]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
022c62cb | 2 | #include "exec/gdbstub.h" |
7b59220e | 3 | #include "helper.h" |
1de7afc9 | 4 | #include "qemu/host-utils.h" |
9c17d615 | 5 | #include "sysemu/sysemu.h" |
1de7afc9 | 6 | #include "qemu/bitops.h" |
0b03bdfc | 7 | |
4a501606 PM |
8 | #ifndef CONFIG_USER_ONLY |
9 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |
10 | int access_type, int is_user, | |
a8170e5e | 11 | hwaddr *phys_ptr, int *prot, |
4a501606 PM |
12 | target_ulong *page_size); |
13 | #endif | |
14 | ||
0ecb72a5 | 15 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
16 | { |
17 | int nregs; | |
18 | ||
19 | /* VFP data registers are always little-endian. */ | |
20 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
21 | if (reg < nregs) { | |
22 | stfq_le_p(buf, env->vfp.regs[reg]); | |
23 | return 8; | |
24 | } | |
25 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
26 | /* Aliases for Q regs. */ | |
27 | nregs += 16; | |
28 | if (reg < nregs) { | |
29 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
30 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
31 | return 16; | |
32 | } | |
33 | } | |
34 | switch (reg - nregs) { | |
35 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
36 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
37 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
38 | } | |
39 | return 0; | |
40 | } | |
41 | ||
0ecb72a5 | 42 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
43 | { |
44 | int nregs; | |
45 | ||
46 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
47 | if (reg < nregs) { | |
48 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
49 | return 8; | |
50 | } | |
51 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
52 | nregs += 16; | |
53 | if (reg < nregs) { | |
54 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
55 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
56 | return 16; | |
57 | } | |
58 | } | |
59 | switch (reg - nregs) { | |
60 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
61 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 62 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
63 | } |
64 | return 0; | |
65 | } | |
66 | ||
d4e6df63 PM |
67 | static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri, |
68 | uint64_t *value) | |
69 | { | |
70 | *value = CPREG_FIELD32(env, ri); | |
71 | return 0; | |
72 | } | |
73 | ||
74 | static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
75 | uint64_t value) | |
76 | { | |
77 | CPREG_FIELD32(env, ri) = value; | |
78 | return 0; | |
79 | } | |
80 | ||
721fae12 PM |
81 | static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
82 | uint64_t *v) | |
83 | { | |
84 | /* Raw read of a coprocessor register (as needed for migration, etc) | |
85 | * return true on success, false if the read is impossible for some reason. | |
86 | */ | |
87 | if (ri->type & ARM_CP_CONST) { | |
88 | *v = ri->resetvalue; | |
89 | } else if (ri->raw_readfn) { | |
90 | return (ri->raw_readfn(env, ri, v) == 0); | |
91 | } else if (ri->readfn) { | |
92 | return (ri->readfn(env, ri, v) == 0); | |
93 | } else { | |
94 | if (ri->type & ARM_CP_64BIT) { | |
95 | *v = CPREG_FIELD64(env, ri); | |
96 | } else { | |
97 | *v = CPREG_FIELD32(env, ri); | |
98 | } | |
99 | } | |
100 | return true; | |
101 | } | |
102 | ||
103 | static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, | |
104 | int64_t v) | |
105 | { | |
106 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
107 | * Return true on success, false if the write is impossible for some reason. | |
108 | * Note that constant registers are treated as write-ignored; the | |
109 | * caller should check for success by whether a readback gives the | |
110 | * value written. | |
111 | */ | |
112 | if (ri->type & ARM_CP_CONST) { | |
113 | return true; | |
114 | } else if (ri->raw_writefn) { | |
115 | return (ri->raw_writefn(env, ri, v) == 0); | |
116 | } else if (ri->writefn) { | |
117 | return (ri->writefn(env, ri, v) == 0); | |
118 | } else { | |
119 | if (ri->type & ARM_CP_64BIT) { | |
120 | CPREG_FIELD64(env, ri) = v; | |
121 | } else { | |
122 | CPREG_FIELD32(env, ri) = v; | |
123 | } | |
124 | } | |
125 | return true; | |
126 | } | |
127 | ||
128 | bool write_cpustate_to_list(ARMCPU *cpu) | |
129 | { | |
130 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
131 | int i; | |
132 | bool ok = true; | |
133 | ||
134 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
135 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
136 | const ARMCPRegInfo *ri; | |
137 | uint64_t v; | |
138 | ri = get_arm_cp_reginfo(cpu, regidx); | |
139 | if (!ri) { | |
140 | ok = false; | |
141 | continue; | |
142 | } | |
143 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
144 | continue; | |
145 | } | |
146 | if (!read_raw_cp_reg(&cpu->env, ri, &v)) { | |
147 | ok = false; | |
148 | continue; | |
149 | } | |
150 | cpu->cpreg_values[i] = v; | |
151 | } | |
152 | return ok; | |
153 | } | |
154 | ||
155 | bool write_list_to_cpustate(ARMCPU *cpu) | |
156 | { | |
157 | int i; | |
158 | bool ok = true; | |
159 | ||
160 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
161 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
162 | uint64_t v = cpu->cpreg_values[i]; | |
163 | uint64_t readback; | |
164 | const ARMCPRegInfo *ri; | |
165 | ||
166 | ri = get_arm_cp_reginfo(cpu, regidx); | |
167 | if (!ri) { | |
168 | ok = false; | |
169 | continue; | |
170 | } | |
171 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
172 | continue; | |
173 | } | |
174 | /* Write value and confirm it reads back as written | |
175 | * (to catch read-only registers and partially read-only | |
176 | * registers where the incoming migration value doesn't match) | |
177 | */ | |
178 | if (!write_raw_cp_reg(&cpu->env, ri, v) || | |
179 | !read_raw_cp_reg(&cpu->env, ri, &readback) || | |
180 | readback != v) { | |
181 | ok = false; | |
182 | } | |
183 | } | |
184 | return ok; | |
185 | } | |
186 | ||
187 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
188 | { | |
189 | ARMCPU *cpu = opaque; | |
190 | uint64_t regidx; | |
191 | const ARMCPRegInfo *ri; | |
192 | ||
193 | regidx = *(uint32_t *)key; | |
194 | ri = get_arm_cp_reginfo(cpu, regidx); | |
195 | ||
196 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
197 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |
198 | /* The value array need not be initialized at this point */ | |
199 | cpu->cpreg_array_len++; | |
200 | } | |
201 | } | |
202 | ||
203 | static void count_cpreg(gpointer key, gpointer opaque) | |
204 | { | |
205 | ARMCPU *cpu = opaque; | |
206 | uint64_t regidx; | |
207 | const ARMCPRegInfo *ri; | |
208 | ||
209 | regidx = *(uint32_t *)key; | |
210 | ri = get_arm_cp_reginfo(cpu, regidx); | |
211 | ||
212 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
213 | cpu->cpreg_array_len++; | |
214 | } | |
215 | } | |
216 | ||
217 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
218 | { | |
219 | uint32_t aidx = *(uint32_t *)a; | |
220 | uint32_t bidx = *(uint32_t *)b; | |
221 | ||
222 | return aidx - bidx; | |
223 | } | |
224 | ||
82a3a118 PM |
225 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
226 | { | |
227 | GList **plist = udata; | |
228 | ||
229 | *plist = g_list_prepend(*plist, key); | |
230 | } | |
231 | ||
721fae12 PM |
232 | void init_cpreg_list(ARMCPU *cpu) |
233 | { | |
234 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
235 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
236 | */ | |
82a3a118 | 237 | GList *keys = NULL; |
721fae12 PM |
238 | int arraylen; |
239 | ||
82a3a118 PM |
240 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
241 | ||
721fae12 PM |
242 | keys = g_list_sort(keys, cpreg_key_compare); |
243 | ||
244 | cpu->cpreg_array_len = 0; | |
245 | ||
246 | g_list_foreach(keys, count_cpreg, cpu); | |
247 | ||
248 | arraylen = cpu->cpreg_array_len; | |
249 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
250 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
251 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
252 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
253 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
254 | cpu->cpreg_array_len = 0; | |
255 | ||
256 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
257 | ||
258 | assert(cpu->cpreg_array_len == arraylen); | |
259 | ||
260 | g_list_free(keys); | |
261 | } | |
262 | ||
c983fe6c PM |
263 | static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
264 | { | |
265 | env->cp15.c3 = value; | |
266 | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ | |
267 | return 0; | |
268 | } | |
269 | ||
08de207b PM |
270 | static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
271 | { | |
272 | if (env->cp15.c13_fcse != value) { | |
273 | /* Unlike real hardware the qemu TLB uses virtual addresses, | |
274 | * not modified virtual addresses, so this causes a TLB flush. | |
275 | */ | |
276 | tlb_flush(env, 1); | |
277 | env->cp15.c13_fcse = value; | |
278 | } | |
279 | return 0; | |
280 | } | |
281 | static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
282 | uint64_t value) | |
283 | { | |
284 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { | |
285 | /* For VMSA (when not using the LPAE long descriptor page table | |
286 | * format) this register includes the ASID, so do a TLB flush. | |
287 | * For PMSA it is purely a process ID and no action is needed. | |
288 | */ | |
289 | tlb_flush(env, 1); | |
290 | } | |
291 | env->cp15.c13_context = value; | |
292 | return 0; | |
293 | } | |
294 | ||
d929823f PM |
295 | static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
296 | uint64_t value) | |
297 | { | |
298 | /* Invalidate all (TLBIALL) */ | |
299 | tlb_flush(env, 1); | |
300 | return 0; | |
301 | } | |
302 | ||
303 | static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
304 | uint64_t value) | |
305 | { | |
306 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
307 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
308 | return 0; | |
309 | } | |
310 | ||
311 | static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
312 | uint64_t value) | |
313 | { | |
314 | /* Invalidate by ASID (TLBIASID) */ | |
315 | tlb_flush(env, value == 0); | |
316 | return 0; | |
317 | } | |
318 | ||
319 | static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
320 | uint64_t value) | |
321 | { | |
322 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
323 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
324 | return 0; | |
325 | } | |
326 | ||
e9aa6c21 PM |
327 | static const ARMCPRegInfo cp_reginfo[] = { |
328 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture | |
329 | * version" bits will read as a reserved value, which should cause | |
330 | * Linux to not try to use the debug hardware. | |
331 | */ | |
332 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
333 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
c983fe6c PM |
334 | /* MMU Domain access control / MPU write buffer control */ |
335 | { .name = "DACR", .cp = 15, | |
336 | .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
337 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
d4e6df63 | 338 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, |
08de207b PM |
339 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
340 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 341 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
08de207b PM |
342 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
343 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 344 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
4fdd17dd PM |
345 | /* ??? This covers not just the impdef TLB lockdown registers but also |
346 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
347 | */ | |
348 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
349 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
d929823f PM |
350 | /* MMU TLB control. Note that the wildcarding means we cover not just |
351 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
352 | */ | |
353 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
d4e6df63 PM |
354 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
355 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 356 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
357 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
358 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 359 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
360 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
361 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 362 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
363 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
364 | .type = ARM_CP_NO_MIGRATE }, | |
c4804214 PM |
365 | /* Cache maintenance ops; some of this space may be overridden later. */ |
366 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
367 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
368 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
369 | REGINFO_SENTINEL |
370 | }; | |
371 | ||
7d57f408 PM |
372 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
373 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
374 | * over-broad. | |
375 | */ | |
376 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
377 | .access = PL1_W, .type = ARM_CP_WFI }, | |
378 | REGINFO_SENTINEL | |
379 | }; | |
380 | ||
381 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
382 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
383 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
384 | */ | |
385 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
386 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
387 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
388 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
389 | * OMAPCP will override this space. | |
390 | */ | |
391 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
392 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
393 | .resetvalue = 0 }, | |
394 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
395 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
396 | .resetvalue = 0 }, | |
776d4e5c PM |
397 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
398 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
d4e6df63 PM |
399 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
400 | .resetvalue = 0 }, | |
7d57f408 PM |
401 | REGINFO_SENTINEL |
402 | }; | |
403 | ||
2771db27 PM |
404 | static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
405 | { | |
406 | if (env->cp15.c1_coproc != value) { | |
407 | env->cp15.c1_coproc = value; | |
408 | /* ??? Is this safe when called from within a TB? */ | |
409 | tb_flush(env); | |
410 | } | |
411 | return 0; | |
412 | } | |
413 | ||
7d57f408 PM |
414 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
415 | /* prefetch by MVA in v6, NOP in v7 */ | |
416 | { .name = "MVA_prefetch", | |
417 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
418 | .access = PL1_W, .type = ARM_CP_NOP }, | |
419 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
420 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 421 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 422 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 423 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 424 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 PM |
425 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
426 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), | |
427 | .resetvalue = 0, }, | |
428 | /* Watchpoint Fault Address Register : should actually only be present | |
429 | * for 1136, 1176, 11MPCore. | |
430 | */ | |
431 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
432 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
2771db27 PM |
433 | { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, |
434 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), | |
435 | .resetvalue = 0, .writefn = cpacr_write }, | |
7d57f408 PM |
436 | REGINFO_SENTINEL |
437 | }; | |
438 | ||
d4e6df63 | 439 | |
200ac0ef PM |
440 | static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri, |
441 | uint64_t *value) | |
442 | { | |
443 | /* Generic performance monitor register read function for where | |
444 | * user access may be allowed by PMUSERENR. | |
445 | */ | |
446 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
447 | return EXCP_UDEF; | |
448 | } | |
449 | *value = CPREG_FIELD32(env, ri); | |
450 | return 0; | |
451 | } | |
452 | ||
453 | static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
454 | uint64_t value) | |
455 | { | |
456 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
457 | return EXCP_UDEF; | |
458 | } | |
459 | /* only the DP, X, D and E bits are writable */ | |
460 | env->cp15.c9_pmcr &= ~0x39; | |
461 | env->cp15.c9_pmcr |= (value & 0x39); | |
462 | return 0; | |
463 | } | |
464 | ||
465 | static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
466 | uint64_t value) | |
467 | { | |
468 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
469 | return EXCP_UDEF; | |
470 | } | |
471 | value &= (1 << 31); | |
472 | env->cp15.c9_pmcnten |= value; | |
473 | return 0; | |
474 | } | |
475 | ||
476 | static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
477 | uint64_t value) | |
478 | { | |
479 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
480 | return EXCP_UDEF; | |
481 | } | |
482 | value &= (1 << 31); | |
483 | env->cp15.c9_pmcnten &= ~value; | |
484 | return 0; | |
485 | } | |
486 | ||
487 | static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
488 | uint64_t value) | |
489 | { | |
490 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
491 | return EXCP_UDEF; | |
492 | } | |
493 | env->cp15.c9_pmovsr &= ~value; | |
494 | return 0; | |
495 | } | |
496 | ||
497 | static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
498 | uint64_t value) | |
499 | { | |
500 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
501 | return EXCP_UDEF; | |
502 | } | |
503 | env->cp15.c9_pmxevtyper = value & 0xff; | |
504 | return 0; | |
505 | } | |
506 | ||
507 | static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
508 | uint64_t value) | |
509 | { | |
510 | env->cp15.c9_pmuserenr = value & 1; | |
511 | return 0; | |
512 | } | |
513 | ||
514 | static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
515 | uint64_t value) | |
516 | { | |
517 | /* We have no event counters so only the C bit can be changed */ | |
518 | value &= (1 << 31); | |
519 | env->cp15.c9_pminten |= value; | |
520 | return 0; | |
521 | } | |
522 | ||
523 | static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
524 | uint64_t value) | |
525 | { | |
526 | value &= (1 << 31); | |
527 | env->cp15.c9_pminten &= ~value; | |
528 | return 0; | |
529 | } | |
530 | ||
776d4e5c PM |
531 | static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
532 | uint64_t *value) | |
533 | { | |
534 | ARMCPU *cpu = arm_env_get_cpu(env); | |
535 | *value = cpu->ccsidr[env->cp15.c0_cssel]; | |
536 | return 0; | |
537 | } | |
538 | ||
539 | static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
540 | uint64_t value) | |
541 | { | |
542 | env->cp15.c0_cssel = value & 0xf; | |
543 | return 0; | |
544 | } | |
545 | ||
e9aa6c21 PM |
546 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
547 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | |
548 | * debug components | |
549 | */ | |
550 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
551 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
091fd17c | 552 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
e9aa6c21 | 553 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
7d57f408 PM |
554 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
555 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
556 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
557 | /* Performance monitors are implementation defined in v7, |
558 | * but with an ARM recommended set of registers, which we | |
559 | * follow (although we don't actually implement any counters) | |
560 | * | |
561 | * Performance registers fall into three categories: | |
562 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
563 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
564 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
565 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
566 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
567 | */ | |
568 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
569 | .access = PL0_RW, .resetvalue = 0, | |
570 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
d4e6df63 PM |
571 | .readfn = pmreg_read, .writefn = pmcntenset_write, |
572 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |
200ac0ef PM |
573 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
574 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
d4e6df63 PM |
575 | .readfn = pmreg_read, .writefn = pmcntenclr_write, |
576 | .type = ARM_CP_NO_MIGRATE }, | |
200ac0ef PM |
577 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
578 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
d4e6df63 PM |
579 | .readfn = pmreg_read, .writefn = pmovsr_write, |
580 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |
200ac0ef PM |
581 | /* Unimplemented so WI. Strictly speaking write accesses in PL0 should |
582 | * respect PMUSERENR. | |
583 | */ | |
584 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, | |
585 | .access = PL0_W, .type = ARM_CP_NOP }, | |
586 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. | |
587 | * We choose to RAZ/WI. XXX should respect PMUSERENR. | |
588 | */ | |
589 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
590 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
591 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ | |
592 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, | |
593 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
594 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, | |
595 | .access = PL0_RW, | |
596 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
d4e6df63 PM |
597 | .readfn = pmreg_read, .writefn = pmxevtyper_write, |
598 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |
200ac0ef PM |
599 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ |
600 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, | |
601 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
602 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, | |
603 | .access = PL0_R | PL1_RW, | |
604 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
605 | .resetvalue = 0, | |
d4e6df63 | 606 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
607 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
608 | .access = PL1_RW, | |
609 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
610 | .resetvalue = 0, | |
d4e6df63 | 611 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 612 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
d4e6df63 | 613 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
200ac0ef | 614 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
d4e6df63 | 615 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
2771db27 PM |
616 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
617 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), | |
618 | .resetvalue = 0, }, | |
776d4e5c | 619 | { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
d4e6df63 | 620 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, |
776d4e5c PM |
621 | { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
622 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), | |
623 | .writefn = csselr_write, .resetvalue = 0 }, | |
624 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |
625 | * just RAZ for all cores: | |
626 | */ | |
627 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, | |
628 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
e9aa6c21 PM |
629 | REGINFO_SENTINEL |
630 | }; | |
631 | ||
c326b979 PM |
632 | static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
633 | { | |
634 | value &= 1; | |
635 | env->teecr = value; | |
636 | return 0; | |
637 | } | |
638 | ||
639 | static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
640 | uint64_t *value) | |
641 | { | |
642 | /* This is a helper function because the user access rights | |
643 | * depend on the value of the TEECR. | |
644 | */ | |
645 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |
646 | return EXCP_UDEF; | |
647 | } | |
648 | *value = env->teehbr; | |
649 | return 0; | |
650 | } | |
651 | ||
652 | static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
653 | uint64_t value) | |
654 | { | |
655 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |
656 | return EXCP_UDEF; | |
657 | } | |
658 | env->teehbr = value; | |
659 | return 0; | |
660 | } | |
661 | ||
662 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
663 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
664 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
665 | .resetvalue = 0, | |
666 | .writefn = teecr_write }, | |
667 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
668 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
d4e6df63 | 669 | .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write, |
c326b979 PM |
670 | .readfn = teehbr_read, .writefn = teehbr_write }, |
671 | REGINFO_SENTINEL | |
672 | }; | |
673 | ||
4d31c596 PM |
674 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
675 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, | |
676 | .access = PL0_RW, | |
677 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1), | |
678 | .resetvalue = 0 }, | |
679 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, | |
680 | .access = PL0_R|PL1_W, | |
681 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2), | |
682 | .resetvalue = 0 }, | |
683 | { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4, | |
684 | .access = PL1_RW, | |
685 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3), | |
686 | .resetvalue = 0 }, | |
687 | REGINFO_SENTINEL | |
688 | }; | |
689 | ||
6cc7a3ae PM |
690 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
691 | /* Dummy implementation: RAZ/WI the whole crn=14 space */ | |
692 | { .name = "GENERIC_TIMER", .cp = 15, .crn = 14, | |
693 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
694 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
695 | .resetvalue = 0 }, | |
6cc7a3ae PM |
696 | REGINFO_SENTINEL |
697 | }; | |
698 | ||
4a501606 PM |
699 | static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
700 | { | |
891a2fe7 PM |
701 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
702 | env->cp15.c7_par = value; | |
703 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
4a501606 PM |
704 | env->cp15.c7_par = value & 0xfffff6ff; |
705 | } else { | |
706 | env->cp15.c7_par = value & 0xfffff1ff; | |
707 | } | |
708 | return 0; | |
709 | } | |
710 | ||
711 | #ifndef CONFIG_USER_ONLY | |
712 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 PM |
713 | |
714 | /* Return true if extended addresses are enabled, ie this is an | |
715 | * LPAE implementation and we are using the long-descriptor translation | |
716 | * table format because the TTBCR EAE bit is set. | |
717 | */ | |
718 | static inline bool extended_addresses_enabled(CPUARMState *env) | |
719 | { | |
720 | return arm_feature(env, ARM_FEATURE_LPAE) | |
721 | && (env->cp15.c2_control & (1 << 31)); | |
722 | } | |
723 | ||
4a501606 PM |
724 | static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
725 | { | |
a8170e5e | 726 | hwaddr phys_addr; |
4a501606 PM |
727 | target_ulong page_size; |
728 | int prot; | |
729 | int ret, is_user = ri->opc2 & 2; | |
730 | int access_type = ri->opc2 & 1; | |
731 | ||
732 | if (ri->opc2 & 4) { | |
733 | /* Other states are only available with TrustZone */ | |
734 | return EXCP_UDEF; | |
735 | } | |
736 | ret = get_phys_addr(env, value, access_type, is_user, | |
737 | &phys_addr, &prot, &page_size); | |
702a9357 PM |
738 | if (extended_addresses_enabled(env)) { |
739 | /* ret is a DFSR/IFSR value for the long descriptor | |
740 | * translation table format, but with WnR always clear. | |
741 | * Convert it to a 64-bit PAR. | |
742 | */ | |
743 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
744 | if (ret == 0) { | |
745 | par64 |= phys_addr & ~0xfffULL; | |
746 | /* We don't set the ATTR or SH fields in the PAR. */ | |
4a501606 | 747 | } else { |
702a9357 PM |
748 | par64 |= 1; /* F */ |
749 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
750 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
751 | * implement virtualization and therefore there can't be a stage 2 | |
752 | * fault. | |
753 | */ | |
4a501606 | 754 | } |
702a9357 PM |
755 | env->cp15.c7_par = par64; |
756 | env->cp15.c7_par_hi = par64 >> 32; | |
4a501606 | 757 | } else { |
702a9357 PM |
758 | /* ret is a DFSR/IFSR value for the short descriptor |
759 | * translation table format (with WnR always clear). | |
760 | * Convert it to a 32-bit PAR. | |
761 | */ | |
762 | if (ret == 0) { | |
763 | /* We do not set any attribute bits in the PAR */ | |
764 | if (page_size == (1 << 24) | |
765 | && arm_feature(env, ARM_FEATURE_V7)) { | |
766 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; | |
767 | } else { | |
768 | env->cp15.c7_par = phys_addr & 0xfffff000; | |
769 | } | |
770 | } else { | |
771 | env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | | |
772 | ((ret & (12 << 1)) >> 6) | | |
773 | ((ret & 0xf) << 1) | 1; | |
774 | } | |
775 | env->cp15.c7_par_hi = 0; | |
4a501606 PM |
776 | } |
777 | return 0; | |
778 | } | |
779 | #endif | |
780 | ||
781 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
782 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
783 | .access = PL1_RW, .resetvalue = 0, | |
784 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par), | |
785 | .writefn = par_write }, | |
786 | #ifndef CONFIG_USER_ONLY | |
787 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
d4e6df63 | 788 | .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, |
4a501606 PM |
789 | #endif |
790 | REGINFO_SENTINEL | |
791 | }; | |
792 | ||
18032bec PM |
793 | /* Return basic MPU access permission bits. */ |
794 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
795 | { | |
796 | uint32_t ret; | |
797 | uint32_t mask; | |
798 | int i; | |
799 | ret = 0; | |
800 | mask = 3; | |
801 | for (i = 0; i < 16; i += 2) { | |
802 | ret |= (val >> i) & mask; | |
803 | mask <<= 2; | |
804 | } | |
805 | return ret; | |
806 | } | |
807 | ||
808 | /* Pad basic MPU access permission bits to extended format. */ | |
809 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
810 | { | |
811 | uint32_t ret; | |
812 | uint32_t mask; | |
813 | int i; | |
814 | ret = 0; | |
815 | mask = 3; | |
816 | for (i = 0; i < 16; i += 2) { | |
817 | ret |= (val & mask) << i; | |
818 | mask <<= 2; | |
819 | } | |
820 | return ret; | |
821 | } | |
822 | ||
823 | static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
824 | uint64_t value) | |
825 | { | |
826 | env->cp15.c5_data = extended_mpu_ap_bits(value); | |
827 | return 0; | |
828 | } | |
829 | ||
830 | static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
831 | uint64_t *value) | |
832 | { | |
833 | *value = simple_mpu_ap_bits(env->cp15.c5_data); | |
834 | return 0; | |
835 | } | |
836 | ||
837 | static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
838 | uint64_t value) | |
839 | { | |
840 | env->cp15.c5_insn = extended_mpu_ap_bits(value); | |
841 | return 0; | |
842 | } | |
843 | ||
844 | static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
845 | uint64_t *value) | |
846 | { | |
847 | *value = simple_mpu_ap_bits(env->cp15.c5_insn); | |
848 | return 0; | |
849 | } | |
850 | ||
06d76f31 PM |
851 | static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri, |
852 | uint64_t *value) | |
853 | { | |
599d64f6 | 854 | if (ri->crm >= 8) { |
06d76f31 PM |
855 | return EXCP_UDEF; |
856 | } | |
857 | *value = env->cp15.c6_region[ri->crm]; | |
858 | return 0; | |
859 | } | |
860 | ||
861 | static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
862 | uint64_t value) | |
863 | { | |
599d64f6 | 864 | if (ri->crm >= 8) { |
06d76f31 PM |
865 | return EXCP_UDEF; |
866 | } | |
867 | env->cp15.c6_region[ri->crm] = value; | |
868 | return 0; | |
869 | } | |
870 | ||
18032bec PM |
871 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
872 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d4e6df63 | 873 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
18032bec PM |
874 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, |
875 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, | |
876 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
d4e6df63 | 877 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
18032bec PM |
878 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, |
879 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, | |
880 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
881 | .access = PL1_RW, | |
882 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
883 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, | |
884 | .access = PL1_RW, | |
885 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
ecce5c3c PM |
886 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
887 | .access = PL1_RW, | |
888 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
889 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
890 | .access = PL1_RW, | |
891 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 PM |
892 | /* Protection region base and size registers */ |
893 | { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0, | |
894 | .opc2 = CP_ANY, .access = PL1_RW, | |
895 | .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, }, | |
18032bec PM |
896 | REGINFO_SENTINEL |
897 | }; | |
898 | ||
d4e6df63 PM |
899 | static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
900 | uint64_t value) | |
ecce5c3c | 901 | { |
2ebcebe2 PM |
902 | int maskshift = extract32(value, 0, 3); |
903 | ||
e42c4db3 PM |
904 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
905 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
e42c4db3 PM |
906 | } else { |
907 | value &= 7; | |
908 | } | |
909 | /* Note that we always calculate c2_mask and c2_base_mask, but | |
910 | * they are only used for short-descriptor tables (ie if EAE is 0); | |
911 | * for long-descriptor tables the TTBCR fields are used differently | |
912 | * and the c2_mask and c2_base_mask values are meaningless. | |
913 | */ | |
ecce5c3c | 914 | env->cp15.c2_control = value; |
2ebcebe2 PM |
915 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
916 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
917 | return 0; |
918 | } | |
919 | ||
d4e6df63 PM |
920 | static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
921 | uint64_t value) | |
922 | { | |
923 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
924 | /* With LPAE the TTBCR could result in a change of ASID | |
925 | * via the TTBCR.A1 bit, so do a TLB flush. | |
926 | */ | |
927 | tlb_flush(env, 1); | |
928 | } | |
929 | return vmsa_ttbcr_raw_write(env, ri, value); | |
930 | } | |
931 | ||
ecce5c3c PM |
932 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
933 | { | |
934 | env->cp15.c2_base_mask = 0xffffc000u; | |
935 | env->cp15.c2_control = 0; | |
936 | env->cp15.c2_mask = 0; | |
937 | } | |
938 | ||
18032bec PM |
939 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
940 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
941 | .access = PL1_RW, | |
942 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
943 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
944 | .access = PL1_RW, | |
945 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
ecce5c3c PM |
946 | { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
947 | .access = PL1_RW, | |
948 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, | |
949 | { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
950 | .access = PL1_RW, | |
81a60ada | 951 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, }, |
ecce5c3c PM |
952 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
953 | .access = PL1_RW, .writefn = vmsa_ttbcr_write, | |
d4e6df63 | 954 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
ecce5c3c | 955 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, |
06d76f31 PM |
956 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
957 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), | |
958 | .resetvalue = 0, }, | |
18032bec PM |
959 | REGINFO_SENTINEL |
960 | }; | |
961 | ||
1047b9d7 PM |
962 | static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
963 | uint64_t value) | |
964 | { | |
965 | env->cp15.c15_ticonfig = value & 0xe7; | |
966 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
967 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
968 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
969 | return 0; | |
970 | } | |
971 | ||
972 | static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
973 | uint64_t value) | |
974 | { | |
975 | env->cp15.c15_threadid = value & 0xffff; | |
976 | return 0; | |
977 | } | |
978 | ||
979 | static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
980 | uint64_t value) | |
981 | { | |
982 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 983 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
984 | return 0; |
985 | } | |
986 | ||
c4804214 PM |
987 | static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
988 | uint64_t value) | |
989 | { | |
990 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
991 | * containing a dirty line; cache flush operations have to reset these. | |
992 | */ | |
993 | env->cp15.c15_i_max = 0x000; | |
994 | env->cp15.c15_i_min = 0xff0; | |
995 | return 0; | |
996 | } | |
997 | ||
18032bec PM |
998 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
999 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1000 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
1001 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1047b9d7 PM |
1002 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1003 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1004 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1005 | .access = PL1_RW, | |
1006 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1007 | .writefn = omap_ticonfig_write }, | |
1008 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1009 | .access = PL1_RW, | |
1010 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1011 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1012 | .access = PL1_RW, .resetvalue = 0xff0, | |
1013 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1014 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1015 | .access = PL1_RW, | |
1016 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1017 | .writefn = omap_threadid_write }, | |
1018 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1019 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
d4e6df63 | 1020 | .type = ARM_CP_NO_MIGRATE, |
1047b9d7 PM |
1021 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1022 | /* TODO: Peripheral port remap register: | |
1023 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1024 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1025 | * when MMU is off. | |
1026 | */ | |
c4804214 | 1027 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 PM |
1028 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
1029 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, | |
c4804214 | 1030 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
1031 | { .name = "C9", .cp = 15, .crn = 9, |
1032 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1033 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
1034 | REGINFO_SENTINEL |
1035 | }; | |
1036 | ||
1037 | static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1038 | uint64_t value) | |
1039 | { | |
1040 | value &= 0x3fff; | |
1041 | if (env->cp15.c15_cpar != value) { | |
1042 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ | |
1043 | tb_flush(env); | |
1044 | env->cp15.c15_cpar = value; | |
1045 | } | |
1046 | return 0; | |
1047 | } | |
1048 | ||
1049 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1050 | { .name = "XSCALE_CPAR", | |
1051 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1052 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1053 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
1054 | { .name = "XSCALE_AUXCR", |
1055 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1056 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1057 | .resetvalue = 0, }, | |
1047b9d7 PM |
1058 | REGINFO_SENTINEL |
1059 | }; | |
1060 | ||
1061 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1062 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1063 | * implementation of this implementation-defined space. | |
1064 | * Ideally this should eventually disappear in favour of actually | |
1065 | * implementing the correct behaviour for all cores. | |
1066 | */ | |
1067 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1068 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1069 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1070 | .resetvalue = 0 }, | |
18032bec PM |
1071 | REGINFO_SENTINEL |
1072 | }; | |
1073 | ||
c4804214 PM |
1074 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1075 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1076 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
d4e6df63 PM |
1077 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1078 | .resetvalue = 0 }, | |
c4804214 PM |
1079 | REGINFO_SENTINEL |
1080 | }; | |
1081 | ||
1082 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1083 | /* We never have a a block transfer operation in progress */ | |
1084 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
d4e6df63 PM |
1085 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1086 | .resetvalue = 0 }, | |
30b05bba PM |
1087 | /* The cache ops themselves: these all NOP for QEMU */ |
1088 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1089 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1090 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
1091 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1092 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
1093 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1094 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
1095 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1096 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
1097 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1098 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
1099 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
1100 | REGINFO_SENTINEL |
1101 | }; | |
1102 | ||
1103 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
1104 | /* The cache test-and-clean instructions always return (1 << 30) | |
1105 | * to indicate that there are no dirty cache lines. | |
1106 | */ | |
1107 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
d4e6df63 PM |
1108 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1109 | .resetvalue = (1 << 30) }, | |
c4804214 | 1110 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
d4e6df63 PM |
1111 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1112 | .resetvalue = (1 << 30) }, | |
c4804214 PM |
1113 | REGINFO_SENTINEL |
1114 | }; | |
1115 | ||
34f90529 PM |
1116 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
1117 | /* Ignore ReadBuffer accesses */ | |
1118 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
1119 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1120 | .access = PL1_RW, .resetvalue = 0, |
1121 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, | |
34f90529 PM |
1122 | REGINFO_SENTINEL |
1123 | }; | |
1124 | ||
81bdde9d PM |
1125 | static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1126 | uint64_t *value) | |
1127 | { | |
55e5c285 AF |
1128 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
1129 | uint32_t mpidr = cs->cpu_index; | |
81bdde9d PM |
1130 | /* We don't support setting cluster ID ([8..11]) |
1131 | * so these bits always RAZ. | |
1132 | */ | |
1133 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
1134 | mpidr |= (1 << 31); | |
1135 | /* Cores which are uniprocessor (non-coherent) | |
1136 | * but still implement the MP extensions set | |
1137 | * bit 30. (For instance, A9UP.) However we do | |
1138 | * not currently model any of those cores. | |
1139 | */ | |
1140 | } | |
1141 | *value = mpidr; | |
1142 | return 0; | |
1143 | } | |
1144 | ||
1145 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
1146 | { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
d4e6df63 | 1147 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, |
81bdde9d PM |
1148 | REGINFO_SENTINEL |
1149 | }; | |
1150 | ||
891a2fe7 PM |
1151 | static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) |
1152 | { | |
1153 | *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; | |
1154 | return 0; | |
1155 | } | |
1156 | ||
1157 | static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1158 | { | |
1159 | env->cp15.c7_par_hi = value >> 32; | |
1160 | env->cp15.c7_par = value; | |
1161 | return 0; | |
1162 | } | |
1163 | ||
1164 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1165 | { | |
1166 | env->cp15.c7_par_hi = 0; | |
1167 | env->cp15.c7_par = 0; | |
1168 | } | |
1169 | ||
1170 | static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1171 | uint64_t *value) | |
1172 | { | |
1173 | *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |
1174 | return 0; | |
1175 | } | |
1176 | ||
d4e6df63 PM |
1177 | static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1178 | uint64_t value) | |
891a2fe7 PM |
1179 | { |
1180 | env->cp15.c2_base0_hi = value >> 32; | |
1181 | env->cp15.c2_base0 = value; | |
d4e6df63 PM |
1182 | return 0; |
1183 | } | |
1184 | ||
1185 | static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1186 | uint64_t value) | |
1187 | { | |
891a2fe7 PM |
1188 | /* Writes to the 64 bit format TTBRs may change the ASID */ |
1189 | tlb_flush(env, 1); | |
d4e6df63 | 1190 | return ttbr064_raw_write(env, ri, value); |
891a2fe7 PM |
1191 | } |
1192 | ||
1193 | static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1194 | { | |
1195 | env->cp15.c2_base0_hi = 0; | |
1196 | env->cp15.c2_base0 = 0; | |
1197 | } | |
1198 | ||
1199 | static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1200 | uint64_t *value) | |
1201 | { | |
1202 | *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |
1203 | return 0; | |
1204 | } | |
1205 | ||
1206 | static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1207 | uint64_t value) | |
1208 | { | |
1209 | env->cp15.c2_base1_hi = value >> 32; | |
1210 | env->cp15.c2_base1 = value; | |
1211 | return 0; | |
1212 | } | |
1213 | ||
1214 | static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1215 | { | |
1216 | env->cp15.c2_base1_hi = 0; | |
1217 | env->cp15.c2_base1 = 0; | |
1218 | } | |
1219 | ||
7ac681cf | 1220 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 1221 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
1222 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
1223 | */ | |
1224 | { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1225 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1226 | .resetvalue = 0 }, | |
1227 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, | |
1228 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1229 | .resetvalue = 0 }, | |
f9fc619a PM |
1230 | /* 64 bit access versions of the (dummy) debug registers */ |
1231 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
1232 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
1233 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
1234 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
891a2fe7 PM |
1235 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1236 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
1237 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, | |
1238 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | |
1239 | .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read, | |
d4e6df63 PM |
1240 | .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write, |
1241 | .resetfn = ttbr064_reset }, | |
891a2fe7 PM |
1242 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
1243 | .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read, | |
1244 | .writefn = ttbr164_write, .resetfn = ttbr164_reset }, | |
7ac681cf PM |
1245 | REGINFO_SENTINEL |
1246 | }; | |
1247 | ||
2771db27 PM |
1248 | static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1249 | { | |
1250 | env->cp15.c1_sys = value; | |
1251 | /* ??? Lots of these bits are not implemented. */ | |
1252 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
1253 | tlb_flush(env, 1); | |
1254 | return 0; | |
1255 | } | |
1256 | ||
2ceb98c0 PM |
1257 | void register_cp_regs_for_features(ARMCPU *cpu) |
1258 | { | |
1259 | /* Register all the coprocessor registers based on feature bits */ | |
1260 | CPUARMState *env = &cpu->env; | |
1261 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1262 | /* M profile has no coprocessor registers */ | |
1263 | return; | |
1264 | } | |
1265 | ||
e9aa6c21 | 1266 | define_arm_cp_regs(cpu, cp_reginfo); |
7d57f408 | 1267 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
1268 | /* The ID registers all have impdef reset values */ |
1269 | ARMCPRegInfo v6_idregs[] = { | |
1270 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, | |
1271 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1272 | .resetvalue = cpu->id_pfr0 }, | |
1273 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, | |
1274 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1275 | .resetvalue = cpu->id_pfr1 }, | |
1276 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, | |
1277 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1278 | .resetvalue = cpu->id_dfr0 }, | |
1279 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, | |
1280 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1281 | .resetvalue = cpu->id_afr0 }, | |
1282 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, | |
1283 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1284 | .resetvalue = cpu->id_mmfr0 }, | |
1285 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, | |
1286 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1287 | .resetvalue = cpu->id_mmfr1 }, | |
1288 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, | |
1289 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1290 | .resetvalue = cpu->id_mmfr2 }, | |
1291 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, | |
1292 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1293 | .resetvalue = cpu->id_mmfr3 }, | |
1294 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, | |
1295 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1296 | .resetvalue = cpu->id_isar0 }, | |
1297 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, | |
1298 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1299 | .resetvalue = cpu->id_isar1 }, | |
1300 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, | |
1301 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1302 | .resetvalue = cpu->id_isar2 }, | |
1303 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, | |
1304 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1305 | .resetvalue = cpu->id_isar3 }, | |
1306 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, | |
1307 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1308 | .resetvalue = cpu->id_isar4 }, | |
1309 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, | |
1310 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1311 | .resetvalue = cpu->id_isar5 }, | |
1312 | /* 6..7 are as yet unallocated and must RAZ */ | |
1313 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
1314 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1315 | .resetvalue = 0 }, | |
1316 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
1317 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1318 | .resetvalue = 0 }, | |
1319 | REGINFO_SENTINEL | |
1320 | }; | |
1321 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
1322 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
1323 | } else { | |
1324 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
1325 | } | |
4d31c596 PM |
1326 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
1327 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
1328 | } | |
e9aa6c21 | 1329 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef PM |
1330 | /* v7 performance monitor control register: same implementor |
1331 | * field as main ID register, and we implement no event counters. | |
1332 | */ | |
1333 | ARMCPRegInfo pmcr = { | |
1334 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
1335 | .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, | |
1336 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
d4e6df63 PM |
1337 | .readfn = pmreg_read, .writefn = pmcr_write, |
1338 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |
200ac0ef | 1339 | }; |
776d4e5c PM |
1340 | ARMCPRegInfo clidr = { |
1341 | .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
1342 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr | |
1343 | }; | |
200ac0ef | 1344 | define_one_arm_cp_reg(cpu, &pmcr); |
776d4e5c | 1345 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 1346 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
7d57f408 PM |
1347 | } else { |
1348 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 1349 | } |
18032bec PM |
1350 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
1351 | /* These are the MPU registers prior to PMSAv6. Any new | |
1352 | * PMSA core later than the ARM946 will require that we | |
1353 | * implement the PMSAv6 or PMSAv7 registers, which are | |
1354 | * completely different. | |
1355 | */ | |
1356 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
1357 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
1358 | } else { | |
1359 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
1360 | } | |
c326b979 PM |
1361 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
1362 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
1363 | } | |
6cc7a3ae PM |
1364 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
1365 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
1366 | } | |
4a501606 PM |
1367 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
1368 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
1369 | } | |
c4804214 PM |
1370 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
1371 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
1372 | } | |
1373 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
1374 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
1375 | } | |
1376 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
1377 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
1378 | } | |
18032bec PM |
1379 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
1380 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
1381 | } | |
34f90529 PM |
1382 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
1383 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
1384 | } | |
1047b9d7 PM |
1385 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
1386 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
1387 | } | |
1388 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
1389 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
1390 | } | |
7ac681cf PM |
1391 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1392 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
1393 | } | |
7884849c PM |
1394 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
1395 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
1396 | * be read-only (ie write causes UNDEF exception). | |
1397 | */ | |
1398 | { | |
1399 | ARMCPRegInfo id_cp_reginfo[] = { | |
1400 | /* Note that the MIDR isn't a simple constant register because | |
1401 | * of the TI925 behaviour where writes to another register can | |
1402 | * cause the MIDR value to change. | |
97ce8d61 PC |
1403 | * |
1404 | * Unimplemented registers in the c15 0 0 0 space default to | |
1405 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
1406 | * and friends override accordingly. | |
7884849c PM |
1407 | */ |
1408 | { .name = "MIDR", | |
97ce8d61 | 1409 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 1410 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 1411 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
1412 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
1413 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
1414 | { .name = "CTR", |
1415 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1416 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
1417 | { .name = "TCMTR", | |
1418 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1419 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1420 | { .name = "TLBTR", | |
1421 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
1422 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1423 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | |
1424 | { .name = "DUMMY", | |
1425 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
1426 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1427 | { .name = "DUMMY", | |
1428 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
1429 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1430 | { .name = "DUMMY", | |
1431 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
1432 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1433 | { .name = "DUMMY", | |
1434 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
1435 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1436 | { .name = "DUMMY", | |
1437 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
1438 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1439 | REGINFO_SENTINEL | |
1440 | }; | |
1441 | ARMCPRegInfo crn0_wi_reginfo = { | |
1442 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
1443 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
1444 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
1445 | }; | |
1446 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
1447 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
1448 | ARMCPRegInfo *r; | |
1449 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
1450 | * whole space. Then update the specific ID registers to allow write |
1451 | * access, so that they ignore writes rather than causing them to | |
1452 | * UNDEF. | |
7884849c PM |
1453 | */ |
1454 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
1455 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { | |
1456 | r->access = PL1_RW; | |
7884849c | 1457 | } |
7884849c | 1458 | } |
a703eda1 | 1459 | define_arm_cp_regs(cpu, id_cp_reginfo); |
7884849c PM |
1460 | } |
1461 | ||
97ce8d61 PC |
1462 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
1463 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
1464 | } | |
1465 | ||
2771db27 PM |
1466 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
1467 | ARMCPRegInfo auxcr = { | |
1468 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1469 | .access = PL1_RW, .type = ARM_CP_CONST, | |
1470 | .resetvalue = cpu->reset_auxcr | |
1471 | }; | |
1472 | define_one_arm_cp_reg(cpu, &auxcr); | |
1473 | } | |
1474 | ||
1475 | /* Generic registers whose values depend on the implementation */ | |
1476 | { | |
1477 | ARMCPRegInfo sctlr = { | |
1478 | .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1479 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), | |
d4e6df63 PM |
1480 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
1481 | .raw_writefn = raw_write, | |
2771db27 PM |
1482 | }; |
1483 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
1484 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
1485 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
1486 | * an MMU enable to execute from cache. Imitate this behaviour. | |
1487 | */ | |
1488 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
1489 | } | |
1490 | define_one_arm_cp_reg(cpu, &sctlr); | |
1491 | } | |
2ceb98c0 PM |
1492 | } |
1493 | ||
778c3a06 | 1494 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 1495 | { |
dec9c2d4 | 1496 | ARMCPU *cpu; |
40f137e1 | 1497 | CPUARMState *env; |
5900d6b2 | 1498 | ObjectClass *oc; |
40f137e1 | 1499 | |
5900d6b2 AF |
1500 | oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); |
1501 | if (!oc) { | |
aaed909a | 1502 | return NULL; |
777dc784 | 1503 | } |
5900d6b2 | 1504 | cpu = ARM_CPU(object_new(object_class_get_name(oc))); |
dec9c2d4 | 1505 | env = &cpu->env; |
777dc784 | 1506 | env->cpu_model_str = cpu_model; |
14969266 AF |
1507 | |
1508 | /* TODO this should be set centrally, once possible */ | |
1509 | object_property_set_bool(OBJECT(cpu), true, "realized", NULL); | |
777dc784 | 1510 | |
14969266 AF |
1511 | return cpu; |
1512 | } | |
1513 | ||
1514 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
1515 | { | |
1516 | CPUARMState *env = &cpu->env; | |
1517 | ||
56aebc89 PB |
1518 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
1519 | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
1520 | 51, "arm-neon.xml", 0); | |
1521 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
1522 | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
1523 | 35, "arm-vfp3.xml", 0); | |
1524 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
1525 | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
1526 | 19, "arm-vfp.xml", 0); | |
1527 | } | |
40f137e1 PB |
1528 | } |
1529 | ||
777dc784 PM |
1530 | /* Sort alphabetically by type name, except for "any". */ |
1531 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 1532 | { |
777dc784 PM |
1533 | ObjectClass *class_a = (ObjectClass *)a; |
1534 | ObjectClass *class_b = (ObjectClass *)b; | |
1535 | const char *name_a, *name_b; | |
5adb4839 | 1536 | |
777dc784 PM |
1537 | name_a = object_class_get_name(class_a); |
1538 | name_b = object_class_get_name(class_b); | |
51492fd1 | 1539 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 1540 | return 1; |
51492fd1 | 1541 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
1542 | return -1; |
1543 | } else { | |
1544 | return strcmp(name_a, name_b); | |
5adb4839 PB |
1545 | } |
1546 | } | |
1547 | ||
777dc784 | 1548 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 1549 | { |
777dc784 | 1550 | ObjectClass *oc = data; |
92a31361 | 1551 | CPUListState *s = user_data; |
51492fd1 AF |
1552 | const char *typename; |
1553 | char *name; | |
3371d272 | 1554 | |
51492fd1 AF |
1555 | typename = object_class_get_name(oc); |
1556 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 1557 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
1558 | name); |
1559 | g_free(name); | |
777dc784 PM |
1560 | } |
1561 | ||
1562 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
1563 | { | |
92a31361 | 1564 | CPUListState s = { |
777dc784 PM |
1565 | .file = f, |
1566 | .cpu_fprintf = cpu_fprintf, | |
1567 | }; | |
1568 | GSList *list; | |
1569 | ||
1570 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
1571 | list = g_slist_sort(list, arm_cpu_list_compare); | |
1572 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
1573 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
1574 | g_slist_free(list); | |
40f137e1 PB |
1575 | } |
1576 | ||
4b6a83fb PM |
1577 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
1578 | const ARMCPRegInfo *r, void *opaque) | |
1579 | { | |
1580 | /* Define implementations of coprocessor registers. | |
1581 | * We store these in a hashtable because typically | |
1582 | * there are less than 150 registers in a space which | |
1583 | * is 16*16*16*8*8 = 262144 in size. | |
1584 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
1585 | * If a register is defined twice then the second definition is | |
1586 | * used, so this can be used to define some generic registers and | |
1587 | * then override them with implementation specific variations. | |
1588 | * At least one of the original and the second definition should | |
1589 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
1590 | * against accidental use. | |
1591 | */ | |
1592 | int crm, opc1, opc2; | |
1593 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; | |
1594 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
1595 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
1596 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
1597 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
1598 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
1599 | /* 64 bit registers have only CRm and Opc1 fields */ | |
1600 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
1601 | /* Check that the register definition has enough info to handle | |
1602 | * reads and writes if they are permitted. | |
1603 | */ | |
1604 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
1605 | if (r->access & PL3_R) { | |
1606 | assert(r->fieldoffset || r->readfn); | |
1607 | } | |
1608 | if (r->access & PL3_W) { | |
1609 | assert(r->fieldoffset || r->writefn); | |
1610 | } | |
1611 | } | |
1612 | /* Bad type field probably means missing sentinel at end of reg list */ | |
1613 | assert(cptype_valid(r->type)); | |
1614 | for (crm = crmmin; crm <= crmmax; crm++) { | |
1615 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
1616 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
1617 | uint32_t *key = g_new(uint32_t, 1); | |
1618 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
1619 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
1620 | *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2); | |
204a9c43 PC |
1621 | if (opaque) { |
1622 | r2->opaque = opaque; | |
1623 | } | |
4b6a83fb PM |
1624 | /* Make sure reginfo passed to helpers for wildcarded regs |
1625 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
1626 | */ | |
1627 | r2->crm = crm; | |
1628 | r2->opc1 = opc1; | |
1629 | r2->opc2 = opc2; | |
7023ec7e PM |
1630 | /* By convention, for wildcarded registers only the first |
1631 | * entry is used for migration; the others are marked as | |
1632 | * NO_MIGRATE so we don't try to transfer the register | |
1633 | * multiple times. Special registers (ie NOP/WFI) are | |
1634 | * never migratable. | |
1635 | */ | |
1636 | if ((r->type & ARM_CP_SPECIAL) || | |
1637 | ((r->crm == CP_ANY) && crm != 0) || | |
1638 | ((r->opc1 == CP_ANY) && opc1 != 0) || | |
1639 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
1640 | r2->type |= ARM_CP_NO_MIGRATE; | |
1641 | } | |
1642 | ||
4b6a83fb PM |
1643 | /* Overriding of an existing definition must be explicitly |
1644 | * requested. | |
1645 | */ | |
1646 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
1647 | ARMCPRegInfo *oldreg; | |
1648 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
1649 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
1650 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
1651 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
1652 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
1653 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
1654 | oldreg->name, r2->name); | |
1655 | assert(0); | |
1656 | } | |
1657 | } | |
1658 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
1659 | } | |
1660 | } | |
1661 | } | |
1662 | } | |
1663 | ||
1664 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
1665 | const ARMCPRegInfo *regs, void *opaque) | |
1666 | { | |
1667 | /* Define a whole list of registers */ | |
1668 | const ARMCPRegInfo *r; | |
1669 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
1670 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
1671 | } | |
1672 | } | |
1673 | ||
1674 | const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp) | |
1675 | { | |
1676 | return g_hash_table_lookup(cpu->cp_regs, &encoded_cp); | |
1677 | } | |
1678 | ||
1679 | int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, | |
1680 | uint64_t value) | |
1681 | { | |
1682 | /* Helper coprocessor write function for write-ignore registers */ | |
1683 | return 0; | |
1684 | } | |
1685 | ||
1686 | int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) | |
1687 | { | |
1688 | /* Helper coprocessor write function for read-as-zero registers */ | |
1689 | *value = 0; | |
1690 | return 0; | |
1691 | } | |
1692 | ||
0ecb72a5 | 1693 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
1694 | { |
1695 | /* Return true if it is not valid for us to switch to | |
1696 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
1697 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
1698 | */ | |
1699 | switch (mode) { | |
1700 | case ARM_CPU_MODE_USR: | |
1701 | case ARM_CPU_MODE_SYS: | |
1702 | case ARM_CPU_MODE_SVC: | |
1703 | case ARM_CPU_MODE_ABT: | |
1704 | case ARM_CPU_MODE_UND: | |
1705 | case ARM_CPU_MODE_IRQ: | |
1706 | case ARM_CPU_MODE_FIQ: | |
1707 | return 0; | |
1708 | default: | |
1709 | return 1; | |
1710 | } | |
1711 | } | |
1712 | ||
2f4a40e5 AZ |
1713 | uint32_t cpsr_read(CPUARMState *env) |
1714 | { | |
1715 | int ZF; | |
6fbe23d5 PB |
1716 | ZF = (env->ZF == 0); |
1717 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
1718 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
1719 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
1720 | | ((env->condexec_bits & 0xfc) << 8) | |
1721 | | (env->GE << 16); | |
1722 | } | |
1723 | ||
1724 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
1725 | { | |
2f4a40e5 | 1726 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
1727 | env->ZF = (~val) & CPSR_Z; |
1728 | env->NF = val; | |
2f4a40e5 AZ |
1729 | env->CF = (val >> 29) & 1; |
1730 | env->VF = (val << 3) & 0x80000000; | |
1731 | } | |
1732 | if (mask & CPSR_Q) | |
1733 | env->QF = ((val & CPSR_Q) != 0); | |
1734 | if (mask & CPSR_T) | |
1735 | env->thumb = ((val & CPSR_T) != 0); | |
1736 | if (mask & CPSR_IT_0_1) { | |
1737 | env->condexec_bits &= ~3; | |
1738 | env->condexec_bits |= (val >> 25) & 3; | |
1739 | } | |
1740 | if (mask & CPSR_IT_2_7) { | |
1741 | env->condexec_bits &= 3; | |
1742 | env->condexec_bits |= (val >> 8) & 0xfc; | |
1743 | } | |
1744 | if (mask & CPSR_GE) { | |
1745 | env->GE = (val >> 16) & 0xf; | |
1746 | } | |
1747 | ||
1748 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { | |
37064a8b PM |
1749 | if (bad_mode_switch(env, val & CPSR_M)) { |
1750 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
1751 | * We choose to ignore the attempt and leave the CPSR M field | |
1752 | * untouched. | |
1753 | */ | |
1754 | mask &= ~CPSR_M; | |
1755 | } else { | |
1756 | switch_mode(env, val & CPSR_M); | |
1757 | } | |
2f4a40e5 AZ |
1758 | } |
1759 | mask &= ~CACHED_CPSR_BITS; | |
1760 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
1761 | } | |
1762 | ||
b26eefb6 PB |
1763 | /* Sign/zero extend */ |
1764 | uint32_t HELPER(sxtb16)(uint32_t x) | |
1765 | { | |
1766 | uint32_t res; | |
1767 | res = (uint16_t)(int8_t)x; | |
1768 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
1769 | return res; | |
1770 | } | |
1771 | ||
1772 | uint32_t HELPER(uxtb16)(uint32_t x) | |
1773 | { | |
1774 | uint32_t res; | |
1775 | res = (uint16_t)(uint8_t)x; | |
1776 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
1777 | return res; | |
1778 | } | |
1779 | ||
f51bbbfe PB |
1780 | uint32_t HELPER(clz)(uint32_t x) |
1781 | { | |
7bbcb0af | 1782 | return clz32(x); |
f51bbbfe PB |
1783 | } |
1784 | ||
3670669c PB |
1785 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
1786 | { | |
1787 | if (den == 0) | |
1788 | return 0; | |
686eeb93 AJ |
1789 | if (num == INT_MIN && den == -1) |
1790 | return INT_MIN; | |
3670669c PB |
1791 | return num / den; |
1792 | } | |
1793 | ||
1794 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
1795 | { | |
1796 | if (den == 0) | |
1797 | return 0; | |
1798 | return num / den; | |
1799 | } | |
1800 | ||
1801 | uint32_t HELPER(rbit)(uint32_t x) | |
1802 | { | |
1803 | x = ((x & 0xff000000) >> 24) | |
1804 | | ((x & 0x00ff0000) >> 8) | |
1805 | | ((x & 0x0000ff00) << 8) | |
1806 | | ((x & 0x000000ff) << 24); | |
1807 | x = ((x & 0xf0f0f0f0) >> 4) | |
1808 | | ((x & 0x0f0f0f0f) << 4); | |
1809 | x = ((x & 0x88888888) >> 3) | |
1810 | | ((x & 0x44444444) >> 1) | |
1811 | | ((x & 0x22222222) << 1) | |
1812 | | ((x & 0x11111111) << 3); | |
1813 | return x; | |
1814 | } | |
1815 | ||
5fafdf24 | 1816 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 1817 | |
97a8ea5a | 1818 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 1819 | { |
97a8ea5a AF |
1820 | ARMCPU *cpu = ARM_CPU(cs); |
1821 | CPUARMState *env = &cpu->env; | |
1822 | ||
b5ff1b31 FB |
1823 | env->exception_index = -1; |
1824 | } | |
1825 | ||
0ecb72a5 | 1826 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
97b348e7 | 1827 | int mmu_idx) |
b5ff1b31 FB |
1828 | { |
1829 | if (rw == 2) { | |
1830 | env->exception_index = EXCP_PREFETCH_ABORT; | |
1831 | env->cp15.c6_insn = address; | |
1832 | } else { | |
1833 | env->exception_index = EXCP_DATA_ABORT; | |
1834 | env->cp15.c6_data = address; | |
1835 | } | |
1836 | return 1; | |
1837 | } | |
1838 | ||
9ee6e8bb | 1839 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 1840 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb PB |
1841 | { |
1842 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
1843 | } | |
1844 | ||
0ecb72a5 | 1845 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb PB |
1846 | { |
1847 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
1848 | return 0; | |
1849 | } | |
1850 | ||
0ecb72a5 | 1851 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
1852 | { |
1853 | if (mode != ARM_CPU_MODE_USR) | |
1854 | cpu_abort(env, "Tried to switch out of user mode\n"); | |
1855 | } | |
1856 | ||
0ecb72a5 | 1857 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb PB |
1858 | { |
1859 | cpu_abort(env, "banked r13 write\n"); | |
1860 | } | |
1861 | ||
0ecb72a5 | 1862 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb PB |
1863 | { |
1864 | cpu_abort(env, "banked r13 read\n"); | |
1865 | return 0; | |
1866 | } | |
1867 | ||
b5ff1b31 FB |
1868 | #else |
1869 | ||
1870 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 1871 | int bank_number(int mode) |
b5ff1b31 FB |
1872 | { |
1873 | switch (mode) { | |
1874 | case ARM_CPU_MODE_USR: | |
1875 | case ARM_CPU_MODE_SYS: | |
1876 | return 0; | |
1877 | case ARM_CPU_MODE_SVC: | |
1878 | return 1; | |
1879 | case ARM_CPU_MODE_ABT: | |
1880 | return 2; | |
1881 | case ARM_CPU_MODE_UND: | |
1882 | return 3; | |
1883 | case ARM_CPU_MODE_IRQ: | |
1884 | return 4; | |
1885 | case ARM_CPU_MODE_FIQ: | |
1886 | return 5; | |
1887 | } | |
f5206413 | 1888 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
1889 | } |
1890 | ||
0ecb72a5 | 1891 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
1892 | { |
1893 | int old_mode; | |
1894 | int i; | |
1895 | ||
1896 | old_mode = env->uncached_cpsr & CPSR_M; | |
1897 | if (mode == old_mode) | |
1898 | return; | |
1899 | ||
1900 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
1901 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 1902 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
1903 | } else if (mode == ARM_CPU_MODE_FIQ) { |
1904 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 1905 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
1906 | } |
1907 | ||
f5206413 | 1908 | i = bank_number(old_mode); |
b5ff1b31 FB |
1909 | env->banked_r13[i] = env->regs[13]; |
1910 | env->banked_r14[i] = env->regs[14]; | |
1911 | env->banked_spsr[i] = env->spsr; | |
1912 | ||
f5206413 | 1913 | i = bank_number(mode); |
b5ff1b31 FB |
1914 | env->regs[13] = env->banked_r13[i]; |
1915 | env->regs[14] = env->banked_r14[i]; | |
1916 | env->spsr = env->banked_spsr[i]; | |
1917 | } | |
1918 | ||
9ee6e8bb PB |
1919 | static void v7m_push(CPUARMState *env, uint32_t val) |
1920 | { | |
1921 | env->regs[13] -= 4; | |
1922 | stl_phys(env->regs[13], val); | |
1923 | } | |
1924 | ||
1925 | static uint32_t v7m_pop(CPUARMState *env) | |
1926 | { | |
1927 | uint32_t val; | |
1928 | val = ldl_phys(env->regs[13]); | |
1929 | env->regs[13] += 4; | |
1930 | return val; | |
1931 | } | |
1932 | ||
1933 | /* Switch to V7M main or process stack pointer. */ | |
1934 | static void switch_v7m_sp(CPUARMState *env, int process) | |
1935 | { | |
1936 | uint32_t tmp; | |
1937 | if (env->v7m.current_sp != process) { | |
1938 | tmp = env->v7m.other_sp; | |
1939 | env->v7m.other_sp = env->regs[13]; | |
1940 | env->regs[13] = tmp; | |
1941 | env->v7m.current_sp = process; | |
1942 | } | |
1943 | } | |
1944 | ||
1945 | static void do_v7m_exception_exit(CPUARMState *env) | |
1946 | { | |
1947 | uint32_t type; | |
1948 | uint32_t xpsr; | |
1949 | ||
1950 | type = env->regs[15]; | |
1951 | if (env->v7m.exception != 0) | |
983fe826 | 1952 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
1953 | |
1954 | /* Switch to the target stack. */ | |
1955 | switch_v7m_sp(env, (type & 4) != 0); | |
1956 | /* Pop registers. */ | |
1957 | env->regs[0] = v7m_pop(env); | |
1958 | env->regs[1] = v7m_pop(env); | |
1959 | env->regs[2] = v7m_pop(env); | |
1960 | env->regs[3] = v7m_pop(env); | |
1961 | env->regs[12] = v7m_pop(env); | |
1962 | env->regs[14] = v7m_pop(env); | |
1963 | env->regs[15] = v7m_pop(env); | |
1964 | xpsr = v7m_pop(env); | |
1965 | xpsr_write(env, xpsr, 0xfffffdff); | |
1966 | /* Undo stack alignment. */ | |
1967 | if (xpsr & 0x200) | |
1968 | env->regs[13] |= 4; | |
1969 | /* ??? The exception return type specifies Thread/Handler mode. However | |
1970 | this is also implied by the xPSR value. Not sure what to do | |
1971 | if there is a mismatch. */ | |
1972 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
1973 | pointer. */ | |
1974 | } | |
1975 | ||
e6f010cc | 1976 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 1977 | { |
e6f010cc AF |
1978 | ARMCPU *cpu = ARM_CPU(cs); |
1979 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
1980 | uint32_t xpsr = xpsr_read(env); |
1981 | uint32_t lr; | |
1982 | uint32_t addr; | |
1983 | ||
1984 | lr = 0xfffffff1; | |
1985 | if (env->v7m.current_sp) | |
1986 | lr |= 4; | |
1987 | if (env->v7m.exception == 0) | |
1988 | lr |= 8; | |
1989 | ||
1990 | /* For exceptions we just mark as pending on the NVIC, and let that | |
1991 | handle it. */ | |
1992 | /* TODO: Need to escalate if the current priority is higher than the | |
1993 | one we're raising. */ | |
1994 | switch (env->exception_index) { | |
1995 | case EXCP_UDEF: | |
983fe826 | 1996 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
1997 | return; |
1998 | case EXCP_SWI: | |
314e2296 | 1999 | /* The PC already points to the next instruction. */ |
983fe826 | 2000 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
2001 | return; |
2002 | case EXCP_PREFETCH_ABORT: | |
2003 | case EXCP_DATA_ABORT: | |
983fe826 | 2004 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
2005 | return; |
2006 | case EXCP_BKPT: | |
2ad207d4 PB |
2007 | if (semihosting_enabled) { |
2008 | int nr; | |
d31dd73e | 2009 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
2010 | if (nr == 0xab) { |
2011 | env->regs[15] += 2; | |
2012 | env->regs[0] = do_arm_semihosting(env); | |
2013 | return; | |
2014 | } | |
2015 | } | |
983fe826 | 2016 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
2017 | return; |
2018 | case EXCP_IRQ: | |
983fe826 | 2019 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
2020 | break; |
2021 | case EXCP_EXCEPTION_EXIT: | |
2022 | do_v7m_exception_exit(env); | |
2023 | return; | |
2024 | default: | |
2025 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
2026 | return; /* Never happens. Keep compiler happy. */ | |
2027 | } | |
2028 | ||
2029 | /* Align stack pointer. */ | |
2030 | /* ??? Should only do this if Configuration Control Register | |
2031 | STACKALIGN bit is set. */ | |
2032 | if (env->regs[13] & 4) { | |
ab19b0ec | 2033 | env->regs[13] -= 4; |
9ee6e8bb PB |
2034 | xpsr |= 0x200; |
2035 | } | |
6c95676b | 2036 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
2037 | v7m_push(env, xpsr); |
2038 | v7m_push(env, env->regs[15]); | |
2039 | v7m_push(env, env->regs[14]); | |
2040 | v7m_push(env, env->regs[12]); | |
2041 | v7m_push(env, env->regs[3]); | |
2042 | v7m_push(env, env->regs[2]); | |
2043 | v7m_push(env, env->regs[1]); | |
2044 | v7m_push(env, env->regs[0]); | |
2045 | switch_v7m_sp(env, 0); | |
c98d174c PM |
2046 | /* Clear IT bits */ |
2047 | env->condexec_bits = 0; | |
9ee6e8bb PB |
2048 | env->regs[14] = lr; |
2049 | addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); | |
2050 | env->regs[15] = addr & 0xfffffffe; | |
2051 | env->thumb = addr & 1; | |
2052 | } | |
2053 | ||
b5ff1b31 | 2054 | /* Handle a CPU exception. */ |
97a8ea5a | 2055 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 2056 | { |
97a8ea5a AF |
2057 | ARMCPU *cpu = ARM_CPU(cs); |
2058 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
2059 | uint32_t addr; |
2060 | uint32_t mask; | |
2061 | int new_mode; | |
2062 | uint32_t offset; | |
2063 | ||
e6f010cc AF |
2064 | assert(!IS_M(env)); |
2065 | ||
b5ff1b31 FB |
2066 | /* TODO: Vectored interrupt controller. */ |
2067 | switch (env->exception_index) { | |
2068 | case EXCP_UDEF: | |
2069 | new_mode = ARM_CPU_MODE_UND; | |
2070 | addr = 0x04; | |
2071 | mask = CPSR_I; | |
2072 | if (env->thumb) | |
2073 | offset = 2; | |
2074 | else | |
2075 | offset = 4; | |
2076 | break; | |
2077 | case EXCP_SWI: | |
8e71621f PB |
2078 | if (semihosting_enabled) { |
2079 | /* Check for semihosting interrupt. */ | |
2080 | if (env->thumb) { | |
d31dd73e BS |
2081 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
2082 | & 0xff; | |
8e71621f | 2083 | } else { |
d31dd73e | 2084 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 2085 | & 0xffffff; |
8e71621f PB |
2086 | } |
2087 | /* Only intercept calls from privileged modes, to provide some | |
2088 | semblance of security. */ | |
2089 | if (((mask == 0x123456 && !env->thumb) | |
2090 | || (mask == 0xab && env->thumb)) | |
2091 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
2092 | env->regs[0] = do_arm_semihosting(env); | |
2093 | return; | |
2094 | } | |
2095 | } | |
b5ff1b31 FB |
2096 | new_mode = ARM_CPU_MODE_SVC; |
2097 | addr = 0x08; | |
2098 | mask = CPSR_I; | |
601d70b9 | 2099 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
2100 | offset = 0; |
2101 | break; | |
06c949e6 | 2102 | case EXCP_BKPT: |
9ee6e8bb | 2103 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 2104 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 2105 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
2106 | if (mask == 0xab |
2107 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
2108 | env->regs[15] += 2; | |
2109 | env->regs[0] = do_arm_semihosting(env); | |
2110 | return; | |
2111 | } | |
2112 | } | |
81c05daf | 2113 | env->cp15.c5_insn = 2; |
9ee6e8bb PB |
2114 | /* Fall through to prefetch abort. */ |
2115 | case EXCP_PREFETCH_ABORT: | |
b5ff1b31 FB |
2116 | new_mode = ARM_CPU_MODE_ABT; |
2117 | addr = 0x0c; | |
2118 | mask = CPSR_A | CPSR_I; | |
2119 | offset = 4; | |
2120 | break; | |
2121 | case EXCP_DATA_ABORT: | |
2122 | new_mode = ARM_CPU_MODE_ABT; | |
2123 | addr = 0x10; | |
2124 | mask = CPSR_A | CPSR_I; | |
2125 | offset = 8; | |
2126 | break; | |
2127 | case EXCP_IRQ: | |
2128 | new_mode = ARM_CPU_MODE_IRQ; | |
2129 | addr = 0x18; | |
2130 | /* Disable IRQ and imprecise data aborts. */ | |
2131 | mask = CPSR_A | CPSR_I; | |
2132 | offset = 4; | |
2133 | break; | |
2134 | case EXCP_FIQ: | |
2135 | new_mode = ARM_CPU_MODE_FIQ; | |
2136 | addr = 0x1c; | |
2137 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
2138 | mask = CPSR_A | CPSR_I | CPSR_F; | |
2139 | offset = 4; | |
2140 | break; | |
2141 | default: | |
2142 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
2143 | return; /* Never happens. Keep compiler happy. */ | |
2144 | } | |
2145 | /* High vectors. */ | |
2146 | if (env->cp15.c1_sys & (1 << 13)) { | |
2147 | addr += 0xffff0000; | |
2148 | } | |
2149 | switch_mode (env, new_mode); | |
2150 | env->spsr = cpsr_read(env); | |
9ee6e8bb PB |
2151 | /* Clear IT bits. */ |
2152 | env->condexec_bits = 0; | |
30a8cac1 | 2153 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 2154 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
b5ff1b31 | 2155 | env->uncached_cpsr |= mask; |
be5e7a76 DES |
2156 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
2157 | * and we should just guard the thumb mode on V4 */ | |
2158 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
2159 | env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; | |
2160 | } | |
b5ff1b31 FB |
2161 | env->regs[14] = env->regs[15] + offset; |
2162 | env->regs[15] = addr; | |
259186a7 | 2163 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
2164 | } |
2165 | ||
2166 | /* Check section/page access permissions. | |
2167 | Returns the page protection flags, or zero if the access is not | |
2168 | permitted. */ | |
0ecb72a5 | 2169 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
dd4ebc2e | 2170 | int access_type, int is_user) |
b5ff1b31 | 2171 | { |
9ee6e8bb PB |
2172 | int prot_ro; |
2173 | ||
dd4ebc2e | 2174 | if (domain_prot == 3) { |
b5ff1b31 | 2175 | return PAGE_READ | PAGE_WRITE; |
dd4ebc2e | 2176 | } |
b5ff1b31 | 2177 | |
9ee6e8bb PB |
2178 | if (access_type == 1) |
2179 | prot_ro = 0; | |
2180 | else | |
2181 | prot_ro = PAGE_READ; | |
2182 | ||
b5ff1b31 FB |
2183 | switch (ap) { |
2184 | case 0: | |
78600320 | 2185 | if (access_type == 1) |
b5ff1b31 FB |
2186 | return 0; |
2187 | switch ((env->cp15.c1_sys >> 8) & 3) { | |
2188 | case 1: | |
2189 | return is_user ? 0 : PAGE_READ; | |
2190 | case 2: | |
2191 | return PAGE_READ; | |
2192 | default: | |
2193 | return 0; | |
2194 | } | |
2195 | case 1: | |
2196 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
2197 | case 2: | |
2198 | if (is_user) | |
9ee6e8bb | 2199 | return prot_ro; |
b5ff1b31 FB |
2200 | else |
2201 | return PAGE_READ | PAGE_WRITE; | |
2202 | case 3: | |
2203 | return PAGE_READ | PAGE_WRITE; | |
d4934d18 | 2204 | case 4: /* Reserved. */ |
9ee6e8bb PB |
2205 | return 0; |
2206 | case 5: | |
2207 | return is_user ? 0 : prot_ro; | |
2208 | case 6: | |
2209 | return prot_ro; | |
d4934d18 | 2210 | case 7: |
0ab06d83 | 2211 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
d4934d18 PB |
2212 | return 0; |
2213 | return prot_ro; | |
b5ff1b31 FB |
2214 | default: |
2215 | abort(); | |
2216 | } | |
2217 | } | |
2218 | ||
0ecb72a5 | 2219 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
b2fa1797 PB |
2220 | { |
2221 | uint32_t table; | |
2222 | ||
2223 | if (address & env->cp15.c2_mask) | |
2224 | table = env->cp15.c2_base1 & 0xffffc000; | |
2225 | else | |
2226 | table = env->cp15.c2_base0 & env->cp15.c2_base_mask; | |
2227 | ||
2228 | table |= (address >> 18) & 0x3ffc; | |
2229 | return table; | |
2230 | } | |
2231 | ||
0ecb72a5 | 2232 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 2233 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 2234 | int *prot, target_ulong *page_size) |
b5ff1b31 FB |
2235 | { |
2236 | int code; | |
2237 | uint32_t table; | |
2238 | uint32_t desc; | |
2239 | int type; | |
2240 | int ap; | |
2241 | int domain; | |
dd4ebc2e | 2242 | int domain_prot; |
a8170e5e | 2243 | hwaddr phys_addr; |
b5ff1b31 | 2244 | |
9ee6e8bb PB |
2245 | /* Pagetable walk. */ |
2246 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 2247 | table = get_level1_table_address(env, address); |
9ee6e8bb PB |
2248 | desc = ldl_phys(table); |
2249 | type = (desc & 3); | |
dd4ebc2e JCD |
2250 | domain = (desc >> 5) & 0x0f; |
2251 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
9ee6e8bb | 2252 | if (type == 0) { |
601d70b9 | 2253 | /* Section translation fault. */ |
9ee6e8bb PB |
2254 | code = 5; |
2255 | goto do_fault; | |
2256 | } | |
dd4ebc2e | 2257 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
2258 | if (type == 2) |
2259 | code = 9; /* Section domain fault. */ | |
2260 | else | |
2261 | code = 11; /* Page domain fault. */ | |
2262 | goto do_fault; | |
2263 | } | |
2264 | if (type == 2) { | |
2265 | /* 1Mb section. */ | |
2266 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
2267 | ap = (desc >> 10) & 3; | |
2268 | code = 13; | |
d4c430a8 | 2269 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
2270 | } else { |
2271 | /* Lookup l2 entry. */ | |
2272 | if (type == 1) { | |
2273 | /* Coarse pagetable. */ | |
2274 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
2275 | } else { | |
2276 | /* Fine pagetable. */ | |
2277 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
2278 | } | |
2279 | desc = ldl_phys(table); | |
2280 | switch (desc & 3) { | |
2281 | case 0: /* Page translation fault. */ | |
2282 | code = 7; | |
2283 | goto do_fault; | |
2284 | case 1: /* 64k page. */ | |
2285 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
2286 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 2287 | *page_size = 0x10000; |
ce819861 | 2288 | break; |
9ee6e8bb PB |
2289 | case 2: /* 4k page. */ |
2290 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2291 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 2292 | *page_size = 0x1000; |
ce819861 | 2293 | break; |
9ee6e8bb PB |
2294 | case 3: /* 1k page. */ |
2295 | if (type == 1) { | |
2296 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
2297 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2298 | } else { | |
2299 | /* Page translation fault. */ | |
2300 | code = 7; | |
2301 | goto do_fault; | |
2302 | } | |
2303 | } else { | |
2304 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
2305 | } | |
2306 | ap = (desc >> 4) & 3; | |
d4c430a8 | 2307 | *page_size = 0x400; |
ce819861 PB |
2308 | break; |
2309 | default: | |
9ee6e8bb PB |
2310 | /* Never happens, but compiler isn't smart enough to tell. */ |
2311 | abort(); | |
ce819861 | 2312 | } |
9ee6e8bb PB |
2313 | code = 15; |
2314 | } | |
dd4ebc2e | 2315 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
9ee6e8bb PB |
2316 | if (!*prot) { |
2317 | /* Access permission fault. */ | |
2318 | goto do_fault; | |
2319 | } | |
3ad493fc | 2320 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
2321 | *phys_ptr = phys_addr; |
2322 | return 0; | |
2323 | do_fault: | |
2324 | return code | (domain << 4); | |
2325 | } | |
2326 | ||
0ecb72a5 | 2327 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 2328 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 2329 | int *prot, target_ulong *page_size) |
9ee6e8bb PB |
2330 | { |
2331 | int code; | |
2332 | uint32_t table; | |
2333 | uint32_t desc; | |
2334 | uint32_t xn; | |
de9b05b8 | 2335 | uint32_t pxn = 0; |
9ee6e8bb PB |
2336 | int type; |
2337 | int ap; | |
de9b05b8 | 2338 | int domain = 0; |
dd4ebc2e | 2339 | int domain_prot; |
a8170e5e | 2340 | hwaddr phys_addr; |
9ee6e8bb PB |
2341 | |
2342 | /* Pagetable walk. */ | |
2343 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 2344 | table = get_level1_table_address(env, address); |
9ee6e8bb PB |
2345 | desc = ldl_phys(table); |
2346 | type = (desc & 3); | |
de9b05b8 PM |
2347 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
2348 | /* Section translation fault, or attempt to use the encoding | |
2349 | * which is Reserved on implementations without PXN. | |
2350 | */ | |
9ee6e8bb | 2351 | code = 5; |
9ee6e8bb | 2352 | goto do_fault; |
de9b05b8 PM |
2353 | } |
2354 | if ((type == 1) || !(desc & (1 << 18))) { | |
2355 | /* Page or Section. */ | |
dd4ebc2e | 2356 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 2357 | } |
dd4ebc2e JCD |
2358 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
2359 | if (domain_prot == 0 || domain_prot == 2) { | |
de9b05b8 | 2360 | if (type != 1) { |
9ee6e8bb | 2361 | code = 9; /* Section domain fault. */ |
de9b05b8 | 2362 | } else { |
9ee6e8bb | 2363 | code = 11; /* Page domain fault. */ |
de9b05b8 | 2364 | } |
9ee6e8bb PB |
2365 | goto do_fault; |
2366 | } | |
de9b05b8 | 2367 | if (type != 1) { |
9ee6e8bb PB |
2368 | if (desc & (1 << 18)) { |
2369 | /* Supersection. */ | |
2370 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 2371 | *page_size = 0x1000000; |
b5ff1b31 | 2372 | } else { |
9ee6e8bb PB |
2373 | /* Section. */ |
2374 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 2375 | *page_size = 0x100000; |
b5ff1b31 | 2376 | } |
9ee6e8bb PB |
2377 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
2378 | xn = desc & (1 << 4); | |
de9b05b8 | 2379 | pxn = desc & 1; |
9ee6e8bb PB |
2380 | code = 13; |
2381 | } else { | |
de9b05b8 PM |
2382 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
2383 | pxn = (desc >> 2) & 1; | |
2384 | } | |
9ee6e8bb PB |
2385 | /* Lookup l2 entry. */ |
2386 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
2387 | desc = ldl_phys(table); | |
2388 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); | |
2389 | switch (desc & 3) { | |
2390 | case 0: /* Page translation fault. */ | |
2391 | code = 7; | |
b5ff1b31 | 2392 | goto do_fault; |
9ee6e8bb PB |
2393 | case 1: /* 64k page. */ |
2394 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
2395 | xn = desc & (1 << 15); | |
d4c430a8 | 2396 | *page_size = 0x10000; |
9ee6e8bb PB |
2397 | break; |
2398 | case 2: case 3: /* 4k page. */ | |
2399 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2400 | xn = desc & 1; | |
d4c430a8 | 2401 | *page_size = 0x1000; |
9ee6e8bb PB |
2402 | break; |
2403 | default: | |
2404 | /* Never happens, but compiler isn't smart enough to tell. */ | |
2405 | abort(); | |
b5ff1b31 | 2406 | } |
9ee6e8bb PB |
2407 | code = 15; |
2408 | } | |
dd4ebc2e | 2409 | if (domain_prot == 3) { |
c0034328 JR |
2410 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
2411 | } else { | |
de9b05b8 PM |
2412 | if (pxn && !is_user) { |
2413 | xn = 1; | |
2414 | } | |
c0034328 JR |
2415 | if (xn && access_type == 2) |
2416 | goto do_fault; | |
9ee6e8bb | 2417 | |
c0034328 JR |
2418 | /* The simplified model uses AP[0] as an access control bit. */ |
2419 | if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { | |
2420 | /* Access flag fault. */ | |
2421 | code = (code == 15) ? 6 : 3; | |
2422 | goto do_fault; | |
2423 | } | |
dd4ebc2e | 2424 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
c0034328 JR |
2425 | if (!*prot) { |
2426 | /* Access permission fault. */ | |
2427 | goto do_fault; | |
2428 | } | |
2429 | if (!xn) { | |
2430 | *prot |= PAGE_EXEC; | |
2431 | } | |
3ad493fc | 2432 | } |
9ee6e8bb | 2433 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
2434 | return 0; |
2435 | do_fault: | |
2436 | return code | (domain << 4); | |
2437 | } | |
2438 | ||
3dde962f PM |
2439 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
2440 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
2441 | */ | |
2442 | typedef enum { | |
2443 | translation_fault = 1, | |
2444 | access_fault = 2, | |
2445 | permission_fault = 3, | |
2446 | } MMUFaultType; | |
2447 | ||
2448 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, | |
2449 | int access_type, int is_user, | |
a8170e5e | 2450 | hwaddr *phys_ptr, int *prot, |
3dde962f PM |
2451 | target_ulong *page_size_ptr) |
2452 | { | |
2453 | /* Read an LPAE long-descriptor translation table. */ | |
2454 | MMUFaultType fault_type = translation_fault; | |
2455 | uint32_t level = 1; | |
2456 | uint32_t epd; | |
2457 | uint32_t tsz; | |
2458 | uint64_t ttbr; | |
2459 | int ttbr_select; | |
2460 | int n; | |
a8170e5e | 2461 | hwaddr descaddr; |
3dde962f PM |
2462 | uint32_t tableattrs; |
2463 | target_ulong page_size; | |
2464 | uint32_t attrs; | |
2465 | ||
2466 | /* Determine whether this address is in the region controlled by | |
2467 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
2468 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
2469 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
2470 | */ | |
2471 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); | |
2472 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); | |
2473 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { | |
2474 | /* there is a ttbr0 region and we are in it (high bits all zero) */ | |
2475 | ttbr_select = 0; | |
2476 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { | |
2477 | /* there is a ttbr1 region and we are in it (high bits all one) */ | |
2478 | ttbr_select = 1; | |
2479 | } else if (!t0sz) { | |
2480 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
2481 | ttbr_select = 0; | |
2482 | } else if (!t1sz) { | |
2483 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
2484 | ttbr_select = 1; | |
2485 | } else { | |
2486 | /* in the gap between the two regions, this is a Translation fault */ | |
2487 | fault_type = translation_fault; | |
2488 | goto do_fault; | |
2489 | } | |
2490 | ||
2491 | /* Note that QEMU ignores shareability and cacheability attributes, | |
2492 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
2493 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
2494 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
2495 | * implement any ASID-like capability so we can ignore it (instead | |
2496 | * we will always flush the TLB any time the ASID is changed). | |
2497 | */ | |
2498 | if (ttbr_select == 0) { | |
2499 | ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |
2500 | epd = extract32(env->cp15.c2_control, 7, 1); | |
2501 | tsz = t0sz; | |
2502 | } else { | |
2503 | ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |
2504 | epd = extract32(env->cp15.c2_control, 23, 1); | |
2505 | tsz = t1sz; | |
2506 | } | |
2507 | ||
2508 | if (epd) { | |
2509 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
2510 | goto do_fault; | |
2511 | } | |
2512 | ||
2513 | /* If the region is small enough we will skip straight to a 2nd level | |
2514 | * lookup. This affects the number of bits of the address used in | |
2515 | * combination with the TTBR to find the first descriptor. ('n' here | |
2516 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are | |
2517 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). | |
2518 | */ | |
2519 | if (tsz > 1) { | |
2520 | level = 2; | |
2521 | n = 14 - tsz; | |
2522 | } else { | |
2523 | n = 5 - tsz; | |
2524 | } | |
2525 | ||
2526 | /* Clear the vaddr bits which aren't part of the within-region address, | |
2527 | * so that we don't have to special case things when calculating the | |
2528 | * first descriptor address. | |
2529 | */ | |
2530 | address &= (0xffffffffU >> tsz); | |
2531 | ||
2532 | /* Now we can extract the actual base address from the TTBR */ | |
2533 | descaddr = extract64(ttbr, 0, 40); | |
2534 | descaddr &= ~((1ULL << n) - 1); | |
2535 | ||
2536 | tableattrs = 0; | |
2537 | for (;;) { | |
2538 | uint64_t descriptor; | |
2539 | ||
2540 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); | |
2541 | descriptor = ldq_phys(descaddr); | |
2542 | if (!(descriptor & 1) || | |
2543 | (!(descriptor & 2) && (level == 3))) { | |
2544 | /* Invalid, or the Reserved level 3 encoding */ | |
2545 | goto do_fault; | |
2546 | } | |
2547 | descaddr = descriptor & 0xfffffff000ULL; | |
2548 | ||
2549 | if ((descriptor & 2) && (level < 3)) { | |
2550 | /* Table entry. The top five bits are attributes which may | |
2551 | * propagate down through lower levels of the table (and | |
2552 | * which are all arranged so that 0 means "no effect", so | |
2553 | * we can gather them up by ORing in the bits at each level). | |
2554 | */ | |
2555 | tableattrs |= extract64(descriptor, 59, 5); | |
2556 | level++; | |
2557 | continue; | |
2558 | } | |
2559 | /* Block entry at level 1 or 2, or page entry at level 3. | |
2560 | * These are basically the same thing, although the number | |
2561 | * of bits we pull in from the vaddr varies. | |
2562 | */ | |
2563 | page_size = (1 << (39 - (9 * level))); | |
2564 | descaddr |= (address & (page_size - 1)); | |
2565 | /* Extract attributes from the descriptor and merge with table attrs */ | |
2566 | attrs = extract64(descriptor, 2, 10) | |
2567 | | (extract64(descriptor, 52, 12) << 10); | |
2568 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
2569 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
2570 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
2571 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
2572 | */ | |
2573 | if (extract32(tableattrs, 2, 1)) { | |
2574 | attrs &= ~(1 << 4); | |
2575 | } | |
2576 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
2577 | break; | |
2578 | } | |
2579 | /* Here descaddr is the final physical address, and attributes | |
2580 | * are all in attrs. | |
2581 | */ | |
2582 | fault_type = access_fault; | |
2583 | if ((attrs & (1 << 8)) == 0) { | |
2584 | /* Access flag */ | |
2585 | goto do_fault; | |
2586 | } | |
2587 | fault_type = permission_fault; | |
2588 | if (is_user && !(attrs & (1 << 4))) { | |
2589 | /* Unprivileged access not enabled */ | |
2590 | goto do_fault; | |
2591 | } | |
2592 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
2593 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { | |
2594 | /* XN or PXN */ | |
2595 | if (access_type == 2) { | |
2596 | goto do_fault; | |
2597 | } | |
2598 | *prot &= ~PAGE_EXEC; | |
2599 | } | |
2600 | if (attrs & (1 << 5)) { | |
2601 | /* Write access forbidden */ | |
2602 | if (access_type == 1) { | |
2603 | goto do_fault; | |
2604 | } | |
2605 | *prot &= ~PAGE_WRITE; | |
2606 | } | |
2607 | ||
2608 | *phys_ptr = descaddr; | |
2609 | *page_size_ptr = page_size; | |
2610 | return 0; | |
2611 | ||
2612 | do_fault: | |
2613 | /* Long-descriptor format IFSR/DFSR value */ | |
2614 | return (1 << 9) | (fault_type << 2) | level; | |
2615 | } | |
2616 | ||
77a71dd1 PM |
2617 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
2618 | int access_type, int is_user, | |
a8170e5e | 2619 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
2620 | { |
2621 | int n; | |
2622 | uint32_t mask; | |
2623 | uint32_t base; | |
2624 | ||
2625 | *phys_ptr = address; | |
2626 | for (n = 7; n >= 0; n--) { | |
2627 | base = env->cp15.c6_region[n]; | |
2628 | if ((base & 1) == 0) | |
2629 | continue; | |
2630 | mask = 1 << ((base >> 1) & 0x1f); | |
2631 | /* Keep this shift separate from the above to avoid an | |
2632 | (undefined) << 32. */ | |
2633 | mask = (mask << 1) - 1; | |
2634 | if (((base ^ address) & ~mask) == 0) | |
2635 | break; | |
2636 | } | |
2637 | if (n < 0) | |
2638 | return 2; | |
2639 | ||
2640 | if (access_type == 2) { | |
2641 | mask = env->cp15.c5_insn; | |
2642 | } else { | |
2643 | mask = env->cp15.c5_data; | |
2644 | } | |
2645 | mask = (mask >> (n * 4)) & 0xf; | |
2646 | switch (mask) { | |
2647 | case 0: | |
2648 | return 1; | |
2649 | case 1: | |
2650 | if (is_user) | |
2651 | return 1; | |
2652 | *prot = PAGE_READ | PAGE_WRITE; | |
2653 | break; | |
2654 | case 2: | |
2655 | *prot = PAGE_READ; | |
2656 | if (!is_user) | |
2657 | *prot |= PAGE_WRITE; | |
2658 | break; | |
2659 | case 3: | |
2660 | *prot = PAGE_READ | PAGE_WRITE; | |
2661 | break; | |
2662 | case 5: | |
2663 | if (is_user) | |
2664 | return 1; | |
2665 | *prot = PAGE_READ; | |
2666 | break; | |
2667 | case 6: | |
2668 | *prot = PAGE_READ; | |
2669 | break; | |
2670 | default: | |
2671 | /* Bad permission. */ | |
2672 | return 1; | |
2673 | } | |
3ad493fc | 2674 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
2675 | return 0; |
2676 | } | |
2677 | ||
702a9357 PM |
2678 | /* get_phys_addr - get the physical address for this virtual address |
2679 | * | |
2680 | * Find the physical address corresponding to the given virtual address, | |
2681 | * by doing a translation table walk on MMU based systems or using the | |
2682 | * MPU state on MPU based systems. | |
2683 | * | |
2684 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
2685 | * prot and page_size are not filled in, and the return value provides | |
2686 | * information on why the translation aborted, in the format of a | |
2687 | * DFSR/IFSR fault register, with the following caveats: | |
2688 | * * we honour the short vs long DFSR format differences. | |
2689 | * * the WnR bit is never set (the caller must do this). | |
2690 | * * for MPU based systems we don't bother to return a full FSR format | |
2691 | * value. | |
2692 | * | |
2693 | * @env: CPUARMState | |
2694 | * @address: virtual address to get physical address for | |
2695 | * @access_type: 0 for read, 1 for write, 2 for execute | |
2696 | * @is_user: 0 for privileged access, 1 for user | |
2697 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
2698 | * @prot: set to the permissions for the page containing phys_ptr | |
2699 | * @page_size: set to the size of the page containing phys_ptr | |
2700 | */ | |
0ecb72a5 | 2701 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
9ee6e8bb | 2702 | int access_type, int is_user, |
a8170e5e | 2703 | hwaddr *phys_ptr, int *prot, |
d4c430a8 | 2704 | target_ulong *page_size) |
9ee6e8bb PB |
2705 | { |
2706 | /* Fast Context Switch Extension. */ | |
2707 | if (address < 0x02000000) | |
2708 | address += env->cp15.c13_fcse; | |
2709 | ||
2710 | if ((env->cp15.c1_sys & 1) == 0) { | |
2711 | /* MMU/MPU disabled. */ | |
2712 | *phys_ptr = address; | |
3ad493fc | 2713 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 2714 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
2715 | return 0; |
2716 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 2717 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
2718 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
2719 | prot); | |
3dde962f PM |
2720 | } else if (extended_addresses_enabled(env)) { |
2721 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
2722 | prot, page_size); | |
9ee6e8bb PB |
2723 | } else if (env->cp15.c1_sys & (1 << 23)) { |
2724 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 2725 | prot, page_size); |
9ee6e8bb PB |
2726 | } else { |
2727 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 2728 | prot, page_size); |
9ee6e8bb PB |
2729 | } |
2730 | } | |
2731 | ||
0ecb72a5 | 2732 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
97b348e7 | 2733 | int access_type, int mmu_idx) |
b5ff1b31 | 2734 | { |
a8170e5e | 2735 | hwaddr phys_addr; |
d4c430a8 | 2736 | target_ulong page_size; |
b5ff1b31 | 2737 | int prot; |
6ebbf390 | 2738 | int ret, is_user; |
b5ff1b31 | 2739 | |
6ebbf390 | 2740 | is_user = mmu_idx == MMU_USER_IDX; |
d4c430a8 PB |
2741 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
2742 | &page_size); | |
b5ff1b31 FB |
2743 | if (ret == 0) { |
2744 | /* Map a single [sub]page. */ | |
a8170e5e | 2745 | phys_addr &= ~(hwaddr)0x3ff; |
b5ff1b31 | 2746 | address &= ~(uint32_t)0x3ff; |
3ad493fc | 2747 | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
d4c430a8 | 2748 | return 0; |
b5ff1b31 FB |
2749 | } |
2750 | ||
2751 | if (access_type == 2) { | |
2752 | env->cp15.c5_insn = ret; | |
2753 | env->cp15.c6_insn = address; | |
2754 | env->exception_index = EXCP_PREFETCH_ABORT; | |
2755 | } else { | |
2756 | env->cp15.c5_data = ret; | |
9ee6e8bb PB |
2757 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
2758 | env->cp15.c5_data |= (1 << 11); | |
b5ff1b31 FB |
2759 | env->cp15.c6_data = address; |
2760 | env->exception_index = EXCP_DATA_ABORT; | |
2761 | } | |
2762 | return 1; | |
2763 | } | |
2764 | ||
a8170e5e | 2765 | hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr) |
b5ff1b31 | 2766 | { |
a8170e5e | 2767 | hwaddr phys_addr; |
d4c430a8 | 2768 | target_ulong page_size; |
b5ff1b31 FB |
2769 | int prot; |
2770 | int ret; | |
2771 | ||
d4c430a8 | 2772 | ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size); |
b5ff1b31 FB |
2773 | |
2774 | if (ret != 0) | |
2775 | return -1; | |
2776 | ||
2777 | return phys_addr; | |
2778 | } | |
2779 | ||
0ecb72a5 | 2780 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 2781 | { |
39ea3d4e PM |
2782 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
2783 | env->regs[13] = val; | |
2784 | } else { | |
f5206413 | 2785 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 2786 | } |
9ee6e8bb PB |
2787 | } |
2788 | ||
0ecb72a5 | 2789 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 2790 | { |
39ea3d4e PM |
2791 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
2792 | return env->regs[13]; | |
2793 | } else { | |
f5206413 | 2794 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 2795 | } |
9ee6e8bb PB |
2796 | } |
2797 | ||
0ecb72a5 | 2798 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb PB |
2799 | { |
2800 | switch (reg) { | |
2801 | case 0: /* APSR */ | |
2802 | return xpsr_read(env) & 0xf8000000; | |
2803 | case 1: /* IAPSR */ | |
2804 | return xpsr_read(env) & 0xf80001ff; | |
2805 | case 2: /* EAPSR */ | |
2806 | return xpsr_read(env) & 0xff00fc00; | |
2807 | case 3: /* xPSR */ | |
2808 | return xpsr_read(env) & 0xff00fdff; | |
2809 | case 5: /* IPSR */ | |
2810 | return xpsr_read(env) & 0x000001ff; | |
2811 | case 6: /* EPSR */ | |
2812 | return xpsr_read(env) & 0x0700fc00; | |
2813 | case 7: /* IEPSR */ | |
2814 | return xpsr_read(env) & 0x0700edff; | |
2815 | case 8: /* MSP */ | |
2816 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
2817 | case 9: /* PSP */ | |
2818 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
2819 | case 16: /* PRIMASK */ | |
2820 | return (env->uncached_cpsr & CPSR_I) != 0; | |
82845826 SH |
2821 | case 17: /* BASEPRI */ |
2822 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 2823 | return env->v7m.basepri; |
82845826 SH |
2824 | case 19: /* FAULTMASK */ |
2825 | return (env->uncached_cpsr & CPSR_F) != 0; | |
9ee6e8bb PB |
2826 | case 20: /* CONTROL */ |
2827 | return env->v7m.control; | |
2828 | default: | |
2829 | /* ??? For debugging only. */ | |
2830 | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); | |
2831 | return 0; | |
2832 | } | |
2833 | } | |
2834 | ||
0ecb72a5 | 2835 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb PB |
2836 | { |
2837 | switch (reg) { | |
2838 | case 0: /* APSR */ | |
2839 | xpsr_write(env, val, 0xf8000000); | |
2840 | break; | |
2841 | case 1: /* IAPSR */ | |
2842 | xpsr_write(env, val, 0xf8000000); | |
2843 | break; | |
2844 | case 2: /* EAPSR */ | |
2845 | xpsr_write(env, val, 0xfe00fc00); | |
2846 | break; | |
2847 | case 3: /* xPSR */ | |
2848 | xpsr_write(env, val, 0xfe00fc00); | |
2849 | break; | |
2850 | case 5: /* IPSR */ | |
2851 | /* IPSR bits are readonly. */ | |
2852 | break; | |
2853 | case 6: /* EPSR */ | |
2854 | xpsr_write(env, val, 0x0600fc00); | |
2855 | break; | |
2856 | case 7: /* IEPSR */ | |
2857 | xpsr_write(env, val, 0x0600fc00); | |
2858 | break; | |
2859 | case 8: /* MSP */ | |
2860 | if (env->v7m.current_sp) | |
2861 | env->v7m.other_sp = val; | |
2862 | else | |
2863 | env->regs[13] = val; | |
2864 | break; | |
2865 | case 9: /* PSP */ | |
2866 | if (env->v7m.current_sp) | |
2867 | env->regs[13] = val; | |
2868 | else | |
2869 | env->v7m.other_sp = val; | |
2870 | break; | |
2871 | case 16: /* PRIMASK */ | |
2872 | if (val & 1) | |
2873 | env->uncached_cpsr |= CPSR_I; | |
2874 | else | |
2875 | env->uncached_cpsr &= ~CPSR_I; | |
2876 | break; | |
82845826 | 2877 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
2878 | env->v7m.basepri = val & 0xff; |
2879 | break; | |
82845826 | 2880 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
2881 | val &= 0xff; |
2882 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
2883 | env->v7m.basepri = val; | |
2884 | break; | |
82845826 SH |
2885 | case 19: /* FAULTMASK */ |
2886 | if (val & 1) | |
2887 | env->uncached_cpsr |= CPSR_F; | |
2888 | else | |
2889 | env->uncached_cpsr &= ~CPSR_F; | |
2890 | break; | |
9ee6e8bb PB |
2891 | case 20: /* CONTROL */ |
2892 | env->v7m.control = val & 3; | |
2893 | switch_v7m_sp(env, (val & 2) != 0); | |
2894 | break; | |
2895 | default: | |
2896 | /* ??? For debugging only. */ | |
2897 | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); | |
2898 | return; | |
2899 | } | |
2900 | } | |
2901 | ||
b5ff1b31 | 2902 | #endif |
6ddbc6e4 PB |
2903 | |
2904 | /* Note that signed overflow is undefined in C. The following routines are | |
2905 | careful to use unsigned types where modulo arithmetic is required. | |
2906 | Failure to do so _will_ break on newer gcc. */ | |
2907 | ||
2908 | /* Signed saturating arithmetic. */ | |
2909 | ||
1654b2d6 | 2910 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
2911 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
2912 | { | |
2913 | uint16_t res; | |
2914 | ||
2915 | res = a + b; | |
2916 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
2917 | if (a & 0x8000) | |
2918 | res = 0x8000; | |
2919 | else | |
2920 | res = 0x7fff; | |
2921 | } | |
2922 | return res; | |
2923 | } | |
2924 | ||
1654b2d6 | 2925 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
2926 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
2927 | { | |
2928 | uint8_t res; | |
2929 | ||
2930 | res = a + b; | |
2931 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
2932 | if (a & 0x80) | |
2933 | res = 0x80; | |
2934 | else | |
2935 | res = 0x7f; | |
2936 | } | |
2937 | return res; | |
2938 | } | |
2939 | ||
1654b2d6 | 2940 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
2941 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
2942 | { | |
2943 | uint16_t res; | |
2944 | ||
2945 | res = a - b; | |
2946 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
2947 | if (a & 0x8000) | |
2948 | res = 0x8000; | |
2949 | else | |
2950 | res = 0x7fff; | |
2951 | } | |
2952 | return res; | |
2953 | } | |
2954 | ||
1654b2d6 | 2955 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
2956 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
2957 | { | |
2958 | uint8_t res; | |
2959 | ||
2960 | res = a - b; | |
2961 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
2962 | if (a & 0x80) | |
2963 | res = 0x80; | |
2964 | else | |
2965 | res = 0x7f; | |
2966 | } | |
2967 | return res; | |
2968 | } | |
2969 | ||
2970 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
2971 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
2972 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
2973 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
2974 | #define PFX q | |
2975 | ||
2976 | #include "op_addsub.h" | |
2977 | ||
2978 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 2979 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
2980 | { |
2981 | uint16_t res; | |
2982 | res = a + b; | |
2983 | if (res < a) | |
2984 | res = 0xffff; | |
2985 | return res; | |
2986 | } | |
2987 | ||
460a09c1 | 2988 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 2989 | { |
4c4fd3f8 | 2990 | if (a > b) |
6ddbc6e4 PB |
2991 | return a - b; |
2992 | else | |
2993 | return 0; | |
2994 | } | |
2995 | ||
2996 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
2997 | { | |
2998 | uint8_t res; | |
2999 | res = a + b; | |
3000 | if (res < a) | |
3001 | res = 0xff; | |
3002 | return res; | |
3003 | } | |
3004 | ||
3005 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
3006 | { | |
4c4fd3f8 | 3007 | if (a > b) |
6ddbc6e4 PB |
3008 | return a - b; |
3009 | else | |
3010 | return 0; | |
3011 | } | |
3012 | ||
3013 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
3014 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
3015 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
3016 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
3017 | #define PFX uq | |
3018 | ||
3019 | #include "op_addsub.h" | |
3020 | ||
3021 | /* Signed modulo arithmetic. */ | |
3022 | #define SARITH16(a, b, n, op) do { \ | |
3023 | int32_t sum; \ | |
db6e2e65 | 3024 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
3025 | RESULT(sum, n, 16); \ |
3026 | if (sum >= 0) \ | |
3027 | ge |= 3 << (n * 2); \ | |
3028 | } while(0) | |
3029 | ||
3030 | #define SARITH8(a, b, n, op) do { \ | |
3031 | int32_t sum; \ | |
db6e2e65 | 3032 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
3033 | RESULT(sum, n, 8); \ |
3034 | if (sum >= 0) \ | |
3035 | ge |= 1 << n; \ | |
3036 | } while(0) | |
3037 | ||
3038 | ||
3039 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
3040 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
3041 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
3042 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
3043 | #define PFX s | |
3044 | #define ARITH_GE | |
3045 | ||
3046 | #include "op_addsub.h" | |
3047 | ||
3048 | /* Unsigned modulo arithmetic. */ | |
3049 | #define ADD16(a, b, n) do { \ | |
3050 | uint32_t sum; \ | |
3051 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
3052 | RESULT(sum, n, 16); \ | |
a87aa10b | 3053 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
3054 | ge |= 3 << (n * 2); \ |
3055 | } while(0) | |
3056 | ||
3057 | #define ADD8(a, b, n) do { \ | |
3058 | uint32_t sum; \ | |
3059 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
3060 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
3061 | if ((sum >> 8) == 1) \ |
3062 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
3063 | } while(0) |
3064 | ||
3065 | #define SUB16(a, b, n) do { \ | |
3066 | uint32_t sum; \ | |
3067 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
3068 | RESULT(sum, n, 16); \ | |
3069 | if ((sum >> 16) == 0) \ | |
3070 | ge |= 3 << (n * 2); \ | |
3071 | } while(0) | |
3072 | ||
3073 | #define SUB8(a, b, n) do { \ | |
3074 | uint32_t sum; \ | |
3075 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
3076 | RESULT(sum, n, 8); \ | |
3077 | if ((sum >> 8) == 0) \ | |
a87aa10b | 3078 | ge |= 1 << n; \ |
6ddbc6e4 PB |
3079 | } while(0) |
3080 | ||
3081 | #define PFX u | |
3082 | #define ARITH_GE | |
3083 | ||
3084 | #include "op_addsub.h" | |
3085 | ||
3086 | /* Halved signed arithmetic. */ | |
3087 | #define ADD16(a, b, n) \ | |
3088 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
3089 | #define SUB16(a, b, n) \ | |
3090 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
3091 | #define ADD8(a, b, n) \ | |
3092 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
3093 | #define SUB8(a, b, n) \ | |
3094 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
3095 | #define PFX sh | |
3096 | ||
3097 | #include "op_addsub.h" | |
3098 | ||
3099 | /* Halved unsigned arithmetic. */ | |
3100 | #define ADD16(a, b, n) \ | |
3101 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
3102 | #define SUB16(a, b, n) \ | |
3103 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
3104 | #define ADD8(a, b, n) \ | |
3105 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
3106 | #define SUB8(a, b, n) \ | |
3107 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
3108 | #define PFX uh | |
3109 | ||
3110 | #include "op_addsub.h" | |
3111 | ||
3112 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
3113 | { | |
3114 | if (a > b) | |
3115 | return a - b; | |
3116 | else | |
3117 | return b - a; | |
3118 | } | |
3119 | ||
3120 | /* Unsigned sum of absolute byte differences. */ | |
3121 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
3122 | { | |
3123 | uint32_t sum; | |
3124 | sum = do_usad(a, b); | |
3125 | sum += do_usad(a >> 8, b >> 8); | |
3126 | sum += do_usad(a >> 16, b >>16); | |
3127 | sum += do_usad(a >> 24, b >> 24); | |
3128 | return sum; | |
3129 | } | |
3130 | ||
3131 | /* For ARMv6 SEL instruction. */ | |
3132 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
3133 | { | |
3134 | uint32_t mask; | |
3135 | ||
3136 | mask = 0; | |
3137 | if (flags & 1) | |
3138 | mask |= 0xff; | |
3139 | if (flags & 2) | |
3140 | mask |= 0xff00; | |
3141 | if (flags & 4) | |
3142 | mask |= 0xff0000; | |
3143 | if (flags & 8) | |
3144 | mask |= 0xff000000; | |
3145 | return (a & mask) | (b & ~mask); | |
3146 | } | |
3147 | ||
b90372ad PM |
3148 | /* VFP support. We follow the convention used for VFP instructions: |
3149 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
3150 | "d" suffix. */ |
3151 | ||
3152 | /* Convert host exception flags to vfp form. */ | |
3153 | static inline int vfp_exceptbits_from_host(int host_bits) | |
3154 | { | |
3155 | int target_bits = 0; | |
3156 | ||
3157 | if (host_bits & float_flag_invalid) | |
3158 | target_bits |= 1; | |
3159 | if (host_bits & float_flag_divbyzero) | |
3160 | target_bits |= 2; | |
3161 | if (host_bits & float_flag_overflow) | |
3162 | target_bits |= 4; | |
36802b6b | 3163 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
3164 | target_bits |= 8; |
3165 | if (host_bits & float_flag_inexact) | |
3166 | target_bits |= 0x10; | |
cecd8504 PM |
3167 | if (host_bits & float_flag_input_denormal) |
3168 | target_bits |= 0x80; | |
4373f3ce PB |
3169 | return target_bits; |
3170 | } | |
3171 | ||
0ecb72a5 | 3172 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
3173 | { |
3174 | int i; | |
3175 | uint32_t fpscr; | |
3176 | ||
3177 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
3178 | | (env->vfp.vec_len << 16) | |
3179 | | (env->vfp.vec_stride << 20); | |
3180 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 3181 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
3182 | fpscr |= vfp_exceptbits_from_host(i); |
3183 | return fpscr; | |
3184 | } | |
3185 | ||
0ecb72a5 | 3186 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
3187 | { |
3188 | return HELPER(vfp_get_fpscr)(env); | |
3189 | } | |
3190 | ||
4373f3ce PB |
3191 | /* Convert vfp exception flags to target form. */ |
3192 | static inline int vfp_exceptbits_to_host(int target_bits) | |
3193 | { | |
3194 | int host_bits = 0; | |
3195 | ||
3196 | if (target_bits & 1) | |
3197 | host_bits |= float_flag_invalid; | |
3198 | if (target_bits & 2) | |
3199 | host_bits |= float_flag_divbyzero; | |
3200 | if (target_bits & 4) | |
3201 | host_bits |= float_flag_overflow; | |
3202 | if (target_bits & 8) | |
3203 | host_bits |= float_flag_underflow; | |
3204 | if (target_bits & 0x10) | |
3205 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
3206 | if (target_bits & 0x80) |
3207 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
3208 | return host_bits; |
3209 | } | |
3210 | ||
0ecb72a5 | 3211 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
3212 | { |
3213 | int i; | |
3214 | uint32_t changed; | |
3215 | ||
3216 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
3217 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
3218 | env->vfp.vec_len = (val >> 16) & 7; | |
3219 | env->vfp.vec_stride = (val >> 20) & 3; | |
3220 | ||
3221 | changed ^= val; | |
3222 | if (changed & (3 << 22)) { | |
3223 | i = (val >> 22) & 3; | |
3224 | switch (i) { | |
3225 | case 0: | |
3226 | i = float_round_nearest_even; | |
3227 | break; | |
3228 | case 1: | |
3229 | i = float_round_up; | |
3230 | break; | |
3231 | case 2: | |
3232 | i = float_round_down; | |
3233 | break; | |
3234 | case 3: | |
3235 | i = float_round_to_zero; | |
3236 | break; | |
3237 | } | |
3238 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
3239 | } | |
cecd8504 | 3240 | if (changed & (1 << 24)) { |
fe76d976 | 3241 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
3242 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
3243 | } | |
5c7908ed PB |
3244 | if (changed & (1 << 25)) |
3245 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 3246 | |
b12c390b | 3247 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 3248 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 3249 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
3250 | } |
3251 | ||
0ecb72a5 | 3252 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
3253 | { |
3254 | HELPER(vfp_set_fpscr)(env, val); | |
3255 | } | |
3256 | ||
4373f3ce PB |
3257 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
3258 | ||
3259 | #define VFP_BINOP(name) \ | |
ae1857ec | 3260 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 3261 | { \ |
ae1857ec PM |
3262 | float_status *fpst = fpstp; \ |
3263 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 3264 | } \ |
ae1857ec | 3265 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 3266 | { \ |
ae1857ec PM |
3267 | float_status *fpst = fpstp; \ |
3268 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
3269 | } |
3270 | VFP_BINOP(add) | |
3271 | VFP_BINOP(sub) | |
3272 | VFP_BINOP(mul) | |
3273 | VFP_BINOP(div) | |
3274 | #undef VFP_BINOP | |
3275 | ||
3276 | float32 VFP_HELPER(neg, s)(float32 a) | |
3277 | { | |
3278 | return float32_chs(a); | |
3279 | } | |
3280 | ||
3281 | float64 VFP_HELPER(neg, d)(float64 a) | |
3282 | { | |
66230e0d | 3283 | return float64_chs(a); |
4373f3ce PB |
3284 | } |
3285 | ||
3286 | float32 VFP_HELPER(abs, s)(float32 a) | |
3287 | { | |
3288 | return float32_abs(a); | |
3289 | } | |
3290 | ||
3291 | float64 VFP_HELPER(abs, d)(float64 a) | |
3292 | { | |
66230e0d | 3293 | return float64_abs(a); |
4373f3ce PB |
3294 | } |
3295 | ||
0ecb72a5 | 3296 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
3297 | { |
3298 | return float32_sqrt(a, &env->vfp.fp_status); | |
3299 | } | |
3300 | ||
0ecb72a5 | 3301 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
3302 | { |
3303 | return float64_sqrt(a, &env->vfp.fp_status); | |
3304 | } | |
3305 | ||
3306 | /* XXX: check quiet/signaling case */ | |
3307 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 3308 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
3309 | { \ |
3310 | uint32_t flags; \ | |
3311 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
3312 | case 0: flags = 0x6; break; \ | |
3313 | case -1: flags = 0x8; break; \ | |
3314 | case 1: flags = 0x2; break; \ | |
3315 | default: case 2: flags = 0x3; break; \ | |
3316 | } \ | |
3317 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
3318 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
3319 | } \ | |
0ecb72a5 | 3320 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
3321 | { \ |
3322 | uint32_t flags; \ | |
3323 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
3324 | case 0: flags = 0x6; break; \ | |
3325 | case -1: flags = 0x8; break; \ | |
3326 | case 1: flags = 0x2; break; \ | |
3327 | default: case 2: flags = 0x3; break; \ | |
3328 | } \ | |
3329 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
3330 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
3331 | } | |
3332 | DO_VFP_cmp(s, float32) | |
3333 | DO_VFP_cmp(d, float64) | |
3334 | #undef DO_VFP_cmp | |
3335 | ||
5500b06c | 3336 | /* Integer to float and float to integer conversions */ |
4373f3ce | 3337 | |
5500b06c PM |
3338 | #define CONV_ITOF(name, fsz, sign) \ |
3339 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
3340 | { \ | |
3341 | float_status *fpst = fpstp; \ | |
85836979 | 3342 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
3343 | } |
3344 | ||
5500b06c PM |
3345 | #define CONV_FTOI(name, fsz, sign, round) \ |
3346 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
3347 | { \ | |
3348 | float_status *fpst = fpstp; \ | |
3349 | if (float##fsz##_is_any_nan(x)) { \ | |
3350 | float_raise(float_flag_invalid, fpst); \ | |
3351 | return 0; \ | |
3352 | } \ | |
3353 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
3354 | } |
3355 | ||
5500b06c PM |
3356 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
3357 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
3358 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
3359 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 3360 | |
5500b06c PM |
3361 | FLOAT_CONVS(si, s, 32, ) |
3362 | FLOAT_CONVS(si, d, 64, ) | |
3363 | FLOAT_CONVS(ui, s, 32, u) | |
3364 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 3365 | |
5500b06c PM |
3366 | #undef CONV_ITOF |
3367 | #undef CONV_FTOI | |
3368 | #undef FLOAT_CONVS | |
4373f3ce PB |
3369 | |
3370 | /* floating point conversion */ | |
0ecb72a5 | 3371 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 3372 | { |
2d627737 PM |
3373 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
3374 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
3375 | * a quiet NaN by forcing the most significant frac bit to 1. | |
3376 | */ | |
3377 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
3378 | } |
3379 | ||
0ecb72a5 | 3380 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 3381 | { |
2d627737 PM |
3382 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
3383 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
3384 | * a quiet NaN by forcing the most significant frac bit to 1. | |
3385 | */ | |
3386 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
3387 | } |
3388 | ||
3389 | /* VFP3 fixed point conversion. */ | |
622465e1 | 3390 | #define VFP_CONV_FIX(name, p, fsz, itype, sign) \ |
5500b06c PM |
3391 | float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \ |
3392 | void *fpstp) \ | |
4373f3ce | 3393 | { \ |
5500b06c | 3394 | float_status *fpst = fpstp; \ |
622465e1 | 3395 | float##fsz tmp; \ |
5500b06c PM |
3396 | tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \ |
3397 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ | |
4373f3ce | 3398 | } \ |
5500b06c PM |
3399 | uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \ |
3400 | void *fpstp) \ | |
4373f3ce | 3401 | { \ |
5500b06c | 3402 | float_status *fpst = fpstp; \ |
622465e1 PM |
3403 | float##fsz tmp; \ |
3404 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 3405 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 3406 | return 0; \ |
09d9487f | 3407 | } \ |
5500b06c PM |
3408 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
3409 | return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \ | |
622465e1 PM |
3410 | } |
3411 | ||
3412 | VFP_CONV_FIX(sh, d, 64, int16, ) | |
3413 | VFP_CONV_FIX(sl, d, 64, int32, ) | |
3414 | VFP_CONV_FIX(uh, d, 64, uint16, u) | |
3415 | VFP_CONV_FIX(ul, d, 64, uint32, u) | |
3416 | VFP_CONV_FIX(sh, s, 32, int16, ) | |
3417 | VFP_CONV_FIX(sl, s, 32, int32, ) | |
3418 | VFP_CONV_FIX(uh, s, 32, uint16, u) | |
3419 | VFP_CONV_FIX(ul, s, 32, uint32, u) | |
4373f3ce PB |
3420 | #undef VFP_CONV_FIX |
3421 | ||
60011498 | 3422 | /* Half precision conversions. */ |
0ecb72a5 | 3423 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 3424 | { |
60011498 | 3425 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
3426 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
3427 | if (ieee) { | |
3428 | return float32_maybe_silence_nan(r); | |
3429 | } | |
3430 | return r; | |
60011498 PB |
3431 | } |
3432 | ||
0ecb72a5 | 3433 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 3434 | { |
60011498 | 3435 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
3436 | float16 r = float32_to_float16(a, ieee, s); |
3437 | if (ieee) { | |
3438 | r = float16_maybe_silence_nan(r); | |
3439 | } | |
3440 | return float16_val(r); | |
60011498 PB |
3441 | } |
3442 | ||
0ecb72a5 | 3443 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
3444 | { |
3445 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
3446 | } | |
3447 | ||
0ecb72a5 | 3448 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
3449 | { |
3450 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
3451 | } | |
3452 | ||
0ecb72a5 | 3453 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
3454 | { |
3455 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
3456 | } | |
3457 | ||
0ecb72a5 | 3458 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
3459 | { |
3460 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
3461 | } | |
3462 | ||
dda3ec49 | 3463 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
3464 | #define float32_three make_float32(0x40400000) |
3465 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 3466 | |
0ecb72a5 | 3467 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 3468 | { |
dda3ec49 PM |
3469 | float_status *s = &env->vfp.standard_fp_status; |
3470 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
3471 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
3472 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
3473 | float_raise(float_flag_input_denormal, s); | |
3474 | } | |
dda3ec49 PM |
3475 | return float32_two; |
3476 | } | |
3477 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
3478 | } |
3479 | ||
0ecb72a5 | 3480 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 3481 | { |
71826966 | 3482 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
3483 | float32 product; |
3484 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
3485 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
3486 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
3487 | float_raise(float_flag_input_denormal, s); | |
3488 | } | |
6aae3df1 | 3489 | return float32_one_point_five; |
9ea62f57 | 3490 | } |
6aae3df1 PM |
3491 | product = float32_mul(a, b, s); |
3492 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
3493 | } |
3494 | ||
8f8e3aa4 PB |
3495 | /* NEON helpers. */ |
3496 | ||
56bf4fe2 CL |
3497 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
3498 | * int->float conversions at run-time. */ | |
3499 | #define float64_256 make_float64(0x4070000000000000LL) | |
3500 | #define float64_512 make_float64(0x4080000000000000LL) | |
3501 | ||
fe0e4872 CL |
3502 | /* The algorithm that must be used to calculate the estimate |
3503 | * is specified by the ARM ARM. | |
3504 | */ | |
0ecb72a5 | 3505 | static float64 recip_estimate(float64 a, CPUARMState *env) |
fe0e4872 | 3506 | { |
1146a817 PM |
3507 | /* These calculations mustn't set any fp exception flags, |
3508 | * so we use a local copy of the fp_status. | |
3509 | */ | |
3510 | float_status dummy_status = env->vfp.standard_fp_status; | |
3511 | float_status *s = &dummy_status; | |
fe0e4872 CL |
3512 | /* q = (int)(a * 512.0) */ |
3513 | float64 q = float64_mul(float64_512, a, s); | |
3514 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
3515 | ||
3516 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
3517 | q = int64_to_float64(q_int, s); | |
3518 | q = float64_add(q, float64_half, s); | |
3519 | q = float64_div(q, float64_512, s); | |
3520 | q = float64_div(float64_one, q, s); | |
3521 | ||
3522 | /* s = (int)(256.0 * r + 0.5) */ | |
3523 | q = float64_mul(q, float64_256, s); | |
3524 | q = float64_add(q, float64_half, s); | |
3525 | q_int = float64_to_int64_round_to_zero(q, s); | |
3526 | ||
3527 | /* return (double)s / 256.0 */ | |
3528 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
3529 | } | |
3530 | ||
0ecb72a5 | 3531 | float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) |
4373f3ce | 3532 | { |
fe0e4872 CL |
3533 | float_status *s = &env->vfp.standard_fp_status; |
3534 | float64 f64; | |
3535 | uint32_t val32 = float32_val(a); | |
3536 | ||
3537 | int result_exp; | |
3538 | int a_exp = (val32 & 0x7f800000) >> 23; | |
3539 | int sign = val32 & 0x80000000; | |
3540 | ||
3541 | if (float32_is_any_nan(a)) { | |
3542 | if (float32_is_signaling_nan(a)) { | |
3543 | float_raise(float_flag_invalid, s); | |
3544 | } | |
3545 | return float32_default_nan; | |
3546 | } else if (float32_is_infinity(a)) { | |
3547 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
3548 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
3549 | if (!float32_is_zero(a)) { |
3550 | float_raise(float_flag_input_denormal, s); | |
3551 | } | |
fe0e4872 CL |
3552 | float_raise(float_flag_divbyzero, s); |
3553 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
3554 | } else if (a_exp >= 253) { | |
3555 | float_raise(float_flag_underflow, s); | |
3556 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
3557 | } | |
3558 | ||
3559 | f64 = make_float64((0x3feULL << 52) | |
3560 | | ((int64_t)(val32 & 0x7fffff) << 29)); | |
3561 | ||
3562 | result_exp = 253 - a_exp; | |
3563 | ||
3564 | f64 = recip_estimate(f64, env); | |
3565 | ||
3566 | val32 = sign | |
3567 | | ((result_exp & 0xff) << 23) | |
3568 | | ((float64_val(f64) >> 29) & 0x7fffff); | |
3569 | return make_float32(val32); | |
4373f3ce PB |
3570 | } |
3571 | ||
e07be5d2 CL |
3572 | /* The algorithm that must be used to calculate the estimate |
3573 | * is specified by the ARM ARM. | |
3574 | */ | |
0ecb72a5 | 3575 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
e07be5d2 | 3576 | { |
1146a817 PM |
3577 | /* These calculations mustn't set any fp exception flags, |
3578 | * so we use a local copy of the fp_status. | |
3579 | */ | |
3580 | float_status dummy_status = env->vfp.standard_fp_status; | |
3581 | float_status *s = &dummy_status; | |
e07be5d2 CL |
3582 | float64 q; |
3583 | int64_t q_int; | |
3584 | ||
3585 | if (float64_lt(a, float64_half, s)) { | |
3586 | /* range 0.25 <= a < 0.5 */ | |
3587 | ||
3588 | /* a in units of 1/512 rounded down */ | |
3589 | /* q0 = (int)(a * 512.0); */ | |
3590 | q = float64_mul(float64_512, a, s); | |
3591 | q_int = float64_to_int64_round_to_zero(q, s); | |
3592 | ||
3593 | /* reciprocal root r */ | |
3594 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
3595 | q = int64_to_float64(q_int, s); | |
3596 | q = float64_add(q, float64_half, s); | |
3597 | q = float64_div(q, float64_512, s); | |
3598 | q = float64_sqrt(q, s); | |
3599 | q = float64_div(float64_one, q, s); | |
3600 | } else { | |
3601 | /* range 0.5 <= a < 1.0 */ | |
3602 | ||
3603 | /* a in units of 1/256 rounded down */ | |
3604 | /* q1 = (int)(a * 256.0); */ | |
3605 | q = float64_mul(float64_256, a, s); | |
3606 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
3607 | ||
3608 | /* reciprocal root r */ | |
3609 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
3610 | q = int64_to_float64(q_int, s); | |
3611 | q = float64_add(q, float64_half, s); | |
3612 | q = float64_div(q, float64_256, s); | |
3613 | q = float64_sqrt(q, s); | |
3614 | q = float64_div(float64_one, q, s); | |
3615 | } | |
3616 | /* r in units of 1/256 rounded to nearest */ | |
3617 | /* s = (int)(256.0 * r + 0.5); */ | |
3618 | ||
3619 | q = float64_mul(q, float64_256,s ); | |
3620 | q = float64_add(q, float64_half, s); | |
3621 | q_int = float64_to_int64_round_to_zero(q, s); | |
3622 | ||
3623 | /* return (double)s / 256.0;*/ | |
3624 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
3625 | } | |
3626 | ||
0ecb72a5 | 3627 | float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) |
4373f3ce | 3628 | { |
e07be5d2 CL |
3629 | float_status *s = &env->vfp.standard_fp_status; |
3630 | int result_exp; | |
3631 | float64 f64; | |
3632 | uint32_t val; | |
3633 | uint64_t val64; | |
3634 | ||
3635 | val = float32_val(a); | |
3636 | ||
3637 | if (float32_is_any_nan(a)) { | |
3638 | if (float32_is_signaling_nan(a)) { | |
3639 | float_raise(float_flag_invalid, s); | |
3640 | } | |
3641 | return float32_default_nan; | |
3642 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
3643 | if (!float32_is_zero(a)) { |
3644 | float_raise(float_flag_input_denormal, s); | |
3645 | } | |
e07be5d2 CL |
3646 | float_raise(float_flag_divbyzero, s); |
3647 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
3648 | } else if (float32_is_neg(a)) { | |
3649 | float_raise(float_flag_invalid, s); | |
3650 | return float32_default_nan; | |
3651 | } else if (float32_is_infinity(a)) { | |
3652 | return float32_zero; | |
3653 | } | |
3654 | ||
3655 | /* Normalize to a double-precision value between 0.25 and 1.0, | |
3656 | * preserving the parity of the exponent. */ | |
3657 | if ((val & 0x800000) == 0) { | |
3658 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
3659 | | (0x3feULL << 52) | |
3660 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
3661 | } else { | |
3662 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
3663 | | (0x3fdULL << 52) | |
3664 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
3665 | } | |
3666 | ||
3667 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; | |
3668 | ||
3669 | f64 = recip_sqrt_estimate(f64, env); | |
3670 | ||
3671 | val64 = float64_val(f64); | |
3672 | ||
26cc6abf | 3673 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
3674 | | ((val64 >> 29) & 0x7fffff); |
3675 | return make_float32(val); | |
4373f3ce PB |
3676 | } |
3677 | ||
0ecb72a5 | 3678 | uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 3679 | { |
fe0e4872 CL |
3680 | float64 f64; |
3681 | ||
3682 | if ((a & 0x80000000) == 0) { | |
3683 | return 0xffffffff; | |
3684 | } | |
3685 | ||
3686 | f64 = make_float64((0x3feULL << 52) | |
3687 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
3688 | ||
3689 | f64 = recip_estimate (f64, env); | |
3690 | ||
3691 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
3692 | } |
3693 | ||
0ecb72a5 | 3694 | uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 3695 | { |
e07be5d2 CL |
3696 | float64 f64; |
3697 | ||
3698 | if ((a & 0xc0000000) == 0) { | |
3699 | return 0xffffffff; | |
3700 | } | |
3701 | ||
3702 | if (a & 0x80000000) { | |
3703 | f64 = make_float64((0x3feULL << 52) | |
3704 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
3705 | } else { /* bits 31-30 == '01' */ | |
3706 | f64 = make_float64((0x3fdULL << 52) | |
3707 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
3708 | } | |
3709 | ||
3710 | f64 = recip_sqrt_estimate(f64, env); | |
3711 | ||
3712 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 3713 | } |
fe1479c3 | 3714 | |
da97f52c PM |
3715 | /* VFPv4 fused multiply-accumulate */ |
3716 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
3717 | { | |
3718 | float_status *fpst = fpstp; | |
3719 | return float32_muladd(a, b, c, 0, fpst); | |
3720 | } | |
3721 | ||
3722 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
3723 | { | |
3724 | float_status *fpst = fpstp; | |
3725 | return float64_muladd(a, b, c, 0, fpst); | |
3726 | } |