]>
Commit | Line | Data |
---|---|---|
74c21bd0 | 1 | #include "qemu/osdep.h" |
b5ff1b31 | 2 | #include "cpu.h" |
ccd38087 | 3 | #include "internals.h" |
022c62cb | 4 | #include "exec/gdbstub.h" |
2ef6175a | 5 | #include "exec/helper-proto.h" |
1de7afc9 | 6 | #include "qemu/host-utils.h" |
78027bb6 | 7 | #include "sysemu/arch_init.h" |
9c17d615 | 8 | #include "sysemu/sysemu.h" |
1de7afc9 | 9 | #include "qemu/bitops.h" |
eb0ecd5a | 10 | #include "qemu/crc32c.h" |
f08b6170 | 11 | #include "exec/cpu_ldst.h" |
1d854765 | 12 | #include "arm_ldst.h" |
eb0ecd5a | 13 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 14 | #include "exec/semihost.h" |
f3a9b694 | 15 | #include "sysemu/kvm.h" |
0b03bdfc | 16 | |
352c98e5 LV |
17 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
18 | ||
4a501606 | 19 | #ifndef CONFIG_USER_ONLY |
af51f566 EI |
20 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
21 | int access_type, ARMMMUIdx mmu_idx, | |
22 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
e14b5a23 EI |
23 | target_ulong *page_size, uint32_t *fsr, |
24 | ARMMMUFaultInfo *fi); | |
7c2cb42b | 25 | |
37785977 EI |
26 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
27 | int access_type, ARMMMUIdx mmu_idx, | |
28 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | |
29 | target_ulong *page_size_ptr, uint32_t *fsr, | |
30 | ARMMMUFaultInfo *fi); | |
31 | ||
7c2cb42b AF |
32 | /* Definitions for the PMCCNTR and PMCR registers */ |
33 | #define PMCRD 0x8 | |
34 | #define PMCRC 0x4 | |
35 | #define PMCRE 0x1 | |
4a501606 PM |
36 | #endif |
37 | ||
0ecb72a5 | 38 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
39 | { |
40 | int nregs; | |
41 | ||
42 | /* VFP data registers are always little-endian. */ | |
43 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
44 | if (reg < nregs) { | |
45 | stfq_le_p(buf, env->vfp.regs[reg]); | |
46 | return 8; | |
47 | } | |
48 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
49 | /* Aliases for Q regs. */ | |
50 | nregs += 16; | |
51 | if (reg < nregs) { | |
52 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
53 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
54 | return 16; | |
55 | } | |
56 | } | |
57 | switch (reg - nregs) { | |
58 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
59 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
60 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
61 | } | |
62 | return 0; | |
63 | } | |
64 | ||
0ecb72a5 | 65 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
66 | { |
67 | int nregs; | |
68 | ||
69 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
70 | if (reg < nregs) { | |
71 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
72 | return 8; | |
73 | } | |
74 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
75 | nregs += 16; | |
76 | if (reg < nregs) { | |
77 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
78 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
79 | return 16; | |
80 | } | |
81 | } | |
82 | switch (reg - nregs) { | |
83 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
84 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 85 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
86 | } |
87 | return 0; | |
88 | } | |
89 | ||
6a669427 PM |
90 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
91 | { | |
92 | switch (reg) { | |
93 | case 0 ... 31: | |
94 | /* 128 bit FP register */ | |
95 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
96 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
97 | return 16; | |
98 | case 32: | |
99 | /* FPSR */ | |
100 | stl_p(buf, vfp_get_fpsr(env)); | |
101 | return 4; | |
102 | case 33: | |
103 | /* FPCR */ | |
104 | stl_p(buf, vfp_get_fpcr(env)); | |
105 | return 4; | |
106 | default: | |
107 | return 0; | |
108 | } | |
109 | } | |
110 | ||
111 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
112 | { | |
113 | switch (reg) { | |
114 | case 0 ... 31: | |
115 | /* 128 bit FP register */ | |
116 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
117 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
118 | return 16; | |
119 | case 32: | |
120 | /* FPSR */ | |
121 | vfp_set_fpsr(env, ldl_p(buf)); | |
122 | return 4; | |
123 | case 33: | |
124 | /* FPCR */ | |
125 | vfp_set_fpcr(env, ldl_p(buf)); | |
126 | return 4; | |
127 | default: | |
128 | return 0; | |
129 | } | |
130 | } | |
131 | ||
c4241c7d | 132 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 133 | { |
375421cc | 134 | assert(ri->fieldoffset); |
67ed771d | 135 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 136 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 137 | } else { |
c4241c7d | 138 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 139 | } |
d4e6df63 PM |
140 | } |
141 | ||
c4241c7d PM |
142 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
143 | uint64_t value) | |
d4e6df63 | 144 | { |
375421cc | 145 | assert(ri->fieldoffset); |
67ed771d | 146 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
147 | CPREG_FIELD64(env, ri) = value; |
148 | } else { | |
149 | CPREG_FIELD32(env, ri) = value; | |
150 | } | |
d4e6df63 PM |
151 | } |
152 | ||
11f136ee FA |
153 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
154 | { | |
155 | return (char *)env + ri->fieldoffset; | |
156 | } | |
157 | ||
49a66191 | 158 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 159 | { |
59a1c327 | 160 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 161 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 162 | return ri->resetvalue; |
721fae12 | 163 | } else if (ri->raw_readfn) { |
59a1c327 | 164 | return ri->raw_readfn(env, ri); |
721fae12 | 165 | } else if (ri->readfn) { |
59a1c327 | 166 | return ri->readfn(env, ri); |
721fae12 | 167 | } else { |
59a1c327 | 168 | return raw_read(env, ri); |
721fae12 | 169 | } |
721fae12 PM |
170 | } |
171 | ||
59a1c327 | 172 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 173 | uint64_t v) |
721fae12 PM |
174 | { |
175 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
176 | * Note that constant registers are treated as write-ignored; the |
177 | * caller should check for success by whether a readback gives the | |
178 | * value written. | |
179 | */ | |
180 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 181 | return; |
721fae12 | 182 | } else if (ri->raw_writefn) { |
c4241c7d | 183 | ri->raw_writefn(env, ri, v); |
721fae12 | 184 | } else if (ri->writefn) { |
c4241c7d | 185 | ri->writefn(env, ri, v); |
721fae12 | 186 | } else { |
afb2530f | 187 | raw_write(env, ri, v); |
721fae12 | 188 | } |
721fae12 PM |
189 | } |
190 | ||
375421cc PM |
191 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
192 | { | |
193 | /* Return true if the regdef would cause an assertion if you called | |
194 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
195 | * program bug for it not to have the NO_RAW flag). | |
196 | * NB that returning false here doesn't necessarily mean that calling | |
197 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
198 | * read/write access functions which are safe for raw use" from "has | |
199 | * read/write access functions which have side effects but has forgotten | |
200 | * to provide raw access functions". | |
201 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
202 | * and assertions in raw_read()/raw_write(). | |
203 | */ | |
204 | if ((ri->type & ARM_CP_CONST) || | |
205 | ri->fieldoffset || | |
206 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
207 | return false; | |
208 | } | |
209 | return true; | |
210 | } | |
211 | ||
721fae12 PM |
212 | bool write_cpustate_to_list(ARMCPU *cpu) |
213 | { | |
214 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
215 | int i; | |
216 | bool ok = true; | |
217 | ||
218 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
219 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
220 | const ARMCPRegInfo *ri; | |
59a1c327 | 221 | |
60322b39 | 222 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
223 | if (!ri) { |
224 | ok = false; | |
225 | continue; | |
226 | } | |
7a0e58fa | 227 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
228 | continue; |
229 | } | |
59a1c327 | 230 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
231 | } |
232 | return ok; | |
233 | } | |
234 | ||
235 | bool write_list_to_cpustate(ARMCPU *cpu) | |
236 | { | |
237 | int i; | |
238 | bool ok = true; | |
239 | ||
240 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
241 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
242 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
243 | const ARMCPRegInfo *ri; |
244 | ||
60322b39 | 245 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
246 | if (!ri) { |
247 | ok = false; | |
248 | continue; | |
249 | } | |
7a0e58fa | 250 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
251 | continue; |
252 | } | |
253 | /* Write value and confirm it reads back as written | |
254 | * (to catch read-only registers and partially read-only | |
255 | * registers where the incoming migration value doesn't match) | |
256 | */ | |
59a1c327 PM |
257 | write_raw_cp_reg(&cpu->env, ri, v); |
258 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
259 | ok = false; |
260 | } | |
261 | } | |
262 | return ok; | |
263 | } | |
264 | ||
265 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
266 | { | |
267 | ARMCPU *cpu = opaque; | |
268 | uint64_t regidx; | |
269 | const ARMCPRegInfo *ri; | |
270 | ||
271 | regidx = *(uint32_t *)key; | |
60322b39 | 272 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 273 | |
7a0e58fa | 274 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
275 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
276 | /* The value array need not be initialized at this point */ | |
277 | cpu->cpreg_array_len++; | |
278 | } | |
279 | } | |
280 | ||
281 | static void count_cpreg(gpointer key, gpointer opaque) | |
282 | { | |
283 | ARMCPU *cpu = opaque; | |
284 | uint64_t regidx; | |
285 | const ARMCPRegInfo *ri; | |
286 | ||
287 | regidx = *(uint32_t *)key; | |
60322b39 | 288 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 289 | |
7a0e58fa | 290 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
291 | cpu->cpreg_array_len++; |
292 | } | |
293 | } | |
294 | ||
295 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
296 | { | |
cbf239b7 AR |
297 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
298 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 299 | |
cbf239b7 AR |
300 | if (aidx > bidx) { |
301 | return 1; | |
302 | } | |
303 | if (aidx < bidx) { | |
304 | return -1; | |
305 | } | |
306 | return 0; | |
721fae12 PM |
307 | } |
308 | ||
309 | void init_cpreg_list(ARMCPU *cpu) | |
310 | { | |
311 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
312 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
313 | */ | |
57b6d95e | 314 | GList *keys; |
721fae12 PM |
315 | int arraylen; |
316 | ||
57b6d95e | 317 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
318 | keys = g_list_sort(keys, cpreg_key_compare); |
319 | ||
320 | cpu->cpreg_array_len = 0; | |
321 | ||
322 | g_list_foreach(keys, count_cpreg, cpu); | |
323 | ||
324 | arraylen = cpu->cpreg_array_len; | |
325 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
326 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
327 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
328 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
329 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
330 | cpu->cpreg_array_len = 0; | |
331 | ||
332 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
333 | ||
334 | assert(cpu->cpreg_array_len == arraylen); | |
335 | ||
336 | g_list_free(keys); | |
337 | } | |
338 | ||
68e9c2fe EI |
339 | /* |
340 | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but | |
341 | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. | |
342 | * | |
343 | * access_el3_aa32ns: Used to check AArch32 register views. | |
344 | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. | |
345 | */ | |
346 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
3f208fd7 PM |
347 | const ARMCPRegInfo *ri, |
348 | bool isread) | |
68e9c2fe EI |
349 | { |
350 | bool secure = arm_is_secure_below_el3(env); | |
351 | ||
352 | assert(!arm_el_is_aa64(env, 3)); | |
353 | if (secure) { | |
354 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
355 | } | |
356 | return CP_ACCESS_OK; | |
357 | } | |
358 | ||
359 | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, | |
3f208fd7 PM |
360 | const ARMCPRegInfo *ri, |
361 | bool isread) | |
68e9c2fe EI |
362 | { |
363 | if (!arm_el_is_aa64(env, 3)) { | |
3f208fd7 | 364 | return access_el3_aa32ns(env, ri, isread); |
68e9c2fe EI |
365 | } |
366 | return CP_ACCESS_OK; | |
367 | } | |
368 | ||
5513c3ab PM |
369 | /* Some secure-only AArch32 registers trap to EL3 if used from |
370 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). | |
371 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. | |
372 | * We assume that the .access field is set to PL1_RW. | |
373 | */ | |
374 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, | |
3f208fd7 PM |
375 | const ARMCPRegInfo *ri, |
376 | bool isread) | |
5513c3ab PM |
377 | { |
378 | if (arm_current_el(env) == 3) { | |
379 | return CP_ACCESS_OK; | |
380 | } | |
381 | if (arm_is_secure_below_el3(env)) { | |
382 | return CP_ACCESS_TRAP_EL3; | |
383 | } | |
384 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ | |
385 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
386 | } | |
387 | ||
187f678d PM |
388 | /* Check for traps to "powerdown debug" registers, which are controlled |
389 | * by MDCR.TDOSA | |
390 | */ | |
391 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, | |
392 | bool isread) | |
393 | { | |
394 | int el = arm_current_el(env); | |
395 | ||
396 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) | |
397 | && !arm_is_secure_below_el3(env)) { | |
398 | return CP_ACCESS_TRAP_EL2; | |
399 | } | |
400 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { | |
401 | return CP_ACCESS_TRAP_EL3; | |
402 | } | |
403 | return CP_ACCESS_OK; | |
404 | } | |
405 | ||
91b0a238 PM |
406 | /* Check for traps to "debug ROM" registers, which are controlled |
407 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. | |
408 | */ | |
409 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, | |
410 | bool isread) | |
411 | { | |
412 | int el = arm_current_el(env); | |
413 | ||
414 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) | |
415 | && !arm_is_secure_below_el3(env)) { | |
416 | return CP_ACCESS_TRAP_EL2; | |
417 | } | |
418 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
419 | return CP_ACCESS_TRAP_EL3; | |
420 | } | |
421 | return CP_ACCESS_OK; | |
422 | } | |
423 | ||
d6c8cf81 PM |
424 | /* Check for traps to general debug registers, which are controlled |
425 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. | |
426 | */ | |
427 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, | |
428 | bool isread) | |
429 | { | |
430 | int el = arm_current_el(env); | |
431 | ||
432 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) | |
433 | && !arm_is_secure_below_el3(env)) { | |
434 | return CP_ACCESS_TRAP_EL2; | |
435 | } | |
436 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
437 | return CP_ACCESS_TRAP_EL3; | |
438 | } | |
439 | return CP_ACCESS_OK; | |
440 | } | |
441 | ||
1fce1ba9 PM |
442 | /* Check for traps to performance monitor registers, which are controlled |
443 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. | |
444 | */ | |
445 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, | |
446 | bool isread) | |
447 | { | |
448 | int el = arm_current_el(env); | |
449 | ||
450 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) | |
451 | && !arm_is_secure_below_el3(env)) { | |
452 | return CP_ACCESS_TRAP_EL2; | |
453 | } | |
454 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
455 | return CP_ACCESS_TRAP_EL3; | |
456 | } | |
457 | return CP_ACCESS_OK; | |
458 | } | |
459 | ||
c4241c7d | 460 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 461 | { |
00c8cb0a AF |
462 | ARMCPU *cpu = arm_env_get_cpu(env); |
463 | ||
8d5c773e | 464 | raw_write(env, ri, value); |
00c8cb0a | 465 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
466 | } |
467 | ||
c4241c7d | 468 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 469 | { |
00c8cb0a AF |
470 | ARMCPU *cpu = arm_env_get_cpu(env); |
471 | ||
8d5c773e | 472 | if (raw_read(env, ri) != value) { |
08de207b PM |
473 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
474 | * not modified virtual addresses, so this causes a TLB flush. | |
475 | */ | |
00c8cb0a | 476 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 477 | raw_write(env, ri, value); |
08de207b | 478 | } |
08de207b | 479 | } |
c4241c7d PM |
480 | |
481 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
482 | uint64_t value) | |
08de207b | 483 | { |
00c8cb0a AF |
484 | ARMCPU *cpu = arm_env_get_cpu(env); |
485 | ||
8d5c773e | 486 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 487 | && !extended_addresses_enabled(env)) { |
08de207b PM |
488 | /* For VMSA (when not using the LPAE long descriptor page table |
489 | * format) this register includes the ASID, so do a TLB flush. | |
490 | * For PMSA it is purely a process ID and no action is needed. | |
491 | */ | |
00c8cb0a | 492 | tlb_flush(CPU(cpu), 1); |
08de207b | 493 | } |
8d5c773e | 494 | raw_write(env, ri, value); |
08de207b PM |
495 | } |
496 | ||
c4241c7d PM |
497 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
498 | uint64_t value) | |
d929823f PM |
499 | { |
500 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
501 | ARMCPU *cpu = arm_env_get_cpu(env); |
502 | ||
503 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
504 | } |
505 | ||
c4241c7d PM |
506 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
507 | uint64_t value) | |
d929823f PM |
508 | { |
509 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
510 | ARMCPU *cpu = arm_env_get_cpu(env); |
511 | ||
512 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
513 | } |
514 | ||
c4241c7d PM |
515 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
516 | uint64_t value) | |
d929823f PM |
517 | { |
518 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
519 | ARMCPU *cpu = arm_env_get_cpu(env); |
520 | ||
521 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
522 | } |
523 | ||
c4241c7d PM |
524 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
525 | uint64_t value) | |
d929823f PM |
526 | { |
527 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
528 | ARMCPU *cpu = arm_env_get_cpu(env); |
529 | ||
530 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
531 | } |
532 | ||
fa439fc5 PM |
533 | /* IS variants of TLB operations must affect all cores */ |
534 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
535 | uint64_t value) | |
536 | { | |
537 | CPUState *other_cs; | |
538 | ||
539 | CPU_FOREACH(other_cs) { | |
540 | tlb_flush(other_cs, 1); | |
541 | } | |
542 | } | |
543 | ||
544 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
545 | uint64_t value) | |
546 | { | |
547 | CPUState *other_cs; | |
548 | ||
549 | CPU_FOREACH(other_cs) { | |
550 | tlb_flush(other_cs, value == 0); | |
551 | } | |
552 | } | |
553 | ||
554 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
555 | uint64_t value) | |
556 | { | |
557 | CPUState *other_cs; | |
558 | ||
559 | CPU_FOREACH(other_cs) { | |
560 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
561 | } | |
562 | } | |
563 | ||
564 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
565 | uint64_t value) | |
566 | { | |
567 | CPUState *other_cs; | |
568 | ||
569 | CPU_FOREACH(other_cs) { | |
570 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
571 | } | |
572 | } | |
573 | ||
e9aa6c21 | 574 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
575 | /* Define the secure and non-secure FCSE identifier CP registers |
576 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
577 | * the secure register to be properly reset and migrated. There is also no | |
578 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
579 | */ | |
580 | { .name = "FCSEIDR(NS)", | |
581 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
582 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
583 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
584 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
585 | { .name = "FCSEIDR(S)", | |
586 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
587 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
588 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 589 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
590 | /* Define the secure and non-secure context identifier CP registers |
591 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
592 | * the secure register to be properly reset and migrated. In the | |
593 | * non-secure case, the 32-bit register will have reset and migration | |
594 | * disabled during registration as it is handled by the 64-bit instance. | |
595 | */ | |
596 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 597 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
598 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
599 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
600 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
601 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
602 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
603 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
604 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 605 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
606 | REGINFO_SENTINEL |
607 | }; | |
608 | ||
609 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
610 | /* NB: Some of these registers exist in v8 but with more precise | |
611 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
612 | */ | |
613 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
614 | { .name = "DACR", |
615 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
616 | .access = PL1_RW, .resetvalue = 0, | |
617 | .writefn = dacr_write, .raw_writefn = raw_write, | |
618 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
619 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
620 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
621 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 622 | */ |
a903c449 EI |
623 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
624 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
625 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
626 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
627 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
628 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
629 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 630 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
631 | /* Cache maintenance ops; some of this space may be overridden later. */ |
632 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
633 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
634 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
635 | REGINFO_SENTINEL |
636 | }; | |
637 | ||
7d57f408 PM |
638 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
639 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
640 | * over-broad. | |
641 | */ | |
642 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
643 | .access = PL1_W, .type = ARM_CP_WFI }, | |
644 | REGINFO_SENTINEL | |
645 | }; | |
646 | ||
647 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
648 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
649 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
650 | */ | |
651 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
652 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
653 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
654 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
655 | * OMAPCP will override this space. | |
656 | */ | |
657 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
658 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
659 | .resetvalue = 0 }, | |
660 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
661 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
662 | .resetvalue = 0 }, | |
776d4e5c PM |
663 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
664 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 665 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 666 | .resetvalue = 0 }, |
50300698 PM |
667 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
668 | * implementing it as RAZ means the "debug architecture version" bits | |
669 | * will read as a reserved value, which should cause Linux to not try | |
670 | * to use the debug hardware. | |
671 | */ | |
672 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
673 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
674 | /* MMU TLB control. Note that the wildcarding means we cover not just |
675 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
676 | */ | |
677 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
678 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 679 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
680 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
681 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 682 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
683 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
684 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 685 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
686 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
687 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 688 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
689 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
690 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
691 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
692 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
693 | REGINFO_SENTINEL |
694 | }; | |
695 | ||
c4241c7d PM |
696 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
697 | uint64_t value) | |
2771db27 | 698 | { |
f0aff255 FA |
699 | uint32_t mask = 0; |
700 | ||
701 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
702 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
703 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
704 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
705 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
706 | */ | |
707 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
708 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
709 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
710 | ||
711 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
712 | /* ASEDIS [31] bit is RAO/WI */ | |
713 | value |= (1 << 31); | |
714 | } | |
715 | ||
716 | /* VFPv3 and upwards with NEON implement 32 double precision | |
717 | * registers (D0-D31). | |
718 | */ | |
719 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
720 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
721 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
722 | value |= (1 << 30); | |
723 | } | |
724 | } | |
725 | value &= mask; | |
2771db27 | 726 | } |
7ebd5f2e | 727 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
728 | } |
729 | ||
3f208fd7 PM |
730 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
731 | bool isread) | |
c6f19164 GB |
732 | { |
733 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
734 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
735 | if (arm_current_el(env) == 1 && | |
736 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
737 | return CP_ACCESS_TRAP_EL2; | |
738 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
739 | } else if (arm_current_el(env) < 3 && | |
740 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
741 | return CP_ACCESS_TRAP_EL3; | |
742 | } | |
743 | } | |
744 | ||
745 | return CP_ACCESS_OK; | |
746 | } | |
747 | ||
3f208fd7 PM |
748 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
749 | bool isread) | |
c6f19164 GB |
750 | { |
751 | /* Check if CPTR accesses are set to trap to EL3 */ | |
752 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
753 | return CP_ACCESS_TRAP_EL3; | |
754 | } | |
755 | ||
756 | return CP_ACCESS_OK; | |
757 | } | |
758 | ||
7d57f408 PM |
759 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
760 | /* prefetch by MVA in v6, NOP in v7 */ | |
761 | { .name = "MVA_prefetch", | |
762 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
763 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
764 | /* We need to break the TB after ISB to execute self-modifying code |
765 | * correctly and also to take any pending interrupts immediately. | |
766 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
767 | */ | |
7d57f408 | 768 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 769 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 770 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 771 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 772 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 773 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 774 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 775 | .access = PL1_RW, |
b848ce2b FA |
776 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
777 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
778 | .resetvalue = 0, }, |
779 | /* Watchpoint Fault Address Register : should actually only be present | |
780 | * for 1136, 1176, 11MPCore. | |
781 | */ | |
782 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
783 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 784 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 785 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 786 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 787 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
788 | REGINFO_SENTINEL |
789 | }; | |
790 | ||
3f208fd7 PM |
791 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
792 | bool isread) | |
200ac0ef | 793 | { |
3b163b01 | 794 | /* Performance monitor registers user accessibility is controlled |
1fce1ba9 PM |
795 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
796 | * trapping to EL2 or EL3 for other accesses. | |
200ac0ef | 797 | */ |
1fce1ba9 PM |
798 | int el = arm_current_el(env); |
799 | ||
800 | if (el == 0 && !env->cp15.c9_pmuserenr) { | |
fcd25206 | 801 | return CP_ACCESS_TRAP; |
200ac0ef | 802 | } |
1fce1ba9 PM |
803 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
804 | && !arm_is_secure_below_el3(env)) { | |
805 | return CP_ACCESS_TRAP_EL2; | |
806 | } | |
807 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
808 | return CP_ACCESS_TRAP_EL3; | |
809 | } | |
810 | ||
fcd25206 | 811 | return CP_ACCESS_OK; |
200ac0ef PM |
812 | } |
813 | ||
7c2cb42b | 814 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
815 | |
816 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
817 | { | |
818 | /* This does not support checking PMCCFILTR_EL0 register */ | |
819 | ||
820 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
821 | return false; | |
822 | } | |
823 | ||
824 | return true; | |
825 | } | |
826 | ||
ec7b4ce4 AF |
827 | void pmccntr_sync(CPUARMState *env) |
828 | { | |
829 | uint64_t temp_ticks; | |
830 | ||
352c98e5 LV |
831 | temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
832 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
ec7b4ce4 AF |
833 | |
834 | if (env->cp15.c9_pmcr & PMCRD) { | |
835 | /* Increment once every 64 processor clock cycles */ | |
836 | temp_ticks /= 64; | |
837 | } | |
838 | ||
839 | if (arm_ccnt_enabled(env)) { | |
840 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
841 | } | |
842 | } | |
843 | ||
c4241c7d PM |
844 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
845 | uint64_t value) | |
200ac0ef | 846 | { |
942a155b | 847 | pmccntr_sync(env); |
7c2cb42b AF |
848 | |
849 | if (value & PMCRC) { | |
850 | /* The counter has been reset */ | |
851 | env->cp15.c15_ccnt = 0; | |
852 | } | |
853 | ||
200ac0ef PM |
854 | /* only the DP, X, D and E bits are writable */ |
855 | env->cp15.c9_pmcr &= ~0x39; | |
856 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 857 | |
942a155b | 858 | pmccntr_sync(env); |
7c2cb42b AF |
859 | } |
860 | ||
861 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
862 | { | |
c92c0687 | 863 | uint64_t total_ticks; |
7c2cb42b | 864 | |
942a155b | 865 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
866 | /* Counter is disabled, do not change value */ |
867 | return env->cp15.c15_ccnt; | |
868 | } | |
869 | ||
352c98e5 LV |
870 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
871 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
872 | |
873 | if (env->cp15.c9_pmcr & PMCRD) { | |
874 | /* Increment once every 64 processor clock cycles */ | |
875 | total_ticks /= 64; | |
876 | } | |
877 | return total_ticks - env->cp15.c15_ccnt; | |
878 | } | |
879 | ||
880 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
881 | uint64_t value) | |
882 | { | |
c92c0687 | 883 | uint64_t total_ticks; |
7c2cb42b | 884 | |
942a155b | 885 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
886 | /* Counter is disabled, set the absolute value */ |
887 | env->cp15.c15_ccnt = value; | |
888 | return; | |
889 | } | |
890 | ||
352c98e5 LV |
891 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
892 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
893 | |
894 | if (env->cp15.c9_pmcr & PMCRD) { | |
895 | /* Increment once every 64 processor clock cycles */ | |
896 | total_ticks /= 64; | |
897 | } | |
898 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 899 | } |
421c7ebd PC |
900 | |
901 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
902 | uint64_t value) | |
903 | { | |
904 | uint64_t cur_val = pmccntr_read(env, NULL); | |
905 | ||
906 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
907 | } | |
908 | ||
ec7b4ce4 AF |
909 | #else /* CONFIG_USER_ONLY */ |
910 | ||
911 | void pmccntr_sync(CPUARMState *env) | |
912 | { | |
913 | } | |
914 | ||
7c2cb42b | 915 | #endif |
200ac0ef | 916 | |
0614601c AF |
917 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
918 | uint64_t value) | |
919 | { | |
920 | pmccntr_sync(env); | |
921 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
922 | pmccntr_sync(env); | |
923 | } | |
924 | ||
c4241c7d | 925 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
926 | uint64_t value) |
927 | { | |
200ac0ef PM |
928 | value &= (1 << 31); |
929 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
930 | } |
931 | ||
c4241c7d PM |
932 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
933 | uint64_t value) | |
200ac0ef | 934 | { |
200ac0ef PM |
935 | value &= (1 << 31); |
936 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
937 | } |
938 | ||
c4241c7d PM |
939 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
940 | uint64_t value) | |
200ac0ef | 941 | { |
200ac0ef | 942 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
943 | } |
944 | ||
c4241c7d PM |
945 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
946 | uint64_t value) | |
200ac0ef | 947 | { |
200ac0ef | 948 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
949 | } |
950 | ||
c4241c7d | 951 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
952 | uint64_t value) |
953 | { | |
954 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
955 | } |
956 | ||
c4241c7d PM |
957 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
958 | uint64_t value) | |
200ac0ef PM |
959 | { |
960 | /* We have no event counters so only the C bit can be changed */ | |
961 | value &= (1 << 31); | |
962 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
963 | } |
964 | ||
c4241c7d PM |
965 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
966 | uint64_t value) | |
200ac0ef PM |
967 | { |
968 | value &= (1 << 31); | |
969 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
970 | } |
971 | ||
c4241c7d PM |
972 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
973 | uint64_t value) | |
8641136c | 974 | { |
a505d7fe PM |
975 | /* Note that even though the AArch64 view of this register has bits |
976 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
977 | * architectural requirements for bits which are RES0 only in some | |
978 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
979 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
980 | */ | |
855ea66d | 981 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
982 | } |
983 | ||
64e0e2de EI |
984 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
985 | { | |
986 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
987 | * For bits that vary between AArch32/64, code needs to check the | |
988 | * current execution mode before directly using the feature bit. | |
989 | */ | |
990 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
991 | ||
992 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
993 | valid_mask &= ~SCR_HCE; | |
994 | ||
995 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
996 | * supported if EL2 exists. The bit is UNK/SBZP when | |
997 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
998 | * when EL2 is unavailable. | |
4eb27640 | 999 | * On ARMv8, this bit is always available. |
64e0e2de | 1000 | */ |
4eb27640 GB |
1001 | if (arm_feature(env, ARM_FEATURE_V7) && |
1002 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
1003 | valid_mask &= ~SCR_SMD; |
1004 | } | |
1005 | } | |
1006 | ||
1007 | /* Clear all-context RES0 bits. */ | |
1008 | value &= valid_mask; | |
1009 | raw_write(env, ri, value); | |
1010 | } | |
1011 | ||
c4241c7d | 1012 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
1013 | { |
1014 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
1015 | |
1016 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
1017 | * bank | |
1018 | */ | |
1019 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
1020 | ri->secure & ARM_CP_SECSTATE_S); | |
1021 | ||
1022 | return cpu->ccsidr[index]; | |
776d4e5c PM |
1023 | } |
1024 | ||
c4241c7d PM |
1025 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1026 | uint64_t value) | |
776d4e5c | 1027 | { |
8d5c773e | 1028 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
1029 | } |
1030 | ||
1090b9c6 PM |
1031 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1032 | { | |
1033 | CPUState *cs = ENV_GET_CPU(env); | |
1034 | uint64_t ret = 0; | |
1035 | ||
1036 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
1037 | ret |= CPSR_I; | |
1038 | } | |
1039 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
1040 | ret |= CPSR_F; | |
1041 | } | |
1042 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
1043 | return ret; | |
1044 | } | |
1045 | ||
e9aa6c21 | 1046 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
1047 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
1048 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
1049 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
1050 | /* Performance monitors are implementation defined in v7, |
1051 | * but with an ARM recommended set of registers, which we | |
1052 | * follow (although we don't actually implement any counters) | |
1053 | * | |
1054 | * Performance registers fall into three categories: | |
1055 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
1056 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
1057 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
1058 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
1059 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
1060 | */ | |
1061 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1062 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 1063 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
1064 | .writefn = pmcntenset_write, |
1065 | .accessfn = pmreg_access, | |
1066 | .raw_writefn = raw_write }, | |
8521466b AF |
1067 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
1068 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
1069 | .access = PL0_RW, .accessfn = pmreg_access, | |
1070 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
1071 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 1072 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
1073 | .access = PL0_RW, |
1074 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
1075 | .accessfn = pmreg_access, |
1076 | .writefn = pmcntenclr_write, | |
7a0e58fa | 1077 | .type = ARM_CP_ALIAS }, |
8521466b AF |
1078 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
1079 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
1080 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 1081 | .type = ARM_CP_ALIAS, |
8521466b AF |
1082 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
1083 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
1084 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
1085 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
1086 | .accessfn = pmreg_access, |
1087 | .writefn = pmovsr_write, | |
1088 | .raw_writefn = raw_write }, | |
978364f1 AF |
1089 | { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
1090 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, | |
1091 | .access = PL0_RW, .accessfn = pmreg_access, | |
1092 | .type = ARM_CP_ALIAS, | |
1093 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
1094 | .writefn = pmovsr_write, | |
1095 | .raw_writefn = raw_write }, | |
fcd25206 | 1096 | /* Unimplemented so WI. */ |
200ac0ef | 1097 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 1098 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 1099 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 1100 | * We choose to RAZ/WI. |
200ac0ef PM |
1101 | */ |
1102 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
1103 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
1104 | .accessfn = pmreg_access }, | |
7c2cb42b | 1105 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 1106 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 1107 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 1108 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 1109 | .accessfn = pmreg_access }, |
8521466b AF |
1110 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
1111 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
1112 | .access = PL0_RW, .accessfn = pmreg_access, | |
1113 | .type = ARM_CP_IO, | |
1114 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 1115 | #endif |
8521466b AF |
1116 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
1117 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 1118 | .writefn = pmccfiltr_write, |
8521466b AF |
1119 | .access = PL0_RW, .accessfn = pmreg_access, |
1120 | .type = ARM_CP_IO, | |
1121 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
1122 | .resetvalue = 0, }, | |
200ac0ef PM |
1123 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
1124 | .access = PL0_RW, | |
1125 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
1126 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
1127 | .raw_writefn = raw_write }, | |
1128 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 1129 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
1130 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
1131 | .accessfn = pmreg_access }, | |
200ac0ef | 1132 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1fce1ba9 | 1133 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
200ac0ef PM |
1134 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1135 | .resetvalue = 0, | |
d4e6df63 | 1136 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
8a83ffc2 AF |
1137 | { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
1138 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, | |
1fce1ba9 | 1139 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
8a83ffc2 AF |
1140 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1141 | .resetvalue = 0, | |
1142 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
200ac0ef | 1143 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1fce1ba9 | 1144 | .access = PL1_RW, .accessfn = access_tpm, |
200ac0ef PM |
1145 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
1146 | .resetvalue = 0, | |
d4e6df63 | 1147 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 1148 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
1fce1ba9 | 1149 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
200ac0ef | 1150 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 1151 | .writefn = pmintenclr_write, }, |
978364f1 AF |
1152 | { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
1153 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, | |
1fce1ba9 | 1154 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
978364f1 AF |
1155 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
1156 | .writefn = pmintenclr_write }, | |
a505d7fe PM |
1157 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
1158 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 1159 | .access = PL1_RW, .writefn = vbar_write, |
fb6c91ba GB |
1160 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
1161 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8641136c | 1162 | .resetvalue = 0 }, |
7da845b0 PM |
1163 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
1164 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 1165 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
1166 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
1167 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1168 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1169 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1170 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1171 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1172 | * just RAZ for all cores: | |
1173 | */ | |
0ff644a7 PM |
1174 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1175 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1176 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1177 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1178 | * choose to RAZ/WI for all cores. | |
1179 | */ | |
1180 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1181 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1182 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1183 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1184 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1185 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1186 | /* MAIR can just read-as-written because we don't implement caches |
1187 | * and so don't need to care about memory attributes. | |
1188 | */ | |
1189 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1190 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1191 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 | 1192 | .resetvalue = 0 }, |
4cfb8ad8 PM |
1193 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
1194 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
1195 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
1196 | .resetvalue = 0 }, | |
b0fe2427 PM |
1197 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
1198 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1199 | */ |
1281f8e3 | 1200 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1201 | * allows them to assign the correct fieldoffset based on the endianness |
1202 | * handled in the field definitions. | |
1203 | */ | |
a903c449 | 1204 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1205 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1206 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1207 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1208 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1209 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1210 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1211 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1212 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1213 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1214 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1215 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1216 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1217 | /* 32 bit ITLB invalidates */ |
1218 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1219 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1220 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1221 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1222 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1223 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1224 | /* 32 bit DTLB invalidates */ |
1225 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1226 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1227 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1228 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1229 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1230 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1231 | /* 32 bit TLB invalidates */ |
1232 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1233 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1234 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1235 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1236 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1237 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1238 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1239 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1240 | REGINFO_SENTINEL |
1241 | }; | |
1242 | ||
1243 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1244 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1245 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1246 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1247 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1248 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1249 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1250 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1251 | .writefn = tlbiasid_is_write }, |
995939a6 | 1252 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1253 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1254 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1255 | REGINFO_SENTINEL |
1256 | }; | |
1257 | ||
c4241c7d PM |
1258 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1259 | uint64_t value) | |
c326b979 PM |
1260 | { |
1261 | value &= 1; | |
1262 | env->teecr = value; | |
c326b979 PM |
1263 | } |
1264 | ||
3f208fd7 PM |
1265 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1266 | bool isread) | |
c326b979 | 1267 | { |
dcbff19b | 1268 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1269 | return CP_ACCESS_TRAP; |
c326b979 | 1270 | } |
92611c00 | 1271 | return CP_ACCESS_OK; |
c326b979 PM |
1272 | } |
1273 | ||
1274 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1275 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1276 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1277 | .resetvalue = 0, | |
1278 | .writefn = teecr_write }, | |
1279 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1280 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1281 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1282 | REGINFO_SENTINEL |
1283 | }; | |
1284 | ||
4d31c596 | 1285 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1286 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1287 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1288 | .access = PL0_RW, | |
54bf36ed | 1289 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1290 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1291 | .access = PL0_RW, | |
54bf36ed FA |
1292 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1293 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1294 | .resetfn = arm_cp_reset_ignore }, |
1295 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1296 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1297 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1298 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1299 | .resetvalue = 0}, | |
4d31c596 PM |
1300 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1301 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1302 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1303 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1304 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1305 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1306 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1307 | .access = PL1_RW, |
54bf36ed FA |
1308 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1309 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1310 | .access = PL1_RW, | |
1311 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1312 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1313 | .resetvalue = 0 }, | |
4d31c596 PM |
1314 | REGINFO_SENTINEL |
1315 | }; | |
1316 | ||
55d284af PM |
1317 | #ifndef CONFIG_USER_ONLY |
1318 | ||
3f208fd7 PM |
1319 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1320 | bool isread) | |
00108f2d | 1321 | { |
75502672 PM |
1322 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
1323 | * Writable only at the highest implemented exception level. | |
1324 | */ | |
1325 | int el = arm_current_el(env); | |
1326 | ||
1327 | switch (el) { | |
1328 | case 0: | |
1329 | if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
1330 | return CP_ACCESS_TRAP; | |
1331 | } | |
1332 | break; | |
1333 | case 1: | |
1334 | if (!isread && ri->state == ARM_CP_STATE_AA32 && | |
1335 | arm_is_secure_below_el3(env)) { | |
1336 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ | |
1337 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1338 | } | |
1339 | break; | |
1340 | case 2: | |
1341 | case 3: | |
1342 | break; | |
00108f2d | 1343 | } |
75502672 PM |
1344 | |
1345 | if (!isread && el < arm_highest_el(env)) { | |
1346 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1347 | } | |
1348 | ||
00108f2d PM |
1349 | return CP_ACCESS_OK; |
1350 | } | |
1351 | ||
3f208fd7 PM |
1352 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
1353 | bool isread) | |
00108f2d | 1354 | { |
0b6440af EI |
1355 | unsigned int cur_el = arm_current_el(env); |
1356 | bool secure = arm_is_secure(env); | |
1357 | ||
00108f2d | 1358 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1359 | if (cur_el == 0 && |
00108f2d PM |
1360 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1361 | return CP_ACCESS_TRAP; | |
1362 | } | |
0b6440af EI |
1363 | |
1364 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1365 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1366 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1367 | return CP_ACCESS_TRAP_EL2; | |
1368 | } | |
00108f2d PM |
1369 | return CP_ACCESS_OK; |
1370 | } | |
1371 | ||
3f208fd7 PM |
1372 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
1373 | bool isread) | |
00108f2d | 1374 | { |
0b6440af EI |
1375 | unsigned int cur_el = arm_current_el(env); |
1376 | bool secure = arm_is_secure(env); | |
1377 | ||
00108f2d PM |
1378 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1379 | * EL0[PV]TEN is zero. | |
1380 | */ | |
0b6440af | 1381 | if (cur_el == 0 && |
00108f2d PM |
1382 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1383 | return CP_ACCESS_TRAP; | |
1384 | } | |
0b6440af EI |
1385 | |
1386 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1387 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1388 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1389 | return CP_ACCESS_TRAP_EL2; | |
1390 | } | |
00108f2d PM |
1391 | return CP_ACCESS_OK; |
1392 | } | |
1393 | ||
1394 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
3f208fd7 PM |
1395 | const ARMCPRegInfo *ri, |
1396 | bool isread) | |
00108f2d | 1397 | { |
3f208fd7 | 1398 | return gt_counter_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1399 | } |
1400 | ||
1401 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
3f208fd7 PM |
1402 | const ARMCPRegInfo *ri, |
1403 | bool isread) | |
00108f2d | 1404 | { |
3f208fd7 | 1405 | return gt_counter_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1406 | } |
1407 | ||
3f208fd7 PM |
1408 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1409 | bool isread) | |
00108f2d | 1410 | { |
3f208fd7 | 1411 | return gt_timer_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1412 | } |
1413 | ||
3f208fd7 PM |
1414 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1415 | bool isread) | |
00108f2d | 1416 | { |
3f208fd7 | 1417 | return gt_timer_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1418 | } |
1419 | ||
b4d3978c | 1420 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
3f208fd7 PM |
1421 | const ARMCPRegInfo *ri, |
1422 | bool isread) | |
b4d3978c PM |
1423 | { |
1424 | /* The AArch64 register view of the secure physical timer is | |
1425 | * always accessible from EL3, and configurably accessible from | |
1426 | * Secure EL1. | |
1427 | */ | |
1428 | switch (arm_current_el(env)) { | |
1429 | case 1: | |
1430 | if (!arm_is_secure(env)) { | |
1431 | return CP_ACCESS_TRAP; | |
1432 | } | |
1433 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
1434 | return CP_ACCESS_TRAP_EL3; | |
1435 | } | |
1436 | return CP_ACCESS_OK; | |
1437 | case 0: | |
1438 | case 2: | |
1439 | return CP_ACCESS_TRAP; | |
1440 | case 3: | |
1441 | return CP_ACCESS_OK; | |
1442 | default: | |
1443 | g_assert_not_reached(); | |
1444 | } | |
1445 | } | |
1446 | ||
55d284af PM |
1447 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1448 | { | |
bc72ad67 | 1449 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1450 | } |
1451 | ||
1452 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1453 | { | |
1454 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1455 | ||
1456 | if (gt->ctl & 1) { | |
1457 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1458 | * reset timer to when ISTATUS next has to change | |
1459 | */ | |
edac4d8a EI |
1460 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1461 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1462 | uint64_t count = gt_get_countervalue(&cpu->env); |
1463 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1464 | int istatus = count - offset >= gt->cval; |
55d284af PM |
1465 | uint64_t nexttick; |
1466 | ||
1467 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1468 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1469 | (istatus && !(gt->ctl & 2))); | |
1470 | if (istatus) { | |
1471 | /* Next transition is when count rolls back over to zero */ | |
1472 | nexttick = UINT64_MAX; | |
1473 | } else { | |
1474 | /* Next transition is when we hit cval */ | |
edac4d8a | 1475 | nexttick = gt->cval + offset; |
55d284af PM |
1476 | } |
1477 | /* Note that the desired next expiry time might be beyond the | |
1478 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1479 | * set the timer for as far in the future as possible. When the | |
1480 | * timer expires we will reset the timer for any remaining period. | |
1481 | */ | |
1482 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1483 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1484 | } | |
bc72ad67 | 1485 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1486 | } else { |
1487 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1488 | gt->ctl &= ~4; | |
1489 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1490 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1491 | } |
1492 | } | |
1493 | ||
0e3eca4c EI |
1494 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1495 | int timeridx) | |
55d284af PM |
1496 | { |
1497 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1498 | |
bc72ad67 | 1499 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1500 | } |
1501 | ||
c4241c7d | 1502 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1503 | { |
c4241c7d | 1504 | return gt_get_countervalue(env); |
55d284af PM |
1505 | } |
1506 | ||
edac4d8a EI |
1507 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1508 | { | |
1509 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1510 | } | |
1511 | ||
c4241c7d | 1512 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1513 | int timeridx, |
c4241c7d | 1514 | uint64_t value) |
55d284af | 1515 | { |
55d284af PM |
1516 | env->cp15.c14_timer[timeridx].cval = value; |
1517 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1518 | } |
c4241c7d | 1519 | |
0e3eca4c EI |
1520 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1521 | int timeridx) | |
55d284af | 1522 | { |
edac4d8a | 1523 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1524 | |
c4241c7d | 1525 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1526 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1527 | } |
1528 | ||
c4241c7d | 1529 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1530 | int timeridx, |
c4241c7d | 1531 | uint64_t value) |
55d284af | 1532 | { |
edac4d8a | 1533 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1534 | |
edac4d8a | 1535 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1536 | sextract64(value, 0, 32); |
55d284af | 1537 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1538 | } |
1539 | ||
c4241c7d | 1540 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1541 | int timeridx, |
c4241c7d | 1542 | uint64_t value) |
55d284af PM |
1543 | { |
1544 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1545 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1546 | ||
d3afacc7 | 1547 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1548 | if ((oldval ^ value) & 1) { |
1549 | /* Enable toggled */ | |
1550 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1551 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1552 | /* IMASK toggled: don't need to recalculate, |
1553 | * just set the interrupt line based on ISTATUS | |
1554 | */ | |
1555 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1556 | (oldval & 4) && !(value & 2)); |
55d284af | 1557 | } |
55d284af PM |
1558 | } |
1559 | ||
0e3eca4c EI |
1560 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1561 | { | |
1562 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1563 | } | |
1564 | ||
1565 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1566 | uint64_t value) | |
1567 | { | |
1568 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1569 | } | |
1570 | ||
1571 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1572 | { | |
1573 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1574 | } | |
1575 | ||
1576 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1577 | uint64_t value) | |
1578 | { | |
1579 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1580 | } | |
1581 | ||
1582 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1583 | uint64_t value) | |
1584 | { | |
1585 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1586 | } | |
1587 | ||
1588 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1589 | { | |
1590 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1591 | } | |
1592 | ||
1593 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1594 | uint64_t value) | |
1595 | { | |
1596 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1597 | } | |
1598 | ||
1599 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1600 | { | |
1601 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1602 | } | |
1603 | ||
1604 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1605 | uint64_t value) | |
1606 | { | |
1607 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1608 | } | |
1609 | ||
1610 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1611 | uint64_t value) | |
1612 | { | |
1613 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1614 | } | |
1615 | ||
edac4d8a EI |
1616 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1617 | uint64_t value) | |
1618 | { | |
1619 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1620 | ||
1621 | raw_write(env, ri, value); | |
1622 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1623 | } | |
1624 | ||
b0e66d95 EI |
1625 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1626 | { | |
1627 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1628 | } | |
1629 | ||
1630 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1631 | uint64_t value) | |
1632 | { | |
1633 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1634 | } | |
1635 | ||
1636 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1637 | { | |
1638 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1639 | } | |
1640 | ||
1641 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1642 | uint64_t value) | |
1643 | { | |
1644 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1645 | } | |
1646 | ||
1647 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1648 | uint64_t value) | |
1649 | { | |
1650 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1651 | } | |
1652 | ||
b4d3978c PM |
1653 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1654 | { | |
1655 | gt_timer_reset(env, ri, GTIMER_SEC); | |
1656 | } | |
1657 | ||
1658 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1659 | uint64_t value) | |
1660 | { | |
1661 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
1662 | } | |
1663 | ||
1664 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1665 | { | |
1666 | return gt_tval_read(env, ri, GTIMER_SEC); | |
1667 | } | |
1668 | ||
1669 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1670 | uint64_t value) | |
1671 | { | |
1672 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
1673 | } | |
1674 | ||
1675 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1676 | uint64_t value) | |
1677 | { | |
1678 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
1679 | } | |
1680 | ||
55d284af PM |
1681 | void arm_gt_ptimer_cb(void *opaque) |
1682 | { | |
1683 | ARMCPU *cpu = opaque; | |
1684 | ||
1685 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1686 | } | |
1687 | ||
1688 | void arm_gt_vtimer_cb(void *opaque) | |
1689 | { | |
1690 | ARMCPU *cpu = opaque; | |
1691 | ||
1692 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1693 | } | |
1694 | ||
b0e66d95 EI |
1695 | void arm_gt_htimer_cb(void *opaque) |
1696 | { | |
1697 | ARMCPU *cpu = opaque; | |
1698 | ||
1699 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1700 | } | |
1701 | ||
b4d3978c PM |
1702 | void arm_gt_stimer_cb(void *opaque) |
1703 | { | |
1704 | ARMCPU *cpu = opaque; | |
1705 | ||
1706 | gt_recalc_timer(cpu, GTIMER_SEC); | |
1707 | } | |
1708 | ||
55d284af PM |
1709 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1710 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1711 | * of software; writing it doesn't actually change the timer frequency. | |
1712 | * Our reset value matches the fixed frequency we implement the timer at. | |
1713 | */ | |
1714 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1715 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1716 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1717 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1718 | }, |
1719 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1720 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1721 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1722 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1723 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1724 | }, |
1725 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1726 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1727 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1728 | .access = PL1_RW, |
1729 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1730 | .resetvalue = 0, | |
1731 | }, | |
1732 | /* per-timer control */ | |
1733 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 1734 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1735 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1736 | .accessfn = gt_ptimer_access, |
1737 | .fieldoffset = offsetoflow32(CPUARMState, | |
1738 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1739 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 | 1740 | }, |
9ff9dd3c PM |
1741 | { .name = "CNTP_CTL(S)", |
1742 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1743 | .secure = ARM_CP_SECSTATE_S, | |
1744 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | |
1745 | .accessfn = gt_ptimer_access, | |
1746 | .fieldoffset = offsetoflow32(CPUARMState, | |
1747 | cp15.c14_timer[GTIMER_SEC].ctl), | |
1748 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1749 | }, | |
a7adc4b7 PM |
1750 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
1751 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1752 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1753 | .accessfn = gt_ptimer_access, |
55d284af PM |
1754 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1755 | .resetvalue = 0, | |
0e3eca4c | 1756 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1757 | }, |
1758 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1759 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1760 | .accessfn = gt_vtimer_access, |
1761 | .fieldoffset = offsetoflow32(CPUARMState, | |
1762 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1763 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1764 | }, |
1765 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1766 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1767 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1768 | .accessfn = gt_vtimer_access, |
55d284af PM |
1769 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1770 | .resetvalue = 0, | |
0e3eca4c | 1771 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1772 | }, |
1773 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1774 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 1775 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1776 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1777 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1778 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 1779 | }, |
9ff9dd3c PM |
1780 | { .name = "CNTP_TVAL(S)", |
1781 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1782 | .secure = ARM_CP_SECSTATE_S, | |
1783 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1784 | .accessfn = gt_ptimer_access, | |
1785 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
1786 | }, | |
a7adc4b7 PM |
1787 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1788 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 1789 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1790 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
1791 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 1792 | }, |
55d284af | 1793 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 1794 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1795 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1796 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 1797 | }, |
a7adc4b7 PM |
1798 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1799 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1800 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1801 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
1802 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 1803 | }, |
55d284af PM |
1804 | /* The counter itself */ |
1805 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 1806 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1807 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1808 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1809 | }, | |
1810 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1811 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 1812 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1813 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
1814 | }, |
1815 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 1816 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1817 | .accessfn = gt_vct_access, |
edac4d8a | 1818 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
1819 | }, |
1820 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1821 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 1822 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1823 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
1824 | }, |
1825 | /* Comparison value, indicating when the timer goes off */ | |
1826 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 1827 | .secure = ARM_CP_SECSTATE_NS, |
55d284af | 1828 | .access = PL1_RW | PL0_R, |
7a0e58fa | 1829 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1830 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 1831 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1832 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 | 1833 | }, |
9ff9dd3c PM |
1834 | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
1835 | .secure = ARM_CP_SECSTATE_S, | |
1836 | .access = PL1_RW | PL0_R, | |
1837 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | |
1838 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1839 | .accessfn = gt_ptimer_access, | |
1840 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1841 | }, | |
a7adc4b7 PM |
1842 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
1843 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1844 | .access = PL1_RW | PL0_R, | |
1845 | .type = ARM_CP_IO, | |
1846 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 1847 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 1848 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1849 | }, |
1850 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1851 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1852 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1853 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 1854 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1855 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1856 | }, |
1857 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1858 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1859 | .access = PL1_RW | PL0_R, | |
1860 | .type = ARM_CP_IO, | |
1861 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1862 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 1863 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af | 1864 | }, |
b4d3978c PM |
1865 | /* Secure timer -- this is actually restricted to only EL3 |
1866 | * and configurably Secure-EL1 via the accessfn. | |
1867 | */ | |
1868 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1869 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
1870 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
1871 | .accessfn = gt_stimer_access, | |
1872 | .readfn = gt_sec_tval_read, | |
1873 | .writefn = gt_sec_tval_write, | |
1874 | .resetfn = gt_sec_timer_reset, | |
1875 | }, | |
1876 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
1877 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
1878 | .type = ARM_CP_IO, .access = PL1_RW, | |
1879 | .accessfn = gt_stimer_access, | |
1880 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
1881 | .resetvalue = 0, | |
1882 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1883 | }, | |
1884 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1885 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
1886 | .type = ARM_CP_IO, .access = PL1_RW, | |
1887 | .accessfn = gt_stimer_access, | |
1888 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1889 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1890 | }, | |
55d284af PM |
1891 | REGINFO_SENTINEL |
1892 | }; | |
1893 | ||
1894 | #else | |
1895 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1896 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1897 | * so instead just don't register any of them. |
1898 | */ | |
6cc7a3ae | 1899 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1900 | REGINFO_SENTINEL |
1901 | }; | |
1902 | ||
55d284af PM |
1903 | #endif |
1904 | ||
c4241c7d | 1905 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1906 | { |
891a2fe7 | 1907 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 1908 | raw_write(env, ri, value); |
891a2fe7 | 1909 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 1910 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 1911 | } else { |
8d5c773e | 1912 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 1913 | } |
4a501606 PM |
1914 | } |
1915 | ||
1916 | #ifndef CONFIG_USER_ONLY | |
1917 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1918 | |
3f208fd7 PM |
1919 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1920 | bool isread) | |
92611c00 PM |
1921 | { |
1922 | if (ri->opc2 & 4) { | |
87562e4f PM |
1923 | /* The ATS12NSO* operations must trap to EL3 if executed in |
1924 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
1925 | * They are simply UNDEF if executed from NS EL1. | |
1926 | * They function normally from EL2 or EL3. | |
92611c00 | 1927 | */ |
87562e4f PM |
1928 | if (arm_current_el(env) == 1) { |
1929 | if (arm_is_secure_below_el3(env)) { | |
1930 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
1931 | } | |
1932 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1933 | } | |
92611c00 PM |
1934 | } |
1935 | return CP_ACCESS_OK; | |
1936 | } | |
1937 | ||
060e8a48 | 1938 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
d3649702 | 1939 | int access_type, ARMMMUIdx mmu_idx) |
4a501606 | 1940 | { |
a8170e5e | 1941 | hwaddr phys_addr; |
4a501606 PM |
1942 | target_ulong page_size; |
1943 | int prot; | |
b7cc4e82 PC |
1944 | uint32_t fsr; |
1945 | bool ret; | |
01c097f7 | 1946 | uint64_t par64; |
8bf5b6a9 | 1947 | MemTxAttrs attrs = {}; |
e14b5a23 | 1948 | ARMMMUFaultInfo fi = {}; |
4a501606 | 1949 | |
d3649702 | 1950 | ret = get_phys_addr(env, value, access_type, mmu_idx, |
e14b5a23 | 1951 | &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); |
702a9357 | 1952 | if (extended_addresses_enabled(env)) { |
b7cc4e82 | 1953 | /* fsr is a DFSR/IFSR value for the long descriptor |
702a9357 PM |
1954 | * translation table format, but with WnR always clear. |
1955 | * Convert it to a 64-bit PAR. | |
1956 | */ | |
01c097f7 | 1957 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 1958 | if (!ret) { |
702a9357 | 1959 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
1960 | if (!attrs.secure) { |
1961 | par64 |= (1 << 9); /* NS */ | |
1962 | } | |
702a9357 | 1963 | /* We don't set the ATTR or SH fields in the PAR. */ |
4a501606 | 1964 | } else { |
702a9357 | 1965 | par64 |= 1; /* F */ |
b7cc4e82 | 1966 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
1967 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
1968 | * implement virtualization and therefore there can't be a stage 2 | |
1969 | * fault. | |
1970 | */ | |
4a501606 PM |
1971 | } |
1972 | } else { | |
b7cc4e82 | 1973 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
1974 | * translation table format (with WnR always clear). |
1975 | * Convert it to a 32-bit PAR. | |
1976 | */ | |
b7cc4e82 | 1977 | if (!ret) { |
702a9357 PM |
1978 | /* We do not set any attribute bits in the PAR */ |
1979 | if (page_size == (1 << 24) | |
1980 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 1981 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 1982 | } else { |
01c097f7 | 1983 | par64 = phys_addr & 0xfffff000; |
702a9357 | 1984 | } |
8bf5b6a9 PM |
1985 | if (!attrs.secure) { |
1986 | par64 |= (1 << 9); /* NS */ | |
1987 | } | |
702a9357 | 1988 | } else { |
b7cc4e82 PC |
1989 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
1990 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 1991 | } |
4a501606 | 1992 | } |
060e8a48 PM |
1993 | return par64; |
1994 | } | |
1995 | ||
1996 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1997 | { | |
060e8a48 PM |
1998 | int access_type = ri->opc2 & 1; |
1999 | uint64_t par64; | |
d3649702 PM |
2000 | ARMMMUIdx mmu_idx; |
2001 | int el = arm_current_el(env); | |
2002 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 2003 | |
d3649702 PM |
2004 | switch (ri->opc2 & 6) { |
2005 | case 0: | |
2006 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
2007 | switch (el) { | |
2008 | case 3: | |
2009 | mmu_idx = ARMMMUIdx_S1E3; | |
2010 | break; | |
2011 | case 2: | |
2012 | mmu_idx = ARMMMUIdx_S1NSE1; | |
2013 | break; | |
2014 | case 1: | |
2015 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2016 | break; | |
2017 | default: | |
2018 | g_assert_not_reached(); | |
2019 | } | |
2020 | break; | |
2021 | case 2: | |
2022 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
2023 | switch (el) { | |
2024 | case 3: | |
2025 | mmu_idx = ARMMMUIdx_S1SE0; | |
2026 | break; | |
2027 | case 2: | |
2028 | mmu_idx = ARMMMUIdx_S1NSE0; | |
2029 | break; | |
2030 | case 1: | |
2031 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2032 | break; | |
2033 | default: | |
2034 | g_assert_not_reached(); | |
2035 | } | |
2036 | break; | |
2037 | case 4: | |
2038 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
2039 | mmu_idx = ARMMMUIdx_S12NSE1; | |
2040 | break; | |
2041 | case 6: | |
2042 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
2043 | mmu_idx = ARMMMUIdx_S12NSE0; | |
2044 | break; | |
2045 | default: | |
2046 | g_assert_not_reached(); | |
2047 | } | |
2048 | ||
2049 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
2050 | |
2051 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 2052 | } |
060e8a48 | 2053 | |
14db7fe0 PM |
2054 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2055 | uint64_t value) | |
2056 | { | |
2057 | int access_type = ri->opc2 & 1; | |
2058 | uint64_t par64; | |
2059 | ||
2060 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | |
2061 | ||
2062 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
2063 | } | |
2064 | ||
3f208fd7 PM |
2065 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2066 | bool isread) | |
2a47df95 PM |
2067 | { |
2068 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
2069 | return CP_ACCESS_TRAP; | |
2070 | } | |
2071 | return CP_ACCESS_OK; | |
2072 | } | |
2073 | ||
060e8a48 PM |
2074 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
2075 | uint64_t value) | |
2076 | { | |
060e8a48 | 2077 | int access_type = ri->opc2 & 1; |
d3649702 PM |
2078 | ARMMMUIdx mmu_idx; |
2079 | int secure = arm_is_secure_below_el3(env); | |
2080 | ||
2081 | switch (ri->opc2 & 6) { | |
2082 | case 0: | |
2083 | switch (ri->opc1) { | |
2084 | case 0: /* AT S1E1R, AT S1E1W */ | |
2085 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2086 | break; | |
2087 | case 4: /* AT S1E2R, AT S1E2W */ | |
2088 | mmu_idx = ARMMMUIdx_S1E2; | |
2089 | break; | |
2090 | case 6: /* AT S1E3R, AT S1E3W */ | |
2091 | mmu_idx = ARMMMUIdx_S1E3; | |
2092 | break; | |
2093 | default: | |
2094 | g_assert_not_reached(); | |
2095 | } | |
2096 | break; | |
2097 | case 2: /* AT S1E0R, AT S1E0W */ | |
2098 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2099 | break; | |
2100 | case 4: /* AT S12E1R, AT S12E1W */ | |
2a47df95 | 2101 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
d3649702 PM |
2102 | break; |
2103 | case 6: /* AT S12E0R, AT S12E0W */ | |
2a47df95 | 2104 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
d3649702 PM |
2105 | break; |
2106 | default: | |
2107 | g_assert_not_reached(); | |
2108 | } | |
060e8a48 | 2109 | |
d3649702 | 2110 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 2111 | } |
4a501606 PM |
2112 | #endif |
2113 | ||
2114 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
2115 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2116 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
2117 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
2118 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
2119 | .writefn = par_write }, |
2120 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 2121 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 2122 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 2123 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 2124 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
2125 | #endif |
2126 | REGINFO_SENTINEL | |
2127 | }; | |
2128 | ||
18032bec PM |
2129 | /* Return basic MPU access permission bits. */ |
2130 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
2131 | { | |
2132 | uint32_t ret; | |
2133 | uint32_t mask; | |
2134 | int i; | |
2135 | ret = 0; | |
2136 | mask = 3; | |
2137 | for (i = 0; i < 16; i += 2) { | |
2138 | ret |= (val >> i) & mask; | |
2139 | mask <<= 2; | |
2140 | } | |
2141 | return ret; | |
2142 | } | |
2143 | ||
2144 | /* Pad basic MPU access permission bits to extended format. */ | |
2145 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
2146 | { | |
2147 | uint32_t ret; | |
2148 | uint32_t mask; | |
2149 | int i; | |
2150 | ret = 0; | |
2151 | mask = 3; | |
2152 | for (i = 0; i < 16; i += 2) { | |
2153 | ret |= (val & mask) << i; | |
2154 | mask <<= 2; | |
2155 | } | |
2156 | return ret; | |
2157 | } | |
2158 | ||
c4241c7d PM |
2159 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2160 | uint64_t value) | |
18032bec | 2161 | { |
7e09797c | 2162 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2163 | } |
2164 | ||
c4241c7d | 2165 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2166 | { |
7e09797c | 2167 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
2168 | } |
2169 | ||
c4241c7d PM |
2170 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2171 | uint64_t value) | |
18032bec | 2172 | { |
7e09797c | 2173 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2174 | } |
2175 | ||
c4241c7d | 2176 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2177 | { |
7e09797c | 2178 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
2179 | } |
2180 | ||
6cb0b013 PC |
2181 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2182 | { | |
2183 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2184 | ||
2185 | if (!u32p) { | |
2186 | return 0; | |
2187 | } | |
2188 | ||
2189 | u32p += env->cp15.c6_rgnr; | |
2190 | return *u32p; | |
2191 | } | |
2192 | ||
2193 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2194 | uint64_t value) | |
2195 | { | |
2196 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2197 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2198 | ||
2199 | if (!u32p) { | |
2200 | return; | |
2201 | } | |
2202 | ||
2203 | u32p += env->cp15.c6_rgnr; | |
2204 | tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ | |
2205 | *u32p = value; | |
2206 | } | |
2207 | ||
2208 | static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
2209 | { | |
2210 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2211 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2212 | ||
2213 | if (!u32p) { | |
2214 | return; | |
2215 | } | |
2216 | ||
2217 | memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); | |
2218 | } | |
2219 | ||
2220 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2221 | uint64_t value) | |
2222 | { | |
2223 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2224 | uint32_t nrgs = cpu->pmsav7_dregion; | |
2225 | ||
2226 | if (value >= nrgs) { | |
2227 | qemu_log_mask(LOG_GUEST_ERROR, | |
2228 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
2229 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
2230 | return; | |
2231 | } | |
2232 | ||
2233 | raw_write(env, ri, value); | |
2234 | } | |
2235 | ||
2236 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
2237 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, | |
2238 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2239 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
2240 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2241 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, | |
2242 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2243 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
2244 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2245 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, | |
2246 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2247 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
2248 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2249 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, | |
2250 | .access = PL1_RW, | |
2251 | .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), | |
2252 | .writefn = pmsav7_rgnr_write }, | |
2253 | REGINFO_SENTINEL | |
2254 | }; | |
2255 | ||
18032bec PM |
2256 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
2257 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2258 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2259 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
2260 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
2261 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2262 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2263 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
2264 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
2265 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2266 | .access = PL1_RW, | |
7e09797c PM |
2267 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
2268 | .resetvalue = 0, }, | |
18032bec PM |
2269 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
2270 | .access = PL1_RW, | |
7e09797c PM |
2271 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
2272 | .resetvalue = 0, }, | |
ecce5c3c PM |
2273 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2274 | .access = PL1_RW, | |
2275 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
2276 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2277 | .access = PL1_RW, | |
2278 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 2279 | /* Protection region base and size registers */ |
e508a92b PM |
2280 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
2281 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2282 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
2283 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
2284 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2285 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
2286 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
2287 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2288 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
2289 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
2290 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2291 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
2292 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
2293 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2294 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
2295 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
2296 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2297 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
2298 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
2299 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2300 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
2301 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
2302 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2303 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
2304 | REGINFO_SENTINEL |
2305 | }; | |
2306 | ||
c4241c7d PM |
2307 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2308 | uint64_t value) | |
ecce5c3c | 2309 | { |
11f136ee | 2310 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
2311 | int maskshift = extract32(value, 0, 3); |
2312 | ||
e389be16 FA |
2313 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2314 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
2315 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
2316 | * using Long-desciptor translation table format */ | |
2317 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
2318 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2319 | /* In an implementation that includes the Security Extensions | |
2320 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
2321 | * Short-descriptor translation table format. | |
2322 | */ | |
2323 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
2324 | } else { | |
2325 | value &= TTBCR_N; | |
2326 | } | |
e42c4db3 | 2327 | } |
e389be16 | 2328 | |
b6af0975 | 2329 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 2330 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 2331 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
2332 | * for long-descriptor tables the TCR fields are used differently |
2333 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 2334 | */ |
11f136ee FA |
2335 | tcr->raw_tcr = value; |
2336 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
2337 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
2338 | } |
2339 | ||
c4241c7d PM |
2340 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2341 | uint64_t value) | |
d4e6df63 | 2342 | { |
00c8cb0a AF |
2343 | ARMCPU *cpu = arm_env_get_cpu(env); |
2344 | ||
d4e6df63 PM |
2345 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2346 | /* With LPAE the TTBCR could result in a change of ASID | |
2347 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2348 | */ | |
00c8cb0a | 2349 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 2350 | } |
c4241c7d | 2351 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2352 | } |
2353 | ||
ecce5c3c PM |
2354 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2355 | { | |
11f136ee FA |
2356 | TCR *tcr = raw_ptr(env, ri); |
2357 | ||
2358 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2359 | * the TCR being reset. | |
2360 | */ | |
2361 | tcr->raw_tcr = 0; | |
2362 | tcr->mask = 0; | |
2363 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2364 | } |
2365 | ||
cb2e37df PM |
2366 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2367 | uint64_t value) | |
2368 | { | |
00c8cb0a | 2369 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2370 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2371 | |
cb2e37df | 2372 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 2373 | tlb_flush(CPU(cpu), 1); |
11f136ee | 2374 | tcr->raw_tcr = value; |
cb2e37df PM |
2375 | } |
2376 | ||
327ed10f PM |
2377 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2378 | uint64_t value) | |
2379 | { | |
2380 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2381 | * must flush the TLB. | |
2382 | */ | |
2383 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2384 | ARMCPU *cpu = arm_env_get_cpu(env); |
2385 | ||
2386 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
2387 | } |
2388 | raw_write(env, ri, value); | |
2389 | } | |
2390 | ||
b698e9cf EI |
2391 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2392 | uint64_t value) | |
2393 | { | |
2394 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2395 | CPUState *cs = CPU(cpu); | |
2396 | ||
2397 | /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ | |
2398 | if (raw_read(env, ri) != value) { | |
2399 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | |
2400 | ARMMMUIdx_S2NS, -1); | |
2401 | raw_write(env, ri, value); | |
2402 | } | |
2403 | } | |
2404 | ||
8e5d75c9 | 2405 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2406 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2407 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2408 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2409 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2410 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2411 | .access = PL1_RW, .resetvalue = 0, |
2412 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2413 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2414 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2415 | .access = PL1_RW, .resetvalue = 0, | |
2416 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2417 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2418 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2419 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2420 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2421 | .resetvalue = 0, }, | |
2422 | REGINFO_SENTINEL | |
2423 | }; | |
2424 | ||
2425 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2426 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2427 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2428 | .access = PL1_RW, | |
d81c519c | 2429 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2430 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2431 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2432 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2433 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2434 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2435 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2436 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2437 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2438 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2439 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2440 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2441 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2442 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2443 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2444 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2445 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2446 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2447 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2448 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2449 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2450 | REGINFO_SENTINEL |
2451 | }; | |
2452 | ||
c4241c7d PM |
2453 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2454 | uint64_t value) | |
1047b9d7 PM |
2455 | { |
2456 | env->cp15.c15_ticonfig = value & 0xe7; | |
2457 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2458 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2459 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2460 | } |
2461 | ||
c4241c7d PM |
2462 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2463 | uint64_t value) | |
1047b9d7 PM |
2464 | { |
2465 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2466 | } |
2467 | ||
c4241c7d PM |
2468 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2469 | uint64_t value) | |
1047b9d7 PM |
2470 | { |
2471 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2472 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2473 | } |
2474 | ||
c4241c7d PM |
2475 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2476 | uint64_t value) | |
c4804214 PM |
2477 | { |
2478 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2479 | * containing a dirty line; cache flush operations have to reset these. | |
2480 | */ | |
2481 | env->cp15.c15_i_max = 0x000; | |
2482 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2483 | } |
2484 | ||
18032bec PM |
2485 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2486 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2487 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2488 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2489 | .resetvalue = 0, }, |
1047b9d7 PM |
2490 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2491 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2492 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2493 | .access = PL1_RW, | |
2494 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2495 | .writefn = omap_ticonfig_write }, | |
2496 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2497 | .access = PL1_RW, | |
2498 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2499 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2500 | .access = PL1_RW, .resetvalue = 0xff0, | |
2501 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2502 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2503 | .access = PL1_RW, | |
2504 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2505 | .writefn = omap_threadid_write }, | |
2506 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2507 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2508 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2509 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2510 | /* TODO: Peripheral port remap register: | |
2511 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2512 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2513 | * when MMU is off. | |
2514 | */ | |
c4804214 | 2515 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2516 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2517 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2518 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2519 | { .name = "C9", .cp = 15, .crn = 9, |
2520 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2521 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2522 | REGINFO_SENTINEL |
2523 | }; | |
2524 | ||
c4241c7d PM |
2525 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2526 | uint64_t value) | |
1047b9d7 | 2527 | { |
c0f4af17 | 2528 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2529 | } |
2530 | ||
2531 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2532 | { .name = "XSCALE_CPAR", | |
2533 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2534 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2535 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2536 | { .name = "XSCALE_AUXCR", |
2537 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2538 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2539 | .resetvalue = 0, }, | |
3b771579 PM |
2540 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2541 | * and hope the guest does not really rely on cache behaviour. | |
2542 | */ | |
2543 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2544 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2545 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2546 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2547 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2548 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2549 | { .name = "XSCALE_DCACHE_LOCK", | |
2550 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2551 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2552 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2553 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2554 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2555 | REGINFO_SENTINEL |
2556 | }; | |
2557 | ||
2558 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2559 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2560 | * implementation of this implementation-defined space. | |
2561 | * Ideally this should eventually disappear in favour of actually | |
2562 | * implementing the correct behaviour for all cores. | |
2563 | */ | |
2564 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2565 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2566 | .access = PL1_RW, |
7a0e58fa | 2567 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2568 | .resetvalue = 0 }, |
18032bec PM |
2569 | REGINFO_SENTINEL |
2570 | }; | |
2571 | ||
c4804214 PM |
2572 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2573 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2574 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2575 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2576 | .resetvalue = 0 }, |
c4804214 PM |
2577 | REGINFO_SENTINEL |
2578 | }; | |
2579 | ||
2580 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2581 | /* We never have a a block transfer operation in progress */ | |
2582 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2583 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2584 | .resetvalue = 0 }, |
30b05bba PM |
2585 | /* The cache ops themselves: these all NOP for QEMU */ |
2586 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2587 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2588 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2589 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2590 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2591 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2592 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2593 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2594 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2595 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2596 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2597 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2598 | REGINFO_SENTINEL |
2599 | }; | |
2600 | ||
2601 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2602 | /* The cache test-and-clean instructions always return (1 << 30) | |
2603 | * to indicate that there are no dirty cache lines. | |
2604 | */ | |
2605 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2606 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2607 | .resetvalue = (1 << 30) }, |
c4804214 | 2608 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2609 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2610 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2611 | REGINFO_SENTINEL |
2612 | }; | |
2613 | ||
34f90529 PM |
2614 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2615 | /* Ignore ReadBuffer accesses */ | |
2616 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2617 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2618 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2619 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2620 | REGINFO_SENTINEL |
2621 | }; | |
2622 | ||
731de9e6 EI |
2623 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2624 | { | |
2625 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2626 | unsigned int cur_el = arm_current_el(env); | |
2627 | bool secure = arm_is_secure(env); | |
2628 | ||
2629 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2630 | return env->cp15.vpidr_el2; | |
2631 | } | |
2632 | return raw_read(env, ri); | |
2633 | } | |
2634 | ||
06a7e647 | 2635 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 2636 | { |
eb5e1d3c PF |
2637 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2638 | uint64_t mpidr = cpu->mp_affinity; | |
2639 | ||
81bdde9d | 2640 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2641 | mpidr |= (1U << 31); |
81bdde9d PM |
2642 | /* Cores which are uniprocessor (non-coherent) |
2643 | * but still implement the MP extensions set | |
a8e81b31 | 2644 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2645 | */ |
a8e81b31 PC |
2646 | if (cpu->mp_is_up) { |
2647 | mpidr |= (1u << 30); | |
2648 | } | |
81bdde9d | 2649 | } |
c4241c7d | 2650 | return mpidr; |
81bdde9d PM |
2651 | } |
2652 | ||
06a7e647 EI |
2653 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2654 | { | |
f0d574d6 EI |
2655 | unsigned int cur_el = arm_current_el(env); |
2656 | bool secure = arm_is_secure(env); | |
2657 | ||
2658 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2659 | return env->cp15.vmpidr_el2; | |
2660 | } | |
06a7e647 EI |
2661 | return mpidr_read_val(env); |
2662 | } | |
2663 | ||
81bdde9d | 2664 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
4b7fff2f PM |
2665 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2666 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2667 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2668 | REGINFO_SENTINEL |
2669 | }; | |
2670 | ||
7ac681cf | 2671 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2672 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2673 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2674 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2675 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2676 | .resetvalue = 0 }, |
b0fe2427 | 2677 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2678 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2679 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2680 | .resetvalue = 0 }, |
891a2fe7 | 2681 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2682 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2683 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2684 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2685 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2686 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2687 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2688 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2689 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2690 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2691 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2692 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2693 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2694 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2695 | REGINFO_SENTINEL |
2696 | }; | |
2697 | ||
c4241c7d | 2698 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2699 | { |
c4241c7d | 2700 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2701 | } |
2702 | ||
c4241c7d PM |
2703 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2704 | uint64_t value) | |
b0d2b7d0 PM |
2705 | { |
2706 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2707 | } |
2708 | ||
c4241c7d | 2709 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2710 | { |
c4241c7d | 2711 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2712 | } |
2713 | ||
c4241c7d PM |
2714 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2715 | uint64_t value) | |
b0d2b7d0 PM |
2716 | { |
2717 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2718 | } |
2719 | ||
3f208fd7 PM |
2720 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2721 | bool isread) | |
c2b820fe | 2722 | { |
137feaa9 | 2723 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2724 | return CP_ACCESS_TRAP; |
2725 | } | |
2726 | return CP_ACCESS_OK; | |
2727 | } | |
2728 | ||
2729 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2730 | uint64_t value) | |
2731 | { | |
2732 | env->daif = value & PSTATE_DAIF; | |
2733 | } | |
2734 | ||
8af35c37 | 2735 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
3f208fd7 PM |
2736 | const ARMCPRegInfo *ri, |
2737 | bool isread) | |
8af35c37 PM |
2738 | { |
2739 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2740 | * SCTLR_EL1.UCI is set. | |
2741 | */ | |
137feaa9 | 2742 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2743 | return CP_ACCESS_TRAP; |
2744 | } | |
2745 | return CP_ACCESS_OK; | |
2746 | } | |
2747 | ||
dbb1fb27 AB |
2748 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2749 | * Page D4-1736 (DDI0487A.b) | |
2750 | */ | |
2751 | ||
fd3ed969 PM |
2752 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2753 | uint64_t value) | |
168aa23b | 2754 | { |
31b030d4 | 2755 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 | 2756 | CPUState *cs = CPU(cpu); |
dbb1fb27 | 2757 | |
fd3ed969 PM |
2758 | if (arm_is_secure_below_el3(env)) { |
2759 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2760 | } else { | |
2761 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | |
2762 | } | |
168aa23b PM |
2763 | } |
2764 | ||
fd3ed969 PM |
2765 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2766 | uint64_t value) | |
168aa23b | 2767 | { |
fd3ed969 PM |
2768 | bool sec = arm_is_secure_below_el3(env); |
2769 | CPUState *other_cs; | |
dbb1fb27 | 2770 | |
fd3ed969 PM |
2771 | CPU_FOREACH(other_cs) { |
2772 | if (sec) { | |
2773 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2774 | } else { | |
2775 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2776 | ARMMMUIdx_S12NSE0, -1); | |
2777 | } | |
2778 | } | |
168aa23b PM |
2779 | } |
2780 | ||
fd3ed969 PM |
2781 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2782 | uint64_t value) | |
168aa23b | 2783 | { |
fd3ed969 PM |
2784 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
2785 | * stage 2 translations, whereas most other scopes only invalidate | |
2786 | * stage 1 translations. | |
2787 | */ | |
00c8cb0a | 2788 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 PM |
2789 | CPUState *cs = CPU(cpu); |
2790 | ||
2791 | if (arm_is_secure_below_el3(env)) { | |
2792 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2793 | } else { | |
2794 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
2795 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | |
2796 | ARMMMUIdx_S2NS, -1); | |
2797 | } else { | |
2798 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | |
2799 | } | |
2800 | } | |
168aa23b PM |
2801 | } |
2802 | ||
fd3ed969 | 2803 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
2804 | uint64_t value) |
2805 | { | |
fd3ed969 PM |
2806 | ARMCPU *cpu = arm_env_get_cpu(env); |
2807 | CPUState *cs = CPU(cpu); | |
2808 | ||
2809 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); | |
2810 | } | |
2811 | ||
43efaa33 PM |
2812 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2813 | uint64_t value) | |
2814 | { | |
2815 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2816 | CPUState *cs = CPU(cpu); | |
2817 | ||
2818 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); | |
2819 | } | |
2820 | ||
fd3ed969 PM |
2821 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2822 | uint64_t value) | |
2823 | { | |
2824 | /* Note that the 'ALL' scope must invalidate both stage 1 and | |
2825 | * stage 2 translations, whereas most other scopes only invalidate | |
2826 | * stage 1 translations. | |
2827 | */ | |
2828 | bool sec = arm_is_secure_below_el3(env); | |
2829 | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); | |
fa439fc5 | 2830 | CPUState *other_cs; |
fa439fc5 PM |
2831 | |
2832 | CPU_FOREACH(other_cs) { | |
fd3ed969 PM |
2833 | if (sec) { |
2834 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2835 | } else if (has_el2) { | |
2836 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2837 | ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); | |
2838 | } else { | |
2839 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2840 | ARMMMUIdx_S12NSE0, -1); | |
2841 | } | |
fa439fc5 PM |
2842 | } |
2843 | } | |
2844 | ||
2bfb9d75 PM |
2845 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2846 | uint64_t value) | |
2847 | { | |
2848 | CPUState *other_cs; | |
2849 | ||
2850 | CPU_FOREACH(other_cs) { | |
2851 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); | |
2852 | } | |
2853 | } | |
2854 | ||
43efaa33 PM |
2855 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2856 | uint64_t value) | |
2857 | { | |
2858 | CPUState *other_cs; | |
2859 | ||
2860 | CPU_FOREACH(other_cs) { | |
2861 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); | |
2862 | } | |
2863 | } | |
2864 | ||
fd3ed969 PM |
2865 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2866 | uint64_t value) | |
2867 | { | |
2868 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
2869 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
2870 | * since we don't support flush-for-specific-ASID-only or | |
2871 | * flush-last-level-only. | |
2872 | */ | |
2873 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2874 | CPUState *cs = CPU(cpu); | |
2875 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2876 | ||
2877 | if (arm_is_secure_below_el3(env)) { | |
2878 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, | |
2879 | ARMMMUIdx_S1SE0, -1); | |
2880 | } else { | |
2881 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, | |
2882 | ARMMMUIdx_S12NSE0, -1); | |
2883 | } | |
2884 | } | |
2885 | ||
2886 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2887 | uint64_t value) | |
fa439fc5 | 2888 | { |
fd3ed969 PM |
2889 | /* Invalidate by VA, EL2 |
2890 | * Currently handles both VAE2 and VALE2, since we don't support | |
2891 | * flush-last-level-only. | |
2892 | */ | |
2893 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2894 | CPUState *cs = CPU(cpu); | |
2895 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2896 | ||
2897 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); | |
2898 | } | |
2899 | ||
43efaa33 PM |
2900 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2901 | uint64_t value) | |
2902 | { | |
2903 | /* Invalidate by VA, EL3 | |
2904 | * Currently handles both VAE3 and VALE3, since we don't support | |
2905 | * flush-last-level-only. | |
2906 | */ | |
2907 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2908 | CPUState *cs = CPU(cpu); | |
2909 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2910 | ||
2911 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); | |
2912 | } | |
2913 | ||
fd3ed969 PM |
2914 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2915 | uint64_t value) | |
2916 | { | |
2917 | bool sec = arm_is_secure_below_el3(env); | |
fa439fc5 PM |
2918 | CPUState *other_cs; |
2919 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2920 | ||
2921 | CPU_FOREACH(other_cs) { | |
fd3ed969 PM |
2922 | if (sec) { |
2923 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, | |
2924 | ARMMMUIdx_S1SE0, -1); | |
2925 | } else { | |
2926 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, | |
2927 | ARMMMUIdx_S12NSE0, -1); | |
2928 | } | |
fa439fc5 PM |
2929 | } |
2930 | } | |
2931 | ||
fd3ed969 PM |
2932 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2933 | uint64_t value) | |
fa439fc5 PM |
2934 | { |
2935 | CPUState *other_cs; | |
fd3ed969 | 2936 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
fa439fc5 PM |
2937 | |
2938 | CPU_FOREACH(other_cs) { | |
fd3ed969 | 2939 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); |
fa439fc5 PM |
2940 | } |
2941 | } | |
2942 | ||
43efaa33 PM |
2943 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2944 | uint64_t value) | |
2945 | { | |
2946 | CPUState *other_cs; | |
2947 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2948 | ||
2949 | CPU_FOREACH(other_cs) { | |
2950 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); | |
2951 | } | |
2952 | } | |
2953 | ||
cea66e91 PM |
2954 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2955 | uint64_t value) | |
2956 | { | |
2957 | /* Invalidate by IPA. This has to invalidate any structures that | |
2958 | * contain only stage 2 translation information, but does not need | |
2959 | * to apply to structures that contain combined stage 1 and stage 2 | |
2960 | * translation information. | |
2961 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
2962 | */ | |
2963 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2964 | CPUState *cs = CPU(cpu); | |
2965 | uint64_t pageaddr; | |
2966 | ||
2967 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
2968 | return; | |
2969 | } | |
2970 | ||
2971 | pageaddr = sextract64(value << 12, 0, 48); | |
2972 | ||
2973 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
2974 | } | |
2975 | ||
2976 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2977 | uint64_t value) | |
2978 | { | |
2979 | CPUState *other_cs; | |
2980 | uint64_t pageaddr; | |
2981 | ||
2982 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
2983 | return; | |
2984 | } | |
2985 | ||
2986 | pageaddr = sextract64(value << 12, 0, 48); | |
2987 | ||
2988 | CPU_FOREACH(other_cs) { | |
2989 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
2990 | } | |
2991 | } | |
2992 | ||
3f208fd7 PM |
2993 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2994 | bool isread) | |
aca3f40b PM |
2995 | { |
2996 | /* We don't implement EL2, so the only control on DC ZVA is the | |
2997 | * bit in the SCTLR which can prohibit access for EL0. | |
2998 | */ | |
137feaa9 | 2999 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
3000 | return CP_ACCESS_TRAP; |
3001 | } | |
3002 | return CP_ACCESS_OK; | |
3003 | } | |
3004 | ||
3005 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3006 | { | |
3007 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3008 | int dzp_bit = 1 << 4; | |
3009 | ||
3010 | /* DZP indicates whether DC ZVA access is allowed */ | |
3f208fd7 | 3011 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
aca3f40b PM |
3012 | dzp_bit = 0; |
3013 | } | |
3014 | return cpu->dcz_blocksize | dzp_bit; | |
3015 | } | |
3016 | ||
3f208fd7 PM |
3017 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3018 | bool isread) | |
f502cfc2 | 3019 | { |
cdcf1405 | 3020 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
3021 | /* Access to SP_EL0 is undefined if it's being used as |
3022 | * the stack pointer. | |
3023 | */ | |
3024 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3025 | } | |
3026 | return CP_ACCESS_OK; | |
3027 | } | |
3028 | ||
3029 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3030 | { | |
3031 | return env->pstate & PSTATE_SP; | |
3032 | } | |
3033 | ||
3034 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
3035 | { | |
3036 | update_spsel(env, val); | |
3037 | } | |
3038 | ||
137feaa9 FA |
3039 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3040 | uint64_t value) | |
3041 | { | |
3042 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3043 | ||
3044 | if (raw_read(env, ri) == value) { | |
3045 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
3046 | * to do a lot of pointless SCTLR writes. | |
3047 | */ | |
3048 | return; | |
3049 | } | |
3050 | ||
3051 | raw_write(env, ri, value); | |
3052 | /* ??? Lots of these bits are not implemented. */ | |
3053 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
3054 | tlb_flush(CPU(cpu), 1); | |
3055 | } | |
3056 | ||
3f208fd7 PM |
3057 | static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3058 | bool isread) | |
03fbf20f PM |
3059 | { |
3060 | if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { | |
f2cae609 | 3061 | return CP_ACCESS_TRAP_FP_EL2; |
03fbf20f PM |
3062 | } |
3063 | if (env->cp15.cptr_el[3] & CPTR_TFP) { | |
f2cae609 | 3064 | return CP_ACCESS_TRAP_FP_EL3; |
03fbf20f PM |
3065 | } |
3066 | return CP_ACCESS_OK; | |
3067 | } | |
3068 | ||
a8d64e73 PM |
3069 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3070 | uint64_t value) | |
3071 | { | |
3072 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; | |
3073 | } | |
3074 | ||
b0d2b7d0 PM |
3075 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
3076 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
3077 | * significantly for system emulation of AArch64 CPUs. | |
3078 | */ | |
3079 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
3080 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
3081 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
3082 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
3083 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 3084 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
3085 | .access = PL0_RW, .accessfn = aa64_daif_access, |
3086 | .fieldoffset = offsetof(CPUARMState, daif), | |
3087 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
3088 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
3089 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
3090 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
3091 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
3092 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
3093 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
3094 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
3095 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 3096 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
3097 | .readfn = aa64_dczid_read }, |
3098 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
3099 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
3100 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
3101 | #ifndef CONFIG_USER_ONLY | |
3102 | /* Avoid overhead of an access check that always passes in user-mode */ | |
3103 | .accessfn = aa64_zva_access, | |
3104 | #endif | |
3105 | }, | |
0eef9d98 PM |
3106 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
3107 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
3108 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
3109 | /* Cache ops: all NOPs since we don't emulate caches */ |
3110 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
3111 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3112 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3113 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
3114 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3115 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3116 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
3117 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
3118 | .access = PL0_W, .type = ARM_CP_NOP, | |
3119 | .accessfn = aa64_cacheop_access }, | |
3120 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
3121 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3122 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3123 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
3124 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3125 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3126 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
3127 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
3128 | .access = PL0_W, .type = ARM_CP_NOP, | |
3129 | .accessfn = aa64_cacheop_access }, | |
3130 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
3131 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3132 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3133 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
3134 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
3135 | .access = PL0_W, .type = ARM_CP_NOP, | |
3136 | .accessfn = aa64_cacheop_access }, | |
3137 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
3138 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
3139 | .access = PL0_W, .type = ARM_CP_NOP, | |
3140 | .accessfn = aa64_cacheop_access }, | |
3141 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
3142 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3143 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
3144 | /* TLBI operations */ |
3145 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 3146 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 3147 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3148 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3149 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3150 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 3151 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3152 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3153 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3154 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 3155 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3156 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3157 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3158 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 3159 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3160 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3161 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3162 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3163 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3164 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3165 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3166 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3167 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3168 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3169 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3170 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 3171 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3172 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3173 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3174 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 3175 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3176 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3177 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3178 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 3179 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3180 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3181 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3182 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 3183 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3184 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3185 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3186 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3187 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3188 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3189 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3190 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3191 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3192 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
3193 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
3194 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3195 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3196 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
3197 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
3198 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3199 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3200 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
83ddf975 PM |
3201 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
3202 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3203 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3204 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
3205 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
3206 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
3207 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3208 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
3209 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
3210 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3211 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3212 | .writefn = tlbi_aa64_ipas2e1_write }, | |
3213 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | |
3214 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3215 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3216 | .writefn = tlbi_aa64_ipas2e1_write }, | |
83ddf975 PM |
3217 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
3218 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3219 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3220 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
3221 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
3222 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
3223 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3224 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
3225 | #ifndef CONFIG_USER_ONLY |
3226 | /* 64 bit address translation operations */ | |
3227 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
3228 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 3229 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3230 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
3231 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 3232 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3233 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
3234 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 3235 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3236 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
3237 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 3238 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2a47df95 | 3239 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 3240 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
2a47df95 PM |
3241 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3242 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3243 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
2a47df95 PM |
3244 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3245 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3246 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
2a47df95 PM |
3247 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3248 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3249 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
2a47df95 PM |
3250 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3251 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | |
3252 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
3253 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
3254 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3255 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | |
3256 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
3257 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
c96fc9b5 EI |
3258 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
3259 | .type = ARM_CP_ALIAS, | |
3260 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
3261 | .access = PL1_RW, .resetvalue = 0, | |
3262 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
3263 | .writefn = par_write }, | |
19525524 | 3264 | #endif |
995939a6 | 3265 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 3266 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3267 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 3268 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3269 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 3270 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 3271 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3272 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 3273 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3274 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
9449fdf6 PM |
3275 | /* 32 bit cache operations */ |
3276 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3277 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3278 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
3279 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3280 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3281 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3282 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
3283 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3284 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
3285 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3286 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
3287 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3288 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3289 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3290 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3291 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3292 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
3293 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3294 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3295 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3296 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
3297 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3298 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
3299 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3300 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3301 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3302 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
3303 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
3304 | .access = PL1_RW, .resetvalue = 0, | |
3305 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3306 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
3307 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 3308 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3309 | .type = ARM_CP_ALIAS, |
a0618a19 | 3310 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
3311 | .access = PL1_RW, |
3312 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 3313 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3314 | .type = ARM_CP_ALIAS, |
a65f1de9 | 3315 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3316 | .access = PL1_RW, |
3317 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, | |
f502cfc2 PM |
3318 | /* We rely on the access checks not allowing the guest to write to the |
3319 | * state field when SPSel indicates that it's being used as the stack | |
3320 | * pointer. | |
3321 | */ | |
3322 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
3323 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
3324 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 3325 | .type = ARM_CP_ALIAS, |
f502cfc2 | 3326 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
3327 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
3328 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3329 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3330 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
3331 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
3332 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 3333 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 3334 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
03fbf20f PM |
3335 | { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
3336 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, | |
3337 | .type = ARM_CP_ALIAS, | |
3338 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), | |
3339 | .access = PL2_RW, .accessfn = fpexc32_access }, | |
6a43e0b6 PM |
3340 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
3341 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
3342 | .access = PL2_RW, .resetvalue = 0, | |
3343 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3344 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3345 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | |
3346 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
3347 | .access = PL2_RW, .resetvalue = 0, | |
3348 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
3349 | { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, | |
3350 | .type = ARM_CP_ALIAS, | |
3351 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, | |
3352 | .access = PL2_RW, | |
3353 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, | |
3354 | { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, | |
3355 | .type = ARM_CP_ALIAS, | |
3356 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, | |
3357 | .access = PL2_RW, | |
3358 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, | |
3359 | { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, | |
3360 | .type = ARM_CP_ALIAS, | |
3361 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, | |
3362 | .access = PL2_RW, | |
3363 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, | |
3364 | { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, | |
3365 | .type = ARM_CP_ALIAS, | |
3366 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, | |
3367 | .access = PL2_RW, | |
3368 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, | |
a8d64e73 PM |
3369 | { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
3370 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, | |
3371 | .resetvalue = 0, | |
3372 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, | |
3373 | { .name = "SDCR", .type = ARM_CP_ALIAS, | |
3374 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, | |
3375 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, | |
3376 | .writefn = sdcr_write, | |
3377 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, | |
b0d2b7d0 PM |
3378 | REGINFO_SENTINEL |
3379 | }; | |
3380 | ||
d42e3c26 | 3381 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 3382 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
3383 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3384 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3385 | .access = PL2_RW, | |
3386 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 3387 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3388 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
3389 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
3390 | .access = PL2_RW, | |
3391 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
3392 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3393 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3394 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
3395 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3396 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3397 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3398 | .resetvalue = 0 }, | |
3399 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3400 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3401 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2179ef95 PM |
3402 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3403 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3404 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3405 | .resetvalue = 0 }, | |
3406 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3407 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3408 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3409 | .resetvalue = 0 }, | |
37cd6c24 PM |
3410 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3411 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3412 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3413 | .resetvalue = 0 }, | |
3414 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3415 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3416 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3417 | .resetvalue = 0 }, | |
06ec4c8c EI |
3418 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3419 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3420 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e9c2fe EI |
3421 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
3422 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3423 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3424 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b698e9cf EI |
3425 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3426 | .cp = 15, .opc1 = 6, .crm = 2, | |
3427 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3428 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | |
3429 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3430 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3431 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
3432 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3433 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3434 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
3435 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3436 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3437 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
3438 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3439 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3440 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3441 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3442 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3443 | .resetvalue = 0 }, | |
0b6440af EI |
3444 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3445 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3446 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
3447 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3448 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3449 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3450 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3451 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3452 | .resetvalue = 0 }, | |
b0e66d95 EI |
3453 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3454 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3455 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3456 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3457 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3458 | .resetvalue = 0 }, | |
3459 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3460 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3461 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3462 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3463 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3464 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
14cc7b54 SF |
3465 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
3466 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
d6c8cf81 PM |
3467 | .access = PL2_RW, .accessfn = access_tda, |
3468 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
59e05530 EI |
3469 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
3470 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3471 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3472 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
3473 | REGINFO_SENTINEL |
3474 | }; | |
3475 | ||
f149e3e8 EI |
3476 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
3477 | { | |
3478 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3479 | uint64_t valid_mask = HCR_MASK; | |
3480 | ||
3481 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3482 | valid_mask &= ~HCR_HCD; | |
3483 | } else { | |
3484 | valid_mask &= ~HCR_TSC; | |
3485 | } | |
3486 | ||
3487 | /* Clear RES0 bits. */ | |
3488 | value &= valid_mask; | |
3489 | ||
3490 | /* These bits change the MMU setup: | |
3491 | * HCR_VM enables stage 2 translation | |
3492 | * HCR_PTW forbids certain page-table setups | |
3493 | * HCR_DC Disables stage1 and enables stage2 translation | |
3494 | */ | |
3495 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
3496 | tlb_flush(CPU(cpu), 1); | |
3497 | } | |
3498 | raw_write(env, ri, value); | |
3499 | } | |
3500 | ||
4771cd01 | 3501 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
3502 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
3503 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
3504 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
3505 | .writefn = hcr_write }, | |
3b685ba7 | 3506 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3507 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3508 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
3509 | .access = PL2_RW, | |
3510 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 3511 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3512 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
3513 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
3514 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
63b60551 EI |
3515 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
3516 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
3517 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 3518 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3519 | .type = ARM_CP_ALIAS, |
3b685ba7 | 3520 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3521 | .access = PL2_RW, |
3522 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, | |
d42e3c26 EI |
3523 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3524 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3525 | .access = PL2_RW, .writefn = vbar_write, | |
3526 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
3527 | .resetvalue = 0 }, | |
884b4dee GB |
3528 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
3529 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3530 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3531 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
3532 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3533 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3534 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3535 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
3536 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3537 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3538 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
3539 | .resetvalue = 0 }, | |
3540 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3541 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3542 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3543 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
3544 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3545 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3546 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3547 | .resetvalue = 0 }, | |
3548 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
3549 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3550 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3551 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3552 | .resetvalue = 0 }, | |
37cd6c24 PM |
3553 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3554 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3555 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3556 | .resetvalue = 0 }, | |
3557 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3558 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3559 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3560 | .resetvalue = 0 }, | |
06ec4c8c EI |
3561 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3562 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3563 | .access = PL2_RW, .writefn = vmsa_tcr_el1_write, | |
3564 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
3565 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, | |
68e9c2fe EI |
3566 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
3567 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3568 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3569 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
3570 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
3571 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3572 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3573 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
b698e9cf EI |
3574 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3575 | .cp = 15, .opc1 = 6, .crm = 2, | |
3576 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
3577 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3578 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
3579 | .writefn = vttbr_write }, | |
3580 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3581 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3582 | .access = PL2_RW, .writefn = vttbr_write, | |
3583 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
3584 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3585 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3586 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3587 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
3588 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3589 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3590 | .access = PL2_RW, .resetvalue = 0, | |
3591 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
3592 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3593 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3594 | .access = PL2_RW, .resetvalue = 0, | |
3595 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
3596 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3597 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 3598 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
51da9014 EI |
3599 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
3600 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3601 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3602 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
3603 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
3604 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3605 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3606 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
3607 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
3608 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
3609 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3610 | .writefn = tlbi_aa64_vae2_write }, | |
3611 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
3612 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3613 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3614 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
3615 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
3616 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3617 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3618 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
3619 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
3620 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3621 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3622 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 3623 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
3624 | /* Unlike the other EL2-related AT operations, these must |
3625 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
3626 | * define them here rather than with the rest of the AT ops. | |
3627 | */ | |
3628 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
3629 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3630 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3631 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3632 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | |
3633 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3634 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3635 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
14db7fe0 PM |
3636 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
3637 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
3638 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
3639 | * to behave as if SCR.NS was 1. | |
3640 | */ | |
3641 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3642 | .access = PL2_W, | |
3643 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
3644 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3645 | .access = PL2_W, | |
3646 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
0b6440af EI |
3647 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3648 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3649 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
3650 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
3651 | * both ARMv7 and ARMv8. | |
3652 | */ | |
3653 | .access = PL2_RW, .resetvalue = 3, | |
3654 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
3655 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3656 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3657 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
3658 | .writefn = gt_cntvoff_write, | |
3659 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
3660 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3661 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
3662 | .writefn = gt_cntvoff_write, | |
3663 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
3664 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3665 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3666 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3667 | .type = ARM_CP_IO, .access = PL2_RW, | |
3668 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3669 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3670 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3671 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
3672 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3673 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3674 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
d44ec156 | 3675 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
b0e66d95 EI |
3676 | .resetfn = gt_hyp_timer_reset, |
3677 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
3678 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3679 | .type = ARM_CP_IO, | |
3680 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3681 | .access = PL2_RW, | |
3682 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
3683 | .resetvalue = 0, | |
3684 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 3685 | #endif |
14cc7b54 SF |
3686 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
3687 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we | |
3688 | * don't impelment any PMU event counters, so using zero as a reset | |
3689 | * value for MDCR_EL2 is okay | |
3690 | */ | |
3691 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, | |
3692 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
3693 | .access = PL2_RW, .resetvalue = 0, | |
3694 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, | |
59e05530 EI |
3695 | { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
3696 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3697 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3698 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
3699 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, | |
3700 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3701 | .access = PL2_RW, | |
3702 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
3b685ba7 EI |
3703 | REGINFO_SENTINEL |
3704 | }; | |
3705 | ||
2f027fc5 PM |
3706 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3707 | bool isread) | |
3708 | { | |
3709 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. | |
3710 | * At Secure EL1 it traps to EL3. | |
3711 | */ | |
3712 | if (arm_current_el(env) == 3) { | |
3713 | return CP_ACCESS_OK; | |
3714 | } | |
3715 | if (arm_is_secure_below_el3(env)) { | |
3716 | return CP_ACCESS_TRAP_EL3; | |
3717 | } | |
3718 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ | |
3719 | if (isread) { | |
3720 | return CP_ACCESS_OK; | |
3721 | } | |
3722 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3723 | } | |
3724 | ||
60fb1a87 GB |
3725 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
3726 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
3727 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
3728 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
3729 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 3730 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 | 3731 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
efe4a274 PM |
3732 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
3733 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 3734 | .writefn = scr_write }, |
60fb1a87 GB |
3735 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
3736 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
3737 | .access = PL3_RW, .resetvalue = 0, | |
3738 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
3739 | { .name = "SDER", | |
3740 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
3741 | .access = PL3_RW, .resetvalue = 0, | |
3742 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
60fb1a87 | 3743 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
efe4a274 PM |
3744 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
3745 | .writefn = vbar_write, .resetvalue = 0, | |
60fb1a87 | 3746 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
137feaa9 | 3747 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
e46e1a74 | 3748 | .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */ |
137feaa9 FA |
3749 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, |
3750 | .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3751 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, | |
7dd8c9af FA |
3752 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
3753 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
3754 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
3755 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
3756 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
3757 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
3758 | .access = PL3_RW, .writefn = vmsa_tcr_el1_write, | |
3759 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
3760 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, | |
81547d66 | 3761 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3762 | .type = ARM_CP_ALIAS, |
81547d66 EI |
3763 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
3764 | .access = PL3_RW, | |
3765 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 3766 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3767 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
3768 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
3769 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
3770 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
3771 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
3772 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 3773 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3774 | .type = ARM_CP_ALIAS, |
81547d66 | 3775 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3776 | .access = PL3_RW, |
3777 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, | |
a1ba125c EI |
3778 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
3779 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
3780 | .access = PL3_RW, .writefn = vbar_write, | |
3781 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
3782 | .resetvalue = 0 }, | |
c6f19164 GB |
3783 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
3784 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
3785 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3786 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
3787 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
3788 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
3789 | .access = PL3_RW, .resetvalue = 0, | |
3790 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
3791 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
3792 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
3793 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3794 | .resetvalue = 0 }, | |
37cd6c24 PM |
3795 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
3796 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
3797 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3798 | .resetvalue = 0 }, | |
3799 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
3800 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
3801 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3802 | .resetvalue = 0 }, | |
43efaa33 PM |
3803 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
3804 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
3805 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3806 | .writefn = tlbi_aa64_alle3is_write }, | |
3807 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
3808 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
3809 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3810 | .writefn = tlbi_aa64_vae3is_write }, | |
3811 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
3812 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
3813 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3814 | .writefn = tlbi_aa64_vae3is_write }, | |
3815 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
3816 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
3817 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3818 | .writefn = tlbi_aa64_alle3_write }, | |
3819 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
3820 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
3821 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3822 | .writefn = tlbi_aa64_vae3_write }, | |
3823 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
3824 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
3825 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3826 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
3827 | REGINFO_SENTINEL |
3828 | }; | |
3829 | ||
3f208fd7 PM |
3830 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3831 | bool isread) | |
7da845b0 PM |
3832 | { |
3833 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
3834 | * but the AArch32 CTR has its own reginfo struct) | |
3835 | */ | |
137feaa9 | 3836 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
3837 | return CP_ACCESS_TRAP; |
3838 | } | |
3839 | return CP_ACCESS_OK; | |
3840 | } | |
3841 | ||
1424ca8d DM |
3842 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3843 | uint64_t value) | |
3844 | { | |
3845 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be | |
3846 | * read via a bit in OSLSR_EL1. | |
3847 | */ | |
3848 | int oslock; | |
3849 | ||
3850 | if (ri->state == ARM_CP_STATE_AA32) { | |
3851 | oslock = (value == 0xC5ACCE55); | |
3852 | } else { | |
3853 | oslock = value & 1; | |
3854 | } | |
3855 | ||
3856 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); | |
3857 | } | |
3858 | ||
50300698 | 3859 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 3860 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
3861 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
3862 | * unlike DBGDRAR it is never accessible from EL0. | |
3863 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
3864 | * accessor. | |
50300698 PM |
3865 | */ |
3866 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
91b0a238 PM |
3867 | .access = PL0_R, .accessfn = access_tdra, |
3868 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
3869 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
3870 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
91b0a238 PM |
3871 | .access = PL1_R, .accessfn = access_tdra, |
3872 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 | 3873 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
91b0a238 PM |
3874 | .access = PL0_R, .accessfn = access_tdra, |
3875 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 3876 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
3877 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
3878 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
d6c8cf81 | 3879 | .access = PL1_RW, .accessfn = access_tda, |
0e5e8935 PM |
3880 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
3881 | .resetvalue = 0 }, | |
5e8b12ff PM |
3882 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
3883 | * We don't implement the configurable EL0 access. | |
3884 | */ | |
3885 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
3886 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3887 | .type = ARM_CP_ALIAS, |
d6c8cf81 | 3888 | .access = PL1_R, .accessfn = access_tda, |
b061a82b | 3889 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
10aae104 PM |
3890 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
3891 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1424ca8d | 3892 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
187f678d | 3893 | .accessfn = access_tdosa, |
1424ca8d DM |
3894 | .writefn = oslar_write }, |
3895 | { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, | |
3896 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, | |
3897 | .access = PL1_R, .resetvalue = 10, | |
187f678d | 3898 | .accessfn = access_tdosa, |
1424ca8d | 3899 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
5e8b12ff PM |
3900 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
3901 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
3902 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
187f678d PM |
3903 | .access = PL1_RW, .accessfn = access_tdosa, |
3904 | .type = ARM_CP_NOP }, | |
5e8b12ff PM |
3905 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
3906 | * implement vector catch debug events yet. | |
3907 | */ | |
3908 | { .name = "DBGVCR", | |
3909 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
d6c8cf81 PM |
3910 | .access = PL1_RW, .accessfn = access_tda, |
3911 | .type = ARM_CP_NOP }, | |
50300698 PM |
3912 | REGINFO_SENTINEL |
3913 | }; | |
3914 | ||
3915 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
3916 | /* 64 bit access versions of the (dummy) debug registers */ | |
3917 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
3918 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3919 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
3920 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
3921 | REGINFO_SENTINEL | |
3922 | }; | |
3923 | ||
9ee98ce8 PM |
3924 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
3925 | { | |
3926 | CPUARMState *env = &cpu->env; | |
3927 | vaddr len = 0; | |
3928 | vaddr wvr = env->cp15.dbgwvr[n]; | |
3929 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
3930 | int mask; | |
3931 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
3932 | ||
3933 | if (env->cpu_watchpoint[n]) { | |
3934 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
3935 | env->cpu_watchpoint[n] = NULL; | |
3936 | } | |
3937 | ||
3938 | if (!extract64(wcr, 0, 1)) { | |
3939 | /* E bit clear : watchpoint disabled */ | |
3940 | return; | |
3941 | } | |
3942 | ||
3943 | switch (extract64(wcr, 3, 2)) { | |
3944 | case 0: | |
3945 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
3946 | return; | |
3947 | case 1: | |
3948 | flags |= BP_MEM_READ; | |
3949 | break; | |
3950 | case 2: | |
3951 | flags |= BP_MEM_WRITE; | |
3952 | break; | |
3953 | case 3: | |
3954 | flags |= BP_MEM_ACCESS; | |
3955 | break; | |
3956 | } | |
3957 | ||
3958 | /* Attempts to use both MASK and BAS fields simultaneously are | |
3959 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
3960 | * thus generating a watchpoint for every byte in the masked region. | |
3961 | */ | |
3962 | mask = extract64(wcr, 24, 4); | |
3963 | if (mask == 1 || mask == 2) { | |
3964 | /* Reserved values of MASK; we must act as if the mask value was | |
3965 | * some non-reserved value, or as if the watchpoint were disabled. | |
3966 | * We choose the latter. | |
3967 | */ | |
3968 | return; | |
3969 | } else if (mask) { | |
3970 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
3971 | len = 1ULL << mask; | |
3972 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
3973 | * whether the watchpoint fires when the unmasked bits match; we opt | |
3974 | * to generate the exceptions. | |
3975 | */ | |
3976 | wvr &= ~(len - 1); | |
3977 | } else { | |
3978 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
3979 | int bas = extract64(wcr, 5, 8); | |
3980 | int basstart; | |
3981 | ||
3982 | if (bas == 0) { | |
3983 | /* This must act as if the watchpoint is disabled */ | |
3984 | return; | |
3985 | } | |
3986 | ||
3987 | if (extract64(wvr, 2, 1)) { | |
3988 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
3989 | * ignored, and BAS[3:0] define which bytes to watch. | |
3990 | */ | |
3991 | bas &= 0xf; | |
3992 | } | |
3993 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
3994 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
3995 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
3996 | * We choose to ignore any non-zero bits after the first range of 1s. | |
3997 | */ | |
3998 | basstart = ctz32(bas); | |
3999 | len = cto32(bas >> basstart); | |
4000 | wvr += basstart; | |
4001 | } | |
4002 | ||
4003 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
4004 | &env->cpu_watchpoint[n]); | |
4005 | } | |
4006 | ||
4007 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
4008 | { | |
4009 | int i; | |
4010 | CPUARMState *env = &cpu->env; | |
4011 | ||
4012 | /* Completely clear out existing QEMU watchpoints and our array, to | |
4013 | * avoid possible stale entries following migration load. | |
4014 | */ | |
4015 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
4016 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
4017 | ||
4018 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
4019 | hw_watchpoint_update(cpu, i); | |
4020 | } | |
4021 | } | |
4022 | ||
4023 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4024 | uint64_t value) | |
4025 | { | |
4026 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4027 | int i = ri->crm; | |
4028 | ||
4029 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
4030 | * register reads and behaves as if values written are sign extended. | |
4031 | * Bits [1:0] are RES0. | |
4032 | */ | |
4033 | value = sextract64(value, 0, 49) & ~3ULL; | |
4034 | ||
4035 | raw_write(env, ri, value); | |
4036 | hw_watchpoint_update(cpu, i); | |
4037 | } | |
4038 | ||
4039 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4040 | uint64_t value) | |
4041 | { | |
4042 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4043 | int i = ri->crm; | |
4044 | ||
4045 | raw_write(env, ri, value); | |
4046 | hw_watchpoint_update(cpu, i); | |
4047 | } | |
4048 | ||
46747d15 PM |
4049 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
4050 | { | |
4051 | CPUARMState *env = &cpu->env; | |
4052 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
4053 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
4054 | vaddr addr; | |
4055 | int bt; | |
4056 | int flags = BP_CPU; | |
4057 | ||
4058 | if (env->cpu_breakpoint[n]) { | |
4059 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
4060 | env->cpu_breakpoint[n] = NULL; | |
4061 | } | |
4062 | ||
4063 | if (!extract64(bcr, 0, 1)) { | |
4064 | /* E bit clear : watchpoint disabled */ | |
4065 | return; | |
4066 | } | |
4067 | ||
4068 | bt = extract64(bcr, 20, 4); | |
4069 | ||
4070 | switch (bt) { | |
4071 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
4072 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
4073 | qemu_log_mask(LOG_UNIMP, | |
4074 | "arm: address mismatch breakpoint types not implemented"); | |
4075 | return; | |
4076 | case 0: /* unlinked address match */ | |
4077 | case 1: /* linked address match */ | |
4078 | { | |
4079 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
4080 | * we behave as if the register was sign extended. Bits [1:0] are | |
4081 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
4082 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
4083 | * a bp will fire if the addresses covered by the bp and the addresses | |
4084 | * covered by the insn overlap but the insn doesn't start at the | |
4085 | * start of the bp address range. We choose to require the insn and | |
4086 | * the bp to have the same address. The constraints on writing to | |
4087 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
4088 | * 0b0000 => no breakpoint | |
4089 | * 0b0011 => breakpoint on addr | |
4090 | * 0b1100 => breakpoint on addr + 2 | |
4091 | * 0b1111 => breakpoint on addr | |
4092 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
4093 | */ | |
4094 | int bas = extract64(bcr, 5, 4); | |
4095 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
4096 | if (bas == 0) { | |
4097 | return; | |
4098 | } | |
4099 | if (bas == 0xc) { | |
4100 | addr += 2; | |
4101 | } | |
4102 | break; | |
4103 | } | |
4104 | case 2: /* unlinked context ID match */ | |
4105 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
4106 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
4107 | qemu_log_mask(LOG_UNIMP, | |
4108 | "arm: unlinked context breakpoint types not implemented"); | |
4109 | return; | |
4110 | case 9: /* linked VMID match (reserved if no EL2) */ | |
4111 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
4112 | case 3: /* linked context ID match */ | |
4113 | default: | |
4114 | /* We must generate no events for Linked context matches (unless | |
4115 | * they are linked to by some other bp/wp, which is handled in | |
4116 | * updates for the linking bp/wp). We choose to also generate no events | |
4117 | * for reserved values. | |
4118 | */ | |
4119 | return; | |
4120 | } | |
4121 | ||
4122 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
4123 | } | |
4124 | ||
4125 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
4126 | { | |
4127 | int i; | |
4128 | CPUARMState *env = &cpu->env; | |
4129 | ||
4130 | /* Completely clear out existing QEMU breakpoints and our array, to | |
4131 | * avoid possible stale entries following migration load. | |
4132 | */ | |
4133 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
4134 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
4135 | ||
4136 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
4137 | hw_breakpoint_update(cpu, i); | |
4138 | } | |
4139 | } | |
4140 | ||
4141 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4142 | uint64_t value) | |
4143 | { | |
4144 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4145 | int i = ri->crm; | |
4146 | ||
4147 | raw_write(env, ri, value); | |
4148 | hw_breakpoint_update(cpu, i); | |
4149 | } | |
4150 | ||
4151 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4152 | uint64_t value) | |
4153 | { | |
4154 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4155 | int i = ri->crm; | |
4156 | ||
4157 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
4158 | * copy of BAS[0]. | |
4159 | */ | |
4160 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
4161 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
4162 | ||
4163 | raw_write(env, ri, value); | |
4164 | hw_breakpoint_update(cpu, i); | |
4165 | } | |
4166 | ||
50300698 | 4167 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 4168 | { |
50300698 PM |
4169 | /* Define v7 and v8 architectural debug registers. |
4170 | * These are just dummy implementations for now. | |
0b45451e PM |
4171 | */ |
4172 | int i; | |
3ff6fc91 | 4173 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
4174 | ARMCPRegInfo dbgdidr = { |
4175 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d6c8cf81 PM |
4176 | .access = PL0_R, .accessfn = access_tda, |
4177 | .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
48eb3ae6 PM |
4178 | }; |
4179 | ||
3ff6fc91 | 4180 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
4181 | brps = extract32(cpu->dbgdidr, 24, 4); |
4182 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
4183 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
4184 | ||
4185 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
4186 | |
4187 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
4188 | * of the debug registers such as number of breakpoints; | |
4189 | * check that if they both exist then they agree. | |
4190 | */ | |
4191 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
4192 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
4193 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 4194 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 4195 | } |
0b45451e | 4196 | |
48eb3ae6 | 4197 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
4198 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
4199 | ||
4200 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
4201 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
4202 | } | |
4203 | ||
48eb3ae6 | 4204 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 4205 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
4206 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
4207 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
d6c8cf81 | 4208 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4209 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
4210 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
4211 | }, | |
10aae104 PM |
4212 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
4213 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
d6c8cf81 | 4214 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4215 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
4216 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
4217 | }, | |
48eb3ae6 PM |
4218 | REGINFO_SENTINEL |
4219 | }; | |
4220 | define_arm_cp_regs(cpu, dbgregs); | |
4221 | } | |
4222 | ||
4223 | for (i = 0; i < wrps + 1; i++) { | |
4224 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
4225 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
4226 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
d6c8cf81 | 4227 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4228 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
4229 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
4230 | }, | |
10aae104 PM |
4231 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
4232 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
d6c8cf81 | 4233 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4234 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
4235 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
4236 | }, | |
4237 | REGINFO_SENTINEL | |
0b45451e PM |
4238 | }; |
4239 | define_arm_cp_regs(cpu, dbgregs); | |
4240 | } | |
4241 | } | |
4242 | ||
2ceb98c0 PM |
4243 | void register_cp_regs_for_features(ARMCPU *cpu) |
4244 | { | |
4245 | /* Register all the coprocessor registers based on feature bits */ | |
4246 | CPUARMState *env = &cpu->env; | |
4247 | if (arm_feature(env, ARM_FEATURE_M)) { | |
4248 | /* M profile has no coprocessor registers */ | |
4249 | return; | |
4250 | } | |
4251 | ||
e9aa6c21 | 4252 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
4253 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
4254 | /* Must go early as it is full of wildcards that may be | |
4255 | * overridden by later definitions. | |
4256 | */ | |
4257 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
4258 | } | |
4259 | ||
7d57f408 | 4260 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
4261 | /* The ID registers all have impdef reset values */ |
4262 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
4263 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
4264 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
4265 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4266 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
4267 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
4268 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
4269 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4270 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
4271 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
4272 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
4273 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4274 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
4275 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
4276 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
4277 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4278 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
4279 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
4280 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
4281 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4282 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
4283 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
4284 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
4285 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4286 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
4287 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
4288 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
4289 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4290 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
4291 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
4292 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
4293 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4294 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
4295 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
4296 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
4297 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4298 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
4299 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
4300 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
4301 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4302 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
4303 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
4304 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
4305 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4306 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
4307 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
4308 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
4309 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4310 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
4311 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
4312 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
4313 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4314 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
4315 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
4316 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
4317 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4318 | .resetvalue = cpu->id_isar5 }, |
e20d84c1 PM |
4319 | { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
4320 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, | |
4321 | .access = PL1_R, .type = ARM_CP_CONST, | |
4322 | .resetvalue = cpu->id_mmfr4 }, | |
4323 | /* 7 is as yet unallocated and must RAZ */ | |
4324 | { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, | |
4325 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, | |
4326 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
4327 | .resetvalue = 0 }, |
4328 | REGINFO_SENTINEL | |
4329 | }; | |
4330 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
4331 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
4332 | } else { | |
4333 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
4334 | } | |
4d31c596 PM |
4335 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
4336 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
4337 | } | |
5e5cf9e3 PC |
4338 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
4339 | !arm_feature(env, ARM_FEATURE_MPU)) { | |
995939a6 PM |
4340 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
4341 | } | |
e9aa6c21 | 4342 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 4343 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
4344 | * field as main ID register, and we implement only the cycle |
4345 | * count register. | |
200ac0ef | 4346 | */ |
7c2cb42b | 4347 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
4348 | ARMCPRegInfo pmcr = { |
4349 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 4350 | .access = PL0_RW, |
7a0e58fa | 4351 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 4352 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
4353 | .accessfn = pmreg_access, .writefn = pmcr_write, |
4354 | .raw_writefn = raw_write, | |
200ac0ef | 4355 | }; |
8521466b AF |
4356 | ARMCPRegInfo pmcr64 = { |
4357 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
4358 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
4359 | .access = PL0_RW, .accessfn = pmreg_access, | |
4360 | .type = ARM_CP_IO, | |
4361 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
4362 | .resetvalue = cpu->midr & 0xff000000, | |
4363 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
4364 | }; | |
7c2cb42b | 4365 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 4366 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 4367 | #endif |
776d4e5c | 4368 | ARMCPRegInfo clidr = { |
7da845b0 PM |
4369 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
4370 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
4371 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
4372 | }; | |
776d4e5c | 4373 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 4374 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 4375 | define_debug_regs(cpu); |
7d57f408 PM |
4376 | } else { |
4377 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 4378 | } |
b0d2b7d0 | 4379 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e20d84c1 PM |
4380 | /* AArch64 ID registers, which all have impdef reset values. |
4381 | * Note that within the ID register ranges the unused slots | |
4382 | * must all RAZ, not UNDEF; future architecture versions may | |
4383 | * define new registers here. | |
4384 | */ | |
e60cef86 PM |
4385 | ARMCPRegInfo v8_idregs[] = { |
4386 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4387 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
4388 | .access = PL1_R, .type = ARM_CP_CONST, | |
4389 | .resetvalue = cpu->id_aa64pfr0 }, | |
4390 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4391 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
4392 | .access = PL1_R, .type = ARM_CP_CONST, | |
4393 | .resetvalue = cpu->id_aa64pfr1}, | |
e20d84c1 PM |
4394 | { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4395 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, | |
4396 | .access = PL1_R, .type = ARM_CP_CONST, | |
4397 | .resetvalue = 0 }, | |
4398 | { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4399 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, | |
4400 | .access = PL1_R, .type = ARM_CP_CONST, | |
4401 | .resetvalue = 0 }, | |
4402 | { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4403 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, | |
4404 | .access = PL1_R, .type = ARM_CP_CONST, | |
4405 | .resetvalue = 0 }, | |
4406 | { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4407 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, | |
4408 | .access = PL1_R, .type = ARM_CP_CONST, | |
4409 | .resetvalue = 0 }, | |
4410 | { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4411 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, | |
4412 | .access = PL1_R, .type = ARM_CP_CONST, | |
4413 | .resetvalue = 0 }, | |
4414 | { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4415 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, | |
4416 | .access = PL1_R, .type = ARM_CP_CONST, | |
4417 | .resetvalue = 0 }, | |
e60cef86 PM |
4418 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
4419 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
4420 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 4421 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
4422 | * implement the PMU. Not advertising it prevents the guest |
4423 | * from trying to use it and getting UNDEFs on registers we | |
4424 | * don't implement. | |
4425 | */ | |
4426 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
4427 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
4428 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
4429 | .access = PL1_R, .type = ARM_CP_CONST, | |
4430 | .resetvalue = cpu->id_aa64dfr1 }, | |
e20d84c1 PM |
4431 | { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4432 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, | |
4433 | .access = PL1_R, .type = ARM_CP_CONST, | |
4434 | .resetvalue = 0 }, | |
4435 | { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4436 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, | |
4437 | .access = PL1_R, .type = ARM_CP_CONST, | |
4438 | .resetvalue = 0 }, | |
e60cef86 PM |
4439 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
4440 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
4441 | .access = PL1_R, .type = ARM_CP_CONST, | |
4442 | .resetvalue = cpu->id_aa64afr0 }, | |
4443 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4444 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
4445 | .access = PL1_R, .type = ARM_CP_CONST, | |
4446 | .resetvalue = cpu->id_aa64afr1 }, | |
e20d84c1 PM |
4447 | { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4448 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, | |
4449 | .access = PL1_R, .type = ARM_CP_CONST, | |
4450 | .resetvalue = 0 }, | |
4451 | { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4452 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, | |
4453 | .access = PL1_R, .type = ARM_CP_CONST, | |
4454 | .resetvalue = 0 }, | |
e60cef86 PM |
4455 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
4456 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
4457 | .access = PL1_R, .type = ARM_CP_CONST, | |
4458 | .resetvalue = cpu->id_aa64isar0 }, | |
4459 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
4460 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
4461 | .access = PL1_R, .type = ARM_CP_CONST, | |
4462 | .resetvalue = cpu->id_aa64isar1 }, | |
e20d84c1 PM |
4463 | { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4464 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, | |
4465 | .access = PL1_R, .type = ARM_CP_CONST, | |
4466 | .resetvalue = 0 }, | |
4467 | { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4468 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, | |
4469 | .access = PL1_R, .type = ARM_CP_CONST, | |
4470 | .resetvalue = 0 }, | |
4471 | { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4472 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, | |
4473 | .access = PL1_R, .type = ARM_CP_CONST, | |
4474 | .resetvalue = 0 }, | |
4475 | { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4476 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, | |
4477 | .access = PL1_R, .type = ARM_CP_CONST, | |
4478 | .resetvalue = 0 }, | |
4479 | { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4480 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, | |
4481 | .access = PL1_R, .type = ARM_CP_CONST, | |
4482 | .resetvalue = 0 }, | |
4483 | { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4484 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, | |
4485 | .access = PL1_R, .type = ARM_CP_CONST, | |
4486 | .resetvalue = 0 }, | |
e60cef86 PM |
4487 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
4488 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
4489 | .access = PL1_R, .type = ARM_CP_CONST, | |
4490 | .resetvalue = cpu->id_aa64mmfr0 }, | |
4491 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4492 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
4493 | .access = PL1_R, .type = ARM_CP_CONST, | |
4494 | .resetvalue = cpu->id_aa64mmfr1 }, | |
e20d84c1 PM |
4495 | { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4496 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, | |
4497 | .access = PL1_R, .type = ARM_CP_CONST, | |
4498 | .resetvalue = 0 }, | |
4499 | { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4500 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, | |
4501 | .access = PL1_R, .type = ARM_CP_CONST, | |
4502 | .resetvalue = 0 }, | |
4503 | { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4504 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, | |
4505 | .access = PL1_R, .type = ARM_CP_CONST, | |
4506 | .resetvalue = 0 }, | |
4507 | { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4508 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, | |
4509 | .access = PL1_R, .type = ARM_CP_CONST, | |
4510 | .resetvalue = 0 }, | |
4511 | { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4512 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, | |
4513 | .access = PL1_R, .type = ARM_CP_CONST, | |
4514 | .resetvalue = 0 }, | |
4515 | { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4516 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, | |
4517 | .access = PL1_R, .type = ARM_CP_CONST, | |
4518 | .resetvalue = 0 }, | |
a50c0f51 PM |
4519 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
4520 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
4521 | .access = PL1_R, .type = ARM_CP_CONST, | |
4522 | .resetvalue = cpu->mvfr0 }, | |
4523 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4524 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
4525 | .access = PL1_R, .type = ARM_CP_CONST, | |
4526 | .resetvalue = cpu->mvfr1 }, | |
4527 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
4528 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
4529 | .access = PL1_R, .type = ARM_CP_CONST, | |
4530 | .resetvalue = cpu->mvfr2 }, | |
e20d84c1 PM |
4531 | { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4532 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, | |
4533 | .access = PL1_R, .type = ARM_CP_CONST, | |
4534 | .resetvalue = 0 }, | |
4535 | { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4536 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, | |
4537 | .access = PL1_R, .type = ARM_CP_CONST, | |
4538 | .resetvalue = 0 }, | |
4539 | { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4540 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, | |
4541 | .access = PL1_R, .type = ARM_CP_CONST, | |
4542 | .resetvalue = 0 }, | |
4543 | { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4544 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, | |
4545 | .access = PL1_R, .type = ARM_CP_CONST, | |
4546 | .resetvalue = 0 }, | |
4547 | { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4548 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, | |
4549 | .access = PL1_R, .type = ARM_CP_CONST, | |
4550 | .resetvalue = 0 }, | |
4054bfa9 AF |
4551 | { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
4552 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, | |
4553 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4554 | .resetvalue = cpu->pmceid0 }, | |
4555 | { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, | |
4556 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, | |
4557 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4558 | .resetvalue = cpu->pmceid0 }, | |
4559 | { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, | |
4560 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, | |
4561 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4562 | .resetvalue = cpu->pmceid1 }, | |
4563 | { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, | |
4564 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, | |
4565 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4566 | .resetvalue = cpu->pmceid1 }, | |
e60cef86 PM |
4567 | REGINFO_SENTINEL |
4568 | }; | |
be8e8128 GB |
4569 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
4570 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
4571 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
4572 | ARMCPRegInfo rvbar = { | |
4573 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4574 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
4575 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
4576 | }; | |
4577 | define_one_arm_cp_reg(cpu, &rvbar); | |
4578 | } | |
e60cef86 | 4579 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
4580 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
4581 | } | |
3b685ba7 | 4582 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
f0d574d6 | 4583 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
4584 | ARMCPRegInfo vpidr_regs[] = { |
4585 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
4586 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4587 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4588 | .resetvalue = cpu->midr, | |
4589 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
4590 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4591 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4592 | .access = PL2_RW, .resetvalue = cpu->midr, | |
4593 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4594 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
4595 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4596 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4597 | .resetvalue = vmpidr_def, | |
4598 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
4599 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4600 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4601 | .access = PL2_RW, | |
4602 | .resetvalue = vmpidr_def, | |
4603 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
731de9e6 EI |
4604 | REGINFO_SENTINEL |
4605 | }; | |
4606 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4607 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
4608 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
4609 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
4610 | ARMCPRegInfo rvbar = { | |
4611 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
4612 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
4613 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
4614 | }; | |
4615 | define_one_arm_cp_reg(cpu, &rvbar); | |
4616 | } | |
d42e3c26 EI |
4617 | } else { |
4618 | /* If EL2 is missing but higher ELs are enabled, we need to | |
4619 | * register the no_el2 reginfos. | |
4620 | */ | |
4621 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
f0d574d6 EI |
4622 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
4623 | * of MIDR_EL1 and MPIDR_EL1. | |
731de9e6 EI |
4624 | */ |
4625 | ARMCPRegInfo vpidr_regs[] = { | |
4626 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | |
4627 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4628 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4629 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, | |
4630 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4631 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
4632 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4633 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4634 | .type = ARM_CP_NO_RAW, | |
4635 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | |
731de9e6 EI |
4636 | REGINFO_SENTINEL |
4637 | }; | |
4638 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4639 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 4640 | } |
3b685ba7 | 4641 | } |
81547d66 | 4642 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 4643 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
be8e8128 GB |
4644 | ARMCPRegInfo rvbar = { |
4645 | .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
4646 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
4647 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar | |
4648 | }; | |
4649 | define_one_arm_cp_reg(cpu, &rvbar); | |
81547d66 | 4650 | } |
2f027fc5 PM |
4651 | /* The behaviour of NSACR is sufficiently various that we don't |
4652 | * try to describe it in a single reginfo: | |
4653 | * if EL3 is 64 bit, then trap to EL3 from S EL1, | |
4654 | * reads as constant 0xc00 from NS EL1 and NS EL2 | |
4655 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 | |
4656 | * if v7 without EL3, register doesn't exist | |
4657 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 | |
4658 | */ | |
4659 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
4660 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
4661 | ARMCPRegInfo nsacr = { | |
4662 | .name = "NSACR", .type = ARM_CP_CONST, | |
4663 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4664 | .access = PL1_RW, .accessfn = nsacr_access, | |
4665 | .resetvalue = 0xc00 | |
4666 | }; | |
4667 | define_one_arm_cp_reg(cpu, &nsacr); | |
4668 | } else { | |
4669 | ARMCPRegInfo nsacr = { | |
4670 | .name = "NSACR", | |
4671 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4672 | .access = PL3_RW | PL1_R, | |
4673 | .resetvalue = 0, | |
4674 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) | |
4675 | }; | |
4676 | define_one_arm_cp_reg(cpu, &nsacr); | |
4677 | } | |
4678 | } else { | |
4679 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
4680 | ARMCPRegInfo nsacr = { | |
4681 | .name = "NSACR", .type = ARM_CP_CONST, | |
4682 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4683 | .access = PL1_R, | |
4684 | .resetvalue = 0xc00 | |
4685 | }; | |
4686 | define_one_arm_cp_reg(cpu, &nsacr); | |
4687 | } | |
4688 | } | |
4689 | ||
18032bec | 4690 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
6cb0b013 PC |
4691 | if (arm_feature(env, ARM_FEATURE_V6)) { |
4692 | /* PMSAv6 not implemented */ | |
4693 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
4694 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
4695 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
4696 | } else { | |
4697 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
4698 | } | |
18032bec | 4699 | } else { |
8e5d75c9 | 4700 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
4701 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
4702 | } | |
c326b979 PM |
4703 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
4704 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
4705 | } | |
6cc7a3ae PM |
4706 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
4707 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
4708 | } | |
4a501606 PM |
4709 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
4710 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
4711 | } | |
c4804214 PM |
4712 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
4713 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
4714 | } | |
4715 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
4716 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
4717 | } | |
4718 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
4719 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
4720 | } | |
18032bec PM |
4721 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
4722 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
4723 | } | |
34f90529 PM |
4724 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
4725 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
4726 | } | |
1047b9d7 PM |
4727 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
4728 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
4729 | } | |
4730 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
4731 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
4732 | } | |
7ac681cf PM |
4733 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
4734 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
4735 | } | |
7884849c PM |
4736 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
4737 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
4738 | * be read-only (ie write causes UNDEF exception). | |
4739 | */ | |
4740 | { | |
00a29f3d PM |
4741 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
4742 | /* Pre-v8 MIDR space. | |
4743 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
4744 | * of the TI925 behaviour where writes to another register can |
4745 | * cause the MIDR value to change. | |
97ce8d61 PC |
4746 | * |
4747 | * Unimplemented registers in the c15 0 0 0 space default to | |
4748 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
4749 | * and friends override accordingly. | |
7884849c PM |
4750 | */ |
4751 | { .name = "MIDR", | |
97ce8d61 | 4752 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 4753 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 4754 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 4755 | .readfn = midr_read, |
97ce8d61 PC |
4756 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
4757 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
4758 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
4759 | { .name = "DUMMY", | |
4760 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
4761 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4762 | { .name = "DUMMY", | |
4763 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
4764 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4765 | { .name = "DUMMY", | |
4766 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
4767 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4768 | { .name = "DUMMY", | |
4769 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
4770 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4771 | { .name = "DUMMY", | |
4772 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
4773 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4774 | REGINFO_SENTINEL | |
4775 | }; | |
00a29f3d | 4776 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
4777 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
4778 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
4779 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
4780 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
4781 | .readfn = midr_read }, | |
ac00c79f SF |
4782 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
4783 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
4784 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
4785 | .access = PL1_R, .resetvalue = cpu->midr }, | |
4786 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
4787 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
4788 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
4789 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
4790 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 4791 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
4792 | REGINFO_SENTINEL |
4793 | }; | |
4794 | ARMCPRegInfo id_cp_reginfo[] = { | |
4795 | /* These are common to v8 and pre-v8 */ | |
4796 | { .name = "CTR", | |
4797 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
4798 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
4799 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
4800 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
4801 | .access = PL0_R, .accessfn = ctr_el0_access, | |
4802 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
4803 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
4804 | { .name = "TCMTR", | |
4805 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
4806 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
4807 | REGINFO_SENTINEL |
4808 | }; | |
8085ce63 PC |
4809 | /* TLBTR is specific to VMSA */ |
4810 | ARMCPRegInfo id_tlbtr_reginfo = { | |
4811 | .name = "TLBTR", | |
4812 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
4813 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
4814 | }; | |
3281af81 PC |
4815 | /* MPUIR is specific to PMSA V6+ */ |
4816 | ARMCPRegInfo id_mpuir_reginfo = { | |
4817 | .name = "MPUIR", | |
4818 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
4819 | .access = PL1_R, .type = ARM_CP_CONST, | |
4820 | .resetvalue = cpu->pmsav7_dregion << 8 | |
4821 | }; | |
7884849c PM |
4822 | ARMCPRegInfo crn0_wi_reginfo = { |
4823 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
4824 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
4825 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
4826 | }; | |
4827 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
4828 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
4829 | ARMCPRegInfo *r; | |
4830 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
4831 | * whole space. Then update the specific ID registers to allow write |
4832 | * access, so that they ignore writes rather than causing them to | |
4833 | * UNDEF. | |
7884849c PM |
4834 | */ |
4835 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
4836 | for (r = id_pre_v8_midr_cp_reginfo; |
4837 | r->type != ARM_CP_SENTINEL; r++) { | |
4838 | r->access = PL1_RW; | |
4839 | } | |
7884849c PM |
4840 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
4841 | r->access = PL1_RW; | |
7884849c | 4842 | } |
8085ce63 | 4843 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 4844 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 4845 | } |
00a29f3d PM |
4846 | if (arm_feature(env, ARM_FEATURE_V8)) { |
4847 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
4848 | } else { | |
4849 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
4850 | } | |
a703eda1 | 4851 | define_arm_cp_regs(cpu, id_cp_reginfo); |
8085ce63 PC |
4852 | if (!arm_feature(env, ARM_FEATURE_MPU)) { |
4853 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); | |
3281af81 PC |
4854 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
4855 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 4856 | } |
7884849c PM |
4857 | } |
4858 | ||
97ce8d61 PC |
4859 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
4860 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
4861 | } | |
4862 | ||
2771db27 | 4863 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
4864 | ARMCPRegInfo auxcr_reginfo[] = { |
4865 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
4866 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
4867 | .access = PL1_RW, .type = ARM_CP_CONST, | |
4868 | .resetvalue = cpu->reset_auxcr }, | |
4869 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | |
4870 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
4871 | .access = PL2_RW, .type = ARM_CP_CONST, | |
4872 | .resetvalue = 0 }, | |
4873 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
4874 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
4875 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4876 | .resetvalue = 0 }, | |
4877 | REGINFO_SENTINEL | |
2771db27 | 4878 | }; |
834a6c69 | 4879 | define_arm_cp_regs(cpu, auxcr_reginfo); |
2771db27 PM |
4880 | } |
4881 | ||
d8ba780b | 4882 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
4883 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
4884 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
4885 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
4886 | | extract64(cpu->reset_cbar, 32, 12); | |
4887 | ARMCPRegInfo cbar_reginfo[] = { | |
4888 | { .name = "CBAR", | |
4889 | .type = ARM_CP_CONST, | |
4890 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
4891 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
4892 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4893 | .type = ARM_CP_CONST, | |
4894 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
4895 | .access = PL1_R, .resetvalue = cbar32 }, | |
4896 | REGINFO_SENTINEL | |
4897 | }; | |
4898 | /* We don't implement a r/w 64 bit CBAR currently */ | |
4899 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
4900 | define_arm_cp_regs(cpu, cbar_reginfo); | |
4901 | } else { | |
4902 | ARMCPRegInfo cbar = { | |
4903 | .name = "CBAR", | |
4904 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
4905 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
4906 | .fieldoffset = offsetof(CPUARMState, | |
4907 | cp15.c15_config_base_address) | |
4908 | }; | |
4909 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
4910 | cbar.access = PL1_R; | |
4911 | cbar.fieldoffset = 0; | |
4912 | cbar.type = ARM_CP_CONST; | |
4913 | } | |
4914 | define_one_arm_cp_reg(cpu, &cbar); | |
4915 | } | |
d8ba780b PC |
4916 | } |
4917 | ||
2771db27 PM |
4918 | /* Generic registers whose values depend on the implementation */ |
4919 | { | |
4920 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 4921 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
4922 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
4923 | .access = PL1_RW, | |
4924 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
4925 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
4926 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
4927 | .raw_writefn = raw_write, | |
2771db27 PM |
4928 | }; |
4929 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
4930 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
4931 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
4932 | * an MMU enable to execute from cache. Imitate this behaviour. | |
4933 | */ | |
4934 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
4935 | } | |
4936 | define_one_arm_cp_reg(cpu, &sctlr); | |
4937 | } | |
2ceb98c0 PM |
4938 | } |
4939 | ||
778c3a06 | 4940 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 4941 | { |
9262685b | 4942 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
4943 | } |
4944 | ||
4945 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
4946 | { | |
22169d41 | 4947 | CPUState *cs = CPU(cpu); |
14969266 AF |
4948 | CPUARMState *env = &cpu->env; |
4949 | ||
6a669427 PM |
4950 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
4951 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
4952 | aarch64_fpu_gdb_set_reg, | |
4953 | 34, "aarch64-fpu.xml", 0); | |
4954 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 4955 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4956 | 51, "arm-neon.xml", 0); |
4957 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 4958 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4959 | 35, "arm-vfp3.xml", 0); |
4960 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 4961 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
4962 | 19, "arm-vfp.xml", 0); |
4963 | } | |
40f137e1 PB |
4964 | } |
4965 | ||
777dc784 PM |
4966 | /* Sort alphabetically by type name, except for "any". */ |
4967 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 4968 | { |
777dc784 PM |
4969 | ObjectClass *class_a = (ObjectClass *)a; |
4970 | ObjectClass *class_b = (ObjectClass *)b; | |
4971 | const char *name_a, *name_b; | |
5adb4839 | 4972 | |
777dc784 PM |
4973 | name_a = object_class_get_name(class_a); |
4974 | name_b = object_class_get_name(class_b); | |
51492fd1 | 4975 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 4976 | return 1; |
51492fd1 | 4977 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
4978 | return -1; |
4979 | } else { | |
4980 | return strcmp(name_a, name_b); | |
5adb4839 PB |
4981 | } |
4982 | } | |
4983 | ||
777dc784 | 4984 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 4985 | { |
777dc784 | 4986 | ObjectClass *oc = data; |
92a31361 | 4987 | CPUListState *s = user_data; |
51492fd1 AF |
4988 | const char *typename; |
4989 | char *name; | |
3371d272 | 4990 | |
51492fd1 AF |
4991 | typename = object_class_get_name(oc); |
4992 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 4993 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
4994 | name); |
4995 | g_free(name); | |
777dc784 PM |
4996 | } |
4997 | ||
4998 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
4999 | { | |
92a31361 | 5000 | CPUListState s = { |
777dc784 PM |
5001 | .file = f, |
5002 | .cpu_fprintf = cpu_fprintf, | |
5003 | }; | |
5004 | GSList *list; | |
5005 | ||
5006 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5007 | list = g_slist_sort(list, arm_cpu_list_compare); | |
5008 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
5009 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
5010 | g_slist_free(list); | |
a96c0514 PM |
5011 | #ifdef CONFIG_KVM |
5012 | /* The 'host' CPU type is dynamically registered only if KVM is | |
5013 | * enabled, so we have to special-case it here: | |
5014 | */ | |
5015 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
5016 | #endif | |
40f137e1 PB |
5017 | } |
5018 | ||
78027bb6 CR |
5019 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
5020 | { | |
5021 | ObjectClass *oc = data; | |
5022 | CpuDefinitionInfoList **cpu_list = user_data; | |
5023 | CpuDefinitionInfoList *entry; | |
5024 | CpuDefinitionInfo *info; | |
5025 | const char *typename; | |
5026 | ||
5027 | typename = object_class_get_name(oc); | |
5028 | info = g_malloc0(sizeof(*info)); | |
5029 | info->name = g_strndup(typename, | |
5030 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
5031 | ||
5032 | entry = g_malloc0(sizeof(*entry)); | |
5033 | entry->value = info; | |
5034 | entry->next = *cpu_list; | |
5035 | *cpu_list = entry; | |
5036 | } | |
5037 | ||
5038 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
5039 | { | |
5040 | CpuDefinitionInfoList *cpu_list = NULL; | |
5041 | GSList *list; | |
5042 | ||
5043 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5044 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
5045 | g_slist_free(list); | |
5046 | ||
5047 | return cpu_list; | |
5048 | } | |
5049 | ||
6e6efd61 | 5050 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 5051 | void *opaque, int state, int secstate, |
f5a0a5a5 | 5052 | int crm, int opc1, int opc2) |
6e6efd61 PM |
5053 | { |
5054 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
5055 | * add a single reginfo struct to the hash table. | |
5056 | */ | |
5057 | uint32_t *key = g_new(uint32_t, 1); | |
5058 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
5059 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
5060 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
5061 | ||
5062 | /* Reset the secure state to the specific incoming state. This is | |
5063 | * necessary as the register may have been defined with both states. | |
5064 | */ | |
5065 | r2->secure = secstate; | |
5066 | ||
5067 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5068 | /* Register is banked (using both entries in array). | |
5069 | * Overwriting fieldoffset as the array is only used to define | |
5070 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 5071 | */ |
3f3c82a5 FA |
5072 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
5073 | } | |
5074 | ||
5075 | if (state == ARM_CP_STATE_AA32) { | |
5076 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5077 | /* If the register is banked then we don't need to migrate or | |
5078 | * reset the 32-bit instance in certain cases: | |
5079 | * | |
5080 | * 1) If the register has both 32-bit and 64-bit instances then we | |
5081 | * can count on the 64-bit instance taking care of the | |
5082 | * non-secure bank. | |
5083 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
5084 | * taking care of the secure bank. This requires that separate | |
5085 | * 32 and 64-bit definitions are provided. | |
5086 | */ | |
5087 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
5088 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 5089 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
5090 | } |
5091 | } else if ((secstate != r->secure) && !ns) { | |
5092 | /* The register is not banked so we only want to allow migration of | |
5093 | * the non-secure instance. | |
5094 | */ | |
7a0e58fa | 5095 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 5096 | } |
3f3c82a5 FA |
5097 | |
5098 | if (r->state == ARM_CP_STATE_BOTH) { | |
5099 | /* We assume it is a cp15 register if the .cp field is left unset. | |
5100 | */ | |
5101 | if (r2->cp == 0) { | |
5102 | r2->cp = 15; | |
5103 | } | |
5104 | ||
f5a0a5a5 | 5105 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
5106 | if (r2->fieldoffset) { |
5107 | r2->fieldoffset += sizeof(uint32_t); | |
5108 | } | |
f5a0a5a5 | 5109 | #endif |
3f3c82a5 | 5110 | } |
f5a0a5a5 PM |
5111 | } |
5112 | if (state == ARM_CP_STATE_AA64) { | |
5113 | /* To allow abbreviation of ARMCPRegInfo | |
5114 | * definitions, we treat cp == 0 as equivalent to | |
5115 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
5116 | * STATE_BOTH definitions are also always "standard |
5117 | * sysreg" in their AArch64 view (the .cp value may | |
5118 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 5119 | */ |
58a1d8ce | 5120 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
5121 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
5122 | } | |
5123 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
5124 | r2->opc0, opc1, opc2); | |
5125 | } else { | |
51a79b03 | 5126 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 5127 | } |
6e6efd61 PM |
5128 | if (opaque) { |
5129 | r2->opaque = opaque; | |
5130 | } | |
67ed771d PM |
5131 | /* reginfo passed to helpers is correct for the actual access, |
5132 | * and is never ARM_CP_STATE_BOTH: | |
5133 | */ | |
5134 | r2->state = state; | |
6e6efd61 PM |
5135 | /* Make sure reginfo passed to helpers for wildcarded regs |
5136 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
5137 | */ | |
5138 | r2->crm = crm; | |
5139 | r2->opc1 = opc1; | |
5140 | r2->opc2 = opc2; | |
5141 | /* By convention, for wildcarded registers only the first | |
5142 | * entry is used for migration; the others are marked as | |
7a0e58fa | 5143 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 5144 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 5145 | * never migratable and not even raw-accessible. |
6e6efd61 | 5146 | */ |
7a0e58fa PM |
5147 | if ((r->type & ARM_CP_SPECIAL)) { |
5148 | r2->type |= ARM_CP_NO_RAW; | |
5149 | } | |
5150 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
5151 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
5152 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 5153 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
5154 | } |
5155 | ||
375421cc PM |
5156 | /* Check that raw accesses are either forbidden or handled. Note that |
5157 | * we can't assert this earlier because the setup of fieldoffset for | |
5158 | * banked registers has to be done first. | |
5159 | */ | |
5160 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
5161 | assert(!raw_accessors_invalid(r2)); | |
5162 | } | |
5163 | ||
6e6efd61 PM |
5164 | /* Overriding of an existing definition must be explicitly |
5165 | * requested. | |
5166 | */ | |
5167 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
5168 | ARMCPRegInfo *oldreg; | |
5169 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
5170 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
5171 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
5172 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
5173 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
5174 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
5175 | oldreg->name, r2->name); | |
5176 | g_assert_not_reached(); | |
5177 | } | |
5178 | } | |
5179 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
5180 | } | |
5181 | ||
5182 | ||
4b6a83fb PM |
5183 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
5184 | const ARMCPRegInfo *r, void *opaque) | |
5185 | { | |
5186 | /* Define implementations of coprocessor registers. | |
5187 | * We store these in a hashtable because typically | |
5188 | * there are less than 150 registers in a space which | |
5189 | * is 16*16*16*8*8 = 262144 in size. | |
5190 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
5191 | * If a register is defined twice then the second definition is | |
5192 | * used, so this can be used to define some generic registers and | |
5193 | * then override them with implementation specific variations. | |
5194 | * At least one of the original and the second definition should | |
5195 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
5196 | * against accidental use. | |
f5a0a5a5 PM |
5197 | * |
5198 | * The state field defines whether the register is to be | |
5199 | * visible in the AArch32 or AArch64 execution state. If the | |
5200 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
5201 | * reginfo structure for the AArch32 view, which sees the lower | |
5202 | * 32 bits of the 64 bit register. | |
5203 | * | |
5204 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
5205 | * be wildcarded. AArch64 registers are always considered to be 64 | |
5206 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
5207 | * the register, if any. | |
4b6a83fb | 5208 | */ |
f5a0a5a5 | 5209 | int crm, opc1, opc2, state; |
4b6a83fb PM |
5210 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
5211 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
5212 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
5213 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
5214 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
5215 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
5216 | /* 64 bit registers have only CRm and Opc1 fields */ | |
5217 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
5218 | /* op0 only exists in the AArch64 encodings */ |
5219 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
5220 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
5221 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
5222 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
5223 | * encodes a minimum access level for the register. We roll this | |
5224 | * runtime check into our general permission check code, so check | |
5225 | * here that the reginfo's specified permissions are strict enough | |
5226 | * to encompass the generic architectural permission check. | |
5227 | */ | |
5228 | if (r->state != ARM_CP_STATE_AA32) { | |
5229 | int mask = 0; | |
5230 | switch (r->opc1) { | |
5231 | case 0: case 1: case 2: | |
5232 | /* min_EL EL1 */ | |
5233 | mask = PL1_RW; | |
5234 | break; | |
5235 | case 3: | |
5236 | /* min_EL EL0 */ | |
5237 | mask = PL0_RW; | |
5238 | break; | |
5239 | case 4: | |
5240 | /* min_EL EL2 */ | |
5241 | mask = PL2_RW; | |
5242 | break; | |
5243 | case 5: | |
5244 | /* unallocated encoding, so not possible */ | |
5245 | assert(false); | |
5246 | break; | |
5247 | case 6: | |
5248 | /* min_EL EL3 */ | |
5249 | mask = PL3_RW; | |
5250 | break; | |
5251 | case 7: | |
5252 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
5253 | mask = PL1_RW; | |
5254 | break; | |
5255 | default: | |
5256 | /* broken reginfo with out-of-range opc1 */ | |
5257 | assert(false); | |
5258 | break; | |
5259 | } | |
5260 | /* assert our permissions are not too lax (stricter is fine) */ | |
5261 | assert((r->access & ~mask) == 0); | |
5262 | } | |
5263 | ||
4b6a83fb PM |
5264 | /* Check that the register definition has enough info to handle |
5265 | * reads and writes if they are permitted. | |
5266 | */ | |
5267 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
5268 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
5269 | assert((r->fieldoffset || |
5270 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5271 | r->readfn); | |
4b6a83fb PM |
5272 | } |
5273 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
5274 | assert((r->fieldoffset || |
5275 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5276 | r->writefn); | |
4b6a83fb PM |
5277 | } |
5278 | } | |
5279 | /* Bad type field probably means missing sentinel at end of reg list */ | |
5280 | assert(cptype_valid(r->type)); | |
5281 | for (crm = crmmin; crm <= crmmax; crm++) { | |
5282 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
5283 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
5284 | for (state = ARM_CP_STATE_AA32; |
5285 | state <= ARM_CP_STATE_AA64; state++) { | |
5286 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
5287 | continue; | |
5288 | } | |
3f3c82a5 FA |
5289 | if (state == ARM_CP_STATE_AA32) { |
5290 | /* Under AArch32 CP registers can be common | |
5291 | * (same for secure and non-secure world) or banked. | |
5292 | */ | |
5293 | switch (r->secure) { | |
5294 | case ARM_CP_SECSTATE_S: | |
5295 | case ARM_CP_SECSTATE_NS: | |
5296 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5297 | r->secure, crm, opc1, opc2); | |
5298 | break; | |
5299 | default: | |
5300 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5301 | ARM_CP_SECSTATE_S, | |
5302 | crm, opc1, opc2); | |
5303 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5304 | ARM_CP_SECSTATE_NS, | |
5305 | crm, opc1, opc2); | |
5306 | break; | |
5307 | } | |
5308 | } else { | |
5309 | /* AArch64 registers get mapped to non-secure instance | |
5310 | * of AArch32 */ | |
5311 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5312 | ARM_CP_SECSTATE_NS, | |
5313 | crm, opc1, opc2); | |
5314 | } | |
f5a0a5a5 | 5315 | } |
4b6a83fb PM |
5316 | } |
5317 | } | |
5318 | } | |
5319 | } | |
5320 | ||
5321 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
5322 | const ARMCPRegInfo *regs, void *opaque) | |
5323 | { | |
5324 | /* Define a whole list of registers */ | |
5325 | const ARMCPRegInfo *r; | |
5326 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
5327 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
5328 | } | |
5329 | } | |
5330 | ||
60322b39 | 5331 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 5332 | { |
60322b39 | 5333 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
5334 | } |
5335 | ||
c4241c7d PM |
5336 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
5337 | uint64_t value) | |
4b6a83fb PM |
5338 | { |
5339 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
5340 | } |
5341 | ||
c4241c7d | 5342 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
5343 | { |
5344 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
5345 | return 0; |
5346 | } | |
5347 | ||
f5a0a5a5 PM |
5348 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
5349 | { | |
5350 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
5351 | } | |
5352 | ||
af393ffc | 5353 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
37064a8b PM |
5354 | { |
5355 | /* Return true if it is not valid for us to switch to | |
5356 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
5357 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
5358 | */ | |
af393ffc PM |
5359 | |
5360 | /* Changes to or from Hyp via MSR and CPS are illegal. */ | |
5361 | if (write_type == CPSRWriteByInstr && | |
5362 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || | |
5363 | mode == ARM_CPU_MODE_HYP)) { | |
5364 | return 1; | |
5365 | } | |
5366 | ||
37064a8b PM |
5367 | switch (mode) { |
5368 | case ARM_CPU_MODE_USR: | |
10eacda7 | 5369 | return 0; |
37064a8b PM |
5370 | case ARM_CPU_MODE_SYS: |
5371 | case ARM_CPU_MODE_SVC: | |
5372 | case ARM_CPU_MODE_ABT: | |
5373 | case ARM_CPU_MODE_UND: | |
5374 | case ARM_CPU_MODE_IRQ: | |
5375 | case ARM_CPU_MODE_FIQ: | |
52ff951b PM |
5376 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
5377 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) | |
5378 | */ | |
10eacda7 PM |
5379 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
5380 | * and CPS are treated as illegal mode changes. | |
5381 | */ | |
5382 | if (write_type == CPSRWriteByInstr && | |
5383 | (env->cp15.hcr_el2 & HCR_TGE) && | |
5384 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && | |
5385 | !arm_is_secure_below_el3(env)) { | |
5386 | return 1; | |
5387 | } | |
37064a8b | 5388 | return 0; |
e6c8fc07 PM |
5389 | case ARM_CPU_MODE_HYP: |
5390 | return !arm_feature(env, ARM_FEATURE_EL2) | |
5391 | || arm_current_el(env) < 2 || arm_is_secure(env); | |
027fc527 | 5392 | case ARM_CPU_MODE_MON: |
58ae2d1f | 5393 | return arm_current_el(env) < 3; |
37064a8b PM |
5394 | default: |
5395 | return 1; | |
5396 | } | |
5397 | } | |
5398 | ||
2f4a40e5 AZ |
5399 | uint32_t cpsr_read(CPUARMState *env) |
5400 | { | |
5401 | int ZF; | |
6fbe23d5 PB |
5402 | ZF = (env->ZF == 0); |
5403 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
5404 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
5405 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
5406 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 5407 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
5408 | } |
5409 | ||
50866ba5 PM |
5410 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
5411 | CPSRWriteType write_type) | |
2f4a40e5 | 5412 | { |
6e8801f9 FA |
5413 | uint32_t changed_daif; |
5414 | ||
2f4a40e5 | 5415 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
5416 | env->ZF = (~val) & CPSR_Z; |
5417 | env->NF = val; | |
2f4a40e5 AZ |
5418 | env->CF = (val >> 29) & 1; |
5419 | env->VF = (val << 3) & 0x80000000; | |
5420 | } | |
5421 | if (mask & CPSR_Q) | |
5422 | env->QF = ((val & CPSR_Q) != 0); | |
5423 | if (mask & CPSR_T) | |
5424 | env->thumb = ((val & CPSR_T) != 0); | |
5425 | if (mask & CPSR_IT_0_1) { | |
5426 | env->condexec_bits &= ~3; | |
5427 | env->condexec_bits |= (val >> 25) & 3; | |
5428 | } | |
5429 | if (mask & CPSR_IT_2_7) { | |
5430 | env->condexec_bits &= 3; | |
5431 | env->condexec_bits |= (val >> 8) & 0xfc; | |
5432 | } | |
5433 | if (mask & CPSR_GE) { | |
5434 | env->GE = (val >> 16) & 0xf; | |
5435 | } | |
5436 | ||
6e8801f9 FA |
5437 | /* In a V7 implementation that includes the security extensions but does |
5438 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
5439 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
5440 | * bits respectively. | |
5441 | * | |
5442 | * In a V8 implementation, it is permitted for privileged software to | |
5443 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
5444 | */ | |
f8c88bbc | 5445 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
6e8801f9 FA |
5446 | arm_feature(env, ARM_FEATURE_EL3) && |
5447 | !arm_feature(env, ARM_FEATURE_EL2) && | |
5448 | !arm_is_secure(env)) { | |
5449 | ||
5450 | changed_daif = (env->daif ^ val) & mask; | |
5451 | ||
5452 | if (changed_daif & CPSR_A) { | |
5453 | /* Check to see if we are allowed to change the masking of async | |
5454 | * abort exceptions from a non-secure state. | |
5455 | */ | |
5456 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
5457 | qemu_log_mask(LOG_GUEST_ERROR, | |
5458 | "Ignoring attempt to switch CPSR_A flag from " | |
5459 | "non-secure world with SCR.AW bit clear\n"); | |
5460 | mask &= ~CPSR_A; | |
5461 | } | |
5462 | } | |
5463 | ||
5464 | if (changed_daif & CPSR_F) { | |
5465 | /* Check to see if we are allowed to change the masking of FIQ | |
5466 | * exceptions from a non-secure state. | |
5467 | */ | |
5468 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
5469 | qemu_log_mask(LOG_GUEST_ERROR, | |
5470 | "Ignoring attempt to switch CPSR_F flag from " | |
5471 | "non-secure world with SCR.FW bit clear\n"); | |
5472 | mask &= ~CPSR_F; | |
5473 | } | |
5474 | ||
5475 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
5476 | * If this bit is set software is not allowed to mask | |
5477 | * FIQs, but is allowed to set CPSR_F to 0. | |
5478 | */ | |
5479 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
5480 | (val & CPSR_F)) { | |
5481 | qemu_log_mask(LOG_GUEST_ERROR, | |
5482 | "Ignoring attempt to enable CPSR_F flag " | |
5483 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
5484 | mask &= ~CPSR_F; | |
5485 | } | |
5486 | } | |
5487 | } | |
5488 | ||
4cc35614 PM |
5489 | env->daif &= ~(CPSR_AIF & mask); |
5490 | env->daif |= val & CPSR_AIF & mask; | |
5491 | ||
f8c88bbc PM |
5492 | if (write_type != CPSRWriteRaw && |
5493 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { | |
8c4f0eb9 PM |
5494 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
5495 | /* Note that we can only get here in USR mode if this is a | |
5496 | * gdb stub write; for this case we follow the architectural | |
5497 | * behaviour for guest writes in USR mode of ignoring an attempt | |
5498 | * to switch mode. (Those are caught by translate.c for writes | |
5499 | * triggered by guest instructions.) | |
5500 | */ | |
5501 | mask &= ~CPSR_M; | |
5502 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { | |
81907a58 PM |
5503 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
5504 | * v7, and has defined behaviour in v8: | |
5505 | * + leave CPSR.M untouched | |
5506 | * + allow changes to the other CPSR fields | |
5507 | * + set PSTATE.IL | |
5508 | * For user changes via the GDB stub, we don't set PSTATE.IL, | |
5509 | * as this would be unnecessarily harsh for a user error. | |
37064a8b PM |
5510 | */ |
5511 | mask &= ~CPSR_M; | |
81907a58 PM |
5512 | if (write_type != CPSRWriteByGDBStub && |
5513 | arm_feature(env, ARM_FEATURE_V8)) { | |
5514 | mask |= CPSR_IL; | |
5515 | val |= CPSR_IL; | |
5516 | } | |
37064a8b PM |
5517 | } else { |
5518 | switch_mode(env, val & CPSR_M); | |
5519 | } | |
2f4a40e5 AZ |
5520 | } |
5521 | mask &= ~CACHED_CPSR_BITS; | |
5522 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
5523 | } | |
5524 | ||
b26eefb6 PB |
5525 | /* Sign/zero extend */ |
5526 | uint32_t HELPER(sxtb16)(uint32_t x) | |
5527 | { | |
5528 | uint32_t res; | |
5529 | res = (uint16_t)(int8_t)x; | |
5530 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
5531 | return res; | |
5532 | } | |
5533 | ||
5534 | uint32_t HELPER(uxtb16)(uint32_t x) | |
5535 | { | |
5536 | uint32_t res; | |
5537 | res = (uint16_t)(uint8_t)x; | |
5538 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
5539 | return res; | |
5540 | } | |
5541 | ||
f51bbbfe PB |
5542 | uint32_t HELPER(clz)(uint32_t x) |
5543 | { | |
7bbcb0af | 5544 | return clz32(x); |
f51bbbfe PB |
5545 | } |
5546 | ||
3670669c PB |
5547 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
5548 | { | |
5549 | if (den == 0) | |
5550 | return 0; | |
686eeb93 AJ |
5551 | if (num == INT_MIN && den == -1) |
5552 | return INT_MIN; | |
3670669c PB |
5553 | return num / den; |
5554 | } | |
5555 | ||
5556 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
5557 | { | |
5558 | if (den == 0) | |
5559 | return 0; | |
5560 | return num / den; | |
5561 | } | |
5562 | ||
5563 | uint32_t HELPER(rbit)(uint32_t x) | |
5564 | { | |
42fedbca | 5565 | return revbit32(x); |
3670669c PB |
5566 | } |
5567 | ||
5fafdf24 | 5568 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 5569 | |
9ee6e8bb | 5570 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 5571 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 5572 | { |
a47dddd7 AF |
5573 | ARMCPU *cpu = arm_env_get_cpu(env); |
5574 | ||
5575 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
5576 | } |
5577 | ||
0ecb72a5 | 5578 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 5579 | { |
a47dddd7 AF |
5580 | ARMCPU *cpu = arm_env_get_cpu(env); |
5581 | ||
5582 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
5583 | return 0; |
5584 | } | |
5585 | ||
0ecb72a5 | 5586 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 5587 | { |
a47dddd7 AF |
5588 | ARMCPU *cpu = arm_env_get_cpu(env); |
5589 | ||
5590 | if (mode != ARM_CPU_MODE_USR) { | |
5591 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
5592 | } | |
b5ff1b31 FB |
5593 | } |
5594 | ||
012a906b GB |
5595 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5596 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
5597 | { |
5598 | return 1; | |
5599 | } | |
5600 | ||
ce02049d GB |
5601 | void aarch64_sync_64_to_32(CPUARMState *env) |
5602 | { | |
5603 | g_assert_not_reached(); | |
5604 | } | |
5605 | ||
b5ff1b31 FB |
5606 | #else |
5607 | ||
0ecb72a5 | 5608 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
5609 | { |
5610 | int old_mode; | |
5611 | int i; | |
5612 | ||
5613 | old_mode = env->uncached_cpsr & CPSR_M; | |
5614 | if (mode == old_mode) | |
5615 | return; | |
5616 | ||
5617 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
5618 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5619 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5620 | } else if (mode == ARM_CPU_MODE_FIQ) { |
5621 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5622 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5623 | } |
5624 | ||
f5206413 | 5625 | i = bank_number(old_mode); |
b5ff1b31 FB |
5626 | env->banked_r13[i] = env->regs[13]; |
5627 | env->banked_r14[i] = env->regs[14]; | |
5628 | env->banked_spsr[i] = env->spsr; | |
5629 | ||
f5206413 | 5630 | i = bank_number(mode); |
b5ff1b31 FB |
5631 | env->regs[13] = env->banked_r13[i]; |
5632 | env->regs[14] = env->banked_r14[i]; | |
5633 | env->spsr = env->banked_spsr[i]; | |
5634 | } | |
5635 | ||
0eeb17d6 GB |
5636 | /* Physical Interrupt Target EL Lookup Table |
5637 | * | |
5638 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
5639 | * | |
5640 | * The below multi-dimensional table is used for looking up the target | |
5641 | * exception level given numerous condition criteria. Specifically, the | |
5642 | * target EL is based on SCR and HCR routing controls as well as the | |
5643 | * currently executing EL and secure state. | |
5644 | * | |
5645 | * Dimensions: | |
5646 | * target_el_table[2][2][2][2][2][4] | |
5647 | * | | | | | +--- Current EL | |
5648 | * | | | | +------ Non-secure(0)/Secure(1) | |
5649 | * | | | +--------- HCR mask override | |
5650 | * | | +------------ SCR exec state control | |
5651 | * | +--------------- SCR mask override | |
5652 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
5653 | * | |
5654 | * The table values are as such: | |
5655 | * 0-3 = EL0-EL3 | |
5656 | * -1 = Cannot occur | |
5657 | * | |
5658 | * The ARM ARM target EL table includes entries indicating that an "exception | |
5659 | * is not taken". The two cases where this is applicable are: | |
5660 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
5661 | * routed to EL3. | |
5662 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
5663 | * routed to EL2. | |
5664 | * In these two cases, the below table contain a target of EL1. This value is | |
5665 | * returned as it is expected that the consumer of the table data will check | |
5666 | * for "target EL >= current EL" to ensure the exception is not taken. | |
5667 | * | |
5668 | * SCR HCR | |
5669 | * 64 EA AMO From | |
5670 | * BIT IRQ IMO Non-secure Secure | |
5671 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
5672 | */ | |
82c39f6a | 5673 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
5674 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
5675 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
5676 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
5677 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
5678 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5679 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
5680 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5681 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
5682 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
5683 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
5684 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
5685 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
5686 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
5687 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
5688 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
5689 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
5690 | }; | |
5691 | ||
5692 | /* | |
5693 | * Determine the target EL for physical exceptions | |
5694 | */ | |
012a906b GB |
5695 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5696 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
5697 | { |
5698 | CPUARMState *env = cs->env_ptr; | |
2cde031f | 5699 | int rw; |
0eeb17d6 GB |
5700 | int scr; |
5701 | int hcr; | |
5702 | int target_el; | |
2cde031f SS |
5703 | /* Is the highest EL AArch64? */ |
5704 | int is64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
5705 | ||
5706 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
5707 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
5708 | } else { | |
5709 | /* Either EL2 is the highest EL (and so the EL2 register width | |
5710 | * is given by is64); or there is no EL2 or EL3, in which case | |
5711 | * the value of 'rw' does not affect the table lookup anyway. | |
5712 | */ | |
5713 | rw = is64; | |
5714 | } | |
0eeb17d6 GB |
5715 | |
5716 | switch (excp_idx) { | |
5717 | case EXCP_IRQ: | |
5718 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
5719 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
5720 | break; | |
5721 | case EXCP_FIQ: | |
5722 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
5723 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
5724 | break; | |
5725 | default: | |
5726 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
5727 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
5728 | break; | |
5729 | }; | |
5730 | ||
5731 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
5732 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
5733 | ||
5734 | /* Perform a table-lookup for the target EL given the current state */ | |
5735 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
5736 | ||
5737 | assert(target_el > 0); | |
5738 | ||
5739 | return target_el; | |
5740 | } | |
5741 | ||
9ee6e8bb PB |
5742 | static void v7m_push(CPUARMState *env, uint32_t val) |
5743 | { | |
70d74660 AF |
5744 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
5745 | ||
9ee6e8bb | 5746 | env->regs[13] -= 4; |
ab1da857 | 5747 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
5748 | } |
5749 | ||
5750 | static uint32_t v7m_pop(CPUARMState *env) | |
5751 | { | |
70d74660 | 5752 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 5753 | uint32_t val; |
70d74660 | 5754 | |
fdfba1a2 | 5755 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
5756 | env->regs[13] += 4; |
5757 | return val; | |
5758 | } | |
5759 | ||
5760 | /* Switch to V7M main or process stack pointer. */ | |
5761 | static void switch_v7m_sp(CPUARMState *env, int process) | |
5762 | { | |
5763 | uint32_t tmp; | |
5764 | if (env->v7m.current_sp != process) { | |
5765 | tmp = env->v7m.other_sp; | |
5766 | env->v7m.other_sp = env->regs[13]; | |
5767 | env->regs[13] = tmp; | |
5768 | env->v7m.current_sp = process; | |
5769 | } | |
5770 | } | |
5771 | ||
5772 | static void do_v7m_exception_exit(CPUARMState *env) | |
5773 | { | |
5774 | uint32_t type; | |
5775 | uint32_t xpsr; | |
5776 | ||
5777 | type = env->regs[15]; | |
5778 | if (env->v7m.exception != 0) | |
983fe826 | 5779 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
5780 | |
5781 | /* Switch to the target stack. */ | |
5782 | switch_v7m_sp(env, (type & 4) != 0); | |
5783 | /* Pop registers. */ | |
5784 | env->regs[0] = v7m_pop(env); | |
5785 | env->regs[1] = v7m_pop(env); | |
5786 | env->regs[2] = v7m_pop(env); | |
5787 | env->regs[3] = v7m_pop(env); | |
5788 | env->regs[12] = v7m_pop(env); | |
5789 | env->regs[14] = v7m_pop(env); | |
5790 | env->regs[15] = v7m_pop(env); | |
fcf83ab1 PM |
5791 | if (env->regs[15] & 1) { |
5792 | qemu_log_mask(LOG_GUEST_ERROR, | |
5793 | "M profile return from interrupt with misaligned " | |
5794 | "PC is UNPREDICTABLE\n"); | |
5795 | /* Actual hardware seems to ignore the lsbit, and there are several | |
5796 | * RTOSes out there which incorrectly assume the r15 in the stack | |
5797 | * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. | |
5798 | */ | |
5799 | env->regs[15] &= ~1U; | |
5800 | } | |
9ee6e8bb PB |
5801 | xpsr = v7m_pop(env); |
5802 | xpsr_write(env, xpsr, 0xfffffdff); | |
5803 | /* Undo stack alignment. */ | |
5804 | if (xpsr & 0x200) | |
5805 | env->regs[13] |= 4; | |
5806 | /* ??? The exception return type specifies Thread/Handler mode. However | |
5807 | this is also implied by the xPSR value. Not sure what to do | |
5808 | if there is a mismatch. */ | |
5809 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
5810 | pointer. */ | |
5811 | } | |
5812 | ||
e6f010cc | 5813 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 5814 | { |
e6f010cc AF |
5815 | ARMCPU *cpu = ARM_CPU(cs); |
5816 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
5817 | uint32_t xpsr = xpsr_read(env); |
5818 | uint32_t lr; | |
5819 | uint32_t addr; | |
5820 | ||
27103424 | 5821 | arm_log_exception(cs->exception_index); |
3f1beaca | 5822 | |
9ee6e8bb PB |
5823 | lr = 0xfffffff1; |
5824 | if (env->v7m.current_sp) | |
5825 | lr |= 4; | |
5826 | if (env->v7m.exception == 0) | |
5827 | lr |= 8; | |
5828 | ||
5829 | /* For exceptions we just mark as pending on the NVIC, and let that | |
5830 | handle it. */ | |
5831 | /* TODO: Need to escalate if the current priority is higher than the | |
5832 | one we're raising. */ | |
27103424 | 5833 | switch (cs->exception_index) { |
9ee6e8bb | 5834 | case EXCP_UDEF: |
983fe826 | 5835 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
5836 | return; |
5837 | case EXCP_SWI: | |
314e2296 | 5838 | /* The PC already points to the next instruction. */ |
983fe826 | 5839 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
5840 | return; |
5841 | case EXCP_PREFETCH_ABORT: | |
5842 | case EXCP_DATA_ABORT: | |
abf1172f PM |
5843 | /* TODO: if we implemented the MPU registers, this is where we |
5844 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
5845 | */ | |
983fe826 | 5846 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
5847 | return; |
5848 | case EXCP_BKPT: | |
cfe67cef | 5849 | if (semihosting_enabled()) { |
2ad207d4 | 5850 | int nr; |
f9fd40eb | 5851 | nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; |
2ad207d4 PB |
5852 | if (nr == 0xab) { |
5853 | env->regs[15] += 2; | |
205ace55 CC |
5854 | qemu_log_mask(CPU_LOG_INT, |
5855 | "...handling as semihosting call 0x%x\n", | |
5856 | env->regs[0]); | |
2ad207d4 PB |
5857 | env->regs[0] = do_arm_semihosting(env); |
5858 | return; | |
5859 | } | |
5860 | } | |
983fe826 | 5861 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
5862 | return; |
5863 | case EXCP_IRQ: | |
983fe826 | 5864 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
5865 | break; |
5866 | case EXCP_EXCEPTION_EXIT: | |
5867 | do_v7m_exception_exit(env); | |
5868 | return; | |
5869 | default: | |
a47dddd7 | 5870 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
5871 | return; /* Never happens. Keep compiler happy. */ |
5872 | } | |
5873 | ||
5874 | /* Align stack pointer. */ | |
5875 | /* ??? Should only do this if Configuration Control Register | |
5876 | STACKALIGN bit is set. */ | |
5877 | if (env->regs[13] & 4) { | |
ab19b0ec | 5878 | env->regs[13] -= 4; |
9ee6e8bb PB |
5879 | xpsr |= 0x200; |
5880 | } | |
6c95676b | 5881 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
5882 | v7m_push(env, xpsr); |
5883 | v7m_push(env, env->regs[15]); | |
5884 | v7m_push(env, env->regs[14]); | |
5885 | v7m_push(env, env->regs[12]); | |
5886 | v7m_push(env, env->regs[3]); | |
5887 | v7m_push(env, env->regs[2]); | |
5888 | v7m_push(env, env->regs[1]); | |
5889 | v7m_push(env, env->regs[0]); | |
5890 | switch_v7m_sp(env, 0); | |
c98d174c PM |
5891 | /* Clear IT bits */ |
5892 | env->condexec_bits = 0; | |
9ee6e8bb | 5893 | env->regs[14] = lr; |
fdfba1a2 | 5894 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
5895 | env->regs[15] = addr & 0xfffffffe; |
5896 | env->thumb = addr & 1; | |
5897 | } | |
5898 | ||
ce02049d GB |
5899 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
5900 | * register set. This is necessary when switching between AArch32 and AArch64 | |
5901 | * execution state. | |
5902 | */ | |
5903 | void aarch64_sync_32_to_64(CPUARMState *env) | |
5904 | { | |
5905 | int i; | |
5906 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
5907 | ||
5908 | /* We can blanket copy R[0:7] to X[0:7] */ | |
5909 | for (i = 0; i < 8; i++) { | |
5910 | env->xregs[i] = env->regs[i]; | |
5911 | } | |
5912 | ||
5913 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
5914 | * Otherwise, they come from the banked user regs. | |
5915 | */ | |
5916 | if (mode == ARM_CPU_MODE_FIQ) { | |
5917 | for (i = 8; i < 13; i++) { | |
5918 | env->xregs[i] = env->usr_regs[i - 8]; | |
5919 | } | |
5920 | } else { | |
5921 | for (i = 8; i < 13; i++) { | |
5922 | env->xregs[i] = env->regs[i]; | |
5923 | } | |
5924 | } | |
5925 | ||
5926 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
5927 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
5928 | * from the mode banked register. | |
5929 | */ | |
5930 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
5931 | env->xregs[13] = env->regs[13]; | |
5932 | env->xregs[14] = env->regs[14]; | |
5933 | } else { | |
5934 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
5935 | /* HYP is an exception in that it is copied from r14 */ | |
5936 | if (mode == ARM_CPU_MODE_HYP) { | |
5937 | env->xregs[14] = env->regs[14]; | |
5938 | } else { | |
5939 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
5940 | } | |
5941 | } | |
5942 | ||
5943 | if (mode == ARM_CPU_MODE_HYP) { | |
5944 | env->xregs[15] = env->regs[13]; | |
5945 | } else { | |
5946 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
5947 | } | |
5948 | ||
5949 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
5950 | env->xregs[16] = env->regs[14]; |
5951 | env->xregs[17] = env->regs[13]; | |
ce02049d | 5952 | } else { |
3a9148d0 SS |
5953 | env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; |
5954 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
ce02049d GB |
5955 | } |
5956 | ||
5957 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
5958 | env->xregs[18] = env->regs[14]; |
5959 | env->xregs[19] = env->regs[13]; | |
ce02049d | 5960 | } else { |
3a9148d0 SS |
5961 | env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; |
5962 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
ce02049d GB |
5963 | } |
5964 | ||
5965 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
5966 | env->xregs[20] = env->regs[14]; |
5967 | env->xregs[21] = env->regs[13]; | |
ce02049d | 5968 | } else { |
3a9148d0 SS |
5969 | env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; |
5970 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
ce02049d GB |
5971 | } |
5972 | ||
5973 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
5974 | env->xregs[22] = env->regs[14]; |
5975 | env->xregs[23] = env->regs[13]; | |
ce02049d | 5976 | } else { |
3a9148d0 SS |
5977 | env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; |
5978 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
ce02049d GB |
5979 | } |
5980 | ||
5981 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
5982 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
5983 | * FIQ bank for r8-r14. | |
5984 | */ | |
5985 | if (mode == ARM_CPU_MODE_FIQ) { | |
5986 | for (i = 24; i < 31; i++) { | |
5987 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
5988 | } | |
5989 | } else { | |
5990 | for (i = 24; i < 29; i++) { | |
5991 | env->xregs[i] = env->fiq_regs[i - 24]; | |
5992 | } | |
5993 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
5994 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
5995 | } | |
5996 | ||
5997 | env->pc = env->regs[15]; | |
5998 | } | |
5999 | ||
6000 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
6001 | * register set. This is necessary when switching between AArch32 and AArch64 | |
6002 | * execution state. | |
6003 | */ | |
6004 | void aarch64_sync_64_to_32(CPUARMState *env) | |
6005 | { | |
6006 | int i; | |
6007 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
6008 | ||
6009 | /* We can blanket copy X[0:7] to R[0:7] */ | |
6010 | for (i = 0; i < 8; i++) { | |
6011 | env->regs[i] = env->xregs[i]; | |
6012 | } | |
6013 | ||
6014 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
6015 | * Otherwise, we copy x8-x12 into the banked user regs. | |
6016 | */ | |
6017 | if (mode == ARM_CPU_MODE_FIQ) { | |
6018 | for (i = 8; i < 13; i++) { | |
6019 | env->usr_regs[i - 8] = env->xregs[i]; | |
6020 | } | |
6021 | } else { | |
6022 | for (i = 8; i < 13; i++) { | |
6023 | env->regs[i] = env->xregs[i]; | |
6024 | } | |
6025 | } | |
6026 | ||
6027 | /* Registers r13 & r14 depend on the current mode. | |
6028 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
6029 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
6030 | * for the mode. | |
6031 | */ | |
6032 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
6033 | env->regs[13] = env->xregs[13]; | |
6034 | env->regs[14] = env->xregs[14]; | |
6035 | } else { | |
6036 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
6037 | ||
6038 | /* HYP is an exception in that it does not have its own banked r14 but | |
6039 | * shares the USR r14 | |
6040 | */ | |
6041 | if (mode == ARM_CPU_MODE_HYP) { | |
6042 | env->regs[14] = env->xregs[14]; | |
6043 | } else { | |
6044 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
6045 | } | |
6046 | } | |
6047 | ||
6048 | if (mode == ARM_CPU_MODE_HYP) { | |
6049 | env->regs[13] = env->xregs[15]; | |
6050 | } else { | |
6051 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
6052 | } | |
6053 | ||
6054 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
6055 | env->regs[14] = env->xregs[16]; |
6056 | env->regs[13] = env->xregs[17]; | |
ce02049d | 6057 | } else { |
3a9148d0 SS |
6058 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
6059 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
ce02049d GB |
6060 | } |
6061 | ||
6062 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
6063 | env->regs[14] = env->xregs[18]; |
6064 | env->regs[13] = env->xregs[19]; | |
ce02049d | 6065 | } else { |
3a9148d0 SS |
6066 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
6067 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
ce02049d GB |
6068 | } |
6069 | ||
6070 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
6071 | env->regs[14] = env->xregs[20]; |
6072 | env->regs[13] = env->xregs[21]; | |
ce02049d | 6073 | } else { |
3a9148d0 SS |
6074 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
6075 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
6076 | } |
6077 | ||
6078 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
6079 | env->regs[14] = env->xregs[22]; |
6080 | env->regs[13] = env->xregs[23]; | |
ce02049d | 6081 | } else { |
3a9148d0 SS |
6082 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
6083 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
ce02049d GB |
6084 | } |
6085 | ||
6086 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
6087 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
6088 | * FIQ bank for r8-r14. | |
6089 | */ | |
6090 | if (mode == ARM_CPU_MODE_FIQ) { | |
6091 | for (i = 24; i < 31; i++) { | |
6092 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
6093 | } | |
6094 | } else { | |
6095 | for (i = 24; i < 29; i++) { | |
6096 | env->fiq_regs[i - 24] = env->xregs[i]; | |
6097 | } | |
6098 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
6099 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
6100 | } | |
6101 | ||
6102 | env->regs[15] = env->pc; | |
6103 | } | |
6104 | ||
966f758c | 6105 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
b5ff1b31 | 6106 | { |
97a8ea5a AF |
6107 | ARMCPU *cpu = ARM_CPU(cs); |
6108 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
6109 | uint32_t addr; |
6110 | uint32_t mask; | |
6111 | int new_mode; | |
6112 | uint32_t offset; | |
16a906fd | 6113 | uint32_t moe; |
b5ff1b31 | 6114 | |
16a906fd PM |
6115 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
6116 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
6117 | case EC_BREAKPOINT: | |
6118 | case EC_BREAKPOINT_SAME_EL: | |
6119 | moe = 1; | |
6120 | break; | |
6121 | case EC_WATCHPOINT: | |
6122 | case EC_WATCHPOINT_SAME_EL: | |
6123 | moe = 10; | |
6124 | break; | |
6125 | case EC_AA32_BKPT: | |
6126 | moe = 3; | |
6127 | break; | |
6128 | case EC_VECTORCATCH: | |
6129 | moe = 5; | |
6130 | break; | |
6131 | default: | |
6132 | moe = 0; | |
6133 | break; | |
6134 | } | |
6135 | ||
6136 | if (moe) { | |
6137 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
6138 | } | |
6139 | ||
b5ff1b31 | 6140 | /* TODO: Vectored interrupt controller. */ |
27103424 | 6141 | switch (cs->exception_index) { |
b5ff1b31 FB |
6142 | case EXCP_UDEF: |
6143 | new_mode = ARM_CPU_MODE_UND; | |
6144 | addr = 0x04; | |
6145 | mask = CPSR_I; | |
6146 | if (env->thumb) | |
6147 | offset = 2; | |
6148 | else | |
6149 | offset = 4; | |
6150 | break; | |
6151 | case EXCP_SWI: | |
6152 | new_mode = ARM_CPU_MODE_SVC; | |
6153 | addr = 0x08; | |
6154 | mask = CPSR_I; | |
601d70b9 | 6155 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
6156 | offset = 0; |
6157 | break; | |
06c949e6 | 6158 | case EXCP_BKPT: |
abf1172f | 6159 | env->exception.fsr = 2; |
9ee6e8bb PB |
6160 | /* Fall through to prefetch abort. */ |
6161 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 6162 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 6163 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 6164 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 6165 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
6166 | new_mode = ARM_CPU_MODE_ABT; |
6167 | addr = 0x0c; | |
6168 | mask = CPSR_A | CPSR_I; | |
6169 | offset = 4; | |
6170 | break; | |
6171 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 6172 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 6173 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 6174 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 6175 | env->exception.fsr, |
6cd8a264 | 6176 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
6177 | new_mode = ARM_CPU_MODE_ABT; |
6178 | addr = 0x10; | |
6179 | mask = CPSR_A | CPSR_I; | |
6180 | offset = 8; | |
6181 | break; | |
6182 | case EXCP_IRQ: | |
6183 | new_mode = ARM_CPU_MODE_IRQ; | |
6184 | addr = 0x18; | |
6185 | /* Disable IRQ and imprecise data aborts. */ | |
6186 | mask = CPSR_A | CPSR_I; | |
6187 | offset = 4; | |
de38d23b FA |
6188 | if (env->cp15.scr_el3 & SCR_IRQ) { |
6189 | /* IRQ routed to monitor mode */ | |
6190 | new_mode = ARM_CPU_MODE_MON; | |
6191 | mask |= CPSR_F; | |
6192 | } | |
b5ff1b31 FB |
6193 | break; |
6194 | case EXCP_FIQ: | |
6195 | new_mode = ARM_CPU_MODE_FIQ; | |
6196 | addr = 0x1c; | |
6197 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
6198 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
6199 | if (env->cp15.scr_el3 & SCR_FIQ) { |
6200 | /* FIQ routed to monitor mode */ | |
6201 | new_mode = ARM_CPU_MODE_MON; | |
6202 | } | |
b5ff1b31 FB |
6203 | offset = 4; |
6204 | break; | |
dbe9d163 FA |
6205 | case EXCP_SMC: |
6206 | new_mode = ARM_CPU_MODE_MON; | |
6207 | addr = 0x08; | |
6208 | mask = CPSR_A | CPSR_I | CPSR_F; | |
6209 | offset = 0; | |
6210 | break; | |
b5ff1b31 | 6211 | default: |
a47dddd7 | 6212 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
6213 | return; /* Never happens. Keep compiler happy. */ |
6214 | } | |
e89e51a1 FA |
6215 | |
6216 | if (new_mode == ARM_CPU_MODE_MON) { | |
6217 | addr += env->cp15.mvbar; | |
137feaa9 | 6218 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 6219 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 6220 | addr += 0xffff0000; |
8641136c NR |
6221 | } else { |
6222 | /* ARM v7 architectures provide a vector base address register to remap | |
6223 | * the interrupt vector table. | |
e89e51a1 | 6224 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
6225 | * Note: only bits 31:5 are valid. |
6226 | */ | |
fb6c91ba | 6227 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 6228 | } |
dbe9d163 FA |
6229 | |
6230 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
6231 | env->cp15.scr_el3 &= ~SCR_NS; | |
6232 | } | |
6233 | ||
b5ff1b31 | 6234 | switch_mode (env, new_mode); |
662cefb7 PM |
6235 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
6236 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
6237 | */ | |
6238 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 6239 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
6240 | /* Clear IT bits. */ |
6241 | env->condexec_bits = 0; | |
30a8cac1 | 6242 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 6243 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 6244 | env->daif |= mask; |
be5e7a76 DES |
6245 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
6246 | * and we should just guard the thumb mode on V4 */ | |
6247 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 6248 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 6249 | } |
b5ff1b31 FB |
6250 | env->regs[14] = env->regs[15] + offset; |
6251 | env->regs[15] = addr; | |
b5ff1b31 FB |
6252 | } |
6253 | ||
966f758c PM |
6254 | /* Handle exception entry to a target EL which is using AArch64 */ |
6255 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) | |
f3a9b694 PM |
6256 | { |
6257 | ARMCPU *cpu = ARM_CPU(cs); | |
6258 | CPUARMState *env = &cpu->env; | |
6259 | unsigned int new_el = env->exception.target_el; | |
6260 | target_ulong addr = env->cp15.vbar_el[new_el]; | |
6261 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | |
6262 | ||
6263 | if (arm_current_el(env) < new_el) { | |
3d6f7617 PM |
6264 | /* Entry vector offset depends on whether the implemented EL |
6265 | * immediately lower than the target level is using AArch32 or AArch64 | |
6266 | */ | |
6267 | bool is_aa64; | |
6268 | ||
6269 | switch (new_el) { | |
6270 | case 3: | |
6271 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; | |
6272 | break; | |
6273 | case 2: | |
6274 | is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; | |
6275 | break; | |
6276 | case 1: | |
6277 | is_aa64 = is_a64(env); | |
6278 | break; | |
6279 | default: | |
6280 | g_assert_not_reached(); | |
6281 | } | |
6282 | ||
6283 | if (is_aa64) { | |
f3a9b694 PM |
6284 | addr += 0x400; |
6285 | } else { | |
6286 | addr += 0x600; | |
6287 | } | |
6288 | } else if (pstate_read(env) & PSTATE_SP) { | |
6289 | addr += 0x200; | |
6290 | } | |
6291 | ||
f3a9b694 PM |
6292 | switch (cs->exception_index) { |
6293 | case EXCP_PREFETCH_ABORT: | |
6294 | case EXCP_DATA_ABORT: | |
6295 | env->cp15.far_el[new_el] = env->exception.vaddress; | |
6296 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
6297 | env->cp15.far_el[new_el]); | |
6298 | /* fall through */ | |
6299 | case EXCP_BKPT: | |
6300 | case EXCP_UDEF: | |
6301 | case EXCP_SWI: | |
6302 | case EXCP_HVC: | |
6303 | case EXCP_HYP_TRAP: | |
6304 | case EXCP_SMC: | |
6305 | env->cp15.esr_el[new_el] = env->exception.syndrome; | |
6306 | break; | |
6307 | case EXCP_IRQ: | |
6308 | case EXCP_VIRQ: | |
6309 | addr += 0x80; | |
6310 | break; | |
6311 | case EXCP_FIQ: | |
6312 | case EXCP_VFIQ: | |
6313 | addr += 0x100; | |
6314 | break; | |
6315 | case EXCP_SEMIHOST: | |
6316 | qemu_log_mask(CPU_LOG_INT, | |
6317 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
6318 | env->xregs[0]); | |
6319 | env->xregs[0] = do_arm_semihosting(env); | |
6320 | return; | |
6321 | default: | |
6322 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
6323 | } | |
6324 | ||
6325 | if (is_a64(env)) { | |
6326 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); | |
6327 | aarch64_save_sp(env, arm_current_el(env)); | |
6328 | env->elr_el[new_el] = env->pc; | |
6329 | } else { | |
6330 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); | |
6331 | if (!env->thumb) { | |
6332 | env->cp15.esr_el[new_el] |= 1 << 25; | |
6333 | } | |
6334 | env->elr_el[new_el] = env->regs[15]; | |
6335 | ||
6336 | aarch64_sync_32_to_64(env); | |
6337 | ||
6338 | env->condexec_bits = 0; | |
6339 | } | |
6340 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", | |
6341 | env->elr_el[new_el]); | |
6342 | ||
6343 | pstate_write(env, PSTATE_DAIF | new_mode); | |
6344 | env->aarch64 = 1; | |
6345 | aarch64_restore_sp(env, new_el); | |
6346 | ||
6347 | env->pc = addr; | |
6348 | ||
6349 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", | |
6350 | new_el, env->pc, pstate_read(env)); | |
966f758c PM |
6351 | } |
6352 | ||
904c04de PM |
6353 | static inline bool check_for_semihosting(CPUState *cs) |
6354 | { | |
6355 | /* Check whether this exception is a semihosting call; if so | |
6356 | * then handle it and return true; otherwise return false. | |
6357 | */ | |
6358 | ARMCPU *cpu = ARM_CPU(cs); | |
6359 | CPUARMState *env = &cpu->env; | |
6360 | ||
6361 | if (is_a64(env)) { | |
6362 | if (cs->exception_index == EXCP_SEMIHOST) { | |
6363 | /* This is always the 64-bit semihosting exception. | |
6364 | * The "is this usermode" and "is semihosting enabled" | |
6365 | * checks have been done at translate time. | |
6366 | */ | |
6367 | qemu_log_mask(CPU_LOG_INT, | |
6368 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
6369 | env->xregs[0]); | |
6370 | env->xregs[0] = do_arm_semihosting(env); | |
6371 | return true; | |
6372 | } | |
6373 | return false; | |
6374 | } else { | |
6375 | uint32_t imm; | |
6376 | ||
6377 | /* Only intercept calls from privileged modes, to provide some | |
6378 | * semblance of security. | |
6379 | */ | |
6380 | if (!semihosting_enabled() || | |
6381 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) { | |
6382 | return false; | |
6383 | } | |
6384 | ||
6385 | switch (cs->exception_index) { | |
6386 | case EXCP_SWI: | |
6387 | /* Check for semihosting interrupt. */ | |
6388 | if (env->thumb) { | |
f9fd40eb | 6389 | imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) |
904c04de PM |
6390 | & 0xff; |
6391 | if (imm == 0xab) { | |
6392 | break; | |
6393 | } | |
6394 | } else { | |
f9fd40eb | 6395 | imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) |
904c04de PM |
6396 | & 0xffffff; |
6397 | if (imm == 0x123456) { | |
6398 | break; | |
6399 | } | |
6400 | } | |
6401 | return false; | |
6402 | case EXCP_BKPT: | |
6403 | /* See if this is a semihosting syscall. */ | |
6404 | if (env->thumb) { | |
f9fd40eb | 6405 | imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) |
904c04de PM |
6406 | & 0xff; |
6407 | if (imm == 0xab) { | |
6408 | env->regs[15] += 2; | |
6409 | break; | |
6410 | } | |
6411 | } | |
6412 | return false; | |
6413 | default: | |
6414 | return false; | |
6415 | } | |
6416 | ||
6417 | qemu_log_mask(CPU_LOG_INT, | |
6418 | "...handling as semihosting call 0x%x\n", | |
6419 | env->regs[0]); | |
6420 | env->regs[0] = do_arm_semihosting(env); | |
6421 | return true; | |
6422 | } | |
6423 | } | |
6424 | ||
966f758c PM |
6425 | /* Handle a CPU exception for A and R profile CPUs. |
6426 | * Do any appropriate logging, handle PSCI calls, and then hand off | |
6427 | * to the AArch64-entry or AArch32-entry function depending on the | |
6428 | * target exception level's register width. | |
6429 | */ | |
6430 | void arm_cpu_do_interrupt(CPUState *cs) | |
6431 | { | |
6432 | ARMCPU *cpu = ARM_CPU(cs); | |
6433 | CPUARMState *env = &cpu->env; | |
6434 | unsigned int new_el = env->exception.target_el; | |
6435 | ||
6436 | assert(!IS_M(env)); | |
6437 | ||
6438 | arm_log_exception(cs->exception_index); | |
6439 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), | |
6440 | new_el); | |
6441 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
6442 | && !excp_is_internal(cs->exception_index)) { | |
6443 | qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n", | |
6444 | env->exception.syndrome >> ARM_EL_EC_SHIFT, | |
6445 | env->exception.syndrome); | |
6446 | } | |
6447 | ||
6448 | if (arm_is_psci_call(cpu, cs->exception_index)) { | |
6449 | arm_handle_psci_call(cpu); | |
6450 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
6451 | return; | |
6452 | } | |
6453 | ||
904c04de PM |
6454 | /* Semihosting semantics depend on the register width of the |
6455 | * code that caused the exception, not the target exception level, | |
6456 | * so must be handled here. | |
966f758c | 6457 | */ |
904c04de PM |
6458 | if (check_for_semihosting(cs)) { |
6459 | return; | |
6460 | } | |
6461 | ||
6462 | assert(!excp_is_internal(cs->exception_index)); | |
6463 | if (arm_el_is_aa64(env, new_el)) { | |
966f758c PM |
6464 | arm_cpu_do_interrupt_aarch64(cs); |
6465 | } else { | |
6466 | arm_cpu_do_interrupt_aarch32(cs); | |
6467 | } | |
f3a9b694 PM |
6468 | |
6469 | if (!kvm_enabled()) { | |
6470 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
6471 | } | |
6472 | } | |
0480f69a PM |
6473 | |
6474 | /* Return the exception level which controls this address translation regime */ | |
6475 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
6476 | { | |
6477 | switch (mmu_idx) { | |
6478 | case ARMMMUIdx_S2NS: | |
6479 | case ARMMMUIdx_S1E2: | |
6480 | return 2; | |
6481 | case ARMMMUIdx_S1E3: | |
6482 | return 3; | |
6483 | case ARMMMUIdx_S1SE0: | |
6484 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
6485 | case ARMMMUIdx_S1SE1: | |
6486 | case ARMMMUIdx_S1NSE0: | |
6487 | case ARMMMUIdx_S1NSE1: | |
6488 | return 1; | |
6489 | default: | |
6490 | g_assert_not_reached(); | |
6491 | } | |
6492 | } | |
6493 | ||
8bf5b6a9 PM |
6494 | /* Return true if this address translation regime is secure */ |
6495 | static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) | |
6496 | { | |
6497 | switch (mmu_idx) { | |
6498 | case ARMMMUIdx_S12NSE0: | |
6499 | case ARMMMUIdx_S12NSE1: | |
6500 | case ARMMMUIdx_S1NSE0: | |
6501 | case ARMMMUIdx_S1NSE1: | |
6502 | case ARMMMUIdx_S1E2: | |
6503 | case ARMMMUIdx_S2NS: | |
6504 | return false; | |
6505 | case ARMMMUIdx_S1E3: | |
6506 | case ARMMMUIdx_S1SE0: | |
6507 | case ARMMMUIdx_S1SE1: | |
6508 | return true; | |
6509 | default: | |
6510 | g_assert_not_reached(); | |
6511 | } | |
6512 | } | |
6513 | ||
0480f69a PM |
6514 | /* Return the SCTLR value which controls this address translation regime */ |
6515 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
6516 | { | |
6517 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
6518 | } | |
6519 | ||
6520 | /* Return true if the specified stage of address translation is disabled */ | |
6521 | static inline bool regime_translation_disabled(CPUARMState *env, | |
6522 | ARMMMUIdx mmu_idx) | |
6523 | { | |
6524 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
6525 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
6526 | } | |
6527 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
6528 | } | |
6529 | ||
6530 | /* Return the TCR controlling this translation regime */ | |
6531 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
6532 | { | |
6533 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
68e9c2fe | 6534 | return &env->cp15.vtcr_el2; |
0480f69a PM |
6535 | } |
6536 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
6537 | } | |
6538 | ||
aef878be GB |
6539 | /* Return the TTBR associated with this translation regime */ |
6540 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
6541 | int ttbrn) | |
6542 | { | |
6543 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
b698e9cf | 6544 | return env->cp15.vttbr_el2; |
aef878be GB |
6545 | } |
6546 | if (ttbrn == 0) { | |
6547 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
6548 | } else { | |
6549 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
6550 | } | |
6551 | } | |
6552 | ||
0480f69a PM |
6553 | /* Return true if the translation regime is using LPAE format page tables */ |
6554 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
6555 | ARMMMUIdx mmu_idx) | |
6556 | { | |
6557 | int el = regime_el(env, mmu_idx); | |
6558 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
6559 | return true; | |
6560 | } | |
6561 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
6562 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
6563 | return true; | |
6564 | } | |
6565 | return false; | |
6566 | } | |
6567 | ||
deb2db99 AR |
6568 | /* Returns true if the stage 1 translation regime is using LPAE format page |
6569 | * tables. Used when raising alignment exceptions, whose FSR changes depending | |
6570 | * on whether the long or short descriptor format is in use. */ | |
6571 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) | |
30901475 | 6572 | { |
deb2db99 AR |
6573 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
6574 | mmu_idx += ARMMMUIdx_S1NSE0; | |
6575 | } | |
6576 | ||
30901475 AB |
6577 | return regime_using_lpae_format(env, mmu_idx); |
6578 | } | |
6579 | ||
0480f69a PM |
6580 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
6581 | { | |
6582 | switch (mmu_idx) { | |
6583 | case ARMMMUIdx_S1SE0: | |
6584 | case ARMMMUIdx_S1NSE0: | |
6585 | return true; | |
6586 | default: | |
6587 | return false; | |
6588 | case ARMMMUIdx_S12NSE0: | |
6589 | case ARMMMUIdx_S12NSE1: | |
6590 | g_assert_not_reached(); | |
6591 | } | |
6592 | } | |
6593 | ||
0fbf5238 AJ |
6594 | /* Translate section/page access permissions to page |
6595 | * R/W protection flags | |
d76951b6 AJ |
6596 | * |
6597 | * @env: CPUARMState | |
6598 | * @mmu_idx: MMU index indicating required translation regime | |
6599 | * @ap: The 3-bit access permissions (AP[2:0]) | |
6600 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
6601 | */ |
6602 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
6603 | int ap, int domain_prot) | |
6604 | { | |
554b0b09 PM |
6605 | bool is_user = regime_is_user(env, mmu_idx); |
6606 | ||
6607 | if (domain_prot == 3) { | |
6608 | return PAGE_READ | PAGE_WRITE; | |
6609 | } | |
6610 | ||
554b0b09 PM |
6611 | switch (ap) { |
6612 | case 0: | |
6613 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
6614 | return 0; | |
6615 | } | |
554b0b09 PM |
6616 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
6617 | case SCTLR_S: | |
6618 | return is_user ? 0 : PAGE_READ; | |
6619 | case SCTLR_R: | |
6620 | return PAGE_READ; | |
6621 | default: | |
6622 | return 0; | |
6623 | } | |
6624 | case 1: | |
6625 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
6626 | case 2: | |
87c3d486 | 6627 | if (is_user) { |
0fbf5238 | 6628 | return PAGE_READ; |
87c3d486 | 6629 | } else { |
554b0b09 | 6630 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 6631 | } |
554b0b09 PM |
6632 | case 3: |
6633 | return PAGE_READ | PAGE_WRITE; | |
6634 | case 4: /* Reserved. */ | |
6635 | return 0; | |
6636 | case 5: | |
0fbf5238 | 6637 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 6638 | case 6: |
0fbf5238 | 6639 | return PAGE_READ; |
554b0b09 | 6640 | case 7: |
87c3d486 | 6641 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 6642 | return 0; |
87c3d486 | 6643 | } |
0fbf5238 | 6644 | return PAGE_READ; |
554b0b09 | 6645 | default: |
0fbf5238 | 6646 | g_assert_not_reached(); |
554b0b09 | 6647 | } |
b5ff1b31 FB |
6648 | } |
6649 | ||
d76951b6 AJ |
6650 | /* Translate section/page access permissions to page |
6651 | * R/W protection flags. | |
6652 | * | |
d76951b6 | 6653 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 6654 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 6655 | */ |
d8e052b3 | 6656 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 6657 | { |
d76951b6 AJ |
6658 | switch (ap) { |
6659 | case 0: | |
6660 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
6661 | case 1: | |
6662 | return PAGE_READ | PAGE_WRITE; | |
6663 | case 2: | |
6664 | return is_user ? 0 : PAGE_READ; | |
6665 | case 3: | |
6666 | return PAGE_READ; | |
6667 | default: | |
6668 | g_assert_not_reached(); | |
6669 | } | |
6670 | } | |
6671 | ||
d8e052b3 AJ |
6672 | static inline int |
6673 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
6674 | { | |
6675 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
6676 | } | |
6677 | ||
6ab1a5ee EI |
6678 | /* Translate S2 section/page access permissions to protection flags |
6679 | * | |
6680 | * @env: CPUARMState | |
6681 | * @s2ap: The 2-bit stage2 access permissions (S2AP) | |
6682 | * @xn: XN (execute-never) bit | |
6683 | */ | |
6684 | static int get_S2prot(CPUARMState *env, int s2ap, int xn) | |
6685 | { | |
6686 | int prot = 0; | |
6687 | ||
6688 | if (s2ap & 1) { | |
6689 | prot |= PAGE_READ; | |
6690 | } | |
6691 | if (s2ap & 2) { | |
6692 | prot |= PAGE_WRITE; | |
6693 | } | |
6694 | if (!xn) { | |
6695 | prot |= PAGE_EXEC; | |
6696 | } | |
6697 | return prot; | |
6698 | } | |
6699 | ||
d8e052b3 AJ |
6700 | /* Translate section/page access permissions to protection flags |
6701 | * | |
6702 | * @env: CPUARMState | |
6703 | * @mmu_idx: MMU index indicating required translation regime | |
6704 | * @is_aa64: TRUE if AArch64 | |
6705 | * @ap: The 2-bit simple AP (AP[2:1]) | |
6706 | * @ns: NS (non-secure) bit | |
6707 | * @xn: XN (execute-never) bit | |
6708 | * @pxn: PXN (privileged execute-never) bit | |
6709 | */ | |
6710 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
6711 | int ap, int ns, int xn, int pxn) | |
6712 | { | |
6713 | bool is_user = regime_is_user(env, mmu_idx); | |
6714 | int prot_rw, user_rw; | |
6715 | bool have_wxn; | |
6716 | int wxn = 0; | |
6717 | ||
6718 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
6719 | ||
6720 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
6721 | if (is_user) { | |
6722 | prot_rw = user_rw; | |
6723 | } else { | |
6724 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
6725 | } | |
6726 | ||
6727 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
6728 | return prot_rw; | |
6729 | } | |
6730 | ||
6731 | /* TODO have_wxn should be replaced with | |
6732 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
6733 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
6734 | * compatible processors have EL2, which is required for [U]WXN. | |
6735 | */ | |
6736 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
6737 | ||
6738 | if (have_wxn) { | |
6739 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
6740 | } | |
6741 | ||
6742 | if (is_aa64) { | |
6743 | switch (regime_el(env, mmu_idx)) { | |
6744 | case 1: | |
6745 | if (!is_user) { | |
6746 | xn = pxn || (user_rw & PAGE_WRITE); | |
6747 | } | |
6748 | break; | |
6749 | case 2: | |
6750 | case 3: | |
6751 | break; | |
6752 | } | |
6753 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
6754 | switch (regime_el(env, mmu_idx)) { | |
6755 | case 1: | |
6756 | case 3: | |
6757 | if (is_user) { | |
6758 | xn = xn || !(user_rw & PAGE_READ); | |
6759 | } else { | |
6760 | int uwxn = 0; | |
6761 | if (have_wxn) { | |
6762 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
6763 | } | |
6764 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
6765 | (uwxn && (user_rw & PAGE_WRITE)); | |
6766 | } | |
6767 | break; | |
6768 | case 2: | |
6769 | break; | |
6770 | } | |
6771 | } else { | |
6772 | xn = wxn = 0; | |
6773 | } | |
6774 | ||
6775 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
6776 | return prot_rw; | |
6777 | } | |
6778 | return prot_rw | PAGE_EXEC; | |
6779 | } | |
6780 | ||
0480f69a PM |
6781 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
6782 | uint32_t *table, uint32_t address) | |
b2fa1797 | 6783 | { |
0480f69a | 6784 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 6785 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 6786 | |
11f136ee FA |
6787 | if (address & tcr->mask) { |
6788 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
6789 | /* Translation table walk disabled for TTBR1 */ |
6790 | return false; | |
6791 | } | |
aef878be | 6792 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 6793 | } else { |
11f136ee | 6794 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
6795 | /* Translation table walk disabled for TTBR0 */ |
6796 | return false; | |
6797 | } | |
aef878be | 6798 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
6799 | } |
6800 | *table |= (address >> 18) & 0x3ffc; | |
6801 | return true; | |
b2fa1797 PB |
6802 | } |
6803 | ||
37785977 EI |
6804 | /* Translate a S1 pagetable walk through S2 if needed. */ |
6805 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, | |
6806 | hwaddr addr, MemTxAttrs txattrs, | |
6807 | uint32_t *fsr, | |
6808 | ARMMMUFaultInfo *fi) | |
6809 | { | |
6810 | if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && | |
6811 | !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
6812 | target_ulong s2size; | |
6813 | hwaddr s2pa; | |
6814 | int s2prot; | |
6815 | int ret; | |
6816 | ||
6817 | ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, | |
6818 | &txattrs, &s2prot, &s2size, fsr, fi); | |
6819 | if (ret) { | |
6820 | fi->s2addr = addr; | |
6821 | fi->stage2 = true; | |
6822 | fi->s1ptw = true; | |
6823 | return ~0; | |
6824 | } | |
6825 | addr = s2pa; | |
6826 | } | |
6827 | return addr; | |
6828 | } | |
6829 | ||
ebca90e4 PM |
6830 | /* All loads done in the course of a page table walk go through here. |
6831 | * TODO: rather than ignoring errors from physical memory reads (which | |
6832 | * are external aborts in ARM terminology) we should propagate this | |
6833 | * error out so that we can turn it into a Data Abort if this walk | |
6834 | * was being done for a CPU load/store or an address translation instruction | |
6835 | * (but not if it was for a debug access). | |
6836 | */ | |
a614e698 EI |
6837 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
6838 | ARMMMUIdx mmu_idx, uint32_t *fsr, | |
6839 | ARMMMUFaultInfo *fi) | |
ebca90e4 | 6840 | { |
a614e698 EI |
6841 | ARMCPU *cpu = ARM_CPU(cs); |
6842 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 6843 | MemTxAttrs attrs = {}; |
5ce4ff65 | 6844 | AddressSpace *as; |
ebca90e4 PM |
6845 | |
6846 | attrs.secure = is_secure; | |
5ce4ff65 | 6847 | as = arm_addressspace(cs, attrs); |
a614e698 EI |
6848 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
6849 | if (fi->s1ptw) { | |
6850 | return 0; | |
6851 | } | |
5ce4ff65 | 6852 | return address_space_ldl(as, addr, attrs, NULL); |
ebca90e4 PM |
6853 | } |
6854 | ||
37785977 EI |
6855 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
6856 | ARMMMUIdx mmu_idx, uint32_t *fsr, | |
6857 | ARMMMUFaultInfo *fi) | |
ebca90e4 | 6858 | { |
37785977 EI |
6859 | ARMCPU *cpu = ARM_CPU(cs); |
6860 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 6861 | MemTxAttrs attrs = {}; |
5ce4ff65 | 6862 | AddressSpace *as; |
ebca90e4 PM |
6863 | |
6864 | attrs.secure = is_secure; | |
5ce4ff65 | 6865 | as = arm_addressspace(cs, attrs); |
37785977 EI |
6866 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
6867 | if (fi->s1ptw) { | |
6868 | return 0; | |
6869 | } | |
5ce4ff65 | 6870 | return address_space_ldq(as, addr, attrs, NULL); |
ebca90e4 PM |
6871 | } |
6872 | ||
b7cc4e82 PC |
6873 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
6874 | int access_type, ARMMMUIdx mmu_idx, | |
6875 | hwaddr *phys_ptr, int *prot, | |
e14b5a23 EI |
6876 | target_ulong *page_size, uint32_t *fsr, |
6877 | ARMMMUFaultInfo *fi) | |
b5ff1b31 | 6878 | { |
70d74660 | 6879 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
6880 | int code; |
6881 | uint32_t table; | |
6882 | uint32_t desc; | |
6883 | int type; | |
6884 | int ap; | |
e389be16 | 6885 | int domain = 0; |
dd4ebc2e | 6886 | int domain_prot; |
a8170e5e | 6887 | hwaddr phys_addr; |
0480f69a | 6888 | uint32_t dacr; |
b5ff1b31 | 6889 | |
9ee6e8bb PB |
6890 | /* Pagetable walk. */ |
6891 | /* Lookup l1 descriptor. */ | |
0480f69a | 6892 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
6893 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
6894 | code = 5; | |
6895 | goto do_fault; | |
6896 | } | |
a614e698 EI |
6897 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
6898 | mmu_idx, fsr, fi); | |
9ee6e8bb | 6899 | type = (desc & 3); |
dd4ebc2e | 6900 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
6901 | if (regime_el(env, mmu_idx) == 1) { |
6902 | dacr = env->cp15.dacr_ns; | |
6903 | } else { | |
6904 | dacr = env->cp15.dacr_s; | |
6905 | } | |
6906 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 6907 | if (type == 0) { |
601d70b9 | 6908 | /* Section translation fault. */ |
9ee6e8bb PB |
6909 | code = 5; |
6910 | goto do_fault; | |
6911 | } | |
dd4ebc2e | 6912 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
6913 | if (type == 2) |
6914 | code = 9; /* Section domain fault. */ | |
6915 | else | |
6916 | code = 11; /* Page domain fault. */ | |
6917 | goto do_fault; | |
6918 | } | |
6919 | if (type == 2) { | |
6920 | /* 1Mb section. */ | |
6921 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
6922 | ap = (desc >> 10) & 3; | |
6923 | code = 13; | |
d4c430a8 | 6924 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
6925 | } else { |
6926 | /* Lookup l2 entry. */ | |
554b0b09 PM |
6927 | if (type == 1) { |
6928 | /* Coarse pagetable. */ | |
6929 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
6930 | } else { | |
6931 | /* Fine pagetable. */ | |
6932 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
6933 | } | |
a614e698 EI |
6934 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
6935 | mmu_idx, fsr, fi); | |
9ee6e8bb PB |
6936 | switch (desc & 3) { |
6937 | case 0: /* Page translation fault. */ | |
6938 | code = 7; | |
6939 | goto do_fault; | |
6940 | case 1: /* 64k page. */ | |
6941 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
6942 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 6943 | *page_size = 0x10000; |
ce819861 | 6944 | break; |
9ee6e8bb PB |
6945 | case 2: /* 4k page. */ |
6946 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 6947 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 6948 | *page_size = 0x1000; |
ce819861 | 6949 | break; |
fc1891c7 | 6950 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 6951 | if (type == 1) { |
fc1891c7 PM |
6952 | /* ARMv6/XScale extended small page format */ |
6953 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
6954 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 6955 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 6956 | *page_size = 0x1000; |
554b0b09 | 6957 | } else { |
fc1891c7 PM |
6958 | /* UNPREDICTABLE in ARMv5; we choose to take a |
6959 | * page translation fault. | |
6960 | */ | |
554b0b09 PM |
6961 | code = 7; |
6962 | goto do_fault; | |
6963 | } | |
6964 | } else { | |
6965 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 6966 | *page_size = 0x400; |
554b0b09 | 6967 | } |
9ee6e8bb | 6968 | ap = (desc >> 4) & 3; |
ce819861 PB |
6969 | break; |
6970 | default: | |
9ee6e8bb PB |
6971 | /* Never happens, but compiler isn't smart enough to tell. */ |
6972 | abort(); | |
ce819861 | 6973 | } |
9ee6e8bb PB |
6974 | code = 15; |
6975 | } | |
0fbf5238 AJ |
6976 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
6977 | *prot |= *prot ? PAGE_EXEC : 0; | |
6978 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
6979 | /* Access permission fault. */ |
6980 | goto do_fault; | |
6981 | } | |
6982 | *phys_ptr = phys_addr; | |
b7cc4e82 | 6983 | return false; |
9ee6e8bb | 6984 | do_fault: |
b7cc4e82 PC |
6985 | *fsr = code | (domain << 4); |
6986 | return true; | |
9ee6e8bb PB |
6987 | } |
6988 | ||
b7cc4e82 PC |
6989 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
6990 | int access_type, ARMMMUIdx mmu_idx, | |
6991 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
e14b5a23 EI |
6992 | target_ulong *page_size, uint32_t *fsr, |
6993 | ARMMMUFaultInfo *fi) | |
9ee6e8bb | 6994 | { |
70d74660 | 6995 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
6996 | int code; |
6997 | uint32_t table; | |
6998 | uint32_t desc; | |
6999 | uint32_t xn; | |
de9b05b8 | 7000 | uint32_t pxn = 0; |
9ee6e8bb PB |
7001 | int type; |
7002 | int ap; | |
de9b05b8 | 7003 | int domain = 0; |
dd4ebc2e | 7004 | int domain_prot; |
a8170e5e | 7005 | hwaddr phys_addr; |
0480f69a | 7006 | uint32_t dacr; |
8bf5b6a9 | 7007 | bool ns; |
9ee6e8bb PB |
7008 | |
7009 | /* Pagetable walk. */ | |
7010 | /* Lookup l1 descriptor. */ | |
0480f69a | 7011 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
7012 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
7013 | code = 5; | |
7014 | goto do_fault; | |
7015 | } | |
a614e698 EI |
7016 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
7017 | mmu_idx, fsr, fi); | |
9ee6e8bb | 7018 | type = (desc & 3); |
de9b05b8 PM |
7019 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
7020 | /* Section translation fault, or attempt to use the encoding | |
7021 | * which is Reserved on implementations without PXN. | |
7022 | */ | |
9ee6e8bb | 7023 | code = 5; |
9ee6e8bb | 7024 | goto do_fault; |
de9b05b8 PM |
7025 | } |
7026 | if ((type == 1) || !(desc & (1 << 18))) { | |
7027 | /* Page or Section. */ | |
dd4ebc2e | 7028 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 7029 | } |
0480f69a PM |
7030 | if (regime_el(env, mmu_idx) == 1) { |
7031 | dacr = env->cp15.dacr_ns; | |
7032 | } else { | |
7033 | dacr = env->cp15.dacr_s; | |
7034 | } | |
7035 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 7036 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 7037 | if (type != 1) { |
9ee6e8bb | 7038 | code = 9; /* Section domain fault. */ |
de9b05b8 | 7039 | } else { |
9ee6e8bb | 7040 | code = 11; /* Page domain fault. */ |
de9b05b8 | 7041 | } |
9ee6e8bb PB |
7042 | goto do_fault; |
7043 | } | |
de9b05b8 | 7044 | if (type != 1) { |
9ee6e8bb PB |
7045 | if (desc & (1 << 18)) { |
7046 | /* Supersection. */ | |
7047 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
7048 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
7049 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 7050 | *page_size = 0x1000000; |
b5ff1b31 | 7051 | } else { |
9ee6e8bb PB |
7052 | /* Section. */ |
7053 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 7054 | *page_size = 0x100000; |
b5ff1b31 | 7055 | } |
9ee6e8bb PB |
7056 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
7057 | xn = desc & (1 << 4); | |
de9b05b8 | 7058 | pxn = desc & 1; |
9ee6e8bb | 7059 | code = 13; |
8bf5b6a9 | 7060 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 7061 | } else { |
de9b05b8 PM |
7062 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
7063 | pxn = (desc >> 2) & 1; | |
7064 | } | |
8bf5b6a9 | 7065 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
7066 | /* Lookup l2 entry. */ |
7067 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
a614e698 EI |
7068 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
7069 | mmu_idx, fsr, fi); | |
9ee6e8bb PB |
7070 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
7071 | switch (desc & 3) { | |
7072 | case 0: /* Page translation fault. */ | |
7073 | code = 7; | |
b5ff1b31 | 7074 | goto do_fault; |
9ee6e8bb PB |
7075 | case 1: /* 64k page. */ |
7076 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
7077 | xn = desc & (1 << 15); | |
d4c430a8 | 7078 | *page_size = 0x10000; |
9ee6e8bb PB |
7079 | break; |
7080 | case 2: case 3: /* 4k page. */ | |
7081 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
7082 | xn = desc & 1; | |
d4c430a8 | 7083 | *page_size = 0x1000; |
9ee6e8bb PB |
7084 | break; |
7085 | default: | |
7086 | /* Never happens, but compiler isn't smart enough to tell. */ | |
7087 | abort(); | |
b5ff1b31 | 7088 | } |
9ee6e8bb PB |
7089 | code = 15; |
7090 | } | |
dd4ebc2e | 7091 | if (domain_prot == 3) { |
c0034328 JR |
7092 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
7093 | } else { | |
0480f69a | 7094 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
7095 | xn = 1; |
7096 | } | |
c0034328 JR |
7097 | if (xn && access_type == 2) |
7098 | goto do_fault; | |
9ee6e8bb | 7099 | |
d76951b6 AJ |
7100 | if (arm_feature(env, ARM_FEATURE_V6K) && |
7101 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
7102 | /* The simplified model uses AP[0] as an access control bit. */ | |
7103 | if ((ap & 1) == 0) { | |
7104 | /* Access flag fault. */ | |
7105 | code = (code == 15) ? 6 : 3; | |
7106 | goto do_fault; | |
7107 | } | |
7108 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
7109 | } else { | |
7110 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 7111 | } |
0fbf5238 AJ |
7112 | if (*prot && !xn) { |
7113 | *prot |= PAGE_EXEC; | |
7114 | } | |
7115 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
7116 | /* Access permission fault. */ |
7117 | goto do_fault; | |
7118 | } | |
3ad493fc | 7119 | } |
8bf5b6a9 PM |
7120 | if (ns) { |
7121 | /* The NS bit will (as required by the architecture) have no effect if | |
7122 | * the CPU doesn't support TZ or this is a non-secure translation | |
7123 | * regime, because the attribute will already be non-secure. | |
7124 | */ | |
7125 | attrs->secure = false; | |
7126 | } | |
9ee6e8bb | 7127 | *phys_ptr = phys_addr; |
b7cc4e82 | 7128 | return false; |
b5ff1b31 | 7129 | do_fault: |
b7cc4e82 PC |
7130 | *fsr = code | (domain << 4); |
7131 | return true; | |
b5ff1b31 FB |
7132 | } |
7133 | ||
3dde962f PM |
7134 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
7135 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
7136 | */ | |
7137 | typedef enum { | |
7138 | translation_fault = 1, | |
7139 | access_fault = 2, | |
7140 | permission_fault = 3, | |
7141 | } MMUFaultType; | |
7142 | ||
1853d5a9 | 7143 | /* |
a0e966c9 | 7144 | * check_s2_mmu_setup |
1853d5a9 EI |
7145 | * @cpu: ARMCPU |
7146 | * @is_aa64: True if the translation regime is in AArch64 state | |
7147 | * @startlevel: Suggested starting level | |
7148 | * @inputsize: Bitsize of IPAs | |
7149 | * @stride: Page-table stride (See the ARM ARM) | |
7150 | * | |
a0e966c9 EI |
7151 | * Returns true if the suggested S2 translation parameters are OK and |
7152 | * false otherwise. | |
1853d5a9 | 7153 | */ |
a0e966c9 EI |
7154 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
7155 | int inputsize, int stride) | |
1853d5a9 | 7156 | { |
98d68ec2 EI |
7157 | const int grainsize = stride + 3; |
7158 | int startsizecheck; | |
7159 | ||
1853d5a9 EI |
7160 | /* Negative levels are never allowed. */ |
7161 | if (level < 0) { | |
7162 | return false; | |
7163 | } | |
7164 | ||
98d68ec2 EI |
7165 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
7166 | if (startsizecheck < 1 || startsizecheck > stride + 4) { | |
7167 | return false; | |
7168 | } | |
7169 | ||
1853d5a9 | 7170 | if (is_aa64) { |
3526423e | 7171 | CPUARMState *env = &cpu->env; |
1853d5a9 EI |
7172 | unsigned int pamax = arm_pamax(cpu); |
7173 | ||
7174 | switch (stride) { | |
7175 | case 13: /* 64KB Pages. */ | |
7176 | if (level == 0 || (level == 1 && pamax <= 42)) { | |
7177 | return false; | |
7178 | } | |
7179 | break; | |
7180 | case 11: /* 16KB Pages. */ | |
7181 | if (level == 0 || (level == 1 && pamax <= 40)) { | |
7182 | return false; | |
7183 | } | |
7184 | break; | |
7185 | case 9: /* 4KB Pages. */ | |
7186 | if (level == 0 && pamax <= 42) { | |
7187 | return false; | |
7188 | } | |
7189 | break; | |
7190 | default: | |
7191 | g_assert_not_reached(); | |
7192 | } | |
3526423e EI |
7193 | |
7194 | /* Inputsize checks. */ | |
7195 | if (inputsize > pamax && | |
7196 | (arm_el_is_aa64(env, 1) || inputsize > 40)) { | |
7197 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ | |
7198 | return false; | |
7199 | } | |
1853d5a9 | 7200 | } else { |
1853d5a9 EI |
7201 | /* AArch32 only supports 4KB pages. Assert on that. */ |
7202 | assert(stride == 9); | |
7203 | ||
7204 | if (level == 0) { | |
7205 | return false; | |
7206 | } | |
1853d5a9 EI |
7207 | } |
7208 | return true; | |
7209 | } | |
7210 | ||
b7cc4e82 PC |
7211 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
7212 | int access_type, ARMMMUIdx mmu_idx, | |
7213 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | |
e14b5a23 EI |
7214 | target_ulong *page_size_ptr, uint32_t *fsr, |
7215 | ARMMMUFaultInfo *fi) | |
3dde962f | 7216 | { |
1853d5a9 EI |
7217 | ARMCPU *cpu = arm_env_get_cpu(env); |
7218 | CPUState *cs = CPU(cpu); | |
3dde962f PM |
7219 | /* Read an LPAE long-descriptor translation table. */ |
7220 | MMUFaultType fault_type = translation_fault; | |
7221 | uint32_t level = 1; | |
0c5fbf3b | 7222 | uint32_t epd = 0; |
1f4c8c18 | 7223 | int32_t t0sz, t1sz; |
2c8dd318 | 7224 | uint32_t tg; |
3dde962f PM |
7225 | uint64_t ttbr; |
7226 | int ttbr_select; | |
2c8dd318 | 7227 | hwaddr descaddr, descmask; |
3dde962f PM |
7228 | uint32_t tableattrs; |
7229 | target_ulong page_size; | |
7230 | uint32_t attrs; | |
973a5434 | 7231 | int32_t stride = 9; |
2c8dd318 | 7232 | int32_t va_size = 32; |
4ca6a051 | 7233 | int inputsize; |
2c8dd318 | 7234 | int32_t tbi = 0; |
0480f69a | 7235 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 7236 | int ap, ns, xn, pxn; |
88e8add8 GB |
7237 | uint32_t el = regime_el(env, mmu_idx); |
7238 | bool ttbr1_valid = true; | |
6109769a | 7239 | uint64_t descaddrmask; |
0480f69a PM |
7240 | |
7241 | /* TODO: | |
88e8add8 GB |
7242 | * This code does not handle the different format TCR for VTCR_EL2. |
7243 | * This code also does not support shareability levels. | |
7244 | * Attribute and permission bit handling should also be checked when adding | |
7245 | * support for those page table walks. | |
0480f69a | 7246 | */ |
88e8add8 | 7247 | if (arm_el_is_aa64(env, el)) { |
2c8dd318 | 7248 | va_size = 64; |
88e8add8 | 7249 | if (el > 1) { |
1edee470 EI |
7250 | if (mmu_idx != ARMMMUIdx_S2NS) { |
7251 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
7252 | } | |
88e8add8 GB |
7253 | } else { |
7254 | if (extract64(address, 55, 1)) { | |
7255 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
7256 | } else { | |
7257 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
7258 | } | |
7259 | } | |
2c8dd318 | 7260 | tbi *= 8; |
88e8add8 GB |
7261 | |
7262 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
7263 | * invalid. | |
7264 | */ | |
7265 | if (el > 1) { | |
7266 | ttbr1_valid = false; | |
7267 | } | |
d0a2cbce PM |
7268 | } else { |
7269 | /* There is no TTBR1 for EL2 */ | |
7270 | if (el == 2) { | |
7271 | ttbr1_valid = false; | |
7272 | } | |
2c8dd318 | 7273 | } |
3dde962f PM |
7274 | |
7275 | /* Determine whether this address is in the region controlled by | |
7276 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
7277 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
7278 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
7279 | */ | |
0480f69a | 7280 | if (va_size == 64) { |
4ee38098 EI |
7281 | /* AArch64 translation. */ |
7282 | t0sz = extract32(tcr->raw_tcr, 0, 6); | |
2c8dd318 RH |
7283 | t0sz = MIN(t0sz, 39); |
7284 | t0sz = MAX(t0sz, 16); | |
4ee38098 EI |
7285 | } else if (mmu_idx != ARMMMUIdx_S2NS) { |
7286 | /* AArch32 stage 1 translation. */ | |
7287 | t0sz = extract32(tcr->raw_tcr, 0, 3); | |
7288 | } else { | |
7289 | /* AArch32 stage 2 translation. */ | |
7290 | bool sext = extract32(tcr->raw_tcr, 4, 1); | |
7291 | bool sign = extract32(tcr->raw_tcr, 3, 1); | |
7292 | t0sz = sextract32(tcr->raw_tcr, 0, 4); | |
7293 | ||
7294 | /* If the sign-extend bit is not the same as t0sz[3], the result | |
7295 | * is unpredictable. Flag this as a guest error. */ | |
7296 | if (sign != sext) { | |
7297 | qemu_log_mask(LOG_GUEST_ERROR, | |
7298 | "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n"); | |
7299 | } | |
2c8dd318 | 7300 | } |
1f4c8c18 | 7301 | t1sz = extract32(tcr->raw_tcr, 16, 6); |
0480f69a | 7302 | if (va_size == 64) { |
2c8dd318 RH |
7303 | t1sz = MIN(t1sz, 39); |
7304 | t1sz = MAX(t1sz, 16); | |
7305 | } | |
7306 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
7307 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
7308 | ttbr_select = 0; | |
88e8add8 GB |
7309 | } else if (ttbr1_valid && t1sz && |
7310 | !extract64(~address, va_size - t1sz, t1sz - tbi)) { | |
3dde962f PM |
7311 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
7312 | ttbr_select = 1; | |
7313 | } else if (!t0sz) { | |
7314 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
7315 | ttbr_select = 0; | |
88e8add8 | 7316 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
7317 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
7318 | ttbr_select = 1; | |
7319 | } else { | |
7320 | /* in the gap between the two regions, this is a Translation fault */ | |
7321 | fault_type = translation_fault; | |
7322 | goto do_fault; | |
7323 | } | |
7324 | ||
7325 | /* Note that QEMU ignores shareability and cacheability attributes, | |
7326 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
7327 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
7328 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
7329 | * implement any ASID-like capability so we can ignore it (instead | |
7330 | * we will always flush the TLB any time the ASID is changed). | |
7331 | */ | |
7332 | if (ttbr_select == 0) { | |
aef878be | 7333 | ttbr = regime_ttbr(env, mmu_idx, 0); |
0c5fbf3b EI |
7334 | if (el < 2) { |
7335 | epd = extract32(tcr->raw_tcr, 7, 1); | |
7336 | } | |
4ca6a051 | 7337 | inputsize = va_size - t0sz; |
2c8dd318 | 7338 | |
11f136ee | 7339 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 | 7340 | if (tg == 1) { /* 64KB pages */ |
973a5434 | 7341 | stride = 13; |
2c8dd318 RH |
7342 | } |
7343 | if (tg == 2) { /* 16KB pages */ | |
973a5434 | 7344 | stride = 11; |
2c8dd318 | 7345 | } |
3dde962f | 7346 | } else { |
88e8add8 GB |
7347 | /* We should only be here if TTBR1 is valid */ |
7348 | assert(ttbr1_valid); | |
7349 | ||
aef878be | 7350 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 7351 | epd = extract32(tcr->raw_tcr, 23, 1); |
4ca6a051 | 7352 | inputsize = va_size - t1sz; |
2c8dd318 | 7353 | |
11f136ee | 7354 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 | 7355 | if (tg == 3) { /* 64KB pages */ |
973a5434 | 7356 | stride = 13; |
2c8dd318 RH |
7357 | } |
7358 | if (tg == 1) { /* 16KB pages */ | |
973a5434 | 7359 | stride = 11; |
2c8dd318 | 7360 | } |
3dde962f PM |
7361 | } |
7362 | ||
0480f69a | 7363 | /* Here we should have set up all the parameters for the translation: |
973a5434 | 7364 | * va_size, inputsize, ttbr, epd, stride, tbi |
0480f69a PM |
7365 | */ |
7366 | ||
3dde962f | 7367 | if (epd) { |
88e8add8 GB |
7368 | /* Translation table walk disabled => Translation fault on TLB miss |
7369 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
7370 | */ | |
3dde962f PM |
7371 | goto do_fault; |
7372 | } | |
7373 | ||
1853d5a9 EI |
7374 | if (mmu_idx != ARMMMUIdx_S2NS) { |
7375 | /* The starting level depends on the virtual address size (which can | |
7376 | * be up to 48 bits) and the translation granule size. It indicates | |
7377 | * the number of strides (stride bits at a time) needed to | |
7378 | * consume the bits of the input address. In the pseudocode this is: | |
7379 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
7380 | * where their 'inputsize' is our 'inputsize', 'grainsize' is | |
7381 | * our 'stride + 3' and 'stride' is our 'stride'. | |
7382 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
7383 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride | |
7384 | * = 4 - (inputsize - 4) / stride; | |
7385 | */ | |
7386 | level = 4 - (inputsize - 4) / stride; | |
7387 | } else { | |
7388 | /* For stage 2 translations the starting level is specified by the | |
7389 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) | |
7390 | */ | |
7391 | int startlevel = extract32(tcr->raw_tcr, 6, 2); | |
7392 | bool ok; | |
7393 | ||
7394 | if (va_size == 32 || stride == 9) { | |
7395 | /* AArch32 or 4KB pages */ | |
7396 | level = 2 - startlevel; | |
7397 | } else { | |
7398 | /* 16KB or 64KB pages */ | |
7399 | level = 3 - startlevel; | |
7400 | } | |
7401 | ||
7402 | /* Check that the starting level is valid. */ | |
a0e966c9 | 7403 | ok = check_s2_mmu_setup(cpu, va_size == 64, level, inputsize, stride); |
1853d5a9 EI |
7404 | if (!ok) { |
7405 | /* AArch64 reports these as level 0 faults. | |
7406 | * AArch32 reports these as level 1 faults. | |
7407 | */ | |
7408 | level = va_size == 64 ? 0 : 1; | |
7409 | fault_type = translation_fault; | |
7410 | goto do_fault; | |
7411 | } | |
7412 | } | |
3dde962f PM |
7413 | |
7414 | /* Clear the vaddr bits which aren't part of the within-region address, | |
7415 | * so that we don't have to special case things when calculating the | |
7416 | * first descriptor address. | |
7417 | */ | |
4ca6a051 EI |
7418 | if (va_size != inputsize) { |
7419 | address &= (1ULL << inputsize) - 1; | |
2c8dd318 RH |
7420 | } |
7421 | ||
973a5434 | 7422 | descmask = (1ULL << (stride + 3)) - 1; |
3dde962f PM |
7423 | |
7424 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 | 7425 | descaddr = extract64(ttbr, 0, 48); |
973a5434 | 7426 | descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1); |
3dde962f | 7427 | |
6109769a PM |
7428 | /* The address field in the descriptor goes up to bit 39 for ARMv7 |
7429 | * but up to bit 47 for ARMv8. | |
7430 | */ | |
7431 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
7432 | descaddrmask = 0xfffffffff000ULL; | |
7433 | } else { | |
7434 | descaddrmask = 0xfffffff000ULL; | |
7435 | } | |
7436 | ||
ebca90e4 PM |
7437 | /* Secure accesses start with the page table in secure memory and |
7438 | * can be downgraded to non-secure at any step. Non-secure accesses | |
7439 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
7440 | * bits at each step. | |
7441 | */ | |
7442 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
7443 | for (;;) { |
7444 | uint64_t descriptor; | |
ebca90e4 | 7445 | bool nstable; |
3dde962f | 7446 | |
973a5434 | 7447 | descaddr |= (address >> (stride * (4 - level))) & descmask; |
2c8dd318 | 7448 | descaddr &= ~7ULL; |
ebca90e4 | 7449 | nstable = extract32(tableattrs, 4, 1); |
37785977 EI |
7450 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); |
7451 | if (fi->s1ptw) { | |
7452 | goto do_fault; | |
7453 | } | |
7454 | ||
3dde962f PM |
7455 | if (!(descriptor & 1) || |
7456 | (!(descriptor & 2) && (level == 3))) { | |
7457 | /* Invalid, or the Reserved level 3 encoding */ | |
7458 | goto do_fault; | |
7459 | } | |
6109769a | 7460 | descaddr = descriptor & descaddrmask; |
3dde962f PM |
7461 | |
7462 | if ((descriptor & 2) && (level < 3)) { | |
7463 | /* Table entry. The top five bits are attributes which may | |
7464 | * propagate down through lower levels of the table (and | |
7465 | * which are all arranged so that 0 means "no effect", so | |
7466 | * we can gather them up by ORing in the bits at each level). | |
7467 | */ | |
7468 | tableattrs |= extract64(descriptor, 59, 5); | |
7469 | level++; | |
7470 | continue; | |
7471 | } | |
7472 | /* Block entry at level 1 or 2, or page entry at level 3. | |
7473 | * These are basically the same thing, although the number | |
7474 | * of bits we pull in from the vaddr varies. | |
7475 | */ | |
973a5434 | 7476 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
3dde962f | 7477 | descaddr |= (address & (page_size - 1)); |
6ab1a5ee | 7478 | /* Extract attributes from the descriptor */ |
d615efac IC |
7479 | attrs = extract64(descriptor, 2, 10) |
7480 | | (extract64(descriptor, 52, 12) << 10); | |
6ab1a5ee EI |
7481 | |
7482 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
7483 | /* Stage 2 table descriptors do not include any attribute fields */ | |
7484 | break; | |
7485 | } | |
7486 | /* Merge in attributes from table descriptors */ | |
3dde962f PM |
7487 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
7488 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
7489 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
7490 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
7491 | */ | |
7492 | if (extract32(tableattrs, 2, 1)) { | |
7493 | attrs &= ~(1 << 4); | |
7494 | } | |
ebca90e4 | 7495 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
7496 | break; |
7497 | } | |
7498 | /* Here descaddr is the final physical address, and attributes | |
7499 | * are all in attrs. | |
7500 | */ | |
7501 | fault_type = access_fault; | |
7502 | if ((attrs & (1 << 8)) == 0) { | |
7503 | /* Access flag */ | |
7504 | goto do_fault; | |
7505 | } | |
d8e052b3 AJ |
7506 | |
7507 | ap = extract32(attrs, 4, 2); | |
d8e052b3 | 7508 | xn = extract32(attrs, 12, 1); |
d8e052b3 | 7509 | |
6ab1a5ee EI |
7510 | if (mmu_idx == ARMMMUIdx_S2NS) { |
7511 | ns = true; | |
7512 | *prot = get_S2prot(env, ap, xn); | |
7513 | } else { | |
7514 | ns = extract32(attrs, 3, 1); | |
7515 | pxn = extract32(attrs, 11, 1); | |
7516 | *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); | |
7517 | } | |
d8e052b3 | 7518 | |
3dde962f | 7519 | fault_type = permission_fault; |
d8e052b3 | 7520 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
7521 | goto do_fault; |
7522 | } | |
3dde962f | 7523 | |
8bf5b6a9 PM |
7524 | if (ns) { |
7525 | /* The NS bit will (as required by the architecture) have no effect if | |
7526 | * the CPU doesn't support TZ or this is a non-secure translation | |
7527 | * regime, because the attribute will already be non-secure. | |
7528 | */ | |
7529 | txattrs->secure = false; | |
7530 | } | |
3dde962f PM |
7531 | *phys_ptr = descaddr; |
7532 | *page_size_ptr = page_size; | |
b7cc4e82 | 7533 | return false; |
3dde962f PM |
7534 | |
7535 | do_fault: | |
7536 | /* Long-descriptor format IFSR/DFSR value */ | |
b7cc4e82 | 7537 | *fsr = (1 << 9) | (fault_type << 2) | level; |
37785977 EI |
7538 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
7539 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); | |
b7cc4e82 | 7540 | return true; |
3dde962f PM |
7541 | } |
7542 | ||
f6bda88f PC |
7543 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
7544 | ARMMMUIdx mmu_idx, | |
7545 | int32_t address, int *prot) | |
7546 | { | |
7547 | *prot = PAGE_READ | PAGE_WRITE; | |
7548 | switch (address) { | |
7549 | case 0xF0000000 ... 0xFFFFFFFF: | |
7550 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ | |
7551 | *prot |= PAGE_EXEC; | |
7552 | } | |
7553 | break; | |
7554 | case 0x00000000 ... 0x7FFFFFFF: | |
7555 | *prot |= PAGE_EXEC; | |
7556 | break; | |
7557 | } | |
7558 | ||
7559 | } | |
7560 | ||
7561 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, | |
7562 | int access_type, ARMMMUIdx mmu_idx, | |
7563 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
7564 | { | |
7565 | ARMCPU *cpu = arm_env_get_cpu(env); | |
7566 | int n; | |
7567 | bool is_user = regime_is_user(env, mmu_idx); | |
7568 | ||
7569 | *phys_ptr = address; | |
7570 | *prot = 0; | |
7571 | ||
7572 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
7573 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
7574 | } else { /* MPU enabled */ | |
7575 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
7576 | /* region search */ | |
7577 | uint32_t base = env->pmsav7.drbar[n]; | |
7578 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
7579 | uint32_t rmask; | |
7580 | bool srdis = false; | |
7581 | ||
7582 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
7583 | continue; | |
7584 | } | |
7585 | ||
7586 | if (!rsize) { | |
7587 | qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); | |
7588 | continue; | |
7589 | } | |
7590 | rsize++; | |
7591 | rmask = (1ull << rsize) - 1; | |
7592 | ||
7593 | if (base & rmask) { | |
7594 | qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " | |
7595 | "to DRSR region size, mask = %" PRIx32, | |
7596 | base, rmask); | |
7597 | continue; | |
7598 | } | |
7599 | ||
7600 | if (address < base || address > base + rmask) { | |
7601 | continue; | |
7602 | } | |
7603 | ||
7604 | /* Region matched */ | |
7605 | ||
7606 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
7607 | int i, snd; | |
7608 | uint32_t srdis_mask; | |
7609 | ||
7610 | rsize -= 3; /* sub region size (power of 2) */ | |
7611 | snd = ((address - base) >> rsize) & 0x7; | |
7612 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
7613 | ||
7614 | srdis_mask = srdis ? 0x3 : 0x0; | |
7615 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
7616 | /* This will check in groups of 2, 4 and then 8, whether | |
7617 | * the subregion bits are consistent. rsize is incremented | |
7618 | * back up to give the region size, considering consistent | |
7619 | * adjacent subregions as one region. Stop testing if rsize | |
7620 | * is already big enough for an entire QEMU page. | |
7621 | */ | |
7622 | int snd_rounded = snd & ~(i - 1); | |
7623 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
7624 | snd_rounded + 8, i); | |
7625 | if (srdis_mask ^ srdis_multi) { | |
7626 | break; | |
7627 | } | |
7628 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
7629 | rsize++; | |
7630 | } | |
7631 | } | |
7632 | if (rsize < TARGET_PAGE_BITS) { | |
7633 | qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" | |
7634 | "alignment of %" PRIu32 " bits. Minimum is %d\n", | |
7635 | rsize, TARGET_PAGE_BITS); | |
7636 | continue; | |
7637 | } | |
7638 | if (srdis) { | |
7639 | continue; | |
7640 | } | |
7641 | break; | |
7642 | } | |
7643 | ||
7644 | if (n == -1) { /* no hits */ | |
7645 | if (cpu->pmsav7_dregion && | |
7646 | (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { | |
7647 | /* background fault */ | |
7648 | *fsr = 0; | |
7649 | return true; | |
7650 | } | |
7651 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
7652 | } else { /* a MPU hit! */ | |
7653 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
7654 | ||
7655 | if (is_user) { /* User mode AP bit decoding */ | |
7656 | switch (ap) { | |
7657 | case 0: | |
7658 | case 1: | |
7659 | case 5: | |
7660 | break; /* no access */ | |
7661 | case 3: | |
7662 | *prot |= PAGE_WRITE; | |
7663 | /* fall through */ | |
7664 | case 2: | |
7665 | case 6: | |
7666 | *prot |= PAGE_READ | PAGE_EXEC; | |
7667 | break; | |
7668 | default: | |
7669 | qemu_log_mask(LOG_GUEST_ERROR, | |
7670 | "Bad value for AP bits in DRACR %" | |
7671 | PRIx32 "\n", ap); | |
7672 | } | |
7673 | } else { /* Priv. mode AP bits decoding */ | |
7674 | switch (ap) { | |
7675 | case 0: | |
7676 | break; /* no access */ | |
7677 | case 1: | |
7678 | case 2: | |
7679 | case 3: | |
7680 | *prot |= PAGE_WRITE; | |
7681 | /* fall through */ | |
7682 | case 5: | |
7683 | case 6: | |
7684 | *prot |= PAGE_READ | PAGE_EXEC; | |
7685 | break; | |
7686 | default: | |
7687 | qemu_log_mask(LOG_GUEST_ERROR, | |
7688 | "Bad value for AP bits in DRACR %" | |
7689 | PRIx32 "\n", ap); | |
7690 | } | |
7691 | } | |
7692 | ||
7693 | /* execute never */ | |
7694 | if (env->pmsav7.dracr[n] & (1 << 12)) { | |
7695 | *prot &= ~PAGE_EXEC; | |
7696 | } | |
7697 | } | |
7698 | } | |
7699 | ||
7700 | *fsr = 0x00d; /* Permission fault */ | |
7701 | return !(*prot & (1 << access_type)); | |
7702 | } | |
7703 | ||
13689d43 PC |
7704 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
7705 | int access_type, ARMMMUIdx mmu_idx, | |
7706 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
9ee6e8bb PB |
7707 | { |
7708 | int n; | |
7709 | uint32_t mask; | |
7710 | uint32_t base; | |
0480f69a | 7711 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb PB |
7712 | |
7713 | *phys_ptr = address; | |
7714 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 7715 | base = env->cp15.c6_region[n]; |
87c3d486 | 7716 | if ((base & 1) == 0) { |
554b0b09 | 7717 | continue; |
87c3d486 | 7718 | } |
554b0b09 PM |
7719 | mask = 1 << ((base >> 1) & 0x1f); |
7720 | /* Keep this shift separate from the above to avoid an | |
7721 | (undefined) << 32. */ | |
7722 | mask = (mask << 1) - 1; | |
87c3d486 | 7723 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 7724 | break; |
87c3d486 | 7725 | } |
9ee6e8bb | 7726 | } |
87c3d486 | 7727 | if (n < 0) { |
b7cc4e82 PC |
7728 | *fsr = 2; |
7729 | return true; | |
87c3d486 | 7730 | } |
9ee6e8bb PB |
7731 | |
7732 | if (access_type == 2) { | |
7e09797c | 7733 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 7734 | } else { |
7e09797c | 7735 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
7736 | } |
7737 | mask = (mask >> (n * 4)) & 0xf; | |
7738 | switch (mask) { | |
7739 | case 0: | |
b7cc4e82 PC |
7740 | *fsr = 1; |
7741 | return true; | |
9ee6e8bb | 7742 | case 1: |
87c3d486 | 7743 | if (is_user) { |
b7cc4e82 PC |
7744 | *fsr = 1; |
7745 | return true; | |
87c3d486 | 7746 | } |
554b0b09 PM |
7747 | *prot = PAGE_READ | PAGE_WRITE; |
7748 | break; | |
9ee6e8bb | 7749 | case 2: |
554b0b09 | 7750 | *prot = PAGE_READ; |
87c3d486 | 7751 | if (!is_user) { |
554b0b09 | 7752 | *prot |= PAGE_WRITE; |
87c3d486 | 7753 | } |
554b0b09 | 7754 | break; |
9ee6e8bb | 7755 | case 3: |
554b0b09 PM |
7756 | *prot = PAGE_READ | PAGE_WRITE; |
7757 | break; | |
9ee6e8bb | 7758 | case 5: |
87c3d486 | 7759 | if (is_user) { |
b7cc4e82 PC |
7760 | *fsr = 1; |
7761 | return true; | |
87c3d486 | 7762 | } |
554b0b09 PM |
7763 | *prot = PAGE_READ; |
7764 | break; | |
9ee6e8bb | 7765 | case 6: |
554b0b09 PM |
7766 | *prot = PAGE_READ; |
7767 | break; | |
9ee6e8bb | 7768 | default: |
554b0b09 | 7769 | /* Bad permission. */ |
b7cc4e82 PC |
7770 | *fsr = 1; |
7771 | return true; | |
9ee6e8bb | 7772 | } |
3ad493fc | 7773 | *prot |= PAGE_EXEC; |
b7cc4e82 | 7774 | return false; |
9ee6e8bb PB |
7775 | } |
7776 | ||
702a9357 PM |
7777 | /* get_phys_addr - get the physical address for this virtual address |
7778 | * | |
7779 | * Find the physical address corresponding to the given virtual address, | |
7780 | * by doing a translation table walk on MMU based systems or using the | |
7781 | * MPU state on MPU based systems. | |
7782 | * | |
b7cc4e82 PC |
7783 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
7784 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
7785 | * information on why the translation aborted, in the format of a |
7786 | * DFSR/IFSR fault register, with the following caveats: | |
7787 | * * we honour the short vs long DFSR format differences. | |
7788 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 7789 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
7790 | * value. |
7791 | * | |
7792 | * @env: CPUARMState | |
7793 | * @address: virtual address to get physical address for | |
7794 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 7795 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 7796 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 7797 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
7798 | * @prot: set to the permissions for the page containing phys_ptr |
7799 | * @page_size: set to the size of the page containing phys_ptr | |
b7cc4e82 | 7800 | * @fsr: set to the DFSR/IFSR value on failure |
702a9357 | 7801 | */ |
af51f566 EI |
7802 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
7803 | int access_type, ARMMMUIdx mmu_idx, | |
7804 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
e14b5a23 EI |
7805 | target_ulong *page_size, uint32_t *fsr, |
7806 | ARMMMUFaultInfo *fi) | |
9ee6e8bb | 7807 | { |
0480f69a | 7808 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
9b539263 EI |
7809 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
7810 | * translations. | |
0480f69a | 7811 | */ |
9b539263 EI |
7812 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
7813 | hwaddr ipa; | |
7814 | int s2_prot; | |
7815 | int ret; | |
7816 | ||
7817 | ret = get_phys_addr(env, address, access_type, | |
7818 | mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs, | |
7819 | prot, page_size, fsr, fi); | |
7820 | ||
7821 | /* If S1 fails or S2 is disabled, return early. */ | |
7822 | if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
7823 | *phys_ptr = ipa; | |
7824 | return ret; | |
7825 | } | |
7826 | ||
7827 | /* S1 is done. Now do S2 translation. */ | |
7828 | ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, | |
7829 | phys_ptr, attrs, &s2_prot, | |
7830 | page_size, fsr, fi); | |
7831 | fi->s2addr = ipa; | |
7832 | /* Combine the S1 and S2 perms. */ | |
7833 | *prot &= s2_prot; | |
7834 | return ret; | |
7835 | } else { | |
7836 | /* | |
7837 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | |
7838 | */ | |
7839 | mmu_idx += ARMMMUIdx_S1NSE0; | |
7840 | } | |
0480f69a | 7841 | } |
d3649702 | 7842 | |
8bf5b6a9 PM |
7843 | /* The page table entries may downgrade secure to non-secure, but |
7844 | * cannot upgrade an non-secure translation regime's attributes | |
7845 | * to secure. | |
7846 | */ | |
7847 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 7848 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 7849 | |
0480f69a PM |
7850 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
7851 | * In v7 and earlier it affects all stage 1 translations. | |
7852 | */ | |
7853 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
7854 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
7855 | if (regime_el(env, mmu_idx) == 3) { | |
7856 | address += env->cp15.fcseidr_s; | |
7857 | } else { | |
7858 | address += env->cp15.fcseidr_ns; | |
7859 | } | |
54bf36ed | 7860 | } |
9ee6e8bb | 7861 | |
f6bda88f PC |
7862 | /* pmsav7 has special handling for when MPU is disabled so call it before |
7863 | * the common MMU/MPU disabled check below. | |
7864 | */ | |
7865 | if (arm_feature(env, ARM_FEATURE_MPU) && | |
7866 | arm_feature(env, ARM_FEATURE_V7)) { | |
7867 | *page_size = TARGET_PAGE_SIZE; | |
7868 | return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
7869 | phys_ptr, prot, fsr); | |
7870 | } | |
7871 | ||
0480f69a | 7872 | if (regime_translation_disabled(env, mmu_idx)) { |
9ee6e8bb PB |
7873 | /* MMU/MPU disabled. */ |
7874 | *phys_ptr = address; | |
3ad493fc | 7875 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 7876 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 7877 | return 0; |
0480f69a PM |
7878 | } |
7879 | ||
7880 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |
f6bda88f | 7881 | /* Pre-v7 MPU */ |
d4c430a8 | 7882 | *page_size = TARGET_PAGE_SIZE; |
13689d43 PC |
7883 | return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
7884 | phys_ptr, prot, fsr); | |
0480f69a PM |
7885 | } |
7886 | ||
7887 | if (regime_using_lpae_format(env, mmu_idx)) { | |
7888 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
e14b5a23 | 7889 | attrs, prot, page_size, fsr, fi); |
0480f69a PM |
7890 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
7891 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
e14b5a23 | 7892 | attrs, prot, page_size, fsr, fi); |
9ee6e8bb | 7893 | } else { |
0480f69a | 7894 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
e14b5a23 | 7895 | prot, page_size, fsr, fi); |
9ee6e8bb PB |
7896 | } |
7897 | } | |
7898 | ||
8c6084bf | 7899 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
7900 | * to the TLB. Return false on success, or true on failure. Populate |
7901 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 7902 | */ |
b7cc4e82 | 7903 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
e14b5a23 EI |
7904 | int access_type, int mmu_idx, uint32_t *fsr, |
7905 | ARMMMUFaultInfo *fi) | |
b5ff1b31 | 7906 | { |
7510454e AF |
7907 | ARMCPU *cpu = ARM_CPU(cs); |
7908 | CPUARMState *env = &cpu->env; | |
a8170e5e | 7909 | hwaddr phys_addr; |
d4c430a8 | 7910 | target_ulong page_size; |
b5ff1b31 | 7911 | int prot; |
d3649702 | 7912 | int ret; |
8bf5b6a9 | 7913 | MemTxAttrs attrs = {}; |
b5ff1b31 | 7914 | |
8bf5b6a9 | 7915 | ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, |
e14b5a23 | 7916 | &attrs, &prot, &page_size, fsr, fi); |
b7cc4e82 | 7917 | if (!ret) { |
b5ff1b31 | 7918 | /* Map a single [sub]page. */ |
dcd82c11 AB |
7919 | phys_addr &= TARGET_PAGE_MASK; |
7920 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
7921 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
7922 | prot, mmu_idx, page_size); | |
d4c430a8 | 7923 | return 0; |
b5ff1b31 FB |
7924 | } |
7925 | ||
8c6084bf | 7926 | return ret; |
b5ff1b31 FB |
7927 | } |
7928 | ||
0faea0c7 PM |
7929 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
7930 | MemTxAttrs *attrs) | |
b5ff1b31 | 7931 | { |
00b941e5 | 7932 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 7933 | CPUARMState *env = &cpu->env; |
a8170e5e | 7934 | hwaddr phys_addr; |
d4c430a8 | 7935 | target_ulong page_size; |
b5ff1b31 | 7936 | int prot; |
b7cc4e82 PC |
7937 | bool ret; |
7938 | uint32_t fsr; | |
e14b5a23 | 7939 | ARMMMUFaultInfo fi = {}; |
b5ff1b31 | 7940 | |
0faea0c7 PM |
7941 | *attrs = (MemTxAttrs) {}; |
7942 | ||
97ed5ccd | 7943 | ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, |
0faea0c7 | 7944 | attrs, &prot, &page_size, &fsr, &fi); |
b5ff1b31 | 7945 | |
b7cc4e82 | 7946 | if (ret) { |
b5ff1b31 | 7947 | return -1; |
00b941e5 | 7948 | } |
b5ff1b31 FB |
7949 | return phys_addr; |
7950 | } | |
7951 | ||
0ecb72a5 | 7952 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 7953 | { |
a47dddd7 AF |
7954 | ARMCPU *cpu = arm_env_get_cpu(env); |
7955 | ||
9ee6e8bb PB |
7956 | switch (reg) { |
7957 | case 0: /* APSR */ | |
7958 | return xpsr_read(env) & 0xf8000000; | |
7959 | case 1: /* IAPSR */ | |
7960 | return xpsr_read(env) & 0xf80001ff; | |
7961 | case 2: /* EAPSR */ | |
7962 | return xpsr_read(env) & 0xff00fc00; | |
7963 | case 3: /* xPSR */ | |
7964 | return xpsr_read(env) & 0xff00fdff; | |
7965 | case 5: /* IPSR */ | |
7966 | return xpsr_read(env) & 0x000001ff; | |
7967 | case 6: /* EPSR */ | |
7968 | return xpsr_read(env) & 0x0700fc00; | |
7969 | case 7: /* IEPSR */ | |
7970 | return xpsr_read(env) & 0x0700edff; | |
7971 | case 8: /* MSP */ | |
7972 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
7973 | case 9: /* PSP */ | |
7974 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
7975 | case 16: /* PRIMASK */ | |
4cc35614 | 7976 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
7977 | case 17: /* BASEPRI */ |
7978 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 7979 | return env->v7m.basepri; |
82845826 | 7980 | case 19: /* FAULTMASK */ |
4cc35614 | 7981 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
7982 | case 20: /* CONTROL */ |
7983 | return env->v7m.control; | |
7984 | default: | |
7985 | /* ??? For debugging only. */ | |
a47dddd7 | 7986 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
7987 | return 0; |
7988 | } | |
7989 | } | |
7990 | ||
0ecb72a5 | 7991 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 7992 | { |
a47dddd7 AF |
7993 | ARMCPU *cpu = arm_env_get_cpu(env); |
7994 | ||
9ee6e8bb PB |
7995 | switch (reg) { |
7996 | case 0: /* APSR */ | |
7997 | xpsr_write(env, val, 0xf8000000); | |
7998 | break; | |
7999 | case 1: /* IAPSR */ | |
8000 | xpsr_write(env, val, 0xf8000000); | |
8001 | break; | |
8002 | case 2: /* EAPSR */ | |
8003 | xpsr_write(env, val, 0xfe00fc00); | |
8004 | break; | |
8005 | case 3: /* xPSR */ | |
8006 | xpsr_write(env, val, 0xfe00fc00); | |
8007 | break; | |
8008 | case 5: /* IPSR */ | |
8009 | /* IPSR bits are readonly. */ | |
8010 | break; | |
8011 | case 6: /* EPSR */ | |
8012 | xpsr_write(env, val, 0x0600fc00); | |
8013 | break; | |
8014 | case 7: /* IEPSR */ | |
8015 | xpsr_write(env, val, 0x0600fc00); | |
8016 | break; | |
8017 | case 8: /* MSP */ | |
8018 | if (env->v7m.current_sp) | |
8019 | env->v7m.other_sp = val; | |
8020 | else | |
8021 | env->regs[13] = val; | |
8022 | break; | |
8023 | case 9: /* PSP */ | |
8024 | if (env->v7m.current_sp) | |
8025 | env->regs[13] = val; | |
8026 | else | |
8027 | env->v7m.other_sp = val; | |
8028 | break; | |
8029 | case 16: /* PRIMASK */ | |
4cc35614 PM |
8030 | if (val & 1) { |
8031 | env->daif |= PSTATE_I; | |
8032 | } else { | |
8033 | env->daif &= ~PSTATE_I; | |
8034 | } | |
9ee6e8bb | 8035 | break; |
82845826 | 8036 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
8037 | env->v7m.basepri = val & 0xff; |
8038 | break; | |
82845826 | 8039 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
8040 | val &= 0xff; |
8041 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
8042 | env->v7m.basepri = val; | |
8043 | break; | |
82845826 | 8044 | case 19: /* FAULTMASK */ |
4cc35614 PM |
8045 | if (val & 1) { |
8046 | env->daif |= PSTATE_F; | |
8047 | } else { | |
8048 | env->daif &= ~PSTATE_F; | |
8049 | } | |
82845826 | 8050 | break; |
9ee6e8bb PB |
8051 | case 20: /* CONTROL */ |
8052 | env->v7m.control = val & 3; | |
8053 | switch_v7m_sp(env, (val & 2) != 0); | |
8054 | break; | |
8055 | default: | |
8056 | /* ??? For debugging only. */ | |
a47dddd7 | 8057 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
8058 | return; |
8059 | } | |
8060 | } | |
8061 | ||
b5ff1b31 | 8062 | #endif |
6ddbc6e4 | 8063 | |
aca3f40b PM |
8064 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
8065 | { | |
8066 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
8067 | * Note that we do not implement the (architecturally mandated) | |
8068 | * alignment fault for attempts to use this on Device memory | |
8069 | * (which matches the usual QEMU behaviour of not implementing either | |
8070 | * alignment faults or any memory attribute handling). | |
8071 | */ | |
8072 | ||
8073 | ARMCPU *cpu = arm_env_get_cpu(env); | |
8074 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
8075 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
8076 | ||
8077 | #ifndef CONFIG_USER_ONLY | |
8078 | { | |
8079 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
8080 | * the block size so we might have to do more than one TLB lookup. | |
8081 | * We know that in fact for any v8 CPU the page size is at least 4K | |
8082 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
8083 | * 1K as an artefact of legacy v5 subpage support being present in the | |
8084 | * same QEMU executable. | |
8085 | */ | |
8086 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
8087 | void *hostaddr[maxidx]; | |
8088 | int try, i; | |
97ed5ccd | 8089 | unsigned mmu_idx = cpu_mmu_index(env, false); |
3972ef6f | 8090 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
aca3f40b PM |
8091 | |
8092 | for (try = 0; try < 2; try++) { | |
8093 | ||
8094 | for (i = 0; i < maxidx; i++) { | |
8095 | hostaddr[i] = tlb_vaddr_to_host(env, | |
8096 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 8097 | 1, mmu_idx); |
aca3f40b PM |
8098 | if (!hostaddr[i]) { |
8099 | break; | |
8100 | } | |
8101 | } | |
8102 | if (i == maxidx) { | |
8103 | /* If it's all in the TLB it's fair game for just writing to; | |
8104 | * we know we don't need to update dirty status, etc. | |
8105 | */ | |
8106 | for (i = 0; i < maxidx - 1; i++) { | |
8107 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
8108 | } | |
8109 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
8110 | return; | |
8111 | } | |
8112 | /* OK, try a store and see if we can populate the tlb. This | |
8113 | * might cause an exception if the memory isn't writable, | |
8114 | * in which case we will longjmp out of here. We must for | |
8115 | * this purpose use the actual register value passed to us | |
8116 | * so that we get the fault address right. | |
8117 | */ | |
3972ef6f | 8118 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA()); |
aca3f40b PM |
8119 | /* Now we can populate the other TLB entries, if any */ |
8120 | for (i = 0; i < maxidx; i++) { | |
8121 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
8122 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
3972ef6f | 8123 | helper_ret_stb_mmu(env, va, 0, oi, GETRA()); |
aca3f40b PM |
8124 | } |
8125 | } | |
8126 | } | |
8127 | ||
8128 | /* Slow path (probably attempt to do this to an I/O device or | |
8129 | * similar, or clearing of a block of code we have translations | |
8130 | * cached for). Just do a series of byte writes as the architecture | |
8131 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
8132 | * memset(), unmap() sequence here because: | |
8133 | * + we'd need to account for the blocksize being larger than a page | |
8134 | * + the direct-RAM access case is almost always going to be dealt | |
8135 | * with in the fastpath code above, so there's no speed benefit | |
8136 | * + we would have to deal with the map returning NULL because the | |
8137 | * bounce buffer was in use | |
8138 | */ | |
8139 | for (i = 0; i < blocklen; i++) { | |
3972ef6f | 8140 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA()); |
aca3f40b PM |
8141 | } |
8142 | } | |
8143 | #else | |
8144 | memset(g2h(vaddr), 0, blocklen); | |
8145 | #endif | |
8146 | } | |
8147 | ||
6ddbc6e4 PB |
8148 | /* Note that signed overflow is undefined in C. The following routines are |
8149 | careful to use unsigned types where modulo arithmetic is required. | |
8150 | Failure to do so _will_ break on newer gcc. */ | |
8151 | ||
8152 | /* Signed saturating arithmetic. */ | |
8153 | ||
1654b2d6 | 8154 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
8155 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
8156 | { | |
8157 | uint16_t res; | |
8158 | ||
8159 | res = a + b; | |
8160 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
8161 | if (a & 0x8000) | |
8162 | res = 0x8000; | |
8163 | else | |
8164 | res = 0x7fff; | |
8165 | } | |
8166 | return res; | |
8167 | } | |
8168 | ||
1654b2d6 | 8169 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
8170 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
8171 | { | |
8172 | uint8_t res; | |
8173 | ||
8174 | res = a + b; | |
8175 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
8176 | if (a & 0x80) | |
8177 | res = 0x80; | |
8178 | else | |
8179 | res = 0x7f; | |
8180 | } | |
8181 | return res; | |
8182 | } | |
8183 | ||
1654b2d6 | 8184 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
8185 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
8186 | { | |
8187 | uint16_t res; | |
8188 | ||
8189 | res = a - b; | |
8190 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
8191 | if (a & 0x8000) | |
8192 | res = 0x8000; | |
8193 | else | |
8194 | res = 0x7fff; | |
8195 | } | |
8196 | return res; | |
8197 | } | |
8198 | ||
1654b2d6 | 8199 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
8200 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
8201 | { | |
8202 | uint8_t res; | |
8203 | ||
8204 | res = a - b; | |
8205 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
8206 | if (a & 0x80) | |
8207 | res = 0x80; | |
8208 | else | |
8209 | res = 0x7f; | |
8210 | } | |
8211 | return res; | |
8212 | } | |
8213 | ||
8214 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
8215 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
8216 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
8217 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
8218 | #define PFX q | |
8219 | ||
8220 | #include "op_addsub.h" | |
8221 | ||
8222 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 8223 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
8224 | { |
8225 | uint16_t res; | |
8226 | res = a + b; | |
8227 | if (res < a) | |
8228 | res = 0xffff; | |
8229 | return res; | |
8230 | } | |
8231 | ||
460a09c1 | 8232 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 8233 | { |
4c4fd3f8 | 8234 | if (a > b) |
6ddbc6e4 PB |
8235 | return a - b; |
8236 | else | |
8237 | return 0; | |
8238 | } | |
8239 | ||
8240 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
8241 | { | |
8242 | uint8_t res; | |
8243 | res = a + b; | |
8244 | if (res < a) | |
8245 | res = 0xff; | |
8246 | return res; | |
8247 | } | |
8248 | ||
8249 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
8250 | { | |
4c4fd3f8 | 8251 | if (a > b) |
6ddbc6e4 PB |
8252 | return a - b; |
8253 | else | |
8254 | return 0; | |
8255 | } | |
8256 | ||
8257 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
8258 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
8259 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
8260 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
8261 | #define PFX uq | |
8262 | ||
8263 | #include "op_addsub.h" | |
8264 | ||
8265 | /* Signed modulo arithmetic. */ | |
8266 | #define SARITH16(a, b, n, op) do { \ | |
8267 | int32_t sum; \ | |
db6e2e65 | 8268 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
8269 | RESULT(sum, n, 16); \ |
8270 | if (sum >= 0) \ | |
8271 | ge |= 3 << (n * 2); \ | |
8272 | } while(0) | |
8273 | ||
8274 | #define SARITH8(a, b, n, op) do { \ | |
8275 | int32_t sum; \ | |
db6e2e65 | 8276 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
8277 | RESULT(sum, n, 8); \ |
8278 | if (sum >= 0) \ | |
8279 | ge |= 1 << n; \ | |
8280 | } while(0) | |
8281 | ||
8282 | ||
8283 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
8284 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
8285 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
8286 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
8287 | #define PFX s | |
8288 | #define ARITH_GE | |
8289 | ||
8290 | #include "op_addsub.h" | |
8291 | ||
8292 | /* Unsigned modulo arithmetic. */ | |
8293 | #define ADD16(a, b, n) do { \ | |
8294 | uint32_t sum; \ | |
8295 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
8296 | RESULT(sum, n, 16); \ | |
a87aa10b | 8297 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
8298 | ge |= 3 << (n * 2); \ |
8299 | } while(0) | |
8300 | ||
8301 | #define ADD8(a, b, n) do { \ | |
8302 | uint32_t sum; \ | |
8303 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
8304 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
8305 | if ((sum >> 8) == 1) \ |
8306 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
8307 | } while(0) |
8308 | ||
8309 | #define SUB16(a, b, n) do { \ | |
8310 | uint32_t sum; \ | |
8311 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
8312 | RESULT(sum, n, 16); \ | |
8313 | if ((sum >> 16) == 0) \ | |
8314 | ge |= 3 << (n * 2); \ | |
8315 | } while(0) | |
8316 | ||
8317 | #define SUB8(a, b, n) do { \ | |
8318 | uint32_t sum; \ | |
8319 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
8320 | RESULT(sum, n, 8); \ | |
8321 | if ((sum >> 8) == 0) \ | |
a87aa10b | 8322 | ge |= 1 << n; \ |
6ddbc6e4 PB |
8323 | } while(0) |
8324 | ||
8325 | #define PFX u | |
8326 | #define ARITH_GE | |
8327 | ||
8328 | #include "op_addsub.h" | |
8329 | ||
8330 | /* Halved signed arithmetic. */ | |
8331 | #define ADD16(a, b, n) \ | |
8332 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
8333 | #define SUB16(a, b, n) \ | |
8334 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
8335 | #define ADD8(a, b, n) \ | |
8336 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
8337 | #define SUB8(a, b, n) \ | |
8338 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
8339 | #define PFX sh | |
8340 | ||
8341 | #include "op_addsub.h" | |
8342 | ||
8343 | /* Halved unsigned arithmetic. */ | |
8344 | #define ADD16(a, b, n) \ | |
8345 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
8346 | #define SUB16(a, b, n) \ | |
8347 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
8348 | #define ADD8(a, b, n) \ | |
8349 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
8350 | #define SUB8(a, b, n) \ | |
8351 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
8352 | #define PFX uh | |
8353 | ||
8354 | #include "op_addsub.h" | |
8355 | ||
8356 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
8357 | { | |
8358 | if (a > b) | |
8359 | return a - b; | |
8360 | else | |
8361 | return b - a; | |
8362 | } | |
8363 | ||
8364 | /* Unsigned sum of absolute byte differences. */ | |
8365 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
8366 | { | |
8367 | uint32_t sum; | |
8368 | sum = do_usad(a, b); | |
8369 | sum += do_usad(a >> 8, b >> 8); | |
8370 | sum += do_usad(a >> 16, b >>16); | |
8371 | sum += do_usad(a >> 24, b >> 24); | |
8372 | return sum; | |
8373 | } | |
8374 | ||
8375 | /* For ARMv6 SEL instruction. */ | |
8376 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
8377 | { | |
8378 | uint32_t mask; | |
8379 | ||
8380 | mask = 0; | |
8381 | if (flags & 1) | |
8382 | mask |= 0xff; | |
8383 | if (flags & 2) | |
8384 | mask |= 0xff00; | |
8385 | if (flags & 4) | |
8386 | mask |= 0xff0000; | |
8387 | if (flags & 8) | |
8388 | mask |= 0xff000000; | |
8389 | return (a & mask) | (b & ~mask); | |
8390 | } | |
8391 | ||
b90372ad PM |
8392 | /* VFP support. We follow the convention used for VFP instructions: |
8393 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
8394 | "d" suffix. */ |
8395 | ||
8396 | /* Convert host exception flags to vfp form. */ | |
8397 | static inline int vfp_exceptbits_from_host(int host_bits) | |
8398 | { | |
8399 | int target_bits = 0; | |
8400 | ||
8401 | if (host_bits & float_flag_invalid) | |
8402 | target_bits |= 1; | |
8403 | if (host_bits & float_flag_divbyzero) | |
8404 | target_bits |= 2; | |
8405 | if (host_bits & float_flag_overflow) | |
8406 | target_bits |= 4; | |
36802b6b | 8407 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
8408 | target_bits |= 8; |
8409 | if (host_bits & float_flag_inexact) | |
8410 | target_bits |= 0x10; | |
cecd8504 PM |
8411 | if (host_bits & float_flag_input_denormal) |
8412 | target_bits |= 0x80; | |
4373f3ce PB |
8413 | return target_bits; |
8414 | } | |
8415 | ||
0ecb72a5 | 8416 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
8417 | { |
8418 | int i; | |
8419 | uint32_t fpscr; | |
8420 | ||
8421 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
8422 | | (env->vfp.vec_len << 16) | |
8423 | | (env->vfp.vec_stride << 20); | |
8424 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 8425 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
8426 | fpscr |= vfp_exceptbits_from_host(i); |
8427 | return fpscr; | |
8428 | } | |
8429 | ||
0ecb72a5 | 8430 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
8431 | { |
8432 | return HELPER(vfp_get_fpscr)(env); | |
8433 | } | |
8434 | ||
4373f3ce PB |
8435 | /* Convert vfp exception flags to target form. */ |
8436 | static inline int vfp_exceptbits_to_host(int target_bits) | |
8437 | { | |
8438 | int host_bits = 0; | |
8439 | ||
8440 | if (target_bits & 1) | |
8441 | host_bits |= float_flag_invalid; | |
8442 | if (target_bits & 2) | |
8443 | host_bits |= float_flag_divbyzero; | |
8444 | if (target_bits & 4) | |
8445 | host_bits |= float_flag_overflow; | |
8446 | if (target_bits & 8) | |
8447 | host_bits |= float_flag_underflow; | |
8448 | if (target_bits & 0x10) | |
8449 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
8450 | if (target_bits & 0x80) |
8451 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
8452 | return host_bits; |
8453 | } | |
8454 | ||
0ecb72a5 | 8455 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
8456 | { |
8457 | int i; | |
8458 | uint32_t changed; | |
8459 | ||
8460 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
8461 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
8462 | env->vfp.vec_len = (val >> 16) & 7; | |
8463 | env->vfp.vec_stride = (val >> 20) & 3; | |
8464 | ||
8465 | changed ^= val; | |
8466 | if (changed & (3 << 22)) { | |
8467 | i = (val >> 22) & 3; | |
8468 | switch (i) { | |
4d3da0f3 | 8469 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
8470 | i = float_round_nearest_even; |
8471 | break; | |
4d3da0f3 | 8472 | case FPROUNDING_POSINF: |
4373f3ce PB |
8473 | i = float_round_up; |
8474 | break; | |
4d3da0f3 | 8475 | case FPROUNDING_NEGINF: |
4373f3ce PB |
8476 | i = float_round_down; |
8477 | break; | |
4d3da0f3 | 8478 | case FPROUNDING_ZERO: |
4373f3ce PB |
8479 | i = float_round_to_zero; |
8480 | break; | |
8481 | } | |
8482 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
8483 | } | |
cecd8504 | 8484 | if (changed & (1 << 24)) { |
fe76d976 | 8485 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
8486 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
8487 | } | |
5c7908ed PB |
8488 | if (changed & (1 << 25)) |
8489 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 8490 | |
b12c390b | 8491 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 8492 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 8493 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
8494 | } |
8495 | ||
0ecb72a5 | 8496 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
8497 | { |
8498 | HELPER(vfp_set_fpscr)(env, val); | |
8499 | } | |
8500 | ||
4373f3ce PB |
8501 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
8502 | ||
8503 | #define VFP_BINOP(name) \ | |
ae1857ec | 8504 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 8505 | { \ |
ae1857ec PM |
8506 | float_status *fpst = fpstp; \ |
8507 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 8508 | } \ |
ae1857ec | 8509 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 8510 | { \ |
ae1857ec PM |
8511 | float_status *fpst = fpstp; \ |
8512 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
8513 | } |
8514 | VFP_BINOP(add) | |
8515 | VFP_BINOP(sub) | |
8516 | VFP_BINOP(mul) | |
8517 | VFP_BINOP(div) | |
f71a2ae5 PM |
8518 | VFP_BINOP(min) |
8519 | VFP_BINOP(max) | |
8520 | VFP_BINOP(minnum) | |
8521 | VFP_BINOP(maxnum) | |
4373f3ce PB |
8522 | #undef VFP_BINOP |
8523 | ||
8524 | float32 VFP_HELPER(neg, s)(float32 a) | |
8525 | { | |
8526 | return float32_chs(a); | |
8527 | } | |
8528 | ||
8529 | float64 VFP_HELPER(neg, d)(float64 a) | |
8530 | { | |
66230e0d | 8531 | return float64_chs(a); |
4373f3ce PB |
8532 | } |
8533 | ||
8534 | float32 VFP_HELPER(abs, s)(float32 a) | |
8535 | { | |
8536 | return float32_abs(a); | |
8537 | } | |
8538 | ||
8539 | float64 VFP_HELPER(abs, d)(float64 a) | |
8540 | { | |
66230e0d | 8541 | return float64_abs(a); |
4373f3ce PB |
8542 | } |
8543 | ||
0ecb72a5 | 8544 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
8545 | { |
8546 | return float32_sqrt(a, &env->vfp.fp_status); | |
8547 | } | |
8548 | ||
0ecb72a5 | 8549 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
8550 | { |
8551 | return float64_sqrt(a, &env->vfp.fp_status); | |
8552 | } | |
8553 | ||
8554 | /* XXX: check quiet/signaling case */ | |
8555 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 8556 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
8557 | { \ |
8558 | uint32_t flags; \ | |
8559 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
8560 | case 0: flags = 0x6; break; \ | |
8561 | case -1: flags = 0x8; break; \ | |
8562 | case 1: flags = 0x2; break; \ | |
8563 | default: case 2: flags = 0x3; break; \ | |
8564 | } \ | |
8565 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
8566 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
8567 | } \ | |
0ecb72a5 | 8568 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
8569 | { \ |
8570 | uint32_t flags; \ | |
8571 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
8572 | case 0: flags = 0x6; break; \ | |
8573 | case -1: flags = 0x8; break; \ | |
8574 | case 1: flags = 0x2; break; \ | |
8575 | default: case 2: flags = 0x3; break; \ | |
8576 | } \ | |
8577 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
8578 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
8579 | } | |
8580 | DO_VFP_cmp(s, float32) | |
8581 | DO_VFP_cmp(d, float64) | |
8582 | #undef DO_VFP_cmp | |
8583 | ||
5500b06c | 8584 | /* Integer to float and float to integer conversions */ |
4373f3ce | 8585 | |
5500b06c PM |
8586 | #define CONV_ITOF(name, fsz, sign) \ |
8587 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
8588 | { \ | |
8589 | float_status *fpst = fpstp; \ | |
85836979 | 8590 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
8591 | } |
8592 | ||
5500b06c PM |
8593 | #define CONV_FTOI(name, fsz, sign, round) \ |
8594 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
8595 | { \ | |
8596 | float_status *fpst = fpstp; \ | |
8597 | if (float##fsz##_is_any_nan(x)) { \ | |
8598 | float_raise(float_flag_invalid, fpst); \ | |
8599 | return 0; \ | |
8600 | } \ | |
8601 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
8602 | } |
8603 | ||
5500b06c PM |
8604 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
8605 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
8606 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
8607 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 8608 | |
5500b06c PM |
8609 | FLOAT_CONVS(si, s, 32, ) |
8610 | FLOAT_CONVS(si, d, 64, ) | |
8611 | FLOAT_CONVS(ui, s, 32, u) | |
8612 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 8613 | |
5500b06c PM |
8614 | #undef CONV_ITOF |
8615 | #undef CONV_FTOI | |
8616 | #undef FLOAT_CONVS | |
4373f3ce PB |
8617 | |
8618 | /* floating point conversion */ | |
0ecb72a5 | 8619 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 8620 | { |
2d627737 PM |
8621 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
8622 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
8623 | * a quiet NaN by forcing the most significant frac bit to 1. | |
8624 | */ | |
8625 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
8626 | } |
8627 | ||
0ecb72a5 | 8628 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 8629 | { |
2d627737 PM |
8630 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
8631 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
8632 | * a quiet NaN by forcing the most significant frac bit to 1. | |
8633 | */ | |
8634 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
8635 | } |
8636 | ||
8637 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 8638 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
8639 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
8640 | void *fpstp) \ | |
4373f3ce | 8641 | { \ |
5500b06c | 8642 | float_status *fpst = fpstp; \ |
622465e1 | 8643 | float##fsz tmp; \ |
8ed697e8 | 8644 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 8645 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
8646 | } |
8647 | ||
abe66f70 PM |
8648 | /* Notice that we want only input-denormal exception flags from the |
8649 | * scalbn operation: the other possible flags (overflow+inexact if | |
8650 | * we overflow to infinity, output-denormal) aren't correct for the | |
8651 | * complete scale-and-convert operation. | |
8652 | */ | |
16d5b3ca WN |
8653 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
8654 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
8655 | uint32_t shift, \ | |
8656 | void *fpstp) \ | |
4373f3ce | 8657 | { \ |
5500b06c | 8658 | float_status *fpst = fpstp; \ |
abe66f70 | 8659 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
8660 | float##fsz tmp; \ |
8661 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 8662 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 8663 | return 0; \ |
09d9487f | 8664 | } \ |
5500b06c | 8665 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
8666 | old_exc_flags |= get_float_exception_flags(fpst) \ |
8667 | & float_flag_input_denormal; \ | |
8668 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 8669 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
8670 | } |
8671 | ||
16d5b3ca WN |
8672 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
8673 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
8674 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
8675 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
8676 | ||
8677 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
8678 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
8679 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 8680 | |
8ed697e8 WN |
8681 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
8682 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 8683 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
8684 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
8685 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 8686 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
8687 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
8688 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 8689 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
8690 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
8691 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 8692 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 8693 | #undef VFP_CONV_FIX |
16d5b3ca WN |
8694 | #undef VFP_CONV_FIX_FLOAT |
8695 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 8696 | |
52a1f6a3 AG |
8697 | /* Set the current fp rounding mode and return the old one. |
8698 | * The argument is a softfloat float_round_ value. | |
8699 | */ | |
8700 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
8701 | { | |
8702 | float_status *fp_status = &env->vfp.fp_status; | |
8703 | ||
8704 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
8705 | set_float_rounding_mode(rmode, fp_status); | |
8706 | ||
8707 | return prev_rmode; | |
8708 | } | |
8709 | ||
43630e58 WN |
8710 | /* Set the current fp rounding mode in the standard fp status and return |
8711 | * the old one. This is for NEON instructions that need to change the | |
8712 | * rounding mode but wish to use the standard FPSCR values for everything | |
8713 | * else. Always set the rounding mode back to the correct value after | |
8714 | * modifying it. | |
8715 | * The argument is a softfloat float_round_ value. | |
8716 | */ | |
8717 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
8718 | { | |
8719 | float_status *fp_status = &env->vfp.standard_fp_status; | |
8720 | ||
8721 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
8722 | set_float_rounding_mode(rmode, fp_status); | |
8723 | ||
8724 | return prev_rmode; | |
8725 | } | |
8726 | ||
60011498 | 8727 | /* Half precision conversions. */ |
0ecb72a5 | 8728 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 8729 | { |
60011498 | 8730 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
8731 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
8732 | if (ieee) { | |
8733 | return float32_maybe_silence_nan(r); | |
8734 | } | |
8735 | return r; | |
60011498 PB |
8736 | } |
8737 | ||
0ecb72a5 | 8738 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 8739 | { |
60011498 | 8740 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
8741 | float16 r = float32_to_float16(a, ieee, s); |
8742 | if (ieee) { | |
8743 | r = float16_maybe_silence_nan(r); | |
8744 | } | |
8745 | return float16_val(r); | |
60011498 PB |
8746 | } |
8747 | ||
0ecb72a5 | 8748 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
8749 | { |
8750 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
8751 | } | |
8752 | ||
0ecb72a5 | 8753 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
8754 | { |
8755 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
8756 | } | |
8757 | ||
0ecb72a5 | 8758 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
8759 | { |
8760 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
8761 | } | |
8762 | ||
0ecb72a5 | 8763 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
8764 | { |
8765 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
8766 | } | |
8767 | ||
8900aad2 PM |
8768 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
8769 | { | |
8770 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
8771 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
8772 | if (ieee) { | |
8773 | return float64_maybe_silence_nan(r); | |
8774 | } | |
8775 | return r; | |
8776 | } | |
8777 | ||
8778 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
8779 | { | |
8780 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
8781 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
8782 | if (ieee) { | |
8783 | r = float16_maybe_silence_nan(r); | |
8784 | } | |
8785 | return float16_val(r); | |
8786 | } | |
8787 | ||
dda3ec49 | 8788 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
8789 | #define float32_three make_float32(0x40400000) |
8790 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 8791 | |
0ecb72a5 | 8792 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 8793 | { |
dda3ec49 PM |
8794 | float_status *s = &env->vfp.standard_fp_status; |
8795 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
8796 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
8797 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
8798 | float_raise(float_flag_input_denormal, s); | |
8799 | } | |
dda3ec49 PM |
8800 | return float32_two; |
8801 | } | |
8802 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
8803 | } |
8804 | ||
0ecb72a5 | 8805 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 8806 | { |
71826966 | 8807 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
8808 | float32 product; |
8809 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
8810 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
8811 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
8812 | float_raise(float_flag_input_denormal, s); | |
8813 | } | |
6aae3df1 | 8814 | return float32_one_point_five; |
9ea62f57 | 8815 | } |
6aae3df1 PM |
8816 | product = float32_mul(a, b, s); |
8817 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
8818 | } |
8819 | ||
8f8e3aa4 PB |
8820 | /* NEON helpers. */ |
8821 | ||
56bf4fe2 CL |
8822 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
8823 | * int->float conversions at run-time. */ | |
8824 | #define float64_256 make_float64(0x4070000000000000LL) | |
8825 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
8826 | #define float32_maxnorm make_float32(0x7f7fffff) |
8827 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 8828 | |
b6d4443a AB |
8829 | /* Reciprocal functions |
8830 | * | |
8831 | * The algorithm that must be used to calculate the estimate | |
8832 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 8833 | */ |
b6d4443a AB |
8834 | |
8835 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 8836 | { |
1146a817 PM |
8837 | /* These calculations mustn't set any fp exception flags, |
8838 | * so we use a local copy of the fp_status. | |
8839 | */ | |
b6d4443a | 8840 | float_status dummy_status = *real_fp_status; |
1146a817 | 8841 | float_status *s = &dummy_status; |
fe0e4872 CL |
8842 | /* q = (int)(a * 512.0) */ |
8843 | float64 q = float64_mul(float64_512, a, s); | |
8844 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
8845 | ||
8846 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
8847 | q = int64_to_float64(q_int, s); | |
8848 | q = float64_add(q, float64_half, s); | |
8849 | q = float64_div(q, float64_512, s); | |
8850 | q = float64_div(float64_one, q, s); | |
8851 | ||
8852 | /* s = (int)(256.0 * r + 0.5) */ | |
8853 | q = float64_mul(q, float64_256, s); | |
8854 | q = float64_add(q, float64_half, s); | |
8855 | q_int = float64_to_int64_round_to_zero(q, s); | |
8856 | ||
8857 | /* return (double)s / 256.0 */ | |
8858 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
8859 | } | |
8860 | ||
b6d4443a AB |
8861 | /* Common wrapper to call recip_estimate */ |
8862 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 8863 | { |
b6d4443a AB |
8864 | uint64_t val64 = float64_val(num); |
8865 | uint64_t frac = extract64(val64, 0, 52); | |
8866 | int64_t exp = extract64(val64, 52, 11); | |
8867 | uint64_t sbit; | |
8868 | float64 scaled, estimate; | |
fe0e4872 | 8869 | |
b6d4443a AB |
8870 | /* Generate the scaled number for the estimate function */ |
8871 | if (exp == 0) { | |
8872 | if (extract64(frac, 51, 1) == 0) { | |
8873 | exp = -1; | |
8874 | frac = extract64(frac, 0, 50) << 2; | |
8875 | } else { | |
8876 | frac = extract64(frac, 0, 51) << 1; | |
8877 | } | |
8878 | } | |
fe0e4872 | 8879 | |
b6d4443a AB |
8880 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
8881 | scaled = make_float64((0x3feULL << 52) | |
8882 | | extract64(frac, 44, 8) << 44); | |
8883 | ||
8884 | estimate = recip_estimate(scaled, fpst); | |
8885 | ||
8886 | /* Build new result */ | |
8887 | val64 = float64_val(estimate); | |
8888 | sbit = 0x8000000000000000ULL & val64; | |
8889 | exp = off - exp; | |
8890 | frac = extract64(val64, 0, 52); | |
8891 | ||
8892 | if (exp == 0) { | |
8893 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
8894 | } else if (exp == -1) { | |
8895 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
8896 | exp = 0; | |
8897 | } | |
8898 | ||
8899 | return make_float64(sbit | (exp << 52) | frac); | |
8900 | } | |
8901 | ||
8902 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
8903 | { | |
8904 | switch (fpst->float_rounding_mode) { | |
8905 | case float_round_nearest_even: /* Round to Nearest */ | |
8906 | return true; | |
8907 | case float_round_up: /* Round to +Inf */ | |
8908 | return !sign_bit; | |
8909 | case float_round_down: /* Round to -Inf */ | |
8910 | return sign_bit; | |
8911 | case float_round_to_zero: /* Round to Zero */ | |
8912 | return false; | |
8913 | } | |
8914 | ||
8915 | g_assert_not_reached(); | |
8916 | } | |
8917 | ||
8918 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
8919 | { | |
8920 | float_status *fpst = fpstp; | |
8921 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
8922 | uint32_t f32_val = float32_val(f32); | |
8923 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
8924 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
8925 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
8926 | float64 f64, r64; | |
8927 | uint64_t r64_val; | |
8928 | int64_t r64_exp; | |
8929 | uint64_t r64_frac; | |
8930 | ||
8931 | if (float32_is_any_nan(f32)) { | |
8932 | float32 nan = f32; | |
8933 | if (float32_is_signaling_nan(f32)) { | |
8934 | float_raise(float_flag_invalid, fpst); | |
8935 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 8936 | } |
b6d4443a AB |
8937 | if (fpst->default_nan_mode) { |
8938 | nan = float32_default_nan; | |
43fe9bdb | 8939 | } |
b6d4443a AB |
8940 | return nan; |
8941 | } else if (float32_is_infinity(f32)) { | |
8942 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
8943 | } else if (float32_is_zero(f32)) { | |
8944 | float_raise(float_flag_divbyzero, fpst); | |
8945 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
8946 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
8947 | /* Abs(value) < 2.0^-128 */ | |
8948 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
8949 | if (round_to_inf(fpst, f32_sbit)) { | |
8950 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
8951 | } else { | |
8952 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
8953 | } | |
8954 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
8955 | float_raise(float_flag_underflow, fpst); | |
8956 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
8957 | } |
8958 | ||
fe0e4872 | 8959 | |
b6d4443a AB |
8960 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
8961 | r64 = call_recip_estimate(f64, 253, fpst); | |
8962 | r64_val = float64_val(r64); | |
8963 | r64_exp = extract64(r64_val, 52, 11); | |
8964 | r64_frac = extract64(r64_val, 0, 52); | |
8965 | ||
8966 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
8967 | return make_float32(f32_sbit | | |
8968 | (r64_exp & 0xff) << 23 | | |
8969 | extract64(r64_frac, 29, 24)); | |
8970 | } | |
8971 | ||
8972 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
8973 | { | |
8974 | float_status *fpst = fpstp; | |
8975 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
8976 | uint64_t f64_val = float64_val(f64); | |
8977 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
8978 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
8979 | float64 r64; | |
8980 | uint64_t r64_val; | |
8981 | int64_t r64_exp; | |
8982 | uint64_t r64_frac; | |
8983 | ||
8984 | /* Deal with any special cases */ | |
8985 | if (float64_is_any_nan(f64)) { | |
8986 | float64 nan = f64; | |
8987 | if (float64_is_signaling_nan(f64)) { | |
8988 | float_raise(float_flag_invalid, fpst); | |
8989 | nan = float64_maybe_silence_nan(f64); | |
8990 | } | |
8991 | if (fpst->default_nan_mode) { | |
8992 | nan = float64_default_nan; | |
8993 | } | |
8994 | return nan; | |
8995 | } else if (float64_is_infinity(f64)) { | |
8996 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
8997 | } else if (float64_is_zero(f64)) { | |
8998 | float_raise(float_flag_divbyzero, fpst); | |
8999 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
9000 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
9001 | /* Abs(value) < 2.0^-1024 */ | |
9002 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
9003 | if (round_to_inf(fpst, f64_sbit)) { | |
9004 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
9005 | } else { | |
9006 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
9007 | } | |
fc1792e9 | 9008 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
9009 | float_raise(float_flag_underflow, fpst); |
9010 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
9011 | } | |
fe0e4872 | 9012 | |
b6d4443a AB |
9013 | r64 = call_recip_estimate(f64, 2045, fpst); |
9014 | r64_val = float64_val(r64); | |
9015 | r64_exp = extract64(r64_val, 52, 11); | |
9016 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 9017 | |
b6d4443a AB |
9018 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
9019 | return make_float64(f64_sbit | | |
9020 | ((r64_exp & 0x7ff) << 52) | | |
9021 | r64_frac); | |
4373f3ce PB |
9022 | } |
9023 | ||
e07be5d2 CL |
9024 | /* The algorithm that must be used to calculate the estimate |
9025 | * is specified by the ARM ARM. | |
9026 | */ | |
c2fb418e | 9027 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 9028 | { |
1146a817 PM |
9029 | /* These calculations mustn't set any fp exception flags, |
9030 | * so we use a local copy of the fp_status. | |
9031 | */ | |
c2fb418e | 9032 | float_status dummy_status = *real_fp_status; |
1146a817 | 9033 | float_status *s = &dummy_status; |
e07be5d2 CL |
9034 | float64 q; |
9035 | int64_t q_int; | |
9036 | ||
9037 | if (float64_lt(a, float64_half, s)) { | |
9038 | /* range 0.25 <= a < 0.5 */ | |
9039 | ||
9040 | /* a in units of 1/512 rounded down */ | |
9041 | /* q0 = (int)(a * 512.0); */ | |
9042 | q = float64_mul(float64_512, a, s); | |
9043 | q_int = float64_to_int64_round_to_zero(q, s); | |
9044 | ||
9045 | /* reciprocal root r */ | |
9046 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
9047 | q = int64_to_float64(q_int, s); | |
9048 | q = float64_add(q, float64_half, s); | |
9049 | q = float64_div(q, float64_512, s); | |
9050 | q = float64_sqrt(q, s); | |
9051 | q = float64_div(float64_one, q, s); | |
9052 | } else { | |
9053 | /* range 0.5 <= a < 1.0 */ | |
9054 | ||
9055 | /* a in units of 1/256 rounded down */ | |
9056 | /* q1 = (int)(a * 256.0); */ | |
9057 | q = float64_mul(float64_256, a, s); | |
9058 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
9059 | ||
9060 | /* reciprocal root r */ | |
9061 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
9062 | q = int64_to_float64(q_int, s); | |
9063 | q = float64_add(q, float64_half, s); | |
9064 | q = float64_div(q, float64_256, s); | |
9065 | q = float64_sqrt(q, s); | |
9066 | q = float64_div(float64_one, q, s); | |
9067 | } | |
9068 | /* r in units of 1/256 rounded to nearest */ | |
9069 | /* s = (int)(256.0 * r + 0.5); */ | |
9070 | ||
9071 | q = float64_mul(q, float64_256,s ); | |
9072 | q = float64_add(q, float64_half, s); | |
9073 | q_int = float64_to_int64_round_to_zero(q, s); | |
9074 | ||
9075 | /* return (double)s / 256.0;*/ | |
9076 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
9077 | } | |
9078 | ||
c2fb418e | 9079 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 9080 | { |
c2fb418e AB |
9081 | float_status *s = fpstp; |
9082 | float32 f32 = float32_squash_input_denormal(input, s); | |
9083 | uint32_t val = float32_val(f32); | |
9084 | uint32_t f32_sbit = 0x80000000 & val; | |
9085 | int32_t f32_exp = extract32(val, 23, 8); | |
9086 | uint32_t f32_frac = extract32(val, 0, 23); | |
9087 | uint64_t f64_frac; | |
9088 | uint64_t val64; | |
e07be5d2 CL |
9089 | int result_exp; |
9090 | float64 f64; | |
e07be5d2 | 9091 | |
c2fb418e AB |
9092 | if (float32_is_any_nan(f32)) { |
9093 | float32 nan = f32; | |
9094 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 9095 | float_raise(float_flag_invalid, s); |
c2fb418e | 9096 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 9097 | } |
c2fb418e AB |
9098 | if (s->default_nan_mode) { |
9099 | nan = float32_default_nan; | |
43fe9bdb | 9100 | } |
c2fb418e AB |
9101 | return nan; |
9102 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 9103 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
9104 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
9105 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
9106 | float_raise(float_flag_invalid, s); |
9107 | return float32_default_nan; | |
c2fb418e | 9108 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
9109 | return float32_zero; |
9110 | } | |
9111 | ||
c2fb418e | 9112 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 9113 | * preserving the parity of the exponent. */ |
c2fb418e AB |
9114 | |
9115 | f64_frac = ((uint64_t) f32_frac) << 29; | |
9116 | if (f32_exp == 0) { | |
9117 | while (extract64(f64_frac, 51, 1) == 0) { | |
9118 | f64_frac = f64_frac << 1; | |
9119 | f32_exp = f32_exp-1; | |
9120 | } | |
9121 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
9122 | } | |
9123 | ||
9124 | if (extract64(f32_exp, 0, 1) == 0) { | |
9125 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 9126 | | (0x3feULL << 52) |
c2fb418e | 9127 | | f64_frac); |
e07be5d2 | 9128 | } else { |
c2fb418e | 9129 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 9130 | | (0x3fdULL << 52) |
c2fb418e | 9131 | | f64_frac); |
e07be5d2 CL |
9132 | } |
9133 | ||
c2fb418e | 9134 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 9135 | |
c2fb418e | 9136 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
9137 | |
9138 | val64 = float64_val(f64); | |
9139 | ||
26cc6abf | 9140 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
9141 | | ((val64 >> 29) & 0x7fffff); |
9142 | return make_float32(val); | |
4373f3ce PB |
9143 | } |
9144 | ||
c2fb418e AB |
9145 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
9146 | { | |
9147 | float_status *s = fpstp; | |
9148 | float64 f64 = float64_squash_input_denormal(input, s); | |
9149 | uint64_t val = float64_val(f64); | |
9150 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
9151 | int64_t f64_exp = extract64(val, 52, 11); | |
9152 | uint64_t f64_frac = extract64(val, 0, 52); | |
9153 | int64_t result_exp; | |
9154 | uint64_t result_frac; | |
9155 | ||
9156 | if (float64_is_any_nan(f64)) { | |
9157 | float64 nan = f64; | |
9158 | if (float64_is_signaling_nan(f64)) { | |
9159 | float_raise(float_flag_invalid, s); | |
9160 | nan = float64_maybe_silence_nan(f64); | |
9161 | } | |
9162 | if (s->default_nan_mode) { | |
9163 | nan = float64_default_nan; | |
9164 | } | |
9165 | return nan; | |
9166 | } else if (float64_is_zero(f64)) { | |
9167 | float_raise(float_flag_divbyzero, s); | |
9168 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
9169 | } else if (float64_is_neg(f64)) { | |
9170 | float_raise(float_flag_invalid, s); | |
9171 | return float64_default_nan; | |
9172 | } else if (float64_is_infinity(f64)) { | |
9173 | return float64_zero; | |
9174 | } | |
9175 | ||
9176 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
9177 | * preserving the parity of the exponent. */ | |
9178 | ||
9179 | if (f64_exp == 0) { | |
9180 | while (extract64(f64_frac, 51, 1) == 0) { | |
9181 | f64_frac = f64_frac << 1; | |
9182 | f64_exp = f64_exp - 1; | |
9183 | } | |
9184 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
9185 | } | |
9186 | ||
9187 | if (extract64(f64_exp, 0, 1) == 0) { | |
9188 | f64 = make_float64(f64_sbit | |
9189 | | (0x3feULL << 52) | |
9190 | | f64_frac); | |
9191 | } else { | |
9192 | f64 = make_float64(f64_sbit | |
9193 | | (0x3fdULL << 52) | |
9194 | | f64_frac); | |
9195 | } | |
9196 | ||
9197 | result_exp = (3068 - f64_exp) / 2; | |
9198 | ||
9199 | f64 = recip_sqrt_estimate(f64, s); | |
9200 | ||
9201 | result_frac = extract64(float64_val(f64), 0, 52); | |
9202 | ||
9203 | return make_float64(f64_sbit | | |
9204 | ((result_exp & 0x7ff) << 52) | | |
9205 | result_frac); | |
9206 | } | |
9207 | ||
b6d4443a | 9208 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 9209 | { |
b6d4443a | 9210 | float_status *s = fpstp; |
fe0e4872 CL |
9211 | float64 f64; |
9212 | ||
9213 | if ((a & 0x80000000) == 0) { | |
9214 | return 0xffffffff; | |
9215 | } | |
9216 | ||
9217 | f64 = make_float64((0x3feULL << 52) | |
9218 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
9219 | ||
b6d4443a | 9220 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
9221 | |
9222 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
9223 | } |
9224 | ||
c2fb418e | 9225 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 9226 | { |
c2fb418e | 9227 | float_status *fpst = fpstp; |
e07be5d2 CL |
9228 | float64 f64; |
9229 | ||
9230 | if ((a & 0xc0000000) == 0) { | |
9231 | return 0xffffffff; | |
9232 | } | |
9233 | ||
9234 | if (a & 0x80000000) { | |
9235 | f64 = make_float64((0x3feULL << 52) | |
9236 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
9237 | } else { /* bits 31-30 == '01' */ | |
9238 | f64 = make_float64((0x3fdULL << 52) | |
9239 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
9240 | } | |
9241 | ||
c2fb418e | 9242 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
9243 | |
9244 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 9245 | } |
fe1479c3 | 9246 | |
da97f52c PM |
9247 | /* VFPv4 fused multiply-accumulate */ |
9248 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
9249 | { | |
9250 | float_status *fpst = fpstp; | |
9251 | return float32_muladd(a, b, c, 0, fpst); | |
9252 | } | |
9253 | ||
9254 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
9255 | { | |
9256 | float_status *fpst = fpstp; | |
9257 | return float64_muladd(a, b, c, 0, fpst); | |
9258 | } | |
d9b0848d PM |
9259 | |
9260 | /* ARMv8 round to integral */ | |
9261 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
9262 | { | |
9263 | return float32_round_to_int(x, fp_status); | |
9264 | } | |
9265 | ||
9266 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
9267 | { | |
9268 | return float64_round_to_int(x, fp_status); | |
9269 | } | |
9270 | ||
9271 | float32 HELPER(rints)(float32 x, void *fp_status) | |
9272 | { | |
9273 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
9274 | float32 ret; | |
9275 | ||
9276 | ret = float32_round_to_int(x, fp_status); | |
9277 | ||
9278 | /* Suppress any inexact exceptions the conversion produced */ | |
9279 | if (!(old_flags & float_flag_inexact)) { | |
9280 | new_flags = get_float_exception_flags(fp_status); | |
9281 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
9282 | } | |
9283 | ||
9284 | return ret; | |
9285 | } | |
9286 | ||
9287 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
9288 | { | |
9289 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
9290 | float64 ret; | |
9291 | ||
9292 | ret = float64_round_to_int(x, fp_status); | |
9293 | ||
9294 | new_flags = get_float_exception_flags(fp_status); | |
9295 | ||
9296 | /* Suppress any inexact exceptions the conversion produced */ | |
9297 | if (!(old_flags & float_flag_inexact)) { | |
9298 | new_flags = get_float_exception_flags(fp_status); | |
9299 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
9300 | } | |
9301 | ||
9302 | return ret; | |
9303 | } | |
9972da66 WN |
9304 | |
9305 | /* Convert ARM rounding mode to softfloat */ | |
9306 | int arm_rmode_to_sf(int rmode) | |
9307 | { | |
9308 | switch (rmode) { | |
9309 | case FPROUNDING_TIEAWAY: | |
9310 | rmode = float_round_ties_away; | |
9311 | break; | |
9312 | case FPROUNDING_ODD: | |
9313 | /* FIXME: add support for TIEAWAY and ODD */ | |
9314 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
9315 | rmode); | |
9316 | case FPROUNDING_TIEEVEN: | |
9317 | default: | |
9318 | rmode = float_round_nearest_even; | |
9319 | break; | |
9320 | case FPROUNDING_POSINF: | |
9321 | rmode = float_round_up; | |
9322 | break; | |
9323 | case FPROUNDING_NEGINF: | |
9324 | rmode = float_round_down; | |
9325 | break; | |
9326 | case FPROUNDING_ZERO: | |
9327 | rmode = float_round_to_zero; | |
9328 | break; | |
9329 | } | |
9330 | return rmode; | |
9331 | } | |
eb0ecd5a | 9332 | |
aa633469 PM |
9333 | /* CRC helpers. |
9334 | * The upper bytes of val (above the number specified by 'bytes') must have | |
9335 | * been zeroed out by the caller. | |
9336 | */ | |
eb0ecd5a WN |
9337 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
9338 | { | |
9339 | uint8_t buf[4]; | |
9340 | ||
aa633469 | 9341 | stl_le_p(buf, val); |
eb0ecd5a WN |
9342 | |
9343 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
9344 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
9345 | } | |
9346 | ||
9347 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
9348 | { | |
9349 | uint8_t buf[4]; | |
9350 | ||
aa633469 | 9351 | stl_le_p(buf, val); |
eb0ecd5a WN |
9352 | |
9353 | /* Linux crc32c converts the output to one's complement. */ | |
9354 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
9355 | } |