]>
Commit | Line | Data |
---|---|---|
ed3baad1 PMD |
1 | /* |
2 | * ARM generic helpers. | |
3 | * | |
4 | * This code is licensed under the GNU GPL v2 or later. | |
5 | * | |
6 | * SPDX-License-Identifier: GPL-2.0-or-later | |
7 | */ | |
db725815 | 8 | |
74c21bd0 | 9 | #include "qemu/osdep.h" |
63159601 | 10 | #include "qemu/units.h" |
cd617484 | 11 | #include "qemu/log.h" |
181962fd | 12 | #include "target/arm/idau.h" |
194cbc49 | 13 | #include "trace.h" |
b5ff1b31 | 14 | #include "cpu.h" |
ccd38087 | 15 | #include "internals.h" |
2ef6175a | 16 | #include "exec/helper-proto.h" |
1de7afc9 | 17 | #include "qemu/host-utils.h" |
db725815 | 18 | #include "qemu/main-loop.h" |
b8012ecf | 19 | #include "qemu/timer.h" |
1de7afc9 | 20 | #include "qemu/bitops.h" |
eb0ecd5a | 21 | #include "qemu/crc32c.h" |
0442428a | 22 | #include "qemu/qemu-print.h" |
63c91552 | 23 | #include "exec/exec-all.h" |
eb0ecd5a | 24 | #include <zlib.h> /* For crc32 */ |
64552b6b | 25 | #include "hw/irq.h" |
6b5fe137 | 26 | #include "semihosting/semihost.h" |
b2e23725 | 27 | #include "sysemu/cpus.h" |
740b1759 | 28 | #include "sysemu/cpu-timers.h" |
f3a9b694 | 29 | #include "sysemu/kvm.h" |
9d2b5a58 | 30 | #include "qemu/range.h" |
7f7b4e7a | 31 | #include "qapi/qapi-commands-machine-target.h" |
de390645 RH |
32 | #include "qapi/error.h" |
33 | #include "qemu/guest-random.h" | |
91f78c58 PMD |
34 | #ifdef CONFIG_TCG |
35 | #include "arm_ldst.h" | |
7aab5a8c | 36 | #include "exec/cpu_ldst.h" |
6b5fe137 | 37 | #include "semihosting/common-semi.h" |
91f78c58 | 38 | #endif |
cf7c6d10 | 39 | #include "cpregs.h" |
0b03bdfc | 40 | |
352c98e5 | 41 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
21c2dd77 | 42 | #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ |
352c98e5 | 43 | |
4a501606 | 44 | #ifndef CONFIG_USER_ONLY |
7c2cb42b | 45 | |
98e87797 | 46 | static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, |
03ae85f8 | 47 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
ff7de2fc | 48 | bool s1_is_el0, |
37785977 | 49 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
da909b2c | 50 | target_ulong *page_size_ptr, |
7e98e21c RH |
51 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
52 | __attribute__((nonnull)); | |
4a501606 PM |
53 | #endif |
54 | ||
affdb64d | 55 | static void switch_mode(CPUARMState *env, int mode); |
ea04dce7 | 56 | static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); |
affdb64d | 57 | |
c4241c7d | 58 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 59 | { |
375421cc | 60 | assert(ri->fieldoffset); |
67ed771d | 61 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 62 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 63 | } else { |
c4241c7d | 64 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 65 | } |
d4e6df63 PM |
66 | } |
67 | ||
c4241c7d PM |
68 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
69 | uint64_t value) | |
d4e6df63 | 70 | { |
375421cc | 71 | assert(ri->fieldoffset); |
67ed771d | 72 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
73 | CPREG_FIELD64(env, ri) = value; |
74 | } else { | |
75 | CPREG_FIELD32(env, ri) = value; | |
76 | } | |
d4e6df63 PM |
77 | } |
78 | ||
11f136ee FA |
79 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
80 | { | |
81 | return (char *)env + ri->fieldoffset; | |
82 | } | |
83 | ||
49a66191 | 84 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 85 | { |
59a1c327 | 86 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 87 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 88 | return ri->resetvalue; |
721fae12 | 89 | } else if (ri->raw_readfn) { |
59a1c327 | 90 | return ri->raw_readfn(env, ri); |
721fae12 | 91 | } else if (ri->readfn) { |
59a1c327 | 92 | return ri->readfn(env, ri); |
721fae12 | 93 | } else { |
59a1c327 | 94 | return raw_read(env, ri); |
721fae12 | 95 | } |
721fae12 PM |
96 | } |
97 | ||
59a1c327 | 98 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 99 | uint64_t v) |
721fae12 PM |
100 | { |
101 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
102 | * Note that constant registers are treated as write-ignored; the |
103 | * caller should check for success by whether a readback gives the | |
104 | * value written. | |
105 | */ | |
106 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 107 | return; |
721fae12 | 108 | } else if (ri->raw_writefn) { |
c4241c7d | 109 | ri->raw_writefn(env, ri, v); |
721fae12 | 110 | } else if (ri->writefn) { |
c4241c7d | 111 | ri->writefn(env, ri, v); |
721fae12 | 112 | } else { |
afb2530f | 113 | raw_write(env, ri, v); |
721fae12 | 114 | } |
721fae12 PM |
115 | } |
116 | ||
375421cc PM |
117 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
118 | { | |
119 | /* Return true if the regdef would cause an assertion if you called | |
120 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
121 | * program bug for it not to have the NO_RAW flag). | |
122 | * NB that returning false here doesn't necessarily mean that calling | |
123 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
124 | * read/write access functions which are safe for raw use" from "has | |
125 | * read/write access functions which have side effects but has forgotten | |
126 | * to provide raw access functions". | |
127 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
128 | * and assertions in raw_read()/raw_write(). | |
129 | */ | |
130 | if ((ri->type & ARM_CP_CONST) || | |
131 | ri->fieldoffset || | |
132 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
133 | return false; | |
134 | } | |
135 | return true; | |
136 | } | |
137 | ||
b698e4ee | 138 | bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) |
721fae12 PM |
139 | { |
140 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
141 | int i; | |
142 | bool ok = true; | |
143 | ||
144 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
145 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
146 | const ARMCPRegInfo *ri; | |
b698e4ee | 147 | uint64_t newval; |
59a1c327 | 148 | |
60322b39 | 149 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
150 | if (!ri) { |
151 | ok = false; | |
152 | continue; | |
153 | } | |
7a0e58fa | 154 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
155 | continue; |
156 | } | |
b698e4ee PM |
157 | |
158 | newval = read_raw_cp_reg(&cpu->env, ri); | |
159 | if (kvm_sync) { | |
160 | /* | |
161 | * Only sync if the previous list->cpustate sync succeeded. | |
162 | * Rather than tracking the success/failure state for every | |
163 | * item in the list, we just recheck "does the raw write we must | |
164 | * have made in write_list_to_cpustate() read back OK" here. | |
165 | */ | |
166 | uint64_t oldval = cpu->cpreg_values[i]; | |
167 | ||
168 | if (oldval == newval) { | |
169 | continue; | |
170 | } | |
171 | ||
172 | write_raw_cp_reg(&cpu->env, ri, oldval); | |
173 | if (read_raw_cp_reg(&cpu->env, ri) != oldval) { | |
174 | continue; | |
175 | } | |
176 | ||
177 | write_raw_cp_reg(&cpu->env, ri, newval); | |
178 | } | |
179 | cpu->cpreg_values[i] = newval; | |
721fae12 PM |
180 | } |
181 | return ok; | |
182 | } | |
183 | ||
184 | bool write_list_to_cpustate(ARMCPU *cpu) | |
185 | { | |
186 | int i; | |
187 | bool ok = true; | |
188 | ||
189 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
190 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
191 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
192 | const ARMCPRegInfo *ri; |
193 | ||
60322b39 | 194 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
195 | if (!ri) { |
196 | ok = false; | |
197 | continue; | |
198 | } | |
7a0e58fa | 199 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
200 | continue; |
201 | } | |
202 | /* Write value and confirm it reads back as written | |
203 | * (to catch read-only registers and partially read-only | |
204 | * registers where the incoming migration value doesn't match) | |
205 | */ | |
59a1c327 PM |
206 | write_raw_cp_reg(&cpu->env, ri, v); |
207 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
208 | ok = false; |
209 | } | |
210 | } | |
211 | return ok; | |
212 | } | |
213 | ||
214 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
215 | { | |
216 | ARMCPU *cpu = opaque; | |
5860362d RH |
217 | uint32_t regidx = (uintptr_t)key; |
218 | const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |
721fae12 | 219 | |
7a0e58fa | 220 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
221 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
222 | /* The value array need not be initialized at this point */ | |
223 | cpu->cpreg_array_len++; | |
224 | } | |
225 | } | |
226 | ||
227 | static void count_cpreg(gpointer key, gpointer opaque) | |
228 | { | |
229 | ARMCPU *cpu = opaque; | |
721fae12 PM |
230 | const ARMCPRegInfo *ri; |
231 | ||
5860362d | 232 | ri = g_hash_table_lookup(cpu->cp_regs, key); |
721fae12 | 233 | |
7a0e58fa | 234 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
235 | cpu->cpreg_array_len++; |
236 | } | |
237 | } | |
238 | ||
239 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
240 | { | |
5860362d RH |
241 | uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); |
242 | uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); | |
721fae12 | 243 | |
cbf239b7 AR |
244 | if (aidx > bidx) { |
245 | return 1; | |
246 | } | |
247 | if (aidx < bidx) { | |
248 | return -1; | |
249 | } | |
250 | return 0; | |
721fae12 PM |
251 | } |
252 | ||
253 | void init_cpreg_list(ARMCPU *cpu) | |
254 | { | |
255 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
256 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
257 | */ | |
57b6d95e | 258 | GList *keys; |
721fae12 PM |
259 | int arraylen; |
260 | ||
57b6d95e | 261 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
262 | keys = g_list_sort(keys, cpreg_key_compare); |
263 | ||
264 | cpu->cpreg_array_len = 0; | |
265 | ||
266 | g_list_foreach(keys, count_cpreg, cpu); | |
267 | ||
268 | arraylen = cpu->cpreg_array_len; | |
269 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
270 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
271 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
272 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
273 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
274 | cpu->cpreg_array_len = 0; | |
275 | ||
276 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
277 | ||
278 | assert(cpu->cpreg_array_len == arraylen); | |
279 | ||
280 | g_list_free(keys); | |
281 | } | |
282 | ||
68e9c2fe | 283 | /* |
93dd1e61 | 284 | * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. |
68e9c2fe EI |
285 | */ |
286 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
3f208fd7 PM |
287 | const ARMCPRegInfo *ri, |
288 | bool isread) | |
68e9c2fe | 289 | { |
93dd1e61 EI |
290 | if (!is_a64(env) && arm_current_el(env) == 3 && |
291 | arm_is_secure_below_el3(env)) { | |
68e9c2fe EI |
292 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
293 | } | |
294 | return CP_ACCESS_OK; | |
295 | } | |
296 | ||
5513c3ab PM |
297 | /* Some secure-only AArch32 registers trap to EL3 if used from |
298 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). | |
299 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. | |
300 | * We assume that the .access field is set to PL1_RW. | |
301 | */ | |
302 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, | |
3f208fd7 PM |
303 | const ARMCPRegInfo *ri, |
304 | bool isread) | |
5513c3ab PM |
305 | { |
306 | if (arm_current_el(env) == 3) { | |
307 | return CP_ACCESS_OK; | |
308 | } | |
309 | if (arm_is_secure_below_el3(env)) { | |
926c1b97 RDC |
310 | if (env->cp15.scr_el3 & SCR_EEL2) { |
311 | return CP_ACCESS_TRAP_EL2; | |
312 | } | |
5513c3ab PM |
313 | return CP_ACCESS_TRAP_EL3; |
314 | } | |
315 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ | |
316 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
317 | } | |
318 | ||
59dd089c RDC |
319 | static uint64_t arm_mdcr_el2_eff(CPUARMState *env) |
320 | { | |
321 | return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; | |
322 | } | |
323 | ||
187f678d PM |
324 | /* Check for traps to "powerdown debug" registers, which are controlled |
325 | * by MDCR.TDOSA | |
326 | */ | |
327 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, | |
328 | bool isread) | |
329 | { | |
330 | int el = arm_current_el(env); | |
59dd089c RDC |
331 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
332 | bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 333 | (arm_hcr_el2_eff(env) & HCR_TGE); |
187f678d | 334 | |
59dd089c | 335 | if (el < 2 && mdcr_el2_tdosa) { |
187f678d PM |
336 | return CP_ACCESS_TRAP_EL2; |
337 | } | |
338 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { | |
339 | return CP_ACCESS_TRAP_EL3; | |
340 | } | |
341 | return CP_ACCESS_OK; | |
342 | } | |
343 | ||
91b0a238 PM |
344 | /* Check for traps to "debug ROM" registers, which are controlled |
345 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. | |
346 | */ | |
347 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, | |
348 | bool isread) | |
349 | { | |
350 | int el = arm_current_el(env); | |
59dd089c RDC |
351 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
352 | bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 353 | (arm_hcr_el2_eff(env) & HCR_TGE); |
91b0a238 | 354 | |
59dd089c | 355 | if (el < 2 && mdcr_el2_tdra) { |
91b0a238 PM |
356 | return CP_ACCESS_TRAP_EL2; |
357 | } | |
358 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
359 | return CP_ACCESS_TRAP_EL3; | |
360 | } | |
361 | return CP_ACCESS_OK; | |
362 | } | |
363 | ||
d6c8cf81 PM |
364 | /* Check for traps to general debug registers, which are controlled |
365 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. | |
366 | */ | |
367 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, | |
368 | bool isread) | |
369 | { | |
370 | int el = arm_current_el(env); | |
59dd089c RDC |
371 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
372 | bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 373 | (arm_hcr_el2_eff(env) & HCR_TGE); |
d6c8cf81 | 374 | |
59dd089c | 375 | if (el < 2 && mdcr_el2_tda) { |
d6c8cf81 PM |
376 | return CP_ACCESS_TRAP_EL2; |
377 | } | |
378 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
379 | return CP_ACCESS_TRAP_EL3; | |
380 | } | |
381 | return CP_ACCESS_OK; | |
382 | } | |
383 | ||
1fce1ba9 PM |
384 | /* Check for traps to performance monitor registers, which are controlled |
385 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. | |
386 | */ | |
387 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, | |
388 | bool isread) | |
389 | { | |
390 | int el = arm_current_el(env); | |
59dd089c | 391 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
1fce1ba9 | 392 | |
59dd089c | 393 | if (el < 2 && (mdcr_el2 & MDCR_TPM)) { |
1fce1ba9 PM |
394 | return CP_ACCESS_TRAP_EL2; |
395 | } | |
396 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
397 | return CP_ACCESS_TRAP_EL3; | |
398 | } | |
399 | return CP_ACCESS_OK; | |
400 | } | |
401 | ||
84929218 RH |
402 | /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ |
403 | static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, | |
404 | bool isread) | |
405 | { | |
406 | if (arm_current_el(env) == 1) { | |
407 | uint64_t trap = isread ? HCR_TRVM : HCR_TVM; | |
408 | if (arm_hcr_el2_eff(env) & trap) { | |
409 | return CP_ACCESS_TRAP_EL2; | |
410 | } | |
411 | } | |
412 | return CP_ACCESS_OK; | |
413 | } | |
414 | ||
1803d271 RH |
415 | /* Check for traps from EL1 due to HCR_EL2.TSW. */ |
416 | static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, | |
417 | bool isread) | |
418 | { | |
419 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { | |
420 | return CP_ACCESS_TRAP_EL2; | |
421 | } | |
422 | return CP_ACCESS_OK; | |
423 | } | |
424 | ||
99602377 RH |
425 | /* Check for traps from EL1 due to HCR_EL2.TACR. */ |
426 | static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, | |
427 | bool isread) | |
428 | { | |
429 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { | |
430 | return CP_ACCESS_TRAP_EL2; | |
431 | } | |
432 | return CP_ACCESS_OK; | |
433 | } | |
434 | ||
30881b73 RH |
435 | /* Check for traps from EL1 due to HCR_EL2.TTLB. */ |
436 | static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, | |
437 | bool isread) | |
438 | { | |
439 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { | |
440 | return CP_ACCESS_TRAP_EL2; | |
441 | } | |
442 | return CP_ACCESS_OK; | |
443 | } | |
444 | ||
c4241c7d | 445 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 446 | { |
2fc0cc0e | 447 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 448 | |
8d5c773e | 449 | raw_write(env, ri, value); |
d10eb08f | 450 | tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
451 | } |
452 | ||
c4241c7d | 453 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 454 | { |
2fc0cc0e | 455 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 456 | |
8d5c773e | 457 | if (raw_read(env, ri) != value) { |
08de207b PM |
458 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
459 | * not modified virtual addresses, so this causes a TLB flush. | |
460 | */ | |
d10eb08f | 461 | tlb_flush(CPU(cpu)); |
8d5c773e | 462 | raw_write(env, ri, value); |
08de207b | 463 | } |
08de207b | 464 | } |
c4241c7d PM |
465 | |
466 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
467 | uint64_t value) | |
08de207b | 468 | { |
2fc0cc0e | 469 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 470 | |
452a0955 | 471 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) |
014406b5 | 472 | && !extended_addresses_enabled(env)) { |
08de207b PM |
473 | /* For VMSA (when not using the LPAE long descriptor page table |
474 | * format) this register includes the ASID, so do a TLB flush. | |
475 | * For PMSA it is purely a process ID and no action is needed. | |
476 | */ | |
d10eb08f | 477 | tlb_flush(CPU(cpu)); |
08de207b | 478 | } |
8d5c773e | 479 | raw_write(env, ri, value); |
08de207b PM |
480 | } |
481 | ||
b4ab8ce9 PM |
482 | /* IS variants of TLB operations must affect all cores */ |
483 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
484 | uint64_t value) | |
485 | { | |
29a0af61 | 486 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
487 | |
488 | tlb_flush_all_cpus_synced(cs); | |
489 | } | |
490 | ||
491 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
492 | uint64_t value) | |
493 | { | |
29a0af61 | 494 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
495 | |
496 | tlb_flush_all_cpus_synced(cs); | |
497 | } | |
498 | ||
499 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
500 | uint64_t value) | |
501 | { | |
29a0af61 | 502 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
503 | |
504 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); | |
505 | } | |
506 | ||
507 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
508 | uint64_t value) | |
509 | { | |
29a0af61 | 510 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
511 | |
512 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); | |
513 | } | |
514 | ||
515 | /* | |
516 | * Non-IS variants of TLB operations are upgraded to | |
373e7ffd | 517 | * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to |
b4ab8ce9 PM |
518 | * force broadcast of these operations. |
519 | */ | |
520 | static bool tlb_force_broadcast(CPUARMState *env) | |
521 | { | |
373e7ffd | 522 | return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); |
b4ab8ce9 PM |
523 | } |
524 | ||
c4241c7d PM |
525 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
526 | uint64_t value) | |
d929823f PM |
527 | { |
528 | /* Invalidate all (TLBIALL) */ | |
527db2be | 529 | CPUState *cs = env_cpu(env); |
00c8cb0a | 530 | |
b4ab8ce9 | 531 | if (tlb_force_broadcast(env)) { |
527db2be RH |
532 | tlb_flush_all_cpus_synced(cs); |
533 | } else { | |
534 | tlb_flush(cs); | |
b4ab8ce9 | 535 | } |
d929823f PM |
536 | } |
537 | ||
c4241c7d PM |
538 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
539 | uint64_t value) | |
d929823f PM |
540 | { |
541 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
527db2be | 542 | CPUState *cs = env_cpu(env); |
31b030d4 | 543 | |
527db2be | 544 | value &= TARGET_PAGE_MASK; |
b4ab8ce9 | 545 | if (tlb_force_broadcast(env)) { |
527db2be RH |
546 | tlb_flush_page_all_cpus_synced(cs, value); |
547 | } else { | |
548 | tlb_flush_page(cs, value); | |
b4ab8ce9 | 549 | } |
d929823f PM |
550 | } |
551 | ||
c4241c7d PM |
552 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
553 | uint64_t value) | |
d929823f PM |
554 | { |
555 | /* Invalidate by ASID (TLBIASID) */ | |
527db2be | 556 | CPUState *cs = env_cpu(env); |
00c8cb0a | 557 | |
b4ab8ce9 | 558 | if (tlb_force_broadcast(env)) { |
527db2be RH |
559 | tlb_flush_all_cpus_synced(cs); |
560 | } else { | |
561 | tlb_flush(cs); | |
b4ab8ce9 | 562 | } |
d929823f PM |
563 | } |
564 | ||
c4241c7d PM |
565 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
566 | uint64_t value) | |
d929823f PM |
567 | { |
568 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
527db2be | 569 | CPUState *cs = env_cpu(env); |
31b030d4 | 570 | |
527db2be | 571 | value &= TARGET_PAGE_MASK; |
b4ab8ce9 | 572 | if (tlb_force_broadcast(env)) { |
527db2be RH |
573 | tlb_flush_page_all_cpus_synced(cs, value); |
574 | } else { | |
575 | tlb_flush_page(cs, value); | |
b4ab8ce9 | 576 | } |
fa439fc5 PM |
577 | } |
578 | ||
541ef8c2 SS |
579 | static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
580 | uint64_t value) | |
581 | { | |
29a0af61 | 582 | CPUState *cs = env_cpu(env); |
541ef8c2 | 583 | |
0336cbf8 | 584 | tlb_flush_by_mmuidx(cs, |
01b98b68 | 585 | ARMMMUIdxBit_E10_1 | |
452ef8cb | 586 | ARMMMUIdxBit_E10_1_PAN | |
bf05340c | 587 | ARMMMUIdxBit_E10_0); |
541ef8c2 SS |
588 | } |
589 | ||
590 | static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
591 | uint64_t value) | |
592 | { | |
29a0af61 | 593 | CPUState *cs = env_cpu(env); |
541ef8c2 | 594 | |
a67cf277 | 595 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
01b98b68 | 596 | ARMMMUIdxBit_E10_1 | |
452ef8cb | 597 | ARMMMUIdxBit_E10_1_PAN | |
bf05340c | 598 | ARMMMUIdxBit_E10_0); |
541ef8c2 SS |
599 | } |
600 | ||
541ef8c2 SS |
601 | |
602 | static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
603 | uint64_t value) | |
604 | { | |
29a0af61 | 605 | CPUState *cs = env_cpu(env); |
541ef8c2 | 606 | |
e013b741 | 607 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); |
541ef8c2 SS |
608 | } |
609 | ||
610 | static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
611 | uint64_t value) | |
612 | { | |
29a0af61 | 613 | CPUState *cs = env_cpu(env); |
541ef8c2 | 614 | |
e013b741 | 615 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); |
541ef8c2 SS |
616 | } |
617 | ||
618 | static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
619 | uint64_t value) | |
620 | { | |
29a0af61 | 621 | CPUState *cs = env_cpu(env); |
541ef8c2 SS |
622 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
623 | ||
e013b741 | 624 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); |
541ef8c2 SS |
625 | } |
626 | ||
627 | static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
628 | uint64_t value) | |
629 | { | |
29a0af61 | 630 | CPUState *cs = env_cpu(env); |
541ef8c2 SS |
631 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
632 | ||
a67cf277 | 633 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
e013b741 | 634 | ARMMMUIdxBit_E2); |
541ef8c2 SS |
635 | } |
636 | ||
e9aa6c21 | 637 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
638 | /* Define the secure and non-secure FCSE identifier CP registers |
639 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
640 | * the secure register to be properly reset and migrated. There is also no | |
641 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
642 | */ | |
9c513e78 | 643 | { .name = "FCSEIDR", |
54bf36ed FA |
644 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
645 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
646 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
647 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
9c513e78 | 648 | { .name = "FCSEIDR_S", |
54bf36ed FA |
649 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
650 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
651 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 652 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
653 | /* Define the secure and non-secure context identifier CP registers |
654 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
655 | * the secure register to be properly reset and migrated. In the | |
656 | * non-secure case, the 32-bit register will have reset and migration | |
657 | * disabled during registration as it is handled by the 64-bit instance. | |
658 | */ | |
659 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 660 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
84929218 RH |
661 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
662 | .secure = ARM_CP_SECSTATE_NS, | |
54bf36ed FA |
663 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), |
664 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
9c513e78 | 665 | { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, |
54bf36ed | 666 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
84929218 RH |
667 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
668 | .secure = ARM_CP_SECSTATE_S, | |
54bf36ed | 669 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), |
d4e6df63 | 670 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
671 | }; |
672 | ||
673 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
674 | /* NB: Some of these registers exist in v8 but with more precise | |
675 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
676 | */ | |
677 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
678 | { .name = "DACR", |
679 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
84929218 | 680 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
0c17d68c FA |
681 | .writefn = dacr_write, .raw_writefn = raw_write, |
682 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
683 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
684 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
685 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 686 | */ |
a903c449 EI |
687 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
688 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
689 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
690 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
691 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
692 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
693 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 694 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
695 | /* Cache maintenance ops; some of this space may be overridden later. */ |
696 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
697 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
698 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
699 | }; |
700 | ||
7d57f408 PM |
701 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
702 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
703 | * over-broad. | |
704 | */ | |
705 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
706 | .access = PL1_W, .type = ARM_CP_WFI }, | |
7d57f408 PM |
707 | }; |
708 | ||
709 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
710 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
711 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
712 | */ | |
713 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
714 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
715 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
716 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
717 | * OMAPCP will override this space. | |
718 | */ | |
719 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
720 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
721 | .resetvalue = 0 }, | |
722 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
723 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
724 | .resetvalue = 0 }, | |
776d4e5c PM |
725 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
726 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 727 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 728 | .resetvalue = 0 }, |
50300698 PM |
729 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
730 | * implementing it as RAZ means the "debug architecture version" bits | |
731 | * will read as a reserved value, which should cause Linux to not try | |
732 | * to use the debug hardware. | |
733 | */ | |
734 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
735 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
736 | /* MMU TLB control. Note that the wildcarding means we cover not just |
737 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
738 | */ | |
739 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
740 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 741 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
742 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
743 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 744 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
745 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
746 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 747 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
748 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
749 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 750 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
751 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
752 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
753 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
754 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
755 | }; |
756 | ||
c4241c7d PM |
757 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
758 | uint64_t value) | |
2771db27 | 759 | { |
f0aff255 FA |
760 | uint32_t mask = 0; |
761 | ||
762 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
763 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
764 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
765 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
766 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
767 | */ | |
7fbc6a40 | 768 | if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { |
f0aff255 FA |
769 | /* VFP coprocessor: cp10 & cp11 [23:20] */ |
770 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
771 | ||
772 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
773 | /* ASEDIS [31] bit is RAO/WI */ | |
774 | value |= (1 << 31); | |
775 | } | |
776 | ||
777 | /* VFPv3 and upwards with NEON implement 32 double precision | |
778 | * registers (D0-D31). | |
779 | */ | |
a6627f5f | 780 | if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { |
f0aff255 FA |
781 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ |
782 | value |= (1 << 30); | |
783 | } | |
784 | } | |
785 | value &= mask; | |
2771db27 | 786 | } |
fc1120a7 PM |
787 | |
788 | /* | |
789 | * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 | |
790 | * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. | |
791 | */ | |
792 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
793 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
794 | value &= ~(0xf << 20); | |
795 | value |= env->cp15.cpacr_el1 & (0xf << 20); | |
796 | } | |
797 | ||
7ebd5f2e | 798 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
799 | } |
800 | ||
fc1120a7 PM |
801 | static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
802 | { | |
803 | /* | |
804 | * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 | |
805 | * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. | |
806 | */ | |
807 | uint64_t value = env->cp15.cpacr_el1; | |
808 | ||
809 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
810 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
811 | value &= ~(0xf << 20); | |
812 | } | |
813 | return value; | |
814 | } | |
815 | ||
816 | ||
5deac39c PM |
817 | static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
818 | { | |
819 | /* Call cpacr_write() so that we reset with the correct RAO bits set | |
820 | * for our CPU features. | |
821 | */ | |
822 | cpacr_write(env, ri, 0); | |
823 | } | |
824 | ||
3f208fd7 PM |
825 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
826 | bool isread) | |
c6f19164 GB |
827 | { |
828 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
829 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
e6ef0169 RDC |
830 | if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && |
831 | (env->cp15.cptr_el[2] & CPTR_TCPAC)) { | |
c6f19164 GB |
832 | return CP_ACCESS_TRAP_EL2; |
833 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
834 | } else if (arm_current_el(env) < 3 && | |
835 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
836 | return CP_ACCESS_TRAP_EL3; | |
837 | } | |
838 | } | |
839 | ||
840 | return CP_ACCESS_OK; | |
841 | } | |
842 | ||
3f208fd7 PM |
843 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
844 | bool isread) | |
c6f19164 GB |
845 | { |
846 | /* Check if CPTR accesses are set to trap to EL3 */ | |
847 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
848 | return CP_ACCESS_TRAP_EL3; | |
849 | } | |
850 | ||
851 | return CP_ACCESS_OK; | |
852 | } | |
853 | ||
7d57f408 PM |
854 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
855 | /* prefetch by MVA in v6, NOP in v7 */ | |
856 | { .name = "MVA_prefetch", | |
857 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
858 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
859 | /* We need to break the TB after ISB to execute self-modifying code |
860 | * correctly and also to take any pending interrupts immediately. | |
861 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
862 | */ | |
7d57f408 | 863 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 864 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 865 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 866 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 867 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 868 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 869 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
84929218 | 870 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
b848ce2b FA |
871 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
872 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
873 | .resetvalue = 0, }, |
874 | /* Watchpoint Fault Address Register : should actually only be present | |
875 | * for 1136, 1176, 11MPCore. | |
876 | */ | |
877 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
878 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 879 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 880 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 881 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
fc1120a7 | 882 | .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, |
7d57f408 PM |
883 | }; |
884 | ||
57a4a11b AL |
885 | typedef struct pm_event { |
886 | uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ | |
887 | /* If the event is supported on this CPU (used to generate PMCEID[01]) */ | |
888 | bool (*supported)(CPUARMState *); | |
889 | /* | |
890 | * Retrieve the current count of the underlying event. The programmed | |
891 | * counters hold a difference from the return value from this function | |
892 | */ | |
893 | uint64_t (*get_count)(CPUARMState *); | |
4e7beb0c AL |
894 | /* |
895 | * Return how many nanoseconds it will take (at a minimum) for count events | |
896 | * to occur. A negative value indicates the counter will never overflow, or | |
897 | * that the counter has otherwise arranged for the overflow bit to be set | |
898 | * and the PMU interrupt to be raised on overflow. | |
899 | */ | |
900 | int64_t (*ns_per_count)(uint64_t); | |
57a4a11b AL |
901 | } pm_event; |
902 | ||
b2e23725 AL |
903 | static bool event_always_supported(CPUARMState *env) |
904 | { | |
905 | return true; | |
906 | } | |
907 | ||
0d4bfd7d AL |
908 | static uint64_t swinc_get_count(CPUARMState *env) |
909 | { | |
910 | /* | |
911 | * SW_INCR events are written directly to the pmevcntr's by writes to | |
912 | * PMSWINC, so there is no underlying count maintained by the PMU itself | |
913 | */ | |
914 | return 0; | |
915 | } | |
916 | ||
4e7beb0c AL |
917 | static int64_t swinc_ns_per(uint64_t ignored) |
918 | { | |
919 | return -1; | |
920 | } | |
921 | ||
b2e23725 AL |
922 | /* |
923 | * Return the underlying cycle count for the PMU cycle counters. If we're in | |
924 | * usermode, simply return 0. | |
925 | */ | |
926 | static uint64_t cycles_get_count(CPUARMState *env) | |
927 | { | |
928 | #ifndef CONFIG_USER_ONLY | |
929 | return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | |
930 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
931 | #else | |
932 | return cpu_get_host_ticks(); | |
933 | #endif | |
934 | } | |
935 | ||
936 | #ifndef CONFIG_USER_ONLY | |
4e7beb0c AL |
937 | static int64_t cycles_ns_per(uint64_t cycles) |
938 | { | |
939 | return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; | |
940 | } | |
941 | ||
b2e23725 AL |
942 | static bool instructions_supported(CPUARMState *env) |
943 | { | |
740b1759 | 944 | return icount_enabled() == 1; /* Precise instruction counting */ |
b2e23725 AL |
945 | } |
946 | ||
947 | static uint64_t instructions_get_count(CPUARMState *env) | |
948 | { | |
8191d368 | 949 | return (uint64_t)icount_get_raw(); |
b2e23725 | 950 | } |
4e7beb0c AL |
951 | |
952 | static int64_t instructions_ns_per(uint64_t icount) | |
953 | { | |
8191d368 | 954 | return icount_to_ns((int64_t)icount); |
4e7beb0c | 955 | } |
b2e23725 AL |
956 | #endif |
957 | ||
0727f63b PM |
958 | static bool pmu_8_1_events_supported(CPUARMState *env) |
959 | { | |
960 | /* For events which are supported in any v8.1 PMU */ | |
961 | return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); | |
962 | } | |
963 | ||
15dd1ebd PM |
964 | static bool pmu_8_4_events_supported(CPUARMState *env) |
965 | { | |
966 | /* For events which are supported in any v8.1 PMU */ | |
967 | return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); | |
968 | } | |
969 | ||
0727f63b PM |
970 | static uint64_t zero_event_get_count(CPUARMState *env) |
971 | { | |
972 | /* For events which on QEMU never fire, so their count is always zero */ | |
973 | return 0; | |
974 | } | |
975 | ||
976 | static int64_t zero_event_ns_per(uint64_t cycles) | |
977 | { | |
978 | /* An event which never fires can never overflow */ | |
979 | return -1; | |
980 | } | |
981 | ||
57a4a11b | 982 | static const pm_event pm_events[] = { |
0d4bfd7d AL |
983 | { .number = 0x000, /* SW_INCR */ |
984 | .supported = event_always_supported, | |
985 | .get_count = swinc_get_count, | |
4e7beb0c | 986 | .ns_per_count = swinc_ns_per, |
0d4bfd7d | 987 | }, |
b2e23725 AL |
988 | #ifndef CONFIG_USER_ONLY |
989 | { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ | |
990 | .supported = instructions_supported, | |
991 | .get_count = instructions_get_count, | |
4e7beb0c | 992 | .ns_per_count = instructions_ns_per, |
b2e23725 AL |
993 | }, |
994 | { .number = 0x011, /* CPU_CYCLES, Cycle */ | |
995 | .supported = event_always_supported, | |
996 | .get_count = cycles_get_count, | |
4e7beb0c | 997 | .ns_per_count = cycles_ns_per, |
0727f63b | 998 | }, |
b2e23725 | 999 | #endif |
0727f63b PM |
1000 | { .number = 0x023, /* STALL_FRONTEND */ |
1001 | .supported = pmu_8_1_events_supported, | |
1002 | .get_count = zero_event_get_count, | |
1003 | .ns_per_count = zero_event_ns_per, | |
1004 | }, | |
1005 | { .number = 0x024, /* STALL_BACKEND */ | |
1006 | .supported = pmu_8_1_events_supported, | |
1007 | .get_count = zero_event_get_count, | |
1008 | .ns_per_count = zero_event_ns_per, | |
1009 | }, | |
15dd1ebd PM |
1010 | { .number = 0x03c, /* STALL */ |
1011 | .supported = pmu_8_4_events_supported, | |
1012 | .get_count = zero_event_get_count, | |
1013 | .ns_per_count = zero_event_ns_per, | |
1014 | }, | |
57a4a11b AL |
1015 | }; |
1016 | ||
1017 | /* | |
1018 | * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of | |
1019 | * events (i.e. the statistical profiling extension), this implementation | |
1020 | * should first be updated to something sparse instead of the current | |
1021 | * supported_event_map[] array. | |
1022 | */ | |
15dd1ebd | 1023 | #define MAX_EVENT_ID 0x3c |
57a4a11b AL |
1024 | #define UNSUPPORTED_EVENT UINT16_MAX |
1025 | static uint16_t supported_event_map[MAX_EVENT_ID + 1]; | |
1026 | ||
1027 | /* | |
bf8d0969 AL |
1028 | * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map |
1029 | * of ARM event numbers to indices in our pm_events array. | |
57a4a11b AL |
1030 | * |
1031 | * Note: Events in the 0x40XX range are not currently supported. | |
1032 | */ | |
bf8d0969 | 1033 | void pmu_init(ARMCPU *cpu) |
57a4a11b | 1034 | { |
57a4a11b AL |
1035 | unsigned int i; |
1036 | ||
bf8d0969 AL |
1037 | /* |
1038 | * Empty supported_event_map and cpu->pmceid[01] before adding supported | |
1039 | * events to them | |
1040 | */ | |
57a4a11b AL |
1041 | for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { |
1042 | supported_event_map[i] = UNSUPPORTED_EVENT; | |
1043 | } | |
bf8d0969 AL |
1044 | cpu->pmceid0 = 0; |
1045 | cpu->pmceid1 = 0; | |
57a4a11b AL |
1046 | |
1047 | for (i = 0; i < ARRAY_SIZE(pm_events); i++) { | |
1048 | const pm_event *cnt = &pm_events[i]; | |
1049 | assert(cnt->number <= MAX_EVENT_ID); | |
1050 | /* We do not currently support events in the 0x40xx range */ | |
1051 | assert(cnt->number <= 0x3f); | |
1052 | ||
bf8d0969 | 1053 | if (cnt->supported(&cpu->env)) { |
57a4a11b | 1054 | supported_event_map[cnt->number] = i; |
67da43d6 | 1055 | uint64_t event_mask = 1ULL << (cnt->number & 0x1f); |
bf8d0969 AL |
1056 | if (cnt->number & 0x20) { |
1057 | cpu->pmceid1 |= event_mask; | |
1058 | } else { | |
1059 | cpu->pmceid0 |= event_mask; | |
1060 | } | |
57a4a11b AL |
1061 | } |
1062 | } | |
57a4a11b AL |
1063 | } |
1064 | ||
5ecdd3e4 AL |
1065 | /* |
1066 | * Check at runtime whether a PMU event is supported for the current machine | |
1067 | */ | |
1068 | static bool event_supported(uint16_t number) | |
1069 | { | |
1070 | if (number > MAX_EVENT_ID) { | |
1071 | return false; | |
1072 | } | |
1073 | return supported_event_map[number] != UNSUPPORTED_EVENT; | |
1074 | } | |
1075 | ||
3f208fd7 PM |
1076 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1077 | bool isread) | |
200ac0ef | 1078 | { |
3b163b01 | 1079 | /* Performance monitor registers user accessibility is controlled |
1fce1ba9 PM |
1080 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
1081 | * trapping to EL2 or EL3 for other accesses. | |
200ac0ef | 1082 | */ |
1fce1ba9 | 1083 | int el = arm_current_el(env); |
59dd089c | 1084 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
1fce1ba9 | 1085 | |
6ecd0b6b | 1086 | if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { |
fcd25206 | 1087 | return CP_ACCESS_TRAP; |
200ac0ef | 1088 | } |
59dd089c | 1089 | if (el < 2 && (mdcr_el2 & MDCR_TPM)) { |
1fce1ba9 PM |
1090 | return CP_ACCESS_TRAP_EL2; |
1091 | } | |
1092 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
1093 | return CP_ACCESS_TRAP_EL3; | |
1094 | } | |
1095 | ||
fcd25206 | 1096 | return CP_ACCESS_OK; |
200ac0ef PM |
1097 | } |
1098 | ||
6ecd0b6b AB |
1099 | static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, |
1100 | const ARMCPRegInfo *ri, | |
1101 | bool isread) | |
1102 | { | |
1103 | /* ER: event counter read trap control */ | |
1104 | if (arm_feature(env, ARM_FEATURE_V8) | |
1105 | && arm_current_el(env) == 0 | |
1106 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 | |
1107 | && isread) { | |
1108 | return CP_ACCESS_OK; | |
1109 | } | |
1110 | ||
1111 | return pmreg_access(env, ri, isread); | |
1112 | } | |
1113 | ||
1114 | static CPAccessResult pmreg_access_swinc(CPUARMState *env, | |
1115 | const ARMCPRegInfo *ri, | |
1116 | bool isread) | |
1117 | { | |
1118 | /* SW: software increment write trap control */ | |
1119 | if (arm_feature(env, ARM_FEATURE_V8) | |
1120 | && arm_current_el(env) == 0 | |
1121 | && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 | |
1122 | && !isread) { | |
1123 | return CP_ACCESS_OK; | |
1124 | } | |
1125 | ||
1126 | return pmreg_access(env, ri, isread); | |
1127 | } | |
1128 | ||
6ecd0b6b AB |
1129 | static CPAccessResult pmreg_access_selr(CPUARMState *env, |
1130 | const ARMCPRegInfo *ri, | |
1131 | bool isread) | |
1132 | { | |
1133 | /* ER: event counter read trap control */ | |
1134 | if (arm_feature(env, ARM_FEATURE_V8) | |
1135 | && arm_current_el(env) == 0 | |
1136 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { | |
1137 | return CP_ACCESS_OK; | |
1138 | } | |
1139 | ||
1140 | return pmreg_access(env, ri, isread); | |
1141 | } | |
1142 | ||
1143 | static CPAccessResult pmreg_access_ccntr(CPUARMState *env, | |
1144 | const ARMCPRegInfo *ri, | |
1145 | bool isread) | |
1146 | { | |
1147 | /* CR: cycle counter read trap control */ | |
1148 | if (arm_feature(env, ARM_FEATURE_V8) | |
1149 | && arm_current_el(env) == 0 | |
1150 | && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 | |
1151 | && isread) { | |
1152 | return CP_ACCESS_OK; | |
1153 | } | |
1154 | ||
1155 | return pmreg_access(env, ri, isread); | |
1156 | } | |
1157 | ||
033614c4 AL |
1158 | /* Returns true if the counter (pass 31 for PMCCNTR) should count events using |
1159 | * the current EL, security state, and register configuration. | |
1160 | */ | |
1161 | static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) | |
87124fde | 1162 | { |
033614c4 AL |
1163 | uint64_t filter; |
1164 | bool e, p, u, nsk, nsu, nsh, m; | |
1165 | bool enabled, prohibited, filtered; | |
1166 | bool secure = arm_is_secure(env); | |
1167 | int el = arm_current_el(env); | |
59dd089c RDC |
1168 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
1169 | uint8_t hpmn = mdcr_el2 & MDCR_HPMN; | |
87124fde | 1170 | |
cbbb3041 AJ |
1171 | if (!arm_feature(env, ARM_FEATURE_PMU)) { |
1172 | return false; | |
1173 | } | |
1174 | ||
033614c4 AL |
1175 | if (!arm_feature(env, ARM_FEATURE_EL2) || |
1176 | (counter < hpmn || counter == 31)) { | |
1177 | e = env->cp15.c9_pmcr & PMCRE; | |
1178 | } else { | |
59dd089c | 1179 | e = mdcr_el2 & MDCR_HPME; |
87124fde | 1180 | } |
033614c4 | 1181 | enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); |
87124fde | 1182 | |
033614c4 AL |
1183 | if (!secure) { |
1184 | if (el == 2 && (counter < hpmn || counter == 31)) { | |
59dd089c | 1185 | prohibited = mdcr_el2 & MDCR_HPMD; |
033614c4 AL |
1186 | } else { |
1187 | prohibited = false; | |
1188 | } | |
1189 | } else { | |
1190 | prohibited = arm_feature(env, ARM_FEATURE_EL3) && | |
db1f3afb | 1191 | !(env->cp15.mdcr_el3 & MDCR_SPME); |
033614c4 AL |
1192 | } |
1193 | ||
1194 | if (prohibited && counter == 31) { | |
1195 | prohibited = env->cp15.c9_pmcr & PMCRDP; | |
1196 | } | |
1197 | ||
5ecdd3e4 AL |
1198 | if (counter == 31) { |
1199 | filter = env->cp15.pmccfiltr_el0; | |
1200 | } else { | |
1201 | filter = env->cp15.c14_pmevtyper[counter]; | |
1202 | } | |
033614c4 AL |
1203 | |
1204 | p = filter & PMXEVTYPER_P; | |
1205 | u = filter & PMXEVTYPER_U; | |
1206 | nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); | |
1207 | nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); | |
1208 | nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); | |
1209 | m = arm_el_is_aa64(env, 1) && | |
1210 | arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); | |
1211 | ||
1212 | if (el == 0) { | |
1213 | filtered = secure ? u : u != nsu; | |
1214 | } else if (el == 1) { | |
1215 | filtered = secure ? p : p != nsk; | |
1216 | } else if (el == 2) { | |
1217 | filtered = !nsh; | |
1218 | } else { /* EL3 */ | |
1219 | filtered = m != p; | |
1220 | } | |
1221 | ||
5ecdd3e4 AL |
1222 | if (counter != 31) { |
1223 | /* | |
1224 | * If not checking PMCCNTR, ensure the counter is setup to an event we | |
1225 | * support | |
1226 | */ | |
1227 | uint16_t event = filter & PMXEVTYPER_EVTCOUNT; | |
1228 | if (!event_supported(event)) { | |
1229 | return false; | |
1230 | } | |
1231 | } | |
1232 | ||
033614c4 | 1233 | return enabled && !prohibited && !filtered; |
87124fde | 1234 | } |
033614c4 | 1235 | |
f4efb4b2 AL |
1236 | static void pmu_update_irq(CPUARMState *env) |
1237 | { | |
2fc0cc0e | 1238 | ARMCPU *cpu = env_archcpu(env); |
f4efb4b2 AL |
1239 | qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && |
1240 | (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); | |
1241 | } | |
1242 | ||
5d05b9d4 AL |
1243 | /* |
1244 | * Ensure c15_ccnt is the guest-visible count so that operations such as | |
1245 | * enabling/disabling the counter or filtering, modifying the count itself, | |
1246 | * etc. can be done logically. This is essentially a no-op if the counter is | |
1247 | * not enabled at the time of the call. | |
1248 | */ | |
f2b2f53f | 1249 | static void pmccntr_op_start(CPUARMState *env) |
ec7b4ce4 | 1250 | { |
b2e23725 | 1251 | uint64_t cycles = cycles_get_count(env); |
ec7b4ce4 | 1252 | |
033614c4 | 1253 | if (pmu_counter_enabled(env, 31)) { |
5d05b9d4 AL |
1254 | uint64_t eff_cycles = cycles; |
1255 | if (env->cp15.c9_pmcr & PMCRD) { | |
1256 | /* Increment once every 64 processor clock cycles */ | |
1257 | eff_cycles /= 64; | |
1258 | } | |
1259 | ||
f4efb4b2 AL |
1260 | uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; |
1261 | ||
1262 | uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ | |
1263 | 1ull << 63 : 1ull << 31; | |
1264 | if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { | |
1265 | env->cp15.c9_pmovsr |= (1 << 31); | |
1266 | pmu_update_irq(env); | |
1267 | } | |
1268 | ||
1269 | env->cp15.c15_ccnt = new_pmccntr; | |
ec7b4ce4 | 1270 | } |
5d05b9d4 AL |
1271 | env->cp15.c15_ccnt_delta = cycles; |
1272 | } | |
ec7b4ce4 | 1273 | |
5d05b9d4 AL |
1274 | /* |
1275 | * If PMCCNTR is enabled, recalculate the delta between the clock and the | |
1276 | * guest-visible count. A call to pmccntr_op_finish should follow every call to | |
1277 | * pmccntr_op_start. | |
1278 | */ | |
f2b2f53f | 1279 | static void pmccntr_op_finish(CPUARMState *env) |
5d05b9d4 | 1280 | { |
033614c4 | 1281 | if (pmu_counter_enabled(env, 31)) { |
4e7beb0c AL |
1282 | #ifndef CONFIG_USER_ONLY |
1283 | /* Calculate when the counter will next overflow */ | |
1284 | uint64_t remaining_cycles = -env->cp15.c15_ccnt; | |
1285 | if (!(env->cp15.c9_pmcr & PMCRLC)) { | |
1286 | remaining_cycles = (uint32_t)remaining_cycles; | |
1287 | } | |
1288 | int64_t overflow_in = cycles_ns_per(remaining_cycles); | |
1289 | ||
1290 | if (overflow_in > 0) { | |
1291 | int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
1292 | overflow_in; | |
2fc0cc0e | 1293 | ARMCPU *cpu = env_archcpu(env); |
4e7beb0c AL |
1294 | timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
1295 | } | |
1296 | #endif | |
5d05b9d4 | 1297 | |
4e7beb0c | 1298 | uint64_t prev_cycles = env->cp15.c15_ccnt_delta; |
5d05b9d4 AL |
1299 | if (env->cp15.c9_pmcr & PMCRD) { |
1300 | /* Increment once every 64 processor clock cycles */ | |
1301 | prev_cycles /= 64; | |
1302 | } | |
5d05b9d4 | 1303 | env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; |
ec7b4ce4 AF |
1304 | } |
1305 | } | |
1306 | ||
5ecdd3e4 AL |
1307 | static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) |
1308 | { | |
1309 | ||
1310 | uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; | |
1311 | uint64_t count = 0; | |
1312 | if (event_supported(event)) { | |
1313 | uint16_t event_idx = supported_event_map[event]; | |
1314 | count = pm_events[event_idx].get_count(env); | |
1315 | } | |
1316 | ||
1317 | if (pmu_counter_enabled(env, counter)) { | |
f4efb4b2 AL |
1318 | uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; |
1319 | ||
1320 | if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { | |
1321 | env->cp15.c9_pmovsr |= (1 << counter); | |
1322 | pmu_update_irq(env); | |
1323 | } | |
1324 | env->cp15.c14_pmevcntr[counter] = new_pmevcntr; | |
5ecdd3e4 AL |
1325 | } |
1326 | env->cp15.c14_pmevcntr_delta[counter] = count; | |
1327 | } | |
1328 | ||
1329 | static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) | |
1330 | { | |
1331 | if (pmu_counter_enabled(env, counter)) { | |
4e7beb0c AL |
1332 | #ifndef CONFIG_USER_ONLY |
1333 | uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; | |
1334 | uint16_t event_idx = supported_event_map[event]; | |
1335 | uint64_t delta = UINT32_MAX - | |
1336 | (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; | |
1337 | int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); | |
1338 | ||
1339 | if (overflow_in > 0) { | |
1340 | int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
1341 | overflow_in; | |
2fc0cc0e | 1342 | ARMCPU *cpu = env_archcpu(env); |
4e7beb0c AL |
1343 | timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
1344 | } | |
1345 | #endif | |
1346 | ||
5ecdd3e4 AL |
1347 | env->cp15.c14_pmevcntr_delta[counter] -= |
1348 | env->cp15.c14_pmevcntr[counter]; | |
1349 | } | |
1350 | } | |
1351 | ||
5d05b9d4 AL |
1352 | void pmu_op_start(CPUARMState *env) |
1353 | { | |
5ecdd3e4 | 1354 | unsigned int i; |
5d05b9d4 | 1355 | pmccntr_op_start(env); |
5ecdd3e4 AL |
1356 | for (i = 0; i < pmu_num_counters(env); i++) { |
1357 | pmevcntr_op_start(env, i); | |
1358 | } | |
5d05b9d4 AL |
1359 | } |
1360 | ||
1361 | void pmu_op_finish(CPUARMState *env) | |
1362 | { | |
5ecdd3e4 | 1363 | unsigned int i; |
5d05b9d4 | 1364 | pmccntr_op_finish(env); |
5ecdd3e4 AL |
1365 | for (i = 0; i < pmu_num_counters(env); i++) { |
1366 | pmevcntr_op_finish(env, i); | |
1367 | } | |
5d05b9d4 AL |
1368 | } |
1369 | ||
033614c4 AL |
1370 | void pmu_pre_el_change(ARMCPU *cpu, void *ignored) |
1371 | { | |
1372 | pmu_op_start(&cpu->env); | |
1373 | } | |
1374 | ||
1375 | void pmu_post_el_change(ARMCPU *cpu, void *ignored) | |
1376 | { | |
1377 | pmu_op_finish(&cpu->env); | |
1378 | } | |
1379 | ||
4e7beb0c AL |
1380 | void arm_pmu_timer_cb(void *opaque) |
1381 | { | |
1382 | ARMCPU *cpu = opaque; | |
1383 | ||
1384 | /* | |
1385 | * Update all the counter values based on the current underlying counts, | |
1386 | * triggering interrupts to be raised, if necessary. pmu_op_finish() also | |
1387 | * has the effect of setting the cpu->pmu_timer to the next earliest time a | |
1388 | * counter may expire. | |
1389 | */ | |
1390 | pmu_op_start(&cpu->env); | |
1391 | pmu_op_finish(&cpu->env); | |
1392 | } | |
1393 | ||
c4241c7d PM |
1394 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1395 | uint64_t value) | |
200ac0ef | 1396 | { |
5d05b9d4 | 1397 | pmu_op_start(env); |
7c2cb42b AF |
1398 | |
1399 | if (value & PMCRC) { | |
1400 | /* The counter has been reset */ | |
1401 | env->cp15.c15_ccnt = 0; | |
1402 | } | |
1403 | ||
5ecdd3e4 AL |
1404 | if (value & PMCRP) { |
1405 | unsigned int i; | |
1406 | for (i = 0; i < pmu_num_counters(env); i++) { | |
1407 | env->cp15.c14_pmevcntr[i] = 0; | |
1408 | } | |
1409 | } | |
1410 | ||
62d96ff4 PM |
1411 | env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; |
1412 | env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); | |
7c2cb42b | 1413 | |
5d05b9d4 | 1414 | pmu_op_finish(env); |
7c2cb42b AF |
1415 | } |
1416 | ||
0d4bfd7d AL |
1417 | static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1418 | uint64_t value) | |
1419 | { | |
1420 | unsigned int i; | |
1421 | for (i = 0; i < pmu_num_counters(env); i++) { | |
1422 | /* Increment a counter's count iff: */ | |
1423 | if ((value & (1 << i)) && /* counter's bit is set */ | |
1424 | /* counter is enabled and not filtered */ | |
1425 | pmu_counter_enabled(env, i) && | |
1426 | /* counter is SW_INCR */ | |
1427 | (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { | |
1428 | pmevcntr_op_start(env, i); | |
f4efb4b2 AL |
1429 | |
1430 | /* | |
1431 | * Detect if this write causes an overflow since we can't predict | |
1432 | * PMSWINC overflows like we can for other events | |
1433 | */ | |
1434 | uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; | |
1435 | ||
1436 | if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { | |
1437 | env->cp15.c9_pmovsr |= (1 << i); | |
1438 | pmu_update_irq(env); | |
1439 | } | |
1440 | ||
1441 | env->cp15.c14_pmevcntr[i] = new_pmswinc; | |
1442 | ||
0d4bfd7d AL |
1443 | pmevcntr_op_finish(env, i); |
1444 | } | |
1445 | } | |
1446 | } | |
1447 | ||
7c2cb42b AF |
1448 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1449 | { | |
5d05b9d4 AL |
1450 | uint64_t ret; |
1451 | pmccntr_op_start(env); | |
1452 | ret = env->cp15.c15_ccnt; | |
1453 | pmccntr_op_finish(env); | |
1454 | return ret; | |
7c2cb42b AF |
1455 | } |
1456 | ||
6b040780 WH |
1457 | static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1458 | uint64_t value) | |
1459 | { | |
1460 | /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and | |
1461 | * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the | |
1462 | * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are | |
1463 | * accessed. | |
1464 | */ | |
1465 | env->cp15.c9_pmselr = value & 0x1f; | |
1466 | } | |
1467 | ||
7c2cb42b AF |
1468 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1469 | uint64_t value) | |
1470 | { | |
5d05b9d4 AL |
1471 | pmccntr_op_start(env); |
1472 | env->cp15.c15_ccnt = value; | |
1473 | pmccntr_op_finish(env); | |
200ac0ef | 1474 | } |
421c7ebd PC |
1475 | |
1476 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1477 | uint64_t value) | |
1478 | { | |
1479 | uint64_t cur_val = pmccntr_read(env, NULL); | |
1480 | ||
1481 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
1482 | } | |
1483 | ||
0614601c AF |
1484 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1485 | uint64_t value) | |
1486 | { | |
5d05b9d4 | 1487 | pmccntr_op_start(env); |
4b8afa1f AL |
1488 | env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; |
1489 | pmccntr_op_finish(env); | |
1490 | } | |
1491 | ||
1492 | static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1493 | uint64_t value) | |
1494 | { | |
1495 | pmccntr_op_start(env); | |
1496 | /* M is not accessible from AArch32 */ | |
1497 | env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | | |
1498 | (value & PMCCFILTR); | |
5d05b9d4 | 1499 | pmccntr_op_finish(env); |
0614601c AF |
1500 | } |
1501 | ||
4b8afa1f AL |
1502 | static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) |
1503 | { | |
1504 | /* M is not visible in AArch32 */ | |
1505 | return env->cp15.pmccfiltr_el0 & PMCCFILTR; | |
1506 | } | |
1507 | ||
c4241c7d | 1508 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1509 | uint64_t value) |
1510 | { | |
7ece99b1 | 1511 | value &= pmu_counter_mask(env); |
200ac0ef | 1512 | env->cp15.c9_pmcnten |= value; |
200ac0ef PM |
1513 | } |
1514 | ||
c4241c7d PM |
1515 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1516 | uint64_t value) | |
200ac0ef | 1517 | { |
7ece99b1 | 1518 | value &= pmu_counter_mask(env); |
200ac0ef | 1519 | env->cp15.c9_pmcnten &= ~value; |
200ac0ef PM |
1520 | } |
1521 | ||
c4241c7d PM |
1522 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1523 | uint64_t value) | |
200ac0ef | 1524 | { |
599b71e2 | 1525 | value &= pmu_counter_mask(env); |
200ac0ef | 1526 | env->cp15.c9_pmovsr &= ~value; |
f4efb4b2 | 1527 | pmu_update_irq(env); |
200ac0ef PM |
1528 | } |
1529 | ||
327dd510 AL |
1530 | static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1531 | uint64_t value) | |
1532 | { | |
1533 | value &= pmu_counter_mask(env); | |
1534 | env->cp15.c9_pmovsr |= value; | |
f4efb4b2 | 1535 | pmu_update_irq(env); |
327dd510 AL |
1536 | } |
1537 | ||
5ecdd3e4 AL |
1538 | static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1539 | uint64_t value, const uint8_t counter) | |
200ac0ef | 1540 | { |
5ecdd3e4 AL |
1541 | if (counter == 31) { |
1542 | pmccfiltr_write(env, ri, value); | |
1543 | } else if (counter < pmu_num_counters(env)) { | |
1544 | pmevcntr_op_start(env, counter); | |
1545 | ||
1546 | /* | |
1547 | * If this counter's event type is changing, store the current | |
1548 | * underlying count for the new type in c14_pmevcntr_delta[counter] so | |
1549 | * pmevcntr_op_finish has the correct baseline when it converts back to | |
1550 | * a delta. | |
1551 | */ | |
1552 | uint16_t old_event = env->cp15.c14_pmevtyper[counter] & | |
1553 | PMXEVTYPER_EVTCOUNT; | |
1554 | uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; | |
1555 | if (old_event != new_event) { | |
1556 | uint64_t count = 0; | |
1557 | if (event_supported(new_event)) { | |
1558 | uint16_t event_idx = supported_event_map[new_event]; | |
1559 | count = pm_events[event_idx].get_count(env); | |
1560 | } | |
1561 | env->cp15.c14_pmevcntr_delta[counter] = count; | |
1562 | } | |
1563 | ||
1564 | env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; | |
1565 | pmevcntr_op_finish(env, counter); | |
1566 | } | |
fdb86656 WH |
1567 | /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when |
1568 | * PMSELR value is equal to or greater than the number of implemented | |
1569 | * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. | |
1570 | */ | |
5ecdd3e4 AL |
1571 | } |
1572 | ||
1573 | static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1574 | const uint8_t counter) | |
1575 | { | |
1576 | if (counter == 31) { | |
1577 | return env->cp15.pmccfiltr_el0; | |
1578 | } else if (counter < pmu_num_counters(env)) { | |
1579 | return env->cp15.c14_pmevtyper[counter]; | |
1580 | } else { | |
1581 | /* | |
1582 | * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER | |
1583 | * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). | |
1584 | */ | |
1585 | return 0; | |
1586 | } | |
1587 | } | |
1588 | ||
1589 | static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, | |
1590 | uint64_t value) | |
1591 | { | |
1592 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1593 | pmevtyper_write(env, ri, value, counter); | |
1594 | } | |
1595 | ||
1596 | static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, | |
1597 | uint64_t value) | |
1598 | { | |
1599 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1600 | env->cp15.c14_pmevtyper[counter] = value; | |
1601 | ||
1602 | /* | |
1603 | * pmevtyper_rawwrite is called between a pair of pmu_op_start and | |
1604 | * pmu_op_finish calls when loading saved state for a migration. Because | |
1605 | * we're potentially updating the type of event here, the value written to | |
1606 | * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a | |
1607 | * different counter type. Therefore, we need to set this value to the | |
1608 | * current count for the counter type we're writing so that pmu_op_finish | |
1609 | * has the correct count for its calculation. | |
1610 | */ | |
1611 | uint16_t event = value & PMXEVTYPER_EVTCOUNT; | |
1612 | if (event_supported(event)) { | |
1613 | uint16_t event_idx = supported_event_map[event]; | |
1614 | env->cp15.c14_pmevcntr_delta[counter] = | |
1615 | pm_events[event_idx].get_count(env); | |
fdb86656 WH |
1616 | } |
1617 | } | |
1618 | ||
5ecdd3e4 AL |
1619 | static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
1620 | { | |
1621 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1622 | return pmevtyper_read(env, ri, counter); | |
1623 | } | |
1624 | ||
1625 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1626 | uint64_t value) | |
1627 | { | |
1628 | pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); | |
1629 | } | |
1630 | ||
fdb86656 WH |
1631 | static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1632 | { | |
5ecdd3e4 AL |
1633 | return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); |
1634 | } | |
1635 | ||
1636 | static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1637 | uint64_t value, uint8_t counter) | |
1638 | { | |
1639 | if (counter < pmu_num_counters(env)) { | |
1640 | pmevcntr_op_start(env, counter); | |
1641 | env->cp15.c14_pmevcntr[counter] = value; | |
1642 | pmevcntr_op_finish(env, counter); | |
1643 | } | |
1644 | /* | |
1645 | * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR | |
1646 | * are CONSTRAINED UNPREDICTABLE. | |
fdb86656 | 1647 | */ |
5ecdd3e4 AL |
1648 | } |
1649 | ||
1650 | static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1651 | uint8_t counter) | |
1652 | { | |
1653 | if (counter < pmu_num_counters(env)) { | |
1654 | uint64_t ret; | |
1655 | pmevcntr_op_start(env, counter); | |
1656 | ret = env->cp15.c14_pmevcntr[counter]; | |
1657 | pmevcntr_op_finish(env, counter); | |
1658 | return ret; | |
fdb86656 | 1659 | } else { |
5ecdd3e4 AL |
1660 | /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR |
1661 | * are CONSTRAINED UNPREDICTABLE. */ | |
fdb86656 WH |
1662 | return 0; |
1663 | } | |
200ac0ef PM |
1664 | } |
1665 | ||
5ecdd3e4 AL |
1666 | static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, |
1667 | uint64_t value) | |
1668 | { | |
1669 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1670 | pmevcntr_write(env, ri, value, counter); | |
1671 | } | |
1672 | ||
1673 | static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) | |
1674 | { | |
1675 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1676 | return pmevcntr_read(env, ri, counter); | |
1677 | } | |
1678 | ||
1679 | static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, | |
1680 | uint64_t value) | |
1681 | { | |
1682 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1683 | assert(counter < pmu_num_counters(env)); | |
1684 | env->cp15.c14_pmevcntr[counter] = value; | |
1685 | pmevcntr_write(env, ri, value, counter); | |
1686 | } | |
1687 | ||
1688 | static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) | |
1689 | { | |
1690 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1691 | assert(counter < pmu_num_counters(env)); | |
1692 | return env->cp15.c14_pmevcntr[counter]; | |
1693 | } | |
1694 | ||
1695 | static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1696 | uint64_t value) | |
1697 | { | |
1698 | pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); | |
1699 | } | |
1700 | ||
1701 | static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1702 | { | |
1703 | return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); | |
1704 | } | |
1705 | ||
c4241c7d | 1706 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1707 | uint64_t value) |
1708 | { | |
6ecd0b6b AB |
1709 | if (arm_feature(env, ARM_FEATURE_V8)) { |
1710 | env->cp15.c9_pmuserenr = value & 0xf; | |
1711 | } else { | |
1712 | env->cp15.c9_pmuserenr = value & 1; | |
1713 | } | |
200ac0ef PM |
1714 | } |
1715 | ||
c4241c7d PM |
1716 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1717 | uint64_t value) | |
200ac0ef PM |
1718 | { |
1719 | /* We have no event counters so only the C bit can be changed */ | |
7ece99b1 | 1720 | value &= pmu_counter_mask(env); |
200ac0ef | 1721 | env->cp15.c9_pminten |= value; |
f4efb4b2 | 1722 | pmu_update_irq(env); |
200ac0ef PM |
1723 | } |
1724 | ||
c4241c7d PM |
1725 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1726 | uint64_t value) | |
200ac0ef | 1727 | { |
7ece99b1 | 1728 | value &= pmu_counter_mask(env); |
200ac0ef | 1729 | env->cp15.c9_pminten &= ~value; |
f4efb4b2 | 1730 | pmu_update_irq(env); |
200ac0ef PM |
1731 | } |
1732 | ||
c4241c7d PM |
1733 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1734 | uint64_t value) | |
8641136c | 1735 | { |
a505d7fe PM |
1736 | /* Note that even though the AArch64 view of this register has bits |
1737 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
1738 | * architectural requirements for bits which are RES0 only in some | |
1739 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
1740 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
1741 | */ | |
855ea66d | 1742 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
1743 | } |
1744 | ||
64e0e2de EI |
1745 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1746 | { | |
ea22747c RH |
1747 | /* Begin with base v8.0 state. */ |
1748 | uint32_t valid_mask = 0x3fff; | |
2fc0cc0e | 1749 | ARMCPU *cpu = env_archcpu(env); |
ea22747c | 1750 | |
252e8c69 | 1751 | if (ri->state == ARM_CP_STATE_AA64) { |
10d0ef3e MN |
1752 | if (arm_feature(env, ARM_FEATURE_AARCH64) && |
1753 | !cpu_isar_feature(aa64_aa32_el1, cpu)) { | |
1754 | value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ | |
1755 | } | |
ea22747c | 1756 | valid_mask &= ~SCR_NET; |
252e8c69 | 1757 | |
da3d8b13 RH |
1758 | if (cpu_isar_feature(aa64_ras, cpu)) { |
1759 | valid_mask |= SCR_TERR; | |
1760 | } | |
252e8c69 RH |
1761 | if (cpu_isar_feature(aa64_lor, cpu)) { |
1762 | valid_mask |= SCR_TLOR; | |
1763 | } | |
1764 | if (cpu_isar_feature(aa64_pauth, cpu)) { | |
1765 | valid_mask |= SCR_API | SCR_APK; | |
1766 | } | |
926c1b97 RDC |
1767 | if (cpu_isar_feature(aa64_sel2, cpu)) { |
1768 | valid_mask |= SCR_EEL2; | |
1769 | } | |
8ddb300b RH |
1770 | if (cpu_isar_feature(aa64_mte, cpu)) { |
1771 | valid_mask |= SCR_ATA; | |
1772 | } | |
7cb1e618 RH |
1773 | if (cpu_isar_feature(aa64_scxtnum, cpu)) { |
1774 | valid_mask |= SCR_ENSCXT; | |
1775 | } | |
ea22747c RH |
1776 | } else { |
1777 | valid_mask &= ~(SCR_RW | SCR_ST); | |
da3d8b13 RH |
1778 | if (cpu_isar_feature(aa32_ras, cpu)) { |
1779 | valid_mask |= SCR_TERR; | |
1780 | } | |
ea22747c | 1781 | } |
64e0e2de EI |
1782 | |
1783 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
1784 | valid_mask &= ~SCR_HCE; | |
1785 | ||
1786 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
1787 | * supported if EL2 exists. The bit is UNK/SBZP when | |
1788 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
1789 | * when EL2 is unavailable. | |
4eb27640 | 1790 | * On ARMv8, this bit is always available. |
64e0e2de | 1791 | */ |
4eb27640 GB |
1792 | if (arm_feature(env, ARM_FEATURE_V7) && |
1793 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
1794 | valid_mask &= ~SCR_SMD; |
1795 | } | |
1796 | } | |
1797 | ||
1798 | /* Clear all-context RES0 bits. */ | |
1799 | value &= valid_mask; | |
1800 | raw_write(env, ri, value); | |
1801 | } | |
1802 | ||
10d0ef3e MN |
1803 | static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1804 | { | |
1805 | /* | |
1806 | * scr_write will set the RES1 bits on an AArch64-only CPU. | |
1807 | * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. | |
1808 | */ | |
1809 | scr_write(env, ri, 0); | |
1810 | } | |
1811 | ||
630fcd4d MZ |
1812 | static CPAccessResult access_aa64_tid2(CPUARMState *env, |
1813 | const ARMCPRegInfo *ri, | |
1814 | bool isread) | |
1815 | { | |
1816 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { | |
1817 | return CP_ACCESS_TRAP_EL2; | |
1818 | } | |
1819 | ||
1820 | return CP_ACCESS_OK; | |
1821 | } | |
1822 | ||
c4241c7d | 1823 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c | 1824 | { |
2fc0cc0e | 1825 | ARMCPU *cpu = env_archcpu(env); |
b85a1fd6 FA |
1826 | |
1827 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
1828 | * bank | |
1829 | */ | |
1830 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
1831 | ri->secure & ARM_CP_SECSTATE_S); | |
1832 | ||
1833 | return cpu->ccsidr[index]; | |
776d4e5c PM |
1834 | } |
1835 | ||
c4241c7d PM |
1836 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1837 | uint64_t value) | |
776d4e5c | 1838 | { |
8d5c773e | 1839 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
1840 | } |
1841 | ||
1090b9c6 PM |
1842 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1843 | { | |
29a0af61 | 1844 | CPUState *cs = env_cpu(env); |
cc974d5c RDC |
1845 | bool el1 = arm_current_el(env) == 1; |
1846 | uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; | |
1090b9c6 PM |
1847 | uint64_t ret = 0; |
1848 | ||
cc974d5c | 1849 | if (hcr_el2 & HCR_IMO) { |
636540e9 PM |
1850 | if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { |
1851 | ret |= CPSR_I; | |
1852 | } | |
1853 | } else { | |
1854 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
1855 | ret |= CPSR_I; | |
1856 | } | |
1090b9c6 | 1857 | } |
636540e9 | 1858 | |
cc974d5c | 1859 | if (hcr_el2 & HCR_FMO) { |
636540e9 PM |
1860 | if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { |
1861 | ret |= CPSR_F; | |
1862 | } | |
1863 | } else { | |
1864 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
1865 | ret |= CPSR_F; | |
1866 | } | |
1090b9c6 | 1867 | } |
636540e9 | 1868 | |
3c29632f RH |
1869 | if (hcr_el2 & HCR_AMO) { |
1870 | if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { | |
1871 | ret |= CPSR_A; | |
1872 | } | |
1873 | } | |
1874 | ||
1090b9c6 PM |
1875 | return ret; |
1876 | } | |
1877 | ||
93fbc983 MZ |
1878 | static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, |
1879 | bool isread) | |
1880 | { | |
1881 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { | |
1882 | return CP_ACCESS_TRAP_EL2; | |
1883 | } | |
1884 | ||
1885 | return CP_ACCESS_OK; | |
1886 | } | |
1887 | ||
1888 | static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, | |
1889 | bool isread) | |
1890 | { | |
1891 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
1892 | return access_aa64_tid1(env, ri, isread); | |
1893 | } | |
1894 | ||
1895 | return CP_ACCESS_OK; | |
1896 | } | |
1897 | ||
e9aa6c21 | 1898 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
1899 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
1900 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
1901 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
1902 | /* Performance monitors are implementation defined in v7, |
1903 | * but with an ARM recommended set of registers, which we | |
ac689a2e | 1904 | * follow. |
200ac0ef PM |
1905 | * |
1906 | * Performance registers fall into three categories: | |
1907 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
1908 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
1909 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
1910 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
1911 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
1912 | */ | |
1913 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1914 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 1915 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
1916 | .writefn = pmcntenset_write, |
1917 | .accessfn = pmreg_access, | |
1918 | .raw_writefn = raw_write }, | |
8521466b AF |
1919 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
1920 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
1921 | .access = PL0_RW, .accessfn = pmreg_access, | |
1922 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
1923 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 1924 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
1925 | .access = PL0_RW, |
1926 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
1927 | .accessfn = pmreg_access, |
1928 | .writefn = pmcntenclr_write, | |
7a0e58fa | 1929 | .type = ARM_CP_ALIAS }, |
8521466b AF |
1930 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
1931 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
1932 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 1933 | .type = ARM_CP_ALIAS, |
8521466b AF |
1934 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
1935 | .writefn = pmcntenclr_write }, | |
200ac0ef | 1936 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
f4efb4b2 | 1937 | .access = PL0_RW, .type = ARM_CP_IO, |
e4e91a21 | 1938 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
fcd25206 PM |
1939 | .accessfn = pmreg_access, |
1940 | .writefn = pmovsr_write, | |
1941 | .raw_writefn = raw_write }, | |
978364f1 AF |
1942 | { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
1943 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, | |
1944 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 1945 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
978364f1 AF |
1946 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
1947 | .writefn = pmovsr_write, | |
1948 | .raw_writefn = raw_write }, | |
200ac0ef | 1949 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
f4efb4b2 AL |
1950 | .access = PL0_W, .accessfn = pmreg_access_swinc, |
1951 | .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
0d4bfd7d AL |
1952 | .writefn = pmswinc_write }, |
1953 | { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, | |
1954 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, | |
f4efb4b2 AL |
1955 | .access = PL0_W, .accessfn = pmreg_access_swinc, |
1956 | .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
0d4bfd7d | 1957 | .writefn = pmswinc_write }, |
6b040780 WH |
1958 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
1959 | .access = PL0_RW, .type = ARM_CP_ALIAS, | |
1960 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), | |
6ecd0b6b | 1961 | .accessfn = pmreg_access_selr, .writefn = pmselr_write, |
6b040780 WH |
1962 | .raw_writefn = raw_write}, |
1963 | { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, | |
1964 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, | |
6ecd0b6b | 1965 | .access = PL0_RW, .accessfn = pmreg_access_selr, |
6b040780 WH |
1966 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), |
1967 | .writefn = pmselr_write, .raw_writefn = raw_write, }, | |
200ac0ef | 1968 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
169c8938 | 1969 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, |
421c7ebd | 1970 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
6ecd0b6b | 1971 | .accessfn = pmreg_access_ccntr }, |
8521466b AF |
1972 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
1973 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
6ecd0b6b | 1974 | .access = PL0_RW, .accessfn = pmreg_access_ccntr, |
8521466b | 1975 | .type = ARM_CP_IO, |
980ebe87 AL |
1976 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), |
1977 | .readfn = pmccntr_read, .writefn = pmccntr_write, | |
1978 | .raw_readfn = raw_read, .raw_writefn = raw_write, }, | |
4b8afa1f AL |
1979 | { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, |
1980 | .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, | |
1981 | .access = PL0_RW, .accessfn = pmreg_access, | |
1982 | .type = ARM_CP_ALIAS | ARM_CP_IO, | |
1983 | .resetvalue = 0, }, | |
8521466b AF |
1984 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
1985 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
980ebe87 | 1986 | .writefn = pmccfiltr_write, .raw_writefn = raw_write, |
8521466b AF |
1987 | .access = PL0_RW, .accessfn = pmreg_access, |
1988 | .type = ARM_CP_IO, | |
1989 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
1990 | .resetvalue = 0, }, | |
200ac0ef | 1991 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
5ecdd3e4 AL |
1992 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
1993 | .accessfn = pmreg_access, | |
fdb86656 WH |
1994 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
1995 | { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, | |
1996 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, | |
5ecdd3e4 AL |
1997 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
1998 | .accessfn = pmreg_access, | |
fdb86656 | 1999 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
200ac0ef | 2000 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
5ecdd3e4 AL |
2001 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
2002 | .accessfn = pmreg_access_xevcntr, | |
2003 | .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, | |
2004 | { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, | |
2005 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, | |
2006 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
2007 | .accessfn = pmreg_access_xevcntr, | |
2008 | .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, | |
200ac0ef | 2009 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1fce1ba9 | 2010 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
e4e91a21 | 2011 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), |
200ac0ef | 2012 | .resetvalue = 0, |
d4e6df63 | 2013 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
8a83ffc2 AF |
2014 | { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
2015 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, | |
1fce1ba9 | 2016 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
8a83ffc2 AF |
2017 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
2018 | .resetvalue = 0, | |
2019 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
200ac0ef | 2020 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1fce1ba9 | 2021 | .access = PL1_RW, .accessfn = access_tpm, |
b7d793ad | 2022 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
e6ec5457 | 2023 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), |
200ac0ef | 2024 | .resetvalue = 0, |
d4e6df63 | 2025 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
e6ec5457 WH |
2026 | { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, |
2027 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, | |
2028 | .access = PL1_RW, .accessfn = access_tpm, | |
2029 | .type = ARM_CP_IO, | |
2030 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
2031 | .writefn = pmintenset_write, .raw_writefn = raw_write, | |
2032 | .resetvalue = 0x0 }, | |
200ac0ef | 2033 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
fc5f6856 | 2034 | .access = PL1_RW, .accessfn = access_tpm, |
887c0f15 | 2035 | .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, |
200ac0ef | 2036 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 2037 | .writefn = pmintenclr_write, }, |
978364f1 AF |
2038 | { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
2039 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, | |
fc5f6856 | 2040 | .access = PL1_RW, .accessfn = access_tpm, |
887c0f15 | 2041 | .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, |
978364f1 AF |
2042 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
2043 | .writefn = pmintenclr_write }, | |
7da845b0 PM |
2044 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
2045 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
630fcd4d MZ |
2046 | .access = PL1_R, |
2047 | .accessfn = access_aa64_tid2, | |
2048 | .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, | |
7da845b0 PM |
2049 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
2050 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
630fcd4d MZ |
2051 | .access = PL1_RW, |
2052 | .accessfn = access_aa64_tid2, | |
2053 | .writefn = csselr_write, .resetvalue = 0, | |
b85a1fd6 FA |
2054 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), |
2055 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
2056 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
2057 | * just RAZ for all cores: | |
2058 | */ | |
0ff644a7 PM |
2059 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
2060 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
93fbc983 MZ |
2061 | .access = PL1_R, .type = ARM_CP_CONST, |
2062 | .accessfn = access_aa64_tid1, | |
2063 | .resetvalue = 0 }, | |
f32cdad5 PM |
2064 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
2065 | * choose to RAZ/WI for all cores. | |
2066 | */ | |
2067 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
2068 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
84929218 RH |
2069 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2070 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
f32cdad5 PM |
2071 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, |
2072 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
84929218 RH |
2073 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2074 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
2075 | /* MAIR can just read-as-written because we don't implement caches |
2076 | * and so don't need to care about memory attributes. | |
2077 | */ | |
2078 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
2079 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
84929218 RH |
2080 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2081 | .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), | |
b0fe2427 | 2082 | .resetvalue = 0 }, |
4cfb8ad8 PM |
2083 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
2084 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
2085 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
2086 | .resetvalue = 0 }, | |
b0fe2427 PM |
2087 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
2088 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 2089 | */ |
1281f8e3 | 2090 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
2091 | * allows them to assign the correct fieldoffset based on the endianness |
2092 | * handled in the field definitions. | |
2093 | */ | |
a903c449 | 2094 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
84929218 RH |
2095 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, |
2096 | .access = PL1_RW, .accessfn = access_tvm_trvm, | |
be693c87 GB |
2097 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
2098 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 2099 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 2100 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
84929218 RH |
2101 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, |
2102 | .access = PL1_RW, .accessfn = access_tvm_trvm, | |
be693c87 GB |
2103 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
2104 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 2105 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
2106 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
2107 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2108 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
2109 | /* 32 bit ITLB invalidates */ |
2110 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
30881b73 RH |
2111 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2112 | .writefn = tlbiall_write }, | |
995939a6 | 2113 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
30881b73 RH |
2114 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2115 | .writefn = tlbimva_write }, | |
995939a6 | 2116 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
30881b73 RH |
2117 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2118 | .writefn = tlbiasid_write }, | |
995939a6 PM |
2119 | /* 32 bit DTLB invalidates */ |
2120 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
30881b73 RH |
2121 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2122 | .writefn = tlbiall_write }, | |
995939a6 | 2123 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
30881b73 RH |
2124 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2125 | .writefn = tlbimva_write }, | |
995939a6 | 2126 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
30881b73 RH |
2127 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2128 | .writefn = tlbiasid_write }, | |
995939a6 PM |
2129 | /* 32 bit TLB invalidates */ |
2130 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
30881b73 RH |
2131 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2132 | .writefn = tlbiall_write }, | |
995939a6 | 2133 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
30881b73 RH |
2134 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2135 | .writefn = tlbimva_write }, | |
995939a6 | 2136 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
30881b73 RH |
2137 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2138 | .writefn = tlbiasid_write }, | |
995939a6 | 2139 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
30881b73 RH |
2140 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2141 | .writefn = tlbimvaa_write }, | |
995939a6 PM |
2142 | }; |
2143 | ||
2144 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
2145 | /* 32 bit TLB invalidates, Inner Shareable */ | |
2146 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
30881b73 RH |
2147 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2148 | .writefn = tlbiall_is_write }, | |
995939a6 | 2149 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
30881b73 RH |
2150 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2151 | .writefn = tlbimva_is_write }, | |
995939a6 | 2152 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
30881b73 | 2153 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 2154 | .writefn = tlbiasid_is_write }, |
995939a6 | 2155 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
30881b73 | 2156 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 2157 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
2158 | }; |
2159 | ||
327dd510 AL |
2160 | static const ARMCPRegInfo pmovsset_cp_reginfo[] = { |
2161 | /* PMOVSSET is not implemented in v7 before v7ve */ | |
2162 | { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, | |
2163 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 2164 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
327dd510 AL |
2165 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
2166 | .writefn = pmovsset_write, | |
2167 | .raw_writefn = raw_write }, | |
2168 | { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, | |
2169 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, | |
2170 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 2171 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
327dd510 AL |
2172 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
2173 | .writefn = pmovsset_write, | |
2174 | .raw_writefn = raw_write }, | |
327dd510 AL |
2175 | }; |
2176 | ||
c4241c7d PM |
2177 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2178 | uint64_t value) | |
c326b979 PM |
2179 | { |
2180 | value &= 1; | |
2181 | env->teecr = value; | |
c326b979 PM |
2182 | } |
2183 | ||
cc7613bf PM |
2184 | static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2185 | bool isread) | |
2186 | { | |
2187 | /* | |
2188 | * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE | |
2189 | * at all, so we don't need to check whether we're v8A. | |
2190 | */ | |
2191 | if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && | |
2192 | (env->cp15.hstr_el2 & HSTR_TTEE)) { | |
2193 | return CP_ACCESS_TRAP_EL2; | |
2194 | } | |
2195 | return CP_ACCESS_OK; | |
2196 | } | |
2197 | ||
3f208fd7 PM |
2198 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2199 | bool isread) | |
c326b979 | 2200 | { |
dcbff19b | 2201 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 2202 | return CP_ACCESS_TRAP; |
c326b979 | 2203 | } |
cc7613bf | 2204 | return teecr_access(env, ri, isread); |
c326b979 PM |
2205 | } |
2206 | ||
2207 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
2208 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
2209 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
2210 | .resetvalue = 0, | |
cc7613bf | 2211 | .writefn = teecr_write, .accessfn = teecr_access }, |
c326b979 PM |
2212 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, |
2213 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 2214 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
2215 | }; |
2216 | ||
4d31c596 | 2217 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
2218 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
2219 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
2220 | .access = PL0_RW, | |
54bf36ed | 2221 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
2222 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
2223 | .access = PL0_RW, | |
54bf36ed FA |
2224 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
2225 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
2226 | .resetfn = arm_cp_reset_ignore }, |
2227 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
2228 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
2229 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
2230 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
2231 | .resetvalue = 0}, | |
4d31c596 PM |
2232 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
2233 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
2234 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
2235 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 2236 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 2237 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 2238 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 2239 | .access = PL1_RW, |
54bf36ed FA |
2240 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
2241 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
2242 | .access = PL1_RW, | |
2243 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
2244 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
2245 | .resetvalue = 0 }, | |
4d31c596 PM |
2246 | }; |
2247 | ||
55d284af PM |
2248 | #ifndef CONFIG_USER_ONLY |
2249 | ||
3f208fd7 PM |
2250 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2251 | bool isread) | |
00108f2d | 2252 | { |
75502672 PM |
2253 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
2254 | * Writable only at the highest implemented exception level. | |
2255 | */ | |
2256 | int el = arm_current_el(env); | |
5bc84371 RH |
2257 | uint64_t hcr; |
2258 | uint32_t cntkctl; | |
75502672 PM |
2259 | |
2260 | switch (el) { | |
2261 | case 0: | |
5bc84371 RH |
2262 | hcr = arm_hcr_el2_eff(env); |
2263 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2264 | cntkctl = env->cp15.cnthctl_el2; | |
2265 | } else { | |
2266 | cntkctl = env->cp15.c14_cntkctl; | |
2267 | } | |
2268 | if (!extract32(cntkctl, 0, 2)) { | |
75502672 PM |
2269 | return CP_ACCESS_TRAP; |
2270 | } | |
2271 | break; | |
2272 | case 1: | |
2273 | if (!isread && ri->state == ARM_CP_STATE_AA32 && | |
2274 | arm_is_secure_below_el3(env)) { | |
2275 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ | |
2276 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2277 | } | |
2278 | break; | |
2279 | case 2: | |
2280 | case 3: | |
2281 | break; | |
00108f2d | 2282 | } |
75502672 PM |
2283 | |
2284 | if (!isread && el < arm_highest_el(env)) { | |
2285 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2286 | } | |
2287 | ||
00108f2d PM |
2288 | return CP_ACCESS_OK; |
2289 | } | |
2290 | ||
3f208fd7 PM |
2291 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
2292 | bool isread) | |
00108f2d | 2293 | { |
0b6440af | 2294 | unsigned int cur_el = arm_current_el(env); |
e6ef0169 | 2295 | bool has_el2 = arm_is_el2_enabled(env); |
5bc84371 | 2296 | uint64_t hcr = arm_hcr_el2_eff(env); |
0b6440af | 2297 | |
5bc84371 RH |
2298 | switch (cur_el) { |
2299 | case 0: | |
2300 | /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ | |
2301 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2302 | return (extract32(env->cp15.cnthctl_el2, timeridx, 1) | |
2303 | ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); | |
2304 | } | |
0b6440af | 2305 | |
5bc84371 RH |
2306 | /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ |
2307 | if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |
2308 | return CP_ACCESS_TRAP; | |
2309 | } | |
2310 | ||
2311 | /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ | |
2312 | if (hcr & HCR_E2H) { | |
2313 | if (timeridx == GTIMER_PHYS && | |
2314 | !extract32(env->cp15.cnthctl_el2, 10, 1)) { | |
2315 | return CP_ACCESS_TRAP_EL2; | |
2316 | } | |
2317 | } else { | |
2318 | /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ | |
e6ef0169 | 2319 | if (has_el2 && timeridx == GTIMER_PHYS && |
5bc84371 RH |
2320 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { |
2321 | return CP_ACCESS_TRAP_EL2; | |
2322 | } | |
2323 | } | |
2324 | break; | |
2325 | ||
2326 | case 1: | |
2327 | /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ | |
e6ef0169 | 2328 | if (has_el2 && timeridx == GTIMER_PHYS && |
5bc84371 RH |
2329 | (hcr & HCR_E2H |
2330 | ? !extract32(env->cp15.cnthctl_el2, 10, 1) | |
2331 | : !extract32(env->cp15.cnthctl_el2, 0, 1))) { | |
2332 | return CP_ACCESS_TRAP_EL2; | |
2333 | } | |
2334 | break; | |
0b6440af | 2335 | } |
00108f2d PM |
2336 | return CP_ACCESS_OK; |
2337 | } | |
2338 | ||
3f208fd7 PM |
2339 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
2340 | bool isread) | |
00108f2d | 2341 | { |
0b6440af | 2342 | unsigned int cur_el = arm_current_el(env); |
e6ef0169 | 2343 | bool has_el2 = arm_is_el2_enabled(env); |
5bc84371 | 2344 | uint64_t hcr = arm_hcr_el2_eff(env); |
0b6440af | 2345 | |
5bc84371 RH |
2346 | switch (cur_el) { |
2347 | case 0: | |
2348 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2349 | /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ | |
2350 | return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) | |
2351 | ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); | |
2352 | } | |
0b6440af | 2353 | |
5bc84371 RH |
2354 | /* |
2355 | * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from | |
2356 | * EL0 if EL0[PV]TEN is zero. | |
2357 | */ | |
2358 | if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
2359 | return CP_ACCESS_TRAP; | |
2360 | } | |
2361 | /* fall through */ | |
2362 | ||
2363 | case 1: | |
e6ef0169 | 2364 | if (has_el2 && timeridx == GTIMER_PHYS) { |
5bc84371 RH |
2365 | if (hcr & HCR_E2H) { |
2366 | /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ | |
2367 | if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { | |
2368 | return CP_ACCESS_TRAP_EL2; | |
2369 | } | |
2370 | } else { | |
2371 | /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ | |
2372 | if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
2373 | return CP_ACCESS_TRAP_EL2; | |
2374 | } | |
2375 | } | |
2376 | } | |
2377 | break; | |
0b6440af | 2378 | } |
00108f2d PM |
2379 | return CP_ACCESS_OK; |
2380 | } | |
2381 | ||
2382 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
3f208fd7 PM |
2383 | const ARMCPRegInfo *ri, |
2384 | bool isread) | |
00108f2d | 2385 | { |
3f208fd7 | 2386 | return gt_counter_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
2387 | } |
2388 | ||
2389 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
3f208fd7 PM |
2390 | const ARMCPRegInfo *ri, |
2391 | bool isread) | |
00108f2d | 2392 | { |
3f208fd7 | 2393 | return gt_counter_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
2394 | } |
2395 | ||
3f208fd7 PM |
2396 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2397 | bool isread) | |
00108f2d | 2398 | { |
3f208fd7 | 2399 | return gt_timer_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
2400 | } |
2401 | ||
3f208fd7 PM |
2402 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2403 | bool isread) | |
00108f2d | 2404 | { |
3f208fd7 | 2405 | return gt_timer_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
2406 | } |
2407 | ||
b4d3978c | 2408 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
3f208fd7 PM |
2409 | const ARMCPRegInfo *ri, |
2410 | bool isread) | |
b4d3978c PM |
2411 | { |
2412 | /* The AArch64 register view of the secure physical timer is | |
2413 | * always accessible from EL3, and configurably accessible from | |
2414 | * Secure EL1. | |
2415 | */ | |
2416 | switch (arm_current_el(env)) { | |
2417 | case 1: | |
2418 | if (!arm_is_secure(env)) { | |
2419 | return CP_ACCESS_TRAP; | |
2420 | } | |
2421 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
2422 | return CP_ACCESS_TRAP_EL3; | |
2423 | } | |
2424 | return CP_ACCESS_OK; | |
2425 | case 0: | |
2426 | case 2: | |
2427 | return CP_ACCESS_TRAP; | |
2428 | case 3: | |
2429 | return CP_ACCESS_OK; | |
2430 | default: | |
2431 | g_assert_not_reached(); | |
2432 | } | |
2433 | } | |
2434 | ||
55d284af PM |
2435 | static uint64_t gt_get_countervalue(CPUARMState *env) |
2436 | { | |
7def8754 AJ |
2437 | ARMCPU *cpu = env_archcpu(env); |
2438 | ||
2439 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); | |
55d284af PM |
2440 | } |
2441 | ||
2442 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
2443 | { | |
2444 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
2445 | ||
2446 | if (gt->ctl & 1) { | |
2447 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
2448 | * reset timer to when ISTATUS next has to change | |
2449 | */ | |
edac4d8a EI |
2450 | uint64_t offset = timeridx == GTIMER_VIRT ? |
2451 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
2452 | uint64_t count = gt_get_countervalue(&cpu->env); |
2453 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 2454 | int istatus = count - offset >= gt->cval; |
55d284af | 2455 | uint64_t nexttick; |
194cbc49 | 2456 | int irqstate; |
55d284af PM |
2457 | |
2458 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
194cbc49 PM |
2459 | |
2460 | irqstate = (istatus && !(gt->ctl & 2)); | |
2461 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
2462 | ||
55d284af PM |
2463 | if (istatus) { |
2464 | /* Next transition is when count rolls back over to zero */ | |
2465 | nexttick = UINT64_MAX; | |
2466 | } else { | |
2467 | /* Next transition is when we hit cval */ | |
edac4d8a | 2468 | nexttick = gt->cval + offset; |
55d284af PM |
2469 | } |
2470 | /* Note that the desired next expiry time might be beyond the | |
2471 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
2472 | * set the timer for as far in the future as possible. When the | |
2473 | * timer expires we will reset the timer for any remaining period. | |
2474 | */ | |
7def8754 | 2475 | if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { |
4a0245b6 AJ |
2476 | timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); |
2477 | } else { | |
2478 | timer_mod(cpu->gt_timer[timeridx], nexttick); | |
55d284af | 2479 | } |
194cbc49 | 2480 | trace_arm_gt_recalc(timeridx, irqstate, nexttick); |
55d284af PM |
2481 | } else { |
2482 | /* Timer disabled: ISTATUS and timer output always clear */ | |
2483 | gt->ctl &= ~4; | |
2484 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 2485 | timer_del(cpu->gt_timer[timeridx]); |
194cbc49 | 2486 | trace_arm_gt_recalc_disabled(timeridx); |
55d284af PM |
2487 | } |
2488 | } | |
2489 | ||
0e3eca4c EI |
2490 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
2491 | int timeridx) | |
55d284af | 2492 | { |
2fc0cc0e | 2493 | ARMCPU *cpu = env_archcpu(env); |
55d284af | 2494 | |
bc72ad67 | 2495 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
2496 | } |
2497 | ||
c4241c7d | 2498 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 2499 | { |
c4241c7d | 2500 | return gt_get_countervalue(env); |
55d284af PM |
2501 | } |
2502 | ||
53d1f856 RH |
2503 | static uint64_t gt_virt_cnt_offset(CPUARMState *env) |
2504 | { | |
2505 | uint64_t hcr; | |
2506 | ||
2507 | switch (arm_current_el(env)) { | |
2508 | case 2: | |
2509 | hcr = arm_hcr_el2_eff(env); | |
2510 | if (hcr & HCR_E2H) { | |
2511 | return 0; | |
2512 | } | |
2513 | break; | |
2514 | case 0: | |
2515 | hcr = arm_hcr_el2_eff(env); | |
2516 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2517 | return 0; | |
2518 | } | |
2519 | break; | |
2520 | } | |
2521 | ||
2522 | return env->cp15.cntvoff_el2; | |
2523 | } | |
2524 | ||
edac4d8a EI |
2525 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2526 | { | |
53d1f856 | 2527 | return gt_get_countervalue(env) - gt_virt_cnt_offset(env); |
edac4d8a EI |
2528 | } |
2529 | ||
c4241c7d | 2530 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2531 | int timeridx, |
c4241c7d | 2532 | uint64_t value) |
55d284af | 2533 | { |
194cbc49 | 2534 | trace_arm_gt_cval_write(timeridx, value); |
55d284af | 2535 | env->cp15.c14_timer[timeridx].cval = value; |
2fc0cc0e | 2536 | gt_recalc_timer(env_archcpu(env), timeridx); |
55d284af | 2537 | } |
c4241c7d | 2538 | |
0e3eca4c EI |
2539 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
2540 | int timeridx) | |
55d284af | 2541 | { |
53d1f856 RH |
2542 | uint64_t offset = 0; |
2543 | ||
2544 | switch (timeridx) { | |
2545 | case GTIMER_VIRT: | |
8c94b071 | 2546 | case GTIMER_HYPVIRT: |
53d1f856 RH |
2547 | offset = gt_virt_cnt_offset(env); |
2548 | break; | |
2549 | } | |
55d284af | 2550 | |
c4241c7d | 2551 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 2552 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
2553 | } |
2554 | ||
c4241c7d | 2555 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2556 | int timeridx, |
c4241c7d | 2557 | uint64_t value) |
55d284af | 2558 | { |
53d1f856 RH |
2559 | uint64_t offset = 0; |
2560 | ||
2561 | switch (timeridx) { | |
2562 | case GTIMER_VIRT: | |
8c94b071 | 2563 | case GTIMER_HYPVIRT: |
53d1f856 RH |
2564 | offset = gt_virt_cnt_offset(env); |
2565 | break; | |
2566 | } | |
55d284af | 2567 | |
194cbc49 | 2568 | trace_arm_gt_tval_write(timeridx, value); |
edac4d8a | 2569 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 2570 | sextract64(value, 0, 32); |
2fc0cc0e | 2571 | gt_recalc_timer(env_archcpu(env), timeridx); |
55d284af PM |
2572 | } |
2573 | ||
c4241c7d | 2574 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2575 | int timeridx, |
c4241c7d | 2576 | uint64_t value) |
55d284af | 2577 | { |
2fc0cc0e | 2578 | ARMCPU *cpu = env_archcpu(env); |
55d284af PM |
2579 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
2580 | ||
194cbc49 | 2581 | trace_arm_gt_ctl_write(timeridx, value); |
d3afacc7 | 2582 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
2583 | if ((oldval ^ value) & 1) { |
2584 | /* Enable toggled */ | |
2585 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 2586 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
2587 | /* IMASK toggled: don't need to recalculate, |
2588 | * just set the interrupt line based on ISTATUS | |
2589 | */ | |
194cbc49 PM |
2590 | int irqstate = (oldval & 4) && !(value & 2); |
2591 | ||
2592 | trace_arm_gt_imask_toggle(timeridx, irqstate); | |
2593 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
55d284af | 2594 | } |
55d284af PM |
2595 | } |
2596 | ||
0e3eca4c EI |
2597 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2598 | { | |
2599 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
2600 | } | |
2601 | ||
2602 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2603 | uint64_t value) | |
2604 | { | |
2605 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
2606 | } | |
2607 | ||
2608 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2609 | { | |
2610 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
2611 | } | |
2612 | ||
2613 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2614 | uint64_t value) | |
2615 | { | |
2616 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
2617 | } | |
2618 | ||
2619 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2620 | uint64_t value) | |
2621 | { | |
2622 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
2623 | } | |
2624 | ||
bb5972e4 RH |
2625 | static int gt_phys_redir_timeridx(CPUARMState *env) |
2626 | { | |
2627 | switch (arm_mmu_idx(env)) { | |
2628 | case ARMMMUIdx_E20_0: | |
2629 | case ARMMMUIdx_E20_2: | |
452ef8cb | 2630 | case ARMMMUIdx_E20_2_PAN: |
b6ad6062 RDC |
2631 | case ARMMMUIdx_SE20_0: |
2632 | case ARMMMUIdx_SE20_2: | |
2633 | case ARMMMUIdx_SE20_2_PAN: | |
bb5972e4 RH |
2634 | return GTIMER_HYP; |
2635 | default: | |
2636 | return GTIMER_PHYS; | |
2637 | } | |
2638 | } | |
2639 | ||
2640 | static int gt_virt_redir_timeridx(CPUARMState *env) | |
2641 | { | |
2642 | switch (arm_mmu_idx(env)) { | |
2643 | case ARMMMUIdx_E20_0: | |
2644 | case ARMMMUIdx_E20_2: | |
452ef8cb | 2645 | case ARMMMUIdx_E20_2_PAN: |
b6ad6062 RDC |
2646 | case ARMMMUIdx_SE20_0: |
2647 | case ARMMMUIdx_SE20_2: | |
2648 | case ARMMMUIdx_SE20_2_PAN: | |
bb5972e4 RH |
2649 | return GTIMER_HYPVIRT; |
2650 | default: | |
2651 | return GTIMER_VIRT; | |
2652 | } | |
2653 | } | |
2654 | ||
2655 | static uint64_t gt_phys_redir_cval_read(CPUARMState *env, | |
2656 | const ARMCPRegInfo *ri) | |
2657 | { | |
2658 | int timeridx = gt_phys_redir_timeridx(env); | |
2659 | return env->cp15.c14_timer[timeridx].cval; | |
2660 | } | |
2661 | ||
2662 | static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2663 | uint64_t value) | |
2664 | { | |
2665 | int timeridx = gt_phys_redir_timeridx(env); | |
2666 | gt_cval_write(env, ri, timeridx, value); | |
2667 | } | |
2668 | ||
2669 | static uint64_t gt_phys_redir_tval_read(CPUARMState *env, | |
2670 | const ARMCPRegInfo *ri) | |
2671 | { | |
2672 | int timeridx = gt_phys_redir_timeridx(env); | |
2673 | return gt_tval_read(env, ri, timeridx); | |
2674 | } | |
2675 | ||
2676 | static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2677 | uint64_t value) | |
2678 | { | |
2679 | int timeridx = gt_phys_redir_timeridx(env); | |
2680 | gt_tval_write(env, ri, timeridx, value); | |
2681 | } | |
2682 | ||
2683 | static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, | |
2684 | const ARMCPRegInfo *ri) | |
2685 | { | |
2686 | int timeridx = gt_phys_redir_timeridx(env); | |
2687 | return env->cp15.c14_timer[timeridx].ctl; | |
2688 | } | |
2689 | ||
2690 | static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2691 | uint64_t value) | |
2692 | { | |
2693 | int timeridx = gt_phys_redir_timeridx(env); | |
2694 | gt_ctl_write(env, ri, timeridx, value); | |
2695 | } | |
2696 | ||
0e3eca4c EI |
2697 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2698 | { | |
2699 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
2700 | } | |
2701 | ||
2702 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2703 | uint64_t value) | |
2704 | { | |
2705 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
2706 | } | |
2707 | ||
2708 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2709 | { | |
2710 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
2711 | } | |
2712 | ||
2713 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2714 | uint64_t value) | |
2715 | { | |
2716 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
2717 | } | |
2718 | ||
2719 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2720 | uint64_t value) | |
2721 | { | |
2722 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
2723 | } | |
2724 | ||
edac4d8a EI |
2725 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2726 | uint64_t value) | |
2727 | { | |
2fc0cc0e | 2728 | ARMCPU *cpu = env_archcpu(env); |
edac4d8a | 2729 | |
194cbc49 | 2730 | trace_arm_gt_cntvoff_write(value); |
edac4d8a EI |
2731 | raw_write(env, ri, value); |
2732 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
2733 | } | |
2734 | ||
bb5972e4 RH |
2735 | static uint64_t gt_virt_redir_cval_read(CPUARMState *env, |
2736 | const ARMCPRegInfo *ri) | |
2737 | { | |
2738 | int timeridx = gt_virt_redir_timeridx(env); | |
2739 | return env->cp15.c14_timer[timeridx].cval; | |
2740 | } | |
2741 | ||
2742 | static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2743 | uint64_t value) | |
2744 | { | |
2745 | int timeridx = gt_virt_redir_timeridx(env); | |
2746 | gt_cval_write(env, ri, timeridx, value); | |
2747 | } | |
2748 | ||
2749 | static uint64_t gt_virt_redir_tval_read(CPUARMState *env, | |
2750 | const ARMCPRegInfo *ri) | |
2751 | { | |
2752 | int timeridx = gt_virt_redir_timeridx(env); | |
2753 | return gt_tval_read(env, ri, timeridx); | |
2754 | } | |
2755 | ||
2756 | static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2757 | uint64_t value) | |
2758 | { | |
2759 | int timeridx = gt_virt_redir_timeridx(env); | |
2760 | gt_tval_write(env, ri, timeridx, value); | |
2761 | } | |
2762 | ||
2763 | static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, | |
2764 | const ARMCPRegInfo *ri) | |
2765 | { | |
2766 | int timeridx = gt_virt_redir_timeridx(env); | |
2767 | return env->cp15.c14_timer[timeridx].ctl; | |
2768 | } | |
2769 | ||
2770 | static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2771 | uint64_t value) | |
2772 | { | |
2773 | int timeridx = gt_virt_redir_timeridx(env); | |
2774 | gt_ctl_write(env, ri, timeridx, value); | |
2775 | } | |
2776 | ||
b0e66d95 EI |
2777 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2778 | { | |
2779 | gt_timer_reset(env, ri, GTIMER_HYP); | |
2780 | } | |
2781 | ||
2782 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2783 | uint64_t value) | |
2784 | { | |
2785 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
2786 | } | |
2787 | ||
2788 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2789 | { | |
2790 | return gt_tval_read(env, ri, GTIMER_HYP); | |
2791 | } | |
2792 | ||
2793 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2794 | uint64_t value) | |
2795 | { | |
2796 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
2797 | } | |
2798 | ||
2799 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2800 | uint64_t value) | |
2801 | { | |
2802 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
2803 | } | |
2804 | ||
b4d3978c PM |
2805 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2806 | { | |
2807 | gt_timer_reset(env, ri, GTIMER_SEC); | |
2808 | } | |
2809 | ||
2810 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2811 | uint64_t value) | |
2812 | { | |
2813 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
2814 | } | |
2815 | ||
2816 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2817 | { | |
2818 | return gt_tval_read(env, ri, GTIMER_SEC); | |
2819 | } | |
2820 | ||
2821 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2822 | uint64_t value) | |
2823 | { | |
2824 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
2825 | } | |
2826 | ||
2827 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2828 | uint64_t value) | |
2829 | { | |
2830 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
2831 | } | |
2832 | ||
8c94b071 RH |
2833 | static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2834 | { | |
2835 | gt_timer_reset(env, ri, GTIMER_HYPVIRT); | |
2836 | } | |
2837 | ||
2838 | static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2839 | uint64_t value) | |
2840 | { | |
2841 | gt_cval_write(env, ri, GTIMER_HYPVIRT, value); | |
2842 | } | |
2843 | ||
2844 | static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2845 | { | |
2846 | return gt_tval_read(env, ri, GTIMER_HYPVIRT); | |
2847 | } | |
2848 | ||
2849 | static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2850 | uint64_t value) | |
2851 | { | |
2852 | gt_tval_write(env, ri, GTIMER_HYPVIRT, value); | |
2853 | } | |
2854 | ||
2855 | static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2856 | uint64_t value) | |
2857 | { | |
2858 | gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); | |
2859 | } | |
2860 | ||
55d284af PM |
2861 | void arm_gt_ptimer_cb(void *opaque) |
2862 | { | |
2863 | ARMCPU *cpu = opaque; | |
2864 | ||
2865 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
2866 | } | |
2867 | ||
2868 | void arm_gt_vtimer_cb(void *opaque) | |
2869 | { | |
2870 | ARMCPU *cpu = opaque; | |
2871 | ||
2872 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
2873 | } | |
2874 | ||
b0e66d95 EI |
2875 | void arm_gt_htimer_cb(void *opaque) |
2876 | { | |
2877 | ARMCPU *cpu = opaque; | |
2878 | ||
2879 | gt_recalc_timer(cpu, GTIMER_HYP); | |
2880 | } | |
2881 | ||
b4d3978c PM |
2882 | void arm_gt_stimer_cb(void *opaque) |
2883 | { | |
2884 | ARMCPU *cpu = opaque; | |
2885 | ||
2886 | gt_recalc_timer(cpu, GTIMER_SEC); | |
2887 | } | |
2888 | ||
8c94b071 RH |
2889 | void arm_gt_hvtimer_cb(void *opaque) |
2890 | { | |
2891 | ARMCPU *cpu = opaque; | |
2892 | ||
2893 | gt_recalc_timer(cpu, GTIMER_HYPVIRT); | |
2894 | } | |
2895 | ||
96eec6b2 AJ |
2896 | static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) |
2897 | { | |
2898 | ARMCPU *cpu = env_archcpu(env); | |
2899 | ||
2900 | cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; | |
2901 | } | |
2902 | ||
55d284af PM |
2903 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
2904 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
2905 | * of software; writing it doesn't actually change the timer frequency. | |
2906 | * Our reset value matches the fixed frequency we implement the timer at. | |
2907 | */ | |
2908 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2909 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
2910 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
2911 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
2912 | }, |
2913 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
2914 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
2915 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af | 2916 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
96eec6b2 | 2917 | .resetfn = arm_gt_cntfrq_reset, |
55d284af PM |
2918 | }, |
2919 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
2920 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
2921 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
2922 | .access = PL1_RW, |
2923 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
2924 | .resetvalue = 0, | |
2925 | }, | |
2926 | /* per-timer control */ | |
2927 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 2928 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 2929 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
a7adc4b7 PM |
2930 | .accessfn = gt_ptimer_access, |
2931 | .fieldoffset = offsetoflow32(CPUARMState, | |
2932 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
bb5972e4 RH |
2933 | .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, |
2934 | .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, | |
a7adc4b7 | 2935 | }, |
9c513e78 | 2936 | { .name = "CNTP_CTL_S", |
9ff9dd3c PM |
2937 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
2938 | .secure = ARM_CP_SECSTATE_S, | |
daf1dc5f | 2939 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
9ff9dd3c PM |
2940 | .accessfn = gt_ptimer_access, |
2941 | .fieldoffset = offsetoflow32(CPUARMState, | |
2942 | cp15.c14_timer[GTIMER_SEC].ctl), | |
2943 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
2944 | }, | |
a7adc4b7 PM |
2945 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
2946 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
daf1dc5f | 2947 | .type = ARM_CP_IO, .access = PL0_RW, |
a7adc4b7 | 2948 | .accessfn = gt_ptimer_access, |
55d284af PM |
2949 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
2950 | .resetvalue = 0, | |
bb5972e4 RH |
2951 | .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, |
2952 | .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, | |
55d284af PM |
2953 | }, |
2954 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
daf1dc5f | 2955 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
a7adc4b7 PM |
2956 | .accessfn = gt_vtimer_access, |
2957 | .fieldoffset = offsetoflow32(CPUARMState, | |
2958 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
bb5972e4 RH |
2959 | .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, |
2960 | .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, | |
a7adc4b7 PM |
2961 | }, |
2962 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
2963 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
daf1dc5f | 2964 | .type = ARM_CP_IO, .access = PL0_RW, |
a7adc4b7 | 2965 | .accessfn = gt_vtimer_access, |
55d284af PM |
2966 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
2967 | .resetvalue = 0, | |
bb5972e4 RH |
2968 | .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, |
2969 | .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, | |
55d284af PM |
2970 | }, |
2971 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
2972 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 2973 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 2974 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
00108f2d | 2975 | .accessfn = gt_ptimer_access, |
bb5972e4 | 2976 | .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, |
55d284af | 2977 | }, |
9c513e78 | 2978 | { .name = "CNTP_TVAL_S", |
9ff9dd3c PM |
2979 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
2980 | .secure = ARM_CP_SECSTATE_S, | |
daf1dc5f | 2981 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
9ff9dd3c PM |
2982 | .accessfn = gt_ptimer_access, |
2983 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
2984 | }, | |
a7adc4b7 PM |
2985 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
2986 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
daf1dc5f | 2987 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
0e3eca4c | 2988 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
bb5972e4 | 2989 | .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, |
a7adc4b7 | 2990 | }, |
55d284af | 2991 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
daf1dc5f | 2992 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
00108f2d | 2993 | .accessfn = gt_vtimer_access, |
bb5972e4 | 2994 | .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, |
55d284af | 2995 | }, |
a7adc4b7 PM |
2996 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
2997 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
daf1dc5f | 2998 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
0e3eca4c | 2999 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
bb5972e4 | 3000 | .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, |
a7adc4b7 | 3001 | }, |
55d284af PM |
3002 | /* The counter itself */ |
3003 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 3004 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 3005 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
3006 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
3007 | }, | |
3008 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
3009 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 3010 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 3011 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
3012 | }, |
3013 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 3014 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 3015 | .accessfn = gt_vct_access, |
edac4d8a | 3016 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
3017 | }, |
3018 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
3019 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 3020 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 3021 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
3022 | }, |
3023 | /* Comparison value, indicating when the timer goes off */ | |
3024 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 3025 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 3026 | .access = PL0_RW, |
7a0e58fa | 3027 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 3028 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 3029 | .accessfn = gt_ptimer_access, |
bb5972e4 RH |
3030 | .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, |
3031 | .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, | |
a7adc4b7 | 3032 | }, |
9c513e78 | 3033 | { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, |
9ff9dd3c | 3034 | .secure = ARM_CP_SECSTATE_S, |
daf1dc5f | 3035 | .access = PL0_RW, |
9ff9dd3c PM |
3036 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
3037 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
3038 | .accessfn = gt_ptimer_access, | |
3039 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
3040 | }, | |
a7adc4b7 PM |
3041 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
3042 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
daf1dc5f | 3043 | .access = PL0_RW, |
a7adc4b7 PM |
3044 | .type = ARM_CP_IO, |
3045 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 3046 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
bb5972e4 RH |
3047 | .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, |
3048 | .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, | |
55d284af PM |
3049 | }, |
3050 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
daf1dc5f | 3051 | .access = PL0_RW, |
7a0e58fa | 3052 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 3053 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 3054 | .accessfn = gt_vtimer_access, |
bb5972e4 RH |
3055 | .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, |
3056 | .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, | |
a7adc4b7 PM |
3057 | }, |
3058 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
3059 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
daf1dc5f | 3060 | .access = PL0_RW, |
a7adc4b7 PM |
3061 | .type = ARM_CP_IO, |
3062 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
3063 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
bb5972e4 RH |
3064 | .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, |
3065 | .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, | |
55d284af | 3066 | }, |
b4d3978c PM |
3067 | /* Secure timer -- this is actually restricted to only EL3 |
3068 | * and configurably Secure-EL1 via the accessfn. | |
3069 | */ | |
3070 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
3071 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
3072 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
3073 | .accessfn = gt_stimer_access, | |
3074 | .readfn = gt_sec_tval_read, | |
3075 | .writefn = gt_sec_tval_write, | |
3076 | .resetfn = gt_sec_timer_reset, | |
3077 | }, | |
3078 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
3079 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
3080 | .type = ARM_CP_IO, .access = PL1_RW, | |
3081 | .accessfn = gt_stimer_access, | |
3082 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
3083 | .resetvalue = 0, | |
3084 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
3085 | }, | |
3086 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
3087 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
3088 | .type = ARM_CP_IO, .access = PL1_RW, | |
3089 | .accessfn = gt_stimer_access, | |
3090 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
3091 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
3092 | }, | |
55d284af PM |
3093 | }; |
3094 | ||
bb5972e4 RH |
3095 | static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3096 | bool isread) | |
3097 | { | |
3098 | if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { | |
3099 | return CP_ACCESS_TRAP; | |
3100 | } | |
3101 | return CP_ACCESS_OK; | |
3102 | } | |
3103 | ||
55d284af | 3104 | #else |
26c4a83b AB |
3105 | |
3106 | /* In user-mode most of the generic timer registers are inaccessible | |
3107 | * however modern kernels (4.12+) allow access to cntvct_el0 | |
55d284af | 3108 | */ |
26c4a83b AB |
3109 | |
3110 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3111 | { | |
7def8754 AJ |
3112 | ARMCPU *cpu = env_archcpu(env); |
3113 | ||
26c4a83b AB |
3114 | /* Currently we have no support for QEMUTimer in linux-user so we |
3115 | * can't call gt_get_countervalue(env), instead we directly | |
3116 | * call the lower level functions. | |
3117 | */ | |
7def8754 | 3118 | return cpu_get_clock() / gt_cntfrq_period_ns(cpu); |
26c4a83b AB |
3119 | } |
3120 | ||
6cc7a3ae | 3121 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
26c4a83b AB |
3122 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, |
3123 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
3124 | .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, | |
3125 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), | |
3126 | .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, | |
3127 | }, | |
3128 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
3129 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
3130 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
3131 | .readfn = gt_virt_cnt_read, | |
3132 | }, | |
6cc7a3ae PM |
3133 | }; |
3134 | ||
55d284af PM |
3135 | #endif |
3136 | ||
c4241c7d | 3137 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 3138 | { |
891a2fe7 | 3139 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 3140 | raw_write(env, ri, value); |
891a2fe7 | 3141 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 3142 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 3143 | } else { |
8d5c773e | 3144 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 3145 | } |
4a501606 PM |
3146 | } |
3147 | ||
3148 | #ifndef CONFIG_USER_ONLY | |
3149 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 3150 | |
3f208fd7 PM |
3151 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3152 | bool isread) | |
92611c00 PM |
3153 | { |
3154 | if (ri->opc2 & 4) { | |
926c1b97 | 3155 | /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in |
87562e4f PM |
3156 | * Secure EL1 (which can only happen if EL3 is AArch64). |
3157 | * They are simply UNDEF if executed from NS EL1. | |
3158 | * They function normally from EL2 or EL3. | |
92611c00 | 3159 | */ |
87562e4f PM |
3160 | if (arm_current_el(env) == 1) { |
3161 | if (arm_is_secure_below_el3(env)) { | |
926c1b97 RDC |
3162 | if (env->cp15.scr_el3 & SCR_EEL2) { |
3163 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; | |
3164 | } | |
87562e4f PM |
3165 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; |
3166 | } | |
3167 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3168 | } | |
92611c00 PM |
3169 | } |
3170 | return CP_ACCESS_OK; | |
3171 | } | |
3172 | ||
9fb005b0 | 3173 | #ifdef CONFIG_TCG |
060e8a48 | 3174 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
03ae85f8 | 3175 | MMUAccessType access_type, ARMMMUIdx mmu_idx) |
4a501606 | 3176 | { |
a8170e5e | 3177 | hwaddr phys_addr; |
4a501606 PM |
3178 | target_ulong page_size; |
3179 | int prot; | |
b7cc4e82 | 3180 | bool ret; |
01c097f7 | 3181 | uint64_t par64; |
1313e2d7 | 3182 | bool format64 = false; |
8bf5b6a9 | 3183 | MemTxAttrs attrs = {}; |
e14b5a23 | 3184 | ARMMMUFaultInfo fi = {}; |
5b2d261d | 3185 | ARMCacheAttrs cacheattrs = {}; |
4a501606 | 3186 | |
5b2d261d | 3187 | ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, |
bc52bfeb | 3188 | &prot, &page_size, &fi, &cacheattrs); |
1313e2d7 | 3189 | |
0710b2fa PM |
3190 | if (ret) { |
3191 | /* | |
3192 | * Some kinds of translation fault must cause exceptions rather | |
3193 | * than being reported in the PAR. | |
3194 | */ | |
3195 | int current_el = arm_current_el(env); | |
3196 | int target_el; | |
3197 | uint32_t syn, fsr, fsc; | |
3198 | bool take_exc = false; | |
3199 | ||
b1a10c86 | 3200 | if (fi.s1ptw && current_el == 1 |
fee7aa46 | 3201 | && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { |
0710b2fa PM |
3202 | /* |
3203 | * Synchronous stage 2 fault on an access made as part of the | |
3204 | * translation table walk for AT S1E0* or AT S1E1* insn | |
3205 | * executed from NS EL1. If this is a synchronous external abort | |
3206 | * and SCR_EL3.EA == 1, then we take a synchronous external abort | |
3207 | * to EL3. Otherwise the fault is taken as an exception to EL2, | |
3208 | * and HPFAR_EL2 holds the faulting IPA. | |
3209 | */ | |
3210 | if (fi.type == ARMFault_SyncExternalOnWalk && | |
3211 | (env->cp15.scr_el3 & SCR_EA)) { | |
3212 | target_el = 3; | |
3213 | } else { | |
3214 | env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; | |
9861248f RDC |
3215 | if (arm_is_secure_below_el3(env) && fi.s1ns) { |
3216 | env->cp15.hpfar_el2 |= HPFAR_NS; | |
3217 | } | |
0710b2fa PM |
3218 | target_el = 2; |
3219 | } | |
3220 | take_exc = true; | |
3221 | } else if (fi.type == ARMFault_SyncExternalOnWalk) { | |
3222 | /* | |
3223 | * Synchronous external aborts during a translation table walk | |
3224 | * are taken as Data Abort exceptions. | |
3225 | */ | |
3226 | if (fi.stage2) { | |
3227 | if (current_el == 3) { | |
3228 | target_el = 3; | |
3229 | } else { | |
3230 | target_el = 2; | |
3231 | } | |
3232 | } else { | |
3233 | target_el = exception_target_el(env); | |
3234 | } | |
3235 | take_exc = true; | |
3236 | } | |
3237 | ||
3238 | if (take_exc) { | |
3239 | /* Construct FSR and FSC using same logic as arm_deliver_fault() */ | |
3240 | if (target_el == 2 || arm_el_is_aa64(env, target_el) || | |
3241 | arm_s1_regime_using_lpae_format(env, mmu_idx)) { | |
3242 | fsr = arm_fi_to_lfsc(&fi); | |
3243 | fsc = extract32(fsr, 0, 6); | |
3244 | } else { | |
3245 | fsr = arm_fi_to_sfsc(&fi); | |
3246 | fsc = 0x3f; | |
3247 | } | |
3248 | /* | |
3249 | * Report exception with ESR indicating a fault due to a | |
3250 | * translation table walk for a cache maintenance instruction. | |
3251 | */ | |
e24fd076 | 3252 | syn = syn_data_abort_no_iss(current_el == target_el, 0, |
0710b2fa PM |
3253 | fi.ea, 1, fi.s1ptw, 1, fsc); |
3254 | env->exception.vaddress = value; | |
3255 | env->exception.fsr = fsr; | |
3256 | raise_exception(env, EXCP_DATA_ABORT, syn, target_el); | |
3257 | } | |
3258 | } | |
3259 | ||
1313e2d7 EI |
3260 | if (is_a64(env)) { |
3261 | format64 = true; | |
3262 | } else if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
3263 | /* | |
3264 | * ATS1Cxx: | |
3265 | * * TTBCR.EAE determines whether the result is returned using the | |
3266 | * 32-bit or the 64-bit PAR format | |
3267 | * * Instructions executed in Hyp mode always use the 64bit format | |
3268 | * | |
3269 | * ATS1S2NSOxx uses the 64bit format if any of the following is true: | |
3270 | * * The Non-secure TTBCR.EAE bit is set to 1 | |
3271 | * * The implementation includes EL2, and the value of HCR.VM is 1 | |
3272 | * | |
9d1bab33 PM |
3273 | * (Note that HCR.DC makes HCR.VM behave as if it is 1.) |
3274 | * | |
23463e0e | 3275 | * ATS1Hx always uses the 64bit format. |
1313e2d7 EI |
3276 | */ |
3277 | format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); | |
3278 | ||
3279 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
452ef8cb RH |
3280 | if (mmu_idx == ARMMMUIdx_E10_0 || |
3281 | mmu_idx == ARMMMUIdx_E10_1 || | |
3282 | mmu_idx == ARMMMUIdx_E10_1_PAN) { | |
9d1bab33 | 3283 | format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); |
1313e2d7 EI |
3284 | } else { |
3285 | format64 |= arm_current_el(env) == 2; | |
3286 | } | |
3287 | } | |
3288 | } | |
3289 | ||
3290 | if (format64) { | |
5efe9ed4 | 3291 | /* Create a 64-bit PAR */ |
01c097f7 | 3292 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 3293 | if (!ret) { |
702a9357 | 3294 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
3295 | if (!attrs.secure) { |
3296 | par64 |= (1 << 9); /* NS */ | |
3297 | } | |
5b2d261d AB |
3298 | par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ |
3299 | par64 |= cacheattrs.shareability << 7; /* SH */ | |
4a501606 | 3300 | } else { |
5efe9ed4 PM |
3301 | uint32_t fsr = arm_fi_to_lfsc(&fi); |
3302 | ||
702a9357 | 3303 | par64 |= 1; /* F */ |
b7cc4e82 | 3304 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
0f7b791b PM |
3305 | if (fi.stage2) { |
3306 | par64 |= (1 << 9); /* S */ | |
3307 | } | |
3308 | if (fi.s1ptw) { | |
3309 | par64 |= (1 << 8); /* PTW */ | |
3310 | } | |
4a501606 PM |
3311 | } |
3312 | } else { | |
b7cc4e82 | 3313 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
3314 | * translation table format (with WnR always clear). |
3315 | * Convert it to a 32-bit PAR. | |
3316 | */ | |
b7cc4e82 | 3317 | if (!ret) { |
702a9357 PM |
3318 | /* We do not set any attribute bits in the PAR */ |
3319 | if (page_size == (1 << 24) | |
3320 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 3321 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 3322 | } else { |
01c097f7 | 3323 | par64 = phys_addr & 0xfffff000; |
702a9357 | 3324 | } |
8bf5b6a9 PM |
3325 | if (!attrs.secure) { |
3326 | par64 |= (1 << 9); /* NS */ | |
3327 | } | |
702a9357 | 3328 | } else { |
5efe9ed4 PM |
3329 | uint32_t fsr = arm_fi_to_sfsc(&fi); |
3330 | ||
b7cc4e82 PC |
3331 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
3332 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 3333 | } |
4a501606 | 3334 | } |
060e8a48 PM |
3335 | return par64; |
3336 | } | |
9fb005b0 | 3337 | #endif /* CONFIG_TCG */ |
060e8a48 PM |
3338 | |
3339 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
3340 | { | |
9fb005b0 | 3341 | #ifdef CONFIG_TCG |
03ae85f8 | 3342 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
060e8a48 | 3343 | uint64_t par64; |
d3649702 PM |
3344 | ARMMMUIdx mmu_idx; |
3345 | int el = arm_current_el(env); | |
3346 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 3347 | |
d3649702 PM |
3348 | switch (ri->opc2 & 6) { |
3349 | case 0: | |
04b07d29 | 3350 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ |
d3649702 PM |
3351 | switch (el) { |
3352 | case 3: | |
127b2b08 | 3353 | mmu_idx = ARMMMUIdx_SE3; |
d3649702 PM |
3354 | break; |
3355 | case 2: | |
b6ad6062 | 3356 | g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ |
04b07d29 | 3357 | /* fall through */ |
d3649702 | 3358 | case 1: |
04b07d29 | 3359 | if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { |
b1a10c86 | 3360 | mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN |
04b07d29 RH |
3361 | : ARMMMUIdx_Stage1_E1_PAN); |
3362 | } else { | |
b1a10c86 | 3363 | mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; |
04b07d29 | 3364 | } |
d3649702 PM |
3365 | break; |
3366 | default: | |
3367 | g_assert_not_reached(); | |
3368 | } | |
3369 | break; | |
3370 | case 2: | |
3371 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
3372 | switch (el) { | |
3373 | case 3: | |
fba37aed | 3374 | mmu_idx = ARMMMUIdx_SE10_0; |
d3649702 PM |
3375 | break; |
3376 | case 2: | |
b1a10c86 | 3377 | g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ |
2859d7b5 | 3378 | mmu_idx = ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3379 | break; |
3380 | case 1: | |
b1a10c86 | 3381 | mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3382 | break; |
3383 | default: | |
3384 | g_assert_not_reached(); | |
3385 | } | |
3386 | break; | |
3387 | case 4: | |
3388 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
01b98b68 | 3389 | mmu_idx = ARMMMUIdx_E10_1; |
d3649702 PM |
3390 | break; |
3391 | case 6: | |
3392 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
01b98b68 | 3393 | mmu_idx = ARMMMUIdx_E10_0; |
d3649702 PM |
3394 | break; |
3395 | default: | |
3396 | g_assert_not_reached(); | |
3397 | } | |
3398 | ||
3399 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
3400 | |
3401 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
9fb005b0 PMD |
3402 | #else |
3403 | /* Handled by hardware accelerator. */ | |
3404 | g_assert_not_reached(); | |
3405 | #endif /* CONFIG_TCG */ | |
4a501606 | 3406 | } |
060e8a48 | 3407 | |
14db7fe0 PM |
3408 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3409 | uint64_t value) | |
3410 | { | |
9fb005b0 | 3411 | #ifdef CONFIG_TCG |
03ae85f8 | 3412 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
14db7fe0 PM |
3413 | uint64_t par64; |
3414 | ||
e013b741 | 3415 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); |
14db7fe0 PM |
3416 | |
3417 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
9fb005b0 PMD |
3418 | #else |
3419 | /* Handled by hardware accelerator. */ | |
3420 | g_assert_not_reached(); | |
3421 | #endif /* CONFIG_TCG */ | |
14db7fe0 PM |
3422 | } |
3423 | ||
3f208fd7 PM |
3424 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3425 | bool isread) | |
2a47df95 | 3426 | { |
926c1b97 RDC |
3427 | if (arm_current_el(env) == 3 && |
3428 | !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { | |
2a47df95 PM |
3429 | return CP_ACCESS_TRAP; |
3430 | } | |
3431 | return CP_ACCESS_OK; | |
3432 | } | |
3433 | ||
060e8a48 PM |
3434 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
3435 | uint64_t value) | |
3436 | { | |
9fb005b0 | 3437 | #ifdef CONFIG_TCG |
03ae85f8 | 3438 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
d3649702 PM |
3439 | ARMMMUIdx mmu_idx; |
3440 | int secure = arm_is_secure_below_el3(env); | |
3441 | ||
3442 | switch (ri->opc2 & 6) { | |
3443 | case 0: | |
3444 | switch (ri->opc1) { | |
04b07d29 RH |
3445 | case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ |
3446 | if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { | |
b1a10c86 | 3447 | mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN |
04b07d29 RH |
3448 | : ARMMMUIdx_Stage1_E1_PAN); |
3449 | } else { | |
b1a10c86 | 3450 | mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; |
04b07d29 | 3451 | } |
d3649702 PM |
3452 | break; |
3453 | case 4: /* AT S1E2R, AT S1E2W */ | |
b6ad6062 | 3454 | mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; |
d3649702 PM |
3455 | break; |
3456 | case 6: /* AT S1E3R, AT S1E3W */ | |
127b2b08 | 3457 | mmu_idx = ARMMMUIdx_SE3; |
d3649702 PM |
3458 | break; |
3459 | default: | |
3460 | g_assert_not_reached(); | |
3461 | } | |
3462 | break; | |
3463 | case 2: /* AT S1E0R, AT S1E0W */ | |
b1a10c86 | 3464 | mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3465 | break; |
3466 | case 4: /* AT S12E1R, AT S12E1W */ | |
fba37aed | 3467 | mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; |
d3649702 PM |
3468 | break; |
3469 | case 6: /* AT S12E0R, AT S12E0W */ | |
fba37aed | 3470 | mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; |
d3649702 PM |
3471 | break; |
3472 | default: | |
3473 | g_assert_not_reached(); | |
3474 | } | |
060e8a48 | 3475 | |
d3649702 | 3476 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
9fb005b0 PMD |
3477 | #else |
3478 | /* Handled by hardware accelerator. */ | |
3479 | g_assert_not_reached(); | |
3480 | #endif /* CONFIG_TCG */ | |
060e8a48 | 3481 | } |
4a501606 PM |
3482 | #endif |
3483 | ||
3484 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
3485 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
3486 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
3487 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
3488 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
3489 | .writefn = par_write }, |
3490 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 3491 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 3492 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 3493 | .access = PL1_W, .accessfn = ats_access, |
0710b2fa | 3494 | .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
4a501606 | 3495 | #endif |
4a501606 PM |
3496 | }; |
3497 | ||
18032bec PM |
3498 | /* Return basic MPU access permission bits. */ |
3499 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
3500 | { | |
3501 | uint32_t ret; | |
3502 | uint32_t mask; | |
3503 | int i; | |
3504 | ret = 0; | |
3505 | mask = 3; | |
3506 | for (i = 0; i < 16; i += 2) { | |
3507 | ret |= (val >> i) & mask; | |
3508 | mask <<= 2; | |
3509 | } | |
3510 | return ret; | |
3511 | } | |
3512 | ||
3513 | /* Pad basic MPU access permission bits to extended format. */ | |
3514 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
3515 | { | |
3516 | uint32_t ret; | |
3517 | uint32_t mask; | |
3518 | int i; | |
3519 | ret = 0; | |
3520 | mask = 3; | |
3521 | for (i = 0; i < 16; i += 2) { | |
3522 | ret |= (val & mask) << i; | |
3523 | mask <<= 2; | |
3524 | } | |
3525 | return ret; | |
3526 | } | |
3527 | ||
c4241c7d PM |
3528 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3529 | uint64_t value) | |
18032bec | 3530 | { |
7e09797c | 3531 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
3532 | } |
3533 | ||
c4241c7d | 3534 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 3535 | { |
7e09797c | 3536 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
3537 | } |
3538 | ||
c4241c7d PM |
3539 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3540 | uint64_t value) | |
18032bec | 3541 | { |
7e09797c | 3542 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
3543 | } |
3544 | ||
c4241c7d | 3545 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 3546 | { |
7e09797c | 3547 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
3548 | } |
3549 | ||
6cb0b013 PC |
3550 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
3551 | { | |
3552 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
3553 | ||
3554 | if (!u32p) { | |
3555 | return 0; | |
3556 | } | |
3557 | ||
1bc04a88 | 3558 | u32p += env->pmsav7.rnr[M_REG_NS]; |
6cb0b013 PC |
3559 | return *u32p; |
3560 | } | |
3561 | ||
3562 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3563 | uint64_t value) | |
3564 | { | |
2fc0cc0e | 3565 | ARMCPU *cpu = env_archcpu(env); |
6cb0b013 PC |
3566 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
3567 | ||
3568 | if (!u32p) { | |
3569 | return; | |
3570 | } | |
3571 | ||
1bc04a88 | 3572 | u32p += env->pmsav7.rnr[M_REG_NS]; |
d10eb08f | 3573 | tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ |
6cb0b013 PC |
3574 | *u32p = value; |
3575 | } | |
3576 | ||
6cb0b013 PC |
3577 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3578 | uint64_t value) | |
3579 | { | |
2fc0cc0e | 3580 | ARMCPU *cpu = env_archcpu(env); |
6cb0b013 PC |
3581 | uint32_t nrgs = cpu->pmsav7_dregion; |
3582 | ||
3583 | if (value >= nrgs) { | |
3584 | qemu_log_mask(LOG_GUEST_ERROR, | |
3585 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
3586 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
3587 | return; | |
3588 | } | |
3589 | ||
3590 | raw_write(env, ri, value); | |
3591 | } | |
3592 | ||
3593 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
69ceea64 PM |
3594 | /* Reset for all these registers is handled in arm_cpu_reset(), |
3595 | * because the PMSAv7 is also used by M-profile CPUs, which do | |
3596 | * not register cpregs but still need the state to be reset. | |
3597 | */ | |
6cb0b013 PC |
3598 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
3599 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3600 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
69ceea64 PM |
3601 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3602 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3603 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
3604 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3605 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
69ceea64 PM |
3606 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3607 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3608 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
3609 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3610 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
69ceea64 PM |
3611 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3612 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3613 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
3614 | .access = PL1_RW, | |
1bc04a88 | 3615 | .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), |
69ceea64 PM |
3616 | .writefn = pmsav7_rgnr_write, |
3617 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3618 | }; |
3619 | ||
18032bec PM |
3620 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
3621 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 3622 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 3623 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
3624 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
3625 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 3626 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 3627 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
3628 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
3629 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
3630 | .access = PL1_RW, | |
7e09797c PM |
3631 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
3632 | .resetvalue = 0, }, | |
18032bec PM |
3633 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
3634 | .access = PL1_RW, | |
7e09797c PM |
3635 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
3636 | .resetvalue = 0, }, | |
ecce5c3c PM |
3637 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
3638 | .access = PL1_RW, | |
3639 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
3640 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
3641 | .access = PL1_RW, | |
3642 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 3643 | /* Protection region base and size registers */ |
e508a92b PM |
3644 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
3645 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3646 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
3647 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
3648 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3649 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
3650 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
3651 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3652 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
3653 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
3654 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3655 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
3656 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
3657 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3658 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
3659 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
3660 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3661 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
3662 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
3663 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3664 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
3665 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
3666 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3667 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
3668 | }; |
3669 | ||
c4241c7d PM |
3670 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3671 | uint64_t value) | |
ecce5c3c | 3672 | { |
11f136ee | 3673 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
3674 | int maskshift = extract32(value, 0, 3); |
3675 | ||
e389be16 FA |
3676 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
3677 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
3678 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
3679 | * using Long-desciptor translation table format */ | |
3680 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
3681 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3682 | /* In an implementation that includes the Security Extensions | |
3683 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
3684 | * Short-descriptor translation table format. | |
3685 | */ | |
3686 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
3687 | } else { | |
3688 | value &= TTBCR_N; | |
3689 | } | |
e42c4db3 | 3690 | } |
e389be16 | 3691 | |
b6af0975 | 3692 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 3693 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 3694 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
3695 | * for long-descriptor tables the TCR fields are used differently |
3696 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 3697 | */ |
11f136ee FA |
3698 | tcr->raw_tcr = value; |
3699 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
3700 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
3701 | } |
3702 | ||
c4241c7d PM |
3703 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3704 | uint64_t value) | |
d4e6df63 | 3705 | { |
2fc0cc0e | 3706 | ARMCPU *cpu = env_archcpu(env); |
ab638a32 | 3707 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 3708 | |
d4e6df63 PM |
3709 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
3710 | /* With LPAE the TTBCR could result in a change of ASID | |
3711 | * via the TTBCR.A1 bit, so do a TLB flush. | |
3712 | */ | |
d10eb08f | 3713 | tlb_flush(CPU(cpu)); |
d4e6df63 | 3714 | } |
ab638a32 RH |
3715 | /* Preserve the high half of TCR_EL1, set via TTBCR2. */ |
3716 | value = deposit64(tcr->raw_tcr, 0, 32, value); | |
c4241c7d | 3717 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
3718 | } |
3719 | ||
ecce5c3c PM |
3720 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3721 | { | |
11f136ee FA |
3722 | TCR *tcr = raw_ptr(env, ri); |
3723 | ||
3724 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
3725 | * the TCR being reset. | |
3726 | */ | |
3727 | tcr->raw_tcr = 0; | |
3728 | tcr->mask = 0; | |
3729 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
3730 | } |
3731 | ||
d06dc933 | 3732 | static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, |
cb2e37df PM |
3733 | uint64_t value) |
3734 | { | |
2fc0cc0e | 3735 | ARMCPU *cpu = env_archcpu(env); |
11f136ee | 3736 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 3737 | |
cb2e37df | 3738 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
d10eb08f | 3739 | tlb_flush(CPU(cpu)); |
11f136ee | 3740 | tcr->raw_tcr = value; |
cb2e37df PM |
3741 | } |
3742 | ||
327ed10f PM |
3743 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3744 | uint64_t value) | |
3745 | { | |
93f379b0 RH |
3746 | /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ |
3747 | if (cpreg_field_is_64bit(ri) && | |
3748 | extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { | |
2fc0cc0e | 3749 | ARMCPU *cpu = env_archcpu(env); |
d10eb08f | 3750 | tlb_flush(CPU(cpu)); |
327ed10f PM |
3751 | } |
3752 | raw_write(env, ri, value); | |
3753 | } | |
3754 | ||
ed30da8e RH |
3755 | static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3756 | uint64_t value) | |
3757 | { | |
d06dc933 RH |
3758 | /* |
3759 | * If we are running with E2&0 regime, then an ASID is active. | |
3760 | * Flush if that might be changing. Note we're not checking | |
3761 | * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that | |
3762 | * holds the active ASID, only checking the field that might. | |
3763 | */ | |
3764 | if (extract64(raw_read(env, ri) ^ value, 48, 16) && | |
3765 | (arm_hcr_el2_eff(env) & HCR_E2H)) { | |
b6ad6062 RDC |
3766 | uint16_t mask = ARMMMUIdxBit_E20_2 | |
3767 | ARMMMUIdxBit_E20_2_PAN | | |
3768 | ARMMMUIdxBit_E20_0; | |
3769 | ||
3770 | if (arm_is_secure_below_el3(env)) { | |
3771 | mask >>= ARM_MMU_IDX_A_NS; | |
3772 | } | |
3773 | ||
3774 | tlb_flush_by_mmuidx(env_cpu(env), mask); | |
d06dc933 | 3775 | } |
ed30da8e RH |
3776 | raw_write(env, ri, value); |
3777 | } | |
3778 | ||
b698e9cf EI |
3779 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3780 | uint64_t value) | |
3781 | { | |
2fc0cc0e | 3782 | ARMCPU *cpu = env_archcpu(env); |
b698e9cf EI |
3783 | CPUState *cs = CPU(cpu); |
3784 | ||
97fa9350 RH |
3785 | /* |
3786 | * A change in VMID to the stage2 page table (Stage2) invalidates | |
3787 | * the combined stage 1&2 tlbs (EL10_1 and EL10_0). | |
3788 | */ | |
b698e9cf | 3789 | if (raw_read(env, ri) != value) { |
c4f060e8 RDC |
3790 | uint16_t mask = ARMMMUIdxBit_E10_1 | |
3791 | ARMMMUIdxBit_E10_1_PAN | | |
3792 | ARMMMUIdxBit_E10_0; | |
3793 | ||
3794 | if (arm_is_secure_below_el3(env)) { | |
3795 | mask >>= ARM_MMU_IDX_A_NS; | |
3796 | } | |
3797 | ||
3798 | tlb_flush_by_mmuidx(cs, mask); | |
b698e9cf EI |
3799 | raw_write(env, ri, value); |
3800 | } | |
3801 | } | |
3802 | ||
8e5d75c9 | 3803 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 3804 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
84929218 | 3805 | .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, |
4a7e2d73 | 3806 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 3807 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 3808 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
84929218 | 3809 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
88ca1c2d FA |
3810 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), |
3811 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 | 3812 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
84929218 | 3813 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
8e5d75c9 PC |
3814 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), |
3815 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
3816 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
3817 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
84929218 RH |
3818 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
3819 | .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
8e5d75c9 | 3820 | .resetvalue = 0, }, |
8e5d75c9 PC |
3821 | }; |
3822 | ||
3823 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
3824 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
3825 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
84929218 | 3826 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
d81c519c | 3827 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 3828 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af | 3829 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
84929218 RH |
3830 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
3831 | .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
7dd8c9af FA |
3832 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
3833 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 3834 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af | 3835 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
84929218 RH |
3836 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
3837 | .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
7dd8c9af FA |
3838 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
3839 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
3840 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
3841 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
84929218 RH |
3842 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
3843 | .writefn = vmsa_tcr_el12_write, | |
cb2e37df | 3844 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, |
11f136ee | 3845 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 3846 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
84929218 RH |
3847 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
3848 | .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, | |
b061a82b | 3849 | .raw_writefn = vmsa_ttbcr_raw_write, |
d102058e RH |
3850 | /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ |
3851 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), | |
3852 | offsetof(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
3853 | }; |
3854 | ||
ab638a32 RH |
3855 | /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing |
3856 | * qemu tlbs nor adjusting cached masks. | |
3857 | */ | |
3858 | static const ARMCPRegInfo ttbcr2_reginfo = { | |
3859 | .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, | |
84929218 RH |
3860 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
3861 | .type = ARM_CP_ALIAS, | |
d102058e RH |
3862 | .bank_fieldoffsets = { |
3863 | offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), | |
3864 | offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), | |
3865 | }, | |
ab638a32 RH |
3866 | }; |
3867 | ||
c4241c7d PM |
3868 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3869 | uint64_t value) | |
1047b9d7 PM |
3870 | { |
3871 | env->cp15.c15_ticonfig = value & 0xe7; | |
3872 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
3873 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
3874 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
3875 | } |
3876 | ||
c4241c7d PM |
3877 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3878 | uint64_t value) | |
1047b9d7 PM |
3879 | { |
3880 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
3881 | } |
3882 | ||
c4241c7d PM |
3883 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3884 | uint64_t value) | |
1047b9d7 PM |
3885 | { |
3886 | /* Wait-for-interrupt (deprecated) */ | |
2fc0cc0e | 3887 | cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
3888 | } |
3889 | ||
c4241c7d PM |
3890 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3891 | uint64_t value) | |
c4804214 PM |
3892 | { |
3893 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
3894 | * containing a dirty line; cache flush operations have to reset these. | |
3895 | */ | |
3896 | env->cp15.c15_i_max = 0x000; | |
3897 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
3898 | } |
3899 | ||
18032bec PM |
3900 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
3901 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
3902 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 3903 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 3904 | .resetvalue = 0, }, |
1047b9d7 PM |
3905 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
3906 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
3907 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
3908 | .access = PL1_RW, | |
3909 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
3910 | .writefn = omap_ticonfig_write }, | |
3911 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
3912 | .access = PL1_RW, | |
3913 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
3914 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
3915 | .access = PL1_RW, .resetvalue = 0xff0, | |
3916 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
3917 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
3918 | .access = PL1_RW, | |
3919 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
3920 | .writefn = omap_threadid_write }, | |
3921 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
3922 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 3923 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
3924 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
3925 | /* TODO: Peripheral port remap register: | |
3926 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
3927 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
3928 | * when MMU is off. | |
3929 | */ | |
c4804214 | 3930 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 3931 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 3932 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 3933 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
3934 | { .name = "C9", .cp = 15, .crn = 9, |
3935 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
3936 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
3937 | }; |
3938 | ||
c4241c7d PM |
3939 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3940 | uint64_t value) | |
1047b9d7 | 3941 | { |
c0f4af17 | 3942 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
3943 | } |
3944 | ||
3945 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
3946 | { .name = "XSCALE_CPAR", | |
3947 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
3948 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
3949 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
3950 | { .name = "XSCALE_AUXCR", |
3951 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
3952 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
3953 | .resetvalue = 0, }, | |
3b771579 PM |
3954 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
3955 | * and hope the guest does not really rely on cache behaviour. | |
3956 | */ | |
3957 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
3958 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
3959 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3960 | { .name = "XSCALE_UNLOCK_ICACHE", | |
3961 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
3962 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3963 | { .name = "XSCALE_DCACHE_LOCK", | |
3964 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
3965 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
3966 | { .name = "XSCALE_UNLOCK_DCACHE", | |
3967 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
3968 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
3969 | }; |
3970 | ||
3971 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
3972 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
3973 | * implementation of this implementation-defined space. | |
3974 | * Ideally this should eventually disappear in favour of actually | |
3975 | * implementing the correct behaviour for all cores. | |
3976 | */ | |
3977 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
3978 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 3979 | .access = PL1_RW, |
7a0e58fa | 3980 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 3981 | .resetvalue = 0 }, |
18032bec PM |
3982 | }; |
3983 | ||
c4804214 PM |
3984 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
3985 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
3986 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 3987 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 3988 | .resetvalue = 0 }, |
c4804214 PM |
3989 | }; |
3990 | ||
3991 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
3992 | /* We never have a a block transfer operation in progress */ | |
3993 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 3994 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 3995 | .resetvalue = 0 }, |
30b05bba PM |
3996 | /* The cache ops themselves: these all NOP for QEMU */ |
3997 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
3998 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
3999 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
4000 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4001 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
4002 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4003 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
4004 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4005 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
4006 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4007 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
4008 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
4009 | }; |
4010 | ||
4011 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
4012 | /* The cache test-and-clean instructions always return (1 << 30) | |
4013 | * to indicate that there are no dirty cache lines. | |
4014 | */ | |
4015 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 4016 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4017 | .resetvalue = (1 << 30) }, |
c4804214 | 4018 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 4019 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4020 | .resetvalue = (1 << 30) }, |
c4804214 PM |
4021 | }; |
4022 | ||
34f90529 PM |
4023 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
4024 | /* Ignore ReadBuffer accesses */ | |
4025 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
4026 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 4027 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 4028 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
4029 | }; |
4030 | ||
731de9e6 EI |
4031 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4032 | { | |
731de9e6 | 4033 | unsigned int cur_el = arm_current_el(env); |
731de9e6 | 4034 | |
e6ef0169 | 4035 | if (arm_is_el2_enabled(env) && cur_el == 1) { |
731de9e6 EI |
4036 | return env->cp15.vpidr_el2; |
4037 | } | |
4038 | return raw_read(env, ri); | |
4039 | } | |
4040 | ||
06a7e647 | 4041 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 4042 | { |
2fc0cc0e | 4043 | ARMCPU *cpu = env_archcpu(env); |
eb5e1d3c PF |
4044 | uint64_t mpidr = cpu->mp_affinity; |
4045 | ||
81bdde9d | 4046 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 4047 | mpidr |= (1U << 31); |
81bdde9d PM |
4048 | /* Cores which are uniprocessor (non-coherent) |
4049 | * but still implement the MP extensions set | |
a8e81b31 | 4050 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 4051 | */ |
a8e81b31 PC |
4052 | if (cpu->mp_is_up) { |
4053 | mpidr |= (1u << 30); | |
4054 | } | |
81bdde9d | 4055 | } |
c4241c7d | 4056 | return mpidr; |
81bdde9d PM |
4057 | } |
4058 | ||
06a7e647 EI |
4059 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4060 | { | |
f0d574d6 | 4061 | unsigned int cur_el = arm_current_el(env); |
f0d574d6 | 4062 | |
e6ef0169 | 4063 | if (arm_is_el2_enabled(env) && cur_el == 1) { |
f0d574d6 EI |
4064 | return env->cp15.vmpidr_el2; |
4065 | } | |
06a7e647 EI |
4066 | return mpidr_read_val(env); |
4067 | } | |
4068 | ||
7ac681cf | 4069 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 4070 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
4071 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
4072 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
84929218 RH |
4073 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4074 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 | 4075 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 4076 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
84929218 RH |
4077 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4078 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
891a2fe7 | 4079 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
4080 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
4081 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
4082 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 4083 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
84929218 RH |
4084 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4085 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
7dd8c9af FA |
4086 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
4087 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 4088 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 4089 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
84929218 RH |
4090 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4091 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
7dd8c9af FA |
4092 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
4093 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 4094 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
4095 | }; |
4096 | ||
c4241c7d | 4097 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 4098 | { |
c4241c7d | 4099 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
4100 | } |
4101 | ||
c4241c7d PM |
4102 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4103 | uint64_t value) | |
b0d2b7d0 PM |
4104 | { |
4105 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
4106 | } |
4107 | ||
c4241c7d | 4108 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 4109 | { |
c4241c7d | 4110 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
4111 | } |
4112 | ||
c4241c7d PM |
4113 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4114 | uint64_t value) | |
b0d2b7d0 PM |
4115 | { |
4116 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
4117 | } |
4118 | ||
3f208fd7 PM |
4119 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4120 | bool isread) | |
c2b820fe | 4121 | { |
aaec1432 | 4122 | if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { |
c2b820fe PM |
4123 | return CP_ACCESS_TRAP; |
4124 | } | |
4125 | return CP_ACCESS_OK; | |
4126 | } | |
4127 | ||
4128 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4129 | uint64_t value) | |
4130 | { | |
4131 | env->daif = value & PSTATE_DAIF; | |
4132 | } | |
4133 | ||
220f508f RH |
4134 | static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4135 | { | |
4136 | return env->pstate & PSTATE_PAN; | |
4137 | } | |
4138 | ||
4139 | static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4140 | uint64_t value) | |
4141 | { | |
4142 | env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); | |
4143 | } | |
4144 | ||
4145 | static const ARMCPRegInfo pan_reginfo = { | |
4146 | .name = "PAN", .state = ARM_CP_STATE_AA64, | |
4147 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, | |
4148 | .type = ARM_CP_NO_RAW, .access = PL1_RW, | |
4149 | .readfn = aa64_pan_read, .writefn = aa64_pan_write | |
4150 | }; | |
4151 | ||
9eeb7a1c RH |
4152 | static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4153 | { | |
4154 | return env->pstate & PSTATE_UAO; | |
4155 | } | |
4156 | ||
4157 | static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4158 | uint64_t value) | |
4159 | { | |
4160 | env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); | |
4161 | } | |
4162 | ||
4163 | static const ARMCPRegInfo uao_reginfo = { | |
4164 | .name = "UAO", .state = ARM_CP_STATE_AA64, | |
4165 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, | |
4166 | .type = ARM_CP_NO_RAW, .access = PL1_RW, | |
4167 | .readfn = aa64_uao_read, .writefn = aa64_uao_write | |
4168 | }; | |
4169 | ||
dc8b1853 RC |
4170 | static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4171 | { | |
4172 | return env->pstate & PSTATE_DIT; | |
4173 | } | |
4174 | ||
4175 | static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4176 | uint64_t value) | |
4177 | { | |
4178 | env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); | |
4179 | } | |
4180 | ||
4181 | static const ARMCPRegInfo dit_reginfo = { | |
4182 | .name = "DIT", .state = ARM_CP_STATE_AA64, | |
4183 | .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, | |
4184 | .type = ARM_CP_NO_RAW, .access = PL0_RW, | |
4185 | .readfn = aa64_dit_read, .writefn = aa64_dit_write | |
4186 | }; | |
4187 | ||
f2f68a78 RC |
4188 | static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4189 | { | |
4190 | return env->pstate & PSTATE_SSBS; | |
4191 | } | |
4192 | ||
4193 | static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4194 | uint64_t value) | |
4195 | { | |
4196 | env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); | |
4197 | } | |
4198 | ||
4199 | static const ARMCPRegInfo ssbs_reginfo = { | |
4200 | .name = "SSBS", .state = ARM_CP_STATE_AA64, | |
4201 | .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, | |
4202 | .type = ARM_CP_NO_RAW, .access = PL0_RW, | |
4203 | .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write | |
4204 | }; | |
4205 | ||
38262d8a RH |
4206 | static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, |
4207 | const ARMCPRegInfo *ri, | |
4208 | bool isread) | |
8af35c37 | 4209 | { |
38262d8a RH |
4210 | /* Cache invalidate/clean to Point of Coherency or Persistence... */ |
4211 | switch (arm_current_el(env)) { | |
4212 | case 0: | |
4213 | /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ | |
4214 | if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { | |
4215 | return CP_ACCESS_TRAP; | |
4216 | } | |
4217 | /* fall through */ | |
4218 | case 1: | |
4219 | /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ | |
4220 | if (arm_hcr_el2_eff(env) & HCR_TPCP) { | |
4221 | return CP_ACCESS_TRAP_EL2; | |
4222 | } | |
4223 | break; | |
8af35c37 PM |
4224 | } |
4225 | return CP_ACCESS_OK; | |
4226 | } | |
4227 | ||
38262d8a | 4228 | static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, |
1bed4d2e RH |
4229 | const ARMCPRegInfo *ri, |
4230 | bool isread) | |
4231 | { | |
38262d8a | 4232 | /* Cache invalidate/clean to Point of Unification... */ |
1bed4d2e RH |
4233 | switch (arm_current_el(env)) { |
4234 | case 0: | |
4235 | /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ | |
4236 | if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { | |
4237 | return CP_ACCESS_TRAP; | |
4238 | } | |
4239 | /* fall through */ | |
4240 | case 1: | |
38262d8a RH |
4241 | /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ |
4242 | if (arm_hcr_el2_eff(env) & HCR_TPU) { | |
1bed4d2e RH |
4243 | return CP_ACCESS_TRAP_EL2; |
4244 | } | |
4245 | break; | |
4246 | } | |
4247 | return CP_ACCESS_OK; | |
4248 | } | |
4249 | ||
dbb1fb27 AB |
4250 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
4251 | * Page D4-1736 (DDI0487A.b) | |
4252 | */ | |
4253 | ||
b7e0730d RH |
4254 | static int vae1_tlbmask(CPUARMState *env) |
4255 | { | |
e04a5752 | 4256 | uint64_t hcr = arm_hcr_el2_eff(env); |
bc944d3a | 4257 | uint16_t mask; |
e04a5752 RDC |
4258 | |
4259 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
bc944d3a RDC |
4260 | mask = ARMMMUIdxBit_E20_2 | |
4261 | ARMMMUIdxBit_E20_2_PAN | | |
4262 | ARMMMUIdxBit_E20_0; | |
b7e0730d | 4263 | } else { |
bc944d3a | 4264 | mask = ARMMMUIdxBit_E10_1 | |
452ef8cb RH |
4265 | ARMMMUIdxBit_E10_1_PAN | |
4266 | ARMMMUIdxBit_E10_0; | |
b7e0730d | 4267 | } |
bc944d3a RDC |
4268 | |
4269 | if (arm_is_secure_below_el3(env)) { | |
4270 | mask >>= ARM_MMU_IDX_A_NS; | |
4271 | } | |
4272 | ||
4273 | return mask; | |
b7e0730d RH |
4274 | } |
4275 | ||
ea04dce7 RH |
4276 | /* Return 56 if TBI is enabled, 64 otherwise. */ |
4277 | static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, | |
4278 | uint64_t addr) | |
4279 | { | |
4280 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; | |
4281 | int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); | |
4282 | int select = extract64(addr, 55, 1); | |
4283 | ||
4284 | return (tbi >> select) & 1 ? 56 : 64; | |
4285 | } | |
4286 | ||
4287 | static int vae1_tlbbits(CPUARMState *env, uint64_t addr) | |
4288 | { | |
b6ad6062 | 4289 | uint64_t hcr = arm_hcr_el2_eff(env); |
ea04dce7 RH |
4290 | ARMMMUIdx mmu_idx; |
4291 | ||
4292 | /* Only the regime of the mmu_idx below is significant. */ | |
b6ad6062 | 4293 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { |
ea04dce7 RH |
4294 | mmu_idx = ARMMMUIdx_E20_0; |
4295 | } else { | |
4296 | mmu_idx = ARMMMUIdx_E10_0; | |
4297 | } | |
b6ad6062 RDC |
4298 | |
4299 | if (arm_is_secure_below_el3(env)) { | |
4300 | mmu_idx &= ~ARM_MMU_IDX_A_NS; | |
4301 | } | |
4302 | ||
ea04dce7 RH |
4303 | return tlbbits_for_regime(env, mmu_idx, addr); |
4304 | } | |
4305 | ||
fd3ed969 PM |
4306 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4307 | uint64_t value) | |
168aa23b | 4308 | { |
29a0af61 | 4309 | CPUState *cs = env_cpu(env); |
b7e0730d | 4310 | int mask = vae1_tlbmask(env); |
dbb1fb27 | 4311 | |
b7e0730d | 4312 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
168aa23b PM |
4313 | } |
4314 | ||
b4ab8ce9 PM |
4315 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4316 | uint64_t value) | |
4317 | { | |
29a0af61 | 4318 | CPUState *cs = env_cpu(env); |
b7e0730d | 4319 | int mask = vae1_tlbmask(env); |
b4ab8ce9 PM |
4320 | |
4321 | if (tlb_force_broadcast(env)) { | |
527db2be RH |
4322 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
4323 | } else { | |
4324 | tlb_flush_by_mmuidx(cs, mask); | |
b4ab8ce9 | 4325 | } |
b4ab8ce9 PM |
4326 | } |
4327 | ||
90c19cdf | 4328 | static int alle1_tlbmask(CPUARMState *env) |
168aa23b | 4329 | { |
90c19cdf RH |
4330 | /* |
4331 | * Note that the 'ALL' scope must invalidate both stage 1 and | |
fd3ed969 PM |
4332 | * stage 2 translations, whereas most other scopes only invalidate |
4333 | * stage 1 translations. | |
4334 | */ | |
fd3ed969 | 4335 | if (arm_is_secure_below_el3(env)) { |
452ef8cb RH |
4336 | return ARMMMUIdxBit_SE10_1 | |
4337 | ARMMMUIdxBit_SE10_1_PAN | | |
4338 | ARMMMUIdxBit_SE10_0; | |
fd3ed969 | 4339 | } else { |
452ef8cb RH |
4340 | return ARMMMUIdxBit_E10_1 | |
4341 | ARMMMUIdxBit_E10_1_PAN | | |
4342 | ARMMMUIdxBit_E10_0; | |
fd3ed969 | 4343 | } |
168aa23b PM |
4344 | } |
4345 | ||
85d0dc9f RH |
4346 | static int e2_tlbmask(CPUARMState *env) |
4347 | { | |
b6ad6062 RDC |
4348 | if (arm_is_secure_below_el3(env)) { |
4349 | return ARMMMUIdxBit_SE20_0 | | |
4350 | ARMMMUIdxBit_SE20_2 | | |
4351 | ARMMMUIdxBit_SE20_2_PAN | | |
4352 | ARMMMUIdxBit_SE2; | |
4353 | } else { | |
4354 | return ARMMMUIdxBit_E20_0 | | |
4355 | ARMMMUIdxBit_E20_2 | | |
4356 | ARMMMUIdxBit_E20_2_PAN | | |
4357 | ARMMMUIdxBit_E2; | |
4358 | } | |
85d0dc9f RH |
4359 | } |
4360 | ||
90c19cdf RH |
4361 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4362 | uint64_t value) | |
4363 | { | |
4364 | CPUState *cs = env_cpu(env); | |
4365 | int mask = alle1_tlbmask(env); | |
4366 | ||
4367 | tlb_flush_by_mmuidx(cs, mask); | |
4368 | } | |
4369 | ||
fd3ed969 | 4370 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
4371 | uint64_t value) |
4372 | { | |
85d0dc9f RH |
4373 | CPUState *cs = env_cpu(env); |
4374 | int mask = e2_tlbmask(env); | |
fd3ed969 | 4375 | |
85d0dc9f | 4376 | tlb_flush_by_mmuidx(cs, mask); |
fd3ed969 PM |
4377 | } |
4378 | ||
43efaa33 PM |
4379 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4380 | uint64_t value) | |
4381 | { | |
2fc0cc0e | 4382 | ARMCPU *cpu = env_archcpu(env); |
43efaa33 PM |
4383 | CPUState *cs = CPU(cpu); |
4384 | ||
127b2b08 | 4385 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4386 | } |
4387 | ||
fd3ed969 PM |
4388 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4389 | uint64_t value) | |
4390 | { | |
29a0af61 | 4391 | CPUState *cs = env_cpu(env); |
90c19cdf RH |
4392 | int mask = alle1_tlbmask(env); |
4393 | ||
4394 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); | |
fa439fc5 PM |
4395 | } |
4396 | ||
2bfb9d75 PM |
4397 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4398 | uint64_t value) | |
4399 | { | |
29a0af61 | 4400 | CPUState *cs = env_cpu(env); |
85d0dc9f | 4401 | int mask = e2_tlbmask(env); |
2bfb9d75 | 4402 | |
85d0dc9f | 4403 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
2bfb9d75 PM |
4404 | } |
4405 | ||
43efaa33 PM |
4406 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4407 | uint64_t value) | |
4408 | { | |
29a0af61 | 4409 | CPUState *cs = env_cpu(env); |
43efaa33 | 4410 | |
127b2b08 | 4411 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4412 | } |
4413 | ||
fd3ed969 PM |
4414 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4415 | uint64_t value) | |
fa439fc5 | 4416 | { |
fd3ed969 PM |
4417 | /* Invalidate by VA, EL2 |
4418 | * Currently handles both VAE2 and VALE2, since we don't support | |
4419 | * flush-last-level-only. | |
4420 | */ | |
85d0dc9f RH |
4421 | CPUState *cs = env_cpu(env); |
4422 | int mask = e2_tlbmask(env); | |
fd3ed969 PM |
4423 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
4424 | ||
85d0dc9f | 4425 | tlb_flush_page_by_mmuidx(cs, pageaddr, mask); |
fd3ed969 PM |
4426 | } |
4427 | ||
43efaa33 PM |
4428 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4429 | uint64_t value) | |
4430 | { | |
4431 | /* Invalidate by VA, EL3 | |
4432 | * Currently handles both VAE3 and VALE3, since we don't support | |
4433 | * flush-last-level-only. | |
4434 | */ | |
2fc0cc0e | 4435 | ARMCPU *cpu = env_archcpu(env); |
43efaa33 PM |
4436 | CPUState *cs = CPU(cpu); |
4437 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
4438 | ||
127b2b08 | 4439 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4440 | } |
4441 | ||
fd3ed969 PM |
4442 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4443 | uint64_t value) | |
4444 | { | |
90c19cdf RH |
4445 | CPUState *cs = env_cpu(env); |
4446 | int mask = vae1_tlbmask(env); | |
fa439fc5 | 4447 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
ea04dce7 | 4448 | int bits = vae1_tlbbits(env, pageaddr); |
fa439fc5 | 4449 | |
ea04dce7 | 4450 | tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); |
fa439fc5 PM |
4451 | } |
4452 | ||
b4ab8ce9 PM |
4453 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4454 | uint64_t value) | |
4455 | { | |
4456 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
4457 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
4458 | * since we don't support flush-for-specific-ASID-only or | |
4459 | * flush-last-level-only. | |
4460 | */ | |
90c19cdf RH |
4461 | CPUState *cs = env_cpu(env); |
4462 | int mask = vae1_tlbmask(env); | |
b4ab8ce9 | 4463 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
ea04dce7 | 4464 | int bits = vae1_tlbbits(env, pageaddr); |
b4ab8ce9 PM |
4465 | |
4466 | if (tlb_force_broadcast(env)) { | |
ea04dce7 | 4467 | tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); |
527db2be | 4468 | } else { |
ea04dce7 | 4469 | tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); |
b4ab8ce9 | 4470 | } |
b4ab8ce9 PM |
4471 | } |
4472 | ||
fd3ed969 PM |
4473 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4474 | uint64_t value) | |
fa439fc5 | 4475 | { |
29a0af61 | 4476 | CPUState *cs = env_cpu(env); |
fd3ed969 | 4477 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
b6ad6062 RDC |
4478 | bool secure = arm_is_secure_below_el3(env); |
4479 | int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; | |
eb849d8f | 4480 | int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, |
b6ad6062 | 4481 | pageaddr); |
fa439fc5 | 4482 | |
b6ad6062 | 4483 | tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); |
fa439fc5 PM |
4484 | } |
4485 | ||
43efaa33 PM |
4486 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4487 | uint64_t value) | |
4488 | { | |
29a0af61 | 4489 | CPUState *cs = env_cpu(env); |
43efaa33 | 4490 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
ea04dce7 | 4491 | int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); |
43efaa33 | 4492 | |
ea04dce7 RH |
4493 | tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, |
4494 | ARMMMUIdxBit_SE3, bits); | |
43efaa33 PM |
4495 | } |
4496 | ||
84940ed8 | 4497 | #ifdef TARGET_AARCH64 |
ab1cdb47 RH |
4498 | typedef struct { |
4499 | uint64_t base; | |
84940ed8 | 4500 | uint64_t length; |
ab1cdb47 RH |
4501 | } TLBIRange; |
4502 | ||
4503 | static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, | |
4504 | uint64_t value) | |
4505 | { | |
4506 | unsigned int page_size_granule, page_shift, num, scale, exponent; | |
3974ff93 RH |
4507 | /* Extract one bit to represent the va selector in use. */ |
4508 | uint64_t select = sextract64(value, 36, 1); | |
4509 | ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); | |
ab1cdb47 | 4510 | TLBIRange ret = { }; |
84940ed8 | 4511 | |
84940ed8 RC |
4512 | page_size_granule = extract64(value, 46, 2); |
4513 | ||
3974ff93 RH |
4514 | /* The granule encoded in value must match the granule in use. */ |
4515 | if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { | |
4516 | qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", | |
84940ed8 | 4517 | page_size_granule); |
ab1cdb47 | 4518 | return ret; |
84940ed8 RC |
4519 | } |
4520 | ||
52a9f609 | 4521 | page_shift = (page_size_granule - 1) * 2 + 12; |
ab1cdb47 RH |
4522 | num = extract64(value, 39, 5); |
4523 | scale = extract64(value, 44, 2); | |
84940ed8 | 4524 | exponent = (5 * scale) + 1; |
84940ed8 | 4525 | |
ab1cdb47 | 4526 | ret.length = (num + 1) << (exponent + page_shift); |
84940ed8 | 4527 | |
3974ff93 | 4528 | if (param.select) { |
d976de21 | 4529 | ret.base = sextract64(value, 0, 37); |
84940ed8 | 4530 | } else { |
d976de21 | 4531 | ret.base = extract64(value, 0, 37); |
84940ed8 | 4532 | } |
ef56c242 RH |
4533 | if (param.ds) { |
4534 | /* | |
4535 | * With DS=1, BaseADDR is always shifted 16 so that it is able | |
4536 | * to address all 52 va bits. The input address is perforce | |
4537 | * aligned on a 64k boundary regardless of translation granule. | |
4538 | */ | |
4539 | page_shift = 16; | |
4540 | } | |
d976de21 | 4541 | ret.base <<= page_shift; |
84940ed8 | 4542 | |
ab1cdb47 | 4543 | return ret; |
84940ed8 RC |
4544 | } |
4545 | ||
4546 | static void do_rvae_write(CPUARMState *env, uint64_t value, | |
4547 | int idxmap, bool synced) | |
4548 | { | |
4549 | ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); | |
ab1cdb47 | 4550 | TLBIRange range; |
84940ed8 RC |
4551 | int bits; |
4552 | ||
ab1cdb47 RH |
4553 | range = tlbi_aa64_get_range(env, one_idx, value); |
4554 | bits = tlbbits_for_regime(env, one_idx, range.base); | |
84940ed8 RC |
4555 | |
4556 | if (synced) { | |
4557 | tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), | |
ab1cdb47 RH |
4558 | range.base, |
4559 | range.length, | |
84940ed8 RC |
4560 | idxmap, |
4561 | bits); | |
4562 | } else { | |
ab1cdb47 RH |
4563 | tlb_flush_range_by_mmuidx(env_cpu(env), range.base, |
4564 | range.length, idxmap, bits); | |
84940ed8 RC |
4565 | } |
4566 | } | |
4567 | ||
4568 | static void tlbi_aa64_rvae1_write(CPUARMState *env, | |
4569 | const ARMCPRegInfo *ri, | |
4570 | uint64_t value) | |
4571 | { | |
4572 | /* | |
4573 | * Invalidate by VA range, EL1&0. | |
4574 | * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, | |
4575 | * since we don't support flush-for-specific-ASID-only or | |
4576 | * flush-last-level-only. | |
4577 | */ | |
4578 | ||
4579 | do_rvae_write(env, value, vae1_tlbmask(env), | |
4580 | tlb_force_broadcast(env)); | |
4581 | } | |
4582 | ||
4583 | static void tlbi_aa64_rvae1is_write(CPUARMState *env, | |
4584 | const ARMCPRegInfo *ri, | |
4585 | uint64_t value) | |
4586 | { | |
4587 | /* | |
4588 | * Invalidate by VA range, Inner/Outer Shareable EL1&0. | |
4589 | * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, | |
4590 | * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support | |
4591 | * flush-for-specific-ASID-only, flush-last-level-only or inner/outer | |
4592 | * shareable specific flushes. | |
4593 | */ | |
4594 | ||
4595 | do_rvae_write(env, value, vae1_tlbmask(env), true); | |
4596 | } | |
4597 | ||
4598 | static int vae2_tlbmask(CPUARMState *env) | |
4599 | { | |
4600 | return (arm_is_secure_below_el3(env) | |
4601 | ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); | |
4602 | } | |
4603 | ||
4604 | static void tlbi_aa64_rvae2_write(CPUARMState *env, | |
4605 | const ARMCPRegInfo *ri, | |
4606 | uint64_t value) | |
4607 | { | |
4608 | /* | |
4609 | * Invalidate by VA range, EL2. | |
4610 | * Currently handles all of RVAE2 and RVALE2, | |
4611 | * since we don't support flush-for-specific-ASID-only or | |
4612 | * flush-last-level-only. | |
4613 | */ | |
4614 | ||
4615 | do_rvae_write(env, value, vae2_tlbmask(env), | |
4616 | tlb_force_broadcast(env)); | |
4617 | ||
4618 | ||
4619 | } | |
4620 | ||
4621 | static void tlbi_aa64_rvae2is_write(CPUARMState *env, | |
4622 | const ARMCPRegInfo *ri, | |
4623 | uint64_t value) | |
4624 | { | |
4625 | /* | |
4626 | * Invalidate by VA range, Inner/Outer Shareable, EL2. | |
4627 | * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, | |
4628 | * since we don't support flush-for-specific-ASID-only, | |
4629 | * flush-last-level-only or inner/outer shareable specific flushes. | |
4630 | */ | |
4631 | ||
4632 | do_rvae_write(env, value, vae2_tlbmask(env), true); | |
4633 | ||
4634 | } | |
4635 | ||
4636 | static void tlbi_aa64_rvae3_write(CPUARMState *env, | |
4637 | const ARMCPRegInfo *ri, | |
4638 | uint64_t value) | |
4639 | { | |
4640 | /* | |
4641 | * Invalidate by VA range, EL3. | |
4642 | * Currently handles all of RVAE3 and RVALE3, | |
4643 | * since we don't support flush-for-specific-ASID-only or | |
4644 | * flush-last-level-only. | |
4645 | */ | |
4646 | ||
4647 | do_rvae_write(env, value, ARMMMUIdxBit_SE3, | |
4648 | tlb_force_broadcast(env)); | |
4649 | } | |
4650 | ||
4651 | static void tlbi_aa64_rvae3is_write(CPUARMState *env, | |
4652 | const ARMCPRegInfo *ri, | |
4653 | uint64_t value) | |
4654 | { | |
4655 | /* | |
4656 | * Invalidate by VA range, EL3, Inner/Outer Shareable. | |
4657 | * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, | |
4658 | * since we don't support flush-for-specific-ASID-only, | |
4659 | * flush-last-level-only or inner/outer specific flushes. | |
4660 | */ | |
4661 | ||
4662 | do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); | |
4663 | } | |
4664 | #endif | |
4665 | ||
3f208fd7 PM |
4666 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4667 | bool isread) | |
aca3f40b | 4668 | { |
4351cb72 RH |
4669 | int cur_el = arm_current_el(env); |
4670 | ||
4671 | if (cur_el < 2) { | |
4672 | uint64_t hcr = arm_hcr_el2_eff(env); | |
4673 | ||
4674 | if (cur_el == 0) { | |
4675 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
4676 | if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { | |
4677 | return CP_ACCESS_TRAP_EL2; | |
4678 | } | |
4679 | } else { | |
4680 | if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { | |
4681 | return CP_ACCESS_TRAP; | |
4682 | } | |
4683 | if (hcr & HCR_TDZ) { | |
4684 | return CP_ACCESS_TRAP_EL2; | |
4685 | } | |
4686 | } | |
4687 | } else if (hcr & HCR_TDZ) { | |
4688 | return CP_ACCESS_TRAP_EL2; | |
4689 | } | |
aca3f40b PM |
4690 | } |
4691 | return CP_ACCESS_OK; | |
4692 | } | |
4693 | ||
4694 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
4695 | { | |
2fc0cc0e | 4696 | ARMCPU *cpu = env_archcpu(env); |
aca3f40b PM |
4697 | int dzp_bit = 1 << 4; |
4698 | ||
4699 | /* DZP indicates whether DC ZVA access is allowed */ | |
3f208fd7 | 4700 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
aca3f40b PM |
4701 | dzp_bit = 0; |
4702 | } | |
4703 | return cpu->dcz_blocksize | dzp_bit; | |
4704 | } | |
4705 | ||
3f208fd7 PM |
4706 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4707 | bool isread) | |
f502cfc2 | 4708 | { |
cdcf1405 | 4709 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
4710 | /* Access to SP_EL0 is undefined if it's being used as |
4711 | * the stack pointer. | |
4712 | */ | |
4713 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
4714 | } | |
4715 | return CP_ACCESS_OK; | |
4716 | } | |
4717 | ||
4718 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
4719 | { | |
4720 | return env->pstate & PSTATE_SP; | |
4721 | } | |
4722 | ||
4723 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
4724 | { | |
4725 | update_spsel(env, val); | |
4726 | } | |
4727 | ||
137feaa9 FA |
4728 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4729 | uint64_t value) | |
4730 | { | |
2fc0cc0e | 4731 | ARMCPU *cpu = env_archcpu(env); |
137feaa9 | 4732 | |
f00faf13 RH |
4733 | if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { |
4734 | /* M bit is RAZ/WI for PMSA with no MPU implemented */ | |
4735 | value &= ~SCTLR_M; | |
4736 | } | |
4737 | ||
4738 | /* ??? Lots of these bits are not implemented. */ | |
4739 | ||
4740 | if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { | |
4741 | if (ri->opc1 == 6) { /* SCTLR_EL3 */ | |
4742 | value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); | |
4743 | } else { | |
4744 | value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | | |
4745 | SCTLR_ATA0 | SCTLR_ATA); | |
4746 | } | |
4747 | } | |
4748 | ||
137feaa9 FA |
4749 | if (raw_read(env, ri) == value) { |
4750 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
4751 | * to do a lot of pointless SCTLR writes. | |
4752 | */ | |
4753 | return; | |
4754 | } | |
4755 | ||
4756 | raw_write(env, ri, value); | |
f00faf13 | 4757 | |
137feaa9 | 4758 | /* This may enable/disable the MMU, so do a TLB flush. */ |
d10eb08f | 4759 | tlb_flush(CPU(cpu)); |
2e5dcf36 RH |
4760 | |
4761 | if (ri->type & ARM_CP_SUPPRESS_TB_END) { | |
4762 | /* | |
4763 | * Normally we would always end the TB on an SCTLR write; see the | |
4764 | * comment in ARMCPRegInfo sctlr initialization below for why Xscale | |
4765 | * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild | |
4766 | * of hflags from the translator, so do it here. | |
4767 | */ | |
4768 | arm_rebuild_hflags(env); | |
4769 | } | |
137feaa9 FA |
4770 | } |
4771 | ||
a8d64e73 PM |
4772 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4773 | uint64_t value) | |
4774 | { | |
4775 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; | |
4776 | } | |
4777 | ||
b0d2b7d0 PM |
4778 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
4779 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
4780 | * significantly for system emulation of AArch64 CPUs. | |
4781 | */ | |
4782 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
4783 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
4784 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
4785 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
4786 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 4787 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
4788 | .access = PL0_RW, .accessfn = aa64_daif_access, |
4789 | .fieldoffset = offsetof(CPUARMState, daif), | |
4790 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
4791 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
4792 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
b916c9c3 | 4793 | .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
fe03d45f | 4794 | .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
b0d2b7d0 PM |
4795 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, |
4796 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
b916c9c3 | 4797 | .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
fe03d45f | 4798 | .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
b0d2b7d0 PM |
4799 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
4800 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 4801 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
4802 | .readfn = aa64_dczid_read }, |
4803 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
4804 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
4805 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
4806 | #ifndef CONFIG_USER_ONLY | |
4807 | /* Avoid overhead of an access check that always passes in user-mode */ | |
4808 | .accessfn = aa64_zva_access, | |
4809 | #endif | |
4810 | }, | |
0eef9d98 PM |
4811 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
4812 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
4813 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
4814 | /* Cache ops: all NOPs since we don't emulate caches */ |
4815 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
4816 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
38262d8a RH |
4817 | .access = PL1_W, .type = ARM_CP_NOP, |
4818 | .accessfn = aa64_cacheop_pou_access }, | |
8af35c37 PM |
4819 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, |
4820 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
38262d8a RH |
4821 | .access = PL1_W, .type = ARM_CP_NOP, |
4822 | .accessfn = aa64_cacheop_pou_access }, | |
8af35c37 PM |
4823 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, |
4824 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
4825 | .access = PL0_W, .type = ARM_CP_NOP, | |
38262d8a | 4826 | .accessfn = aa64_cacheop_pou_access }, |
8af35c37 PM |
4827 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, |
4828 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1bed4d2e RH |
4829 | .access = PL1_W, .accessfn = aa64_cacheop_poc_access, |
4830 | .type = ARM_CP_NOP }, | |
8af35c37 PM |
4831 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, |
4832 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
1803d271 | 4833 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
8af35c37 PM |
4834 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, |
4835 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
4836 | .access = PL0_W, .type = ARM_CP_NOP, | |
1bed4d2e | 4837 | .accessfn = aa64_cacheop_poc_access }, |
8af35c37 PM |
4838 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, |
4839 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
1803d271 | 4840 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
8af35c37 PM |
4841 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, |
4842 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
4843 | .access = PL0_W, .type = ARM_CP_NOP, | |
38262d8a | 4844 | .accessfn = aa64_cacheop_pou_access }, |
8af35c37 PM |
4845 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, |
4846 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
4847 | .access = PL0_W, .type = ARM_CP_NOP, | |
1bed4d2e | 4848 | .accessfn = aa64_cacheop_poc_access }, |
8af35c37 PM |
4849 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, |
4850 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
1803d271 | 4851 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
168aa23b PM |
4852 | /* TLBI operations */ |
4853 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 4854 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
30881b73 | 4855 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4856 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 4857 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4858 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
30881b73 | 4859 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4860 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4861 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4862 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
30881b73 | 4863 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4864 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 4865 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4866 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
30881b73 | 4867 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4868 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4869 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4870 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
30881b73 | 4871 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4872 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4873 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4874 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
30881b73 | 4875 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4876 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4877 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4878 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
30881b73 | 4879 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4880 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 4881 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4882 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
30881b73 | 4883 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4884 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4885 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4886 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
30881b73 | 4887 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4888 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 4889 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4890 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
30881b73 | 4891 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4892 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4893 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4894 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
30881b73 | 4895 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4896 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4897 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4898 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
30881b73 | 4899 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4900 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
4901 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
4902 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
bf05340c | 4903 | .access = PL2_W, .type = ARM_CP_NOP }, |
cea66e91 PM |
4904 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, |
4905 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
bf05340c | 4906 | .access = PL2_W, .type = ARM_CP_NOP }, |
83ddf975 PM |
4907 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
4908 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
4909 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 4910 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
4911 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
4912 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
4913 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4914 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
4915 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
4916 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
bf05340c | 4917 | .access = PL2_W, .type = ARM_CP_NOP }, |
cea66e91 PM |
4918 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, |
4919 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
bf05340c | 4920 | .access = PL2_W, .type = ARM_CP_NOP }, |
83ddf975 PM |
4921 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
4922 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
4923 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 4924 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
4925 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
4926 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
4927 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4928 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
4929 | #ifndef CONFIG_USER_ONLY |
4930 | /* 64 bit address translation operations */ | |
4931 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
4932 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
0710b2fa PM |
4933 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4934 | .writefn = ats_write64 }, | |
19525524 PM |
4935 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
4936 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
0710b2fa PM |
4937 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4938 | .writefn = ats_write64 }, | |
19525524 PM |
4939 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
4940 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
0710b2fa PM |
4941 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4942 | .writefn = ats_write64 }, | |
19525524 PM |
4943 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
4944 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
0710b2fa PM |
4945 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4946 | .writefn = ats_write64 }, | |
2a47df95 | 4947 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 4948 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
0710b2fa PM |
4949 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4950 | .writefn = ats_write64 }, | |
2a47df95 | 4951 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, |
7a379c7e | 4952 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
0710b2fa PM |
4953 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4954 | .writefn = ats_write64 }, | |
2a47df95 | 4955 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 4956 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
0710b2fa PM |
4957 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4958 | .writefn = ats_write64 }, | |
2a47df95 | 4959 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, |
7a379c7e | 4960 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
0710b2fa PM |
4961 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4962 | .writefn = ats_write64 }, | |
2a47df95 PM |
4963 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ |
4964 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
4965 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
0710b2fa PM |
4966 | .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4967 | .writefn = ats_write64 }, | |
2a47df95 PM |
4968 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, |
4969 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
0710b2fa PM |
4970 | .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4971 | .writefn = ats_write64 }, | |
c96fc9b5 EI |
4972 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
4973 | .type = ARM_CP_ALIAS, | |
4974 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
4975 | .access = PL1_RW, .resetvalue = 0, | |
4976 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
4977 | .writefn = par_write }, | |
19525524 | 4978 | #endif |
995939a6 | 4979 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 4980 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
30881b73 RH |
4981 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
4982 | .writefn = tlbimva_is_write }, | |
9449fdf6 | 4983 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
30881b73 | 4984 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 4985 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 4986 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
30881b73 RH |
4987 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
4988 | .writefn = tlbimva_write }, | |
9449fdf6 | 4989 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
30881b73 RH |
4990 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
4991 | .writefn = tlbimvaa_write }, | |
541ef8c2 SS |
4992 | { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
4993 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
4994 | .writefn = tlbimva_hyp_write }, | |
4995 | { .name = "TLBIMVALHIS", | |
4996 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
4997 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
4998 | .writefn = tlbimva_hyp_is_write }, | |
4999 | { .name = "TLBIIPAS2", | |
5000 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
bf05340c | 5001 | .type = ARM_CP_NOP, .access = PL2_W }, |
541ef8c2 SS |
5002 | { .name = "TLBIIPAS2IS", |
5003 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
bf05340c | 5004 | .type = ARM_CP_NOP, .access = PL2_W }, |
541ef8c2 SS |
5005 | { .name = "TLBIIPAS2L", |
5006 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
bf05340c | 5007 | .type = ARM_CP_NOP, .access = PL2_W }, |
541ef8c2 SS |
5008 | { .name = "TLBIIPAS2LIS", |
5009 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
bf05340c | 5010 | .type = ARM_CP_NOP, .access = PL2_W }, |
9449fdf6 PM |
5011 | /* 32 bit cache operations */ |
5012 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
38262d8a | 5013 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 PM |
5014 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, |
5015 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5016 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
38262d8a | 5017 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 | 5018 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, |
38262d8a | 5019 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 PM |
5020 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, |
5021 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5022 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
5023 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5024 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1bed4d2e | 5025 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5026 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
1803d271 | 5027 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5028 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, |
1bed4d2e | 5029 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5030 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
1803d271 | 5031 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5032 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, |
38262d8a | 5033 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 | 5034 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, |
1bed4d2e | 5035 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5036 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
1803d271 | 5037 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5038 | /* MMU Domain access control / MPU write buffer control */ |
0c17d68c | 5039 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
84929218 | 5040 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
0c17d68c FA |
5041 | .writefn = dacr_write, .raw_writefn = raw_write, |
5042 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
5043 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 5044 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5045 | .type = ARM_CP_ALIAS, |
a0618a19 | 5046 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
5047 | .access = PL1_RW, |
5048 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 5049 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5050 | .type = ARM_CP_ALIAS, |
a65f1de9 | 5051 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5052 | .access = PL1_RW, |
5053 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, | |
f502cfc2 PM |
5054 | /* We rely on the access checks not allowing the guest to write to the |
5055 | * state field when SPSel indicates that it's being used as the stack | |
5056 | * pointer. | |
5057 | */ | |
5058 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
5059 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
5060 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 5061 | .type = ARM_CP_ALIAS, |
f502cfc2 | 5062 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
5063 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
5064 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 5065 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 5066 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
5067 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
5068 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 5069 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 5070 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
03fbf20f PM |
5071 | { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
5072 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, | |
696ba377 RH |
5073 | .access = PL2_RW, |
5074 | .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, | |
a4c88675 | 5075 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, |
6a43e0b6 PM |
5076 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
5077 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
696ba377 | 5078 | .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, |
6a43e0b6 PM |
5079 | .writefn = dacr_write, .raw_writefn = raw_write, |
5080 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
5081 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | |
5082 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
696ba377 | 5083 | .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, |
6a43e0b6 PM |
5084 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, |
5085 | { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, | |
5086 | .type = ARM_CP_ALIAS, | |
5087 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, | |
5088 | .access = PL2_RW, | |
5089 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, | |
5090 | { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, | |
5091 | .type = ARM_CP_ALIAS, | |
5092 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, | |
5093 | .access = PL2_RW, | |
5094 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, | |
5095 | { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, | |
5096 | .type = ARM_CP_ALIAS, | |
5097 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, | |
5098 | .access = PL2_RW, | |
5099 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, | |
5100 | { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, | |
5101 | .type = ARM_CP_ALIAS, | |
5102 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, | |
5103 | .access = PL2_RW, | |
5104 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, | |
a8d64e73 PM |
5105 | { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
5106 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, | |
5107 | .resetvalue = 0, | |
5108 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, | |
5109 | { .name = "SDCR", .type = ARM_CP_ALIAS, | |
5110 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, | |
5111 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, | |
5112 | .writefn = sdcr_write, | |
5113 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, | |
b0d2b7d0 PM |
5114 | }; |
5115 | ||
d1fb4da2 | 5116 | static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) |
f149e3e8 | 5117 | { |
2fc0cc0e | 5118 | ARMCPU *cpu = env_archcpu(env); |
d1fb4da2 RH |
5119 | |
5120 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
5121 | valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ | |
5122 | } else { | |
5123 | valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ | |
5124 | } | |
f149e3e8 EI |
5125 | |
5126 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
5127 | valid_mask &= ~HCR_HCD; | |
77077a83 JK |
5128 | } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
5129 | /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. | |
5130 | * However, if we're using the SMC PSCI conduit then QEMU is | |
5131 | * effectively acting like EL3 firmware and so the guest at | |
5132 | * EL2 should retain the ability to prevent EL1 from being | |
5133 | * able to make SMC calls into the ersatz firmware, so in | |
5134 | * that case HCR.TSC should be read/write. | |
5135 | */ | |
f149e3e8 EI |
5136 | valid_mask &= ~HCR_TSC; |
5137 | } | |
d1fb4da2 RH |
5138 | |
5139 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
5140 | if (cpu_isar_feature(aa64_vh, cpu)) { | |
5141 | valid_mask |= HCR_E2H; | |
5142 | } | |
da3d8b13 RH |
5143 | if (cpu_isar_feature(aa64_ras, cpu)) { |
5144 | valid_mask |= HCR_TERR | HCR_TEA; | |
5145 | } | |
d1fb4da2 RH |
5146 | if (cpu_isar_feature(aa64_lor, cpu)) { |
5147 | valid_mask |= HCR_TLOR; | |
5148 | } | |
5149 | if (cpu_isar_feature(aa64_pauth, cpu)) { | |
5150 | valid_mask |= HCR_API | HCR_APK; | |
5151 | } | |
8ddb300b RH |
5152 | if (cpu_isar_feature(aa64_mte, cpu)) { |
5153 | valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; | |
5154 | } | |
7cb1e618 RH |
5155 | if (cpu_isar_feature(aa64_scxtnum, cpu)) { |
5156 | valid_mask |= HCR_ENSCXT; | |
5157 | } | |
ef682cdb | 5158 | } |
f149e3e8 EI |
5159 | |
5160 | /* Clear RES0 bits. */ | |
5161 | value &= valid_mask; | |
5162 | ||
8ddb300b RH |
5163 | /* |
5164 | * These bits change the MMU setup: | |
f149e3e8 EI |
5165 | * HCR_VM enables stage 2 translation |
5166 | * HCR_PTW forbids certain page-table setups | |
8ddb300b RH |
5167 | * HCR_DC disables stage1 and enables stage2 translation |
5168 | * HCR_DCT enables tagging on (disabled) stage1 translation | |
f149e3e8 | 5169 | */ |
8ddb300b | 5170 | if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { |
d10eb08f | 5171 | tlb_flush(CPU(cpu)); |
f149e3e8 | 5172 | } |
ce4afed8 | 5173 | env->cp15.hcr_el2 = value; |
89430fc6 PM |
5174 | |
5175 | /* | |
5176 | * Updates to VI and VF require us to update the status of | |
5177 | * virtual interrupts, which are the logical OR of these bits | |
5178 | * and the state of the input lines from the GIC. (This requires | |
5179 | * that we have the iothread lock, which is done by marking the | |
5180 | * reginfo structs as ARM_CP_IO.) | |
5181 | * Note that if a write to HCR pends a VIRQ or VFIQ it is never | |
5182 | * possible for it to be taken immediately, because VIRQ and | |
5183 | * VFIQ are masked unless running at EL0 or EL1, and HCR | |
5184 | * can only be written at EL2. | |
5185 | */ | |
5186 | g_assert(qemu_mutex_iothread_locked()); | |
5187 | arm_cpu_update_virq(cpu); | |
5188 | arm_cpu_update_vfiq(cpu); | |
3c29632f | 5189 | arm_cpu_update_vserr(cpu); |
ce4afed8 PM |
5190 | } |
5191 | ||
d1fb4da2 RH |
5192 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
5193 | { | |
5194 | do_hcr_write(env, value, 0); | |
5195 | } | |
5196 | ||
ce4afed8 PM |
5197 | static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, |
5198 | uint64_t value) | |
5199 | { | |
5200 | /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ | |
5201 | value = deposit64(env->cp15.hcr_el2, 32, 32, value); | |
d1fb4da2 | 5202 | do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); |
ce4afed8 PM |
5203 | } |
5204 | ||
5205 | static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, | |
5206 | uint64_t value) | |
5207 | { | |
5208 | /* Handle HCR write, i.e. write to low half of HCR_EL2 */ | |
5209 | value = deposit64(env->cp15.hcr_el2, 0, 32, value); | |
d1fb4da2 | 5210 | do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); |
f149e3e8 EI |
5211 | } |
5212 | ||
f7778444 RH |
5213 | /* |
5214 | * Return the effective value of HCR_EL2. | |
5215 | * Bits that are not included here: | |
5216 | * RW (read from SCR_EL3.RW as needed) | |
5217 | */ | |
5218 | uint64_t arm_hcr_el2_eff(CPUARMState *env) | |
5219 | { | |
5220 | uint64_t ret = env->cp15.hcr_el2; | |
5221 | ||
e6ef0169 | 5222 | if (!arm_is_el2_enabled(env)) { |
f7778444 RH |
5223 | /* |
5224 | * "This register has no effect if EL2 is not enabled in the | |
5225 | * current Security state". This is ARMv8.4-SecEL2 speak for | |
5226 | * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). | |
5227 | * | |
5228 | * Prior to that, the language was "In an implementation that | |
5229 | * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves | |
5230 | * as if this field is 0 for all purposes other than a direct | |
5231 | * read or write access of HCR_EL2". With lots of enumeration | |
5232 | * on a per-field basis. In current QEMU, this is condition | |
5233 | * is arm_is_secure_below_el3. | |
5234 | * | |
5235 | * Since the v8.4 language applies to the entire register, and | |
5236 | * appears to be backward compatible, use that. | |
5237 | */ | |
4990e1d3 RH |
5238 | return 0; |
5239 | } | |
5240 | ||
5241 | /* | |
5242 | * For a cpu that supports both aarch64 and aarch32, we can set bits | |
5243 | * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. | |
5244 | * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. | |
5245 | */ | |
5246 | if (!arm_el_is_aa64(env, 2)) { | |
5247 | uint64_t aa32_valid; | |
5248 | ||
5249 | /* | |
5250 | * These bits are up-to-date as of ARMv8.6. | |
5251 | * For HCR, it's easiest to list just the 2 bits that are invalid. | |
5252 | * For HCR2, list those that are valid. | |
5253 | */ | |
5254 | aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); | |
5255 | aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | | |
5256 | HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); | |
5257 | ret &= aa32_valid; | |
5258 | } | |
5259 | ||
5260 | if (ret & HCR_TGE) { | |
5261 | /* These bits are up-to-date as of ARMv8.6. */ | |
f7778444 RH |
5262 | if (ret & HCR_E2H) { |
5263 | ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | | |
5264 | HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | | |
5265 | HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | | |
4990e1d3 RH |
5266 | HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | |
5267 | HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | | |
5268 | HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); | |
f7778444 RH |
5269 | } else { |
5270 | ret |= HCR_FMO | HCR_IMO | HCR_AMO; | |
5271 | } | |
5272 | ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | | |
5273 | HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | | |
5274 | HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | | |
5275 | HCR_TLOR); | |
5276 | } | |
5277 | ||
5278 | return ret; | |
5279 | } | |
5280 | ||
fc1120a7 PM |
5281 | static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
5282 | uint64_t value) | |
5283 | { | |
5284 | /* | |
5285 | * For A-profile AArch32 EL3, if NSACR.CP10 | |
5286 | * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. | |
5287 | */ | |
5288 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
5289 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
5290 | value &= ~(0x3 << 10); | |
5291 | value |= env->cp15.cptr_el[2] & (0x3 << 10); | |
5292 | } | |
5293 | env->cp15.cptr_el[2] = value; | |
5294 | } | |
5295 | ||
5296 | static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
5297 | { | |
5298 | /* | |
5299 | * For A-profile AArch32 EL3, if NSACR.CP10 | |
5300 | * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. | |
5301 | */ | |
5302 | uint64_t value = env->cp15.cptr_el[2]; | |
5303 | ||
5304 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
5305 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
5306 | value |= 0x3 << 10; | |
5307 | } | |
5308 | return value; | |
5309 | } | |
5310 | ||
4771cd01 | 5311 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 | 5312 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
89430fc6 | 5313 | .type = ARM_CP_IO, |
f149e3e8 EI |
5314 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
5315 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
c624ea0f | 5316 | .writefn = hcr_write }, |
ce4afed8 | 5317 | { .name = "HCR", .state = ARM_CP_STATE_AA32, |
89430fc6 | 5318 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
ce4afed8 PM |
5319 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
5320 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
c624ea0f | 5321 | .writefn = hcr_writelow }, |
831a2fca PM |
5322 | { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, |
5323 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, | |
5324 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3b685ba7 | 5325 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5326 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
5327 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
5328 | .access = PL2_RW, | |
5329 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
68e78e33 | 5330 | { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, |
f2c30f42 EI |
5331 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
5332 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
cba517c3 | 5333 | { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, |
63b60551 EI |
5334 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, |
5335 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
cba517c3 PM |
5336 | { .name = "HIFAR", .state = ARM_CP_STATE_AA32, |
5337 | .type = ARM_CP_ALIAS, | |
5338 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, | |
5339 | .access = PL2_RW, | |
5340 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 5341 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5342 | .type = ARM_CP_ALIAS, |
3b685ba7 | 5343 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5344 | .access = PL2_RW, |
5345 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, | |
d79e0c06 | 5346 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, |
d42e3c26 EI |
5347 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
5348 | .access = PL2_RW, .writefn = vbar_write, | |
5349 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
5350 | .resetvalue = 0 }, | |
884b4dee GB |
5351 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
5352 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 5353 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 5354 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
5355 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
5356 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
5357 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
fc1120a7 PM |
5358 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), |
5359 | .readfn = cptr_el2_read, .writefn = cptr_el2_write }, | |
95f949ac EI |
5360 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5361 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
5362 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
5363 | .resetvalue = 0 }, | |
5364 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
b5ede85b | 5365 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
95f949ac EI |
5366 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
5367 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
5368 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5369 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
5370 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5371 | .resetvalue = 0 }, | |
5372 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
55b53c71 | 5373 | { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, |
b5ede85b | 5374 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
2179ef95 PM |
5375 | .access = PL2_RW, .type = ARM_CP_CONST, |
5376 | .resetvalue = 0 }, | |
37cd6c24 PM |
5377 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
5378 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
5379 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5380 | .resetvalue = 0 }, | |
5381 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
5382 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
5383 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5384 | .resetvalue = 0 }, | |
06ec4c8c EI |
5385 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
5386 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
d06dc933 RH |
5387 | .access = PL2_RW, .writefn = vmsa_tcr_el12_write, |
5388 | /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ | |
06ec4c8c | 5389 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
68e9c2fe EI |
5390 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
5391 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 | 5392 | .type = ARM_CP_ALIAS, |
68e9c2fe EI |
5393 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
5394 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
5395 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
5396 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 PM |
5397 | .access = PL2_RW, |
5398 | /* no .writefn needed as this can't cause an ASID change; | |
5399 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
5400 | */ | |
68e9c2fe | 5401 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
b698e9cf EI |
5402 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
5403 | .cp = 15, .opc1 = 6, .crm = 2, | |
5404 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
5405 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
5406 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
5407 | .writefn = vttbr_write }, | |
5408 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
5409 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
5410 | .access = PL2_RW, .writefn = vttbr_write, | |
5411 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
5412 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
5413 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
5414 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
5415 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
5416 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
5417 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
5418 | .access = PL2_RW, .resetvalue = 0, | |
5419 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
5420 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
5421 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
ed30da8e | 5422 | .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, |
a57633c0 EI |
5423 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
5424 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
5425 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 5426 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
541ef8c2 SS |
5427 | { .name = "TLBIALLNSNH", |
5428 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
5429 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5430 | .writefn = tlbiall_nsnh_write }, | |
5431 | { .name = "TLBIALLNSNHIS", | |
5432 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
5433 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5434 | .writefn = tlbiall_nsnh_is_write }, | |
5435 | { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
5436 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5437 | .writefn = tlbiall_hyp_write }, | |
5438 | { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
5439 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5440 | .writefn = tlbiall_hyp_is_write }, | |
5441 | { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
5442 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5443 | .writefn = tlbimva_hyp_write }, | |
5444 | { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
5445 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5446 | .writefn = tlbimva_hyp_is_write }, | |
51da9014 EI |
5447 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
5448 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
696ba377 | 5449 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
fd3ed969 | 5450 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
5451 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
5452 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
696ba377 | 5453 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
fd3ed969 | 5454 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
5455 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
5456 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
696ba377 | 5457 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
2bfb9d75 PM |
5458 | .writefn = tlbi_aa64_vae2_write }, |
5459 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
5460 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
696ba377 | 5461 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
2bfb9d75 | 5462 | .writefn = tlbi_aa64_alle2is_write }, |
8742d49d EI |
5463 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
5464 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
696ba377 | 5465 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
fd3ed969 | 5466 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
5467 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
5468 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
696ba377 | 5469 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
2bfb9d75 | 5470 | .writefn = tlbi_aa64_vae2is_write }, |
edac4d8a | 5471 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
5472 | /* Unlike the other EL2-related AT operations, these must |
5473 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
5474 | * define them here rather than with the rest of the AT ops. | |
5475 | */ | |
5476 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
5477 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
5478 | .access = PL2_W, .accessfn = at_s1e2_access, | |
696ba377 RH |
5479 | .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, |
5480 | .writefn = ats_write64 }, | |
2a47df95 PM |
5481 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, |
5482 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
5483 | .access = PL2_W, .accessfn = at_s1e2_access, | |
696ba377 RH |
5484 | .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, |
5485 | .writefn = ats_write64 }, | |
14db7fe0 PM |
5486 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
5487 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
5488 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
5489 | * to behave as if SCR.NS was 1. | |
5490 | */ | |
5491 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
5492 | .access = PL2_W, | |
0710b2fa | 5493 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
14db7fe0 PM |
5494 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
5495 | .access = PL2_W, | |
0710b2fa | 5496 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
0b6440af EI |
5497 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
5498 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
5499 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
5500 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
5501 | * both ARMv7 and ARMv8. | |
5502 | */ | |
5503 | .access = PL2_RW, .resetvalue = 3, | |
5504 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
5505 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
5506 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
5507 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
5508 | .writefn = gt_cntvoff_write, | |
5509 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
5510 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
5511 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
5512 | .writefn = gt_cntvoff_write, | |
5513 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
5514 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
5515 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
5516 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
5517 | .type = ARM_CP_IO, .access = PL2_RW, | |
5518 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
5519 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
5520 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
5521 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
5522 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
5523 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
5524 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
d44ec156 | 5525 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
b0e66d95 EI |
5526 | .resetfn = gt_hyp_timer_reset, |
5527 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
5528 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
5529 | .type = ARM_CP_IO, | |
5530 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
5531 | .access = PL2_RW, | |
5532 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
5533 | .resetvalue = 0, | |
5534 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 5535 | #endif |
21c2dd77 PM |
5536 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
5537 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. | |
5538 | */ | |
5539 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, | |
5540 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
5541 | .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, | |
5542 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, | |
59e05530 EI |
5543 | { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
5544 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
5545 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
5546 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
5547 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, | |
5548 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
5549 | .access = PL2_RW, | |
5550 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
2a5a9abd AF |
5551 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
5552 | .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
5553 | .access = PL2_RW, | |
5554 | .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, | |
3b685ba7 EI |
5555 | }; |
5556 | ||
ce4afed8 PM |
5557 | static const ARMCPRegInfo el2_v8_cp_reginfo[] = { |
5558 | { .name = "HCR2", .state = ARM_CP_STATE_AA32, | |
89430fc6 | 5559 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
ce4afed8 PM |
5560 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, |
5561 | .access = PL2_RW, | |
5562 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), | |
5563 | .writefn = hcr_writehigh }, | |
ce4afed8 PM |
5564 | }; |
5565 | ||
e9152ee9 RDC |
5566 | static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
5567 | bool isread) | |
5568 | { | |
5569 | if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { | |
5570 | return CP_ACCESS_OK; | |
5571 | } | |
5572 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
5573 | } | |
5574 | ||
5575 | static const ARMCPRegInfo el2_sec_cp_reginfo[] = { | |
5576 | { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
5577 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, | |
5578 | .access = PL2_RW, .accessfn = sel2_access, | |
5579 | .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, | |
5580 | { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, | |
5581 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, | |
5582 | .access = PL2_RW, .accessfn = sel2_access, | |
5583 | .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, | |
e9152ee9 RDC |
5584 | }; |
5585 | ||
2f027fc5 PM |
5586 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
5587 | bool isread) | |
5588 | { | |
5589 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. | |
926c1b97 | 5590 | * At Secure EL1 it traps to EL3 or EL2. |
2f027fc5 PM |
5591 | */ |
5592 | if (arm_current_el(env) == 3) { | |
5593 | return CP_ACCESS_OK; | |
5594 | } | |
5595 | if (arm_is_secure_below_el3(env)) { | |
926c1b97 RDC |
5596 | if (env->cp15.scr_el3 & SCR_EEL2) { |
5597 | return CP_ACCESS_TRAP_EL2; | |
5598 | } | |
2f027fc5 PM |
5599 | return CP_ACCESS_TRAP_EL3; |
5600 | } | |
5601 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ | |
5602 | if (isread) { | |
5603 | return CP_ACCESS_OK; | |
5604 | } | |
5605 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
5606 | } | |
5607 | ||
60fb1a87 GB |
5608 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
5609 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
5610 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
5611 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
10d0ef3e | 5612 | .resetfn = scr_reset, .writefn = scr_write }, |
f80741d1 | 5613 | { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, |
60fb1a87 | 5614 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
efe4a274 PM |
5615 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
5616 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 5617 | .writefn = scr_write }, |
60fb1a87 GB |
5618 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
5619 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
5620 | .access = PL3_RW, .resetvalue = 0, | |
5621 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
5622 | { .name = "SDER", | |
5623 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
5624 | .access = PL3_RW, .resetvalue = 0, | |
5625 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
60fb1a87 | 5626 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
efe4a274 PM |
5627 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
5628 | .writefn = vbar_write, .resetvalue = 0, | |
60fb1a87 | 5629 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
7dd8c9af FA |
5630 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
5631 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
f478847f | 5632 | .access = PL3_RW, .resetvalue = 0, |
7dd8c9af | 5633 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, |
11f136ee FA |
5634 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
5635 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
5636 | .access = PL3_RW, |
5637 | /* no .writefn needed as this can't cause an ASID change; | |
811595a2 PM |
5638 | * we must provide a .raw_writefn and .resetfn because we handle |
5639 | * reset and migration for the AArch32 TTBCR(S), which might be | |
5640 | * using mask and base_mask. | |
6459b94c | 5641 | */ |
811595a2 | 5642 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee | 5643 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
81547d66 | 5644 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5645 | .type = ARM_CP_ALIAS, |
81547d66 EI |
5646 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
5647 | .access = PL3_RW, | |
5648 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 5649 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
5650 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
5651 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
5652 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
5653 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
5654 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 5655 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5656 | .type = ARM_CP_ALIAS, |
81547d66 | 5657 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5658 | .access = PL3_RW, |
5659 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, | |
a1ba125c EI |
5660 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
5661 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
5662 | .access = PL3_RW, .writefn = vbar_write, | |
5663 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
5664 | .resetvalue = 0 }, | |
c6f19164 GB |
5665 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
5666 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
5667 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
5668 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
5669 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
5670 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
5671 | .access = PL3_RW, .resetvalue = 0, | |
5672 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
5673 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
5674 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
5675 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5676 | .resetvalue = 0 }, | |
37cd6c24 PM |
5677 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
5678 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
5679 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5680 | .resetvalue = 0 }, | |
5681 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
5682 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
5683 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5684 | .resetvalue = 0 }, | |
43efaa33 PM |
5685 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
5686 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
5687 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5688 | .writefn = tlbi_aa64_alle3is_write }, | |
5689 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
5690 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
5691 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5692 | .writefn = tlbi_aa64_vae3is_write }, | |
5693 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
5694 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
5695 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5696 | .writefn = tlbi_aa64_vae3is_write }, | |
5697 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
5698 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
5699 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5700 | .writefn = tlbi_aa64_alle3_write }, | |
5701 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
5702 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
5703 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5704 | .writefn = tlbi_aa64_vae3_write }, | |
5705 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
5706 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
5707 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5708 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
5709 | }; |
5710 | ||
e2cce18f RH |
5711 | #ifndef CONFIG_USER_ONLY |
5712 | /* Test if system register redirection is to occur in the current state. */ | |
5713 | static bool redirect_for_e2h(CPUARMState *env) | |
5714 | { | |
5715 | return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); | |
5716 | } | |
5717 | ||
5718 | static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
5719 | { | |
5720 | CPReadFn *readfn; | |
5721 | ||
5722 | if (redirect_for_e2h(env)) { | |
5723 | /* Switch to the saved EL2 version of the register. */ | |
5724 | ri = ri->opaque; | |
5725 | readfn = ri->readfn; | |
5726 | } else { | |
5727 | readfn = ri->orig_readfn; | |
5728 | } | |
5729 | if (readfn == NULL) { | |
5730 | readfn = raw_read; | |
5731 | } | |
5732 | return readfn(env, ri); | |
5733 | } | |
5734 | ||
5735 | static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
5736 | uint64_t value) | |
5737 | { | |
5738 | CPWriteFn *writefn; | |
5739 | ||
5740 | if (redirect_for_e2h(env)) { | |
5741 | /* Switch to the saved EL2 version of the register. */ | |
5742 | ri = ri->opaque; | |
5743 | writefn = ri->writefn; | |
5744 | } else { | |
5745 | writefn = ri->orig_writefn; | |
5746 | } | |
5747 | if (writefn == NULL) { | |
5748 | writefn = raw_write; | |
5749 | } | |
5750 | writefn(env, ri, value); | |
5751 | } | |
5752 | ||
5753 | static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) | |
5754 | { | |
5755 | struct E2HAlias { | |
5756 | uint32_t src_key, dst_key, new_key; | |
5757 | const char *src_name, *dst_name, *new_name; | |
5758 | bool (*feature)(const ARMISARegisters *id); | |
5759 | }; | |
5760 | ||
5761 | #define K(op0, op1, crn, crm, op2) \ | |
5762 | ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) | |
5763 | ||
5764 | static const struct E2HAlias aliases[] = { | |
5765 | { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), | |
5766 | "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, | |
5767 | { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), | |
5768 | "CPACR", "CPTR_EL2", "CPACR_EL12" }, | |
5769 | { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), | |
5770 | "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, | |
5771 | { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), | |
5772 | "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, | |
5773 | { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), | |
5774 | "TCR_EL1", "TCR_EL2", "TCR_EL12" }, | |
5775 | { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), | |
5776 | "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, | |
5777 | { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), | |
5778 | "ELR_EL1", "ELR_EL2", "ELR_EL12" }, | |
5779 | { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), | |
5780 | "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, | |
5781 | { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), | |
5782 | "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, | |
5783 | { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), | |
5784 | "ESR_EL1", "ESR_EL2", "ESR_EL12" }, | |
5785 | { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), | |
5786 | "FAR_EL1", "FAR_EL2", "FAR_EL12" }, | |
5787 | { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), | |
5788 | "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, | |
5789 | { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), | |
5790 | "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, | |
5791 | { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), | |
5792 | "VBAR", "VBAR_EL2", "VBAR_EL12" }, | |
5793 | { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), | |
5794 | "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, | |
5795 | { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), | |
5796 | "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, | |
5797 | ||
5798 | /* | |
5799 | * Note that redirection of ZCR is mentioned in the description | |
5800 | * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but | |
5801 | * not in the summary table. | |
5802 | */ | |
5803 | { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), | |
5804 | "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, | |
5805 | ||
4b779ceb RH |
5806 | { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), |
5807 | "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, | |
5808 | ||
7cb1e618 RH |
5809 | { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), |
5810 | "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", | |
5811 | isar_feature_aa64_scxtnum }, | |
5812 | ||
e2cce18f RH |
5813 | /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ |
5814 | /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ | |
5815 | }; | |
5816 | #undef K | |
5817 | ||
5818 | size_t i; | |
5819 | ||
5820 | for (i = 0; i < ARRAY_SIZE(aliases); i++) { | |
5821 | const struct E2HAlias *a = &aliases[i]; | |
9da35a40 | 5822 | ARMCPRegInfo *src_reg, *dst_reg, *new_reg; |
9da35a40 | 5823 | bool ok; |
e2cce18f RH |
5824 | |
5825 | if (a->feature && !a->feature(&cpu->isar)) { | |
5826 | continue; | |
5827 | } | |
5828 | ||
5860362d RH |
5829 | src_reg = g_hash_table_lookup(cpu->cp_regs, |
5830 | (gpointer)(uintptr_t)a->src_key); | |
5831 | dst_reg = g_hash_table_lookup(cpu->cp_regs, | |
5832 | (gpointer)(uintptr_t)a->dst_key); | |
e2cce18f RH |
5833 | g_assert(src_reg != NULL); |
5834 | g_assert(dst_reg != NULL); | |
5835 | ||
5836 | /* Cross-compare names to detect typos in the keys. */ | |
5837 | g_assert(strcmp(src_reg->name, a->src_name) == 0); | |
5838 | g_assert(strcmp(dst_reg->name, a->dst_name) == 0); | |
5839 | ||
5840 | /* None of the core system registers use opaque; we will. */ | |
5841 | g_assert(src_reg->opaque == NULL); | |
5842 | ||
5843 | /* Create alias before redirection so we dup the right data. */ | |
9da35a40 | 5844 | new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); |
9da35a40 RH |
5845 | |
5846 | new_reg->name = a->new_name; | |
5847 | new_reg->type |= ARM_CP_ALIAS; | |
5848 | /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ | |
5849 | new_reg->access &= PL2_RW | PL3_RW; | |
5850 | ||
5860362d RH |
5851 | ok = g_hash_table_insert(cpu->cp_regs, |
5852 | (gpointer)(uintptr_t)a->new_key, new_reg); | |
9da35a40 | 5853 | g_assert(ok); |
e2cce18f RH |
5854 | |
5855 | src_reg->opaque = dst_reg; | |
5856 | src_reg->orig_readfn = src_reg->readfn ?: raw_read; | |
5857 | src_reg->orig_writefn = src_reg->writefn ?: raw_write; | |
5858 | if (!src_reg->raw_readfn) { | |
5859 | src_reg->raw_readfn = raw_read; | |
5860 | } | |
5861 | if (!src_reg->raw_writefn) { | |
5862 | src_reg->raw_writefn = raw_write; | |
5863 | } | |
5864 | src_reg->readfn = el2_e2h_read; | |
5865 | src_reg->writefn = el2_e2h_write; | |
5866 | } | |
5867 | } | |
5868 | #endif | |
5869 | ||
3f208fd7 PM |
5870 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
5871 | bool isread) | |
7da845b0 | 5872 | { |
97475a89 RH |
5873 | int cur_el = arm_current_el(env); |
5874 | ||
5875 | if (cur_el < 2) { | |
5876 | uint64_t hcr = arm_hcr_el2_eff(env); | |
5877 | ||
5878 | if (cur_el == 0) { | |
5879 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
5880 | if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { | |
5881 | return CP_ACCESS_TRAP_EL2; | |
5882 | } | |
5883 | } else { | |
5884 | if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { | |
5885 | return CP_ACCESS_TRAP; | |
5886 | } | |
5887 | if (hcr & HCR_TID2) { | |
5888 | return CP_ACCESS_TRAP_EL2; | |
5889 | } | |
5890 | } | |
5891 | } else if (hcr & HCR_TID2) { | |
5892 | return CP_ACCESS_TRAP_EL2; | |
5893 | } | |
7da845b0 | 5894 | } |
630fcd4d MZ |
5895 | |
5896 | if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { | |
5897 | return CP_ACCESS_TRAP_EL2; | |
5898 | } | |
5899 | ||
7da845b0 PM |
5900 | return CP_ACCESS_OK; |
5901 | } | |
5902 | ||
1424ca8d DM |
5903 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
5904 | uint64_t value) | |
5905 | { | |
5906 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be | |
5907 | * read via a bit in OSLSR_EL1. | |
5908 | */ | |
5909 | int oslock; | |
5910 | ||
5911 | if (ri->state == ARM_CP_STATE_AA32) { | |
5912 | oslock = (value == 0xC5ACCE55); | |
5913 | } else { | |
5914 | oslock = value & 1; | |
5915 | } | |
5916 | ||
5917 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); | |
5918 | } | |
5919 | ||
50300698 | 5920 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 5921 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
5922 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
5923 | * unlike DBGDRAR it is never accessible from EL0. | |
5924 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
5925 | * accessor. | |
50300698 PM |
5926 | */ |
5927 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
91b0a238 PM |
5928 | .access = PL0_R, .accessfn = access_tdra, |
5929 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
5930 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
5931 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
91b0a238 PM |
5932 | .access = PL1_R, .accessfn = access_tdra, |
5933 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 | 5934 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
91b0a238 PM |
5935 | .access = PL0_R, .accessfn = access_tdra, |
5936 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 5937 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
5938 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
5939 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
d6c8cf81 | 5940 | .access = PL1_RW, .accessfn = access_tda, |
0e5e8935 PM |
5941 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
5942 | .resetvalue = 0 }, | |
49a6f3bf NH |
5943 | /* |
5944 | * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external | |
5945 | * Debug Communication Channel is not implemented. | |
5946 | */ | |
5947 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, | |
5948 | .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, | |
5949 | .access = PL0_R, .accessfn = access_tda, | |
5950 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5951 | /* | |
5952 | * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as | |
5953 | * it is unlikely a guest will care. | |
5e8b12ff PM |
5954 | * We don't implement the configurable EL0 access. |
5955 | */ | |
49a6f3bf NH |
5956 | { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, |
5957 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 5958 | .type = ARM_CP_ALIAS, |
d6c8cf81 | 5959 | .access = PL1_R, .accessfn = access_tda, |
b061a82b | 5960 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
10aae104 PM |
5961 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
5962 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1424ca8d | 5963 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
187f678d | 5964 | .accessfn = access_tdosa, |
1424ca8d DM |
5965 | .writefn = oslar_write }, |
5966 | { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, | |
5967 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, | |
5968 | .access = PL1_R, .resetvalue = 10, | |
187f678d | 5969 | .accessfn = access_tdosa, |
1424ca8d | 5970 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
5e8b12ff PM |
5971 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
5972 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
5973 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
187f678d PM |
5974 | .access = PL1_RW, .accessfn = access_tdosa, |
5975 | .type = ARM_CP_NOP }, | |
5e8b12ff PM |
5976 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
5977 | * implement vector catch debug events yet. | |
5978 | */ | |
5979 | { .name = "DBGVCR", | |
5980 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
d6c8cf81 PM |
5981 | .access = PL1_RW, .accessfn = access_tda, |
5982 | .type = ARM_CP_NOP }, | |
4d2ec4da PM |
5983 | /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor |
5984 | * to save and restore a 32-bit guest's DBGVCR) | |
5985 | */ | |
5986 | { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, | |
5987 | .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, | |
5988 | .access = PL2_RW, .accessfn = access_tda, | |
696ba377 | 5989 | .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, |
5dbdc434 PM |
5990 | /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications |
5991 | * Channel but Linux may try to access this register. The 32-bit | |
5992 | * alias is DBGDCCINT. | |
5993 | */ | |
5994 | { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, | |
5995 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
5996 | .access = PL1_RW, .accessfn = access_tda, | |
5997 | .type = ARM_CP_NOP }, | |
50300698 PM |
5998 | }; |
5999 | ||
6000 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
6001 | /* 64 bit access versions of the (dummy) debug registers */ | |
6002 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
6003 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
6004 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
6005 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
50300698 PM |
6006 | }; |
6007 | ||
58e93b48 RH |
6008 | /* |
6009 | * Check for traps to RAS registers, which are controlled | |
6010 | * by HCR_EL2.TERR and SCR_EL3.TERR. | |
6011 | */ | |
6012 | static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, | |
6013 | bool isread) | |
6014 | { | |
6015 | int el = arm_current_el(env); | |
6016 | ||
6017 | if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { | |
6018 | return CP_ACCESS_TRAP_EL2; | |
6019 | } | |
6020 | if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { | |
6021 | return CP_ACCESS_TRAP_EL3; | |
6022 | } | |
6023 | return CP_ACCESS_OK; | |
6024 | } | |
6025 | ||
6026 | static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
6027 | { | |
6028 | int el = arm_current_el(env); | |
6029 | ||
6030 | if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { | |
6031 | return env->cp15.vdisr_el2; | |
6032 | } | |
6033 | if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { | |
6034 | return 0; /* RAZ/WI */ | |
6035 | } | |
6036 | return env->cp15.disr_el1; | |
6037 | } | |
6038 | ||
6039 | static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
6040 | { | |
6041 | int el = arm_current_el(env); | |
6042 | ||
6043 | if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { | |
6044 | env->cp15.vdisr_el2 = val; | |
6045 | return; | |
6046 | } | |
6047 | if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { | |
6048 | return; /* RAZ/WI */ | |
6049 | } | |
6050 | env->cp15.disr_el1 = val; | |
6051 | } | |
6052 | ||
6053 | /* | |
6054 | * Minimal RAS implementation with no Error Records. | |
6055 | * Which means that all of the Error Record registers: | |
6056 | * ERXADDR_EL1 | |
6057 | * ERXCTLR_EL1 | |
6058 | * ERXFR_EL1 | |
6059 | * ERXMISC0_EL1 | |
6060 | * ERXMISC1_EL1 | |
6061 | * ERXMISC2_EL1 | |
6062 | * ERXMISC3_EL1 | |
6063 | * ERXPFGCDN_EL1 (RASv1p1) | |
6064 | * ERXPFGCTL_EL1 (RASv1p1) | |
6065 | * ERXPFGF_EL1 (RASv1p1) | |
6066 | * ERXSTATUS_EL1 | |
6067 | * and | |
6068 | * ERRSELR_EL1 | |
6069 | * may generate UNDEFINED, which is the effect we get by not | |
6070 | * listing them at all. | |
6071 | */ | |
6072 | static const ARMCPRegInfo minimal_ras_reginfo[] = { | |
6073 | { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, | |
6074 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, | |
6075 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), | |
6076 | .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, | |
6077 | { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
6078 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, | |
6079 | .access = PL1_R, .accessfn = access_terr, | |
6080 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6081 | { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, | |
6082 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, | |
6083 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, | |
6084 | { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, | |
6085 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, | |
6086 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, | |
6087 | }; | |
6088 | ||
60eed086 RH |
6089 | /* Return the exception level to which exceptions should be taken |
6090 | * via SVEAccessTrap. If an exception should be routed through | |
6091 | * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should | |
6092 | * take care of raising that exception. | |
6093 | * C.f. the ARM pseudocode function CheckSVEEnabled. | |
5be5e8ed | 6094 | */ |
ced31551 | 6095 | int sve_exception_el(CPUARMState *env, int el) |
5be5e8ed RH |
6096 | { |
6097 | #ifndef CONFIG_USER_ONLY | |
c2ddb7cf RH |
6098 | uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
6099 | ||
6100 | if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
7701cee5 RH |
6101 | /* Check CPACR.ZEN. */ |
6102 | switch (extract32(env->cp15.cpacr_el1, 16, 2)) { | |
6103 | case 1: | |
6104 | if (el != 0) { | |
6105 | break; | |
6106 | } | |
6107 | /* fall through */ | |
6108 | case 0: | |
6109 | case 2: | |
60eed086 | 6110 | /* route_to_el2 */ |
c2ddb7cf | 6111 | return hcr_el2 & HCR_TGE ? 2 : 1; |
5be5e8ed | 6112 | } |
5be5e8ed | 6113 | |
60eed086 | 6114 | /* Check CPACR.FPEN. */ |
7701cee5 RH |
6115 | switch (extract32(env->cp15.cpacr_el1, 20, 2)) { |
6116 | case 1: | |
6117 | if (el != 0) { | |
6118 | break; | |
6119 | } | |
6120 | /* fall through */ | |
6121 | case 0: | |
6122 | case 2: | |
60eed086 | 6123 | return 0; |
5be5e8ed | 6124 | } |
5be5e8ed RH |
6125 | } |
6126 | ||
d5a6fa2d RH |
6127 | /* |
6128 | * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). | |
60eed086 | 6129 | */ |
d5a6fa2d RH |
6130 | if (el <= 2) { |
6131 | if (hcr_el2 & HCR_E2H) { | |
6132 | /* Check CPTR_EL2.ZEN. */ | |
6133 | switch (extract32(env->cp15.cptr_el[2], 16, 2)) { | |
6134 | case 1: | |
6135 | if (el != 0 || !(hcr_el2 & HCR_TGE)) { | |
6136 | break; | |
6137 | } | |
6138 | /* fall through */ | |
6139 | case 0: | |
6140 | case 2: | |
6141 | return 2; | |
6142 | } | |
6143 | ||
6144 | /* Check CPTR_EL2.FPEN. */ | |
6145 | switch (extract32(env->cp15.cptr_el[2], 20, 2)) { | |
6146 | case 1: | |
6147 | if (el == 2 || !(hcr_el2 & HCR_TGE)) { | |
6148 | break; | |
6149 | } | |
6150 | /* fall through */ | |
6151 | case 0: | |
6152 | case 2: | |
6153 | return 0; | |
6154 | } | |
6155 | } else if (arm_is_el2_enabled(env)) { | |
6156 | if (env->cp15.cptr_el[2] & CPTR_TZ) { | |
6157 | return 2; | |
6158 | } | |
6159 | if (env->cp15.cptr_el[2] & CPTR_TFP) { | |
6160 | return 0; | |
6161 | } | |
60eed086 | 6162 | } |
5be5e8ed RH |
6163 | } |
6164 | ||
60eed086 RH |
6165 | /* CPTR_EL3. Since EZ is negative we must check for EL3. */ |
6166 | if (arm_feature(env, ARM_FEATURE_EL3) | |
6167 | && !(env->cp15.cptr_el[3] & CPTR_EZ)) { | |
5be5e8ed RH |
6168 | return 3; |
6169 | } | |
6170 | #endif | |
6171 | return 0; | |
6172 | } | |
6173 | ||
ce440581 | 6174 | uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) |
0df9142d | 6175 | { |
6e553f2a | 6176 | uint32_t end_len; |
0df9142d | 6177 | |
dc0bc8e7 RH |
6178 | start_len = MIN(start_len, ARM_MAX_VQ - 1); |
6179 | end_len = start_len; | |
6180 | ||
6e553f2a RH |
6181 | if (!test_bit(start_len, cpu->sve_vq_map)) { |
6182 | end_len = find_last_bit(cpu->sve_vq_map, start_len); | |
6183 | assert(end_len < start_len); | |
6184 | } | |
6185 | return end_len; | |
0df9142d AJ |
6186 | } |
6187 | ||
0ab5953b RH |
6188 | /* |
6189 | * Given that SVE is enabled, return the vector length for EL. | |
6190 | */ | |
ced31551 | 6191 | uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) |
0ab5953b | 6192 | { |
2fc0cc0e | 6193 | ARMCPU *cpu = env_archcpu(env); |
0ab5953b RH |
6194 | uint32_t zcr_len = cpu->sve_max_vq - 1; |
6195 | ||
63888fa7 RH |
6196 | if (el <= 1 && |
6197 | (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
0ab5953b RH |
6198 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); |
6199 | } | |
6a02a732 | 6200 | if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { |
0ab5953b RH |
6201 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); |
6202 | } | |
6a02a732 | 6203 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0ab5953b RH |
6204 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); |
6205 | } | |
0df9142d | 6206 | |
ce440581 | 6207 | return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); |
0ab5953b RH |
6208 | } |
6209 | ||
5be5e8ed RH |
6210 | static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
6211 | uint64_t value) | |
6212 | { | |
0ab5953b RH |
6213 | int cur_el = arm_current_el(env); |
6214 | int old_len = sve_zcr_len_for_el(env, cur_el); | |
6215 | int new_len; | |
6216 | ||
5be5e8ed | 6217 | /* Bits other than [3:0] are RAZ/WI. */ |
7b351d98 | 6218 | QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); |
5be5e8ed | 6219 | raw_write(env, ri, value & 0xf); |
0ab5953b RH |
6220 | |
6221 | /* | |
6222 | * Because we arrived here, we know both FP and SVE are enabled; | |
6223 | * otherwise we would have trapped access to the ZCR_ELn register. | |
6224 | */ | |
6225 | new_len = sve_zcr_len_for_el(env, cur_el); | |
6226 | if (new_len < old_len) { | |
6227 | aarch64_sve_narrow_vq(env, new_len + 1); | |
6228 | } | |
5be5e8ed RH |
6229 | } |
6230 | ||
60360d82 RH |
6231 | static const ARMCPRegInfo zcr_reginfo[] = { |
6232 | { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, | |
6233 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, | |
6234 | .access = PL1_RW, .type = ARM_CP_SVE, | |
6235 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), | |
6236 | .writefn = zcr_write, .raw_writefn = raw_write }, | |
6237 | { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, | |
6238 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, | |
6239 | .access = PL2_RW, .type = ARM_CP_SVE, | |
6240 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), | |
6241 | .writefn = zcr_write, .raw_writefn = raw_write }, | |
6242 | { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, | |
6243 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, | |
6244 | .access = PL3_RW, .type = ARM_CP_SVE, | |
6245 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), | |
6246 | .writefn = zcr_write, .raw_writefn = raw_write }, | |
5be5e8ed RH |
6247 | }; |
6248 | ||
9ee98ce8 PM |
6249 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
6250 | { | |
6251 | CPUARMState *env = &cpu->env; | |
6252 | vaddr len = 0; | |
6253 | vaddr wvr = env->cp15.dbgwvr[n]; | |
6254 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
6255 | int mask; | |
6256 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
6257 | ||
6258 | if (env->cpu_watchpoint[n]) { | |
6259 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
6260 | env->cpu_watchpoint[n] = NULL; | |
6261 | } | |
6262 | ||
8b7a5bbe | 6263 | if (!FIELD_EX64(wcr, DBGWCR, E)) { |
9ee98ce8 PM |
6264 | /* E bit clear : watchpoint disabled */ |
6265 | return; | |
6266 | } | |
6267 | ||
8b7a5bbe | 6268 | switch (FIELD_EX64(wcr, DBGWCR, LSC)) { |
9ee98ce8 PM |
6269 | case 0: |
6270 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
6271 | return; | |
6272 | case 1: | |
6273 | flags |= BP_MEM_READ; | |
6274 | break; | |
6275 | case 2: | |
6276 | flags |= BP_MEM_WRITE; | |
6277 | break; | |
6278 | case 3: | |
6279 | flags |= BP_MEM_ACCESS; | |
6280 | break; | |
6281 | } | |
6282 | ||
6283 | /* Attempts to use both MASK and BAS fields simultaneously are | |
6284 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
6285 | * thus generating a watchpoint for every byte in the masked region. | |
6286 | */ | |
8b7a5bbe | 6287 | mask = FIELD_EX64(wcr, DBGWCR, MASK); |
9ee98ce8 PM |
6288 | if (mask == 1 || mask == 2) { |
6289 | /* Reserved values of MASK; we must act as if the mask value was | |
6290 | * some non-reserved value, or as if the watchpoint were disabled. | |
6291 | * We choose the latter. | |
6292 | */ | |
6293 | return; | |
6294 | } else if (mask) { | |
6295 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
6296 | len = 1ULL << mask; | |
6297 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
6298 | * whether the watchpoint fires when the unmasked bits match; we opt | |
6299 | * to generate the exceptions. | |
6300 | */ | |
6301 | wvr &= ~(len - 1); | |
6302 | } else { | |
6303 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
8b7a5bbe | 6304 | int bas = FIELD_EX64(wcr, DBGWCR, BAS); |
9ee98ce8 PM |
6305 | int basstart; |
6306 | ||
9ee98ce8 PM |
6307 | if (extract64(wvr, 2, 1)) { |
6308 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
6309 | * ignored, and BAS[3:0] define which bytes to watch. | |
6310 | */ | |
6311 | bas &= 0xf; | |
6312 | } | |
ae1111d4 RH |
6313 | |
6314 | if (bas == 0) { | |
6315 | /* This must act as if the watchpoint is disabled */ | |
6316 | return; | |
6317 | } | |
6318 | ||
9ee98ce8 PM |
6319 | /* The BAS bits are supposed to be programmed to indicate a contiguous |
6320 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
6321 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
6322 | * We choose to ignore any non-zero bits after the first range of 1s. | |
6323 | */ | |
6324 | basstart = ctz32(bas); | |
6325 | len = cto32(bas >> basstart); | |
6326 | wvr += basstart; | |
6327 | } | |
6328 | ||
6329 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
6330 | &env->cpu_watchpoint[n]); | |
6331 | } | |
6332 | ||
6333 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
6334 | { | |
6335 | int i; | |
6336 | CPUARMState *env = &cpu->env; | |
6337 | ||
6338 | /* Completely clear out existing QEMU watchpoints and our array, to | |
6339 | * avoid possible stale entries following migration load. | |
6340 | */ | |
6341 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
6342 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
6343 | ||
6344 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
6345 | hw_watchpoint_update(cpu, i); | |
6346 | } | |
6347 | } | |
6348 | ||
6349 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6350 | uint64_t value) | |
6351 | { | |
2fc0cc0e | 6352 | ARMCPU *cpu = env_archcpu(env); |
9ee98ce8 PM |
6353 | int i = ri->crm; |
6354 | ||
777ab8d8 | 6355 | /* |
9ee98ce8 | 6356 | * Bits [1:0] are RES0. |
777ab8d8 RH |
6357 | * |
6358 | * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) | |
6359 | * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if | |
6360 | * they contain the value written. It is CONSTRAINED UNPREDICTABLE | |
6361 | * whether the RESS bits are ignored when comparing an address. | |
6362 | * | |
6363 | * Therefore we are allowed to compare the entire register, which lets | |
6364 | * us avoid considering whether or not FEAT_LVA is actually enabled. | |
9ee98ce8 | 6365 | */ |
777ab8d8 | 6366 | value &= ~3ULL; |
9ee98ce8 PM |
6367 | |
6368 | raw_write(env, ri, value); | |
6369 | hw_watchpoint_update(cpu, i); | |
6370 | } | |
6371 | ||
6372 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6373 | uint64_t value) | |
6374 | { | |
2fc0cc0e | 6375 | ARMCPU *cpu = env_archcpu(env); |
9ee98ce8 PM |
6376 | int i = ri->crm; |
6377 | ||
6378 | raw_write(env, ri, value); | |
6379 | hw_watchpoint_update(cpu, i); | |
6380 | } | |
6381 | ||
46747d15 PM |
6382 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
6383 | { | |
6384 | CPUARMState *env = &cpu->env; | |
6385 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
6386 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
6387 | vaddr addr; | |
6388 | int bt; | |
6389 | int flags = BP_CPU; | |
6390 | ||
6391 | if (env->cpu_breakpoint[n]) { | |
6392 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
6393 | env->cpu_breakpoint[n] = NULL; | |
6394 | } | |
6395 | ||
6396 | if (!extract64(bcr, 0, 1)) { | |
6397 | /* E bit clear : watchpoint disabled */ | |
6398 | return; | |
6399 | } | |
6400 | ||
6401 | bt = extract64(bcr, 20, 4); | |
6402 | ||
6403 | switch (bt) { | |
6404 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
6405 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
6406 | qemu_log_mask(LOG_UNIMP, | |
0221c8fd | 6407 | "arm: address mismatch breakpoint types not implemented\n"); |
46747d15 PM |
6408 | return; |
6409 | case 0: /* unlinked address match */ | |
6410 | case 1: /* linked address match */ | |
6411 | { | |
777ab8d8 RH |
6412 | /* |
6413 | * Bits [1:0] are RES0. | |
6414 | * | |
6415 | * It is IMPLEMENTATION DEFINED whether bits [63:49] | |
6416 | * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit | |
6417 | * of the VA field ([48] or [52] for FEAT_LVA), or whether the | |
6418 | * value is read as written. It is CONSTRAINED UNPREDICTABLE | |
6419 | * whether the RESS bits are ignored when comparing an address. | |
6420 | * Therefore we are allowed to compare the entire register, which | |
6421 | * lets us avoid considering whether FEAT_LVA is actually enabled. | |
6422 | * | |
6423 | * The BAS field is used to allow setting breakpoints on 16-bit | |
6424 | * wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
46747d15 PM |
6425 | * a bp will fire if the addresses covered by the bp and the addresses |
6426 | * covered by the insn overlap but the insn doesn't start at the | |
6427 | * start of the bp address range. We choose to require the insn and | |
6428 | * the bp to have the same address. The constraints on writing to | |
6429 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
6430 | * 0b0000 => no breakpoint | |
6431 | * 0b0011 => breakpoint on addr | |
6432 | * 0b1100 => breakpoint on addr + 2 | |
6433 | * 0b1111 => breakpoint on addr | |
6434 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
6435 | */ | |
6436 | int bas = extract64(bcr, 5, 4); | |
777ab8d8 | 6437 | addr = bvr & ~3ULL; |
46747d15 PM |
6438 | if (bas == 0) { |
6439 | return; | |
6440 | } | |
6441 | if (bas == 0xc) { | |
6442 | addr += 2; | |
6443 | } | |
6444 | break; | |
6445 | } | |
6446 | case 2: /* unlinked context ID match */ | |
6447 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
6448 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
6449 | qemu_log_mask(LOG_UNIMP, | |
0221c8fd | 6450 | "arm: unlinked context breakpoint types not implemented\n"); |
46747d15 PM |
6451 | return; |
6452 | case 9: /* linked VMID match (reserved if no EL2) */ | |
6453 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
6454 | case 3: /* linked context ID match */ | |
6455 | default: | |
6456 | /* We must generate no events for Linked context matches (unless | |
6457 | * they are linked to by some other bp/wp, which is handled in | |
6458 | * updates for the linking bp/wp). We choose to also generate no events | |
6459 | * for reserved values. | |
6460 | */ | |
6461 | return; | |
6462 | } | |
6463 | ||
6464 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
6465 | } | |
6466 | ||
6467 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
6468 | { | |
6469 | int i; | |
6470 | CPUARMState *env = &cpu->env; | |
6471 | ||
6472 | /* Completely clear out existing QEMU breakpoints and our array, to | |
6473 | * avoid possible stale entries following migration load. | |
6474 | */ | |
6475 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
6476 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
6477 | ||
6478 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
6479 | hw_breakpoint_update(cpu, i); | |
6480 | } | |
6481 | } | |
6482 | ||
6483 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6484 | uint64_t value) | |
6485 | { | |
2fc0cc0e | 6486 | ARMCPU *cpu = env_archcpu(env); |
46747d15 PM |
6487 | int i = ri->crm; |
6488 | ||
6489 | raw_write(env, ri, value); | |
6490 | hw_breakpoint_update(cpu, i); | |
6491 | } | |
6492 | ||
6493 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6494 | uint64_t value) | |
6495 | { | |
2fc0cc0e | 6496 | ARMCPU *cpu = env_archcpu(env); |
46747d15 PM |
6497 | int i = ri->crm; |
6498 | ||
6499 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
6500 | * copy of BAS[0]. | |
6501 | */ | |
6502 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
6503 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
6504 | ||
6505 | raw_write(env, ri, value); | |
6506 | hw_breakpoint_update(cpu, i); | |
6507 | } | |
6508 | ||
50300698 | 6509 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 6510 | { |
50300698 PM |
6511 | /* Define v7 and v8 architectural debug registers. |
6512 | * These are just dummy implementations for now. | |
0b45451e PM |
6513 | */ |
6514 | int i; | |
3ff6fc91 | 6515 | int wrps, brps, ctx_cmps; |
54a78718 RH |
6516 | |
6517 | /* | |
6518 | * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot | |
6519 | * use AArch32. Given that bit 15 is RES1, if the value is 0 then | |
6520 | * the register must not exist for this cpu. | |
6521 | */ | |
6522 | if (cpu->isar.dbgdidr != 0) { | |
6523 | ARMCPRegInfo dbgdidr = { | |
6524 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, | |
6525 | .opc1 = 0, .opc2 = 0, | |
6526 | .access = PL0_R, .accessfn = access_tda, | |
6527 | .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, | |
6528 | }; | |
6529 | define_one_arm_cp_reg(cpu, &dbgdidr); | |
6530 | } | |
48eb3ae6 | 6531 | |
3ff6fc91 | 6532 | /* Note that all these register fields hold "number of Xs minus 1". */ |
88ce6c6e PM |
6533 | brps = arm_num_brps(cpu); |
6534 | wrps = arm_num_wrps(cpu); | |
6535 | ctx_cmps = arm_num_ctx_cmps(cpu); | |
3ff6fc91 PM |
6536 | |
6537 | assert(ctx_cmps <= brps); | |
48eb3ae6 | 6538 | |
50300698 PM |
6539 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
6540 | ||
6541 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
6542 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
6543 | } | |
6544 | ||
88ce6c6e | 6545 | for (i = 0; i < brps; i++) { |
0b45451e | 6546 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
6547 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
6548 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
d6c8cf81 | 6549 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
6550 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
6551 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
6552 | }, | |
10aae104 PM |
6553 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
6554 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
d6c8cf81 | 6555 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
6556 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
6557 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
6558 | }, | |
48eb3ae6 PM |
6559 | }; |
6560 | define_arm_cp_regs(cpu, dbgregs); | |
6561 | } | |
6562 | ||
88ce6c6e | 6563 | for (i = 0; i < wrps; i++) { |
48eb3ae6 | 6564 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
6565 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
6566 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
d6c8cf81 | 6567 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
6568 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
6569 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
6570 | }, | |
10aae104 PM |
6571 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
6572 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
d6c8cf81 | 6573 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
6574 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
6575 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
6576 | }, | |
0b45451e PM |
6577 | }; |
6578 | define_arm_cp_regs(cpu, dbgregs); | |
6579 | } | |
6580 | } | |
6581 | ||
24183fb6 PM |
6582 | static void define_pmu_regs(ARMCPU *cpu) |
6583 | { | |
6584 | /* | |
6585 | * v7 performance monitor control register: same implementor | |
6586 | * field as main ID register, and we implement four counters in | |
6587 | * addition to the cycle count register. | |
6588 | */ | |
21c2dd77 | 6589 | unsigned int i, pmcrn = PMCR_NUM_COUNTERS; |
24183fb6 PM |
6590 | ARMCPRegInfo pmcr = { |
6591 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
6592 | .access = PL0_RW, | |
6593 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6594 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), | |
6595 | .accessfn = pmreg_access, .writefn = pmcr_write, | |
6596 | .raw_writefn = raw_write, | |
6597 | }; | |
6598 | ARMCPRegInfo pmcr64 = { | |
6599 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
6600 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
6601 | .access = PL0_RW, .accessfn = pmreg_access, | |
6602 | .type = ARM_CP_IO, | |
6603 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
21c2dd77 PM |
6604 | .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | |
6605 | PMCRLC, | |
24183fb6 PM |
6606 | .writefn = pmcr_write, .raw_writefn = raw_write, |
6607 | }; | |
6608 | define_one_arm_cp_reg(cpu, &pmcr); | |
6609 | define_one_arm_cp_reg(cpu, &pmcr64); | |
6610 | for (i = 0; i < pmcrn; i++) { | |
6611 | char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); | |
6612 | char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); | |
6613 | char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); | |
6614 | char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); | |
6615 | ARMCPRegInfo pmev_regs[] = { | |
6616 | { .name = pmevcntr_name, .cp = 15, .crn = 14, | |
6617 | .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, | |
6618 | .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6619 | .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, | |
99a50d1a | 6620 | .accessfn = pmreg_access_xevcntr }, |
24183fb6 PM |
6621 | { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, |
6622 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), | |
99a50d1a | 6623 | .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, |
24183fb6 PM |
6624 | .type = ARM_CP_IO, |
6625 | .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, | |
6626 | .raw_readfn = pmevcntr_rawread, | |
6627 | .raw_writefn = pmevcntr_rawwrite }, | |
6628 | { .name = pmevtyper_name, .cp = 15, .crn = 14, | |
6629 | .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, | |
6630 | .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6631 | .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, | |
6632 | .accessfn = pmreg_access }, | |
6633 | { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, | |
6634 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), | |
6635 | .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, | |
6636 | .type = ARM_CP_IO, | |
6637 | .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, | |
6638 | .raw_writefn = pmevtyper_rawwrite }, | |
24183fb6 PM |
6639 | }; |
6640 | define_arm_cp_regs(cpu, pmev_regs); | |
6641 | g_free(pmevcntr_name); | |
6642 | g_free(pmevcntr_el0_name); | |
6643 | g_free(pmevtyper_name); | |
6644 | g_free(pmevtyper_el0_name); | |
6645 | } | |
a6179538 | 6646 | if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { |
24183fb6 PM |
6647 | ARMCPRegInfo v81_pmu_regs[] = { |
6648 | { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, | |
6649 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, | |
6650 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6651 | .resetvalue = extract64(cpu->pmceid0, 32, 32) }, | |
6652 | { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, | |
6653 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, | |
6654 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6655 | .resetvalue = extract64(cpu->pmceid1, 32, 32) }, | |
24183fb6 PM |
6656 | }; |
6657 | define_arm_cp_regs(cpu, v81_pmu_regs); | |
6658 | } | |
15dd1ebd PM |
6659 | if (cpu_isar_feature(any_pmu_8_4, cpu)) { |
6660 | static const ARMCPRegInfo v84_pmmir = { | |
6661 | .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, | |
6662 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, | |
6663 | .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6664 | .resetvalue = 0 | |
6665 | }; | |
6666 | define_one_arm_cp_reg(cpu, &v84_pmmir); | |
6667 | } | |
24183fb6 PM |
6668 | } |
6669 | ||
96a8b92e PM |
6670 | /* We don't know until after realize whether there's a GICv3 |
6671 | * attached, and that is what registers the gicv3 sysregs. | |
6672 | * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 | |
6673 | * at runtime. | |
6674 | */ | |
6675 | static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
6676 | { | |
2fc0cc0e | 6677 | ARMCPU *cpu = env_archcpu(env); |
8a130a7b | 6678 | uint64_t pfr1 = cpu->isar.id_pfr1; |
96a8b92e PM |
6679 | |
6680 | if (env->gicv3state) { | |
6681 | pfr1 |= 1 << 28; | |
6682 | } | |
6683 | return pfr1; | |
6684 | } | |
6685 | ||
976b99b6 | 6686 | #ifndef CONFIG_USER_ONLY |
96a8b92e PM |
6687 | static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) |
6688 | { | |
2fc0cc0e | 6689 | ARMCPU *cpu = env_archcpu(env); |
47576b94 | 6690 | uint64_t pfr0 = cpu->isar.id_aa64pfr0; |
96a8b92e PM |
6691 | |
6692 | if (env->gicv3state) { | |
6693 | pfr0 |= 1 << 24; | |
6694 | } | |
6695 | return pfr0; | |
6696 | } | |
976b99b6 | 6697 | #endif |
96a8b92e | 6698 | |
2d7137c1 | 6699 | /* Shared logic between LORID and the rest of the LOR* registers. |
9bd268ba | 6700 | * Secure state exclusion has already been dealt with. |
2d7137c1 | 6701 | */ |
9bd268ba RDC |
6702 | static CPAccessResult access_lor_ns(CPUARMState *env, |
6703 | const ARMCPRegInfo *ri, bool isread) | |
2d7137c1 RH |
6704 | { |
6705 | int el = arm_current_el(env); | |
6706 | ||
6707 | if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { | |
6708 | return CP_ACCESS_TRAP_EL2; | |
6709 | } | |
6710 | if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { | |
6711 | return CP_ACCESS_TRAP_EL3; | |
6712 | } | |
6713 | return CP_ACCESS_OK; | |
6714 | } | |
6715 | ||
2d7137c1 RH |
6716 | static CPAccessResult access_lor_other(CPUARMState *env, |
6717 | const ARMCPRegInfo *ri, bool isread) | |
6718 | { | |
6719 | if (arm_is_secure_below_el3(env)) { | |
6720 | /* Access denied in secure mode. */ | |
6721 | return CP_ACCESS_TRAP; | |
6722 | } | |
9bd268ba | 6723 | return access_lor_ns(env, ri, isread); |
2d7137c1 RH |
6724 | } |
6725 | ||
d8564ee4 RH |
6726 | /* |
6727 | * A trivial implementation of ARMv8.1-LOR leaves all of these | |
6728 | * registers fixed at 0, which indicates that there are zero | |
6729 | * supported Limited Ordering regions. | |
6730 | */ | |
6731 | static const ARMCPRegInfo lor_reginfo[] = { | |
6732 | { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, | |
6733 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, | |
6734 | .access = PL1_RW, .accessfn = access_lor_other, | |
6735 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6736 | { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, | |
6737 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, | |
6738 | .access = PL1_RW, .accessfn = access_lor_other, | |
6739 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6740 | { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, | |
6741 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, | |
6742 | .access = PL1_RW, .accessfn = access_lor_other, | |
6743 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6744 | { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, | |
6745 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, | |
6746 | .access = PL1_RW, .accessfn = access_lor_other, | |
6747 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6748 | { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, | |
6749 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, | |
9bd268ba | 6750 | .access = PL1_R, .accessfn = access_lor_ns, |
d8564ee4 | 6751 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
d8564ee4 RH |
6752 | }; |
6753 | ||
967aa94f RH |
6754 | #ifdef TARGET_AARCH64 |
6755 | static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, | |
6756 | bool isread) | |
6757 | { | |
6758 | int el = arm_current_el(env); | |
6759 | ||
6760 | if (el < 2 && | |
6761 | arm_feature(env, ARM_FEATURE_EL2) && | |
6762 | !(arm_hcr_el2_eff(env) & HCR_APK)) { | |
6763 | return CP_ACCESS_TRAP_EL2; | |
6764 | } | |
6765 | if (el < 3 && | |
6766 | arm_feature(env, ARM_FEATURE_EL3) && | |
6767 | !(env->cp15.scr_el3 & SCR_APK)) { | |
6768 | return CP_ACCESS_TRAP_EL3; | |
6769 | } | |
6770 | return CP_ACCESS_OK; | |
6771 | } | |
6772 | ||
6773 | static const ARMCPRegInfo pauth_reginfo[] = { | |
6774 | { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, | |
6775 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, | |
6776 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6777 | .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, |
967aa94f RH |
6778 | { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6779 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, | |
6780 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6781 | .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, |
967aa94f RH |
6782 | { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6783 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, | |
6784 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6785 | .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, |
967aa94f RH |
6786 | { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6787 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, | |
6788 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6789 | .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, |
967aa94f RH |
6790 | { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6791 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, | |
6792 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6793 | .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, |
967aa94f RH |
6794 | { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6795 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, | |
6796 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6797 | .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, |
967aa94f RH |
6798 | { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6799 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, | |
6800 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6801 | .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, |
967aa94f RH |
6802 | { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6803 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, | |
6804 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6805 | .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, |
967aa94f RH |
6806 | { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6807 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, | |
6808 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6809 | .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, |
967aa94f RH |
6810 | { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6811 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, | |
6812 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6813 | .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, |
967aa94f | 6814 | }; |
de390645 | 6815 | |
84940ed8 RC |
6816 | static const ARMCPRegInfo tlbirange_reginfo[] = { |
6817 | { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, | |
6818 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, | |
6819 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6820 | .writefn = tlbi_aa64_rvae1is_write }, | |
6821 | { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, | |
6822 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, | |
6823 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6824 | .writefn = tlbi_aa64_rvae1is_write }, | |
6825 | { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, | |
6826 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, | |
6827 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6828 | .writefn = tlbi_aa64_rvae1is_write }, | |
6829 | { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, | |
6830 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, | |
6831 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6832 | .writefn = tlbi_aa64_rvae1is_write }, | |
6833 | { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, | |
6834 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, | |
6835 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6836 | .writefn = tlbi_aa64_rvae1is_write }, | |
6837 | { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, | |
6838 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, | |
6839 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6840 | .writefn = tlbi_aa64_rvae1is_write }, | |
6841 | { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, | |
6842 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, | |
6843 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6844 | .writefn = tlbi_aa64_rvae1is_write }, | |
6845 | { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, | |
6846 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, | |
6847 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6848 | .writefn = tlbi_aa64_rvae1is_write }, | |
6849 | { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, | |
6850 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, | |
6851 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6852 | .writefn = tlbi_aa64_rvae1_write }, | |
6853 | { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, | |
6854 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, | |
6855 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6856 | .writefn = tlbi_aa64_rvae1_write }, | |
6857 | { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, | |
6858 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, | |
6859 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6860 | .writefn = tlbi_aa64_rvae1_write }, | |
6861 | { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, | |
6862 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, | |
6863 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6864 | .writefn = tlbi_aa64_rvae1_write }, | |
6865 | { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, | |
6866 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, | |
6867 | .access = PL2_W, .type = ARM_CP_NOP }, | |
6868 | { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
6869 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, | |
6870 | .access = PL2_W, .type = ARM_CP_NOP }, | |
6871 | { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, | |
6872 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, | |
696ba377 | 6873 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
84940ed8 RC |
6874 | .writefn = tlbi_aa64_rvae2is_write }, |
6875 | { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, | |
6876 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, | |
696ba377 | 6877 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
84940ed8 RC |
6878 | .writefn = tlbi_aa64_rvae2is_write }, |
6879 | { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, | |
6880 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, | |
6881 | .access = PL2_W, .type = ARM_CP_NOP }, | |
6882 | { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, | |
6883 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, | |
6884 | .access = PL2_W, .type = ARM_CP_NOP }, | |
6885 | { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, | |
6886 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, | |
696ba377 | 6887 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
84940ed8 RC |
6888 | .writefn = tlbi_aa64_rvae2is_write }, |
6889 | { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, | |
6890 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, | |
696ba377 | 6891 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
84940ed8 RC |
6892 | .writefn = tlbi_aa64_rvae2is_write }, |
6893 | { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, | |
6894 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, | |
696ba377 | 6895 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
84940ed8 RC |
6896 | .writefn = tlbi_aa64_rvae2_write }, |
6897 | { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, | |
6898 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, | |
696ba377 | 6899 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
84940ed8 RC |
6900 | .writefn = tlbi_aa64_rvae2_write }, |
6901 | { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, | |
6902 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, | |
6903 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6904 | .writefn = tlbi_aa64_rvae3is_write }, | |
6905 | { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, | |
6906 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, | |
6907 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6908 | .writefn = tlbi_aa64_rvae3is_write }, | |
6909 | { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, | |
6910 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, | |
6911 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6912 | .writefn = tlbi_aa64_rvae3is_write }, | |
6913 | { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, | |
6914 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, | |
6915 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6916 | .writefn = tlbi_aa64_rvae3is_write }, | |
6917 | { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, | |
6918 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, | |
6919 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6920 | .writefn = tlbi_aa64_rvae3_write }, | |
6921 | { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, | |
6922 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, | |
6923 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6924 | .writefn = tlbi_aa64_rvae3_write }, | |
84940ed8 RC |
6925 | }; |
6926 | ||
7113d618 RC |
6927 | static const ARMCPRegInfo tlbios_reginfo[] = { |
6928 | { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, | |
6929 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, | |
6930 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6931 | .writefn = tlbi_aa64_vmalle1is_write }, | |
b7469ef9 IH |
6932 | { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, |
6933 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, | |
6934 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6935 | .writefn = tlbi_aa64_vae1is_write }, | |
7113d618 RC |
6936 | { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, |
6937 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, | |
6938 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6939 | .writefn = tlbi_aa64_vmalle1is_write }, | |
b7469ef9 IH |
6940 | { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, |
6941 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, | |
6942 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6943 | .writefn = tlbi_aa64_vae1is_write }, | |
6944 | { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, | |
6945 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, | |
6946 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6947 | .writefn = tlbi_aa64_vae1is_write }, | |
6948 | { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, | |
6949 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, | |
6950 | .access = PL1_W, .type = ARM_CP_NO_RAW, | |
6951 | .writefn = tlbi_aa64_vae1is_write }, | |
7113d618 RC |
6952 | { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, |
6953 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, | |
696ba377 | 6954 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
7113d618 | 6955 | .writefn = tlbi_aa64_alle2is_write }, |
b7469ef9 IH |
6956 | { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, |
6957 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, | |
696ba377 | 6958 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
b7469ef9 | 6959 | .writefn = tlbi_aa64_vae2is_write }, |
7113d618 RC |
6960 | { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, |
6961 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, | |
6962 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
6963 | .writefn = tlbi_aa64_alle1is_write }, | |
b7469ef9 IH |
6964 | { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, |
6965 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, | |
696ba377 | 6966 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, |
b7469ef9 | 6967 | .writefn = tlbi_aa64_vae2is_write }, |
7113d618 RC |
6968 | { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, |
6969 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, | |
6970 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
6971 | .writefn = tlbi_aa64_alle1is_write }, | |
6972 | { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, | |
6973 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, | |
6974 | .access = PL2_W, .type = ARM_CP_NOP }, | |
6975 | { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, | |
6976 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, | |
6977 | .access = PL2_W, .type = ARM_CP_NOP }, | |
6978 | { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, | |
6979 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, | |
6980 | .access = PL2_W, .type = ARM_CP_NOP }, | |
6981 | { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, | |
6982 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, | |
6983 | .access = PL2_W, .type = ARM_CP_NOP }, | |
6984 | { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, | |
6985 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, | |
6986 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6987 | .writefn = tlbi_aa64_alle3is_write }, | |
b7469ef9 IH |
6988 | { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, |
6989 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, | |
6990 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6991 | .writefn = tlbi_aa64_vae3is_write }, | |
6992 | { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, | |
6993 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, | |
6994 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
6995 | .writefn = tlbi_aa64_vae3is_write }, | |
7113d618 RC |
6996 | }; |
6997 | ||
de390645 RH |
6998 | static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
6999 | { | |
7000 | Error *err = NULL; | |
7001 | uint64_t ret; | |
7002 | ||
7003 | /* Success sets NZCV = 0000. */ | |
7004 | env->NF = env->CF = env->VF = 0, env->ZF = 1; | |
7005 | ||
7006 | if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { | |
7007 | /* | |
7008 | * ??? Failed, for unknown reasons in the crypto subsystem. | |
7009 | * The best we can do is log the reason and return the | |
7010 | * timed-out indication to the guest. There is no reason | |
7011 | * we know to expect this failure to be transitory, so the | |
7012 | * guest may well hang retrying the operation. | |
7013 | */ | |
7014 | qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", | |
7015 | ri->name, error_get_pretty(err)); | |
7016 | error_free(err); | |
7017 | ||
7018 | env->ZF = 0; /* NZCF = 0100 */ | |
7019 | return 0; | |
7020 | } | |
7021 | return ret; | |
7022 | } | |
7023 | ||
7024 | /* We do not support re-seeding, so the two registers operate the same. */ | |
7025 | static const ARMCPRegInfo rndr_reginfo[] = { | |
7026 | { .name = "RNDR", .state = ARM_CP_STATE_AA64, | |
7027 | .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, | |
7028 | .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, | |
7029 | .access = PL0_R, .readfn = rndr_readfn }, | |
7030 | { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, | |
7031 | .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, | |
7032 | .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, | |
7033 | .access = PL0_R, .readfn = rndr_readfn }, | |
de390645 | 7034 | }; |
0d57b499 BM |
7035 | |
7036 | #ifndef CONFIG_USER_ONLY | |
7037 | static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, | |
7038 | uint64_t value) | |
7039 | { | |
7040 | ARMCPU *cpu = env_archcpu(env); | |
7041 | /* CTR_EL0 System register -> DminLine, bits [19:16] */ | |
7042 | uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); | |
7043 | uint64_t vaddr_in = (uint64_t) value; | |
7044 | uint64_t vaddr = vaddr_in & ~(dline_size - 1); | |
7045 | void *haddr; | |
7046 | int mem_idx = cpu_mmu_index(env, false); | |
7047 | ||
7048 | /* This won't be crossing page boundaries */ | |
7049 | haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); | |
7050 | if (haddr) { | |
7051 | ||
7052 | ram_addr_t offset; | |
7053 | MemoryRegion *mr; | |
7054 | ||
7055 | /* RCU lock is already being held */ | |
7056 | mr = memory_region_from_host(haddr, &offset); | |
7057 | ||
7058 | if (mr) { | |
4dfe59d1 | 7059 | memory_region_writeback(mr, offset, dline_size); |
0d57b499 BM |
7060 | } |
7061 | } | |
7062 | } | |
7063 | ||
7064 | static const ARMCPRegInfo dcpop_reg[] = { | |
7065 | { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, | |
7066 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, | |
7067 | .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, | |
1bed4d2e | 7068 | .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, |
0d57b499 BM |
7069 | }; |
7070 | ||
7071 | static const ARMCPRegInfo dcpodp_reg[] = { | |
7072 | { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, | |
7073 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, | |
7074 | .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, | |
1bed4d2e | 7075 | .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, |
0d57b499 BM |
7076 | }; |
7077 | #endif /*CONFIG_USER_ONLY*/ | |
7078 | ||
4b779ceb RH |
7079 | static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, |
7080 | bool isread) | |
7081 | { | |
7082 | if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { | |
7083 | return CP_ACCESS_TRAP_EL2; | |
7084 | } | |
7085 | ||
7086 | return CP_ACCESS_OK; | |
7087 | } | |
7088 | ||
7089 | static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, | |
7090 | bool isread) | |
7091 | { | |
7092 | int el = arm_current_el(env); | |
7093 | ||
0da067f2 | 7094 | if (el < 2 && arm_is_el2_enabled(env)) { |
4301acd7 RH |
7095 | uint64_t hcr = arm_hcr_el2_eff(env); |
7096 | if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { | |
7097 | return CP_ACCESS_TRAP_EL2; | |
7098 | } | |
4b779ceb RH |
7099 | } |
7100 | if (el < 3 && | |
7101 | arm_feature(env, ARM_FEATURE_EL3) && | |
7102 | !(env->cp15.scr_el3 & SCR_ATA)) { | |
7103 | return CP_ACCESS_TRAP_EL3; | |
7104 | } | |
7105 | return CP_ACCESS_OK; | |
7106 | } | |
7107 | ||
7108 | static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
7109 | { | |
7110 | return env->pstate & PSTATE_TCO; | |
7111 | } | |
7112 | ||
7113 | static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
7114 | { | |
7115 | env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); | |
7116 | } | |
7117 | ||
7118 | static const ARMCPRegInfo mte_reginfo[] = { | |
7119 | { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, | |
7120 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, | |
7121 | .access = PL1_RW, .accessfn = access_mte, | |
7122 | .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, | |
7123 | { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, | |
7124 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, | |
7125 | .access = PL1_RW, .accessfn = access_mte, | |
7126 | .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, | |
7127 | { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, | |
7128 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, | |
7129 | .access = PL2_RW, .accessfn = access_mte, | |
7130 | .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, | |
7131 | { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, | |
7132 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, | |
7133 | .access = PL3_RW, | |
7134 | .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, | |
7135 | { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, | |
7136 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, | |
7137 | .access = PL1_RW, .accessfn = access_mte, | |
7138 | .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, | |
7139 | { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, | |
7140 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, | |
7141 | .access = PL1_RW, .accessfn = access_mte, | |
7142 | .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, | |
7143 | { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, | |
7144 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, | |
7145 | .access = PL1_R, .accessfn = access_aa64_tid5, | |
7146 | .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, | |
7147 | { .name = "TCO", .state = ARM_CP_STATE_AA64, | |
7148 | .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, | |
7149 | .type = ARM_CP_NO_RAW, | |
7150 | .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, | |
5463df16 RH |
7151 | { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, |
7152 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, | |
7153 | .type = ARM_CP_NOP, .access = PL1_W, | |
7154 | .accessfn = aa64_cacheop_poc_access }, | |
7155 | { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, | |
7156 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, | |
7157 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7158 | { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, | |
7159 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, | |
7160 | .type = ARM_CP_NOP, .access = PL1_W, | |
7161 | .accessfn = aa64_cacheop_poc_access }, | |
7162 | { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, | |
7163 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, | |
7164 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7165 | { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, | |
7166 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, | |
7167 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7168 | { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, | |
7169 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, | |
7170 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7171 | { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, | |
7172 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, | |
7173 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7174 | { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, | |
7175 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, | |
7176 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
4b779ceb RH |
7177 | }; |
7178 | ||
7179 | static const ARMCPRegInfo mte_tco_ro_reginfo[] = { | |
7180 | { .name = "TCO", .state = ARM_CP_STATE_AA64, | |
7181 | .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, | |
7182 | .type = ARM_CP_CONST, .access = PL0_RW, }, | |
4b779ceb | 7183 | }; |
5463df16 RH |
7184 | |
7185 | static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { | |
7186 | { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, | |
7187 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, | |
7188 | .type = ARM_CP_NOP, .access = PL0_W, | |
7189 | .accessfn = aa64_cacheop_poc_access }, | |
7190 | { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, | |
7191 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, | |
7192 | .type = ARM_CP_NOP, .access = PL0_W, | |
7193 | .accessfn = aa64_cacheop_poc_access }, | |
7194 | { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, | |
7195 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, | |
7196 | .type = ARM_CP_NOP, .access = PL0_W, | |
7197 | .accessfn = aa64_cacheop_poc_access }, | |
7198 | { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, | |
7199 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, | |
7200 | .type = ARM_CP_NOP, .access = PL0_W, | |
7201 | .accessfn = aa64_cacheop_poc_access }, | |
7202 | { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, | |
7203 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, | |
7204 | .type = ARM_CP_NOP, .access = PL0_W, | |
7205 | .accessfn = aa64_cacheop_poc_access }, | |
7206 | { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, | |
7207 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, | |
7208 | .type = ARM_CP_NOP, .access = PL0_W, | |
7209 | .accessfn = aa64_cacheop_poc_access }, | |
7210 | { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, | |
7211 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, | |
7212 | .type = ARM_CP_NOP, .access = PL0_W, | |
7213 | .accessfn = aa64_cacheop_poc_access }, | |
7214 | { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, | |
7215 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, | |
7216 | .type = ARM_CP_NOP, .access = PL0_W, | |
7217 | .accessfn = aa64_cacheop_poc_access }, | |
eb821168 RH |
7218 | { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, |
7219 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, | |
7220 | .access = PL0_W, .type = ARM_CP_DC_GVA, | |
7221 | #ifndef CONFIG_USER_ONLY | |
7222 | /* Avoid overhead of an access check that always passes in user-mode */ | |
7223 | .accessfn = aa64_zva_access, | |
7224 | #endif | |
7225 | }, | |
7226 | { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, | |
7227 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, | |
7228 | .access = PL0_W, .type = ARM_CP_DC_GZVA, | |
7229 | #ifndef CONFIG_USER_ONLY | |
7230 | /* Avoid overhead of an access check that always passes in user-mode */ | |
7231 | .accessfn = aa64_zva_access, | |
7232 | #endif | |
7233 | }, | |
5463df16 RH |
7234 | }; |
7235 | ||
7cb1e618 RH |
7236 | static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, |
7237 | bool isread) | |
7238 | { | |
7239 | uint64_t hcr = arm_hcr_el2_eff(env); | |
7240 | int el = arm_current_el(env); | |
7241 | ||
7242 | if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { | |
7243 | if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { | |
7244 | if (hcr & HCR_TGE) { | |
7245 | return CP_ACCESS_TRAP_EL2; | |
7246 | } | |
7247 | return CP_ACCESS_TRAP; | |
7248 | } | |
7249 | } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { | |
7250 | return CP_ACCESS_TRAP_EL2; | |
7251 | } | |
7252 | if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { | |
7253 | return CP_ACCESS_TRAP_EL2; | |
7254 | } | |
7255 | if (el < 3 | |
7256 | && arm_feature(env, ARM_FEATURE_EL3) | |
7257 | && !(env->cp15.scr_el3 & SCR_ENSCXT)) { | |
7258 | return CP_ACCESS_TRAP_EL3; | |
7259 | } | |
7260 | return CP_ACCESS_OK; | |
7261 | } | |
7262 | ||
7263 | static const ARMCPRegInfo scxtnum_reginfo[] = { | |
7264 | { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, | |
7265 | .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, | |
7266 | .access = PL0_RW, .accessfn = access_scxtnum, | |
7267 | .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, | |
7268 | { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, | |
7269 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, | |
7270 | .access = PL1_RW, .accessfn = access_scxtnum, | |
7271 | .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, | |
7272 | { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, | |
7273 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, | |
7274 | .access = PL2_RW, .accessfn = access_scxtnum, | |
7275 | .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, | |
7276 | { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, | |
7277 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, | |
7278 | .access = PL3_RW, | |
7279 | .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, | |
7280 | }; | |
7281 | #endif /* TARGET_AARCH64 */ | |
967aa94f | 7282 | |
cb570bd3 RH |
7283 | static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, |
7284 | bool isread) | |
7285 | { | |
7286 | int el = arm_current_el(env); | |
7287 | ||
7288 | if (el == 0) { | |
7289 | uint64_t sctlr = arm_sctlr(env, el); | |
7290 | if (!(sctlr & SCTLR_EnRCTX)) { | |
7291 | return CP_ACCESS_TRAP; | |
7292 | } | |
7293 | } else if (el == 1) { | |
7294 | uint64_t hcr = arm_hcr_el2_eff(env); | |
7295 | if (hcr & HCR_NV) { | |
7296 | return CP_ACCESS_TRAP_EL2; | |
7297 | } | |
7298 | } | |
7299 | return CP_ACCESS_OK; | |
7300 | } | |
7301 | ||
7302 | static const ARMCPRegInfo predinv_reginfo[] = { | |
7303 | { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, | |
7304 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, | |
7305 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7306 | { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, | |
7307 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, | |
7308 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7309 | { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, | |
7310 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, | |
7311 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7312 | /* | |
7313 | * Note the AArch32 opcodes have a different OPC1. | |
7314 | */ | |
7315 | { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, | |
7316 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, | |
7317 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7318 | { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, | |
7319 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, | |
7320 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7321 | { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, | |
7322 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, | |
7323 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
cb570bd3 RH |
7324 | }; |
7325 | ||
957e6155 PM |
7326 | static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) |
7327 | { | |
7328 | /* Read the high 32 bits of the current CCSIDR */ | |
7329 | return extract64(ccsidr_read(env, ri), 32, 32); | |
7330 | } | |
7331 | ||
7332 | static const ARMCPRegInfo ccsidr2_reginfo[] = { | |
7333 | { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, | |
7334 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, | |
7335 | .access = PL1_R, | |
7336 | .accessfn = access_aa64_tid2, | |
7337 | .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, | |
957e6155 PM |
7338 | }; |
7339 | ||
6a4ef4e5 MZ |
7340 | static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, |
7341 | bool isread) | |
7342 | { | |
7343 | if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { | |
7344 | return CP_ACCESS_TRAP_EL2; | |
7345 | } | |
7346 | ||
7347 | return CP_ACCESS_OK; | |
7348 | } | |
7349 | ||
7350 | static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, | |
7351 | bool isread) | |
7352 | { | |
7353 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
7354 | return access_aa64_tid3(env, ri, isread); | |
7355 | } | |
7356 | ||
7357 | return CP_ACCESS_OK; | |
7358 | } | |
7359 | ||
f96f3d5f MZ |
7360 | static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, |
7361 | bool isread) | |
7362 | { | |
7363 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { | |
7364 | return CP_ACCESS_TRAP_EL2; | |
7365 | } | |
7366 | ||
7367 | return CP_ACCESS_OK; | |
7368 | } | |
7369 | ||
8e228c9e PM |
7370 | static CPAccessResult access_joscr_jmcr(CPUARMState *env, |
7371 | const ARMCPRegInfo *ri, bool isread) | |
7372 | { | |
7373 | /* | |
7374 | * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only | |
7375 | * in v7A, not in v8A. | |
7376 | */ | |
7377 | if (!arm_feature(env, ARM_FEATURE_V8) && | |
7378 | arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && | |
7379 | (env->cp15.hstr_el2 & HSTR_TJDBX)) { | |
7380 | return CP_ACCESS_TRAP_EL2; | |
7381 | } | |
7382 | return CP_ACCESS_OK; | |
7383 | } | |
7384 | ||
f96f3d5f MZ |
7385 | static const ARMCPRegInfo jazelle_regs[] = { |
7386 | { .name = "JIDR", | |
7387 | .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, | |
7388 | .access = PL1_R, .accessfn = access_jazelle, | |
7389 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7390 | { .name = "JOSCR", | |
7391 | .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, | |
8e228c9e | 7392 | .accessfn = access_joscr_jmcr, |
f96f3d5f MZ |
7393 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
7394 | { .name = "JMCR", | |
7395 | .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, | |
8e228c9e | 7396 | .accessfn = access_joscr_jmcr, |
f96f3d5f | 7397 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f96f3d5f MZ |
7398 | }; |
7399 | ||
52d18727 RH |
7400 | static const ARMCPRegInfo contextidr_el2 = { |
7401 | .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, | |
7402 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, | |
7403 | .access = PL2_RW, | |
7404 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) | |
7405 | }; | |
7406 | ||
e2a1a461 | 7407 | static const ARMCPRegInfo vhe_reginfo[] = { |
ed30da8e RH |
7408 | { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, |
7409 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, | |
7410 | .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, | |
7411 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, | |
8c94b071 RH |
7412 | #ifndef CONFIG_USER_ONLY |
7413 | { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, | |
7414 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, | |
7415 | .fieldoffset = | |
7416 | offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), | |
7417 | .type = ARM_CP_IO, .access = PL2_RW, | |
7418 | .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, | |
7419 | { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
7420 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, | |
7421 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, | |
7422 | .resetfn = gt_hv_timer_reset, | |
7423 | .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, | |
7424 | { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
7425 | .type = ARM_CP_IO, | |
7426 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, | |
7427 | .access = PL2_RW, | |
7428 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), | |
7429 | .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, | |
bb5972e4 RH |
7430 | { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, |
7431 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, | |
7432 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7433 | .access = PL2_RW, .accessfn = e2h_access, | |
7434 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), | |
7435 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, | |
7436 | { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, | |
7437 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, | |
7438 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7439 | .access = PL2_RW, .accessfn = e2h_access, | |
7440 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), | |
7441 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, | |
7442 | { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7443 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, | |
7444 | .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, | |
7445 | .access = PL2_RW, .accessfn = e2h_access, | |
7446 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, | |
7447 | { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7448 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, | |
7449 | .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, | |
7450 | .access = PL2_RW, .accessfn = e2h_access, | |
7451 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, | |
7452 | { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7453 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, | |
7454 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7455 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
7456 | .access = PL2_RW, .accessfn = e2h_access, | |
7457 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, | |
7458 | { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7459 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, | |
7460 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7461 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
7462 | .access = PL2_RW, .accessfn = e2h_access, | |
7463 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, | |
8c94b071 | 7464 | #endif |
e2a1a461 RH |
7465 | }; |
7466 | ||
04b07d29 RH |
7467 | #ifndef CONFIG_USER_ONLY |
7468 | static const ARMCPRegInfo ats1e1_reginfo[] = { | |
7469 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
7470 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, | |
7471 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7472 | .writefn = ats_write64 }, | |
7473 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, | |
7474 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, | |
7475 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7476 | .writefn = ats_write64 }, | |
04b07d29 RH |
7477 | }; |
7478 | ||
7479 | static const ARMCPRegInfo ats1cp_reginfo[] = { | |
7480 | { .name = "ATS1CPRP", | |
7481 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, | |
7482 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7483 | .writefn = ats_write }, | |
7484 | { .name = "ATS1CPWP", | |
7485 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, | |
7486 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7487 | .writefn = ats_write }, | |
04b07d29 RH |
7488 | }; |
7489 | #endif | |
7490 | ||
f6287c24 PM |
7491 | /* |
7492 | * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and | |
7493 | * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field | |
7494 | * is non-zero, which is never for ARMv7, optionally in ARMv8 | |
7495 | * and mandatorily for ARMv8.2 and up. | |
7496 | * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's | |
7497 | * implementation is RAZ/WI we can ignore this detail, as we | |
7498 | * do for ACTLR. | |
7499 | */ | |
7500 | static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { | |
7501 | { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, | |
7502 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, | |
99602377 RH |
7503 | .access = PL1_RW, .accessfn = access_tacr, |
7504 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
f6287c24 PM |
7505 | { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, |
7506 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, | |
7507 | .access = PL2_RW, .type = ARM_CP_CONST, | |
7508 | .resetvalue = 0 }, | |
f6287c24 PM |
7509 | }; |
7510 | ||
2ceb98c0 PM |
7511 | void register_cp_regs_for_features(ARMCPU *cpu) |
7512 | { | |
7513 | /* Register all the coprocessor registers based on feature bits */ | |
7514 | CPUARMState *env = &cpu->env; | |
7515 | if (arm_feature(env, ARM_FEATURE_M)) { | |
7516 | /* M profile has no coprocessor registers */ | |
7517 | return; | |
7518 | } | |
7519 | ||
e9aa6c21 | 7520 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
7521 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
7522 | /* Must go early as it is full of wildcards that may be | |
7523 | * overridden by later definitions. | |
7524 | */ | |
7525 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
7526 | } | |
7527 | ||
7d57f408 | 7528 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
7529 | /* The ID registers all have impdef reset values */ |
7530 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
7531 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
7532 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7533 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7534 | .accessfn = access_aa32_tid3, |
8a130a7b | 7535 | .resetvalue = cpu->isar.id_pfr0 }, |
96a8b92e PM |
7536 | /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know |
7537 | * the value of the GIC field until after we define these regs. | |
7538 | */ | |
0ff644a7 PM |
7539 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
7540 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
96a8b92e | 7541 | .access = PL1_R, .type = ARM_CP_NO_RAW, |
6a4ef4e5 | 7542 | .accessfn = access_aa32_tid3, |
96a8b92e PM |
7543 | .readfn = id_pfr1_read, |
7544 | .writefn = arm_cp_write_ignore }, | |
0ff644a7 PM |
7545 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
7546 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
7547 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7548 | .accessfn = access_aa32_tid3, |
a6179538 | 7549 | .resetvalue = cpu->isar.id_dfr0 }, |
0ff644a7 PM |
7550 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
7551 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
7552 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7553 | .accessfn = access_aa32_tid3, |
8515a092 | 7554 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
7555 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
7556 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
7557 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7558 | .accessfn = access_aa32_tid3, |
10054016 | 7559 | .resetvalue = cpu->isar.id_mmfr0 }, |
0ff644a7 PM |
7560 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
7561 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
7562 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7563 | .accessfn = access_aa32_tid3, |
10054016 | 7564 | .resetvalue = cpu->isar.id_mmfr1 }, |
0ff644a7 PM |
7565 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
7566 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
7567 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7568 | .accessfn = access_aa32_tid3, |
10054016 | 7569 | .resetvalue = cpu->isar.id_mmfr2 }, |
0ff644a7 PM |
7570 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
7571 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
7572 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7573 | .accessfn = access_aa32_tid3, |
10054016 | 7574 | .resetvalue = cpu->isar.id_mmfr3 }, |
0ff644a7 PM |
7575 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
7576 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
7577 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7578 | .accessfn = access_aa32_tid3, |
47576b94 | 7579 | .resetvalue = cpu->isar.id_isar0 }, |
0ff644a7 PM |
7580 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
7581 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
7582 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7583 | .accessfn = access_aa32_tid3, |
47576b94 | 7584 | .resetvalue = cpu->isar.id_isar1 }, |
0ff644a7 PM |
7585 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
7586 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
7587 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7588 | .accessfn = access_aa32_tid3, |
47576b94 | 7589 | .resetvalue = cpu->isar.id_isar2 }, |
0ff644a7 PM |
7590 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
7591 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
7592 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7593 | .accessfn = access_aa32_tid3, |
47576b94 | 7594 | .resetvalue = cpu->isar.id_isar3 }, |
0ff644a7 PM |
7595 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
7596 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
7597 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7598 | .accessfn = access_aa32_tid3, |
47576b94 | 7599 | .resetvalue = cpu->isar.id_isar4 }, |
0ff644a7 PM |
7600 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
7601 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
7602 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7603 | .accessfn = access_aa32_tid3, |
47576b94 | 7604 | .resetvalue = cpu->isar.id_isar5 }, |
e20d84c1 PM |
7605 | { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
7606 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, | |
7607 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7608 | .accessfn = access_aa32_tid3, |
10054016 | 7609 | .resetvalue = cpu->isar.id_mmfr4 }, |
802abf40 | 7610 | { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, |
e20d84c1 PM |
7611 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, |
7612 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7613 | .accessfn = access_aa32_tid3, |
47576b94 | 7614 | .resetvalue = cpu->isar.id_isar6 }, |
8515a092 PM |
7615 | }; |
7616 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
7617 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
7618 | } else { | |
7619 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
7620 | } | |
4d31c596 PM |
7621 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
7622 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
7623 | } | |
5e5cf9e3 | 7624 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
452a0955 | 7625 | !arm_feature(env, ARM_FEATURE_PMSA)) { |
995939a6 PM |
7626 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
7627 | } | |
327dd510 AL |
7628 | if (arm_feature(env, ARM_FEATURE_V7VE)) { |
7629 | define_arm_cp_regs(cpu, pmovsset_cp_reginfo); | |
7630 | } | |
e9aa6c21 | 7631 | if (arm_feature(env, ARM_FEATURE_V7)) { |
776d4e5c | 7632 | ARMCPRegInfo clidr = { |
7da845b0 PM |
7633 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
7634 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
630fcd4d MZ |
7635 | .access = PL1_R, .type = ARM_CP_CONST, |
7636 | .accessfn = access_aa64_tid2, | |
7637 | .resetvalue = cpu->clidr | |
776d4e5c | 7638 | }; |
776d4e5c | 7639 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 7640 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 7641 | define_debug_regs(cpu); |
24183fb6 | 7642 | define_pmu_regs(cpu); |
7d57f408 PM |
7643 | } else { |
7644 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 7645 | } |
b0d2b7d0 | 7646 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e20d84c1 PM |
7647 | /* AArch64 ID registers, which all have impdef reset values. |
7648 | * Note that within the ID register ranges the unused slots | |
7649 | * must all RAZ, not UNDEF; future architecture versions may | |
7650 | * define new registers here. | |
7651 | */ | |
e60cef86 | 7652 | ARMCPRegInfo v8_idregs[] = { |
976b99b6 AB |
7653 | /* |
7654 | * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system | |
7655 | * emulation because we don't know the right value for the | |
7656 | * GIC field until after we define these regs. | |
96a8b92e | 7657 | */ |
e60cef86 PM |
7658 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, |
7659 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
976b99b6 AB |
7660 | .access = PL1_R, |
7661 | #ifdef CONFIG_USER_ONLY | |
7662 | .type = ARM_CP_CONST, | |
7663 | .resetvalue = cpu->isar.id_aa64pfr0 | |
7664 | #else | |
7665 | .type = ARM_CP_NO_RAW, | |
6a4ef4e5 | 7666 | .accessfn = access_aa64_tid3, |
96a8b92e | 7667 | .readfn = id_aa64pfr0_read, |
976b99b6 AB |
7668 | .writefn = arm_cp_write_ignore |
7669 | #endif | |
7670 | }, | |
e60cef86 PM |
7671 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, |
7672 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
7673 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7674 | .accessfn = access_aa64_tid3, |
47576b94 | 7675 | .resetvalue = cpu->isar.id_aa64pfr1}, |
e20d84c1 PM |
7676 | { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7677 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, | |
7678 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7679 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7680 | .resetvalue = 0 }, |
7681 | { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7682 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, | |
7683 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7684 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7685 | .resetvalue = 0 }, |
9516d772 | 7686 | { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, |
e20d84c1 PM |
7687 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, |
7688 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7689 | .accessfn = access_aa64_tid3, |
2dc10fa2 | 7690 | .resetvalue = cpu->isar.id_aa64zfr0 }, |
e20d84c1 PM |
7691 | { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7692 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, | |
7693 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7694 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7695 | .resetvalue = 0 }, |
7696 | { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7697 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, | |
7698 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7699 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7700 | .resetvalue = 0 }, |
7701 | { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7702 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, | |
7703 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7704 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7705 | .resetvalue = 0 }, |
e60cef86 PM |
7706 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
7707 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
7708 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7709 | .accessfn = access_aa64_tid3, |
2a609df8 | 7710 | .resetvalue = cpu->isar.id_aa64dfr0 }, |
e60cef86 PM |
7711 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
7712 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
7713 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7714 | .accessfn = access_aa64_tid3, |
2a609df8 | 7715 | .resetvalue = cpu->isar.id_aa64dfr1 }, |
e20d84c1 PM |
7716 | { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7717 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, | |
7718 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7719 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7720 | .resetvalue = 0 }, |
7721 | { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7722 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, | |
7723 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7724 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7725 | .resetvalue = 0 }, |
e60cef86 PM |
7726 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
7727 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
7728 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7729 | .accessfn = access_aa64_tid3, |
e60cef86 PM |
7730 | .resetvalue = cpu->id_aa64afr0 }, |
7731 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
7732 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
7733 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7734 | .accessfn = access_aa64_tid3, |
e60cef86 | 7735 | .resetvalue = cpu->id_aa64afr1 }, |
e20d84c1 PM |
7736 | { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7737 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, | |
7738 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7739 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7740 | .resetvalue = 0 }, |
7741 | { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7742 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, | |
7743 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7744 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7745 | .resetvalue = 0 }, |
e60cef86 PM |
7746 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
7747 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
7748 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7749 | .accessfn = access_aa64_tid3, |
47576b94 | 7750 | .resetvalue = cpu->isar.id_aa64isar0 }, |
e60cef86 PM |
7751 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, |
7752 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
7753 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7754 | .accessfn = access_aa64_tid3, |
47576b94 | 7755 | .resetvalue = cpu->isar.id_aa64isar1 }, |
e20d84c1 PM |
7756 | { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7757 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, | |
7758 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7759 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7760 | .resetvalue = 0 }, |
7761 | { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7762 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, | |
7763 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7764 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7765 | .resetvalue = 0 }, |
7766 | { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7767 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, | |
7768 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7769 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7770 | .resetvalue = 0 }, |
7771 | { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7772 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, | |
7773 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7774 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7775 | .resetvalue = 0 }, |
7776 | { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7777 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, | |
7778 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7779 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7780 | .resetvalue = 0 }, |
7781 | { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7782 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, | |
7783 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7784 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7785 | .resetvalue = 0 }, |
e60cef86 PM |
7786 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
7787 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
7788 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7789 | .accessfn = access_aa64_tid3, |
3dc91ddb | 7790 | .resetvalue = cpu->isar.id_aa64mmfr0 }, |
e60cef86 PM |
7791 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, |
7792 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
7793 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7794 | .accessfn = access_aa64_tid3, |
3dc91ddb | 7795 | .resetvalue = cpu->isar.id_aa64mmfr1 }, |
64761e10 | 7796 | { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, |
e20d84c1 PM |
7797 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, |
7798 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7799 | .accessfn = access_aa64_tid3, |
64761e10 | 7800 | .resetvalue = cpu->isar.id_aa64mmfr2 }, |
e20d84c1 PM |
7801 | { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7802 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, | |
7803 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7804 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7805 | .resetvalue = 0 }, |
7806 | { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7807 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, | |
7808 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7809 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7810 | .resetvalue = 0 }, |
7811 | { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7812 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, | |
7813 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7814 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7815 | .resetvalue = 0 }, |
7816 | { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7817 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, | |
7818 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7819 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7820 | .resetvalue = 0 }, |
7821 | { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7822 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, | |
7823 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7824 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7825 | .resetvalue = 0 }, |
a50c0f51 PM |
7826 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
7827 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
7828 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7829 | .accessfn = access_aa64_tid3, |
47576b94 | 7830 | .resetvalue = cpu->isar.mvfr0 }, |
a50c0f51 PM |
7831 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, |
7832 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
7833 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7834 | .accessfn = access_aa64_tid3, |
47576b94 | 7835 | .resetvalue = cpu->isar.mvfr1 }, |
a50c0f51 PM |
7836 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, |
7837 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
7838 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7839 | .accessfn = access_aa64_tid3, |
47576b94 | 7840 | .resetvalue = cpu->isar.mvfr2 }, |
e20d84c1 PM |
7841 | { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7842 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, | |
7843 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7844 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7845 | .resetvalue = 0 }, |
1d51bc96 | 7846 | { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, |
e20d84c1 PM |
7847 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, |
7848 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7849 | .accessfn = access_aa64_tid3, |
1d51bc96 | 7850 | .resetvalue = cpu->isar.id_pfr2 }, |
e20d84c1 PM |
7851 | { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7852 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, | |
7853 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7854 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7855 | .resetvalue = 0 }, |
7856 | { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7857 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, | |
7858 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7859 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7860 | .resetvalue = 0 }, |
7861 | { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7862 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, | |
7863 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7864 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7865 | .resetvalue = 0 }, |
4054bfa9 AF |
7866 | { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
7867 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, | |
7868 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
cad86737 | 7869 | .resetvalue = extract64(cpu->pmceid0, 0, 32) }, |
4054bfa9 AF |
7870 | { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, |
7871 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, | |
7872 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
7873 | .resetvalue = cpu->pmceid0 }, | |
7874 | { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, | |
7875 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, | |
7876 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
cad86737 | 7877 | .resetvalue = extract64(cpu->pmceid1, 0, 32) }, |
4054bfa9 AF |
7878 | { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, |
7879 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, | |
7880 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
7881 | .resetvalue = cpu->pmceid1 }, | |
e60cef86 | 7882 | }; |
6c5c0fec | 7883 | #ifdef CONFIG_USER_ONLY |
10b0220e | 7884 | static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { |
6c5c0fec AB |
7885 | { .name = "ID_AA64PFR0_EL1", |
7886 | .exported_bits = 0x000f000f00ff0000, | |
7887 | .fixed_bits = 0x0000000000000011 }, | |
7888 | { .name = "ID_AA64PFR1_EL1", | |
7889 | .exported_bits = 0x00000000000000f0 }, | |
d040242e AB |
7890 | { .name = "ID_AA64PFR*_EL1_RESERVED", |
7891 | .is_glob = true }, | |
6c5c0fec AB |
7892 | { .name = "ID_AA64ZFR0_EL1" }, |
7893 | { .name = "ID_AA64MMFR0_EL1", | |
7894 | .fixed_bits = 0x00000000ff000000 }, | |
7895 | { .name = "ID_AA64MMFR1_EL1" }, | |
d040242e AB |
7896 | { .name = "ID_AA64MMFR*_EL1_RESERVED", |
7897 | .is_glob = true }, | |
6c5c0fec AB |
7898 | { .name = "ID_AA64DFR0_EL1", |
7899 | .fixed_bits = 0x0000000000000006 }, | |
7900 | { .name = "ID_AA64DFR1_EL1" }, | |
d040242e AB |
7901 | { .name = "ID_AA64DFR*_EL1_RESERVED", |
7902 | .is_glob = true }, | |
7903 | { .name = "ID_AA64AFR*", | |
7904 | .is_glob = true }, | |
6c5c0fec AB |
7905 | { .name = "ID_AA64ISAR0_EL1", |
7906 | .exported_bits = 0x00fffffff0fffff0 }, | |
7907 | { .name = "ID_AA64ISAR1_EL1", | |
7908 | .exported_bits = 0x000000f0ffffffff }, | |
d040242e AB |
7909 | { .name = "ID_AA64ISAR*_EL1_RESERVED", |
7910 | .is_glob = true }, | |
6c5c0fec AB |
7911 | }; |
7912 | modify_arm_cp_regs(v8_idregs, v8_user_idregs); | |
7913 | #endif | |
be8e8128 GB |
7914 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
7915 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
7916 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
7917 | ARMCPRegInfo rvbar = { | |
7918 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
7919 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
4a7319b7 EI |
7920 | .access = PL1_R, |
7921 | .fieldoffset = offsetof(CPUARMState, cp15.rvbar), | |
be8e8128 GB |
7922 | }; |
7923 | define_one_arm_cp_reg(cpu, &rvbar); | |
7924 | } | |
e60cef86 | 7925 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
7926 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
7927 | } | |
99a90811 RH |
7928 | |
7929 | /* | |
7930 | * Register the base EL2 cpregs. | |
7931 | * Pre v8, these registers are implemented only as part of the | |
7932 | * Virtualization Extensions (EL2 present). Beginning with v8, | |
7933 | * if EL2 is missing but EL3 is enabled, mostly these become | |
7934 | * RES0 from EL3, with some specific exceptions. | |
7935 | */ | |
7936 | if (arm_feature(env, ARM_FEATURE_EL2) | |
7937 | || (arm_feature(env, ARM_FEATURE_EL3) | |
7938 | && arm_feature(env, ARM_FEATURE_V8))) { | |
f0d574d6 | 7939 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
7940 | ARMCPRegInfo vpidr_regs[] = { |
7941 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
7942 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
7943 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
696ba377 RH |
7944 | .resetvalue = cpu->midr, |
7945 | .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, | |
36476562 | 7946 | .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, |
731de9e6 EI |
7947 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, |
7948 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
7949 | .access = PL2_RW, .resetvalue = cpu->midr, | |
696ba377 | 7950 | .type = ARM_CP_EL3_NO_EL2_C_NZ, |
731de9e6 | 7951 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, |
f0d574d6 EI |
7952 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
7953 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
7954 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
696ba377 RH |
7955 | .resetvalue = vmpidr_def, |
7956 | .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, | |
36476562 | 7957 | .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, |
f0d574d6 EI |
7958 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, |
7959 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
696ba377 RH |
7960 | .access = PL2_RW, .resetvalue = vmpidr_def, |
7961 | .type = ARM_CP_EL3_NO_EL2_C_NZ, | |
f0d574d6 | 7962 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, |
731de9e6 EI |
7963 | }; |
7964 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 7965 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
ce4afed8 PM |
7966 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7967 | define_arm_cp_regs(cpu, el2_v8_cp_reginfo); | |
7968 | } | |
e9152ee9 RDC |
7969 | if (cpu_isar_feature(aa64_sel2, cpu)) { |
7970 | define_arm_cp_regs(cpu, el2_sec_cp_reginfo); | |
7971 | } | |
be8e8128 GB |
7972 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
7973 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
7974 | ARMCPRegInfo rvbar = { | |
7975 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
7976 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
4a7319b7 EI |
7977 | .access = PL2_R, |
7978 | .fieldoffset = offsetof(CPUARMState, cp15.rvbar), | |
be8e8128 GB |
7979 | }; |
7980 | define_one_arm_cp_reg(cpu, &rvbar); | |
7981 | } | |
3b685ba7 | 7982 | } |
99a90811 RH |
7983 | |
7984 | /* Register the base EL3 cpregs. */ | |
81547d66 | 7985 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 7986 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
e24fdd23 PM |
7987 | ARMCPRegInfo el3_regs[] = { |
7988 | { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
7989 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
4a7319b7 EI |
7990 | .access = PL3_R, |
7991 | .fieldoffset = offsetof(CPUARMState, cp15.rvbar), | |
7992 | }, | |
e24fdd23 PM |
7993 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
7994 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
7995 | .access = PL3_RW, | |
7996 | .raw_writefn = raw_write, .writefn = sctlr_write, | |
7997 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), | |
7998 | .resetvalue = cpu->reset_sctlr }, | |
be8e8128 | 7999 | }; |
e24fdd23 PM |
8000 | |
8001 | define_arm_cp_regs(cpu, el3_regs); | |
81547d66 | 8002 | } |
2f027fc5 PM |
8003 | /* The behaviour of NSACR is sufficiently various that we don't |
8004 | * try to describe it in a single reginfo: | |
8005 | * if EL3 is 64 bit, then trap to EL3 from S EL1, | |
8006 | * reads as constant 0xc00 from NS EL1 and NS EL2 | |
8007 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 | |
8008 | * if v7 without EL3, register doesn't exist | |
8009 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 | |
8010 | */ | |
8011 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
8012 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
10b0220e | 8013 | static const ARMCPRegInfo nsacr = { |
2f027fc5 PM |
8014 | .name = "NSACR", .type = ARM_CP_CONST, |
8015 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
8016 | .access = PL1_RW, .accessfn = nsacr_access, | |
8017 | .resetvalue = 0xc00 | |
8018 | }; | |
8019 | define_one_arm_cp_reg(cpu, &nsacr); | |
8020 | } else { | |
10b0220e | 8021 | static const ARMCPRegInfo nsacr = { |
2f027fc5 PM |
8022 | .name = "NSACR", |
8023 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
8024 | .access = PL3_RW | PL1_R, | |
8025 | .resetvalue = 0, | |
8026 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) | |
8027 | }; | |
8028 | define_one_arm_cp_reg(cpu, &nsacr); | |
8029 | } | |
8030 | } else { | |
8031 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
10b0220e | 8032 | static const ARMCPRegInfo nsacr = { |
2f027fc5 PM |
8033 | .name = "NSACR", .type = ARM_CP_CONST, |
8034 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
8035 | .access = PL1_R, | |
8036 | .resetvalue = 0xc00 | |
8037 | }; | |
8038 | define_one_arm_cp_reg(cpu, &nsacr); | |
8039 | } | |
8040 | } | |
8041 | ||
452a0955 | 8042 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
6cb0b013 PC |
8043 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8044 | /* PMSAv6 not implemented */ | |
8045 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
8046 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
8047 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
8048 | } else { | |
8049 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
8050 | } | |
18032bec | 8051 | } else { |
8e5d75c9 | 8052 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec | 8053 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
4036b7d1 PM |
8054 | /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ |
8055 | if (cpu_isar_feature(aa32_hpd, cpu)) { | |
ab638a32 RH |
8056 | define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); |
8057 | } | |
18032bec | 8058 | } |
c326b979 PM |
8059 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
8060 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
8061 | } | |
6cc7a3ae PM |
8062 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
8063 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
8064 | } | |
4a501606 PM |
8065 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
8066 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
8067 | } | |
c4804214 PM |
8068 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
8069 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
8070 | } | |
8071 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
8072 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
8073 | } | |
8074 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
8075 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
8076 | } | |
18032bec PM |
8077 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
8078 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
8079 | } | |
34f90529 PM |
8080 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
8081 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
8082 | } | |
1047b9d7 PM |
8083 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
8084 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
8085 | } | |
8086 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
8087 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
8088 | } | |
7ac681cf PM |
8089 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8090 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
8091 | } | |
873b73c0 | 8092 | if (cpu_isar_feature(aa32_jazelle, cpu)) { |
f96f3d5f MZ |
8093 | define_arm_cp_regs(cpu, jazelle_regs); |
8094 | } | |
7884849c PM |
8095 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
8096 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
8097 | * be read-only (ie write causes UNDEF exception). | |
8098 | */ | |
8099 | { | |
00a29f3d PM |
8100 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
8101 | /* Pre-v8 MIDR space. | |
8102 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
8103 | * of the TI925 behaviour where writes to another register can |
8104 | * cause the MIDR value to change. | |
97ce8d61 PC |
8105 | * |
8106 | * Unimplemented registers in the c15 0 0 0 space default to | |
8107 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
8108 | * and friends override accordingly. | |
7884849c PM |
8109 | */ |
8110 | { .name = "MIDR", | |
97ce8d61 | 8111 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 8112 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 8113 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 8114 | .readfn = midr_read, |
97ce8d61 PC |
8115 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
8116 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
8117 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
8118 | { .name = "DUMMY", | |
8119 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
8120 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
8121 | { .name = "DUMMY", | |
8122 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
8123 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
8124 | { .name = "DUMMY", | |
8125 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
8126 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
8127 | { .name = "DUMMY", | |
8128 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
8129 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
8130 | { .name = "DUMMY", | |
8131 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
8132 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7884849c | 8133 | }; |
00a29f3d | 8134 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
8135 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
8136 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
8137 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
8138 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
8139 | .readfn = midr_read }, | |
ac00c79f SF |
8140 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
8141 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
8142 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
8143 | .access = PL1_R, .resetvalue = cpu->midr }, | |
8144 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
8145 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
8146 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
8147 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
8148 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
93fbc983 MZ |
8149 | .access = PL1_R, |
8150 | .accessfn = access_aa64_tid1, | |
8151 | .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, | |
00a29f3d PM |
8152 | }; |
8153 | ARMCPRegInfo id_cp_reginfo[] = { | |
8154 | /* These are common to v8 and pre-v8 */ | |
8155 | { .name = "CTR", | |
8156 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
630fcd4d MZ |
8157 | .access = PL1_R, .accessfn = ctr_el0_access, |
8158 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
00a29f3d PM |
8159 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
8160 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
8161 | .access = PL0_R, .accessfn = ctr_el0_access, | |
8162 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
8163 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
8164 | { .name = "TCMTR", | |
8165 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
93fbc983 MZ |
8166 | .access = PL1_R, |
8167 | .accessfn = access_aa32_tid1, | |
8168 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d | 8169 | }; |
8085ce63 PC |
8170 | /* TLBTR is specific to VMSA */ |
8171 | ARMCPRegInfo id_tlbtr_reginfo = { | |
8172 | .name = "TLBTR", | |
8173 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
93fbc983 MZ |
8174 | .access = PL1_R, |
8175 | .accessfn = access_aa32_tid1, | |
8176 | .type = ARM_CP_CONST, .resetvalue = 0, | |
8085ce63 | 8177 | }; |
3281af81 PC |
8178 | /* MPUIR is specific to PMSA V6+ */ |
8179 | ARMCPRegInfo id_mpuir_reginfo = { | |
8180 | .name = "MPUIR", | |
8181 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
8182 | .access = PL1_R, .type = ARM_CP_CONST, | |
8183 | .resetvalue = cpu->pmsav7_dregion << 8 | |
8184 | }; | |
10b0220e | 8185 | static const ARMCPRegInfo crn0_wi_reginfo = { |
7884849c PM |
8186 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, |
8187 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
8188 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
8189 | }; | |
6c5c0fec | 8190 | #ifdef CONFIG_USER_ONLY |
10b0220e | 8191 | static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { |
6c5c0fec AB |
8192 | { .name = "MIDR_EL1", |
8193 | .exported_bits = 0x00000000ffffffff }, | |
8194 | { .name = "REVIDR_EL1" }, | |
6c5c0fec AB |
8195 | }; |
8196 | modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); | |
8197 | #endif | |
7884849c PM |
8198 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
8199 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
5809ac57 | 8200 | size_t i; |
7884849c | 8201 | /* Register the blanket "writes ignored" value first to cover the |
a703eda1 PC |
8202 | * whole space. Then update the specific ID registers to allow write |
8203 | * access, so that they ignore writes rather than causing them to | |
8204 | * UNDEF. | |
7884849c PM |
8205 | */ |
8206 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
5809ac57 RH |
8207 | for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { |
8208 | id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; | |
00a29f3d | 8209 | } |
5809ac57 RH |
8210 | for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { |
8211 | id_cp_reginfo[i].access = PL1_RW; | |
7884849c | 8212 | } |
10006112 | 8213 | id_mpuir_reginfo.access = PL1_RW; |
3281af81 | 8214 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 8215 | } |
00a29f3d PM |
8216 | if (arm_feature(env, ARM_FEATURE_V8)) { |
8217 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
8218 | } else { | |
8219 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
8220 | } | |
a703eda1 | 8221 | define_arm_cp_regs(cpu, id_cp_reginfo); |
452a0955 | 8222 | if (!arm_feature(env, ARM_FEATURE_PMSA)) { |
8085ce63 | 8223 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
3281af81 PC |
8224 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8225 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 8226 | } |
7884849c PM |
8227 | } |
8228 | ||
97ce8d61 | 8229 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
52264166 AB |
8230 | ARMCPRegInfo mpidr_cp_reginfo[] = { |
8231 | { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
8232 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
8233 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, | |
52264166 AB |
8234 | }; |
8235 | #ifdef CONFIG_USER_ONLY | |
10b0220e | 8236 | static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { |
52264166 AB |
8237 | { .name = "MPIDR_EL1", |
8238 | .fixed_bits = 0x0000000080000000 }, | |
52264166 AB |
8239 | }; |
8240 | modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); | |
8241 | #endif | |
97ce8d61 PC |
8242 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
8243 | } | |
8244 | ||
2771db27 | 8245 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
8246 | ARMCPRegInfo auxcr_reginfo[] = { |
8247 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
8248 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
99602377 RH |
8249 | .access = PL1_RW, .accessfn = access_tacr, |
8250 | .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, | |
834a6c69 PM |
8251 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, |
8252 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
8253 | .access = PL2_RW, .type = ARM_CP_CONST, | |
8254 | .resetvalue = 0 }, | |
8255 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
8256 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
8257 | .access = PL3_RW, .type = ARM_CP_CONST, | |
8258 | .resetvalue = 0 }, | |
2771db27 | 8259 | }; |
834a6c69 | 8260 | define_arm_cp_regs(cpu, auxcr_reginfo); |
f6287c24 PM |
8261 | if (cpu_isar_feature(aa32_ac2, cpu)) { |
8262 | define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); | |
0e0456ab | 8263 | } |
2771db27 PM |
8264 | } |
8265 | ||
d8ba780b | 8266 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
d56974af LM |
8267 | /* |
8268 | * CBAR is IMPDEF, but common on Arm Cortex-A implementations. | |
8269 | * There are two flavours: | |
8270 | * (1) older 32-bit only cores have a simple 32-bit CBAR | |
8271 | * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a | |
8272 | * 32-bit register visible to AArch32 at a different encoding | |
8273 | * to the "flavour 1" register and with the bits rearranged to | |
8274 | * be able to squash a 64-bit address into the 32-bit view. | |
8275 | * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but | |
8276 | * in future if we support AArch32-only configs of some of the | |
8277 | * AArch64 cores we might need to add a specific feature flag | |
8278 | * to indicate cores with "flavour 2" CBAR. | |
8279 | */ | |
f318cec6 PM |
8280 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
8281 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
8282 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
8283 | | extract64(cpu->reset_cbar, 32, 12); | |
8284 | ARMCPRegInfo cbar_reginfo[] = { | |
8285 | { .name = "CBAR", | |
8286 | .type = ARM_CP_CONST, | |
d56974af LM |
8287 | .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, |
8288 | .access = PL1_R, .resetvalue = cbar32 }, | |
f318cec6 PM |
8289 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, |
8290 | .type = ARM_CP_CONST, | |
8291 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
d56974af | 8292 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, |
f318cec6 PM |
8293 | }; |
8294 | /* We don't implement a r/w 64 bit CBAR currently */ | |
8295 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
8296 | define_arm_cp_regs(cpu, cbar_reginfo); | |
8297 | } else { | |
8298 | ARMCPRegInfo cbar = { | |
8299 | .name = "CBAR", | |
8300 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
8301 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
8302 | .fieldoffset = offsetof(CPUARMState, | |
8303 | cp15.c15_config_base_address) | |
8304 | }; | |
8305 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
8306 | cbar.access = PL1_R; | |
8307 | cbar.fieldoffset = 0; | |
8308 | cbar.type = ARM_CP_CONST; | |
8309 | } | |
8310 | define_one_arm_cp_reg(cpu, &cbar); | |
8311 | } | |
d8ba780b PC |
8312 | } |
8313 | ||
91db4642 | 8314 | if (arm_feature(env, ARM_FEATURE_VBAR)) { |
10b0220e | 8315 | static const ARMCPRegInfo vbar_cp_reginfo[] = { |
91db4642 CLG |
8316 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
8317 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8318 | .access = PL1_RW, .writefn = vbar_write, | |
8319 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), | |
8320 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8321 | .resetvalue = 0 }, | |
91db4642 CLG |
8322 | }; |
8323 | define_arm_cp_regs(cpu, vbar_cp_reginfo); | |
8324 | } | |
8325 | ||
2771db27 PM |
8326 | /* Generic registers whose values depend on the implementation */ |
8327 | { | |
8328 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 8329 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 | 8330 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
84929218 | 8331 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
137feaa9 FA |
8332 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), |
8333 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
8334 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
8335 | .raw_writefn = raw_write, | |
2771db27 PM |
8336 | }; |
8337 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
8338 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
8339 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
8340 | * an MMU enable to execute from cache. Imitate this behaviour. | |
8341 | */ | |
8342 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
8343 | } | |
8344 | define_one_arm_cp_reg(cpu, &sctlr); | |
8345 | } | |
5be5e8ed | 8346 | |
2d7137c1 | 8347 | if (cpu_isar_feature(aa64_lor, cpu)) { |
2d7137c1 RH |
8348 | define_arm_cp_regs(cpu, lor_reginfo); |
8349 | } | |
220f508f RH |
8350 | if (cpu_isar_feature(aa64_pan, cpu)) { |
8351 | define_one_arm_cp_reg(cpu, &pan_reginfo); | |
8352 | } | |
04b07d29 RH |
8353 | #ifndef CONFIG_USER_ONLY |
8354 | if (cpu_isar_feature(aa64_ats1e1, cpu)) { | |
8355 | define_arm_cp_regs(cpu, ats1e1_reginfo); | |
8356 | } | |
8357 | if (cpu_isar_feature(aa32_ats1e1, cpu)) { | |
8358 | define_arm_cp_regs(cpu, ats1cp_reginfo); | |
8359 | } | |
8360 | #endif | |
9eeb7a1c RH |
8361 | if (cpu_isar_feature(aa64_uao, cpu)) { |
8362 | define_one_arm_cp_reg(cpu, &uao_reginfo); | |
8363 | } | |
2d7137c1 | 8364 | |
dc8b1853 RC |
8365 | if (cpu_isar_feature(aa64_dit, cpu)) { |
8366 | define_one_arm_cp_reg(cpu, &dit_reginfo); | |
8367 | } | |
f2f68a78 RC |
8368 | if (cpu_isar_feature(aa64_ssbs, cpu)) { |
8369 | define_one_arm_cp_reg(cpu, &ssbs_reginfo); | |
8370 | } | |
58e93b48 RH |
8371 | if (cpu_isar_feature(any_ras, cpu)) { |
8372 | define_arm_cp_regs(cpu, minimal_ras_reginfo); | |
8373 | } | |
dc8b1853 | 8374 | |
52d18727 RH |
8375 | if (cpu_isar_feature(aa64_vh, cpu) || |
8376 | cpu_isar_feature(aa64_debugv8p2, cpu)) { | |
8377 | define_one_arm_cp_reg(cpu, &contextidr_el2); | |
8378 | } | |
e2a1a461 RH |
8379 | if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { |
8380 | define_arm_cp_regs(cpu, vhe_reginfo); | |
8381 | } | |
8382 | ||
cd208a1c | 8383 | if (cpu_isar_feature(aa64_sve, cpu)) { |
60360d82 | 8384 | define_arm_cp_regs(cpu, zcr_reginfo); |
5be5e8ed | 8385 | } |
967aa94f RH |
8386 | |
8387 | #ifdef TARGET_AARCH64 | |
8388 | if (cpu_isar_feature(aa64_pauth, cpu)) { | |
8389 | define_arm_cp_regs(cpu, pauth_reginfo); | |
8390 | } | |
de390645 RH |
8391 | if (cpu_isar_feature(aa64_rndr, cpu)) { |
8392 | define_arm_cp_regs(cpu, rndr_reginfo); | |
8393 | } | |
84940ed8 RC |
8394 | if (cpu_isar_feature(aa64_tlbirange, cpu)) { |
8395 | define_arm_cp_regs(cpu, tlbirange_reginfo); | |
8396 | } | |
7113d618 RC |
8397 | if (cpu_isar_feature(aa64_tlbios, cpu)) { |
8398 | define_arm_cp_regs(cpu, tlbios_reginfo); | |
8399 | } | |
0d57b499 BM |
8400 | #ifndef CONFIG_USER_ONLY |
8401 | /* Data Cache clean instructions up to PoP */ | |
8402 | if (cpu_isar_feature(aa64_dcpop, cpu)) { | |
8403 | define_one_arm_cp_reg(cpu, dcpop_reg); | |
8404 | ||
8405 | if (cpu_isar_feature(aa64_dcpodp, cpu)) { | |
8406 | define_one_arm_cp_reg(cpu, dcpodp_reg); | |
8407 | } | |
8408 | } | |
8409 | #endif /*CONFIG_USER_ONLY*/ | |
4b779ceb RH |
8410 | |
8411 | /* | |
8412 | * If full MTE is enabled, add all of the system registers. | |
8413 | * If only "instructions available at EL0" are enabled, | |
8414 | * then define only a RAZ/WI version of PSTATE.TCO. | |
8415 | */ | |
8416 | if (cpu_isar_feature(aa64_mte, cpu)) { | |
8417 | define_arm_cp_regs(cpu, mte_reginfo); | |
5463df16 | 8418 | define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); |
4b779ceb RH |
8419 | } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { |
8420 | define_arm_cp_regs(cpu, mte_tco_ro_reginfo); | |
5463df16 | 8421 | define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); |
4b779ceb | 8422 | } |
7cb1e618 RH |
8423 | |
8424 | if (cpu_isar_feature(aa64_scxtnum, cpu)) { | |
8425 | define_arm_cp_regs(cpu, scxtnum_reginfo); | |
8426 | } | |
967aa94f | 8427 | #endif |
cb570bd3 | 8428 | |
22e57073 | 8429 | if (cpu_isar_feature(any_predinv, cpu)) { |
cb570bd3 RH |
8430 | define_arm_cp_regs(cpu, predinv_reginfo); |
8431 | } | |
e2cce18f | 8432 | |
957e6155 PM |
8433 | if (cpu_isar_feature(any_ccidx, cpu)) { |
8434 | define_arm_cp_regs(cpu, ccsidr2_reginfo); | |
8435 | } | |
8436 | ||
e2cce18f RH |
8437 | #ifndef CONFIG_USER_ONLY |
8438 | /* | |
8439 | * Register redirections and aliases must be done last, | |
8440 | * after the registers from the other extensions have been defined. | |
8441 | */ | |
8442 | if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { | |
8443 | define_arm_vh_e2h_redirects_aliases(cpu); | |
8444 | } | |
8445 | #endif | |
2ceb98c0 PM |
8446 | } |
8447 | ||
777dc784 PM |
8448 | /* Sort alphabetically by type name, except for "any". */ |
8449 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 8450 | { |
777dc784 PM |
8451 | ObjectClass *class_a = (ObjectClass *)a; |
8452 | ObjectClass *class_b = (ObjectClass *)b; | |
8453 | const char *name_a, *name_b; | |
5adb4839 | 8454 | |
777dc784 PM |
8455 | name_a = object_class_get_name(class_a); |
8456 | name_b = object_class_get_name(class_b); | |
51492fd1 | 8457 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 8458 | return 1; |
51492fd1 | 8459 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
8460 | return -1; |
8461 | } else { | |
8462 | return strcmp(name_a, name_b); | |
5adb4839 PB |
8463 | } |
8464 | } | |
8465 | ||
777dc784 | 8466 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 8467 | { |
777dc784 | 8468 | ObjectClass *oc = data; |
51492fd1 AF |
8469 | const char *typename; |
8470 | char *name; | |
3371d272 | 8471 | |
51492fd1 AF |
8472 | typename = object_class_get_name(oc); |
8473 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
0442428a | 8474 | qemu_printf(" %s\n", name); |
51492fd1 | 8475 | g_free(name); |
777dc784 PM |
8476 | } |
8477 | ||
0442428a | 8478 | void arm_cpu_list(void) |
777dc784 | 8479 | { |
777dc784 PM |
8480 | GSList *list; |
8481 | ||
8482 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
8483 | list = g_slist_sort(list, arm_cpu_list_compare); | |
0442428a MA |
8484 | qemu_printf("Available CPUs:\n"); |
8485 | g_slist_foreach(list, arm_cpu_list_entry, NULL); | |
777dc784 | 8486 | g_slist_free(list); |
40f137e1 PB |
8487 | } |
8488 | ||
78027bb6 CR |
8489 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
8490 | { | |
8491 | ObjectClass *oc = data; | |
8492 | CpuDefinitionInfoList **cpu_list = user_data; | |
78027bb6 CR |
8493 | CpuDefinitionInfo *info; |
8494 | const char *typename; | |
8495 | ||
8496 | typename = object_class_get_name(oc); | |
8497 | info = g_malloc0(sizeof(*info)); | |
8498 | info->name = g_strndup(typename, | |
8499 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
8ed877b7 | 8500 | info->q_typename = g_strdup(typename); |
78027bb6 | 8501 | |
54aa3de7 | 8502 | QAPI_LIST_PREPEND(*cpu_list, info); |
78027bb6 CR |
8503 | } |
8504 | ||
25a9d6ca | 8505 | CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) |
78027bb6 CR |
8506 | { |
8507 | CpuDefinitionInfoList *cpu_list = NULL; | |
8508 | GSList *list; | |
8509 | ||
8510 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
8511 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
8512 | g_slist_free(list); | |
8513 | ||
8514 | return cpu_list; | |
8515 | } | |
8516 | ||
1859f8c3 RH |
8517 | /* |
8518 | * Private utility function for define_one_arm_cp_reg_with_opaque(): | |
8519 | * add a single reginfo struct to the hash table. | |
8520 | */ | |
6e6efd61 | 8521 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
cbe64585 RH |
8522 | void *opaque, CPState state, |
8523 | CPSecureState secstate, | |
9c513e78 AB |
8524 | int crm, int opc1, int opc2, |
8525 | const char *name) | |
6e6efd61 | 8526 | { |
696ba377 | 8527 | CPUARMState *env = &cpu->env; |
5860362d | 8528 | uint32_t key; |
c27f5d3a | 8529 | ARMCPRegInfo *r2; |
4c8c4541 RH |
8530 | bool is64 = r->type & ARM_CP_64BIT; |
8531 | bool ns = secstate & ARM_CP_SECSTATE_NS; | |
cac65299 | 8532 | int cp = r->cp; |
c27f5d3a | 8533 | size_t name_len; |
696ba377 | 8534 | bool make_const; |
c27f5d3a | 8535 | |
cac65299 RH |
8536 | switch (state) { |
8537 | case ARM_CP_STATE_AA32: | |
8538 | /* We assume it is a cp15 register if the .cp field is left unset. */ | |
8539 | if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { | |
8540 | cp = 15; | |
8541 | } | |
8542 | key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); | |
8543 | break; | |
8544 | case ARM_CP_STATE_AA64: | |
8545 | /* | |
8546 | * To allow abbreviation of ARMCPRegInfo definitions, we treat | |
8547 | * cp == 0 as equivalent to the value for "standard guest-visible | |
8548 | * sysreg". STATE_BOTH definitions are also always "standard sysreg" | |
8549 | * in their AArch64 view (the .cp value may be non-zero for the | |
8550 | * benefit of the AArch32 view). | |
8551 | */ | |
8552 | if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { | |
8553 | cp = CP_REG_ARM64_SYSREG_CP; | |
8554 | } | |
8555 | key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); | |
8556 | break; | |
8557 | default: | |
8558 | g_assert_not_reached(); | |
8559 | } | |
8560 | ||
dc44545b RH |
8561 | /* Overriding of an existing definition must be explicitly requested. */ |
8562 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
8563 | const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); | |
8564 | if (oldreg) { | |
8565 | assert(oldreg->type & ARM_CP_OVERRIDE); | |
8566 | } | |
8567 | } | |
8568 | ||
696ba377 RH |
8569 | /* |
8570 | * Eliminate registers that are not present because the EL is missing. | |
8571 | * Doing this here makes it easier to put all registers for a given | |
8572 | * feature into the same ARMCPRegInfo array and define them all at once. | |
8573 | */ | |
8574 | make_const = false; | |
8575 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
8576 | /* | |
8577 | * An EL2 register without EL2 but with EL3 is (usually) RES0. | |
8578 | * See rule RJFFP in section D1.1.3 of DDI0487H.a. | |
8579 | */ | |
8580 | int min_el = ctz32(r->access) / 2; | |
8581 | if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { | |
8582 | if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { | |
8583 | return; | |
8584 | } | |
8585 | make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); | |
8586 | } | |
8587 | } else { | |
8588 | CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) | |
8589 | ? PL2_RW : PL1_RW); | |
8590 | if ((r->access & max_el) == 0) { | |
8591 | return; | |
8592 | } | |
8593 | } | |
8594 | ||
c27f5d3a RH |
8595 | /* Combine cpreg and name into one allocation. */ |
8596 | name_len = strlen(name) + 1; | |
8597 | r2 = g_malloc(sizeof(*r2) + name_len); | |
8598 | *r2 = *r; | |
8599 | r2->name = memcpy(r2 + 1, name, name_len); | |
3f3c82a5 | 8600 | |
cc946d96 RH |
8601 | /* |
8602 | * Update fields to match the instantiation, overwiting wildcards | |
8603 | * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. | |
3f3c82a5 | 8604 | */ |
cc946d96 RH |
8605 | r2->cp = cp; |
8606 | r2->crm = crm; | |
8607 | r2->opc1 = opc1; | |
8608 | r2->opc2 = opc2; | |
8609 | r2->state = state; | |
3f3c82a5 | 8610 | r2->secure = secstate; |
cc946d96 RH |
8611 | if (opaque) { |
8612 | r2->opaque = opaque; | |
8613 | } | |
3f3c82a5 | 8614 | |
696ba377 RH |
8615 | if (make_const) { |
8616 | /* This should not have been a very special register to begin. */ | |
8617 | int old_special = r2->type & ARM_CP_SPECIAL_MASK; | |
8618 | assert(old_special == 0 || old_special == ARM_CP_NOP); | |
1859f8c3 | 8619 | /* |
696ba377 RH |
8620 | * Set the special function to CONST, retaining the other flags. |
8621 | * This is important for e.g. ARM_CP_SVE so that we still | |
8622 | * take the SVE trap if CPTR_EL3.EZ == 0. | |
f5a0a5a5 | 8623 | */ |
696ba377 RH |
8624 | r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; |
8625 | /* | |
8626 | * Usually, these registers become RES0, but there are a few | |
8627 | * special cases like VPIDR_EL2 which have a constant non-zero | |
8628 | * value with writes ignored. | |
8629 | */ | |
8630 | if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { | |
8631 | r2->resetvalue = 0; | |
8632 | } | |
8633 | /* | |
8634 | * ARM_CP_CONST has precedence, so removing the callbacks and | |
8635 | * offsets are not strictly necessary, but it is potentially | |
8636 | * less confusing to debug later. | |
8637 | */ | |
8638 | r2->readfn = NULL; | |
8639 | r2->writefn = NULL; | |
8640 | r2->raw_readfn = NULL; | |
8641 | r2->raw_writefn = NULL; | |
8642 | r2->resetfn = NULL; | |
8643 | r2->fieldoffset = 0; | |
8644 | r2->bank_fieldoffsets[0] = 0; | |
8645 | r2->bank_fieldoffsets[1] = 0; | |
8646 | } else { | |
8647 | bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; | |
3f3c82a5 | 8648 | |
10748a96 | 8649 | if (isbanked) { |
1859f8c3 | 8650 | /* |
696ba377 RH |
8651 | * Register is banked (using both entries in array). |
8652 | * Overwriting fieldoffset as the array is only used to define | |
8653 | * banked registers but later only fieldoffset is used. | |
3f3c82a5 | 8654 | */ |
696ba377 RH |
8655 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
8656 | } | |
8657 | if (state == ARM_CP_STATE_AA32) { | |
8658 | if (isbanked) { | |
8659 | /* | |
8660 | * If the register is banked then we don't need to migrate or | |
8661 | * reset the 32-bit instance in certain cases: | |
8662 | * | |
8663 | * 1) If the register has both 32-bit and 64-bit instances | |
8664 | * then we can count on the 64-bit instance taking care | |
8665 | * of the non-secure bank. | |
8666 | * 2) If ARMv8 is enabled then we can count on a 64-bit | |
8667 | * version taking care of the secure bank. This requires | |
8668 | * that separate 32 and 64-bit definitions are provided. | |
8669 | */ | |
8670 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
8671 | (arm_feature(env, ARM_FEATURE_V8) && !ns)) { | |
8672 | r2->type |= ARM_CP_ALIAS; | |
8673 | } | |
8674 | } else if ((secstate != r->secure) && !ns) { | |
8675 | /* | |
8676 | * The register is not banked so we only want to allow | |
8677 | * migration of the non-secure instance. | |
8678 | */ | |
7a0e58fa | 8679 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 | 8680 | } |
3f3c82a5 | 8681 | |
696ba377 RH |
8682 | if (HOST_BIG_ENDIAN && |
8683 | r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { | |
8684 | r2->fieldoffset += sizeof(uint32_t); | |
8685 | } | |
3f3c82a5 | 8686 | } |
f5a0a5a5 | 8687 | } |
cc946d96 | 8688 | |
1859f8c3 RH |
8689 | /* |
8690 | * By convention, for wildcarded registers only the first | |
6e6efd61 | 8691 | * entry is used for migration; the others are marked as |
7a0e58fa | 8692 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 8693 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 8694 | * never migratable and not even raw-accessible. |
6e6efd61 | 8695 | */ |
696ba377 | 8696 | if (r2->type & ARM_CP_SPECIAL_MASK) { |
7a0e58fa PM |
8697 | r2->type |= ARM_CP_NO_RAW; |
8698 | } | |
8699 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
8700 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
8701 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
1f163787 | 8702 | r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; |
6e6efd61 PM |
8703 | } |
8704 | ||
1859f8c3 RH |
8705 | /* |
8706 | * Check that raw accesses are either forbidden or handled. Note that | |
375421cc PM |
8707 | * we can't assert this earlier because the setup of fieldoffset for |
8708 | * banked registers has to be done first. | |
8709 | */ | |
8710 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
8711 | assert(!raw_accessors_invalid(r2)); | |
8712 | } | |
8713 | ||
5860362d | 8714 | g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); |
6e6efd61 PM |
8715 | } |
8716 | ||
8717 | ||
4b6a83fb PM |
8718 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
8719 | const ARMCPRegInfo *r, void *opaque) | |
8720 | { | |
8721 | /* Define implementations of coprocessor registers. | |
8722 | * We store these in a hashtable because typically | |
8723 | * there are less than 150 registers in a space which | |
8724 | * is 16*16*16*8*8 = 262144 in size. | |
8725 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
8726 | * If a register is defined twice then the second definition is | |
8727 | * used, so this can be used to define some generic registers and | |
8728 | * then override them with implementation specific variations. | |
8729 | * At least one of the original and the second definition should | |
8730 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
8731 | * against accidental use. | |
f5a0a5a5 PM |
8732 | * |
8733 | * The state field defines whether the register is to be | |
8734 | * visible in the AArch32 or AArch64 execution state. If the | |
8735 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
8736 | * reginfo structure for the AArch32 view, which sees the lower | |
8737 | * 32 bits of the 64 bit register. | |
8738 | * | |
8739 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
8740 | * be wildcarded. AArch64 registers are always considered to be 64 | |
8741 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
8742 | * the register, if any. | |
4b6a83fb | 8743 | */ |
d95101d6 | 8744 | int crm, opc1, opc2; |
4b6a83fb PM |
8745 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
8746 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
8747 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
8748 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
8749 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
8750 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
d95101d6 RH |
8751 | CPState state; |
8752 | ||
4b6a83fb PM |
8753 | /* 64 bit registers have only CRm and Opc1 fields */ |
8754 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
8755 | /* op0 only exists in the AArch64 encodings */ |
8756 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
8757 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
8758 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
cd8be50e PM |
8759 | /* |
8760 | * This API is only for Arm's system coprocessors (14 and 15) or | |
8761 | * (M-profile or v7A-and-earlier only) for implementation defined | |
8762 | * coprocessors in the range 0..7. Our decode assumes this, since | |
8763 | * 8..13 can be used for other insns including VFP and Neon. See | |
8764 | * valid_cp() in translate.c. Assert here that we haven't tried | |
8765 | * to use an invalid coprocessor number. | |
8766 | */ | |
8767 | switch (r->state) { | |
8768 | case ARM_CP_STATE_BOTH: | |
8769 | /* 0 has a special meaning, but otherwise the same rules as AA32. */ | |
8770 | if (r->cp == 0) { | |
8771 | break; | |
8772 | } | |
8773 | /* fall through */ | |
8774 | case ARM_CP_STATE_AA32: | |
8775 | if (arm_feature(&cpu->env, ARM_FEATURE_V8) && | |
8776 | !arm_feature(&cpu->env, ARM_FEATURE_M)) { | |
8777 | assert(r->cp >= 14 && r->cp <= 15); | |
8778 | } else { | |
8779 | assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); | |
8780 | } | |
8781 | break; | |
8782 | case ARM_CP_STATE_AA64: | |
8783 | assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); | |
8784 | break; | |
8785 | default: | |
8786 | g_assert_not_reached(); | |
8787 | } | |
f5a0a5a5 PM |
8788 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 |
8789 | * encodes a minimum access level for the register. We roll this | |
8790 | * runtime check into our general permission check code, so check | |
8791 | * here that the reginfo's specified permissions are strict enough | |
8792 | * to encompass the generic architectural permission check. | |
8793 | */ | |
8794 | if (r->state != ARM_CP_STATE_AA32) { | |
39107337 | 8795 | CPAccessRights mask; |
f5a0a5a5 | 8796 | switch (r->opc1) { |
b5bd7440 AB |
8797 | case 0: |
8798 | /* min_EL EL1, but some accessible to EL0 via kernel ABI */ | |
8799 | mask = PL0U_R | PL1_RW; | |
8800 | break; | |
8801 | case 1: case 2: | |
f5a0a5a5 PM |
8802 | /* min_EL EL1 */ |
8803 | mask = PL1_RW; | |
8804 | break; | |
8805 | case 3: | |
8806 | /* min_EL EL0 */ | |
8807 | mask = PL0_RW; | |
8808 | break; | |
8809 | case 4: | |
b4ecf60f | 8810 | case 5: |
f5a0a5a5 PM |
8811 | /* min_EL EL2 */ |
8812 | mask = PL2_RW; | |
8813 | break; | |
f5a0a5a5 PM |
8814 | case 6: |
8815 | /* min_EL EL3 */ | |
8816 | mask = PL3_RW; | |
8817 | break; | |
8818 | case 7: | |
8819 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
8820 | mask = PL1_RW; | |
8821 | break; | |
8822 | default: | |
8823 | /* broken reginfo with out-of-range opc1 */ | |
d385a605 | 8824 | g_assert_not_reached(); |
f5a0a5a5 PM |
8825 | } |
8826 | /* assert our permissions are not too lax (stricter is fine) */ | |
8827 | assert((r->access & ~mask) == 0); | |
8828 | } | |
8829 | ||
4b6a83fb PM |
8830 | /* Check that the register definition has enough info to handle |
8831 | * reads and writes if they are permitted. | |
8832 | */ | |
87c3f0f2 | 8833 | if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { |
4b6a83fb | 8834 | if (r->access & PL3_R) { |
3f3c82a5 FA |
8835 | assert((r->fieldoffset || |
8836 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
8837 | r->readfn); | |
4b6a83fb PM |
8838 | } |
8839 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
8840 | assert((r->fieldoffset || |
8841 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
8842 | r->writefn); | |
4b6a83fb PM |
8843 | } |
8844 | } | |
5809ac57 | 8845 | |
4b6a83fb PM |
8846 | for (crm = crmmin; crm <= crmmax; crm++) { |
8847 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
8848 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
8849 | for (state = ARM_CP_STATE_AA32; |
8850 | state <= ARM_CP_STATE_AA64; state++) { | |
8851 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
8852 | continue; | |
8853 | } | |
3f3c82a5 FA |
8854 | if (state == ARM_CP_STATE_AA32) { |
8855 | /* Under AArch32 CP registers can be common | |
8856 | * (same for secure and non-secure world) or banked. | |
8857 | */ | |
9c513e78 AB |
8858 | char *name; |
8859 | ||
3f3c82a5 FA |
8860 | switch (r->secure) { |
8861 | case ARM_CP_SECSTATE_S: | |
8862 | case ARM_CP_SECSTATE_NS: | |
8863 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
9c513e78 AB |
8864 | r->secure, crm, opc1, opc2, |
8865 | r->name); | |
3f3c82a5 | 8866 | break; |
cbe64585 | 8867 | case ARM_CP_SECSTATE_BOTH: |
9c513e78 | 8868 | name = g_strdup_printf("%s_S", r->name); |
3f3c82a5 FA |
8869 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
8870 | ARM_CP_SECSTATE_S, | |
9c513e78 AB |
8871 | crm, opc1, opc2, name); |
8872 | g_free(name); | |
3f3c82a5 FA |
8873 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
8874 | ARM_CP_SECSTATE_NS, | |
9c513e78 | 8875 | crm, opc1, opc2, r->name); |
3f3c82a5 | 8876 | break; |
cbe64585 RH |
8877 | default: |
8878 | g_assert_not_reached(); | |
3f3c82a5 FA |
8879 | } |
8880 | } else { | |
8881 | /* AArch64 registers get mapped to non-secure instance | |
8882 | * of AArch32 */ | |
8883 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
8884 | ARM_CP_SECSTATE_NS, | |
9c513e78 | 8885 | crm, opc1, opc2, r->name); |
3f3c82a5 | 8886 | } |
f5a0a5a5 | 8887 | } |
4b6a83fb PM |
8888 | } |
8889 | } | |
8890 | } | |
8891 | } | |
8892 | ||
5809ac57 RH |
8893 | /* Define a whole list of registers */ |
8894 | void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, | |
8895 | void *opaque, size_t len) | |
4b6a83fb | 8896 | { |
5809ac57 RH |
8897 | size_t i; |
8898 | for (i = 0; i < len; ++i) { | |
8899 | define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); | |
4b6a83fb PM |
8900 | } |
8901 | } | |
8902 | ||
6c5c0fec AB |
8903 | /* |
8904 | * Modify ARMCPRegInfo for access from userspace. | |
8905 | * | |
8906 | * This is a data driven modification directed by | |
8907 | * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as | |
8908 | * user-space cannot alter any values and dynamic values pertaining to | |
8909 | * execution state are hidden from user space view anyway. | |
8910 | */ | |
5809ac57 RH |
8911 | void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, |
8912 | const ARMCPRegUserSpaceInfo *mods, | |
8913 | size_t mods_len) | |
6c5c0fec | 8914 | { |
5809ac57 RH |
8915 | for (size_t mi = 0; mi < mods_len; ++mi) { |
8916 | const ARMCPRegUserSpaceInfo *m = mods + mi; | |
d040242e | 8917 | GPatternSpec *pat = NULL; |
5809ac57 | 8918 | |
d040242e AB |
8919 | if (m->is_glob) { |
8920 | pat = g_pattern_spec_new(m->name); | |
8921 | } | |
5809ac57 RH |
8922 | for (size_t ri = 0; ri < regs_len; ++ri) { |
8923 | ARMCPRegInfo *r = regs + ri; | |
8924 | ||
d040242e AB |
8925 | if (pat && g_pattern_match_string(pat, r->name)) { |
8926 | r->type = ARM_CP_CONST; | |
8927 | r->access = PL0U_R; | |
8928 | r->resetvalue = 0; | |
8929 | /* continue */ | |
8930 | } else if (strcmp(r->name, m->name) == 0) { | |
6c5c0fec AB |
8931 | r->type = ARM_CP_CONST; |
8932 | r->access = PL0U_R; | |
8933 | r->resetvalue &= m->exported_bits; | |
8934 | r->resetvalue |= m->fixed_bits; | |
8935 | break; | |
8936 | } | |
8937 | } | |
d040242e AB |
8938 | if (pat) { |
8939 | g_pattern_spec_free(pat); | |
8940 | } | |
6c5c0fec AB |
8941 | } |
8942 | } | |
8943 | ||
60322b39 | 8944 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 8945 | { |
5860362d | 8946 | return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); |
4b6a83fb PM |
8947 | } |
8948 | ||
c4241c7d PM |
8949 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
8950 | uint64_t value) | |
4b6a83fb PM |
8951 | { |
8952 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
8953 | } |
8954 | ||
c4241c7d | 8955 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
8956 | { |
8957 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
8958 | return 0; |
8959 | } | |
8960 | ||
f5a0a5a5 PM |
8961 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
8962 | { | |
8963 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
8964 | } | |
8965 | ||
af393ffc | 8966 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
37064a8b PM |
8967 | { |
8968 | /* Return true if it is not valid for us to switch to | |
8969 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
8970 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
8971 | */ | |
af393ffc PM |
8972 | |
8973 | /* Changes to or from Hyp via MSR and CPS are illegal. */ | |
8974 | if (write_type == CPSRWriteByInstr && | |
8975 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || | |
8976 | mode == ARM_CPU_MODE_HYP)) { | |
8977 | return 1; | |
8978 | } | |
8979 | ||
37064a8b PM |
8980 | switch (mode) { |
8981 | case ARM_CPU_MODE_USR: | |
10eacda7 | 8982 | return 0; |
37064a8b PM |
8983 | case ARM_CPU_MODE_SYS: |
8984 | case ARM_CPU_MODE_SVC: | |
8985 | case ARM_CPU_MODE_ABT: | |
8986 | case ARM_CPU_MODE_UND: | |
8987 | case ARM_CPU_MODE_IRQ: | |
8988 | case ARM_CPU_MODE_FIQ: | |
52ff951b PM |
8989 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
8990 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) | |
8991 | */ | |
10eacda7 PM |
8992 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
8993 | * and CPS are treated as illegal mode changes. | |
8994 | */ | |
8995 | if (write_type == CPSRWriteByInstr && | |
10eacda7 | 8996 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && |
7c208e0f | 8997 | (arm_hcr_el2_eff(env) & HCR_TGE)) { |
10eacda7 PM |
8998 | return 1; |
8999 | } | |
37064a8b | 9000 | return 0; |
e6c8fc07 | 9001 | case ARM_CPU_MODE_HYP: |
e6ef0169 | 9002 | return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; |
027fc527 | 9003 | case ARM_CPU_MODE_MON: |
58ae2d1f | 9004 | return arm_current_el(env) < 3; |
37064a8b PM |
9005 | default: |
9006 | return 1; | |
9007 | } | |
9008 | } | |
9009 | ||
2f4a40e5 AZ |
9010 | uint32_t cpsr_read(CPUARMState *env) |
9011 | { | |
9012 | int ZF; | |
6fbe23d5 PB |
9013 | ZF = (env->ZF == 0); |
9014 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
9015 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
9016 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
9017 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 9018 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
9019 | } |
9020 | ||
50866ba5 PM |
9021 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
9022 | CPSRWriteType write_type) | |
2f4a40e5 | 9023 | { |
6e8801f9 | 9024 | uint32_t changed_daif; |
e784807c PM |
9025 | bool rebuild_hflags = (write_type != CPSRWriteRaw) && |
9026 | (mask & (CPSR_M | CPSR_E | CPSR_IL)); | |
6e8801f9 | 9027 | |
2f4a40e5 | 9028 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
9029 | env->ZF = (~val) & CPSR_Z; |
9030 | env->NF = val; | |
2f4a40e5 AZ |
9031 | env->CF = (val >> 29) & 1; |
9032 | env->VF = (val << 3) & 0x80000000; | |
9033 | } | |
9034 | if (mask & CPSR_Q) | |
9035 | env->QF = ((val & CPSR_Q) != 0); | |
9036 | if (mask & CPSR_T) | |
9037 | env->thumb = ((val & CPSR_T) != 0); | |
9038 | if (mask & CPSR_IT_0_1) { | |
9039 | env->condexec_bits &= ~3; | |
9040 | env->condexec_bits |= (val >> 25) & 3; | |
9041 | } | |
9042 | if (mask & CPSR_IT_2_7) { | |
9043 | env->condexec_bits &= 3; | |
9044 | env->condexec_bits |= (val >> 8) & 0xfc; | |
9045 | } | |
9046 | if (mask & CPSR_GE) { | |
9047 | env->GE = (val >> 16) & 0xf; | |
9048 | } | |
9049 | ||
6e8801f9 FA |
9050 | /* In a V7 implementation that includes the security extensions but does |
9051 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
9052 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
9053 | * bits respectively. | |
9054 | * | |
9055 | * In a V8 implementation, it is permitted for privileged software to | |
9056 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
9057 | */ | |
f8c88bbc | 9058 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
6e8801f9 FA |
9059 | arm_feature(env, ARM_FEATURE_EL3) && |
9060 | !arm_feature(env, ARM_FEATURE_EL2) && | |
9061 | !arm_is_secure(env)) { | |
9062 | ||
9063 | changed_daif = (env->daif ^ val) & mask; | |
9064 | ||
9065 | if (changed_daif & CPSR_A) { | |
9066 | /* Check to see if we are allowed to change the masking of async | |
9067 | * abort exceptions from a non-secure state. | |
9068 | */ | |
9069 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
9070 | qemu_log_mask(LOG_GUEST_ERROR, | |
9071 | "Ignoring attempt to switch CPSR_A flag from " | |
9072 | "non-secure world with SCR.AW bit clear\n"); | |
9073 | mask &= ~CPSR_A; | |
9074 | } | |
9075 | } | |
9076 | ||
9077 | if (changed_daif & CPSR_F) { | |
9078 | /* Check to see if we are allowed to change the masking of FIQ | |
9079 | * exceptions from a non-secure state. | |
9080 | */ | |
9081 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
9082 | qemu_log_mask(LOG_GUEST_ERROR, | |
9083 | "Ignoring attempt to switch CPSR_F flag from " | |
9084 | "non-secure world with SCR.FW bit clear\n"); | |
9085 | mask &= ~CPSR_F; | |
9086 | } | |
9087 | ||
9088 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
9089 | * If this bit is set software is not allowed to mask | |
9090 | * FIQs, but is allowed to set CPSR_F to 0. | |
9091 | */ | |
9092 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
9093 | (val & CPSR_F)) { | |
9094 | qemu_log_mask(LOG_GUEST_ERROR, | |
9095 | "Ignoring attempt to enable CPSR_F flag " | |
9096 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
9097 | mask &= ~CPSR_F; | |
9098 | } | |
9099 | } | |
9100 | } | |
9101 | ||
4cc35614 PM |
9102 | env->daif &= ~(CPSR_AIF & mask); |
9103 | env->daif |= val & CPSR_AIF & mask; | |
9104 | ||
f8c88bbc PM |
9105 | if (write_type != CPSRWriteRaw && |
9106 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { | |
8c4f0eb9 PM |
9107 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
9108 | /* Note that we can only get here in USR mode if this is a | |
9109 | * gdb stub write; for this case we follow the architectural | |
9110 | * behaviour for guest writes in USR mode of ignoring an attempt | |
9111 | * to switch mode. (Those are caught by translate.c for writes | |
9112 | * triggered by guest instructions.) | |
9113 | */ | |
9114 | mask &= ~CPSR_M; | |
9115 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { | |
81907a58 PM |
9116 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
9117 | * v7, and has defined behaviour in v8: | |
9118 | * + leave CPSR.M untouched | |
9119 | * + allow changes to the other CPSR fields | |
9120 | * + set PSTATE.IL | |
9121 | * For user changes via the GDB stub, we don't set PSTATE.IL, | |
9122 | * as this would be unnecessarily harsh for a user error. | |
37064a8b PM |
9123 | */ |
9124 | mask &= ~CPSR_M; | |
81907a58 PM |
9125 | if (write_type != CPSRWriteByGDBStub && |
9126 | arm_feature(env, ARM_FEATURE_V8)) { | |
9127 | mask |= CPSR_IL; | |
9128 | val |= CPSR_IL; | |
9129 | } | |
81e37284 PM |
9130 | qemu_log_mask(LOG_GUEST_ERROR, |
9131 | "Illegal AArch32 mode switch attempt from %s to %s\n", | |
9132 | aarch32_mode_name(env->uncached_cpsr), | |
9133 | aarch32_mode_name(val)); | |
37064a8b | 9134 | } else { |
81e37284 PM |
9135 | qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", |
9136 | write_type == CPSRWriteExceptionReturn ? | |
9137 | "Exception return from AArch32" : | |
9138 | "AArch32 mode switch from", | |
9139 | aarch32_mode_name(env->uncached_cpsr), | |
9140 | aarch32_mode_name(val), env->regs[15]); | |
37064a8b PM |
9141 | switch_mode(env, val & CPSR_M); |
9142 | } | |
2f4a40e5 AZ |
9143 | } |
9144 | mask &= ~CACHED_CPSR_BITS; | |
9145 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
e784807c PM |
9146 | if (rebuild_hflags) { |
9147 | arm_rebuild_hflags(env); | |
9148 | } | |
2f4a40e5 AZ |
9149 | } |
9150 | ||
b26eefb6 PB |
9151 | /* Sign/zero extend */ |
9152 | uint32_t HELPER(sxtb16)(uint32_t x) | |
9153 | { | |
9154 | uint32_t res; | |
9155 | res = (uint16_t)(int8_t)x; | |
9156 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
9157 | return res; | |
9158 | } | |
9159 | ||
e5346292 PM |
9160 | static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) |
9161 | { | |
9162 | /* | |
9163 | * Take a division-by-zero exception if necessary; otherwise return | |
9164 | * to get the usual non-trapping division behaviour (result of 0) | |
9165 | */ | |
9166 | if (arm_feature(env, ARM_FEATURE_M) | |
9167 | && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { | |
9168 | raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); | |
9169 | } | |
9170 | } | |
9171 | ||
b26eefb6 PB |
9172 | uint32_t HELPER(uxtb16)(uint32_t x) |
9173 | { | |
9174 | uint32_t res; | |
9175 | res = (uint16_t)(uint8_t)x; | |
9176 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
9177 | return res; | |
9178 | } | |
9179 | ||
e5346292 | 9180 | int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) |
3670669c | 9181 | { |
fc7a5038 | 9182 | if (den == 0) { |
e5346292 | 9183 | handle_possible_div0_trap(env, GETPC()); |
fc7a5038 PM |
9184 | return 0; |
9185 | } | |
9186 | if (num == INT_MIN && den == -1) { | |
9187 | return INT_MIN; | |
9188 | } | |
3670669c PB |
9189 | return num / den; |
9190 | } | |
9191 | ||
e5346292 | 9192 | uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) |
3670669c | 9193 | { |
fc7a5038 | 9194 | if (den == 0) { |
e5346292 | 9195 | handle_possible_div0_trap(env, GETPC()); |
fc7a5038 PM |
9196 | return 0; |
9197 | } | |
3670669c PB |
9198 | return num / den; |
9199 | } | |
9200 | ||
9201 | uint32_t HELPER(rbit)(uint32_t x) | |
9202 | { | |
42fedbca | 9203 | return revbit32(x); |
3670669c PB |
9204 | } |
9205 | ||
c47eaf9f | 9206 | #ifdef CONFIG_USER_ONLY |
b5ff1b31 | 9207 | |
affdb64d | 9208 | static void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 9209 | { |
2fc0cc0e | 9210 | ARMCPU *cpu = env_archcpu(env); |
a47dddd7 AF |
9211 | |
9212 | if (mode != ARM_CPU_MODE_USR) { | |
9213 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
9214 | } | |
b5ff1b31 FB |
9215 | } |
9216 | ||
012a906b GB |
9217 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
9218 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
9219 | { |
9220 | return 1; | |
9221 | } | |
9222 | ||
ce02049d GB |
9223 | void aarch64_sync_64_to_32(CPUARMState *env) |
9224 | { | |
9225 | g_assert_not_reached(); | |
9226 | } | |
9227 | ||
b5ff1b31 FB |
9228 | #else |
9229 | ||
affdb64d | 9230 | static void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
9231 | { |
9232 | int old_mode; | |
9233 | int i; | |
9234 | ||
9235 | old_mode = env->uncached_cpsr & CPSR_M; | |
9236 | if (mode == old_mode) | |
9237 | return; | |
9238 | ||
9239 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
9240 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 9241 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
9242 | } else if (mode == ARM_CPU_MODE_FIQ) { |
9243 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 9244 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
9245 | } |
9246 | ||
f5206413 | 9247 | i = bank_number(old_mode); |
b5ff1b31 | 9248 | env->banked_r13[i] = env->regs[13]; |
b5ff1b31 FB |
9249 | env->banked_spsr[i] = env->spsr; |
9250 | ||
f5206413 | 9251 | i = bank_number(mode); |
b5ff1b31 | 9252 | env->regs[13] = env->banked_r13[i]; |
b5ff1b31 | 9253 | env->spsr = env->banked_spsr[i]; |
593cfa2b PM |
9254 | |
9255 | env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; | |
9256 | env->regs[14] = env->banked_r14[r14_bank_number(mode)]; | |
b5ff1b31 FB |
9257 | } |
9258 | ||
0eeb17d6 GB |
9259 | /* Physical Interrupt Target EL Lookup Table |
9260 | * | |
9261 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
9262 | * | |
9263 | * The below multi-dimensional table is used for looking up the target | |
9264 | * exception level given numerous condition criteria. Specifically, the | |
9265 | * target EL is based on SCR and HCR routing controls as well as the | |
9266 | * currently executing EL and secure state. | |
9267 | * | |
9268 | * Dimensions: | |
9269 | * target_el_table[2][2][2][2][2][4] | |
9270 | * | | | | | +--- Current EL | |
9271 | * | | | | +------ Non-secure(0)/Secure(1) | |
9272 | * | | | +--------- HCR mask override | |
9273 | * | | +------------ SCR exec state control | |
9274 | * | +--------------- SCR mask override | |
9275 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
9276 | * | |
9277 | * The table values are as such: | |
9278 | * 0-3 = EL0-EL3 | |
9279 | * -1 = Cannot occur | |
9280 | * | |
9281 | * The ARM ARM target EL table includes entries indicating that an "exception | |
9282 | * is not taken". The two cases where this is applicable are: | |
9283 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
9284 | * routed to EL3. | |
9285 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
9286 | * routed to EL2. | |
9287 | * In these two cases, the below table contain a target of EL1. This value is | |
9288 | * returned as it is expected that the consumer of the table data will check | |
9289 | * for "target EL >= current EL" to ensure the exception is not taken. | |
9290 | * | |
9291 | * SCR HCR | |
9292 | * 64 EA AMO From | |
9293 | * BIT IRQ IMO Non-secure Secure | |
9294 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
9295 | */ | |
82c39f6a | 9296 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
9297 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
9298 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
9299 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
9300 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
9301 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
9302 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
9303 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
9304 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
9305 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
6c85f906 RDC |
9306 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, |
9307 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, | |
9308 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, | |
0eeb17d6 GB |
9309 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, |
9310 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
6c85f906 RDC |
9311 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, |
9312 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, | |
0eeb17d6 GB |
9313 | }; |
9314 | ||
9315 | /* | |
9316 | * Determine the target EL for physical exceptions | |
9317 | */ | |
012a906b GB |
9318 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
9319 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
9320 | { |
9321 | CPUARMState *env = cs->env_ptr; | |
f7778444 RH |
9322 | bool rw; |
9323 | bool scr; | |
9324 | bool hcr; | |
0eeb17d6 | 9325 | int target_el; |
2cde031f | 9326 | /* Is the highest EL AArch64? */ |
f7778444 RH |
9327 | bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); |
9328 | uint64_t hcr_el2; | |
2cde031f SS |
9329 | |
9330 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
9331 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
9332 | } else { | |
9333 | /* Either EL2 is the highest EL (and so the EL2 register width | |
9334 | * is given by is64); or there is no EL2 or EL3, in which case | |
9335 | * the value of 'rw' does not affect the table lookup anyway. | |
9336 | */ | |
9337 | rw = is64; | |
9338 | } | |
0eeb17d6 | 9339 | |
f7778444 | 9340 | hcr_el2 = arm_hcr_el2_eff(env); |
0eeb17d6 GB |
9341 | switch (excp_idx) { |
9342 | case EXCP_IRQ: | |
9343 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
f7778444 | 9344 | hcr = hcr_el2 & HCR_IMO; |
0eeb17d6 GB |
9345 | break; |
9346 | case EXCP_FIQ: | |
9347 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
f7778444 | 9348 | hcr = hcr_el2 & HCR_FMO; |
0eeb17d6 GB |
9349 | break; |
9350 | default: | |
9351 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
f7778444 | 9352 | hcr = hcr_el2 & HCR_AMO; |
0eeb17d6 GB |
9353 | break; |
9354 | }; | |
9355 | ||
d1b31428 RH |
9356 | /* |
9357 | * For these purposes, TGE and AMO/IMO/FMO both force the | |
9358 | * interrupt to EL2. Fold TGE into the bit extracted above. | |
9359 | */ | |
9360 | hcr |= (hcr_el2 & HCR_TGE) != 0; | |
9361 | ||
0eeb17d6 GB |
9362 | /* Perform a table-lookup for the target EL given the current state */ |
9363 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
9364 | ||
9365 | assert(target_el > 0); | |
9366 | ||
9367 | return target_el; | |
9368 | } | |
9369 | ||
fc6177af | 9370 | void arm_log_exception(CPUState *cs) |
b59f479b | 9371 | { |
fc6177af PM |
9372 | int idx = cs->exception_index; |
9373 | ||
b59f479b PMD |
9374 | if (qemu_loglevel_mask(CPU_LOG_INT)) { |
9375 | const char *exc = NULL; | |
9376 | static const char * const excnames[] = { | |
9377 | [EXCP_UDEF] = "Undefined Instruction", | |
9378 | [EXCP_SWI] = "SVC", | |
9379 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
9380 | [EXCP_DATA_ABORT] = "Data Abort", | |
9381 | [EXCP_IRQ] = "IRQ", | |
9382 | [EXCP_FIQ] = "FIQ", | |
9383 | [EXCP_BKPT] = "Breakpoint", | |
9384 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
9385 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
9386 | [EXCP_HVC] = "Hypervisor Call", | |
9387 | [EXCP_HYP_TRAP] = "Hypervisor Trap", | |
9388 | [EXCP_SMC] = "Secure Monitor Call", | |
9389 | [EXCP_VIRQ] = "Virtual IRQ", | |
9390 | [EXCP_VFIQ] = "Virtual FIQ", | |
9391 | [EXCP_SEMIHOST] = "Semihosting call", | |
9392 | [EXCP_NOCP] = "v7M NOCP UsageFault", | |
9393 | [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", | |
9394 | [EXCP_STKOF] = "v8M STKOF UsageFault", | |
9395 | [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", | |
9396 | [EXCP_LSERR] = "v8M LSERR UsageFault", | |
9397 | [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", | |
e5346292 | 9398 | [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", |
3c29632f | 9399 | [EXCP_VSERR] = "Virtual SERR", |
b59f479b PMD |
9400 | }; |
9401 | ||
9402 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
9403 | exc = excnames[idx]; | |
9404 | } | |
9405 | if (!exc) { | |
9406 | exc = "unknown"; | |
9407 | } | |
fc6177af PM |
9408 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", |
9409 | idx, exc, cs->cpu_index); | |
b59f479b PMD |
9410 | } |
9411 | } | |
9412 | ||
a356dacf | 9413 | /* |
7aab5a8c PMD |
9414 | * Function used to synchronize QEMU's AArch64 register set with AArch32 |
9415 | * register set. This is necessary when switching between AArch32 and AArch64 | |
9416 | * execution state. | |
a356dacf | 9417 | */ |
7aab5a8c | 9418 | void aarch64_sync_32_to_64(CPUARMState *env) |
9ee6e8bb | 9419 | { |
7aab5a8c PMD |
9420 | int i; |
9421 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
9422 | ||
9423 | /* We can blanket copy R[0:7] to X[0:7] */ | |
9424 | for (i = 0; i < 8; i++) { | |
9425 | env->xregs[i] = env->regs[i]; | |
fd592d89 | 9426 | } |
70d74660 | 9427 | |
9a223097 | 9428 | /* |
7aab5a8c PMD |
9429 | * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. |
9430 | * Otherwise, they come from the banked user regs. | |
fd592d89 | 9431 | */ |
7aab5a8c PMD |
9432 | if (mode == ARM_CPU_MODE_FIQ) { |
9433 | for (i = 8; i < 13; i++) { | |
9434 | env->xregs[i] = env->usr_regs[i - 8]; | |
9435 | } | |
9436 | } else { | |
9437 | for (i = 8; i < 13; i++) { | |
9438 | env->xregs[i] = env->regs[i]; | |
9439 | } | |
fd592d89 | 9440 | } |
9ee6e8bb | 9441 | |
7aab5a8c PMD |
9442 | /* |
9443 | * Registers x13-x23 are the various mode SP and FP registers. Registers | |
9444 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
9445 | * from the mode banked register. | |
9446 | */ | |
9447 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
9448 | env->xregs[13] = env->regs[13]; | |
9449 | env->xregs[14] = env->regs[14]; | |
9450 | } else { | |
9451 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
9452 | /* HYP is an exception in that it is copied from r14 */ | |
9453 | if (mode == ARM_CPU_MODE_HYP) { | |
9454 | env->xregs[14] = env->regs[14]; | |
95695eff | 9455 | } else { |
7aab5a8c | 9456 | env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; |
95695eff | 9457 | } |
95695eff PM |
9458 | } |
9459 | ||
7aab5a8c PMD |
9460 | if (mode == ARM_CPU_MODE_HYP) { |
9461 | env->xregs[15] = env->regs[13]; | |
9462 | } else { | |
9463 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
95695eff PM |
9464 | } |
9465 | ||
7aab5a8c PMD |
9466 | if (mode == ARM_CPU_MODE_IRQ) { |
9467 | env->xregs[16] = env->regs[14]; | |
9468 | env->xregs[17] = env->regs[13]; | |
9469 | } else { | |
9470 | env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; | |
9471 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
9472 | } | |
95695eff | 9473 | |
7aab5a8c PMD |
9474 | if (mode == ARM_CPU_MODE_SVC) { |
9475 | env->xregs[18] = env->regs[14]; | |
9476 | env->xregs[19] = env->regs[13]; | |
9477 | } else { | |
9478 | env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; | |
9479 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
9480 | } | |
95695eff | 9481 | |
7aab5a8c PMD |
9482 | if (mode == ARM_CPU_MODE_ABT) { |
9483 | env->xregs[20] = env->regs[14]; | |
9484 | env->xregs[21] = env->regs[13]; | |
9485 | } else { | |
9486 | env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; | |
9487 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
9488 | } | |
e33cf0f8 | 9489 | |
7aab5a8c PMD |
9490 | if (mode == ARM_CPU_MODE_UND) { |
9491 | env->xregs[22] = env->regs[14]; | |
9492 | env->xregs[23] = env->regs[13]; | |
9493 | } else { | |
9494 | env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; | |
9495 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
e33cf0f8 PM |
9496 | } |
9497 | ||
9498 | /* | |
7aab5a8c PMD |
9499 | * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
9500 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
9501 | * FIQ bank for r8-r14. | |
e33cf0f8 | 9502 | */ |
7aab5a8c PMD |
9503 | if (mode == ARM_CPU_MODE_FIQ) { |
9504 | for (i = 24; i < 31; i++) { | |
9505 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
9506 | } | |
9507 | } else { | |
9508 | for (i = 24; i < 29; i++) { | |
9509 | env->xregs[i] = env->fiq_regs[i - 24]; | |
e33cf0f8 | 9510 | } |
7aab5a8c PMD |
9511 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; |
9512 | env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; | |
e33cf0f8 | 9513 | } |
7aab5a8c PMD |
9514 | |
9515 | env->pc = env->regs[15]; | |
e33cf0f8 PM |
9516 | } |
9517 | ||
9a223097 | 9518 | /* |
7aab5a8c PMD |
9519 | * Function used to synchronize QEMU's AArch32 register set with AArch64 |
9520 | * register set. This is necessary when switching between AArch32 and AArch64 | |
9521 | * execution state. | |
de2db7ec | 9522 | */ |
7aab5a8c | 9523 | void aarch64_sync_64_to_32(CPUARMState *env) |
9ee6e8bb | 9524 | { |
7aab5a8c PMD |
9525 | int i; |
9526 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
abc24d86 | 9527 | |
7aab5a8c PMD |
9528 | /* We can blanket copy X[0:7] to R[0:7] */ |
9529 | for (i = 0; i < 8; i++) { | |
9530 | env->regs[i] = env->xregs[i]; | |
de2db7ec | 9531 | } |
3f0cddee | 9532 | |
9a223097 | 9533 | /* |
7aab5a8c PMD |
9534 | * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. |
9535 | * Otherwise, we copy x8-x12 into the banked user regs. | |
de2db7ec | 9536 | */ |
7aab5a8c PMD |
9537 | if (mode == ARM_CPU_MODE_FIQ) { |
9538 | for (i = 8; i < 13; i++) { | |
9539 | env->usr_regs[i - 8] = env->xregs[i]; | |
9540 | } | |
9541 | } else { | |
9542 | for (i = 8; i < 13; i++) { | |
9543 | env->regs[i] = env->xregs[i]; | |
9544 | } | |
fb602cb7 PM |
9545 | } |
9546 | ||
9a223097 | 9547 | /* |
7aab5a8c PMD |
9548 | * Registers r13 & r14 depend on the current mode. |
9549 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
9550 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
9551 | * for the mode. | |
fb602cb7 | 9552 | */ |
7aab5a8c PMD |
9553 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
9554 | env->regs[13] = env->xregs[13]; | |
9555 | env->regs[14] = env->xregs[14]; | |
fb602cb7 | 9556 | } else { |
7aab5a8c | 9557 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; |
fb602cb7 | 9558 | |
7aab5a8c PMD |
9559 | /* |
9560 | * HYP is an exception in that it does not have its own banked r14 but | |
9561 | * shares the USR r14 | |
9562 | */ | |
9563 | if (mode == ARM_CPU_MODE_HYP) { | |
9564 | env->regs[14] = env->xregs[14]; | |
9565 | } else { | |
9566 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
9567 | } | |
9568 | } | |
fb602cb7 | 9569 | |
7aab5a8c PMD |
9570 | if (mode == ARM_CPU_MODE_HYP) { |
9571 | env->regs[13] = env->xregs[15]; | |
fb602cb7 | 9572 | } else { |
7aab5a8c | 9573 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; |
fb602cb7 | 9574 | } |
d02a8698 | 9575 | |
7aab5a8c PMD |
9576 | if (mode == ARM_CPU_MODE_IRQ) { |
9577 | env->regs[14] = env->xregs[16]; | |
9578 | env->regs[13] = env->xregs[17]; | |
d02a8698 | 9579 | } else { |
7aab5a8c PMD |
9580 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
9581 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
d02a8698 PM |
9582 | } |
9583 | ||
7aab5a8c PMD |
9584 | if (mode == ARM_CPU_MODE_SVC) { |
9585 | env->regs[14] = env->xregs[18]; | |
9586 | env->regs[13] = env->xregs[19]; | |
9587 | } else { | |
9588 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; | |
9589 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
fb602cb7 PM |
9590 | } |
9591 | ||
7aab5a8c PMD |
9592 | if (mode == ARM_CPU_MODE_ABT) { |
9593 | env->regs[14] = env->xregs[20]; | |
9594 | env->regs[13] = env->xregs[21]; | |
9595 | } else { | |
9596 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; | |
9597 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
9598 | } |
9599 | ||
9600 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
9601 | env->regs[14] = env->xregs[22]; |
9602 | env->regs[13] = env->xregs[23]; | |
ce02049d | 9603 | } else { |
593cfa2b | 9604 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
3a9148d0 | 9605 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; |
ce02049d GB |
9606 | } |
9607 | ||
9608 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
9609 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
9610 | * FIQ bank for r8-r14. | |
9611 | */ | |
9612 | if (mode == ARM_CPU_MODE_FIQ) { | |
9613 | for (i = 24; i < 31; i++) { | |
9614 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
9615 | } | |
9616 | } else { | |
9617 | for (i = 24; i < 29; i++) { | |
9618 | env->fiq_regs[i - 24] = env->xregs[i]; | |
9619 | } | |
9620 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
593cfa2b | 9621 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; |
ce02049d GB |
9622 | } |
9623 | ||
9624 | env->regs[15] = env->pc; | |
9625 | } | |
9626 | ||
dea8378b PM |
9627 | static void take_aarch32_exception(CPUARMState *env, int new_mode, |
9628 | uint32_t mask, uint32_t offset, | |
9629 | uint32_t newpc) | |
9630 | { | |
4a2696c0 RH |
9631 | int new_el; |
9632 | ||
dea8378b PM |
9633 | /* Change the CPU state so as to actually take the exception. */ |
9634 | switch_mode(env, new_mode); | |
4a2696c0 | 9635 | |
dea8378b PM |
9636 | /* |
9637 | * For exceptions taken to AArch32 we must clear the SS bit in both | |
9638 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
9639 | */ | |
f944a854 | 9640 | env->pstate &= ~PSTATE_SS; |
dea8378b PM |
9641 | env->spsr = cpsr_read(env); |
9642 | /* Clear IT bits. */ | |
9643 | env->condexec_bits = 0; | |
9644 | /* Switch to the new mode, and to the correct instruction set. */ | |
9645 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; | |
88828bf1 CD |
9646 | |
9647 | /* This must be after mode switching. */ | |
9648 | new_el = arm_current_el(env); | |
9649 | ||
dea8378b PM |
9650 | /* Set new mode endianness */ |
9651 | env->uncached_cpsr &= ~CPSR_E; | |
4a2696c0 | 9652 | if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { |
dea8378b PM |
9653 | env->uncached_cpsr |= CPSR_E; |
9654 | } | |
829f9fd3 PM |
9655 | /* J and IL must always be cleared for exception entry */ |
9656 | env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); | |
dea8378b PM |
9657 | env->daif |= mask; |
9658 | ||
f2f68a78 RC |
9659 | if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { |
9660 | if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { | |
9661 | env->uncached_cpsr |= CPSR_SSBS; | |
9662 | } else { | |
9663 | env->uncached_cpsr &= ~CPSR_SSBS; | |
9664 | } | |
9665 | } | |
9666 | ||
dea8378b PM |
9667 | if (new_mode == ARM_CPU_MODE_HYP) { |
9668 | env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; | |
9669 | env->elr_el[2] = env->regs[15]; | |
9670 | } else { | |
4a2696c0 | 9671 | /* CPSR.PAN is normally preserved preserved unless... */ |
f8af1143 | 9672 | if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { |
4a2696c0 RH |
9673 | switch (new_el) { |
9674 | case 3: | |
9675 | if (!arm_is_secure_below_el3(env)) { | |
9676 | /* ... the target is EL3, from non-secure state. */ | |
9677 | env->uncached_cpsr &= ~CPSR_PAN; | |
9678 | break; | |
9679 | } | |
9680 | /* ... the target is EL3, from secure state ... */ | |
9681 | /* fall through */ | |
9682 | case 1: | |
9683 | /* ... the target is EL1 and SCTLR.SPAN is 0. */ | |
9684 | if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { | |
9685 | env->uncached_cpsr |= CPSR_PAN; | |
9686 | } | |
9687 | break; | |
9688 | } | |
9689 | } | |
dea8378b PM |
9690 | /* |
9691 | * this is a lie, as there was no c1_sys on V4T/V5, but who cares | |
9692 | * and we should just guard the thumb mode on V4 | |
9693 | */ | |
9694 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
9695 | env->thumb = | |
9696 | (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; | |
9697 | } | |
9698 | env->regs[14] = env->regs[15] + offset; | |
9699 | } | |
9700 | env->regs[15] = newpc; | |
a8a79c7a | 9701 | arm_rebuild_hflags(env); |
dea8378b PM |
9702 | } |
9703 | ||
b9bc21ff PM |
9704 | static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) |
9705 | { | |
9706 | /* | |
9707 | * Handle exception entry to Hyp mode; this is sufficiently | |
9708 | * different to entry to other AArch32 modes that we handle it | |
9709 | * separately here. | |
9710 | * | |
9711 | * The vector table entry used is always the 0x14 Hyp mode entry point, | |
2c023d36 | 9712 | * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. |
b9bc21ff PM |
9713 | * The offset applied to the preferred return address is always zero |
9714 | * (see DDI0487C.a section G1.12.3). | |
9715 | * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. | |
9716 | */ | |
9717 | uint32_t addr, mask; | |
9718 | ARMCPU *cpu = ARM_CPU(cs); | |
9719 | CPUARMState *env = &cpu->env; | |
9720 | ||
9721 | switch (cs->exception_index) { | |
9722 | case EXCP_UDEF: | |
9723 | addr = 0x04; | |
9724 | break; | |
9725 | case EXCP_SWI: | |
2c023d36 | 9726 | addr = 0x08; |
b9bc21ff PM |
9727 | break; |
9728 | case EXCP_BKPT: | |
9729 | /* Fall through to prefetch abort. */ | |
9730 | case EXCP_PREFETCH_ABORT: | |
9731 | env->cp15.ifar_s = env->exception.vaddress; | |
9732 | qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", | |
9733 | (uint32_t)env->exception.vaddress); | |
9734 | addr = 0x0c; | |
9735 | break; | |
9736 | case EXCP_DATA_ABORT: | |
9737 | env->cp15.dfar_s = env->exception.vaddress; | |
9738 | qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", | |
9739 | (uint32_t)env->exception.vaddress); | |
9740 | addr = 0x10; | |
9741 | break; | |
9742 | case EXCP_IRQ: | |
9743 | addr = 0x18; | |
9744 | break; | |
9745 | case EXCP_FIQ: | |
9746 | addr = 0x1c; | |
9747 | break; | |
9748 | case EXCP_HVC: | |
9749 | addr = 0x08; | |
9750 | break; | |
9751 | case EXCP_HYP_TRAP: | |
9752 | addr = 0x14; | |
9bbb4ef9 | 9753 | break; |
b9bc21ff PM |
9754 | default: |
9755 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
9756 | } | |
9757 | ||
9758 | if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { | |
2ed08180 PM |
9759 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
9760 | /* | |
9761 | * QEMU syndrome values are v8-style. v7 has the IL bit | |
9762 | * UNK/SBZP for "field not valid" cases, where v8 uses RES1. | |
9763 | * If this is a v7 CPU, squash the IL bit in those cases. | |
9764 | */ | |
9765 | if (cs->exception_index == EXCP_PREFETCH_ABORT || | |
9766 | (cs->exception_index == EXCP_DATA_ABORT && | |
9767 | !(env->exception.syndrome & ARM_EL_ISV)) || | |
9768 | syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { | |
9769 | env->exception.syndrome &= ~ARM_EL_IL; | |
9770 | } | |
9771 | } | |
b9bc21ff PM |
9772 | env->cp15.esr_el[2] = env->exception.syndrome; |
9773 | } | |
9774 | ||
9775 | if (arm_current_el(env) != 2 && addr < 0x14) { | |
9776 | addr = 0x14; | |
9777 | } | |
9778 | ||
9779 | mask = 0; | |
9780 | if (!(env->cp15.scr_el3 & SCR_EA)) { | |
9781 | mask |= CPSR_A; | |
9782 | } | |
9783 | if (!(env->cp15.scr_el3 & SCR_IRQ)) { | |
9784 | mask |= CPSR_I; | |
9785 | } | |
9786 | if (!(env->cp15.scr_el3 & SCR_FIQ)) { | |
9787 | mask |= CPSR_F; | |
9788 | } | |
9789 | ||
9790 | addr += env->cp15.hvbar; | |
9791 | ||
9792 | take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); | |
9793 | } | |
9794 | ||
966f758c | 9795 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
b5ff1b31 | 9796 | { |
97a8ea5a AF |
9797 | ARMCPU *cpu = ARM_CPU(cs); |
9798 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
9799 | uint32_t addr; |
9800 | uint32_t mask; | |
9801 | int new_mode; | |
9802 | uint32_t offset; | |
16a906fd | 9803 | uint32_t moe; |
b5ff1b31 | 9804 | |
16a906fd | 9805 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
64b91e3f | 9806 | switch (syn_get_ec(env->exception.syndrome)) { |
16a906fd PM |
9807 | case EC_BREAKPOINT: |
9808 | case EC_BREAKPOINT_SAME_EL: | |
9809 | moe = 1; | |
9810 | break; | |
9811 | case EC_WATCHPOINT: | |
9812 | case EC_WATCHPOINT_SAME_EL: | |
9813 | moe = 10; | |
9814 | break; | |
9815 | case EC_AA32_BKPT: | |
9816 | moe = 3; | |
9817 | break; | |
9818 | case EC_VECTORCATCH: | |
9819 | moe = 5; | |
9820 | break; | |
9821 | default: | |
9822 | moe = 0; | |
9823 | break; | |
9824 | } | |
9825 | ||
9826 | if (moe) { | |
9827 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
9828 | } | |
9829 | ||
b9bc21ff PM |
9830 | if (env->exception.target_el == 2) { |
9831 | arm_cpu_do_interrupt_aarch32_hyp(cs); | |
9832 | return; | |
9833 | } | |
9834 | ||
27103424 | 9835 | switch (cs->exception_index) { |
b5ff1b31 FB |
9836 | case EXCP_UDEF: |
9837 | new_mode = ARM_CPU_MODE_UND; | |
9838 | addr = 0x04; | |
9839 | mask = CPSR_I; | |
9840 | if (env->thumb) | |
9841 | offset = 2; | |
9842 | else | |
9843 | offset = 4; | |
9844 | break; | |
9845 | case EXCP_SWI: | |
9846 | new_mode = ARM_CPU_MODE_SVC; | |
9847 | addr = 0x08; | |
9848 | mask = CPSR_I; | |
601d70b9 | 9849 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
9850 | offset = 0; |
9851 | break; | |
06c949e6 | 9852 | case EXCP_BKPT: |
9ee6e8bb PB |
9853 | /* Fall through to prefetch abort. */ |
9854 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 9855 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 9856 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 9857 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 9858 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
9859 | new_mode = ARM_CPU_MODE_ABT; |
9860 | addr = 0x0c; | |
9861 | mask = CPSR_A | CPSR_I; | |
9862 | offset = 4; | |
9863 | break; | |
9864 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 9865 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 9866 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 9867 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 9868 | env->exception.fsr, |
6cd8a264 | 9869 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
9870 | new_mode = ARM_CPU_MODE_ABT; |
9871 | addr = 0x10; | |
9872 | mask = CPSR_A | CPSR_I; | |
9873 | offset = 8; | |
9874 | break; | |
9875 | case EXCP_IRQ: | |
9876 | new_mode = ARM_CPU_MODE_IRQ; | |
9877 | addr = 0x18; | |
9878 | /* Disable IRQ and imprecise data aborts. */ | |
9879 | mask = CPSR_A | CPSR_I; | |
9880 | offset = 4; | |
de38d23b FA |
9881 | if (env->cp15.scr_el3 & SCR_IRQ) { |
9882 | /* IRQ routed to monitor mode */ | |
9883 | new_mode = ARM_CPU_MODE_MON; | |
9884 | mask |= CPSR_F; | |
9885 | } | |
b5ff1b31 FB |
9886 | break; |
9887 | case EXCP_FIQ: | |
9888 | new_mode = ARM_CPU_MODE_FIQ; | |
9889 | addr = 0x1c; | |
9890 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
9891 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
9892 | if (env->cp15.scr_el3 & SCR_FIQ) { |
9893 | /* FIQ routed to monitor mode */ | |
9894 | new_mode = ARM_CPU_MODE_MON; | |
9895 | } | |
b5ff1b31 FB |
9896 | offset = 4; |
9897 | break; | |
87a4b270 PM |
9898 | case EXCP_VIRQ: |
9899 | new_mode = ARM_CPU_MODE_IRQ; | |
9900 | addr = 0x18; | |
9901 | /* Disable IRQ and imprecise data aborts. */ | |
9902 | mask = CPSR_A | CPSR_I; | |
9903 | offset = 4; | |
9904 | break; | |
9905 | case EXCP_VFIQ: | |
9906 | new_mode = ARM_CPU_MODE_FIQ; | |
9907 | addr = 0x1c; | |
9908 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
9909 | mask = CPSR_A | CPSR_I | CPSR_F; | |
9910 | offset = 4; | |
9911 | break; | |
3c29632f RH |
9912 | case EXCP_VSERR: |
9913 | { | |
9914 | /* | |
9915 | * Note that this is reported as a data abort, but the DFAR | |
9916 | * has an UNKNOWN value. Construct the SError syndrome from | |
9917 | * AET and ExT fields. | |
9918 | */ | |
9919 | ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; | |
9920 | ||
9921 | if (extended_addresses_enabled(env)) { | |
9922 | env->exception.fsr = arm_fi_to_lfsc(&fi); | |
9923 | } else { | |
9924 | env->exception.fsr = arm_fi_to_sfsc(&fi); | |
9925 | } | |
9926 | env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; | |
9927 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); | |
9928 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", | |
9929 | env->exception.fsr); | |
9930 | ||
9931 | new_mode = ARM_CPU_MODE_ABT; | |
9932 | addr = 0x10; | |
9933 | mask = CPSR_A | CPSR_I; | |
9934 | offset = 8; | |
9935 | } | |
9936 | break; | |
dbe9d163 FA |
9937 | case EXCP_SMC: |
9938 | new_mode = ARM_CPU_MODE_MON; | |
9939 | addr = 0x08; | |
9940 | mask = CPSR_A | CPSR_I | CPSR_F; | |
9941 | offset = 0; | |
9942 | break; | |
b5ff1b31 | 9943 | default: |
a47dddd7 | 9944 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
9945 | return; /* Never happens. Keep compiler happy. */ |
9946 | } | |
e89e51a1 FA |
9947 | |
9948 | if (new_mode == ARM_CPU_MODE_MON) { | |
9949 | addr += env->cp15.mvbar; | |
137feaa9 | 9950 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 9951 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 9952 | addr += 0xffff0000; |
8641136c NR |
9953 | } else { |
9954 | /* ARM v7 architectures provide a vector base address register to remap | |
9955 | * the interrupt vector table. | |
e89e51a1 | 9956 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
9957 | * Note: only bits 31:5 are valid. |
9958 | */ | |
fb6c91ba | 9959 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 9960 | } |
dbe9d163 FA |
9961 | |
9962 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
9963 | env->cp15.scr_el3 &= ~SCR_NS; | |
9964 | } | |
9965 | ||
dea8378b | 9966 | take_aarch32_exception(env, new_mode, mask, offset, addr); |
b5ff1b31 FB |
9967 | } |
9968 | ||
a65dabf7 PM |
9969 | static int aarch64_regnum(CPUARMState *env, int aarch32_reg) |
9970 | { | |
9971 | /* | |
9972 | * Return the register number of the AArch64 view of the AArch32 | |
9973 | * register @aarch32_reg. The CPUARMState CPSR is assumed to still | |
9974 | * be that of the AArch32 mode the exception came from. | |
9975 | */ | |
9976 | int mode = env->uncached_cpsr & CPSR_M; | |
9977 | ||
9978 | switch (aarch32_reg) { | |
9979 | case 0 ... 7: | |
9980 | return aarch32_reg; | |
9981 | case 8 ... 12: | |
9982 | return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; | |
9983 | case 13: | |
9984 | switch (mode) { | |
9985 | case ARM_CPU_MODE_USR: | |
9986 | case ARM_CPU_MODE_SYS: | |
9987 | return 13; | |
9988 | case ARM_CPU_MODE_HYP: | |
9989 | return 15; | |
9990 | case ARM_CPU_MODE_IRQ: | |
9991 | return 17; | |
9992 | case ARM_CPU_MODE_SVC: | |
9993 | return 19; | |
9994 | case ARM_CPU_MODE_ABT: | |
9995 | return 21; | |
9996 | case ARM_CPU_MODE_UND: | |
9997 | return 23; | |
9998 | case ARM_CPU_MODE_FIQ: | |
9999 | return 29; | |
10000 | default: | |
10001 | g_assert_not_reached(); | |
10002 | } | |
10003 | case 14: | |
10004 | switch (mode) { | |
10005 | case ARM_CPU_MODE_USR: | |
10006 | case ARM_CPU_MODE_SYS: | |
10007 | case ARM_CPU_MODE_HYP: | |
10008 | return 14; | |
10009 | case ARM_CPU_MODE_IRQ: | |
10010 | return 16; | |
10011 | case ARM_CPU_MODE_SVC: | |
10012 | return 18; | |
10013 | case ARM_CPU_MODE_ABT: | |
10014 | return 20; | |
10015 | case ARM_CPU_MODE_UND: | |
10016 | return 22; | |
10017 | case ARM_CPU_MODE_FIQ: | |
10018 | return 30; | |
10019 | default: | |
10020 | g_assert_not_reached(); | |
10021 | } | |
10022 | case 15: | |
10023 | return 31; | |
10024 | default: | |
10025 | g_assert_not_reached(); | |
10026 | } | |
10027 | } | |
10028 | ||
f944a854 RC |
10029 | static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) |
10030 | { | |
10031 | uint32_t ret = cpsr_read(env); | |
10032 | ||
10033 | /* Move DIT to the correct location for SPSR_ELx */ | |
10034 | if (ret & CPSR_DIT) { | |
10035 | ret &= ~CPSR_DIT; | |
10036 | ret |= PSTATE_DIT; | |
10037 | } | |
10038 | /* Merge PSTATE.SS into SPSR_ELx */ | |
10039 | ret |= env->pstate & PSTATE_SS; | |
10040 | ||
10041 | return ret; | |
10042 | } | |
10043 | ||
966f758c PM |
10044 | /* Handle exception entry to a target EL which is using AArch64 */ |
10045 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) | |
f3a9b694 PM |
10046 | { |
10047 | ARMCPU *cpu = ARM_CPU(cs); | |
10048 | CPUARMState *env = &cpu->env; | |
10049 | unsigned int new_el = env->exception.target_el; | |
10050 | target_ulong addr = env->cp15.vbar_el[new_el]; | |
10051 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | |
4a2696c0 | 10052 | unsigned int old_mode; |
0ab5953b | 10053 | unsigned int cur_el = arm_current_el(env); |
a65dabf7 | 10054 | int rt; |
0ab5953b | 10055 | |
9a05f7b6 RH |
10056 | /* |
10057 | * Note that new_el can never be 0. If cur_el is 0, then | |
10058 | * el0_a64 is is_a64(), else el0_a64 is ignored. | |
10059 | */ | |
10060 | aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); | |
f3a9b694 | 10061 | |
0ab5953b | 10062 | if (cur_el < new_el) { |
3d6f7617 PM |
10063 | /* Entry vector offset depends on whether the implemented EL |
10064 | * immediately lower than the target level is using AArch32 or AArch64 | |
10065 | */ | |
10066 | bool is_aa64; | |
cb092fbb | 10067 | uint64_t hcr; |
3d6f7617 PM |
10068 | |
10069 | switch (new_el) { | |
10070 | case 3: | |
10071 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; | |
10072 | break; | |
10073 | case 2: | |
cb092fbb RH |
10074 | hcr = arm_hcr_el2_eff(env); |
10075 | if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
10076 | is_aa64 = (hcr & HCR_RW) != 0; | |
10077 | break; | |
10078 | } | |
10079 | /* fall through */ | |
3d6f7617 PM |
10080 | case 1: |
10081 | is_aa64 = is_a64(env); | |
10082 | break; | |
10083 | default: | |
10084 | g_assert_not_reached(); | |
10085 | } | |
10086 | ||
10087 | if (is_aa64) { | |
f3a9b694 PM |
10088 | addr += 0x400; |
10089 | } else { | |
10090 | addr += 0x600; | |
10091 | } | |
10092 | } else if (pstate_read(env) & PSTATE_SP) { | |
10093 | addr += 0x200; | |
10094 | } | |
10095 | ||
f3a9b694 PM |
10096 | switch (cs->exception_index) { |
10097 | case EXCP_PREFETCH_ABORT: | |
10098 | case EXCP_DATA_ABORT: | |
10099 | env->cp15.far_el[new_el] = env->exception.vaddress; | |
10100 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
10101 | env->cp15.far_el[new_el]); | |
10102 | /* fall through */ | |
10103 | case EXCP_BKPT: | |
10104 | case EXCP_UDEF: | |
10105 | case EXCP_SWI: | |
10106 | case EXCP_HVC: | |
10107 | case EXCP_HYP_TRAP: | |
10108 | case EXCP_SMC: | |
a65dabf7 PM |
10109 | switch (syn_get_ec(env->exception.syndrome)) { |
10110 | case EC_ADVSIMDFPACCESSTRAP: | |
4be42f40 PM |
10111 | /* |
10112 | * QEMU internal FP/SIMD syndromes from AArch32 include the | |
10113 | * TA and coproc fields which are only exposed if the exception | |
10114 | * is taken to AArch32 Hyp mode. Mask them out to get a valid | |
10115 | * AArch64 format syndrome. | |
10116 | */ | |
10117 | env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); | |
a65dabf7 PM |
10118 | break; |
10119 | case EC_CP14RTTRAP: | |
10120 | case EC_CP15RTTRAP: | |
10121 | case EC_CP14DTTRAP: | |
10122 | /* | |
10123 | * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently | |
10124 | * the raw register field from the insn; when taking this to | |
10125 | * AArch64 we must convert it to the AArch64 view of the register | |
10126 | * number. Notice that we read a 4-bit AArch32 register number and | |
10127 | * write back a 5-bit AArch64 one. | |
10128 | */ | |
10129 | rt = extract32(env->exception.syndrome, 5, 4); | |
10130 | rt = aarch64_regnum(env, rt); | |
10131 | env->exception.syndrome = deposit32(env->exception.syndrome, | |
10132 | 5, 5, rt); | |
10133 | break; | |
10134 | case EC_CP15RRTTRAP: | |
10135 | case EC_CP14RRTTRAP: | |
10136 | /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ | |
10137 | rt = extract32(env->exception.syndrome, 5, 4); | |
10138 | rt = aarch64_regnum(env, rt); | |
10139 | env->exception.syndrome = deposit32(env->exception.syndrome, | |
10140 | 5, 5, rt); | |
10141 | rt = extract32(env->exception.syndrome, 10, 4); | |
10142 | rt = aarch64_regnum(env, rt); | |
10143 | env->exception.syndrome = deposit32(env->exception.syndrome, | |
10144 | 10, 5, rt); | |
10145 | break; | |
4be42f40 | 10146 | } |
f3a9b694 PM |
10147 | env->cp15.esr_el[new_el] = env->exception.syndrome; |
10148 | break; | |
10149 | case EXCP_IRQ: | |
10150 | case EXCP_VIRQ: | |
10151 | addr += 0x80; | |
10152 | break; | |
10153 | case EXCP_FIQ: | |
10154 | case EXCP_VFIQ: | |
10155 | addr += 0x100; | |
10156 | break; | |
3c29632f RH |
10157 | case EXCP_VSERR: |
10158 | addr += 0x180; | |
10159 | /* Construct the SError syndrome from IDS and ISS fields. */ | |
10160 | env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); | |
10161 | env->cp15.esr_el[new_el] = env->exception.syndrome; | |
10162 | break; | |
f3a9b694 PM |
10163 | default: |
10164 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
10165 | } | |
10166 | ||
10167 | if (is_a64(env)) { | |
4a2696c0 | 10168 | old_mode = pstate_read(env); |
f3a9b694 PM |
10169 | aarch64_save_sp(env, arm_current_el(env)); |
10170 | env->elr_el[new_el] = env->pc; | |
10171 | } else { | |
f944a854 | 10172 | old_mode = cpsr_read_for_spsr_elx(env); |
f3a9b694 PM |
10173 | env->elr_el[new_el] = env->regs[15]; |
10174 | ||
10175 | aarch64_sync_32_to_64(env); | |
10176 | ||
10177 | env->condexec_bits = 0; | |
10178 | } | |
4a2696c0 RH |
10179 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; |
10180 | ||
f3a9b694 PM |
10181 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", |
10182 | env->elr_el[new_el]); | |
10183 | ||
4a2696c0 RH |
10184 | if (cpu_isar_feature(aa64_pan, cpu)) { |
10185 | /* The value of PSTATE.PAN is normally preserved, except when ... */ | |
10186 | new_mode |= old_mode & PSTATE_PAN; | |
10187 | switch (new_el) { | |
10188 | case 2: | |
10189 | /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ | |
10190 | if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) | |
10191 | != (HCR_E2H | HCR_TGE)) { | |
10192 | break; | |
10193 | } | |
10194 | /* fall through */ | |
10195 | case 1: | |
10196 | /* ... the target is EL1 ... */ | |
10197 | /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ | |
10198 | if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { | |
10199 | new_mode |= PSTATE_PAN; | |
10200 | } | |
10201 | break; | |
10202 | } | |
10203 | } | |
34669338 RH |
10204 | if (cpu_isar_feature(aa64_mte, cpu)) { |
10205 | new_mode |= PSTATE_TCO; | |
10206 | } | |
4a2696c0 | 10207 | |
f2f68a78 RC |
10208 | if (cpu_isar_feature(aa64_ssbs, cpu)) { |
10209 | if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { | |
10210 | new_mode |= PSTATE_SSBS; | |
10211 | } else { | |
10212 | new_mode &= ~PSTATE_SSBS; | |
10213 | } | |
10214 | } | |
10215 | ||
f3a9b694 | 10216 | pstate_write(env, PSTATE_DAIF | new_mode); |
53221552 | 10217 | env->aarch64 = true; |
f3a9b694 | 10218 | aarch64_restore_sp(env, new_el); |
a8a79c7a | 10219 | helper_rebuild_hflags_a64(env, new_el); |
f3a9b694 PM |
10220 | |
10221 | env->pc = addr; | |
10222 | ||
10223 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", | |
10224 | new_el, env->pc, pstate_read(env)); | |
966f758c PM |
10225 | } |
10226 | ||
ed6e6ba9 AB |
10227 | /* |
10228 | * Do semihosting call and set the appropriate return value. All the | |
10229 | * permission and validity checks have been done at translate time. | |
10230 | * | |
10231 | * We only see semihosting exceptions in TCG only as they are not | |
10232 | * trapped to the hypervisor in KVM. | |
10233 | */ | |
91f78c58 | 10234 | #ifdef CONFIG_TCG |
ed6e6ba9 AB |
10235 | static void handle_semihosting(CPUState *cs) |
10236 | { | |
904c04de PM |
10237 | ARMCPU *cpu = ARM_CPU(cs); |
10238 | CPUARMState *env = &cpu->env; | |
10239 | ||
10240 | if (is_a64(env)) { | |
ed6e6ba9 AB |
10241 | qemu_log_mask(CPU_LOG_INT, |
10242 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
10243 | env->xregs[0]); | |
0bb446d8 | 10244 | env->xregs[0] = do_common_semihosting(cs); |
4ff5ef9e | 10245 | env->pc += 4; |
904c04de | 10246 | } else { |
904c04de PM |
10247 | qemu_log_mask(CPU_LOG_INT, |
10248 | "...handling as semihosting call 0x%x\n", | |
10249 | env->regs[0]); | |
0bb446d8 | 10250 | env->regs[0] = do_common_semihosting(cs); |
4ff5ef9e | 10251 | env->regs[15] += env->thumb ? 2 : 4; |
904c04de PM |
10252 | } |
10253 | } | |
ed6e6ba9 | 10254 | #endif |
904c04de | 10255 | |
966f758c PM |
10256 | /* Handle a CPU exception for A and R profile CPUs. |
10257 | * Do any appropriate logging, handle PSCI calls, and then hand off | |
10258 | * to the AArch64-entry or AArch32-entry function depending on the | |
10259 | * target exception level's register width. | |
853bfef4 CF |
10260 | * |
10261 | * Note: this is used for both TCG (as the do_interrupt tcg op), | |
10262 | * and KVM to re-inject guest debug exceptions, and to | |
10263 | * inject a Synchronous-External-Abort. | |
966f758c PM |
10264 | */ |
10265 | void arm_cpu_do_interrupt(CPUState *cs) | |
10266 | { | |
10267 | ARMCPU *cpu = ARM_CPU(cs); | |
10268 | CPUARMState *env = &cpu->env; | |
10269 | unsigned int new_el = env->exception.target_el; | |
10270 | ||
531c60a9 | 10271 | assert(!arm_feature(env, ARM_FEATURE_M)); |
966f758c | 10272 | |
fc6177af | 10273 | arm_log_exception(cs); |
966f758c PM |
10274 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), |
10275 | new_el); | |
10276 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
10277 | && !excp_is_internal(cs->exception_index)) { | |
6568da45 | 10278 | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", |
64b91e3f | 10279 | syn_get_ec(env->exception.syndrome), |
966f758c PM |
10280 | env->exception.syndrome); |
10281 | } | |
10282 | ||
10283 | if (arm_is_psci_call(cpu, cs->exception_index)) { | |
10284 | arm_handle_psci_call(cpu); | |
10285 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
10286 | return; | |
10287 | } | |
10288 | ||
ed6e6ba9 AB |
10289 | /* |
10290 | * Semihosting semantics depend on the register width of the code | |
10291 | * that caused the exception, not the target exception level, so | |
10292 | * must be handled here. | |
966f758c | 10293 | */ |
ed6e6ba9 AB |
10294 | #ifdef CONFIG_TCG |
10295 | if (cs->exception_index == EXCP_SEMIHOST) { | |
10296 | handle_semihosting(cs); | |
904c04de PM |
10297 | return; |
10298 | } | |
ed6e6ba9 | 10299 | #endif |
904c04de | 10300 | |
b5c53d1b AL |
10301 | /* Hooks may change global state so BQL should be held, also the |
10302 | * BQL needs to be held for any modification of | |
10303 | * cs->interrupt_request. | |
10304 | */ | |
10305 | g_assert(qemu_mutex_iothread_locked()); | |
10306 | ||
10307 | arm_call_pre_el_change_hook(cpu); | |
10308 | ||
904c04de PM |
10309 | assert(!excp_is_internal(cs->exception_index)); |
10310 | if (arm_el_is_aa64(env, new_el)) { | |
966f758c PM |
10311 | arm_cpu_do_interrupt_aarch64(cs); |
10312 | } else { | |
10313 | arm_cpu_do_interrupt_aarch32(cs); | |
10314 | } | |
f3a9b694 | 10315 | |
bd7d00fc PM |
10316 | arm_call_el_change_hook(cpu); |
10317 | ||
f3a9b694 PM |
10318 | if (!kvm_enabled()) { |
10319 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
10320 | } | |
10321 | } | |
c47eaf9f | 10322 | #endif /* !CONFIG_USER_ONLY */ |
0480f69a | 10323 | |
aaec1432 RH |
10324 | uint64_t arm_sctlr(CPUARMState *env, int el) |
10325 | { | |
10326 | /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ | |
10327 | if (el == 0) { | |
10328 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); | |
b6ad6062 RDC |
10329 | el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) |
10330 | ? 2 : 1; | |
aaec1432 RH |
10331 | } |
10332 | return env->cp15.sctlr_el[el]; | |
10333 | } | |
c47eaf9f | 10334 | |
0480f69a | 10335 | /* Return the SCTLR value which controls this address translation regime */ |
aaec1432 | 10336 | static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) |
0480f69a PM |
10337 | { |
10338 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
10339 | } | |
10340 | ||
aaec1432 RH |
10341 | #ifndef CONFIG_USER_ONLY |
10342 | ||
0480f69a PM |
10343 | /* Return true if the specified stage of address translation is disabled */ |
10344 | static inline bool regime_translation_disabled(CPUARMState *env, | |
10345 | ARMMMUIdx mmu_idx) | |
10346 | { | |
e04a5752 RDC |
10347 | uint64_t hcr_el2; |
10348 | ||
29c483a5 | 10349 | if (arm_feature(env, ARM_FEATURE_M)) { |
ecf5e8ea | 10350 | switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & |
3bef7012 PM |
10351 | (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
10352 | case R_V7M_MPU_CTRL_ENABLE_MASK: | |
10353 | /* Enabled, but not for HardFault and NMI */ | |
62593718 | 10354 | return mmu_idx & ARM_MMU_IDX_M_NEGPRI; |
3bef7012 PM |
10355 | case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
10356 | /* Enabled for all cases */ | |
10357 | return false; | |
10358 | case 0: | |
10359 | default: | |
10360 | /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but | |
10361 | * we warned about that in armv7m_nvic.c when the guest set it. | |
10362 | */ | |
10363 | return true; | |
10364 | } | |
29c483a5 MD |
10365 | } |
10366 | ||
e04a5752 RDC |
10367 | hcr_el2 = arm_hcr_el2_eff(env); |
10368 | ||
b1a10c86 | 10369 | if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { |
9d1bab33 | 10370 | /* HCR.DC means HCR.VM behaves as 1 */ |
e04a5752 | 10371 | return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; |
0480f69a | 10372 | } |
3d0e3080 | 10373 | |
e04a5752 | 10374 | if (hcr_el2 & HCR_TGE) { |
3d0e3080 PM |
10375 | /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ |
10376 | if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { | |
10377 | return true; | |
10378 | } | |
10379 | } | |
10380 | ||
e04a5752 | 10381 | if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { |
9d1bab33 PM |
10382 | /* HCR.DC means SCTLR_EL1.M behaves as 0 */ |
10383 | return true; | |
10384 | } | |
10385 | ||
0480f69a PM |
10386 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; |
10387 | } | |
10388 | ||
73462ddd PC |
10389 | static inline bool regime_translation_big_endian(CPUARMState *env, |
10390 | ARMMMUIdx mmu_idx) | |
10391 | { | |
10392 | return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; | |
10393 | } | |
10394 | ||
c47eaf9f PM |
10395 | /* Return the TTBR associated with this translation regime */ |
10396 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
10397 | int ttbrn) | |
10398 | { | |
97fa9350 | 10399 | if (mmu_idx == ARMMMUIdx_Stage2) { |
c47eaf9f PM |
10400 | return env->cp15.vttbr_el2; |
10401 | } | |
b1a10c86 RDC |
10402 | if (mmu_idx == ARMMMUIdx_Stage2_S) { |
10403 | return env->cp15.vsttbr_el2; | |
10404 | } | |
c47eaf9f PM |
10405 | if (ttbrn == 0) { |
10406 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
10407 | } else { | |
10408 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
10409 | } | |
10410 | } | |
10411 | ||
10412 | #endif /* !CONFIG_USER_ONLY */ | |
10413 | ||
8bd5c820 PM |
10414 | /* Convert a possible stage1+2 MMU index into the appropriate |
10415 | * stage 1 MMU index | |
10416 | */ | |
10417 | static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) | |
10418 | { | |
b9f6033c | 10419 | switch (mmu_idx) { |
b1a10c86 RDC |
10420 | case ARMMMUIdx_SE10_0: |
10421 | return ARMMMUIdx_Stage1_SE0; | |
10422 | case ARMMMUIdx_SE10_1: | |
10423 | return ARMMMUIdx_Stage1_SE1; | |
10424 | case ARMMMUIdx_SE10_1_PAN: | |
10425 | return ARMMMUIdx_Stage1_SE1_PAN; | |
b9f6033c RH |
10426 | case ARMMMUIdx_E10_0: |
10427 | return ARMMMUIdx_Stage1_E0; | |
10428 | case ARMMMUIdx_E10_1: | |
10429 | return ARMMMUIdx_Stage1_E1; | |
452ef8cb RH |
10430 | case ARMMMUIdx_E10_1_PAN: |
10431 | return ARMMMUIdx_Stage1_E1_PAN; | |
b9f6033c RH |
10432 | default: |
10433 | return mmu_idx; | |
8bd5c820 | 10434 | } |
8bd5c820 PM |
10435 | } |
10436 | ||
0480f69a PM |
10437 | /* Return true if the translation regime is using LPAE format page tables */ |
10438 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
10439 | ARMMMUIdx mmu_idx) | |
10440 | { | |
10441 | int el = regime_el(env, mmu_idx); | |
10442 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
10443 | return true; | |
10444 | } | |
10445 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
10446 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
10447 | return true; | |
10448 | } | |
10449 | return false; | |
10450 | } | |
10451 | ||
deb2db99 AR |
10452 | /* Returns true if the stage 1 translation regime is using LPAE format page |
10453 | * tables. Used when raising alignment exceptions, whose FSR changes depending | |
10454 | * on whether the long or short descriptor format is in use. */ | |
10455 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) | |
30901475 | 10456 | { |
8bd5c820 | 10457 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
deb2db99 | 10458 | |
30901475 AB |
10459 | return regime_using_lpae_format(env, mmu_idx); |
10460 | } | |
10461 | ||
c47eaf9f | 10462 | #ifndef CONFIG_USER_ONLY |
0480f69a PM |
10463 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
10464 | { | |
10465 | switch (mmu_idx) { | |
fba37aed | 10466 | case ARMMMUIdx_SE10_0: |
b9f6033c | 10467 | case ARMMMUIdx_E20_0: |
b6ad6062 | 10468 | case ARMMMUIdx_SE20_0: |
2859d7b5 | 10469 | case ARMMMUIdx_Stage1_E0: |
b1a10c86 | 10470 | case ARMMMUIdx_Stage1_SE0: |
e7b921c2 | 10471 | case ARMMMUIdx_MUser: |
871bec7c | 10472 | case ARMMMUIdx_MSUser: |
62593718 PM |
10473 | case ARMMMUIdx_MUserNegPri: |
10474 | case ARMMMUIdx_MSUserNegPri: | |
0480f69a PM |
10475 | return true; |
10476 | default: | |
10477 | return false; | |
01b98b68 RH |
10478 | case ARMMMUIdx_E10_0: |
10479 | case ARMMMUIdx_E10_1: | |
452ef8cb | 10480 | case ARMMMUIdx_E10_1_PAN: |
0480f69a PM |
10481 | g_assert_not_reached(); |
10482 | } | |
10483 | } | |
10484 | ||
0fbf5238 AJ |
10485 | /* Translate section/page access permissions to page |
10486 | * R/W protection flags | |
d76951b6 AJ |
10487 | * |
10488 | * @env: CPUARMState | |
10489 | * @mmu_idx: MMU index indicating required translation regime | |
10490 | * @ap: The 3-bit access permissions (AP[2:0]) | |
10491 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
10492 | */ |
10493 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
10494 | int ap, int domain_prot) | |
10495 | { | |
554b0b09 PM |
10496 | bool is_user = regime_is_user(env, mmu_idx); |
10497 | ||
10498 | if (domain_prot == 3) { | |
10499 | return PAGE_READ | PAGE_WRITE; | |
10500 | } | |
10501 | ||
554b0b09 PM |
10502 | switch (ap) { |
10503 | case 0: | |
10504 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
10505 | return 0; | |
10506 | } | |
554b0b09 PM |
10507 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
10508 | case SCTLR_S: | |
10509 | return is_user ? 0 : PAGE_READ; | |
10510 | case SCTLR_R: | |
10511 | return PAGE_READ; | |
10512 | default: | |
10513 | return 0; | |
10514 | } | |
10515 | case 1: | |
10516 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
10517 | case 2: | |
87c3d486 | 10518 | if (is_user) { |
0fbf5238 | 10519 | return PAGE_READ; |
87c3d486 | 10520 | } else { |
554b0b09 | 10521 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 10522 | } |
554b0b09 PM |
10523 | case 3: |
10524 | return PAGE_READ | PAGE_WRITE; | |
10525 | case 4: /* Reserved. */ | |
10526 | return 0; | |
10527 | case 5: | |
0fbf5238 | 10528 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 10529 | case 6: |
0fbf5238 | 10530 | return PAGE_READ; |
554b0b09 | 10531 | case 7: |
87c3d486 | 10532 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 10533 | return 0; |
87c3d486 | 10534 | } |
0fbf5238 | 10535 | return PAGE_READ; |
554b0b09 | 10536 | default: |
0fbf5238 | 10537 | g_assert_not_reached(); |
554b0b09 | 10538 | } |
b5ff1b31 FB |
10539 | } |
10540 | ||
d76951b6 AJ |
10541 | /* Translate section/page access permissions to page |
10542 | * R/W protection flags. | |
10543 | * | |
d76951b6 | 10544 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 10545 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 10546 | */ |
d8e052b3 | 10547 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 10548 | { |
d76951b6 AJ |
10549 | switch (ap) { |
10550 | case 0: | |
10551 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
10552 | case 1: | |
10553 | return PAGE_READ | PAGE_WRITE; | |
10554 | case 2: | |
10555 | return is_user ? 0 : PAGE_READ; | |
10556 | case 3: | |
10557 | return PAGE_READ; | |
10558 | default: | |
10559 | g_assert_not_reached(); | |
10560 | } | |
10561 | } | |
10562 | ||
d8e052b3 AJ |
10563 | static inline int |
10564 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
10565 | { | |
10566 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
10567 | } | |
10568 | ||
6ab1a5ee EI |
10569 | /* Translate S2 section/page access permissions to protection flags |
10570 | * | |
10571 | * @env: CPUARMState | |
10572 | * @s2ap: The 2-bit stage2 access permissions (S2AP) | |
ce3125be PM |
10573 | * @xn: XN (execute-never) bits |
10574 | * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 | |
6ab1a5ee | 10575 | */ |
ce3125be | 10576 | static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) |
6ab1a5ee EI |
10577 | { |
10578 | int prot = 0; | |
10579 | ||
10580 | if (s2ap & 1) { | |
10581 | prot |= PAGE_READ; | |
10582 | } | |
10583 | if (s2ap & 2) { | |
10584 | prot |= PAGE_WRITE; | |
10585 | } | |
ce3125be PM |
10586 | |
10587 | if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { | |
10588 | switch (xn) { | |
10589 | case 0: | |
dfda6837 | 10590 | prot |= PAGE_EXEC; |
ce3125be PM |
10591 | break; |
10592 | case 1: | |
10593 | if (s1_is_el0) { | |
10594 | prot |= PAGE_EXEC; | |
10595 | } | |
10596 | break; | |
10597 | case 2: | |
10598 | break; | |
10599 | case 3: | |
10600 | if (!s1_is_el0) { | |
10601 | prot |= PAGE_EXEC; | |
10602 | } | |
10603 | break; | |
10604 | default: | |
10605 | g_assert_not_reached(); | |
10606 | } | |
10607 | } else { | |
10608 | if (!extract32(xn, 1, 1)) { | |
10609 | if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { | |
10610 | prot |= PAGE_EXEC; | |
10611 | } | |
dfda6837 | 10612 | } |
6ab1a5ee EI |
10613 | } |
10614 | return prot; | |
10615 | } | |
10616 | ||
d8e052b3 AJ |
10617 | /* Translate section/page access permissions to protection flags |
10618 | * | |
10619 | * @env: CPUARMState | |
10620 | * @mmu_idx: MMU index indicating required translation regime | |
10621 | * @is_aa64: TRUE if AArch64 | |
10622 | * @ap: The 2-bit simple AP (AP[2:1]) | |
10623 | * @ns: NS (non-secure) bit | |
10624 | * @xn: XN (execute-never) bit | |
10625 | * @pxn: PXN (privileged execute-never) bit | |
10626 | */ | |
10627 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
10628 | int ap, int ns, int xn, int pxn) | |
10629 | { | |
10630 | bool is_user = regime_is_user(env, mmu_idx); | |
10631 | int prot_rw, user_rw; | |
10632 | bool have_wxn; | |
10633 | int wxn = 0; | |
10634 | ||
97fa9350 | 10635 | assert(mmu_idx != ARMMMUIdx_Stage2); |
b1a10c86 | 10636 | assert(mmu_idx != ARMMMUIdx_Stage2_S); |
d8e052b3 AJ |
10637 | |
10638 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
10639 | if (is_user) { | |
10640 | prot_rw = user_rw; | |
10641 | } else { | |
81636b70 | 10642 | if (user_rw && regime_is_pan(env, mmu_idx)) { |
f4e1dbc5 PM |
10643 | /* PAN forbids data accesses but doesn't affect insn fetch */ |
10644 | prot_rw = 0; | |
10645 | } else { | |
10646 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
81636b70 | 10647 | } |
d8e052b3 AJ |
10648 | } |
10649 | ||
10650 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
10651 | return prot_rw; | |
10652 | } | |
10653 | ||
10654 | /* TODO have_wxn should be replaced with | |
10655 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
10656 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
10657 | * compatible processors have EL2, which is required for [U]WXN. | |
10658 | */ | |
10659 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
10660 | ||
10661 | if (have_wxn) { | |
10662 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
10663 | } | |
10664 | ||
10665 | if (is_aa64) { | |
339370b9 RH |
10666 | if (regime_has_2_ranges(mmu_idx) && !is_user) { |
10667 | xn = pxn || (user_rw & PAGE_WRITE); | |
d8e052b3 AJ |
10668 | } |
10669 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
10670 | switch (regime_el(env, mmu_idx)) { | |
10671 | case 1: | |
10672 | case 3: | |
10673 | if (is_user) { | |
10674 | xn = xn || !(user_rw & PAGE_READ); | |
10675 | } else { | |
10676 | int uwxn = 0; | |
10677 | if (have_wxn) { | |
10678 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
10679 | } | |
10680 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
10681 | (uwxn && (user_rw & PAGE_WRITE)); | |
10682 | } | |
10683 | break; | |
10684 | case 2: | |
10685 | break; | |
10686 | } | |
10687 | } else { | |
10688 | xn = wxn = 0; | |
10689 | } | |
10690 | ||
10691 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
10692 | return prot_rw; | |
10693 | } | |
10694 | return prot_rw | PAGE_EXEC; | |
10695 | } | |
10696 | ||
0480f69a PM |
10697 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
10698 | uint32_t *table, uint32_t address) | |
b2fa1797 | 10699 | { |
0480f69a | 10700 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 10701 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 10702 | |
11f136ee FA |
10703 | if (address & tcr->mask) { |
10704 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
10705 | /* Translation table walk disabled for TTBR1 */ |
10706 | return false; | |
10707 | } | |
aef878be | 10708 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 10709 | } else { |
11f136ee | 10710 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
10711 | /* Translation table walk disabled for TTBR0 */ |
10712 | return false; | |
10713 | } | |
aef878be | 10714 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
10715 | } |
10716 | *table |= (address >> 18) & 0x3ffc; | |
10717 | return true; | |
b2fa1797 PB |
10718 | } |
10719 | ||
37785977 EI |
10720 | /* Translate a S1 pagetable walk through S2 if needed. */ |
10721 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, | |
3d4bd397 | 10722 | hwaddr addr, bool *is_secure, |
37785977 EI |
10723 | ARMMMUFaultInfo *fi) |
10724 | { | |
fee7aa46 | 10725 | if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && |
97fa9350 | 10726 | !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { |
37785977 EI |
10727 | target_ulong s2size; |
10728 | hwaddr s2pa; | |
10729 | int s2prot; | |
10730 | int ret; | |
b1a10c86 RDC |
10731 | ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S |
10732 | : ARMMMUIdx_Stage2; | |
eadb2feb | 10733 | ARMCacheAttrs cacheattrs = {}; |
3d4bd397 RDC |
10734 | MemTxAttrs txattrs = {}; |
10735 | ||
b1a10c86 | 10736 | ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, |
59dff859 | 10737 | &s2pa, &txattrs, &s2prot, &s2size, fi, |
a6d6f37a | 10738 | &cacheattrs); |
37785977 | 10739 | if (ret) { |
3b39d734 | 10740 | assert(fi->type != ARMFault_None); |
37785977 EI |
10741 | fi->s2addr = addr; |
10742 | fi->stage2 = true; | |
10743 | fi->s1ptw = true; | |
9861248f | 10744 | fi->s1ns = !*is_secure; |
37785977 EI |
10745 | return ~0; |
10746 | } | |
e04a5752 RDC |
10747 | if ((arm_hcr_el2_eff(env) & HCR_PTW) && |
10748 | (cacheattrs.attrs & 0xf0) == 0) { | |
a6d6f37a RH |
10749 | /* |
10750 | * PTW set and S1 walk touched S2 Device memory: | |
10751 | * generate Permission fault. | |
10752 | */ | |
eadb2feb PM |
10753 | fi->type = ARMFault_Permission; |
10754 | fi->s2addr = addr; | |
10755 | fi->stage2 = true; | |
10756 | fi->s1ptw = true; | |
9861248f | 10757 | fi->s1ns = !*is_secure; |
eadb2feb PM |
10758 | return ~0; |
10759 | } | |
588c6dd1 RDC |
10760 | |
10761 | if (arm_is_secure_below_el3(env)) { | |
10762 | /* Check if page table walk is to secure or non-secure PA space. */ | |
10763 | if (*is_secure) { | |
10764 | *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); | |
10765 | } else { | |
10766 | *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); | |
10767 | } | |
10768 | } else { | |
10769 | assert(!*is_secure); | |
10770 | } | |
10771 | ||
37785977 EI |
10772 | addr = s2pa; |
10773 | } | |
10774 | return addr; | |
10775 | } | |
10776 | ||
14577270 | 10777 | /* All loads done in the course of a page table walk go through here. */ |
a614e698 | 10778 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
3795a6de | 10779 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
ebca90e4 | 10780 | { |
a614e698 EI |
10781 | ARMCPU *cpu = ARM_CPU(cs); |
10782 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 10783 | MemTxAttrs attrs = {}; |
3b39d734 | 10784 | MemTxResult result = MEMTX_OK; |
5ce4ff65 | 10785 | AddressSpace *as; |
3b39d734 | 10786 | uint32_t data; |
ebca90e4 | 10787 | |
3d4bd397 | 10788 | addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); |
ebca90e4 | 10789 | attrs.secure = is_secure; |
5ce4ff65 | 10790 | as = arm_addressspace(cs, attrs); |
a614e698 EI |
10791 | if (fi->s1ptw) { |
10792 | return 0; | |
10793 | } | |
73462ddd | 10794 | if (regime_translation_big_endian(env, mmu_idx)) { |
3b39d734 | 10795 | data = address_space_ldl_be(as, addr, attrs, &result); |
73462ddd | 10796 | } else { |
3b39d734 | 10797 | data = address_space_ldl_le(as, addr, attrs, &result); |
73462ddd | 10798 | } |
3b39d734 PM |
10799 | if (result == MEMTX_OK) { |
10800 | return data; | |
10801 | } | |
10802 | fi->type = ARMFault_SyncExternalOnWalk; | |
10803 | fi->ea = arm_extabort_type(result); | |
10804 | return 0; | |
ebca90e4 PM |
10805 | } |
10806 | ||
37785977 | 10807 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
3795a6de | 10808 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
ebca90e4 | 10809 | { |
37785977 EI |
10810 | ARMCPU *cpu = ARM_CPU(cs); |
10811 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 10812 | MemTxAttrs attrs = {}; |
3b39d734 | 10813 | MemTxResult result = MEMTX_OK; |
5ce4ff65 | 10814 | AddressSpace *as; |
9aea1ea3 | 10815 | uint64_t data; |
ebca90e4 | 10816 | |
3d4bd397 | 10817 | addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); |
ebca90e4 | 10818 | attrs.secure = is_secure; |
5ce4ff65 | 10819 | as = arm_addressspace(cs, attrs); |
37785977 EI |
10820 | if (fi->s1ptw) { |
10821 | return 0; | |
10822 | } | |
73462ddd | 10823 | if (regime_translation_big_endian(env, mmu_idx)) { |
3b39d734 | 10824 | data = address_space_ldq_be(as, addr, attrs, &result); |
73462ddd | 10825 | } else { |
3b39d734 PM |
10826 | data = address_space_ldq_le(as, addr, attrs, &result); |
10827 | } | |
10828 | if (result == MEMTX_OK) { | |
10829 | return data; | |
73462ddd | 10830 | } |
3b39d734 PM |
10831 | fi->type = ARMFault_SyncExternalOnWalk; |
10832 | fi->ea = arm_extabort_type(result); | |
10833 | return 0; | |
ebca90e4 PM |
10834 | } |
10835 | ||
b7cc4e82 | 10836 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
03ae85f8 | 10837 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 10838 | hwaddr *phys_ptr, int *prot, |
f989983e | 10839 | target_ulong *page_size, |
e14b5a23 | 10840 | ARMMMUFaultInfo *fi) |
b5ff1b31 | 10841 | { |
2fc0cc0e | 10842 | CPUState *cs = env_cpu(env); |
f989983e | 10843 | int level = 1; |
b5ff1b31 FB |
10844 | uint32_t table; |
10845 | uint32_t desc; | |
10846 | int type; | |
10847 | int ap; | |
e389be16 | 10848 | int domain = 0; |
dd4ebc2e | 10849 | int domain_prot; |
a8170e5e | 10850 | hwaddr phys_addr; |
0480f69a | 10851 | uint32_t dacr; |
b5ff1b31 | 10852 | |
9ee6e8bb PB |
10853 | /* Pagetable walk. */ |
10854 | /* Lookup l1 descriptor. */ | |
0480f69a | 10855 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 | 10856 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
f989983e | 10857 | fi->type = ARMFault_Translation; |
e389be16 FA |
10858 | goto do_fault; |
10859 | } | |
a614e698 | 10860 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10861 | mmu_idx, fi); |
3b39d734 PM |
10862 | if (fi->type != ARMFault_None) { |
10863 | goto do_fault; | |
10864 | } | |
9ee6e8bb | 10865 | type = (desc & 3); |
dd4ebc2e | 10866 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
10867 | if (regime_el(env, mmu_idx) == 1) { |
10868 | dacr = env->cp15.dacr_ns; | |
10869 | } else { | |
10870 | dacr = env->cp15.dacr_s; | |
10871 | } | |
10872 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 10873 | if (type == 0) { |
601d70b9 | 10874 | /* Section translation fault. */ |
f989983e | 10875 | fi->type = ARMFault_Translation; |
9ee6e8bb PB |
10876 | goto do_fault; |
10877 | } | |
f989983e PM |
10878 | if (type != 2) { |
10879 | level = 2; | |
10880 | } | |
dd4ebc2e | 10881 | if (domain_prot == 0 || domain_prot == 2) { |
f989983e | 10882 | fi->type = ARMFault_Domain; |
9ee6e8bb PB |
10883 | goto do_fault; |
10884 | } | |
10885 | if (type == 2) { | |
10886 | /* 1Mb section. */ | |
10887 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
10888 | ap = (desc >> 10) & 3; | |
d4c430a8 | 10889 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
10890 | } else { |
10891 | /* Lookup l2 entry. */ | |
554b0b09 PM |
10892 | if (type == 1) { |
10893 | /* Coarse pagetable. */ | |
10894 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
10895 | } else { | |
10896 | /* Fine pagetable. */ | |
10897 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
10898 | } | |
a614e698 | 10899 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10900 | mmu_idx, fi); |
3b39d734 PM |
10901 | if (fi->type != ARMFault_None) { |
10902 | goto do_fault; | |
10903 | } | |
9ee6e8bb PB |
10904 | switch (desc & 3) { |
10905 | case 0: /* Page translation fault. */ | |
f989983e | 10906 | fi->type = ARMFault_Translation; |
9ee6e8bb PB |
10907 | goto do_fault; |
10908 | case 1: /* 64k page. */ | |
10909 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
10910 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 10911 | *page_size = 0x10000; |
ce819861 | 10912 | break; |
9ee6e8bb PB |
10913 | case 2: /* 4k page. */ |
10914 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 10915 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 10916 | *page_size = 0x1000; |
ce819861 | 10917 | break; |
fc1891c7 | 10918 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 10919 | if (type == 1) { |
fc1891c7 PM |
10920 | /* ARMv6/XScale extended small page format */ |
10921 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
10922 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 10923 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 10924 | *page_size = 0x1000; |
554b0b09 | 10925 | } else { |
fc1891c7 PM |
10926 | /* UNPREDICTABLE in ARMv5; we choose to take a |
10927 | * page translation fault. | |
10928 | */ | |
f989983e | 10929 | fi->type = ARMFault_Translation; |
554b0b09 PM |
10930 | goto do_fault; |
10931 | } | |
10932 | } else { | |
10933 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 10934 | *page_size = 0x400; |
554b0b09 | 10935 | } |
9ee6e8bb | 10936 | ap = (desc >> 4) & 3; |
ce819861 PB |
10937 | break; |
10938 | default: | |
9ee6e8bb | 10939 | /* Never happens, but compiler isn't smart enough to tell. */ |
d385a605 | 10940 | g_assert_not_reached(); |
ce819861 | 10941 | } |
9ee6e8bb | 10942 | } |
0fbf5238 AJ |
10943 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
10944 | *prot |= *prot ? PAGE_EXEC : 0; | |
10945 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb | 10946 | /* Access permission fault. */ |
f989983e | 10947 | fi->type = ARMFault_Permission; |
9ee6e8bb PB |
10948 | goto do_fault; |
10949 | } | |
10950 | *phys_ptr = phys_addr; | |
b7cc4e82 | 10951 | return false; |
9ee6e8bb | 10952 | do_fault: |
f989983e PM |
10953 | fi->domain = domain; |
10954 | fi->level = level; | |
b7cc4e82 | 10955 | return true; |
9ee6e8bb PB |
10956 | } |
10957 | ||
b7cc4e82 | 10958 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
03ae85f8 | 10959 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 10960 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
f06cf243 | 10961 | target_ulong *page_size, ARMMMUFaultInfo *fi) |
9ee6e8bb | 10962 | { |
2fc0cc0e | 10963 | CPUState *cs = env_cpu(env); |
0ae0326b | 10964 | ARMCPU *cpu = env_archcpu(env); |
f06cf243 | 10965 | int level = 1; |
9ee6e8bb PB |
10966 | uint32_t table; |
10967 | uint32_t desc; | |
10968 | uint32_t xn; | |
de9b05b8 | 10969 | uint32_t pxn = 0; |
9ee6e8bb PB |
10970 | int type; |
10971 | int ap; | |
de9b05b8 | 10972 | int domain = 0; |
dd4ebc2e | 10973 | int domain_prot; |
a8170e5e | 10974 | hwaddr phys_addr; |
0480f69a | 10975 | uint32_t dacr; |
8bf5b6a9 | 10976 | bool ns; |
9ee6e8bb PB |
10977 | |
10978 | /* Pagetable walk. */ | |
10979 | /* Lookup l1 descriptor. */ | |
0480f69a | 10980 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 | 10981 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
f06cf243 | 10982 | fi->type = ARMFault_Translation; |
e389be16 FA |
10983 | goto do_fault; |
10984 | } | |
a614e698 | 10985 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10986 | mmu_idx, fi); |
3b39d734 PM |
10987 | if (fi->type != ARMFault_None) { |
10988 | goto do_fault; | |
10989 | } | |
9ee6e8bb | 10990 | type = (desc & 3); |
0ae0326b | 10991 | if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { |
de9b05b8 PM |
10992 | /* Section translation fault, or attempt to use the encoding |
10993 | * which is Reserved on implementations without PXN. | |
10994 | */ | |
f06cf243 | 10995 | fi->type = ARMFault_Translation; |
9ee6e8bb | 10996 | goto do_fault; |
de9b05b8 PM |
10997 | } |
10998 | if ((type == 1) || !(desc & (1 << 18))) { | |
10999 | /* Page or Section. */ | |
dd4ebc2e | 11000 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 11001 | } |
0480f69a PM |
11002 | if (regime_el(env, mmu_idx) == 1) { |
11003 | dacr = env->cp15.dacr_ns; | |
11004 | } else { | |
11005 | dacr = env->cp15.dacr_s; | |
11006 | } | |
f06cf243 PM |
11007 | if (type == 1) { |
11008 | level = 2; | |
11009 | } | |
0480f69a | 11010 | domain_prot = (dacr >> (domain * 2)) & 3; |
dd4ebc2e | 11011 | if (domain_prot == 0 || domain_prot == 2) { |
f06cf243 PM |
11012 | /* Section or Page domain fault */ |
11013 | fi->type = ARMFault_Domain; | |
9ee6e8bb PB |
11014 | goto do_fault; |
11015 | } | |
de9b05b8 | 11016 | if (type != 1) { |
9ee6e8bb PB |
11017 | if (desc & (1 << 18)) { |
11018 | /* Supersection. */ | |
11019 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
11020 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
11021 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 11022 | *page_size = 0x1000000; |
b5ff1b31 | 11023 | } else { |
9ee6e8bb PB |
11024 | /* Section. */ |
11025 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 11026 | *page_size = 0x100000; |
b5ff1b31 | 11027 | } |
9ee6e8bb PB |
11028 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
11029 | xn = desc & (1 << 4); | |
de9b05b8 | 11030 | pxn = desc & 1; |
8bf5b6a9 | 11031 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 11032 | } else { |
0ae0326b | 11033 | if (cpu_isar_feature(aa32_pxn, cpu)) { |
de9b05b8 PM |
11034 | pxn = (desc >> 2) & 1; |
11035 | } | |
8bf5b6a9 | 11036 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
11037 | /* Lookup l2 entry. */ |
11038 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
a614e698 | 11039 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 11040 | mmu_idx, fi); |
3b39d734 PM |
11041 | if (fi->type != ARMFault_None) { |
11042 | goto do_fault; | |
11043 | } | |
9ee6e8bb PB |
11044 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
11045 | switch (desc & 3) { | |
11046 | case 0: /* Page translation fault. */ | |
f06cf243 | 11047 | fi->type = ARMFault_Translation; |
b5ff1b31 | 11048 | goto do_fault; |
9ee6e8bb PB |
11049 | case 1: /* 64k page. */ |
11050 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
11051 | xn = desc & (1 << 15); | |
d4c430a8 | 11052 | *page_size = 0x10000; |
9ee6e8bb PB |
11053 | break; |
11054 | case 2: case 3: /* 4k page. */ | |
11055 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
11056 | xn = desc & 1; | |
d4c430a8 | 11057 | *page_size = 0x1000; |
9ee6e8bb PB |
11058 | break; |
11059 | default: | |
11060 | /* Never happens, but compiler isn't smart enough to tell. */ | |
d385a605 | 11061 | g_assert_not_reached(); |
b5ff1b31 | 11062 | } |
9ee6e8bb | 11063 | } |
dd4ebc2e | 11064 | if (domain_prot == 3) { |
c0034328 JR |
11065 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
11066 | } else { | |
0480f69a | 11067 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
11068 | xn = 1; |
11069 | } | |
f06cf243 PM |
11070 | if (xn && access_type == MMU_INST_FETCH) { |
11071 | fi->type = ARMFault_Permission; | |
c0034328 | 11072 | goto do_fault; |
f06cf243 | 11073 | } |
9ee6e8bb | 11074 | |
d76951b6 AJ |
11075 | if (arm_feature(env, ARM_FEATURE_V6K) && |
11076 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
11077 | /* The simplified model uses AP[0] as an access control bit. */ | |
11078 | if ((ap & 1) == 0) { | |
11079 | /* Access flag fault. */ | |
f06cf243 | 11080 | fi->type = ARMFault_AccessFlag; |
d76951b6 AJ |
11081 | goto do_fault; |
11082 | } | |
11083 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
11084 | } else { | |
11085 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 11086 | } |
0fbf5238 AJ |
11087 | if (*prot && !xn) { |
11088 | *prot |= PAGE_EXEC; | |
11089 | } | |
11090 | if (!(*prot & (1 << access_type))) { | |
c0034328 | 11091 | /* Access permission fault. */ |
f06cf243 | 11092 | fi->type = ARMFault_Permission; |
c0034328 JR |
11093 | goto do_fault; |
11094 | } | |
3ad493fc | 11095 | } |
8bf5b6a9 PM |
11096 | if (ns) { |
11097 | /* The NS bit will (as required by the architecture) have no effect if | |
11098 | * the CPU doesn't support TZ or this is a non-secure translation | |
11099 | * regime, because the attribute will already be non-secure. | |
11100 | */ | |
11101 | attrs->secure = false; | |
11102 | } | |
9ee6e8bb | 11103 | *phys_ptr = phys_addr; |
b7cc4e82 | 11104 | return false; |
b5ff1b31 | 11105 | do_fault: |
f06cf243 PM |
11106 | fi->domain = domain; |
11107 | fi->level = level; | |
b7cc4e82 | 11108 | return true; |
b5ff1b31 FB |
11109 | } |
11110 | ||
1853d5a9 | 11111 | /* |
a0e966c9 | 11112 | * check_s2_mmu_setup |
1853d5a9 EI |
11113 | * @cpu: ARMCPU |
11114 | * @is_aa64: True if the translation regime is in AArch64 state | |
11115 | * @startlevel: Suggested starting level | |
11116 | * @inputsize: Bitsize of IPAs | |
11117 | * @stride: Page-table stride (See the ARM ARM) | |
11118 | * | |
a0e966c9 EI |
11119 | * Returns true if the suggested S2 translation parameters are OK and |
11120 | * false otherwise. | |
1853d5a9 | 11121 | */ |
a0e966c9 | 11122 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
49ba115b | 11123 | int inputsize, int stride, int outputsize) |
1853d5a9 | 11124 | { |
98d68ec2 EI |
11125 | const int grainsize = stride + 3; |
11126 | int startsizecheck; | |
11127 | ||
ef56c242 RH |
11128 | /* |
11129 | * Negative levels are usually not allowed... | |
11130 | * Except for FEAT_LPA2, 4k page table, 52-bit address space, which | |
11131 | * begins with level -1. Note that previous feature tests will have | |
11132 | * eliminated this combination if it is not enabled. | |
11133 | */ | |
11134 | if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { | |
1853d5a9 EI |
11135 | return false; |
11136 | } | |
11137 | ||
98d68ec2 EI |
11138 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
11139 | if (startsizecheck < 1 || startsizecheck > stride + 4) { | |
11140 | return false; | |
11141 | } | |
11142 | ||
1853d5a9 | 11143 | if (is_aa64) { |
1853d5a9 EI |
11144 | switch (stride) { |
11145 | case 13: /* 64KB Pages. */ | |
49ba115b | 11146 | if (level == 0 || (level == 1 && outputsize <= 42)) { |
1853d5a9 EI |
11147 | return false; |
11148 | } | |
11149 | break; | |
11150 | case 11: /* 16KB Pages. */ | |
49ba115b | 11151 | if (level == 0 || (level == 1 && outputsize <= 40)) { |
1853d5a9 EI |
11152 | return false; |
11153 | } | |
11154 | break; | |
11155 | case 9: /* 4KB Pages. */ | |
49ba115b | 11156 | if (level == 0 && outputsize <= 42) { |
1853d5a9 EI |
11157 | return false; |
11158 | } | |
11159 | break; | |
11160 | default: | |
11161 | g_assert_not_reached(); | |
11162 | } | |
3526423e EI |
11163 | |
11164 | /* Inputsize checks. */ | |
49ba115b RH |
11165 | if (inputsize > outputsize && |
11166 | (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { | |
3526423e EI |
11167 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ |
11168 | return false; | |
11169 | } | |
1853d5a9 | 11170 | } else { |
1853d5a9 EI |
11171 | /* AArch32 only supports 4KB pages. Assert on that. */ |
11172 | assert(stride == 9); | |
11173 | ||
11174 | if (level == 0) { | |
11175 | return false; | |
11176 | } | |
1853d5a9 EI |
11177 | } |
11178 | return true; | |
11179 | } | |
11180 | ||
5b2d261d AB |
11181 | /* Translate from the 4-bit stage 2 representation of |
11182 | * memory attributes (without cache-allocation hints) to | |
11183 | * the 8-bit representation of the stage 1 MAIR registers | |
11184 | * (which includes allocation hints). | |
11185 | * | |
11186 | * ref: shared/translation/attrs/S2AttrDecode() | |
11187 | * .../S2ConvertAttrsHints() | |
11188 | */ | |
11189 | static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) | |
11190 | { | |
11191 | uint8_t hiattr = extract32(s2attrs, 2, 2); | |
11192 | uint8_t loattr = extract32(s2attrs, 0, 2); | |
11193 | uint8_t hihint = 0, lohint = 0; | |
11194 | ||
11195 | if (hiattr != 0) { /* normal memory */ | |
e04a5752 | 11196 | if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ |
5b2d261d AB |
11197 | hiattr = loattr = 1; /* non-cacheable */ |
11198 | } else { | |
11199 | if (hiattr != 1) { /* Write-through or write-back */ | |
11200 | hihint = 3; /* RW allocate */ | |
11201 | } | |
11202 | if (loattr != 1) { /* Write-through or write-back */ | |
11203 | lohint = 3; /* RW allocate */ | |
11204 | } | |
11205 | } | |
11206 | } | |
11207 | ||
11208 | return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; | |
11209 | } | |
c47eaf9f | 11210 | #endif /* !CONFIG_USER_ONLY */ |
5b2d261d | 11211 | |
f4ecc015 RH |
11212 | /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ |
11213 | static const uint8_t pamax_map[] = { | |
11214 | [0] = 32, | |
11215 | [1] = 36, | |
11216 | [2] = 40, | |
11217 | [3] = 42, | |
11218 | [4] = 44, | |
11219 | [5] = 48, | |
7a928f43 | 11220 | [6] = 52, |
f4ecc015 RH |
11221 | }; |
11222 | ||
71a77257 RH |
11223 | /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ |
11224 | unsigned int arm_pamax(ARMCPU *cpu) | |
11225 | { | |
71a77257 RH |
11226 | unsigned int parange = |
11227 | FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); | |
11228 | ||
11229 | /* | |
11230 | * id_aa64mmfr0 is a read-only register so values outside of the | |
11231 | * supported mappings can be considered an implementation error. | |
11232 | */ | |
11233 | assert(parange < ARRAY_SIZE(pamax_map)); | |
11234 | return pamax_map[parange]; | |
11235 | } | |
11236 | ||
b830a5ee RH |
11237 | static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) |
11238 | { | |
11239 | if (regime_has_2_ranges(mmu_idx)) { | |
11240 | return extract64(tcr, 37, 2); | |
b1a10c86 | 11241 | } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { |
b830a5ee RH |
11242 | return 0; /* VTCR_EL2 */ |
11243 | } else { | |
3e270f67 RH |
11244 | /* Replicate the single TBI bit so we always have 2 bits. */ |
11245 | return extract32(tcr, 20, 1) * 3; | |
b830a5ee RH |
11246 | } |
11247 | } | |
11248 | ||
11249 | static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) | |
11250 | { | |
11251 | if (regime_has_2_ranges(mmu_idx)) { | |
11252 | return extract64(tcr, 51, 2); | |
b1a10c86 | 11253 | } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { |
b830a5ee RH |
11254 | return 0; /* VTCR_EL2 */ |
11255 | } else { | |
3e270f67 RH |
11256 | /* Replicate the single TBID bit so we always have 2 bits. */ |
11257 | return extract32(tcr, 29, 1) * 3; | |
b830a5ee RH |
11258 | } |
11259 | } | |
11260 | ||
81ae05fa RH |
11261 | static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) |
11262 | { | |
11263 | if (regime_has_2_ranges(mmu_idx)) { | |
11264 | return extract64(tcr, 57, 2); | |
11265 | } else { | |
11266 | /* Replicate the single TCMA bit so we always have 2 bits. */ | |
11267 | return extract32(tcr, 30, 1) * 3; | |
11268 | } | |
11269 | } | |
11270 | ||
b830a5ee RH |
11271 | ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, |
11272 | ARMMMUIdx mmu_idx, bool data) | |
ba97be9f RH |
11273 | { |
11274 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; | |
ef56c242 RH |
11275 | bool epd, hpd, using16k, using64k, tsz_oob, ds; |
11276 | int select, tsz, tbi, max_tsz, min_tsz, ps, sh; | |
11277 | ARMCPU *cpu = env_archcpu(env); | |
ba97be9f | 11278 | |
339370b9 | 11279 | if (!regime_has_2_ranges(mmu_idx)) { |
71d18164 | 11280 | select = 0; |
ba97be9f RH |
11281 | tsz = extract32(tcr, 0, 6); |
11282 | using64k = extract32(tcr, 14, 1); | |
11283 | using16k = extract32(tcr, 15, 1); | |
b1a10c86 | 11284 | if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { |
ba97be9f | 11285 | /* VTCR_EL2 */ |
b830a5ee | 11286 | hpd = false; |
ba97be9f | 11287 | } else { |
ba97be9f RH |
11288 | hpd = extract32(tcr, 24, 1); |
11289 | } | |
11290 | epd = false; | |
ef56c242 | 11291 | sh = extract32(tcr, 12, 2); |
f4ecc015 | 11292 | ps = extract32(tcr, 16, 3); |
ef56c242 | 11293 | ds = extract64(tcr, 32, 1); |
ba97be9f | 11294 | } else { |
71d18164 RH |
11295 | /* |
11296 | * Bit 55 is always between the two regions, and is canonical for | |
11297 | * determining if address tagging is enabled. | |
11298 | */ | |
11299 | select = extract64(va, 55, 1); | |
11300 | if (!select) { | |
11301 | tsz = extract32(tcr, 0, 6); | |
11302 | epd = extract32(tcr, 7, 1); | |
ef56c242 | 11303 | sh = extract32(tcr, 12, 2); |
71d18164 RH |
11304 | using64k = extract32(tcr, 14, 1); |
11305 | using16k = extract32(tcr, 15, 1); | |
71d18164 | 11306 | hpd = extract64(tcr, 41, 1); |
71d18164 RH |
11307 | } else { |
11308 | int tg = extract32(tcr, 30, 2); | |
11309 | using16k = tg == 1; | |
11310 | using64k = tg == 3; | |
11311 | tsz = extract32(tcr, 16, 6); | |
11312 | epd = extract32(tcr, 23, 1); | |
ef56c242 | 11313 | sh = extract32(tcr, 28, 2); |
71d18164 | 11314 | hpd = extract64(tcr, 42, 1); |
71d18164 | 11315 | } |
f4ecc015 | 11316 | ps = extract64(tcr, 32, 3); |
ef56c242 | 11317 | ds = extract64(tcr, 59, 1); |
ba97be9f | 11318 | } |
c36c65ea | 11319 | |
ef56c242 | 11320 | if (cpu_isar_feature(aa64_st, cpu)) { |
c36c65ea RDC |
11321 | max_tsz = 48 - using64k; |
11322 | } else { | |
11323 | max_tsz = 39; | |
11324 | } | |
0af312b6 | 11325 | |
ef56c242 RH |
11326 | /* |
11327 | * DS is RES0 unless FEAT_LPA2 is supported for the given page size; | |
11328 | * adjust the effective value of DS, as documented. | |
11329 | */ | |
0af312b6 RH |
11330 | min_tsz = 16; |
11331 | if (using64k) { | |
ef56c242 RH |
11332 | if (cpu_isar_feature(aa64_lva, cpu)) { |
11333 | min_tsz = 12; | |
11334 | } | |
11335 | ds = false; | |
11336 | } else if (ds) { | |
11337 | switch (mmu_idx) { | |
11338 | case ARMMMUIdx_Stage2: | |
11339 | case ARMMMUIdx_Stage2_S: | |
11340 | if (using16k) { | |
11341 | ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); | |
11342 | } else { | |
11343 | ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); | |
11344 | } | |
11345 | break; | |
11346 | default: | |
11347 | if (using16k) { | |
11348 | ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); | |
11349 | } else { | |
11350 | ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); | |
11351 | } | |
11352 | break; | |
11353 | } | |
11354 | if (ds) { | |
0af312b6 RH |
11355 | min_tsz = 12; |
11356 | } | |
11357 | } | |
c36c65ea | 11358 | |
ebf93ce7 RH |
11359 | if (tsz > max_tsz) { |
11360 | tsz = max_tsz; | |
11361 | tsz_oob = true; | |
11362 | } else if (tsz < min_tsz) { | |
11363 | tsz = min_tsz; | |
11364 | tsz_oob = true; | |
11365 | } else { | |
11366 | tsz_oob = false; | |
11367 | } | |
ba97be9f | 11368 | |
b830a5ee RH |
11369 | /* Present TBI as a composite with TBID. */ |
11370 | tbi = aa64_va_parameter_tbi(tcr, mmu_idx); | |
11371 | if (!data) { | |
11372 | tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
11373 | } | |
11374 | tbi = (tbi >> select) & 1; | |
11375 | ||
ba97be9f RH |
11376 | return (ARMVAParameters) { |
11377 | .tsz = tsz, | |
f4ecc015 | 11378 | .ps = ps, |
ef56c242 | 11379 | .sh = sh, |
ba97be9f RH |
11380 | .select = select, |
11381 | .tbi = tbi, | |
11382 | .epd = epd, | |
11383 | .hpd = hpd, | |
11384 | .using16k = using16k, | |
11385 | .using64k = using64k, | |
ebf93ce7 | 11386 | .tsz_oob = tsz_oob, |
ef56c242 | 11387 | .ds = ds, |
ba97be9f RH |
11388 | }; |
11389 | } | |
11390 | ||
c47eaf9f | 11391 | #ifndef CONFIG_USER_ONLY |
ba97be9f RH |
11392 | static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, |
11393 | ARMMMUIdx mmu_idx) | |
11394 | { | |
11395 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; | |
11396 | uint32_t el = regime_el(env, mmu_idx); | |
11397 | int select, tsz; | |
11398 | bool epd, hpd; | |
11399 | ||
b1a10c86 RDC |
11400 | assert(mmu_idx != ARMMMUIdx_Stage2_S); |
11401 | ||
97fa9350 | 11402 | if (mmu_idx == ARMMMUIdx_Stage2) { |
ba97be9f RH |
11403 | /* VTCR */ |
11404 | bool sext = extract32(tcr, 4, 1); | |
11405 | bool sign = extract32(tcr, 3, 1); | |
11406 | ||
11407 | /* | |
11408 | * If the sign-extend bit is not the same as t0sz[3], the result | |
11409 | * is unpredictable. Flag this as a guest error. | |
11410 | */ | |
11411 | if (sign != sext) { | |
11412 | qemu_log_mask(LOG_GUEST_ERROR, | |
11413 | "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); | |
11414 | } | |
11415 | tsz = sextract32(tcr, 0, 4) + 8; | |
11416 | select = 0; | |
11417 | hpd = false; | |
11418 | epd = false; | |
11419 | } else if (el == 2) { | |
11420 | /* HTCR */ | |
11421 | tsz = extract32(tcr, 0, 3); | |
11422 | select = 0; | |
11423 | hpd = extract64(tcr, 24, 1); | |
11424 | epd = false; | |
11425 | } else { | |
11426 | int t0sz = extract32(tcr, 0, 3); | |
11427 | int t1sz = extract32(tcr, 16, 3); | |
11428 | ||
11429 | if (t1sz == 0) { | |
11430 | select = va > (0xffffffffu >> t0sz); | |
11431 | } else { | |
11432 | /* Note that we will detect errors later. */ | |
11433 | select = va >= ~(0xffffffffu >> t1sz); | |
11434 | } | |
11435 | if (!select) { | |
11436 | tsz = t0sz; | |
11437 | epd = extract32(tcr, 7, 1); | |
11438 | hpd = extract64(tcr, 41, 1); | |
11439 | } else { | |
11440 | tsz = t1sz; | |
11441 | epd = extract32(tcr, 23, 1); | |
11442 | hpd = extract64(tcr, 42, 1); | |
11443 | } | |
11444 | /* For aarch32, hpd0 is not enabled without t2e as well. */ | |
11445 | hpd &= extract32(tcr, 6, 1); | |
11446 | } | |
11447 | ||
11448 | return (ARMVAParameters) { | |
11449 | .tsz = tsz, | |
11450 | .select = select, | |
11451 | .epd = epd, | |
11452 | .hpd = hpd, | |
11453 | }; | |
11454 | } | |
11455 | ||
ff7de2fc PM |
11456 | /** |
11457 | * get_phys_addr_lpae: perform one stage of page table walk, LPAE format | |
11458 | * | |
11459 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, | |
11460 | * prot and page_size may not be filled in, and the populated fsr value provides | |
11461 | * information on why the translation aborted, in the format of a long-format | |
11462 | * DFSR/IFSR fault register, with the following caveats: | |
11463 | * * the WnR bit is never set (the caller must do this). | |
11464 | * | |
11465 | * @env: CPUARMState | |
11466 | * @address: virtual address to get physical address for | |
11467 | * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH | |
11468 | * @mmu_idx: MMU index indicating required translation regime | |
11469 | * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table | |
11470 | * walk), must be true if this is stage 2 of a stage 1+2 walk for an | |
11471 | * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. | |
11472 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
11473 | * @attrs: set to the memory transaction attributes to use | |
11474 | * @prot: set to the permissions for the page containing phys_ptr | |
11475 | * @page_size_ptr: set to the size of the page containing phys_ptr | |
11476 | * @fi: set to fault info if the translation fails | |
11477 | * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes | |
11478 | */ | |
98e87797 | 11479 | static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, |
03ae85f8 | 11480 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
ff7de2fc | 11481 | bool s1_is_el0, |
b7cc4e82 | 11482 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
da909b2c | 11483 | target_ulong *page_size_ptr, |
5b2d261d | 11484 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
3dde962f | 11485 | { |
2fc0cc0e | 11486 | ARMCPU *cpu = env_archcpu(env); |
1853d5a9 | 11487 | CPUState *cs = CPU(cpu); |
3dde962f | 11488 | /* Read an LPAE long-descriptor translation table. */ |
da909b2c | 11489 | ARMFaultType fault_type = ARMFault_Translation; |
1b4093ea | 11490 | uint32_t level; |
ba97be9f | 11491 | ARMVAParameters param; |
3dde962f | 11492 | uint64_t ttbr; |
dddb5223 | 11493 | hwaddr descaddr, indexmask, indexmask_grainsize; |
3dde962f | 11494 | uint32_t tableattrs; |
36d820af | 11495 | target_ulong page_size; |
3dde962f | 11496 | uint32_t attrs; |
ba97be9f | 11497 | int32_t stride; |
49ba115b | 11498 | int addrsize, inputsize, outputsize; |
0480f69a | 11499 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 11500 | int ap, ns, xn, pxn; |
88e8add8 | 11501 | uint32_t el = regime_el(env, mmu_idx); |
6109769a | 11502 | uint64_t descaddrmask; |
6e99f762 | 11503 | bool aarch64 = arm_el_is_aa64(env, el); |
1bafc2ba | 11504 | bool guarded = false; |
0480f69a | 11505 | |
07d1be3b | 11506 | /* TODO: This code does not support shareability levels. */ |
6e99f762 | 11507 | if (aarch64) { |
f4ecc015 RH |
11508 | int ps; |
11509 | ||
ba97be9f RH |
11510 | param = aa64_va_parameters(env, address, mmu_idx, |
11511 | access_type != MMU_INST_FETCH); | |
1b4093ea | 11512 | level = 0; |
ebf93ce7 RH |
11513 | |
11514 | /* | |
11515 | * If TxSZ is programmed to a value larger than the maximum, | |
11516 | * or smaller than the effective minimum, it is IMPLEMENTATION | |
11517 | * DEFINED whether we behave as if the field were programmed | |
11518 | * within bounds, or if a level 0 Translation fault is generated. | |
11519 | * | |
11520 | * With FEAT_LVA, fault on less than minimum becomes required, | |
11521 | * so our choice is to always raise the fault. | |
11522 | */ | |
11523 | if (param.tsz_oob) { | |
11524 | fault_type = ARMFault_Translation; | |
11525 | goto do_fault; | |
11526 | } | |
11527 | ||
ba97be9f RH |
11528 | addrsize = 64 - 8 * param.tbi; |
11529 | inputsize = 64 - param.tsz; | |
f4ecc015 RH |
11530 | |
11531 | /* | |
11532 | * Bound PS by PARANGE to find the effective output address size. | |
11533 | * ID_AA64MMFR0 is a read-only register so values outside of the | |
11534 | * supported mappings can be considered an implementation error. | |
11535 | */ | |
11536 | ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); | |
11537 | ps = MIN(ps, param.ps); | |
11538 | assert(ps < ARRAY_SIZE(pamax_map)); | |
11539 | outputsize = pamax_map[ps]; | |
d0a2cbce | 11540 | } else { |
ba97be9f | 11541 | param = aa32_va_parameters(env, address, mmu_idx); |
1b4093ea | 11542 | level = 1; |
97fa9350 | 11543 | addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); |
ba97be9f | 11544 | inputsize = addrsize - param.tsz; |
49ba115b | 11545 | outputsize = 40; |
2c8dd318 | 11546 | } |
3dde962f | 11547 | |
ba97be9f RH |
11548 | /* |
11549 | * We determined the region when collecting the parameters, but we | |
11550 | * have not yet validated that the address is valid for the region. | |
11551 | * Extract the top bits and verify that they all match select. | |
36d820af RH |
11552 | * |
11553 | * For aa32, if inputsize == addrsize, then we have selected the | |
11554 | * region by exclusion in aa32_va_parameters and there is no more | |
11555 | * validation to do here. | |
11556 | */ | |
11557 | if (inputsize < addrsize) { | |
11558 | target_ulong top_bits = sextract64(address, inputsize, | |
11559 | addrsize - inputsize); | |
03f27724 | 11560 | if (-top_bits != param.select) { |
36d820af RH |
11561 | /* The gap between the two regions is a Translation fault */ |
11562 | fault_type = ARMFault_Translation; | |
11563 | goto do_fault; | |
11564 | } | |
3dde962f PM |
11565 | } |
11566 | ||
ba97be9f RH |
11567 | if (param.using64k) { |
11568 | stride = 13; | |
11569 | } else if (param.using16k) { | |
11570 | stride = 11; | |
11571 | } else { | |
11572 | stride = 9; | |
11573 | } | |
11574 | ||
3dde962f PM |
11575 | /* Note that QEMU ignores shareability and cacheability attributes, |
11576 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
11577 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
11578 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
11579 | * implement any ASID-like capability so we can ignore it (instead | |
11580 | * we will always flush the TLB any time the ASID is changed). | |
11581 | */ | |
ba97be9f | 11582 | ttbr = regime_ttbr(env, mmu_idx, param.select); |
3dde962f | 11583 | |
0480f69a | 11584 | /* Here we should have set up all the parameters for the translation: |
6e99f762 | 11585 | * inputsize, ttbr, epd, stride, tbi |
0480f69a PM |
11586 | */ |
11587 | ||
ba97be9f | 11588 | if (param.epd) { |
88e8add8 GB |
11589 | /* Translation table walk disabled => Translation fault on TLB miss |
11590 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
11591 | */ | |
3dde962f PM |
11592 | goto do_fault; |
11593 | } | |
11594 | ||
b1a10c86 | 11595 | if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { |
1853d5a9 EI |
11596 | /* The starting level depends on the virtual address size (which can |
11597 | * be up to 48 bits) and the translation granule size. It indicates | |
11598 | * the number of strides (stride bits at a time) needed to | |
11599 | * consume the bits of the input address. In the pseudocode this is: | |
11600 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
11601 | * where their 'inputsize' is our 'inputsize', 'grainsize' is | |
11602 | * our 'stride + 3' and 'stride' is our 'stride'. | |
11603 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
11604 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride | |
11605 | * = 4 - (inputsize - 4) / stride; | |
11606 | */ | |
11607 | level = 4 - (inputsize - 4) / stride; | |
11608 | } else { | |
11609 | /* For stage 2 translations the starting level is specified by the | |
11610 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) | |
11611 | */ | |
1b4093ea | 11612 | uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
ef56c242 | 11613 | uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); |
1b4093ea | 11614 | uint32_t startlevel; |
1853d5a9 EI |
11615 | bool ok; |
11616 | ||
ef56c242 RH |
11617 | /* SL2 is RES0 unless DS=1 & 4kb granule. */ |
11618 | if (param.ds && stride == 9 && sl2) { | |
11619 | if (sl0 != 0) { | |
11620 | level = 0; | |
11621 | fault_type = ARMFault_Translation; | |
11622 | goto do_fault; | |
11623 | } | |
11624 | startlevel = -1; | |
11625 | } else if (!aarch64 || stride == 9) { | |
1853d5a9 | 11626 | /* AArch32 or 4KB pages */ |
1b4093ea | 11627 | startlevel = 2 - sl0; |
c36c65ea RDC |
11628 | |
11629 | if (cpu_isar_feature(aa64_st, cpu)) { | |
11630 | startlevel &= 3; | |
11631 | } | |
1853d5a9 EI |
11632 | } else { |
11633 | /* 16KB or 64KB pages */ | |
1b4093ea | 11634 | startlevel = 3 - sl0; |
1853d5a9 EI |
11635 | } |
11636 | ||
11637 | /* Check that the starting level is valid. */ | |
6e99f762 | 11638 | ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
49ba115b | 11639 | inputsize, stride, outputsize); |
1853d5a9 | 11640 | if (!ok) { |
da909b2c | 11641 | fault_type = ARMFault_Translation; |
1853d5a9 EI |
11642 | goto do_fault; |
11643 | } | |
1b4093ea | 11644 | level = startlevel; |
1853d5a9 | 11645 | } |
3dde962f | 11646 | |
d06449f2 RH |
11647 | indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); |
11648 | indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); | |
3dde962f PM |
11649 | |
11650 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 | 11651 | descaddr = extract64(ttbr, 0, 48); |
f4ecc015 RH |
11652 | |
11653 | /* | |
7a928f43 RH |
11654 | * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. |
11655 | * | |
11656 | * Otherwise, if the base address is out of range, raise AddressSizeFault. | |
f4ecc015 RH |
11657 | * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), |
11658 | * but we've just cleared the bits above 47, so simplify the test. | |
11659 | */ | |
7a928f43 RH |
11660 | if (outputsize > 48) { |
11661 | descaddr |= extract64(ttbr, 2, 4) << 48; | |
11662 | } else if (descaddr >> outputsize) { | |
f4ecc015 RH |
11663 | level = 0; |
11664 | fault_type = ARMFault_AddressSize; | |
11665 | goto do_fault; | |
11666 | } | |
11667 | ||
41a4bf1f PM |
11668 | /* |
11669 | * We rely on this masking to clear the RES0 bits at the bottom of the TTBR | |
11670 | * and also to mask out CnP (bit 0) which could validly be non-zero. | |
11671 | */ | |
dddb5223 | 11672 | descaddr &= ~indexmask; |
3dde962f | 11673 | |
f4ecc015 RH |
11674 | /* |
11675 | * For AArch32, the address field in the descriptor goes up to bit 39 | |
11676 | * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 | |
11677 | * or an AddressSize fault is raised. So for v8 we extract those SBZ | |
11678 | * bits as part of the address, which will be checked via outputsize. | |
ef56c242 RH |
11679 | * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; |
11680 | * the highest bits of a 52-bit output are placed elsewhere. | |
6109769a | 11681 | */ |
ef56c242 RH |
11682 | if (param.ds) { |
11683 | descaddrmask = MAKE_64BIT_MASK(0, 50); | |
11684 | } else if (arm_feature(env, ARM_FEATURE_V8)) { | |
f4ecc015 RH |
11685 | descaddrmask = MAKE_64BIT_MASK(0, 48); |
11686 | } else { | |
11687 | descaddrmask = MAKE_64BIT_MASK(0, 40); | |
11688 | } | |
11689 | descaddrmask &= ~indexmask_grainsize; | |
6109769a | 11690 | |
ebca90e4 PM |
11691 | /* Secure accesses start with the page table in secure memory and |
11692 | * can be downgraded to non-secure at any step. Non-secure accesses | |
11693 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
11694 | * bits at each step. | |
11695 | */ | |
11696 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
11697 | for (;;) { |
11698 | uint64_t descriptor; | |
ebca90e4 | 11699 | bool nstable; |
3dde962f | 11700 | |
dddb5223 | 11701 | descaddr |= (address >> (stride * (4 - level))) & indexmask; |
2c8dd318 | 11702 | descaddr &= ~7ULL; |
ebca90e4 | 11703 | nstable = extract32(tableattrs, 4, 1); |
3795a6de | 11704 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); |
3b39d734 | 11705 | if (fi->type != ARMFault_None) { |
37785977 EI |
11706 | goto do_fault; |
11707 | } | |
11708 | ||
3dde962f PM |
11709 | if (!(descriptor & 1) || |
11710 | (!(descriptor & 2) && (level == 3))) { | |
11711 | /* Invalid, or the Reserved level 3 encoding */ | |
11712 | goto do_fault; | |
11713 | } | |
f4ecc015 | 11714 | |
6109769a | 11715 | descaddr = descriptor & descaddrmask; |
7a928f43 RH |
11716 | |
11717 | /* | |
11718 | * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] | |
ef56c242 RH |
11719 | * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of |
11720 | * descaddr are in [9:8]. Otherwise, if descaddr is out of range, | |
11721 | * raise AddressSizeFault. | |
7a928f43 RH |
11722 | */ |
11723 | if (outputsize > 48) { | |
ef56c242 RH |
11724 | if (param.ds) { |
11725 | descaddr |= extract64(descriptor, 8, 2) << 50; | |
11726 | } else { | |
11727 | descaddr |= extract64(descriptor, 12, 4) << 48; | |
11728 | } | |
7a928f43 | 11729 | } else if (descaddr >> outputsize) { |
f4ecc015 RH |
11730 | fault_type = ARMFault_AddressSize; |
11731 | goto do_fault; | |
11732 | } | |
3dde962f PM |
11733 | |
11734 | if ((descriptor & 2) && (level < 3)) { | |
037c13c5 | 11735 | /* Table entry. The top five bits are attributes which may |
3dde962f PM |
11736 | * propagate down through lower levels of the table (and |
11737 | * which are all arranged so that 0 means "no effect", so | |
11738 | * we can gather them up by ORing in the bits at each level). | |
11739 | */ | |
11740 | tableattrs |= extract64(descriptor, 59, 5); | |
11741 | level++; | |
dddb5223 | 11742 | indexmask = indexmask_grainsize; |
3dde962f PM |
11743 | continue; |
11744 | } | |
39a1fd25 PM |
11745 | /* |
11746 | * Block entry at level 1 or 2, or page entry at level 3. | |
3dde962f | 11747 | * These are basically the same thing, although the number |
39a1fd25 PM |
11748 | * of bits we pull in from the vaddr varies. Note that although |
11749 | * descaddrmask masks enough of the low bits of the descriptor | |
11750 | * to give a correct page or table address, the address field | |
11751 | * in a block descriptor is smaller; so we need to explicitly | |
11752 | * clear the lower bits here before ORing in the low vaddr bits. | |
3dde962f | 11753 | */ |
973a5434 | 11754 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
39a1fd25 | 11755 | descaddr &= ~(page_size - 1); |
3dde962f | 11756 | descaddr |= (address & (page_size - 1)); |
6ab1a5ee | 11757 | /* Extract attributes from the descriptor */ |
d615efac IC |
11758 | attrs = extract64(descriptor, 2, 10) |
11759 | | (extract64(descriptor, 52, 12) << 10); | |
6ab1a5ee | 11760 | |
b1a10c86 | 11761 | if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { |
6ab1a5ee EI |
11762 | /* Stage 2 table descriptors do not include any attribute fields */ |
11763 | break; | |
11764 | } | |
11765 | /* Merge in attributes from table descriptors */ | |
037c13c5 | 11766 | attrs |= nstable << 3; /* NS */ |
1bafc2ba | 11767 | guarded = extract64(descriptor, 50, 1); /* GP */ |
ba97be9f | 11768 | if (param.hpd) { |
037c13c5 RH |
11769 | /* HPD disables all the table attributes except NSTable. */ |
11770 | break; | |
11771 | } | |
11772 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
3dde962f PM |
11773 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
11774 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
11775 | */ | |
037c13c5 RH |
11776 | attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ |
11777 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ | |
3dde962f PM |
11778 | break; |
11779 | } | |
11780 | /* Here descaddr is the final physical address, and attributes | |
11781 | * are all in attrs. | |
11782 | */ | |
da909b2c | 11783 | fault_type = ARMFault_AccessFlag; |
3dde962f PM |
11784 | if ((attrs & (1 << 8)) == 0) { |
11785 | /* Access flag */ | |
11786 | goto do_fault; | |
11787 | } | |
d8e052b3 AJ |
11788 | |
11789 | ap = extract32(attrs, 4, 2); | |
d8e052b3 | 11790 | |
b1a10c86 RDC |
11791 | if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { |
11792 | ns = mmu_idx == ARMMMUIdx_Stage2; | |
ce3125be PM |
11793 | xn = extract32(attrs, 11, 2); |
11794 | *prot = get_S2prot(env, ap, xn, s1_is_el0); | |
6ab1a5ee EI |
11795 | } else { |
11796 | ns = extract32(attrs, 3, 1); | |
ce3125be | 11797 | xn = extract32(attrs, 12, 1); |
6ab1a5ee | 11798 | pxn = extract32(attrs, 11, 1); |
6e99f762 | 11799 | *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
6ab1a5ee | 11800 | } |
d8e052b3 | 11801 | |
da909b2c | 11802 | fault_type = ARMFault_Permission; |
d8e052b3 | 11803 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
11804 | goto do_fault; |
11805 | } | |
3dde962f | 11806 | |
8bf5b6a9 PM |
11807 | if (ns) { |
11808 | /* The NS bit will (as required by the architecture) have no effect if | |
11809 | * the CPU doesn't support TZ or this is a non-secure translation | |
11810 | * regime, because the attribute will already be non-secure. | |
11811 | */ | |
11812 | txattrs->secure = false; | |
11813 | } | |
1bafc2ba RH |
11814 | /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ |
11815 | if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { | |
149d3b31 | 11816 | arm_tlb_bti_gp(txattrs) = true; |
1bafc2ba | 11817 | } |
5b2d261d | 11818 | |
b1a10c86 | 11819 | if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { |
7e98e21c RH |
11820 | cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); |
11821 | } else { | |
11822 | /* Index into MAIR registers for cache attributes */ | |
11823 | uint8_t attrindx = extract32(attrs, 0, 3); | |
11824 | uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; | |
11825 | assert(attrindx <= 7); | |
11826 | cacheattrs->attrs = extract64(mair, attrindx * 8, 8); | |
5b2d261d | 11827 | } |
ef56c242 RH |
11828 | |
11829 | /* | |
11830 | * For FEAT_LPA2 and effective DS, the SH field in the attributes | |
11831 | * was re-purposed for output address bits. The SH attribute in | |
11832 | * that case comes from TCR_ELx, which we extracted earlier. | |
11833 | */ | |
11834 | if (param.ds) { | |
11835 | cacheattrs->shareability = param.sh; | |
11836 | } else { | |
11837 | cacheattrs->shareability = extract32(attrs, 6, 2); | |
11838 | } | |
5b2d261d | 11839 | |
3dde962f PM |
11840 | *phys_ptr = descaddr; |
11841 | *page_size_ptr = page_size; | |
b7cc4e82 | 11842 | return false; |
3dde962f PM |
11843 | |
11844 | do_fault: | |
da909b2c PM |
11845 | fi->type = fault_type; |
11846 | fi->level = level; | |
37785977 | 11847 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
b1a10c86 RDC |
11848 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || |
11849 | mmu_idx == ARMMMUIdx_Stage2_S); | |
9861248f | 11850 | fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; |
b7cc4e82 | 11851 | return true; |
3dde962f PM |
11852 | } |
11853 | ||
f6bda88f PC |
11854 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
11855 | ARMMMUIdx mmu_idx, | |
11856 | int32_t address, int *prot) | |
11857 | { | |
3a00d560 MD |
11858 | if (!arm_feature(env, ARM_FEATURE_M)) { |
11859 | *prot = PAGE_READ | PAGE_WRITE; | |
11860 | switch (address) { | |
11861 | case 0xF0000000 ... 0xFFFFFFFF: | |
11862 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { | |
11863 | /* hivecs execing is ok */ | |
11864 | *prot |= PAGE_EXEC; | |
11865 | } | |
11866 | break; | |
11867 | case 0x00000000 ... 0x7FFFFFFF: | |
f6bda88f | 11868 | *prot |= PAGE_EXEC; |
3a00d560 MD |
11869 | break; |
11870 | } | |
11871 | } else { | |
11872 | /* Default system address map for M profile cores. | |
11873 | * The architecture specifies which regions are execute-never; | |
11874 | * at the MPU level no other checks are defined. | |
11875 | */ | |
11876 | switch (address) { | |
11877 | case 0x00000000 ... 0x1fffffff: /* ROM */ | |
11878 | case 0x20000000 ... 0x3fffffff: /* SRAM */ | |
11879 | case 0x60000000 ... 0x7fffffff: /* RAM */ | |
11880 | case 0x80000000 ... 0x9fffffff: /* RAM */ | |
11881 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
11882 | break; | |
11883 | case 0x40000000 ... 0x5fffffff: /* Peripheral */ | |
11884 | case 0xa0000000 ... 0xbfffffff: /* Device */ | |
11885 | case 0xc0000000 ... 0xdfffffff: /* Device */ | |
11886 | case 0xe0000000 ... 0xffffffff: /* System */ | |
11887 | *prot = PAGE_READ | PAGE_WRITE; | |
11888 | break; | |
11889 | default: | |
11890 | g_assert_not_reached(); | |
f6bda88f | 11891 | } |
f6bda88f | 11892 | } |
f6bda88f PC |
11893 | } |
11894 | ||
29c483a5 MD |
11895 | static bool pmsav7_use_background_region(ARMCPU *cpu, |
11896 | ARMMMUIdx mmu_idx, bool is_user) | |
11897 | { | |
11898 | /* Return true if we should use the default memory map as a | |
11899 | * "background" region if there are no hits against any MPU regions. | |
11900 | */ | |
11901 | CPUARMState *env = &cpu->env; | |
11902 | ||
11903 | if (is_user) { | |
11904 | return false; | |
11905 | } | |
11906 | ||
11907 | if (arm_feature(env, ARM_FEATURE_M)) { | |
ecf5e8ea PM |
11908 | return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] |
11909 | & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; | |
29c483a5 MD |
11910 | } else { |
11911 | return regime_sctlr(env, mmu_idx) & SCTLR_BR; | |
11912 | } | |
11913 | } | |
11914 | ||
38aaa60c PM |
11915 | static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
11916 | { | |
11917 | /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ | |
11918 | return arm_feature(env, ARM_FEATURE_M) && | |
11919 | extract32(address, 20, 12) == 0xe00; | |
11920 | } | |
11921 | ||
bf446a11 PM |
11922 | static inline bool m_is_system_region(CPUARMState *env, uint32_t address) |
11923 | { | |
11924 | /* True if address is in the M profile system region | |
11925 | * 0xe0000000 - 0xffffffff | |
11926 | */ | |
11927 | return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; | |
11928 | } | |
11929 | ||
f6bda88f | 11930 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
03ae85f8 | 11931 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
9375ad15 | 11932 | hwaddr *phys_ptr, int *prot, |
e5e40999 | 11933 | target_ulong *page_size, |
9375ad15 | 11934 | ARMMMUFaultInfo *fi) |
f6bda88f | 11935 | { |
2fc0cc0e | 11936 | ARMCPU *cpu = env_archcpu(env); |
f6bda88f PC |
11937 | int n; |
11938 | bool is_user = regime_is_user(env, mmu_idx); | |
11939 | ||
11940 | *phys_ptr = address; | |
e5e40999 | 11941 | *page_size = TARGET_PAGE_SIZE; |
f6bda88f PC |
11942 | *prot = 0; |
11943 | ||
38aaa60c PM |
11944 | if (regime_translation_disabled(env, mmu_idx) || |
11945 | m_is_ppb_region(env, address)) { | |
11946 | /* MPU disabled or M profile PPB access: use default memory map. | |
11947 | * The other case which uses the default memory map in the | |
11948 | * v7M ARM ARM pseudocode is exception vector reads from the vector | |
11949 | * table. In QEMU those accesses are done in arm_v7m_load_vector(), | |
11950 | * which always does a direct read using address_space_ldl(), rather | |
11951 | * than going via this function, so we don't need to check that here. | |
11952 | */ | |
f6bda88f PC |
11953 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
11954 | } else { /* MPU enabled */ | |
11955 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
11956 | /* region search */ | |
11957 | uint32_t base = env->pmsav7.drbar[n]; | |
11958 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
11959 | uint32_t rmask; | |
11960 | bool srdis = false; | |
11961 | ||
11962 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
11963 | continue; | |
11964 | } | |
11965 | ||
11966 | if (!rsize) { | |
c9f9f124 MD |
11967 | qemu_log_mask(LOG_GUEST_ERROR, |
11968 | "DRSR[%d]: Rsize field cannot be 0\n", n); | |
f6bda88f PC |
11969 | continue; |
11970 | } | |
11971 | rsize++; | |
11972 | rmask = (1ull << rsize) - 1; | |
11973 | ||
11974 | if (base & rmask) { | |
c9f9f124 MD |
11975 | qemu_log_mask(LOG_GUEST_ERROR, |
11976 | "DRBAR[%d]: 0x%" PRIx32 " misaligned " | |
11977 | "to DRSR region size, mask = 0x%" PRIx32 "\n", | |
11978 | n, base, rmask); | |
f6bda88f PC |
11979 | continue; |
11980 | } | |
11981 | ||
11982 | if (address < base || address > base + rmask) { | |
9d2b5a58 PM |
11983 | /* |
11984 | * Address not in this region. We must check whether the | |
11985 | * region covers addresses in the same page as our address. | |
11986 | * In that case we must not report a size that covers the | |
11987 | * whole page for a subsequent hit against a different MPU | |
11988 | * region or the background region, because it would result in | |
11989 | * incorrect TLB hits for subsequent accesses to addresses that | |
11990 | * are in this MPU region. | |
11991 | */ | |
11992 | if (ranges_overlap(base, rmask, | |
11993 | address & TARGET_PAGE_MASK, | |
11994 | TARGET_PAGE_SIZE)) { | |
11995 | *page_size = 1; | |
11996 | } | |
f6bda88f PC |
11997 | continue; |
11998 | } | |
11999 | ||
12000 | /* Region matched */ | |
12001 | ||
12002 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
12003 | int i, snd; | |
12004 | uint32_t srdis_mask; | |
12005 | ||
12006 | rsize -= 3; /* sub region size (power of 2) */ | |
12007 | snd = ((address - base) >> rsize) & 0x7; | |
12008 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
12009 | ||
12010 | srdis_mask = srdis ? 0x3 : 0x0; | |
12011 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
12012 | /* This will check in groups of 2, 4 and then 8, whether | |
12013 | * the subregion bits are consistent. rsize is incremented | |
12014 | * back up to give the region size, considering consistent | |
12015 | * adjacent subregions as one region. Stop testing if rsize | |
12016 | * is already big enough for an entire QEMU page. | |
12017 | */ | |
12018 | int snd_rounded = snd & ~(i - 1); | |
12019 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
12020 | snd_rounded + 8, i); | |
12021 | if (srdis_mask ^ srdis_multi) { | |
12022 | break; | |
12023 | } | |
12024 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
12025 | rsize++; | |
12026 | } | |
12027 | } | |
f6bda88f PC |
12028 | if (srdis) { |
12029 | continue; | |
12030 | } | |
e5e40999 PM |
12031 | if (rsize < TARGET_PAGE_BITS) { |
12032 | *page_size = 1 << rsize; | |
12033 | } | |
f6bda88f PC |
12034 | break; |
12035 | } | |
12036 | ||
12037 | if (n == -1) { /* no hits */ | |
29c483a5 | 12038 | if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
f6bda88f | 12039 | /* background fault */ |
9375ad15 | 12040 | fi->type = ARMFault_Background; |
f6bda88f PC |
12041 | return true; |
12042 | } | |
12043 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
12044 | } else { /* a MPU hit! */ | |
12045 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
bf446a11 PM |
12046 | uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
12047 | ||
12048 | if (m_is_system_region(env, address)) { | |
12049 | /* System space is always execute never */ | |
12050 | xn = 1; | |
12051 | } | |
f6bda88f PC |
12052 | |
12053 | if (is_user) { /* User mode AP bit decoding */ | |
12054 | switch (ap) { | |
12055 | case 0: | |
12056 | case 1: | |
12057 | case 5: | |
12058 | break; /* no access */ | |
12059 | case 3: | |
12060 | *prot |= PAGE_WRITE; | |
12061 | /* fall through */ | |
12062 | case 2: | |
12063 | case 6: | |
12064 | *prot |= PAGE_READ | PAGE_EXEC; | |
12065 | break; | |
8638f1ad PM |
12066 | case 7: |
12067 | /* for v7M, same as 6; for R profile a reserved value */ | |
12068 | if (arm_feature(env, ARM_FEATURE_M)) { | |
12069 | *prot |= PAGE_READ | PAGE_EXEC; | |
12070 | break; | |
12071 | } | |
12072 | /* fall through */ | |
f6bda88f PC |
12073 | default: |
12074 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
12075 | "DRACR[%d]: Bad value for AP bits: 0x%" |
12076 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
12077 | } |
12078 | } else { /* Priv. mode AP bits decoding */ | |
12079 | switch (ap) { | |
12080 | case 0: | |
12081 | break; /* no access */ | |
12082 | case 1: | |
12083 | case 2: | |
12084 | case 3: | |
12085 | *prot |= PAGE_WRITE; | |
12086 | /* fall through */ | |
12087 | case 5: | |
12088 | case 6: | |
12089 | *prot |= PAGE_READ | PAGE_EXEC; | |
12090 | break; | |
8638f1ad PM |
12091 | case 7: |
12092 | /* for v7M, same as 6; for R profile a reserved value */ | |
12093 | if (arm_feature(env, ARM_FEATURE_M)) { | |
12094 | *prot |= PAGE_READ | PAGE_EXEC; | |
12095 | break; | |
12096 | } | |
12097 | /* fall through */ | |
f6bda88f PC |
12098 | default: |
12099 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
12100 | "DRACR[%d]: Bad value for AP bits: 0x%" |
12101 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
12102 | } |
12103 | } | |
12104 | ||
12105 | /* execute never */ | |
bf446a11 | 12106 | if (xn) { |
f6bda88f PC |
12107 | *prot &= ~PAGE_EXEC; |
12108 | } | |
12109 | } | |
12110 | } | |
12111 | ||
9375ad15 PM |
12112 | fi->type = ARMFault_Permission; |
12113 | fi->level = 1; | |
f6bda88f PC |
12114 | return !(*prot & (1 << access_type)); |
12115 | } | |
12116 | ||
35337cc3 PM |
12117 | static bool v8m_is_sau_exempt(CPUARMState *env, |
12118 | uint32_t address, MMUAccessType access_type) | |
12119 | { | |
12120 | /* The architecture specifies that certain address ranges are | |
12121 | * exempt from v8M SAU/IDAU checks. | |
12122 | */ | |
12123 | return | |
12124 | (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || | |
12125 | (address >= 0xe0000000 && address <= 0xe0002fff) || | |
12126 | (address >= 0xe000e000 && address <= 0xe000efff) || | |
12127 | (address >= 0xe002e000 && address <= 0xe002efff) || | |
12128 | (address >= 0xe0040000 && address <= 0xe0041fff) || | |
12129 | (address >= 0xe00ff000 && address <= 0xe00fffff); | |
12130 | } | |
12131 | ||
787a7e76 | 12132 | void v8m_security_lookup(CPUARMState *env, uint32_t address, |
35337cc3 PM |
12133 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
12134 | V8M_SAttributes *sattrs) | |
12135 | { | |
12136 | /* Look up the security attributes for this address. Compare the | |
12137 | * pseudocode SecurityCheck() function. | |
12138 | * We assume the caller has zero-initialized *sattrs. | |
12139 | */ | |
2fc0cc0e | 12140 | ARMCPU *cpu = env_archcpu(env); |
35337cc3 | 12141 | int r; |
181962fd PM |
12142 | bool idau_exempt = false, idau_ns = true, idau_nsc = true; |
12143 | int idau_region = IREGION_NOTVALID; | |
72042435 PM |
12144 | uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
12145 | uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); | |
35337cc3 | 12146 | |
181962fd PM |
12147 | if (cpu->idau) { |
12148 | IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); | |
12149 | IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); | |
12150 | ||
12151 | iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, | |
12152 | &idau_nsc); | |
12153 | } | |
35337cc3 PM |
12154 | |
12155 | if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { | |
12156 | /* 0xf0000000..0xffffffff is always S for insn fetches */ | |
12157 | return; | |
12158 | } | |
12159 | ||
181962fd | 12160 | if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { |
35337cc3 PM |
12161 | sattrs->ns = !regime_is_secure(env, mmu_idx); |
12162 | return; | |
12163 | } | |
12164 | ||
181962fd PM |
12165 | if (idau_region != IREGION_NOTVALID) { |
12166 | sattrs->irvalid = true; | |
12167 | sattrs->iregion = idau_region; | |
12168 | } | |
12169 | ||
35337cc3 PM |
12170 | switch (env->sau.ctrl & 3) { |
12171 | case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ | |
12172 | break; | |
12173 | case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ | |
12174 | sattrs->ns = true; | |
12175 | break; | |
12176 | default: /* SAU.ENABLE == 1 */ | |
12177 | for (r = 0; r < cpu->sau_sregion; r++) { | |
12178 | if (env->sau.rlar[r] & 1) { | |
12179 | uint32_t base = env->sau.rbar[r] & ~0x1f; | |
12180 | uint32_t limit = env->sau.rlar[r] | 0x1f; | |
12181 | ||
12182 | if (base <= address && limit >= address) { | |
72042435 PM |
12183 | if (base > addr_page_base || limit < addr_page_limit) { |
12184 | sattrs->subpage = true; | |
12185 | } | |
35337cc3 PM |
12186 | if (sattrs->srvalid) { |
12187 | /* If we hit in more than one region then we must report | |
12188 | * as Secure, not NS-Callable, with no valid region | |
12189 | * number info. | |
12190 | */ | |
12191 | sattrs->ns = false; | |
12192 | sattrs->nsc = false; | |
12193 | sattrs->sregion = 0; | |
12194 | sattrs->srvalid = false; | |
12195 | break; | |
12196 | } else { | |
12197 | if (env->sau.rlar[r] & 2) { | |
12198 | sattrs->nsc = true; | |
12199 | } else { | |
12200 | sattrs->ns = true; | |
12201 | } | |
12202 | sattrs->srvalid = true; | |
12203 | sattrs->sregion = r; | |
12204 | } | |
9d2b5a58 PM |
12205 | } else { |
12206 | /* | |
12207 | * Address not in this region. We must check whether the | |
12208 | * region covers addresses in the same page as our address. | |
12209 | * In that case we must not report a size that covers the | |
12210 | * whole page for a subsequent hit against a different MPU | |
12211 | * region or the background region, because it would result | |
12212 | * in incorrect TLB hits for subsequent accesses to | |
12213 | * addresses that are in this MPU region. | |
12214 | */ | |
12215 | if (limit >= base && | |
12216 | ranges_overlap(base, limit - base + 1, | |
12217 | addr_page_base, | |
12218 | TARGET_PAGE_SIZE)) { | |
12219 | sattrs->subpage = true; | |
12220 | } | |
35337cc3 PM |
12221 | } |
12222 | } | |
12223 | } | |
7e3f1223 TR |
12224 | break; |
12225 | } | |
35337cc3 | 12226 | |
7e3f1223 TR |
12227 | /* |
12228 | * The IDAU will override the SAU lookup results if it specifies | |
12229 | * higher security than the SAU does. | |
12230 | */ | |
12231 | if (!idau_ns) { | |
12232 | if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { | |
12233 | sattrs->ns = false; | |
12234 | sattrs->nsc = idau_nsc; | |
181962fd | 12235 | } |
35337cc3 PM |
12236 | } |
12237 | } | |
12238 | ||
787a7e76 | 12239 | bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, |
54317c0f PM |
12240 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
12241 | hwaddr *phys_ptr, MemTxAttrs *txattrs, | |
72042435 PM |
12242 | int *prot, bool *is_subpage, |
12243 | ARMMMUFaultInfo *fi, uint32_t *mregion) | |
54317c0f PM |
12244 | { |
12245 | /* Perform a PMSAv8 MPU lookup (without also doing the SAU check | |
12246 | * that a full phys-to-virt translation does). | |
12247 | * mregion is (if not NULL) set to the region number which matched, | |
12248 | * or -1 if no region number is returned (MPU off, address did not | |
12249 | * hit a region, address hit in multiple regions). | |
72042435 PM |
12250 | * We set is_subpage to true if the region hit doesn't cover the |
12251 | * entire TARGET_PAGE the address is within. | |
54317c0f | 12252 | */ |
2fc0cc0e | 12253 | ARMCPU *cpu = env_archcpu(env); |
504e3cc3 | 12254 | bool is_user = regime_is_user(env, mmu_idx); |
62c58ee0 | 12255 | uint32_t secure = regime_is_secure(env, mmu_idx); |
504e3cc3 PM |
12256 | int n; |
12257 | int matchregion = -1; | |
12258 | bool hit = false; | |
72042435 PM |
12259 | uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
12260 | uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); | |
504e3cc3 | 12261 | |
72042435 | 12262 | *is_subpage = false; |
504e3cc3 PM |
12263 | *phys_ptr = address; |
12264 | *prot = 0; | |
54317c0f PM |
12265 | if (mregion) { |
12266 | *mregion = -1; | |
35337cc3 PM |
12267 | } |
12268 | ||
504e3cc3 PM |
12269 | /* Unlike the ARM ARM pseudocode, we don't need to check whether this |
12270 | * was an exception vector read from the vector table (which is always | |
12271 | * done using the default system address map), because those accesses | |
12272 | * are done in arm_v7m_load_vector(), which always does a direct | |
12273 | * read using address_space_ldl(), rather than going via this function. | |
12274 | */ | |
12275 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
12276 | hit = true; | |
12277 | } else if (m_is_ppb_region(env, address)) { | |
12278 | hit = true; | |
504e3cc3 | 12279 | } else { |
cff21316 PM |
12280 | if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
12281 | hit = true; | |
12282 | } | |
12283 | ||
504e3cc3 PM |
12284 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
12285 | /* region search */ | |
12286 | /* Note that the base address is bits [31:5] from the register | |
12287 | * with bits [4:0] all zeroes, but the limit address is bits | |
12288 | * [31:5] from the register with bits [4:0] all ones. | |
12289 | */ | |
62c58ee0 PM |
12290 | uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; |
12291 | uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; | |
504e3cc3 | 12292 | |
62c58ee0 | 12293 | if (!(env->pmsav8.rlar[secure][n] & 0x1)) { |
504e3cc3 PM |
12294 | /* Region disabled */ |
12295 | continue; | |
12296 | } | |
12297 | ||
12298 | if (address < base || address > limit) { | |
9d2b5a58 PM |
12299 | /* |
12300 | * Address not in this region. We must check whether the | |
12301 | * region covers addresses in the same page as our address. | |
12302 | * In that case we must not report a size that covers the | |
12303 | * whole page for a subsequent hit against a different MPU | |
12304 | * region or the background region, because it would result in | |
12305 | * incorrect TLB hits for subsequent accesses to addresses that | |
12306 | * are in this MPU region. | |
12307 | */ | |
12308 | if (limit >= base && | |
12309 | ranges_overlap(base, limit - base + 1, | |
12310 | addr_page_base, | |
12311 | TARGET_PAGE_SIZE)) { | |
12312 | *is_subpage = true; | |
12313 | } | |
504e3cc3 PM |
12314 | continue; |
12315 | } | |
12316 | ||
72042435 PM |
12317 | if (base > addr_page_base || limit < addr_page_limit) { |
12318 | *is_subpage = true; | |
12319 | } | |
12320 | ||
cff21316 | 12321 | if (matchregion != -1) { |
504e3cc3 PM |
12322 | /* Multiple regions match -- always a failure (unlike |
12323 | * PMSAv7 where highest-numbered-region wins) | |
12324 | */ | |
3f551b5b PM |
12325 | fi->type = ARMFault_Permission; |
12326 | fi->level = 1; | |
504e3cc3 PM |
12327 | return true; |
12328 | } | |
12329 | ||
12330 | matchregion = n; | |
12331 | hit = true; | |
504e3cc3 PM |
12332 | } |
12333 | } | |
12334 | ||
12335 | if (!hit) { | |
12336 | /* background fault */ | |
3f551b5b | 12337 | fi->type = ARMFault_Background; |
504e3cc3 PM |
12338 | return true; |
12339 | } | |
12340 | ||
12341 | if (matchregion == -1) { | |
12342 | /* hit using the background region */ | |
12343 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
12344 | } else { | |
62c58ee0 PM |
12345 | uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); |
12346 | uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); | |
cad8e2e3 PM |
12347 | bool pxn = false; |
12348 | ||
12349 | if (arm_feature(env, ARM_FEATURE_V8_1M)) { | |
12350 | pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); | |
12351 | } | |
504e3cc3 PM |
12352 | |
12353 | if (m_is_system_region(env, address)) { | |
12354 | /* System space is always execute never */ | |
12355 | xn = 1; | |
12356 | } | |
12357 | ||
12358 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); | |
cad8e2e3 | 12359 | if (*prot && !xn && !(pxn && !is_user)) { |
504e3cc3 PM |
12360 | *prot |= PAGE_EXEC; |
12361 | } | |
12362 | /* We don't need to look the attribute up in the MAIR0/MAIR1 | |
12363 | * registers because that only tells us about cacheability. | |
12364 | */ | |
54317c0f PM |
12365 | if (mregion) { |
12366 | *mregion = matchregion; | |
12367 | } | |
504e3cc3 PM |
12368 | } |
12369 | ||
3f551b5b PM |
12370 | fi->type = ARMFault_Permission; |
12371 | fi->level = 1; | |
504e3cc3 PM |
12372 | return !(*prot & (1 << access_type)); |
12373 | } | |
12374 | ||
54317c0f PM |
12375 | |
12376 | static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, | |
12377 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
12378 | hwaddr *phys_ptr, MemTxAttrs *txattrs, | |
72042435 PM |
12379 | int *prot, target_ulong *page_size, |
12380 | ARMMMUFaultInfo *fi) | |
54317c0f PM |
12381 | { |
12382 | uint32_t secure = regime_is_secure(env, mmu_idx); | |
12383 | V8M_SAttributes sattrs = {}; | |
72042435 PM |
12384 | bool ret; |
12385 | bool mpu_is_subpage; | |
54317c0f PM |
12386 | |
12387 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
12388 | v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); | |
12389 | if (access_type == MMU_INST_FETCH) { | |
12390 | /* Instruction fetches always use the MMU bank and the | |
12391 | * transaction attribute determined by the fetch address, | |
12392 | * regardless of CPU state. This is painful for QEMU | |
12393 | * to handle, because it would mean we need to encode | |
12394 | * into the mmu_idx not just the (user, negpri) information | |
12395 | * for the current security state but also that for the | |
12396 | * other security state, which would balloon the number | |
12397 | * of mmu_idx values needed alarmingly. | |
12398 | * Fortunately we can avoid this because it's not actually | |
12399 | * possible to arbitrarily execute code from memory with | |
12400 | * the wrong security attribute: it will always generate | |
12401 | * an exception of some kind or another, apart from the | |
12402 | * special case of an NS CPU executing an SG instruction | |
12403 | * in S&NSC memory. So we always just fail the translation | |
12404 | * here and sort things out in the exception handler | |
12405 | * (including possibly emulating an SG instruction). | |
12406 | */ | |
12407 | if (sattrs.ns != !secure) { | |
3f551b5b PM |
12408 | if (sattrs.nsc) { |
12409 | fi->type = ARMFault_QEMU_NSCExec; | |
12410 | } else { | |
12411 | fi->type = ARMFault_QEMU_SFault; | |
12412 | } | |
72042435 | 12413 | *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
54317c0f PM |
12414 | *phys_ptr = address; |
12415 | *prot = 0; | |
12416 | return true; | |
12417 | } | |
12418 | } else { | |
12419 | /* For data accesses we always use the MMU bank indicated | |
12420 | * by the current CPU state, but the security attributes | |
12421 | * might downgrade a secure access to nonsecure. | |
12422 | */ | |
12423 | if (sattrs.ns) { | |
12424 | txattrs->secure = false; | |
12425 | } else if (!secure) { | |
12426 | /* NS access to S memory must fault. | |
12427 | * Architecturally we should first check whether the | |
12428 | * MPU information for this address indicates that we | |
12429 | * are doing an unaligned access to Device memory, which | |
12430 | * should generate a UsageFault instead. QEMU does not | |
12431 | * currently check for that kind of unaligned access though. | |
12432 | * If we added it we would need to do so as a special case | |
12433 | * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). | |
12434 | */ | |
3f551b5b | 12435 | fi->type = ARMFault_QEMU_SFault; |
72042435 | 12436 | *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
54317c0f PM |
12437 | *phys_ptr = address; |
12438 | *prot = 0; | |
12439 | return true; | |
12440 | } | |
12441 | } | |
12442 | } | |
12443 | ||
72042435 PM |
12444 | ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, |
12445 | txattrs, prot, &mpu_is_subpage, fi, NULL); | |
72042435 PM |
12446 | *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; |
12447 | return ret; | |
54317c0f PM |
12448 | } |
12449 | ||
13689d43 | 12450 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
03ae85f8 | 12451 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
53a4e5c5 PM |
12452 | hwaddr *phys_ptr, int *prot, |
12453 | ARMMMUFaultInfo *fi) | |
9ee6e8bb PB |
12454 | { |
12455 | int n; | |
12456 | uint32_t mask; | |
12457 | uint32_t base; | |
0480f69a | 12458 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb | 12459 | |
3279adb9 PM |
12460 | if (regime_translation_disabled(env, mmu_idx)) { |
12461 | /* MPU disabled. */ | |
12462 | *phys_ptr = address; | |
12463 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
12464 | return false; | |
12465 | } | |
12466 | ||
9ee6e8bb PB |
12467 | *phys_ptr = address; |
12468 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 12469 | base = env->cp15.c6_region[n]; |
87c3d486 | 12470 | if ((base & 1) == 0) { |
554b0b09 | 12471 | continue; |
87c3d486 | 12472 | } |
554b0b09 PM |
12473 | mask = 1 << ((base >> 1) & 0x1f); |
12474 | /* Keep this shift separate from the above to avoid an | |
12475 | (undefined) << 32. */ | |
12476 | mask = (mask << 1) - 1; | |
87c3d486 | 12477 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 12478 | break; |
87c3d486 | 12479 | } |
9ee6e8bb | 12480 | } |
87c3d486 | 12481 | if (n < 0) { |
53a4e5c5 | 12482 | fi->type = ARMFault_Background; |
b7cc4e82 | 12483 | return true; |
87c3d486 | 12484 | } |
9ee6e8bb | 12485 | |
03ae85f8 | 12486 | if (access_type == MMU_INST_FETCH) { |
7e09797c | 12487 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 12488 | } else { |
7e09797c | 12489 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
12490 | } |
12491 | mask = (mask >> (n * 4)) & 0xf; | |
12492 | switch (mask) { | |
12493 | case 0: | |
53a4e5c5 PM |
12494 | fi->type = ARMFault_Permission; |
12495 | fi->level = 1; | |
b7cc4e82 | 12496 | return true; |
9ee6e8bb | 12497 | case 1: |
87c3d486 | 12498 | if (is_user) { |
53a4e5c5 PM |
12499 | fi->type = ARMFault_Permission; |
12500 | fi->level = 1; | |
b7cc4e82 | 12501 | return true; |
87c3d486 | 12502 | } |
554b0b09 PM |
12503 | *prot = PAGE_READ | PAGE_WRITE; |
12504 | break; | |
9ee6e8bb | 12505 | case 2: |
554b0b09 | 12506 | *prot = PAGE_READ; |
87c3d486 | 12507 | if (!is_user) { |
554b0b09 | 12508 | *prot |= PAGE_WRITE; |
87c3d486 | 12509 | } |
554b0b09 | 12510 | break; |
9ee6e8bb | 12511 | case 3: |
554b0b09 PM |
12512 | *prot = PAGE_READ | PAGE_WRITE; |
12513 | break; | |
9ee6e8bb | 12514 | case 5: |
87c3d486 | 12515 | if (is_user) { |
53a4e5c5 PM |
12516 | fi->type = ARMFault_Permission; |
12517 | fi->level = 1; | |
b7cc4e82 | 12518 | return true; |
87c3d486 | 12519 | } |
554b0b09 PM |
12520 | *prot = PAGE_READ; |
12521 | break; | |
9ee6e8bb | 12522 | case 6: |
554b0b09 PM |
12523 | *prot = PAGE_READ; |
12524 | break; | |
9ee6e8bb | 12525 | default: |
554b0b09 | 12526 | /* Bad permission. */ |
53a4e5c5 PM |
12527 | fi->type = ARMFault_Permission; |
12528 | fi->level = 1; | |
b7cc4e82 | 12529 | return true; |
9ee6e8bb | 12530 | } |
3ad493fc | 12531 | *prot |= PAGE_EXEC; |
b7cc4e82 | 12532 | return false; |
9ee6e8bb PB |
12533 | } |
12534 | ||
5b2d261d AB |
12535 | /* Combine either inner or outer cacheability attributes for normal |
12536 | * memory, according to table D4-42 and pseudocode procedure | |
12537 | * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). | |
12538 | * | |
12539 | * NB: only stage 1 includes allocation hints (RW bits), leading to | |
12540 | * some asymmetry. | |
12541 | */ | |
12542 | static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) | |
12543 | { | |
12544 | if (s1 == 4 || s2 == 4) { | |
12545 | /* non-cacheable has precedence */ | |
12546 | return 4; | |
12547 | } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { | |
12548 | /* stage 1 write-through takes precedence */ | |
12549 | return s1; | |
12550 | } else if (extract32(s2, 2, 2) == 2) { | |
12551 | /* stage 2 write-through takes precedence, but the allocation hint | |
12552 | * is still taken from stage 1 | |
12553 | */ | |
12554 | return (2 << 2) | extract32(s1, 0, 2); | |
12555 | } else { /* write-back */ | |
12556 | return s1; | |
12557 | } | |
12558 | } | |
12559 | ||
12560 | /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 | |
12561 | * and CombineS1S2Desc() | |
12562 | * | |
12563 | * @s1: Attributes from stage 1 walk | |
12564 | * @s2: Attributes from stage 2 walk | |
12565 | */ | |
12566 | static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) | |
12567 | { | |
337a03f0 | 12568 | uint8_t s1lo, s2lo, s1hi, s2hi; |
5b2d261d | 12569 | ARMCacheAttrs ret; |
337a03f0 RH |
12570 | bool tagged = false; |
12571 | ||
12572 | if (s1.attrs == 0xf0) { | |
12573 | tagged = true; | |
12574 | s1.attrs = 0xff; | |
12575 | } | |
12576 | ||
12577 | s1lo = extract32(s1.attrs, 0, 4); | |
12578 | s2lo = extract32(s2.attrs, 0, 4); | |
12579 | s1hi = extract32(s1.attrs, 4, 4); | |
12580 | s2hi = extract32(s2.attrs, 4, 4); | |
5b2d261d AB |
12581 | |
12582 | /* Combine shareability attributes (table D4-43) */ | |
12583 | if (s1.shareability == 2 || s2.shareability == 2) { | |
12584 | /* if either are outer-shareable, the result is outer-shareable */ | |
12585 | ret.shareability = 2; | |
12586 | } else if (s1.shareability == 3 || s2.shareability == 3) { | |
12587 | /* if either are inner-shareable, the result is inner-shareable */ | |
12588 | ret.shareability = 3; | |
12589 | } else { | |
12590 | /* both non-shareable */ | |
12591 | ret.shareability = 0; | |
12592 | } | |
12593 | ||
12594 | /* Combine memory type and cacheability attributes */ | |
12595 | if (s1hi == 0 || s2hi == 0) { | |
12596 | /* Device has precedence over normal */ | |
12597 | if (s1lo == 0 || s2lo == 0) { | |
12598 | /* nGnRnE has precedence over anything */ | |
12599 | ret.attrs = 0; | |
12600 | } else if (s1lo == 4 || s2lo == 4) { | |
12601 | /* non-Reordering has precedence over Reordering */ | |
12602 | ret.attrs = 4; /* nGnRE */ | |
12603 | } else if (s1lo == 8 || s2lo == 8) { | |
12604 | /* non-Gathering has precedence over Gathering */ | |
12605 | ret.attrs = 8; /* nGRE */ | |
12606 | } else { | |
12607 | ret.attrs = 0xc; /* GRE */ | |
12608 | } | |
12609 | ||
12610 | /* Any location for which the resultant memory type is any | |
12611 | * type of Device memory is always treated as Outer Shareable. | |
12612 | */ | |
12613 | ret.shareability = 2; | |
12614 | } else { /* Normal memory */ | |
12615 | /* Outer/inner cacheability combine independently */ | |
12616 | ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 | |
12617 | | combine_cacheattr_nibble(s1lo, s2lo); | |
12618 | ||
12619 | if (ret.attrs == 0x44) { | |
12620 | /* Any location for which the resultant memory type is Normal | |
12621 | * Inner Non-cacheable, Outer Non-cacheable is always treated | |
12622 | * as Outer Shareable. | |
12623 | */ | |
12624 | ret.shareability = 2; | |
12625 | } | |
12626 | } | |
12627 | ||
337a03f0 RH |
12628 | /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ |
12629 | if (tagged && ret.attrs == 0xff) { | |
12630 | ret.attrs = 0xf0; | |
12631 | } | |
12632 | ||
5b2d261d AB |
12633 | return ret; |
12634 | } | |
12635 | ||
12636 | ||
702a9357 PM |
12637 | /* get_phys_addr - get the physical address for this virtual address |
12638 | * | |
12639 | * Find the physical address corresponding to the given virtual address, | |
12640 | * by doing a translation table walk on MMU based systems or using the | |
12641 | * MPU state on MPU based systems. | |
12642 | * | |
b7cc4e82 PC |
12643 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
12644 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
12645 | * information on why the translation aborted, in the format of a |
12646 | * DFSR/IFSR fault register, with the following caveats: | |
12647 | * * we honour the short vs long DFSR format differences. | |
12648 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 12649 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
12650 | * value. |
12651 | * | |
12652 | * @env: CPUARMState | |
12653 | * @address: virtual address to get physical address for | |
12654 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 12655 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 12656 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 12657 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
12658 | * @prot: set to the permissions for the page containing phys_ptr |
12659 | * @page_size: set to the size of the page containing phys_ptr | |
5b2d261d AB |
12660 | * @fi: set to fault info if the translation fails |
12661 | * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes | |
702a9357 | 12662 | */ |
ebae861f PMD |
12663 | bool get_phys_addr(CPUARMState *env, target_ulong address, |
12664 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
12665 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
12666 | target_ulong *page_size, | |
12667 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) | |
9ee6e8bb | 12668 | { |
7879460a RDC |
12669 | ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); |
12670 | ||
12671 | if (mmu_idx != s1_mmu_idx) { | |
9b539263 | 12672 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
7879460a | 12673 | * translations if mmu_idx is a two-stage regime. |
0480f69a | 12674 | */ |
9b539263 EI |
12675 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
12676 | hwaddr ipa; | |
12677 | int s2_prot; | |
12678 | int ret; | |
6c05a866 | 12679 | bool ipa_secure; |
5b2d261d | 12680 | ARMCacheAttrs cacheattrs2 = {}; |
b1a10c86 RDC |
12681 | ARMMMUIdx s2_mmu_idx; |
12682 | bool is_el0; | |
9b539263 | 12683 | |
7879460a RDC |
12684 | ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, |
12685 | attrs, prot, page_size, fi, cacheattrs); | |
9b539263 EI |
12686 | |
12687 | /* If S1 fails or S2 is disabled, return early. */ | |
97fa9350 | 12688 | if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { |
9b539263 EI |
12689 | *phys_ptr = ipa; |
12690 | return ret; | |
12691 | } | |
12692 | ||
6c05a866 | 12693 | ipa_secure = attrs->secure; |
bcd7a8cf | 12694 | if (arm_is_secure_below_el3(env)) { |
6c05a866 | 12695 | if (ipa_secure) { |
bcd7a8cf IH |
12696 | attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); |
12697 | } else { | |
12698 | attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); | |
12699 | } | |
12700 | } else { | |
6c05a866 | 12701 | assert(!ipa_secure); |
bcd7a8cf IH |
12702 | } |
12703 | ||
b1a10c86 RDC |
12704 | s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; |
12705 | is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; | |
12706 | ||
9b539263 | 12707 | /* S1 is done. Now do S2 translation. */ |
b1a10c86 | 12708 | ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, |
9b539263 | 12709 | phys_ptr, attrs, &s2_prot, |
7e98e21c | 12710 | page_size, fi, &cacheattrs2); |
9b539263 EI |
12711 | fi->s2addr = ipa; |
12712 | /* Combine the S1 and S2 perms. */ | |
12713 | *prot &= s2_prot; | |
5b2d261d | 12714 | |
7e98e21c RH |
12715 | /* If S2 fails, return early. */ |
12716 | if (ret) { | |
12717 | return ret; | |
5b2d261d AB |
12718 | } |
12719 | ||
7e98e21c | 12720 | /* Combine the S1 and S2 cache attributes. */ |
e04a5752 | 12721 | if (arm_hcr_el2_eff(env) & HCR_DC) { |
7e98e21c RH |
12722 | /* |
12723 | * HCR.DC forces the first stage attributes to | |
12724 | * Normal Non-Shareable, | |
12725 | * Inner Write-Back Read-Allocate Write-Allocate, | |
12726 | * Outer Write-Back Read-Allocate Write-Allocate. | |
337a03f0 | 12727 | * Do not overwrite Tagged within attrs. |
7e98e21c | 12728 | */ |
337a03f0 RH |
12729 | if (cacheattrs->attrs != 0xf0) { |
12730 | cacheattrs->attrs = 0xff; | |
12731 | } | |
7e98e21c RH |
12732 | cacheattrs->shareability = 0; |
12733 | } | |
12734 | *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); | |
b1a10c86 RDC |
12735 | |
12736 | /* Check if IPA translates to secure or non-secure PA space. */ | |
12737 | if (arm_is_secure_below_el3(env)) { | |
6c05a866 | 12738 | if (ipa_secure) { |
b1a10c86 RDC |
12739 | attrs->secure = |
12740 | !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); | |
12741 | } else { | |
12742 | attrs->secure = | |
12743 | !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) | |
d3b2d191 | 12744 | || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); |
b1a10c86 RDC |
12745 | } |
12746 | } | |
7e98e21c | 12747 | return 0; |
9b539263 EI |
12748 | } else { |
12749 | /* | |
12750 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | |
12751 | */ | |
8bd5c820 | 12752 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
9b539263 | 12753 | } |
0480f69a | 12754 | } |
d3649702 | 12755 | |
8bf5b6a9 PM |
12756 | /* The page table entries may downgrade secure to non-secure, but |
12757 | * cannot upgrade an non-secure translation regime's attributes | |
12758 | * to secure. | |
12759 | */ | |
12760 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 12761 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 12762 | |
0480f69a PM |
12763 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
12764 | * In v7 and earlier it affects all stage 1 translations. | |
12765 | */ | |
97fa9350 | 12766 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 |
0480f69a PM |
12767 | && !arm_feature(env, ARM_FEATURE_V8)) { |
12768 | if (regime_el(env, mmu_idx) == 3) { | |
12769 | address += env->cp15.fcseidr_s; | |
12770 | } else { | |
12771 | address += env->cp15.fcseidr_ns; | |
12772 | } | |
54bf36ed | 12773 | } |
9ee6e8bb | 12774 | |
3279adb9 | 12775 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
c9f9f124 | 12776 | bool ret; |
f6bda88f | 12777 | *page_size = TARGET_PAGE_SIZE; |
3279adb9 | 12778 | |
504e3cc3 PM |
12779 | if (arm_feature(env, ARM_FEATURE_V8)) { |
12780 | /* PMSAv8 */ | |
12781 | ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, | |
72042435 | 12782 | phys_ptr, attrs, prot, page_size, fi); |
504e3cc3 | 12783 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
3279adb9 PM |
12784 | /* PMSAv7 */ |
12785 | ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
e5e40999 | 12786 | phys_ptr, prot, page_size, fi); |
3279adb9 PM |
12787 | } else { |
12788 | /* Pre-v7 MPU */ | |
12789 | ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, | |
53a4e5c5 | 12790 | phys_ptr, prot, fi); |
3279adb9 PM |
12791 | } |
12792 | qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 | |
c9f9f124 | 12793 | " mmu_idx %u -> %s (prot %c%c%c)\n", |
709e4407 PM |
12794 | access_type == MMU_DATA_LOAD ? "reading" : |
12795 | (access_type == MMU_DATA_STORE ? "writing" : "execute"), | |
c9f9f124 MD |
12796 | (uint32_t)address, mmu_idx, |
12797 | ret ? "Miss" : "Hit", | |
12798 | *prot & PAGE_READ ? 'r' : '-', | |
12799 | *prot & PAGE_WRITE ? 'w' : '-', | |
12800 | *prot & PAGE_EXEC ? 'x' : '-'); | |
12801 | ||
12802 | return ret; | |
f6bda88f PC |
12803 | } |
12804 | ||
3279adb9 PM |
12805 | /* Definitely a real MMU, not an MPU */ |
12806 | ||
0480f69a | 12807 | if (regime_translation_disabled(env, mmu_idx)) { |
337a03f0 RH |
12808 | uint64_t hcr; |
12809 | uint8_t memattr; | |
12810 | ||
cebfb648 RH |
12811 | /* |
12812 | * MMU disabled. S1 addresses within aa64 translation regimes are | |
12813 | * still checked for bounds -- see AArch64.TranslateAddressS1Off. | |
12814 | */ | |
b1a10c86 | 12815 | if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { |
cebfb648 RH |
12816 | int r_el = regime_el(env, mmu_idx); |
12817 | if (arm_el_is_aa64(env, r_el)) { | |
12818 | int pamax = arm_pamax(env_archcpu(env)); | |
12819 | uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; | |
12820 | int addrtop, tbi; | |
12821 | ||
12822 | tbi = aa64_va_parameter_tbi(tcr, mmu_idx); | |
12823 | if (access_type == MMU_INST_FETCH) { | |
12824 | tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
12825 | } | |
12826 | tbi = (tbi >> extract64(address, 55, 1)) & 1; | |
12827 | addrtop = (tbi ? 55 : 63); | |
12828 | ||
12829 | if (extract64(address, pamax, addrtop - pamax + 1) != 0) { | |
12830 | fi->type = ARMFault_AddressSize; | |
12831 | fi->level = 0; | |
12832 | fi->stage2 = false; | |
12833 | return 1; | |
12834 | } | |
12835 | ||
12836 | /* | |
12837 | * When TBI is disabled, we've just validated that all of the | |
12838 | * bits above PAMax are zero, so logically we only need to | |
12839 | * clear the top byte for TBI. But it's clearer to follow | |
12840 | * the pseudocode set of addrdesc.paddress. | |
12841 | */ | |
12842 | address = extract64(address, 0, 52); | |
12843 | } | |
12844 | } | |
9ee6e8bb | 12845 | *phys_ptr = address; |
3ad493fc | 12846 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 12847 | *page_size = TARGET_PAGE_SIZE; |
337a03f0 RH |
12848 | |
12849 | /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ | |
12850 | hcr = arm_hcr_el2_eff(env); | |
12851 | cacheattrs->shareability = 0; | |
12852 | if (hcr & HCR_DC) { | |
12853 | if (hcr & HCR_DCT) { | |
12854 | memattr = 0xf0; /* Tagged, Normal, WB, RWA */ | |
12855 | } else { | |
12856 | memattr = 0xff; /* Normal, WB, RWA */ | |
12857 | } | |
12858 | } else if (access_type == MMU_INST_FETCH) { | |
12859 | if (regime_sctlr(env, mmu_idx) & SCTLR_I) { | |
12860 | memattr = 0xee; /* Normal, WT, RA, NT */ | |
12861 | } else { | |
12862 | memattr = 0x44; /* Normal, NC, No */ | |
12863 | } | |
12864 | cacheattrs->shareability = 2; /* outer sharable */ | |
12865 | } else { | |
12866 | memattr = 0x00; /* Device, nGnRnE */ | |
12867 | } | |
12868 | cacheattrs->attrs = memattr; | |
9ee6e8bb | 12869 | return 0; |
0480f69a PM |
12870 | } |
12871 | ||
0480f69a | 12872 | if (regime_using_lpae_format(env, mmu_idx)) { |
ff7de2fc | 12873 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, |
bc52bfeb PM |
12874 | phys_ptr, attrs, prot, page_size, |
12875 | fi, cacheattrs); | |
0480f69a | 12876 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
bc52bfeb PM |
12877 | return get_phys_addr_v6(env, address, access_type, mmu_idx, |
12878 | phys_ptr, attrs, prot, page_size, fi); | |
9ee6e8bb | 12879 | } else { |
bc52bfeb | 12880 | return get_phys_addr_v5(env, address, access_type, mmu_idx, |
f989983e | 12881 | phys_ptr, prot, page_size, fi); |
9ee6e8bb PB |
12882 | } |
12883 | } | |
12884 | ||
0faea0c7 PM |
12885 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
12886 | MemTxAttrs *attrs) | |
b5ff1b31 | 12887 | { |
00b941e5 | 12888 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 12889 | CPUARMState *env = &cpu->env; |
a8170e5e | 12890 | hwaddr phys_addr; |
d4c430a8 | 12891 | target_ulong page_size; |
b5ff1b31 | 12892 | int prot; |
b7cc4e82 | 12893 | bool ret; |
e14b5a23 | 12894 | ARMMMUFaultInfo fi = {}; |
50494a27 | 12895 | ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
7e98e21c | 12896 | ARMCacheAttrs cacheattrs = {}; |
b5ff1b31 | 12897 | |
0faea0c7 PM |
12898 | *attrs = (MemTxAttrs) {}; |
12899 | ||
a9dd161f | 12900 | ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, |
7e98e21c | 12901 | attrs, &prot, &page_size, &fi, &cacheattrs); |
b5ff1b31 | 12902 | |
b7cc4e82 | 12903 | if (ret) { |
b5ff1b31 | 12904 | return -1; |
00b941e5 | 12905 | } |
b5ff1b31 FB |
12906 | return phys_addr; |
12907 | } | |
12908 | ||
b5ff1b31 | 12909 | #endif |
6ddbc6e4 PB |
12910 | |
12911 | /* Note that signed overflow is undefined in C. The following routines are | |
12912 | careful to use unsigned types where modulo arithmetic is required. | |
12913 | Failure to do so _will_ break on newer gcc. */ | |
12914 | ||
12915 | /* Signed saturating arithmetic. */ | |
12916 | ||
1654b2d6 | 12917 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
12918 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
12919 | { | |
12920 | uint16_t res; | |
12921 | ||
12922 | res = a + b; | |
12923 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
12924 | if (a & 0x8000) | |
12925 | res = 0x8000; | |
12926 | else | |
12927 | res = 0x7fff; | |
12928 | } | |
12929 | return res; | |
12930 | } | |
12931 | ||
1654b2d6 | 12932 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
12933 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
12934 | { | |
12935 | uint8_t res; | |
12936 | ||
12937 | res = a + b; | |
12938 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
12939 | if (a & 0x80) | |
12940 | res = 0x80; | |
12941 | else | |
12942 | res = 0x7f; | |
12943 | } | |
12944 | return res; | |
12945 | } | |
12946 | ||
1654b2d6 | 12947 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
12948 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
12949 | { | |
12950 | uint16_t res; | |
12951 | ||
12952 | res = a - b; | |
12953 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
12954 | if (a & 0x8000) | |
12955 | res = 0x8000; | |
12956 | else | |
12957 | res = 0x7fff; | |
12958 | } | |
12959 | return res; | |
12960 | } | |
12961 | ||
1654b2d6 | 12962 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
12963 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
12964 | { | |
12965 | uint8_t res; | |
12966 | ||
12967 | res = a - b; | |
12968 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
12969 | if (a & 0x80) | |
12970 | res = 0x80; | |
12971 | else | |
12972 | res = 0x7f; | |
12973 | } | |
12974 | return res; | |
12975 | } | |
12976 | ||
12977 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
12978 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
12979 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
12980 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
12981 | #define PFX q | |
12982 | ||
12983 | #include "op_addsub.h" | |
12984 | ||
12985 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 12986 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
12987 | { |
12988 | uint16_t res; | |
12989 | res = a + b; | |
12990 | if (res < a) | |
12991 | res = 0xffff; | |
12992 | return res; | |
12993 | } | |
12994 | ||
460a09c1 | 12995 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 12996 | { |
4c4fd3f8 | 12997 | if (a > b) |
6ddbc6e4 PB |
12998 | return a - b; |
12999 | else | |
13000 | return 0; | |
13001 | } | |
13002 | ||
13003 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
13004 | { | |
13005 | uint8_t res; | |
13006 | res = a + b; | |
13007 | if (res < a) | |
13008 | res = 0xff; | |
13009 | return res; | |
13010 | } | |
13011 | ||
13012 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
13013 | { | |
4c4fd3f8 | 13014 | if (a > b) |
6ddbc6e4 PB |
13015 | return a - b; |
13016 | else | |
13017 | return 0; | |
13018 | } | |
13019 | ||
13020 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
13021 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
13022 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
13023 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
13024 | #define PFX uq | |
13025 | ||
13026 | #include "op_addsub.h" | |
13027 | ||
13028 | /* Signed modulo arithmetic. */ | |
13029 | #define SARITH16(a, b, n, op) do { \ | |
13030 | int32_t sum; \ | |
db6e2e65 | 13031 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
13032 | RESULT(sum, n, 16); \ |
13033 | if (sum >= 0) \ | |
13034 | ge |= 3 << (n * 2); \ | |
13035 | } while(0) | |
13036 | ||
13037 | #define SARITH8(a, b, n, op) do { \ | |
13038 | int32_t sum; \ | |
db6e2e65 | 13039 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
13040 | RESULT(sum, n, 8); \ |
13041 | if (sum >= 0) \ | |
13042 | ge |= 1 << n; \ | |
13043 | } while(0) | |
13044 | ||
13045 | ||
13046 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
13047 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
13048 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
13049 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
13050 | #define PFX s | |
13051 | #define ARITH_GE | |
13052 | ||
13053 | #include "op_addsub.h" | |
13054 | ||
13055 | /* Unsigned modulo arithmetic. */ | |
13056 | #define ADD16(a, b, n) do { \ | |
13057 | uint32_t sum; \ | |
13058 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
13059 | RESULT(sum, n, 16); \ | |
a87aa10b | 13060 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
13061 | ge |= 3 << (n * 2); \ |
13062 | } while(0) | |
13063 | ||
13064 | #define ADD8(a, b, n) do { \ | |
13065 | uint32_t sum; \ | |
13066 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
13067 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
13068 | if ((sum >> 8) == 1) \ |
13069 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
13070 | } while(0) |
13071 | ||
13072 | #define SUB16(a, b, n) do { \ | |
13073 | uint32_t sum; \ | |
13074 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
13075 | RESULT(sum, n, 16); \ | |
13076 | if ((sum >> 16) == 0) \ | |
13077 | ge |= 3 << (n * 2); \ | |
13078 | } while(0) | |
13079 | ||
13080 | #define SUB8(a, b, n) do { \ | |
13081 | uint32_t sum; \ | |
13082 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
13083 | RESULT(sum, n, 8); \ | |
13084 | if ((sum >> 8) == 0) \ | |
a87aa10b | 13085 | ge |= 1 << n; \ |
6ddbc6e4 PB |
13086 | } while(0) |
13087 | ||
13088 | #define PFX u | |
13089 | #define ARITH_GE | |
13090 | ||
13091 | #include "op_addsub.h" | |
13092 | ||
13093 | /* Halved signed arithmetic. */ | |
13094 | #define ADD16(a, b, n) \ | |
13095 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
13096 | #define SUB16(a, b, n) \ | |
13097 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
13098 | #define ADD8(a, b, n) \ | |
13099 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
13100 | #define SUB8(a, b, n) \ | |
13101 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
13102 | #define PFX sh | |
13103 | ||
13104 | #include "op_addsub.h" | |
13105 | ||
13106 | /* Halved unsigned arithmetic. */ | |
13107 | #define ADD16(a, b, n) \ | |
13108 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
13109 | #define SUB16(a, b, n) \ | |
13110 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
13111 | #define ADD8(a, b, n) \ | |
13112 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
13113 | #define SUB8(a, b, n) \ | |
13114 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
13115 | #define PFX uh | |
13116 | ||
13117 | #include "op_addsub.h" | |
13118 | ||
13119 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
13120 | { | |
13121 | if (a > b) | |
13122 | return a - b; | |
13123 | else | |
13124 | return b - a; | |
13125 | } | |
13126 | ||
13127 | /* Unsigned sum of absolute byte differences. */ | |
13128 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
13129 | { | |
13130 | uint32_t sum; | |
13131 | sum = do_usad(a, b); | |
13132 | sum += do_usad(a >> 8, b >> 8); | |
bdc3b6f5 | 13133 | sum += do_usad(a >> 16, b >> 16); |
6ddbc6e4 PB |
13134 | sum += do_usad(a >> 24, b >> 24); |
13135 | return sum; | |
13136 | } | |
13137 | ||
13138 | /* For ARMv6 SEL instruction. */ | |
13139 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
13140 | { | |
13141 | uint32_t mask; | |
13142 | ||
13143 | mask = 0; | |
13144 | if (flags & 1) | |
13145 | mask |= 0xff; | |
13146 | if (flags & 2) | |
13147 | mask |= 0xff00; | |
13148 | if (flags & 4) | |
13149 | mask |= 0xff0000; | |
13150 | if (flags & 8) | |
13151 | mask |= 0xff000000; | |
13152 | return (a & mask) | (b & ~mask); | |
13153 | } | |
13154 | ||
aa633469 PM |
13155 | /* CRC helpers. |
13156 | * The upper bytes of val (above the number specified by 'bytes') must have | |
13157 | * been zeroed out by the caller. | |
13158 | */ | |
eb0ecd5a WN |
13159 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
13160 | { | |
13161 | uint8_t buf[4]; | |
13162 | ||
aa633469 | 13163 | stl_le_p(buf, val); |
eb0ecd5a WN |
13164 | |
13165 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
13166 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
13167 | } | |
13168 | ||
13169 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
13170 | { | |
13171 | uint8_t buf[4]; | |
13172 | ||
aa633469 | 13173 | stl_le_p(buf, val); |
eb0ecd5a WN |
13174 | |
13175 | /* Linux crc32c converts the output to one's complement. */ | |
13176 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
13177 | } | |
a9e01311 RH |
13178 | |
13179 | /* Return the exception level to which FP-disabled exceptions should | |
13180 | * be taken, or 0 if FP is enabled. | |
13181 | */ | |
ced31551 | 13182 | int fp_exception_el(CPUARMState *env, int cur_el) |
a9e01311 | 13183 | { |
55faa212 | 13184 | #ifndef CONFIG_USER_ONLY |
d5a6fa2d RH |
13185 | uint64_t hcr_el2; |
13186 | ||
a9e01311 RH |
13187 | /* CPACR and the CPTR registers don't exist before v6, so FP is |
13188 | * always accessible | |
13189 | */ | |
13190 | if (!arm_feature(env, ARM_FEATURE_V6)) { | |
13191 | return 0; | |
13192 | } | |
13193 | ||
d87513c0 PM |
13194 | if (arm_feature(env, ARM_FEATURE_M)) { |
13195 | /* CPACR can cause a NOCP UsageFault taken to current security state */ | |
13196 | if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { | |
13197 | return 1; | |
13198 | } | |
13199 | ||
13200 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { | |
13201 | if (!extract32(env->v7m.nsacr, 10, 1)) { | |
13202 | /* FP insns cause a NOCP UsageFault taken to Secure */ | |
13203 | return 3; | |
13204 | } | |
13205 | } | |
13206 | ||
13207 | return 0; | |
13208 | } | |
13209 | ||
d5a6fa2d RH |
13210 | hcr_el2 = arm_hcr_el2_eff(env); |
13211 | ||
a9e01311 RH |
13212 | /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: |
13213 | * 0, 2 : trap EL0 and EL1/PL1 accesses | |
13214 | * 1 : trap only EL0 accesses | |
13215 | * 3 : trap no accesses | |
c2ddb7cf | 13216 | * This register is ignored if E2H+TGE are both set. |
a9e01311 | 13217 | */ |
d5a6fa2d | 13218 | if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { |
c2ddb7cf RH |
13219 | int fpen = extract32(env->cp15.cpacr_el1, 20, 2); |
13220 | ||
13221 | switch (fpen) { | |
13222 | case 0: | |
13223 | case 2: | |
13224 | if (cur_el == 0 || cur_el == 1) { | |
13225 | /* Trap to PL1, which might be EL1 or EL3 */ | |
13226 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
13227 | return 3; | |
13228 | } | |
13229 | return 1; | |
13230 | } | |
13231 | if (cur_el == 3 && !is_a64(env)) { | |
13232 | /* Secure PL1 running at EL3 */ | |
a9e01311 RH |
13233 | return 3; |
13234 | } | |
c2ddb7cf RH |
13235 | break; |
13236 | case 1: | |
13237 | if (cur_el == 0) { | |
13238 | return 1; | |
13239 | } | |
13240 | break; | |
13241 | case 3: | |
13242 | break; | |
a9e01311 | 13243 | } |
a9e01311 RH |
13244 | } |
13245 | ||
fc1120a7 PM |
13246 | /* |
13247 | * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode | |
13248 | * to control non-secure access to the FPU. It doesn't have any | |
13249 | * effect if EL3 is AArch64 or if EL3 doesn't exist at all. | |
13250 | */ | |
13251 | if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
13252 | cur_el <= 2 && !arm_is_secure_below_el3(env))) { | |
13253 | if (!extract32(env->cp15.nsacr, 10, 1)) { | |
13254 | /* FP insns act as UNDEF */ | |
13255 | return cur_el == 2 ? 2 : 1; | |
13256 | } | |
13257 | } | |
13258 | ||
d5a6fa2d RH |
13259 | /* |
13260 | * CPTR_EL2 is present in v7VE or v8, and changes format | |
13261 | * with HCR_EL2.E2H (regardless of TGE). | |
a9e01311 | 13262 | */ |
d5a6fa2d RH |
13263 | if (cur_el <= 2) { |
13264 | if (hcr_el2 & HCR_E2H) { | |
13265 | /* Check CPTR_EL2.FPEN. */ | |
13266 | switch (extract32(env->cp15.cptr_el[2], 20, 2)) { | |
13267 | case 1: | |
13268 | if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { | |
13269 | break; | |
13270 | } | |
13271 | /* fall through */ | |
13272 | case 0: | |
13273 | case 2: | |
13274 | return 2; | |
13275 | } | |
13276 | } else if (arm_is_el2_enabled(env)) { | |
13277 | if (env->cp15.cptr_el[2] & CPTR_TFP) { | |
13278 | return 2; | |
13279 | } | |
13280 | } | |
a9e01311 RH |
13281 | } |
13282 | ||
13283 | /* CPTR_EL3 : present in v8 */ | |
a7b66ada | 13284 | if (env->cp15.cptr_el[3] & CPTR_TFP) { |
a9e01311 RH |
13285 | /* Trap all FP ops to EL3 */ |
13286 | return 3; | |
13287 | } | |
55faa212 | 13288 | #endif |
a9e01311 RH |
13289 | return 0; |
13290 | } | |
13291 | ||
b9f6033c RH |
13292 | /* Return the exception level we're running at if this is our mmu_idx */ |
13293 | int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) | |
13294 | { | |
13295 | if (mmu_idx & ARM_MMU_IDX_M) { | |
13296 | return mmu_idx & ARM_MMU_IDX_M_PRIV; | |
13297 | } | |
13298 | ||
13299 | switch (mmu_idx) { | |
13300 | case ARMMMUIdx_E10_0: | |
13301 | case ARMMMUIdx_E20_0: | |
13302 | case ARMMMUIdx_SE10_0: | |
b6ad6062 | 13303 | case ARMMMUIdx_SE20_0: |
b9f6033c RH |
13304 | return 0; |
13305 | case ARMMMUIdx_E10_1: | |
452ef8cb | 13306 | case ARMMMUIdx_E10_1_PAN: |
b9f6033c | 13307 | case ARMMMUIdx_SE10_1: |
452ef8cb | 13308 | case ARMMMUIdx_SE10_1_PAN: |
b9f6033c RH |
13309 | return 1; |
13310 | case ARMMMUIdx_E2: | |
13311 | case ARMMMUIdx_E20_2: | |
452ef8cb | 13312 | case ARMMMUIdx_E20_2_PAN: |
b6ad6062 RDC |
13313 | case ARMMMUIdx_SE2: |
13314 | case ARMMMUIdx_SE20_2: | |
13315 | case ARMMMUIdx_SE20_2_PAN: | |
b9f6033c RH |
13316 | return 2; |
13317 | case ARMMMUIdx_SE3: | |
13318 | return 3; | |
13319 | default: | |
13320 | g_assert_not_reached(); | |
13321 | } | |
13322 | } | |
13323 | ||
7aab5a8c | 13324 | #ifndef CONFIG_TCG |
65e4655c RH |
13325 | ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) |
13326 | { | |
7aab5a8c | 13327 | g_assert_not_reached(); |
65e4655c | 13328 | } |
7aab5a8c | 13329 | #endif |
65e4655c | 13330 | |
164690b2 | 13331 | ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) |
65e4655c | 13332 | { |
b6ad6062 RDC |
13333 | ARMMMUIdx idx; |
13334 | uint64_t hcr; | |
13335 | ||
65e4655c | 13336 | if (arm_feature(env, ARM_FEATURE_M)) { |
50494a27 | 13337 | return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); |
65e4655c RH |
13338 | } |
13339 | ||
6003d980 | 13340 | /* See ARM pseudo-function ELIsInHost. */ |
b9f6033c RH |
13341 | switch (el) { |
13342 | case 0: | |
b6ad6062 RDC |
13343 | hcr = arm_hcr_el2_eff(env); |
13344 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
13345 | idx = ARMMMUIdx_E20_0; | |
13346 | } else { | |
13347 | idx = ARMMMUIdx_E10_0; | |
6003d980 | 13348 | } |
b6ad6062 | 13349 | break; |
b9f6033c | 13350 | case 1: |
66412260 | 13351 | if (env->pstate & PSTATE_PAN) { |
b6ad6062 RDC |
13352 | idx = ARMMMUIdx_E10_1_PAN; |
13353 | } else { | |
13354 | idx = ARMMMUIdx_E10_1; | |
66412260 | 13355 | } |
b6ad6062 | 13356 | break; |
b9f6033c | 13357 | case 2: |
6003d980 | 13358 | /* Note that TGE does not apply at EL2. */ |
b6ad6062 | 13359 | if (arm_hcr_el2_eff(env) & HCR_E2H) { |
66412260 | 13360 | if (env->pstate & PSTATE_PAN) { |
b6ad6062 RDC |
13361 | idx = ARMMMUIdx_E20_2_PAN; |
13362 | } else { | |
13363 | idx = ARMMMUIdx_E20_2; | |
66412260 | 13364 | } |
b6ad6062 RDC |
13365 | } else { |
13366 | idx = ARMMMUIdx_E2; | |
6003d980 | 13367 | } |
b6ad6062 | 13368 | break; |
b9f6033c RH |
13369 | case 3: |
13370 | return ARMMMUIdx_SE3; | |
13371 | default: | |
13372 | g_assert_not_reached(); | |
65e4655c | 13373 | } |
b6ad6062 RDC |
13374 | |
13375 | if (arm_is_secure_below_el3(env)) { | |
13376 | idx &= ~ARM_MMU_IDX_A_NS; | |
13377 | } | |
13378 | ||
13379 | return idx; | |
50494a27 RH |
13380 | } |
13381 | ||
164690b2 RH |
13382 | ARMMMUIdx arm_mmu_idx(CPUARMState *env) |
13383 | { | |
13384 | return arm_mmu_idx_el(env, arm_current_el(env)); | |
13385 | } | |
13386 | ||
64be86ab RH |
13387 | #ifndef CONFIG_USER_ONLY |
13388 | ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) | |
13389 | { | |
13390 | return stage_1_mmu_idx(arm_mmu_idx(env)); | |
13391 | } | |
13392 | #endif | |
13393 | ||
3902bfc6 RH |
13394 | static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, |
13395 | ARMMMUIdx mmu_idx, | |
13396 | CPUARMTBFlags flags) | |
fdd1b228 | 13397 | { |
a729a46b RH |
13398 | DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); |
13399 | DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); | |
fdd1b228 | 13400 | |
fdd1b228 | 13401 | if (arm_singlestep_active(env)) { |
a729a46b | 13402 | DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); |
fdd1b228 RH |
13403 | } |
13404 | return flags; | |
13405 | } | |
13406 | ||
3902bfc6 RH |
13407 | static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, |
13408 | ARMMMUIdx mmu_idx, | |
13409 | CPUARMTBFlags flags) | |
43eccfb6 | 13410 | { |
8061a649 RH |
13411 | bool sctlr_b = arm_sctlr_b(env); |
13412 | ||
13413 | if (sctlr_b) { | |
a729a46b | 13414 | DP_TBFLAG_A32(flags, SCTLR__B, 1); |
8061a649 RH |
13415 | } |
13416 | if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { | |
a729a46b | 13417 | DP_TBFLAG_ANY(flags, BE_DATA, 1); |
8061a649 | 13418 | } |
a729a46b | 13419 | DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); |
43eccfb6 RH |
13420 | |
13421 | return rebuild_hflags_common(env, fp_el, mmu_idx, flags); | |
13422 | } | |
13423 | ||
3902bfc6 RH |
13424 | static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, |
13425 | ARMMMUIdx mmu_idx) | |
6e33ced5 | 13426 | { |
3902bfc6 | 13427 | CPUARMTBFlags flags = {}; |
4479ec30 RH |
13428 | uint32_t ccr = env->v7m.ccr[env->v7m.secure]; |
13429 | ||
13430 | /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ | |
13431 | if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { | |
13432 | DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); | |
13433 | } | |
6e33ced5 RH |
13434 | |
13435 | if (arm_v7m_is_handler_mode(env)) { | |
a729a46b | 13436 | DP_TBFLAG_M32(flags, HANDLER, 1); |
6e33ced5 RH |
13437 | } |
13438 | ||
13439 | /* | |
13440 | * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN | |
13441 | * is suppressing them because the requested execution priority | |
13442 | * is less than 0. | |
13443 | */ | |
13444 | if (arm_feature(env, ARM_FEATURE_V8) && | |
13445 | !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && | |
4479ec30 | 13446 | (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { |
a729a46b | 13447 | DP_TBFLAG_M32(flags, STACKCHECK, 1); |
6e33ced5 RH |
13448 | } |
13449 | ||
13450 | return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); | |
13451 | } | |
13452 | ||
3902bfc6 | 13453 | static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) |
83f4baef | 13454 | { |
3902bfc6 | 13455 | CPUARMTBFlags flags = {}; |
83f4baef | 13456 | |
a729a46b | 13457 | DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); |
83f4baef RH |
13458 | return flags; |
13459 | } | |
13460 | ||
3902bfc6 RH |
13461 | static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, |
13462 | ARMMMUIdx mmu_idx) | |
c747224c | 13463 | { |
3902bfc6 | 13464 | CPUARMTBFlags flags = rebuild_hflags_aprofile(env); |
4479ec30 RH |
13465 | int el = arm_current_el(env); |
13466 | ||
13467 | if (arm_sctlr(env, el) & SCTLR_A) { | |
13468 | DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); | |
13469 | } | |
0a54d68e RH |
13470 | |
13471 | if (arm_el_is_aa64(env, 1)) { | |
a729a46b | 13472 | DP_TBFLAG_A32(flags, VFPEN, 1); |
0a54d68e | 13473 | } |
5bb0a20b | 13474 | |
4479ec30 | 13475 | if (el < 2 && env->cp15.hstr_el2 && |
5bb0a20b | 13476 | (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { |
a729a46b | 13477 | DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); |
5bb0a20b MZ |
13478 | } |
13479 | ||
520d1621 PM |
13480 | if (env->uncached_cpsr & CPSR_IL) { |
13481 | DP_TBFLAG_ANY(flags, PSTATE__IL, 1); | |
13482 | } | |
13483 | ||
83f4baef | 13484 | return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); |
c747224c RH |
13485 | } |
13486 | ||
3902bfc6 RH |
13487 | static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, |
13488 | ARMMMUIdx mmu_idx) | |
a9e01311 | 13489 | { |
3902bfc6 | 13490 | CPUARMTBFlags flags = rebuild_hflags_aprofile(env); |
d4d7503a | 13491 | ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); |
b830a5ee | 13492 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; |
d4d7503a RH |
13493 | uint64_t sctlr; |
13494 | int tbii, tbid; | |
b9adaa70 | 13495 | |
a729a46b | 13496 | DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); |
cd208a1c | 13497 | |
339370b9 | 13498 | /* Get control bits for tagged addresses. */ |
b830a5ee RH |
13499 | tbid = aa64_va_parameter_tbi(tcr, mmu_idx); |
13500 | tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
5d8634f5 | 13501 | |
a729a46b RH |
13502 | DP_TBFLAG_A64(flags, TBII, tbii); |
13503 | DP_TBFLAG_A64(flags, TBID, tbid); | |
d4d7503a RH |
13504 | |
13505 | if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { | |
13506 | int sve_el = sve_exception_el(env, el); | |
13507 | uint32_t zcr_len; | |
5d8634f5 | 13508 | |
d4d7503a RH |
13509 | /* |
13510 | * If SVE is disabled, but FP is enabled, | |
13511 | * then the effective len is 0. | |
13512 | */ | |
13513 | if (sve_el != 0 && fp_el == 0) { | |
13514 | zcr_len = 0; | |
13515 | } else { | |
13516 | zcr_len = sve_zcr_len_for_el(env, el); | |
5d8634f5 | 13517 | } |
a729a46b RH |
13518 | DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); |
13519 | DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); | |
d4d7503a | 13520 | } |
1db5e96c | 13521 | |
aaec1432 | 13522 | sctlr = regime_sctlr(env, stage1); |
1db5e96c | 13523 | |
4479ec30 RH |
13524 | if (sctlr & SCTLR_A) { |
13525 | DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); | |
13526 | } | |
13527 | ||
8061a649 | 13528 | if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { |
a729a46b | 13529 | DP_TBFLAG_ANY(flags, BE_DATA, 1); |
8061a649 RH |
13530 | } |
13531 | ||
d4d7503a RH |
13532 | if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { |
13533 | /* | |
13534 | * In order to save space in flags, we record only whether | |
13535 | * pauth is "inactive", meaning all insns are implemented as | |
13536 | * a nop, or "active" when some action must be performed. | |
13537 | * The decision of which action to take is left to a helper. | |
13538 | */ | |
13539 | if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { | |
a729a46b | 13540 | DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); |
1db5e96c | 13541 | } |
d4d7503a | 13542 | } |
0816ef1b | 13543 | |
d4d7503a RH |
13544 | if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { |
13545 | /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ | |
13546 | if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { | |
a729a46b | 13547 | DP_TBFLAG_A64(flags, BT, 1); |
0816ef1b | 13548 | } |
d4d7503a | 13549 | } |
08f1434a | 13550 | |
cc28fc30 | 13551 | /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ |
7a8014ab RH |
13552 | if (!(env->pstate & PSTATE_UAO)) { |
13553 | switch (mmu_idx) { | |
13554 | case ARMMMUIdx_E10_1: | |
13555 | case ARMMMUIdx_E10_1_PAN: | |
13556 | case ARMMMUIdx_SE10_1: | |
13557 | case ARMMMUIdx_SE10_1_PAN: | |
13558 | /* TODO: ARMv8.3-NV */ | |
a729a46b | 13559 | DP_TBFLAG_A64(flags, UNPRIV, 1); |
7a8014ab RH |
13560 | break; |
13561 | case ARMMMUIdx_E20_2: | |
13562 | case ARMMMUIdx_E20_2_PAN: | |
b6ad6062 RDC |
13563 | case ARMMMUIdx_SE20_2: |
13564 | case ARMMMUIdx_SE20_2_PAN: | |
7a8014ab RH |
13565 | /* |
13566 | * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is | |
13567 | * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. | |
13568 | */ | |
13569 | if (env->cp15.hcr_el2 & HCR_TGE) { | |
a729a46b | 13570 | DP_TBFLAG_A64(flags, UNPRIV, 1); |
7a8014ab RH |
13571 | } |
13572 | break; | |
13573 | default: | |
13574 | break; | |
cc28fc30 | 13575 | } |
cc28fc30 RH |
13576 | } |
13577 | ||
520d1621 PM |
13578 | if (env->pstate & PSTATE_IL) { |
13579 | DP_TBFLAG_ANY(flags, PSTATE__IL, 1); | |
13580 | } | |
13581 | ||
81ae05fa RH |
13582 | if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { |
13583 | /* | |
13584 | * Set MTE_ACTIVE if any access may be Checked, and leave clear | |
13585 | * if all accesses must be Unchecked: | |
13586 | * 1) If no TBI, then there are no tags in the address to check, | |
13587 | * 2) If Tag Check Override, then all accesses are Unchecked, | |
13588 | * 3) If Tag Check Fail == 0, then Checked access have no effect, | |
13589 | * 4) If no Allocation Tag Access, then all accesses are Unchecked. | |
13590 | */ | |
13591 | if (allocation_tag_access_enabled(env, el, sctlr)) { | |
a729a46b | 13592 | DP_TBFLAG_A64(flags, ATA, 1); |
81ae05fa RH |
13593 | if (tbid |
13594 | && !(env->pstate & PSTATE_TCO) | |
13595 | && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { | |
a729a46b | 13596 | DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); |
81ae05fa RH |
13597 | } |
13598 | } | |
13599 | /* And again for unprivileged accesses, if required. */ | |
a729a46b | 13600 | if (EX_TBFLAG_A64(flags, UNPRIV) |
81ae05fa RH |
13601 | && tbid |
13602 | && !(env->pstate & PSTATE_TCO) | |
2d928adf | 13603 | && (sctlr & SCTLR_TCF0) |
81ae05fa | 13604 | && allocation_tag_access_enabled(env, 0, sctlr)) { |
a729a46b | 13605 | DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); |
81ae05fa RH |
13606 | } |
13607 | /* Cache TCMA as well as TBI. */ | |
a729a46b | 13608 | DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); |
81ae05fa RH |
13609 | } |
13610 | ||
d4d7503a RH |
13611 | return rebuild_hflags_common(env, fp_el, mmu_idx, flags); |
13612 | } | |
13613 | ||
3902bfc6 | 13614 | static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) |
3d74e2e9 RH |
13615 | { |
13616 | int el = arm_current_el(env); | |
13617 | int fp_el = fp_exception_el(env, el); | |
164690b2 | 13618 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
3d74e2e9 RH |
13619 | |
13620 | if (is_a64(env)) { | |
13621 | return rebuild_hflags_a64(env, el, fp_el, mmu_idx); | |
13622 | } else if (arm_feature(env, ARM_FEATURE_M)) { | |
13623 | return rebuild_hflags_m32(env, fp_el, mmu_idx); | |
13624 | } else { | |
13625 | return rebuild_hflags_a32(env, fp_el, mmu_idx); | |
13626 | } | |
13627 | } | |
13628 | ||
13629 | void arm_rebuild_hflags(CPUARMState *env) | |
13630 | { | |
13631 | env->hflags = rebuild_hflags_internal(env); | |
13632 | } | |
13633 | ||
19717e9b PM |
13634 | /* |
13635 | * If we have triggered a EL state change we can't rely on the | |
13636 | * translator having passed it to us, we need to recompute. | |
13637 | */ | |
13638 | void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) | |
13639 | { | |
13640 | int el = arm_current_el(env); | |
13641 | int fp_el = fp_exception_el(env, el); | |
13642 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
3902bfc6 | 13643 | |
19717e9b PM |
13644 | env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); |
13645 | } | |
13646 | ||
14f3c588 RH |
13647 | void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) |
13648 | { | |
13649 | int fp_el = fp_exception_el(env, el); | |
13650 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13651 | ||
13652 | env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); | |
13653 | } | |
13654 | ||
f80741d1 AB |
13655 | /* |
13656 | * If we have triggered a EL state change we can't rely on the | |
563152e0 | 13657 | * translator having passed it to us, we need to recompute. |
f80741d1 AB |
13658 | */ |
13659 | void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) | |
13660 | { | |
13661 | int el = arm_current_el(env); | |
13662 | int fp_el = fp_exception_el(env, el); | |
13663 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13664 | env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); | |
13665 | } | |
13666 | ||
14f3c588 RH |
13667 | void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) |
13668 | { | |
13669 | int fp_el = fp_exception_el(env, el); | |
13670 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13671 | ||
13672 | env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); | |
13673 | } | |
13674 | ||
13675 | void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) | |
13676 | { | |
13677 | int fp_el = fp_exception_el(env, el); | |
13678 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13679 | ||
13680 | env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); | |
13681 | } | |
13682 | ||
0ee8b24a PMD |
13683 | static inline void assert_hflags_rebuild_correctly(CPUARMState *env) |
13684 | { | |
13685 | #ifdef CONFIG_DEBUG_TCG | |
3902bfc6 RH |
13686 | CPUARMTBFlags c = env->hflags; |
13687 | CPUARMTBFlags r = rebuild_hflags_internal(env); | |
0ee8b24a | 13688 | |
a378206a RH |
13689 | if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { |
13690 | fprintf(stderr, "TCG hflags mismatch " | |
13691 | "(current:(0x%08x,0x" TARGET_FMT_lx ")" | |
13692 | " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", | |
13693 | c.flags, c.flags2, r.flags, r.flags2); | |
0ee8b24a PMD |
13694 | abort(); |
13695 | } | |
13696 | #endif | |
13697 | } | |
13698 | ||
26702213 PM |
13699 | static bool mve_no_pred(CPUARMState *env) |
13700 | { | |
13701 | /* | |
13702 | * Return true if there is definitely no predication of MVE | |
13703 | * instructions by VPR or LTPSIZE. (Returning false even if there | |
13704 | * isn't any predication is OK; generated code will just be | |
13705 | * a little worse.) | |
13706 | * If the CPU does not implement MVE then this TB flag is always 0. | |
13707 | * | |
13708 | * NOTE: if you change this logic, the "recalculate s->mve_no_pred" | |
13709 | * logic in gen_update_fp_context() needs to be updated to match. | |
13710 | * | |
13711 | * We do not include the effect of the ECI bits here -- they are | |
13712 | * tracked in other TB flags. This simplifies the logic for | |
13713 | * "when did we emit code that changes the MVE_NO_PRED TB flag | |
13714 | * and thus need to end the TB?". | |
13715 | */ | |
13716 | if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { | |
13717 | return false; | |
13718 | } | |
13719 | if (env->v7m.vpr) { | |
13720 | return false; | |
13721 | } | |
13722 | if (env->v7m.ltpsize < 4) { | |
13723 | return false; | |
13724 | } | |
13725 | return true; | |
13726 | } | |
13727 | ||
d4d7503a RH |
13728 | void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
13729 | target_ulong *cs_base, uint32_t *pflags) | |
13730 | { | |
3902bfc6 | 13731 | CPUARMTBFlags flags; |
d4d7503a | 13732 | |
0ee8b24a | 13733 | assert_hflags_rebuild_correctly(env); |
3902bfc6 | 13734 | flags = env->hflags; |
3d74e2e9 | 13735 | |
a729a46b | 13736 | if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { |
d4d7503a | 13737 | *pc = env->pc; |
d4d7503a | 13738 | if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { |
a729a46b | 13739 | DP_TBFLAG_A64(flags, BTYPE, env->btype); |
08f1434a | 13740 | } |
a9e01311 RH |
13741 | } else { |
13742 | *pc = env->regs[15]; | |
6e33ced5 RH |
13743 | |
13744 | if (arm_feature(env, ARM_FEATURE_M)) { | |
9550d1bd RH |
13745 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && |
13746 | FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) | |
13747 | != env->v7m.secure) { | |
a729a46b | 13748 | DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); |
9550d1bd RH |
13749 | } |
13750 | ||
13751 | if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && | |
13752 | (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || | |
13753 | (env->v7m.secure && | |
13754 | !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { | |
13755 | /* | |
13756 | * ASPEN is set, but FPCA/SFPA indicate that there is no | |
13757 | * active FP context; we must create a new FP context before | |
13758 | * executing any FP insn. | |
13759 | */ | |
a729a46b | 13760 | DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); |
9550d1bd RH |
13761 | } |
13762 | ||
13763 | bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; | |
13764 | if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { | |
a729a46b | 13765 | DP_TBFLAG_M32(flags, LSPACT, 1); |
9550d1bd | 13766 | } |
26702213 PM |
13767 | |
13768 | if (mve_no_pred(env)) { | |
13769 | DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); | |
13770 | } | |
6e33ced5 | 13771 | } else { |
bbad7c62 RH |
13772 | /* |
13773 | * Note that XSCALE_CPAR shares bits with VECSTRIDE. | |
13774 | * Note that VECLEN+VECSTRIDE are RES0 for M-profile. | |
13775 | */ | |
13776 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
a729a46b | 13777 | DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); |
bbad7c62 | 13778 | } else { |
a729a46b RH |
13779 | DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); |
13780 | DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); | |
bbad7c62 | 13781 | } |
0a54d68e | 13782 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { |
a729a46b | 13783 | DP_TBFLAG_A32(flags, VFPEN, 1); |
0a54d68e | 13784 | } |
6e33ced5 RH |
13785 | } |
13786 | ||
a729a46b RH |
13787 | DP_TBFLAG_AM32(flags, THUMB, env->thumb); |
13788 | DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); | |
d4d7503a | 13789 | } |
a9e01311 | 13790 | |
60e12c37 RH |
13791 | /* |
13792 | * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine | |
a9e01311 RH |
13793 | * states defined in the ARM ARM for software singlestep: |
13794 | * SS_ACTIVE PSTATE.SS State | |
13795 | * 0 x Inactive (the TB flag for SS is always 0) | |
13796 | * 1 0 Active-pending | |
13797 | * 1 1 Active-not-pending | |
ae6eb1e9 | 13798 | * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. |
a9e01311 | 13799 | */ |
a729a46b RH |
13800 | if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { |
13801 | DP_TBFLAG_ANY(flags, PSTATE__SS, 1); | |
a9e01311 | 13802 | } |
a9e01311 | 13803 | |
3902bfc6 | 13804 | *pflags = flags.flags; |
a378206a | 13805 | *cs_base = flags.flags2; |
a9e01311 | 13806 | } |
0ab5953b RH |
13807 | |
13808 | #ifdef TARGET_AARCH64 | |
13809 | /* | |
13810 | * The manual says that when SVE is enabled and VQ is widened the | |
13811 | * implementation is allowed to zero the previously inaccessible | |
13812 | * portion of the registers. The corollary to that is that when | |
13813 | * SVE is enabled and VQ is narrowed we are also allowed to zero | |
13814 | * the now inaccessible portion of the registers. | |
13815 | * | |
13816 | * The intent of this is that no predicate bit beyond VQ is ever set. | |
13817 | * Which means that some operations on predicate registers themselves | |
13818 | * may operate on full uint64_t or even unrolled across the maximum | |
13819 | * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally | |
13820 | * may well be cheaper than conditionals to restrict the operation | |
13821 | * to the relevant portion of a uint16_t[16]. | |
13822 | */ | |
13823 | void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) | |
13824 | { | |
13825 | int i, j; | |
13826 | uint64_t pmask; | |
13827 | ||
13828 | assert(vq >= 1 && vq <= ARM_MAX_VQ); | |
2fc0cc0e | 13829 | assert(vq <= env_archcpu(env)->sve_max_vq); |
0ab5953b RH |
13830 | |
13831 | /* Zap the high bits of the zregs. */ | |
13832 | for (i = 0; i < 32; i++) { | |
13833 | memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); | |
13834 | } | |
13835 | ||
13836 | /* Zap the high bits of the pregs and ffr. */ | |
13837 | pmask = 0; | |
13838 | if (vq & 3) { | |
13839 | pmask = ~(-1ULL << (16 * (vq & 3))); | |
13840 | } | |
13841 | for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { | |
13842 | for (i = 0; i < 17; ++i) { | |
13843 | env->vfp.pregs[i].p[j] &= pmask; | |
13844 | } | |
13845 | pmask = 0; | |
13846 | } | |
13847 | } | |
13848 | ||
13849 | /* | |
13850 | * Notice a change in SVE vector size when changing EL. | |
13851 | */ | |
9a05f7b6 RH |
13852 | void aarch64_sve_change_el(CPUARMState *env, int old_el, |
13853 | int new_el, bool el0_a64) | |
0ab5953b | 13854 | { |
2fc0cc0e | 13855 | ARMCPU *cpu = env_archcpu(env); |
0ab5953b | 13856 | int old_len, new_len; |
9a05f7b6 | 13857 | bool old_a64, new_a64; |
0ab5953b RH |
13858 | |
13859 | /* Nothing to do if no SVE. */ | |
cd208a1c | 13860 | if (!cpu_isar_feature(aa64_sve, cpu)) { |
0ab5953b RH |
13861 | return; |
13862 | } | |
13863 | ||
13864 | /* Nothing to do if FP is disabled in either EL. */ | |
13865 | if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { | |
13866 | return; | |
13867 | } | |
13868 | ||
13869 | /* | |
13870 | * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped | |
13871 | * at ELx, or not available because the EL is in AArch32 state, then | |
13872 | * for all purposes other than a direct read, the ZCR_ELx.LEN field | |
13873 | * has an effective value of 0". | |
13874 | * | |
13875 | * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). | |
13876 | * If we ignore aa32 state, we would fail to see the vq4->vq0 transition | |
13877 | * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that | |
13878 | * we already have the correct register contents when encountering the | |
13879 | * vq0->vq0 transition between EL0->EL1. | |
13880 | */ | |
9a05f7b6 RH |
13881 | old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; |
13882 | old_len = (old_a64 && !sve_exception_el(env, old_el) | |
0ab5953b | 13883 | ? sve_zcr_len_for_el(env, old_el) : 0); |
9a05f7b6 RH |
13884 | new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; |
13885 | new_len = (new_a64 && !sve_exception_el(env, new_el) | |
0ab5953b RH |
13886 | ? sve_zcr_len_for_el(env, new_el) : 0); |
13887 | ||
13888 | /* When changing vector length, clear inaccessible state. */ | |
13889 | if (new_len < old_len) { | |
13890 | aarch64_sve_narrow_vq(env, new_len + 1); | |
13891 | } | |
13892 | } | |
13893 | #endif |