as it is expected that the consumer of the table data will check | |
4815 | * for "target EL >= current EL" to ensure the exception is not taken. | |
4816 | * | |
4817 | * SCR HCR | |
4818 | * 64 EA AMO From | |
4819 | * BIT IRQ IMO Non-secure Secure | |
4820 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
4821 | */ | |
4822 | const int8_t target_el_table[2][2][2][2][2][4] = { | |
4823 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
4824 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
4825 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
4826 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
4827 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
4828 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
4829 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
4830 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
4831 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
4832 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
4833 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
4834 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
4835 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
4836 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
4837 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
4838 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
4839 | }; | |
4840 | ||
4841 | /* | |
4842 | * Determine the target EL for physical exceptions | |
4843 | */ | |
012a906b GB |
4844 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
4845 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
4846 | { |
4847 | CPUARMState *env = cs->env_ptr; | |
4848 | int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
4849 | int scr; | |
4850 | int hcr; | |
4851 | int target_el; | |
4852 | int is64 = arm_el_is_aa64(env, 3); | |
4853 | ||
4854 | switch (excp_idx) { | |
4855 | case EXCP_IRQ: | |
4856 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
4857 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
4858 | break; | |
4859 | case EXCP_FIQ: | |
4860 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
4861 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
4862 | break; | |
4863 | default: | |
4864 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
4865 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
4866 | break; | |
4867 | }; | |
4868 | ||
4869 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
4870 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
4871 | ||
4872 | /* Perform a table-lookup for the target EL given the current state */ | |
4873 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
4874 | ||
4875 | assert(target_el > 0); | |
4876 | ||
4877 | return target_el; | |
4878 | } | |
4879 | ||
9ee6e8bb PB |
4880 | static void v7m_push(CPUARMState *env, uint32_t val) |
4881 | { | |
70d74660 AF |
4882 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
4883 | ||
9ee6e8bb | 4884 | env->regs[13] -= 4; |
ab1da857 | 4885 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
4886 | } |
4887 | ||
4888 | static uint32_t v7m_pop(CPUARMState *env) | |
4889 | { | |
70d74660 | 4890 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 4891 | uint32_t val; |
70d74660 | 4892 | |
fdfba1a2 | 4893 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
4894 | env->regs[13] += 4; |
4895 | return val; | |
4896 | } | |
4897 | ||
4898 | /* Switch to V7M main or process stack pointer. */ | |
4899 | static void switch_v7m_sp(CPUARMState *env, int process) | |
4900 | { | |
4901 | uint32_t tmp; | |
4902 | if (env->v7m.current_sp != process) { | |
4903 | tmp = env->v7m.other_sp; | |
4904 | env->v7m.other_sp = env->regs[13]; | |
4905 | env->regs[13] = tmp; | |
4906 | env->v7m.current_sp = process; | |
4907 | } | |
4908 | } | |
4909 | ||
4910 | static void do_v7m_exception_exit(CPUARMState *env) | |
4911 | { | |
4912 | uint32_t type; | |
4913 | uint32_t xpsr; | |
4914 | ||
4915 | type = env->regs[15]; | |
4916 | if (env->v7m.exception != 0) | |
983fe826 | 4917 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
4918 | |
4919 | /* Switch to the target stack. */ | |
4920 | switch_v7m_sp(env, (type & 4) != 0); | |
4921 | /* Pop registers. */ | |
4922 | env->regs[0] = v7m_pop(env); | |
4923 | env->regs[1] = v7m_pop(env); | |
4924 | env->regs[2] = v7m_pop(env); | |
4925 | env->regs[3] = v7m_pop(env); | |
4926 | env->regs[12] = v7m_pop(env); | |
4927 | env->regs[14] = v7m_pop(env); | |
4928 | env->regs[15] = v7m_pop(env); | |
fcf83ab1 PM |
4929 | if (env->regs[15] & 1) { |
4930 | qemu_log_mask(LOG_GUEST_ERROR, | |
4931 | "M profile return from interrupt with misaligned " | |
4932 | "PC is UNPREDICTABLE\n"); | |
4933 | /* Actual hardware seems to ignore the lsbit, and there are several | |
4934 | * RTOSes out there which incorrectly assume the r15 in the stack | |
4935 | * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. | |
4936 | */ | |
4937 | env->regs[15] &= ~1U; | |
4938 | } | |
9ee6e8bb PB |
4939 | xpsr = v7m_pop(env); |
4940 | xpsr_write(env, xpsr, 0xfffffdff); | |
4941 | /* Undo stack alignment. */ | |
4942 | if (xpsr & 0x200) | |
4943 | env->regs[13] |= 4; | |
4944 | /* ??? The exception return type specifies Thread/Handler mode. However | |
4945 | this is also implied by the xPSR value. Not sure what to do | |
4946 | if there is a mismatch. */ | |
4947 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
4948 | pointer. */ | |
4949 | } | |
4950 | ||
e6f010cc | 4951 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 4952 | { |
e6f010cc AF |
4953 | ARMCPU *cpu = ARM_CPU(cs); |
4954 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
4955 | uint32_t xpsr = xpsr_read(env); |
4956 | uint32_t lr; | |
4957 | uint32_t addr; | |
4958 | ||
27103424 | 4959 | arm_log_exception(cs->exception_index); |
3f1beaca | 4960 | |
9ee6e8bb PB |
4961 | lr = 0xfffffff1; |
4962 | if (env->v7m.current_sp) | |
4963 | lr |= 4; | |
4964 | if (env->v7m.exception == 0) | |
4965 | lr |= 8; | |
4966 | ||
4967 | /* For exceptions we just mark as pending on the NVIC, and let that | |
4968 | handle it. */ | |
4969 | /* TODO: Need to escalate if the current priority is higher than the | |
4970 | one we're raising. */ | |
27103424 | 4971 | switch (cs->exception_index) { |
9ee6e8bb | 4972 | case EXCP_UDEF: |
983fe826 | 4973 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
4974 | return; |
4975 | case EXCP_SWI: | |
314e2296 | 4976 | /* The PC already points to the next instruction. */ |
983fe826 | 4977 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
4978 | return; |
4979 | case EXCP_PREFETCH_ABORT: | |
4980 | case EXCP_DATA_ABORT: | |
abf1172f PM |
4981 | /* TODO: if we implemented the MPU registers, this is where we |
4982 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
4983 | */ | |
983fe826 | 4984 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
4985 | return; |
4986 | case EXCP_BKPT: | |
cfe67cef | 4987 | if (semihosting_enabled()) { |
2ad207d4 | 4988 | int nr; |
d31dd73e | 4989 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
4990 | if (nr == 0xab) { |
4991 | env->regs[15] += 2; | |
4992 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4993 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
4994 | return; |
4995 | } | |
4996 | } | |
983fe826 | 4997 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
4998 | return; |
4999 | case EXCP_IRQ: | |
983fe826 | 5000 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
5001 | break; |
5002 | case EXCP_EXCEPTION_EXIT: | |
5003 | do_v7m_exception_exit(env); | |
5004 | return; | |
5005 | default: | |
a47dddd7 | 5006 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
5007 | return; /* Never happens. Keep compiler happy. */ |
5008 | } | |
5009 | ||
5010 | /* Align stack pointer. */ | |
5011 | /* ??? Should only do this if Configuration Control Register | |
5012 | STACKALIGN bit is set. */ | |
5013 | if (env->regs[13] & 4) { | |
ab19b0ec | 5014 | env->regs[13] -= 4; |
9ee6e8bb PB |
5015 | xpsr |= 0x200; |
5016 | } | |
6c95676b | 5017 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
5018 | v7m_push(env, xpsr); |
5019 | v7m_push(env, env->regs[15]); | |
5020 | v7m_push(env, env->regs[14]); | |
5021 | v7m_push(env, env->regs[12]); | |
5022 | v7m_push(env, env->regs[3]); | |
5023 | v7m_push(env, env->regs[2]); | |
5024 | v7m_push(env, env->regs[1]); | |
5025 | v7m_push(env, env->regs[0]); | |
5026 | switch_v7m_sp(env, 0); | |
c98d174c PM |
5027 | /* Clear IT bits */ |
5028 | env->condexec_bits = 0; | |
9ee6e8bb | 5029 | env->regs[14] = lr; |
fdfba1a2 | 5030 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
5031 | env->regs[15] = addr & 0xfffffffe; |
5032 | env->thumb = addr & 1; | |
5033 | } | |
5034 | ||
ce02049d GB |
5035 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
5036 | * register set. This is necessary when switching between AArch32 and AArch64 | |
5037 | * execution state. | |
5038 | */ | |
5039 | void aarch64_sync_32_to_64(CPUARMState *env) | |
5040 | { | |
5041 | int i; | |
5042 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
5043 | ||
5044 | /* We can blanket copy R[0:7] to X[0:7] */ | |
5045 | for (i = 0; i < 8; i++) { | |
5046 | env->xregs[i] = env->regs[i]; | |
5047 | } | |
5048 | ||
5049 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
5050 | * Otherwise, they come from the banked user regs. | |
5051 | */ | |
5052 | if (mode == ARM_CPU_MODE_FIQ) { | |
5053 | for (i = 8; i < 13; i++) { | |
5054 | env->xregs[i] = env->usr_regs[i - 8]; | |
5055 | } | |
5056 | } else { | |
5057 | for (i = 8; i < 13; i++) { | |
5058 | env->xregs[i] = env->regs[i]; | |
5059 | } | |
5060 | } | |
5061 | ||
5062 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
5063 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
5064 | * from the mode banked register. | |
5065 | */ | |
5066 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
5067 | env->xregs[13] = env->regs[13]; | |
5068 | env->xregs[14] = env->regs[14]; | |
5069 | } else { | |
5070 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
5071 | /* HYP is an exception in that it is copied from r14 */ | |
5072 | if (mode == ARM_CPU_MODE_HYP) { | |
5073 | env->xregs[14] = env->regs[14]; | |
5074 | } else { | |
5075 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
5076 | } | |
5077 | } | |
5078 | ||
5079 | if (mode == ARM_CPU_MODE_HYP) { | |
5080 | env->xregs[15] = env->regs[13]; | |
5081 | } else { | |
5082 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
5083 | } | |
5084 | ||
5085 | if (mode == ARM_CPU_MODE_IRQ) { | |
5086 | env->xregs[16] = env->regs[13]; | |
5087 | env->xregs[17] = env->regs[14]; | |
5088 | } else { | |
5089 | env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
5090 | env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; | |
5091 | } | |
5092 | ||
5093 | if (mode == ARM_CPU_MODE_SVC) { | |
5094 | env->xregs[18] = env->regs[13]; | |
5095 | env->xregs[19] = env->regs[14]; | |
5096 | } else { | |
5097 | env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
5098 | env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; | |
5099 | } | |
5100 | ||
5101 | if (mode == ARM_CPU_MODE_ABT) { | |
5102 | env->xregs[20] = env->regs[13]; | |
5103 | env->xregs[21] = env->regs[14]; | |
5104 | } else { | |
5105 | env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
5106 | env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; | |
5107 | } | |
5108 | ||
5109 | if (mode == ARM_CPU_MODE_UND) { | |
5110 | env->xregs[22] = env->regs[13]; | |
5111 | env->xregs[23] = env->regs[14]; | |
5112 | } else { | |
5113 | env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
5114 | env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; | |
5115 | } | |
5116 | ||
5117 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
5118 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
5119 | * FIQ bank for r8-r14. | |
5120 | */ | |
5121 | if (mode == ARM_CPU_MODE_FIQ) { | |
5122 | for (i = 24; i < 31; i++) { | |
5123 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
5124 | } | |
5125 | } else { | |
5126 | for (i = 24; i < 29; i++) { | |
5127 | env->xregs[i] = env->fiq_regs[i - 24]; | |
5128 | } | |
5129 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
5130 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
5131 | } | |
5132 | ||
5133 | env->pc = env->regs[15]; | |
5134 | } | |
5135 | ||
5136 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
5137 | * register set. This is necessary when switching between AArch32 and AArch64 | |
5138 | * execution state. | |
5139 | */ | |
5140 | void aarch64_sync_64_to_32(CPUARMState *env) | |
5141 | { | |
5142 | int i; | |
5143 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
5144 | ||
5145 | /* We can blanket copy X[0:7] to R[0:7] */ | |
5146 | for (i = 0; i < 8; i++) { | |
5147 | env->regs[i] = env->xregs[i]; | |
5148 | } | |
5149 | ||
5150 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
5151 | * Otherwise, we copy x8-x12 into the banked user regs. | |
5152 | */ | |
5153 | if (mode == ARM_CPU_MODE_FIQ) { | |
5154 | for (i = 8; i < 13; i++) { | |
5155 | env->usr_regs[i - 8] = env->xregs[i]; | |
5156 | } | |
5157 | } else { | |
5158 | for (i = 8; i < 13; i++) { | |
5159 | env->regs[i] = env->xregs[i]; | |
5160 | } | |
5161 | } | |
5162 | ||
5163 | /* Registers r13 & r14 depend on the current mode. | |
5164 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
5165 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
5166 | * for the mode. | |
5167 | */ | |
5168 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
5169 | env->regs[13] = env->xregs[13]; | |
5170 | env->regs[14] = env->xregs[14]; | |
5171 | } else { | |
5172 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
5173 | ||
5174 | /* HYP is an exception in that it does not have its own banked r14 but | |
5175 | * shares the USR r14 | |
5176 | */ | |
5177 | if (mode == ARM_CPU_MODE_HYP) { | |
5178 | env->regs[14] = env->xregs[14]; | |
5179 | } else { | |
5180 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
5181 | } | |
5182 | } | |
5183 | ||
5184 | if (mode == ARM_CPU_MODE_HYP) { | |
5185 | env->regs[13] = env->xregs[15]; | |
5186 | } else { | |
5187 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
5188 | } | |
5189 | ||
5190 | if (mode == ARM_CPU_MODE_IRQ) { | |
5191 | env->regs[13] = env->xregs[16]; | |
5192 | env->regs[14] = env->xregs[17]; | |
5193 | } else { | |
5194 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; | |
5195 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
5196 | } | |
5197 | ||
5198 | if (mode == ARM_CPU_MODE_SVC) { | |
5199 | env->regs[13] = env->xregs[18]; | |
5200 | env->regs[14] = env->xregs[19]; | |
5201 | } else { | |
5202 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; | |
5203 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
5204 | } | |
5205 | ||
5206 | if (mode == ARM_CPU_MODE_ABT) { | |
5207 | env->regs[13] = env->xregs[20]; | |
5208 | env->regs[14] = env->xregs[21]; | |
5209 | } else { | |
5210 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; | |
5211 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
5212 | } | |
5213 | ||
5214 | if (mode == ARM_CPU_MODE_UND) { | |
5215 | env->regs[13] = env->xregs[22]; | |
5216 | env->regs[14] = env->xregs[23]; | |
5217 | } else { | |
5218 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; | |
5219 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
5220 | } | |
5221 | ||
5222 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
5223 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
5224 | * FIQ bank for r8-r14. | |
5225 | */ | |
5226 | if (mode == ARM_CPU_MODE_FIQ) { | |
5227 | for (i = 24; i < 31; i++) { | |
5228 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
5229 | } | |
5230 | } else { | |
5231 | for (i = 24; i < 29; i++) { | |
5232 | env->fiq_regs[i - 24] = env->xregs[i]; | |
5233 | } | |
5234 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
5235 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
5236 | } | |
5237 | ||
5238 | env->regs[15] = env->pc; | |
5239 | } | |
5240 | ||
b5ff1b31 | 5241 | /* Handle a CPU exception. */ |
97a8ea5a | 5242 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 5243 | { |
97a8ea5a AF |
5244 | ARMCPU *cpu = ARM_CPU(cs); |
5245 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
5246 | uint32_t addr; |
5247 | uint32_t mask; | |
5248 | int new_mode; | |
5249 | uint32_t offset; | |
16a906fd | 5250 | uint32_t moe; |
b5ff1b31 | 5251 | |
e6f010cc AF |
5252 | assert(!IS_M(env)); |
5253 | ||
27103424 | 5254 | arm_log_exception(cs->exception_index); |
3f1beaca | 5255 | |
98128601 RH |
5256 | if (arm_is_psci_call(cpu, cs->exception_index)) { |
5257 | arm_handle_psci_call(cpu); | |
5258 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
5259 | return; | |
5260 | } | |
5261 | ||
16a906fd PM |
5262 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
5263 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
5264 | case EC_BREAKPOINT: | |
5265 | case EC_BREAKPOINT_SAME_EL: | |
5266 | moe = 1; | |
5267 | break; | |
5268 | case EC_WATCHPOINT: | |
5269 | case EC_WATCHPOINT_SAME_EL: | |
5270 | moe = 10; | |
5271 | break; | |
5272 | case EC_AA32_BKPT: | |
5273 | moe = 3; | |
5274 | break; | |
5275 | case EC_VECTORCATCH: | |
5276 | moe = 5; | |
5277 | break; | |
5278 | default: | |
5279 | moe = 0; | |
5280 | break; | |
5281 | } | |
5282 | ||
5283 | if (moe) { | |
5284 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
5285 | } | |
5286 | ||
b5ff1b31 | 5287 | /* TODO: Vectored interrupt controller. */ |
27103424 | 5288 | switch (cs->exception_index) { |
b5ff1b31 FB |
5289 | case EXCP_UDEF: |
5290 | new_mode = ARM_CPU_MODE_UND; | |
5291 | addr = 0x04; | |
5292 | mask = CPSR_I; | |
5293 | if (env->thumb) | |
5294 | offset = 2; | |
5295 | else | |
5296 | offset = 4; | |
5297 | break; | |
5298 | case EXCP_SWI: | |
cfe67cef | 5299 | if (semihosting_enabled()) { |
8e71621f PB |
5300 | /* Check for semihosting interrupt. */ |
5301 | if (env->thumb) { | |
d31dd73e BS |
5302 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
5303 | & 0xff; | |
8e71621f | 5304 | } else { |
d31dd73e | 5305 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 5306 | & 0xffffff; |
8e71621f PB |
5307 | } |
5308 | /* Only intercept calls from privileged modes, to provide some | |
5309 | semblance of security. */ | |
5310 | if (((mask == 0x123456 && !env->thumb) | |
5311 | || (mask == 0xab && env->thumb)) | |
5312 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
5313 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 5314 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
5315 | return; |
5316 | } | |
5317 | } | |
b5ff1b31 FB |
5318 | new_mode = ARM_CPU_MODE_SVC; |
5319 | addr = 0x08; | |
5320 | mask = CPSR_I; | |
601d70b9 | 5321 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
5322 | offset = 0; |
5323 | break; | |
06c949e6 | 5324 | case EXCP_BKPT: |
9ee6e8bb | 5325 | /* See if this is a semihosting syscall. */ |
cfe67cef | 5326 | if (env->thumb && semihosting_enabled()) { |
d31dd73e | 5327 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
5328 | if (mask == 0xab |
5329 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
5330 | env->regs[15] += 2; | |
5331 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 5332 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
5333 | return; |
5334 | } | |
5335 | } | |
abf1172f | 5336 | env->exception.fsr = 2; |
9ee6e8bb PB |
5337 | /* Fall through to prefetch abort. */ |
5338 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 5339 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 5340 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 5341 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 5342 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
5343 | new_mode = ARM_CPU_MODE_ABT; |
5344 | addr = 0x0c; | |
5345 | mask = CPSR_A | CPSR_I; | |
5346 | offset = 4; | |
5347 | break; | |
5348 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 5349 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 5350 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 5351 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 5352 | env->exception.fsr, |
6cd8a264 | 5353 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
5354 | new_mode = ARM_CPU_MODE_ABT; |
5355 | addr = 0x10; | |
5356 | mask = CPSR_A | CPSR_I; | |
5357 | offset = 8; | |
5358 | break; | |
5359 | case EXCP_IRQ: | |
5360 | new_mode = ARM_CPU_MODE_IRQ; | |
5361 | addr = 0x18; | |
5362 | /* Disable IRQ and imprecise data aborts. */ | |
5363 | mask = CPSR_A | CPSR_I; | |
5364 | offset = 4; | |
de38d23b FA |
5365 | if (env->cp15.scr_el3 & SCR_IRQ) { |
5366 | /* IRQ routed to monitor mode */ | |
5367 | new_mode = ARM_CPU_MODE_MON; | |
5368 | mask |= CPSR_F; | |
5369 | } | |
b5ff1b31 FB |
5370 | break; |
5371 | case EXCP_FIQ: | |
5372 | new_mode = ARM_CPU_MODE_FIQ; | |
5373 | addr = 0x1c; | |
5374 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
5375 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
5376 | if (env->cp15.scr_el3 & SCR_FIQ) { |
5377 | /* FIQ routed to monitor mode */ | |
5378 | new_mode = ARM_CPU_MODE_MON; | |
5379 | } | |
b5ff1b31 FB |
5380 | offset = 4; |
5381 | break; | |
dbe9d163 FA |
5382 | case EXCP_SMC: |
5383 | new_mode = ARM_CPU_MODE_MON; | |
5384 | addr = 0x08; | |
5385 | mask = CPSR_A | CPSR_I | CPSR_F; | |
5386 | offset = 0; | |
5387 | break; | |
b5ff1b31 | 5388 | default: |
a47dddd7 | 5389 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
5390 | return; /* Never happens. Keep compiler happy. */ |
5391 | } | |
e89e51a1 FA |
5392 | |
5393 | if (new_mode == ARM_CPU_MODE_MON) { | |
5394 | addr += env->cp15.mvbar; | |
137feaa9 | 5395 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 5396 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 5397 | addr += 0xffff0000; |
8641136c NR |
5398 | } else { |
5399 | /* ARM v7 architectures provide a vector base address register to remap | |
5400 | * the interrupt vector table. | |
e89e51a1 | 5401 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
5402 | * Note: only bits 31:5 are valid. |
5403 | */ | |
fb6c91ba | 5404 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 5405 | } |
dbe9d163 FA |
5406 | |
5407 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
5408 | env->cp15.scr_el3 &= ~SCR_NS; | |
5409 | } | |
5410 | ||
b5ff1b31 | 5411 | switch_mode (env, new_mode); |
662cefb7 PM |
5412 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
5413 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
5414 | */ | |
5415 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 5416 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
5417 | /* Clear IT bits. */ |
5418 | env->condexec_bits = 0; | |
30a8cac1 | 5419 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 5420 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 5421 | env->daif |= mask; |
be5e7a76 DES |
5422 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
5423 | * and we should just guard the thumb mode on V4 */ | |
5424 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 5425 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 5426 | } |
b5ff1b31 FB |
5427 | env->regs[14] = env->regs[15] + offset; |
5428 | env->regs[15] = addr; | |
259186a7 | 5429 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
5430 | } |
5431 | ||
0480f69a PM |
5432 | |
5433 | /* Return the exception level which controls this address translation regime */ | |
5434 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5435 | { | |
5436 | switch (mmu_idx) { | |
5437 | case ARMMMUIdx_S2NS: | |
5438 | case ARMMMUIdx_S1E2: | |
5439 | return 2; | |
5440 | case ARMMMUIdx_S1E3: | |
5441 | return 3; | |
5442 | case ARMMMUIdx_S1SE0: | |
5443 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
5444 | case ARMMMUIdx_S1SE1: | |
5445 | case ARMMMUIdx_S1NSE0: | |
5446 | case ARMMMUIdx_S1NSE1: | |
5447 | return 1; | |
5448 | default: | |
5449 | g_assert_not_reached(); | |
5450 | } | |
5451 | } | |
5452 | ||
8bf5b6a9 PM |
5453 | /* Return true if this address translation regime is secure */ |
5454 | static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5455 | { | |
5456 | switch (mmu_idx) { | |
5457 | case ARMMMUIdx_S12NSE0: | |
5458 | case ARMMMUIdx_S12NSE1: | |
5459 | case ARMMMUIdx_S1NSE0: | |
5460 | case ARMMMUIdx_S1NSE1: | |
5461 | case ARMMMUIdx_S1E2: | |
5462 | case ARMMMUIdx_S2NS: | |
5463 | return false; | |
5464 | case ARMMMUIdx_S1E3: | |
5465 | case ARMMMUIdx_S1SE0: | |
5466 | case ARMMMUIdx_S1SE1: | |
5467 | return true; | |
5468 | default: | |
5469 | g_assert_not_reached(); | |
5470 | } | |
5471 | } | |
5472 | ||
0480f69a PM |
5473 | /* Return the SCTLR value which controls this address translation regime */ |
5474 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5475 | { | |
5476 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
5477 | } | |
5478 | ||
5479 | /* Return true if the specified stage of address translation is disabled */ | |
5480 | static inline bool regime_translation_disabled(CPUARMState *env, | |
5481 | ARMMMUIdx mmu_idx) | |
5482 | { | |
5483 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5484 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
5485 | } | |
5486 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
5487 | } | |
5488 | ||
5489 | /* Return the TCR controlling this translation regime */ | |
5490 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5491 | { | |
5492 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5493 | /* TODO: return VTCR_EL2 */ | |
5494 | g_assert_not_reached(); | |
5495 | } | |
5496 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
5497 | } | |
5498 | ||
aef878be GB |
5499 | /* Return the TTBR associated with this translation regime */ |
5500 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
5501 | int ttbrn) | |
5502 | { | |
5503 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
5504 | /* TODO: return VTTBR_EL2 */ | |
5505 | g_assert_not_reached(); | |
5506 | } | |
5507 | if (ttbrn == 0) { | |
5508 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
5509 | } else { | |
5510 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
5511 | } | |
5512 | } | |
5513 | ||
0480f69a PM |
5514 | /* Return true if the translation regime is using LPAE format page tables */ |
5515 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
5516 | ARMMMUIdx mmu_idx) | |
5517 | { | |
5518 | int el = regime_el(env, mmu_idx); | |
5519 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
5520 | return true; | |
5521 | } | |
5522 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
5523 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
5524 | return true; | |
5525 | } | |
5526 | return false; | |
5527 | } | |
5528 | ||
5529 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) | |
5530 | { | |
5531 | switch (mmu_idx) { | |
5532 | case ARMMMUIdx_S1SE0: | |
5533 | case ARMMMUIdx_S1NSE0: | |
5534 | return true; | |
5535 | default: | |
5536 | return false; | |
5537 | case ARMMMUIdx_S12NSE0: | |
5538 | case ARMMMUIdx_S12NSE1: | |
5539 | g_assert_not_reached(); | |
5540 | } | |
5541 | } | |
5542 | ||
0fbf5238 AJ |
5543 | /* Translate section/page access permissions to page |
5544 | * R/W protection flags | |
d76951b6 AJ |
5545 | * |
5546 | * @env: CPUARMState | |
5547 | * @mmu_idx: MMU index indicating required translation regime | |
5548 | * @ap: The 3-bit access permissions (AP[2:0]) | |
5549 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
5550 | */ |
5551 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
5552 | int ap, int domain_prot) | |
5553 | { | |
554b0b09 PM |
5554 | bool is_user = regime_is_user(env, mmu_idx); |
5555 | ||
5556 | if (domain_prot == 3) { | |
5557 | return PAGE_READ | PAGE_WRITE; | |
5558 | } | |
5559 | ||
554b0b09 PM |
5560 | switch (ap) { |
5561 | case 0: | |
5562 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
5563 | return 0; | |
5564 | } | |
554b0b09 PM |
5565 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
5566 | case SCTLR_S: | |
5567 | return is_user ? 0 : PAGE_READ; | |
5568 | case SCTLR_R: | |
5569 | return PAGE_READ; | |
5570 | default: | |
5571 | return 0; | |
5572 | } | |
5573 | case 1: | |
5574 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
5575 | case 2: | |
87c3d486 | 5576 | if (is_user) { |
0fbf5238 | 5577 | return PAGE_READ; |
87c3d486 | 5578 | } else { |
554b0b09 | 5579 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 5580 | } |
554b0b09 PM |
5581 | case 3: |
5582 | return PAGE_READ | PAGE_WRITE; | |
5583 | case 4: /* Reserved. */ | |
5584 | return 0; | |
5585 | case 5: | |
0fbf5238 | 5586 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 5587 | case 6: |
0fbf5238 | 5588 | return PAGE_READ; |
554b0b09 | 5589 | case 7: |
87c3d486 | 5590 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 5591 | return 0; |
87c3d486 | 5592 | } |
0fbf5238 | 5593 | return PAGE_READ; |
554b0b09 | 5594 | default: |
0fbf5238 | 5595 | g_assert_not_reached(); |
554b0b09 | 5596 | } |
b5ff1b31 FB |
5597 | } |
5598 | ||
d76951b6 AJ |
5599 | /* Translate section/page access permissions to page |
5600 | * R/W protection flags. | |
5601 | * | |
d76951b6 | 5602 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 5603 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 5604 | */ |
d8e052b3 | 5605 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 5606 | { |
d76951b6 AJ |
5607 | switch (ap) { |
5608 | case 0: | |
5609 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
5610 | case 1: | |
5611 | return PAGE_READ | PAGE_WRITE; | |
5612 | case 2: | |
5613 | return is_user ? 0 : PAGE_READ; | |
5614 | case 3: | |
5615 | return PAGE_READ; | |
5616 | default: | |
5617 | g_assert_not_reached(); | |
5618 | } | |
5619 | } | |
5620 | ||
d8e052b3 AJ |
5621 | static inline int |
5622 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
5623 | { | |
5624 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
5625 | } | |
5626 | ||
5627 | /* Translate section/page access permissions to protection flags | |
5628 | * | |
5629 | * @env: CPUARMState | |
5630 | * @mmu_idx: MMU index indicating required translation regime | |
5631 | * @is_aa64: TRUE if AArch64 | |
5632 | * @ap: The 2-bit simple AP (AP[2:1]) | |
5633 | * @ns: NS (non-secure) bit | |
5634 | * @xn: XN (execute-never) bit | |
5635 | * @pxn: PXN (privileged execute-never) bit | |
5636 | */ | |
5637 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
5638 | int ap, int ns, int xn, int pxn) | |
5639 | { | |
5640 | bool is_user = regime_is_user(env, mmu_idx); | |
5641 | int prot_rw, user_rw; | |
5642 | bool have_wxn; | |
5643 | int wxn = 0; | |
5644 | ||
5645 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
5646 | ||
5647 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
5648 | if (is_user) { | |
5649 | prot_rw = user_rw; | |
5650 | } else { | |
5651 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
5652 | } | |
5653 | ||
5654 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
5655 | return prot_rw; | |
5656 | } | |
5657 | ||
5658 | /* TODO have_wxn should be replaced with | |
5659 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
5660 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
5661 | * compatible processors have EL2, which is required for [U]WXN. | |
5662 | */ | |
5663 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
5664 | ||
5665 | if (have_wxn) { | |
5666 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
5667 | } | |
5668 | ||
5669 | if (is_aa64) { | |
5670 | switch (regime_el(env, mmu_idx)) { | |
5671 | case 1: | |
5672 | if (!is_user) { | |
5673 | xn = pxn || (user_rw & PAGE_WRITE); | |
5674 | } | |
5675 | break; | |
5676 | case 2: | |
5677 | case 3: | |
5678 | break; | |
5679 | } | |
5680 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
5681 | switch (regime_el(env, mmu_idx)) { | |
5682 | case 1: | |
5683 | case 3: | |
5684 | if (is_user) { | |
5685 | xn = xn || !(user_rw & PAGE_READ); | |
5686 | } else { | |
5687 | int uwxn = 0; | |
5688 | if (have_wxn) { | |
5689 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
5690 | } | |
5691 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
5692 | (uwxn && (user_rw & PAGE_WRITE)); | |
5693 | } | |
5694 | break; | |
5695 | case 2: | |
5696 | break; | |
5697 | } | |
5698 | } else { | |
5699 | xn = wxn = 0; | |
5700 | } | |
5701 | ||
5702 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
5703 | return prot_rw; | |
5704 | } | |
5705 | return prot_rw | PAGE_EXEC; | |
5706 | } | |
5707 | ||
0480f69a PM |
5708 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
5709 | uint32_t *table, uint32_t address) | |
b2fa1797 | 5710 | { |
0480f69a | 5711 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 5712 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 5713 | |
11f136ee FA |
5714 | if (address & tcr->mask) { |
5715 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
5716 | /* Translation table walk disabled for TTBR1 */ |
5717 | return false; | |
5718 | } | |
aef878be | 5719 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 5720 | } else { |
11f136ee | 5721 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
5722 | /* Translation table walk disabled for TTBR0 */ |
5723 | return false; | |
5724 | } | |
aef878be | 5725 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
5726 | } |
5727 | *table |= (address >> 18) & 0x3ffc; | |
5728 | return true; | |
b2fa1797 PB |
5729 | } |
5730 | ||
ebca90e4 PM |
5731 | /* All loads done in the course of a page table walk go through here. |
5732 | * TODO: rather than ignoring errors from physical memory reads (which | |
5733 | * are external aborts in ARM terminology) we should propagate this | |
5734 | * error out so that we can turn it into a Data Abort if this walk | |
5735 | * was being done for a CPU load/store or an address translation instruction | |
5736 | * (but not if it was for a debug access). | |
5737 | */ | |
5738 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
5739 | { | |
5740 | MemTxAttrs attrs = {}; | |
5741 | ||
5742 | attrs.secure = is_secure; | |
5743 | return address_space_ldl(cs->as, addr, attrs, NULL); | |
5744 | } | |
5745 | ||
5746 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
5747 | { | |
5748 | MemTxAttrs attrs = {}; | |
5749 | ||
5750 | attrs.secure = is_secure; | |
5751 | return address_space_ldq(cs->as, addr, attrs, NULL); | |
5752 | } | |
5753 | ||
b7cc4e82 PC |
5754 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
5755 | int access_type, ARMMMUIdx mmu_idx, | |
5756 | hwaddr *phys_ptr, int *prot, | |
5757 | target_ulong *page_size, uint32_t *fsr) | |
b5ff1b31 | 5758 | { |
70d74660 | 5759 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
5760 | int code; |
5761 | uint32_t table; | |
5762 | uint32_t desc; | |
5763 | int type; | |
5764 | int ap; | |
e389be16 | 5765 | int domain = 0; |
dd4ebc2e | 5766 | int domain_prot; |
a8170e5e | 5767 | hwaddr phys_addr; |
0480f69a | 5768 | uint32_t dacr; |
b5ff1b31 | 5769 | |
9ee6e8bb PB |
5770 | /* Pagetable walk. */ |
5771 | /* Lookup l1 descriptor. */ | |
0480f69a | 5772 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
5773 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
5774 | code = 5; | |
5775 | goto do_fault; | |
5776 | } | |
ebca90e4 | 5777 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 5778 | type = (desc & 3); |
dd4ebc2e | 5779 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
5780 | if (regime_el(env, mmu_idx) == 1) { |
5781 | dacr = env->cp15.dacr_ns; | |
5782 | } else { | |
5783 | dacr = env->cp15.dacr_s; | |
5784 | } | |
5785 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 5786 | if (type == 0) { |
601d70b9 | 5787 | /* Section translation fault. */ |
9ee6e8bb PB |
5788 | code = 5; |
5789 | goto do_fault; | |
5790 | } | |
dd4ebc2e | 5791 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
5792 | if (type == 2) |
5793 | code = 9; /* Section domain fault. */ | |
5794 | else | |
5795 | code = 11; /* Page domain fault. */ | |
5796 | goto do_fault; | |
5797 | } | |
5798 | if (type == 2) { | |
5799 | /* 1Mb section. */ | |
5800 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
5801 | ap = (desc >> 10) & 3; | |
5802 | code = 13; | |
d4c430a8 | 5803 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
5804 | } else { |
5805 | /* Lookup l2 entry. */ | |
554b0b09 PM |
5806 | if (type == 1) { |
5807 | /* Coarse pagetable. */ | |
5808 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
5809 | } else { | |
5810 | /* Fine pagetable. */ | |
5811 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
5812 | } | |
ebca90e4 | 5813 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
5814 | switch (desc & 3) { |
5815 | case 0: /* Page translation fault. */ | |
5816 | code = 7; | |
5817 | goto do_fault; | |
5818 | case 1: /* 64k page. */ | |
5819 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
5820 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 5821 | *page_size = 0x10000; |
ce819861 | 5822 | break; |
9ee6e8bb PB |
5823 | case 2: /* 4k page. */ |
5824 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 5825 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 5826 | *page_size = 0x1000; |
ce819861 | 5827 | break; |
fc1891c7 | 5828 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 5829 | if (type == 1) { |
fc1891c7 PM |
5830 | /* ARMv6/XScale extended small page format */ |
5831 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
5832 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 5833 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 5834 | *page_size = 0x1000; |
554b0b09 | 5835 | } else { |
fc1891c7 PM |
5836 | /* UNPREDICTABLE in ARMv5; we choose to take a |
5837 | * page translation fault. | |
5838 | */ | |
554b0b09 PM |
5839 | code = 7; |
5840 | goto do_fault; | |
5841 | } | |
5842 | } else { | |
5843 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 5844 | *page_size = 0x400; |
554b0b09 | 5845 | } |
9ee6e8bb | 5846 | ap = (desc >> 4) & 3; |
ce819861 PB |
5847 | break; |
5848 | default: | |
9ee6e8bb PB |
5849 | /* Never happens, but compiler isn't smart enough to tell. */ |
5850 | abort(); | |
ce819861 | 5851 | } |
9ee6e8bb PB |
5852 | code = 15; |
5853 | } | |
0fbf5238 AJ |
5854 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
5855 | *prot |= *prot ? PAGE_EXEC : 0; | |
5856 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
5857 | /* Access permission fault. */ |
5858 | goto do_fault; | |
5859 | } | |
5860 | *phys_ptr = phys_addr; | |
b7cc4e82 | 5861 | return false; |
9ee6e8bb | 5862 | do_fault: |
b7cc4e82 PC |
5863 | *fsr = code | (domain << 4); |
5864 | return true; | |
9ee6e8bb PB |
5865 | } |
5866 | ||
b7cc4e82 PC |
5867 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
5868 | int access_type, ARMMMUIdx mmu_idx, | |
5869 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
5870 | target_ulong *page_size, uint32_t *fsr) | |
9ee6e8bb | 5871 | { |
70d74660 | 5872 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
5873 | int code; |
5874 | uint32_t table; | |
5875 | uint32_t desc; | |
5876 | uint32_t xn; | |
de9b05b8 | 5877 | uint32_t pxn = 0; |
9ee6e8bb PB |
5878 | int type; |
5879 | int ap; | |
de9b05b8 | 5880 | int domain = 0; |
dd4ebc2e | 5881 | int domain_prot; |
a8170e5e | 5882 | hwaddr phys_addr; |
0480f69a | 5883 | uint32_t dacr; |
8bf5b6a9 | 5884 | bool ns; |
9ee6e8bb PB |
5885 | |
5886 | /* Pagetable walk. */ | |
5887 | /* Lookup l1 descriptor. */ | |
0480f69a | 5888 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
5889 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
5890 | code = 5; | |
5891 | goto do_fault; | |
5892 | } | |
ebca90e4 | 5893 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 5894 | type = (desc & 3); |
de9b05b8 PM |
5895 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
5896 | /* Section translation fault, or attempt to use the encoding | |
5897 | * which is Reserved on implementations without PXN. | |
5898 | */ | |
9ee6e8bb | 5899 | code = 5; |
9ee6e8bb | 5900 | goto do_fault; |
de9b05b8 PM |
5901 | } |
5902 | if ((type == 1) || !(desc & (1 << 18))) { | |
5903 | /* Page or Section. */ | |
dd4ebc2e | 5904 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 5905 | } |
0480f69a PM |
5906 | if (regime_el(env, mmu_idx) == 1) { |
5907 | dacr = env->cp15.dacr_ns; | |
5908 | } else { | |
5909 | dacr = env->cp15.dacr_s; | |
5910 | } | |
5911 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 5912 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 5913 | if (type != 1) { |
9ee6e8bb | 5914 | code = 9; /* Section domain fault. */ |
de9b05b8 | 5915 | } else { |
9ee6e8bb | 5916 | code = 11; /* Page domain fault. */ |
de9b05b8 | 5917 | } |
9ee6e8bb PB |
5918 | goto do_fault; |
5919 | } | |
de9b05b8 | 5920 | if (type != 1) { |
9ee6e8bb PB |
5921 | if (desc & (1 << 18)) { |
5922 | /* Supersection. */ | |
5923 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
5924 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
5925 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 5926 | *page_size = 0x1000000; |
b5ff1b31 | 5927 | } else { |
9ee6e8bb PB |
5928 | /* Section. */ |
5929 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 5930 | *page_size = 0x100000; |
b5ff1b31 | 5931 | } |
9ee6e8bb PB |
5932 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
5933 | xn = desc & (1 << 4); | |
de9b05b8 | 5934 | pxn = desc & 1; |
9ee6e8bb | 5935 | code = 13; |
8bf5b6a9 | 5936 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 5937 | } else { |
de9b05b8 PM |
5938 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
5939 | pxn = (desc >> 2) & 1; | |
5940 | } | |
8bf5b6a9 | 5941 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
5942 | /* Lookup l2 entry. */ |
5943 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
ebca90e4 | 5944 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
5945 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
5946 | switch (desc & 3) { | |
5947 | case 0: /* Page translation fault. */ | |
5948 | code = 7; | |
b5ff1b31 | 5949 | goto do_fault; |
9ee6e8bb PB |
5950 | case 1: /* 64k page. */ |
5951 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
5952 | xn = desc & (1 << 15); | |
d4c430a8 | 5953 | *page_size = 0x10000; |
9ee6e8bb PB |
5954 | break; |
5955 | case 2: case 3: /* 4k page. */ | |
5956 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
5957 | xn = desc & 1; | |
d4c430a8 | 5958 | *page_size = 0x1000; |
9ee6e8bb PB |
5959 | break; |
5960 | default: | |
5961 | /* Never happens, but compiler isn't smart enough to tell. */ | |
5962 | abort(); | |
b5ff1b31 | 5963 | } |
9ee6e8bb PB |
5964 | code = 15; |
5965 | } | |
dd4ebc2e | 5966 | if (domain_prot == 3) { |
c0034328 JR |
5967 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
5968 | } else { | |
0480f69a | 5969 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
5970 | xn = 1; |
5971 | } | |
c0034328 JR |
5972 | if (xn && access_type == 2) |
5973 | goto do_fault; | |
9ee6e8bb | 5974 | |
d76951b6 AJ |
5975 | if (arm_feature(env, ARM_FEATURE_V6K) && |
5976 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
5977 | /* The simplified model uses AP[0] as an access control bit. */ | |
5978 | if ((ap & 1) == 0) { | |
5979 | /* Access flag fault. */ | |
5980 | code = (code == 15) ? 6 : 3; | |
5981 | goto do_fault; | |
5982 | } | |
5983 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
5984 | } else { | |
5985 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 5986 | } |
0fbf5238 AJ |
5987 | if (*prot && !xn) { |
5988 | *prot |= PAGE_EXEC; | |
5989 | } | |
5990 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
5991 | /* Access permission fault. */ |
5992 | goto do_fault; | |
5993 | } | |
3ad493fc | 5994 | } |
8bf5b6a9 PM |
5995 | if (ns) { |
5996 | /* The NS bit will (as required by the architecture) have no effect if | |
5997 | * the CPU doesn't support TZ or this is a non-secure translation | |
5998 | * regime, because the attribute will already be non-secure. | |
5999 | */ | |
6000 | attrs->secure = false; | |
6001 | } | |
9ee6e8bb | 6002 | *phys_ptr = phys_addr; |
b7cc4e82 | 6003 | return false; |
b5ff1b31 | 6004 | do_fault: |
b7cc4e82 PC |
6005 | *fsr = code | (domain << 4); |
6006 | return true; | |
b5ff1b31 FB |
6007 | } |
6008 | ||
3dde962f PM |
6009 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
6010 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
6011 | */ | |
6012 | typedef enum { | |
6013 | translation_fault = 1, | |
6014 | access_fault = 2, | |
6015 | permission_fault = 3, | |
6016 | } MMUFaultType; | |
6017 | ||
b7cc4e82 PC |
6018 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
6019 | int access_type, ARMMMUIdx mmu_idx, | |
6020 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | |
6021 | target_ulong *page_size_ptr, uint32_t *fsr) | |
3dde962f | 6022 | { |
70d74660 | 6023 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
6024 | /* Read an LPAE long-descriptor translation table. */ |
6025 | MMUFaultType fault_type = translation_fault; | |
6026 | uint32_t level = 1; | |
6027 | uint32_t epd; | |
2c8dd318 RH |
6028 | int32_t tsz; |
6029 | uint32_t tg; | |
3dde962f PM |
6030 | uint64_t ttbr; |
6031 | int ttbr_select; | |
2c8dd318 | 6032 | hwaddr descaddr, descmask; |
3dde962f PM |
6033 | uint32_t tableattrs; |
6034 | target_ulong page_size; | |
6035 | uint32_t attrs; | |
2c8dd318 RH |
6036 | int32_t granule_sz = 9; |
6037 | int32_t va_size = 32; | |
6038 | int32_t tbi = 0; | |
0480f69a | 6039 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 6040 | int ap, ns, xn, pxn; |
88e8add8 GB |
6041 | uint32_t el = regime_el(env, mmu_idx); |
6042 | bool ttbr1_valid = true; | |
0480f69a PM |
6043 | |
6044 | /* TODO: | |
88e8add8 GB |
6045 | * This code does not handle the different format TCR for VTCR_EL2. |
6046 | * This code also does not support shareability levels. | |
6047 | * Attribute and permission bit handling should also be checked when adding | |
6048 | * support for those page table walks. | |
0480f69a | 6049 | */ |
88e8add8 | 6050 | if (arm_el_is_aa64(env, el)) { |
2c8dd318 | 6051 | va_size = 64; |
88e8add8 GB |
6052 | if (el > 1) { |
6053 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
6054 | } else { | |
6055 | if (extract64(address, 55, 1)) { | |
6056 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
6057 | } else { | |
6058 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
6059 | } | |
6060 | } | |
2c8dd318 | 6061 | tbi *= 8; |
88e8add8 GB |
6062 | |
6063 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
6064 | * invalid. | |
6065 | */ | |
6066 | if (el > 1) { | |
6067 | ttbr1_valid = false; | |
6068 | } | |
d0a2cbce PM |
6069 | } else { |
6070 | /* There is no TTBR1 for EL2 */ | |
6071 | if (el == 2) { | |
6072 | ttbr1_valid = false; | |
6073 | } | |
2c8dd318 | 6074 | } |
3dde962f PM |
6075 | |
6076 | /* Determine whether this address is in the region controlled by | |
6077 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
6078 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
6079 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
6080 | */ | |
11f136ee | 6081 | uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); |
0480f69a | 6082 | if (va_size == 64) { |
2c8dd318 RH |
6083 | t0sz = MIN(t0sz, 39); |
6084 | t0sz = MAX(t0sz, 16); | |
6085 | } | |
11f136ee | 6086 | uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); |
0480f69a | 6087 | if (va_size == 64) { |
2c8dd318 RH |
6088 | t1sz = MIN(t1sz, 39); |
6089 | t1sz = MAX(t1sz, 16); | |
6090 | } | |
6091 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
6092 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
6093 | ttbr_select = 0; | |
88e8add8 GB |
6094 | } else if (ttbr1_valid && t1sz && |
6095 | !extract64(~address, va_size - t1sz, t1sz - tbi)) { | |
3dde962f PM |
6096 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
6097 | ttbr_select = 1; | |
6098 | } else if (!t0sz) { | |
6099 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
6100 | ttbr_select = 0; | |
88e8add8 | 6101 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
6102 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
6103 | ttbr_select = 1; | |
6104 | } else { | |
6105 | /* in the gap between the two regions, this is a Translation fault */ | |
6106 | fault_type = translation_fault; | |
6107 | goto do_fault; | |
6108 | } | |
6109 | ||
6110 | /* Note that QEMU ignores shareability and cacheability attributes, | |
6111 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
6112 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
6113 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
6114 | * implement any ASID-like capability so we can ignore it (instead | |
6115 | * we will always flush the TLB any time the ASID is changed). | |
6116 | */ | |
6117 | if (ttbr_select == 0) { | |
aef878be | 6118 | ttbr = regime_ttbr(env, mmu_idx, 0); |
11f136ee | 6119 | epd = extract32(tcr->raw_tcr, 7, 1); |
3dde962f | 6120 | tsz = t0sz; |
2c8dd318 | 6121 | |
11f136ee | 6122 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 RH |
6123 | if (tg == 1) { /* 64KB pages */ |
6124 | granule_sz = 13; | |
6125 | } | |
6126 | if (tg == 2) { /* 16KB pages */ | |
6127 | granule_sz = 11; | |
6128 | } | |
3dde962f | 6129 | } else { |
88e8add8 GB |
6130 | /* We should only be here if TTBR1 is valid */ |
6131 | assert(ttbr1_valid); | |
6132 | ||
aef878be | 6133 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 6134 | epd = extract32(tcr->raw_tcr, 23, 1); |
3dde962f | 6135 | tsz = t1sz; |
2c8dd318 | 6136 | |
11f136ee | 6137 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 RH |
6138 | if (tg == 3) { /* 64KB pages */ |
6139 | granule_sz = 13; | |
6140 | } | |
6141 | if (tg == 1) { /* 16KB pages */ | |
6142 | granule_sz = 11; | |
6143 | } | |
3dde962f PM |
6144 | } |
6145 | ||
0480f69a PM |
6146 | /* Here we should have set up all the parameters for the translation: |
6147 | * va_size, ttbr, epd, tsz, granule_sz, tbi | |
6148 | */ | |
6149 | ||
3dde962f | 6150 | if (epd) { |
88e8add8 GB |
6151 | /* Translation table walk disabled => Translation fault on TLB miss |
6152 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
6153 | */ | |
3dde962f PM |
6154 | goto do_fault; |
6155 | } | |
6156 | ||
d6be29e3 PM |
6157 | /* The starting level depends on the virtual address size (which can be |
6158 | * up to 48 bits) and the translation granule size. It indicates the number | |
6159 | * of strides (granule_sz bits at a time) needed to consume the bits | |
6160 | * of the input address. In the pseudocode this is: | |
6161 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
6162 | * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is | |
6163 | * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. | |
6164 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
6165 | * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz | |
6166 | * = 4 - (va_size - tsz - 4) / granule_sz; | |
3dde962f | 6167 | */ |
d6be29e3 | 6168 | level = 4 - (va_size - tsz - 4) / granule_sz; |
3dde962f PM |
6169 | |
6170 | /* Clear the vaddr bits which aren't part of the within-region address, | |
6171 | * so that we don't have to special case things when calculating the | |
6172 | * first descriptor address. | |
6173 | */ | |
2c8dd318 RH |
6174 | if (tsz) { |
6175 | address &= (1ULL << (va_size - tsz)) - 1; | |
6176 | } | |
6177 | ||
6178 | descmask = (1ULL << (granule_sz + 3)) - 1; | |
3dde962f PM |
6179 | |
6180 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 RH |
6181 | descaddr = extract64(ttbr, 0, 48); |
6182 | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | |
3dde962f | 6183 | |
ebca90e4 PM |
6184 | /* Secure accesses start with the page table in secure memory and |
6185 | * can be downgraded to non-secure at any step. Non-secure accesses | |
6186 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
6187 | * bits at each step. | |
6188 | */ | |
6189 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
6190 | for (;;) { |
6191 | uint64_t descriptor; | |
ebca90e4 | 6192 | bool nstable; |
3dde962f | 6193 | |
2c8dd318 RH |
6194 | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; |
6195 | descaddr &= ~7ULL; | |
ebca90e4 PM |
6196 | nstable = extract32(tableattrs, 4, 1); |
6197 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable); | |
3dde962f PM |
6198 | if (!(descriptor & 1) || |
6199 | (!(descriptor & 2) && (level == 3))) { | |
6200 | /* Invalid, or the Reserved level 3 encoding */ | |
6201 | goto do_fault; | |
6202 | } | |
6203 | descaddr = descriptor & 0xfffffff000ULL; | |
6204 | ||
6205 | if ((descriptor & 2) && (level < 3)) { | |
6206 | /* Table entry. The top five bits are attributes which may | |
6207 | * propagate down through lower levels of the table (and | |
6208 | * which are all arranged so that 0 means "no effect", so | |
6209 | * we can gather them up by ORing in the bits at each level). | |
6210 | */ | |
6211 | tableattrs |= extract64(descriptor, 59, 5); | |
6212 | level++; | |
6213 | continue; | |
6214 | } | |
6215 | /* Block entry at level 1 or 2, or page entry at level 3. | |
6216 | * These are basically the same thing, although the number | |
6217 | * of bits we pull in from the vaddr varies. | |
6218 | */ | |
5661ae6b | 6219 | page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); |
3dde962f PM |
6220 | descaddr |= (address & (page_size - 1)); |
6221 | /* Extract attributes from the descriptor and merge with table attrs */ | |
d615efac IC |
6222 | attrs = extract64(descriptor, 2, 10) |
6223 | | (extract64(descriptor, 52, 12) << 10); | |
3dde962f PM |
6224 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
6225 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
6226 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
6227 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
6228 | */ | |
6229 | if (extract32(tableattrs, 2, 1)) { | |
6230 | attrs &= ~(1 << 4); | |
6231 | } | |
ebca90e4 | 6232 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
6233 | break; |
6234 | } | |
6235 | /* Here descaddr is the final physical address, and attributes | |
6236 | * are all in attrs. | |
6237 | */ | |
6238 | fault_type = access_fault; | |
6239 | if ((attrs & (1 << 8)) == 0) { | |
6240 | /* Access flag */ | |
6241 | goto do_fault; | |
6242 | } | |
d8e052b3 AJ |
6243 | |
6244 | ap = extract32(attrs, 4, 2); | |
6245 | ns = extract32(attrs, 3, 1); | |
6246 | xn = extract32(attrs, 12, 1); | |
6247 | pxn = extract32(attrs, 11, 1); | |
6248 | ||
6249 | *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); | |
6250 | ||
3dde962f | 6251 | fault_type = permission_fault; |
d8e052b3 | 6252 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
6253 | goto do_fault; |
6254 | } | |
3dde962f | 6255 | |
8bf5b6a9 PM |
6256 | if (ns) { |
6257 | /* The NS bit will (as required by the architecture) have no effect if | |
6258 | * the CPU doesn't support TZ or this is a non-secure translation | |
6259 | * regime, because the attribute will already be non-secure. | |
6260 | */ | |
6261 | txattrs->secure = false; | |
6262 | } | |
3dde962f PM |
6263 | *phys_ptr = descaddr; |
6264 | *page_size_ptr = page_size; | |
b7cc4e82 | 6265 | return false; |
3dde962f PM |
6266 | |
6267 | do_fault: | |
6268 | /* Long-descriptor format IFSR/DFSR value */ | |
b7cc4e82 PC |
6269 | *fsr = (1 << 9) | (fault_type << 2) | level; |
6270 | return true; | |
3dde962f PM |
6271 | } |
6272 | ||
f6bda88f PC |
6273 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
6274 | ARMMMUIdx mmu_idx, | |
6275 | int32_t address, int *prot) | |
6276 | { | |
6277 | *prot = PAGE_READ | PAGE_WRITE; | |
6278 | switch (address) { | |
6279 | case 0xF0000000 ... 0xFFFFFFFF: | |
6280 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ | |
6281 | *prot |= PAGE_EXEC; | |
6282 | } | |
6283 | break; | |
6284 | case 0x00000000 ... 0x7FFFFFFF: | |
6285 | *prot |= PAGE_EXEC; | |
6286 | break; | |
6287 | } | |
6288 | ||
6289 | } | |
6290 | ||
6291 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, | |
6292 | int access_type, ARMMMUIdx mmu_idx, | |
6293 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
6294 | { | |
6295 | ARMCPU *cpu = arm_env_get_cpu(env); | |
6296 | int n; | |
6297 | bool is_user = regime_is_user(env, mmu_idx); | |
6298 | ||
6299 | *phys_ptr = address; | |
6300 | *prot = 0; | |
6301 | ||
6302 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
6303 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
6304 | } else { /* MPU enabled */ | |
6305 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
6306 | /* region search */ | |
6307 | uint32_t base = env->pmsav7.drbar[n]; | |
6308 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
6309 | uint32_t rmask; | |
6310 | bool srdis = false; | |
6311 | ||
6312 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
6313 | continue; | |
6314 | } | |
6315 | ||
6316 | if (!rsize) { | |
6317 | qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); | |
6318 | continue; | |
6319 | } | |
6320 | rsize++; | |
6321 | rmask = (1ull << rsize) - 1; | |
6322 | ||
6323 | if (base & rmask) { | |
6324 | qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " | |
6325 | "to DRSR region size, mask = %" PRIx32, | |
6326 | base, rmask); | |
6327 | continue; | |
6328 | } | |
6329 | ||
6330 | if (address < base || address > base + rmask) { | |
6331 | continue; | |
6332 | } | |
6333 | ||
6334 | /* Region matched */ | |
6335 | ||
6336 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
6337 | int i, snd; | |
6338 | uint32_t srdis_mask; | |
6339 | ||
6340 | rsize -= 3; /* sub region size (power of 2) */ | |
6341 | snd = ((address - base) >> rsize) & 0x7; | |
6342 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
6343 | ||
6344 | srdis_mask = srdis ? 0x3 : 0x0; | |
6345 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
6346 | /* This will check in groups of 2, 4 and then 8, whether | |
6347 | * the subregion bits are consistent. rsize is incremented | |
6348 | * back up to give the region size, considering consistent | |
6349 | * adjacent subregions as one region. Stop testing if rsize | |
6350 | * is already big enough for an entire QEMU page. | |
6351 | */ | |
6352 | int snd_rounded = snd & ~(i - 1); | |
6353 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
6354 | snd_rounded + 8, i); | |
6355 | if (srdis_mask ^ srdis_multi) { | |
6356 | break; | |
6357 | } | |
6358 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
6359 | rsize++; | |
6360 | } | |
6361 | } | |
6362 | if (rsize < TARGET_PAGE_BITS) { | |
6363 | qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" | |
6364 | "alignment of %" PRIu32 " bits. Minimum is %d\n", | |
6365 | rsize, TARGET_PAGE_BITS); | |
6366 | continue; | |
6367 | } | |
6368 | if (srdis) { | |
6369 | continue; | |
6370 | } | |
6371 | break; | |
6372 | } | |
6373 | ||
6374 | if (n == -1) { /* no hits */ | |
6375 | if (cpu->pmsav7_dregion && | |
6376 | (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { | |
6377 | /* background fault */ | |
6378 | *fsr = 0; | |
6379 | return true; | |
6380 | } | |
6381 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
6382 | } else { /* a MPU hit! */ | |
6383 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
6384 | ||
6385 | if (is_user) { /* User mode AP bit decoding */ | |
6386 | switch (ap) { | |
6387 | case 0: | |
6388 | case 1: | |
6389 | case 5: | |
6390 | break; /* no access */ | |
6391 | case 3: | |
6392 | *prot |= PAGE_WRITE; | |
6393 | /* fall through */ | |
6394 | case 2: | |
6395 | case 6: | |
6396 | *prot |= PAGE_READ | PAGE_EXEC; | |
6397 | break; | |
6398 | default: | |
6399 | qemu_log_mask(LOG_GUEST_ERROR, | |
6400 | "Bad value for AP bits in DRACR %" | |
6401 | PRIx32 "\n", ap); | |
6402 | } | |
6403 | } else { /* Priv. mode AP bits decoding */ | |
6404 | switch (ap) { | |
6405 | case 0: | |
6406 | break; /* no access */ | |
6407 | case 1: | |
6408 | case 2: | |
6409 | case 3: | |
6410 | *prot |= PAGE_WRITE; | |
6411 | /* fall through */ | |
6412 | case 5: | |
6413 | case 6: | |
6414 | *prot |= PAGE_READ | PAGE_EXEC; | |
6415 | break; | |
6416 | default: | |
6417 | qemu_log_mask(LOG_GUEST_ERROR, | |
6418 | "Bad value for AP bits in DRACR %" | |
6419 | PRIx32 "\n", ap); | |
6420 | } | |
6421 | } | |
6422 | ||
6423 | /* execute never */ | |
6424 | if (env->pmsav7.dracr[n] & (1 << 12)) { | |
6425 | *prot &= ~PAGE_EXEC; | |
6426 | } | |
6427 | } | |
6428 | } | |
6429 | ||
6430 | *fsr = 0x00d; /* Permission fault */ | |
6431 | return !(*prot & (1 << access_type)); | |
6432 | } | |
6433 | ||
13689d43 PC |
6434 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
6435 | int access_type, ARMMMUIdx mmu_idx, | |
6436 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
9ee6e8bb PB |
6437 | { |
6438 | int n; | |
6439 | uint32_t mask; | |
6440 | uint32_t base; | |
0480f69a | 6441 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb PB |
6442 | |
6443 | *phys_ptr = address; | |
6444 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 6445 | base = env->cp15.c6_region[n]; |
87c3d486 | 6446 | if ((base & 1) == 0) { |
554b0b09 | 6447 | continue; |
87c3d486 | 6448 | } |
554b0b09 PM |
6449 | mask = 1 << ((base >> 1) & 0x1f); |
6450 | /* Keep this shift separate from the above to avoid an | |
6451 | (undefined) << 32. */ | |
6452 | mask = (mask << 1) - 1; | |
87c3d486 | 6453 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 6454 | break; |
87c3d486 | 6455 | } |
9ee6e8bb | 6456 | } |
87c3d486 | 6457 | if (n < 0) { |
b7cc4e82 PC |
6458 | *fsr = 2; |
6459 | return true; | |
87c3d486 | 6460 | } |
9ee6e8bb PB |
6461 | |
6462 | if (access_type == 2) { | |
7e09797c | 6463 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 6464 | } else { |
7e09797c | 6465 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
6466 | } |
6467 | mask = (mask >> (n * 4)) & 0xf; | |
6468 | switch (mask) { | |
6469 | case 0: | |
b7cc4e82 PC |
6470 | *fsr = 1; |
6471 | return true; | |
9ee6e8bb | 6472 | case 1: |
87c3d486 | 6473 | if (is_user) { |
b7cc4e82 PC |
6474 | *fsr = 1; |
6475 | return true; | |
87c3d486 | 6476 | } |
554b0b09 PM |
6477 | *prot = PAGE_READ | PAGE_WRITE; |
6478 | break; | |
9ee6e8bb | 6479 | case 2: |
554b0b09 | 6480 | *prot = PAGE_READ; |
87c3d486 | 6481 | if (!is_user) { |
554b0b09 | 6482 | *prot |= PAGE_WRITE; |
87c3d486 | 6483 | } |
554b0b09 | 6484 | break; |
9ee6e8bb | 6485 | case 3: |
554b0b09 PM |
6486 | *prot = PAGE_READ | PAGE_WRITE; |
6487 | break; | |
9ee6e8bb | 6488 | case 5: |
87c3d486 | 6489 | if (is_user) { |
b7cc4e82 PC |
6490 | *fsr = 1; |
6491 | return true; | |
87c3d486 | 6492 | } |
554b0b09 PM |
6493 | *prot = PAGE_READ; |
6494 | break; | |
9ee6e8bb | 6495 | case 6: |
554b0b09 PM |
6496 | *prot = PAGE_READ; |
6497 | break; | |
9ee6e8bb | 6498 | default: |
554b0b09 | 6499 | /* Bad permission. */ |
b7cc4e82 PC |
6500 | *fsr = 1; |
6501 | return true; | |
9ee6e8bb | 6502 | } |
3ad493fc | 6503 | *prot |= PAGE_EXEC; |
b7cc4e82 | 6504 | return false; |
9ee6e8bb PB |
6505 | } |
6506 | ||
702a9357 PM |
6507 | /* get_phys_addr - get the physical address for this virtual address |
6508 | * | |
6509 | * Find the physical address corresponding to the given virtual address, | |
6510 | * by doing a translation table walk on MMU based systems or using the | |
6511 | * MPU state on MPU based systems. | |
6512 | * | |
b7cc4e82 PC |
6513 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
6514 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
6515 | * information on why the translation aborted, in the format of a |
6516 | * DFSR/IFSR fault register, with the following caveats: | |
6517 | * * we honour the short vs long DFSR format differences. | |
6518 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 6519 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
6520 | * value. |
6521 | * | |
6522 | * @env: CPUARMState | |
6523 | * @address: virtual address to get physical address for | |
6524 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 6525 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 6526 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 6527 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
6528 | * @prot: set to the permissions for the page containing phys_ptr |
6529 | * @page_size: set to the size of the page containing phys_ptr | |
b7cc4e82 | 6530 | * @fsr: set to the DFSR/IFSR value on failure |
702a9357 | 6531 | */ |
b7cc4e82 PC |
6532 | static inline bool get_phys_addr(CPUARMState *env, target_ulong address, |
6533 | int access_type, ARMMMUIdx mmu_idx, | |
6534 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
6535 | target_ulong *page_size, uint32_t *fsr) | |
9ee6e8bb | 6536 | { |
0480f69a PM |
6537 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
6538 | /* TODO: when we support EL2 we should here call ourselves recursively | |
ebca90e4 PM |
6539 | * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw |
6540 | * functions will also need changing to perform ARMMMUIdx_S2NS loads | |
6541 | * rather than direct physical memory loads when appropriate. | |
0480f69a PM |
6542 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. |
6543 | */ | |
6544 | assert(!arm_feature(env, ARM_FEATURE_EL2)); | |
6545 | mmu_idx += ARMMMUIdx_S1NSE0; | |
6546 | } | |
d3649702 | 6547 | |
8bf5b6a9 PM |
6548 | /* The page table entries may downgrade secure to non-secure, but |
6549 | * cannot upgrade an non-secure translation regime's attributes | |
6550 | * to secure. | |
6551 | */ | |
6552 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 6553 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 6554 | |
0480f69a PM |
6555 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
6556 | * In v7 and earlier it affects all stage 1 translations. | |
6557 | */ | |
6558 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
6559 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
6560 | if (regime_el(env, mmu_idx) == 3) { | |
6561 | address += env->cp15.fcseidr_s; | |
6562 | } else { | |
6563 | address += env->cp15.fcseidr_ns; | |
6564 | } | |
54bf36ed | 6565 | } |
9ee6e8bb | 6566 | |
f6bda88f PC |
6567 | /* pmsav7 has special handling for when MPU is disabled so call it before |
6568 | * the common MMU/MPU disabled check below. | |
6569 | */ | |
6570 | if (arm_feature(env, ARM_FEATURE_MPU) && | |
6571 | arm_feature(env, ARM_FEATURE_V7)) { | |
6572 | *page_size = TARGET_PAGE_SIZE; | |
6573 | return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
6574 | phys_ptr, prot, fsr); | |
6575 | } | |
6576 | ||
0480f69a | 6577 | if (regime_translation_disabled(env, mmu_idx)) { |
9ee6e8bb PB |
6578 | /* MMU/MPU disabled. */ |
6579 | *phys_ptr = address; | |
3ad493fc | 6580 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 6581 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 6582 | return 0; |
0480f69a PM |
6583 | } |
6584 | ||
6585 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |
f6bda88f | 6586 | /* Pre-v7 MPU */ |
d4c430a8 | 6587 | *page_size = TARGET_PAGE_SIZE; |
13689d43 PC |
6588 | return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
6589 | phys_ptr, prot, fsr); | |
0480f69a PM |
6590 | } |
6591 | ||
6592 | if (regime_using_lpae_format(env, mmu_idx)) { | |
6593 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
b7cc4e82 | 6594 | attrs, prot, page_size, fsr); |
0480f69a PM |
6595 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
6596 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
b7cc4e82 | 6597 | attrs, prot, page_size, fsr); |
9ee6e8bb | 6598 | } else { |
0480f69a | 6599 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
b7cc4e82 | 6600 | prot, page_size, fsr); |
9ee6e8bb PB |
6601 | } |
6602 | } | |
6603 | ||
8c6084bf | 6604 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
6605 | * to the TLB. Return false on success, or true on failure. Populate |
6606 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 6607 | */ |
b7cc4e82 PC |
6608 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
6609 | int access_type, int mmu_idx, uint32_t *fsr) | |
b5ff1b31 | 6610 | { |
7510454e AF |
6611 | ARMCPU *cpu = ARM_CPU(cs); |
6612 | CPUARMState *env = &cpu->env; | |
a8170e5e | 6613 | hwaddr phys_addr; |
d4c430a8 | 6614 | target_ulong page_size; |
b5ff1b31 | 6615 | int prot; |
d3649702 | 6616 | int ret; |
8bf5b6a9 | 6617 | MemTxAttrs attrs = {}; |
b5ff1b31 | 6618 | |
8bf5b6a9 | 6619 | ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, |
b7cc4e82 PC |
6620 | &attrs, &prot, &page_size, fsr); |
6621 | if (!ret) { | |
b5ff1b31 | 6622 | /* Map a single [sub]page. */ |
dcd82c11 AB |
6623 | phys_addr &= TARGET_PAGE_MASK; |
6624 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
6625 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
6626 | prot, mmu_idx, page_size); | |
d4c430a8 | 6627 | return 0; |
b5ff1b31 FB |
6628 | } |
6629 | ||
8c6084bf | 6630 | return ret; |
b5ff1b31 FB |
6631 | } |
6632 | ||
00b941e5 | 6633 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 6634 | { |
00b941e5 | 6635 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 6636 | CPUARMState *env = &cpu->env; |
a8170e5e | 6637 | hwaddr phys_addr; |
d4c430a8 | 6638 | target_ulong page_size; |
b5ff1b31 | 6639 | int prot; |
b7cc4e82 PC |
6640 | bool ret; |
6641 | uint32_t fsr; | |
8bf5b6a9 | 6642 | MemTxAttrs attrs = {}; |
b5ff1b31 | 6643 | |
d3649702 | 6644 | ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr, |
b7cc4e82 | 6645 | &attrs, &prot, &page_size, &fsr); |
b5ff1b31 | 6646 | |
b7cc4e82 | 6647 | if (ret) { |
b5ff1b31 | 6648 | return -1; |
00b941e5 | 6649 | } |
b5ff1b31 FB |
6650 | |
6651 | return phys_addr; | |
6652 | } | |
6653 | ||
0ecb72a5 | 6654 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 6655 | { |
39ea3d4e PM |
6656 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
6657 | env->regs[13] = val; | |
6658 | } else { | |
f5206413 | 6659 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 6660 | } |
9ee6e8bb PB |
6661 | } |
6662 | ||
0ecb72a5 | 6663 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 6664 | { |
39ea3d4e PM |
6665 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
6666 | return env->regs[13]; | |
6667 | } else { | |
f5206413 | 6668 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 6669 | } |
9ee6e8bb PB |
6670 | } |
6671 | ||
0ecb72a5 | 6672 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 6673 | { |
a47dddd7 AF |
6674 | ARMCPU *cpu = arm_env_get_cpu(env); |
6675 | ||
9ee6e8bb PB |
6676 | switch (reg) { |
6677 | case 0: /* APSR */ | |
6678 | return xpsr_read(env) & 0xf8000000; | |
6679 | case 1: /* IAPSR */ | |
6680 | return xpsr_read(env) & 0xf80001ff; | |
6681 | case 2: /* EAPSR */ | |
6682 | return xpsr_read(env) & 0xff00fc00; | |
6683 | case 3: /* xPSR */ | |
6684 | return xpsr_read(env) & 0xff00fdff; | |
6685 | case 5: /* IPSR */ | |
6686 | return xpsr_read(env) & 0x000001ff; | |
6687 | case 6: /* EPSR */ | |
6688 | return xpsr_read(env) & 0x0700fc00; | |
6689 | case 7: /* IEPSR */ | |
6690 | return xpsr_read(env) & 0x0700edff; | |
6691 | case 8: /* MSP */ | |
6692 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
6693 | case 9: /* PSP */ | |
6694 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
6695 | case 16: /* PRIMASK */ | |
4cc35614 | 6696 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
6697 | case 17: /* BASEPRI */ |
6698 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 6699 | return env->v7m.basepri; |
82845826 | 6700 | case 19: /* FAULTMASK */ |
4cc35614 | 6701 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
6702 | case 20: /* CONTROL */ |
6703 | return env->v7m.control; | |
6704 | default: | |
6705 | /* ??? For debugging only. */ | |
a47dddd7 | 6706 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
6707 | return 0; |
6708 | } | |
6709 | } | |
6710 | ||
0ecb72a5 | 6711 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 6712 | { |
a47dddd7 AF |
6713 | ARMCPU *cpu = arm_env_get_cpu(env); |
6714 | ||
9ee6e8bb PB |
6715 | switch (reg) { |
6716 | case 0: /* APSR */ | |
6717 | xpsr_write(env, val, 0xf8000000); | |
6718 | break; | |
6719 | case 1: /* IAPSR */ | |
6720 | xpsr_write(env, val, 0xf8000000); | |
6721 | break; | |
6722 | case 2: /* EAPSR */ | |
6723 | xpsr_write(env, val, 0xfe00fc00); | |
6724 | break; | |
6725 | case 3: /* xPSR */ | |
6726 | xpsr_write(env, val, 0xfe00fc00); | |
6727 | break; | |
6728 | case 5: /* IPSR */ | |
6729 | /* IPSR bits are readonly. */ | |
6730 | break; | |
6731 | case 6: /* EPSR */ | |
6732 | xpsr_write(env, val, 0x0600fc00); | |
6733 | break; | |
6734 | case 7: /* IEPSR */ | |
6735 | xpsr_write(env, val, 0x0600fc00); | |
6736 | break; | |
6737 | case 8: /* MSP */ | |
6738 | if (env->v7m.current_sp) | |
6739 | env->v7m.other_sp = val; | |
6740 | else | |
6741 | env->regs[13] = val; | |
6742 | break; | |
6743 | case 9: /* PSP */ | |
6744 | if (env->v7m.current_sp) | |
6745 | env->regs[13] = val; | |
6746 | else | |
6747 | env->v7m.other_sp = val; | |
6748 | break; | |
6749 | case 16: /* PRIMASK */ | |
4cc35614 PM |
6750 | if (val & 1) { |
6751 | env->daif |= PSTATE_I; | |
6752 | } else { | |
6753 | env->daif &= ~PSTATE_I; | |
6754 | } | |
9ee6e8bb | 6755 | break; |
82845826 | 6756 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
6757 | env->v7m.basepri = val & 0xff; |
6758 | break; | |
82845826 | 6759 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
6760 | val &= 0xff; |
6761 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
6762 | env->v7m.basepri = val; | |
6763 | break; | |
82845826 | 6764 | case 19: /* FAULTMASK */ |
4cc35614 PM |
6765 | if (val & 1) { |
6766 | env->daif |= PSTATE_F; | |
6767 | } else { | |
6768 | env->daif &= ~PSTATE_F; | |
6769 | } | |
82845826 | 6770 | break; |
9ee6e8bb PB |
6771 | case 20: /* CONTROL */ |
6772 | env->v7m.control = val & 3; | |
6773 | switch_v7m_sp(env, (val & 2) != 0); | |
6774 | break; | |
6775 | default: | |
6776 | /* ??? For debugging only. */ | |
a47dddd7 | 6777 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
6778 | return; |
6779 | } | |
6780 | } | |
6781 | ||
b5ff1b31 | 6782 | #endif |
6ddbc6e4 | 6783 | |
aca3f40b PM |
6784 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
6785 | { | |
6786 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
6787 | * Note that we do not implement the (architecturally mandated) | |
6788 | * alignment fault for attempts to use this on Device memory | |
6789 | * (which matches the usual QEMU behaviour of not implementing either | |
6790 | * alignment faults or any memory attribute handling). | |
6791 | */ | |
6792 | ||
6793 | ARMCPU *cpu = arm_env_get_cpu(env); | |
6794 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
6795 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
6796 | ||
6797 | #ifndef CONFIG_USER_ONLY | |
6798 | { | |
6799 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
6800 | * the block size so we might have to do more than one TLB lookup. | |
6801 | * We know that in fact for any v8 CPU the page size is at least 4K | |
6802 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
6803 | * 1K as an artefact of legacy v5 subpage support being present in the | |
6804 | * same QEMU executable. | |
6805 | */ | |
6806 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
6807 | void *hostaddr[maxidx]; | |
6808 | int try, i; | |
3972ef6f RH |
6809 | unsigned mmu_idx = cpu_mmu_index(env); |
6810 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); | |
aca3f40b PM |
6811 | |
6812 | for (try = 0; try < 2; try++) { | |
6813 | ||
6814 | for (i = 0; i < maxidx; i++) { | |
6815 | hostaddr[i] = tlb_vaddr_to_host(env, | |
6816 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 6817 | 1, mmu_idx); |
aca3f40b PM |
6818 | if (!hostaddr[i]) { |
6819 | break; | |
6820 | } | |
6821 | } | |
6822 | if (i == maxidx) { | |
6823 | /* If it's all in the TLB it's fair game for just writing to; | |
6824 | * we know we don't need to update dirty status, etc. | |
6825 | */ | |
6826 | for (i = 0; i < maxidx - 1; i++) { | |
6827 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
6828 | } | |
6829 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
6830 | return; | |
6831 | } | |
6832 | /* OK, try a store and see if we can populate the tlb. This | |
6833 | * might cause an exception if the memory isn't writable, | |
6834 | * in which case we will longjmp out of here. We must for | |
6835 | * this purpose use the actual register value passed to us | |
6836 | * so that we get the fault address right. | |
6837 | */ | |
3972ef6f | 6838 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA()); |
aca3f40b PM |
6839 | /* Now we can populate the other TLB entries, if any */ |
6840 | for (i = 0; i < maxidx; i++) { | |
6841 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
6842 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
3972ef6f | 6843 | helper_ret_stb_mmu(env, va, 0, oi, GETRA()); |
aca3f40b PM |
6844 | } |
6845 | } | |
6846 | } | |
6847 | ||
6848 | /* Slow path (probably attempt to do this to an I/O device or | |
6849 | * similar, or clearing of a block of code we have translations | |
6850 | * cached for). Just do a series of byte writes as the architecture | |
6851 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
6852 | * memset(), unmap() sequence here because: | |
6853 | * + we'd need to account for the blocksize being larger than a page | |
6854 | * + the direct-RAM access case is almost always going to be dealt | |
6855 | * with in the fastpath code above, so there's no speed benefit | |
6856 | * + we would have to deal with the map returning NULL because the | |
6857 | * bounce buffer was in use | |
6858 | */ | |
6859 | for (i = 0; i < blocklen; i++) { | |
3972ef6f | 6860 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA()); |
aca3f40b PM |
6861 | } |
6862 | } | |
6863 | #else | |
6864 | memset(g2h(vaddr), 0, blocklen); | |
6865 | #endif | |
6866 | } | |
6867 | ||
6ddbc6e4 PB |
6868 | /* Note that signed overflow is undefined in C. The following routines are |
6869 | careful to use unsigned types where modulo arithmetic is required. | |
6870 | Failure to do so _will_ break on newer gcc. */ | |
6871 | ||
6872 | /* Signed saturating arithmetic. */ | |
6873 | ||
1654b2d6 | 6874 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
6875 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
6876 | { | |
6877 | uint16_t res; | |
6878 | ||
6879 | res = a + b; | |
6880 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
6881 | if (a & 0x8000) | |
6882 | res = 0x8000; | |
6883 | else | |
6884 | res = 0x7fff; | |
6885 | } | |
6886 | return res; | |
6887 | } | |
6888 | ||
1654b2d6 | 6889 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
6890 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
6891 | { | |
6892 | uint8_t res; | |
6893 | ||
6894 | res = a + b; | |
6895 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
6896 | if (a & 0x80) | |
6897 | res = 0x80; | |
6898 | else | |
6899 | res = 0x7f; | |
6900 | } | |
6901 | return res; | |
6902 | } | |
6903 | ||
1654b2d6 | 6904 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
6905 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
6906 | { | |
6907 | uint16_t res; | |
6908 | ||
6909 | res = a - b; | |
6910 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
6911 | if (a & 0x8000) | |
6912 | res = 0x8000; | |
6913 | else | |
6914 | res = 0x7fff; | |
6915 | } | |
6916 | return res; | |
6917 | } | |
6918 | ||
1654b2d6 | 6919 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
6920 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
6921 | { | |
6922 | uint8_t res; | |
6923 | ||
6924 | res = a - b; | |
6925 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
6926 | if (a & 0x80) | |
6927 | res = 0x80; | |
6928 | else | |
6929 | res = 0x7f; | |
6930 | } | |
6931 | return res; | |
6932 | } | |
6933 | ||
6934 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
6935 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
6936 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
6937 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
6938 | #define PFX q | |
6939 | ||
6940 | #include "op_addsub.h" | |
6941 | ||
6942 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 6943 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
6944 | { |
6945 | uint16_t res; | |
6946 | res = a + b; | |
6947 | if (res < a) | |
6948 | res = 0xffff; | |
6949 | return res; | |
6950 | } | |
6951 | ||
460a09c1 | 6952 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 6953 | { |
4c4fd3f8 | 6954 | if (a > b) |
6ddbc6e4 PB |
6955 | return a - b; |
6956 | else | |
6957 | return 0; | |
6958 | } | |
6959 | ||
6960 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
6961 | { | |
6962 | uint8_t res; | |
6963 | res = a + b; | |
6964 | if (res < a) | |
6965 | res = 0xff; | |
6966 | return res; | |
6967 | } | |
6968 | ||
6969 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
6970 | { | |
4c4fd3f8 | 6971 | if (a > b) |
6ddbc6e4 PB |
6972 | return a - b; |
6973 | else | |
6974 | return 0; | |
6975 | } | |
6976 | ||
6977 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
6978 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
6979 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
6980 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
6981 | #define PFX uq | |
6982 | ||
6983 | #include "op_addsub.h" | |
6984 | ||
6985 | /* Signed modulo arithmetic. */ | |
6986 | #define SARITH16(a, b, n, op) do { \ | |
6987 | int32_t sum; \ | |
db6e2e65 | 6988 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
6989 | RESULT(sum, n, 16); \ |
6990 | if (sum >= 0) \ | |
6991 | ge |= 3 << (n * 2); \ | |
6992 | } while(0) | |
6993 | ||
6994 | #define SARITH8(a, b, n, op) do { \ | |
6995 | int32_t sum; \ | |
db6e2e65 | 6996 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
6997 | RESULT(sum, n, 8); \ |
6998 | if (sum >= 0) \ | |
6999 | ge |= 1 << n; \ | |
7000 | } while(0) | |
7001 | ||
7002 | ||
7003 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
7004 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
7005 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
7006 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
7007 | #define PFX s | |
7008 | #define ARITH_GE | |
7009 | ||
7010 | #include "op_addsub.h" | |
7011 | ||
7012 | /* Unsigned modulo arithmetic. */ | |
7013 | #define ADD16(a, b, n) do { \ | |
7014 | uint32_t sum; \ | |
7015 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
7016 | RESULT(sum, n, 16); \ | |
a87aa10b | 7017 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
7018 | ge |= 3 << (n * 2); \ |
7019 | } while(0) | |
7020 | ||
7021 | #define ADD8(a, b, n) do { \ | |
7022 | uint32_t sum; \ | |
7023 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
7024 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
7025 | if ((sum >> 8) == 1) \ |
7026 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
7027 | } while(0) |
7028 | ||
7029 | #define SUB16(a, b, n) do { \ | |
7030 | uint32_t sum; \ | |
7031 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
7032 | RESULT(sum, n, 16); \ | |
7033 | if ((sum >> 16) == 0) \ | |
7034 | ge |= 3 << (n * 2); \ | |
7035 | } while(0) | |
7036 | ||
7037 | #define SUB8(a, b, n) do { \ | |
7038 | uint32_t sum; \ | |
7039 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
7040 | RESULT(sum, n, 8); \ | |
7041 | if ((sum >> 8) == 0) \ | |
a87aa10b | 7042 | ge |= 1 << n; \ |
6ddbc6e4 PB |
7043 | } while(0) |
7044 | ||
7045 | #define PFX u | |
7046 | #define ARITH_GE | |
7047 | ||
7048 | #include "op_addsub.h" | |
7049 | ||
7050 | /* Halved signed arithmetic. */ | |
7051 | #define ADD16(a, b, n) \ | |
7052 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
7053 | #define SUB16(a, b, n) \ | |
7054 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
7055 | #define ADD8(a, b, n) \ | |
7056 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
7057 | #define SUB8(a, b, n) \ | |
7058 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
7059 | #define PFX sh | |
7060 | ||
7061 | #include "op_addsub.h" | |
7062 | ||
7063 | /* Halved unsigned arithmetic. */ | |
7064 | #define ADD16(a, b, n) \ | |
7065 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
7066 | #define SUB16(a, b, n) \ | |
7067 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
7068 | #define ADD8(a, b, n) \ | |
7069 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
7070 | #define SUB8(a, b, n) \ | |
7071 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
7072 | #define PFX uh | |
7073 | ||
7074 | #include "op_addsub.h" | |
7075 | ||
7076 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
7077 | { | |
7078 | if (a > b) | |
7079 | return a - b; | |
7080 | else | |
7081 | return b - a; | |
7082 | } | |
7083 | ||
7084 | /* Unsigned sum of absolute byte differences. */ | |
7085 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
7086 | { | |
7087 | uint32_t sum; | |
7088 | sum = do_usad(a, b); | |
7089 | sum += do_usad(a >> 8, b >> 8); | |
7090 | sum += do_usad(a >> 16, b >>16); | |
7091 | sum += do_usad(a >> 24, b >> 24); | |
7092 | return sum; | |
7093 | } | |
7094 | ||
7095 | /* For ARMv6 SEL instruction. */ | |
7096 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
7097 | { | |
7098 | uint32_t mask; | |
7099 | ||
7100 | mask = 0; | |
7101 | if (flags & 1) | |
7102 | mask |= 0xff; | |
7103 | if (flags & 2) | |
7104 | mask |= 0xff00; | |
7105 | if (flags & 4) | |
7106 | mask |= 0xff0000; | |
7107 | if (flags & 8) | |
7108 | mask |= 0xff000000; | |
7109 | return (a & mask) | (b & ~mask); | |
7110 | } | |
7111 | ||
b90372ad PM |
7112 | /* VFP support. We follow the convention used for VFP instructions: |
7113 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
7114 | "d" suffix. */ |
7115 | ||
7116 | /* Convert host exception flags to vfp form. */ | |
7117 | static inline int vfp_exceptbits_from_host(int host_bits) | |
7118 | { | |
7119 | int target_bits = 0; | |
7120 | ||
7121 | if (host_bits & float_flag_invalid) | |
7122 | target_bits |= 1; | |
7123 | if (host_bits & float_flag_divbyzero) | |
7124 | target_bits |= 2; | |
7125 | if (host_bits & float_flag_overflow) | |
7126 | target_bits |= 4; | |
36802b6b | 7127 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
7128 | target_bits |= 8; |
7129 | if (host_bits & float_flag_inexact) | |
7130 | target_bits |= 0x10; | |
cecd8504 PM |
7131 | if (host_bits & float_flag_input_denormal) |
7132 | target_bits |= 0x80; | |
4373f3ce PB |
7133 | return target_bits; |
7134 | } | |
7135 | ||
0ecb72a5 | 7136 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
7137 | { |
7138 | int i; | |
7139 | uint32_t fpscr; | |
7140 | ||
7141 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
7142 | | (env->vfp.vec_len << 16) | |
7143 | | (env->vfp.vec_stride << 20); | |
7144 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 7145 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
7146 | fpscr |= vfp_exceptbits_from_host(i); |
7147 | return fpscr; | |
7148 | } | |
7149 | ||
0ecb72a5 | 7150 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
7151 | { |
7152 | return HELPER(vfp_get_fpscr)(env); | |
7153 | } | |
7154 | ||
4373f3ce PB |
7155 | /* Convert vfp exception flags to target form. */ |
7156 | static inline int vfp_exceptbits_to_host(int target_bits) | |
7157 | { | |
7158 | int host_bits = 0; | |
7159 | ||
7160 | if (target_bits & 1) | |
7161 | host_bits |= float_flag_invalid; | |
7162 | if (target_bits & 2) | |
7163 | host_bits |= float_flag_divbyzero; | |
7164 | if (target_bits & 4) | |
7165 | host_bits |= float_flag_overflow; | |
7166 | if (target_bits & 8) | |
7167 | host_bits |= float_flag_underflow; | |
7168 | if (target_bits & 0x10) | |
7169 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
7170 | if (target_bits & 0x80) |
7171 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
7172 | return host_bits; |
7173 | } | |
7174 | ||
0ecb72a5 | 7175 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
7176 | { |
7177 | int i; | |
7178 | uint32_t changed; | |
7179 | ||
7180 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
7181 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
7182 | env->vfp.vec_len = (val >> 16) & 7; | |
7183 | env->vfp.vec_stride = (val >> 20) & 3; | |
7184 | ||
7185 | changed ^= val; | |
7186 | if (changed & (3 << 22)) { | |
7187 | i = (val >> 22) & 3; | |
7188 | switch (i) { | |
4d3da0f3 | 7189 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
7190 | i = float_round_nearest_even; |
7191 | break; | |
4d3da0f3 | 7192 | case FPROUNDING_POSINF: |
4373f3ce PB |
7193 | i = float_round_up; |
7194 | break; | |
4d3da0f3 | 7195 | case FPROUNDING_NEGINF: |
4373f3ce PB |
7196 | i = float_round_down; |
7197 | break; | |
4d3da0f3 | 7198 | case FPROUNDING_ZERO: |
4373f3ce PB |
7199 | i = float_round_to_zero; |
7200 | break; | |
7201 | } | |
7202 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
7203 | } | |
cecd8504 | 7204 | if (changed & (1 << 24)) { |
fe76d976 | 7205 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
7206 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
7207 | } | |
5c7908ed PB |
7208 | if (changed & (1 << 25)) |
7209 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 7210 | |
b12c390b | 7211 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 7212 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 7213 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
7214 | } |
7215 | ||
0ecb72a5 | 7216 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
7217 | { |
7218 | HELPER(vfp_set_fpscr)(env, val); | |
7219 | } | |
7220 | ||
4373f3ce PB |
7221 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
7222 | ||
7223 | #define VFP_BINOP(name) \ | |
ae1857ec | 7224 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 7225 | { \ |
ae1857ec PM |
7226 | float_status *fpst = fpstp; \ |
7227 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 7228 | } \ |
ae1857ec | 7229 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 7230 | { \ |
ae1857ec PM |
7231 | float_status *fpst = fpstp; \ |
7232 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
7233 | } |
7234 | VFP_BINOP(add) | |
7235 | VFP_BINOP(sub) | |
7236 | VFP_BINOP(mul) | |
7237 | VFP_BINOP(div) | |
f71a2ae5 PM |
7238 | VFP_BINOP(min) |
7239 | VFP_BINOP(max) | |
7240 | VFP_BINOP(minnum) | |
7241 | VFP_BINOP(maxnum) | |
4373f3ce PB |
7242 | #undef VFP_BINOP |
7243 | ||
7244 | float32 VFP_HELPER(neg, s)(float32 a) | |
7245 | { | |
7246 | return float32_chs(a); | |
7247 | } | |
7248 | ||
7249 | float64 VFP_HELPER(neg, d)(float64 a) | |
7250 | { | |
66230e0d | 7251 | return float64_chs(a); |
4373f3ce PB |
7252 | } |
7253 | ||
7254 | float32 VFP_HELPER(abs, s)(float32 a) | |
7255 | { | |
7256 | return float32_abs(a); | |
7257 | } | |
7258 | ||
7259 | float64 VFP_HELPER(abs, d)(float64 a) | |
7260 | { | |
66230e0d | 7261 | return float64_abs(a); |
4373f3ce PB |
7262 | } |
7263 | ||
0ecb72a5 | 7264 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
7265 | { |
7266 | return float32_sqrt(a, &env->vfp.fp_status); | |
7267 | } | |
7268 | ||
0ecb72a5 | 7269 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
7270 | { |
7271 | return float64_sqrt(a, &env->vfp.fp_status); | |
7272 | } | |
7273 | ||
7274 | /* XXX: check quiet/signaling case */ | |
7275 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 7276 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
7277 | { \ |
7278 | uint32_t flags; \ | |
7279 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
7280 | case 0: flags = 0x6; break; \ | |
7281 | case -1: flags = 0x8; break; \ | |
7282 | case 1: flags = 0x2; break; \ | |
7283 | default: case 2: flags = 0x3; break; \ | |
7284 | } \ | |
7285 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
7286 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
7287 | } \ | |
0ecb72a5 | 7288 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
7289 | { \ |
7290 | uint32_t flags; \ | |
7291 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
7292 | case 0: flags = 0x6; break; \ | |
7293 | case -1: flags = 0x8; break; \ | |
7294 | case 1: flags = 0x2; break; \ | |
7295 | default: case 2: flags = 0x3; break; \ | |
7296 | } \ | |
7297 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
7298 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
7299 | } | |
7300 | DO_VFP_cmp(s, float32) | |
7301 | DO_VFP_cmp(d, float64) | |
7302 | #undef DO_VFP_cmp | |
7303 | ||
5500b06c | 7304 | /* Integer to float and float to integer conversions */ |
4373f3ce | 7305 | |
5500b06c PM |
7306 | #define CONV_ITOF(name, fsz, sign) \ |
7307 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
7308 | { \ | |
7309 | float_status *fpst = fpstp; \ | |
85836979 | 7310 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
7311 | } |
7312 | ||
5500b06c PM |
7313 | #define CONV_FTOI(name, fsz, sign, round) \ |
7314 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
7315 | { \ | |
7316 | float_status *fpst = fpstp; \ | |
7317 | if (float##fsz##_is_any_nan(x)) { \ | |
7318 | float_raise(float_flag_invalid, fpst); \ | |
7319 | return 0; \ | |
7320 | } \ | |
7321 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
7322 | } |
7323 | ||
5500b06c PM |
7324 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
7325 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
7326 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
7327 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 7328 | |
5500b06c PM |
7329 | FLOAT_CONVS(si, s, 32, ) |
7330 | FLOAT_CONVS(si, d, 64, ) | |
7331 | FLOAT_CONVS(ui, s, 32, u) | |
7332 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 7333 | |
5500b06c PM |
7334 | #undef CONV_ITOF |
7335 | #undef CONV_FTOI | |
7336 | #undef FLOAT_CONVS | |
4373f3ce PB |
7337 | |
7338 | /* floating point conversion */ | |
0ecb72a5 | 7339 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 7340 | { |
2d627737 PM |
7341 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
7342 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
7343 | * a quiet NaN by forcing the most significant frac bit to 1. | |
7344 | */ | |
7345 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
7346 | } |
7347 | ||
0ecb72a5 | 7348 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 7349 | { |
2d627737 PM |
7350 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
7351 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
7352 | * a quiet NaN by forcing the most significant frac bit to 1. | |
7353 | */ | |
7354 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
7355 | } |
7356 | ||
7357 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 7358 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
7359 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
7360 | void *fpstp) \ | |
4373f3ce | 7361 | { \ |
5500b06c | 7362 | float_status *fpst = fpstp; \ |
622465e1 | 7363 | float##fsz tmp; \ |
8ed697e8 | 7364 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 7365 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
7366 | } |
7367 | ||
abe66f70 PM |
7368 | /* Notice that we want only input-denormal exception flags from the |
7369 | * scalbn operation: the other possible flags (overflow+inexact if | |
7370 | * we overflow to infinity, output-denormal) aren't correct for the | |
7371 | * complete scale-and-convert operation. | |
7372 | */ | |
16d5b3ca WN |
7373 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
7374 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
7375 | uint32_t shift, \ | |
7376 | void *fpstp) \ | |
4373f3ce | 7377 | { \ |
5500b06c | 7378 | float_status *fpst = fpstp; \ |
abe66f70 | 7379 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
7380 | float##fsz tmp; \ |
7381 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 7382 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 7383 | return 0; \ |
09d9487f | 7384 | } \ |
5500b06c | 7385 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
7386 | old_exc_flags |= get_float_exception_flags(fpst) \ |
7387 | & float_flag_input_denormal; \ | |
7388 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 7389 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
7390 | } |
7391 | ||
16d5b3ca WN |
7392 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
7393 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
7394 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
7395 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
7396 | ||
7397 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
7398 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
7399 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 7400 | |
8ed697e8 WN |
7401 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
7402 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 7403 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
7404 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
7405 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 7406 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
7407 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
7408 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 7409 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
7410 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
7411 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 7412 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 7413 | #undef VFP_CONV_FIX |
16d5b3ca WN |
7414 | #undef VFP_CONV_FIX_FLOAT |
7415 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 7416 | |
52a1f6a3 AG |
7417 | /* Set the current fp rounding mode and return the old one. |
7418 | * The argument is a softfloat float_round_ value. | |
7419 | */ | |
7420 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
7421 | { | |
7422 | float_status *fp_status = &env->vfp.fp_status; | |
7423 | ||
7424 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
7425 | set_float_rounding_mode(rmode, fp_status); | |
7426 | ||
7427 | return prev_rmode; | |
7428 | } | |
7429 | ||
43630e58 WN |
7430 | /* Set the current fp rounding mode in the standard fp status and return |
7431 | * the old one. This is for NEON instructions that need to change the | |
7432 | * rounding mode but wish to use the standard FPSCR values for everything | |
7433 | * else. Always set the rounding mode back to the correct value after | |
7434 | * modifying it. | |
7435 | * The argument is a softfloat float_round_ value. | |
7436 | */ | |
7437 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
7438 | { | |
7439 | float_status *fp_status = &env->vfp.standard_fp_status; | |
7440 | ||
7441 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
7442 | set_float_rounding_mode(rmode, fp_status); | |
7443 | ||
7444 | return prev_rmode; | |
7445 | } | |
7446 | ||
60011498 | 7447 | /* Half precision conversions. */ |
0ecb72a5 | 7448 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 7449 | { |
60011498 | 7450 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
7451 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
7452 | if (ieee) { | |
7453 | return float32_maybe_silence_nan(r); | |
7454 | } | |
7455 | return r; | |
60011498 PB |
7456 | } |
7457 | ||
0ecb72a5 | 7458 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 7459 | { |
60011498 | 7460 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
7461 | float16 r = float32_to_float16(a, ieee, s); |
7462 | if (ieee) { | |
7463 | r = float16_maybe_silence_nan(r); | |
7464 | } | |
7465 | return float16_val(r); | |
60011498 PB |
7466 | } |
7467 | ||
0ecb72a5 | 7468 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
7469 | { |
7470 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
7471 | } | |
7472 | ||
0ecb72a5 | 7473 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
7474 | { |
7475 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
7476 | } | |
7477 | ||
0ecb72a5 | 7478 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
7479 | { |
7480 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
7481 | } | |
7482 | ||
0ecb72a5 | 7483 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
7484 | { |
7485 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
7486 | } | |
7487 | ||
8900aad2 PM |
7488 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
7489 | { | |
7490 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
7491 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
7492 | if (ieee) { | |
7493 | return float64_maybe_silence_nan(r); | |
7494 | } | |
7495 | return r; | |
7496 | } | |
7497 | ||
7498 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
7499 | { | |
7500 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
7501 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
7502 | if (ieee) { | |
7503 | r = float16_maybe_silence_nan(r); | |
7504 | } | |
7505 | return float16_val(r); | |
7506 | } | |
7507 | ||
dda3ec49 | 7508 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
7509 | #define float32_three make_float32(0x40400000) |
7510 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 7511 | |
0ecb72a5 | 7512 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 7513 | { |
dda3ec49 PM |
7514 | float_status *s = &env->vfp.standard_fp_status; |
7515 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
7516 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
7517 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
7518 | float_raise(float_flag_input_denormal, s); | |
7519 | } | |
dda3ec49 PM |
7520 | return float32_two; |
7521 | } | |
7522 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
7523 | } |
7524 | ||
0ecb72a5 | 7525 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 7526 | { |
71826966 | 7527 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
7528 | float32 product; |
7529 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
7530 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
7531 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
7532 | float_raise(float_flag_input_denormal, s); | |
7533 | } | |
6aae3df1 | 7534 | return float32_one_point_five; |
9ea62f57 | 7535 | } |
6aae3df1 PM |
7536 | product = float32_mul(a, b, s); |
7537 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
7538 | } |
7539 | ||
8f8e3aa4 PB |
7540 | /* NEON helpers. */ |
7541 | ||
56bf4fe2 CL |
7542 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
7543 | * int->float conversions at run-time. */ | |
7544 | #define float64_256 make_float64(0x4070000000000000LL) | |
7545 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
7546 | #define float32_maxnorm make_float32(0x7f7fffff) |
7547 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 7548 | |
b6d4443a AB |
7549 | /* Reciprocal functions |
7550 | * | |
7551 | * The algorithm that must be used to calculate the estimate | |
7552 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 7553 | */ |
b6d4443a AB |
7554 | |
7555 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 7556 | { |
1146a817 PM |
7557 | /* These calculations mustn't set any fp exception flags, |
7558 | * so we use a local copy of the fp_status. | |
7559 | */ | |
b6d4443a | 7560 | float_status dummy_status = *real_fp_status; |
1146a817 | 7561 | float_status *s = &dummy_status; |
fe0e4872 CL |
7562 | /* q = (int)(a * 512.0) */ |
7563 | float64 q = float64_mul(float64_512, a, s); | |
7564 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
7565 | ||
7566 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
7567 | q = int64_to_float64(q_int, s); | |
7568 | q = float64_add(q, float64_half, s); | |
7569 | q = float64_div(q, float64_512, s); | |
7570 | q = float64_div(float64_one, q, s); | |
7571 | ||
7572 | /* s = (int)(256.0 * r + 0.5) */ | |
7573 | q = float64_mul(q, float64_256, s); | |
7574 | q = float64_add(q, float64_half, s); | |
7575 | q_int = float64_to_int64_round_to_zero(q, s); | |
7576 | ||
7577 | /* return (double)s / 256.0 */ | |
7578 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
7579 | } | |
7580 | ||
b6d4443a AB |
7581 | /* Common wrapper to call recip_estimate */ |
7582 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 7583 | { |
b6d4443a AB |
7584 | uint64_t val64 = float64_val(num); |
7585 | uint64_t frac = extract64(val64, 0, 52); | |
7586 | int64_t exp = extract64(val64, 52, 11); | |
7587 | uint64_t sbit; | |
7588 | float64 scaled, estimate; | |
fe0e4872 | 7589 | |
b6d4443a AB |
7590 | /* Generate the scaled number for the estimate function */ |
7591 | if (exp == 0) { | |
7592 | if (extract64(frac, 51, 1) == 0) { | |
7593 | exp = -1; | |
7594 | frac = extract64(frac, 0, 50) << 2; | |
7595 | } else { | |
7596 | frac = extract64(frac, 0, 51) << 1; | |
7597 | } | |
7598 | } | |
fe0e4872 | 7599 | |
b6d4443a AB |
7600 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
7601 | scaled = make_float64((0x3feULL << 52) | |
7602 | | extract64(frac, 44, 8) << 44); | |
7603 | ||
7604 | estimate = recip_estimate(scaled, fpst); | |
7605 | ||
7606 | /* Build new result */ | |
7607 | val64 = float64_val(estimate); | |
7608 | sbit = 0x8000000000000000ULL & val64; | |
7609 | exp = off - exp; | |
7610 | frac = extract64(val64, 0, 52); | |
7611 | ||
7612 | if (exp == 0) { | |
7613 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
7614 | } else if (exp == -1) { | |
7615 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
7616 | exp = 0; | |
7617 | } | |
7618 | ||
7619 | return make_float64(sbit | (exp << 52) | frac); | |
7620 | } | |
7621 | ||
7622 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
7623 | { | |
7624 | switch (fpst->float_rounding_mode) { | |
7625 | case float_round_nearest_even: /* Round to Nearest */ | |
7626 | return true; | |
7627 | case float_round_up: /* Round to +Inf */ | |
7628 | return !sign_bit; | |
7629 | case float_round_down: /* Round to -Inf */ | |
7630 | return sign_bit; | |
7631 | case float_round_to_zero: /* Round to Zero */ | |
7632 | return false; | |
7633 | } | |
7634 | ||
7635 | g_assert_not_reached(); | |
7636 | } | |
7637 | ||
7638 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
7639 | { | |
7640 | float_status *fpst = fpstp; | |
7641 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
7642 | uint32_t f32_val = float32_val(f32); | |
7643 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
7644 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
7645 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
7646 | float64 f64, r64; | |
7647 | uint64_t r64_val; | |
7648 | int64_t r64_exp; | |
7649 | uint64_t r64_frac; | |
7650 | ||
7651 | if (float32_is_any_nan(f32)) { | |
7652 | float32 nan = f32; | |
7653 | if (float32_is_signaling_nan(f32)) { | |
7654 | float_raise(float_flag_invalid, fpst); | |
7655 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 7656 | } |
b6d4443a AB |
7657 | if (fpst->default_nan_mode) { |
7658 | nan = float32_default_nan; | |
43fe9bdb | 7659 | } |
b6d4443a AB |
7660 | return nan; |
7661 | } else if (float32_is_infinity(f32)) { | |
7662 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
7663 | } else if (float32_is_zero(f32)) { | |
7664 | float_raise(float_flag_divbyzero, fpst); | |
7665 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
7666 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
7667 | /* Abs(value) < 2.0^-128 */ | |
7668 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
7669 | if (round_to_inf(fpst, f32_sbit)) { | |
7670 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
7671 | } else { | |
7672 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
7673 | } | |
7674 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
7675 | float_raise(float_flag_underflow, fpst); | |
7676 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
7677 | } |
7678 | ||
fe0e4872 | 7679 | |
b6d4443a AB |
7680 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
7681 | r64 = call_recip_estimate(f64, 253, fpst); | |
7682 | r64_val = float64_val(r64); | |
7683 | r64_exp = extract64(r64_val, 52, 11); | |
7684 | r64_frac = extract64(r64_val, 0, 52); | |
7685 | ||
7686 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
7687 | return make_float32(f32_sbit | | |
7688 | (r64_exp & 0xff) << 23 | | |
7689 | extract64(r64_frac, 29, 24)); | |
7690 | } | |
7691 | ||
7692 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
7693 | { | |
7694 | float_status *fpst = fpstp; | |
7695 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
7696 | uint64_t f64_val = float64_val(f64); | |
7697 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
7698 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
7699 | float64 r64; | |
7700 | uint64_t r64_val; | |
7701 | int64_t r64_exp; | |
7702 | uint64_t r64_frac; | |
7703 | ||
7704 | /* Deal with any special cases */ | |
7705 | if (float64_is_any_nan(f64)) { | |
7706 | float64 nan = f64; | |
7707 | if (float64_is_signaling_nan(f64)) { | |
7708 | float_raise(float_flag_invalid, fpst); | |
7709 | nan = float64_maybe_silence_nan(f64); | |
7710 | } | |
7711 | if (fpst->default_nan_mode) { | |
7712 | nan = float64_default_nan; | |
7713 | } | |
7714 | return nan; | |
7715 | } else if (float64_is_infinity(f64)) { | |
7716 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
7717 | } else if (float64_is_zero(f64)) { | |
7718 | float_raise(float_flag_divbyzero, fpst); | |
7719 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7720 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
7721 | /* Abs(value) < 2.0^-1024 */ | |
7722 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
7723 | if (round_to_inf(fpst, f64_sbit)) { | |
7724 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7725 | } else { | |
7726 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
7727 | } | |
fc1792e9 | 7728 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
7729 | float_raise(float_flag_underflow, fpst); |
7730 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
7731 | } | |
fe0e4872 | 7732 | |
b6d4443a AB |
7733 | r64 = call_recip_estimate(f64, 2045, fpst); |
7734 | r64_val = float64_val(r64); | |
7735 | r64_exp = extract64(r64_val, 52, 11); | |
7736 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 7737 | |
b6d4443a AB |
7738 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
7739 | return make_float64(f64_sbit | | |
7740 | ((r64_exp & 0x7ff) << 52) | | |
7741 | r64_frac); | |
4373f3ce PB |
7742 | } |
7743 | ||
e07be5d2 CL |
7744 | /* The algorithm that must be used to calculate the estimate |
7745 | * is specified by the ARM ARM. | |
7746 | */ | |
c2fb418e | 7747 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 7748 | { |
1146a817 PM |
7749 | /* These calculations mustn't set any fp exception flags, |
7750 | * so we use a local copy of the fp_status. | |
7751 | */ | |
c2fb418e | 7752 | float_status dummy_status = *real_fp_status; |
1146a817 | 7753 | float_status *s = &dummy_status; |
e07be5d2 CL |
7754 | float64 q; |
7755 | int64_t q_int; | |
7756 | ||
7757 | if (float64_lt(a, float64_half, s)) { | |
7758 | /* range 0.25 <= a < 0.5 */ | |
7759 | ||
7760 | /* a in units of 1/512 rounded down */ | |
7761 | /* q0 = (int)(a * 512.0); */ | |
7762 | q = float64_mul(float64_512, a, s); | |
7763 | q_int = float64_to_int64_round_to_zero(q, s); | |
7764 | ||
7765 | /* reciprocal root r */ | |
7766 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
7767 | q = int64_to_float64(q_int, s); | |
7768 | q = float64_add(q, float64_half, s); | |
7769 | q = float64_div(q, float64_512, s); | |
7770 | q = float64_sqrt(q, s); | |
7771 | q = float64_div(float64_one, q, s); | |
7772 | } else { | |
7773 | /* range 0.5 <= a < 1.0 */ | |
7774 | ||
7775 | /* a in units of 1/256 rounded down */ | |
7776 | /* q1 = (int)(a * 256.0); */ | |
7777 | q = float64_mul(float64_256, a, s); | |
7778 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
7779 | ||
7780 | /* reciprocal root r */ | |
7781 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
7782 | q = int64_to_float64(q_int, s); | |
7783 | q = float64_add(q, float64_half, s); | |
7784 | q = float64_div(q, float64_256, s); | |
7785 | q = float64_sqrt(q, s); | |
7786 | q = float64_div(float64_one, q, s); | |
7787 | } | |
7788 | /* r in units of 1/256 rounded to nearest */ | |
7789 | /* s = (int)(256.0 * r + 0.5); */ | |
7790 | ||
7791 | q = float64_mul(q, float64_256,s ); | |
7792 | q = float64_add(q, float64_half, s); | |
7793 | q_int = float64_to_int64_round_to_zero(q, s); | |
7794 | ||
7795 | /* return (double)s / 256.0;*/ | |
7796 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
7797 | } | |
7798 | ||
c2fb418e | 7799 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 7800 | { |
c2fb418e AB |
7801 | float_status *s = fpstp; |
7802 | float32 f32 = float32_squash_input_denormal(input, s); | |
7803 | uint32_t val = float32_val(f32); | |
7804 | uint32_t f32_sbit = 0x80000000 & val; | |
7805 | int32_t f32_exp = extract32(val, 23, 8); | |
7806 | uint32_t f32_frac = extract32(val, 0, 23); | |
7807 | uint64_t f64_frac; | |
7808 | uint64_t val64; | |
e07be5d2 CL |
7809 | int result_exp; |
7810 | float64 f64; | |
e07be5d2 | 7811 | |
c2fb418e AB |
7812 | if (float32_is_any_nan(f32)) { |
7813 | float32 nan = f32; | |
7814 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 7815 | float_raise(float_flag_invalid, s); |
c2fb418e | 7816 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 7817 | } |
c2fb418e AB |
7818 | if (s->default_nan_mode) { |
7819 | nan = float32_default_nan; | |
43fe9bdb | 7820 | } |
c2fb418e AB |
7821 | return nan; |
7822 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 7823 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
7824 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
7825 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
7826 | float_raise(float_flag_invalid, s); |
7827 | return float32_default_nan; | |
c2fb418e | 7828 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
7829 | return float32_zero; |
7830 | } | |
7831 | ||
c2fb418e | 7832 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 7833 | * preserving the parity of the exponent. */ |
c2fb418e AB |
7834 | |
7835 | f64_frac = ((uint64_t) f32_frac) << 29; | |
7836 | if (f32_exp == 0) { | |
7837 | while (extract64(f64_frac, 51, 1) == 0) { | |
7838 | f64_frac = f64_frac << 1; | |
7839 | f32_exp = f32_exp-1; | |
7840 | } | |
7841 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
7842 | } | |
7843 | ||
7844 | if (extract64(f32_exp, 0, 1) == 0) { | |
7845 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 7846 | | (0x3feULL << 52) |
c2fb418e | 7847 | | f64_frac); |
e07be5d2 | 7848 | } else { |
c2fb418e | 7849 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 7850 | | (0x3fdULL << 52) |
c2fb418e | 7851 | | f64_frac); |
e07be5d2 CL |
7852 | } |
7853 | ||
c2fb418e | 7854 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 7855 | |
c2fb418e | 7856 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
7857 | |
7858 | val64 = float64_val(f64); | |
7859 | ||
26cc6abf | 7860 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
7861 | | ((val64 >> 29) & 0x7fffff); |
7862 | return make_float32(val); | |
4373f3ce PB |
7863 | } |
7864 | ||
c2fb418e AB |
7865 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
7866 | { | |
7867 | float_status *s = fpstp; | |
7868 | float64 f64 = float64_squash_input_denormal(input, s); | |
7869 | uint64_t val = float64_val(f64); | |
7870 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
7871 | int64_t f64_exp = extract64(val, 52, 11); | |
7872 | uint64_t f64_frac = extract64(val, 0, 52); | |
7873 | int64_t result_exp; | |
7874 | uint64_t result_frac; | |
7875 | ||
7876 | if (float64_is_any_nan(f64)) { | |
7877 | float64 nan = f64; | |
7878 | if (float64_is_signaling_nan(f64)) { | |
7879 | float_raise(float_flag_invalid, s); | |
7880 | nan = float64_maybe_silence_nan(f64); | |
7881 | } | |
7882 | if (s->default_nan_mode) { | |
7883 | nan = float64_default_nan; | |
7884 | } | |
7885 | return nan; | |
7886 | } else if (float64_is_zero(f64)) { | |
7887 | float_raise(float_flag_divbyzero, s); | |
7888 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7889 | } else if (float64_is_neg(f64)) { | |
7890 | float_raise(float_flag_invalid, s); | |
7891 | return float64_default_nan; | |
7892 | } else if (float64_is_infinity(f64)) { | |
7893 | return float64_zero; | |
7894 | } | |
7895 | ||
7896 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
7897 | * preserving the parity of the exponent. */ | |
7898 | ||
7899 | if (f64_exp == 0) { | |
7900 | while (extract64(f64_frac, 51, 1) == 0) { | |
7901 | f64_frac = f64_frac << 1; | |
7902 | f64_exp = f64_exp - 1; | |
7903 | } | |
7904 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
7905 | } | |
7906 | ||
7907 | if (extract64(f64_exp, 0, 1) == 0) { | |
7908 | f64 = make_float64(f64_sbit | |
7909 | | (0x3feULL << 52) | |
7910 | | f64_frac); | |
7911 | } else { | |
7912 | f64 = make_float64(f64_sbit | |
7913 | | (0x3fdULL << 52) | |
7914 | | f64_frac); | |
7915 | } | |
7916 | ||
7917 | result_exp = (3068 - f64_exp) / 2; | |
7918 | ||
7919 | f64 = recip_sqrt_estimate(f64, s); | |
7920 | ||
7921 | result_frac = extract64(float64_val(f64), 0, 52); | |
7922 | ||
7923 | return make_float64(f64_sbit | | |
7924 | ((result_exp & 0x7ff) << 52) | | |
7925 | result_frac); | |
7926 | } | |
7927 | ||
b6d4443a | 7928 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 7929 | { |
b6d4443a | 7930 | float_status *s = fpstp; |
fe0e4872 CL |
7931 | float64 f64; |
7932 | ||
7933 | if ((a & 0x80000000) == 0) { | |
7934 | return 0xffffffff; | |
7935 | } | |
7936 | ||
7937 | f64 = make_float64((0x3feULL << 52) | |
7938 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
7939 | ||
b6d4443a | 7940 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
7941 | |
7942 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
7943 | } |
7944 | ||
c2fb418e | 7945 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 7946 | { |
c2fb418e | 7947 | float_status *fpst = fpstp; |
e07be5d2 CL |
7948 | float64 f64; |
7949 | ||
7950 | if ((a & 0xc0000000) == 0) { | |
7951 | return 0xffffffff; | |
7952 | } | |
7953 | ||
7954 | if (a & 0x80000000) { | |
7955 | f64 = make_float64((0x3feULL << 52) | |
7956 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
7957 | } else { /* bits 31-30 == '01' */ | |
7958 | f64 = make_float64((0x3fdULL << 52) | |
7959 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
7960 | } | |
7961 | ||
c2fb418e | 7962 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
7963 | |
7964 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 7965 | } |
fe1479c3 | 7966 | |
da97f52c PM |
7967 | /* VFPv4 fused multiply-accumulate */ |
7968 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
7969 | { | |
7970 | float_status *fpst = fpstp; | |
7971 | return float32_muladd(a, b, c, 0, fpst); | |
7972 | } | |
7973 | ||
7974 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
7975 | { | |
7976 | float_status *fpst = fpstp; | |
7977 | return float64_muladd(a, b, c, 0, fpst); | |
7978 | } | |
d9b0848d PM |
7979 | |
7980 | /* ARMv8 round to integral */ | |
7981 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
7982 | { | |
7983 | return float32_round_to_int(x, fp_status); | |
7984 | } | |
7985 | ||
7986 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
7987 | { | |
7988 | return float64_round_to_int(x, fp_status); | |
7989 | } | |
7990 | ||
7991 | float32 HELPER(rints)(float32 x, void *fp_status) | |
7992 | { | |
7993 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
7994 | float32 ret; | |
7995 | ||
7996 | ret = float32_round_to_int(x, fp_status); | |
7997 | ||
7998 | /* Suppress any inexact exceptions the conversion produced */ | |
7999 | if (!(old_flags & float_flag_inexact)) { | |
8000 | new_flags = get_float_exception_flags(fp_status); | |
8001 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
8002 | } | |
8003 | ||
8004 | return ret; | |
8005 | } | |
8006 | ||
8007 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
8008 | { | |
8009 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
8010 | float64 ret; | |
8011 | ||
8012 | ret = float64_round_to_int(x, fp_status); | |
8013 | ||
8014 | new_flags = get_float_exception_flags(fp_status); | |
8015 | ||
8016 | /* Suppress any inexact exceptions the conversion produced */ | |
8017 | if (!(old_flags & float_flag_inexact)) { | |
8018 | new_flags = get_float_exception_flags(fp_status); | |
8019 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
8020 | } | |
8021 | ||
8022 | return ret; | |
8023 | } | |
9972da66 WN |
8024 | |
8025 | /* Convert ARM rounding mode to softfloat */ | |
8026 | int arm_rmode_to_sf(int rmode) | |
8027 | { | |
8028 | switch (rmode) { | |
8029 | case FPROUNDING_TIEAWAY: | |
8030 | rmode = float_round_ties_away; | |
8031 | break; | |
8032 | case FPROUNDING_ODD: | |
8033 | /* FIXME: add support for TIEAWAY and ODD */ | |
8034 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
8035 | rmode); | |
8036 | case FPROUNDING_TIEEVEN: | |
8037 | default: | |
8038 | rmode = float_round_nearest_even; | |
8039 | break; | |
8040 | case FPROUNDING_POSINF: | |
8041 | rmode = float_round_up; | |
8042 | break; | |
8043 | case FPROUNDING_NEGINF: | |
8044 | rmode = float_round_down; | |
8045 | break; | |
8046 | case FPROUNDING_ZERO: | |
8047 | rmode = float_round_to_zero; | |
8048 | break; | |
8049 | } | |
8050 | return rmode; | |
8051 | } | |
eb0ecd5a | 8052 | |
aa633469 PM |
8053 | /* CRC helpers. |
8054 | * The upper bytes of val (above the number specified by 'bytes') must have | |
8055 | * been zeroed out by the caller. | |
8056 | */ | |
eb0ecd5a WN |
8057 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
8058 | { | |
8059 | uint8_t buf[4]; | |
8060 | ||
aa633469 | 8061 | stl_le_p(buf, val); |
eb0ecd5a WN |
8062 | |
8063 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
8064 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
8065 | } | |
8066 | ||
8067 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
8068 | { | |
8069 | uint8_t buf[4]; | |
8070 | ||
aa633469 | 8071 | stl_le_p(buf, val); |
eb0ecd5a WN |
8072 | |
8073 | /* Linux crc32c converts the output to one's complement. */ | |
8074 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
8075 | } |