]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
ccd38087 | 2 | #include "internals.h" |
022c62cb | 3 | #include "exec/gdbstub.h" |
2ef6175a | 4 | #include "exec/helper-proto.h" |
1de7afc9 | 5 | #include "qemu/host-utils.h" |
78027bb6 | 6 | #include "sysemu/arch_init.h" |
9c17d615 | 7 | #include "sysemu/sysemu.h" |
1de7afc9 | 8 | #include "qemu/bitops.h" |
eb0ecd5a | 9 | #include "qemu/crc32c.h" |
f08b6170 | 10 | #include "exec/cpu_ldst.h" |
1d854765 | 11 | #include "arm_ldst.h" |
eb0ecd5a | 12 | #include <zlib.h> /* For crc32 */ |
0b03bdfc | 13 | |
4a501606 | 14 | #ifndef CONFIG_USER_ONLY |
2c8dd318 | 15 | static inline int get_phys_addr(CPUARMState *env, target_ulong address, |
4a501606 | 16 | int access_type, int is_user, |
a8170e5e | 17 | hwaddr *phys_ptr, int *prot, |
4a501606 | 18 | target_ulong *page_size); |
7c2cb42b AF |
19 | |
20 | /* Definitions for the PMCCNTR and PMCR registers */ | |
21 | #define PMCRD 0x8 | |
22 | #define PMCRC 0x4 | |
23 | #define PMCRE 0x1 | |
4a501606 PM |
24 | #endif |
25 | ||
0ecb72a5 | 26 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
27 | { |
28 | int nregs; | |
29 | ||
30 | /* VFP data registers are always little-endian. */ | |
31 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
32 | if (reg < nregs) { | |
33 | stfq_le_p(buf, env->vfp.regs[reg]); | |
34 | return 8; | |
35 | } | |
36 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
37 | /* Aliases for Q regs. */ | |
38 | nregs += 16; | |
39 | if (reg < nregs) { | |
40 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
41 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
42 | return 16; | |
43 | } | |
44 | } | |
45 | switch (reg - nregs) { | |
46 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
47 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
48 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
49 | } | |
50 | return 0; | |
51 | } | |
52 | ||
0ecb72a5 | 53 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
54 | { |
55 | int nregs; | |
56 | ||
57 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
58 | if (reg < nregs) { | |
59 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
60 | return 8; | |
61 | } | |
62 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
63 | nregs += 16; | |
64 | if (reg < nregs) { | |
65 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
66 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
67 | return 16; | |
68 | } | |
69 | } | |
70 | switch (reg - nregs) { | |
71 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
72 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 73 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
74 | } |
75 | return 0; | |
76 | } | |
77 | ||
6a669427 PM |
78 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
79 | { | |
80 | switch (reg) { | |
81 | case 0 ... 31: | |
82 | /* 128 bit FP register */ | |
83 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
84 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
85 | return 16; | |
86 | case 32: | |
87 | /* FPSR */ | |
88 | stl_p(buf, vfp_get_fpsr(env)); | |
89 | return 4; | |
90 | case 33: | |
91 | /* FPCR */ | |
92 | stl_p(buf, vfp_get_fpcr(env)); | |
93 | return 4; | |
94 | default: | |
95 | return 0; | |
96 | } | |
97 | } | |
98 | ||
99 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
100 | { | |
101 | switch (reg) { | |
102 | case 0 ... 31: | |
103 | /* 128 bit FP register */ | |
104 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
105 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
106 | return 16; | |
107 | case 32: | |
108 | /* FPSR */ | |
109 | vfp_set_fpsr(env, ldl_p(buf)); | |
110 | return 4; | |
111 | case 33: | |
112 | /* FPCR */ | |
113 | vfp_set_fpcr(env, ldl_p(buf)); | |
114 | return 4; | |
115 | default: | |
116 | return 0; | |
117 | } | |
118 | } | |
119 | ||
c4241c7d | 120 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 121 | { |
67ed771d | 122 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 123 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 124 | } else { |
c4241c7d | 125 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 126 | } |
d4e6df63 PM |
127 | } |
128 | ||
c4241c7d PM |
129 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
130 | uint64_t value) | |
d4e6df63 | 131 | { |
67ed771d | 132 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
133 | CPREG_FIELD64(env, ri) = value; |
134 | } else { | |
135 | CPREG_FIELD32(env, ri) = value; | |
136 | } | |
d4e6df63 PM |
137 | } |
138 | ||
11f136ee FA |
139 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
140 | { | |
141 | return (char *)env + ri->fieldoffset; | |
142 | } | |
143 | ||
59a1c327 | 144 | static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 145 | { |
59a1c327 | 146 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 147 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 148 | return ri->resetvalue; |
721fae12 | 149 | } else if (ri->raw_readfn) { |
59a1c327 | 150 | return ri->raw_readfn(env, ri); |
721fae12 | 151 | } else if (ri->readfn) { |
59a1c327 | 152 | return ri->readfn(env, ri); |
721fae12 | 153 | } else { |
59a1c327 | 154 | return raw_read(env, ri); |
721fae12 | 155 | } |
721fae12 PM |
156 | } |
157 | ||
59a1c327 | 158 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 159 | uint64_t v) |
721fae12 PM |
160 | { |
161 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
162 | * Note that constant registers are treated as write-ignored; the |
163 | * caller should check for success by whether a readback gives the | |
164 | * value written. | |
165 | */ | |
166 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 167 | return; |
721fae12 | 168 | } else if (ri->raw_writefn) { |
c4241c7d | 169 | ri->raw_writefn(env, ri, v); |
721fae12 | 170 | } else if (ri->writefn) { |
c4241c7d | 171 | ri->writefn(env, ri, v); |
721fae12 | 172 | } else { |
afb2530f | 173 | raw_write(env, ri, v); |
721fae12 | 174 | } |
721fae12 PM |
175 | } |
176 | ||
177 | bool write_cpustate_to_list(ARMCPU *cpu) | |
178 | { | |
179 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
180 | int i; | |
181 | bool ok = true; | |
182 | ||
183 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
184 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
185 | const ARMCPRegInfo *ri; | |
59a1c327 | 186 | |
60322b39 | 187 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
188 | if (!ri) { |
189 | ok = false; | |
190 | continue; | |
191 | } | |
192 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
193 | continue; | |
194 | } | |
59a1c327 | 195 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
196 | } |
197 | return ok; | |
198 | } | |
199 | ||
200 | bool write_list_to_cpustate(ARMCPU *cpu) | |
201 | { | |
202 | int i; | |
203 | bool ok = true; | |
204 | ||
205 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
206 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
207 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
208 | const ARMCPRegInfo *ri; |
209 | ||
60322b39 | 210 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
211 | if (!ri) { |
212 | ok = false; | |
213 | continue; | |
214 | } | |
215 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
216 | continue; | |
217 | } | |
218 | /* Write value and confirm it reads back as written | |
219 | * (to catch read-only registers and partially read-only | |
220 | * registers where the incoming migration value doesn't match) | |
221 | */ | |
59a1c327 PM |
222 | write_raw_cp_reg(&cpu->env, ri, v); |
223 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
224 | ok = false; |
225 | } | |
226 | } | |
227 | return ok; | |
228 | } | |
229 | ||
230 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
231 | { | |
232 | ARMCPU *cpu = opaque; | |
233 | uint64_t regidx; | |
234 | const ARMCPRegInfo *ri; | |
235 | ||
236 | regidx = *(uint32_t *)key; | |
60322b39 | 237 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
238 | |
239 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
240 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |
241 | /* The value array need not be initialized at this point */ | |
242 | cpu->cpreg_array_len++; | |
243 | } | |
244 | } | |
245 | ||
246 | static void count_cpreg(gpointer key, gpointer opaque) | |
247 | { | |
248 | ARMCPU *cpu = opaque; | |
249 | uint64_t regidx; | |
250 | const ARMCPRegInfo *ri; | |
251 | ||
252 | regidx = *(uint32_t *)key; | |
60322b39 | 253 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
254 | |
255 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
256 | cpu->cpreg_array_len++; | |
257 | } | |
258 | } | |
259 | ||
260 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
261 | { | |
cbf239b7 AR |
262 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
263 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 264 | |
cbf239b7 AR |
265 | if (aidx > bidx) { |
266 | return 1; | |
267 | } | |
268 | if (aidx < bidx) { | |
269 | return -1; | |
270 | } | |
271 | return 0; | |
721fae12 PM |
272 | } |
273 | ||
82a3a118 PM |
274 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
275 | { | |
276 | GList **plist = udata; | |
277 | ||
278 | *plist = g_list_prepend(*plist, key); | |
279 | } | |
280 | ||
721fae12 PM |
281 | void init_cpreg_list(ARMCPU *cpu) |
282 | { | |
283 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
284 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
285 | */ | |
82a3a118 | 286 | GList *keys = NULL; |
721fae12 PM |
287 | int arraylen; |
288 | ||
82a3a118 PM |
289 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
290 | ||
721fae12 PM |
291 | keys = g_list_sort(keys, cpreg_key_compare); |
292 | ||
293 | cpu->cpreg_array_len = 0; | |
294 | ||
295 | g_list_foreach(keys, count_cpreg, cpu); | |
296 | ||
297 | arraylen = cpu->cpreg_array_len; | |
298 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
299 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
300 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
301 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
302 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
303 | cpu->cpreg_array_len = 0; | |
304 | ||
305 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
306 | ||
307 | assert(cpu->cpreg_array_len == arraylen); | |
308 | ||
309 | g_list_free(keys); | |
310 | } | |
311 | ||
c4241c7d | 312 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 313 | { |
00c8cb0a AF |
314 | ARMCPU *cpu = arm_env_get_cpu(env); |
315 | ||
8d5c773e | 316 | raw_write(env, ri, value); |
00c8cb0a | 317 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
318 | } |
319 | ||
c4241c7d | 320 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 321 | { |
00c8cb0a AF |
322 | ARMCPU *cpu = arm_env_get_cpu(env); |
323 | ||
8d5c773e | 324 | if (raw_read(env, ri) != value) { |
08de207b PM |
325 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
326 | * not modified virtual addresses, so this causes a TLB flush. | |
327 | */ | |
00c8cb0a | 328 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 329 | raw_write(env, ri, value); |
08de207b | 330 | } |
08de207b | 331 | } |
c4241c7d PM |
332 | |
333 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
334 | uint64_t value) | |
08de207b | 335 | { |
00c8cb0a AF |
336 | ARMCPU *cpu = arm_env_get_cpu(env); |
337 | ||
8d5c773e | 338 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 339 | && !extended_addresses_enabled(env)) { |
08de207b PM |
340 | /* For VMSA (when not using the LPAE long descriptor page table |
341 | * format) this register includes the ASID, so do a TLB flush. | |
342 | * For PMSA it is purely a process ID and no action is needed. | |
343 | */ | |
00c8cb0a | 344 | tlb_flush(CPU(cpu), 1); |
08de207b | 345 | } |
8d5c773e | 346 | raw_write(env, ri, value); |
08de207b PM |
347 | } |
348 | ||
c4241c7d PM |
349 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
350 | uint64_t value) | |
d929823f PM |
351 | { |
352 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
353 | ARMCPU *cpu = arm_env_get_cpu(env); |
354 | ||
355 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
356 | } |
357 | ||
c4241c7d PM |
358 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
359 | uint64_t value) | |
d929823f PM |
360 | { |
361 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
362 | ARMCPU *cpu = arm_env_get_cpu(env); |
363 | ||
364 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
365 | } |
366 | ||
c4241c7d PM |
367 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
368 | uint64_t value) | |
d929823f PM |
369 | { |
370 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
371 | ARMCPU *cpu = arm_env_get_cpu(env); |
372 | ||
373 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
374 | } |
375 | ||
c4241c7d PM |
376 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
377 | uint64_t value) | |
d929823f PM |
378 | { |
379 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
380 | ARMCPU *cpu = arm_env_get_cpu(env); |
381 | ||
382 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
383 | } |
384 | ||
fa439fc5 PM |
385 | /* IS variants of TLB operations must affect all cores */ |
386 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
387 | uint64_t value) | |
388 | { | |
389 | CPUState *other_cs; | |
390 | ||
391 | CPU_FOREACH(other_cs) { | |
392 | tlb_flush(other_cs, 1); | |
393 | } | |
394 | } | |
395 | ||
396 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
397 | uint64_t value) | |
398 | { | |
399 | CPUState *other_cs; | |
400 | ||
401 | CPU_FOREACH(other_cs) { | |
402 | tlb_flush(other_cs, value == 0); | |
403 | } | |
404 | } | |
405 | ||
406 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
407 | uint64_t value) | |
408 | { | |
409 | CPUState *other_cs; | |
410 | ||
411 | CPU_FOREACH(other_cs) { | |
412 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
413 | } | |
414 | } | |
415 | ||
416 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
417 | uint64_t value) | |
418 | { | |
419 | CPUState *other_cs; | |
420 | ||
421 | CPU_FOREACH(other_cs) { | |
422 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
423 | } | |
424 | } | |
425 | ||
e9aa6c21 | 426 | static const ARMCPRegInfo cp_reginfo[] = { |
08de207b PM |
427 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
428 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 429 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
014406b5 PM |
430 | { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH, |
431 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
432 | .access = PL1_RW, | |
433 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1), | |
d4e6df63 | 434 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
435 | REGINFO_SENTINEL |
436 | }; | |
437 | ||
438 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
439 | /* NB: Some of these registers exist in v8 but with more precise | |
440 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
441 | */ | |
442 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
443 | { .name = "DACR", |
444 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
445 | .access = PL1_RW, .resetvalue = 0, | |
446 | .writefn = dacr_write, .raw_writefn = raw_write, | |
447 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
448 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
4fdd17dd PM |
449 | /* ??? This covers not just the impdef TLB lockdown registers but also |
450 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
451 | */ | |
452 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
453 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
c4804214 PM |
454 | /* Cache maintenance ops; some of this space may be overridden later. */ |
455 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
456 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
457 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
458 | REGINFO_SENTINEL |
459 | }; | |
460 | ||
7d57f408 PM |
461 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
462 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
463 | * over-broad. | |
464 | */ | |
465 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
466 | .access = PL1_W, .type = ARM_CP_WFI }, | |
467 | REGINFO_SENTINEL | |
468 | }; | |
469 | ||
470 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
471 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
472 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
473 | */ | |
474 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
475 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
476 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
477 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
478 | * OMAPCP will override this space. | |
479 | */ | |
480 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
481 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
482 | .resetvalue = 0 }, | |
483 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
484 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
485 | .resetvalue = 0 }, | |
776d4e5c PM |
486 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
487 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
d4e6df63 PM |
488 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
489 | .resetvalue = 0 }, | |
50300698 PM |
490 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
491 | * implementing it as RAZ means the "debug architecture version" bits | |
492 | * will read as a reserved value, which should cause Linux to not try | |
493 | * to use the debug hardware. | |
494 | */ | |
495 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
496 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
497 | /* MMU TLB control. Note that the wildcarding means we cover not just |
498 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
499 | */ | |
500 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
501 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
502 | .type = ARM_CP_NO_MIGRATE }, | |
503 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, | |
504 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
505 | .type = ARM_CP_NO_MIGRATE }, | |
506 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, | |
507 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
508 | .type = ARM_CP_NO_MIGRATE }, | |
509 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, | |
510 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
511 | .type = ARM_CP_NO_MIGRATE }, | |
7d57f408 PM |
512 | REGINFO_SENTINEL |
513 | }; | |
514 | ||
c4241c7d PM |
515 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
516 | uint64_t value) | |
2771db27 | 517 | { |
f0aff255 FA |
518 | uint32_t mask = 0; |
519 | ||
520 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
521 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
522 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
523 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
524 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
525 | */ | |
526 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
527 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
528 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
529 | ||
530 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
531 | /* ASEDIS [31] bit is RAO/WI */ | |
532 | value |= (1 << 31); | |
533 | } | |
534 | ||
535 | /* VFPv3 and upwards with NEON implement 32 double precision | |
536 | * registers (D0-D31). | |
537 | */ | |
538 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
539 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
540 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
541 | value |= (1 << 30); | |
542 | } | |
543 | } | |
544 | value &= mask; | |
2771db27 | 545 | } |
f0aff255 | 546 | env->cp15.c1_coproc = value; |
2771db27 PM |
547 | } |
548 | ||
7d57f408 PM |
549 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
550 | /* prefetch by MVA in v6, NOP in v7 */ | |
551 | { .name = "MVA_prefetch", | |
552 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
553 | .access = PL1_W, .type = ARM_CP_NOP }, | |
554 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
555 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 556 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 557 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 558 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 559 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 560 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 561 | .access = PL1_RW, |
b848ce2b FA |
562 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
563 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
564 | .resetvalue = 0, }, |
565 | /* Watchpoint Fault Address Register : should actually only be present | |
566 | * for 1136, 1176, 11MPCore. | |
567 | */ | |
568 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
569 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 PM |
570 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
571 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2771db27 PM |
572 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), |
573 | .resetvalue = 0, .writefn = cpacr_write }, | |
7d57f408 PM |
574 | REGINFO_SENTINEL |
575 | }; | |
576 | ||
fcd25206 | 577 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 578 | { |
3b163b01 | 579 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 580 | * by PMUSERENR. |
200ac0ef | 581 | */ |
dcbff19b | 582 | if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { |
fcd25206 | 583 | return CP_ACCESS_TRAP; |
200ac0ef | 584 | } |
fcd25206 | 585 | return CP_ACCESS_OK; |
200ac0ef PM |
586 | } |
587 | ||
7c2cb42b | 588 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
589 | |
590 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
591 | { | |
592 | /* This does not support checking PMCCFILTR_EL0 register */ | |
593 | ||
594 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
595 | return false; | |
596 | } | |
597 | ||
598 | return true; | |
599 | } | |
600 | ||
ec7b4ce4 AF |
601 | void pmccntr_sync(CPUARMState *env) |
602 | { | |
603 | uint64_t temp_ticks; | |
604 | ||
605 | temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | |
606 | get_ticks_per_sec(), 1000000); | |
607 | ||
608 | if (env->cp15.c9_pmcr & PMCRD) { | |
609 | /* Increment once every 64 processor clock cycles */ | |
610 | temp_ticks /= 64; | |
611 | } | |
612 | ||
613 | if (arm_ccnt_enabled(env)) { | |
614 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
615 | } | |
616 | } | |
617 | ||
c4241c7d PM |
618 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
619 | uint64_t value) | |
200ac0ef | 620 | { |
942a155b | 621 | pmccntr_sync(env); |
7c2cb42b AF |
622 | |
623 | if (value & PMCRC) { | |
624 | /* The counter has been reset */ | |
625 | env->cp15.c15_ccnt = 0; | |
626 | } | |
627 | ||
200ac0ef PM |
628 | /* only the DP, X, D and E bits are writable */ |
629 | env->cp15.c9_pmcr &= ~0x39; | |
630 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 631 | |
942a155b | 632 | pmccntr_sync(env); |
7c2cb42b AF |
633 | } |
634 | ||
635 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
636 | { | |
c92c0687 | 637 | uint64_t total_ticks; |
7c2cb42b | 638 | |
942a155b | 639 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
640 | /* Counter is disabled, do not change value */ |
641 | return env->cp15.c15_ccnt; | |
642 | } | |
643 | ||
c92c0687 AF |
644 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
645 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
646 | |
647 | if (env->cp15.c9_pmcr & PMCRD) { | |
648 | /* Increment once every 64 processor clock cycles */ | |
649 | total_ticks /= 64; | |
650 | } | |
651 | return total_ticks - env->cp15.c15_ccnt; | |
652 | } | |
653 | ||
654 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
655 | uint64_t value) | |
656 | { | |
c92c0687 | 657 | uint64_t total_ticks; |
7c2cb42b | 658 | |
942a155b | 659 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
660 | /* Counter is disabled, set the absolute value */ |
661 | env->cp15.c15_ccnt = value; | |
662 | return; | |
663 | } | |
664 | ||
c92c0687 AF |
665 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
666 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
667 | |
668 | if (env->cp15.c9_pmcr & PMCRD) { | |
669 | /* Increment once every 64 processor clock cycles */ | |
670 | total_ticks /= 64; | |
671 | } | |
672 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 673 | } |
421c7ebd PC |
674 | |
675 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
676 | uint64_t value) | |
677 | { | |
678 | uint64_t cur_val = pmccntr_read(env, NULL); | |
679 | ||
680 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
681 | } | |
682 | ||
ec7b4ce4 AF |
683 | #else /* CONFIG_USER_ONLY */ |
684 | ||
685 | void pmccntr_sync(CPUARMState *env) | |
686 | { | |
687 | } | |
688 | ||
7c2cb42b | 689 | #endif |
200ac0ef | 690 | |
0614601c AF |
691 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
692 | uint64_t value) | |
693 | { | |
694 | pmccntr_sync(env); | |
695 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
696 | pmccntr_sync(env); | |
697 | } | |
698 | ||
c4241c7d | 699 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
700 | uint64_t value) |
701 | { | |
200ac0ef PM |
702 | value &= (1 << 31); |
703 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
704 | } |
705 | ||
c4241c7d PM |
706 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
707 | uint64_t value) | |
200ac0ef | 708 | { |
200ac0ef PM |
709 | value &= (1 << 31); |
710 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
711 | } |
712 | ||
c4241c7d PM |
713 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
714 | uint64_t value) | |
200ac0ef | 715 | { |
200ac0ef | 716 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
717 | } |
718 | ||
c4241c7d PM |
719 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
720 | uint64_t value) | |
200ac0ef | 721 | { |
200ac0ef | 722 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
723 | } |
724 | ||
c4241c7d | 725 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
726 | uint64_t value) |
727 | { | |
728 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
729 | } |
730 | ||
c4241c7d PM |
731 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
732 | uint64_t value) | |
200ac0ef PM |
733 | { |
734 | /* We have no event counters so only the C bit can be changed */ | |
735 | value &= (1 << 31); | |
736 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
737 | } |
738 | ||
c4241c7d PM |
739 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
740 | uint64_t value) | |
200ac0ef PM |
741 | { |
742 | value &= (1 << 31); | |
743 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
744 | } |
745 | ||
c4241c7d PM |
746 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
747 | uint64_t value) | |
8641136c | 748 | { |
a505d7fe PM |
749 | /* Note that even though the AArch64 view of this register has bits |
750 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
751 | * architectural requirements for bits which are RES0 only in some | |
752 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
753 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
754 | */ | |
855ea66d | 755 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
756 | } |
757 | ||
64e0e2de EI |
758 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
759 | { | |
760 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
761 | * For bits that vary between AArch32/64, code needs to check the | |
762 | * current execution mode before directly using the feature bit. | |
763 | */ | |
764 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
765 | ||
766 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
767 | valid_mask &= ~SCR_HCE; | |
768 | ||
769 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
770 | * supported if EL2 exists. The bit is UNK/SBZP when | |
771 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
772 | * when EL2 is unavailable. | |
773 | */ | |
774 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
775 | valid_mask &= ~SCR_SMD; | |
776 | } | |
777 | } | |
778 | ||
779 | /* Clear all-context RES0 bits. */ | |
780 | value &= valid_mask; | |
781 | raw_write(env, ri, value); | |
782 | } | |
783 | ||
c4241c7d | 784 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
785 | { |
786 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
787 | |
788 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
789 | * bank | |
790 | */ | |
791 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
792 | ri->secure & ARM_CP_SECSTATE_S); | |
793 | ||
794 | return cpu->ccsidr[index]; | |
776d4e5c PM |
795 | } |
796 | ||
c4241c7d PM |
797 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
798 | uint64_t value) | |
776d4e5c | 799 | { |
8d5c773e | 800 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
801 | } |
802 | ||
1090b9c6 PM |
803 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
804 | { | |
805 | CPUState *cs = ENV_GET_CPU(env); | |
806 | uint64_t ret = 0; | |
807 | ||
808 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
809 | ret |= CPSR_I; | |
810 | } | |
811 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
812 | ret |= CPSR_F; | |
813 | } | |
814 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
815 | return ret; | |
816 | } | |
817 | ||
e9aa6c21 | 818 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
819 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
820 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
821 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
822 | /* Performance monitors are implementation defined in v7, |
823 | * but with an ARM recommended set of registers, which we | |
824 | * follow (although we don't actually implement any counters) | |
825 | * | |
826 | * Performance registers fall into three categories: | |
827 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
828 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
829 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
830 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
831 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
832 | */ | |
833 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
8521466b AF |
834 | .access = PL0_RW, .type = ARM_CP_NO_MIGRATE, |
835 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
836 | .writefn = pmcntenset_write, |
837 | .accessfn = pmreg_access, | |
838 | .raw_writefn = raw_write }, | |
8521466b AF |
839 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
840 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
841 | .access = PL0_RW, .accessfn = pmreg_access, | |
842 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
843 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 844 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
845 | .access = PL0_RW, |
846 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
847 | .accessfn = pmreg_access, |
848 | .writefn = pmcntenclr_write, | |
d4e6df63 | 849 | .type = ARM_CP_NO_MIGRATE }, |
8521466b AF |
850 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
851 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
852 | .access = PL0_RW, .accessfn = pmreg_access, | |
853 | .type = ARM_CP_NO_MIGRATE, | |
854 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
855 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
856 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
857 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
858 | .accessfn = pmreg_access, |
859 | .writefn = pmovsr_write, | |
860 | .raw_writefn = raw_write }, | |
861 | /* Unimplemented so WI. */ | |
200ac0ef | 862 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 863 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 864 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 865 | * We choose to RAZ/WI. |
200ac0ef PM |
866 | */ |
867 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
868 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
869 | .accessfn = pmreg_access }, | |
7c2cb42b | 870 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 871 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 872 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 873 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 874 | .accessfn = pmreg_access }, |
8521466b AF |
875 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
876 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
877 | .access = PL0_RW, .accessfn = pmreg_access, | |
878 | .type = ARM_CP_IO, | |
879 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 880 | #endif |
8521466b AF |
881 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
882 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 883 | .writefn = pmccfiltr_write, |
8521466b AF |
884 | .access = PL0_RW, .accessfn = pmreg_access, |
885 | .type = ARM_CP_IO, | |
886 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
887 | .resetvalue = 0, }, | |
200ac0ef PM |
888 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
889 | .access = PL0_RW, | |
890 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
891 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
892 | .raw_writefn = raw_write }, | |
893 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 894 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
895 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
896 | .accessfn = pmreg_access }, | |
200ac0ef PM |
897 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
898 | .access = PL0_R | PL1_RW, | |
899 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
900 | .resetvalue = 0, | |
d4e6df63 | 901 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
902 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
903 | .access = PL1_RW, | |
904 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
905 | .resetvalue = 0, | |
d4e6df63 | 906 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 907 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
d4e6df63 | 908 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
200ac0ef | 909 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
d4e6df63 | 910 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
a505d7fe PM |
911 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
912 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 913 | .access = PL1_RW, .writefn = vbar_write, |
68fdb6c5 | 914 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[1]), |
8641136c | 915 | .resetvalue = 0 }, |
7da845b0 PM |
916 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
917 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
d4e6df63 | 918 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, |
7da845b0 PM |
919 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
920 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
921 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
922 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
923 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
924 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
925 | * just RAZ for all cores: | |
926 | */ | |
0ff644a7 PM |
927 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
928 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 929 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
930 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
931 | * choose to RAZ/WI for all cores. | |
932 | */ | |
933 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
934 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
935 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
936 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
937 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
938 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
939 | /* MAIR can just read-as-written because we don't implement caches |
940 | * and so don't need to care about memory attributes. | |
941 | */ | |
942 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
943 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
944 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1), | |
945 | .resetvalue = 0 }, | |
946 | /* For non-long-descriptor page tables these are PRRR and NMRR; | |
947 | * regardless they still act as reads-as-written for QEMU. | |
948 | * The override is necessary because of the overly-broad TLB_LOCKDOWN | |
949 | * definition. | |
950 | */ | |
951 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
952 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, | |
953 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1), | |
954 | .resetfn = arm_cp_reset_ignore }, | |
955 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
956 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, | |
957 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1), | |
958 | .resetfn = arm_cp_reset_ignore }, | |
1090b9c6 PM |
959 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
960 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
961 | .type = ARM_CP_NO_MIGRATE, .access = PL1_R, .readfn = isr_read }, | |
995939a6 PM |
962 | /* 32 bit ITLB invalidates */ |
963 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
964 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write }, | |
965 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, | |
966 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write }, | |
967 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, | |
968 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write }, | |
969 | /* 32 bit DTLB invalidates */ | |
970 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
971 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write }, | |
972 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, | |
973 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write }, | |
974 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, | |
975 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write }, | |
976 | /* 32 bit TLB invalidates */ | |
977 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
978 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write }, | |
979 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, | |
980 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write }, | |
981 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, | |
982 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write }, | |
983 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, | |
984 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write }, | |
985 | REGINFO_SENTINEL | |
986 | }; | |
987 | ||
988 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
989 | /* 32 bit TLB invalidates, Inner Shareable */ | |
990 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
fa439fc5 | 991 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 992 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
fa439fc5 | 993 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 994 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
fa439fc5 PM |
995 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, |
996 | .writefn = tlbiasid_is_write }, | |
995939a6 | 997 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
fa439fc5 PM |
998 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, |
999 | .writefn = tlbimvaa_is_write }, | |
e9aa6c21 PM |
1000 | REGINFO_SENTINEL |
1001 | }; | |
1002 | ||
c4241c7d PM |
1003 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1004 | uint64_t value) | |
c326b979 PM |
1005 | { |
1006 | value &= 1; | |
1007 | env->teecr = value; | |
c326b979 PM |
1008 | } |
1009 | ||
c4241c7d | 1010 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 1011 | { |
dcbff19b | 1012 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1013 | return CP_ACCESS_TRAP; |
c326b979 | 1014 | } |
92611c00 | 1015 | return CP_ACCESS_OK; |
c326b979 PM |
1016 | } |
1017 | ||
1018 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1019 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1020 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1021 | .resetvalue = 0, | |
1022 | .writefn = teecr_write }, | |
1023 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1024 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1025 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1026 | REGINFO_SENTINEL |
1027 | }; | |
1028 | ||
4d31c596 | 1029 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1030 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1031 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1032 | .access = PL0_RW, | |
1033 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, | |
4d31c596 PM |
1034 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1035 | .access = PL0_RW, | |
e4fe830b PM |
1036 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0), |
1037 | .resetfn = arm_cp_reset_ignore }, | |
1038 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1039 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1040 | .access = PL0_R|PL1_W, | |
1041 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, | |
4d31c596 PM |
1042 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1043 | .access = PL0_R|PL1_W, | |
e4fe830b PM |
1044 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0), |
1045 | .resetfn = arm_cp_reset_ignore }, | |
1046 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
1047 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, | |
4d31c596 | 1048 | .access = PL1_RW, |
e4fe830b | 1049 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, |
4d31c596 PM |
1050 | REGINFO_SENTINEL |
1051 | }; | |
1052 | ||
55d284af PM |
1053 | #ifndef CONFIG_USER_ONLY |
1054 | ||
00108f2d PM |
1055 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1056 | { | |
1057 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
dcbff19b | 1058 | if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
00108f2d PM |
1059 | return CP_ACCESS_TRAP; |
1060 | } | |
1061 | return CP_ACCESS_OK; | |
1062 | } | |
1063 | ||
1064 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
1065 | { | |
1066 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ | |
dcbff19b | 1067 | if (arm_current_el(env) == 0 && |
00108f2d PM |
1068 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1069 | return CP_ACCESS_TRAP; | |
1070 | } | |
1071 | return CP_ACCESS_OK; | |
1072 | } | |
1073 | ||
1074 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
1075 | { | |
1076 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if | |
1077 | * EL0[PV]TEN is zero. | |
1078 | */ | |
dcbff19b | 1079 | if (arm_current_el(env) == 0 && |
00108f2d PM |
1080 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1081 | return CP_ACCESS_TRAP; | |
1082 | } | |
1083 | return CP_ACCESS_OK; | |
1084 | } | |
1085 | ||
1086 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
1087 | const ARMCPRegInfo *ri) | |
1088 | { | |
1089 | return gt_counter_access(env, GTIMER_PHYS); | |
1090 | } | |
1091 | ||
1092 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
1093 | const ARMCPRegInfo *ri) | |
1094 | { | |
1095 | return gt_counter_access(env, GTIMER_VIRT); | |
1096 | } | |
1097 | ||
1098 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1099 | { | |
1100 | return gt_timer_access(env, GTIMER_PHYS); | |
1101 | } | |
1102 | ||
1103 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1104 | { | |
1105 | return gt_timer_access(env, GTIMER_VIRT); | |
1106 | } | |
1107 | ||
55d284af PM |
1108 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1109 | { | |
bc72ad67 | 1110 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1111 | } |
1112 | ||
1113 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1114 | { | |
1115 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1116 | ||
1117 | if (gt->ctl & 1) { | |
1118 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1119 | * reset timer to when ISTATUS next has to change | |
1120 | */ | |
1121 | uint64_t count = gt_get_countervalue(&cpu->env); | |
1122 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
1123 | int istatus = count >= gt->cval; | |
1124 | uint64_t nexttick; | |
1125 | ||
1126 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1127 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1128 | (istatus && !(gt->ctl & 2))); | |
1129 | if (istatus) { | |
1130 | /* Next transition is when count rolls back over to zero */ | |
1131 | nexttick = UINT64_MAX; | |
1132 | } else { | |
1133 | /* Next transition is when we hit cval */ | |
1134 | nexttick = gt->cval; | |
1135 | } | |
1136 | /* Note that the desired next expiry time might be beyond the | |
1137 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1138 | * set the timer for as far in the future as possible. When the | |
1139 | * timer expires we will reset the timer for any remaining period. | |
1140 | */ | |
1141 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1142 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1143 | } | |
bc72ad67 | 1144 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1145 | } else { |
1146 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1147 | gt->ctl &= ~4; | |
1148 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1149 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1150 | } |
1151 | } | |
1152 | ||
55d284af PM |
1153 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1154 | { | |
1155 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1156 | int timeridx = ri->opc1 & 1; | |
1157 | ||
bc72ad67 | 1158 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1159 | } |
1160 | ||
c4241c7d | 1161 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1162 | { |
c4241c7d | 1163 | return gt_get_countervalue(env); |
55d284af PM |
1164 | } |
1165 | ||
c4241c7d PM |
1166 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1167 | uint64_t value) | |
55d284af PM |
1168 | { |
1169 | int timeridx = ri->opc1 & 1; | |
1170 | ||
1171 | env->cp15.c14_timer[timeridx].cval = value; | |
1172 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1173 | } |
c4241c7d PM |
1174 | |
1175 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
55d284af PM |
1176 | { |
1177 | int timeridx = ri->crm & 1; | |
1178 | ||
c4241c7d PM |
1179 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
1180 | gt_get_countervalue(env)); | |
55d284af PM |
1181 | } |
1182 | ||
c4241c7d PM |
1183 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1184 | uint64_t value) | |
55d284af PM |
1185 | { |
1186 | int timeridx = ri->crm & 1; | |
1187 | ||
1188 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |
1189 | + sextract64(value, 0, 32); | |
1190 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af PM |
1191 | } |
1192 | ||
c4241c7d PM |
1193 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1194 | uint64_t value) | |
55d284af PM |
1195 | { |
1196 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1197 | int timeridx = ri->crm & 1; | |
1198 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |
1199 | ||
d3afacc7 | 1200 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1201 | if ((oldval ^ value) & 1) { |
1202 | /* Enable toggled */ | |
1203 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1204 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1205 | /* IMASK toggled: don't need to recalculate, |
1206 | * just set the interrupt line based on ISTATUS | |
1207 | */ | |
1208 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1209 | (oldval & 4) && !(value & 2)); |
55d284af | 1210 | } |
55d284af PM |
1211 | } |
1212 | ||
1213 | void arm_gt_ptimer_cb(void *opaque) | |
1214 | { | |
1215 | ARMCPU *cpu = opaque; | |
1216 | ||
1217 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1218 | } | |
1219 | ||
1220 | void arm_gt_vtimer_cb(void *opaque) | |
1221 | { | |
1222 | ARMCPU *cpu = opaque; | |
1223 | ||
1224 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1225 | } | |
1226 | ||
1227 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
1228 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1229 | * of software; writing it doesn't actually change the timer frequency. | |
1230 | * Our reset value matches the fixed frequency we implement the timer at. | |
1231 | */ | |
1232 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
a7adc4b7 PM |
1233 | .type = ARM_CP_NO_MIGRATE, |
1234 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
1235 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
1236 | .resetfn = arm_cp_reset_ignore, | |
1237 | }, | |
1238 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1239 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1240 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1241 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1242 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1243 | }, |
1244 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1245 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1246 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1247 | .access = PL1_RW, |
1248 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1249 | .resetvalue = 0, | |
1250 | }, | |
1251 | /* per-timer control */ | |
1252 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
1253 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
1254 | .accessfn = gt_ptimer_access, | |
1255 | .fieldoffset = offsetoflow32(CPUARMState, | |
1256 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
1257 | .resetfn = arm_cp_reset_ignore, | |
1258 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1259 | }, | |
1260 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1261 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1262 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1263 | .accessfn = gt_ptimer_access, |
55d284af PM |
1264 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1265 | .resetvalue = 0, | |
00108f2d | 1266 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1267 | }, |
1268 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
1269 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
1270 | .accessfn = gt_vtimer_access, | |
1271 | .fieldoffset = offsetoflow32(CPUARMState, | |
1272 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
1273 | .resetfn = arm_cp_reset_ignore, | |
1274 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1275 | }, | |
1276 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1277 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1278 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1279 | .accessfn = gt_vtimer_access, |
55d284af PM |
1280 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1281 | .resetvalue = 0, | |
00108f2d | 1282 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1283 | }, |
1284 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1285 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1286 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 1287 | .accessfn = gt_ptimer_access, |
55d284af PM |
1288 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1289 | }, | |
a7adc4b7 PM |
1290 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1291 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
1292 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1293 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1294 | }, | |
55d284af PM |
1295 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
1296 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 1297 | .accessfn = gt_vtimer_access, |
55d284af PM |
1298 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1299 | }, | |
a7adc4b7 PM |
1300 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1301 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
1302 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1303 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1304 | }, | |
55d284af PM |
1305 | /* The counter itself */ |
1306 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
1307 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 1308 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1309 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1310 | }, | |
1311 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1312 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
1313 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1314 | .accessfn = gt_pct_access, | |
55d284af PM |
1315 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1316 | }, | |
1317 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
1318 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 1319 | .accessfn = gt_vct_access, |
a7adc4b7 PM |
1320 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1321 | }, | |
1322 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1323 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
1324 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1325 | .accessfn = gt_vct_access, | |
55d284af PM |
1326 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1327 | }, | |
1328 | /* Comparison value, indicating when the timer goes off */ | |
1329 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
1330 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1331 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1332 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
a7adc4b7 PM |
1333 | .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore, |
1334 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1335 | }, | |
1336 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1337 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1338 | .access = PL1_RW | PL0_R, | |
1339 | .type = ARM_CP_IO, | |
1340 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
1341 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1342 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1343 | }, |
1344 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1345 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1346 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1347 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
a7adc4b7 PM |
1348 | .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore, |
1349 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1350 | }, | |
1351 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1352 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1353 | .access = PL1_RW | PL0_R, | |
1354 | .type = ARM_CP_IO, | |
1355 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1356 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1357 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1358 | }, |
1359 | REGINFO_SENTINEL | |
1360 | }; | |
1361 | ||
1362 | #else | |
1363 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1364 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1365 | * so instead just don't register any of them. |
1366 | */ | |
6cc7a3ae | 1367 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1368 | REGINFO_SENTINEL |
1369 | }; | |
1370 | ||
55d284af PM |
1371 | #endif |
1372 | ||
c4241c7d | 1373 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1374 | { |
891a2fe7 | 1375 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 1376 | raw_write(env, ri, value); |
891a2fe7 | 1377 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 1378 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 1379 | } else { |
8d5c773e | 1380 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 1381 | } |
4a501606 PM |
1382 | } |
1383 | ||
1384 | #ifndef CONFIG_USER_ONLY | |
1385 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1386 | |
92611c00 PM |
1387 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1388 | { | |
1389 | if (ri->opc2 & 4) { | |
1390 | /* Other states are only available with TrustZone; in | |
1391 | * a non-TZ implementation these registers don't exist | |
1392 | * at all, which is an Uncategorized trap. This underdecoding | |
1393 | * is safe because the reginfo is NO_MIGRATE. | |
1394 | */ | |
1395 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1396 | } | |
1397 | return CP_ACCESS_OK; | |
1398 | } | |
1399 | ||
c4241c7d | 1400 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1401 | { |
a8170e5e | 1402 | hwaddr phys_addr; |
4a501606 PM |
1403 | target_ulong page_size; |
1404 | int prot; | |
1405 | int ret, is_user = ri->opc2 & 2; | |
1406 | int access_type = ri->opc2 & 1; | |
1407 | ||
4a501606 PM |
1408 | ret = get_phys_addr(env, value, access_type, is_user, |
1409 | &phys_addr, &prot, &page_size); | |
702a9357 PM |
1410 | if (extended_addresses_enabled(env)) { |
1411 | /* ret is a DFSR/IFSR value for the long descriptor | |
1412 | * translation table format, but with WnR always clear. | |
1413 | * Convert it to a 64-bit PAR. | |
1414 | */ | |
1415 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
1416 | if (ret == 0) { | |
1417 | par64 |= phys_addr & ~0xfffULL; | |
1418 | /* We don't set the ATTR or SH fields in the PAR. */ | |
4a501606 | 1419 | } else { |
702a9357 PM |
1420 | par64 |= 1; /* F */ |
1421 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
1422 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
1423 | * implement virtualization and therefore there can't be a stage 2 | |
1424 | * fault. | |
1425 | */ | |
4a501606 | 1426 | } |
19525524 | 1427 | env->cp15.par_el1 = par64; |
4a501606 | 1428 | } else { |
702a9357 PM |
1429 | /* ret is a DFSR/IFSR value for the short descriptor |
1430 | * translation table format (with WnR always clear). | |
1431 | * Convert it to a 32-bit PAR. | |
1432 | */ | |
1433 | if (ret == 0) { | |
1434 | /* We do not set any attribute bits in the PAR */ | |
1435 | if (page_size == (1 << 24) | |
1436 | && arm_feature(env, ARM_FEATURE_V7)) { | |
19525524 | 1437 | env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1; |
702a9357 | 1438 | } else { |
19525524 | 1439 | env->cp15.par_el1 = phys_addr & 0xfffff000; |
702a9357 PM |
1440 | } |
1441 | } else { | |
19525524 | 1442 | env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) | |
775fda92 | 1443 | ((ret & (1 << 12)) >> 6) | |
702a9357 PM |
1444 | ((ret & 0xf) << 1) | 1; |
1445 | } | |
4a501606 | 1446 | } |
4a501606 PM |
1447 | } |
1448 | #endif | |
1449 | ||
1450 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1451 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1452 | .access = PL1_RW, .resetvalue = 0, | |
19525524 | 1453 | .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1), |
4a501606 PM |
1454 | .writefn = par_write }, |
1455 | #ifndef CONFIG_USER_ONLY | |
1456 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
92611c00 PM |
1457 | .access = PL1_W, .accessfn = ats_access, |
1458 | .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, | |
4a501606 PM |
1459 | #endif |
1460 | REGINFO_SENTINEL | |
1461 | }; | |
1462 | ||
18032bec PM |
1463 | /* Return basic MPU access permission bits. */ |
1464 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1465 | { | |
1466 | uint32_t ret; | |
1467 | uint32_t mask; | |
1468 | int i; | |
1469 | ret = 0; | |
1470 | mask = 3; | |
1471 | for (i = 0; i < 16; i += 2) { | |
1472 | ret |= (val >> i) & mask; | |
1473 | mask <<= 2; | |
1474 | } | |
1475 | return ret; | |
1476 | } | |
1477 | ||
1478 | /* Pad basic MPU access permission bits to extended format. */ | |
1479 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1480 | { | |
1481 | uint32_t ret; | |
1482 | uint32_t mask; | |
1483 | int i; | |
1484 | ret = 0; | |
1485 | mask = 3; | |
1486 | for (i = 0; i < 16; i += 2) { | |
1487 | ret |= (val & mask) << i; | |
1488 | mask <<= 2; | |
1489 | } | |
1490 | return ret; | |
1491 | } | |
1492 | ||
c4241c7d PM |
1493 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1494 | uint64_t value) | |
18032bec | 1495 | { |
7e09797c | 1496 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1497 | } |
1498 | ||
c4241c7d | 1499 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1500 | { |
7e09797c | 1501 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
1502 | } |
1503 | ||
c4241c7d PM |
1504 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1505 | uint64_t value) | |
18032bec | 1506 | { |
7e09797c | 1507 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1508 | } |
1509 | ||
c4241c7d | 1510 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1511 | { |
7e09797c | 1512 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
1513 | } |
1514 | ||
1515 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | |
1516 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d4e6df63 | 1517 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
7e09797c PM |
1518 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1519 | .resetvalue = 0, | |
18032bec PM |
1520 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
1521 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
d4e6df63 | 1522 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
7e09797c PM |
1523 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1524 | .resetvalue = 0, | |
18032bec PM |
1525 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
1526 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1527 | .access = PL1_RW, | |
7e09797c PM |
1528 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1529 | .resetvalue = 0, }, | |
18032bec PM |
1530 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
1531 | .access = PL1_RW, | |
7e09797c PM |
1532 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1533 | .resetvalue = 0, }, | |
ecce5c3c PM |
1534 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1535 | .access = PL1_RW, | |
1536 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1537 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1538 | .access = PL1_RW, | |
1539 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 1540 | /* Protection region base and size registers */ |
e508a92b PM |
1541 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
1542 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1543 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
1544 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
1545 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1546 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
1547 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
1548 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1549 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
1550 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
1551 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1552 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
1553 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
1554 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1555 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
1556 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
1557 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1558 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
1559 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
1560 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1561 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
1562 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
1563 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1564 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
1565 | REGINFO_SENTINEL |
1566 | }; | |
1567 | ||
c4241c7d PM |
1568 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1569 | uint64_t value) | |
ecce5c3c | 1570 | { |
11f136ee | 1571 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
1572 | int maskshift = extract32(value, 0, 3); |
1573 | ||
e389be16 FA |
1574 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
1575 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
1576 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
1577 | * using Long-desciptor translation table format */ | |
1578 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
1579 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1580 | /* In an implementation that includes the Security Extensions | |
1581 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
1582 | * Short-descriptor translation table format. | |
1583 | */ | |
1584 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
1585 | } else { | |
1586 | value &= TTBCR_N; | |
1587 | } | |
e42c4db3 | 1588 | } |
e389be16 | 1589 | |
11f136ee FA |
1590 | /* Update the masks corresponding to the the TCR bank being written |
1591 | * Note that we always calculate mask and base_mask, but | |
e42c4db3 | 1592 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
1593 | * for long-descriptor tables the TCR fields are used differently |
1594 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 1595 | */ |
11f136ee FA |
1596 | tcr->raw_tcr = value; |
1597 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
1598 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
1599 | } |
1600 | ||
c4241c7d PM |
1601 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1602 | uint64_t value) | |
d4e6df63 | 1603 | { |
00c8cb0a AF |
1604 | ARMCPU *cpu = arm_env_get_cpu(env); |
1605 | ||
d4e6df63 PM |
1606 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1607 | /* With LPAE the TTBCR could result in a change of ASID | |
1608 | * via the TTBCR.A1 bit, so do a TLB flush. | |
1609 | */ | |
00c8cb0a | 1610 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 1611 | } |
c4241c7d | 1612 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
1613 | } |
1614 | ||
ecce5c3c PM |
1615 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1616 | { | |
11f136ee FA |
1617 | TCR *tcr = raw_ptr(env, ri); |
1618 | ||
1619 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
1620 | * the TCR being reset. | |
1621 | */ | |
1622 | tcr->raw_tcr = 0; | |
1623 | tcr->mask = 0; | |
1624 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
1625 | } |
1626 | ||
cb2e37df PM |
1627 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1628 | uint64_t value) | |
1629 | { | |
00c8cb0a | 1630 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 1631 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 1632 | |
cb2e37df | 1633 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 1634 | tlb_flush(CPU(cpu), 1); |
11f136ee | 1635 | tcr->raw_tcr = value; |
cb2e37df PM |
1636 | } |
1637 | ||
327ed10f PM |
1638 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1639 | uint64_t value) | |
1640 | { | |
1641 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
1642 | * must flush the TLB. | |
1643 | */ | |
1644 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
1645 | ARMCPU *cpu = arm_env_get_cpu(env); |
1646 | ||
1647 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
1648 | } |
1649 | raw_write(env, ri, value); | |
1650 | } | |
1651 | ||
18032bec PM |
1652 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
1653 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
6cd8a264 | 1654 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
4a7e2d73 FA |
1655 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
1656 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, | |
6cd8a264 | 1657 | .resetfn = arm_cp_reset_ignore, }, |
18032bec | 1658 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
1659 | .access = PL1_RW, .resetvalue = 0, |
1660 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
1661 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
6cd8a264 RH |
1662 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
1663 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1664 | .access = PL1_RW, | |
d81c519c | 1665 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 1666 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
1667 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
1668 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
1669 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
1670 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 1671 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
1672 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
1673 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
1674 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
1675 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
1676 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
1677 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1678 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
1679 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 1680 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df PM |
1681 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
1682 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write, | |
1683 | .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, | |
11f136ee FA |
1684 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
1685 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
b848ce2b | 1686 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, |
6cd8a264 | 1687 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
2f0180c5 | 1688 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), |
06d76f31 | 1689 | .resetvalue = 0, }, |
b848ce2b FA |
1690 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
1691 | .access = PL1_RW, .resetvalue = 0, | |
1692 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
1693 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
18032bec PM |
1694 | REGINFO_SENTINEL |
1695 | }; | |
1696 | ||
c4241c7d PM |
1697 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1698 | uint64_t value) | |
1047b9d7 PM |
1699 | { |
1700 | env->cp15.c15_ticonfig = value & 0xe7; | |
1701 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
1702 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
1703 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
1704 | } |
1705 | ||
c4241c7d PM |
1706 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1707 | uint64_t value) | |
1047b9d7 PM |
1708 | { |
1709 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
1710 | } |
1711 | ||
c4241c7d PM |
1712 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1713 | uint64_t value) | |
1047b9d7 PM |
1714 | { |
1715 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 1716 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
1717 | } |
1718 | ||
c4241c7d PM |
1719 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1720 | uint64_t value) | |
c4804214 PM |
1721 | { |
1722 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
1723 | * containing a dirty line; cache flush operations have to reset these. | |
1724 | */ | |
1725 | env->cp15.c15_i_max = 0x000; | |
1726 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
1727 | } |
1728 | ||
18032bec PM |
1729 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
1730 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1731 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 1732 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 1733 | .resetvalue = 0, }, |
1047b9d7 PM |
1734 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1735 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1736 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1737 | .access = PL1_RW, | |
1738 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1739 | .writefn = omap_ticonfig_write }, | |
1740 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1741 | .access = PL1_RW, | |
1742 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1743 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1744 | .access = PL1_RW, .resetvalue = 0xff0, | |
1745 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1746 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1747 | .access = PL1_RW, | |
1748 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1749 | .writefn = omap_threadid_write }, | |
1750 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1751 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
d4e6df63 | 1752 | .type = ARM_CP_NO_MIGRATE, |
1047b9d7 PM |
1753 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1754 | /* TODO: Peripheral port remap register: | |
1755 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1756 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1757 | * when MMU is off. | |
1758 | */ | |
c4804214 | 1759 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 PM |
1760 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
1761 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, | |
c4804214 | 1762 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
1763 | { .name = "C9", .cp = 15, .crn = 9, |
1764 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1765 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
1766 | REGINFO_SENTINEL |
1767 | }; | |
1768 | ||
c4241c7d PM |
1769 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1770 | uint64_t value) | |
1047b9d7 | 1771 | { |
c0f4af17 | 1772 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
1773 | } |
1774 | ||
1775 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1776 | { .name = "XSCALE_CPAR", | |
1777 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1778 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1779 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
1780 | { .name = "XSCALE_AUXCR", |
1781 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1782 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1783 | .resetvalue = 0, }, | |
3b771579 PM |
1784 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
1785 | * and hope the guest does not really rely on cache behaviour. | |
1786 | */ | |
1787 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
1788 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
1789 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1790 | { .name = "XSCALE_UNLOCK_ICACHE", | |
1791 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
1792 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1793 | { .name = "XSCALE_DCACHE_LOCK", | |
1794 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
1795 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1796 | { .name = "XSCALE_UNLOCK_DCACHE", | |
1797 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
1798 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
1799 | REGINFO_SENTINEL |
1800 | }; | |
1801 | ||
1802 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1803 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1804 | * implementation of this implementation-defined space. | |
1805 | * Ideally this should eventually disappear in favour of actually | |
1806 | * implementing the correct behaviour for all cores. | |
1807 | */ | |
1808 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1809 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 PC |
1810 | .access = PL1_RW, |
1811 | .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE, | |
d4e6df63 | 1812 | .resetvalue = 0 }, |
18032bec PM |
1813 | REGINFO_SENTINEL |
1814 | }; | |
1815 | ||
c4804214 PM |
1816 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1817 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1818 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
d4e6df63 PM |
1819 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1820 | .resetvalue = 0 }, | |
c4804214 PM |
1821 | REGINFO_SENTINEL |
1822 | }; | |
1823 | ||
1824 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1825 | /* We never have a a block transfer operation in progress */ | |
1826 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
d4e6df63 PM |
1827 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1828 | .resetvalue = 0 }, | |
30b05bba PM |
1829 | /* The cache ops themselves: these all NOP for QEMU */ |
1830 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1831 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1832 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
1833 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1834 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
1835 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1836 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
1837 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1838 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
1839 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1840 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
1841 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
1842 | REGINFO_SENTINEL |
1843 | }; | |
1844 | ||
1845 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
1846 | /* The cache test-and-clean instructions always return (1 << 30) | |
1847 | * to indicate that there are no dirty cache lines. | |
1848 | */ | |
1849 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
d4e6df63 PM |
1850 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1851 | .resetvalue = (1 << 30) }, | |
c4804214 | 1852 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
d4e6df63 PM |
1853 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1854 | .resetvalue = (1 << 30) }, | |
c4804214 PM |
1855 | REGINFO_SENTINEL |
1856 | }; | |
1857 | ||
34f90529 PM |
1858 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
1859 | /* Ignore ReadBuffer accesses */ | |
1860 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
1861 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1862 | .access = PL1_RW, .resetvalue = 0, |
1863 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, | |
34f90529 PM |
1864 | REGINFO_SENTINEL |
1865 | }; | |
1866 | ||
c4241c7d | 1867 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 1868 | { |
55e5c285 AF |
1869 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
1870 | uint32_t mpidr = cs->cpu_index; | |
4b7fff2f PM |
1871 | /* We don't support setting cluster ID ([8..11]) (known as Aff1 |
1872 | * in later ARM ARM versions), or any of the higher affinity level fields, | |
81bdde9d PM |
1873 | * so these bits always RAZ. |
1874 | */ | |
1875 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
78dbbbe4 | 1876 | mpidr |= (1U << 31); |
81bdde9d PM |
1877 | /* Cores which are uniprocessor (non-coherent) |
1878 | * but still implement the MP extensions set | |
1879 | * bit 30. (For instance, A9UP.) However we do | |
1880 | * not currently model any of those cores. | |
1881 | */ | |
1882 | } | |
c4241c7d | 1883 | return mpidr; |
81bdde9d PM |
1884 | } |
1885 | ||
1886 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
1887 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
1888 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
d4e6df63 | 1889 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, |
81bdde9d PM |
1890 | REGINFO_SENTINEL |
1891 | }; | |
1892 | ||
7ac681cf | 1893 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 1894 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
1895 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
1896 | */ | |
b0fe2427 PM |
1897 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
1898 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
7ac681cf PM |
1899 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
1900 | .resetvalue = 0 }, | |
b0fe2427 | 1901 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf PM |
1902 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
1903 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1904 | .resetvalue = 0 }, | |
891a2fe7 PM |
1905 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1906 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
19525524 | 1907 | .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 }, |
891a2fe7 | 1908 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
327ed10f | 1909 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
7dd8c9af FA |
1910 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
1911 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
327ed10f | 1912 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, |
891a2fe7 | 1913 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
327ed10f | 1914 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
7dd8c9af FA |
1915 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
1916 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
327ed10f | 1917 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, |
7ac681cf PM |
1918 | REGINFO_SENTINEL |
1919 | }; | |
1920 | ||
c4241c7d | 1921 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1922 | { |
c4241c7d | 1923 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
1924 | } |
1925 | ||
c4241c7d PM |
1926 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1927 | uint64_t value) | |
b0d2b7d0 PM |
1928 | { |
1929 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
1930 | } |
1931 | ||
c4241c7d | 1932 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1933 | { |
c4241c7d | 1934 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
1935 | } |
1936 | ||
c4241c7d PM |
1937 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1938 | uint64_t value) | |
b0d2b7d0 PM |
1939 | { |
1940 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
1941 | } |
1942 | ||
c2b820fe PM |
1943 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1944 | { | |
137feaa9 | 1945 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
1946 | return CP_ACCESS_TRAP; |
1947 | } | |
1948 | return CP_ACCESS_OK; | |
1949 | } | |
1950 | ||
1951 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1952 | uint64_t value) | |
1953 | { | |
1954 | env->daif = value & PSTATE_DAIF; | |
1955 | } | |
1956 | ||
8af35c37 PM |
1957 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
1958 | const ARMCPRegInfo *ri) | |
1959 | { | |
1960 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
1961 | * SCTLR_EL1.UCI is set. | |
1962 | */ | |
137feaa9 | 1963 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
1964 | return CP_ACCESS_TRAP; |
1965 | } | |
1966 | return CP_ACCESS_OK; | |
1967 | } | |
1968 | ||
dbb1fb27 AB |
1969 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
1970 | * Page D4-1736 (DDI0487A.b) | |
1971 | */ | |
1972 | ||
168aa23b PM |
1973 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1974 | uint64_t value) | |
1975 | { | |
1976 | /* Invalidate by VA (AArch64 version) */ | |
31b030d4 | 1977 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
1978 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
1979 | ||
31b030d4 | 1980 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
1981 | } |
1982 | ||
1983 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1984 | uint64_t value) | |
1985 | { | |
1986 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
31b030d4 | 1987 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
1988 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
1989 | ||
31b030d4 | 1990 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
1991 | } |
1992 | ||
1993 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1994 | uint64_t value) | |
1995 | { | |
1996 | /* Invalidate by ASID (AArch64 version) */ | |
00c8cb0a | 1997 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 1998 | int asid = extract64(value, 48, 16); |
00c8cb0a | 1999 | tlb_flush(CPU(cpu), asid == 0); |
168aa23b PM |
2000 | } |
2001 | ||
fa439fc5 PM |
2002 | static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2003 | uint64_t value) | |
2004 | { | |
2005 | CPUState *other_cs; | |
2006 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2007 | ||
2008 | CPU_FOREACH(other_cs) { | |
2009 | tlb_flush_page(other_cs, pageaddr); | |
2010 | } | |
2011 | } | |
2012 | ||
2013 | static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2014 | uint64_t value) | |
2015 | { | |
2016 | CPUState *other_cs; | |
2017 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2018 | ||
2019 | CPU_FOREACH(other_cs) { | |
2020 | tlb_flush_page(other_cs, pageaddr); | |
2021 | } | |
2022 | } | |
2023 | ||
2024 | static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2025 | uint64_t value) | |
2026 | { | |
2027 | CPUState *other_cs; | |
2028 | int asid = extract64(value, 48, 16); | |
2029 | ||
2030 | CPU_FOREACH(other_cs) { | |
2031 | tlb_flush(other_cs, asid == 0); | |
2032 | } | |
2033 | } | |
2034 | ||
aca3f40b PM |
2035 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2036 | { | |
2037 | /* We don't implement EL2, so the only control on DC ZVA is the | |
2038 | * bit in the SCTLR which can prohibit access for EL0. | |
2039 | */ | |
137feaa9 | 2040 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
2041 | return CP_ACCESS_TRAP; |
2042 | } | |
2043 | return CP_ACCESS_OK; | |
2044 | } | |
2045 | ||
2046 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2047 | { | |
2048 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2049 | int dzp_bit = 1 << 4; | |
2050 | ||
2051 | /* DZP indicates whether DC ZVA access is allowed */ | |
14e5f106 | 2052 | if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { |
aca3f40b PM |
2053 | dzp_bit = 0; |
2054 | } | |
2055 | return cpu->dcz_blocksize | dzp_bit; | |
2056 | } | |
2057 | ||
f502cfc2 PM |
2058 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2059 | { | |
cdcf1405 | 2060 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
2061 | /* Access to SP_EL0 is undefined if it's being used as |
2062 | * the stack pointer. | |
2063 | */ | |
2064 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2065 | } | |
2066 | return CP_ACCESS_OK; | |
2067 | } | |
2068 | ||
2069 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2070 | { | |
2071 | return env->pstate & PSTATE_SP; | |
2072 | } | |
2073 | ||
2074 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
2075 | { | |
2076 | update_spsel(env, val); | |
2077 | } | |
2078 | ||
137feaa9 FA |
2079 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2080 | uint64_t value) | |
2081 | { | |
2082 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2083 | ||
2084 | if (raw_read(env, ri) == value) { | |
2085 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
2086 | * to do a lot of pointless SCTLR writes. | |
2087 | */ | |
2088 | return; | |
2089 | } | |
2090 | ||
2091 | raw_write(env, ri, value); | |
2092 | /* ??? Lots of these bits are not implemented. */ | |
2093 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
2094 | tlb_flush(CPU(cpu), 1); | |
2095 | } | |
2096 | ||
b0d2b7d0 PM |
2097 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
2098 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
2099 | * significantly for system emulation of AArch64 CPUs. | |
2100 | */ | |
2101 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
2102 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
2103 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
2104 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
2105 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
2106 | .type = ARM_CP_NO_MIGRATE, | |
2107 | .access = PL0_RW, .accessfn = aa64_daif_access, | |
2108 | .fieldoffset = offsetof(CPUARMState, daif), | |
2109 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
2110 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
2111 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
2112 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
2113 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
2114 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
2115 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
2116 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
2117 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
aca3f40b PM |
2118 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE, |
2119 | .readfn = aa64_dczid_read }, | |
2120 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
2121 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
2122 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
2123 | #ifndef CONFIG_USER_ONLY | |
2124 | /* Avoid overhead of an access check that always passes in user-mode */ | |
2125 | .accessfn = aa64_zva_access, | |
2126 | #endif | |
2127 | }, | |
0eef9d98 PM |
2128 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
2129 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
2130 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
2131 | /* Cache ops: all NOPs since we don't emulate caches */ |
2132 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
2133 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2134 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2135 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
2136 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2137 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2138 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
2139 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
2140 | .access = PL0_W, .type = ARM_CP_NOP, | |
2141 | .accessfn = aa64_cacheop_access }, | |
2142 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
2143 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2144 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2145 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
2146 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2147 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2148 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
2149 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
2150 | .access = PL0_W, .type = ARM_CP_NOP, | |
2151 | .accessfn = aa64_cacheop_access }, | |
2152 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
2153 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2154 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2155 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
2156 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
2157 | .access = PL0_W, .type = ARM_CP_NOP, | |
2158 | .accessfn = aa64_cacheop_access }, | |
2159 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
2160 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
2161 | .access = PL0_W, .type = ARM_CP_NOP, | |
2162 | .accessfn = aa64_cacheop_access }, | |
2163 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
2164 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2165 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
2166 | /* TLBI operations */ |
2167 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2168 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
168aa23b | 2169 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2170 | .writefn = tlbiall_is_write }, |
168aa23b | 2171 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2172 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
168aa23b | 2173 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2174 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2175 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2176 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
168aa23b | 2177 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2178 | .writefn = tlbi_aa64_asid_is_write }, |
168aa23b | 2179 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2180 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
168aa23b | 2181 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2182 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2183 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2184 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
168aa23b | 2185 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2186 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2187 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2188 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
168aa23b | 2189 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2190 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2191 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2192 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
168aa23b PM |
2193 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2194 | .writefn = tlbiall_write }, | |
2195 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2196 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
168aa23b PM |
2197 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2198 | .writefn = tlbi_aa64_va_write }, | |
2199 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2200 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
168aa23b PM |
2201 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2202 | .writefn = tlbi_aa64_asid_write }, | |
2203 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2204 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
168aa23b PM |
2205 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2206 | .writefn = tlbi_aa64_vaa_write }, | |
2207 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2208 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
168aa23b PM |
2209 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2210 | .writefn = tlbi_aa64_va_write }, | |
2211 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2212 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
168aa23b PM |
2213 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2214 | .writefn = tlbi_aa64_vaa_write }, | |
19525524 PM |
2215 | #ifndef CONFIG_USER_ONLY |
2216 | /* 64 bit address translation operations */ | |
2217 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
2218 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
2219 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write }, | |
2220 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, | |
2221 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
2222 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write }, | |
2223 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, | |
2224 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
2225 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write }, | |
2226 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, | |
2227 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
2228 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write }, | |
2229 | #endif | |
995939a6 | 2230 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 2231 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
fa439fc5 | 2232 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 2233 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
fa439fc5 PM |
2234 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, |
2235 | .writefn = tlbimvaa_is_write }, | |
9449fdf6 PM |
2236 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
2237 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write }, | |
2238 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, | |
2239 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write }, | |
2240 | /* 32 bit cache operations */ | |
2241 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2242 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2243 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
2244 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2245 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2246 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2247 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
2248 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2249 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
2250 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2251 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
2252 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2253 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2254 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2255 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2256 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2257 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
2258 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2259 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2260 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2261 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
2262 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2263 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
2264 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2265 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2266 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2267 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
2268 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
2269 | .access = PL1_RW, .resetvalue = 0, | |
2270 | .writefn = dacr_write, .raw_writefn = raw_write, | |
2271 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
2272 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 PM |
2273 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
2274 | .type = ARM_CP_NO_MIGRATE, | |
2275 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, | |
6947f059 EI |
2276 | .access = PL1_RW, |
2277 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 PM |
2278 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
2279 | .type = ARM_CP_NO_MIGRATE, | |
2280 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, | |
2281 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) }, | |
f502cfc2 PM |
2282 | /* We rely on the access checks not allowing the guest to write to the |
2283 | * state field when SPSel indicates that it's being used as the stack | |
2284 | * pointer. | |
2285 | */ | |
2286 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
2287 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
2288 | .access = PL1_RW, .accessfn = sp_el0_access, | |
2289 | .type = ARM_CP_NO_MIGRATE, | |
2290 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, | |
2291 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, | |
2292 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
2293 | .type = ARM_CP_NO_MIGRATE, | |
2294 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, | |
b0d2b7d0 PM |
2295 | REGINFO_SENTINEL |
2296 | }; | |
2297 | ||
d42e3c26 EI |
2298 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
2299 | static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = { | |
2300 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, | |
2301 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2302 | .access = PL2_RW, | |
2303 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 EI |
2304 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
2305 | .type = ARM_CP_NO_MIGRATE, | |
2306 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
2307 | .access = PL2_RW, | |
2308 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
d42e3c26 EI |
2309 | REGINFO_SENTINEL |
2310 | }; | |
2311 | ||
f149e3e8 EI |
2312 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
2313 | { | |
2314 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2315 | uint64_t valid_mask = HCR_MASK; | |
2316 | ||
2317 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2318 | valid_mask &= ~HCR_HCD; | |
2319 | } else { | |
2320 | valid_mask &= ~HCR_TSC; | |
2321 | } | |
2322 | ||
2323 | /* Clear RES0 bits. */ | |
2324 | value &= valid_mask; | |
2325 | ||
2326 | /* These bits change the MMU setup: | |
2327 | * HCR_VM enables stage 2 translation | |
2328 | * HCR_PTW forbids certain page-table setups | |
2329 | * HCR_DC Disables stage1 and enables stage2 translation | |
2330 | */ | |
2331 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
2332 | tlb_flush(CPU(cpu), 1); | |
2333 | } | |
2334 | raw_write(env, ri, value); | |
2335 | } | |
2336 | ||
3b685ba7 | 2337 | static const ARMCPRegInfo v8_el2_cp_reginfo[] = { |
f149e3e8 EI |
2338 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
2339 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
2340 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
2341 | .writefn = hcr_write }, | |
0c17d68c FA |
2342 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
2343 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
2344 | .access = PL2_RW, .resetvalue = 0, | |
2345 | .writefn = dacr_write, .raw_writefn = raw_write, | |
2346 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3b685ba7 EI |
2347 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
2348 | .type = ARM_CP_NO_MIGRATE, | |
2349 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, | |
2350 | .access = PL2_RW, | |
2351 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 EI |
2352 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
2353 | .type = ARM_CP_NO_MIGRATE, | |
2354 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, | |
2355 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
88ca1c2d FA |
2356 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, |
2357 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
2358 | .access = PL2_RW, .resetvalue = 0, | |
2359 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
63b60551 EI |
2360 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
2361 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
2362 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 EI |
2363 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
2364 | .type = ARM_CP_NO_MIGRATE, | |
2365 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, | |
2366 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, | |
d42e3c26 EI |
2367 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
2368 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2369 | .access = PL2_RW, .writefn = vbar_write, | |
2370 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
2371 | .resetvalue = 0 }, | |
3b685ba7 EI |
2372 | REGINFO_SENTINEL |
2373 | }; | |
2374 | ||
81547d66 | 2375 | static const ARMCPRegInfo v8_el3_cp_reginfo[] = { |
137feaa9 FA |
2376 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
2377 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
2378 | .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
2379 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, | |
7dd8c9af FA |
2380 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
2381 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
2382 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2383 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
2384 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
2385 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
2386 | .access = PL3_RW, .writefn = vmsa_tcr_el1_write, | |
2387 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
2388 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, | |
81547d66 EI |
2389 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
2390 | .type = ARM_CP_NO_MIGRATE, | |
2391 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, | |
2392 | .access = PL3_RW, | |
2393 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 EI |
2394 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
2395 | .type = ARM_CP_NO_MIGRATE, | |
2396 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, | |
2397 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
2398 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
2399 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
2400 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 EI |
2401 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
2402 | .type = ARM_CP_NO_MIGRATE, | |
2403 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, | |
2404 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, | |
a1ba125c EI |
2405 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
2406 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
2407 | .access = PL3_RW, .writefn = vbar_write, | |
2408 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
2409 | .resetvalue = 0 }, | |
0f1a3b24 FA |
2410 | REGINFO_SENTINEL |
2411 | }; | |
2412 | ||
2413 | static const ARMCPRegInfo el3_cp_reginfo[] = { | |
64e0e2de | 2414 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, |
64e0e2de EI |
2415 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, |
2416 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
0f1a3b24 FA |
2417 | .resetvalue = 0, .writefn = scr_write }, |
2418 | { .name = "SCR", .type = ARM_CP_NO_MIGRATE, | |
2419 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, | |
2420 | .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
2421 | .resetfn = arm_cp_reset_ignore, .writefn = scr_write }, | |
144634ae GB |
2422 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
2423 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
2424 | .access = PL3_RW, .resetvalue = 0, | |
2425 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
2426 | { .name = "SDER", | |
2427 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
2428 | .access = PL3_RW, .resetvalue = 0, | |
2429 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
77022576 FA |
2430 | /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ |
2431 | { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
2432 | .access = PL3_W | PL1_R, .resetvalue = 0, | |
2433 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, | |
e89e51a1 FA |
2434 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
2435 | .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, | |
2436 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, | |
81547d66 EI |
2437 | REGINFO_SENTINEL |
2438 | }; | |
2439 | ||
7da845b0 PM |
2440 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2441 | { | |
2442 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
2443 | * but the AArch32 CTR has its own reginfo struct) | |
2444 | */ | |
137feaa9 | 2445 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
2446 | return CP_ACCESS_TRAP; |
2447 | } | |
2448 | return CP_ACCESS_OK; | |
2449 | } | |
2450 | ||
50300698 | 2451 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 2452 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
2453 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
2454 | * unlike DBGDRAR it is never accessible from EL0. | |
2455 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
2456 | * accessor. | |
50300698 PM |
2457 | */ |
2458 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2459 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
2460 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
2461 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
2462 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 PM |
2463 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2464 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 2465 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
2466 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
2467 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
0e5e8935 PM |
2468 | .access = PL1_RW, |
2469 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
2470 | .resetvalue = 0 }, | |
5e8b12ff PM |
2471 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
2472 | * We don't implement the configurable EL0 access. | |
2473 | */ | |
2474 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
2475 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
2476 | .type = ARM_CP_NO_MIGRATE, | |
2477 | .access = PL1_R, | |
2478 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
2479 | .resetfn = arm_cp_reset_ignore }, | |
50300698 | 2480 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
10aae104 PM |
2481 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
2482 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
50300698 | 2483 | .access = PL1_W, .type = ARM_CP_NOP }, |
5e8b12ff PM |
2484 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
2485 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
2486 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
2487 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2488 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't | |
2489 | * implement vector catch debug events yet. | |
2490 | */ | |
2491 | { .name = "DBGVCR", | |
2492 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
2493 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
50300698 PM |
2494 | REGINFO_SENTINEL |
2495 | }; | |
2496 | ||
2497 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
2498 | /* 64 bit access versions of the (dummy) debug registers */ | |
2499 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
2500 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
2501 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
2502 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
2503 | REGINFO_SENTINEL | |
2504 | }; | |
2505 | ||
9ee98ce8 PM |
2506 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
2507 | { | |
2508 | CPUARMState *env = &cpu->env; | |
2509 | vaddr len = 0; | |
2510 | vaddr wvr = env->cp15.dbgwvr[n]; | |
2511 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
2512 | int mask; | |
2513 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
2514 | ||
2515 | if (env->cpu_watchpoint[n]) { | |
2516 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
2517 | env->cpu_watchpoint[n] = NULL; | |
2518 | } | |
2519 | ||
2520 | if (!extract64(wcr, 0, 1)) { | |
2521 | /* E bit clear : watchpoint disabled */ | |
2522 | return; | |
2523 | } | |
2524 | ||
2525 | switch (extract64(wcr, 3, 2)) { | |
2526 | case 0: | |
2527 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
2528 | return; | |
2529 | case 1: | |
2530 | flags |= BP_MEM_READ; | |
2531 | break; | |
2532 | case 2: | |
2533 | flags |= BP_MEM_WRITE; | |
2534 | break; | |
2535 | case 3: | |
2536 | flags |= BP_MEM_ACCESS; | |
2537 | break; | |
2538 | } | |
2539 | ||
2540 | /* Attempts to use both MASK and BAS fields simultaneously are | |
2541 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
2542 | * thus generating a watchpoint for every byte in the masked region. | |
2543 | */ | |
2544 | mask = extract64(wcr, 24, 4); | |
2545 | if (mask == 1 || mask == 2) { | |
2546 | /* Reserved values of MASK; we must act as if the mask value was | |
2547 | * some non-reserved value, or as if the watchpoint were disabled. | |
2548 | * We choose the latter. | |
2549 | */ | |
2550 | return; | |
2551 | } else if (mask) { | |
2552 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
2553 | len = 1ULL << mask; | |
2554 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
2555 | * whether the watchpoint fires when the unmasked bits match; we opt | |
2556 | * to generate the exceptions. | |
2557 | */ | |
2558 | wvr &= ~(len - 1); | |
2559 | } else { | |
2560 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
2561 | int bas = extract64(wcr, 5, 8); | |
2562 | int basstart; | |
2563 | ||
2564 | if (bas == 0) { | |
2565 | /* This must act as if the watchpoint is disabled */ | |
2566 | return; | |
2567 | } | |
2568 | ||
2569 | if (extract64(wvr, 2, 1)) { | |
2570 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
2571 | * ignored, and BAS[3:0] define which bytes to watch. | |
2572 | */ | |
2573 | bas &= 0xf; | |
2574 | } | |
2575 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
2576 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
2577 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
2578 | * We choose to ignore any non-zero bits after the first range of 1s. | |
2579 | */ | |
2580 | basstart = ctz32(bas); | |
2581 | len = cto32(bas >> basstart); | |
2582 | wvr += basstart; | |
2583 | } | |
2584 | ||
2585 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
2586 | &env->cpu_watchpoint[n]); | |
2587 | } | |
2588 | ||
2589 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
2590 | { | |
2591 | int i; | |
2592 | CPUARMState *env = &cpu->env; | |
2593 | ||
2594 | /* Completely clear out existing QEMU watchpoints and our array, to | |
2595 | * avoid possible stale entries following migration load. | |
2596 | */ | |
2597 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
2598 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
2599 | ||
2600 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
2601 | hw_watchpoint_update(cpu, i); | |
2602 | } | |
2603 | } | |
2604 | ||
2605 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2606 | uint64_t value) | |
2607 | { | |
2608 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2609 | int i = ri->crm; | |
2610 | ||
2611 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
2612 | * register reads and behaves as if values written are sign extended. | |
2613 | * Bits [1:0] are RES0. | |
2614 | */ | |
2615 | value = sextract64(value, 0, 49) & ~3ULL; | |
2616 | ||
2617 | raw_write(env, ri, value); | |
2618 | hw_watchpoint_update(cpu, i); | |
2619 | } | |
2620 | ||
2621 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2622 | uint64_t value) | |
2623 | { | |
2624 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2625 | int i = ri->crm; | |
2626 | ||
2627 | raw_write(env, ri, value); | |
2628 | hw_watchpoint_update(cpu, i); | |
2629 | } | |
2630 | ||
46747d15 PM |
2631 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
2632 | { | |
2633 | CPUARMState *env = &cpu->env; | |
2634 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
2635 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
2636 | vaddr addr; | |
2637 | int bt; | |
2638 | int flags = BP_CPU; | |
2639 | ||
2640 | if (env->cpu_breakpoint[n]) { | |
2641 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
2642 | env->cpu_breakpoint[n] = NULL; | |
2643 | } | |
2644 | ||
2645 | if (!extract64(bcr, 0, 1)) { | |
2646 | /* E bit clear : watchpoint disabled */ | |
2647 | return; | |
2648 | } | |
2649 | ||
2650 | bt = extract64(bcr, 20, 4); | |
2651 | ||
2652 | switch (bt) { | |
2653 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
2654 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
2655 | qemu_log_mask(LOG_UNIMP, | |
2656 | "arm: address mismatch breakpoint types not implemented"); | |
2657 | return; | |
2658 | case 0: /* unlinked address match */ | |
2659 | case 1: /* linked address match */ | |
2660 | { | |
2661 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
2662 | * we behave as if the register was sign extended. Bits [1:0] are | |
2663 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
2664 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
2665 | * a bp will fire if the addresses covered by the bp and the addresses | |
2666 | * covered by the insn overlap but the insn doesn't start at the | |
2667 | * start of the bp address range. We choose to require the insn and | |
2668 | * the bp to have the same address. The constraints on writing to | |
2669 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
2670 | * 0b0000 => no breakpoint | |
2671 | * 0b0011 => breakpoint on addr | |
2672 | * 0b1100 => breakpoint on addr + 2 | |
2673 | * 0b1111 => breakpoint on addr | |
2674 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
2675 | */ | |
2676 | int bas = extract64(bcr, 5, 4); | |
2677 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
2678 | if (bas == 0) { | |
2679 | return; | |
2680 | } | |
2681 | if (bas == 0xc) { | |
2682 | addr += 2; | |
2683 | } | |
2684 | break; | |
2685 | } | |
2686 | case 2: /* unlinked context ID match */ | |
2687 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
2688 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
2689 | qemu_log_mask(LOG_UNIMP, | |
2690 | "arm: unlinked context breakpoint types not implemented"); | |
2691 | return; | |
2692 | case 9: /* linked VMID match (reserved if no EL2) */ | |
2693 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
2694 | case 3: /* linked context ID match */ | |
2695 | default: | |
2696 | /* We must generate no events for Linked context matches (unless | |
2697 | * they are linked to by some other bp/wp, which is handled in | |
2698 | * updates for the linking bp/wp). We choose to also generate no events | |
2699 | * for reserved values. | |
2700 | */ | |
2701 | return; | |
2702 | } | |
2703 | ||
2704 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
2705 | } | |
2706 | ||
2707 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
2708 | { | |
2709 | int i; | |
2710 | CPUARMState *env = &cpu->env; | |
2711 | ||
2712 | /* Completely clear out existing QEMU breakpoints and our array, to | |
2713 | * avoid possible stale entries following migration load. | |
2714 | */ | |
2715 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
2716 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
2717 | ||
2718 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
2719 | hw_breakpoint_update(cpu, i); | |
2720 | } | |
2721 | } | |
2722 | ||
2723 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2724 | uint64_t value) | |
2725 | { | |
2726 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2727 | int i = ri->crm; | |
2728 | ||
2729 | raw_write(env, ri, value); | |
2730 | hw_breakpoint_update(cpu, i); | |
2731 | } | |
2732 | ||
2733 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2734 | uint64_t value) | |
2735 | { | |
2736 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2737 | int i = ri->crm; | |
2738 | ||
2739 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
2740 | * copy of BAS[0]. | |
2741 | */ | |
2742 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
2743 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
2744 | ||
2745 | raw_write(env, ri, value); | |
2746 | hw_breakpoint_update(cpu, i); | |
2747 | } | |
2748 | ||
50300698 | 2749 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 2750 | { |
50300698 PM |
2751 | /* Define v7 and v8 architectural debug registers. |
2752 | * These are just dummy implementations for now. | |
0b45451e PM |
2753 | */ |
2754 | int i; | |
3ff6fc91 | 2755 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
2756 | ARMCPRegInfo dbgdidr = { |
2757 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2758 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
2759 | }; | |
2760 | ||
3ff6fc91 | 2761 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
2762 | brps = extract32(cpu->dbgdidr, 24, 4); |
2763 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
2764 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
2765 | ||
2766 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
2767 | |
2768 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
2769 | * of the debug registers such as number of breakpoints; | |
2770 | * check that if they both exist then they agree. | |
2771 | */ | |
2772 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
2773 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
2774 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 2775 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 2776 | } |
0b45451e | 2777 | |
48eb3ae6 | 2778 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
2779 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
2780 | ||
2781 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
2782 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
2783 | } | |
2784 | ||
48eb3ae6 | 2785 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 2786 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
2787 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
2788 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
0b45451e | 2789 | .access = PL1_RW, |
46747d15 PM |
2790 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
2791 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
2792 | }, | |
10aae104 PM |
2793 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
2794 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
0b45451e | 2795 | .access = PL1_RW, |
46747d15 PM |
2796 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
2797 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
2798 | }, | |
48eb3ae6 PM |
2799 | REGINFO_SENTINEL |
2800 | }; | |
2801 | define_arm_cp_regs(cpu, dbgregs); | |
2802 | } | |
2803 | ||
2804 | for (i = 0; i < wrps + 1; i++) { | |
2805 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
2806 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
2807 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
0b45451e | 2808 | .access = PL1_RW, |
9ee98ce8 PM |
2809 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
2810 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
2811 | }, | |
10aae104 PM |
2812 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
2813 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
0b45451e | 2814 | .access = PL1_RW, |
9ee98ce8 PM |
2815 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
2816 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
2817 | }, | |
2818 | REGINFO_SENTINEL | |
0b45451e PM |
2819 | }; |
2820 | define_arm_cp_regs(cpu, dbgregs); | |
2821 | } | |
2822 | } | |
2823 | ||
2ceb98c0 PM |
2824 | void register_cp_regs_for_features(ARMCPU *cpu) |
2825 | { | |
2826 | /* Register all the coprocessor registers based on feature bits */ | |
2827 | CPUARMState *env = &cpu->env; | |
2828 | if (arm_feature(env, ARM_FEATURE_M)) { | |
2829 | /* M profile has no coprocessor registers */ | |
2830 | return; | |
2831 | } | |
2832 | ||
e9aa6c21 | 2833 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
2834 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2835 | /* Must go early as it is full of wildcards that may be | |
2836 | * overridden by later definitions. | |
2837 | */ | |
2838 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
2839 | } | |
2840 | ||
7d57f408 | 2841 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
2842 | /* The ID registers all have impdef reset values */ |
2843 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
2844 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
2845 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
2846 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2847 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
2848 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
2849 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
2850 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2851 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
2852 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
2853 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
2854 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2855 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
2856 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
2857 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
2858 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2859 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
2860 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
2861 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
2862 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2863 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
2864 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
2865 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
2866 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2867 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
2868 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
2869 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
2870 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2871 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
2872 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
2873 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
2874 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2875 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
2876 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
2877 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
2878 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2879 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
2880 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
2881 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
2882 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2883 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
2884 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
2885 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
2886 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2887 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
2888 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
2889 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
2890 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2891 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
2892 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
2893 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
2894 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2895 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
2896 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
2897 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
2898 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
2899 | .resetvalue = cpu->id_isar5 }, |
2900 | /* 6..7 are as yet unallocated and must RAZ */ | |
2901 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
2902 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
2903 | .resetvalue = 0 }, | |
2904 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
2905 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
2906 | .resetvalue = 0 }, | |
2907 | REGINFO_SENTINEL | |
2908 | }; | |
2909 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
2910 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
2911 | } else { | |
2912 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
2913 | } | |
4d31c596 PM |
2914 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
2915 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
2916 | } | |
995939a6 PM |
2917 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
2918 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); | |
2919 | } | |
e9aa6c21 | 2920 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 2921 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
2922 | * field as main ID register, and we implement only the cycle |
2923 | * count register. | |
200ac0ef | 2924 | */ |
7c2cb42b | 2925 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
2926 | ARMCPRegInfo pmcr = { |
2927 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b AF |
2928 | .access = PL0_RW, |
2929 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, | |
2930 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), | |
fcd25206 PM |
2931 | .accessfn = pmreg_access, .writefn = pmcr_write, |
2932 | .raw_writefn = raw_write, | |
200ac0ef | 2933 | }; |
8521466b AF |
2934 | ARMCPRegInfo pmcr64 = { |
2935 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
2936 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
2937 | .access = PL0_RW, .accessfn = pmreg_access, | |
2938 | .type = ARM_CP_IO, | |
2939 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
2940 | .resetvalue = cpu->midr & 0xff000000, | |
2941 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
2942 | }; | |
7c2cb42b | 2943 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 2944 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 2945 | #endif |
776d4e5c | 2946 | ARMCPRegInfo clidr = { |
7da845b0 PM |
2947 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
2948 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
2949 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
2950 | }; | |
776d4e5c | 2951 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 2952 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 2953 | define_debug_regs(cpu); |
7d57f408 PM |
2954 | } else { |
2955 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 2956 | } |
b0d2b7d0 | 2957 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
2958 | /* AArch64 ID registers, which all have impdef reset values */ |
2959 | ARMCPRegInfo v8_idregs[] = { | |
2960 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2961 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
2962 | .access = PL1_R, .type = ARM_CP_CONST, | |
2963 | .resetvalue = cpu->id_aa64pfr0 }, | |
2964 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2965 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
2966 | .access = PL1_R, .type = ARM_CP_CONST, | |
2967 | .resetvalue = cpu->id_aa64pfr1}, | |
2968 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2969 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
2970 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 2971 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
2972 | * implement the PMU. Not advertising it prevents the guest |
2973 | * from trying to use it and getting UNDEFs on registers we | |
2974 | * don't implement. | |
2975 | */ | |
2976 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
2977 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
2978 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
2979 | .access = PL1_R, .type = ARM_CP_CONST, | |
2980 | .resetvalue = cpu->id_aa64dfr1 }, | |
2981 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2982 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
2983 | .access = PL1_R, .type = ARM_CP_CONST, | |
2984 | .resetvalue = cpu->id_aa64afr0 }, | |
2985 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2986 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
2987 | .access = PL1_R, .type = ARM_CP_CONST, | |
2988 | .resetvalue = cpu->id_aa64afr1 }, | |
2989 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
2990 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
2991 | .access = PL1_R, .type = ARM_CP_CONST, | |
2992 | .resetvalue = cpu->id_aa64isar0 }, | |
2993 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
2994 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
2995 | .access = PL1_R, .type = ARM_CP_CONST, | |
2996 | .resetvalue = cpu->id_aa64isar1 }, | |
2997 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2998 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
2999 | .access = PL1_R, .type = ARM_CP_CONST, | |
3000 | .resetvalue = cpu->id_aa64mmfr0 }, | |
3001 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3002 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
3003 | .access = PL1_R, .type = ARM_CP_CONST, | |
3004 | .resetvalue = cpu->id_aa64mmfr1 }, | |
a50c0f51 PM |
3005 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
3006 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
3007 | .access = PL1_R, .type = ARM_CP_CONST, | |
3008 | .resetvalue = cpu->mvfr0 }, | |
3009 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3010 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
3011 | .access = PL1_R, .type = ARM_CP_CONST, | |
3012 | .resetvalue = cpu->mvfr1 }, | |
3013 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
3014 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
3015 | .access = PL1_R, .type = ARM_CP_CONST, | |
3016 | .resetvalue = cpu->mvfr2 }, | |
e60cef86 PM |
3017 | REGINFO_SENTINEL |
3018 | }; | |
3933443e PM |
3019 | ARMCPRegInfo rvbar = { |
3020 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
3021 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, | |
3022 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
3023 | }; | |
3024 | define_one_arm_cp_reg(cpu, &rvbar); | |
e60cef86 | 3025 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
3026 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
3027 | } | |
3b685ba7 EI |
3028 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
3029 | define_arm_cp_regs(cpu, v8_el2_cp_reginfo); | |
d42e3c26 EI |
3030 | } else { |
3031 | /* If EL2 is missing but higher ELs are enabled, we need to | |
3032 | * register the no_el2 reginfos. | |
3033 | */ | |
3034 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3035 | define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo); | |
3036 | } | |
3b685ba7 | 3037 | } |
81547d66 | 3038 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 FA |
3039 | if (arm_feature(env, ARM_FEATURE_V8)) { |
3040 | define_arm_cp_regs(cpu, v8_el3_cp_reginfo); | |
3041 | } | |
3042 | define_arm_cp_regs(cpu, el3_cp_reginfo); | |
81547d66 | 3043 | } |
18032bec PM |
3044 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
3045 | /* These are the MPU registers prior to PMSAv6. Any new | |
3046 | * PMSA core later than the ARM946 will require that we | |
3047 | * implement the PMSAv6 or PMSAv7 registers, which are | |
3048 | * completely different. | |
3049 | */ | |
3050 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
3051 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
3052 | } else { | |
3053 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
3054 | } | |
c326b979 PM |
3055 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
3056 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
3057 | } | |
6cc7a3ae PM |
3058 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
3059 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
3060 | } | |
4a501606 PM |
3061 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
3062 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
3063 | } | |
c4804214 PM |
3064 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
3065 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
3066 | } | |
3067 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
3068 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
3069 | } | |
3070 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
3071 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
3072 | } | |
18032bec PM |
3073 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
3074 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
3075 | } | |
34f90529 PM |
3076 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
3077 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
3078 | } | |
1047b9d7 PM |
3079 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
3080 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
3081 | } | |
3082 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
3083 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
3084 | } | |
7ac681cf PM |
3085 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
3086 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
3087 | } | |
7884849c PM |
3088 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
3089 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
3090 | * be read-only (ie write causes UNDEF exception). | |
3091 | */ | |
3092 | { | |
00a29f3d PM |
3093 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
3094 | /* Pre-v8 MIDR space. | |
3095 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
3096 | * of the TI925 behaviour where writes to another register can |
3097 | * cause the MIDR value to change. | |
97ce8d61 PC |
3098 | * |
3099 | * Unimplemented registers in the c15 0 0 0 space default to | |
3100 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
3101 | * and friends override accordingly. | |
7884849c PM |
3102 | */ |
3103 | { .name = "MIDR", | |
97ce8d61 | 3104 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 3105 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 3106 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
3107 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
3108 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
3109 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
3110 | { .name = "DUMMY", | |
3111 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
3112 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3113 | { .name = "DUMMY", | |
3114 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
3115 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3116 | { .name = "DUMMY", | |
3117 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
3118 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3119 | { .name = "DUMMY", | |
3120 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
3121 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3122 | { .name = "DUMMY", | |
3123 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
3124 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3125 | REGINFO_SENTINEL | |
3126 | }; | |
00a29f3d PM |
3127 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
3128 | /* v8 MIDR -- the wildcard isn't necessary, and nor is the | |
3129 | * variable-MIDR TI925 behaviour. Instead we have a single | |
3130 | * (strictly speaking IMPDEF) alias of the MIDR, REVIDR. | |
3131 | */ | |
3132 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
3133 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
3134 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
3135 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
3136 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
3137 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
3138 | REGINFO_SENTINEL | |
3139 | }; | |
3140 | ARMCPRegInfo id_cp_reginfo[] = { | |
3141 | /* These are common to v8 and pre-v8 */ | |
3142 | { .name = "CTR", | |
3143 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
3144 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3145 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
3146 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
3147 | .access = PL0_R, .accessfn = ctr_el0_access, | |
3148 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3149 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
3150 | { .name = "TCMTR", | |
3151 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
3152 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3153 | { .name = "TLBTR", | |
3154 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
3155 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3156 | REGINFO_SENTINEL | |
3157 | }; | |
7884849c PM |
3158 | ARMCPRegInfo crn0_wi_reginfo = { |
3159 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
3160 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
3161 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
3162 | }; | |
3163 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
3164 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
3165 | ARMCPRegInfo *r; | |
3166 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
3167 | * whole space. Then update the specific ID registers to allow write |
3168 | * access, so that they ignore writes rather than causing them to | |
3169 | * UNDEF. | |
7884849c PM |
3170 | */ |
3171 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
3172 | for (r = id_pre_v8_midr_cp_reginfo; |
3173 | r->type != ARM_CP_SENTINEL; r++) { | |
3174 | r->access = PL1_RW; | |
3175 | } | |
7884849c PM |
3176 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
3177 | r->access = PL1_RW; | |
7884849c | 3178 | } |
7884849c | 3179 | } |
00a29f3d PM |
3180 | if (arm_feature(env, ARM_FEATURE_V8)) { |
3181 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
3182 | } else { | |
3183 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
3184 | } | |
a703eda1 | 3185 | define_arm_cp_regs(cpu, id_cp_reginfo); |
7884849c PM |
3186 | } |
3187 | ||
97ce8d61 PC |
3188 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
3189 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
3190 | } | |
3191 | ||
2771db27 PM |
3192 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
3193 | ARMCPRegInfo auxcr = { | |
2eef0bf8 PM |
3194 | .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, |
3195 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
2771db27 PM |
3196 | .access = PL1_RW, .type = ARM_CP_CONST, |
3197 | .resetvalue = cpu->reset_auxcr | |
3198 | }; | |
3199 | define_one_arm_cp_reg(cpu, &auxcr); | |
3200 | } | |
3201 | ||
d8ba780b | 3202 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
3203 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
3204 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
3205 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
3206 | | extract64(cpu->reset_cbar, 32, 12); | |
3207 | ARMCPRegInfo cbar_reginfo[] = { | |
3208 | { .name = "CBAR", | |
3209 | .type = ARM_CP_CONST, | |
3210 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
3211 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
3212 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
3213 | .type = ARM_CP_CONST, | |
3214 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
3215 | .access = PL1_R, .resetvalue = cbar32 }, | |
3216 | REGINFO_SENTINEL | |
3217 | }; | |
3218 | /* We don't implement a r/w 64 bit CBAR currently */ | |
3219 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
3220 | define_arm_cp_regs(cpu, cbar_reginfo); | |
3221 | } else { | |
3222 | ARMCPRegInfo cbar = { | |
3223 | .name = "CBAR", | |
3224 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
3225 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
3226 | .fieldoffset = offsetof(CPUARMState, | |
3227 | cp15.c15_config_base_address) | |
3228 | }; | |
3229 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
3230 | cbar.access = PL1_R; | |
3231 | cbar.fieldoffset = 0; | |
3232 | cbar.type = ARM_CP_CONST; | |
3233 | } | |
3234 | define_one_arm_cp_reg(cpu, &cbar); | |
3235 | } | |
d8ba780b PC |
3236 | } |
3237 | ||
2771db27 PM |
3238 | /* Generic registers whose values depend on the implementation */ |
3239 | { | |
3240 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 3241 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
3242 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
3243 | .access = PL1_RW, | |
3244 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
3245 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
3246 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
3247 | .raw_writefn = raw_write, | |
2771db27 PM |
3248 | }; |
3249 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
3250 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
3251 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
3252 | * an MMU enable to execute from cache. Imitate this behaviour. | |
3253 | */ | |
3254 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
3255 | } | |
3256 | define_one_arm_cp_reg(cpu, &sctlr); | |
3257 | } | |
2ceb98c0 PM |
3258 | } |
3259 | ||
778c3a06 | 3260 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 3261 | { |
9262685b | 3262 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
3263 | } |
3264 | ||
3265 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
3266 | { | |
22169d41 | 3267 | CPUState *cs = CPU(cpu); |
14969266 AF |
3268 | CPUARMState *env = &cpu->env; |
3269 | ||
6a669427 PM |
3270 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
3271 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
3272 | aarch64_fpu_gdb_set_reg, | |
3273 | 34, "aarch64-fpu.xml", 0); | |
3274 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 3275 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3276 | 51, "arm-neon.xml", 0); |
3277 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 3278 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3279 | 35, "arm-vfp3.xml", 0); |
3280 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 3281 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3282 | 19, "arm-vfp.xml", 0); |
3283 | } | |
40f137e1 PB |
3284 | } |
3285 | ||
777dc784 PM |
3286 | /* Sort alphabetically by type name, except for "any". */ |
3287 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 3288 | { |
777dc784 PM |
3289 | ObjectClass *class_a = (ObjectClass *)a; |
3290 | ObjectClass *class_b = (ObjectClass *)b; | |
3291 | const char *name_a, *name_b; | |
5adb4839 | 3292 | |
777dc784 PM |
3293 | name_a = object_class_get_name(class_a); |
3294 | name_b = object_class_get_name(class_b); | |
51492fd1 | 3295 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 3296 | return 1; |
51492fd1 | 3297 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
3298 | return -1; |
3299 | } else { | |
3300 | return strcmp(name_a, name_b); | |
5adb4839 PB |
3301 | } |
3302 | } | |
3303 | ||
777dc784 | 3304 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 3305 | { |
777dc784 | 3306 | ObjectClass *oc = data; |
92a31361 | 3307 | CPUListState *s = user_data; |
51492fd1 AF |
3308 | const char *typename; |
3309 | char *name; | |
3371d272 | 3310 | |
51492fd1 AF |
3311 | typename = object_class_get_name(oc); |
3312 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 3313 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
3314 | name); |
3315 | g_free(name); | |
777dc784 PM |
3316 | } |
3317 | ||
3318 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
3319 | { | |
92a31361 | 3320 | CPUListState s = { |
777dc784 PM |
3321 | .file = f, |
3322 | .cpu_fprintf = cpu_fprintf, | |
3323 | }; | |
3324 | GSList *list; | |
3325 | ||
3326 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
3327 | list = g_slist_sort(list, arm_cpu_list_compare); | |
3328 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
3329 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
3330 | g_slist_free(list); | |
a96c0514 PM |
3331 | #ifdef CONFIG_KVM |
3332 | /* The 'host' CPU type is dynamically registered only if KVM is | |
3333 | * enabled, so we have to special-case it here: | |
3334 | */ | |
3335 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
3336 | #endif | |
40f137e1 PB |
3337 | } |
3338 | ||
78027bb6 CR |
3339 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
3340 | { | |
3341 | ObjectClass *oc = data; | |
3342 | CpuDefinitionInfoList **cpu_list = user_data; | |
3343 | CpuDefinitionInfoList *entry; | |
3344 | CpuDefinitionInfo *info; | |
3345 | const char *typename; | |
3346 | ||
3347 | typename = object_class_get_name(oc); | |
3348 | info = g_malloc0(sizeof(*info)); | |
3349 | info->name = g_strndup(typename, | |
3350 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
3351 | ||
3352 | entry = g_malloc0(sizeof(*entry)); | |
3353 | entry->value = info; | |
3354 | entry->next = *cpu_list; | |
3355 | *cpu_list = entry; | |
3356 | } | |
3357 | ||
3358 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
3359 | { | |
3360 | CpuDefinitionInfoList *cpu_list = NULL; | |
3361 | GSList *list; | |
3362 | ||
3363 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
3364 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
3365 | g_slist_free(list); | |
3366 | ||
3367 | return cpu_list; | |
3368 | } | |
3369 | ||
6e6efd61 | 3370 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 3371 | void *opaque, int state, int secstate, |
f5a0a5a5 | 3372 | int crm, int opc1, int opc2) |
6e6efd61 PM |
3373 | { |
3374 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
3375 | * add a single reginfo struct to the hash table. | |
3376 | */ | |
3377 | uint32_t *key = g_new(uint32_t, 1); | |
3378 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
3379 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
3380 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
3381 | ||
3382 | /* Reset the secure state to the specific incoming state. This is | |
3383 | * necessary as the register may have been defined with both states. | |
3384 | */ | |
3385 | r2->secure = secstate; | |
3386 | ||
3387 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
3388 | /* Register is banked (using both entries in array). | |
3389 | * Overwriting fieldoffset as the array is only used to define | |
3390 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 3391 | */ |
3f3c82a5 FA |
3392 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
3393 | } | |
3394 | ||
3395 | if (state == ARM_CP_STATE_AA32) { | |
3396 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
3397 | /* If the register is banked then we don't need to migrate or | |
3398 | * reset the 32-bit instance in certain cases: | |
3399 | * | |
3400 | * 1) If the register has both 32-bit and 64-bit instances then we | |
3401 | * can count on the 64-bit instance taking care of the | |
3402 | * non-secure bank. | |
3403 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
3404 | * taking care of the secure bank. This requires that separate | |
3405 | * 32 and 64-bit definitions are provided. | |
3406 | */ | |
3407 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
3408 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
3409 | r2->type |= ARM_CP_NO_MIGRATE; | |
3410 | r2->resetfn = arm_cp_reset_ignore; | |
3411 | } | |
3412 | } else if ((secstate != r->secure) && !ns) { | |
3413 | /* The register is not banked so we only want to allow migration of | |
3414 | * the non-secure instance. | |
3415 | */ | |
3416 | r2->type |= ARM_CP_NO_MIGRATE; | |
3417 | r2->resetfn = arm_cp_reset_ignore; | |
58a1d8ce | 3418 | } |
3f3c82a5 FA |
3419 | |
3420 | if (r->state == ARM_CP_STATE_BOTH) { | |
3421 | /* We assume it is a cp15 register if the .cp field is left unset. | |
3422 | */ | |
3423 | if (r2->cp == 0) { | |
3424 | r2->cp = 15; | |
3425 | } | |
3426 | ||
f5a0a5a5 | 3427 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
3428 | if (r2->fieldoffset) { |
3429 | r2->fieldoffset += sizeof(uint32_t); | |
3430 | } | |
f5a0a5a5 | 3431 | #endif |
3f3c82a5 | 3432 | } |
f5a0a5a5 PM |
3433 | } |
3434 | if (state == ARM_CP_STATE_AA64) { | |
3435 | /* To allow abbreviation of ARMCPRegInfo | |
3436 | * definitions, we treat cp == 0 as equivalent to | |
3437 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
3438 | * STATE_BOTH definitions are also always "standard |
3439 | * sysreg" in their AArch64 view (the .cp value may | |
3440 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 3441 | */ |
58a1d8ce | 3442 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
3443 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
3444 | } | |
3445 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
3446 | r2->opc0, opc1, opc2); | |
3447 | } else { | |
51a79b03 | 3448 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 3449 | } |
6e6efd61 PM |
3450 | if (opaque) { |
3451 | r2->opaque = opaque; | |
3452 | } | |
67ed771d PM |
3453 | /* reginfo passed to helpers is correct for the actual access, |
3454 | * and is never ARM_CP_STATE_BOTH: | |
3455 | */ | |
3456 | r2->state = state; | |
6e6efd61 PM |
3457 | /* Make sure reginfo passed to helpers for wildcarded regs |
3458 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
3459 | */ | |
3460 | r2->crm = crm; | |
3461 | r2->opc1 = opc1; | |
3462 | r2->opc2 = opc2; | |
3463 | /* By convention, for wildcarded registers only the first | |
3464 | * entry is used for migration; the others are marked as | |
3465 | * NO_MIGRATE so we don't try to transfer the register | |
3466 | * multiple times. Special registers (ie NOP/WFI) are | |
3467 | * never migratable. | |
3468 | */ | |
3469 | if ((r->type & ARM_CP_SPECIAL) || | |
3470 | ((r->crm == CP_ANY) && crm != 0) || | |
3471 | ((r->opc1 == CP_ANY) && opc1 != 0) || | |
3472 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
3473 | r2->type |= ARM_CP_NO_MIGRATE; | |
3474 | } | |
3475 | ||
3476 | /* Overriding of an existing definition must be explicitly | |
3477 | * requested. | |
3478 | */ | |
3479 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
3480 | ARMCPRegInfo *oldreg; | |
3481 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
3482 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
3483 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
3484 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
3485 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
3486 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
3487 | oldreg->name, r2->name); | |
3488 | g_assert_not_reached(); | |
3489 | } | |
3490 | } | |
3491 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
3492 | } | |
3493 | ||
3494 | ||
4b6a83fb PM |
3495 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
3496 | const ARMCPRegInfo *r, void *opaque) | |
3497 | { | |
3498 | /* Define implementations of coprocessor registers. | |
3499 | * We store these in a hashtable because typically | |
3500 | * there are less than 150 registers in a space which | |
3501 | * is 16*16*16*8*8 = 262144 in size. | |
3502 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
3503 | * If a register is defined twice then the second definition is | |
3504 | * used, so this can be used to define some generic registers and | |
3505 | * then override them with implementation specific variations. | |
3506 | * At least one of the original and the second definition should | |
3507 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
3508 | * against accidental use. | |
f5a0a5a5 PM |
3509 | * |
3510 | * The state field defines whether the register is to be | |
3511 | * visible in the AArch32 or AArch64 execution state. If the | |
3512 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
3513 | * reginfo structure for the AArch32 view, which sees the lower | |
3514 | * 32 bits of the 64 bit register. | |
3515 | * | |
3516 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
3517 | * be wildcarded. AArch64 registers are always considered to be 64 | |
3518 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
3519 | * the register, if any. | |
4b6a83fb | 3520 | */ |
f5a0a5a5 | 3521 | int crm, opc1, opc2, state; |
4b6a83fb PM |
3522 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
3523 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
3524 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
3525 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
3526 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
3527 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
3528 | /* 64 bit registers have only CRm and Opc1 fields */ | |
3529 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
3530 | /* op0 only exists in the AArch64 encodings */ |
3531 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
3532 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
3533 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
3534 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
3535 | * encodes a minimum access level for the register. We roll this | |
3536 | * runtime check into our general permission check code, so check | |
3537 | * here that the reginfo's specified permissions are strict enough | |
3538 | * to encompass the generic architectural permission check. | |
3539 | */ | |
3540 | if (r->state != ARM_CP_STATE_AA32) { | |
3541 | int mask = 0; | |
3542 | switch (r->opc1) { | |
3543 | case 0: case 1: case 2: | |
3544 | /* min_EL EL1 */ | |
3545 | mask = PL1_RW; | |
3546 | break; | |
3547 | case 3: | |
3548 | /* min_EL EL0 */ | |
3549 | mask = PL0_RW; | |
3550 | break; | |
3551 | case 4: | |
3552 | /* min_EL EL2 */ | |
3553 | mask = PL2_RW; | |
3554 | break; | |
3555 | case 5: | |
3556 | /* unallocated encoding, so not possible */ | |
3557 | assert(false); | |
3558 | break; | |
3559 | case 6: | |
3560 | /* min_EL EL3 */ | |
3561 | mask = PL3_RW; | |
3562 | break; | |
3563 | case 7: | |
3564 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
3565 | mask = PL1_RW; | |
3566 | break; | |
3567 | default: | |
3568 | /* broken reginfo with out-of-range opc1 */ | |
3569 | assert(false); | |
3570 | break; | |
3571 | } | |
3572 | /* assert our permissions are not too lax (stricter is fine) */ | |
3573 | assert((r->access & ~mask) == 0); | |
3574 | } | |
3575 | ||
4b6a83fb PM |
3576 | /* Check that the register definition has enough info to handle |
3577 | * reads and writes if they are permitted. | |
3578 | */ | |
3579 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
3580 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
3581 | assert((r->fieldoffset || |
3582 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
3583 | r->readfn); | |
4b6a83fb PM |
3584 | } |
3585 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
3586 | assert((r->fieldoffset || |
3587 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
3588 | r->writefn); | |
4b6a83fb PM |
3589 | } |
3590 | } | |
3591 | /* Bad type field probably means missing sentinel at end of reg list */ | |
3592 | assert(cptype_valid(r->type)); | |
3593 | for (crm = crmmin; crm <= crmmax; crm++) { | |
3594 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
3595 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
3596 | for (state = ARM_CP_STATE_AA32; |
3597 | state <= ARM_CP_STATE_AA64; state++) { | |
3598 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
3599 | continue; | |
3600 | } | |
3f3c82a5 FA |
3601 | if (state == ARM_CP_STATE_AA32) { |
3602 | /* Under AArch32 CP registers can be common | |
3603 | * (same for secure and non-secure world) or banked. | |
3604 | */ | |
3605 | switch (r->secure) { | |
3606 | case ARM_CP_SECSTATE_S: | |
3607 | case ARM_CP_SECSTATE_NS: | |
3608 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3609 | r->secure, crm, opc1, opc2); | |
3610 | break; | |
3611 | default: | |
3612 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3613 | ARM_CP_SECSTATE_S, | |
3614 | crm, opc1, opc2); | |
3615 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3616 | ARM_CP_SECSTATE_NS, | |
3617 | crm, opc1, opc2); | |
3618 | break; | |
3619 | } | |
3620 | } else { | |
3621 | /* AArch64 registers get mapped to non-secure instance | |
3622 | * of AArch32 */ | |
3623 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3624 | ARM_CP_SECSTATE_NS, | |
3625 | crm, opc1, opc2); | |
3626 | } | |
f5a0a5a5 | 3627 | } |
4b6a83fb PM |
3628 | } |
3629 | } | |
3630 | } | |
3631 | } | |
3632 | ||
3633 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
3634 | const ARMCPRegInfo *regs, void *opaque) | |
3635 | { | |
3636 | /* Define a whole list of registers */ | |
3637 | const ARMCPRegInfo *r; | |
3638 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
3639 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
3640 | } | |
3641 | } | |
3642 | ||
60322b39 | 3643 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 3644 | { |
60322b39 | 3645 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
3646 | } |
3647 | ||
c4241c7d PM |
3648 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
3649 | uint64_t value) | |
4b6a83fb PM |
3650 | { |
3651 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
3652 | } |
3653 | ||
c4241c7d | 3654 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
3655 | { |
3656 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
3657 | return 0; |
3658 | } | |
3659 | ||
f5a0a5a5 PM |
3660 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
3661 | { | |
3662 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
3663 | } | |
3664 | ||
0ecb72a5 | 3665 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
3666 | { |
3667 | /* Return true if it is not valid for us to switch to | |
3668 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
3669 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
3670 | */ | |
3671 | switch (mode) { | |
3672 | case ARM_CPU_MODE_USR: | |
3673 | case ARM_CPU_MODE_SYS: | |
3674 | case ARM_CPU_MODE_SVC: | |
3675 | case ARM_CPU_MODE_ABT: | |
3676 | case ARM_CPU_MODE_UND: | |
3677 | case ARM_CPU_MODE_IRQ: | |
3678 | case ARM_CPU_MODE_FIQ: | |
3679 | return 0; | |
027fc527 SF |
3680 | case ARM_CPU_MODE_MON: |
3681 | return !arm_is_secure(env); | |
37064a8b PM |
3682 | default: |
3683 | return 1; | |
3684 | } | |
3685 | } | |
3686 | ||
2f4a40e5 AZ |
3687 | uint32_t cpsr_read(CPUARMState *env) |
3688 | { | |
3689 | int ZF; | |
6fbe23d5 PB |
3690 | ZF = (env->ZF == 0); |
3691 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
3692 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
3693 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
3694 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 3695 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
3696 | } |
3697 | ||
3698 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
3699 | { | |
6e8801f9 FA |
3700 | uint32_t changed_daif; |
3701 | ||
2f4a40e5 | 3702 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
3703 | env->ZF = (~val) & CPSR_Z; |
3704 | env->NF = val; | |
2f4a40e5 AZ |
3705 | env->CF = (val >> 29) & 1; |
3706 | env->VF = (val << 3) & 0x80000000; | |
3707 | } | |
3708 | if (mask & CPSR_Q) | |
3709 | env->QF = ((val & CPSR_Q) != 0); | |
3710 | if (mask & CPSR_T) | |
3711 | env->thumb = ((val & CPSR_T) != 0); | |
3712 | if (mask & CPSR_IT_0_1) { | |
3713 | env->condexec_bits &= ~3; | |
3714 | env->condexec_bits |= (val >> 25) & 3; | |
3715 | } | |
3716 | if (mask & CPSR_IT_2_7) { | |
3717 | env->condexec_bits &= 3; | |
3718 | env->condexec_bits |= (val >> 8) & 0xfc; | |
3719 | } | |
3720 | if (mask & CPSR_GE) { | |
3721 | env->GE = (val >> 16) & 0xf; | |
3722 | } | |
3723 | ||
6e8801f9 FA |
3724 | /* In a V7 implementation that includes the security extensions but does |
3725 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
3726 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
3727 | * bits respectively. | |
3728 | * | |
3729 | * In a V8 implementation, it is permitted for privileged software to | |
3730 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
3731 | */ | |
3732 | if (!arm_feature(env, ARM_FEATURE_V8) && | |
3733 | arm_feature(env, ARM_FEATURE_EL3) && | |
3734 | !arm_feature(env, ARM_FEATURE_EL2) && | |
3735 | !arm_is_secure(env)) { | |
3736 | ||
3737 | changed_daif = (env->daif ^ val) & mask; | |
3738 | ||
3739 | if (changed_daif & CPSR_A) { | |
3740 | /* Check to see if we are allowed to change the masking of async | |
3741 | * abort exceptions from a non-secure state. | |
3742 | */ | |
3743 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
3744 | qemu_log_mask(LOG_GUEST_ERROR, | |
3745 | "Ignoring attempt to switch CPSR_A flag from " | |
3746 | "non-secure world with SCR.AW bit clear\n"); | |
3747 | mask &= ~CPSR_A; | |
3748 | } | |
3749 | } | |
3750 | ||
3751 | if (changed_daif & CPSR_F) { | |
3752 | /* Check to see if we are allowed to change the masking of FIQ | |
3753 | * exceptions from a non-secure state. | |
3754 | */ | |
3755 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
3756 | qemu_log_mask(LOG_GUEST_ERROR, | |
3757 | "Ignoring attempt to switch CPSR_F flag from " | |
3758 | "non-secure world with SCR.FW bit clear\n"); | |
3759 | mask &= ~CPSR_F; | |
3760 | } | |
3761 | ||
3762 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
3763 | * If this bit is set software is not allowed to mask | |
3764 | * FIQs, but is allowed to set CPSR_F to 0. | |
3765 | */ | |
3766 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
3767 | (val & CPSR_F)) { | |
3768 | qemu_log_mask(LOG_GUEST_ERROR, | |
3769 | "Ignoring attempt to enable CPSR_F flag " | |
3770 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
3771 | mask &= ~CPSR_F; | |
3772 | } | |
3773 | } | |
3774 | } | |
3775 | ||
4cc35614 PM |
3776 | env->daif &= ~(CPSR_AIF & mask); |
3777 | env->daif |= val & CPSR_AIF & mask; | |
3778 | ||
2f4a40e5 | 3779 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
3780 | if (bad_mode_switch(env, val & CPSR_M)) { |
3781 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
3782 | * We choose to ignore the attempt and leave the CPSR M field | |
3783 | * untouched. | |
3784 | */ | |
3785 | mask &= ~CPSR_M; | |
3786 | } else { | |
3787 | switch_mode(env, val & CPSR_M); | |
3788 | } | |
2f4a40e5 AZ |
3789 | } |
3790 | mask &= ~CACHED_CPSR_BITS; | |
3791 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
3792 | } | |
3793 | ||
b26eefb6 PB |
3794 | /* Sign/zero extend */ |
3795 | uint32_t HELPER(sxtb16)(uint32_t x) | |
3796 | { | |
3797 | uint32_t res; | |
3798 | res = (uint16_t)(int8_t)x; | |
3799 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
3800 | return res; | |
3801 | } | |
3802 | ||
3803 | uint32_t HELPER(uxtb16)(uint32_t x) | |
3804 | { | |
3805 | uint32_t res; | |
3806 | res = (uint16_t)(uint8_t)x; | |
3807 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
3808 | return res; | |
3809 | } | |
3810 | ||
f51bbbfe PB |
3811 | uint32_t HELPER(clz)(uint32_t x) |
3812 | { | |
7bbcb0af | 3813 | return clz32(x); |
f51bbbfe PB |
3814 | } |
3815 | ||
3670669c PB |
3816 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
3817 | { | |
3818 | if (den == 0) | |
3819 | return 0; | |
686eeb93 AJ |
3820 | if (num == INT_MIN && den == -1) |
3821 | return INT_MIN; | |
3670669c PB |
3822 | return num / den; |
3823 | } | |
3824 | ||
3825 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
3826 | { | |
3827 | if (den == 0) | |
3828 | return 0; | |
3829 | return num / den; | |
3830 | } | |
3831 | ||
3832 | uint32_t HELPER(rbit)(uint32_t x) | |
3833 | { | |
3834 | x = ((x & 0xff000000) >> 24) | |
3835 | | ((x & 0x00ff0000) >> 8) | |
3836 | | ((x & 0x0000ff00) << 8) | |
3837 | | ((x & 0x000000ff) << 24); | |
3838 | x = ((x & 0xf0f0f0f0) >> 4) | |
3839 | | ((x & 0x0f0f0f0f) << 4); | |
3840 | x = ((x & 0x88888888) >> 3) | |
3841 | | ((x & 0x44444444) >> 1) | |
3842 | | ((x & 0x22222222) << 1) | |
3843 | | ((x & 0x11111111) << 3); | |
3844 | return x; | |
3845 | } | |
3846 | ||
5fafdf24 | 3847 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 3848 | |
7510454e AF |
3849 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, |
3850 | int mmu_idx) | |
b5ff1b31 | 3851 | { |
7510454e AF |
3852 | ARMCPU *cpu = ARM_CPU(cs); |
3853 | CPUARMState *env = &cpu->env; | |
3854 | ||
abf1172f | 3855 | env->exception.vaddress = address; |
b5ff1b31 | 3856 | if (rw == 2) { |
27103424 | 3857 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 | 3858 | } else { |
27103424 | 3859 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 FB |
3860 | } |
3861 | return 1; | |
3862 | } | |
3863 | ||
9ee6e8bb | 3864 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 3865 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 3866 | { |
a47dddd7 AF |
3867 | ARMCPU *cpu = arm_env_get_cpu(env); |
3868 | ||
3869 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
3870 | } |
3871 | ||
0ecb72a5 | 3872 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 3873 | { |
a47dddd7 AF |
3874 | ARMCPU *cpu = arm_env_get_cpu(env); |
3875 | ||
3876 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
3877 | return 0; |
3878 | } | |
3879 | ||
0ecb72a5 | 3880 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 3881 | { |
a47dddd7 AF |
3882 | ARMCPU *cpu = arm_env_get_cpu(env); |
3883 | ||
3884 | if (mode != ARM_CPU_MODE_USR) { | |
3885 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
3886 | } | |
b5ff1b31 FB |
3887 | } |
3888 | ||
0ecb72a5 | 3889 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 3890 | { |
a47dddd7 AF |
3891 | ARMCPU *cpu = arm_env_get_cpu(env); |
3892 | ||
3893 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
3894 | } |
3895 | ||
0ecb72a5 | 3896 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 3897 | { |
a47dddd7 AF |
3898 | ARMCPU *cpu = arm_env_get_cpu(env); |
3899 | ||
3900 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
3901 | return 0; |
3902 | } | |
3903 | ||
9e729b57 EI |
3904 | unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx) |
3905 | { | |
3906 | return 1; | |
3907 | } | |
3908 | ||
b5ff1b31 FB |
3909 | #else |
3910 | ||
3911 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 3912 | int bank_number(int mode) |
b5ff1b31 FB |
3913 | { |
3914 | switch (mode) { | |
3915 | case ARM_CPU_MODE_USR: | |
3916 | case ARM_CPU_MODE_SYS: | |
3917 | return 0; | |
3918 | case ARM_CPU_MODE_SVC: | |
3919 | return 1; | |
3920 | case ARM_CPU_MODE_ABT: | |
3921 | return 2; | |
3922 | case ARM_CPU_MODE_UND: | |
3923 | return 3; | |
3924 | case ARM_CPU_MODE_IRQ: | |
3925 | return 4; | |
3926 | case ARM_CPU_MODE_FIQ: | |
3927 | return 5; | |
28c9457d EI |
3928 | case ARM_CPU_MODE_HYP: |
3929 | return 6; | |
3930 | case ARM_CPU_MODE_MON: | |
3931 | return 7; | |
b5ff1b31 | 3932 | } |
f5206413 | 3933 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
3934 | } |
3935 | ||
0ecb72a5 | 3936 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
3937 | { |
3938 | int old_mode; | |
3939 | int i; | |
3940 | ||
3941 | old_mode = env->uncached_cpsr & CPSR_M; | |
3942 | if (mode == old_mode) | |
3943 | return; | |
3944 | ||
3945 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
3946 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 3947 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
3948 | } else if (mode == ARM_CPU_MODE_FIQ) { |
3949 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 3950 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
3951 | } |
3952 | ||
f5206413 | 3953 | i = bank_number(old_mode); |
b5ff1b31 FB |
3954 | env->banked_r13[i] = env->regs[13]; |
3955 | env->banked_r14[i] = env->regs[14]; | |
3956 | env->banked_spsr[i] = env->spsr; | |
3957 | ||
f5206413 | 3958 | i = bank_number(mode); |
b5ff1b31 FB |
3959 | env->regs[13] = env->banked_r13[i]; |
3960 | env->regs[14] = env->banked_r14[i]; | |
3961 | env->spsr = env->banked_spsr[i]; | |
3962 | } | |
3963 | ||
0eeb17d6 GB |
3964 | /* Physical Interrupt Target EL Lookup Table |
3965 | * | |
3966 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
3967 | * | |
3968 | * The below multi-dimensional table is used for looking up the target | |
3969 | * exception level given numerous condition criteria. Specifically, the | |
3970 | * target EL is based on SCR and HCR routing controls as well as the | |
3971 | * currently executing EL and secure state. | |
3972 | * | |
3973 | * Dimensions: | |
3974 | * target_el_table[2][2][2][2][2][4] | |
3975 | * | | | | | +--- Current EL | |
3976 | * | | | | +------ Non-secure(0)/Secure(1) | |
3977 | * | | | +--------- HCR mask override | |
3978 | * | | +------------ SCR exec state control | |
3979 | * | +--------------- SCR mask override | |
3980 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
3981 | * | |
3982 | * The table values are as such: | |
3983 | * 0-3 = EL0-EL3 | |
3984 | * -1 = Cannot occur | |
3985 | * | |
3986 | * The ARM ARM target EL table includes entries indicating that an "exception | |
3987 | * is not taken". The two cases where this is applicable are: | |
3988 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
3989 | * routed to EL3. | |
3990 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
3991 | * routed to EL2. | |
3992 | * In these two cases, the below table contain a target of EL1. This value is | |
3993 | * returned as it is expected that the consumer of the table data will check | |
3994 | * for "target EL >= current EL" to ensure the exception is not taken. | |
3995 | * | |
3996 | * SCR HCR | |
3997 | * 64 EA AMO From | |
3998 | * BIT IRQ IMO Non-secure Secure | |
3999 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
4000 | */ | |
4001 | const int8_t target_el_table[2][2][2][2][2][4] = { | |
4002 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
4003 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
4004 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
4005 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
4006 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
4007 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
4008 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
4009 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
4010 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
4011 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
4012 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
4013 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
4014 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
4015 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
4016 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
4017 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
4018 | }; | |
4019 | ||
4020 | /* | |
4021 | * Determine the target EL for physical exceptions | |
4022 | */ | |
4023 | static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, | |
4024 | uint32_t cur_el, bool secure) | |
4025 | { | |
4026 | CPUARMState *env = cs->env_ptr; | |
4027 | int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
4028 | int scr; | |
4029 | int hcr; | |
4030 | int target_el; | |
4031 | int is64 = arm_el_is_aa64(env, 3); | |
4032 | ||
4033 | switch (excp_idx) { | |
4034 | case EXCP_IRQ: | |
4035 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
4036 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
4037 | break; | |
4038 | case EXCP_FIQ: | |
4039 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
4040 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
4041 | break; | |
4042 | default: | |
4043 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
4044 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
4045 | break; | |
4046 | }; | |
4047 | ||
4048 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
4049 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
4050 | ||
4051 | /* Perform a table-lookup for the target EL given the current state */ | |
4052 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
4053 | ||
4054 | assert(target_el > 0); | |
4055 | ||
4056 | return target_el; | |
4057 | } | |
4058 | ||
9e729b57 EI |
4059 | /* |
4060 | * Determine the target EL for a given exception type. | |
4061 | */ | |
4062 | unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx) | |
4063 | { | |
35979d71 EI |
4064 | ARMCPU *cpu = ARM_CPU(cs); |
4065 | CPUARMState *env = &cpu->env; | |
dcbff19b | 4066 | unsigned int cur_el = arm_current_el(env); |
35979d71 | 4067 | unsigned int target_el; |
0eeb17d6 | 4068 | bool secure = arm_is_secure(env); |
35979d71 EI |
4069 | |
4070 | switch (excp_idx) { | |
4071 | case EXCP_HVC: | |
607d98b8 | 4072 | case EXCP_HYP_TRAP: |
35979d71 EI |
4073 | target_el = 2; |
4074 | break; | |
e0d6e6a5 EI |
4075 | case EXCP_SMC: |
4076 | target_el = 3; | |
4077 | break; | |
041c9666 EI |
4078 | case EXCP_FIQ: |
4079 | case EXCP_IRQ: | |
0eeb17d6 | 4080 | target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); |
041c9666 | 4081 | break; |
136e67e9 EI |
4082 | case EXCP_VIRQ: |
4083 | case EXCP_VFIQ: | |
4084 | target_el = 1; | |
4085 | break; | |
35979d71 EI |
4086 | default: |
4087 | target_el = MAX(cur_el, 1); | |
4088 | break; | |
4089 | } | |
4090 | return target_el; | |
9e729b57 EI |
4091 | } |
4092 | ||
9ee6e8bb PB |
4093 | static void v7m_push(CPUARMState *env, uint32_t val) |
4094 | { | |
70d74660 AF |
4095 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
4096 | ||
9ee6e8bb | 4097 | env->regs[13] -= 4; |
ab1da857 | 4098 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
4099 | } |
4100 | ||
4101 | static uint32_t v7m_pop(CPUARMState *env) | |
4102 | { | |
70d74660 | 4103 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 4104 | uint32_t val; |
70d74660 | 4105 | |
fdfba1a2 | 4106 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
4107 | env->regs[13] += 4; |
4108 | return val; | |
4109 | } | |
4110 | ||
4111 | /* Switch to V7M main or process stack pointer. */ | |
4112 | static void switch_v7m_sp(CPUARMState *env, int process) | |
4113 | { | |
4114 | uint32_t tmp; | |
4115 | if (env->v7m.current_sp != process) { | |
4116 | tmp = env->v7m.other_sp; | |
4117 | env->v7m.other_sp = env->regs[13]; | |
4118 | env->regs[13] = tmp; | |
4119 | env->v7m.current_sp = process; | |
4120 | } | |
4121 | } | |
4122 | ||
4123 | static void do_v7m_exception_exit(CPUARMState *env) | |
4124 | { | |
4125 | uint32_t type; | |
4126 | uint32_t xpsr; | |
4127 | ||
4128 | type = env->regs[15]; | |
4129 | if (env->v7m.exception != 0) | |
983fe826 | 4130 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
4131 | |
4132 | /* Switch to the target stack. */ | |
4133 | switch_v7m_sp(env, (type & 4) != 0); | |
4134 | /* Pop registers. */ | |
4135 | env->regs[0] = v7m_pop(env); | |
4136 | env->regs[1] = v7m_pop(env); | |
4137 | env->regs[2] = v7m_pop(env); | |
4138 | env->regs[3] = v7m_pop(env); | |
4139 | env->regs[12] = v7m_pop(env); | |
4140 | env->regs[14] = v7m_pop(env); | |
4141 | env->regs[15] = v7m_pop(env); | |
4142 | xpsr = v7m_pop(env); | |
4143 | xpsr_write(env, xpsr, 0xfffffdff); | |
4144 | /* Undo stack alignment. */ | |
4145 | if (xpsr & 0x200) | |
4146 | env->regs[13] |= 4; | |
4147 | /* ??? The exception return type specifies Thread/Handler mode. However | |
4148 | this is also implied by the xPSR value. Not sure what to do | |
4149 | if there is a mismatch. */ | |
4150 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
4151 | pointer. */ | |
4152 | } | |
4153 | ||
e6f010cc | 4154 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 4155 | { |
e6f010cc AF |
4156 | ARMCPU *cpu = ARM_CPU(cs); |
4157 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
4158 | uint32_t xpsr = xpsr_read(env); |
4159 | uint32_t lr; | |
4160 | uint32_t addr; | |
4161 | ||
27103424 | 4162 | arm_log_exception(cs->exception_index); |
3f1beaca | 4163 | |
9ee6e8bb PB |
4164 | lr = 0xfffffff1; |
4165 | if (env->v7m.current_sp) | |
4166 | lr |= 4; | |
4167 | if (env->v7m.exception == 0) | |
4168 | lr |= 8; | |
4169 | ||
4170 | /* For exceptions we just mark as pending on the NVIC, and let that | |
4171 | handle it. */ | |
4172 | /* TODO: Need to escalate if the current priority is higher than the | |
4173 | one we're raising. */ | |
27103424 | 4174 | switch (cs->exception_index) { |
9ee6e8bb | 4175 | case EXCP_UDEF: |
983fe826 | 4176 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
4177 | return; |
4178 | case EXCP_SWI: | |
314e2296 | 4179 | /* The PC already points to the next instruction. */ |
983fe826 | 4180 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
4181 | return; |
4182 | case EXCP_PREFETCH_ABORT: | |
4183 | case EXCP_DATA_ABORT: | |
abf1172f PM |
4184 | /* TODO: if we implemented the MPU registers, this is where we |
4185 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
4186 | */ | |
983fe826 | 4187 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
4188 | return; |
4189 | case EXCP_BKPT: | |
2ad207d4 PB |
4190 | if (semihosting_enabled) { |
4191 | int nr; | |
d31dd73e | 4192 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
4193 | if (nr == 0xab) { |
4194 | env->regs[15] += 2; | |
4195 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4196 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
4197 | return; |
4198 | } | |
4199 | } | |
983fe826 | 4200 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
4201 | return; |
4202 | case EXCP_IRQ: | |
983fe826 | 4203 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
4204 | break; |
4205 | case EXCP_EXCEPTION_EXIT: | |
4206 | do_v7m_exception_exit(env); | |
4207 | return; | |
4208 | default: | |
a47dddd7 | 4209 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
4210 | return; /* Never happens. Keep compiler happy. */ |
4211 | } | |
4212 | ||
4213 | /* Align stack pointer. */ | |
4214 | /* ??? Should only do this if Configuration Control Register | |
4215 | STACKALIGN bit is set. */ | |
4216 | if (env->regs[13] & 4) { | |
ab19b0ec | 4217 | env->regs[13] -= 4; |
9ee6e8bb PB |
4218 | xpsr |= 0x200; |
4219 | } | |
6c95676b | 4220 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
4221 | v7m_push(env, xpsr); |
4222 | v7m_push(env, env->regs[15]); | |
4223 | v7m_push(env, env->regs[14]); | |
4224 | v7m_push(env, env->regs[12]); | |
4225 | v7m_push(env, env->regs[3]); | |
4226 | v7m_push(env, env->regs[2]); | |
4227 | v7m_push(env, env->regs[1]); | |
4228 | v7m_push(env, env->regs[0]); | |
4229 | switch_v7m_sp(env, 0); | |
c98d174c PM |
4230 | /* Clear IT bits */ |
4231 | env->condexec_bits = 0; | |
9ee6e8bb | 4232 | env->regs[14] = lr; |
fdfba1a2 | 4233 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
4234 | env->regs[15] = addr & 0xfffffffe; |
4235 | env->thumb = addr & 1; | |
4236 | } | |
4237 | ||
b5ff1b31 | 4238 | /* Handle a CPU exception. */ |
97a8ea5a | 4239 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 4240 | { |
97a8ea5a AF |
4241 | ARMCPU *cpu = ARM_CPU(cs); |
4242 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
4243 | uint32_t addr; |
4244 | uint32_t mask; | |
4245 | int new_mode; | |
4246 | uint32_t offset; | |
16a906fd | 4247 | uint32_t moe; |
b5ff1b31 | 4248 | |
e6f010cc AF |
4249 | assert(!IS_M(env)); |
4250 | ||
27103424 | 4251 | arm_log_exception(cs->exception_index); |
3f1beaca | 4252 | |
98128601 RH |
4253 | if (arm_is_psci_call(cpu, cs->exception_index)) { |
4254 | arm_handle_psci_call(cpu); | |
4255 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
4256 | return; | |
4257 | } | |
4258 | ||
16a906fd PM |
4259 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
4260 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
4261 | case EC_BREAKPOINT: | |
4262 | case EC_BREAKPOINT_SAME_EL: | |
4263 | moe = 1; | |
4264 | break; | |
4265 | case EC_WATCHPOINT: | |
4266 | case EC_WATCHPOINT_SAME_EL: | |
4267 | moe = 10; | |
4268 | break; | |
4269 | case EC_AA32_BKPT: | |
4270 | moe = 3; | |
4271 | break; | |
4272 | case EC_VECTORCATCH: | |
4273 | moe = 5; | |
4274 | break; | |
4275 | default: | |
4276 | moe = 0; | |
4277 | break; | |
4278 | } | |
4279 | ||
4280 | if (moe) { | |
4281 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
4282 | } | |
4283 | ||
b5ff1b31 | 4284 | /* TODO: Vectored interrupt controller. */ |
27103424 | 4285 | switch (cs->exception_index) { |
b5ff1b31 FB |
4286 | case EXCP_UDEF: |
4287 | new_mode = ARM_CPU_MODE_UND; | |
4288 | addr = 0x04; | |
4289 | mask = CPSR_I; | |
4290 | if (env->thumb) | |
4291 | offset = 2; | |
4292 | else | |
4293 | offset = 4; | |
4294 | break; | |
4295 | case EXCP_SWI: | |
8e71621f PB |
4296 | if (semihosting_enabled) { |
4297 | /* Check for semihosting interrupt. */ | |
4298 | if (env->thumb) { | |
d31dd73e BS |
4299 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
4300 | & 0xff; | |
8e71621f | 4301 | } else { |
d31dd73e | 4302 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 4303 | & 0xffffff; |
8e71621f PB |
4304 | } |
4305 | /* Only intercept calls from privileged modes, to provide some | |
4306 | semblance of security. */ | |
4307 | if (((mask == 0x123456 && !env->thumb) | |
4308 | || (mask == 0xab && env->thumb)) | |
4309 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
4310 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4311 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
4312 | return; |
4313 | } | |
4314 | } | |
b5ff1b31 FB |
4315 | new_mode = ARM_CPU_MODE_SVC; |
4316 | addr = 0x08; | |
4317 | mask = CPSR_I; | |
601d70b9 | 4318 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
4319 | offset = 0; |
4320 | break; | |
06c949e6 | 4321 | case EXCP_BKPT: |
9ee6e8bb | 4322 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 4323 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 4324 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
4325 | if (mask == 0xab |
4326 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
4327 | env->regs[15] += 2; | |
4328 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4329 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
4330 | return; |
4331 | } | |
4332 | } | |
abf1172f | 4333 | env->exception.fsr = 2; |
9ee6e8bb PB |
4334 | /* Fall through to prefetch abort. */ |
4335 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 4336 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 4337 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 4338 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 4339 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
4340 | new_mode = ARM_CPU_MODE_ABT; |
4341 | addr = 0x0c; | |
4342 | mask = CPSR_A | CPSR_I; | |
4343 | offset = 4; | |
4344 | break; | |
4345 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 4346 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 4347 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 4348 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 4349 | env->exception.fsr, |
6cd8a264 | 4350 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
4351 | new_mode = ARM_CPU_MODE_ABT; |
4352 | addr = 0x10; | |
4353 | mask = CPSR_A | CPSR_I; | |
4354 | offset = 8; | |
4355 | break; | |
4356 | case EXCP_IRQ: | |
4357 | new_mode = ARM_CPU_MODE_IRQ; | |
4358 | addr = 0x18; | |
4359 | /* Disable IRQ and imprecise data aborts. */ | |
4360 | mask = CPSR_A | CPSR_I; | |
4361 | offset = 4; | |
de38d23b FA |
4362 | if (env->cp15.scr_el3 & SCR_IRQ) { |
4363 | /* IRQ routed to monitor mode */ | |
4364 | new_mode = ARM_CPU_MODE_MON; | |
4365 | mask |= CPSR_F; | |
4366 | } | |
b5ff1b31 FB |
4367 | break; |
4368 | case EXCP_FIQ: | |
4369 | new_mode = ARM_CPU_MODE_FIQ; | |
4370 | addr = 0x1c; | |
4371 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
4372 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
4373 | if (env->cp15.scr_el3 & SCR_FIQ) { |
4374 | /* FIQ routed to monitor mode */ | |
4375 | new_mode = ARM_CPU_MODE_MON; | |
4376 | } | |
b5ff1b31 FB |
4377 | offset = 4; |
4378 | break; | |
dbe9d163 FA |
4379 | case EXCP_SMC: |
4380 | new_mode = ARM_CPU_MODE_MON; | |
4381 | addr = 0x08; | |
4382 | mask = CPSR_A | CPSR_I | CPSR_F; | |
4383 | offset = 0; | |
4384 | break; | |
b5ff1b31 | 4385 | default: |
a47dddd7 | 4386 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
4387 | return; /* Never happens. Keep compiler happy. */ |
4388 | } | |
e89e51a1 FA |
4389 | |
4390 | if (new_mode == ARM_CPU_MODE_MON) { | |
4391 | addr += env->cp15.mvbar; | |
137feaa9 | 4392 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 4393 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 4394 | addr += 0xffff0000; |
8641136c NR |
4395 | } else { |
4396 | /* ARM v7 architectures provide a vector base address register to remap | |
4397 | * the interrupt vector table. | |
e89e51a1 | 4398 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
4399 | * Note: only bits 31:5 are valid. |
4400 | */ | |
68fdb6c5 | 4401 | addr += env->cp15.vbar_el[1]; |
b5ff1b31 | 4402 | } |
dbe9d163 FA |
4403 | |
4404 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
4405 | env->cp15.scr_el3 &= ~SCR_NS; | |
4406 | } | |
4407 | ||
b5ff1b31 | 4408 | switch_mode (env, new_mode); |
662cefb7 PM |
4409 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
4410 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
4411 | */ | |
4412 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 4413 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
4414 | /* Clear IT bits. */ |
4415 | env->condexec_bits = 0; | |
30a8cac1 | 4416 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 4417 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 4418 | env->daif |= mask; |
be5e7a76 DES |
4419 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
4420 | * and we should just guard the thumb mode on V4 */ | |
4421 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 4422 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 4423 | } |
b5ff1b31 FB |
4424 | env->regs[14] = env->regs[15] + offset; |
4425 | env->regs[15] = addr; | |
259186a7 | 4426 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
4427 | } |
4428 | ||
4429 | /* Check section/page access permissions. | |
4430 | Returns the page protection flags, or zero if the access is not | |
4431 | permitted. */ | |
0ecb72a5 | 4432 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
dd4ebc2e | 4433 | int access_type, int is_user) |
b5ff1b31 | 4434 | { |
9ee6e8bb PB |
4435 | int prot_ro; |
4436 | ||
dd4ebc2e | 4437 | if (domain_prot == 3) { |
b5ff1b31 | 4438 | return PAGE_READ | PAGE_WRITE; |
dd4ebc2e | 4439 | } |
b5ff1b31 | 4440 | |
9ee6e8bb PB |
4441 | if (access_type == 1) |
4442 | prot_ro = 0; | |
4443 | else | |
4444 | prot_ro = PAGE_READ; | |
4445 | ||
b5ff1b31 FB |
4446 | switch (ap) { |
4447 | case 0: | |
99f678a6 PM |
4448 | if (arm_feature(env, ARM_FEATURE_V7)) { |
4449 | return 0; | |
4450 | } | |
78600320 | 4451 | if (access_type == 1) |
b5ff1b31 | 4452 | return 0; |
137feaa9 | 4453 | switch (A32_BANKED_CURRENT_REG_GET(env, sctlr) & (SCTLR_S | SCTLR_R)) { |
76e3e1bc | 4454 | case SCTLR_S: |
b5ff1b31 | 4455 | return is_user ? 0 : PAGE_READ; |
76e3e1bc | 4456 | case SCTLR_R: |
b5ff1b31 FB |
4457 | return PAGE_READ; |
4458 | default: | |
4459 | return 0; | |
4460 | } | |
4461 | case 1: | |
4462 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
4463 | case 2: | |
4464 | if (is_user) | |
9ee6e8bb | 4465 | return prot_ro; |
b5ff1b31 FB |
4466 | else |
4467 | return PAGE_READ | PAGE_WRITE; | |
4468 | case 3: | |
4469 | return PAGE_READ | PAGE_WRITE; | |
d4934d18 | 4470 | case 4: /* Reserved. */ |
9ee6e8bb PB |
4471 | return 0; |
4472 | case 5: | |
4473 | return is_user ? 0 : prot_ro; | |
4474 | case 6: | |
4475 | return prot_ro; | |
d4934d18 | 4476 | case 7: |
0ab06d83 | 4477 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
d4934d18 PB |
4478 | return 0; |
4479 | return prot_ro; | |
b5ff1b31 FB |
4480 | default: |
4481 | abort(); | |
4482 | } | |
4483 | } | |
4484 | ||
e389be16 FA |
4485 | static bool get_level1_table_address(CPUARMState *env, uint32_t *table, |
4486 | uint32_t address) | |
b2fa1797 | 4487 | { |
11f136ee FA |
4488 | /* Get the TCR bank based on our security state */ |
4489 | TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; | |
4490 | ||
7dd8c9af FA |
4491 | /* We only get here if EL1 is running in AArch32. If EL3 is running in |
4492 | * AArch32 there is a secure and non-secure instance of the translation | |
4493 | * table registers. | |
4494 | */ | |
11f136ee FA |
4495 | if (address & tcr->mask) { |
4496 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
4497 | /* Translation table walk disabled for TTBR1 */ |
4498 | return false; | |
4499 | } | |
7dd8c9af | 4500 | *table = A32_BANKED_CURRENT_REG_GET(env, ttbr1) & 0xffffc000; |
e389be16 | 4501 | } else { |
11f136ee | 4502 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
4503 | /* Translation table walk disabled for TTBR0 */ |
4504 | return false; | |
4505 | } | |
11f136ee | 4506 | *table = A32_BANKED_CURRENT_REG_GET(env, ttbr0) & tcr->base_mask; |
e389be16 FA |
4507 | } |
4508 | *table |= (address >> 18) & 0x3ffc; | |
4509 | return true; | |
b2fa1797 PB |
4510 | } |
4511 | ||
0ecb72a5 | 4512 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 4513 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 4514 | int *prot, target_ulong *page_size) |
b5ff1b31 | 4515 | { |
70d74660 | 4516 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
4517 | int code; |
4518 | uint32_t table; | |
4519 | uint32_t desc; | |
4520 | int type; | |
4521 | int ap; | |
e389be16 | 4522 | int domain = 0; |
dd4ebc2e | 4523 | int domain_prot; |
a8170e5e | 4524 | hwaddr phys_addr; |
b5ff1b31 | 4525 | |
9ee6e8bb PB |
4526 | /* Pagetable walk. */ |
4527 | /* Lookup l1 descriptor. */ | |
e389be16 FA |
4528 | if (!get_level1_table_address(env, &table, address)) { |
4529 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ | |
4530 | code = 5; | |
4531 | goto do_fault; | |
4532 | } | |
fdfba1a2 | 4533 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 4534 | type = (desc & 3); |
dd4ebc2e | 4535 | domain = (desc >> 5) & 0x0f; |
0c17d68c | 4536 | domain_prot = (A32_BANKED_CURRENT_REG_GET(env, dacr) >> (domain * 2)) & 3; |
9ee6e8bb | 4537 | if (type == 0) { |
601d70b9 | 4538 | /* Section translation fault. */ |
9ee6e8bb PB |
4539 | code = 5; |
4540 | goto do_fault; | |
4541 | } | |
dd4ebc2e | 4542 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
4543 | if (type == 2) |
4544 | code = 9; /* Section domain fault. */ | |
4545 | else | |
4546 | code = 11; /* Page domain fault. */ | |
4547 | goto do_fault; | |
4548 | } | |
4549 | if (type == 2) { | |
4550 | /* 1Mb section. */ | |
4551 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
4552 | ap = (desc >> 10) & 3; | |
4553 | code = 13; | |
d4c430a8 | 4554 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
4555 | } else { |
4556 | /* Lookup l2 entry. */ | |
4557 | if (type == 1) { | |
4558 | /* Coarse pagetable. */ | |
4559 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
4560 | } else { | |
4561 | /* Fine pagetable. */ | |
4562 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
4563 | } | |
fdfba1a2 | 4564 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
4565 | switch (desc & 3) { |
4566 | case 0: /* Page translation fault. */ | |
4567 | code = 7; | |
4568 | goto do_fault; | |
4569 | case 1: /* 64k page. */ | |
4570 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
4571 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 4572 | *page_size = 0x10000; |
ce819861 | 4573 | break; |
9ee6e8bb PB |
4574 | case 2: /* 4k page. */ |
4575 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 4576 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 4577 | *page_size = 0x1000; |
ce819861 | 4578 | break; |
9ee6e8bb PB |
4579 | case 3: /* 1k page. */ |
4580 | if (type == 1) { | |
4581 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
4582 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
4583 | } else { | |
4584 | /* Page translation fault. */ | |
4585 | code = 7; | |
4586 | goto do_fault; | |
4587 | } | |
4588 | } else { | |
4589 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
4590 | } | |
4591 | ap = (desc >> 4) & 3; | |
d4c430a8 | 4592 | *page_size = 0x400; |
ce819861 PB |
4593 | break; |
4594 | default: | |
9ee6e8bb PB |
4595 | /* Never happens, but compiler isn't smart enough to tell. */ |
4596 | abort(); | |
ce819861 | 4597 | } |
9ee6e8bb PB |
4598 | code = 15; |
4599 | } | |
dd4ebc2e | 4600 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
9ee6e8bb PB |
4601 | if (!*prot) { |
4602 | /* Access permission fault. */ | |
4603 | goto do_fault; | |
4604 | } | |
3ad493fc | 4605 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
4606 | *phys_ptr = phys_addr; |
4607 | return 0; | |
4608 | do_fault: | |
4609 | return code | (domain << 4); | |
4610 | } | |
4611 | ||
0ecb72a5 | 4612 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 4613 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 4614 | int *prot, target_ulong *page_size) |
9ee6e8bb | 4615 | { |
70d74660 | 4616 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
4617 | int code; |
4618 | uint32_t table; | |
4619 | uint32_t desc; | |
4620 | uint32_t xn; | |
de9b05b8 | 4621 | uint32_t pxn = 0; |
9ee6e8bb PB |
4622 | int type; |
4623 | int ap; | |
de9b05b8 | 4624 | int domain = 0; |
dd4ebc2e | 4625 | int domain_prot; |
a8170e5e | 4626 | hwaddr phys_addr; |
9ee6e8bb PB |
4627 | |
4628 | /* Pagetable walk. */ | |
4629 | /* Lookup l1 descriptor. */ | |
e389be16 FA |
4630 | if (!get_level1_table_address(env, &table, address)) { |
4631 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ | |
4632 | code = 5; | |
4633 | goto do_fault; | |
4634 | } | |
fdfba1a2 | 4635 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 4636 | type = (desc & 3); |
de9b05b8 PM |
4637 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
4638 | /* Section translation fault, or attempt to use the encoding | |
4639 | * which is Reserved on implementations without PXN. | |
4640 | */ | |
9ee6e8bb | 4641 | code = 5; |
9ee6e8bb | 4642 | goto do_fault; |
de9b05b8 PM |
4643 | } |
4644 | if ((type == 1) || !(desc & (1 << 18))) { | |
4645 | /* Page or Section. */ | |
dd4ebc2e | 4646 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 4647 | } |
0c17d68c | 4648 | domain_prot = (A32_BANKED_CURRENT_REG_GET(env, dacr) >> (domain * 2)) & 3; |
dd4ebc2e | 4649 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 4650 | if (type != 1) { |
9ee6e8bb | 4651 | code = 9; /* Section domain fault. */ |
de9b05b8 | 4652 | } else { |
9ee6e8bb | 4653 | code = 11; /* Page domain fault. */ |
de9b05b8 | 4654 | } |
9ee6e8bb PB |
4655 | goto do_fault; |
4656 | } | |
de9b05b8 | 4657 | if (type != 1) { |
9ee6e8bb PB |
4658 | if (desc & (1 << 18)) { |
4659 | /* Supersection. */ | |
4660 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 4661 | *page_size = 0x1000000; |
b5ff1b31 | 4662 | } else { |
9ee6e8bb PB |
4663 | /* Section. */ |
4664 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 4665 | *page_size = 0x100000; |
b5ff1b31 | 4666 | } |
9ee6e8bb PB |
4667 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
4668 | xn = desc & (1 << 4); | |
de9b05b8 | 4669 | pxn = desc & 1; |
9ee6e8bb PB |
4670 | code = 13; |
4671 | } else { | |
de9b05b8 PM |
4672 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
4673 | pxn = (desc >> 2) & 1; | |
4674 | } | |
9ee6e8bb PB |
4675 | /* Lookup l2 entry. */ |
4676 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
fdfba1a2 | 4677 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
4678 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
4679 | switch (desc & 3) { | |
4680 | case 0: /* Page translation fault. */ | |
4681 | code = 7; | |
b5ff1b31 | 4682 | goto do_fault; |
9ee6e8bb PB |
4683 | case 1: /* 64k page. */ |
4684 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
4685 | xn = desc & (1 << 15); | |
d4c430a8 | 4686 | *page_size = 0x10000; |
9ee6e8bb PB |
4687 | break; |
4688 | case 2: case 3: /* 4k page. */ | |
4689 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
4690 | xn = desc & 1; | |
d4c430a8 | 4691 | *page_size = 0x1000; |
9ee6e8bb PB |
4692 | break; |
4693 | default: | |
4694 | /* Never happens, but compiler isn't smart enough to tell. */ | |
4695 | abort(); | |
b5ff1b31 | 4696 | } |
9ee6e8bb PB |
4697 | code = 15; |
4698 | } | |
dd4ebc2e | 4699 | if (domain_prot == 3) { |
c0034328 JR |
4700 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
4701 | } else { | |
de9b05b8 PM |
4702 | if (pxn && !is_user) { |
4703 | xn = 1; | |
4704 | } | |
c0034328 JR |
4705 | if (xn && access_type == 2) |
4706 | goto do_fault; | |
9ee6e8bb | 4707 | |
c0034328 | 4708 | /* The simplified model uses AP[0] as an access control bit. */ |
137feaa9 FA |
4709 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_AFE) |
4710 | && (ap & 1) == 0) { | |
c0034328 JR |
4711 | /* Access flag fault. */ |
4712 | code = (code == 15) ? 6 : 3; | |
4713 | goto do_fault; | |
4714 | } | |
dd4ebc2e | 4715 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
c0034328 JR |
4716 | if (!*prot) { |
4717 | /* Access permission fault. */ | |
4718 | goto do_fault; | |
4719 | } | |
4720 | if (!xn) { | |
4721 | *prot |= PAGE_EXEC; | |
4722 | } | |
3ad493fc | 4723 | } |
9ee6e8bb | 4724 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
4725 | return 0; |
4726 | do_fault: | |
4727 | return code | (domain << 4); | |
4728 | } | |
4729 | ||
3dde962f PM |
4730 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
4731 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
4732 | */ | |
4733 | typedef enum { | |
4734 | translation_fault = 1, | |
4735 | access_fault = 2, | |
4736 | permission_fault = 3, | |
4737 | } MMUFaultType; | |
4738 | ||
2c8dd318 | 4739 | static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
3dde962f | 4740 | int access_type, int is_user, |
a8170e5e | 4741 | hwaddr *phys_ptr, int *prot, |
3dde962f PM |
4742 | target_ulong *page_size_ptr) |
4743 | { | |
70d74660 | 4744 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
4745 | /* Read an LPAE long-descriptor translation table. */ |
4746 | MMUFaultType fault_type = translation_fault; | |
4747 | uint32_t level = 1; | |
4748 | uint32_t epd; | |
2c8dd318 RH |
4749 | int32_t tsz; |
4750 | uint32_t tg; | |
3dde962f PM |
4751 | uint64_t ttbr; |
4752 | int ttbr_select; | |
2c8dd318 | 4753 | hwaddr descaddr, descmask; |
3dde962f PM |
4754 | uint32_t tableattrs; |
4755 | target_ulong page_size; | |
4756 | uint32_t attrs; | |
2c8dd318 RH |
4757 | int32_t granule_sz = 9; |
4758 | int32_t va_size = 32; | |
4759 | int32_t tbi = 0; | |
11f136ee | 4760 | TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; |
2c8dd318 RH |
4761 | |
4762 | if (arm_el_is_aa64(env, 1)) { | |
4763 | va_size = 64; | |
4764 | if (extract64(address, 55, 1)) | |
11f136ee | 4765 | tbi = extract64(tcr->raw_tcr, 38, 1); |
2c8dd318 | 4766 | else |
11f136ee | 4767 | tbi = extract64(tcr->raw_tcr, 37, 1); |
2c8dd318 RH |
4768 | tbi *= 8; |
4769 | } | |
3dde962f PM |
4770 | |
4771 | /* Determine whether this address is in the region controlled by | |
4772 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
4773 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
4774 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
4775 | */ | |
11f136ee | 4776 | uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); |
2c8dd318 RH |
4777 | if (arm_el_is_aa64(env, 1)) { |
4778 | t0sz = MIN(t0sz, 39); | |
4779 | t0sz = MAX(t0sz, 16); | |
4780 | } | |
11f136ee | 4781 | uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); |
2c8dd318 RH |
4782 | if (arm_el_is_aa64(env, 1)) { |
4783 | t1sz = MIN(t1sz, 39); | |
4784 | t1sz = MAX(t1sz, 16); | |
4785 | } | |
4786 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
4787 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
4788 | ttbr_select = 0; | |
2c8dd318 | 4789 | } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) { |
3dde962f PM |
4790 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
4791 | ttbr_select = 1; | |
4792 | } else if (!t0sz) { | |
4793 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
4794 | ttbr_select = 0; | |
4795 | } else if (!t1sz) { | |
4796 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
4797 | ttbr_select = 1; | |
4798 | } else { | |
4799 | /* in the gap between the two regions, this is a Translation fault */ | |
4800 | fault_type = translation_fault; | |
4801 | goto do_fault; | |
4802 | } | |
4803 | ||
4804 | /* Note that QEMU ignores shareability and cacheability attributes, | |
4805 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
4806 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
4807 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
4808 | * implement any ASID-like capability so we can ignore it (instead | |
4809 | * we will always flush the TLB any time the ASID is changed). | |
4810 | */ | |
4811 | if (ttbr_select == 0) { | |
7dd8c9af | 4812 | ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr0); |
11f136ee | 4813 | epd = extract32(tcr->raw_tcr, 7, 1); |
3dde962f | 4814 | tsz = t0sz; |
2c8dd318 | 4815 | |
11f136ee | 4816 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 RH |
4817 | if (tg == 1) { /* 64KB pages */ |
4818 | granule_sz = 13; | |
4819 | } | |
4820 | if (tg == 2) { /* 16KB pages */ | |
4821 | granule_sz = 11; | |
4822 | } | |
3dde962f | 4823 | } else { |
7dd8c9af | 4824 | ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr1); |
11f136ee | 4825 | epd = extract32(tcr->raw_tcr, 23, 1); |
3dde962f | 4826 | tsz = t1sz; |
2c8dd318 | 4827 | |
11f136ee | 4828 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 RH |
4829 | if (tg == 3) { /* 64KB pages */ |
4830 | granule_sz = 13; | |
4831 | } | |
4832 | if (tg == 1) { /* 16KB pages */ | |
4833 | granule_sz = 11; | |
4834 | } | |
3dde962f PM |
4835 | } |
4836 | ||
4837 | if (epd) { | |
4838 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
4839 | goto do_fault; | |
4840 | } | |
4841 | ||
d6be29e3 PM |
4842 | /* The starting level depends on the virtual address size (which can be |
4843 | * up to 48 bits) and the translation granule size. It indicates the number | |
4844 | * of strides (granule_sz bits at a time) needed to consume the bits | |
4845 | * of the input address. In the pseudocode this is: | |
4846 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
4847 | * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is | |
4848 | * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. | |
4849 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
4850 | * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz | |
4851 | * = 4 - (va_size - tsz - 4) / granule_sz; | |
3dde962f | 4852 | */ |
d6be29e3 | 4853 | level = 4 - (va_size - tsz - 4) / granule_sz; |
3dde962f PM |
4854 | |
4855 | /* Clear the vaddr bits which aren't part of the within-region address, | |
4856 | * so that we don't have to special case things when calculating the | |
4857 | * first descriptor address. | |
4858 | */ | |
2c8dd318 RH |
4859 | if (tsz) { |
4860 | address &= (1ULL << (va_size - tsz)) - 1; | |
4861 | } | |
4862 | ||
4863 | descmask = (1ULL << (granule_sz + 3)) - 1; | |
3dde962f PM |
4864 | |
4865 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 RH |
4866 | descaddr = extract64(ttbr, 0, 48); |
4867 | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | |
3dde962f PM |
4868 | |
4869 | tableattrs = 0; | |
4870 | for (;;) { | |
4871 | uint64_t descriptor; | |
4872 | ||
2c8dd318 RH |
4873 | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; |
4874 | descaddr &= ~7ULL; | |
2c17449b | 4875 | descriptor = ldq_phys(cs->as, descaddr); |
3dde962f PM |
4876 | if (!(descriptor & 1) || |
4877 | (!(descriptor & 2) && (level == 3))) { | |
4878 | /* Invalid, or the Reserved level 3 encoding */ | |
4879 | goto do_fault; | |
4880 | } | |
4881 | descaddr = descriptor & 0xfffffff000ULL; | |
4882 | ||
4883 | if ((descriptor & 2) && (level < 3)) { | |
4884 | /* Table entry. The top five bits are attributes which may | |
4885 | * propagate down through lower levels of the table (and | |
4886 | * which are all arranged so that 0 means "no effect", so | |
4887 | * we can gather them up by ORing in the bits at each level). | |
4888 | */ | |
4889 | tableattrs |= extract64(descriptor, 59, 5); | |
4890 | level++; | |
4891 | continue; | |
4892 | } | |
4893 | /* Block entry at level 1 or 2, or page entry at level 3. | |
4894 | * These are basically the same thing, although the number | |
4895 | * of bits we pull in from the vaddr varies. | |
4896 | */ | |
5661ae6b | 4897 | page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); |
3dde962f PM |
4898 | descaddr |= (address & (page_size - 1)); |
4899 | /* Extract attributes from the descriptor and merge with table attrs */ | |
d615efac IC |
4900 | attrs = extract64(descriptor, 2, 10) |
4901 | | (extract64(descriptor, 52, 12) << 10); | |
3dde962f PM |
4902 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
4903 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
4904 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
4905 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
4906 | */ | |
4907 | if (extract32(tableattrs, 2, 1)) { | |
4908 | attrs &= ~(1 << 4); | |
4909 | } | |
4910 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
4911 | break; | |
4912 | } | |
4913 | /* Here descaddr is the final physical address, and attributes | |
4914 | * are all in attrs. | |
4915 | */ | |
4916 | fault_type = access_fault; | |
4917 | if ((attrs & (1 << 8)) == 0) { | |
4918 | /* Access flag */ | |
4919 | goto do_fault; | |
4920 | } | |
4921 | fault_type = permission_fault; | |
4922 | if (is_user && !(attrs & (1 << 4))) { | |
4923 | /* Unprivileged access not enabled */ | |
4924 | goto do_fault; | |
4925 | } | |
4926 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
d615efac IC |
4927 | if ((arm_feature(env, ARM_FEATURE_V8) && is_user && (attrs & (1 << 12))) || |
4928 | (!arm_feature(env, ARM_FEATURE_V8) && (attrs & (1 << 12))) || | |
4929 | (!is_user && (attrs & (1 << 11)))) { | |
4930 | /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally | |
4931 | * treat XN/UXN as UXN for v8. | |
4932 | */ | |
3dde962f PM |
4933 | if (access_type == 2) { |
4934 | goto do_fault; | |
4935 | } | |
4936 | *prot &= ~PAGE_EXEC; | |
4937 | } | |
4938 | if (attrs & (1 << 5)) { | |
4939 | /* Write access forbidden */ | |
4940 | if (access_type == 1) { | |
4941 | goto do_fault; | |
4942 | } | |
4943 | *prot &= ~PAGE_WRITE; | |
4944 | } | |
4945 | ||
4946 | *phys_ptr = descaddr; | |
4947 | *page_size_ptr = page_size; | |
4948 | return 0; | |
4949 | ||
4950 | do_fault: | |
4951 | /* Long-descriptor format IFSR/DFSR value */ | |
4952 | return (1 << 9) | (fault_type << 2) | level; | |
4953 | } | |
4954 | ||
77a71dd1 PM |
4955 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
4956 | int access_type, int is_user, | |
a8170e5e | 4957 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
4958 | { |
4959 | int n; | |
4960 | uint32_t mask; | |
4961 | uint32_t base; | |
4962 | ||
4963 | *phys_ptr = address; | |
4964 | for (n = 7; n >= 0; n--) { | |
4965 | base = env->cp15.c6_region[n]; | |
4966 | if ((base & 1) == 0) | |
4967 | continue; | |
4968 | mask = 1 << ((base >> 1) & 0x1f); | |
4969 | /* Keep this shift separate from the above to avoid an | |
4970 | (undefined) << 32. */ | |
4971 | mask = (mask << 1) - 1; | |
4972 | if (((base ^ address) & ~mask) == 0) | |
4973 | break; | |
4974 | } | |
4975 | if (n < 0) | |
4976 | return 2; | |
4977 | ||
4978 | if (access_type == 2) { | |
7e09797c | 4979 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 4980 | } else { |
7e09797c | 4981 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
4982 | } |
4983 | mask = (mask >> (n * 4)) & 0xf; | |
4984 | switch (mask) { | |
4985 | case 0: | |
4986 | return 1; | |
4987 | case 1: | |
4988 | if (is_user) | |
4989 | return 1; | |
4990 | *prot = PAGE_READ | PAGE_WRITE; | |
4991 | break; | |
4992 | case 2: | |
4993 | *prot = PAGE_READ; | |
4994 | if (!is_user) | |
4995 | *prot |= PAGE_WRITE; | |
4996 | break; | |
4997 | case 3: | |
4998 | *prot = PAGE_READ | PAGE_WRITE; | |
4999 | break; | |
5000 | case 5: | |
5001 | if (is_user) | |
5002 | return 1; | |
5003 | *prot = PAGE_READ; | |
5004 | break; | |
5005 | case 6: | |
5006 | *prot = PAGE_READ; | |
5007 | break; | |
5008 | default: | |
5009 | /* Bad permission. */ | |
5010 | return 1; | |
5011 | } | |
3ad493fc | 5012 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
5013 | return 0; |
5014 | } | |
5015 | ||
702a9357 PM |
5016 | /* get_phys_addr - get the physical address for this virtual address |
5017 | * | |
5018 | * Find the physical address corresponding to the given virtual address, | |
5019 | * by doing a translation table walk on MMU based systems or using the | |
5020 | * MPU state on MPU based systems. | |
5021 | * | |
5022 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
5023 | * prot and page_size are not filled in, and the return value provides | |
5024 | * information on why the translation aborted, in the format of a | |
5025 | * DFSR/IFSR fault register, with the following caveats: | |
5026 | * * we honour the short vs long DFSR format differences. | |
5027 | * * the WnR bit is never set (the caller must do this). | |
5028 | * * for MPU based systems we don't bother to return a full FSR format | |
5029 | * value. | |
5030 | * | |
5031 | * @env: CPUARMState | |
5032 | * @address: virtual address to get physical address for | |
5033 | * @access_type: 0 for read, 1 for write, 2 for execute | |
5034 | * @is_user: 0 for privileged access, 1 for user | |
5035 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
5036 | * @prot: set to the permissions for the page containing phys_ptr | |
5037 | * @page_size: set to the size of the page containing phys_ptr | |
5038 | */ | |
2c8dd318 | 5039 | static inline int get_phys_addr(CPUARMState *env, target_ulong address, |
9ee6e8bb | 5040 | int access_type, int is_user, |
a8170e5e | 5041 | hwaddr *phys_ptr, int *prot, |
d4c430a8 | 5042 | target_ulong *page_size) |
9ee6e8bb | 5043 | { |
137feaa9 FA |
5044 | /* This is not entirely correct as get_phys_addr() can also be called |
5045 | * from ats_write() for an address translation of a specific regime. | |
5046 | */ | |
5047 | uint32_t sctlr = A32_BANKED_CURRENT_REG_GET(env, sctlr); | |
5048 | ||
9ee6e8bb PB |
5049 | /* Fast Context Switch Extension. */ |
5050 | if (address < 0x02000000) | |
5051 | address += env->cp15.c13_fcse; | |
5052 | ||
137feaa9 | 5053 | if ((sctlr & SCTLR_M) == 0) { |
9ee6e8bb PB |
5054 | /* MMU/MPU disabled. */ |
5055 | *phys_ptr = address; | |
3ad493fc | 5056 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 5057 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
5058 | return 0; |
5059 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 5060 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
5061 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
5062 | prot); | |
3dde962f PM |
5063 | } else if (extended_addresses_enabled(env)) { |
5064 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
5065 | prot, page_size); | |
137feaa9 | 5066 | } else if (sctlr & SCTLR_XP) { |
9ee6e8bb | 5067 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
d4c430a8 | 5068 | prot, page_size); |
9ee6e8bb PB |
5069 | } else { |
5070 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 5071 | prot, page_size); |
9ee6e8bb PB |
5072 | } |
5073 | } | |
5074 | ||
7510454e AF |
5075 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, |
5076 | int access_type, int mmu_idx) | |
b5ff1b31 | 5077 | { |
7510454e AF |
5078 | ARMCPU *cpu = ARM_CPU(cs); |
5079 | CPUARMState *env = &cpu->env; | |
a8170e5e | 5080 | hwaddr phys_addr; |
d4c430a8 | 5081 | target_ulong page_size; |
b5ff1b31 | 5082 | int prot; |
6ebbf390 | 5083 | int ret, is_user; |
00892383 | 5084 | uint32_t syn; |
dcbff19b | 5085 | bool same_el = (arm_current_el(env) != 0); |
b5ff1b31 | 5086 | |
6ebbf390 | 5087 | is_user = mmu_idx == MMU_USER_IDX; |
d4c430a8 PB |
5088 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
5089 | &page_size); | |
b5ff1b31 FB |
5090 | if (ret == 0) { |
5091 | /* Map a single [sub]page. */ | |
dcd82c11 AB |
5092 | phys_addr &= TARGET_PAGE_MASK; |
5093 | address &= TARGET_PAGE_MASK; | |
0c591eb0 | 5094 | tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size); |
d4c430a8 | 5095 | return 0; |
b5ff1b31 FB |
5096 | } |
5097 | ||
00892383 RH |
5098 | /* AArch64 syndrome does not have an LPAE bit */ |
5099 | syn = ret & ~(1 << 9); | |
5100 | ||
5101 | /* For insn and data aborts we assume there is no instruction syndrome | |
5102 | * information; this is always true for exceptions reported to EL1. | |
5103 | */ | |
b5ff1b31 | 5104 | if (access_type == 2) { |
00892383 | 5105 | syn = syn_insn_abort(same_el, 0, 0, syn); |
27103424 | 5106 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 | 5107 | } else { |
00892383 | 5108 | syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn); |
abf1172f PM |
5109 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) { |
5110 | ret |= (1 << 11); | |
5111 | } | |
27103424 | 5112 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 | 5113 | } |
00892383 RH |
5114 | |
5115 | env->exception.syndrome = syn; | |
abf1172f PM |
5116 | env->exception.vaddress = address; |
5117 | env->exception.fsr = ret; | |
b5ff1b31 FB |
5118 | return 1; |
5119 | } | |
5120 | ||
00b941e5 | 5121 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 5122 | { |
00b941e5 | 5123 | ARMCPU *cpu = ARM_CPU(cs); |
a8170e5e | 5124 | hwaddr phys_addr; |
d4c430a8 | 5125 | target_ulong page_size; |
b5ff1b31 FB |
5126 | int prot; |
5127 | int ret; | |
5128 | ||
00b941e5 | 5129 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
b5ff1b31 | 5130 | |
00b941e5 | 5131 | if (ret != 0) { |
b5ff1b31 | 5132 | return -1; |
00b941e5 | 5133 | } |
b5ff1b31 FB |
5134 | |
5135 | return phys_addr; | |
5136 | } | |
5137 | ||
0ecb72a5 | 5138 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 5139 | { |
39ea3d4e PM |
5140 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
5141 | env->regs[13] = val; | |
5142 | } else { | |
f5206413 | 5143 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 5144 | } |
9ee6e8bb PB |
5145 | } |
5146 | ||
0ecb72a5 | 5147 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 5148 | { |
39ea3d4e PM |
5149 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
5150 | return env->regs[13]; | |
5151 | } else { | |
f5206413 | 5152 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 5153 | } |
9ee6e8bb PB |
5154 | } |
5155 | ||
0ecb72a5 | 5156 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 5157 | { |
a47dddd7 AF |
5158 | ARMCPU *cpu = arm_env_get_cpu(env); |
5159 | ||
9ee6e8bb PB |
5160 | switch (reg) { |
5161 | case 0: /* APSR */ | |
5162 | return xpsr_read(env) & 0xf8000000; | |
5163 | case 1: /* IAPSR */ | |
5164 | return xpsr_read(env) & 0xf80001ff; | |
5165 | case 2: /* EAPSR */ | |
5166 | return xpsr_read(env) & 0xff00fc00; | |
5167 | case 3: /* xPSR */ | |
5168 | return xpsr_read(env) & 0xff00fdff; | |
5169 | case 5: /* IPSR */ | |
5170 | return xpsr_read(env) & 0x000001ff; | |
5171 | case 6: /* EPSR */ | |
5172 | return xpsr_read(env) & 0x0700fc00; | |
5173 | case 7: /* IEPSR */ | |
5174 | return xpsr_read(env) & 0x0700edff; | |
5175 | case 8: /* MSP */ | |
5176 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
5177 | case 9: /* PSP */ | |
5178 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
5179 | case 16: /* PRIMASK */ | |
4cc35614 | 5180 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
5181 | case 17: /* BASEPRI */ |
5182 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 5183 | return env->v7m.basepri; |
82845826 | 5184 | case 19: /* FAULTMASK */ |
4cc35614 | 5185 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
5186 | case 20: /* CONTROL */ |
5187 | return env->v7m.control; | |
5188 | default: | |
5189 | /* ??? For debugging only. */ | |
a47dddd7 | 5190 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
5191 | return 0; |
5192 | } | |
5193 | } | |
5194 | ||
0ecb72a5 | 5195 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 5196 | { |
a47dddd7 AF |
5197 | ARMCPU *cpu = arm_env_get_cpu(env); |
5198 | ||
9ee6e8bb PB |
5199 | switch (reg) { |
5200 | case 0: /* APSR */ | |
5201 | xpsr_write(env, val, 0xf8000000); | |
5202 | break; | |
5203 | case 1: /* IAPSR */ | |
5204 | xpsr_write(env, val, 0xf8000000); | |
5205 | break; | |
5206 | case 2: /* EAPSR */ | |
5207 | xpsr_write(env, val, 0xfe00fc00); | |
5208 | break; | |
5209 | case 3: /* xPSR */ | |
5210 | xpsr_write(env, val, 0xfe00fc00); | |
5211 | break; | |
5212 | case 5: /* IPSR */ | |
5213 | /* IPSR bits are readonly. */ | |
5214 | break; | |
5215 | case 6: /* EPSR */ | |
5216 | xpsr_write(env, val, 0x0600fc00); | |
5217 | break; | |
5218 | case 7: /* IEPSR */ | |
5219 | xpsr_write(env, val, 0x0600fc00); | |
5220 | break; | |
5221 | case 8: /* MSP */ | |
5222 | if (env->v7m.current_sp) | |
5223 | env->v7m.other_sp = val; | |
5224 | else | |
5225 | env->regs[13] = val; | |
5226 | break; | |
5227 | case 9: /* PSP */ | |
5228 | if (env->v7m.current_sp) | |
5229 | env->regs[13] = val; | |
5230 | else | |
5231 | env->v7m.other_sp = val; | |
5232 | break; | |
5233 | case 16: /* PRIMASK */ | |
4cc35614 PM |
5234 | if (val & 1) { |
5235 | env->daif |= PSTATE_I; | |
5236 | } else { | |
5237 | env->daif &= ~PSTATE_I; | |
5238 | } | |
9ee6e8bb | 5239 | break; |
82845826 | 5240 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
5241 | env->v7m.basepri = val & 0xff; |
5242 | break; | |
82845826 | 5243 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
5244 | val &= 0xff; |
5245 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
5246 | env->v7m.basepri = val; | |
5247 | break; | |
82845826 | 5248 | case 19: /* FAULTMASK */ |
4cc35614 PM |
5249 | if (val & 1) { |
5250 | env->daif |= PSTATE_F; | |
5251 | } else { | |
5252 | env->daif &= ~PSTATE_F; | |
5253 | } | |
82845826 | 5254 | break; |
9ee6e8bb PB |
5255 | case 20: /* CONTROL */ |
5256 | env->v7m.control = val & 3; | |
5257 | switch_v7m_sp(env, (val & 2) != 0); | |
5258 | break; | |
5259 | default: | |
5260 | /* ??? For debugging only. */ | |
a47dddd7 | 5261 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
5262 | return; |
5263 | } | |
5264 | } | |
5265 | ||
b5ff1b31 | 5266 | #endif |
6ddbc6e4 | 5267 | |
aca3f40b PM |
5268 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
5269 | { | |
5270 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
5271 | * Note that we do not implement the (architecturally mandated) | |
5272 | * alignment fault for attempts to use this on Device memory | |
5273 | * (which matches the usual QEMU behaviour of not implementing either | |
5274 | * alignment faults or any memory attribute handling). | |
5275 | */ | |
5276 | ||
5277 | ARMCPU *cpu = arm_env_get_cpu(env); | |
5278 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
5279 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
5280 | ||
5281 | #ifndef CONFIG_USER_ONLY | |
5282 | { | |
5283 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
5284 | * the block size so we might have to do more than one TLB lookup. | |
5285 | * We know that in fact for any v8 CPU the page size is at least 4K | |
5286 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
5287 | * 1K as an artefact of legacy v5 subpage support being present in the | |
5288 | * same QEMU executable. | |
5289 | */ | |
5290 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
5291 | void *hostaddr[maxidx]; | |
5292 | int try, i; | |
5293 | ||
5294 | for (try = 0; try < 2; try++) { | |
5295 | ||
5296 | for (i = 0; i < maxidx; i++) { | |
5297 | hostaddr[i] = tlb_vaddr_to_host(env, | |
5298 | vaddr + TARGET_PAGE_SIZE * i, | |
5299 | 1, cpu_mmu_index(env)); | |
5300 | if (!hostaddr[i]) { | |
5301 | break; | |
5302 | } | |
5303 | } | |
5304 | if (i == maxidx) { | |
5305 | /* If it's all in the TLB it's fair game for just writing to; | |
5306 | * we know we don't need to update dirty status, etc. | |
5307 | */ | |
5308 | for (i = 0; i < maxidx - 1; i++) { | |
5309 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
5310 | } | |
5311 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
5312 | return; | |
5313 | } | |
5314 | /* OK, try a store and see if we can populate the tlb. This | |
5315 | * might cause an exception if the memory isn't writable, | |
5316 | * in which case we will longjmp out of here. We must for | |
5317 | * this purpose use the actual register value passed to us | |
5318 | * so that we get the fault address right. | |
5319 | */ | |
5320 | helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA()); | |
5321 | /* Now we can populate the other TLB entries, if any */ | |
5322 | for (i = 0; i < maxidx; i++) { | |
5323 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
5324 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
5325 | helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA()); | |
5326 | } | |
5327 | } | |
5328 | } | |
5329 | ||
5330 | /* Slow path (probably attempt to do this to an I/O device or | |
5331 | * similar, or clearing of a block of code we have translations | |
5332 | * cached for). Just do a series of byte writes as the architecture | |
5333 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
5334 | * memset(), unmap() sequence here because: | |
5335 | * + we'd need to account for the blocksize being larger than a page | |
5336 | * + the direct-RAM access case is almost always going to be dealt | |
5337 | * with in the fastpath code above, so there's no speed benefit | |
5338 | * + we would have to deal with the map returning NULL because the | |
5339 | * bounce buffer was in use | |
5340 | */ | |
5341 | for (i = 0; i < blocklen; i++) { | |
5342 | helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA()); | |
5343 | } | |
5344 | } | |
5345 | #else | |
5346 | memset(g2h(vaddr), 0, blocklen); | |
5347 | #endif | |
5348 | } | |
5349 | ||
6ddbc6e4 PB |
5350 | /* Note that signed overflow is undefined in C. The following routines are |
5351 | careful to use unsigned types where modulo arithmetic is required. | |
5352 | Failure to do so _will_ break on newer gcc. */ | |
5353 | ||
5354 | /* Signed saturating arithmetic. */ | |
5355 | ||
1654b2d6 | 5356 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
5357 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
5358 | { | |
5359 | uint16_t res; | |
5360 | ||
5361 | res = a + b; | |
5362 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
5363 | if (a & 0x8000) | |
5364 | res = 0x8000; | |
5365 | else | |
5366 | res = 0x7fff; | |
5367 | } | |
5368 | return res; | |
5369 | } | |
5370 | ||
1654b2d6 | 5371 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
5372 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
5373 | { | |
5374 | uint8_t res; | |
5375 | ||
5376 | res = a + b; | |
5377 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
5378 | if (a & 0x80) | |
5379 | res = 0x80; | |
5380 | else | |
5381 | res = 0x7f; | |
5382 | } | |
5383 | return res; | |
5384 | } | |
5385 | ||
1654b2d6 | 5386 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
5387 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
5388 | { | |
5389 | uint16_t res; | |
5390 | ||
5391 | res = a - b; | |
5392 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
5393 | if (a & 0x8000) | |
5394 | res = 0x8000; | |
5395 | else | |
5396 | res = 0x7fff; | |
5397 | } | |
5398 | return res; | |
5399 | } | |
5400 | ||
1654b2d6 | 5401 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
5402 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
5403 | { | |
5404 | uint8_t res; | |
5405 | ||
5406 | res = a - b; | |
5407 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
5408 | if (a & 0x80) | |
5409 | res = 0x80; | |
5410 | else | |
5411 | res = 0x7f; | |
5412 | } | |
5413 | return res; | |
5414 | } | |
5415 | ||
5416 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
5417 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
5418 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
5419 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
5420 | #define PFX q | |
5421 | ||
5422 | #include "op_addsub.h" | |
5423 | ||
5424 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 5425 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
5426 | { |
5427 | uint16_t res; | |
5428 | res = a + b; | |
5429 | if (res < a) | |
5430 | res = 0xffff; | |
5431 | return res; | |
5432 | } | |
5433 | ||
460a09c1 | 5434 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 5435 | { |
4c4fd3f8 | 5436 | if (a > b) |
6ddbc6e4 PB |
5437 | return a - b; |
5438 | else | |
5439 | return 0; | |
5440 | } | |
5441 | ||
5442 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
5443 | { | |
5444 | uint8_t res; | |
5445 | res = a + b; | |
5446 | if (res < a) | |
5447 | res = 0xff; | |
5448 | return res; | |
5449 | } | |
5450 | ||
5451 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
5452 | { | |
4c4fd3f8 | 5453 | if (a > b) |
6ddbc6e4 PB |
5454 | return a - b; |
5455 | else | |
5456 | return 0; | |
5457 | } | |
5458 | ||
5459 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
5460 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
5461 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
5462 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
5463 | #define PFX uq | |
5464 | ||
5465 | #include "op_addsub.h" | |
5466 | ||
5467 | /* Signed modulo arithmetic. */ | |
5468 | #define SARITH16(a, b, n, op) do { \ | |
5469 | int32_t sum; \ | |
db6e2e65 | 5470 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
5471 | RESULT(sum, n, 16); \ |
5472 | if (sum >= 0) \ | |
5473 | ge |= 3 << (n * 2); \ | |
5474 | } while(0) | |
5475 | ||
5476 | #define SARITH8(a, b, n, op) do { \ | |
5477 | int32_t sum; \ | |
db6e2e65 | 5478 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
5479 | RESULT(sum, n, 8); \ |
5480 | if (sum >= 0) \ | |
5481 | ge |= 1 << n; \ | |
5482 | } while(0) | |
5483 | ||
5484 | ||
5485 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
5486 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
5487 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
5488 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
5489 | #define PFX s | |
5490 | #define ARITH_GE | |
5491 | ||
5492 | #include "op_addsub.h" | |
5493 | ||
5494 | /* Unsigned modulo arithmetic. */ | |
5495 | #define ADD16(a, b, n) do { \ | |
5496 | uint32_t sum; \ | |
5497 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
5498 | RESULT(sum, n, 16); \ | |
a87aa10b | 5499 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
5500 | ge |= 3 << (n * 2); \ |
5501 | } while(0) | |
5502 | ||
5503 | #define ADD8(a, b, n) do { \ | |
5504 | uint32_t sum; \ | |
5505 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
5506 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
5507 | if ((sum >> 8) == 1) \ |
5508 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
5509 | } while(0) |
5510 | ||
5511 | #define SUB16(a, b, n) do { \ | |
5512 | uint32_t sum; \ | |
5513 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
5514 | RESULT(sum, n, 16); \ | |
5515 | if ((sum >> 16) == 0) \ | |
5516 | ge |= 3 << (n * 2); \ | |
5517 | } while(0) | |
5518 | ||
5519 | #define SUB8(a, b, n) do { \ | |
5520 | uint32_t sum; \ | |
5521 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
5522 | RESULT(sum, n, 8); \ | |
5523 | if ((sum >> 8) == 0) \ | |
a87aa10b | 5524 | ge |= 1 << n; \ |
6ddbc6e4 PB |
5525 | } while(0) |
5526 | ||
5527 | #define PFX u | |
5528 | #define ARITH_GE | |
5529 | ||
5530 | #include "op_addsub.h" | |
5531 | ||
5532 | /* Halved signed arithmetic. */ | |
5533 | #define ADD16(a, b, n) \ | |
5534 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
5535 | #define SUB16(a, b, n) \ | |
5536 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
5537 | #define ADD8(a, b, n) \ | |
5538 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
5539 | #define SUB8(a, b, n) \ | |
5540 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
5541 | #define PFX sh | |
5542 | ||
5543 | #include "op_addsub.h" | |
5544 | ||
5545 | /* Halved unsigned arithmetic. */ | |
5546 | #define ADD16(a, b, n) \ | |
5547 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
5548 | #define SUB16(a, b, n) \ | |
5549 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
5550 | #define ADD8(a, b, n) \ | |
5551 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
5552 | #define SUB8(a, b, n) \ | |
5553 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
5554 | #define PFX uh | |
5555 | ||
5556 | #include "op_addsub.h" | |
5557 | ||
5558 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
5559 | { | |
5560 | if (a > b) | |
5561 | return a - b; | |
5562 | else | |
5563 | return b - a; | |
5564 | } | |
5565 | ||
5566 | /* Unsigned sum of absolute byte differences. */ | |
5567 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
5568 | { | |
5569 | uint32_t sum; | |
5570 | sum = do_usad(a, b); | |
5571 | sum += do_usad(a >> 8, b >> 8); | |
5572 | sum += do_usad(a >> 16, b >>16); | |
5573 | sum += do_usad(a >> 24, b >> 24); | |
5574 | return sum; | |
5575 | } | |
5576 | ||
5577 | /* For ARMv6 SEL instruction. */ | |
5578 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
5579 | { | |
5580 | uint32_t mask; | |
5581 | ||
5582 | mask = 0; | |
5583 | if (flags & 1) | |
5584 | mask |= 0xff; | |
5585 | if (flags & 2) | |
5586 | mask |= 0xff00; | |
5587 | if (flags & 4) | |
5588 | mask |= 0xff0000; | |
5589 | if (flags & 8) | |
5590 | mask |= 0xff000000; | |
5591 | return (a & mask) | (b & ~mask); | |
5592 | } | |
5593 | ||
b90372ad PM |
5594 | /* VFP support. We follow the convention used for VFP instructions: |
5595 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
5596 | "d" suffix. */ |
5597 | ||
5598 | /* Convert host exception flags to vfp form. */ | |
5599 | static inline int vfp_exceptbits_from_host(int host_bits) | |
5600 | { | |
5601 | int target_bits = 0; | |
5602 | ||
5603 | if (host_bits & float_flag_invalid) | |
5604 | target_bits |= 1; | |
5605 | if (host_bits & float_flag_divbyzero) | |
5606 | target_bits |= 2; | |
5607 | if (host_bits & float_flag_overflow) | |
5608 | target_bits |= 4; | |
36802b6b | 5609 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
5610 | target_bits |= 8; |
5611 | if (host_bits & float_flag_inexact) | |
5612 | target_bits |= 0x10; | |
cecd8504 PM |
5613 | if (host_bits & float_flag_input_denormal) |
5614 | target_bits |= 0x80; | |
4373f3ce PB |
5615 | return target_bits; |
5616 | } | |
5617 | ||
0ecb72a5 | 5618 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
5619 | { |
5620 | int i; | |
5621 | uint32_t fpscr; | |
5622 | ||
5623 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
5624 | | (env->vfp.vec_len << 16) | |
5625 | | (env->vfp.vec_stride << 20); | |
5626 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 5627 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
5628 | fpscr |= vfp_exceptbits_from_host(i); |
5629 | return fpscr; | |
5630 | } | |
5631 | ||
0ecb72a5 | 5632 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
5633 | { |
5634 | return HELPER(vfp_get_fpscr)(env); | |
5635 | } | |
5636 | ||
4373f3ce PB |
5637 | /* Convert vfp exception flags to target form. */ |
5638 | static inline int vfp_exceptbits_to_host(int target_bits) | |
5639 | { | |
5640 | int host_bits = 0; | |
5641 | ||
5642 | if (target_bits & 1) | |
5643 | host_bits |= float_flag_invalid; | |
5644 | if (target_bits & 2) | |
5645 | host_bits |= float_flag_divbyzero; | |
5646 | if (target_bits & 4) | |
5647 | host_bits |= float_flag_overflow; | |
5648 | if (target_bits & 8) | |
5649 | host_bits |= float_flag_underflow; | |
5650 | if (target_bits & 0x10) | |
5651 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
5652 | if (target_bits & 0x80) |
5653 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
5654 | return host_bits; |
5655 | } | |
5656 | ||
0ecb72a5 | 5657 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
5658 | { |
5659 | int i; | |
5660 | uint32_t changed; | |
5661 | ||
5662 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
5663 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
5664 | env->vfp.vec_len = (val >> 16) & 7; | |
5665 | env->vfp.vec_stride = (val >> 20) & 3; | |
5666 | ||
5667 | changed ^= val; | |
5668 | if (changed & (3 << 22)) { | |
5669 | i = (val >> 22) & 3; | |
5670 | switch (i) { | |
4d3da0f3 | 5671 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
5672 | i = float_round_nearest_even; |
5673 | break; | |
4d3da0f3 | 5674 | case FPROUNDING_POSINF: |
4373f3ce PB |
5675 | i = float_round_up; |
5676 | break; | |
4d3da0f3 | 5677 | case FPROUNDING_NEGINF: |
4373f3ce PB |
5678 | i = float_round_down; |
5679 | break; | |
4d3da0f3 | 5680 | case FPROUNDING_ZERO: |
4373f3ce PB |
5681 | i = float_round_to_zero; |
5682 | break; | |
5683 | } | |
5684 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
5685 | } | |
cecd8504 | 5686 | if (changed & (1 << 24)) { |
fe76d976 | 5687 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
5688 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
5689 | } | |
5c7908ed PB |
5690 | if (changed & (1 << 25)) |
5691 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 5692 | |
b12c390b | 5693 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 5694 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 5695 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
5696 | } |
5697 | ||
0ecb72a5 | 5698 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
5699 | { |
5700 | HELPER(vfp_set_fpscr)(env, val); | |
5701 | } | |
5702 | ||
4373f3ce PB |
5703 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
5704 | ||
5705 | #define VFP_BINOP(name) \ | |
ae1857ec | 5706 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 5707 | { \ |
ae1857ec PM |
5708 | float_status *fpst = fpstp; \ |
5709 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 5710 | } \ |
ae1857ec | 5711 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 5712 | { \ |
ae1857ec PM |
5713 | float_status *fpst = fpstp; \ |
5714 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
5715 | } |
5716 | VFP_BINOP(add) | |
5717 | VFP_BINOP(sub) | |
5718 | VFP_BINOP(mul) | |
5719 | VFP_BINOP(div) | |
f71a2ae5 PM |
5720 | VFP_BINOP(min) |
5721 | VFP_BINOP(max) | |
5722 | VFP_BINOP(minnum) | |
5723 | VFP_BINOP(maxnum) | |
4373f3ce PB |
5724 | #undef VFP_BINOP |
5725 | ||
5726 | float32 VFP_HELPER(neg, s)(float32 a) | |
5727 | { | |
5728 | return float32_chs(a); | |
5729 | } | |
5730 | ||
5731 | float64 VFP_HELPER(neg, d)(float64 a) | |
5732 | { | |
66230e0d | 5733 | return float64_chs(a); |
4373f3ce PB |
5734 | } |
5735 | ||
5736 | float32 VFP_HELPER(abs, s)(float32 a) | |
5737 | { | |
5738 | return float32_abs(a); | |
5739 | } | |
5740 | ||
5741 | float64 VFP_HELPER(abs, d)(float64 a) | |
5742 | { | |
66230e0d | 5743 | return float64_abs(a); |
4373f3ce PB |
5744 | } |
5745 | ||
0ecb72a5 | 5746 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
5747 | { |
5748 | return float32_sqrt(a, &env->vfp.fp_status); | |
5749 | } | |
5750 | ||
0ecb72a5 | 5751 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
5752 | { |
5753 | return float64_sqrt(a, &env->vfp.fp_status); | |
5754 | } | |
5755 | ||
5756 | /* XXX: check quiet/signaling case */ | |
5757 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 5758 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
5759 | { \ |
5760 | uint32_t flags; \ | |
5761 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
5762 | case 0: flags = 0x6; break; \ | |
5763 | case -1: flags = 0x8; break; \ | |
5764 | case 1: flags = 0x2; break; \ | |
5765 | default: case 2: flags = 0x3; break; \ | |
5766 | } \ | |
5767 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
5768 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
5769 | } \ | |
0ecb72a5 | 5770 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
5771 | { \ |
5772 | uint32_t flags; \ | |
5773 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
5774 | case 0: flags = 0x6; break; \ | |
5775 | case -1: flags = 0x8; break; \ | |
5776 | case 1: flags = 0x2; break; \ | |
5777 | default: case 2: flags = 0x3; break; \ | |
5778 | } \ | |
5779 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
5780 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
5781 | } | |
5782 | DO_VFP_cmp(s, float32) | |
5783 | DO_VFP_cmp(d, float64) | |
5784 | #undef DO_VFP_cmp | |
5785 | ||
5500b06c | 5786 | /* Integer to float and float to integer conversions */ |
4373f3ce | 5787 | |
5500b06c PM |
5788 | #define CONV_ITOF(name, fsz, sign) \ |
5789 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
5790 | { \ | |
5791 | float_status *fpst = fpstp; \ | |
85836979 | 5792 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
5793 | } |
5794 | ||
5500b06c PM |
5795 | #define CONV_FTOI(name, fsz, sign, round) \ |
5796 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
5797 | { \ | |
5798 | float_status *fpst = fpstp; \ | |
5799 | if (float##fsz##_is_any_nan(x)) { \ | |
5800 | float_raise(float_flag_invalid, fpst); \ | |
5801 | return 0; \ | |
5802 | } \ | |
5803 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
5804 | } |
5805 | ||
5500b06c PM |
5806 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
5807 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
5808 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
5809 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 5810 | |
5500b06c PM |
5811 | FLOAT_CONVS(si, s, 32, ) |
5812 | FLOAT_CONVS(si, d, 64, ) | |
5813 | FLOAT_CONVS(ui, s, 32, u) | |
5814 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 5815 | |
5500b06c PM |
5816 | #undef CONV_ITOF |
5817 | #undef CONV_FTOI | |
5818 | #undef FLOAT_CONVS | |
4373f3ce PB |
5819 | |
5820 | /* floating point conversion */ | |
0ecb72a5 | 5821 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 5822 | { |
2d627737 PM |
5823 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
5824 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
5825 | * a quiet NaN by forcing the most significant frac bit to 1. | |
5826 | */ | |
5827 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
5828 | } |
5829 | ||
0ecb72a5 | 5830 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 5831 | { |
2d627737 PM |
5832 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
5833 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
5834 | * a quiet NaN by forcing the most significant frac bit to 1. | |
5835 | */ | |
5836 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
5837 | } |
5838 | ||
5839 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 5840 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
5841 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
5842 | void *fpstp) \ | |
4373f3ce | 5843 | { \ |
5500b06c | 5844 | float_status *fpst = fpstp; \ |
622465e1 | 5845 | float##fsz tmp; \ |
8ed697e8 | 5846 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 5847 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
5848 | } |
5849 | ||
abe66f70 PM |
5850 | /* Notice that we want only input-denormal exception flags from the |
5851 | * scalbn operation: the other possible flags (overflow+inexact if | |
5852 | * we overflow to infinity, output-denormal) aren't correct for the | |
5853 | * complete scale-and-convert operation. | |
5854 | */ | |
16d5b3ca WN |
5855 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
5856 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
5857 | uint32_t shift, \ | |
5858 | void *fpstp) \ | |
4373f3ce | 5859 | { \ |
5500b06c | 5860 | float_status *fpst = fpstp; \ |
abe66f70 | 5861 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
5862 | float##fsz tmp; \ |
5863 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 5864 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 5865 | return 0; \ |
09d9487f | 5866 | } \ |
5500b06c | 5867 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
5868 | old_exc_flags |= get_float_exception_flags(fpst) \ |
5869 | & float_flag_input_denormal; \ | |
5870 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 5871 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
5872 | } |
5873 | ||
16d5b3ca WN |
5874 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
5875 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
5876 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
5877 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
5878 | ||
5879 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
5880 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
5881 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 5882 | |
8ed697e8 WN |
5883 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
5884 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 5885 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
5886 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
5887 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 5888 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
5889 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
5890 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 5891 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
5892 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
5893 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 5894 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 5895 | #undef VFP_CONV_FIX |
16d5b3ca WN |
5896 | #undef VFP_CONV_FIX_FLOAT |
5897 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 5898 | |
52a1f6a3 AG |
5899 | /* Set the current fp rounding mode and return the old one. |
5900 | * The argument is a softfloat float_round_ value. | |
5901 | */ | |
5902 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
5903 | { | |
5904 | float_status *fp_status = &env->vfp.fp_status; | |
5905 | ||
5906 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
5907 | set_float_rounding_mode(rmode, fp_status); | |
5908 | ||
5909 | return prev_rmode; | |
5910 | } | |
5911 | ||
43630e58 WN |
5912 | /* Set the current fp rounding mode in the standard fp status and return |
5913 | * the old one. This is for NEON instructions that need to change the | |
5914 | * rounding mode but wish to use the standard FPSCR values for everything | |
5915 | * else. Always set the rounding mode back to the correct value after | |
5916 | * modifying it. | |
5917 | * The argument is a softfloat float_round_ value. | |
5918 | */ | |
5919 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
5920 | { | |
5921 | float_status *fp_status = &env->vfp.standard_fp_status; | |
5922 | ||
5923 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
5924 | set_float_rounding_mode(rmode, fp_status); | |
5925 | ||
5926 | return prev_rmode; | |
5927 | } | |
5928 | ||
60011498 | 5929 | /* Half precision conversions. */ |
0ecb72a5 | 5930 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 5931 | { |
60011498 | 5932 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
5933 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
5934 | if (ieee) { | |
5935 | return float32_maybe_silence_nan(r); | |
5936 | } | |
5937 | return r; | |
60011498 PB |
5938 | } |
5939 | ||
0ecb72a5 | 5940 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 5941 | { |
60011498 | 5942 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
5943 | float16 r = float32_to_float16(a, ieee, s); |
5944 | if (ieee) { | |
5945 | r = float16_maybe_silence_nan(r); | |
5946 | } | |
5947 | return float16_val(r); | |
60011498 PB |
5948 | } |
5949 | ||
0ecb72a5 | 5950 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
5951 | { |
5952 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
5953 | } | |
5954 | ||
0ecb72a5 | 5955 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
5956 | { |
5957 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
5958 | } | |
5959 | ||
0ecb72a5 | 5960 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
5961 | { |
5962 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
5963 | } | |
5964 | ||
0ecb72a5 | 5965 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
5966 | { |
5967 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
5968 | } | |
5969 | ||
8900aad2 PM |
5970 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
5971 | { | |
5972 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
5973 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
5974 | if (ieee) { | |
5975 | return float64_maybe_silence_nan(r); | |
5976 | } | |
5977 | return r; | |
5978 | } | |
5979 | ||
5980 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
5981 | { | |
5982 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
5983 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
5984 | if (ieee) { | |
5985 | r = float16_maybe_silence_nan(r); | |
5986 | } | |
5987 | return float16_val(r); | |
5988 | } | |
5989 | ||
dda3ec49 | 5990 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
5991 | #define float32_three make_float32(0x40400000) |
5992 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 5993 | |
0ecb72a5 | 5994 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 5995 | { |
dda3ec49 PM |
5996 | float_status *s = &env->vfp.standard_fp_status; |
5997 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
5998 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
5999 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
6000 | float_raise(float_flag_input_denormal, s); | |
6001 | } | |
dda3ec49 PM |
6002 | return float32_two; |
6003 | } | |
6004 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
6005 | } |
6006 | ||
0ecb72a5 | 6007 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 6008 | { |
71826966 | 6009 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
6010 | float32 product; |
6011 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
6012 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
6013 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
6014 | float_raise(float_flag_input_denormal, s); | |
6015 | } | |
6aae3df1 | 6016 | return float32_one_point_five; |
9ea62f57 | 6017 | } |
6aae3df1 PM |
6018 | product = float32_mul(a, b, s); |
6019 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
6020 | } |
6021 | ||
8f8e3aa4 PB |
6022 | /* NEON helpers. */ |
6023 | ||
56bf4fe2 CL |
6024 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
6025 | * int->float conversions at run-time. */ | |
6026 | #define float64_256 make_float64(0x4070000000000000LL) | |
6027 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
6028 | #define float32_maxnorm make_float32(0x7f7fffff) |
6029 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 6030 | |
b6d4443a AB |
6031 | /* Reciprocal functions |
6032 | * | |
6033 | * The algorithm that must be used to calculate the estimate | |
6034 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 6035 | */ |
b6d4443a AB |
6036 | |
6037 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 6038 | { |
1146a817 PM |
6039 | /* These calculations mustn't set any fp exception flags, |
6040 | * so we use a local copy of the fp_status. | |
6041 | */ | |
b6d4443a | 6042 | float_status dummy_status = *real_fp_status; |
1146a817 | 6043 | float_status *s = &dummy_status; |
fe0e4872 CL |
6044 | /* q = (int)(a * 512.0) */ |
6045 | float64 q = float64_mul(float64_512, a, s); | |
6046 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
6047 | ||
6048 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
6049 | q = int64_to_float64(q_int, s); | |
6050 | q = float64_add(q, float64_half, s); | |
6051 | q = float64_div(q, float64_512, s); | |
6052 | q = float64_div(float64_one, q, s); | |
6053 | ||
6054 | /* s = (int)(256.0 * r + 0.5) */ | |
6055 | q = float64_mul(q, float64_256, s); | |
6056 | q = float64_add(q, float64_half, s); | |
6057 | q_int = float64_to_int64_round_to_zero(q, s); | |
6058 | ||
6059 | /* return (double)s / 256.0 */ | |
6060 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
6061 | } | |
6062 | ||
b6d4443a AB |
6063 | /* Common wrapper to call recip_estimate */ |
6064 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 6065 | { |
b6d4443a AB |
6066 | uint64_t val64 = float64_val(num); |
6067 | uint64_t frac = extract64(val64, 0, 52); | |
6068 | int64_t exp = extract64(val64, 52, 11); | |
6069 | uint64_t sbit; | |
6070 | float64 scaled, estimate; | |
fe0e4872 | 6071 | |
b6d4443a AB |
6072 | /* Generate the scaled number for the estimate function */ |
6073 | if (exp == 0) { | |
6074 | if (extract64(frac, 51, 1) == 0) { | |
6075 | exp = -1; | |
6076 | frac = extract64(frac, 0, 50) << 2; | |
6077 | } else { | |
6078 | frac = extract64(frac, 0, 51) << 1; | |
6079 | } | |
6080 | } | |
fe0e4872 | 6081 | |
b6d4443a AB |
6082 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
6083 | scaled = make_float64((0x3feULL << 52) | |
6084 | | extract64(frac, 44, 8) << 44); | |
6085 | ||
6086 | estimate = recip_estimate(scaled, fpst); | |
6087 | ||
6088 | /* Build new result */ | |
6089 | val64 = float64_val(estimate); | |
6090 | sbit = 0x8000000000000000ULL & val64; | |
6091 | exp = off - exp; | |
6092 | frac = extract64(val64, 0, 52); | |
6093 | ||
6094 | if (exp == 0) { | |
6095 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
6096 | } else if (exp == -1) { | |
6097 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
6098 | exp = 0; | |
6099 | } | |
6100 | ||
6101 | return make_float64(sbit | (exp << 52) | frac); | |
6102 | } | |
6103 | ||
6104 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
6105 | { | |
6106 | switch (fpst->float_rounding_mode) { | |
6107 | case float_round_nearest_even: /* Round to Nearest */ | |
6108 | return true; | |
6109 | case float_round_up: /* Round to +Inf */ | |
6110 | return !sign_bit; | |
6111 | case float_round_down: /* Round to -Inf */ | |
6112 | return sign_bit; | |
6113 | case float_round_to_zero: /* Round to Zero */ | |
6114 | return false; | |
6115 | } | |
6116 | ||
6117 | g_assert_not_reached(); | |
6118 | } | |
6119 | ||
6120 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
6121 | { | |
6122 | float_status *fpst = fpstp; | |
6123 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
6124 | uint32_t f32_val = float32_val(f32); | |
6125 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
6126 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
6127 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
6128 | float64 f64, r64; | |
6129 | uint64_t r64_val; | |
6130 | int64_t r64_exp; | |
6131 | uint64_t r64_frac; | |
6132 | ||
6133 | if (float32_is_any_nan(f32)) { | |
6134 | float32 nan = f32; | |
6135 | if (float32_is_signaling_nan(f32)) { | |
6136 | float_raise(float_flag_invalid, fpst); | |
6137 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 6138 | } |
b6d4443a AB |
6139 | if (fpst->default_nan_mode) { |
6140 | nan = float32_default_nan; | |
43fe9bdb | 6141 | } |
b6d4443a AB |
6142 | return nan; |
6143 | } else if (float32_is_infinity(f32)) { | |
6144 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
6145 | } else if (float32_is_zero(f32)) { | |
6146 | float_raise(float_flag_divbyzero, fpst); | |
6147 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
6148 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
6149 | /* Abs(value) < 2.0^-128 */ | |
6150 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
6151 | if (round_to_inf(fpst, f32_sbit)) { | |
6152 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
6153 | } else { | |
6154 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
6155 | } | |
6156 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
6157 | float_raise(float_flag_underflow, fpst); | |
6158 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
6159 | } |
6160 | ||
fe0e4872 | 6161 | |
b6d4443a AB |
6162 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
6163 | r64 = call_recip_estimate(f64, 253, fpst); | |
6164 | r64_val = float64_val(r64); | |
6165 | r64_exp = extract64(r64_val, 52, 11); | |
6166 | r64_frac = extract64(r64_val, 0, 52); | |
6167 | ||
6168 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
6169 | return make_float32(f32_sbit | | |
6170 | (r64_exp & 0xff) << 23 | | |
6171 | extract64(r64_frac, 29, 24)); | |
6172 | } | |
6173 | ||
6174 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
6175 | { | |
6176 | float_status *fpst = fpstp; | |
6177 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
6178 | uint64_t f64_val = float64_val(f64); | |
6179 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
6180 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
6181 | float64 r64; | |
6182 | uint64_t r64_val; | |
6183 | int64_t r64_exp; | |
6184 | uint64_t r64_frac; | |
6185 | ||
6186 | /* Deal with any special cases */ | |
6187 | if (float64_is_any_nan(f64)) { | |
6188 | float64 nan = f64; | |
6189 | if (float64_is_signaling_nan(f64)) { | |
6190 | float_raise(float_flag_invalid, fpst); | |
6191 | nan = float64_maybe_silence_nan(f64); | |
6192 | } | |
6193 | if (fpst->default_nan_mode) { | |
6194 | nan = float64_default_nan; | |
6195 | } | |
6196 | return nan; | |
6197 | } else if (float64_is_infinity(f64)) { | |
6198 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
6199 | } else if (float64_is_zero(f64)) { | |
6200 | float_raise(float_flag_divbyzero, fpst); | |
6201 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
6202 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
6203 | /* Abs(value) < 2.0^-1024 */ | |
6204 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
6205 | if (round_to_inf(fpst, f64_sbit)) { | |
6206 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
6207 | } else { | |
6208 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
6209 | } | |
6210 | } else if (f64_exp >= 1023 && fpst->flush_to_zero) { | |
6211 | float_raise(float_flag_underflow, fpst); | |
6212 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
6213 | } | |
fe0e4872 | 6214 | |
b6d4443a AB |
6215 | r64 = call_recip_estimate(f64, 2045, fpst); |
6216 | r64_val = float64_val(r64); | |
6217 | r64_exp = extract64(r64_val, 52, 11); | |
6218 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 6219 | |
b6d4443a AB |
6220 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
6221 | return make_float64(f64_sbit | | |
6222 | ((r64_exp & 0x7ff) << 52) | | |
6223 | r64_frac); | |
4373f3ce PB |
6224 | } |
6225 | ||
e07be5d2 CL |
6226 | /* The algorithm that must be used to calculate the estimate |
6227 | * is specified by the ARM ARM. | |
6228 | */ | |
c2fb418e | 6229 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 6230 | { |
1146a817 PM |
6231 | /* These calculations mustn't set any fp exception flags, |
6232 | * so we use a local copy of the fp_status. | |
6233 | */ | |
c2fb418e | 6234 | float_status dummy_status = *real_fp_status; |
1146a817 | 6235 | float_status *s = &dummy_status; |
e07be5d2 CL |
6236 | float64 q; |
6237 | int64_t q_int; | |
6238 | ||
6239 | if (float64_lt(a, float64_half, s)) { | |
6240 | /* range 0.25 <= a < 0.5 */ | |
6241 | ||
6242 | /* a in units of 1/512 rounded down */ | |
6243 | /* q0 = (int)(a * 512.0); */ | |
6244 | q = float64_mul(float64_512, a, s); | |
6245 | q_int = float64_to_int64_round_to_zero(q, s); | |
6246 | ||
6247 | /* reciprocal root r */ | |
6248 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
6249 | q = int64_to_float64(q_int, s); | |
6250 | q = float64_add(q, float64_half, s); | |
6251 | q = float64_div(q, float64_512, s); | |
6252 | q = float64_sqrt(q, s); | |
6253 | q = float64_div(float64_one, q, s); | |
6254 | } else { | |
6255 | /* range 0.5 <= a < 1.0 */ | |
6256 | ||
6257 | /* a in units of 1/256 rounded down */ | |
6258 | /* q1 = (int)(a * 256.0); */ | |
6259 | q = float64_mul(float64_256, a, s); | |
6260 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
6261 | ||
6262 | /* reciprocal root r */ | |
6263 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
6264 | q = int64_to_float64(q_int, s); | |
6265 | q = float64_add(q, float64_half, s); | |
6266 | q = float64_div(q, float64_256, s); | |
6267 | q = float64_sqrt(q, s); | |
6268 | q = float64_div(float64_one, q, s); | |
6269 | } | |
6270 | /* r in units of 1/256 rounded to nearest */ | |
6271 | /* s = (int)(256.0 * r + 0.5); */ | |
6272 | ||
6273 | q = float64_mul(q, float64_256,s ); | |
6274 | q = float64_add(q, float64_half, s); | |
6275 | q_int = float64_to_int64_round_to_zero(q, s); | |
6276 | ||
6277 | /* return (double)s / 256.0;*/ | |
6278 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
6279 | } | |
6280 | ||
c2fb418e | 6281 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 6282 | { |
c2fb418e AB |
6283 | float_status *s = fpstp; |
6284 | float32 f32 = float32_squash_input_denormal(input, s); | |
6285 | uint32_t val = float32_val(f32); | |
6286 | uint32_t f32_sbit = 0x80000000 & val; | |
6287 | int32_t f32_exp = extract32(val, 23, 8); | |
6288 | uint32_t f32_frac = extract32(val, 0, 23); | |
6289 | uint64_t f64_frac; | |
6290 | uint64_t val64; | |
e07be5d2 CL |
6291 | int result_exp; |
6292 | float64 f64; | |
e07be5d2 | 6293 | |
c2fb418e AB |
6294 | if (float32_is_any_nan(f32)) { |
6295 | float32 nan = f32; | |
6296 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 6297 | float_raise(float_flag_invalid, s); |
c2fb418e | 6298 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 6299 | } |
c2fb418e AB |
6300 | if (s->default_nan_mode) { |
6301 | nan = float32_default_nan; | |
43fe9bdb | 6302 | } |
c2fb418e AB |
6303 | return nan; |
6304 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 6305 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
6306 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
6307 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
6308 | float_raise(float_flag_invalid, s); |
6309 | return float32_default_nan; | |
c2fb418e | 6310 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
6311 | return float32_zero; |
6312 | } | |
6313 | ||
c2fb418e | 6314 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 6315 | * preserving the parity of the exponent. */ |
c2fb418e AB |
6316 | |
6317 | f64_frac = ((uint64_t) f32_frac) << 29; | |
6318 | if (f32_exp == 0) { | |
6319 | while (extract64(f64_frac, 51, 1) == 0) { | |
6320 | f64_frac = f64_frac << 1; | |
6321 | f32_exp = f32_exp-1; | |
6322 | } | |
6323 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
6324 | } | |
6325 | ||
6326 | if (extract64(f32_exp, 0, 1) == 0) { | |
6327 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 6328 | | (0x3feULL << 52) |
c2fb418e | 6329 | | f64_frac); |
e07be5d2 | 6330 | } else { |
c2fb418e | 6331 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 6332 | | (0x3fdULL << 52) |
c2fb418e | 6333 | | f64_frac); |
e07be5d2 CL |
6334 | } |
6335 | ||
c2fb418e | 6336 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 6337 | |
c2fb418e | 6338 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
6339 | |
6340 | val64 = float64_val(f64); | |
6341 | ||
26cc6abf | 6342 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
6343 | | ((val64 >> 29) & 0x7fffff); |
6344 | return make_float32(val); | |
4373f3ce PB |
6345 | } |
6346 | ||
c2fb418e AB |
6347 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
6348 | { | |
6349 | float_status *s = fpstp; | |
6350 | float64 f64 = float64_squash_input_denormal(input, s); | |
6351 | uint64_t val = float64_val(f64); | |
6352 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
6353 | int64_t f64_exp = extract64(val, 52, 11); | |
6354 | uint64_t f64_frac = extract64(val, 0, 52); | |
6355 | int64_t result_exp; | |
6356 | uint64_t result_frac; | |
6357 | ||
6358 | if (float64_is_any_nan(f64)) { | |
6359 | float64 nan = f64; | |
6360 | if (float64_is_signaling_nan(f64)) { | |
6361 | float_raise(float_flag_invalid, s); | |
6362 | nan = float64_maybe_silence_nan(f64); | |
6363 | } | |
6364 | if (s->default_nan_mode) { | |
6365 | nan = float64_default_nan; | |
6366 | } | |
6367 | return nan; | |
6368 | } else if (float64_is_zero(f64)) { | |
6369 | float_raise(float_flag_divbyzero, s); | |
6370 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
6371 | } else if (float64_is_neg(f64)) { | |
6372 | float_raise(float_flag_invalid, s); | |
6373 | return float64_default_nan; | |
6374 | } else if (float64_is_infinity(f64)) { | |
6375 | return float64_zero; | |
6376 | } | |
6377 | ||
6378 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
6379 | * preserving the parity of the exponent. */ | |
6380 | ||
6381 | if (f64_exp == 0) { | |
6382 | while (extract64(f64_frac, 51, 1) == 0) { | |
6383 | f64_frac = f64_frac << 1; | |
6384 | f64_exp = f64_exp - 1; | |
6385 | } | |
6386 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
6387 | } | |
6388 | ||
6389 | if (extract64(f64_exp, 0, 1) == 0) { | |
6390 | f64 = make_float64(f64_sbit | |
6391 | | (0x3feULL << 52) | |
6392 | | f64_frac); | |
6393 | } else { | |
6394 | f64 = make_float64(f64_sbit | |
6395 | | (0x3fdULL << 52) | |
6396 | | f64_frac); | |
6397 | } | |
6398 | ||
6399 | result_exp = (3068 - f64_exp) / 2; | |
6400 | ||
6401 | f64 = recip_sqrt_estimate(f64, s); | |
6402 | ||
6403 | result_frac = extract64(float64_val(f64), 0, 52); | |
6404 | ||
6405 | return make_float64(f64_sbit | | |
6406 | ((result_exp & 0x7ff) << 52) | | |
6407 | result_frac); | |
6408 | } | |
6409 | ||
b6d4443a | 6410 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 6411 | { |
b6d4443a | 6412 | float_status *s = fpstp; |
fe0e4872 CL |
6413 | float64 f64; |
6414 | ||
6415 | if ((a & 0x80000000) == 0) { | |
6416 | return 0xffffffff; | |
6417 | } | |
6418 | ||
6419 | f64 = make_float64((0x3feULL << 52) | |
6420 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
6421 | ||
b6d4443a | 6422 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
6423 | |
6424 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
6425 | } |
6426 | ||
c2fb418e | 6427 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 6428 | { |
c2fb418e | 6429 | float_status *fpst = fpstp; |
e07be5d2 CL |
6430 | float64 f64; |
6431 | ||
6432 | if ((a & 0xc0000000) == 0) { | |
6433 | return 0xffffffff; | |
6434 | } | |
6435 | ||
6436 | if (a & 0x80000000) { | |
6437 | f64 = make_float64((0x3feULL << 52) | |
6438 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
6439 | } else { /* bits 31-30 == '01' */ | |
6440 | f64 = make_float64((0x3fdULL << 52) | |
6441 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
6442 | } | |
6443 | ||
c2fb418e | 6444 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
6445 | |
6446 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 6447 | } |
fe1479c3 | 6448 | |
da97f52c PM |
6449 | /* VFPv4 fused multiply-accumulate */ |
6450 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
6451 | { | |
6452 | float_status *fpst = fpstp; | |
6453 | return float32_muladd(a, b, c, 0, fpst); | |
6454 | } | |
6455 | ||
6456 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
6457 | { | |
6458 | float_status *fpst = fpstp; | |
6459 | return float64_muladd(a, b, c, 0, fpst); | |
6460 | } | |
d9b0848d PM |
6461 | |
6462 | /* ARMv8 round to integral */ | |
6463 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
6464 | { | |
6465 | return float32_round_to_int(x, fp_status); | |
6466 | } | |
6467 | ||
6468 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
6469 | { | |
6470 | return float64_round_to_int(x, fp_status); | |
6471 | } | |
6472 | ||
6473 | float32 HELPER(rints)(float32 x, void *fp_status) | |
6474 | { | |
6475 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
6476 | float32 ret; | |
6477 | ||
6478 | ret = float32_round_to_int(x, fp_status); | |
6479 | ||
6480 | /* Suppress any inexact exceptions the conversion produced */ | |
6481 | if (!(old_flags & float_flag_inexact)) { | |
6482 | new_flags = get_float_exception_flags(fp_status); | |
6483 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
6484 | } | |
6485 | ||
6486 | return ret; | |
6487 | } | |
6488 | ||
6489 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
6490 | { | |
6491 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
6492 | float64 ret; | |
6493 | ||
6494 | ret = float64_round_to_int(x, fp_status); | |
6495 | ||
6496 | new_flags = get_float_exception_flags(fp_status); | |
6497 | ||
6498 | /* Suppress any inexact exceptions the conversion produced */ | |
6499 | if (!(old_flags & float_flag_inexact)) { | |
6500 | new_flags = get_float_exception_flags(fp_status); | |
6501 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
6502 | } | |
6503 | ||
6504 | return ret; | |
6505 | } | |
9972da66 WN |
6506 | |
6507 | /* Convert ARM rounding mode to softfloat */ | |
6508 | int arm_rmode_to_sf(int rmode) | |
6509 | { | |
6510 | switch (rmode) { | |
6511 | case FPROUNDING_TIEAWAY: | |
6512 | rmode = float_round_ties_away; | |
6513 | break; | |
6514 | case FPROUNDING_ODD: | |
6515 | /* FIXME: add support for TIEAWAY and ODD */ | |
6516 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
6517 | rmode); | |
6518 | case FPROUNDING_TIEEVEN: | |
6519 | default: | |
6520 | rmode = float_round_nearest_even; | |
6521 | break; | |
6522 | case FPROUNDING_POSINF: | |
6523 | rmode = float_round_up; | |
6524 | break; | |
6525 | case FPROUNDING_NEGINF: | |
6526 | rmode = float_round_down; | |
6527 | break; | |
6528 | case FPROUNDING_ZERO: | |
6529 | rmode = float_round_to_zero; | |
6530 | break; | |
6531 | } | |
6532 | return rmode; | |
6533 | } | |
eb0ecd5a | 6534 | |
aa633469 PM |
6535 | /* CRC helpers. |
6536 | * The upper bytes of val (above the number specified by 'bytes') must have | |
6537 | * been zeroed out by the caller. | |
6538 | */ | |
eb0ecd5a WN |
6539 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
6540 | { | |
6541 | uint8_t buf[4]; | |
6542 | ||
aa633469 | 6543 | stl_le_p(buf, val); |
eb0ecd5a WN |
6544 | |
6545 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
6546 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
6547 | } | |
6548 | ||
6549 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
6550 | { | |
6551 | uint8_t buf[4]; | |
6552 | ||
aa633469 | 6553 | stl_le_p(buf, val); |
eb0ecd5a WN |
6554 | |
6555 | /* Linux crc32c converts the output to one's complement. */ | |
6556 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
6557 | } |