]>
Commit | Line | Data |
---|---|---|
ed3baad1 PMD |
1 | /* |
2 | * ARM generic helpers. | |
3 | * | |
4 | * This code is licensed under the GNU GPL v2 or later. | |
5 | * | |
6 | * SPDX-License-Identifier: GPL-2.0-or-later | |
7 | */ | |
db725815 | 8 | |
74c21bd0 | 9 | #include "qemu/osdep.h" |
63159601 | 10 | #include "qemu/units.h" |
181962fd | 11 | #include "target/arm/idau.h" |
194cbc49 | 12 | #include "trace.h" |
b5ff1b31 | 13 | #include "cpu.h" |
ccd38087 | 14 | #include "internals.h" |
022c62cb | 15 | #include "exec/gdbstub.h" |
2ef6175a | 16 | #include "exec/helper-proto.h" |
1de7afc9 | 17 | #include "qemu/host-utils.h" |
db725815 | 18 | #include "qemu/main-loop.h" |
1de7afc9 | 19 | #include "qemu/bitops.h" |
eb0ecd5a | 20 | #include "qemu/crc32c.h" |
0442428a | 21 | #include "qemu/qemu-print.h" |
63c91552 | 22 | #include "exec/exec-all.h" |
eb0ecd5a | 23 | #include <zlib.h> /* For crc32 */ |
64552b6b | 24 | #include "hw/irq.h" |
f1672e6f | 25 | #include "hw/semihosting/semihost.h" |
b2e23725 | 26 | #include "sysemu/cpus.h" |
740b1759 | 27 | #include "sysemu/cpu-timers.h" |
f3a9b694 | 28 | #include "sysemu/kvm.h" |
2a609df8 | 29 | #include "sysemu/tcg.h" |
9d2b5a58 | 30 | #include "qemu/range.h" |
7f7b4e7a | 31 | #include "qapi/qapi-commands-machine-target.h" |
de390645 RH |
32 | #include "qapi/error.h" |
33 | #include "qemu/guest-random.h" | |
91f78c58 PMD |
34 | #ifdef CONFIG_TCG |
35 | #include "arm_ldst.h" | |
7aab5a8c | 36 | #include "exec/cpu_ldst.h" |
0bb446d8 | 37 | #include "hw/semihosting/common-semi.h" |
91f78c58 | 38 | #endif |
0b03bdfc | 39 | |
352c98e5 LV |
40 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
41 | ||
4a501606 | 42 | #ifndef CONFIG_USER_ONLY |
7c2cb42b | 43 | |
98e87797 | 44 | static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, |
03ae85f8 | 45 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
ff7de2fc | 46 | bool s1_is_el0, |
37785977 | 47 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
da909b2c | 48 | target_ulong *page_size_ptr, |
7e98e21c RH |
49 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
50 | __attribute__((nonnull)); | |
4a501606 PM |
51 | #endif |
52 | ||
affdb64d | 53 | static void switch_mode(CPUARMState *env, int mode); |
ea04dce7 | 54 | static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); |
affdb64d | 55 | |
a010bdbe | 56 | static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) |
56aebc89 | 57 | { |
a6627f5f RH |
58 | ARMCPU *cpu = env_archcpu(env); |
59 | int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; | |
56aebc89 PB |
60 | |
61 | /* VFP data registers are always little-endian. */ | |
56aebc89 | 62 | if (reg < nregs) { |
a010bdbe | 63 | return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); |
56aebc89 PB |
64 | } |
65 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
66 | /* Aliases for Q regs. */ | |
67 | nregs += 16; | |
68 | if (reg < nregs) { | |
9a2b5256 | 69 | uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
a010bdbe | 70 | return gdb_get_reg128(buf, q[0], q[1]); |
56aebc89 PB |
71 | } |
72 | } | |
73 | switch (reg - nregs) { | |
a010bdbe AB |
74 | case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; |
75 | case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; | |
76 | case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; | |
56aebc89 PB |
77 | } |
78 | return 0; | |
79 | } | |
80 | ||
0ecb72a5 | 81 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 | 82 | { |
a6627f5f RH |
83 | ARMCPU *cpu = env_archcpu(env); |
84 | int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; | |
56aebc89 | 85 | |
56aebc89 | 86 | if (reg < nregs) { |
9a2b5256 | 87 | *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); |
56aebc89 PB |
88 | return 8; |
89 | } | |
90 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
91 | nregs += 16; | |
92 | if (reg < nregs) { | |
9a2b5256 RH |
93 | uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
94 | q[0] = ldq_le_p(buf); | |
95 | q[1] = ldq_le_p(buf + 8); | |
56aebc89 PB |
96 | return 16; |
97 | } | |
98 | } | |
99 | switch (reg - nregs) { | |
100 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
b0a909a4 | 101 | case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; |
71b3c3de | 102 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
103 | } |
104 | return 0; | |
105 | } | |
106 | ||
a010bdbe | 107 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) |
6a669427 PM |
108 | { |
109 | switch (reg) { | |
110 | case 0 ... 31: | |
8b1ca58c AB |
111 | { |
112 | /* 128 bit FP register - quads are in LE order */ | |
113 | uint64_t *q = aa64_vfp_qreg(env, reg); | |
114 | return gdb_get_reg128(buf, q[1], q[0]); | |
115 | } | |
6a669427 PM |
116 | case 32: |
117 | /* FPSR */ | |
8b1ca58c | 118 | return gdb_get_reg32(buf, vfp_get_fpsr(env)); |
6a669427 PM |
119 | case 33: |
120 | /* FPCR */ | |
8b1ca58c | 121 | return gdb_get_reg32(buf,vfp_get_fpcr(env)); |
6a669427 PM |
122 | default: |
123 | return 0; | |
124 | } | |
125 | } | |
126 | ||
127 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
128 | { | |
129 | switch (reg) { | |
130 | case 0 ... 31: | |
131 | /* 128 bit FP register */ | |
9a2b5256 RH |
132 | { |
133 | uint64_t *q = aa64_vfp_qreg(env, reg); | |
134 | q[0] = ldq_le_p(buf); | |
135 | q[1] = ldq_le_p(buf + 8); | |
136 | return 16; | |
137 | } | |
6a669427 PM |
138 | case 32: |
139 | /* FPSR */ | |
140 | vfp_set_fpsr(env, ldl_p(buf)); | |
141 | return 4; | |
142 | case 33: | |
143 | /* FPCR */ | |
144 | vfp_set_fpcr(env, ldl_p(buf)); | |
145 | return 4; | |
146 | default: | |
147 | return 0; | |
148 | } | |
149 | } | |
150 | ||
c4241c7d | 151 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 152 | { |
375421cc | 153 | assert(ri->fieldoffset); |
67ed771d | 154 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 155 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 156 | } else { |
c4241c7d | 157 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 158 | } |
d4e6df63 PM |
159 | } |
160 | ||
c4241c7d PM |
161 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
162 | uint64_t value) | |
d4e6df63 | 163 | { |
375421cc | 164 | assert(ri->fieldoffset); |
67ed771d | 165 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
166 | CPREG_FIELD64(env, ri) = value; |
167 | } else { | |
168 | CPREG_FIELD32(env, ri) = value; | |
169 | } | |
d4e6df63 PM |
170 | } |
171 | ||
11f136ee FA |
172 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
173 | { | |
174 | return (char *)env + ri->fieldoffset; | |
175 | } | |
176 | ||
49a66191 | 177 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 178 | { |
59a1c327 | 179 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 180 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 181 | return ri->resetvalue; |
721fae12 | 182 | } else if (ri->raw_readfn) { |
59a1c327 | 183 | return ri->raw_readfn(env, ri); |
721fae12 | 184 | } else if (ri->readfn) { |
59a1c327 | 185 | return ri->readfn(env, ri); |
721fae12 | 186 | } else { |
59a1c327 | 187 | return raw_read(env, ri); |
721fae12 | 188 | } |
721fae12 PM |
189 | } |
190 | ||
59a1c327 | 191 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 192 | uint64_t v) |
721fae12 PM |
193 | { |
194 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
195 | * Note that constant registers are treated as write-ignored; the |
196 | * caller should check for success by whether a readback gives the | |
197 | * value written. | |
198 | */ | |
199 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 200 | return; |
721fae12 | 201 | } else if (ri->raw_writefn) { |
c4241c7d | 202 | ri->raw_writefn(env, ri, v); |
721fae12 | 203 | } else if (ri->writefn) { |
c4241c7d | 204 | ri->writefn(env, ri, v); |
721fae12 | 205 | } else { |
afb2530f | 206 | raw_write(env, ri, v); |
721fae12 | 207 | } |
721fae12 PM |
208 | } |
209 | ||
d12379c5 AB |
210 | /** |
211 | * arm_get/set_gdb_*: get/set a gdb register | |
212 | * @env: the CPU state | |
213 | * @buf: a buffer to copy to/from | |
214 | * @reg: register number (offset from start of group) | |
215 | * | |
216 | * We return the number of bytes copied | |
217 | */ | |
218 | ||
a010bdbe | 219 | static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) |
200bf5b7 | 220 | { |
2fc0cc0e | 221 | ARMCPU *cpu = env_archcpu(env); |
200bf5b7 AB |
222 | const ARMCPRegInfo *ri; |
223 | uint32_t key; | |
224 | ||
448d4d14 | 225 | key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; |
200bf5b7 AB |
226 | ri = get_arm_cp_reginfo(cpu->cp_regs, key); |
227 | if (ri) { | |
228 | if (cpreg_field_is_64bit(ri)) { | |
229 | return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); | |
230 | } else { | |
231 | return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); | |
232 | } | |
233 | } | |
234 | return 0; | |
235 | } | |
236 | ||
237 | static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) | |
238 | { | |
239 | return 0; | |
240 | } | |
241 | ||
d12379c5 AB |
242 | #ifdef TARGET_AARCH64 |
243 | static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) | |
244 | { | |
245 | ARMCPU *cpu = env_archcpu(env); | |
246 | ||
247 | switch (reg) { | |
248 | /* The first 32 registers are the zregs */ | |
249 | case 0 ... 31: | |
250 | { | |
251 | int vq, len = 0; | |
252 | for (vq = 0; vq < cpu->sve_max_vq; vq++) { | |
253 | len += gdb_get_reg128(buf, | |
254 | env->vfp.zregs[reg].d[vq * 2 + 1], | |
255 | env->vfp.zregs[reg].d[vq * 2]); | |
256 | } | |
257 | return len; | |
258 | } | |
259 | case 32: | |
260 | return gdb_get_reg32(buf, vfp_get_fpsr(env)); | |
261 | case 33: | |
262 | return gdb_get_reg32(buf, vfp_get_fpcr(env)); | |
263 | /* then 16 predicates and the ffr */ | |
264 | case 34 ... 50: | |
265 | { | |
266 | int preg = reg - 34; | |
267 | int vq, len = 0; | |
268 | for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { | |
269 | len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); | |
270 | } | |
271 | return len; | |
272 | } | |
273 | case 51: | |
274 | { | |
275 | /* | |
276 | * We report in Vector Granules (VG) which is 64bit in a Z reg | |
277 | * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. | |
278 | */ | |
279 | int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; | |
797920b9 | 280 | return gdb_get_reg64(buf, vq * 2); |
d12379c5 AB |
281 | } |
282 | default: | |
283 | /* gdbstub asked for something out our range */ | |
284 | qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); | |
285 | break; | |
286 | } | |
287 | ||
288 | return 0; | |
289 | } | |
290 | ||
291 | static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) | |
292 | { | |
293 | ARMCPU *cpu = env_archcpu(env); | |
294 | ||
295 | /* The first 32 registers are the zregs */ | |
296 | switch (reg) { | |
297 | /* The first 32 registers are the zregs */ | |
298 | case 0 ... 31: | |
299 | { | |
300 | int vq, len = 0; | |
301 | uint64_t *p = (uint64_t *) buf; | |
302 | for (vq = 0; vq < cpu->sve_max_vq; vq++) { | |
303 | env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; | |
304 | env->vfp.zregs[reg].d[vq * 2] = *p++; | |
305 | len += 16; | |
306 | } | |
307 | return len; | |
308 | } | |
309 | case 32: | |
310 | vfp_set_fpsr(env, *(uint32_t *)buf); | |
311 | return 4; | |
312 | case 33: | |
313 | vfp_set_fpcr(env, *(uint32_t *)buf); | |
314 | return 4; | |
315 | case 34 ... 50: | |
316 | { | |
317 | int preg = reg - 34; | |
318 | int vq, len = 0; | |
319 | uint64_t *p = (uint64_t *) buf; | |
320 | for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { | |
321 | env->vfp.pregs[preg].p[vq / 4] = *p++; | |
322 | len += 8; | |
323 | } | |
324 | return len; | |
325 | } | |
326 | case 51: | |
327 | /* cannot set vg via gdbstub */ | |
328 | return 0; | |
329 | default: | |
330 | /* gdbstub asked for something out our range */ | |
331 | break; | |
332 | } | |
333 | ||
334 | return 0; | |
335 | } | |
336 | #endif /* TARGET_AARCH64 */ | |
337 | ||
375421cc PM |
338 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
339 | { | |
340 | /* Return true if the regdef would cause an assertion if you called | |
341 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
342 | * program bug for it not to have the NO_RAW flag). | |
343 | * NB that returning false here doesn't necessarily mean that calling | |
344 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
345 | * read/write access functions which are safe for raw use" from "has | |
346 | * read/write access functions which have side effects but has forgotten | |
347 | * to provide raw access functions". | |
348 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
349 | * and assertions in raw_read()/raw_write(). | |
350 | */ | |
351 | if ((ri->type & ARM_CP_CONST) || | |
352 | ri->fieldoffset || | |
353 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
354 | return false; | |
355 | } | |
356 | return true; | |
357 | } | |
358 | ||
b698e4ee | 359 | bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) |
721fae12 PM |
360 | { |
361 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
362 | int i; | |
363 | bool ok = true; | |
364 | ||
365 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
366 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
367 | const ARMCPRegInfo *ri; | |
b698e4ee | 368 | uint64_t newval; |
59a1c327 | 369 | |
60322b39 | 370 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
371 | if (!ri) { |
372 | ok = false; | |
373 | continue; | |
374 | } | |
7a0e58fa | 375 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
376 | continue; |
377 | } | |
b698e4ee PM |
378 | |
379 | newval = read_raw_cp_reg(&cpu->env, ri); | |
380 | if (kvm_sync) { | |
381 | /* | |
382 | * Only sync if the previous list->cpustate sync succeeded. | |
383 | * Rather than tracking the success/failure state for every | |
384 | * item in the list, we just recheck "does the raw write we must | |
385 | * have made in write_list_to_cpustate() read back OK" here. | |
386 | */ | |
387 | uint64_t oldval = cpu->cpreg_values[i]; | |
388 | ||
389 | if (oldval == newval) { | |
390 | continue; | |
391 | } | |
392 | ||
393 | write_raw_cp_reg(&cpu->env, ri, oldval); | |
394 | if (read_raw_cp_reg(&cpu->env, ri) != oldval) { | |
395 | continue; | |
396 | } | |
397 | ||
398 | write_raw_cp_reg(&cpu->env, ri, newval); | |
399 | } | |
400 | cpu->cpreg_values[i] = newval; | |
721fae12 PM |
401 | } |
402 | return ok; | |
403 | } | |
404 | ||
405 | bool write_list_to_cpustate(ARMCPU *cpu) | |
406 | { | |
407 | int i; | |
408 | bool ok = true; | |
409 | ||
410 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
411 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
412 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
413 | const ARMCPRegInfo *ri; |
414 | ||
60322b39 | 415 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
416 | if (!ri) { |
417 | ok = false; | |
418 | continue; | |
419 | } | |
7a0e58fa | 420 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
421 | continue; |
422 | } | |
423 | /* Write value and confirm it reads back as written | |
424 | * (to catch read-only registers and partially read-only | |
425 | * registers where the incoming migration value doesn't match) | |
426 | */ | |
59a1c327 PM |
427 | write_raw_cp_reg(&cpu->env, ri, v); |
428 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
429 | ok = false; |
430 | } | |
431 | } | |
432 | return ok; | |
433 | } | |
434 | ||
435 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
436 | { | |
437 | ARMCPU *cpu = opaque; | |
438 | uint64_t regidx; | |
439 | const ARMCPRegInfo *ri; | |
440 | ||
441 | regidx = *(uint32_t *)key; | |
60322b39 | 442 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 443 | |
7a0e58fa | 444 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
445 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
446 | /* The value array need not be initialized at this point */ | |
447 | cpu->cpreg_array_len++; | |
448 | } | |
449 | } | |
450 | ||
451 | static void count_cpreg(gpointer key, gpointer opaque) | |
452 | { | |
453 | ARMCPU *cpu = opaque; | |
454 | uint64_t regidx; | |
455 | const ARMCPRegInfo *ri; | |
456 | ||
457 | regidx = *(uint32_t *)key; | |
60322b39 | 458 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 459 | |
7a0e58fa | 460 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
461 | cpu->cpreg_array_len++; |
462 | } | |
463 | } | |
464 | ||
465 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
466 | { | |
cbf239b7 AR |
467 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
468 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 469 | |
cbf239b7 AR |
470 | if (aidx > bidx) { |
471 | return 1; | |
472 | } | |
473 | if (aidx < bidx) { | |
474 | return -1; | |
475 | } | |
476 | return 0; | |
721fae12 PM |
477 | } |
478 | ||
479 | void init_cpreg_list(ARMCPU *cpu) | |
480 | { | |
481 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
482 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
483 | */ | |
57b6d95e | 484 | GList *keys; |
721fae12 PM |
485 | int arraylen; |
486 | ||
57b6d95e | 487 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
488 | keys = g_list_sort(keys, cpreg_key_compare); |
489 | ||
490 | cpu->cpreg_array_len = 0; | |
491 | ||
492 | g_list_foreach(keys, count_cpreg, cpu); | |
493 | ||
494 | arraylen = cpu->cpreg_array_len; | |
495 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
496 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
497 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
498 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
499 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
500 | cpu->cpreg_array_len = 0; | |
501 | ||
502 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
503 | ||
504 | assert(cpu->cpreg_array_len == arraylen); | |
505 | ||
506 | g_list_free(keys); | |
507 | } | |
508 | ||
68e9c2fe | 509 | /* |
93dd1e61 | 510 | * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. |
68e9c2fe EI |
511 | */ |
512 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
3f208fd7 PM |
513 | const ARMCPRegInfo *ri, |
514 | bool isread) | |
68e9c2fe | 515 | { |
93dd1e61 EI |
516 | if (!is_a64(env) && arm_current_el(env) == 3 && |
517 | arm_is_secure_below_el3(env)) { | |
68e9c2fe EI |
518 | return CP_ACCESS_TRAP_UNCATEGORIZED; |
519 | } | |
520 | return CP_ACCESS_OK; | |
521 | } | |
522 | ||
5513c3ab PM |
523 | /* Some secure-only AArch32 registers trap to EL3 if used from |
524 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). | |
525 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. | |
526 | * We assume that the .access field is set to PL1_RW. | |
527 | */ | |
528 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, | |
3f208fd7 PM |
529 | const ARMCPRegInfo *ri, |
530 | bool isread) | |
5513c3ab PM |
531 | { |
532 | if (arm_current_el(env) == 3) { | |
533 | return CP_ACCESS_OK; | |
534 | } | |
535 | if (arm_is_secure_below_el3(env)) { | |
536 | return CP_ACCESS_TRAP_EL3; | |
537 | } | |
538 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ | |
539 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
540 | } | |
541 | ||
59dd089c RDC |
542 | static uint64_t arm_mdcr_el2_eff(CPUARMState *env) |
543 | { | |
544 | return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; | |
545 | } | |
546 | ||
187f678d PM |
547 | /* Check for traps to "powerdown debug" registers, which are controlled |
548 | * by MDCR.TDOSA | |
549 | */ | |
550 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, | |
551 | bool isread) | |
552 | { | |
553 | int el = arm_current_el(env); | |
59dd089c RDC |
554 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
555 | bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 556 | (arm_hcr_el2_eff(env) & HCR_TGE); |
187f678d | 557 | |
59dd089c | 558 | if (el < 2 && mdcr_el2_tdosa) { |
187f678d PM |
559 | return CP_ACCESS_TRAP_EL2; |
560 | } | |
561 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { | |
562 | return CP_ACCESS_TRAP_EL3; | |
563 | } | |
564 | return CP_ACCESS_OK; | |
565 | } | |
566 | ||
91b0a238 PM |
567 | /* Check for traps to "debug ROM" registers, which are controlled |
568 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. | |
569 | */ | |
570 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, | |
571 | bool isread) | |
572 | { | |
573 | int el = arm_current_el(env); | |
59dd089c RDC |
574 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
575 | bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 576 | (arm_hcr_el2_eff(env) & HCR_TGE); |
91b0a238 | 577 | |
59dd089c | 578 | if (el < 2 && mdcr_el2_tdra) { |
91b0a238 PM |
579 | return CP_ACCESS_TRAP_EL2; |
580 | } | |
581 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
582 | return CP_ACCESS_TRAP_EL3; | |
583 | } | |
584 | return CP_ACCESS_OK; | |
585 | } | |
586 | ||
d6c8cf81 PM |
587 | /* Check for traps to general debug registers, which are controlled |
588 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. | |
589 | */ | |
590 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, | |
591 | bool isread) | |
592 | { | |
593 | int el = arm_current_el(env); | |
59dd089c RDC |
594 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
595 | bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 596 | (arm_hcr_el2_eff(env) & HCR_TGE); |
d6c8cf81 | 597 | |
59dd089c | 598 | if (el < 2 && mdcr_el2_tda) { |
d6c8cf81 PM |
599 | return CP_ACCESS_TRAP_EL2; |
600 | } | |
601 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
602 | return CP_ACCESS_TRAP_EL3; | |
603 | } | |
604 | return CP_ACCESS_OK; | |
605 | } | |
606 | ||
1fce1ba9 PM |
607 | /* Check for traps to performance monitor registers, which are controlled |
608 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. | |
609 | */ | |
610 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, | |
611 | bool isread) | |
612 | { | |
613 | int el = arm_current_el(env); | |
59dd089c | 614 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
1fce1ba9 | 615 | |
59dd089c | 616 | if (el < 2 && (mdcr_el2 & MDCR_TPM)) { |
1fce1ba9 PM |
617 | return CP_ACCESS_TRAP_EL2; |
618 | } | |
619 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
620 | return CP_ACCESS_TRAP_EL3; | |
621 | } | |
622 | return CP_ACCESS_OK; | |
623 | } | |
624 | ||
84929218 RH |
625 | /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ |
626 | static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, | |
627 | bool isread) | |
628 | { | |
629 | if (arm_current_el(env) == 1) { | |
630 | uint64_t trap = isread ? HCR_TRVM : HCR_TVM; | |
631 | if (arm_hcr_el2_eff(env) & trap) { | |
632 | return CP_ACCESS_TRAP_EL2; | |
633 | } | |
634 | } | |
635 | return CP_ACCESS_OK; | |
636 | } | |
637 | ||
1803d271 RH |
638 | /* Check for traps from EL1 due to HCR_EL2.TSW. */ |
639 | static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, | |
640 | bool isread) | |
641 | { | |
642 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { | |
643 | return CP_ACCESS_TRAP_EL2; | |
644 | } | |
645 | return CP_ACCESS_OK; | |
646 | } | |
647 | ||
99602377 RH |
648 | /* Check for traps from EL1 due to HCR_EL2.TACR. */ |
649 | static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, | |
650 | bool isread) | |
651 | { | |
652 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { | |
653 | return CP_ACCESS_TRAP_EL2; | |
654 | } | |
655 | return CP_ACCESS_OK; | |
656 | } | |
657 | ||
30881b73 RH |
658 | /* Check for traps from EL1 due to HCR_EL2.TTLB. */ |
659 | static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, | |
660 | bool isread) | |
661 | { | |
662 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { | |
663 | return CP_ACCESS_TRAP_EL2; | |
664 | } | |
665 | return CP_ACCESS_OK; | |
666 | } | |
667 | ||
c4241c7d | 668 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 669 | { |
2fc0cc0e | 670 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 671 | |
8d5c773e | 672 | raw_write(env, ri, value); |
d10eb08f | 673 | tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
674 | } |
675 | ||
c4241c7d | 676 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 677 | { |
2fc0cc0e | 678 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 679 | |
8d5c773e | 680 | if (raw_read(env, ri) != value) { |
08de207b PM |
681 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
682 | * not modified virtual addresses, so this causes a TLB flush. | |
683 | */ | |
d10eb08f | 684 | tlb_flush(CPU(cpu)); |
8d5c773e | 685 | raw_write(env, ri, value); |
08de207b | 686 | } |
08de207b | 687 | } |
c4241c7d PM |
688 | |
689 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
690 | uint64_t value) | |
08de207b | 691 | { |
2fc0cc0e | 692 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 693 | |
452a0955 | 694 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) |
014406b5 | 695 | && !extended_addresses_enabled(env)) { |
08de207b PM |
696 | /* For VMSA (when not using the LPAE long descriptor page table |
697 | * format) this register includes the ASID, so do a TLB flush. | |
698 | * For PMSA it is purely a process ID and no action is needed. | |
699 | */ | |
d10eb08f | 700 | tlb_flush(CPU(cpu)); |
08de207b | 701 | } |
8d5c773e | 702 | raw_write(env, ri, value); |
08de207b PM |
703 | } |
704 | ||
b4ab8ce9 PM |
705 | /* IS variants of TLB operations must affect all cores */ |
706 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
707 | uint64_t value) | |
708 | { | |
29a0af61 | 709 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
710 | |
711 | tlb_flush_all_cpus_synced(cs); | |
712 | } | |
713 | ||
714 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
715 | uint64_t value) | |
716 | { | |
29a0af61 | 717 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
718 | |
719 | tlb_flush_all_cpus_synced(cs); | |
720 | } | |
721 | ||
722 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
723 | uint64_t value) | |
724 | { | |
29a0af61 | 725 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
726 | |
727 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); | |
728 | } | |
729 | ||
730 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
731 | uint64_t value) | |
732 | { | |
29a0af61 | 733 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
734 | |
735 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); | |
736 | } | |
737 | ||
738 | /* | |
739 | * Non-IS variants of TLB operations are upgraded to | |
373e7ffd | 740 | * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to |
b4ab8ce9 PM |
741 | * force broadcast of these operations. |
742 | */ | |
743 | static bool tlb_force_broadcast(CPUARMState *env) | |
744 | { | |
373e7ffd | 745 | return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); |
b4ab8ce9 PM |
746 | } |
747 | ||
c4241c7d PM |
748 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
749 | uint64_t value) | |
d929823f PM |
750 | { |
751 | /* Invalidate all (TLBIALL) */ | |
527db2be | 752 | CPUState *cs = env_cpu(env); |
00c8cb0a | 753 | |
b4ab8ce9 | 754 | if (tlb_force_broadcast(env)) { |
527db2be RH |
755 | tlb_flush_all_cpus_synced(cs); |
756 | } else { | |
757 | tlb_flush(cs); | |
b4ab8ce9 | 758 | } |
d929823f PM |
759 | } |
760 | ||
c4241c7d PM |
761 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
762 | uint64_t value) | |
d929823f PM |
763 | { |
764 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
527db2be | 765 | CPUState *cs = env_cpu(env); |
31b030d4 | 766 | |
527db2be | 767 | value &= TARGET_PAGE_MASK; |
b4ab8ce9 | 768 | if (tlb_force_broadcast(env)) { |
527db2be RH |
769 | tlb_flush_page_all_cpus_synced(cs, value); |
770 | } else { | |
771 | tlb_flush_page(cs, value); | |
b4ab8ce9 | 772 | } |
d929823f PM |
773 | } |
774 | ||
c4241c7d PM |
775 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
776 | uint64_t value) | |
d929823f PM |
777 | { |
778 | /* Invalidate by ASID (TLBIASID) */ | |
527db2be | 779 | CPUState *cs = env_cpu(env); |
00c8cb0a | 780 | |
b4ab8ce9 | 781 | if (tlb_force_broadcast(env)) { |
527db2be RH |
782 | tlb_flush_all_cpus_synced(cs); |
783 | } else { | |
784 | tlb_flush(cs); | |
b4ab8ce9 | 785 | } |
d929823f PM |
786 | } |
787 | ||
c4241c7d PM |
788 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
789 | uint64_t value) | |
d929823f PM |
790 | { |
791 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
527db2be | 792 | CPUState *cs = env_cpu(env); |
31b030d4 | 793 | |
527db2be | 794 | value &= TARGET_PAGE_MASK; |
b4ab8ce9 | 795 | if (tlb_force_broadcast(env)) { |
527db2be RH |
796 | tlb_flush_page_all_cpus_synced(cs, value); |
797 | } else { | |
798 | tlb_flush_page(cs, value); | |
b4ab8ce9 | 799 | } |
fa439fc5 PM |
800 | } |
801 | ||
541ef8c2 SS |
802 | static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
803 | uint64_t value) | |
804 | { | |
29a0af61 | 805 | CPUState *cs = env_cpu(env); |
541ef8c2 | 806 | |
0336cbf8 | 807 | tlb_flush_by_mmuidx(cs, |
01b98b68 | 808 | ARMMMUIdxBit_E10_1 | |
452ef8cb | 809 | ARMMMUIdxBit_E10_1_PAN | |
bf05340c | 810 | ARMMMUIdxBit_E10_0); |
541ef8c2 SS |
811 | } |
812 | ||
813 | static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
814 | uint64_t value) | |
815 | { | |
29a0af61 | 816 | CPUState *cs = env_cpu(env); |
541ef8c2 | 817 | |
a67cf277 | 818 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
01b98b68 | 819 | ARMMMUIdxBit_E10_1 | |
452ef8cb | 820 | ARMMMUIdxBit_E10_1_PAN | |
bf05340c | 821 | ARMMMUIdxBit_E10_0); |
541ef8c2 SS |
822 | } |
823 | ||
541ef8c2 SS |
824 | |
825 | static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
826 | uint64_t value) | |
827 | { | |
29a0af61 | 828 | CPUState *cs = env_cpu(env); |
541ef8c2 | 829 | |
e013b741 | 830 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); |
541ef8c2 SS |
831 | } |
832 | ||
833 | static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
834 | uint64_t value) | |
835 | { | |
29a0af61 | 836 | CPUState *cs = env_cpu(env); |
541ef8c2 | 837 | |
e013b741 | 838 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); |
541ef8c2 SS |
839 | } |
840 | ||
841 | static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
842 | uint64_t value) | |
843 | { | |
29a0af61 | 844 | CPUState *cs = env_cpu(env); |
541ef8c2 SS |
845 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
846 | ||
e013b741 | 847 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); |
541ef8c2 SS |
848 | } |
849 | ||
850 | static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
851 | uint64_t value) | |
852 | { | |
29a0af61 | 853 | CPUState *cs = env_cpu(env); |
541ef8c2 SS |
854 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
855 | ||
a67cf277 | 856 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
e013b741 | 857 | ARMMMUIdxBit_E2); |
541ef8c2 SS |
858 | } |
859 | ||
e9aa6c21 | 860 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
861 | /* Define the secure and non-secure FCSE identifier CP registers |
862 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
863 | * the secure register to be properly reset and migrated. There is also no | |
864 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
865 | */ | |
9c513e78 | 866 | { .name = "FCSEIDR", |
54bf36ed FA |
867 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
868 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
869 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
870 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
9c513e78 | 871 | { .name = "FCSEIDR_S", |
54bf36ed FA |
872 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
873 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
874 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 875 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
876 | /* Define the secure and non-secure context identifier CP registers |
877 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
878 | * the secure register to be properly reset and migrated. In the | |
879 | * non-secure case, the 32-bit register will have reset and migration | |
880 | * disabled during registration as it is handled by the 64-bit instance. | |
881 | */ | |
882 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 883 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
84929218 RH |
884 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
885 | .secure = ARM_CP_SECSTATE_NS, | |
54bf36ed FA |
886 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), |
887 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
9c513e78 | 888 | { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, |
54bf36ed | 889 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
84929218 RH |
890 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
891 | .secure = ARM_CP_SECSTATE_S, | |
54bf36ed | 892 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), |
d4e6df63 | 893 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
894 | REGINFO_SENTINEL |
895 | }; | |
896 | ||
897 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
898 | /* NB: Some of these registers exist in v8 but with more precise | |
899 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
900 | */ | |
901 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
902 | { .name = "DACR", |
903 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
84929218 | 904 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
0c17d68c FA |
905 | .writefn = dacr_write, .raw_writefn = raw_write, |
906 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
907 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
908 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
909 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 910 | */ |
a903c449 EI |
911 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
912 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
913 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
914 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
915 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
916 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
917 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 918 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
919 | /* Cache maintenance ops; some of this space may be overridden later. */ |
920 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
921 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
922 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
923 | REGINFO_SENTINEL |
924 | }; | |
925 | ||
7d57f408 PM |
926 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
927 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
928 | * over-broad. | |
929 | */ | |
930 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
931 | .access = PL1_W, .type = ARM_CP_WFI }, | |
932 | REGINFO_SENTINEL | |
933 | }; | |
934 | ||
935 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
936 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
937 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
938 | */ | |
939 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
940 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
941 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
942 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
943 | * OMAPCP will override this space. | |
944 | */ | |
945 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
946 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
947 | .resetvalue = 0 }, | |
948 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
949 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
950 | .resetvalue = 0 }, | |
776d4e5c PM |
951 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
952 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 953 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 954 | .resetvalue = 0 }, |
50300698 PM |
955 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
956 | * implementing it as RAZ means the "debug architecture version" bits | |
957 | * will read as a reserved value, which should cause Linux to not try | |
958 | * to use the debug hardware. | |
959 | */ | |
960 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
961 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
962 | /* MMU TLB control. Note that the wildcarding means we cover not just |
963 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
964 | */ | |
965 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
966 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 967 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
968 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
969 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 970 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
971 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
972 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 973 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
974 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
975 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 976 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
977 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
978 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
979 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
980 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
981 | REGINFO_SENTINEL |
982 | }; | |
983 | ||
c4241c7d PM |
984 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
985 | uint64_t value) | |
2771db27 | 986 | { |
f0aff255 FA |
987 | uint32_t mask = 0; |
988 | ||
989 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
990 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
991 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
992 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
993 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
994 | */ | |
7fbc6a40 | 995 | if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { |
f0aff255 FA |
996 | /* VFP coprocessor: cp10 & cp11 [23:20] */ |
997 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
998 | ||
999 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
1000 | /* ASEDIS [31] bit is RAO/WI */ | |
1001 | value |= (1 << 31); | |
1002 | } | |
1003 | ||
1004 | /* VFPv3 and upwards with NEON implement 32 double precision | |
1005 | * registers (D0-D31). | |
1006 | */ | |
a6627f5f | 1007 | if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { |
f0aff255 FA |
1008 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ |
1009 | value |= (1 << 30); | |
1010 | } | |
1011 | } | |
1012 | value &= mask; | |
2771db27 | 1013 | } |
fc1120a7 PM |
1014 | |
1015 | /* | |
1016 | * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 | |
1017 | * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. | |
1018 | */ | |
1019 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
1020 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
1021 | value &= ~(0xf << 20); | |
1022 | value |= env->cp15.cpacr_el1 & (0xf << 20); | |
1023 | } | |
1024 | ||
7ebd5f2e | 1025 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
1026 | } |
1027 | ||
fc1120a7 PM |
1028 | static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1029 | { | |
1030 | /* | |
1031 | * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 | |
1032 | * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. | |
1033 | */ | |
1034 | uint64_t value = env->cp15.cpacr_el1; | |
1035 | ||
1036 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
1037 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
1038 | value &= ~(0xf << 20); | |
1039 | } | |
1040 | return value; | |
1041 | } | |
1042 | ||
1043 | ||
5deac39c PM |
1044 | static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1045 | { | |
1046 | /* Call cpacr_write() so that we reset with the correct RAO bits set | |
1047 | * for our CPU features. | |
1048 | */ | |
1049 | cpacr_write(env, ri, 0); | |
1050 | } | |
1051 | ||
3f208fd7 PM |
1052 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1053 | bool isread) | |
c6f19164 GB |
1054 | { |
1055 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
1056 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
e6ef0169 RDC |
1057 | if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && |
1058 | (env->cp15.cptr_el[2] & CPTR_TCPAC)) { | |
c6f19164 GB |
1059 | return CP_ACCESS_TRAP_EL2; |
1060 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
1061 | } else if (arm_current_el(env) < 3 && | |
1062 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
1063 | return CP_ACCESS_TRAP_EL3; | |
1064 | } | |
1065 | } | |
1066 | ||
1067 | return CP_ACCESS_OK; | |
1068 | } | |
1069 | ||
3f208fd7 PM |
1070 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1071 | bool isread) | |
c6f19164 GB |
1072 | { |
1073 | /* Check if CPTR accesses are set to trap to EL3 */ | |
1074 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
1075 | return CP_ACCESS_TRAP_EL3; | |
1076 | } | |
1077 | ||
1078 | return CP_ACCESS_OK; | |
1079 | } | |
1080 | ||
7d57f408 PM |
1081 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
1082 | /* prefetch by MVA in v6, NOP in v7 */ | |
1083 | { .name = "MVA_prefetch", | |
1084 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
1085 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
1086 | /* We need to break the TB after ISB to execute self-modifying code |
1087 | * correctly and also to take any pending interrupts immediately. | |
1088 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
1089 | */ | |
7d57f408 | 1090 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 1091 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 1092 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 1093 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 1094 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 1095 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 1096 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
84929218 | 1097 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
b848ce2b FA |
1098 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
1099 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
1100 | .resetvalue = 0, }, |
1101 | /* Watchpoint Fault Address Register : should actually only be present | |
1102 | * for 1136, 1176, 11MPCore. | |
1103 | */ | |
1104 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1105 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 1106 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 1107 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 1108 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
fc1120a7 | 1109 | .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, |
7d57f408 PM |
1110 | REGINFO_SENTINEL |
1111 | }; | |
1112 | ||
7ece99b1 AL |
1113 | /* Definitions for the PMU registers */ |
1114 | #define PMCRN_MASK 0xf800 | |
1115 | #define PMCRN_SHIFT 11 | |
f4efb4b2 | 1116 | #define PMCRLC 0x40 |
a1ed04dd PM |
1117 | #define PMCRDP 0x20 |
1118 | #define PMCRX 0x10 | |
7ece99b1 AL |
1119 | #define PMCRD 0x8 |
1120 | #define PMCRC 0x4 | |
5ecdd3e4 | 1121 | #define PMCRP 0x2 |
7ece99b1 | 1122 | #define PMCRE 0x1 |
62d96ff4 PM |
1123 | /* |
1124 | * Mask of PMCR bits writeable by guest (not including WO bits like C, P, | |
1125 | * which can be written as 1 to trigger behaviour but which stay RAZ). | |
1126 | */ | |
1127 | #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) | |
7ece99b1 | 1128 | |
033614c4 AL |
1129 | #define PMXEVTYPER_P 0x80000000 |
1130 | #define PMXEVTYPER_U 0x40000000 | |
1131 | #define PMXEVTYPER_NSK 0x20000000 | |
1132 | #define PMXEVTYPER_NSU 0x10000000 | |
1133 | #define PMXEVTYPER_NSH 0x08000000 | |
1134 | #define PMXEVTYPER_M 0x04000000 | |
1135 | #define PMXEVTYPER_MT 0x02000000 | |
1136 | #define PMXEVTYPER_EVTCOUNT 0x0000ffff | |
1137 | #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ | |
1138 | PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ | |
1139 | PMXEVTYPER_M | PMXEVTYPER_MT | \ | |
1140 | PMXEVTYPER_EVTCOUNT) | |
1141 | ||
4b8afa1f AL |
1142 | #define PMCCFILTR 0xf8000000 |
1143 | #define PMCCFILTR_M PMXEVTYPER_M | |
1144 | #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) | |
1145 | ||
7ece99b1 AL |
1146 | static inline uint32_t pmu_num_counters(CPUARMState *env) |
1147 | { | |
1148 | return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; | |
1149 | } | |
1150 | ||
1151 | /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ | |
1152 | static inline uint64_t pmu_counter_mask(CPUARMState *env) | |
1153 | { | |
1154 | return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); | |
1155 | } | |
1156 | ||
57a4a11b AL |
1157 | typedef struct pm_event { |
1158 | uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ | |
1159 | /* If the event is supported on this CPU (used to generate PMCEID[01]) */ | |
1160 | bool (*supported)(CPUARMState *); | |
1161 | /* | |
1162 | * Retrieve the current count of the underlying event. The programmed | |
1163 | * counters hold a difference from the return value from this function | |
1164 | */ | |
1165 | uint64_t (*get_count)(CPUARMState *); | |
4e7beb0c AL |
1166 | /* |
1167 | * Return how many nanoseconds it will take (at a minimum) for count events | |
1168 | * to occur. A negative value indicates the counter will never overflow, or | |
1169 | * that the counter has otherwise arranged for the overflow bit to be set | |
1170 | * and the PMU interrupt to be raised on overflow. | |
1171 | */ | |
1172 | int64_t (*ns_per_count)(uint64_t); | |
57a4a11b AL |
1173 | } pm_event; |
1174 | ||
b2e23725 AL |
1175 | static bool event_always_supported(CPUARMState *env) |
1176 | { | |
1177 | return true; | |
1178 | } | |
1179 | ||
0d4bfd7d AL |
1180 | static uint64_t swinc_get_count(CPUARMState *env) |
1181 | { | |
1182 | /* | |
1183 | * SW_INCR events are written directly to the pmevcntr's by writes to | |
1184 | * PMSWINC, so there is no underlying count maintained by the PMU itself | |
1185 | */ | |
1186 | return 0; | |
1187 | } | |
1188 | ||
4e7beb0c AL |
1189 | static int64_t swinc_ns_per(uint64_t ignored) |
1190 | { | |
1191 | return -1; | |
1192 | } | |
1193 | ||
b2e23725 AL |
1194 | /* |
1195 | * Return the underlying cycle count for the PMU cycle counters. If we're in | |
1196 | * usermode, simply return 0. | |
1197 | */ | |
1198 | static uint64_t cycles_get_count(CPUARMState *env) | |
1199 | { | |
1200 | #ifndef CONFIG_USER_ONLY | |
1201 | return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | |
1202 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
1203 | #else | |
1204 | return cpu_get_host_ticks(); | |
1205 | #endif | |
1206 | } | |
1207 | ||
1208 | #ifndef CONFIG_USER_ONLY | |
4e7beb0c AL |
1209 | static int64_t cycles_ns_per(uint64_t cycles) |
1210 | { | |
1211 | return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; | |
1212 | } | |
1213 | ||
b2e23725 AL |
1214 | static bool instructions_supported(CPUARMState *env) |
1215 | { | |
740b1759 | 1216 | return icount_enabled() == 1; /* Precise instruction counting */ |
b2e23725 AL |
1217 | } |
1218 | ||
1219 | static uint64_t instructions_get_count(CPUARMState *env) | |
1220 | { | |
8191d368 | 1221 | return (uint64_t)icount_get_raw(); |
b2e23725 | 1222 | } |
4e7beb0c AL |
1223 | |
1224 | static int64_t instructions_ns_per(uint64_t icount) | |
1225 | { | |
8191d368 | 1226 | return icount_to_ns((int64_t)icount); |
4e7beb0c | 1227 | } |
b2e23725 AL |
1228 | #endif |
1229 | ||
0727f63b PM |
1230 | static bool pmu_8_1_events_supported(CPUARMState *env) |
1231 | { | |
1232 | /* For events which are supported in any v8.1 PMU */ | |
1233 | return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); | |
1234 | } | |
1235 | ||
15dd1ebd PM |
1236 | static bool pmu_8_4_events_supported(CPUARMState *env) |
1237 | { | |
1238 | /* For events which are supported in any v8.1 PMU */ | |
1239 | return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); | |
1240 | } | |
1241 | ||
0727f63b PM |
1242 | static uint64_t zero_event_get_count(CPUARMState *env) |
1243 | { | |
1244 | /* For events which on QEMU never fire, so their count is always zero */ | |
1245 | return 0; | |
1246 | } | |
1247 | ||
1248 | static int64_t zero_event_ns_per(uint64_t cycles) | |
1249 | { | |
1250 | /* An event which never fires can never overflow */ | |
1251 | return -1; | |
1252 | } | |
1253 | ||
57a4a11b | 1254 | static const pm_event pm_events[] = { |
0d4bfd7d AL |
1255 | { .number = 0x000, /* SW_INCR */ |
1256 | .supported = event_always_supported, | |
1257 | .get_count = swinc_get_count, | |
4e7beb0c | 1258 | .ns_per_count = swinc_ns_per, |
0d4bfd7d | 1259 | }, |
b2e23725 AL |
1260 | #ifndef CONFIG_USER_ONLY |
1261 | { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ | |
1262 | .supported = instructions_supported, | |
1263 | .get_count = instructions_get_count, | |
4e7beb0c | 1264 | .ns_per_count = instructions_ns_per, |
b2e23725 AL |
1265 | }, |
1266 | { .number = 0x011, /* CPU_CYCLES, Cycle */ | |
1267 | .supported = event_always_supported, | |
1268 | .get_count = cycles_get_count, | |
4e7beb0c | 1269 | .ns_per_count = cycles_ns_per, |
0727f63b | 1270 | }, |
b2e23725 | 1271 | #endif |
0727f63b PM |
1272 | { .number = 0x023, /* STALL_FRONTEND */ |
1273 | .supported = pmu_8_1_events_supported, | |
1274 | .get_count = zero_event_get_count, | |
1275 | .ns_per_count = zero_event_ns_per, | |
1276 | }, | |
1277 | { .number = 0x024, /* STALL_BACKEND */ | |
1278 | .supported = pmu_8_1_events_supported, | |
1279 | .get_count = zero_event_get_count, | |
1280 | .ns_per_count = zero_event_ns_per, | |
1281 | }, | |
15dd1ebd PM |
1282 | { .number = 0x03c, /* STALL */ |
1283 | .supported = pmu_8_4_events_supported, | |
1284 | .get_count = zero_event_get_count, | |
1285 | .ns_per_count = zero_event_ns_per, | |
1286 | }, | |
57a4a11b AL |
1287 | }; |
1288 | ||
1289 | /* | |
1290 | * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of | |
1291 | * events (i.e. the statistical profiling extension), this implementation | |
1292 | * should first be updated to something sparse instead of the current | |
1293 | * supported_event_map[] array. | |
1294 | */ | |
15dd1ebd | 1295 | #define MAX_EVENT_ID 0x3c |
57a4a11b AL |
1296 | #define UNSUPPORTED_EVENT UINT16_MAX |
1297 | static uint16_t supported_event_map[MAX_EVENT_ID + 1]; | |
1298 | ||
1299 | /* | |
bf8d0969 AL |
1300 | * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map |
1301 | * of ARM event numbers to indices in our pm_events array. | |
57a4a11b AL |
1302 | * |
1303 | * Note: Events in the 0x40XX range are not currently supported. | |
1304 | */ | |
bf8d0969 | 1305 | void pmu_init(ARMCPU *cpu) |
57a4a11b | 1306 | { |
57a4a11b AL |
1307 | unsigned int i; |
1308 | ||
bf8d0969 AL |
1309 | /* |
1310 | * Empty supported_event_map and cpu->pmceid[01] before adding supported | |
1311 | * events to them | |
1312 | */ | |
57a4a11b AL |
1313 | for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { |
1314 | supported_event_map[i] = UNSUPPORTED_EVENT; | |
1315 | } | |
bf8d0969 AL |
1316 | cpu->pmceid0 = 0; |
1317 | cpu->pmceid1 = 0; | |
57a4a11b AL |
1318 | |
1319 | for (i = 0; i < ARRAY_SIZE(pm_events); i++) { | |
1320 | const pm_event *cnt = &pm_events[i]; | |
1321 | assert(cnt->number <= MAX_EVENT_ID); | |
1322 | /* We do not currently support events in the 0x40xx range */ | |
1323 | assert(cnt->number <= 0x3f); | |
1324 | ||
bf8d0969 | 1325 | if (cnt->supported(&cpu->env)) { |
57a4a11b | 1326 | supported_event_map[cnt->number] = i; |
67da43d6 | 1327 | uint64_t event_mask = 1ULL << (cnt->number & 0x1f); |
bf8d0969 AL |
1328 | if (cnt->number & 0x20) { |
1329 | cpu->pmceid1 |= event_mask; | |
1330 | } else { | |
1331 | cpu->pmceid0 |= event_mask; | |
1332 | } | |
57a4a11b AL |
1333 | } |
1334 | } | |
57a4a11b AL |
1335 | } |
1336 | ||
5ecdd3e4 AL |
1337 | /* |
1338 | * Check at runtime whether a PMU event is supported for the current machine | |
1339 | */ | |
1340 | static bool event_supported(uint16_t number) | |
1341 | { | |
1342 | if (number > MAX_EVENT_ID) { | |
1343 | return false; | |
1344 | } | |
1345 | return supported_event_map[number] != UNSUPPORTED_EVENT; | |
1346 | } | |
1347 | ||
3f208fd7 PM |
1348 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1349 | bool isread) | |
200ac0ef | 1350 | { |
3b163b01 | 1351 | /* Performance monitor registers user accessibility is controlled |
1fce1ba9 PM |
1352 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
1353 | * trapping to EL2 or EL3 for other accesses. | |
200ac0ef | 1354 | */ |
1fce1ba9 | 1355 | int el = arm_current_el(env); |
59dd089c | 1356 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
1fce1ba9 | 1357 | |
6ecd0b6b | 1358 | if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { |
fcd25206 | 1359 | return CP_ACCESS_TRAP; |
200ac0ef | 1360 | } |
59dd089c | 1361 | if (el < 2 && (mdcr_el2 & MDCR_TPM)) { |
1fce1ba9 PM |
1362 | return CP_ACCESS_TRAP_EL2; |
1363 | } | |
1364 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
1365 | return CP_ACCESS_TRAP_EL3; | |
1366 | } | |
1367 | ||
fcd25206 | 1368 | return CP_ACCESS_OK; |
200ac0ef PM |
1369 | } |
1370 | ||
6ecd0b6b AB |
1371 | static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, |
1372 | const ARMCPRegInfo *ri, | |
1373 | bool isread) | |
1374 | { | |
1375 | /* ER: event counter read trap control */ | |
1376 | if (arm_feature(env, ARM_FEATURE_V8) | |
1377 | && arm_current_el(env) == 0 | |
1378 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 | |
1379 | && isread) { | |
1380 | return CP_ACCESS_OK; | |
1381 | } | |
1382 | ||
1383 | return pmreg_access(env, ri, isread); | |
1384 | } | |
1385 | ||
1386 | static CPAccessResult pmreg_access_swinc(CPUARMState *env, | |
1387 | const ARMCPRegInfo *ri, | |
1388 | bool isread) | |
1389 | { | |
1390 | /* SW: software increment write trap control */ | |
1391 | if (arm_feature(env, ARM_FEATURE_V8) | |
1392 | && arm_current_el(env) == 0 | |
1393 | && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 | |
1394 | && !isread) { | |
1395 | return CP_ACCESS_OK; | |
1396 | } | |
1397 | ||
1398 | return pmreg_access(env, ri, isread); | |
1399 | } | |
1400 | ||
6ecd0b6b AB |
1401 | static CPAccessResult pmreg_access_selr(CPUARMState *env, |
1402 | const ARMCPRegInfo *ri, | |
1403 | bool isread) | |
1404 | { | |
1405 | /* ER: event counter read trap control */ | |
1406 | if (arm_feature(env, ARM_FEATURE_V8) | |
1407 | && arm_current_el(env) == 0 | |
1408 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { | |
1409 | return CP_ACCESS_OK; | |
1410 | } | |
1411 | ||
1412 | return pmreg_access(env, ri, isread); | |
1413 | } | |
1414 | ||
1415 | static CPAccessResult pmreg_access_ccntr(CPUARMState *env, | |
1416 | const ARMCPRegInfo *ri, | |
1417 | bool isread) | |
1418 | { | |
1419 | /* CR: cycle counter read trap control */ | |
1420 | if (arm_feature(env, ARM_FEATURE_V8) | |
1421 | && arm_current_el(env) == 0 | |
1422 | && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 | |
1423 | && isread) { | |
1424 | return CP_ACCESS_OK; | |
1425 | } | |
1426 | ||
1427 | return pmreg_access(env, ri, isread); | |
1428 | } | |
1429 | ||
033614c4 AL |
1430 | /* Returns true if the counter (pass 31 for PMCCNTR) should count events using |
1431 | * the current EL, security state, and register configuration. | |
1432 | */ | |
1433 | static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) | |
87124fde | 1434 | { |
033614c4 AL |
1435 | uint64_t filter; |
1436 | bool e, p, u, nsk, nsu, nsh, m; | |
1437 | bool enabled, prohibited, filtered; | |
1438 | bool secure = arm_is_secure(env); | |
1439 | int el = arm_current_el(env); | |
59dd089c RDC |
1440 | uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); |
1441 | uint8_t hpmn = mdcr_el2 & MDCR_HPMN; | |
87124fde | 1442 | |
cbbb3041 AJ |
1443 | if (!arm_feature(env, ARM_FEATURE_PMU)) { |
1444 | return false; | |
1445 | } | |
1446 | ||
033614c4 AL |
1447 | if (!arm_feature(env, ARM_FEATURE_EL2) || |
1448 | (counter < hpmn || counter == 31)) { | |
1449 | e = env->cp15.c9_pmcr & PMCRE; | |
1450 | } else { | |
59dd089c | 1451 | e = mdcr_el2 & MDCR_HPME; |
87124fde | 1452 | } |
033614c4 | 1453 | enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); |
87124fde | 1454 | |
033614c4 AL |
1455 | if (!secure) { |
1456 | if (el == 2 && (counter < hpmn || counter == 31)) { | |
59dd089c | 1457 | prohibited = mdcr_el2 & MDCR_HPMD; |
033614c4 AL |
1458 | } else { |
1459 | prohibited = false; | |
1460 | } | |
1461 | } else { | |
1462 | prohibited = arm_feature(env, ARM_FEATURE_EL3) && | |
db1f3afb | 1463 | !(env->cp15.mdcr_el3 & MDCR_SPME); |
033614c4 AL |
1464 | } |
1465 | ||
1466 | if (prohibited && counter == 31) { | |
1467 | prohibited = env->cp15.c9_pmcr & PMCRDP; | |
1468 | } | |
1469 | ||
5ecdd3e4 AL |
1470 | if (counter == 31) { |
1471 | filter = env->cp15.pmccfiltr_el0; | |
1472 | } else { | |
1473 | filter = env->cp15.c14_pmevtyper[counter]; | |
1474 | } | |
033614c4 AL |
1475 | |
1476 | p = filter & PMXEVTYPER_P; | |
1477 | u = filter & PMXEVTYPER_U; | |
1478 | nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); | |
1479 | nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); | |
1480 | nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); | |
1481 | m = arm_el_is_aa64(env, 1) && | |
1482 | arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); | |
1483 | ||
1484 | if (el == 0) { | |
1485 | filtered = secure ? u : u != nsu; | |
1486 | } else if (el == 1) { | |
1487 | filtered = secure ? p : p != nsk; | |
1488 | } else if (el == 2) { | |
1489 | filtered = !nsh; | |
1490 | } else { /* EL3 */ | |
1491 | filtered = m != p; | |
1492 | } | |
1493 | ||
5ecdd3e4 AL |
1494 | if (counter != 31) { |
1495 | /* | |
1496 | * If not checking PMCCNTR, ensure the counter is setup to an event we | |
1497 | * support | |
1498 | */ | |
1499 | uint16_t event = filter & PMXEVTYPER_EVTCOUNT; | |
1500 | if (!event_supported(event)) { | |
1501 | return false; | |
1502 | } | |
1503 | } | |
1504 | ||
033614c4 | 1505 | return enabled && !prohibited && !filtered; |
87124fde | 1506 | } |
033614c4 | 1507 | |
f4efb4b2 AL |
1508 | static void pmu_update_irq(CPUARMState *env) |
1509 | { | |
2fc0cc0e | 1510 | ARMCPU *cpu = env_archcpu(env); |
f4efb4b2 AL |
1511 | qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && |
1512 | (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); | |
1513 | } | |
1514 | ||
5d05b9d4 AL |
1515 | /* |
1516 | * Ensure c15_ccnt is the guest-visible count so that operations such as | |
1517 | * enabling/disabling the counter or filtering, modifying the count itself, | |
1518 | * etc. can be done logically. This is essentially a no-op if the counter is | |
1519 | * not enabled at the time of the call. | |
1520 | */ | |
f2b2f53f | 1521 | static void pmccntr_op_start(CPUARMState *env) |
ec7b4ce4 | 1522 | { |
b2e23725 | 1523 | uint64_t cycles = cycles_get_count(env); |
ec7b4ce4 | 1524 | |
033614c4 | 1525 | if (pmu_counter_enabled(env, 31)) { |
5d05b9d4 AL |
1526 | uint64_t eff_cycles = cycles; |
1527 | if (env->cp15.c9_pmcr & PMCRD) { | |
1528 | /* Increment once every 64 processor clock cycles */ | |
1529 | eff_cycles /= 64; | |
1530 | } | |
1531 | ||
f4efb4b2 AL |
1532 | uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; |
1533 | ||
1534 | uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ | |
1535 | 1ull << 63 : 1ull << 31; | |
1536 | if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { | |
1537 | env->cp15.c9_pmovsr |= (1 << 31); | |
1538 | pmu_update_irq(env); | |
1539 | } | |
1540 | ||
1541 | env->cp15.c15_ccnt = new_pmccntr; | |
ec7b4ce4 | 1542 | } |
5d05b9d4 AL |
1543 | env->cp15.c15_ccnt_delta = cycles; |
1544 | } | |
ec7b4ce4 | 1545 | |
5d05b9d4 AL |
1546 | /* |
1547 | * If PMCCNTR is enabled, recalculate the delta between the clock and the | |
1548 | * guest-visible count. A call to pmccntr_op_finish should follow every call to | |
1549 | * pmccntr_op_start. | |
1550 | */ | |
f2b2f53f | 1551 | static void pmccntr_op_finish(CPUARMState *env) |
5d05b9d4 | 1552 | { |
033614c4 | 1553 | if (pmu_counter_enabled(env, 31)) { |
4e7beb0c AL |
1554 | #ifndef CONFIG_USER_ONLY |
1555 | /* Calculate when the counter will next overflow */ | |
1556 | uint64_t remaining_cycles = -env->cp15.c15_ccnt; | |
1557 | if (!(env->cp15.c9_pmcr & PMCRLC)) { | |
1558 | remaining_cycles = (uint32_t)remaining_cycles; | |
1559 | } | |
1560 | int64_t overflow_in = cycles_ns_per(remaining_cycles); | |
1561 | ||
1562 | if (overflow_in > 0) { | |
1563 | int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
1564 | overflow_in; | |
2fc0cc0e | 1565 | ARMCPU *cpu = env_archcpu(env); |
4e7beb0c AL |
1566 | timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
1567 | } | |
1568 | #endif | |
5d05b9d4 | 1569 | |
4e7beb0c | 1570 | uint64_t prev_cycles = env->cp15.c15_ccnt_delta; |
5d05b9d4 AL |
1571 | if (env->cp15.c9_pmcr & PMCRD) { |
1572 | /* Increment once every 64 processor clock cycles */ | |
1573 | prev_cycles /= 64; | |
1574 | } | |
5d05b9d4 | 1575 | env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; |
ec7b4ce4 AF |
1576 | } |
1577 | } | |
1578 | ||
5ecdd3e4 AL |
1579 | static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) |
1580 | { | |
1581 | ||
1582 | uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; | |
1583 | uint64_t count = 0; | |
1584 | if (event_supported(event)) { | |
1585 | uint16_t event_idx = supported_event_map[event]; | |
1586 | count = pm_events[event_idx].get_count(env); | |
1587 | } | |
1588 | ||
1589 | if (pmu_counter_enabled(env, counter)) { | |
f4efb4b2 AL |
1590 | uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; |
1591 | ||
1592 | if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { | |
1593 | env->cp15.c9_pmovsr |= (1 << counter); | |
1594 | pmu_update_irq(env); | |
1595 | } | |
1596 | env->cp15.c14_pmevcntr[counter] = new_pmevcntr; | |
5ecdd3e4 AL |
1597 | } |
1598 | env->cp15.c14_pmevcntr_delta[counter] = count; | |
1599 | } | |
1600 | ||
1601 | static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) | |
1602 | { | |
1603 | if (pmu_counter_enabled(env, counter)) { | |
4e7beb0c AL |
1604 | #ifndef CONFIG_USER_ONLY |
1605 | uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; | |
1606 | uint16_t event_idx = supported_event_map[event]; | |
1607 | uint64_t delta = UINT32_MAX - | |
1608 | (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; | |
1609 | int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); | |
1610 | ||
1611 | if (overflow_in > 0) { | |
1612 | int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
1613 | overflow_in; | |
2fc0cc0e | 1614 | ARMCPU *cpu = env_archcpu(env); |
4e7beb0c AL |
1615 | timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
1616 | } | |
1617 | #endif | |
1618 | ||
5ecdd3e4 AL |
1619 | env->cp15.c14_pmevcntr_delta[counter] -= |
1620 | env->cp15.c14_pmevcntr[counter]; | |
1621 | } | |
1622 | } | |
1623 | ||
5d05b9d4 AL |
1624 | void pmu_op_start(CPUARMState *env) |
1625 | { | |
5ecdd3e4 | 1626 | unsigned int i; |
5d05b9d4 | 1627 | pmccntr_op_start(env); |
5ecdd3e4 AL |
1628 | for (i = 0; i < pmu_num_counters(env); i++) { |
1629 | pmevcntr_op_start(env, i); | |
1630 | } | |
5d05b9d4 AL |
1631 | } |
1632 | ||
1633 | void pmu_op_finish(CPUARMState *env) | |
1634 | { | |
5ecdd3e4 | 1635 | unsigned int i; |
5d05b9d4 | 1636 | pmccntr_op_finish(env); |
5ecdd3e4 AL |
1637 | for (i = 0; i < pmu_num_counters(env); i++) { |
1638 | pmevcntr_op_finish(env, i); | |
1639 | } | |
5d05b9d4 AL |
1640 | } |
1641 | ||
033614c4 AL |
1642 | void pmu_pre_el_change(ARMCPU *cpu, void *ignored) |
1643 | { | |
1644 | pmu_op_start(&cpu->env); | |
1645 | } | |
1646 | ||
1647 | void pmu_post_el_change(ARMCPU *cpu, void *ignored) | |
1648 | { | |
1649 | pmu_op_finish(&cpu->env); | |
1650 | } | |
1651 | ||
4e7beb0c AL |
1652 | void arm_pmu_timer_cb(void *opaque) |
1653 | { | |
1654 | ARMCPU *cpu = opaque; | |
1655 | ||
1656 | /* | |
1657 | * Update all the counter values based on the current underlying counts, | |
1658 | * triggering interrupts to be raised, if necessary. pmu_op_finish() also | |
1659 | * has the effect of setting the cpu->pmu_timer to the next earliest time a | |
1660 | * counter may expire. | |
1661 | */ | |
1662 | pmu_op_start(&cpu->env); | |
1663 | pmu_op_finish(&cpu->env); | |
1664 | } | |
1665 | ||
c4241c7d PM |
1666 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1667 | uint64_t value) | |
200ac0ef | 1668 | { |
5d05b9d4 | 1669 | pmu_op_start(env); |
7c2cb42b AF |
1670 | |
1671 | if (value & PMCRC) { | |
1672 | /* The counter has been reset */ | |
1673 | env->cp15.c15_ccnt = 0; | |
1674 | } | |
1675 | ||
5ecdd3e4 AL |
1676 | if (value & PMCRP) { |
1677 | unsigned int i; | |
1678 | for (i = 0; i < pmu_num_counters(env); i++) { | |
1679 | env->cp15.c14_pmevcntr[i] = 0; | |
1680 | } | |
1681 | } | |
1682 | ||
62d96ff4 PM |
1683 | env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; |
1684 | env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); | |
7c2cb42b | 1685 | |
5d05b9d4 | 1686 | pmu_op_finish(env); |
7c2cb42b AF |
1687 | } |
1688 | ||
0d4bfd7d AL |
1689 | static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1690 | uint64_t value) | |
1691 | { | |
1692 | unsigned int i; | |
1693 | for (i = 0; i < pmu_num_counters(env); i++) { | |
1694 | /* Increment a counter's count iff: */ | |
1695 | if ((value & (1 << i)) && /* counter's bit is set */ | |
1696 | /* counter is enabled and not filtered */ | |
1697 | pmu_counter_enabled(env, i) && | |
1698 | /* counter is SW_INCR */ | |
1699 | (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { | |
1700 | pmevcntr_op_start(env, i); | |
f4efb4b2 AL |
1701 | |
1702 | /* | |
1703 | * Detect if this write causes an overflow since we can't predict | |
1704 | * PMSWINC overflows like we can for other events | |
1705 | */ | |
1706 | uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; | |
1707 | ||
1708 | if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { | |
1709 | env->cp15.c9_pmovsr |= (1 << i); | |
1710 | pmu_update_irq(env); | |
1711 | } | |
1712 | ||
1713 | env->cp15.c14_pmevcntr[i] = new_pmswinc; | |
1714 | ||
0d4bfd7d AL |
1715 | pmevcntr_op_finish(env, i); |
1716 | } | |
1717 | } | |
1718 | } | |
1719 | ||
7c2cb42b AF |
1720 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1721 | { | |
5d05b9d4 AL |
1722 | uint64_t ret; |
1723 | pmccntr_op_start(env); | |
1724 | ret = env->cp15.c15_ccnt; | |
1725 | pmccntr_op_finish(env); | |
1726 | return ret; | |
7c2cb42b AF |
1727 | } |
1728 | ||
6b040780 WH |
1729 | static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1730 | uint64_t value) | |
1731 | { | |
1732 | /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and | |
1733 | * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the | |
1734 | * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are | |
1735 | * accessed. | |
1736 | */ | |
1737 | env->cp15.c9_pmselr = value & 0x1f; | |
1738 | } | |
1739 | ||
7c2cb42b AF |
1740 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1741 | uint64_t value) | |
1742 | { | |
5d05b9d4 AL |
1743 | pmccntr_op_start(env); |
1744 | env->cp15.c15_ccnt = value; | |
1745 | pmccntr_op_finish(env); | |
200ac0ef | 1746 | } |
421c7ebd PC |
1747 | |
1748 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1749 | uint64_t value) | |
1750 | { | |
1751 | uint64_t cur_val = pmccntr_read(env, NULL); | |
1752 | ||
1753 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
1754 | } | |
1755 | ||
0614601c AF |
1756 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1757 | uint64_t value) | |
1758 | { | |
5d05b9d4 | 1759 | pmccntr_op_start(env); |
4b8afa1f AL |
1760 | env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; |
1761 | pmccntr_op_finish(env); | |
1762 | } | |
1763 | ||
1764 | static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1765 | uint64_t value) | |
1766 | { | |
1767 | pmccntr_op_start(env); | |
1768 | /* M is not accessible from AArch32 */ | |
1769 | env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | | |
1770 | (value & PMCCFILTR); | |
5d05b9d4 | 1771 | pmccntr_op_finish(env); |
0614601c AF |
1772 | } |
1773 | ||
4b8afa1f AL |
1774 | static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) |
1775 | { | |
1776 | /* M is not visible in AArch32 */ | |
1777 | return env->cp15.pmccfiltr_el0 & PMCCFILTR; | |
1778 | } | |
1779 | ||
c4241c7d | 1780 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1781 | uint64_t value) |
1782 | { | |
7ece99b1 | 1783 | value &= pmu_counter_mask(env); |
200ac0ef | 1784 | env->cp15.c9_pmcnten |= value; |
200ac0ef PM |
1785 | } |
1786 | ||
c4241c7d PM |
1787 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1788 | uint64_t value) | |
200ac0ef | 1789 | { |
7ece99b1 | 1790 | value &= pmu_counter_mask(env); |
200ac0ef | 1791 | env->cp15.c9_pmcnten &= ~value; |
200ac0ef PM |
1792 | } |
1793 | ||
c4241c7d PM |
1794 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1795 | uint64_t value) | |
200ac0ef | 1796 | { |
599b71e2 | 1797 | value &= pmu_counter_mask(env); |
200ac0ef | 1798 | env->cp15.c9_pmovsr &= ~value; |
f4efb4b2 | 1799 | pmu_update_irq(env); |
200ac0ef PM |
1800 | } |
1801 | ||
327dd510 AL |
1802 | static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1803 | uint64_t value) | |
1804 | { | |
1805 | value &= pmu_counter_mask(env); | |
1806 | env->cp15.c9_pmovsr |= value; | |
f4efb4b2 | 1807 | pmu_update_irq(env); |
327dd510 AL |
1808 | } |
1809 | ||
5ecdd3e4 AL |
1810 | static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1811 | uint64_t value, const uint8_t counter) | |
200ac0ef | 1812 | { |
5ecdd3e4 AL |
1813 | if (counter == 31) { |
1814 | pmccfiltr_write(env, ri, value); | |
1815 | } else if (counter < pmu_num_counters(env)) { | |
1816 | pmevcntr_op_start(env, counter); | |
1817 | ||
1818 | /* | |
1819 | * If this counter's event type is changing, store the current | |
1820 | * underlying count for the new type in c14_pmevcntr_delta[counter] so | |
1821 | * pmevcntr_op_finish has the correct baseline when it converts back to | |
1822 | * a delta. | |
1823 | */ | |
1824 | uint16_t old_event = env->cp15.c14_pmevtyper[counter] & | |
1825 | PMXEVTYPER_EVTCOUNT; | |
1826 | uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; | |
1827 | if (old_event != new_event) { | |
1828 | uint64_t count = 0; | |
1829 | if (event_supported(new_event)) { | |
1830 | uint16_t event_idx = supported_event_map[new_event]; | |
1831 | count = pm_events[event_idx].get_count(env); | |
1832 | } | |
1833 | env->cp15.c14_pmevcntr_delta[counter] = count; | |
1834 | } | |
1835 | ||
1836 | env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; | |
1837 | pmevcntr_op_finish(env, counter); | |
1838 | } | |
fdb86656 WH |
1839 | /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when |
1840 | * PMSELR value is equal to or greater than the number of implemented | |
1841 | * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. | |
1842 | */ | |
5ecdd3e4 AL |
1843 | } |
1844 | ||
1845 | static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1846 | const uint8_t counter) | |
1847 | { | |
1848 | if (counter == 31) { | |
1849 | return env->cp15.pmccfiltr_el0; | |
1850 | } else if (counter < pmu_num_counters(env)) { | |
1851 | return env->cp15.c14_pmevtyper[counter]; | |
1852 | } else { | |
1853 | /* | |
1854 | * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER | |
1855 | * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). | |
1856 | */ | |
1857 | return 0; | |
1858 | } | |
1859 | } | |
1860 | ||
1861 | static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, | |
1862 | uint64_t value) | |
1863 | { | |
1864 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1865 | pmevtyper_write(env, ri, value, counter); | |
1866 | } | |
1867 | ||
1868 | static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, | |
1869 | uint64_t value) | |
1870 | { | |
1871 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1872 | env->cp15.c14_pmevtyper[counter] = value; | |
1873 | ||
1874 | /* | |
1875 | * pmevtyper_rawwrite is called between a pair of pmu_op_start and | |
1876 | * pmu_op_finish calls when loading saved state for a migration. Because | |
1877 | * we're potentially updating the type of event here, the value written to | |
1878 | * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a | |
1879 | * different counter type. Therefore, we need to set this value to the | |
1880 | * current count for the counter type we're writing so that pmu_op_finish | |
1881 | * has the correct count for its calculation. | |
1882 | */ | |
1883 | uint16_t event = value & PMXEVTYPER_EVTCOUNT; | |
1884 | if (event_supported(event)) { | |
1885 | uint16_t event_idx = supported_event_map[event]; | |
1886 | env->cp15.c14_pmevcntr_delta[counter] = | |
1887 | pm_events[event_idx].get_count(env); | |
fdb86656 WH |
1888 | } |
1889 | } | |
1890 | ||
5ecdd3e4 AL |
1891 | static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
1892 | { | |
1893 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1894 | return pmevtyper_read(env, ri, counter); | |
1895 | } | |
1896 | ||
1897 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1898 | uint64_t value) | |
1899 | { | |
1900 | pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); | |
1901 | } | |
1902 | ||
fdb86656 WH |
1903 | static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1904 | { | |
5ecdd3e4 AL |
1905 | return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); |
1906 | } | |
1907 | ||
1908 | static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1909 | uint64_t value, uint8_t counter) | |
1910 | { | |
1911 | if (counter < pmu_num_counters(env)) { | |
1912 | pmevcntr_op_start(env, counter); | |
1913 | env->cp15.c14_pmevcntr[counter] = value; | |
1914 | pmevcntr_op_finish(env, counter); | |
1915 | } | |
1916 | /* | |
1917 | * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR | |
1918 | * are CONSTRAINED UNPREDICTABLE. | |
fdb86656 | 1919 | */ |
5ecdd3e4 AL |
1920 | } |
1921 | ||
1922 | static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1923 | uint8_t counter) | |
1924 | { | |
1925 | if (counter < pmu_num_counters(env)) { | |
1926 | uint64_t ret; | |
1927 | pmevcntr_op_start(env, counter); | |
1928 | ret = env->cp15.c14_pmevcntr[counter]; | |
1929 | pmevcntr_op_finish(env, counter); | |
1930 | return ret; | |
fdb86656 | 1931 | } else { |
5ecdd3e4 AL |
1932 | /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR |
1933 | * are CONSTRAINED UNPREDICTABLE. */ | |
fdb86656 WH |
1934 | return 0; |
1935 | } | |
200ac0ef PM |
1936 | } |
1937 | ||
5ecdd3e4 AL |
1938 | static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, |
1939 | uint64_t value) | |
1940 | { | |
1941 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1942 | pmevcntr_write(env, ri, value, counter); | |
1943 | } | |
1944 | ||
1945 | static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) | |
1946 | { | |
1947 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1948 | return pmevcntr_read(env, ri, counter); | |
1949 | } | |
1950 | ||
1951 | static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, | |
1952 | uint64_t value) | |
1953 | { | |
1954 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1955 | assert(counter < pmu_num_counters(env)); | |
1956 | env->cp15.c14_pmevcntr[counter] = value; | |
1957 | pmevcntr_write(env, ri, value, counter); | |
1958 | } | |
1959 | ||
1960 | static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) | |
1961 | { | |
1962 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1963 | assert(counter < pmu_num_counters(env)); | |
1964 | return env->cp15.c14_pmevcntr[counter]; | |
1965 | } | |
1966 | ||
1967 | static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1968 | uint64_t value) | |
1969 | { | |
1970 | pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); | |
1971 | } | |
1972 | ||
1973 | static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1974 | { | |
1975 | return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); | |
1976 | } | |
1977 | ||
c4241c7d | 1978 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1979 | uint64_t value) |
1980 | { | |
6ecd0b6b AB |
1981 | if (arm_feature(env, ARM_FEATURE_V8)) { |
1982 | env->cp15.c9_pmuserenr = value & 0xf; | |
1983 | } else { | |
1984 | env->cp15.c9_pmuserenr = value & 1; | |
1985 | } | |
200ac0ef PM |
1986 | } |
1987 | ||
c4241c7d PM |
1988 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1989 | uint64_t value) | |
200ac0ef PM |
1990 | { |
1991 | /* We have no event counters so only the C bit can be changed */ | |
7ece99b1 | 1992 | value &= pmu_counter_mask(env); |
200ac0ef | 1993 | env->cp15.c9_pminten |= value; |
f4efb4b2 | 1994 | pmu_update_irq(env); |
200ac0ef PM |
1995 | } |
1996 | ||
c4241c7d PM |
1997 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1998 | uint64_t value) | |
200ac0ef | 1999 | { |
7ece99b1 | 2000 | value &= pmu_counter_mask(env); |
200ac0ef | 2001 | env->cp15.c9_pminten &= ~value; |
f4efb4b2 | 2002 | pmu_update_irq(env); |
200ac0ef PM |
2003 | } |
2004 | ||
c4241c7d PM |
2005 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2006 | uint64_t value) | |
8641136c | 2007 | { |
a505d7fe PM |
2008 | /* Note that even though the AArch64 view of this register has bits |
2009 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
2010 | * architectural requirements for bits which are RES0 only in some | |
2011 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
2012 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
2013 | */ | |
855ea66d | 2014 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
2015 | } |
2016 | ||
64e0e2de EI |
2017 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
2018 | { | |
ea22747c RH |
2019 | /* Begin with base v8.0 state. */ |
2020 | uint32_t valid_mask = 0x3fff; | |
2fc0cc0e | 2021 | ARMCPU *cpu = env_archcpu(env); |
ea22747c | 2022 | |
252e8c69 | 2023 | if (ri->state == ARM_CP_STATE_AA64) { |
ea22747c RH |
2024 | value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ |
2025 | valid_mask &= ~SCR_NET; | |
252e8c69 RH |
2026 | |
2027 | if (cpu_isar_feature(aa64_lor, cpu)) { | |
2028 | valid_mask |= SCR_TLOR; | |
2029 | } | |
2030 | if (cpu_isar_feature(aa64_pauth, cpu)) { | |
2031 | valid_mask |= SCR_API | SCR_APK; | |
2032 | } | |
8ddb300b RH |
2033 | if (cpu_isar_feature(aa64_mte, cpu)) { |
2034 | valid_mask |= SCR_ATA; | |
2035 | } | |
ea22747c RH |
2036 | } else { |
2037 | valid_mask &= ~(SCR_RW | SCR_ST); | |
2038 | } | |
64e0e2de EI |
2039 | |
2040 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
2041 | valid_mask &= ~SCR_HCE; | |
2042 | ||
2043 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
2044 | * supported if EL2 exists. The bit is UNK/SBZP when | |
2045 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
2046 | * when EL2 is unavailable. | |
4eb27640 | 2047 | * On ARMv8, this bit is always available. |
64e0e2de | 2048 | */ |
4eb27640 GB |
2049 | if (arm_feature(env, ARM_FEATURE_V7) && |
2050 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
2051 | valid_mask &= ~SCR_SMD; |
2052 | } | |
2053 | } | |
2054 | ||
2055 | /* Clear all-context RES0 bits. */ | |
2056 | value &= valid_mask; | |
2057 | raw_write(env, ri, value); | |
2058 | } | |
2059 | ||
630fcd4d MZ |
2060 | static CPAccessResult access_aa64_tid2(CPUARMState *env, |
2061 | const ARMCPRegInfo *ri, | |
2062 | bool isread) | |
2063 | { | |
2064 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { | |
2065 | return CP_ACCESS_TRAP_EL2; | |
2066 | } | |
2067 | ||
2068 | return CP_ACCESS_OK; | |
2069 | } | |
2070 | ||
c4241c7d | 2071 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c | 2072 | { |
2fc0cc0e | 2073 | ARMCPU *cpu = env_archcpu(env); |
b85a1fd6 FA |
2074 | |
2075 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
2076 | * bank | |
2077 | */ | |
2078 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
2079 | ri->secure & ARM_CP_SECSTATE_S); | |
2080 | ||
2081 | return cpu->ccsidr[index]; | |
776d4e5c PM |
2082 | } |
2083 | ||
c4241c7d PM |
2084 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2085 | uint64_t value) | |
776d4e5c | 2086 | { |
8d5c773e | 2087 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
2088 | } |
2089 | ||
1090b9c6 PM |
2090 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2091 | { | |
29a0af61 | 2092 | CPUState *cs = env_cpu(env); |
cc974d5c RDC |
2093 | bool el1 = arm_current_el(env) == 1; |
2094 | uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; | |
1090b9c6 PM |
2095 | uint64_t ret = 0; |
2096 | ||
cc974d5c | 2097 | if (hcr_el2 & HCR_IMO) { |
636540e9 PM |
2098 | if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { |
2099 | ret |= CPSR_I; | |
2100 | } | |
2101 | } else { | |
2102 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
2103 | ret |= CPSR_I; | |
2104 | } | |
1090b9c6 | 2105 | } |
636540e9 | 2106 | |
cc974d5c | 2107 | if (hcr_el2 & HCR_FMO) { |
636540e9 PM |
2108 | if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { |
2109 | ret |= CPSR_F; | |
2110 | } | |
2111 | } else { | |
2112 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
2113 | ret |= CPSR_F; | |
2114 | } | |
1090b9c6 | 2115 | } |
636540e9 | 2116 | |
1090b9c6 PM |
2117 | /* External aborts are not possible in QEMU so A bit is always clear */ |
2118 | return ret; | |
2119 | } | |
2120 | ||
93fbc983 MZ |
2121 | static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, |
2122 | bool isread) | |
2123 | { | |
2124 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { | |
2125 | return CP_ACCESS_TRAP_EL2; | |
2126 | } | |
2127 | ||
2128 | return CP_ACCESS_OK; | |
2129 | } | |
2130 | ||
2131 | static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, | |
2132 | bool isread) | |
2133 | { | |
2134 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
2135 | return access_aa64_tid1(env, ri, isread); | |
2136 | } | |
2137 | ||
2138 | return CP_ACCESS_OK; | |
2139 | } | |
2140 | ||
e9aa6c21 | 2141 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
2142 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
2143 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
2144 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
2145 | /* Performance monitors are implementation defined in v7, |
2146 | * but with an ARM recommended set of registers, which we | |
ac689a2e | 2147 | * follow. |
200ac0ef PM |
2148 | * |
2149 | * Performance registers fall into three categories: | |
2150 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
2151 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
2152 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
2153 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
2154 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
2155 | */ | |
2156 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2157 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 2158 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
2159 | .writefn = pmcntenset_write, |
2160 | .accessfn = pmreg_access, | |
2161 | .raw_writefn = raw_write }, | |
8521466b AF |
2162 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
2163 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
2164 | .access = PL0_RW, .accessfn = pmreg_access, | |
2165 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
2166 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 2167 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
2168 | .access = PL0_RW, |
2169 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
2170 | .accessfn = pmreg_access, |
2171 | .writefn = pmcntenclr_write, | |
7a0e58fa | 2172 | .type = ARM_CP_ALIAS }, |
8521466b AF |
2173 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
2174 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
2175 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 2176 | .type = ARM_CP_ALIAS, |
8521466b AF |
2177 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
2178 | .writefn = pmcntenclr_write }, | |
200ac0ef | 2179 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
f4efb4b2 | 2180 | .access = PL0_RW, .type = ARM_CP_IO, |
e4e91a21 | 2181 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
fcd25206 PM |
2182 | .accessfn = pmreg_access, |
2183 | .writefn = pmovsr_write, | |
2184 | .raw_writefn = raw_write }, | |
978364f1 AF |
2185 | { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
2186 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, | |
2187 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 2188 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
978364f1 AF |
2189 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
2190 | .writefn = pmovsr_write, | |
2191 | .raw_writefn = raw_write }, | |
200ac0ef | 2192 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
f4efb4b2 AL |
2193 | .access = PL0_W, .accessfn = pmreg_access_swinc, |
2194 | .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
0d4bfd7d AL |
2195 | .writefn = pmswinc_write }, |
2196 | { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, | |
2197 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, | |
f4efb4b2 AL |
2198 | .access = PL0_W, .accessfn = pmreg_access_swinc, |
2199 | .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
0d4bfd7d | 2200 | .writefn = pmswinc_write }, |
6b040780 WH |
2201 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
2202 | .access = PL0_RW, .type = ARM_CP_ALIAS, | |
2203 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), | |
6ecd0b6b | 2204 | .accessfn = pmreg_access_selr, .writefn = pmselr_write, |
6b040780 WH |
2205 | .raw_writefn = raw_write}, |
2206 | { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, | |
2207 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, | |
6ecd0b6b | 2208 | .access = PL0_RW, .accessfn = pmreg_access_selr, |
6b040780 WH |
2209 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), |
2210 | .writefn = pmselr_write, .raw_writefn = raw_write, }, | |
200ac0ef | 2211 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
169c8938 | 2212 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, |
421c7ebd | 2213 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
6ecd0b6b | 2214 | .accessfn = pmreg_access_ccntr }, |
8521466b AF |
2215 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
2216 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
6ecd0b6b | 2217 | .access = PL0_RW, .accessfn = pmreg_access_ccntr, |
8521466b | 2218 | .type = ARM_CP_IO, |
980ebe87 AL |
2219 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), |
2220 | .readfn = pmccntr_read, .writefn = pmccntr_write, | |
2221 | .raw_readfn = raw_read, .raw_writefn = raw_write, }, | |
4b8afa1f AL |
2222 | { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, |
2223 | .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, | |
2224 | .access = PL0_RW, .accessfn = pmreg_access, | |
2225 | .type = ARM_CP_ALIAS | ARM_CP_IO, | |
2226 | .resetvalue = 0, }, | |
8521466b AF |
2227 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
2228 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
980ebe87 | 2229 | .writefn = pmccfiltr_write, .raw_writefn = raw_write, |
8521466b AF |
2230 | .access = PL0_RW, .accessfn = pmreg_access, |
2231 | .type = ARM_CP_IO, | |
2232 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
2233 | .resetvalue = 0, }, | |
200ac0ef | 2234 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
5ecdd3e4 AL |
2235 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
2236 | .accessfn = pmreg_access, | |
fdb86656 WH |
2237 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
2238 | { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, | |
2239 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, | |
5ecdd3e4 AL |
2240 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
2241 | .accessfn = pmreg_access, | |
fdb86656 | 2242 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
200ac0ef | 2243 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
5ecdd3e4 AL |
2244 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
2245 | .accessfn = pmreg_access_xevcntr, | |
2246 | .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, | |
2247 | { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, | |
2248 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, | |
2249 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
2250 | .accessfn = pmreg_access_xevcntr, | |
2251 | .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, | |
200ac0ef | 2252 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1fce1ba9 | 2253 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
e4e91a21 | 2254 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), |
200ac0ef | 2255 | .resetvalue = 0, |
d4e6df63 | 2256 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
8a83ffc2 AF |
2257 | { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
2258 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, | |
1fce1ba9 | 2259 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
8a83ffc2 AF |
2260 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
2261 | .resetvalue = 0, | |
2262 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
200ac0ef | 2263 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1fce1ba9 | 2264 | .access = PL1_RW, .accessfn = access_tpm, |
b7d793ad | 2265 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
e6ec5457 | 2266 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), |
200ac0ef | 2267 | .resetvalue = 0, |
d4e6df63 | 2268 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
e6ec5457 WH |
2269 | { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, |
2270 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, | |
2271 | .access = PL1_RW, .accessfn = access_tpm, | |
2272 | .type = ARM_CP_IO, | |
2273 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
2274 | .writefn = pmintenset_write, .raw_writefn = raw_write, | |
2275 | .resetvalue = 0x0 }, | |
200ac0ef | 2276 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
fc5f6856 | 2277 | .access = PL1_RW, .accessfn = access_tpm, |
887c0f15 | 2278 | .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, |
200ac0ef | 2279 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 2280 | .writefn = pmintenclr_write, }, |
978364f1 AF |
2281 | { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
2282 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, | |
fc5f6856 | 2283 | .access = PL1_RW, .accessfn = access_tpm, |
887c0f15 | 2284 | .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, |
978364f1 AF |
2285 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
2286 | .writefn = pmintenclr_write }, | |
7da845b0 PM |
2287 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
2288 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
630fcd4d MZ |
2289 | .access = PL1_R, |
2290 | .accessfn = access_aa64_tid2, | |
2291 | .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, | |
7da845b0 PM |
2292 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
2293 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
630fcd4d MZ |
2294 | .access = PL1_RW, |
2295 | .accessfn = access_aa64_tid2, | |
2296 | .writefn = csselr_write, .resetvalue = 0, | |
b85a1fd6 FA |
2297 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), |
2298 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
2299 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
2300 | * just RAZ for all cores: | |
2301 | */ | |
0ff644a7 PM |
2302 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
2303 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
93fbc983 MZ |
2304 | .access = PL1_R, .type = ARM_CP_CONST, |
2305 | .accessfn = access_aa64_tid1, | |
2306 | .resetvalue = 0 }, | |
f32cdad5 PM |
2307 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
2308 | * choose to RAZ/WI for all cores. | |
2309 | */ | |
2310 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
2311 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
84929218 RH |
2312 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2313 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
f32cdad5 PM |
2314 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, |
2315 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
84929218 RH |
2316 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2317 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
2318 | /* MAIR can just read-as-written because we don't implement caches |
2319 | * and so don't need to care about memory attributes. | |
2320 | */ | |
2321 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
2322 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
84929218 RH |
2323 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2324 | .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), | |
b0fe2427 | 2325 | .resetvalue = 0 }, |
4cfb8ad8 PM |
2326 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
2327 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
2328 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
2329 | .resetvalue = 0 }, | |
b0fe2427 PM |
2330 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
2331 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 2332 | */ |
1281f8e3 | 2333 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
2334 | * allows them to assign the correct fieldoffset based on the endianness |
2335 | * handled in the field definitions. | |
2336 | */ | |
a903c449 | 2337 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
84929218 RH |
2338 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, |
2339 | .access = PL1_RW, .accessfn = access_tvm_trvm, | |
be693c87 GB |
2340 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
2341 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 2342 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 2343 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
84929218 RH |
2344 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, |
2345 | .access = PL1_RW, .accessfn = access_tvm_trvm, | |
be693c87 GB |
2346 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
2347 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 2348 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
2349 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
2350 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2351 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
2352 | /* 32 bit ITLB invalidates */ |
2353 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
30881b73 RH |
2354 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2355 | .writefn = tlbiall_write }, | |
995939a6 | 2356 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
30881b73 RH |
2357 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2358 | .writefn = tlbimva_write }, | |
995939a6 | 2359 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
30881b73 RH |
2360 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2361 | .writefn = tlbiasid_write }, | |
995939a6 PM |
2362 | /* 32 bit DTLB invalidates */ |
2363 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
30881b73 RH |
2364 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2365 | .writefn = tlbiall_write }, | |
995939a6 | 2366 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
30881b73 RH |
2367 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2368 | .writefn = tlbimva_write }, | |
995939a6 | 2369 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
30881b73 RH |
2370 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2371 | .writefn = tlbiasid_write }, | |
995939a6 PM |
2372 | /* 32 bit TLB invalidates */ |
2373 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
30881b73 RH |
2374 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2375 | .writefn = tlbiall_write }, | |
995939a6 | 2376 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
30881b73 RH |
2377 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2378 | .writefn = tlbimva_write }, | |
995939a6 | 2379 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
30881b73 RH |
2380 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2381 | .writefn = tlbiasid_write }, | |
995939a6 | 2382 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
30881b73 RH |
2383 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2384 | .writefn = tlbimvaa_write }, | |
995939a6 PM |
2385 | REGINFO_SENTINEL |
2386 | }; | |
2387 | ||
2388 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
2389 | /* 32 bit TLB invalidates, Inner Shareable */ | |
2390 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
30881b73 RH |
2391 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2392 | .writefn = tlbiall_is_write }, | |
995939a6 | 2393 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
30881b73 RH |
2394 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2395 | .writefn = tlbimva_is_write }, | |
995939a6 | 2396 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
30881b73 | 2397 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 2398 | .writefn = tlbiasid_is_write }, |
995939a6 | 2399 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
30881b73 | 2400 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 2401 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
2402 | REGINFO_SENTINEL |
2403 | }; | |
2404 | ||
327dd510 AL |
2405 | static const ARMCPRegInfo pmovsset_cp_reginfo[] = { |
2406 | /* PMOVSSET is not implemented in v7 before v7ve */ | |
2407 | { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, | |
2408 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 2409 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
327dd510 AL |
2410 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
2411 | .writefn = pmovsset_write, | |
2412 | .raw_writefn = raw_write }, | |
2413 | { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, | |
2414 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, | |
2415 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 2416 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
327dd510 AL |
2417 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
2418 | .writefn = pmovsset_write, | |
2419 | .raw_writefn = raw_write }, | |
2420 | REGINFO_SENTINEL | |
2421 | }; | |
2422 | ||
c4241c7d PM |
2423 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2424 | uint64_t value) | |
c326b979 PM |
2425 | { |
2426 | value &= 1; | |
2427 | env->teecr = value; | |
c326b979 PM |
2428 | } |
2429 | ||
3f208fd7 PM |
2430 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2431 | bool isread) | |
c326b979 | 2432 | { |
dcbff19b | 2433 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 2434 | return CP_ACCESS_TRAP; |
c326b979 | 2435 | } |
92611c00 | 2436 | return CP_ACCESS_OK; |
c326b979 PM |
2437 | } |
2438 | ||
2439 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
2440 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
2441 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
2442 | .resetvalue = 0, | |
2443 | .writefn = teecr_write }, | |
2444 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
2445 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 2446 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
2447 | REGINFO_SENTINEL |
2448 | }; | |
2449 | ||
4d31c596 | 2450 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
2451 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
2452 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
2453 | .access = PL0_RW, | |
54bf36ed | 2454 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
2455 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
2456 | .access = PL0_RW, | |
54bf36ed FA |
2457 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
2458 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
2459 | .resetfn = arm_cp_reset_ignore }, |
2460 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
2461 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
2462 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
2463 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
2464 | .resetvalue = 0}, | |
4d31c596 PM |
2465 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
2466 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
2467 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
2468 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 2469 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 2470 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 2471 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 2472 | .access = PL1_RW, |
54bf36ed FA |
2473 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
2474 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
2475 | .access = PL1_RW, | |
2476 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
2477 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
2478 | .resetvalue = 0 }, | |
4d31c596 PM |
2479 | REGINFO_SENTINEL |
2480 | }; | |
2481 | ||
55d284af PM |
2482 | #ifndef CONFIG_USER_ONLY |
2483 | ||
3f208fd7 PM |
2484 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2485 | bool isread) | |
00108f2d | 2486 | { |
75502672 PM |
2487 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
2488 | * Writable only at the highest implemented exception level. | |
2489 | */ | |
2490 | int el = arm_current_el(env); | |
5bc84371 RH |
2491 | uint64_t hcr; |
2492 | uint32_t cntkctl; | |
75502672 PM |
2493 | |
2494 | switch (el) { | |
2495 | case 0: | |
5bc84371 RH |
2496 | hcr = arm_hcr_el2_eff(env); |
2497 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2498 | cntkctl = env->cp15.cnthctl_el2; | |
2499 | } else { | |
2500 | cntkctl = env->cp15.c14_cntkctl; | |
2501 | } | |
2502 | if (!extract32(cntkctl, 0, 2)) { | |
75502672 PM |
2503 | return CP_ACCESS_TRAP; |
2504 | } | |
2505 | break; | |
2506 | case 1: | |
2507 | if (!isread && ri->state == ARM_CP_STATE_AA32 && | |
2508 | arm_is_secure_below_el3(env)) { | |
2509 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ | |
2510 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2511 | } | |
2512 | break; | |
2513 | case 2: | |
2514 | case 3: | |
2515 | break; | |
00108f2d | 2516 | } |
75502672 PM |
2517 | |
2518 | if (!isread && el < arm_highest_el(env)) { | |
2519 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2520 | } | |
2521 | ||
00108f2d PM |
2522 | return CP_ACCESS_OK; |
2523 | } | |
2524 | ||
3f208fd7 PM |
2525 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
2526 | bool isread) | |
00108f2d | 2527 | { |
0b6440af | 2528 | unsigned int cur_el = arm_current_el(env); |
e6ef0169 | 2529 | bool has_el2 = arm_is_el2_enabled(env); |
5bc84371 | 2530 | uint64_t hcr = arm_hcr_el2_eff(env); |
0b6440af | 2531 | |
5bc84371 RH |
2532 | switch (cur_el) { |
2533 | case 0: | |
2534 | /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ | |
2535 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2536 | return (extract32(env->cp15.cnthctl_el2, timeridx, 1) | |
2537 | ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); | |
2538 | } | |
0b6440af | 2539 | |
5bc84371 RH |
2540 | /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ |
2541 | if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |
2542 | return CP_ACCESS_TRAP; | |
2543 | } | |
2544 | ||
2545 | /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ | |
2546 | if (hcr & HCR_E2H) { | |
2547 | if (timeridx == GTIMER_PHYS && | |
2548 | !extract32(env->cp15.cnthctl_el2, 10, 1)) { | |
2549 | return CP_ACCESS_TRAP_EL2; | |
2550 | } | |
2551 | } else { | |
2552 | /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ | |
e6ef0169 | 2553 | if (has_el2 && timeridx == GTIMER_PHYS && |
5bc84371 RH |
2554 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { |
2555 | return CP_ACCESS_TRAP_EL2; | |
2556 | } | |
2557 | } | |
2558 | break; | |
2559 | ||
2560 | case 1: | |
2561 | /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ | |
e6ef0169 | 2562 | if (has_el2 && timeridx == GTIMER_PHYS && |
5bc84371 RH |
2563 | (hcr & HCR_E2H |
2564 | ? !extract32(env->cp15.cnthctl_el2, 10, 1) | |
2565 | : !extract32(env->cp15.cnthctl_el2, 0, 1))) { | |
2566 | return CP_ACCESS_TRAP_EL2; | |
2567 | } | |
2568 | break; | |
0b6440af | 2569 | } |
00108f2d PM |
2570 | return CP_ACCESS_OK; |
2571 | } | |
2572 | ||
3f208fd7 PM |
2573 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
2574 | bool isread) | |
00108f2d | 2575 | { |
0b6440af | 2576 | unsigned int cur_el = arm_current_el(env); |
e6ef0169 | 2577 | bool has_el2 = arm_is_el2_enabled(env); |
5bc84371 | 2578 | uint64_t hcr = arm_hcr_el2_eff(env); |
0b6440af | 2579 | |
5bc84371 RH |
2580 | switch (cur_el) { |
2581 | case 0: | |
2582 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2583 | /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ | |
2584 | return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) | |
2585 | ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); | |
2586 | } | |
0b6440af | 2587 | |
5bc84371 RH |
2588 | /* |
2589 | * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from | |
2590 | * EL0 if EL0[PV]TEN is zero. | |
2591 | */ | |
2592 | if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
2593 | return CP_ACCESS_TRAP; | |
2594 | } | |
2595 | /* fall through */ | |
2596 | ||
2597 | case 1: | |
e6ef0169 | 2598 | if (has_el2 && timeridx == GTIMER_PHYS) { |
5bc84371 RH |
2599 | if (hcr & HCR_E2H) { |
2600 | /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ | |
2601 | if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { | |
2602 | return CP_ACCESS_TRAP_EL2; | |
2603 | } | |
2604 | } else { | |
2605 | /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ | |
2606 | if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
2607 | return CP_ACCESS_TRAP_EL2; | |
2608 | } | |
2609 | } | |
2610 | } | |
2611 | break; | |
0b6440af | 2612 | } |
00108f2d PM |
2613 | return CP_ACCESS_OK; |
2614 | } | |
2615 | ||
2616 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
3f208fd7 PM |
2617 | const ARMCPRegInfo *ri, |
2618 | bool isread) | |
00108f2d | 2619 | { |
3f208fd7 | 2620 | return gt_counter_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
2621 | } |
2622 | ||
2623 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
3f208fd7 PM |
2624 | const ARMCPRegInfo *ri, |
2625 | bool isread) | |
00108f2d | 2626 | { |
3f208fd7 | 2627 | return gt_counter_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
2628 | } |
2629 | ||
3f208fd7 PM |
2630 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2631 | bool isread) | |
00108f2d | 2632 | { |
3f208fd7 | 2633 | return gt_timer_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
2634 | } |
2635 | ||
3f208fd7 PM |
2636 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2637 | bool isread) | |
00108f2d | 2638 | { |
3f208fd7 | 2639 | return gt_timer_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
2640 | } |
2641 | ||
b4d3978c | 2642 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
3f208fd7 PM |
2643 | const ARMCPRegInfo *ri, |
2644 | bool isread) | |
b4d3978c PM |
2645 | { |
2646 | /* The AArch64 register view of the secure physical timer is | |
2647 | * always accessible from EL3, and configurably accessible from | |
2648 | * Secure EL1. | |
2649 | */ | |
2650 | switch (arm_current_el(env)) { | |
2651 | case 1: | |
2652 | if (!arm_is_secure(env)) { | |
2653 | return CP_ACCESS_TRAP; | |
2654 | } | |
2655 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
2656 | return CP_ACCESS_TRAP_EL3; | |
2657 | } | |
2658 | return CP_ACCESS_OK; | |
2659 | case 0: | |
2660 | case 2: | |
2661 | return CP_ACCESS_TRAP; | |
2662 | case 3: | |
2663 | return CP_ACCESS_OK; | |
2664 | default: | |
2665 | g_assert_not_reached(); | |
2666 | } | |
2667 | } | |
2668 | ||
55d284af PM |
2669 | static uint64_t gt_get_countervalue(CPUARMState *env) |
2670 | { | |
7def8754 AJ |
2671 | ARMCPU *cpu = env_archcpu(env); |
2672 | ||
2673 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); | |
55d284af PM |
2674 | } |
2675 | ||
2676 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
2677 | { | |
2678 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
2679 | ||
2680 | if (gt->ctl & 1) { | |
2681 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
2682 | * reset timer to when ISTATUS next has to change | |
2683 | */ | |
edac4d8a EI |
2684 | uint64_t offset = timeridx == GTIMER_VIRT ? |
2685 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
2686 | uint64_t count = gt_get_countervalue(&cpu->env); |
2687 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 2688 | int istatus = count - offset >= gt->cval; |
55d284af | 2689 | uint64_t nexttick; |
194cbc49 | 2690 | int irqstate; |
55d284af PM |
2691 | |
2692 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
194cbc49 PM |
2693 | |
2694 | irqstate = (istatus && !(gt->ctl & 2)); | |
2695 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
2696 | ||
55d284af PM |
2697 | if (istatus) { |
2698 | /* Next transition is when count rolls back over to zero */ | |
2699 | nexttick = UINT64_MAX; | |
2700 | } else { | |
2701 | /* Next transition is when we hit cval */ | |
edac4d8a | 2702 | nexttick = gt->cval + offset; |
55d284af PM |
2703 | } |
2704 | /* Note that the desired next expiry time might be beyond the | |
2705 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
2706 | * set the timer for as far in the future as possible. When the | |
2707 | * timer expires we will reset the timer for any remaining period. | |
2708 | */ | |
7def8754 | 2709 | if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { |
4a0245b6 AJ |
2710 | timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); |
2711 | } else { | |
2712 | timer_mod(cpu->gt_timer[timeridx], nexttick); | |
55d284af | 2713 | } |
194cbc49 | 2714 | trace_arm_gt_recalc(timeridx, irqstate, nexttick); |
55d284af PM |
2715 | } else { |
2716 | /* Timer disabled: ISTATUS and timer output always clear */ | |
2717 | gt->ctl &= ~4; | |
2718 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 2719 | timer_del(cpu->gt_timer[timeridx]); |
194cbc49 | 2720 | trace_arm_gt_recalc_disabled(timeridx); |
55d284af PM |
2721 | } |
2722 | } | |
2723 | ||
0e3eca4c EI |
2724 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
2725 | int timeridx) | |
55d284af | 2726 | { |
2fc0cc0e | 2727 | ARMCPU *cpu = env_archcpu(env); |
55d284af | 2728 | |
bc72ad67 | 2729 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
2730 | } |
2731 | ||
c4241c7d | 2732 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 2733 | { |
c4241c7d | 2734 | return gt_get_countervalue(env); |
55d284af PM |
2735 | } |
2736 | ||
53d1f856 RH |
2737 | static uint64_t gt_virt_cnt_offset(CPUARMState *env) |
2738 | { | |
2739 | uint64_t hcr; | |
2740 | ||
2741 | switch (arm_current_el(env)) { | |
2742 | case 2: | |
2743 | hcr = arm_hcr_el2_eff(env); | |
2744 | if (hcr & HCR_E2H) { | |
2745 | return 0; | |
2746 | } | |
2747 | break; | |
2748 | case 0: | |
2749 | hcr = arm_hcr_el2_eff(env); | |
2750 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2751 | return 0; | |
2752 | } | |
2753 | break; | |
2754 | } | |
2755 | ||
2756 | return env->cp15.cntvoff_el2; | |
2757 | } | |
2758 | ||
edac4d8a EI |
2759 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2760 | { | |
53d1f856 | 2761 | return gt_get_countervalue(env) - gt_virt_cnt_offset(env); |
edac4d8a EI |
2762 | } |
2763 | ||
c4241c7d | 2764 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2765 | int timeridx, |
c4241c7d | 2766 | uint64_t value) |
55d284af | 2767 | { |
194cbc49 | 2768 | trace_arm_gt_cval_write(timeridx, value); |
55d284af | 2769 | env->cp15.c14_timer[timeridx].cval = value; |
2fc0cc0e | 2770 | gt_recalc_timer(env_archcpu(env), timeridx); |
55d284af | 2771 | } |
c4241c7d | 2772 | |
0e3eca4c EI |
2773 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
2774 | int timeridx) | |
55d284af | 2775 | { |
53d1f856 RH |
2776 | uint64_t offset = 0; |
2777 | ||
2778 | switch (timeridx) { | |
2779 | case GTIMER_VIRT: | |
8c94b071 | 2780 | case GTIMER_HYPVIRT: |
53d1f856 RH |
2781 | offset = gt_virt_cnt_offset(env); |
2782 | break; | |
2783 | } | |
55d284af | 2784 | |
c4241c7d | 2785 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 2786 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
2787 | } |
2788 | ||
c4241c7d | 2789 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2790 | int timeridx, |
c4241c7d | 2791 | uint64_t value) |
55d284af | 2792 | { |
53d1f856 RH |
2793 | uint64_t offset = 0; |
2794 | ||
2795 | switch (timeridx) { | |
2796 | case GTIMER_VIRT: | |
8c94b071 | 2797 | case GTIMER_HYPVIRT: |
53d1f856 RH |
2798 | offset = gt_virt_cnt_offset(env); |
2799 | break; | |
2800 | } | |
55d284af | 2801 | |
194cbc49 | 2802 | trace_arm_gt_tval_write(timeridx, value); |
edac4d8a | 2803 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 2804 | sextract64(value, 0, 32); |
2fc0cc0e | 2805 | gt_recalc_timer(env_archcpu(env), timeridx); |
55d284af PM |
2806 | } |
2807 | ||
c4241c7d | 2808 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2809 | int timeridx, |
c4241c7d | 2810 | uint64_t value) |
55d284af | 2811 | { |
2fc0cc0e | 2812 | ARMCPU *cpu = env_archcpu(env); |
55d284af PM |
2813 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
2814 | ||
194cbc49 | 2815 | trace_arm_gt_ctl_write(timeridx, value); |
d3afacc7 | 2816 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
2817 | if ((oldval ^ value) & 1) { |
2818 | /* Enable toggled */ | |
2819 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 2820 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
2821 | /* IMASK toggled: don't need to recalculate, |
2822 | * just set the interrupt line based on ISTATUS | |
2823 | */ | |
194cbc49 PM |
2824 | int irqstate = (oldval & 4) && !(value & 2); |
2825 | ||
2826 | trace_arm_gt_imask_toggle(timeridx, irqstate); | |
2827 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
55d284af | 2828 | } |
55d284af PM |
2829 | } |
2830 | ||
0e3eca4c EI |
2831 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2832 | { | |
2833 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
2834 | } | |
2835 | ||
2836 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2837 | uint64_t value) | |
2838 | { | |
2839 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
2840 | } | |
2841 | ||
2842 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2843 | { | |
2844 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
2845 | } | |
2846 | ||
2847 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2848 | uint64_t value) | |
2849 | { | |
2850 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
2851 | } | |
2852 | ||
2853 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2854 | uint64_t value) | |
2855 | { | |
2856 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
2857 | } | |
2858 | ||
bb5972e4 RH |
2859 | static int gt_phys_redir_timeridx(CPUARMState *env) |
2860 | { | |
2861 | switch (arm_mmu_idx(env)) { | |
2862 | case ARMMMUIdx_E20_0: | |
2863 | case ARMMMUIdx_E20_2: | |
452ef8cb | 2864 | case ARMMMUIdx_E20_2_PAN: |
b6ad6062 RDC |
2865 | case ARMMMUIdx_SE20_0: |
2866 | case ARMMMUIdx_SE20_2: | |
2867 | case ARMMMUIdx_SE20_2_PAN: | |
bb5972e4 RH |
2868 | return GTIMER_HYP; |
2869 | default: | |
2870 | return GTIMER_PHYS; | |
2871 | } | |
2872 | } | |
2873 | ||
2874 | static int gt_virt_redir_timeridx(CPUARMState *env) | |
2875 | { | |
2876 | switch (arm_mmu_idx(env)) { | |
2877 | case ARMMMUIdx_E20_0: | |
2878 | case ARMMMUIdx_E20_2: | |
452ef8cb | 2879 | case ARMMMUIdx_E20_2_PAN: |
b6ad6062 RDC |
2880 | case ARMMMUIdx_SE20_0: |
2881 | case ARMMMUIdx_SE20_2: | |
2882 | case ARMMMUIdx_SE20_2_PAN: | |
bb5972e4 RH |
2883 | return GTIMER_HYPVIRT; |
2884 | default: | |
2885 | return GTIMER_VIRT; | |
2886 | } | |
2887 | } | |
2888 | ||
2889 | static uint64_t gt_phys_redir_cval_read(CPUARMState *env, | |
2890 | const ARMCPRegInfo *ri) | |
2891 | { | |
2892 | int timeridx = gt_phys_redir_timeridx(env); | |
2893 | return env->cp15.c14_timer[timeridx].cval; | |
2894 | } | |
2895 | ||
2896 | static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2897 | uint64_t value) | |
2898 | { | |
2899 | int timeridx = gt_phys_redir_timeridx(env); | |
2900 | gt_cval_write(env, ri, timeridx, value); | |
2901 | } | |
2902 | ||
2903 | static uint64_t gt_phys_redir_tval_read(CPUARMState *env, | |
2904 | const ARMCPRegInfo *ri) | |
2905 | { | |
2906 | int timeridx = gt_phys_redir_timeridx(env); | |
2907 | return gt_tval_read(env, ri, timeridx); | |
2908 | } | |
2909 | ||
2910 | static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2911 | uint64_t value) | |
2912 | { | |
2913 | int timeridx = gt_phys_redir_timeridx(env); | |
2914 | gt_tval_write(env, ri, timeridx, value); | |
2915 | } | |
2916 | ||
2917 | static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, | |
2918 | const ARMCPRegInfo *ri) | |
2919 | { | |
2920 | int timeridx = gt_phys_redir_timeridx(env); | |
2921 | return env->cp15.c14_timer[timeridx].ctl; | |
2922 | } | |
2923 | ||
2924 | static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2925 | uint64_t value) | |
2926 | { | |
2927 | int timeridx = gt_phys_redir_timeridx(env); | |
2928 | gt_ctl_write(env, ri, timeridx, value); | |
2929 | } | |
2930 | ||
0e3eca4c EI |
2931 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2932 | { | |
2933 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
2934 | } | |
2935 | ||
2936 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2937 | uint64_t value) | |
2938 | { | |
2939 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
2940 | } | |
2941 | ||
2942 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2943 | { | |
2944 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
2945 | } | |
2946 | ||
2947 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2948 | uint64_t value) | |
2949 | { | |
2950 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
2951 | } | |
2952 | ||
2953 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2954 | uint64_t value) | |
2955 | { | |
2956 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
2957 | } | |
2958 | ||
edac4d8a EI |
2959 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2960 | uint64_t value) | |
2961 | { | |
2fc0cc0e | 2962 | ARMCPU *cpu = env_archcpu(env); |
edac4d8a | 2963 | |
194cbc49 | 2964 | trace_arm_gt_cntvoff_write(value); |
edac4d8a EI |
2965 | raw_write(env, ri, value); |
2966 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
2967 | } | |
2968 | ||
bb5972e4 RH |
2969 | static uint64_t gt_virt_redir_cval_read(CPUARMState *env, |
2970 | const ARMCPRegInfo *ri) | |
2971 | { | |
2972 | int timeridx = gt_virt_redir_timeridx(env); | |
2973 | return env->cp15.c14_timer[timeridx].cval; | |
2974 | } | |
2975 | ||
2976 | static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2977 | uint64_t value) | |
2978 | { | |
2979 | int timeridx = gt_virt_redir_timeridx(env); | |
2980 | gt_cval_write(env, ri, timeridx, value); | |
2981 | } | |
2982 | ||
2983 | static uint64_t gt_virt_redir_tval_read(CPUARMState *env, | |
2984 | const ARMCPRegInfo *ri) | |
2985 | { | |
2986 | int timeridx = gt_virt_redir_timeridx(env); | |
2987 | return gt_tval_read(env, ri, timeridx); | |
2988 | } | |
2989 | ||
2990 | static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2991 | uint64_t value) | |
2992 | { | |
2993 | int timeridx = gt_virt_redir_timeridx(env); | |
2994 | gt_tval_write(env, ri, timeridx, value); | |
2995 | } | |
2996 | ||
2997 | static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, | |
2998 | const ARMCPRegInfo *ri) | |
2999 | { | |
3000 | int timeridx = gt_virt_redir_timeridx(env); | |
3001 | return env->cp15.c14_timer[timeridx].ctl; | |
3002 | } | |
3003 | ||
3004 | static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3005 | uint64_t value) | |
3006 | { | |
3007 | int timeridx = gt_virt_redir_timeridx(env); | |
3008 | gt_ctl_write(env, ri, timeridx, value); | |
3009 | } | |
3010 | ||
b0e66d95 EI |
3011 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3012 | { | |
3013 | gt_timer_reset(env, ri, GTIMER_HYP); | |
3014 | } | |
3015 | ||
3016 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3017 | uint64_t value) | |
3018 | { | |
3019 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
3020 | } | |
3021 | ||
3022 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3023 | { | |
3024 | return gt_tval_read(env, ri, GTIMER_HYP); | |
3025 | } | |
3026 | ||
3027 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3028 | uint64_t value) | |
3029 | { | |
3030 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
3031 | } | |
3032 | ||
3033 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3034 | uint64_t value) | |
3035 | { | |
3036 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
3037 | } | |
3038 | ||
b4d3978c PM |
3039 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3040 | { | |
3041 | gt_timer_reset(env, ri, GTIMER_SEC); | |
3042 | } | |
3043 | ||
3044 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3045 | uint64_t value) | |
3046 | { | |
3047 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
3048 | } | |
3049 | ||
3050 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3051 | { | |
3052 | return gt_tval_read(env, ri, GTIMER_SEC); | |
3053 | } | |
3054 | ||
3055 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3056 | uint64_t value) | |
3057 | { | |
3058 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
3059 | } | |
3060 | ||
3061 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3062 | uint64_t value) | |
3063 | { | |
3064 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
3065 | } | |
3066 | ||
8c94b071 RH |
3067 | static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3068 | { | |
3069 | gt_timer_reset(env, ri, GTIMER_HYPVIRT); | |
3070 | } | |
3071 | ||
3072 | static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3073 | uint64_t value) | |
3074 | { | |
3075 | gt_cval_write(env, ri, GTIMER_HYPVIRT, value); | |
3076 | } | |
3077 | ||
3078 | static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3079 | { | |
3080 | return gt_tval_read(env, ri, GTIMER_HYPVIRT); | |
3081 | } | |
3082 | ||
3083 | static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3084 | uint64_t value) | |
3085 | { | |
3086 | gt_tval_write(env, ri, GTIMER_HYPVIRT, value); | |
3087 | } | |
3088 | ||
3089 | static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3090 | uint64_t value) | |
3091 | { | |
3092 | gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); | |
3093 | } | |
3094 | ||
55d284af PM |
3095 | void arm_gt_ptimer_cb(void *opaque) |
3096 | { | |
3097 | ARMCPU *cpu = opaque; | |
3098 | ||
3099 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
3100 | } | |
3101 | ||
3102 | void arm_gt_vtimer_cb(void *opaque) | |
3103 | { | |
3104 | ARMCPU *cpu = opaque; | |
3105 | ||
3106 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
3107 | } | |
3108 | ||
b0e66d95 EI |
3109 | void arm_gt_htimer_cb(void *opaque) |
3110 | { | |
3111 | ARMCPU *cpu = opaque; | |
3112 | ||
3113 | gt_recalc_timer(cpu, GTIMER_HYP); | |
3114 | } | |
3115 | ||
b4d3978c PM |
3116 | void arm_gt_stimer_cb(void *opaque) |
3117 | { | |
3118 | ARMCPU *cpu = opaque; | |
3119 | ||
3120 | gt_recalc_timer(cpu, GTIMER_SEC); | |
3121 | } | |
3122 | ||
8c94b071 RH |
3123 | void arm_gt_hvtimer_cb(void *opaque) |
3124 | { | |
3125 | ARMCPU *cpu = opaque; | |
3126 | ||
3127 | gt_recalc_timer(cpu, GTIMER_HYPVIRT); | |
3128 | } | |
3129 | ||
96eec6b2 AJ |
3130 | static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) |
3131 | { | |
3132 | ARMCPU *cpu = env_archcpu(env); | |
3133 | ||
3134 | cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; | |
3135 | } | |
3136 | ||
55d284af PM |
3137 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
3138 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
3139 | * of software; writing it doesn't actually change the timer frequency. | |
3140 | * Our reset value matches the fixed frequency we implement the timer at. | |
3141 | */ | |
3142 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 3143 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
3144 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
3145 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
3146 | }, |
3147 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
3148 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
3149 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af | 3150 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
96eec6b2 | 3151 | .resetfn = arm_gt_cntfrq_reset, |
55d284af PM |
3152 | }, |
3153 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
3154 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
3155 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
3156 | .access = PL1_RW, |
3157 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
3158 | .resetvalue = 0, | |
3159 | }, | |
3160 | /* per-timer control */ | |
3161 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 3162 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 3163 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
a7adc4b7 PM |
3164 | .accessfn = gt_ptimer_access, |
3165 | .fieldoffset = offsetoflow32(CPUARMState, | |
3166 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
bb5972e4 RH |
3167 | .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, |
3168 | .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, | |
a7adc4b7 | 3169 | }, |
9c513e78 | 3170 | { .name = "CNTP_CTL_S", |
9ff9dd3c PM |
3171 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
3172 | .secure = ARM_CP_SECSTATE_S, | |
daf1dc5f | 3173 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
9ff9dd3c PM |
3174 | .accessfn = gt_ptimer_access, |
3175 | .fieldoffset = offsetoflow32(CPUARMState, | |
3176 | cp15.c14_timer[GTIMER_SEC].ctl), | |
3177 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
3178 | }, | |
a7adc4b7 PM |
3179 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
3180 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
daf1dc5f | 3181 | .type = ARM_CP_IO, .access = PL0_RW, |
a7adc4b7 | 3182 | .accessfn = gt_ptimer_access, |
55d284af PM |
3183 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
3184 | .resetvalue = 0, | |
bb5972e4 RH |
3185 | .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, |
3186 | .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, | |
55d284af PM |
3187 | }, |
3188 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
daf1dc5f | 3189 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
a7adc4b7 PM |
3190 | .accessfn = gt_vtimer_access, |
3191 | .fieldoffset = offsetoflow32(CPUARMState, | |
3192 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
bb5972e4 RH |
3193 | .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, |
3194 | .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, | |
a7adc4b7 PM |
3195 | }, |
3196 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
3197 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
daf1dc5f | 3198 | .type = ARM_CP_IO, .access = PL0_RW, |
a7adc4b7 | 3199 | .accessfn = gt_vtimer_access, |
55d284af PM |
3200 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
3201 | .resetvalue = 0, | |
bb5972e4 RH |
3202 | .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, |
3203 | .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, | |
55d284af PM |
3204 | }, |
3205 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
3206 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 3207 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 3208 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
00108f2d | 3209 | .accessfn = gt_ptimer_access, |
bb5972e4 | 3210 | .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, |
55d284af | 3211 | }, |
9c513e78 | 3212 | { .name = "CNTP_TVAL_S", |
9ff9dd3c PM |
3213 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
3214 | .secure = ARM_CP_SECSTATE_S, | |
daf1dc5f | 3215 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
9ff9dd3c PM |
3216 | .accessfn = gt_ptimer_access, |
3217 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
3218 | }, | |
a7adc4b7 PM |
3219 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
3220 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
daf1dc5f | 3221 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
0e3eca4c | 3222 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
bb5972e4 | 3223 | .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, |
a7adc4b7 | 3224 | }, |
55d284af | 3225 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
daf1dc5f | 3226 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
00108f2d | 3227 | .accessfn = gt_vtimer_access, |
bb5972e4 | 3228 | .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, |
55d284af | 3229 | }, |
a7adc4b7 PM |
3230 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
3231 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
daf1dc5f | 3232 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
0e3eca4c | 3233 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
bb5972e4 | 3234 | .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, |
a7adc4b7 | 3235 | }, |
55d284af PM |
3236 | /* The counter itself */ |
3237 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 3238 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 3239 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
3240 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
3241 | }, | |
3242 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
3243 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 3244 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 3245 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
3246 | }, |
3247 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 3248 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 3249 | .accessfn = gt_vct_access, |
edac4d8a | 3250 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
3251 | }, |
3252 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
3253 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 3254 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 3255 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
3256 | }, |
3257 | /* Comparison value, indicating when the timer goes off */ | |
3258 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 3259 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 3260 | .access = PL0_RW, |
7a0e58fa | 3261 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 3262 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 3263 | .accessfn = gt_ptimer_access, |
bb5972e4 RH |
3264 | .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, |
3265 | .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, | |
a7adc4b7 | 3266 | }, |
9c513e78 | 3267 | { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, |
9ff9dd3c | 3268 | .secure = ARM_CP_SECSTATE_S, |
daf1dc5f | 3269 | .access = PL0_RW, |
9ff9dd3c PM |
3270 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
3271 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
3272 | .accessfn = gt_ptimer_access, | |
3273 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
3274 | }, | |
a7adc4b7 PM |
3275 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
3276 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
daf1dc5f | 3277 | .access = PL0_RW, |
a7adc4b7 PM |
3278 | .type = ARM_CP_IO, |
3279 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 3280 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
bb5972e4 RH |
3281 | .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, |
3282 | .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, | |
55d284af PM |
3283 | }, |
3284 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
daf1dc5f | 3285 | .access = PL0_RW, |
7a0e58fa | 3286 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 3287 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 3288 | .accessfn = gt_vtimer_access, |
bb5972e4 RH |
3289 | .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, |
3290 | .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, | |
a7adc4b7 PM |
3291 | }, |
3292 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
3293 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
daf1dc5f | 3294 | .access = PL0_RW, |
a7adc4b7 PM |
3295 | .type = ARM_CP_IO, |
3296 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
3297 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
bb5972e4 RH |
3298 | .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, |
3299 | .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, | |
55d284af | 3300 | }, |
b4d3978c PM |
3301 | /* Secure timer -- this is actually restricted to only EL3 |
3302 | * and configurably Secure-EL1 via the accessfn. | |
3303 | */ | |
3304 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
3305 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
3306 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
3307 | .accessfn = gt_stimer_access, | |
3308 | .readfn = gt_sec_tval_read, | |
3309 | .writefn = gt_sec_tval_write, | |
3310 | .resetfn = gt_sec_timer_reset, | |
3311 | }, | |
3312 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
3313 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
3314 | .type = ARM_CP_IO, .access = PL1_RW, | |
3315 | .accessfn = gt_stimer_access, | |
3316 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
3317 | .resetvalue = 0, | |
3318 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
3319 | }, | |
3320 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
3321 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
3322 | .type = ARM_CP_IO, .access = PL1_RW, | |
3323 | .accessfn = gt_stimer_access, | |
3324 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
3325 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
3326 | }, | |
55d284af PM |
3327 | REGINFO_SENTINEL |
3328 | }; | |
3329 | ||
bb5972e4 RH |
3330 | static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3331 | bool isread) | |
3332 | { | |
3333 | if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { | |
3334 | return CP_ACCESS_TRAP; | |
3335 | } | |
3336 | return CP_ACCESS_OK; | |
3337 | } | |
3338 | ||
55d284af | 3339 | #else |
26c4a83b AB |
3340 | |
3341 | /* In user-mode most of the generic timer registers are inaccessible | |
3342 | * however modern kernels (4.12+) allow access to cntvct_el0 | |
55d284af | 3343 | */ |
26c4a83b AB |
3344 | |
3345 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3346 | { | |
7def8754 AJ |
3347 | ARMCPU *cpu = env_archcpu(env); |
3348 | ||
26c4a83b AB |
3349 | /* Currently we have no support for QEMUTimer in linux-user so we |
3350 | * can't call gt_get_countervalue(env), instead we directly | |
3351 | * call the lower level functions. | |
3352 | */ | |
7def8754 | 3353 | return cpu_get_clock() / gt_cntfrq_period_ns(cpu); |
26c4a83b AB |
3354 | } |
3355 | ||
6cc7a3ae | 3356 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
26c4a83b AB |
3357 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, |
3358 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
3359 | .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, | |
3360 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), | |
3361 | .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, | |
3362 | }, | |
3363 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
3364 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
3365 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
3366 | .readfn = gt_virt_cnt_read, | |
3367 | }, | |
6cc7a3ae PM |
3368 | REGINFO_SENTINEL |
3369 | }; | |
3370 | ||
55d284af PM |
3371 | #endif |
3372 | ||
c4241c7d | 3373 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 3374 | { |
891a2fe7 | 3375 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 3376 | raw_write(env, ri, value); |
891a2fe7 | 3377 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 3378 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 3379 | } else { |
8d5c773e | 3380 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 3381 | } |
4a501606 PM |
3382 | } |
3383 | ||
3384 | #ifndef CONFIG_USER_ONLY | |
3385 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 3386 | |
3f208fd7 PM |
3387 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3388 | bool isread) | |
92611c00 PM |
3389 | { |
3390 | if (ri->opc2 & 4) { | |
87562e4f PM |
3391 | /* The ATS12NSO* operations must trap to EL3 if executed in |
3392 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
3393 | * They are simply UNDEF if executed from NS EL1. | |
3394 | * They function normally from EL2 or EL3. | |
92611c00 | 3395 | */ |
87562e4f PM |
3396 | if (arm_current_el(env) == 1) { |
3397 | if (arm_is_secure_below_el3(env)) { | |
3398 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
3399 | } | |
3400 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3401 | } | |
92611c00 PM |
3402 | } |
3403 | return CP_ACCESS_OK; | |
3404 | } | |
3405 | ||
9fb005b0 | 3406 | #ifdef CONFIG_TCG |
060e8a48 | 3407 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
03ae85f8 | 3408 | MMUAccessType access_type, ARMMMUIdx mmu_idx) |
4a501606 | 3409 | { |
a8170e5e | 3410 | hwaddr phys_addr; |
4a501606 PM |
3411 | target_ulong page_size; |
3412 | int prot; | |
b7cc4e82 | 3413 | bool ret; |
01c097f7 | 3414 | uint64_t par64; |
1313e2d7 | 3415 | bool format64 = false; |
8bf5b6a9 | 3416 | MemTxAttrs attrs = {}; |
e14b5a23 | 3417 | ARMMMUFaultInfo fi = {}; |
5b2d261d | 3418 | ARMCacheAttrs cacheattrs = {}; |
4a501606 | 3419 | |
5b2d261d | 3420 | ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, |
bc52bfeb | 3421 | &prot, &page_size, &fi, &cacheattrs); |
1313e2d7 | 3422 | |
0710b2fa PM |
3423 | if (ret) { |
3424 | /* | |
3425 | * Some kinds of translation fault must cause exceptions rather | |
3426 | * than being reported in the PAR. | |
3427 | */ | |
3428 | int current_el = arm_current_el(env); | |
3429 | int target_el; | |
3430 | uint32_t syn, fsr, fsc; | |
3431 | bool take_exc = false; | |
3432 | ||
3433 | if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) | |
fee7aa46 | 3434 | && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { |
0710b2fa PM |
3435 | /* |
3436 | * Synchronous stage 2 fault on an access made as part of the | |
3437 | * translation table walk for AT S1E0* or AT S1E1* insn | |
3438 | * executed from NS EL1. If this is a synchronous external abort | |
3439 | * and SCR_EL3.EA == 1, then we take a synchronous external abort | |
3440 | * to EL3. Otherwise the fault is taken as an exception to EL2, | |
3441 | * and HPFAR_EL2 holds the faulting IPA. | |
3442 | */ | |
3443 | if (fi.type == ARMFault_SyncExternalOnWalk && | |
3444 | (env->cp15.scr_el3 & SCR_EA)) { | |
3445 | target_el = 3; | |
3446 | } else { | |
3447 | env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; | |
3448 | target_el = 2; | |
3449 | } | |
3450 | take_exc = true; | |
3451 | } else if (fi.type == ARMFault_SyncExternalOnWalk) { | |
3452 | /* | |
3453 | * Synchronous external aborts during a translation table walk | |
3454 | * are taken as Data Abort exceptions. | |
3455 | */ | |
3456 | if (fi.stage2) { | |
3457 | if (current_el == 3) { | |
3458 | target_el = 3; | |
3459 | } else { | |
3460 | target_el = 2; | |
3461 | } | |
3462 | } else { | |
3463 | target_el = exception_target_el(env); | |
3464 | } | |
3465 | take_exc = true; | |
3466 | } | |
3467 | ||
3468 | if (take_exc) { | |
3469 | /* Construct FSR and FSC using same logic as arm_deliver_fault() */ | |
3470 | if (target_el == 2 || arm_el_is_aa64(env, target_el) || | |
3471 | arm_s1_regime_using_lpae_format(env, mmu_idx)) { | |
3472 | fsr = arm_fi_to_lfsc(&fi); | |
3473 | fsc = extract32(fsr, 0, 6); | |
3474 | } else { | |
3475 | fsr = arm_fi_to_sfsc(&fi); | |
3476 | fsc = 0x3f; | |
3477 | } | |
3478 | /* | |
3479 | * Report exception with ESR indicating a fault due to a | |
3480 | * translation table walk for a cache maintenance instruction. | |
3481 | */ | |
e24fd076 | 3482 | syn = syn_data_abort_no_iss(current_el == target_el, 0, |
0710b2fa PM |
3483 | fi.ea, 1, fi.s1ptw, 1, fsc); |
3484 | env->exception.vaddress = value; | |
3485 | env->exception.fsr = fsr; | |
3486 | raise_exception(env, EXCP_DATA_ABORT, syn, target_el); | |
3487 | } | |
3488 | } | |
3489 | ||
1313e2d7 EI |
3490 | if (is_a64(env)) { |
3491 | format64 = true; | |
3492 | } else if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
3493 | /* | |
3494 | * ATS1Cxx: | |
3495 | * * TTBCR.EAE determines whether the result is returned using the | |
3496 | * 32-bit or the 64-bit PAR format | |
3497 | * * Instructions executed in Hyp mode always use the 64bit format | |
3498 | * | |
3499 | * ATS1S2NSOxx uses the 64bit format if any of the following is true: | |
3500 | * * The Non-secure TTBCR.EAE bit is set to 1 | |
3501 | * * The implementation includes EL2, and the value of HCR.VM is 1 | |
3502 | * | |
9d1bab33 PM |
3503 | * (Note that HCR.DC makes HCR.VM behave as if it is 1.) |
3504 | * | |
23463e0e | 3505 | * ATS1Hx always uses the 64bit format. |
1313e2d7 EI |
3506 | */ |
3507 | format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); | |
3508 | ||
3509 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
452ef8cb RH |
3510 | if (mmu_idx == ARMMMUIdx_E10_0 || |
3511 | mmu_idx == ARMMMUIdx_E10_1 || | |
3512 | mmu_idx == ARMMMUIdx_E10_1_PAN) { | |
9d1bab33 | 3513 | format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); |
1313e2d7 EI |
3514 | } else { |
3515 | format64 |= arm_current_el(env) == 2; | |
3516 | } | |
3517 | } | |
3518 | } | |
3519 | ||
3520 | if (format64) { | |
5efe9ed4 | 3521 | /* Create a 64-bit PAR */ |
01c097f7 | 3522 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 3523 | if (!ret) { |
702a9357 | 3524 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
3525 | if (!attrs.secure) { |
3526 | par64 |= (1 << 9); /* NS */ | |
3527 | } | |
5b2d261d AB |
3528 | par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ |
3529 | par64 |= cacheattrs.shareability << 7; /* SH */ | |
4a501606 | 3530 | } else { |
5efe9ed4 PM |
3531 | uint32_t fsr = arm_fi_to_lfsc(&fi); |
3532 | ||
702a9357 | 3533 | par64 |= 1; /* F */ |
b7cc4e82 | 3534 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
0f7b791b PM |
3535 | if (fi.stage2) { |
3536 | par64 |= (1 << 9); /* S */ | |
3537 | } | |
3538 | if (fi.s1ptw) { | |
3539 | par64 |= (1 << 8); /* PTW */ | |
3540 | } | |
4a501606 PM |
3541 | } |
3542 | } else { | |
b7cc4e82 | 3543 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
3544 | * translation table format (with WnR always clear). |
3545 | * Convert it to a 32-bit PAR. | |
3546 | */ | |
b7cc4e82 | 3547 | if (!ret) { |
702a9357 PM |
3548 | /* We do not set any attribute bits in the PAR */ |
3549 | if (page_size == (1 << 24) | |
3550 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 3551 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 3552 | } else { |
01c097f7 | 3553 | par64 = phys_addr & 0xfffff000; |
702a9357 | 3554 | } |
8bf5b6a9 PM |
3555 | if (!attrs.secure) { |
3556 | par64 |= (1 << 9); /* NS */ | |
3557 | } | |
702a9357 | 3558 | } else { |
5efe9ed4 PM |
3559 | uint32_t fsr = arm_fi_to_sfsc(&fi); |
3560 | ||
b7cc4e82 PC |
3561 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
3562 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 3563 | } |
4a501606 | 3564 | } |
060e8a48 PM |
3565 | return par64; |
3566 | } | |
9fb005b0 | 3567 | #endif /* CONFIG_TCG */ |
060e8a48 PM |
3568 | |
3569 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
3570 | { | |
9fb005b0 | 3571 | #ifdef CONFIG_TCG |
03ae85f8 | 3572 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
060e8a48 | 3573 | uint64_t par64; |
d3649702 PM |
3574 | ARMMMUIdx mmu_idx; |
3575 | int el = arm_current_el(env); | |
3576 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 3577 | |
d3649702 PM |
3578 | switch (ri->opc2 & 6) { |
3579 | case 0: | |
04b07d29 | 3580 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ |
d3649702 PM |
3581 | switch (el) { |
3582 | case 3: | |
127b2b08 | 3583 | mmu_idx = ARMMMUIdx_SE3; |
d3649702 PM |
3584 | break; |
3585 | case 2: | |
b6ad6062 | 3586 | g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ |
04b07d29 | 3587 | /* fall through */ |
d3649702 | 3588 | case 1: |
04b07d29 RH |
3589 | if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { |
3590 | mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN | |
3591 | : ARMMMUIdx_Stage1_E1_PAN); | |
3592 | } else { | |
3593 | mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; | |
3594 | } | |
d3649702 PM |
3595 | break; |
3596 | default: | |
3597 | g_assert_not_reached(); | |
3598 | } | |
3599 | break; | |
3600 | case 2: | |
3601 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
3602 | switch (el) { | |
3603 | case 3: | |
fba37aed | 3604 | mmu_idx = ARMMMUIdx_SE10_0; |
d3649702 PM |
3605 | break; |
3606 | case 2: | |
2859d7b5 | 3607 | mmu_idx = ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3608 | break; |
3609 | case 1: | |
fba37aed | 3610 | mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3611 | break; |
3612 | default: | |
3613 | g_assert_not_reached(); | |
3614 | } | |
3615 | break; | |
3616 | case 4: | |
3617 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
01b98b68 | 3618 | mmu_idx = ARMMMUIdx_E10_1; |
d3649702 PM |
3619 | break; |
3620 | case 6: | |
3621 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
01b98b68 | 3622 | mmu_idx = ARMMMUIdx_E10_0; |
d3649702 PM |
3623 | break; |
3624 | default: | |
3625 | g_assert_not_reached(); | |
3626 | } | |
3627 | ||
3628 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
3629 | |
3630 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
9fb005b0 PMD |
3631 | #else |
3632 | /* Handled by hardware accelerator. */ | |
3633 | g_assert_not_reached(); | |
3634 | #endif /* CONFIG_TCG */ | |
4a501606 | 3635 | } |
060e8a48 | 3636 | |
14db7fe0 PM |
3637 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3638 | uint64_t value) | |
3639 | { | |
9fb005b0 | 3640 | #ifdef CONFIG_TCG |
03ae85f8 | 3641 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
14db7fe0 PM |
3642 | uint64_t par64; |
3643 | ||
e013b741 | 3644 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); |
14db7fe0 PM |
3645 | |
3646 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
9fb005b0 PMD |
3647 | #else |
3648 | /* Handled by hardware accelerator. */ | |
3649 | g_assert_not_reached(); | |
3650 | #endif /* CONFIG_TCG */ | |
14db7fe0 PM |
3651 | } |
3652 | ||
3f208fd7 PM |
3653 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3654 | bool isread) | |
2a47df95 PM |
3655 | { |
3656 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
3657 | return CP_ACCESS_TRAP; | |
3658 | } | |
3659 | return CP_ACCESS_OK; | |
3660 | } | |
3661 | ||
060e8a48 PM |
3662 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
3663 | uint64_t value) | |
3664 | { | |
9fb005b0 | 3665 | #ifdef CONFIG_TCG |
03ae85f8 | 3666 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
d3649702 PM |
3667 | ARMMMUIdx mmu_idx; |
3668 | int secure = arm_is_secure_below_el3(env); | |
3669 | ||
3670 | switch (ri->opc2 & 6) { | |
3671 | case 0: | |
3672 | switch (ri->opc1) { | |
04b07d29 RH |
3673 | case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ |
3674 | if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { | |
3675 | mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN | |
3676 | : ARMMMUIdx_Stage1_E1_PAN); | |
3677 | } else { | |
3678 | mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; | |
3679 | } | |
d3649702 PM |
3680 | break; |
3681 | case 4: /* AT S1E2R, AT S1E2W */ | |
b6ad6062 | 3682 | mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; |
d3649702 PM |
3683 | break; |
3684 | case 6: /* AT S1E3R, AT S1E3W */ | |
127b2b08 | 3685 | mmu_idx = ARMMMUIdx_SE3; |
d3649702 PM |
3686 | break; |
3687 | default: | |
3688 | g_assert_not_reached(); | |
3689 | } | |
3690 | break; | |
3691 | case 2: /* AT S1E0R, AT S1E0W */ | |
fba37aed | 3692 | mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3693 | break; |
3694 | case 4: /* AT S12E1R, AT S12E1W */ | |
fba37aed | 3695 | mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; |
d3649702 PM |
3696 | break; |
3697 | case 6: /* AT S12E0R, AT S12E0W */ | |
fba37aed | 3698 | mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; |
d3649702 PM |
3699 | break; |
3700 | default: | |
3701 | g_assert_not_reached(); | |
3702 | } | |
060e8a48 | 3703 | |
d3649702 | 3704 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
9fb005b0 PMD |
3705 | #else |
3706 | /* Handled by hardware accelerator. */ | |
3707 | g_assert_not_reached(); | |
3708 | #endif /* CONFIG_TCG */ | |
060e8a48 | 3709 | } |
4a501606 PM |
3710 | #endif |
3711 | ||
3712 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
3713 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
3714 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
3715 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
3716 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
3717 | .writefn = par_write }, |
3718 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 3719 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 3720 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 3721 | .access = PL1_W, .accessfn = ats_access, |
0710b2fa | 3722 | .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
4a501606 PM |
3723 | #endif |
3724 | REGINFO_SENTINEL | |
3725 | }; | |
3726 | ||
18032bec PM |
3727 | /* Return basic MPU access permission bits. */ |
3728 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
3729 | { | |
3730 | uint32_t ret; | |
3731 | uint32_t mask; | |
3732 | int i; | |
3733 | ret = 0; | |
3734 | mask = 3; | |
3735 | for (i = 0; i < 16; i += 2) { | |
3736 | ret |= (val >> i) & mask; | |
3737 | mask <<= 2; | |
3738 | } | |
3739 | return ret; | |
3740 | } | |
3741 | ||
3742 | /* Pad basic MPU access permission bits to extended format. */ | |
3743 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
3744 | { | |
3745 | uint32_t ret; | |
3746 | uint32_t mask; | |
3747 | int i; | |
3748 | ret = 0; | |
3749 | mask = 3; | |
3750 | for (i = 0; i < 16; i += 2) { | |
3751 | ret |= (val & mask) << i; | |
3752 | mask <<= 2; | |
3753 | } | |
3754 | return ret; | |
3755 | } | |
3756 | ||
c4241c7d PM |
3757 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3758 | uint64_t value) | |
18032bec | 3759 | { |
7e09797c | 3760 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
3761 | } |
3762 | ||
c4241c7d | 3763 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 3764 | { |
7e09797c | 3765 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
3766 | } |
3767 | ||
c4241c7d PM |
3768 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3769 | uint64_t value) | |
18032bec | 3770 | { |
7e09797c | 3771 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
3772 | } |
3773 | ||
c4241c7d | 3774 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 3775 | { |
7e09797c | 3776 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
3777 | } |
3778 | ||
6cb0b013 PC |
3779 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
3780 | { | |
3781 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
3782 | ||
3783 | if (!u32p) { | |
3784 | return 0; | |
3785 | } | |
3786 | ||
1bc04a88 | 3787 | u32p += env->pmsav7.rnr[M_REG_NS]; |
6cb0b013 PC |
3788 | return *u32p; |
3789 | } | |
3790 | ||
3791 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3792 | uint64_t value) | |
3793 | { | |
2fc0cc0e | 3794 | ARMCPU *cpu = env_archcpu(env); |
6cb0b013 PC |
3795 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
3796 | ||
3797 | if (!u32p) { | |
3798 | return; | |
3799 | } | |
3800 | ||
1bc04a88 | 3801 | u32p += env->pmsav7.rnr[M_REG_NS]; |
d10eb08f | 3802 | tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ |
6cb0b013 PC |
3803 | *u32p = value; |
3804 | } | |
3805 | ||
6cb0b013 PC |
3806 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3807 | uint64_t value) | |
3808 | { | |
2fc0cc0e | 3809 | ARMCPU *cpu = env_archcpu(env); |
6cb0b013 PC |
3810 | uint32_t nrgs = cpu->pmsav7_dregion; |
3811 | ||
3812 | if (value >= nrgs) { | |
3813 | qemu_log_mask(LOG_GUEST_ERROR, | |
3814 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
3815 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
3816 | return; | |
3817 | } | |
3818 | ||
3819 | raw_write(env, ri, value); | |
3820 | } | |
3821 | ||
3822 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
69ceea64 PM |
3823 | /* Reset for all these registers is handled in arm_cpu_reset(), |
3824 | * because the PMSAv7 is also used by M-profile CPUs, which do | |
3825 | * not register cpregs but still need the state to be reset. | |
3826 | */ | |
6cb0b013 PC |
3827 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
3828 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3829 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
69ceea64 PM |
3830 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3831 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3832 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
3833 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3834 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
69ceea64 PM |
3835 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3836 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3837 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
3838 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3839 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
69ceea64 PM |
3840 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3841 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3842 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
3843 | .access = PL1_RW, | |
1bc04a88 | 3844 | .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), |
69ceea64 PM |
3845 | .writefn = pmsav7_rgnr_write, |
3846 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3847 | REGINFO_SENTINEL |
3848 | }; | |
3849 | ||
18032bec PM |
3850 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
3851 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 3852 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 3853 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
3854 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
3855 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 3856 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 3857 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
3858 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
3859 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
3860 | .access = PL1_RW, | |
7e09797c PM |
3861 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
3862 | .resetvalue = 0, }, | |
18032bec PM |
3863 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
3864 | .access = PL1_RW, | |
7e09797c PM |
3865 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
3866 | .resetvalue = 0, }, | |
ecce5c3c PM |
3867 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
3868 | .access = PL1_RW, | |
3869 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
3870 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
3871 | .access = PL1_RW, | |
3872 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 3873 | /* Protection region base and size registers */ |
e508a92b PM |
3874 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
3875 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3876 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
3877 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
3878 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3879 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
3880 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
3881 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3882 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
3883 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
3884 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3885 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
3886 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
3887 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3888 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
3889 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
3890 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3891 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
3892 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
3893 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3894 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
3895 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
3896 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3897 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
3898 | REGINFO_SENTINEL |
3899 | }; | |
3900 | ||
c4241c7d PM |
3901 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3902 | uint64_t value) | |
ecce5c3c | 3903 | { |
11f136ee | 3904 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
3905 | int maskshift = extract32(value, 0, 3); |
3906 | ||
e389be16 FA |
3907 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
3908 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
3909 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
3910 | * using Long-desciptor translation table format */ | |
3911 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
3912 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3913 | /* In an implementation that includes the Security Extensions | |
3914 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
3915 | * Short-descriptor translation table format. | |
3916 | */ | |
3917 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
3918 | } else { | |
3919 | value &= TTBCR_N; | |
3920 | } | |
e42c4db3 | 3921 | } |
e389be16 | 3922 | |
b6af0975 | 3923 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 3924 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 3925 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
3926 | * for long-descriptor tables the TCR fields are used differently |
3927 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 3928 | */ |
11f136ee FA |
3929 | tcr->raw_tcr = value; |
3930 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
3931 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
3932 | } |
3933 | ||
c4241c7d PM |
3934 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3935 | uint64_t value) | |
d4e6df63 | 3936 | { |
2fc0cc0e | 3937 | ARMCPU *cpu = env_archcpu(env); |
ab638a32 | 3938 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 3939 | |
d4e6df63 PM |
3940 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
3941 | /* With LPAE the TTBCR could result in a change of ASID | |
3942 | * via the TTBCR.A1 bit, so do a TLB flush. | |
3943 | */ | |
d10eb08f | 3944 | tlb_flush(CPU(cpu)); |
d4e6df63 | 3945 | } |
ab638a32 RH |
3946 | /* Preserve the high half of TCR_EL1, set via TTBCR2. */ |
3947 | value = deposit64(tcr->raw_tcr, 0, 32, value); | |
c4241c7d | 3948 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
3949 | } |
3950 | ||
ecce5c3c PM |
3951 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3952 | { | |
11f136ee FA |
3953 | TCR *tcr = raw_ptr(env, ri); |
3954 | ||
3955 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
3956 | * the TCR being reset. | |
3957 | */ | |
3958 | tcr->raw_tcr = 0; | |
3959 | tcr->mask = 0; | |
3960 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
3961 | } |
3962 | ||
d06dc933 | 3963 | static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, |
cb2e37df PM |
3964 | uint64_t value) |
3965 | { | |
2fc0cc0e | 3966 | ARMCPU *cpu = env_archcpu(env); |
11f136ee | 3967 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 3968 | |
cb2e37df | 3969 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
d10eb08f | 3970 | tlb_flush(CPU(cpu)); |
11f136ee | 3971 | tcr->raw_tcr = value; |
cb2e37df PM |
3972 | } |
3973 | ||
327ed10f PM |
3974 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3975 | uint64_t value) | |
3976 | { | |
93f379b0 RH |
3977 | /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ |
3978 | if (cpreg_field_is_64bit(ri) && | |
3979 | extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { | |
2fc0cc0e | 3980 | ARMCPU *cpu = env_archcpu(env); |
d10eb08f | 3981 | tlb_flush(CPU(cpu)); |
327ed10f PM |
3982 | } |
3983 | raw_write(env, ri, value); | |
3984 | } | |
3985 | ||
ed30da8e RH |
3986 | static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3987 | uint64_t value) | |
3988 | { | |
d06dc933 RH |
3989 | /* |
3990 | * If we are running with E2&0 regime, then an ASID is active. | |
3991 | * Flush if that might be changing. Note we're not checking | |
3992 | * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that | |
3993 | * holds the active ASID, only checking the field that might. | |
3994 | */ | |
3995 | if (extract64(raw_read(env, ri) ^ value, 48, 16) && | |
3996 | (arm_hcr_el2_eff(env) & HCR_E2H)) { | |
b6ad6062 RDC |
3997 | uint16_t mask = ARMMMUIdxBit_E20_2 | |
3998 | ARMMMUIdxBit_E20_2_PAN | | |
3999 | ARMMMUIdxBit_E20_0; | |
4000 | ||
4001 | if (arm_is_secure_below_el3(env)) { | |
4002 | mask >>= ARM_MMU_IDX_A_NS; | |
4003 | } | |
4004 | ||
4005 | tlb_flush_by_mmuidx(env_cpu(env), mask); | |
d06dc933 | 4006 | } |
ed30da8e RH |
4007 | raw_write(env, ri, value); |
4008 | } | |
4009 | ||
b698e9cf EI |
4010 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4011 | uint64_t value) | |
4012 | { | |
2fc0cc0e | 4013 | ARMCPU *cpu = env_archcpu(env); |
b698e9cf EI |
4014 | CPUState *cs = CPU(cpu); |
4015 | ||
97fa9350 RH |
4016 | /* |
4017 | * A change in VMID to the stage2 page table (Stage2) invalidates | |
4018 | * the combined stage 1&2 tlbs (EL10_1 and EL10_0). | |
4019 | */ | |
b698e9cf | 4020 | if (raw_read(env, ri) != value) { |
c4f060e8 RDC |
4021 | uint16_t mask = ARMMMUIdxBit_E10_1 | |
4022 | ARMMMUIdxBit_E10_1_PAN | | |
4023 | ARMMMUIdxBit_E10_0; | |
4024 | ||
4025 | if (arm_is_secure_below_el3(env)) { | |
4026 | mask >>= ARM_MMU_IDX_A_NS; | |
4027 | } | |
4028 | ||
4029 | tlb_flush_by_mmuidx(cs, mask); | |
b698e9cf EI |
4030 | raw_write(env, ri, value); |
4031 | } | |
4032 | } | |
4033 | ||
8e5d75c9 | 4034 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 4035 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
84929218 | 4036 | .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, |
4a7e2d73 | 4037 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 4038 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 4039 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
84929218 | 4040 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
88ca1c2d FA |
4041 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), |
4042 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 | 4043 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
84929218 | 4044 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
8e5d75c9 PC |
4045 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), |
4046 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
4047 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
4048 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
84929218 RH |
4049 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4050 | .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
8e5d75c9 PC |
4051 | .resetvalue = 0, }, |
4052 | REGINFO_SENTINEL | |
4053 | }; | |
4054 | ||
4055 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
4056 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
4057 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
84929218 | 4058 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
d81c519c | 4059 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 4060 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af | 4061 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
84929218 RH |
4062 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4063 | .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
7dd8c9af FA |
4064 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
4065 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 4066 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af | 4067 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
84929218 RH |
4068 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4069 | .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
7dd8c9af FA |
4070 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
4071 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
4072 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
4073 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
84929218 RH |
4074 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4075 | .writefn = vmsa_tcr_el12_write, | |
cb2e37df | 4076 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, |
11f136ee | 4077 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 4078 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
84929218 RH |
4079 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4080 | .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, | |
b061a82b | 4081 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
4082 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
4083 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
4084 | REGINFO_SENTINEL |
4085 | }; | |
4086 | ||
ab638a32 RH |
4087 | /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing |
4088 | * qemu tlbs nor adjusting cached masks. | |
4089 | */ | |
4090 | static const ARMCPRegInfo ttbcr2_reginfo = { | |
4091 | .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, | |
84929218 RH |
4092 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4093 | .type = ARM_CP_ALIAS, | |
ab638a32 RH |
4094 | .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), |
4095 | offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, | |
4096 | }; | |
4097 | ||
c4241c7d PM |
4098 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4099 | uint64_t value) | |
1047b9d7 PM |
4100 | { |
4101 | env->cp15.c15_ticonfig = value & 0xe7; | |
4102 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
4103 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
4104 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
4105 | } |
4106 | ||
c4241c7d PM |
4107 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4108 | uint64_t value) | |
1047b9d7 PM |
4109 | { |
4110 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
4111 | } |
4112 | ||
c4241c7d PM |
4113 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4114 | uint64_t value) | |
1047b9d7 PM |
4115 | { |
4116 | /* Wait-for-interrupt (deprecated) */ | |
2fc0cc0e | 4117 | cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
4118 | } |
4119 | ||
c4241c7d PM |
4120 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4121 | uint64_t value) | |
c4804214 PM |
4122 | { |
4123 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
4124 | * containing a dirty line; cache flush operations have to reset these. | |
4125 | */ | |
4126 | env->cp15.c15_i_max = 0x000; | |
4127 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
4128 | } |
4129 | ||
18032bec PM |
4130 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
4131 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
4132 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 4133 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 4134 | .resetvalue = 0, }, |
1047b9d7 PM |
4135 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
4136 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
4137 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
4138 | .access = PL1_RW, | |
4139 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
4140 | .writefn = omap_ticonfig_write }, | |
4141 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
4142 | .access = PL1_RW, | |
4143 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
4144 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
4145 | .access = PL1_RW, .resetvalue = 0xff0, | |
4146 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
4147 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
4148 | .access = PL1_RW, | |
4149 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
4150 | .writefn = omap_threadid_write }, | |
4151 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
4152 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 4153 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
4154 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
4155 | /* TODO: Peripheral port remap register: | |
4156 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
4157 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
4158 | * when MMU is off. | |
4159 | */ | |
c4804214 | 4160 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 4161 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 4162 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 4163 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
4164 | { .name = "C9", .cp = 15, .crn = 9, |
4165 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
4166 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
4167 | REGINFO_SENTINEL |
4168 | }; | |
4169 | ||
c4241c7d PM |
4170 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4171 | uint64_t value) | |
1047b9d7 | 4172 | { |
c0f4af17 | 4173 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
4174 | } |
4175 | ||
4176 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
4177 | { .name = "XSCALE_CPAR", | |
4178 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
4179 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
4180 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
4181 | { .name = "XSCALE_AUXCR", |
4182 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
4183 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
4184 | .resetvalue = 0, }, | |
3b771579 PM |
4185 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
4186 | * and hope the guest does not really rely on cache behaviour. | |
4187 | */ | |
4188 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
4189 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
4190 | .access = PL1_W, .type = ARM_CP_NOP }, | |
4191 | { .name = "XSCALE_UNLOCK_ICACHE", | |
4192 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
4193 | .access = PL1_W, .type = ARM_CP_NOP }, | |
4194 | { .name = "XSCALE_DCACHE_LOCK", | |
4195 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
4196 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
4197 | { .name = "XSCALE_UNLOCK_DCACHE", | |
4198 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
4199 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
4200 | REGINFO_SENTINEL |
4201 | }; | |
4202 | ||
4203 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
4204 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
4205 | * implementation of this implementation-defined space. | |
4206 | * Ideally this should eventually disappear in favour of actually | |
4207 | * implementing the correct behaviour for all cores. | |
4208 | */ | |
4209 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
4210 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 4211 | .access = PL1_RW, |
7a0e58fa | 4212 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 4213 | .resetvalue = 0 }, |
18032bec PM |
4214 | REGINFO_SENTINEL |
4215 | }; | |
4216 | ||
c4804214 PM |
4217 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
4218 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
4219 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 4220 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4221 | .resetvalue = 0 }, |
c4804214 PM |
4222 | REGINFO_SENTINEL |
4223 | }; | |
4224 | ||
4225 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
4226 | /* We never have a a block transfer operation in progress */ | |
4227 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 4228 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4229 | .resetvalue = 0 }, |
30b05bba PM |
4230 | /* The cache ops themselves: these all NOP for QEMU */ |
4231 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
4232 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4233 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
4234 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4235 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
4236 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4237 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
4238 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4239 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
4240 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4241 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
4242 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
4243 | REGINFO_SENTINEL |
4244 | }; | |
4245 | ||
4246 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
4247 | /* The cache test-and-clean instructions always return (1 << 30) | |
4248 | * to indicate that there are no dirty cache lines. | |
4249 | */ | |
4250 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 4251 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4252 | .resetvalue = (1 << 30) }, |
c4804214 | 4253 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 4254 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4255 | .resetvalue = (1 << 30) }, |
c4804214 PM |
4256 | REGINFO_SENTINEL |
4257 | }; | |
4258 | ||
34f90529 PM |
4259 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
4260 | /* Ignore ReadBuffer accesses */ | |
4261 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
4262 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 4263 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 4264 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
4265 | REGINFO_SENTINEL |
4266 | }; | |
4267 | ||
731de9e6 EI |
4268 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4269 | { | |
731de9e6 | 4270 | unsigned int cur_el = arm_current_el(env); |
731de9e6 | 4271 | |
e6ef0169 | 4272 | if (arm_is_el2_enabled(env) && cur_el == 1) { |
731de9e6 EI |
4273 | return env->cp15.vpidr_el2; |
4274 | } | |
4275 | return raw_read(env, ri); | |
4276 | } | |
4277 | ||
06a7e647 | 4278 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 4279 | { |
2fc0cc0e | 4280 | ARMCPU *cpu = env_archcpu(env); |
eb5e1d3c PF |
4281 | uint64_t mpidr = cpu->mp_affinity; |
4282 | ||
81bdde9d | 4283 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 4284 | mpidr |= (1U << 31); |
81bdde9d PM |
4285 | /* Cores which are uniprocessor (non-coherent) |
4286 | * but still implement the MP extensions set | |
a8e81b31 | 4287 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 4288 | */ |
a8e81b31 PC |
4289 | if (cpu->mp_is_up) { |
4290 | mpidr |= (1u << 30); | |
4291 | } | |
81bdde9d | 4292 | } |
c4241c7d | 4293 | return mpidr; |
81bdde9d PM |
4294 | } |
4295 | ||
06a7e647 EI |
4296 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4297 | { | |
f0d574d6 | 4298 | unsigned int cur_el = arm_current_el(env); |
f0d574d6 | 4299 | |
e6ef0169 | 4300 | if (arm_is_el2_enabled(env) && cur_el == 1) { |
f0d574d6 EI |
4301 | return env->cp15.vmpidr_el2; |
4302 | } | |
06a7e647 EI |
4303 | return mpidr_read_val(env); |
4304 | } | |
4305 | ||
7ac681cf | 4306 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 4307 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
4308 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
4309 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
84929218 RH |
4310 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4311 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 | 4312 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 4313 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
84929218 RH |
4314 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4315 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
891a2fe7 | 4316 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
4317 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
4318 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
4319 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 4320 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
84929218 RH |
4321 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4322 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
7dd8c9af FA |
4323 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
4324 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 4325 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 4326 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
84929218 RH |
4327 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4328 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
7dd8c9af FA |
4329 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
4330 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 4331 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
4332 | REGINFO_SENTINEL |
4333 | }; | |
4334 | ||
c4241c7d | 4335 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 4336 | { |
c4241c7d | 4337 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
4338 | } |
4339 | ||
c4241c7d PM |
4340 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4341 | uint64_t value) | |
b0d2b7d0 PM |
4342 | { |
4343 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
4344 | } |
4345 | ||
c4241c7d | 4346 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 4347 | { |
c4241c7d | 4348 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
4349 | } |
4350 | ||
c4241c7d PM |
4351 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4352 | uint64_t value) | |
b0d2b7d0 PM |
4353 | { |
4354 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
4355 | } |
4356 | ||
3f208fd7 PM |
4357 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4358 | bool isread) | |
c2b820fe | 4359 | { |
aaec1432 | 4360 | if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { |
c2b820fe PM |
4361 | return CP_ACCESS_TRAP; |
4362 | } | |
4363 | return CP_ACCESS_OK; | |
4364 | } | |
4365 | ||
4366 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4367 | uint64_t value) | |
4368 | { | |
4369 | env->daif = value & PSTATE_DAIF; | |
4370 | } | |
4371 | ||
220f508f RH |
4372 | static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4373 | { | |
4374 | return env->pstate & PSTATE_PAN; | |
4375 | } | |
4376 | ||
4377 | static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4378 | uint64_t value) | |
4379 | { | |
4380 | env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); | |
4381 | } | |
4382 | ||
4383 | static const ARMCPRegInfo pan_reginfo = { | |
4384 | .name = "PAN", .state = ARM_CP_STATE_AA64, | |
4385 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, | |
4386 | .type = ARM_CP_NO_RAW, .access = PL1_RW, | |
4387 | .readfn = aa64_pan_read, .writefn = aa64_pan_write | |
4388 | }; | |
4389 | ||
9eeb7a1c RH |
4390 | static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4391 | { | |
4392 | return env->pstate & PSTATE_UAO; | |
4393 | } | |
4394 | ||
4395 | static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4396 | uint64_t value) | |
4397 | { | |
4398 | env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); | |
4399 | } | |
4400 | ||
4401 | static const ARMCPRegInfo uao_reginfo = { | |
4402 | .name = "UAO", .state = ARM_CP_STATE_AA64, | |
4403 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, | |
4404 | .type = ARM_CP_NO_RAW, .access = PL1_RW, | |
4405 | .readfn = aa64_uao_read, .writefn = aa64_uao_write | |
4406 | }; | |
4407 | ||
38262d8a RH |
4408 | static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, |
4409 | const ARMCPRegInfo *ri, | |
4410 | bool isread) | |
8af35c37 | 4411 | { |
38262d8a RH |
4412 | /* Cache invalidate/clean to Point of Coherency or Persistence... */ |
4413 | switch (arm_current_el(env)) { | |
4414 | case 0: | |
4415 | /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ | |
4416 | if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { | |
4417 | return CP_ACCESS_TRAP; | |
4418 | } | |
4419 | /* fall through */ | |
4420 | case 1: | |
4421 | /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ | |
4422 | if (arm_hcr_el2_eff(env) & HCR_TPCP) { | |
4423 | return CP_ACCESS_TRAP_EL2; | |
4424 | } | |
4425 | break; | |
8af35c37 PM |
4426 | } |
4427 | return CP_ACCESS_OK; | |
4428 | } | |
4429 | ||
38262d8a | 4430 | static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, |
1bed4d2e RH |
4431 | const ARMCPRegInfo *ri, |
4432 | bool isread) | |
4433 | { | |
38262d8a | 4434 | /* Cache invalidate/clean to Point of Unification... */ |
1bed4d2e RH |
4435 | switch (arm_current_el(env)) { |
4436 | case 0: | |
4437 | /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ | |
4438 | if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { | |
4439 | return CP_ACCESS_TRAP; | |
4440 | } | |
4441 | /* fall through */ | |
4442 | case 1: | |
38262d8a RH |
4443 | /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ |
4444 | if (arm_hcr_el2_eff(env) & HCR_TPU) { | |
1bed4d2e RH |
4445 | return CP_ACCESS_TRAP_EL2; |
4446 | } | |
4447 | break; | |
4448 | } | |
4449 | return CP_ACCESS_OK; | |
4450 | } | |
4451 | ||
dbb1fb27 AB |
4452 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
4453 | * Page D4-1736 (DDI0487A.b) | |
4454 | */ | |
4455 | ||
b7e0730d RH |
4456 | static int vae1_tlbmask(CPUARMState *env) |
4457 | { | |
e04a5752 RDC |
4458 | uint64_t hcr = arm_hcr_el2_eff(env); |
4459 | ||
4460 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
b6ad6062 RDC |
4461 | uint16_t mask = ARMMMUIdxBit_E20_2 | |
4462 | ARMMMUIdxBit_E20_2_PAN | | |
4463 | ARMMMUIdxBit_E20_0; | |
4464 | ||
4465 | if (arm_is_secure_below_el3(env)) { | |
4466 | mask >>= ARM_MMU_IDX_A_NS; | |
4467 | } | |
4468 | ||
4469 | return mask; | |
e04a5752 RDC |
4470 | } else if (arm_is_secure_below_el3(env)) { |
4471 | return ARMMMUIdxBit_SE10_1 | | |
4472 | ARMMMUIdxBit_SE10_1_PAN | | |
4473 | ARMMMUIdxBit_SE10_0; | |
b7e0730d | 4474 | } else { |
452ef8cb RH |
4475 | return ARMMMUIdxBit_E10_1 | |
4476 | ARMMMUIdxBit_E10_1_PAN | | |
4477 | ARMMMUIdxBit_E10_0; | |
b7e0730d RH |
4478 | } |
4479 | } | |
4480 | ||
ea04dce7 RH |
4481 | /* Return 56 if TBI is enabled, 64 otherwise. */ |
4482 | static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, | |
4483 | uint64_t addr) | |
4484 | { | |
4485 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; | |
4486 | int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); | |
4487 | int select = extract64(addr, 55, 1); | |
4488 | ||
4489 | return (tbi >> select) & 1 ? 56 : 64; | |
4490 | } | |
4491 | ||
4492 | static int vae1_tlbbits(CPUARMState *env, uint64_t addr) | |
4493 | { | |
b6ad6062 | 4494 | uint64_t hcr = arm_hcr_el2_eff(env); |
ea04dce7 RH |
4495 | ARMMMUIdx mmu_idx; |
4496 | ||
4497 | /* Only the regime of the mmu_idx below is significant. */ | |
b6ad6062 | 4498 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { |
ea04dce7 RH |
4499 | mmu_idx = ARMMMUIdx_E20_0; |
4500 | } else { | |
4501 | mmu_idx = ARMMMUIdx_E10_0; | |
4502 | } | |
b6ad6062 RDC |
4503 | |
4504 | if (arm_is_secure_below_el3(env)) { | |
4505 | mmu_idx &= ~ARM_MMU_IDX_A_NS; | |
4506 | } | |
4507 | ||
ea04dce7 RH |
4508 | return tlbbits_for_regime(env, mmu_idx, addr); |
4509 | } | |
4510 | ||
fd3ed969 PM |
4511 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4512 | uint64_t value) | |
168aa23b | 4513 | { |
29a0af61 | 4514 | CPUState *cs = env_cpu(env); |
b7e0730d | 4515 | int mask = vae1_tlbmask(env); |
dbb1fb27 | 4516 | |
b7e0730d | 4517 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
168aa23b PM |
4518 | } |
4519 | ||
b4ab8ce9 PM |
4520 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4521 | uint64_t value) | |
4522 | { | |
29a0af61 | 4523 | CPUState *cs = env_cpu(env); |
b7e0730d | 4524 | int mask = vae1_tlbmask(env); |
b4ab8ce9 PM |
4525 | |
4526 | if (tlb_force_broadcast(env)) { | |
527db2be RH |
4527 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
4528 | } else { | |
4529 | tlb_flush_by_mmuidx(cs, mask); | |
b4ab8ce9 | 4530 | } |
b4ab8ce9 PM |
4531 | } |
4532 | ||
90c19cdf | 4533 | static int alle1_tlbmask(CPUARMState *env) |
168aa23b | 4534 | { |
90c19cdf RH |
4535 | /* |
4536 | * Note that the 'ALL' scope must invalidate both stage 1 and | |
fd3ed969 PM |
4537 | * stage 2 translations, whereas most other scopes only invalidate |
4538 | * stage 1 translations. | |
4539 | */ | |
fd3ed969 | 4540 | if (arm_is_secure_below_el3(env)) { |
452ef8cb RH |
4541 | return ARMMMUIdxBit_SE10_1 | |
4542 | ARMMMUIdxBit_SE10_1_PAN | | |
4543 | ARMMMUIdxBit_SE10_0; | |
fd3ed969 | 4544 | } else { |
452ef8cb RH |
4545 | return ARMMMUIdxBit_E10_1 | |
4546 | ARMMMUIdxBit_E10_1_PAN | | |
4547 | ARMMMUIdxBit_E10_0; | |
fd3ed969 | 4548 | } |
168aa23b PM |
4549 | } |
4550 | ||
85d0dc9f RH |
4551 | static int e2_tlbmask(CPUARMState *env) |
4552 | { | |
b6ad6062 RDC |
4553 | if (arm_is_secure_below_el3(env)) { |
4554 | return ARMMMUIdxBit_SE20_0 | | |
4555 | ARMMMUIdxBit_SE20_2 | | |
4556 | ARMMMUIdxBit_SE20_2_PAN | | |
4557 | ARMMMUIdxBit_SE2; | |
4558 | } else { | |
4559 | return ARMMMUIdxBit_E20_0 | | |
4560 | ARMMMUIdxBit_E20_2 | | |
4561 | ARMMMUIdxBit_E20_2_PAN | | |
4562 | ARMMMUIdxBit_E2; | |
4563 | } | |
85d0dc9f RH |
4564 | } |
4565 | ||
90c19cdf RH |
4566 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4567 | uint64_t value) | |
4568 | { | |
4569 | CPUState *cs = env_cpu(env); | |
4570 | int mask = alle1_tlbmask(env); | |
4571 | ||
4572 | tlb_flush_by_mmuidx(cs, mask); | |
4573 | } | |
4574 | ||
fd3ed969 | 4575 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
4576 | uint64_t value) |
4577 | { | |
85d0dc9f RH |
4578 | CPUState *cs = env_cpu(env); |
4579 | int mask = e2_tlbmask(env); | |
fd3ed969 | 4580 | |
85d0dc9f | 4581 | tlb_flush_by_mmuidx(cs, mask); |
fd3ed969 PM |
4582 | } |
4583 | ||
43efaa33 PM |
4584 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4585 | uint64_t value) | |
4586 | { | |
2fc0cc0e | 4587 | ARMCPU *cpu = env_archcpu(env); |
43efaa33 PM |
4588 | CPUState *cs = CPU(cpu); |
4589 | ||
127b2b08 | 4590 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4591 | } |
4592 | ||
fd3ed969 PM |
4593 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4594 | uint64_t value) | |
4595 | { | |
29a0af61 | 4596 | CPUState *cs = env_cpu(env); |
90c19cdf RH |
4597 | int mask = alle1_tlbmask(env); |
4598 | ||
4599 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); | |
fa439fc5 PM |
4600 | } |
4601 | ||
2bfb9d75 PM |
4602 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4603 | uint64_t value) | |
4604 | { | |
29a0af61 | 4605 | CPUState *cs = env_cpu(env); |
85d0dc9f | 4606 | int mask = e2_tlbmask(env); |
2bfb9d75 | 4607 | |
85d0dc9f | 4608 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
2bfb9d75 PM |
4609 | } |
4610 | ||
43efaa33 PM |
4611 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4612 | uint64_t value) | |
4613 | { | |
29a0af61 | 4614 | CPUState *cs = env_cpu(env); |
43efaa33 | 4615 | |
127b2b08 | 4616 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4617 | } |
4618 | ||
fd3ed969 PM |
4619 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4620 | uint64_t value) | |
fa439fc5 | 4621 | { |
fd3ed969 PM |
4622 | /* Invalidate by VA, EL2 |
4623 | * Currently handles both VAE2 and VALE2, since we don't support | |
4624 | * flush-last-level-only. | |
4625 | */ | |
85d0dc9f RH |
4626 | CPUState *cs = env_cpu(env); |
4627 | int mask = e2_tlbmask(env); | |
fd3ed969 PM |
4628 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
4629 | ||
85d0dc9f | 4630 | tlb_flush_page_by_mmuidx(cs, pageaddr, mask); |
fd3ed969 PM |
4631 | } |
4632 | ||
43efaa33 PM |
4633 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4634 | uint64_t value) | |
4635 | { | |
4636 | /* Invalidate by VA, EL3 | |
4637 | * Currently handles both VAE3 and VALE3, since we don't support | |
4638 | * flush-last-level-only. | |
4639 | */ | |
2fc0cc0e | 4640 | ARMCPU *cpu = env_archcpu(env); |
43efaa33 PM |
4641 | CPUState *cs = CPU(cpu); |
4642 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
4643 | ||
127b2b08 | 4644 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4645 | } |
4646 | ||
fd3ed969 PM |
4647 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4648 | uint64_t value) | |
4649 | { | |
90c19cdf RH |
4650 | CPUState *cs = env_cpu(env); |
4651 | int mask = vae1_tlbmask(env); | |
fa439fc5 | 4652 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
ea04dce7 | 4653 | int bits = vae1_tlbbits(env, pageaddr); |
fa439fc5 | 4654 | |
ea04dce7 | 4655 | tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); |
fa439fc5 PM |
4656 | } |
4657 | ||
b4ab8ce9 PM |
4658 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4659 | uint64_t value) | |
4660 | { | |
4661 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
4662 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
4663 | * since we don't support flush-for-specific-ASID-only or | |
4664 | * flush-last-level-only. | |
4665 | */ | |
90c19cdf RH |
4666 | CPUState *cs = env_cpu(env); |
4667 | int mask = vae1_tlbmask(env); | |
b4ab8ce9 | 4668 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
ea04dce7 | 4669 | int bits = vae1_tlbbits(env, pageaddr); |
b4ab8ce9 PM |
4670 | |
4671 | if (tlb_force_broadcast(env)) { | |
ea04dce7 | 4672 | tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); |
527db2be | 4673 | } else { |
ea04dce7 | 4674 | tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); |
b4ab8ce9 | 4675 | } |
b4ab8ce9 PM |
4676 | } |
4677 | ||
fd3ed969 PM |
4678 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4679 | uint64_t value) | |
fa439fc5 | 4680 | { |
29a0af61 | 4681 | CPUState *cs = env_cpu(env); |
fd3ed969 | 4682 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
b6ad6062 RDC |
4683 | bool secure = arm_is_secure_below_el3(env); |
4684 | int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; | |
4685 | int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2, | |
4686 | pageaddr); | |
fa439fc5 | 4687 | |
b6ad6062 | 4688 | tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); |
fa439fc5 PM |
4689 | } |
4690 | ||
43efaa33 PM |
4691 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4692 | uint64_t value) | |
4693 | { | |
29a0af61 | 4694 | CPUState *cs = env_cpu(env); |
43efaa33 | 4695 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
ea04dce7 | 4696 | int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); |
43efaa33 | 4697 | |
ea04dce7 RH |
4698 | tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, |
4699 | ARMMMUIdxBit_SE3, bits); | |
43efaa33 PM |
4700 | } |
4701 | ||
3f208fd7 PM |
4702 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4703 | bool isread) | |
aca3f40b | 4704 | { |
4351cb72 RH |
4705 | int cur_el = arm_current_el(env); |
4706 | ||
4707 | if (cur_el < 2) { | |
4708 | uint64_t hcr = arm_hcr_el2_eff(env); | |
4709 | ||
4710 | if (cur_el == 0) { | |
4711 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
4712 | if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { | |
4713 | return CP_ACCESS_TRAP_EL2; | |
4714 | } | |
4715 | } else { | |
4716 | if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { | |
4717 | return CP_ACCESS_TRAP; | |
4718 | } | |
4719 | if (hcr & HCR_TDZ) { | |
4720 | return CP_ACCESS_TRAP_EL2; | |
4721 | } | |
4722 | } | |
4723 | } else if (hcr & HCR_TDZ) { | |
4724 | return CP_ACCESS_TRAP_EL2; | |
4725 | } | |
aca3f40b PM |
4726 | } |
4727 | return CP_ACCESS_OK; | |
4728 | } | |
4729 | ||
4730 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
4731 | { | |
2fc0cc0e | 4732 | ARMCPU *cpu = env_archcpu(env); |
aca3f40b PM |
4733 | int dzp_bit = 1 << 4; |
4734 | ||
4735 | /* DZP indicates whether DC ZVA access is allowed */ | |
3f208fd7 | 4736 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
aca3f40b PM |
4737 | dzp_bit = 0; |
4738 | } | |
4739 | return cpu->dcz_blocksize | dzp_bit; | |
4740 | } | |
4741 | ||
3f208fd7 PM |
4742 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4743 | bool isread) | |
f502cfc2 | 4744 | { |
cdcf1405 | 4745 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
4746 | /* Access to SP_EL0 is undefined if it's being used as |
4747 | * the stack pointer. | |
4748 | */ | |
4749 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
4750 | } | |
4751 | return CP_ACCESS_OK; | |
4752 | } | |
4753 | ||
4754 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
4755 | { | |
4756 | return env->pstate & PSTATE_SP; | |
4757 | } | |
4758 | ||
4759 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
4760 | { | |
4761 | update_spsel(env, val); | |
4762 | } | |
4763 | ||
137feaa9 FA |
4764 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4765 | uint64_t value) | |
4766 | { | |
2fc0cc0e | 4767 | ARMCPU *cpu = env_archcpu(env); |
137feaa9 | 4768 | |
f00faf13 RH |
4769 | if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { |
4770 | /* M bit is RAZ/WI for PMSA with no MPU implemented */ | |
4771 | value &= ~SCTLR_M; | |
4772 | } | |
4773 | ||
4774 | /* ??? Lots of these bits are not implemented. */ | |
4775 | ||
4776 | if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { | |
4777 | if (ri->opc1 == 6) { /* SCTLR_EL3 */ | |
4778 | value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); | |
4779 | } else { | |
4780 | value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | | |
4781 | SCTLR_ATA0 | SCTLR_ATA); | |
4782 | } | |
4783 | } | |
4784 | ||
137feaa9 FA |
4785 | if (raw_read(env, ri) == value) { |
4786 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
4787 | * to do a lot of pointless SCTLR writes. | |
4788 | */ | |
4789 | return; | |
4790 | } | |
4791 | ||
4792 | raw_write(env, ri, value); | |
f00faf13 | 4793 | |
137feaa9 | 4794 | /* This may enable/disable the MMU, so do a TLB flush. */ |
d10eb08f | 4795 | tlb_flush(CPU(cpu)); |
2e5dcf36 RH |
4796 | |
4797 | if (ri->type & ARM_CP_SUPPRESS_TB_END) { | |
4798 | /* | |
4799 | * Normally we would always end the TB on an SCTLR write; see the | |
4800 | * comment in ARMCPRegInfo sctlr initialization below for why Xscale | |
4801 | * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild | |
4802 | * of hflags from the translator, so do it here. | |
4803 | */ | |
4804 | arm_rebuild_hflags(env); | |
4805 | } | |
137feaa9 FA |
4806 | } |
4807 | ||
3f208fd7 PM |
4808 | static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4809 | bool isread) | |
03fbf20f PM |
4810 | { |
4811 | if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { | |
f2cae609 | 4812 | return CP_ACCESS_TRAP_FP_EL2; |
03fbf20f PM |
4813 | } |
4814 | if (env->cp15.cptr_el[3] & CPTR_TFP) { | |
f2cae609 | 4815 | return CP_ACCESS_TRAP_FP_EL3; |
03fbf20f PM |
4816 | } |
4817 | return CP_ACCESS_OK; | |
4818 | } | |
4819 | ||
a8d64e73 PM |
4820 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4821 | uint64_t value) | |
4822 | { | |
4823 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; | |
4824 | } | |
4825 | ||
b0d2b7d0 PM |
4826 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
4827 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
4828 | * significantly for system emulation of AArch64 CPUs. | |
4829 | */ | |
4830 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
4831 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
4832 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
4833 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
4834 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 4835 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
4836 | .access = PL0_RW, .accessfn = aa64_daif_access, |
4837 | .fieldoffset = offsetof(CPUARMState, daif), | |
4838 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
4839 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
4840 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
b916c9c3 | 4841 | .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
fe03d45f | 4842 | .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
b0d2b7d0 PM |
4843 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, |
4844 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
b916c9c3 | 4845 | .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
fe03d45f | 4846 | .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
b0d2b7d0 PM |
4847 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
4848 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 4849 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
4850 | .readfn = aa64_dczid_read }, |
4851 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
4852 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
4853 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
4854 | #ifndef CONFIG_USER_ONLY | |
4855 | /* Avoid overhead of an access check that always passes in user-mode */ | |
4856 | .accessfn = aa64_zva_access, | |
4857 | #endif | |
4858 | }, | |
0eef9d98 PM |
4859 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
4860 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
4861 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
4862 | /* Cache ops: all NOPs since we don't emulate caches */ |
4863 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
4864 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
38262d8a RH |
4865 | .access = PL1_W, .type = ARM_CP_NOP, |
4866 | .accessfn = aa64_cacheop_pou_access }, | |
8af35c37 PM |
4867 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, |
4868 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
38262d8a RH |
4869 | .access = PL1_W, .type = ARM_CP_NOP, |
4870 | .accessfn = aa64_cacheop_pou_access }, | |
8af35c37 PM |
4871 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, |
4872 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
4873 | .access = PL0_W, .type = ARM_CP_NOP, | |
38262d8a | 4874 | .accessfn = aa64_cacheop_pou_access }, |
8af35c37 PM |
4875 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, |
4876 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1bed4d2e RH |
4877 | .access = PL1_W, .accessfn = aa64_cacheop_poc_access, |
4878 | .type = ARM_CP_NOP }, | |
8af35c37 PM |
4879 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, |
4880 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
1803d271 | 4881 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
8af35c37 PM |
4882 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, |
4883 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
4884 | .access = PL0_W, .type = ARM_CP_NOP, | |
1bed4d2e | 4885 | .accessfn = aa64_cacheop_poc_access }, |
8af35c37 PM |
4886 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, |
4887 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
1803d271 | 4888 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
8af35c37 PM |
4889 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, |
4890 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
4891 | .access = PL0_W, .type = ARM_CP_NOP, | |
38262d8a | 4892 | .accessfn = aa64_cacheop_pou_access }, |
8af35c37 PM |
4893 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, |
4894 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
4895 | .access = PL0_W, .type = ARM_CP_NOP, | |
1bed4d2e | 4896 | .accessfn = aa64_cacheop_poc_access }, |
8af35c37 PM |
4897 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, |
4898 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
1803d271 | 4899 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
168aa23b PM |
4900 | /* TLBI operations */ |
4901 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 4902 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
30881b73 | 4903 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4904 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 4905 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4906 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
30881b73 | 4907 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4908 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4909 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4910 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
30881b73 | 4911 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4912 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 4913 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4914 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
30881b73 | 4915 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4916 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4917 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4918 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
30881b73 | 4919 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4920 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4921 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4922 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
30881b73 | 4923 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4924 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4925 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4926 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
30881b73 | 4927 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4928 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 4929 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4930 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
30881b73 | 4931 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4932 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4933 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4934 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
30881b73 | 4935 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4936 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 4937 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4938 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
30881b73 | 4939 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4940 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4941 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4942 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
30881b73 | 4943 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4944 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4945 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4946 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
30881b73 | 4947 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4948 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
4949 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
4950 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
bf05340c | 4951 | .access = PL2_W, .type = ARM_CP_NOP }, |
cea66e91 PM |
4952 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, |
4953 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
bf05340c | 4954 | .access = PL2_W, .type = ARM_CP_NOP }, |
83ddf975 PM |
4955 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
4956 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
4957 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 4958 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
4959 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
4960 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
4961 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4962 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
4963 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
4964 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
bf05340c | 4965 | .access = PL2_W, .type = ARM_CP_NOP }, |
cea66e91 PM |
4966 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, |
4967 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
bf05340c | 4968 | .access = PL2_W, .type = ARM_CP_NOP }, |
83ddf975 PM |
4969 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
4970 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
4971 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 4972 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
4973 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
4974 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
4975 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4976 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
4977 | #ifndef CONFIG_USER_ONLY |
4978 | /* 64 bit address translation operations */ | |
4979 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
4980 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
0710b2fa PM |
4981 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4982 | .writefn = ats_write64 }, | |
19525524 PM |
4983 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
4984 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
0710b2fa PM |
4985 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4986 | .writefn = ats_write64 }, | |
19525524 PM |
4987 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
4988 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
0710b2fa PM |
4989 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4990 | .writefn = ats_write64 }, | |
19525524 PM |
4991 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
4992 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
0710b2fa PM |
4993 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4994 | .writefn = ats_write64 }, | |
2a47df95 | 4995 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 4996 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
0710b2fa PM |
4997 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4998 | .writefn = ats_write64 }, | |
2a47df95 | 4999 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, |
7a379c7e | 5000 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
0710b2fa PM |
5001 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5002 | .writefn = ats_write64 }, | |
2a47df95 | 5003 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 5004 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
0710b2fa PM |
5005 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5006 | .writefn = ats_write64 }, | |
2a47df95 | 5007 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, |
7a379c7e | 5008 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
0710b2fa PM |
5009 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5010 | .writefn = ats_write64 }, | |
2a47df95 PM |
5011 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ |
5012 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
5013 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
0710b2fa PM |
5014 | .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5015 | .writefn = ats_write64 }, | |
2a47df95 PM |
5016 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, |
5017 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
0710b2fa PM |
5018 | .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5019 | .writefn = ats_write64 }, | |
c96fc9b5 EI |
5020 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
5021 | .type = ARM_CP_ALIAS, | |
5022 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
5023 | .access = PL1_RW, .resetvalue = 0, | |
5024 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
5025 | .writefn = par_write }, | |
19525524 | 5026 | #endif |
995939a6 | 5027 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 5028 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
30881b73 RH |
5029 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
5030 | .writefn = tlbimva_is_write }, | |
9449fdf6 | 5031 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
30881b73 | 5032 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 5033 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 5034 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
30881b73 RH |
5035 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
5036 | .writefn = tlbimva_write }, | |
9449fdf6 | 5037 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
30881b73 RH |
5038 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
5039 | .writefn = tlbimvaa_write }, | |
541ef8c2 SS |
5040 | { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
5041 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5042 | .writefn = tlbimva_hyp_write }, | |
5043 | { .name = "TLBIMVALHIS", | |
5044 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
5045 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5046 | .writefn = tlbimva_hyp_is_write }, | |
5047 | { .name = "TLBIIPAS2", | |
5048 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
bf05340c | 5049 | .type = ARM_CP_NOP, .access = PL2_W }, |
541ef8c2 SS |
5050 | { .name = "TLBIIPAS2IS", |
5051 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
bf05340c | 5052 | .type = ARM_CP_NOP, .access = PL2_W }, |
541ef8c2 SS |
5053 | { .name = "TLBIIPAS2L", |
5054 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
bf05340c | 5055 | .type = ARM_CP_NOP, .access = PL2_W }, |
541ef8c2 SS |
5056 | { .name = "TLBIIPAS2LIS", |
5057 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
bf05340c | 5058 | .type = ARM_CP_NOP, .access = PL2_W }, |
9449fdf6 PM |
5059 | /* 32 bit cache operations */ |
5060 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
38262d8a | 5061 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 PM |
5062 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, |
5063 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5064 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
38262d8a | 5065 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 | 5066 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, |
38262d8a | 5067 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 PM |
5068 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, |
5069 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5070 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
5071 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5072 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1bed4d2e | 5073 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5074 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
1803d271 | 5075 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5076 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, |
1bed4d2e | 5077 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5078 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
1803d271 | 5079 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5080 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, |
38262d8a | 5081 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 | 5082 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, |
1bed4d2e | 5083 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5084 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
1803d271 | 5085 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5086 | /* MMU Domain access control / MPU write buffer control */ |
0c17d68c | 5087 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
84929218 | 5088 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
0c17d68c FA |
5089 | .writefn = dacr_write, .raw_writefn = raw_write, |
5090 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
5091 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 5092 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5093 | .type = ARM_CP_ALIAS, |
a0618a19 | 5094 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
5095 | .access = PL1_RW, |
5096 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 5097 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5098 | .type = ARM_CP_ALIAS, |
a65f1de9 | 5099 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5100 | .access = PL1_RW, |
5101 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, | |
f502cfc2 PM |
5102 | /* We rely on the access checks not allowing the guest to write to the |
5103 | * state field when SPSel indicates that it's being used as the stack | |
5104 | * pointer. | |
5105 | */ | |
5106 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
5107 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
5108 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 5109 | .type = ARM_CP_ALIAS, |
f502cfc2 | 5110 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
5111 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
5112 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 5113 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 5114 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
5115 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
5116 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 5117 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 5118 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
03fbf20f PM |
5119 | { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
5120 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, | |
5121 | .type = ARM_CP_ALIAS, | |
5122 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), | |
5123 | .access = PL2_RW, .accessfn = fpexc32_access }, | |
6a43e0b6 PM |
5124 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
5125 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
5126 | .access = PL2_RW, .resetvalue = 0, | |
5127 | .writefn = dacr_write, .raw_writefn = raw_write, | |
5128 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
5129 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | |
5130 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
5131 | .access = PL2_RW, .resetvalue = 0, | |
5132 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
5133 | { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, | |
5134 | .type = ARM_CP_ALIAS, | |
5135 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, | |
5136 | .access = PL2_RW, | |
5137 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, | |
5138 | { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, | |
5139 | .type = ARM_CP_ALIAS, | |
5140 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, | |
5141 | .access = PL2_RW, | |
5142 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, | |
5143 | { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, | |
5144 | .type = ARM_CP_ALIAS, | |
5145 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, | |
5146 | .access = PL2_RW, | |
5147 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, | |
5148 | { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, | |
5149 | .type = ARM_CP_ALIAS, | |
5150 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, | |
5151 | .access = PL2_RW, | |
5152 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, | |
a8d64e73 PM |
5153 | { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
5154 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, | |
5155 | .resetvalue = 0, | |
5156 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, | |
5157 | { .name = "SDCR", .type = ARM_CP_ALIAS, | |
5158 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, | |
5159 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, | |
5160 | .writefn = sdcr_write, | |
5161 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, | |
b0d2b7d0 PM |
5162 | REGINFO_SENTINEL |
5163 | }; | |
5164 | ||
d42e3c26 | 5165 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 5166 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d79e0c06 | 5167 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, |
d42e3c26 EI |
5168 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
5169 | .access = PL2_RW, | |
5170 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
ce4afed8 | 5171 | { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, |
f149e3e8 EI |
5172 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
5173 | .access = PL2_RW, | |
ce4afed8 | 5174 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
831a2fca PM |
5175 | { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, |
5176 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, | |
5177 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e78e33 PM |
5178 | { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, |
5179 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, | |
5180 | .access = PL2_RW, | |
5181 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
c6f19164 GB |
5182 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
5183 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
5184 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
5185 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5186 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
5187 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5188 | .resetvalue = 0 }, | |
5189 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
b5ede85b | 5190 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
95f949ac | 5191 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
2179ef95 PM |
5192 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5193 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
5194 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5195 | .resetvalue = 0 }, | |
55b53c71 | 5196 | { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, |
b5ede85b | 5197 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
2179ef95 PM |
5198 | .access = PL2_RW, .type = ARM_CP_CONST, |
5199 | .resetvalue = 0 }, | |
37cd6c24 PM |
5200 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
5201 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
5202 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5203 | .resetvalue = 0 }, | |
5204 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
5205 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
5206 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5207 | .resetvalue = 0 }, | |
06ec4c8c EI |
5208 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
5209 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
5210 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e9c2fe EI |
5211 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
5212 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
93dd1e61 | 5213 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
68e9c2fe | 5214 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
b698e9cf EI |
5215 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
5216 | .cp = 15, .opc1 = 6, .crm = 2, | |
5217 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
5218 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | |
5219 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
5220 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
5221 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
5222 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
5223 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
5224 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
5225 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
5226 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
5227 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
5228 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
5229 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
5230 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5231 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
5232 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
5233 | .resetvalue = 0 }, | |
0b6440af EI |
5234 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
5235 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
5236 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
5237 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
5238 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
5239 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5240 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
5241 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
5242 | .resetvalue = 0 }, | |
b0e66d95 EI |
5243 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
5244 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
5245 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5246 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
5247 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
5248 | .resetvalue = 0 }, | |
5249 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
5250 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
5251 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5252 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
5253 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
5254 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
14cc7b54 SF |
5255 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
5256 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
d6c8cf81 PM |
5257 | .access = PL2_RW, .accessfn = access_tda, |
5258 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
59e05530 EI |
5259 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
5260 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
93dd1e61 | 5261 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
59e05530 | 5262 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
2a5a9abd AF |
5263 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
5264 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
5265 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
cba517c3 PM |
5266 | { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, |
5267 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
5268 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5269 | { .name = "HIFAR", .state = ARM_CP_STATE_AA32, | |
5270 | .type = ARM_CP_CONST, | |
5271 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, | |
5272 | .access = PL2_RW, .resetvalue = 0 }, | |
d42e3c26 EI |
5273 | REGINFO_SENTINEL |
5274 | }; | |
5275 | ||
ce4afed8 PM |
5276 | /* Ditto, but for registers which exist in ARMv8 but not v7 */ |
5277 | static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { | |
5278 | { .name = "HCR2", .state = ARM_CP_STATE_AA32, | |
5279 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, | |
5280 | .access = PL2_RW, | |
5281 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5282 | REGINFO_SENTINEL | |
5283 | }; | |
5284 | ||
d1fb4da2 | 5285 | static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) |
f149e3e8 | 5286 | { |
2fc0cc0e | 5287 | ARMCPU *cpu = env_archcpu(env); |
d1fb4da2 RH |
5288 | |
5289 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
5290 | valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ | |
5291 | } else { | |
5292 | valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ | |
5293 | } | |
f149e3e8 EI |
5294 | |
5295 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
5296 | valid_mask &= ~HCR_HCD; | |
77077a83 JK |
5297 | } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
5298 | /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. | |
5299 | * However, if we're using the SMC PSCI conduit then QEMU is | |
5300 | * effectively acting like EL3 firmware and so the guest at | |
5301 | * EL2 should retain the ability to prevent EL1 from being | |
5302 | * able to make SMC calls into the ersatz firmware, so in | |
5303 | * that case HCR.TSC should be read/write. | |
5304 | */ | |
f149e3e8 EI |
5305 | valid_mask &= ~HCR_TSC; |
5306 | } | |
d1fb4da2 RH |
5307 | |
5308 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
5309 | if (cpu_isar_feature(aa64_vh, cpu)) { | |
5310 | valid_mask |= HCR_E2H; | |
5311 | } | |
5312 | if (cpu_isar_feature(aa64_lor, cpu)) { | |
5313 | valid_mask |= HCR_TLOR; | |
5314 | } | |
5315 | if (cpu_isar_feature(aa64_pauth, cpu)) { | |
5316 | valid_mask |= HCR_API | HCR_APK; | |
5317 | } | |
8ddb300b RH |
5318 | if (cpu_isar_feature(aa64_mte, cpu)) { |
5319 | valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; | |
5320 | } | |
ef682cdb | 5321 | } |
f149e3e8 EI |
5322 | |
5323 | /* Clear RES0 bits. */ | |
5324 | value &= valid_mask; | |
5325 | ||
8ddb300b RH |
5326 | /* |
5327 | * These bits change the MMU setup: | |
f149e3e8 EI |
5328 | * HCR_VM enables stage 2 translation |
5329 | * HCR_PTW forbids certain page-table setups | |
8ddb300b RH |
5330 | * HCR_DC disables stage1 and enables stage2 translation |
5331 | * HCR_DCT enables tagging on (disabled) stage1 translation | |
f149e3e8 | 5332 | */ |
8ddb300b | 5333 | if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { |
d10eb08f | 5334 | tlb_flush(CPU(cpu)); |
f149e3e8 | 5335 | } |
ce4afed8 | 5336 | env->cp15.hcr_el2 = value; |
89430fc6 PM |
5337 | |
5338 | /* | |
5339 | * Updates to VI and VF require us to update the status of | |
5340 | * virtual interrupts, which are the logical OR of these bits | |
5341 | * and the state of the input lines from the GIC. (This requires | |
5342 | * that we have the iothread lock, which is done by marking the | |
5343 | * reginfo structs as ARM_CP_IO.) | |
5344 | * Note that if a write to HCR pends a VIRQ or VFIQ it is never | |
5345 | * possible for it to be taken immediately, because VIRQ and | |
5346 | * VFIQ are masked unless running at EL0 or EL1, and HCR | |
5347 | * can only be written at EL2. | |
5348 | */ | |
5349 | g_assert(qemu_mutex_iothread_locked()); | |
5350 | arm_cpu_update_virq(cpu); | |
5351 | arm_cpu_update_vfiq(cpu); | |
ce4afed8 PM |
5352 | } |
5353 | ||
d1fb4da2 RH |
5354 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
5355 | { | |
5356 | do_hcr_write(env, value, 0); | |
5357 | } | |
5358 | ||
ce4afed8 PM |
5359 | static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, |
5360 | uint64_t value) | |
5361 | { | |
5362 | /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ | |
5363 | value = deposit64(env->cp15.hcr_el2, 32, 32, value); | |
d1fb4da2 | 5364 | do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); |
ce4afed8 PM |
5365 | } |
5366 | ||
5367 | static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, | |
5368 | uint64_t value) | |
5369 | { | |
5370 | /* Handle HCR write, i.e. write to low half of HCR_EL2 */ | |
5371 | value = deposit64(env->cp15.hcr_el2, 0, 32, value); | |
d1fb4da2 | 5372 | do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); |
f149e3e8 EI |
5373 | } |
5374 | ||
f7778444 RH |
5375 | /* |
5376 | * Return the effective value of HCR_EL2. | |
5377 | * Bits that are not included here: | |
5378 | * RW (read from SCR_EL3.RW as needed) | |
5379 | */ | |
5380 | uint64_t arm_hcr_el2_eff(CPUARMState *env) | |
5381 | { | |
5382 | uint64_t ret = env->cp15.hcr_el2; | |
5383 | ||
e6ef0169 | 5384 | if (!arm_is_el2_enabled(env)) { |
f7778444 RH |
5385 | /* |
5386 | * "This register has no effect if EL2 is not enabled in the | |
5387 | * current Security state". This is ARMv8.4-SecEL2 speak for | |
5388 | * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). | |
5389 | * | |
5390 | * Prior to that, the language was "In an implementation that | |
5391 | * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves | |
5392 | * as if this field is 0 for all purposes other than a direct | |
5393 | * read or write access of HCR_EL2". With lots of enumeration | |
5394 | * on a per-field basis. In current QEMU, this is condition | |
5395 | * is arm_is_secure_below_el3. | |
5396 | * | |
5397 | * Since the v8.4 language applies to the entire register, and | |
5398 | * appears to be backward compatible, use that. | |
5399 | */ | |
4990e1d3 RH |
5400 | return 0; |
5401 | } | |
5402 | ||
5403 | /* | |
5404 | * For a cpu that supports both aarch64 and aarch32, we can set bits | |
5405 | * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. | |
5406 | * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. | |
5407 | */ | |
5408 | if (!arm_el_is_aa64(env, 2)) { | |
5409 | uint64_t aa32_valid; | |
5410 | ||
5411 | /* | |
5412 | * These bits are up-to-date as of ARMv8.6. | |
5413 | * For HCR, it's easiest to list just the 2 bits that are invalid. | |
5414 | * For HCR2, list those that are valid. | |
5415 | */ | |
5416 | aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); | |
5417 | aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | | |
5418 | HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); | |
5419 | ret &= aa32_valid; | |
5420 | } | |
5421 | ||
5422 | if (ret & HCR_TGE) { | |
5423 | /* These bits are up-to-date as of ARMv8.6. */ | |
f7778444 RH |
5424 | if (ret & HCR_E2H) { |
5425 | ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | | |
5426 | HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | | |
5427 | HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | | |
4990e1d3 RH |
5428 | HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | |
5429 | HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | | |
5430 | HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); | |
f7778444 RH |
5431 | } else { |
5432 | ret |= HCR_FMO | HCR_IMO | HCR_AMO; | |
5433 | } | |
5434 | ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | | |
5435 | HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | | |
5436 | HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | | |
5437 | HCR_TLOR); | |
5438 | } | |
5439 | ||
5440 | return ret; | |
5441 | } | |
5442 | ||
fc1120a7 PM |
5443 | static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
5444 | uint64_t value) | |
5445 | { | |
5446 | /* | |
5447 | * For A-profile AArch32 EL3, if NSACR.CP10 | |
5448 | * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. | |
5449 | */ | |
5450 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
5451 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
5452 | value &= ~(0x3 << 10); | |
5453 | value |= env->cp15.cptr_el[2] & (0x3 << 10); | |
5454 | } | |
5455 | env->cp15.cptr_el[2] = value; | |
5456 | } | |
5457 | ||
5458 | static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
5459 | { | |
5460 | /* | |
5461 | * For A-profile AArch32 EL3, if NSACR.CP10 | |
5462 | * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. | |
5463 | */ | |
5464 | uint64_t value = env->cp15.cptr_el[2]; | |
5465 | ||
5466 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
5467 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
5468 | value |= 0x3 << 10; | |
5469 | } | |
5470 | return value; | |
5471 | } | |
5472 | ||
4771cd01 | 5473 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 | 5474 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
89430fc6 | 5475 | .type = ARM_CP_IO, |
f149e3e8 EI |
5476 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
5477 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
c624ea0f | 5478 | .writefn = hcr_write }, |
ce4afed8 | 5479 | { .name = "HCR", .state = ARM_CP_STATE_AA32, |
89430fc6 | 5480 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
ce4afed8 PM |
5481 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
5482 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
c624ea0f | 5483 | .writefn = hcr_writelow }, |
831a2fca PM |
5484 | { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, |
5485 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, | |
5486 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3b685ba7 | 5487 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5488 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
5489 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
5490 | .access = PL2_RW, | |
5491 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
68e78e33 | 5492 | { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, |
f2c30f42 EI |
5493 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
5494 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
cba517c3 | 5495 | { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, |
63b60551 EI |
5496 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, |
5497 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
cba517c3 PM |
5498 | { .name = "HIFAR", .state = ARM_CP_STATE_AA32, |
5499 | .type = ARM_CP_ALIAS, | |
5500 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, | |
5501 | .access = PL2_RW, | |
5502 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 5503 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5504 | .type = ARM_CP_ALIAS, |
3b685ba7 | 5505 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5506 | .access = PL2_RW, |
5507 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, | |
d79e0c06 | 5508 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, |
d42e3c26 EI |
5509 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
5510 | .access = PL2_RW, .writefn = vbar_write, | |
5511 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
5512 | .resetvalue = 0 }, | |
884b4dee GB |
5513 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
5514 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 5515 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 5516 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
5517 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
5518 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
5519 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
fc1120a7 PM |
5520 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), |
5521 | .readfn = cptr_el2_read, .writefn = cptr_el2_write }, | |
95f949ac EI |
5522 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5523 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
5524 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
5525 | .resetvalue = 0 }, | |
5526 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
b5ede85b | 5527 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
95f949ac EI |
5528 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
5529 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
5530 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5531 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
5532 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5533 | .resetvalue = 0 }, | |
5534 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
55b53c71 | 5535 | { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, |
b5ede85b | 5536 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
2179ef95 PM |
5537 | .access = PL2_RW, .type = ARM_CP_CONST, |
5538 | .resetvalue = 0 }, | |
37cd6c24 PM |
5539 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
5540 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
5541 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5542 | .resetvalue = 0 }, | |
5543 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
5544 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
5545 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5546 | .resetvalue = 0 }, | |
06ec4c8c EI |
5547 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
5548 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
d06dc933 RH |
5549 | .access = PL2_RW, .writefn = vmsa_tcr_el12_write, |
5550 | /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ | |
06ec4c8c | 5551 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
68e9c2fe EI |
5552 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
5553 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 | 5554 | .type = ARM_CP_ALIAS, |
68e9c2fe EI |
5555 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
5556 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
5557 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
5558 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 PM |
5559 | .access = PL2_RW, |
5560 | /* no .writefn needed as this can't cause an ASID change; | |
5561 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
5562 | */ | |
68e9c2fe | 5563 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
b698e9cf EI |
5564 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
5565 | .cp = 15, .opc1 = 6, .crm = 2, | |
5566 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
5567 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
5568 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
5569 | .writefn = vttbr_write }, | |
5570 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
5571 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
5572 | .access = PL2_RW, .writefn = vttbr_write, | |
5573 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
5574 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
5575 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
5576 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
5577 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
5578 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
5579 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
5580 | .access = PL2_RW, .resetvalue = 0, | |
5581 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
5582 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
5583 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
ed30da8e | 5584 | .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, |
a57633c0 EI |
5585 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
5586 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
5587 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 5588 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
541ef8c2 SS |
5589 | { .name = "TLBIALLNSNH", |
5590 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
5591 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5592 | .writefn = tlbiall_nsnh_write }, | |
5593 | { .name = "TLBIALLNSNHIS", | |
5594 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
5595 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5596 | .writefn = tlbiall_nsnh_is_write }, | |
5597 | { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
5598 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5599 | .writefn = tlbiall_hyp_write }, | |
5600 | { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
5601 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5602 | .writefn = tlbiall_hyp_is_write }, | |
5603 | { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
5604 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5605 | .writefn = tlbimva_hyp_write }, | |
5606 | { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
5607 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5608 | .writefn = tlbimva_hyp_is_write }, | |
51da9014 EI |
5609 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
5610 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
5611 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 5612 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
5613 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
5614 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
5615 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 5616 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
5617 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
5618 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
5619 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
5620 | .writefn = tlbi_aa64_vae2_write }, | |
5621 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
5622 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
5623 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
5624 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
5625 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
5626 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
5627 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 5628 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
5629 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
5630 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
5631 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
5632 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 5633 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
5634 | /* Unlike the other EL2-related AT operations, these must |
5635 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
5636 | * define them here rather than with the rest of the AT ops. | |
5637 | */ | |
5638 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
5639 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
5640 | .access = PL2_W, .accessfn = at_s1e2_access, | |
0710b2fa | 5641 | .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, |
2a47df95 PM |
5642 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, |
5643 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
5644 | .access = PL2_W, .accessfn = at_s1e2_access, | |
0710b2fa | 5645 | .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, |
14db7fe0 PM |
5646 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
5647 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
5648 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
5649 | * to behave as if SCR.NS was 1. | |
5650 | */ | |
5651 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
5652 | .access = PL2_W, | |
0710b2fa | 5653 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
14db7fe0 PM |
5654 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
5655 | .access = PL2_W, | |
0710b2fa | 5656 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
0b6440af EI |
5657 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
5658 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
5659 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
5660 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
5661 | * both ARMv7 and ARMv8. | |
5662 | */ | |
5663 | .access = PL2_RW, .resetvalue = 3, | |
5664 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
5665 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
5666 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
5667 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
5668 | .writefn = gt_cntvoff_write, | |
5669 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
5670 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
5671 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
5672 | .writefn = gt_cntvoff_write, | |
5673 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
5674 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
5675 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
5676 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
5677 | .type = ARM_CP_IO, .access = PL2_RW, | |
5678 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
5679 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
5680 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
5681 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
5682 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
5683 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
5684 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
d44ec156 | 5685 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
b0e66d95 EI |
5686 | .resetfn = gt_hyp_timer_reset, |
5687 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
5688 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
5689 | .type = ARM_CP_IO, | |
5690 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
5691 | .access = PL2_RW, | |
5692 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
5693 | .resetvalue = 0, | |
5694 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 5695 | #endif |
14cc7b54 SF |
5696 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
5697 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we | |
5ecdd3e4 | 5698 | * don't implement any PMU event counters, so using zero as a reset |
14cc7b54 SF |
5699 | * value for MDCR_EL2 is okay |
5700 | */ | |
5701 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, | |
5702 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
5703 | .access = PL2_RW, .resetvalue = 0, | |
5704 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, | |
59e05530 EI |
5705 | { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
5706 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
5707 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
5708 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
5709 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, | |
5710 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
5711 | .access = PL2_RW, | |
5712 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
2a5a9abd AF |
5713 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
5714 | .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
5715 | .access = PL2_RW, | |
5716 | .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, | |
3b685ba7 EI |
5717 | REGINFO_SENTINEL |
5718 | }; | |
5719 | ||
ce4afed8 PM |
5720 | static const ARMCPRegInfo el2_v8_cp_reginfo[] = { |
5721 | { .name = "HCR2", .state = ARM_CP_STATE_AA32, | |
89430fc6 | 5722 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
ce4afed8 PM |
5723 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, |
5724 | .access = PL2_RW, | |
5725 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), | |
5726 | .writefn = hcr_writehigh }, | |
5727 | REGINFO_SENTINEL | |
5728 | }; | |
5729 | ||
e9152ee9 RDC |
5730 | static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
5731 | bool isread) | |
5732 | { | |
5733 | if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { | |
5734 | return CP_ACCESS_OK; | |
5735 | } | |
5736 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
5737 | } | |
5738 | ||
5739 | static const ARMCPRegInfo el2_sec_cp_reginfo[] = { | |
5740 | { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
5741 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, | |
5742 | .access = PL2_RW, .accessfn = sel2_access, | |
5743 | .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, | |
5744 | { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, | |
5745 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, | |
5746 | .access = PL2_RW, .accessfn = sel2_access, | |
5747 | .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, | |
5748 | REGINFO_SENTINEL | |
5749 | }; | |
5750 | ||
2f027fc5 PM |
5751 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
5752 | bool isread) | |
5753 | { | |
5754 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. | |
5755 | * At Secure EL1 it traps to EL3. | |
5756 | */ | |
5757 | if (arm_current_el(env) == 3) { | |
5758 | return CP_ACCESS_OK; | |
5759 | } | |
5760 | if (arm_is_secure_below_el3(env)) { | |
5761 | return CP_ACCESS_TRAP_EL3; | |
5762 | } | |
5763 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ | |
5764 | if (isread) { | |
5765 | return CP_ACCESS_OK; | |
5766 | } | |
5767 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
5768 | } | |
5769 | ||
60fb1a87 GB |
5770 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
5771 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
5772 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
5773 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
5774 | .resetvalue = 0, .writefn = scr_write }, | |
f80741d1 | 5775 | { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, |
60fb1a87 | 5776 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
efe4a274 PM |
5777 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
5778 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 5779 | .writefn = scr_write }, |
60fb1a87 GB |
5780 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
5781 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
5782 | .access = PL3_RW, .resetvalue = 0, | |
5783 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
5784 | { .name = "SDER", | |
5785 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
5786 | .access = PL3_RW, .resetvalue = 0, | |
5787 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
60fb1a87 | 5788 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
efe4a274 PM |
5789 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
5790 | .writefn = vbar_write, .resetvalue = 0, | |
60fb1a87 | 5791 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
7dd8c9af FA |
5792 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
5793 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
f478847f | 5794 | .access = PL3_RW, .resetvalue = 0, |
7dd8c9af | 5795 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, |
11f136ee FA |
5796 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
5797 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
5798 | .access = PL3_RW, |
5799 | /* no .writefn needed as this can't cause an ASID change; | |
811595a2 PM |
5800 | * we must provide a .raw_writefn and .resetfn because we handle |
5801 | * reset and migration for the AArch32 TTBCR(S), which might be | |
5802 | * using mask and base_mask. | |
6459b94c | 5803 | */ |
811595a2 | 5804 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee | 5805 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
81547d66 | 5806 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5807 | .type = ARM_CP_ALIAS, |
81547d66 EI |
5808 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
5809 | .access = PL3_RW, | |
5810 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 5811 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
5812 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
5813 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
5814 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
5815 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
5816 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 5817 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5818 | .type = ARM_CP_ALIAS, |
81547d66 | 5819 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5820 | .access = PL3_RW, |
5821 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, | |
a1ba125c EI |
5822 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
5823 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
5824 | .access = PL3_RW, .writefn = vbar_write, | |
5825 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
5826 | .resetvalue = 0 }, | |
c6f19164 GB |
5827 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
5828 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
5829 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
5830 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
5831 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
5832 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
5833 | .access = PL3_RW, .resetvalue = 0, | |
5834 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
5835 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
5836 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
5837 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5838 | .resetvalue = 0 }, | |
37cd6c24 PM |
5839 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
5840 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
5841 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5842 | .resetvalue = 0 }, | |
5843 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
5844 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
5845 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5846 | .resetvalue = 0 }, | |
43efaa33 PM |
5847 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
5848 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
5849 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5850 | .writefn = tlbi_aa64_alle3is_write }, | |
5851 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
5852 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
5853 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5854 | .writefn = tlbi_aa64_vae3is_write }, | |
5855 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
5856 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
5857 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5858 | .writefn = tlbi_aa64_vae3is_write }, | |
5859 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
5860 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
5861 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5862 | .writefn = tlbi_aa64_alle3_write }, | |
5863 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
5864 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
5865 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5866 | .writefn = tlbi_aa64_vae3_write }, | |
5867 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
5868 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
5869 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5870 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
5871 | REGINFO_SENTINEL |
5872 | }; | |
5873 | ||
e2cce18f RH |
5874 | #ifndef CONFIG_USER_ONLY |
5875 | /* Test if system register redirection is to occur in the current state. */ | |
5876 | static bool redirect_for_e2h(CPUARMState *env) | |
5877 | { | |
5878 | return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); | |
5879 | } | |
5880 | ||
5881 | static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
5882 | { | |
5883 | CPReadFn *readfn; | |
5884 | ||
5885 | if (redirect_for_e2h(env)) { | |
5886 | /* Switch to the saved EL2 version of the register. */ | |
5887 | ri = ri->opaque; | |
5888 | readfn = ri->readfn; | |
5889 | } else { | |
5890 | readfn = ri->orig_readfn; | |
5891 | } | |
5892 | if (readfn == NULL) { | |
5893 | readfn = raw_read; | |
5894 | } | |
5895 | return readfn(env, ri); | |
5896 | } | |
5897 | ||
5898 | static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
5899 | uint64_t value) | |
5900 | { | |
5901 | CPWriteFn *writefn; | |
5902 | ||
5903 | if (redirect_for_e2h(env)) { | |
5904 | /* Switch to the saved EL2 version of the register. */ | |
5905 | ri = ri->opaque; | |
5906 | writefn = ri->writefn; | |
5907 | } else { | |
5908 | writefn = ri->orig_writefn; | |
5909 | } | |
5910 | if (writefn == NULL) { | |
5911 | writefn = raw_write; | |
5912 | } | |
5913 | writefn(env, ri, value); | |
5914 | } | |
5915 | ||
5916 | static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) | |
5917 | { | |
5918 | struct E2HAlias { | |
5919 | uint32_t src_key, dst_key, new_key; | |
5920 | const char *src_name, *dst_name, *new_name; | |
5921 | bool (*feature)(const ARMISARegisters *id); | |
5922 | }; | |
5923 | ||
5924 | #define K(op0, op1, crn, crm, op2) \ | |
5925 | ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) | |
5926 | ||
5927 | static const struct E2HAlias aliases[] = { | |
5928 | { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), | |
5929 | "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, | |
5930 | { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), | |
5931 | "CPACR", "CPTR_EL2", "CPACR_EL12" }, | |
5932 | { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), | |
5933 | "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, | |
5934 | { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), | |
5935 | "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, | |
5936 | { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), | |
5937 | "TCR_EL1", "TCR_EL2", "TCR_EL12" }, | |
5938 | { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), | |
5939 | "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, | |
5940 | { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), | |
5941 | "ELR_EL1", "ELR_EL2", "ELR_EL12" }, | |
5942 | { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), | |
5943 | "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, | |
5944 | { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), | |
5945 | "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, | |
5946 | { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), | |
5947 | "ESR_EL1", "ESR_EL2", "ESR_EL12" }, | |
5948 | { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), | |
5949 | "FAR_EL1", "FAR_EL2", "FAR_EL12" }, | |
5950 | { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), | |
5951 | "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, | |
5952 | { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), | |
5953 | "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, | |
5954 | { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), | |
5955 | "VBAR", "VBAR_EL2", "VBAR_EL12" }, | |
5956 | { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), | |
5957 | "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, | |
5958 | { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), | |
5959 | "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, | |
5960 | ||
5961 | /* | |
5962 | * Note that redirection of ZCR is mentioned in the description | |
5963 | * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but | |
5964 | * not in the summary table. | |
5965 | */ | |
5966 | { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), | |
5967 | "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, | |
5968 | ||
4b779ceb RH |
5969 | { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), |
5970 | "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, | |
5971 | ||
e2cce18f RH |
5972 | /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ |
5973 | /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ | |
5974 | }; | |
5975 | #undef K | |
5976 | ||
5977 | size_t i; | |
5978 | ||
5979 | for (i = 0; i < ARRAY_SIZE(aliases); i++) { | |
5980 | const struct E2HAlias *a = &aliases[i]; | |
5981 | ARMCPRegInfo *src_reg, *dst_reg; | |
5982 | ||
5983 | if (a->feature && !a->feature(&cpu->isar)) { | |
5984 | continue; | |
5985 | } | |
5986 | ||
5987 | src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); | |
5988 | dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); | |
5989 | g_assert(src_reg != NULL); | |
5990 | g_assert(dst_reg != NULL); | |
5991 | ||
5992 | /* Cross-compare names to detect typos in the keys. */ | |
5993 | g_assert(strcmp(src_reg->name, a->src_name) == 0); | |
5994 | g_assert(strcmp(dst_reg->name, a->dst_name) == 0); | |
5995 | ||
5996 | /* None of the core system registers use opaque; we will. */ | |
5997 | g_assert(src_reg->opaque == NULL); | |
5998 | ||
5999 | /* Create alias before redirection so we dup the right data. */ | |
6000 | if (a->new_key) { | |
6001 | ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); | |
6002 | uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); | |
6003 | bool ok; | |
6004 | ||
6005 | new_reg->name = a->new_name; | |
6006 | new_reg->type |= ARM_CP_ALIAS; | |
6007 | /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ | |
6008 | new_reg->access &= PL2_RW | PL3_RW; | |
6009 | ||
6010 | ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); | |
6011 | g_assert(ok); | |
6012 | } | |
6013 | ||
6014 | src_reg->opaque = dst_reg; | |
6015 | src_reg->orig_readfn = src_reg->readfn ?: raw_read; | |
6016 | src_reg->orig_writefn = src_reg->writefn ?: raw_write; | |
6017 | if (!src_reg->raw_readfn) { | |
6018 | src_reg->raw_readfn = raw_read; | |
6019 | } | |
6020 | if (!src_reg->raw_writefn) { | |
6021 | src_reg->raw_writefn = raw_write; | |
6022 | } | |
6023 | src_reg->readfn = el2_e2h_read; | |
6024 | src_reg->writefn = el2_e2h_write; | |
6025 | } | |
6026 | } | |
6027 | #endif | |
6028 | ||
3f208fd7 PM |
6029 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
6030 | bool isread) | |
7da845b0 | 6031 | { |
97475a89 RH |
6032 | int cur_el = arm_current_el(env); |
6033 | ||
6034 | if (cur_el < 2) { | |
6035 | uint64_t hcr = arm_hcr_el2_eff(env); | |
6036 | ||
6037 | if (cur_el == 0) { | |
6038 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
6039 | if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { | |
6040 | return CP_ACCESS_TRAP_EL2; | |
6041 | } | |
6042 | } else { | |
6043 | if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { | |
6044 | return CP_ACCESS_TRAP; | |
6045 | } | |
6046 | if (hcr & HCR_TID2) { | |
6047 | return CP_ACCESS_TRAP_EL2; | |
6048 | } | |
6049 | } | |
6050 | } else if (hcr & HCR_TID2) { | |
6051 | return CP_ACCESS_TRAP_EL2; | |
6052 | } | |
7da845b0 | 6053 | } |
630fcd4d MZ |
6054 | |
6055 | if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { | |
6056 | return CP_ACCESS_TRAP_EL2; | |
6057 | } | |
6058 | ||
7da845b0 PM |
6059 | return CP_ACCESS_OK; |
6060 | } | |
6061 | ||
1424ca8d DM |
6062 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
6063 | uint64_t value) | |
6064 | { | |
6065 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be | |
6066 | * read via a bit in OSLSR_EL1. | |
6067 | */ | |
6068 | int oslock; | |
6069 | ||
6070 | if (ri->state == ARM_CP_STATE_AA32) { | |
6071 | oslock = (value == 0xC5ACCE55); | |
6072 | } else { | |
6073 | oslock = value & 1; | |
6074 | } | |
6075 | ||
6076 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); | |
6077 | } | |
6078 | ||
50300698 | 6079 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 6080 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
6081 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
6082 | * unlike DBGDRAR it is never accessible from EL0. | |
6083 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
6084 | * accessor. | |
50300698 PM |
6085 | */ |
6086 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
91b0a238 PM |
6087 | .access = PL0_R, .accessfn = access_tdra, |
6088 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
6089 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
6090 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
91b0a238 PM |
6091 | .access = PL1_R, .accessfn = access_tdra, |
6092 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 | 6093 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
91b0a238 PM |
6094 | .access = PL0_R, .accessfn = access_tdra, |
6095 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 6096 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
6097 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
6098 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
d6c8cf81 | 6099 | .access = PL1_RW, .accessfn = access_tda, |
0e5e8935 PM |
6100 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
6101 | .resetvalue = 0 }, | |
5e8b12ff PM |
6102 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
6103 | * We don't implement the configurable EL0 access. | |
6104 | */ | |
6105 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
6106 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 6107 | .type = ARM_CP_ALIAS, |
d6c8cf81 | 6108 | .access = PL1_R, .accessfn = access_tda, |
b061a82b | 6109 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
10aae104 PM |
6110 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
6111 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1424ca8d | 6112 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
187f678d | 6113 | .accessfn = access_tdosa, |
1424ca8d DM |
6114 | .writefn = oslar_write }, |
6115 | { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, | |
6116 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, | |
6117 | .access = PL1_R, .resetvalue = 10, | |
187f678d | 6118 | .accessfn = access_tdosa, |
1424ca8d | 6119 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
5e8b12ff PM |
6120 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
6121 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
6122 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
187f678d PM |
6123 | .access = PL1_RW, .accessfn = access_tdosa, |
6124 | .type = ARM_CP_NOP }, | |
5e8b12ff PM |
6125 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
6126 | * implement vector catch debug events yet. | |
6127 | */ | |
6128 | { .name = "DBGVCR", | |
6129 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
d6c8cf81 PM |
6130 | .access = PL1_RW, .accessfn = access_tda, |
6131 | .type = ARM_CP_NOP }, | |
4d2ec4da PM |
6132 | /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor |
6133 | * to save and restore a 32-bit guest's DBGVCR) | |
6134 | */ | |
6135 | { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, | |
6136 | .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, | |
6137 | .access = PL2_RW, .accessfn = access_tda, | |
6138 | .type = ARM_CP_NOP }, | |
5dbdc434 PM |
6139 | /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications |
6140 | * Channel but Linux may try to access this register. The 32-bit | |
6141 | * alias is DBGDCCINT. | |
6142 | */ | |
6143 | { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, | |
6144 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
6145 | .access = PL1_RW, .accessfn = access_tda, | |
6146 | .type = ARM_CP_NOP }, | |
50300698 PM |
6147 | REGINFO_SENTINEL |
6148 | }; | |
6149 | ||
6150 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
6151 | /* 64 bit access versions of the (dummy) debug registers */ | |
6152 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
6153 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
6154 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
6155 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
6156 | REGINFO_SENTINEL | |
6157 | }; | |
6158 | ||
60eed086 RH |
6159 | /* Return the exception level to which exceptions should be taken |
6160 | * via SVEAccessTrap. If an exception should be routed through | |
6161 | * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should | |
6162 | * take care of raising that exception. | |
6163 | * C.f. the ARM pseudocode function CheckSVEEnabled. | |
5be5e8ed | 6164 | */ |
ced31551 | 6165 | int sve_exception_el(CPUARMState *env, int el) |
5be5e8ed RH |
6166 | { |
6167 | #ifndef CONFIG_USER_ONLY | |
c2ddb7cf RH |
6168 | uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
6169 | ||
6170 | if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
60eed086 RH |
6171 | bool disabled = false; |
6172 | ||
6173 | /* The CPACR.ZEN controls traps to EL1: | |
6174 | * 0, 2 : trap EL0 and EL1 accesses | |
6175 | * 1 : trap only EL0 accesses | |
6176 | * 3 : trap no accesses | |
6177 | */ | |
6178 | if (!extract32(env->cp15.cpacr_el1, 16, 1)) { | |
6179 | disabled = true; | |
6180 | } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { | |
2de7ace2 | 6181 | disabled = el == 0; |
5be5e8ed | 6182 | } |
60eed086 RH |
6183 | if (disabled) { |
6184 | /* route_to_el2 */ | |
c2ddb7cf | 6185 | return hcr_el2 & HCR_TGE ? 2 : 1; |
5be5e8ed | 6186 | } |
5be5e8ed | 6187 | |
60eed086 RH |
6188 | /* Check CPACR.FPEN. */ |
6189 | if (!extract32(env->cp15.cpacr_el1, 20, 1)) { | |
6190 | disabled = true; | |
6191 | } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { | |
2de7ace2 | 6192 | disabled = el == 0; |
5be5e8ed | 6193 | } |
60eed086 RH |
6194 | if (disabled) { |
6195 | return 0; | |
5be5e8ed | 6196 | } |
5be5e8ed RH |
6197 | } |
6198 | ||
60eed086 RH |
6199 | /* CPTR_EL2. Since TZ and TFP are positive, |
6200 | * they will be zero when EL2 is not present. | |
6201 | */ | |
e6ef0169 | 6202 | if (el <= 2 && arm_is_el2_enabled(env)) { |
60eed086 RH |
6203 | if (env->cp15.cptr_el[2] & CPTR_TZ) { |
6204 | return 2; | |
6205 | } | |
6206 | if (env->cp15.cptr_el[2] & CPTR_TFP) { | |
6207 | return 0; | |
6208 | } | |
5be5e8ed RH |
6209 | } |
6210 | ||
60eed086 RH |
6211 | /* CPTR_EL3. Since EZ is negative we must check for EL3. */ |
6212 | if (arm_feature(env, ARM_FEATURE_EL3) | |
6213 | && !(env->cp15.cptr_el[3] & CPTR_EZ)) { | |
5be5e8ed RH |
6214 | return 3; |
6215 | } | |
6216 | #endif | |
6217 | return 0; | |
6218 | } | |
6219 | ||
0df9142d AJ |
6220 | static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) |
6221 | { | |
6e553f2a | 6222 | uint32_t end_len; |
0df9142d | 6223 | |
6e553f2a RH |
6224 | end_len = start_len &= 0xf; |
6225 | if (!test_bit(start_len, cpu->sve_vq_map)) { | |
6226 | end_len = find_last_bit(cpu->sve_vq_map, start_len); | |
6227 | assert(end_len < start_len); | |
6228 | } | |
6229 | return end_len; | |
0df9142d AJ |
6230 | } |
6231 | ||
0ab5953b RH |
6232 | /* |
6233 | * Given that SVE is enabled, return the vector length for EL. | |
6234 | */ | |
ced31551 | 6235 | uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) |
0ab5953b | 6236 | { |
2fc0cc0e | 6237 | ARMCPU *cpu = env_archcpu(env); |
0ab5953b RH |
6238 | uint32_t zcr_len = cpu->sve_max_vq - 1; |
6239 | ||
6240 | if (el <= 1) { | |
6241 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); | |
6242 | } | |
6a02a732 | 6243 | if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { |
0ab5953b RH |
6244 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); |
6245 | } | |
6a02a732 | 6246 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0ab5953b RH |
6247 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); |
6248 | } | |
0df9142d AJ |
6249 | |
6250 | return sve_zcr_get_valid_len(cpu, zcr_len); | |
0ab5953b RH |
6251 | } |
6252 | ||
5be5e8ed RH |
6253 | static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
6254 | uint64_t value) | |
6255 | { | |
0ab5953b RH |
6256 | int cur_el = arm_current_el(env); |
6257 | int old_len = sve_zcr_len_for_el(env, cur_el); | |
6258 | int new_len; | |
6259 | ||
5be5e8ed | 6260 | /* Bits other than [3:0] are RAZ/WI. */ |
7b351d98 | 6261 | QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); |
5be5e8ed | 6262 | raw_write(env, ri, value & 0xf); |
0ab5953b RH |
6263 | |
6264 | /* | |
6265 | * Because we arrived here, we know both FP and SVE are enabled; | |
6266 | * otherwise we would have trapped access to the ZCR_ELn register. | |
6267 | */ | |
6268 | new_len = sve_zcr_len_for_el(env, cur_el); | |
6269 | if (new_len < old_len) { | |
6270 | aarch64_sve_narrow_vq(env, new_len + 1); | |
6271 | } | |
5be5e8ed RH |
6272 | } |
6273 | ||
6274 | static const ARMCPRegInfo zcr_el1_reginfo = { | |
6275 | .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, | |
6276 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, | |
11d7870b | 6277 | .access = PL1_RW, .type = ARM_CP_SVE, |
5be5e8ed RH |
6278 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), |
6279 | .writefn = zcr_write, .raw_writefn = raw_write | |
6280 | }; | |
6281 | ||
6282 | static const ARMCPRegInfo zcr_el2_reginfo = { | |
6283 | .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, | |
6284 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, | |
11d7870b | 6285 | .access = PL2_RW, .type = ARM_CP_SVE, |
5be5e8ed RH |
6286 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), |
6287 | .writefn = zcr_write, .raw_writefn = raw_write | |
6288 | }; | |
6289 | ||
6290 | static const ARMCPRegInfo zcr_no_el2_reginfo = { | |
6291 | .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, | |
6292 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, | |
11d7870b | 6293 | .access = PL2_RW, .type = ARM_CP_SVE, |
5be5e8ed RH |
6294 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore |
6295 | }; | |
6296 | ||
6297 | static const ARMCPRegInfo zcr_el3_reginfo = { | |
6298 | .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, | |
6299 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, | |
11d7870b | 6300 | .access = PL3_RW, .type = ARM_CP_SVE, |
5be5e8ed RH |
6301 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), |
6302 | .writefn = zcr_write, .raw_writefn = raw_write | |
6303 | }; | |
6304 | ||
9ee98ce8 PM |
6305 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
6306 | { | |
6307 | CPUARMState *env = &cpu->env; | |
6308 | vaddr len = 0; | |
6309 | vaddr wvr = env->cp15.dbgwvr[n]; | |
6310 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
6311 | int mask; | |
6312 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
6313 | ||
6314 | if (env->cpu_watchpoint[n]) { | |
6315 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
6316 | env->cpu_watchpoint[n] = NULL; | |
6317 | } | |
6318 | ||
6319 | if (!extract64(wcr, 0, 1)) { | |
6320 | /* E bit clear : watchpoint disabled */ | |
6321 | return; | |
6322 | } | |
6323 | ||
6324 | switch (extract64(wcr, 3, 2)) { | |
6325 | case 0: | |
6326 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
6327 | return; | |
6328 | case 1: | |
6329 | flags |= BP_MEM_READ; | |
6330 | break; | |
6331 | case 2: | |
6332 | flags |= BP_MEM_WRITE; | |
6333 | break; | |
6334 | case 3: | |
6335 | flags |= BP_MEM_ACCESS; | |
6336 | break; | |
6337 | } | |
6338 | ||
6339 | /* Attempts to use both MASK and BAS fields simultaneously are | |
6340 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
6341 | * thus generating a watchpoint for every byte in the masked region. | |
6342 | */ | |
6343 | mask = extract64(wcr, 24, 4); | |
6344 | if (mask == 1 || mask == 2) { | |
6345 | /* Reserved values of MASK; we must act as if the mask value was | |
6346 | * some non-reserved value, or as if the watchpoint were disabled. | |
6347 | * We choose the latter. | |
6348 | */ | |
6349 | return; | |
6350 | } else if (mask) { | |
6351 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
6352 | len = 1ULL << mask; | |
6353 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
6354 | * whether the watchpoint fires when the unmasked bits match; we opt | |
6355 | * to generate the exceptions. | |
6356 | */ | |
6357 | wvr &= ~(len - 1); | |
6358 | } else { | |
6359 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
6360 | int bas = extract64(wcr, 5, 8); | |
6361 | int basstart; | |
6362 | ||
9ee98ce8 PM |
6363 | if (extract64(wvr, 2, 1)) { |
6364 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
6365 | * ignored, and BAS[3:0] define which bytes to watch. | |
6366 | */ | |
6367 | bas &= 0xf; | |
6368 | } | |
ae1111d4 RH |
6369 | |
6370 | if (bas == 0) { | |
6371 | /* This must act as if the watchpoint is disabled */ | |
6372 | return; | |
6373 | } | |
6374 | ||
9ee98ce8 PM |
6375 | /* The BAS bits are supposed to be programmed to indicate a contiguous |
6376 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
6377 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
6378 | * We choose to ignore any non-zero bits after the first range of 1s. | |
6379 | */ | |
6380 | basstart = ctz32(bas); | |
6381 | len = cto32(bas >> basstart); | |
6382 | wvr += basstart; | |
6383 | } | |
6384 | ||
6385 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
6386 | &env->cpu_watchpoint[n]); | |
6387 | } | |
6388 | ||
6389 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
6390 | { | |
6391 | int i; | |
6392 | CPUARMState *env = &cpu->env; | |
6393 | ||
6394 | /* Completely clear out existing QEMU watchpoints and our array, to | |
6395 | * avoid possible stale entries following migration load. | |
6396 | */ | |
6397 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
6398 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
6399 | ||
6400 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
6401 | hw_watchpoint_update(cpu, i); | |
6402 | } | |
6403 | } | |
6404 | ||
6405 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6406 | uint64_t value) | |
6407 | { | |
2fc0cc0e | 6408 | ARMCPU *cpu = env_archcpu(env); |
9ee98ce8 PM |
6409 | int i = ri->crm; |
6410 | ||
6411 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
6412 | * register reads and behaves as if values written are sign extended. | |
6413 | * Bits [1:0] are RES0. | |
6414 | */ | |
6415 | value = sextract64(value, 0, 49) & ~3ULL; | |
6416 | ||
6417 | raw_write(env, ri, value); | |
6418 | hw_watchpoint_update(cpu, i); | |
6419 | } | |
6420 | ||
6421 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6422 | uint64_t value) | |
6423 | { | |
2fc0cc0e | 6424 | ARMCPU *cpu = env_archcpu(env); |
9ee98ce8 PM |
6425 | int i = ri->crm; |
6426 | ||
6427 | raw_write(env, ri, value); | |
6428 | hw_watchpoint_update(cpu, i); | |
6429 | } | |
6430 | ||
46747d15 PM |
6431 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
6432 | { | |
6433 | CPUARMState *env = &cpu->env; | |
6434 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
6435 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
6436 | vaddr addr; | |
6437 | int bt; | |
6438 | int flags = BP_CPU; | |
6439 | ||
6440 | if (env->cpu_breakpoint[n]) { | |
6441 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
6442 | env->cpu_breakpoint[n] = NULL; | |
6443 | } | |
6444 | ||
6445 | if (!extract64(bcr, 0, 1)) { | |
6446 | /* E bit clear : watchpoint disabled */ | |
6447 | return; | |
6448 | } | |
6449 | ||
6450 | bt = extract64(bcr, 20, 4); | |
6451 | ||
6452 | switch (bt) { | |
6453 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
6454 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
6455 | qemu_log_mask(LOG_UNIMP, | |
0221c8fd | 6456 | "arm: address mismatch breakpoint types not implemented\n"); |
46747d15 PM |
6457 | return; |
6458 | case 0: /* unlinked address match */ | |
6459 | case 1: /* linked address match */ | |
6460 | { | |
6461 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
6462 | * we behave as if the register was sign extended. Bits [1:0] are | |
6463 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
6464 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
6465 | * a bp will fire if the addresses covered by the bp and the addresses | |
6466 | * covered by the insn overlap but the insn doesn't start at the | |
6467 | * start of the bp address range. We choose to require the insn and | |
6468 | * the bp to have the same address. The constraints on writing to | |
6469 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
6470 | * 0b0000 => no breakpoint | |
6471 | * 0b0011 => breakpoint on addr | |
6472 | * 0b1100 => breakpoint on addr + 2 | |
6473 | * 0b1111 => breakpoint on addr | |
6474 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
6475 | */ | |
6476 | int bas = extract64(bcr, 5, 4); | |
6477 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
6478 | if (bas == 0) { | |
6479 | return; | |
6480 | } | |
6481 | if (bas == 0xc) { | |
6482 | addr += 2; | |
6483 | } | |
6484 | break; | |
6485 | } | |
6486 | case 2: /* unlinked context ID match */ | |
6487 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
6488 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
6489 | qemu_log_mask(LOG_UNIMP, | |
0221c8fd | 6490 | "arm: unlinked context breakpoint types not implemented\n"); |
46747d15 PM |
6491 | return; |
6492 | case 9: /* linked VMID match (reserved if no EL2) */ | |
6493 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
6494 | case 3: /* linked context ID match */ | |
6495 | default: | |
6496 | /* We must generate no events for Linked context matches (unless | |
6497 | * they are linked to by some other bp/wp, which is handled in | |
6498 | * updates for the linking bp/wp). We choose to also generate no events | |
6499 | * for reserved values. | |
6500 | */ | |
6501 | return; | |
6502 | } | |
6503 | ||
6504 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
6505 | } | |
6506 | ||
6507 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
6508 | { | |
6509 | int i; | |
6510 | CPUARMState *env = &cpu->env; | |
6511 | ||
6512 | /* Completely clear out existing QEMU breakpoints and our array, to | |
6513 | * avoid possible stale entries following migration load. | |
6514 | */ | |
6515 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
6516 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
6517 | ||
6518 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
6519 | hw_breakpoint_update(cpu, i); | |
6520 | } | |
6521 | } | |
6522 | ||
6523 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6524 | uint64_t value) | |
6525 | { | |
2fc0cc0e | 6526 | ARMCPU *cpu = env_archcpu(env); |
46747d15 PM |
6527 | int i = ri->crm; |
6528 | ||
6529 | raw_write(env, ri, value); | |
6530 | hw_breakpoint_update(cpu, i); | |
6531 | } | |
6532 | ||
6533 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6534 | uint64_t value) | |
6535 | { | |
2fc0cc0e | 6536 | ARMCPU *cpu = env_archcpu(env); |
46747d15 PM |
6537 | int i = ri->crm; |
6538 | ||
6539 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
6540 | * copy of BAS[0]. | |
6541 | */ | |
6542 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
6543 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
6544 | ||
6545 | raw_write(env, ri, value); | |
6546 | hw_breakpoint_update(cpu, i); | |
6547 | } | |
6548 | ||
50300698 | 6549 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 6550 | { |
50300698 PM |
6551 | /* Define v7 and v8 architectural debug registers. |
6552 | * These are just dummy implementations for now. | |
0b45451e PM |
6553 | */ |
6554 | int i; | |
3ff6fc91 | 6555 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
6556 | ARMCPRegInfo dbgdidr = { |
6557 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d6c8cf81 | 6558 | .access = PL0_R, .accessfn = access_tda, |
4426d361 | 6559 | .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, |
48eb3ae6 PM |
6560 | }; |
6561 | ||
3ff6fc91 | 6562 | /* Note that all these register fields hold "number of Xs minus 1". */ |
88ce6c6e PM |
6563 | brps = arm_num_brps(cpu); |
6564 | wrps = arm_num_wrps(cpu); | |
6565 | ctx_cmps = arm_num_ctx_cmps(cpu); | |
3ff6fc91 PM |
6566 | |
6567 | assert(ctx_cmps <= brps); | |
48eb3ae6 | 6568 | |
48eb3ae6 | 6569 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
6570 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
6571 | ||
6572 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
6573 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
6574 | } | |
6575 | ||
88ce6c6e | 6576 | for (i = 0; i < brps; i++) { |
0b45451e | 6577 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
6578 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
6579 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
d6c8cf81 | 6580 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
6581 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
6582 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
6583 | }, | |
10aae104 PM |
6584 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
6585 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
d6c8cf81 | 6586 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
6587 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
6588 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
6589 | }, | |
48eb3ae6 PM |
6590 | REGINFO_SENTINEL |
6591 | }; | |
6592 | define_arm_cp_regs(cpu, dbgregs); | |
6593 | } | |
6594 | ||
88ce6c6e | 6595 | for (i = 0; i < wrps; i++) { |
48eb3ae6 | 6596 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
6597 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
6598 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
d6c8cf81 | 6599 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
6600 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
6601 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
6602 | }, | |
10aae104 PM |
6603 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
6604 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
d6c8cf81 | 6605 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
6606 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
6607 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
6608 | }, | |
6609 | REGINFO_SENTINEL | |
0b45451e PM |
6610 | }; |
6611 | define_arm_cp_regs(cpu, dbgregs); | |
6612 | } | |
6613 | } | |
6614 | ||
24183fb6 PM |
6615 | static void define_pmu_regs(ARMCPU *cpu) |
6616 | { | |
6617 | /* | |
6618 | * v7 performance monitor control register: same implementor | |
6619 | * field as main ID register, and we implement four counters in | |
6620 | * addition to the cycle count register. | |
6621 | */ | |
6622 | unsigned int i, pmcrn = 4; | |
6623 | ARMCPRegInfo pmcr = { | |
6624 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
6625 | .access = PL0_RW, | |
6626 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6627 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), | |
6628 | .accessfn = pmreg_access, .writefn = pmcr_write, | |
6629 | .raw_writefn = raw_write, | |
6630 | }; | |
6631 | ARMCPRegInfo pmcr64 = { | |
6632 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
6633 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
6634 | .access = PL0_RW, .accessfn = pmreg_access, | |
6635 | .type = ARM_CP_IO, | |
6636 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
62d96ff4 PM |
6637 | .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | |
6638 | PMCRLC, | |
24183fb6 PM |
6639 | .writefn = pmcr_write, .raw_writefn = raw_write, |
6640 | }; | |
6641 | define_one_arm_cp_reg(cpu, &pmcr); | |
6642 | define_one_arm_cp_reg(cpu, &pmcr64); | |
6643 | for (i = 0; i < pmcrn; i++) { | |
6644 | char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); | |
6645 | char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); | |
6646 | char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); | |
6647 | char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); | |
6648 | ARMCPRegInfo pmev_regs[] = { | |
6649 | { .name = pmevcntr_name, .cp = 15, .crn = 14, | |
6650 | .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, | |
6651 | .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6652 | .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, | |
6653 | .accessfn = pmreg_access }, | |
6654 | { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, | |
6655 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), | |
6656 | .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, | |
6657 | .type = ARM_CP_IO, | |
6658 | .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, | |
6659 | .raw_readfn = pmevcntr_rawread, | |
6660 | .raw_writefn = pmevcntr_rawwrite }, | |
6661 | { .name = pmevtyper_name, .cp = 15, .crn = 14, | |
6662 | .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, | |
6663 | .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6664 | .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, | |
6665 | .accessfn = pmreg_access }, | |
6666 | { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, | |
6667 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), | |
6668 | .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, | |
6669 | .type = ARM_CP_IO, | |
6670 | .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, | |
6671 | .raw_writefn = pmevtyper_rawwrite }, | |
6672 | REGINFO_SENTINEL | |
6673 | }; | |
6674 | define_arm_cp_regs(cpu, pmev_regs); | |
6675 | g_free(pmevcntr_name); | |
6676 | g_free(pmevcntr_el0_name); | |
6677 | g_free(pmevtyper_name); | |
6678 | g_free(pmevtyper_el0_name); | |
6679 | } | |
a6179538 | 6680 | if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { |
24183fb6 PM |
6681 | ARMCPRegInfo v81_pmu_regs[] = { |
6682 | { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, | |
6683 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, | |
6684 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6685 | .resetvalue = extract64(cpu->pmceid0, 32, 32) }, | |
6686 | { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, | |
6687 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, | |
6688 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6689 | .resetvalue = extract64(cpu->pmceid1, 32, 32) }, | |
6690 | REGINFO_SENTINEL | |
6691 | }; | |
6692 | define_arm_cp_regs(cpu, v81_pmu_regs); | |
6693 | } | |
15dd1ebd PM |
6694 | if (cpu_isar_feature(any_pmu_8_4, cpu)) { |
6695 | static const ARMCPRegInfo v84_pmmir = { | |
6696 | .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, | |
6697 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, | |
6698 | .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6699 | .resetvalue = 0 | |
6700 | }; | |
6701 | define_one_arm_cp_reg(cpu, &v84_pmmir); | |
6702 | } | |
24183fb6 PM |
6703 | } |
6704 | ||
96a8b92e PM |
6705 | /* We don't know until after realize whether there's a GICv3 |
6706 | * attached, and that is what registers the gicv3 sysregs. | |
6707 | * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 | |
6708 | * at runtime. | |
6709 | */ | |
6710 | static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
6711 | { | |
2fc0cc0e | 6712 | ARMCPU *cpu = env_archcpu(env); |
8a130a7b | 6713 | uint64_t pfr1 = cpu->isar.id_pfr1; |
96a8b92e PM |
6714 | |
6715 | if (env->gicv3state) { | |
6716 | pfr1 |= 1 << 28; | |
6717 | } | |
6718 | return pfr1; | |
6719 | } | |
6720 | ||
976b99b6 | 6721 | #ifndef CONFIG_USER_ONLY |
96a8b92e PM |
6722 | static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) |
6723 | { | |
2fc0cc0e | 6724 | ARMCPU *cpu = env_archcpu(env); |
47576b94 | 6725 | uint64_t pfr0 = cpu->isar.id_aa64pfr0; |
96a8b92e PM |
6726 | |
6727 | if (env->gicv3state) { | |
6728 | pfr0 |= 1 << 24; | |
6729 | } | |
6730 | return pfr0; | |
6731 | } | |
976b99b6 | 6732 | #endif |
96a8b92e | 6733 | |
2d7137c1 | 6734 | /* Shared logic between LORID and the rest of the LOR* registers. |
9bd268ba | 6735 | * Secure state exclusion has already been dealt with. |
2d7137c1 | 6736 | */ |
9bd268ba RDC |
6737 | static CPAccessResult access_lor_ns(CPUARMState *env, |
6738 | const ARMCPRegInfo *ri, bool isread) | |
2d7137c1 RH |
6739 | { |
6740 | int el = arm_current_el(env); | |
6741 | ||
6742 | if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { | |
6743 | return CP_ACCESS_TRAP_EL2; | |
6744 | } | |
6745 | if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { | |
6746 | return CP_ACCESS_TRAP_EL3; | |
6747 | } | |
6748 | return CP_ACCESS_OK; | |
6749 | } | |
6750 | ||
2d7137c1 RH |
6751 | static CPAccessResult access_lor_other(CPUARMState *env, |
6752 | const ARMCPRegInfo *ri, bool isread) | |
6753 | { | |
6754 | if (arm_is_secure_below_el3(env)) { | |
6755 | /* Access denied in secure mode. */ | |
6756 | return CP_ACCESS_TRAP; | |
6757 | } | |
9bd268ba | 6758 | return access_lor_ns(env, ri, isread); |
2d7137c1 RH |
6759 | } |
6760 | ||
d8564ee4 RH |
6761 | /* |
6762 | * A trivial implementation of ARMv8.1-LOR leaves all of these | |
6763 | * registers fixed at 0, which indicates that there are zero | |
6764 | * supported Limited Ordering regions. | |
6765 | */ | |
6766 | static const ARMCPRegInfo lor_reginfo[] = { | |
6767 | { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, | |
6768 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, | |
6769 | .access = PL1_RW, .accessfn = access_lor_other, | |
6770 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6771 | { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, | |
6772 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, | |
6773 | .access = PL1_RW, .accessfn = access_lor_other, | |
6774 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6775 | { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, | |
6776 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, | |
6777 | .access = PL1_RW, .accessfn = access_lor_other, | |
6778 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6779 | { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, | |
6780 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, | |
6781 | .access = PL1_RW, .accessfn = access_lor_other, | |
6782 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6783 | { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, | |
6784 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, | |
9bd268ba | 6785 | .access = PL1_R, .accessfn = access_lor_ns, |
d8564ee4 RH |
6786 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
6787 | REGINFO_SENTINEL | |
6788 | }; | |
6789 | ||
967aa94f RH |
6790 | #ifdef TARGET_AARCH64 |
6791 | static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, | |
6792 | bool isread) | |
6793 | { | |
6794 | int el = arm_current_el(env); | |
6795 | ||
6796 | if (el < 2 && | |
6797 | arm_feature(env, ARM_FEATURE_EL2) && | |
6798 | !(arm_hcr_el2_eff(env) & HCR_APK)) { | |
6799 | return CP_ACCESS_TRAP_EL2; | |
6800 | } | |
6801 | if (el < 3 && | |
6802 | arm_feature(env, ARM_FEATURE_EL3) && | |
6803 | !(env->cp15.scr_el3 & SCR_APK)) { | |
6804 | return CP_ACCESS_TRAP_EL3; | |
6805 | } | |
6806 | return CP_ACCESS_OK; | |
6807 | } | |
6808 | ||
6809 | static const ARMCPRegInfo pauth_reginfo[] = { | |
6810 | { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, | |
6811 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, | |
6812 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6813 | .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, |
967aa94f RH |
6814 | { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6815 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, | |
6816 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6817 | .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, |
967aa94f RH |
6818 | { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6819 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, | |
6820 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6821 | .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, |
967aa94f RH |
6822 | { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6823 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, | |
6824 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6825 | .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, |
967aa94f RH |
6826 | { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6827 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, | |
6828 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6829 | .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, |
967aa94f RH |
6830 | { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6831 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, | |
6832 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6833 | .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, |
967aa94f RH |
6834 | { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6835 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, | |
6836 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6837 | .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, |
967aa94f RH |
6838 | { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6839 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, | |
6840 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6841 | .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, |
967aa94f RH |
6842 | { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6843 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, | |
6844 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6845 | .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, |
967aa94f RH |
6846 | { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6847 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, | |
6848 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6849 | .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, |
967aa94f RH |
6850 | REGINFO_SENTINEL |
6851 | }; | |
de390645 RH |
6852 | |
6853 | static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) | |
6854 | { | |
6855 | Error *err = NULL; | |
6856 | uint64_t ret; | |
6857 | ||
6858 | /* Success sets NZCV = 0000. */ | |
6859 | env->NF = env->CF = env->VF = 0, env->ZF = 1; | |
6860 | ||
6861 | if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { | |
6862 | /* | |
6863 | * ??? Failed, for unknown reasons in the crypto subsystem. | |
6864 | * The best we can do is log the reason and return the | |
6865 | * timed-out indication to the guest. There is no reason | |
6866 | * we know to expect this failure to be transitory, so the | |
6867 | * guest may well hang retrying the operation. | |
6868 | */ | |
6869 | qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", | |
6870 | ri->name, error_get_pretty(err)); | |
6871 | error_free(err); | |
6872 | ||
6873 | env->ZF = 0; /* NZCF = 0100 */ | |
6874 | return 0; | |
6875 | } | |
6876 | return ret; | |
6877 | } | |
6878 | ||
6879 | /* We do not support re-seeding, so the two registers operate the same. */ | |
6880 | static const ARMCPRegInfo rndr_reginfo[] = { | |
6881 | { .name = "RNDR", .state = ARM_CP_STATE_AA64, | |
6882 | .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, | |
6883 | .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, | |
6884 | .access = PL0_R, .readfn = rndr_readfn }, | |
6885 | { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, | |
6886 | .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, | |
6887 | .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, | |
6888 | .access = PL0_R, .readfn = rndr_readfn }, | |
6889 | REGINFO_SENTINEL | |
6890 | }; | |
0d57b499 BM |
6891 | |
6892 | #ifndef CONFIG_USER_ONLY | |
6893 | static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, | |
6894 | uint64_t value) | |
6895 | { | |
6896 | ARMCPU *cpu = env_archcpu(env); | |
6897 | /* CTR_EL0 System register -> DminLine, bits [19:16] */ | |
6898 | uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); | |
6899 | uint64_t vaddr_in = (uint64_t) value; | |
6900 | uint64_t vaddr = vaddr_in & ~(dline_size - 1); | |
6901 | void *haddr; | |
6902 | int mem_idx = cpu_mmu_index(env, false); | |
6903 | ||
6904 | /* This won't be crossing page boundaries */ | |
6905 | haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); | |
6906 | if (haddr) { | |
6907 | ||
6908 | ram_addr_t offset; | |
6909 | MemoryRegion *mr; | |
6910 | ||
6911 | /* RCU lock is already being held */ | |
6912 | mr = memory_region_from_host(haddr, &offset); | |
6913 | ||
6914 | if (mr) { | |
4dfe59d1 | 6915 | memory_region_writeback(mr, offset, dline_size); |
0d57b499 BM |
6916 | } |
6917 | } | |
6918 | } | |
6919 | ||
6920 | static const ARMCPRegInfo dcpop_reg[] = { | |
6921 | { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, | |
6922 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, | |
6923 | .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, | |
1bed4d2e | 6924 | .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, |
0d57b499 BM |
6925 | REGINFO_SENTINEL |
6926 | }; | |
6927 | ||
6928 | static const ARMCPRegInfo dcpodp_reg[] = { | |
6929 | { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, | |
6930 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, | |
6931 | .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, | |
1bed4d2e | 6932 | .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, |
0d57b499 BM |
6933 | REGINFO_SENTINEL |
6934 | }; | |
6935 | #endif /*CONFIG_USER_ONLY*/ | |
6936 | ||
4b779ceb RH |
6937 | static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, |
6938 | bool isread) | |
6939 | { | |
6940 | if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { | |
6941 | return CP_ACCESS_TRAP_EL2; | |
6942 | } | |
6943 | ||
6944 | return CP_ACCESS_OK; | |
6945 | } | |
6946 | ||
6947 | static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, | |
6948 | bool isread) | |
6949 | { | |
6950 | int el = arm_current_el(env); | |
6951 | ||
4301acd7 RH |
6952 | if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { |
6953 | uint64_t hcr = arm_hcr_el2_eff(env); | |
6954 | if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { | |
6955 | return CP_ACCESS_TRAP_EL2; | |
6956 | } | |
4b779ceb RH |
6957 | } |
6958 | if (el < 3 && | |
6959 | arm_feature(env, ARM_FEATURE_EL3) && | |
6960 | !(env->cp15.scr_el3 & SCR_ATA)) { | |
6961 | return CP_ACCESS_TRAP_EL3; | |
6962 | } | |
6963 | return CP_ACCESS_OK; | |
6964 | } | |
6965 | ||
6966 | static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
6967 | { | |
6968 | return env->pstate & PSTATE_TCO; | |
6969 | } | |
6970 | ||
6971 | static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
6972 | { | |
6973 | env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); | |
6974 | } | |
6975 | ||
6976 | static const ARMCPRegInfo mte_reginfo[] = { | |
6977 | { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, | |
6978 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, | |
6979 | .access = PL1_RW, .accessfn = access_mte, | |
6980 | .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, | |
6981 | { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, | |
6982 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, | |
6983 | .access = PL1_RW, .accessfn = access_mte, | |
6984 | .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, | |
6985 | { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, | |
6986 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, | |
6987 | .access = PL2_RW, .accessfn = access_mte, | |
6988 | .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, | |
6989 | { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, | |
6990 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, | |
6991 | .access = PL3_RW, | |
6992 | .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, | |
6993 | { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, | |
6994 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, | |
6995 | .access = PL1_RW, .accessfn = access_mte, | |
6996 | .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, | |
6997 | { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, | |
6998 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, | |
6999 | .access = PL1_RW, .accessfn = access_mte, | |
7000 | .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, | |
7001 | { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, | |
7002 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, | |
7003 | .access = PL1_R, .accessfn = access_aa64_tid5, | |
7004 | .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, | |
7005 | { .name = "TCO", .state = ARM_CP_STATE_AA64, | |
7006 | .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, | |
7007 | .type = ARM_CP_NO_RAW, | |
7008 | .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, | |
5463df16 RH |
7009 | { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, |
7010 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, | |
7011 | .type = ARM_CP_NOP, .access = PL1_W, | |
7012 | .accessfn = aa64_cacheop_poc_access }, | |
7013 | { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, | |
7014 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, | |
7015 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7016 | { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, | |
7017 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, | |
7018 | .type = ARM_CP_NOP, .access = PL1_W, | |
7019 | .accessfn = aa64_cacheop_poc_access }, | |
7020 | { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, | |
7021 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, | |
7022 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7023 | { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, | |
7024 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, | |
7025 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7026 | { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, | |
7027 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, | |
7028 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7029 | { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, | |
7030 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, | |
7031 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
7032 | { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, | |
7033 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, | |
7034 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, | |
4b779ceb RH |
7035 | REGINFO_SENTINEL |
7036 | }; | |
7037 | ||
7038 | static const ARMCPRegInfo mte_tco_ro_reginfo[] = { | |
7039 | { .name = "TCO", .state = ARM_CP_STATE_AA64, | |
7040 | .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, | |
7041 | .type = ARM_CP_CONST, .access = PL0_RW, }, | |
7042 | REGINFO_SENTINEL | |
7043 | }; | |
5463df16 RH |
7044 | |
7045 | static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { | |
7046 | { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, | |
7047 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, | |
7048 | .type = ARM_CP_NOP, .access = PL0_W, | |
7049 | .accessfn = aa64_cacheop_poc_access }, | |
7050 | { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, | |
7051 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, | |
7052 | .type = ARM_CP_NOP, .access = PL0_W, | |
7053 | .accessfn = aa64_cacheop_poc_access }, | |
7054 | { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, | |
7055 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, | |
7056 | .type = ARM_CP_NOP, .access = PL0_W, | |
7057 | .accessfn = aa64_cacheop_poc_access }, | |
7058 | { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, | |
7059 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, | |
7060 | .type = ARM_CP_NOP, .access = PL0_W, | |
7061 | .accessfn = aa64_cacheop_poc_access }, | |
7062 | { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, | |
7063 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, | |
7064 | .type = ARM_CP_NOP, .access = PL0_W, | |
7065 | .accessfn = aa64_cacheop_poc_access }, | |
7066 | { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, | |
7067 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, | |
7068 | .type = ARM_CP_NOP, .access = PL0_W, | |
7069 | .accessfn = aa64_cacheop_poc_access }, | |
7070 | { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, | |
7071 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, | |
7072 | .type = ARM_CP_NOP, .access = PL0_W, | |
7073 | .accessfn = aa64_cacheop_poc_access }, | |
7074 | { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, | |
7075 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, | |
7076 | .type = ARM_CP_NOP, .access = PL0_W, | |
7077 | .accessfn = aa64_cacheop_poc_access }, | |
eb821168 RH |
7078 | { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, |
7079 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, | |
7080 | .access = PL0_W, .type = ARM_CP_DC_GVA, | |
7081 | #ifndef CONFIG_USER_ONLY | |
7082 | /* Avoid overhead of an access check that always passes in user-mode */ | |
7083 | .accessfn = aa64_zva_access, | |
7084 | #endif | |
7085 | }, | |
7086 | { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, | |
7087 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, | |
7088 | .access = PL0_W, .type = ARM_CP_DC_GZVA, | |
7089 | #ifndef CONFIG_USER_ONLY | |
7090 | /* Avoid overhead of an access check that always passes in user-mode */ | |
7091 | .accessfn = aa64_zva_access, | |
7092 | #endif | |
7093 | }, | |
5463df16 RH |
7094 | REGINFO_SENTINEL |
7095 | }; | |
7096 | ||
967aa94f RH |
7097 | #endif |
7098 | ||
cb570bd3 RH |
7099 | static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, |
7100 | bool isread) | |
7101 | { | |
7102 | int el = arm_current_el(env); | |
7103 | ||
7104 | if (el == 0) { | |
7105 | uint64_t sctlr = arm_sctlr(env, el); | |
7106 | if (!(sctlr & SCTLR_EnRCTX)) { | |
7107 | return CP_ACCESS_TRAP; | |
7108 | } | |
7109 | } else if (el == 1) { | |
7110 | uint64_t hcr = arm_hcr_el2_eff(env); | |
7111 | if (hcr & HCR_NV) { | |
7112 | return CP_ACCESS_TRAP_EL2; | |
7113 | } | |
7114 | } | |
7115 | return CP_ACCESS_OK; | |
7116 | } | |
7117 | ||
7118 | static const ARMCPRegInfo predinv_reginfo[] = { | |
7119 | { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, | |
7120 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, | |
7121 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7122 | { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, | |
7123 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, | |
7124 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7125 | { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, | |
7126 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, | |
7127 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7128 | /* | |
7129 | * Note the AArch32 opcodes have a different OPC1. | |
7130 | */ | |
7131 | { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, | |
7132 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, | |
7133 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7134 | { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, | |
7135 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, | |
7136 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7137 | { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, | |
7138 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, | |
7139 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
7140 | REGINFO_SENTINEL | |
7141 | }; | |
7142 | ||
957e6155 PM |
7143 | static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) |
7144 | { | |
7145 | /* Read the high 32 bits of the current CCSIDR */ | |
7146 | return extract64(ccsidr_read(env, ri), 32, 32); | |
7147 | } | |
7148 | ||
7149 | static const ARMCPRegInfo ccsidr2_reginfo[] = { | |
7150 | { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, | |
7151 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, | |
7152 | .access = PL1_R, | |
7153 | .accessfn = access_aa64_tid2, | |
7154 | .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, | |
7155 | REGINFO_SENTINEL | |
7156 | }; | |
7157 | ||
6a4ef4e5 MZ |
7158 | static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, |
7159 | bool isread) | |
7160 | { | |
7161 | if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { | |
7162 | return CP_ACCESS_TRAP_EL2; | |
7163 | } | |
7164 | ||
7165 | return CP_ACCESS_OK; | |
7166 | } | |
7167 | ||
7168 | static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, | |
7169 | bool isread) | |
7170 | { | |
7171 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
7172 | return access_aa64_tid3(env, ri, isread); | |
7173 | } | |
7174 | ||
7175 | return CP_ACCESS_OK; | |
7176 | } | |
7177 | ||
f96f3d5f MZ |
7178 | static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, |
7179 | bool isread) | |
7180 | { | |
7181 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { | |
7182 | return CP_ACCESS_TRAP_EL2; | |
7183 | } | |
7184 | ||
7185 | return CP_ACCESS_OK; | |
7186 | } | |
7187 | ||
7188 | static const ARMCPRegInfo jazelle_regs[] = { | |
7189 | { .name = "JIDR", | |
7190 | .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, | |
7191 | .access = PL1_R, .accessfn = access_jazelle, | |
7192 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7193 | { .name = "JOSCR", | |
7194 | .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, | |
7195 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7196 | { .name = "JMCR", | |
7197 | .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, | |
7198 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7199 | REGINFO_SENTINEL | |
7200 | }; | |
7201 | ||
e2a1a461 RH |
7202 | static const ARMCPRegInfo vhe_reginfo[] = { |
7203 | { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, | |
7204 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, | |
7205 | .access = PL2_RW, | |
7206 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, | |
ed30da8e RH |
7207 | { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, |
7208 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, | |
7209 | .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, | |
7210 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, | |
8c94b071 RH |
7211 | #ifndef CONFIG_USER_ONLY |
7212 | { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, | |
7213 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, | |
7214 | .fieldoffset = | |
7215 | offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), | |
7216 | .type = ARM_CP_IO, .access = PL2_RW, | |
7217 | .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, | |
7218 | { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
7219 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, | |
7220 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, | |
7221 | .resetfn = gt_hv_timer_reset, | |
7222 | .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, | |
7223 | { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
7224 | .type = ARM_CP_IO, | |
7225 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, | |
7226 | .access = PL2_RW, | |
7227 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), | |
7228 | .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, | |
bb5972e4 RH |
7229 | { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, |
7230 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, | |
7231 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7232 | .access = PL2_RW, .accessfn = e2h_access, | |
7233 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), | |
7234 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, | |
7235 | { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, | |
7236 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, | |
7237 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7238 | .access = PL2_RW, .accessfn = e2h_access, | |
7239 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), | |
7240 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, | |
7241 | { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7242 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, | |
7243 | .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, | |
7244 | .access = PL2_RW, .accessfn = e2h_access, | |
7245 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, | |
7246 | { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7247 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, | |
7248 | .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, | |
7249 | .access = PL2_RW, .accessfn = e2h_access, | |
7250 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, | |
7251 | { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7252 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, | |
7253 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7254 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
7255 | .access = PL2_RW, .accessfn = e2h_access, | |
7256 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, | |
7257 | { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7258 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, | |
7259 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7260 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
7261 | .access = PL2_RW, .accessfn = e2h_access, | |
7262 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, | |
8c94b071 | 7263 | #endif |
e2a1a461 RH |
7264 | REGINFO_SENTINEL |
7265 | }; | |
7266 | ||
04b07d29 RH |
7267 | #ifndef CONFIG_USER_ONLY |
7268 | static const ARMCPRegInfo ats1e1_reginfo[] = { | |
7269 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
7270 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, | |
7271 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7272 | .writefn = ats_write64 }, | |
7273 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, | |
7274 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, | |
7275 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7276 | .writefn = ats_write64 }, | |
7277 | REGINFO_SENTINEL | |
7278 | }; | |
7279 | ||
7280 | static const ARMCPRegInfo ats1cp_reginfo[] = { | |
7281 | { .name = "ATS1CPRP", | |
7282 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, | |
7283 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7284 | .writefn = ats_write }, | |
7285 | { .name = "ATS1CPWP", | |
7286 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, | |
7287 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7288 | .writefn = ats_write }, | |
7289 | REGINFO_SENTINEL | |
7290 | }; | |
7291 | #endif | |
7292 | ||
f6287c24 PM |
7293 | /* |
7294 | * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and | |
7295 | * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field | |
7296 | * is non-zero, which is never for ARMv7, optionally in ARMv8 | |
7297 | * and mandatorily for ARMv8.2 and up. | |
7298 | * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's | |
7299 | * implementation is RAZ/WI we can ignore this detail, as we | |
7300 | * do for ACTLR. | |
7301 | */ | |
7302 | static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { | |
7303 | { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, | |
7304 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, | |
99602377 RH |
7305 | .access = PL1_RW, .accessfn = access_tacr, |
7306 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
f6287c24 PM |
7307 | { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, |
7308 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, | |
7309 | .access = PL2_RW, .type = ARM_CP_CONST, | |
7310 | .resetvalue = 0 }, | |
7311 | REGINFO_SENTINEL | |
7312 | }; | |
7313 | ||
2ceb98c0 PM |
7314 | void register_cp_regs_for_features(ARMCPU *cpu) |
7315 | { | |
7316 | /* Register all the coprocessor registers based on feature bits */ | |
7317 | CPUARMState *env = &cpu->env; | |
7318 | if (arm_feature(env, ARM_FEATURE_M)) { | |
7319 | /* M profile has no coprocessor registers */ | |
7320 | return; | |
7321 | } | |
7322 | ||
e9aa6c21 | 7323 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
7324 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
7325 | /* Must go early as it is full of wildcards that may be | |
7326 | * overridden by later definitions. | |
7327 | */ | |
7328 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
7329 | } | |
7330 | ||
7d57f408 | 7331 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
7332 | /* The ID registers all have impdef reset values */ |
7333 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
7334 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
7335 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7336 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7337 | .accessfn = access_aa32_tid3, |
8a130a7b | 7338 | .resetvalue = cpu->isar.id_pfr0 }, |
96a8b92e PM |
7339 | /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know |
7340 | * the value of the GIC field until after we define these regs. | |
7341 | */ | |
0ff644a7 PM |
7342 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
7343 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
96a8b92e | 7344 | .access = PL1_R, .type = ARM_CP_NO_RAW, |
6a4ef4e5 | 7345 | .accessfn = access_aa32_tid3, |
96a8b92e PM |
7346 | .readfn = id_pfr1_read, |
7347 | .writefn = arm_cp_write_ignore }, | |
0ff644a7 PM |
7348 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
7349 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
7350 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7351 | .accessfn = access_aa32_tid3, |
a6179538 | 7352 | .resetvalue = cpu->isar.id_dfr0 }, |
0ff644a7 PM |
7353 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
7354 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
7355 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7356 | .accessfn = access_aa32_tid3, |
8515a092 | 7357 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
7358 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
7359 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
7360 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7361 | .accessfn = access_aa32_tid3, |
10054016 | 7362 | .resetvalue = cpu->isar.id_mmfr0 }, |
0ff644a7 PM |
7363 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
7364 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
7365 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7366 | .accessfn = access_aa32_tid3, |
10054016 | 7367 | .resetvalue = cpu->isar.id_mmfr1 }, |
0ff644a7 PM |
7368 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
7369 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
7370 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7371 | .accessfn = access_aa32_tid3, |
10054016 | 7372 | .resetvalue = cpu->isar.id_mmfr2 }, |
0ff644a7 PM |
7373 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
7374 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
7375 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7376 | .accessfn = access_aa32_tid3, |
10054016 | 7377 | .resetvalue = cpu->isar.id_mmfr3 }, |
0ff644a7 PM |
7378 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
7379 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
7380 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7381 | .accessfn = access_aa32_tid3, |
47576b94 | 7382 | .resetvalue = cpu->isar.id_isar0 }, |
0ff644a7 PM |
7383 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
7384 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
7385 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7386 | .accessfn = access_aa32_tid3, |
47576b94 | 7387 | .resetvalue = cpu->isar.id_isar1 }, |
0ff644a7 PM |
7388 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
7389 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
7390 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7391 | .accessfn = access_aa32_tid3, |
47576b94 | 7392 | .resetvalue = cpu->isar.id_isar2 }, |
0ff644a7 PM |
7393 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
7394 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
7395 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7396 | .accessfn = access_aa32_tid3, |
47576b94 | 7397 | .resetvalue = cpu->isar.id_isar3 }, |
0ff644a7 PM |
7398 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
7399 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
7400 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7401 | .accessfn = access_aa32_tid3, |
47576b94 | 7402 | .resetvalue = cpu->isar.id_isar4 }, |
0ff644a7 PM |
7403 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
7404 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
7405 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7406 | .accessfn = access_aa32_tid3, |
47576b94 | 7407 | .resetvalue = cpu->isar.id_isar5 }, |
e20d84c1 PM |
7408 | { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
7409 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, | |
7410 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7411 | .accessfn = access_aa32_tid3, |
10054016 | 7412 | .resetvalue = cpu->isar.id_mmfr4 }, |
802abf40 | 7413 | { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, |
e20d84c1 PM |
7414 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, |
7415 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7416 | .accessfn = access_aa32_tid3, |
47576b94 | 7417 | .resetvalue = cpu->isar.id_isar6 }, |
8515a092 PM |
7418 | REGINFO_SENTINEL |
7419 | }; | |
7420 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
7421 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
7422 | } else { | |
7423 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
7424 | } | |
4d31c596 PM |
7425 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
7426 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
7427 | } | |
5e5cf9e3 | 7428 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
452a0955 | 7429 | !arm_feature(env, ARM_FEATURE_PMSA)) { |
995939a6 PM |
7430 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
7431 | } | |
327dd510 AL |
7432 | if (arm_feature(env, ARM_FEATURE_V7VE)) { |
7433 | define_arm_cp_regs(cpu, pmovsset_cp_reginfo); | |
7434 | } | |
e9aa6c21 | 7435 | if (arm_feature(env, ARM_FEATURE_V7)) { |
776d4e5c | 7436 | ARMCPRegInfo clidr = { |
7da845b0 PM |
7437 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
7438 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
630fcd4d MZ |
7439 | .access = PL1_R, .type = ARM_CP_CONST, |
7440 | .accessfn = access_aa64_tid2, | |
7441 | .resetvalue = cpu->clidr | |
776d4e5c | 7442 | }; |
776d4e5c | 7443 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 7444 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 7445 | define_debug_regs(cpu); |
24183fb6 | 7446 | define_pmu_regs(cpu); |
7d57f408 PM |
7447 | } else { |
7448 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 7449 | } |
b0d2b7d0 | 7450 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e20d84c1 PM |
7451 | /* AArch64 ID registers, which all have impdef reset values. |
7452 | * Note that within the ID register ranges the unused slots | |
7453 | * must all RAZ, not UNDEF; future architecture versions may | |
7454 | * define new registers here. | |
7455 | */ | |
e60cef86 | 7456 | ARMCPRegInfo v8_idregs[] = { |
976b99b6 AB |
7457 | /* |
7458 | * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system | |
7459 | * emulation because we don't know the right value for the | |
7460 | * GIC field until after we define these regs. | |
96a8b92e | 7461 | */ |
e60cef86 PM |
7462 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, |
7463 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
976b99b6 AB |
7464 | .access = PL1_R, |
7465 | #ifdef CONFIG_USER_ONLY | |
7466 | .type = ARM_CP_CONST, | |
7467 | .resetvalue = cpu->isar.id_aa64pfr0 | |
7468 | #else | |
7469 | .type = ARM_CP_NO_RAW, | |
6a4ef4e5 | 7470 | .accessfn = access_aa64_tid3, |
96a8b92e | 7471 | .readfn = id_aa64pfr0_read, |
976b99b6 AB |
7472 | .writefn = arm_cp_write_ignore |
7473 | #endif | |
7474 | }, | |
e60cef86 PM |
7475 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, |
7476 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
7477 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7478 | .accessfn = access_aa64_tid3, |
47576b94 | 7479 | .resetvalue = cpu->isar.id_aa64pfr1}, |
e20d84c1 PM |
7480 | { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7481 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, | |
7482 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7483 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7484 | .resetvalue = 0 }, |
7485 | { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7486 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, | |
7487 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7488 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7489 | .resetvalue = 0 }, |
9516d772 | 7490 | { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, |
e20d84c1 PM |
7491 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, |
7492 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7493 | .accessfn = access_aa64_tid3, |
9516d772 | 7494 | /* At present, only SVEver == 0 is defined anyway. */ |
e20d84c1 PM |
7495 | .resetvalue = 0 }, |
7496 | { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7497 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, | |
7498 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7499 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7500 | .resetvalue = 0 }, |
7501 | { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7502 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, | |
7503 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7504 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7505 | .resetvalue = 0 }, |
7506 | { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7507 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, | |
7508 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7509 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7510 | .resetvalue = 0 }, |
e60cef86 PM |
7511 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
7512 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
7513 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7514 | .accessfn = access_aa64_tid3, |
2a609df8 | 7515 | .resetvalue = cpu->isar.id_aa64dfr0 }, |
e60cef86 PM |
7516 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
7517 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
7518 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7519 | .accessfn = access_aa64_tid3, |
2a609df8 | 7520 | .resetvalue = cpu->isar.id_aa64dfr1 }, |
e20d84c1 PM |
7521 | { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7522 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, | |
7523 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7524 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7525 | .resetvalue = 0 }, |
7526 | { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7527 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, | |
7528 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7529 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7530 | .resetvalue = 0 }, |
e60cef86 PM |
7531 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
7532 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
7533 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7534 | .accessfn = access_aa64_tid3, |
e60cef86 PM |
7535 | .resetvalue = cpu->id_aa64afr0 }, |
7536 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
7537 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
7538 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7539 | .accessfn = access_aa64_tid3, |
e60cef86 | 7540 | .resetvalue = cpu->id_aa64afr1 }, |
e20d84c1 PM |
7541 | { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7542 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, | |
7543 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7544 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7545 | .resetvalue = 0 }, |
7546 | { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7547 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, | |
7548 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7549 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7550 | .resetvalue = 0 }, |
e60cef86 PM |
7551 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
7552 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
7553 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7554 | .accessfn = access_aa64_tid3, |
47576b94 | 7555 | .resetvalue = cpu->isar.id_aa64isar0 }, |
e60cef86 PM |
7556 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, |
7557 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
7558 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7559 | .accessfn = access_aa64_tid3, |
47576b94 | 7560 | .resetvalue = cpu->isar.id_aa64isar1 }, |
e20d84c1 PM |
7561 | { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7562 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, | |
7563 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7564 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7565 | .resetvalue = 0 }, |
7566 | { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7567 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, | |
7568 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7569 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7570 | .resetvalue = 0 }, |
7571 | { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7572 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, | |
7573 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7574 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7575 | .resetvalue = 0 }, |
7576 | { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7577 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, | |
7578 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7579 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7580 | .resetvalue = 0 }, |
7581 | { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7582 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, | |
7583 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7584 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7585 | .resetvalue = 0 }, |
7586 | { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7587 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, | |
7588 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7589 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7590 | .resetvalue = 0 }, |
e60cef86 PM |
7591 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
7592 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
7593 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7594 | .accessfn = access_aa64_tid3, |
3dc91ddb | 7595 | .resetvalue = cpu->isar.id_aa64mmfr0 }, |
e60cef86 PM |
7596 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, |
7597 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
7598 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7599 | .accessfn = access_aa64_tid3, |
3dc91ddb | 7600 | .resetvalue = cpu->isar.id_aa64mmfr1 }, |
64761e10 | 7601 | { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, |
e20d84c1 PM |
7602 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, |
7603 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7604 | .accessfn = access_aa64_tid3, |
64761e10 | 7605 | .resetvalue = cpu->isar.id_aa64mmfr2 }, |
e20d84c1 PM |
7606 | { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7607 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, | |
7608 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7609 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7610 | .resetvalue = 0 }, |
7611 | { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7612 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, | |
7613 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7614 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7615 | .resetvalue = 0 }, |
7616 | { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7617 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, | |
7618 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7619 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7620 | .resetvalue = 0 }, |
7621 | { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7622 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, | |
7623 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7624 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7625 | .resetvalue = 0 }, |
7626 | { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7627 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, | |
7628 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7629 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7630 | .resetvalue = 0 }, |
a50c0f51 PM |
7631 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
7632 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
7633 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7634 | .accessfn = access_aa64_tid3, |
47576b94 | 7635 | .resetvalue = cpu->isar.mvfr0 }, |
a50c0f51 PM |
7636 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, |
7637 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
7638 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7639 | .accessfn = access_aa64_tid3, |
47576b94 | 7640 | .resetvalue = cpu->isar.mvfr1 }, |
a50c0f51 PM |
7641 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, |
7642 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
7643 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7644 | .accessfn = access_aa64_tid3, |
47576b94 | 7645 | .resetvalue = cpu->isar.mvfr2 }, |
e20d84c1 PM |
7646 | { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7647 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, | |
7648 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7649 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7650 | .resetvalue = 0 }, |
7651 | { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7652 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, | |
7653 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7654 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7655 | .resetvalue = 0 }, |
7656 | { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7657 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, | |
7658 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7659 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7660 | .resetvalue = 0 }, |
7661 | { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7662 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, | |
7663 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7664 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7665 | .resetvalue = 0 }, |
7666 | { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7667 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, | |
7668 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7669 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7670 | .resetvalue = 0 }, |
4054bfa9 AF |
7671 | { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
7672 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, | |
7673 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
cad86737 | 7674 | .resetvalue = extract64(cpu->pmceid0, 0, 32) }, |
4054bfa9 AF |
7675 | { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, |
7676 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, | |
7677 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
7678 | .resetvalue = cpu->pmceid0 }, | |
7679 | { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, | |
7680 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, | |
7681 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
cad86737 | 7682 | .resetvalue = extract64(cpu->pmceid1, 0, 32) }, |
4054bfa9 AF |
7683 | { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, |
7684 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, | |
7685 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
7686 | .resetvalue = cpu->pmceid1 }, | |
e60cef86 PM |
7687 | REGINFO_SENTINEL |
7688 | }; | |
6c5c0fec AB |
7689 | #ifdef CONFIG_USER_ONLY |
7690 | ARMCPRegUserSpaceInfo v8_user_idregs[] = { | |
7691 | { .name = "ID_AA64PFR0_EL1", | |
7692 | .exported_bits = 0x000f000f00ff0000, | |
7693 | .fixed_bits = 0x0000000000000011 }, | |
7694 | { .name = "ID_AA64PFR1_EL1", | |
7695 | .exported_bits = 0x00000000000000f0 }, | |
d040242e AB |
7696 | { .name = "ID_AA64PFR*_EL1_RESERVED", |
7697 | .is_glob = true }, | |
6c5c0fec AB |
7698 | { .name = "ID_AA64ZFR0_EL1" }, |
7699 | { .name = "ID_AA64MMFR0_EL1", | |
7700 | .fixed_bits = 0x00000000ff000000 }, | |
7701 | { .name = "ID_AA64MMFR1_EL1" }, | |
d040242e AB |
7702 | { .name = "ID_AA64MMFR*_EL1_RESERVED", |
7703 | .is_glob = true }, | |
6c5c0fec AB |
7704 | { .name = "ID_AA64DFR0_EL1", |
7705 | .fixed_bits = 0x0000000000000006 }, | |
7706 | { .name = "ID_AA64DFR1_EL1" }, | |
d040242e AB |
7707 | { .name = "ID_AA64DFR*_EL1_RESERVED", |
7708 | .is_glob = true }, | |
7709 | { .name = "ID_AA64AFR*", | |
7710 | .is_glob = true }, | |
6c5c0fec AB |
7711 | { .name = "ID_AA64ISAR0_EL1", |
7712 | .exported_bits = 0x00fffffff0fffff0 }, | |
7713 | { .name = "ID_AA64ISAR1_EL1", | |
7714 | .exported_bits = 0x000000f0ffffffff }, | |
d040242e AB |
7715 | { .name = "ID_AA64ISAR*_EL1_RESERVED", |
7716 | .is_glob = true }, | |
6c5c0fec AB |
7717 | REGUSERINFO_SENTINEL |
7718 | }; | |
7719 | modify_arm_cp_regs(v8_idregs, v8_user_idregs); | |
7720 | #endif | |
be8e8128 GB |
7721 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
7722 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
7723 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
7724 | ARMCPRegInfo rvbar = { | |
7725 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
7726 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
7727 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
7728 | }; | |
7729 | define_one_arm_cp_reg(cpu, &rvbar); | |
7730 | } | |
e60cef86 | 7731 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
7732 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
7733 | } | |
3b685ba7 | 7734 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
f0d574d6 | 7735 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
7736 | ARMCPRegInfo vpidr_regs[] = { |
7737 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
7738 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
7739 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
36476562 PM |
7740 | .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, |
7741 | .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, | |
731de9e6 EI |
7742 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, |
7743 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
7744 | .access = PL2_RW, .resetvalue = cpu->midr, | |
7745 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
7746 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
7747 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
7748 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
36476562 PM |
7749 | .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, |
7750 | .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, | |
f0d574d6 EI |
7751 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, |
7752 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
7753 | .access = PL2_RW, | |
7754 | .resetvalue = vmpidr_def, | |
7755 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
731de9e6 EI |
7756 | REGINFO_SENTINEL |
7757 | }; | |
7758 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 7759 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
ce4afed8 PM |
7760 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7761 | define_arm_cp_regs(cpu, el2_v8_cp_reginfo); | |
7762 | } | |
e9152ee9 RDC |
7763 | if (cpu_isar_feature(aa64_sel2, cpu)) { |
7764 | define_arm_cp_regs(cpu, el2_sec_cp_reginfo); | |
7765 | } | |
be8e8128 GB |
7766 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
7767 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
7768 | ARMCPRegInfo rvbar = { | |
7769 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
7770 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
7771 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
7772 | }; | |
7773 | define_one_arm_cp_reg(cpu, &rvbar); | |
7774 | } | |
d42e3c26 EI |
7775 | } else { |
7776 | /* If EL2 is missing but higher ELs are enabled, we need to | |
7777 | * register the no_el2 reginfos. | |
7778 | */ | |
7779 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
f0d574d6 EI |
7780 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
7781 | * of MIDR_EL1 and MPIDR_EL1. | |
731de9e6 EI |
7782 | */ |
7783 | ARMCPRegInfo vpidr_regs[] = { | |
7784 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | |
7785 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
93dd1e61 | 7786 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
731de9e6 EI |
7787 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, |
7788 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
7789 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
7790 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
93dd1e61 | 7791 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
f0d574d6 EI |
7792 | .type = ARM_CP_NO_RAW, |
7793 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | |
731de9e6 EI |
7794 | REGINFO_SENTINEL |
7795 | }; | |
7796 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 7797 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
ce4afed8 PM |
7798 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7799 | define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); | |
7800 | } | |
d42e3c26 | 7801 | } |
3b685ba7 | 7802 | } |
81547d66 | 7803 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 7804 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
e24fdd23 PM |
7805 | ARMCPRegInfo el3_regs[] = { |
7806 | { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
7807 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
7808 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, | |
7809 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, | |
7810 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
7811 | .access = PL3_RW, | |
7812 | .raw_writefn = raw_write, .writefn = sctlr_write, | |
7813 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), | |
7814 | .resetvalue = cpu->reset_sctlr }, | |
7815 | REGINFO_SENTINEL | |
be8e8128 | 7816 | }; |
e24fdd23 PM |
7817 | |
7818 | define_arm_cp_regs(cpu, el3_regs); | |
81547d66 | 7819 | } |
2f027fc5 PM |
7820 | /* The behaviour of NSACR is sufficiently various that we don't |
7821 | * try to describe it in a single reginfo: | |
7822 | * if EL3 is 64 bit, then trap to EL3 from S EL1, | |
7823 | * reads as constant 0xc00 from NS EL1 and NS EL2 | |
7824 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 | |
7825 | * if v7 without EL3, register doesn't exist | |
7826 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 | |
7827 | */ | |
7828 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
7829 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
7830 | ARMCPRegInfo nsacr = { | |
7831 | .name = "NSACR", .type = ARM_CP_CONST, | |
7832 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
7833 | .access = PL1_RW, .accessfn = nsacr_access, | |
7834 | .resetvalue = 0xc00 | |
7835 | }; | |
7836 | define_one_arm_cp_reg(cpu, &nsacr); | |
7837 | } else { | |
7838 | ARMCPRegInfo nsacr = { | |
7839 | .name = "NSACR", | |
7840 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
7841 | .access = PL3_RW | PL1_R, | |
7842 | .resetvalue = 0, | |
7843 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) | |
7844 | }; | |
7845 | define_one_arm_cp_reg(cpu, &nsacr); | |
7846 | } | |
7847 | } else { | |
7848 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
7849 | ARMCPRegInfo nsacr = { | |
7850 | .name = "NSACR", .type = ARM_CP_CONST, | |
7851 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
7852 | .access = PL1_R, | |
7853 | .resetvalue = 0xc00 | |
7854 | }; | |
7855 | define_one_arm_cp_reg(cpu, &nsacr); | |
7856 | } | |
7857 | } | |
7858 | ||
452a0955 | 7859 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
6cb0b013 PC |
7860 | if (arm_feature(env, ARM_FEATURE_V6)) { |
7861 | /* PMSAv6 not implemented */ | |
7862 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
7863 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
7864 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
7865 | } else { | |
7866 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
7867 | } | |
18032bec | 7868 | } else { |
8e5d75c9 | 7869 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec | 7870 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
4036b7d1 PM |
7871 | /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ |
7872 | if (cpu_isar_feature(aa32_hpd, cpu)) { | |
ab638a32 RH |
7873 | define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); |
7874 | } | |
18032bec | 7875 | } |
c326b979 PM |
7876 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
7877 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
7878 | } | |
6cc7a3ae PM |
7879 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
7880 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
7881 | } | |
4a501606 PM |
7882 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
7883 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
7884 | } | |
c4804214 PM |
7885 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
7886 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
7887 | } | |
7888 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
7889 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
7890 | } | |
7891 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
7892 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
7893 | } | |
18032bec PM |
7894 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
7895 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
7896 | } | |
34f90529 PM |
7897 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
7898 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
7899 | } | |
1047b9d7 PM |
7900 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
7901 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
7902 | } | |
7903 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
7904 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
7905 | } | |
7ac681cf PM |
7906 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
7907 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
7908 | } | |
873b73c0 | 7909 | if (cpu_isar_feature(aa32_jazelle, cpu)) { |
f96f3d5f MZ |
7910 | define_arm_cp_regs(cpu, jazelle_regs); |
7911 | } | |
7884849c PM |
7912 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
7913 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
7914 | * be read-only (ie write causes UNDEF exception). | |
7915 | */ | |
7916 | { | |
00a29f3d PM |
7917 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
7918 | /* Pre-v8 MIDR space. | |
7919 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
7920 | * of the TI925 behaviour where writes to another register can |
7921 | * cause the MIDR value to change. | |
97ce8d61 PC |
7922 | * |
7923 | * Unimplemented registers in the c15 0 0 0 space default to | |
7924 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
7925 | * and friends override accordingly. | |
7884849c PM |
7926 | */ |
7927 | { .name = "MIDR", | |
97ce8d61 | 7928 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 7929 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 7930 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 7931 | .readfn = midr_read, |
97ce8d61 PC |
7932 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
7933 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
7934 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
7935 | { .name = "DUMMY", | |
7936 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
7937 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7938 | { .name = "DUMMY", | |
7939 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
7940 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7941 | { .name = "DUMMY", | |
7942 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
7943 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7944 | { .name = "DUMMY", | |
7945 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
7946 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7947 | { .name = "DUMMY", | |
7948 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
7949 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7950 | REGINFO_SENTINEL | |
7951 | }; | |
00a29f3d | 7952 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
7953 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
7954 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
7955 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
7956 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
7957 | .readfn = midr_read }, | |
ac00c79f SF |
7958 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
7959 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
7960 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
7961 | .access = PL1_R, .resetvalue = cpu->midr }, | |
7962 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
7963 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
7964 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
7965 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
7966 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
93fbc983 MZ |
7967 | .access = PL1_R, |
7968 | .accessfn = access_aa64_tid1, | |
7969 | .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, | |
00a29f3d PM |
7970 | REGINFO_SENTINEL |
7971 | }; | |
7972 | ARMCPRegInfo id_cp_reginfo[] = { | |
7973 | /* These are common to v8 and pre-v8 */ | |
7974 | { .name = "CTR", | |
7975 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
630fcd4d MZ |
7976 | .access = PL1_R, .accessfn = ctr_el0_access, |
7977 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
00a29f3d PM |
7978 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
7979 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
7980 | .access = PL0_R, .accessfn = ctr_el0_access, | |
7981 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
7982 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
7983 | { .name = "TCMTR", | |
7984 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
93fbc983 MZ |
7985 | .access = PL1_R, |
7986 | .accessfn = access_aa32_tid1, | |
7987 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
7988 | REGINFO_SENTINEL |
7989 | }; | |
8085ce63 PC |
7990 | /* TLBTR is specific to VMSA */ |
7991 | ARMCPRegInfo id_tlbtr_reginfo = { | |
7992 | .name = "TLBTR", | |
7993 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
93fbc983 MZ |
7994 | .access = PL1_R, |
7995 | .accessfn = access_aa32_tid1, | |
7996 | .type = ARM_CP_CONST, .resetvalue = 0, | |
8085ce63 | 7997 | }; |
3281af81 PC |
7998 | /* MPUIR is specific to PMSA V6+ */ |
7999 | ARMCPRegInfo id_mpuir_reginfo = { | |
8000 | .name = "MPUIR", | |
8001 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
8002 | .access = PL1_R, .type = ARM_CP_CONST, | |
8003 | .resetvalue = cpu->pmsav7_dregion << 8 | |
8004 | }; | |
7884849c PM |
8005 | ARMCPRegInfo crn0_wi_reginfo = { |
8006 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
8007 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
8008 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
8009 | }; | |
6c5c0fec AB |
8010 | #ifdef CONFIG_USER_ONLY |
8011 | ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { | |
8012 | { .name = "MIDR_EL1", | |
8013 | .exported_bits = 0x00000000ffffffff }, | |
8014 | { .name = "REVIDR_EL1" }, | |
8015 | REGUSERINFO_SENTINEL | |
8016 | }; | |
8017 | modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); | |
8018 | #endif | |
7884849c PM |
8019 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
8020 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
8021 | ARMCPRegInfo *r; | |
8022 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
8023 | * whole space. Then update the specific ID registers to allow write |
8024 | * access, so that they ignore writes rather than causing them to | |
8025 | * UNDEF. | |
7884849c PM |
8026 | */ |
8027 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
8028 | for (r = id_pre_v8_midr_cp_reginfo; |
8029 | r->type != ARM_CP_SENTINEL; r++) { | |
8030 | r->access = PL1_RW; | |
8031 | } | |
7884849c PM |
8032 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
8033 | r->access = PL1_RW; | |
7884849c | 8034 | } |
10006112 | 8035 | id_mpuir_reginfo.access = PL1_RW; |
3281af81 | 8036 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 8037 | } |
00a29f3d PM |
8038 | if (arm_feature(env, ARM_FEATURE_V8)) { |
8039 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
8040 | } else { | |
8041 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
8042 | } | |
a703eda1 | 8043 | define_arm_cp_regs(cpu, id_cp_reginfo); |
452a0955 | 8044 | if (!arm_feature(env, ARM_FEATURE_PMSA)) { |
8085ce63 | 8045 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
3281af81 PC |
8046 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8047 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 8048 | } |
7884849c PM |
8049 | } |
8050 | ||
97ce8d61 | 8051 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
52264166 AB |
8052 | ARMCPRegInfo mpidr_cp_reginfo[] = { |
8053 | { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
8054 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
8055 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, | |
8056 | REGINFO_SENTINEL | |
8057 | }; | |
8058 | #ifdef CONFIG_USER_ONLY | |
8059 | ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { | |
8060 | { .name = "MPIDR_EL1", | |
8061 | .fixed_bits = 0x0000000080000000 }, | |
8062 | REGUSERINFO_SENTINEL | |
8063 | }; | |
8064 | modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); | |
8065 | #endif | |
97ce8d61 PC |
8066 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
8067 | } | |
8068 | ||
2771db27 | 8069 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
8070 | ARMCPRegInfo auxcr_reginfo[] = { |
8071 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
8072 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
99602377 RH |
8073 | .access = PL1_RW, .accessfn = access_tacr, |
8074 | .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, | |
834a6c69 PM |
8075 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, |
8076 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
8077 | .access = PL2_RW, .type = ARM_CP_CONST, | |
8078 | .resetvalue = 0 }, | |
8079 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
8080 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
8081 | .access = PL3_RW, .type = ARM_CP_CONST, | |
8082 | .resetvalue = 0 }, | |
8083 | REGINFO_SENTINEL | |
2771db27 | 8084 | }; |
834a6c69 | 8085 | define_arm_cp_regs(cpu, auxcr_reginfo); |
f6287c24 PM |
8086 | if (cpu_isar_feature(aa32_ac2, cpu)) { |
8087 | define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); | |
0e0456ab | 8088 | } |
2771db27 PM |
8089 | } |
8090 | ||
d8ba780b | 8091 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
d56974af LM |
8092 | /* |
8093 | * CBAR is IMPDEF, but common on Arm Cortex-A implementations. | |
8094 | * There are two flavours: | |
8095 | * (1) older 32-bit only cores have a simple 32-bit CBAR | |
8096 | * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a | |
8097 | * 32-bit register visible to AArch32 at a different encoding | |
8098 | * to the "flavour 1" register and with the bits rearranged to | |
8099 | * be able to squash a 64-bit address into the 32-bit view. | |
8100 | * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but | |
8101 | * in future if we support AArch32-only configs of some of the | |
8102 | * AArch64 cores we might need to add a specific feature flag | |
8103 | * to indicate cores with "flavour 2" CBAR. | |
8104 | */ | |
f318cec6 PM |
8105 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
8106 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
8107 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
8108 | | extract64(cpu->reset_cbar, 32, 12); | |
8109 | ARMCPRegInfo cbar_reginfo[] = { | |
8110 | { .name = "CBAR", | |
8111 | .type = ARM_CP_CONST, | |
d56974af LM |
8112 | .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, |
8113 | .access = PL1_R, .resetvalue = cbar32 }, | |
f318cec6 PM |
8114 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, |
8115 | .type = ARM_CP_CONST, | |
8116 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
d56974af | 8117 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, |
f318cec6 PM |
8118 | REGINFO_SENTINEL |
8119 | }; | |
8120 | /* We don't implement a r/w 64 bit CBAR currently */ | |
8121 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
8122 | define_arm_cp_regs(cpu, cbar_reginfo); | |
8123 | } else { | |
8124 | ARMCPRegInfo cbar = { | |
8125 | .name = "CBAR", | |
8126 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
8127 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
8128 | .fieldoffset = offsetof(CPUARMState, | |
8129 | cp15.c15_config_base_address) | |
8130 | }; | |
8131 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
8132 | cbar.access = PL1_R; | |
8133 | cbar.fieldoffset = 0; | |
8134 | cbar.type = ARM_CP_CONST; | |
8135 | } | |
8136 | define_one_arm_cp_reg(cpu, &cbar); | |
8137 | } | |
d8ba780b PC |
8138 | } |
8139 | ||
91db4642 CLG |
8140 | if (arm_feature(env, ARM_FEATURE_VBAR)) { |
8141 | ARMCPRegInfo vbar_cp_reginfo[] = { | |
8142 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, | |
8143 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8144 | .access = PL1_RW, .writefn = vbar_write, | |
8145 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), | |
8146 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8147 | .resetvalue = 0 }, | |
8148 | REGINFO_SENTINEL | |
8149 | }; | |
8150 | define_arm_cp_regs(cpu, vbar_cp_reginfo); | |
8151 | } | |
8152 | ||
2771db27 PM |
8153 | /* Generic registers whose values depend on the implementation */ |
8154 | { | |
8155 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 8156 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 | 8157 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
84929218 | 8158 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
137feaa9 FA |
8159 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), |
8160 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
8161 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
8162 | .raw_writefn = raw_write, | |
2771db27 PM |
8163 | }; |
8164 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
8165 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
8166 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
8167 | * an MMU enable to execute from cache. Imitate this behaviour. | |
8168 | */ | |
8169 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
8170 | } | |
8171 | define_one_arm_cp_reg(cpu, &sctlr); | |
8172 | } | |
5be5e8ed | 8173 | |
2d7137c1 | 8174 | if (cpu_isar_feature(aa64_lor, cpu)) { |
2d7137c1 RH |
8175 | define_arm_cp_regs(cpu, lor_reginfo); |
8176 | } | |
220f508f RH |
8177 | if (cpu_isar_feature(aa64_pan, cpu)) { |
8178 | define_one_arm_cp_reg(cpu, &pan_reginfo); | |
8179 | } | |
04b07d29 RH |
8180 | #ifndef CONFIG_USER_ONLY |
8181 | if (cpu_isar_feature(aa64_ats1e1, cpu)) { | |
8182 | define_arm_cp_regs(cpu, ats1e1_reginfo); | |
8183 | } | |
8184 | if (cpu_isar_feature(aa32_ats1e1, cpu)) { | |
8185 | define_arm_cp_regs(cpu, ats1cp_reginfo); | |
8186 | } | |
8187 | #endif | |
9eeb7a1c RH |
8188 | if (cpu_isar_feature(aa64_uao, cpu)) { |
8189 | define_one_arm_cp_reg(cpu, &uao_reginfo); | |
8190 | } | |
2d7137c1 | 8191 | |
e2a1a461 RH |
8192 | if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { |
8193 | define_arm_cp_regs(cpu, vhe_reginfo); | |
8194 | } | |
8195 | ||
cd208a1c | 8196 | if (cpu_isar_feature(aa64_sve, cpu)) { |
5be5e8ed RH |
8197 | define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); |
8198 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
8199 | define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); | |
8200 | } else { | |
8201 | define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); | |
8202 | } | |
8203 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
8204 | define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); | |
8205 | } | |
8206 | } | |
967aa94f RH |
8207 | |
8208 | #ifdef TARGET_AARCH64 | |
8209 | if (cpu_isar_feature(aa64_pauth, cpu)) { | |
8210 | define_arm_cp_regs(cpu, pauth_reginfo); | |
8211 | } | |
de390645 RH |
8212 | if (cpu_isar_feature(aa64_rndr, cpu)) { |
8213 | define_arm_cp_regs(cpu, rndr_reginfo); | |
8214 | } | |
0d57b499 BM |
8215 | #ifndef CONFIG_USER_ONLY |
8216 | /* Data Cache clean instructions up to PoP */ | |
8217 | if (cpu_isar_feature(aa64_dcpop, cpu)) { | |
8218 | define_one_arm_cp_reg(cpu, dcpop_reg); | |
8219 | ||
8220 | if (cpu_isar_feature(aa64_dcpodp, cpu)) { | |
8221 | define_one_arm_cp_reg(cpu, dcpodp_reg); | |
8222 | } | |
8223 | } | |
8224 | #endif /*CONFIG_USER_ONLY*/ | |
4b779ceb RH |
8225 | |
8226 | /* | |
8227 | * If full MTE is enabled, add all of the system registers. | |
8228 | * If only "instructions available at EL0" are enabled, | |
8229 | * then define only a RAZ/WI version of PSTATE.TCO. | |
8230 | */ | |
8231 | if (cpu_isar_feature(aa64_mte, cpu)) { | |
8232 | define_arm_cp_regs(cpu, mte_reginfo); | |
5463df16 | 8233 | define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); |
4b779ceb RH |
8234 | } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { |
8235 | define_arm_cp_regs(cpu, mte_tco_ro_reginfo); | |
5463df16 | 8236 | define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); |
4b779ceb | 8237 | } |
967aa94f | 8238 | #endif |
cb570bd3 | 8239 | |
22e57073 | 8240 | if (cpu_isar_feature(any_predinv, cpu)) { |
cb570bd3 RH |
8241 | define_arm_cp_regs(cpu, predinv_reginfo); |
8242 | } | |
e2cce18f | 8243 | |
957e6155 PM |
8244 | if (cpu_isar_feature(any_ccidx, cpu)) { |
8245 | define_arm_cp_regs(cpu, ccsidr2_reginfo); | |
8246 | } | |
8247 | ||
e2cce18f RH |
8248 | #ifndef CONFIG_USER_ONLY |
8249 | /* | |
8250 | * Register redirections and aliases must be done last, | |
8251 | * after the registers from the other extensions have been defined. | |
8252 | */ | |
8253 | if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { | |
8254 | define_arm_vh_e2h_redirects_aliases(cpu); | |
8255 | } | |
8256 | #endif | |
2ceb98c0 PM |
8257 | } |
8258 | ||
14969266 AF |
8259 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
8260 | { | |
22169d41 | 8261 | CPUState *cs = CPU(cpu); |
14969266 AF |
8262 | CPUARMState *env = &cpu->env; |
8263 | ||
6a669427 | 8264 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
d12379c5 AB |
8265 | /* |
8266 | * The lower part of each SVE register aliases to the FPU | |
8267 | * registers so we don't need to include both. | |
8268 | */ | |
8269 | #ifdef TARGET_AARCH64 | |
8270 | if (isar_feature_aa64_sve(&cpu->isar)) { | |
8271 | gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, | |
8272 | arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), | |
8273 | "sve-registers.xml", 0); | |
8274 | } else | |
8275 | #endif | |
8276 | { | |
8277 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
8278 | aarch64_fpu_gdb_set_reg, | |
8279 | 34, "aarch64-fpu.xml", 0); | |
8280 | } | |
6a669427 | 8281 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { |
22169d41 | 8282 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 | 8283 | 51, "arm-neon.xml", 0); |
a6627f5f | 8284 | } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { |
22169d41 | 8285 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 | 8286 | 35, "arm-vfp3.xml", 0); |
7fbc6a40 | 8287 | } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { |
22169d41 | 8288 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
8289 | 19, "arm-vfp.xml", 0); |
8290 | } | |
200bf5b7 | 8291 | gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, |
32d6e32a | 8292 | arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), |
200bf5b7 | 8293 | "system-registers.xml", 0); |
d12379c5 | 8294 | |
40f137e1 PB |
8295 | } |
8296 | ||
777dc784 PM |
8297 | /* Sort alphabetically by type name, except for "any". */ |
8298 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 8299 | { |
777dc784 PM |
8300 | ObjectClass *class_a = (ObjectClass *)a; |
8301 | ObjectClass *class_b = (ObjectClass *)b; | |
8302 | const char *name_a, *name_b; | |
5adb4839 | 8303 | |
777dc784 PM |
8304 | name_a = object_class_get_name(class_a); |
8305 | name_b = object_class_get_name(class_b); | |
51492fd1 | 8306 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 8307 | return 1; |
51492fd1 | 8308 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
8309 | return -1; |
8310 | } else { | |
8311 | return strcmp(name_a, name_b); | |
5adb4839 PB |
8312 | } |
8313 | } | |
8314 | ||
777dc784 | 8315 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 8316 | { |
777dc784 | 8317 | ObjectClass *oc = data; |
51492fd1 AF |
8318 | const char *typename; |
8319 | char *name; | |
3371d272 | 8320 | |
51492fd1 AF |
8321 | typename = object_class_get_name(oc); |
8322 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
0442428a | 8323 | qemu_printf(" %s\n", name); |
51492fd1 | 8324 | g_free(name); |
777dc784 PM |
8325 | } |
8326 | ||
0442428a | 8327 | void arm_cpu_list(void) |
777dc784 | 8328 | { |
777dc784 PM |
8329 | GSList *list; |
8330 | ||
8331 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
8332 | list = g_slist_sort(list, arm_cpu_list_compare); | |
0442428a MA |
8333 | qemu_printf("Available CPUs:\n"); |
8334 | g_slist_foreach(list, arm_cpu_list_entry, NULL); | |
777dc784 | 8335 | g_slist_free(list); |
40f137e1 PB |
8336 | } |
8337 | ||
78027bb6 CR |
8338 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
8339 | { | |
8340 | ObjectClass *oc = data; | |
8341 | CpuDefinitionInfoList **cpu_list = user_data; | |
78027bb6 CR |
8342 | CpuDefinitionInfo *info; |
8343 | const char *typename; | |
8344 | ||
8345 | typename = object_class_get_name(oc); | |
8346 | info = g_malloc0(sizeof(*info)); | |
8347 | info->name = g_strndup(typename, | |
8348 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
8ed877b7 | 8349 | info->q_typename = g_strdup(typename); |
78027bb6 | 8350 | |
54aa3de7 | 8351 | QAPI_LIST_PREPEND(*cpu_list, info); |
78027bb6 CR |
8352 | } |
8353 | ||
25a9d6ca | 8354 | CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) |
78027bb6 CR |
8355 | { |
8356 | CpuDefinitionInfoList *cpu_list = NULL; | |
8357 | GSList *list; | |
8358 | ||
8359 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
8360 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
8361 | g_slist_free(list); | |
8362 | ||
8363 | return cpu_list; | |
8364 | } | |
8365 | ||
6e6efd61 | 8366 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 8367 | void *opaque, int state, int secstate, |
9c513e78 AB |
8368 | int crm, int opc1, int opc2, |
8369 | const char *name) | |
6e6efd61 PM |
8370 | { |
8371 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
8372 | * add a single reginfo struct to the hash table. | |
8373 | */ | |
8374 | uint32_t *key = g_new(uint32_t, 1); | |
8375 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
8376 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
8377 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
8378 | ||
9c513e78 | 8379 | r2->name = g_strdup(name); |
3f3c82a5 FA |
8380 | /* Reset the secure state to the specific incoming state. This is |
8381 | * necessary as the register may have been defined with both states. | |
8382 | */ | |
8383 | r2->secure = secstate; | |
8384 | ||
8385 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
8386 | /* Register is banked (using both entries in array). | |
8387 | * Overwriting fieldoffset as the array is only used to define | |
8388 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 8389 | */ |
3f3c82a5 FA |
8390 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
8391 | } | |
8392 | ||
8393 | if (state == ARM_CP_STATE_AA32) { | |
8394 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
8395 | /* If the register is banked then we don't need to migrate or | |
8396 | * reset the 32-bit instance in certain cases: | |
8397 | * | |
8398 | * 1) If the register has both 32-bit and 64-bit instances then we | |
8399 | * can count on the 64-bit instance taking care of the | |
8400 | * non-secure bank. | |
8401 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
8402 | * taking care of the secure bank. This requires that separate | |
8403 | * 32 and 64-bit definitions are provided. | |
8404 | */ | |
8405 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
8406 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 8407 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
8408 | } |
8409 | } else if ((secstate != r->secure) && !ns) { | |
8410 | /* The register is not banked so we only want to allow migration of | |
8411 | * the non-secure instance. | |
8412 | */ | |
7a0e58fa | 8413 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 8414 | } |
3f3c82a5 FA |
8415 | |
8416 | if (r->state == ARM_CP_STATE_BOTH) { | |
8417 | /* We assume it is a cp15 register if the .cp field is left unset. | |
8418 | */ | |
8419 | if (r2->cp == 0) { | |
8420 | r2->cp = 15; | |
8421 | } | |
8422 | ||
f5a0a5a5 | 8423 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
8424 | if (r2->fieldoffset) { |
8425 | r2->fieldoffset += sizeof(uint32_t); | |
8426 | } | |
f5a0a5a5 | 8427 | #endif |
3f3c82a5 | 8428 | } |
f5a0a5a5 PM |
8429 | } |
8430 | if (state == ARM_CP_STATE_AA64) { | |
8431 | /* To allow abbreviation of ARMCPRegInfo | |
8432 | * definitions, we treat cp == 0 as equivalent to | |
8433 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
8434 | * STATE_BOTH definitions are also always "standard |
8435 | * sysreg" in their AArch64 view (the .cp value may | |
8436 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 8437 | */ |
58a1d8ce | 8438 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
8439 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
8440 | } | |
8441 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
8442 | r2->opc0, opc1, opc2); | |
8443 | } else { | |
51a79b03 | 8444 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 8445 | } |
6e6efd61 PM |
8446 | if (opaque) { |
8447 | r2->opaque = opaque; | |
8448 | } | |
67ed771d PM |
8449 | /* reginfo passed to helpers is correct for the actual access, |
8450 | * and is never ARM_CP_STATE_BOTH: | |
8451 | */ | |
8452 | r2->state = state; | |
6e6efd61 PM |
8453 | /* Make sure reginfo passed to helpers for wildcarded regs |
8454 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
8455 | */ | |
8456 | r2->crm = crm; | |
8457 | r2->opc1 = opc1; | |
8458 | r2->opc2 = opc2; | |
8459 | /* By convention, for wildcarded registers only the first | |
8460 | * entry is used for migration; the others are marked as | |
7a0e58fa | 8461 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 8462 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 8463 | * never migratable and not even raw-accessible. |
6e6efd61 | 8464 | */ |
7a0e58fa PM |
8465 | if ((r->type & ARM_CP_SPECIAL)) { |
8466 | r2->type |= ARM_CP_NO_RAW; | |
8467 | } | |
8468 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
8469 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
8470 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
1f163787 | 8471 | r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; |
6e6efd61 PM |
8472 | } |
8473 | ||
375421cc PM |
8474 | /* Check that raw accesses are either forbidden or handled. Note that |
8475 | * we can't assert this earlier because the setup of fieldoffset for | |
8476 | * banked registers has to be done first. | |
8477 | */ | |
8478 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
8479 | assert(!raw_accessors_invalid(r2)); | |
8480 | } | |
8481 | ||
6e6efd61 PM |
8482 | /* Overriding of an existing definition must be explicitly |
8483 | * requested. | |
8484 | */ | |
8485 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
8486 | ARMCPRegInfo *oldreg; | |
8487 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
8488 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
8489 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
8490 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
8491 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
8492 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
8493 | oldreg->name, r2->name); | |
8494 | g_assert_not_reached(); | |
8495 | } | |
8496 | } | |
8497 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
8498 | } | |
8499 | ||
8500 | ||
4b6a83fb PM |
8501 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
8502 | const ARMCPRegInfo *r, void *opaque) | |
8503 | { | |
8504 | /* Define implementations of coprocessor registers. | |
8505 | * We store these in a hashtable because typically | |
8506 | * there are less than 150 registers in a space which | |
8507 | * is 16*16*16*8*8 = 262144 in size. | |
8508 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
8509 | * If a register is defined twice then the second definition is | |
8510 | * used, so this can be used to define some generic registers and | |
8511 | * then override them with implementation specific variations. | |
8512 | * At least one of the original and the second definition should | |
8513 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
8514 | * against accidental use. | |
f5a0a5a5 PM |
8515 | * |
8516 | * The state field defines whether the register is to be | |
8517 | * visible in the AArch32 or AArch64 execution state. If the | |
8518 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
8519 | * reginfo structure for the AArch32 view, which sees the lower | |
8520 | * 32 bits of the 64 bit register. | |
8521 | * | |
8522 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
8523 | * be wildcarded. AArch64 registers are always considered to be 64 | |
8524 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
8525 | * the register, if any. | |
4b6a83fb | 8526 | */ |
f5a0a5a5 | 8527 | int crm, opc1, opc2, state; |
4b6a83fb PM |
8528 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
8529 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
8530 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
8531 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
8532 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
8533 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
8534 | /* 64 bit registers have only CRm and Opc1 fields */ | |
8535 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
8536 | /* op0 only exists in the AArch64 encodings */ |
8537 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
8538 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
8539 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
cd8be50e PM |
8540 | /* |
8541 | * This API is only for Arm's system coprocessors (14 and 15) or | |
8542 | * (M-profile or v7A-and-earlier only) for implementation defined | |
8543 | * coprocessors in the range 0..7. Our decode assumes this, since | |
8544 | * 8..13 can be used for other insns including VFP and Neon. See | |
8545 | * valid_cp() in translate.c. Assert here that we haven't tried | |
8546 | * to use an invalid coprocessor number. | |
8547 | */ | |
8548 | switch (r->state) { | |
8549 | case ARM_CP_STATE_BOTH: | |
8550 | /* 0 has a special meaning, but otherwise the same rules as AA32. */ | |
8551 | if (r->cp == 0) { | |
8552 | break; | |
8553 | } | |
8554 | /* fall through */ | |
8555 | case ARM_CP_STATE_AA32: | |
8556 | if (arm_feature(&cpu->env, ARM_FEATURE_V8) && | |
8557 | !arm_feature(&cpu->env, ARM_FEATURE_M)) { | |
8558 | assert(r->cp >= 14 && r->cp <= 15); | |
8559 | } else { | |
8560 | assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); | |
8561 | } | |
8562 | break; | |
8563 | case ARM_CP_STATE_AA64: | |
8564 | assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); | |
8565 | break; | |
8566 | default: | |
8567 | g_assert_not_reached(); | |
8568 | } | |
f5a0a5a5 PM |
8569 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 |
8570 | * encodes a minimum access level for the register. We roll this | |
8571 | * runtime check into our general permission check code, so check | |
8572 | * here that the reginfo's specified permissions are strict enough | |
8573 | * to encompass the generic architectural permission check. | |
8574 | */ | |
8575 | if (r->state != ARM_CP_STATE_AA32) { | |
8576 | int mask = 0; | |
8577 | switch (r->opc1) { | |
b5bd7440 AB |
8578 | case 0: |
8579 | /* min_EL EL1, but some accessible to EL0 via kernel ABI */ | |
8580 | mask = PL0U_R | PL1_RW; | |
8581 | break; | |
8582 | case 1: case 2: | |
f5a0a5a5 PM |
8583 | /* min_EL EL1 */ |
8584 | mask = PL1_RW; | |
8585 | break; | |
8586 | case 3: | |
8587 | /* min_EL EL0 */ | |
8588 | mask = PL0_RW; | |
8589 | break; | |
8590 | case 4: | |
b4ecf60f | 8591 | case 5: |
f5a0a5a5 PM |
8592 | /* min_EL EL2 */ |
8593 | mask = PL2_RW; | |
8594 | break; | |
f5a0a5a5 PM |
8595 | case 6: |
8596 | /* min_EL EL3 */ | |
8597 | mask = PL3_RW; | |
8598 | break; | |
8599 | case 7: | |
8600 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
8601 | mask = PL1_RW; | |
8602 | break; | |
8603 | default: | |
8604 | /* broken reginfo with out-of-range opc1 */ | |
8605 | assert(false); | |
8606 | break; | |
8607 | } | |
8608 | /* assert our permissions are not too lax (stricter is fine) */ | |
8609 | assert((r->access & ~mask) == 0); | |
8610 | } | |
8611 | ||
4b6a83fb PM |
8612 | /* Check that the register definition has enough info to handle |
8613 | * reads and writes if they are permitted. | |
8614 | */ | |
8615 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
8616 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
8617 | assert((r->fieldoffset || |
8618 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
8619 | r->readfn); | |
4b6a83fb PM |
8620 | } |
8621 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
8622 | assert((r->fieldoffset || |
8623 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
8624 | r->writefn); | |
4b6a83fb PM |
8625 | } |
8626 | } | |
8627 | /* Bad type field probably means missing sentinel at end of reg list */ | |
8628 | assert(cptype_valid(r->type)); | |
8629 | for (crm = crmmin; crm <= crmmax; crm++) { | |
8630 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
8631 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
8632 | for (state = ARM_CP_STATE_AA32; |
8633 | state <= ARM_CP_STATE_AA64; state++) { | |
8634 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
8635 | continue; | |
8636 | } | |
3f3c82a5 FA |
8637 | if (state == ARM_CP_STATE_AA32) { |
8638 | /* Under AArch32 CP registers can be common | |
8639 | * (same for secure and non-secure world) or banked. | |
8640 | */ | |
9c513e78 AB |
8641 | char *name; |
8642 | ||
3f3c82a5 FA |
8643 | switch (r->secure) { |
8644 | case ARM_CP_SECSTATE_S: | |
8645 | case ARM_CP_SECSTATE_NS: | |
8646 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
9c513e78 AB |
8647 | r->secure, crm, opc1, opc2, |
8648 | r->name); | |
3f3c82a5 FA |
8649 | break; |
8650 | default: | |
9c513e78 | 8651 | name = g_strdup_printf("%s_S", r->name); |
3f3c82a5 FA |
8652 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
8653 | ARM_CP_SECSTATE_S, | |
9c513e78 AB |
8654 | crm, opc1, opc2, name); |
8655 | g_free(name); | |
3f3c82a5 FA |
8656 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
8657 | ARM_CP_SECSTATE_NS, | |
9c513e78 | 8658 | crm, opc1, opc2, r->name); |
3f3c82a5 FA |
8659 | break; |
8660 | } | |
8661 | } else { | |
8662 | /* AArch64 registers get mapped to non-secure instance | |
8663 | * of AArch32 */ | |
8664 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
8665 | ARM_CP_SECSTATE_NS, | |
9c513e78 | 8666 | crm, opc1, opc2, r->name); |
3f3c82a5 | 8667 | } |
f5a0a5a5 | 8668 | } |
4b6a83fb PM |
8669 | } |
8670 | } | |
8671 | } | |
8672 | } | |
8673 | ||
8674 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
8675 | const ARMCPRegInfo *regs, void *opaque) | |
8676 | { | |
8677 | /* Define a whole list of registers */ | |
8678 | const ARMCPRegInfo *r; | |
8679 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
8680 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
8681 | } | |
8682 | } | |
8683 | ||
6c5c0fec AB |
8684 | /* |
8685 | * Modify ARMCPRegInfo for access from userspace. | |
8686 | * | |
8687 | * This is a data driven modification directed by | |
8688 | * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as | |
8689 | * user-space cannot alter any values and dynamic values pertaining to | |
8690 | * execution state are hidden from user space view anyway. | |
8691 | */ | |
8692 | void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) | |
8693 | { | |
8694 | const ARMCPRegUserSpaceInfo *m; | |
8695 | ARMCPRegInfo *r; | |
8696 | ||
8697 | for (m = mods; m->name; m++) { | |
d040242e AB |
8698 | GPatternSpec *pat = NULL; |
8699 | if (m->is_glob) { | |
8700 | pat = g_pattern_spec_new(m->name); | |
8701 | } | |
6c5c0fec | 8702 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
d040242e AB |
8703 | if (pat && g_pattern_match_string(pat, r->name)) { |
8704 | r->type = ARM_CP_CONST; | |
8705 | r->access = PL0U_R; | |
8706 | r->resetvalue = 0; | |
8707 | /* continue */ | |
8708 | } else if (strcmp(r->name, m->name) == 0) { | |
6c5c0fec AB |
8709 | r->type = ARM_CP_CONST; |
8710 | r->access = PL0U_R; | |
8711 | r->resetvalue &= m->exported_bits; | |
8712 | r->resetvalue |= m->fixed_bits; | |
8713 | break; | |
8714 | } | |
8715 | } | |
d040242e AB |
8716 | if (pat) { |
8717 | g_pattern_spec_free(pat); | |
8718 | } | |
6c5c0fec AB |
8719 | } |
8720 | } | |
8721 | ||
60322b39 | 8722 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 8723 | { |
60322b39 | 8724 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
8725 | } |
8726 | ||
c4241c7d PM |
8727 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
8728 | uint64_t value) | |
4b6a83fb PM |
8729 | { |
8730 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
8731 | } |
8732 | ||
c4241c7d | 8733 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
8734 | { |
8735 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
8736 | return 0; |
8737 | } | |
8738 | ||
f5a0a5a5 PM |
8739 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
8740 | { | |
8741 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
8742 | } | |
8743 | ||
af393ffc | 8744 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
37064a8b PM |
8745 | { |
8746 | /* Return true if it is not valid for us to switch to | |
8747 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
8748 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
8749 | */ | |
af393ffc PM |
8750 | |
8751 | /* Changes to or from Hyp via MSR and CPS are illegal. */ | |
8752 | if (write_type == CPSRWriteByInstr && | |
8753 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || | |
8754 | mode == ARM_CPU_MODE_HYP)) { | |
8755 | return 1; | |
8756 | } | |
8757 | ||
37064a8b PM |
8758 | switch (mode) { |
8759 | case ARM_CPU_MODE_USR: | |
10eacda7 | 8760 | return 0; |
37064a8b PM |
8761 | case ARM_CPU_MODE_SYS: |
8762 | case ARM_CPU_MODE_SVC: | |
8763 | case ARM_CPU_MODE_ABT: | |
8764 | case ARM_CPU_MODE_UND: | |
8765 | case ARM_CPU_MODE_IRQ: | |
8766 | case ARM_CPU_MODE_FIQ: | |
52ff951b PM |
8767 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
8768 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) | |
8769 | */ | |
10eacda7 PM |
8770 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
8771 | * and CPS are treated as illegal mode changes. | |
8772 | */ | |
8773 | if (write_type == CPSRWriteByInstr && | |
10eacda7 | 8774 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && |
7c208e0f | 8775 | (arm_hcr_el2_eff(env) & HCR_TGE)) { |
10eacda7 PM |
8776 | return 1; |
8777 | } | |
37064a8b | 8778 | return 0; |
e6c8fc07 | 8779 | case ARM_CPU_MODE_HYP: |
e6ef0169 | 8780 | return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; |
027fc527 | 8781 | case ARM_CPU_MODE_MON: |
58ae2d1f | 8782 | return arm_current_el(env) < 3; |
37064a8b PM |
8783 | default: |
8784 | return 1; | |
8785 | } | |
8786 | } | |
8787 | ||
2f4a40e5 AZ |
8788 | uint32_t cpsr_read(CPUARMState *env) |
8789 | { | |
8790 | int ZF; | |
6fbe23d5 PB |
8791 | ZF = (env->ZF == 0); |
8792 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
8793 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
8794 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
8795 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 8796 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
8797 | } |
8798 | ||
50866ba5 PM |
8799 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
8800 | CPSRWriteType write_type) | |
2f4a40e5 | 8801 | { |
6e8801f9 FA |
8802 | uint32_t changed_daif; |
8803 | ||
2f4a40e5 | 8804 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
8805 | env->ZF = (~val) & CPSR_Z; |
8806 | env->NF = val; | |
2f4a40e5 AZ |
8807 | env->CF = (val >> 29) & 1; |
8808 | env->VF = (val << 3) & 0x80000000; | |
8809 | } | |
8810 | if (mask & CPSR_Q) | |
8811 | env->QF = ((val & CPSR_Q) != 0); | |
8812 | if (mask & CPSR_T) | |
8813 | env->thumb = ((val & CPSR_T) != 0); | |
8814 | if (mask & CPSR_IT_0_1) { | |
8815 | env->condexec_bits &= ~3; | |
8816 | env->condexec_bits |= (val >> 25) & 3; | |
8817 | } | |
8818 | if (mask & CPSR_IT_2_7) { | |
8819 | env->condexec_bits &= 3; | |
8820 | env->condexec_bits |= (val >> 8) & 0xfc; | |
8821 | } | |
8822 | if (mask & CPSR_GE) { | |
8823 | env->GE = (val >> 16) & 0xf; | |
8824 | } | |
8825 | ||
6e8801f9 FA |
8826 | /* In a V7 implementation that includes the security extensions but does |
8827 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
8828 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
8829 | * bits respectively. | |
8830 | * | |
8831 | * In a V8 implementation, it is permitted for privileged software to | |
8832 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
8833 | */ | |
f8c88bbc | 8834 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
6e8801f9 FA |
8835 | arm_feature(env, ARM_FEATURE_EL3) && |
8836 | !arm_feature(env, ARM_FEATURE_EL2) && | |
8837 | !arm_is_secure(env)) { | |
8838 | ||
8839 | changed_daif = (env->daif ^ val) & mask; | |
8840 | ||
8841 | if (changed_daif & CPSR_A) { | |
8842 | /* Check to see if we are allowed to change the masking of async | |
8843 | * abort exceptions from a non-secure state. | |
8844 | */ | |
8845 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
8846 | qemu_log_mask(LOG_GUEST_ERROR, | |
8847 | "Ignoring attempt to switch CPSR_A flag from " | |
8848 | "non-secure world with SCR.AW bit clear\n"); | |
8849 | mask &= ~CPSR_A; | |
8850 | } | |
8851 | } | |
8852 | ||
8853 | if (changed_daif & CPSR_F) { | |
8854 | /* Check to see if we are allowed to change the masking of FIQ | |
8855 | * exceptions from a non-secure state. | |
8856 | */ | |
8857 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
8858 | qemu_log_mask(LOG_GUEST_ERROR, | |
8859 | "Ignoring attempt to switch CPSR_F flag from " | |
8860 | "non-secure world with SCR.FW bit clear\n"); | |
8861 | mask &= ~CPSR_F; | |
8862 | } | |
8863 | ||
8864 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
8865 | * If this bit is set software is not allowed to mask | |
8866 | * FIQs, but is allowed to set CPSR_F to 0. | |
8867 | */ | |
8868 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
8869 | (val & CPSR_F)) { | |
8870 | qemu_log_mask(LOG_GUEST_ERROR, | |
8871 | "Ignoring attempt to enable CPSR_F flag " | |
8872 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
8873 | mask &= ~CPSR_F; | |
8874 | } | |
8875 | } | |
8876 | } | |
8877 | ||
4cc35614 PM |
8878 | env->daif &= ~(CPSR_AIF & mask); |
8879 | env->daif |= val & CPSR_AIF & mask; | |
8880 | ||
f8c88bbc PM |
8881 | if (write_type != CPSRWriteRaw && |
8882 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { | |
8c4f0eb9 PM |
8883 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
8884 | /* Note that we can only get here in USR mode if this is a | |
8885 | * gdb stub write; for this case we follow the architectural | |
8886 | * behaviour for guest writes in USR mode of ignoring an attempt | |
8887 | * to switch mode. (Those are caught by translate.c for writes | |
8888 | * triggered by guest instructions.) | |
8889 | */ | |
8890 | mask &= ~CPSR_M; | |
8891 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { | |
81907a58 PM |
8892 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
8893 | * v7, and has defined behaviour in v8: | |
8894 | * + leave CPSR.M untouched | |
8895 | * + allow changes to the other CPSR fields | |
8896 | * + set PSTATE.IL | |
8897 | * For user changes via the GDB stub, we don't set PSTATE.IL, | |
8898 | * as this would be unnecessarily harsh for a user error. | |
37064a8b PM |
8899 | */ |
8900 | mask &= ~CPSR_M; | |
81907a58 PM |
8901 | if (write_type != CPSRWriteByGDBStub && |
8902 | arm_feature(env, ARM_FEATURE_V8)) { | |
8903 | mask |= CPSR_IL; | |
8904 | val |= CPSR_IL; | |
8905 | } | |
81e37284 PM |
8906 | qemu_log_mask(LOG_GUEST_ERROR, |
8907 | "Illegal AArch32 mode switch attempt from %s to %s\n", | |
8908 | aarch32_mode_name(env->uncached_cpsr), | |
8909 | aarch32_mode_name(val)); | |
37064a8b | 8910 | } else { |
81e37284 PM |
8911 | qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", |
8912 | write_type == CPSRWriteExceptionReturn ? | |
8913 | "Exception return from AArch32" : | |
8914 | "AArch32 mode switch from", | |
8915 | aarch32_mode_name(env->uncached_cpsr), | |
8916 | aarch32_mode_name(val), env->regs[15]); | |
37064a8b PM |
8917 | switch_mode(env, val & CPSR_M); |
8918 | } | |
2f4a40e5 AZ |
8919 | } |
8920 | mask &= ~CACHED_CPSR_BITS; | |
8921 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
8922 | } | |
8923 | ||
b26eefb6 PB |
8924 | /* Sign/zero extend */ |
8925 | uint32_t HELPER(sxtb16)(uint32_t x) | |
8926 | { | |
8927 | uint32_t res; | |
8928 | res = (uint16_t)(int8_t)x; | |
8929 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
8930 | return res; | |
8931 | } | |
8932 | ||
8933 | uint32_t HELPER(uxtb16)(uint32_t x) | |
8934 | { | |
8935 | uint32_t res; | |
8936 | res = (uint16_t)(uint8_t)x; | |
8937 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
8938 | return res; | |
8939 | } | |
8940 | ||
3670669c PB |
8941 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
8942 | { | |
8943 | if (den == 0) | |
8944 | return 0; | |
686eeb93 AJ |
8945 | if (num == INT_MIN && den == -1) |
8946 | return INT_MIN; | |
3670669c PB |
8947 | return num / den; |
8948 | } | |
8949 | ||
8950 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
8951 | { | |
8952 | if (den == 0) | |
8953 | return 0; | |
8954 | return num / den; | |
8955 | } | |
8956 | ||
8957 | uint32_t HELPER(rbit)(uint32_t x) | |
8958 | { | |
42fedbca | 8959 | return revbit32(x); |
3670669c PB |
8960 | } |
8961 | ||
c47eaf9f | 8962 | #ifdef CONFIG_USER_ONLY |
b5ff1b31 | 8963 | |
affdb64d | 8964 | static void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 8965 | { |
2fc0cc0e | 8966 | ARMCPU *cpu = env_archcpu(env); |
a47dddd7 AF |
8967 | |
8968 | if (mode != ARM_CPU_MODE_USR) { | |
8969 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
8970 | } | |
b5ff1b31 FB |
8971 | } |
8972 | ||
012a906b GB |
8973 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
8974 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
8975 | { |
8976 | return 1; | |
8977 | } | |
8978 | ||
ce02049d GB |
8979 | void aarch64_sync_64_to_32(CPUARMState *env) |
8980 | { | |
8981 | g_assert_not_reached(); | |
8982 | } | |
8983 | ||
b5ff1b31 FB |
8984 | #else |
8985 | ||
affdb64d | 8986 | static void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
8987 | { |
8988 | int old_mode; | |
8989 | int i; | |
8990 | ||
8991 | old_mode = env->uncached_cpsr & CPSR_M; | |
8992 | if (mode == old_mode) | |
8993 | return; | |
8994 | ||
8995 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
8996 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 8997 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
8998 | } else if (mode == ARM_CPU_MODE_FIQ) { |
8999 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 9000 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
9001 | } |
9002 | ||
f5206413 | 9003 | i = bank_number(old_mode); |
b5ff1b31 | 9004 | env->banked_r13[i] = env->regs[13]; |
b5ff1b31 FB |
9005 | env->banked_spsr[i] = env->spsr; |
9006 | ||
f5206413 | 9007 | i = bank_number(mode); |
b5ff1b31 | 9008 | env->regs[13] = env->banked_r13[i]; |
b5ff1b31 | 9009 | env->spsr = env->banked_spsr[i]; |
593cfa2b PM |
9010 | |
9011 | env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; | |
9012 | env->regs[14] = env->banked_r14[r14_bank_number(mode)]; | |
b5ff1b31 FB |
9013 | } |
9014 | ||
0eeb17d6 GB |
9015 | /* Physical Interrupt Target EL Lookup Table |
9016 | * | |
9017 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
9018 | * | |
9019 | * The below multi-dimensional table is used for looking up the target | |
9020 | * exception level given numerous condition criteria. Specifically, the | |
9021 | * target EL is based on SCR and HCR routing controls as well as the | |
9022 | * currently executing EL and secure state. | |
9023 | * | |
9024 | * Dimensions: | |
9025 | * target_el_table[2][2][2][2][2][4] | |
9026 | * | | | | | +--- Current EL | |
9027 | * | | | | +------ Non-secure(0)/Secure(1) | |
9028 | * | | | +--------- HCR mask override | |
9029 | * | | +------------ SCR exec state control | |
9030 | * | +--------------- SCR mask override | |
9031 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
9032 | * | |
9033 | * The table values are as such: | |
9034 | * 0-3 = EL0-EL3 | |
9035 | * -1 = Cannot occur | |
9036 | * | |
9037 | * The ARM ARM target EL table includes entries indicating that an "exception | |
9038 | * is not taken". The two cases where this is applicable are: | |
9039 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
9040 | * routed to EL3. | |
9041 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
9042 | * routed to EL2. | |
9043 | * In these two cases, the below table contain a target of EL1. This value is | |
9044 | * returned as it is expected that the consumer of the table data will check | |
9045 | * for "target EL >= current EL" to ensure the exception is not taken. | |
9046 | * | |
9047 | * SCR HCR | |
9048 | * 64 EA AMO From | |
9049 | * BIT IRQ IMO Non-secure Secure | |
9050 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
9051 | */ | |
82c39f6a | 9052 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
9053 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
9054 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
9055 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
9056 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
9057 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
9058 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
9059 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
9060 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
9061 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
6c85f906 RDC |
9062 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, |
9063 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, | |
9064 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, | |
0eeb17d6 GB |
9065 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, |
9066 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
6c85f906 RDC |
9067 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, |
9068 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, | |
0eeb17d6 GB |
9069 | }; |
9070 | ||
9071 | /* | |
9072 | * Determine the target EL for physical exceptions | |
9073 | */ | |
012a906b GB |
9074 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
9075 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
9076 | { |
9077 | CPUARMState *env = cs->env_ptr; | |
f7778444 RH |
9078 | bool rw; |
9079 | bool scr; | |
9080 | bool hcr; | |
0eeb17d6 | 9081 | int target_el; |
2cde031f | 9082 | /* Is the highest EL AArch64? */ |
f7778444 RH |
9083 | bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); |
9084 | uint64_t hcr_el2; | |
2cde031f SS |
9085 | |
9086 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
9087 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
9088 | } else { | |
9089 | /* Either EL2 is the highest EL (and so the EL2 register width | |
9090 | * is given by is64); or there is no EL2 or EL3, in which case | |
9091 | * the value of 'rw' does not affect the table lookup anyway. | |
9092 | */ | |
9093 | rw = is64; | |
9094 | } | |
0eeb17d6 | 9095 | |
f7778444 | 9096 | hcr_el2 = arm_hcr_el2_eff(env); |
0eeb17d6 GB |
9097 | switch (excp_idx) { |
9098 | case EXCP_IRQ: | |
9099 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
f7778444 | 9100 | hcr = hcr_el2 & HCR_IMO; |
0eeb17d6 GB |
9101 | break; |
9102 | case EXCP_FIQ: | |
9103 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
f7778444 | 9104 | hcr = hcr_el2 & HCR_FMO; |
0eeb17d6 GB |
9105 | break; |
9106 | default: | |
9107 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
f7778444 | 9108 | hcr = hcr_el2 & HCR_AMO; |
0eeb17d6 GB |
9109 | break; |
9110 | }; | |
9111 | ||
d1b31428 RH |
9112 | /* |
9113 | * For these purposes, TGE and AMO/IMO/FMO both force the | |
9114 | * interrupt to EL2. Fold TGE into the bit extracted above. | |
9115 | */ | |
9116 | hcr |= (hcr_el2 & HCR_TGE) != 0; | |
9117 | ||
0eeb17d6 GB |
9118 | /* Perform a table-lookup for the target EL given the current state */ |
9119 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
9120 | ||
9121 | assert(target_el > 0); | |
9122 | ||
9123 | return target_el; | |
9124 | } | |
9125 | ||
b59f479b PMD |
9126 | void arm_log_exception(int idx) |
9127 | { | |
9128 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
9129 | const char *exc = NULL; | |
9130 | static const char * const excnames[] = { | |
9131 | [EXCP_UDEF] = "Undefined Instruction", | |
9132 | [EXCP_SWI] = "SVC", | |
9133 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
9134 | [EXCP_DATA_ABORT] = "Data Abort", | |
9135 | [EXCP_IRQ] = "IRQ", | |
9136 | [EXCP_FIQ] = "FIQ", | |
9137 | [EXCP_BKPT] = "Breakpoint", | |
9138 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
9139 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
9140 | [EXCP_HVC] = "Hypervisor Call", | |
9141 | [EXCP_HYP_TRAP] = "Hypervisor Trap", | |
9142 | [EXCP_SMC] = "Secure Monitor Call", | |
9143 | [EXCP_VIRQ] = "Virtual IRQ", | |
9144 | [EXCP_VFIQ] = "Virtual FIQ", | |
9145 | [EXCP_SEMIHOST] = "Semihosting call", | |
9146 | [EXCP_NOCP] = "v7M NOCP UsageFault", | |
9147 | [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", | |
9148 | [EXCP_STKOF] = "v8M STKOF UsageFault", | |
9149 | [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", | |
9150 | [EXCP_LSERR] = "v8M LSERR UsageFault", | |
9151 | [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", | |
9152 | }; | |
9153 | ||
9154 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
9155 | exc = excnames[idx]; | |
9156 | } | |
9157 | if (!exc) { | |
9158 | exc = "unknown"; | |
9159 | } | |
9160 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
9161 | } | |
9162 | } | |
9163 | ||
a356dacf | 9164 | /* |
7aab5a8c PMD |
9165 | * Function used to synchronize QEMU's AArch64 register set with AArch32 |
9166 | * register set. This is necessary when switching between AArch32 and AArch64 | |
9167 | * execution state. | |
a356dacf | 9168 | */ |
7aab5a8c | 9169 | void aarch64_sync_32_to_64(CPUARMState *env) |
9ee6e8bb | 9170 | { |
7aab5a8c PMD |
9171 | int i; |
9172 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
9173 | ||
9174 | /* We can blanket copy R[0:7] to X[0:7] */ | |
9175 | for (i = 0; i < 8; i++) { | |
9176 | env->xregs[i] = env->regs[i]; | |
fd592d89 | 9177 | } |
70d74660 | 9178 | |
9a223097 | 9179 | /* |
7aab5a8c PMD |
9180 | * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. |
9181 | * Otherwise, they come from the banked user regs. | |
fd592d89 | 9182 | */ |
7aab5a8c PMD |
9183 | if (mode == ARM_CPU_MODE_FIQ) { |
9184 | for (i = 8; i < 13; i++) { | |
9185 | env->xregs[i] = env->usr_regs[i - 8]; | |
9186 | } | |
9187 | } else { | |
9188 | for (i = 8; i < 13; i++) { | |
9189 | env->xregs[i] = env->regs[i]; | |
9190 | } | |
fd592d89 | 9191 | } |
9ee6e8bb | 9192 | |
7aab5a8c PMD |
9193 | /* |
9194 | * Registers x13-x23 are the various mode SP and FP registers. Registers | |
9195 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
9196 | * from the mode banked register. | |
9197 | */ | |
9198 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
9199 | env->xregs[13] = env->regs[13]; | |
9200 | env->xregs[14] = env->regs[14]; | |
9201 | } else { | |
9202 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
9203 | /* HYP is an exception in that it is copied from r14 */ | |
9204 | if (mode == ARM_CPU_MODE_HYP) { | |
9205 | env->xregs[14] = env->regs[14]; | |
95695eff | 9206 | } else { |
7aab5a8c | 9207 | env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; |
95695eff | 9208 | } |
95695eff PM |
9209 | } |
9210 | ||
7aab5a8c PMD |
9211 | if (mode == ARM_CPU_MODE_HYP) { |
9212 | env->xregs[15] = env->regs[13]; | |
9213 | } else { | |
9214 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
95695eff PM |
9215 | } |
9216 | ||
7aab5a8c PMD |
9217 | if (mode == ARM_CPU_MODE_IRQ) { |
9218 | env->xregs[16] = env->regs[14]; | |
9219 | env->xregs[17] = env->regs[13]; | |
9220 | } else { | |
9221 | env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; | |
9222 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
9223 | } | |
95695eff | 9224 | |
7aab5a8c PMD |
9225 | if (mode == ARM_CPU_MODE_SVC) { |
9226 | env->xregs[18] = env->regs[14]; | |
9227 | env->xregs[19] = env->regs[13]; | |
9228 | } else { | |
9229 | env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; | |
9230 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
9231 | } | |
95695eff | 9232 | |
7aab5a8c PMD |
9233 | if (mode == ARM_CPU_MODE_ABT) { |
9234 | env->xregs[20] = env->regs[14]; | |
9235 | env->xregs[21] = env->regs[13]; | |
9236 | } else { | |
9237 | env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; | |
9238 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
9239 | } | |
e33cf0f8 | 9240 | |
7aab5a8c PMD |
9241 | if (mode == ARM_CPU_MODE_UND) { |
9242 | env->xregs[22] = env->regs[14]; | |
9243 | env->xregs[23] = env->regs[13]; | |
9244 | } else { | |
9245 | env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; | |
9246 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
e33cf0f8 PM |
9247 | } |
9248 | ||
9249 | /* | |
7aab5a8c PMD |
9250 | * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
9251 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
9252 | * FIQ bank for r8-r14. | |
e33cf0f8 | 9253 | */ |
7aab5a8c PMD |
9254 | if (mode == ARM_CPU_MODE_FIQ) { |
9255 | for (i = 24; i < 31; i++) { | |
9256 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
9257 | } | |
9258 | } else { | |
9259 | for (i = 24; i < 29; i++) { | |
9260 | env->xregs[i] = env->fiq_regs[i - 24]; | |
e33cf0f8 | 9261 | } |
7aab5a8c PMD |
9262 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; |
9263 | env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; | |
e33cf0f8 | 9264 | } |
7aab5a8c PMD |
9265 | |
9266 | env->pc = env->regs[15]; | |
e33cf0f8 PM |
9267 | } |
9268 | ||
9a223097 | 9269 | /* |
7aab5a8c PMD |
9270 | * Function used to synchronize QEMU's AArch32 register set with AArch64 |
9271 | * register set. This is necessary when switching between AArch32 and AArch64 | |
9272 | * execution state. | |
de2db7ec | 9273 | */ |
7aab5a8c | 9274 | void aarch64_sync_64_to_32(CPUARMState *env) |
9ee6e8bb | 9275 | { |
7aab5a8c PMD |
9276 | int i; |
9277 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
abc24d86 | 9278 | |
7aab5a8c PMD |
9279 | /* We can blanket copy X[0:7] to R[0:7] */ |
9280 | for (i = 0; i < 8; i++) { | |
9281 | env->regs[i] = env->xregs[i]; | |
de2db7ec | 9282 | } |
3f0cddee | 9283 | |
9a223097 | 9284 | /* |
7aab5a8c PMD |
9285 | * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. |
9286 | * Otherwise, we copy x8-x12 into the banked user regs. | |
de2db7ec | 9287 | */ |
7aab5a8c PMD |
9288 | if (mode == ARM_CPU_MODE_FIQ) { |
9289 | for (i = 8; i < 13; i++) { | |
9290 | env->usr_regs[i - 8] = env->xregs[i]; | |
9291 | } | |
9292 | } else { | |
9293 | for (i = 8; i < 13; i++) { | |
9294 | env->regs[i] = env->xregs[i]; | |
9295 | } | |
fb602cb7 PM |
9296 | } |
9297 | ||
9a223097 | 9298 | /* |
7aab5a8c PMD |
9299 | * Registers r13 & r14 depend on the current mode. |
9300 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
9301 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
9302 | * for the mode. | |
fb602cb7 | 9303 | */ |
7aab5a8c PMD |
9304 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
9305 | env->regs[13] = env->xregs[13]; | |
9306 | env->regs[14] = env->xregs[14]; | |
fb602cb7 | 9307 | } else { |
7aab5a8c | 9308 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; |
fb602cb7 | 9309 | |
7aab5a8c PMD |
9310 | /* |
9311 | * HYP is an exception in that it does not have its own banked r14 but | |
9312 | * shares the USR r14 | |
9313 | */ | |
9314 | if (mode == ARM_CPU_MODE_HYP) { | |
9315 | env->regs[14] = env->xregs[14]; | |
9316 | } else { | |
9317 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
9318 | } | |
9319 | } | |
fb602cb7 | 9320 | |
7aab5a8c PMD |
9321 | if (mode == ARM_CPU_MODE_HYP) { |
9322 | env->regs[13] = env->xregs[15]; | |
fb602cb7 | 9323 | } else { |
7aab5a8c | 9324 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; |
fb602cb7 | 9325 | } |
d02a8698 | 9326 | |
7aab5a8c PMD |
9327 | if (mode == ARM_CPU_MODE_IRQ) { |
9328 | env->regs[14] = env->xregs[16]; | |
9329 | env->regs[13] = env->xregs[17]; | |
d02a8698 | 9330 | } else { |
7aab5a8c PMD |
9331 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
9332 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
d02a8698 PM |
9333 | } |
9334 | ||
7aab5a8c PMD |
9335 | if (mode == ARM_CPU_MODE_SVC) { |
9336 | env->regs[14] = env->xregs[18]; | |
9337 | env->regs[13] = env->xregs[19]; | |
9338 | } else { | |
9339 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; | |
9340 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
fb602cb7 PM |
9341 | } |
9342 | ||
7aab5a8c PMD |
9343 | if (mode == ARM_CPU_MODE_ABT) { |
9344 | env->regs[14] = env->xregs[20]; | |
9345 | env->regs[13] = env->xregs[21]; | |
9346 | } else { | |
9347 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; | |
9348 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
9349 | } |
9350 | ||
9351 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
9352 | env->regs[14] = env->xregs[22]; |
9353 | env->regs[13] = env->xregs[23]; | |
ce02049d | 9354 | } else { |
593cfa2b | 9355 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
3a9148d0 | 9356 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; |
ce02049d GB |
9357 | } |
9358 | ||
9359 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
9360 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
9361 | * FIQ bank for r8-r14. | |
9362 | */ | |
9363 | if (mode == ARM_CPU_MODE_FIQ) { | |
9364 | for (i = 24; i < 31; i++) { | |
9365 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
9366 | } | |
9367 | } else { | |
9368 | for (i = 24; i < 29; i++) { | |
9369 | env->fiq_regs[i - 24] = env->xregs[i]; | |
9370 | } | |
9371 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
593cfa2b | 9372 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; |
ce02049d GB |
9373 | } |
9374 | ||
9375 | env->regs[15] = env->pc; | |
9376 | } | |
9377 | ||
dea8378b PM |
9378 | static void take_aarch32_exception(CPUARMState *env, int new_mode, |
9379 | uint32_t mask, uint32_t offset, | |
9380 | uint32_t newpc) | |
9381 | { | |
4a2696c0 RH |
9382 | int new_el; |
9383 | ||
dea8378b PM |
9384 | /* Change the CPU state so as to actually take the exception. */ |
9385 | switch_mode(env, new_mode); | |
4a2696c0 | 9386 | |
dea8378b PM |
9387 | /* |
9388 | * For exceptions taken to AArch32 we must clear the SS bit in both | |
9389 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
9390 | */ | |
9391 | env->uncached_cpsr &= ~PSTATE_SS; | |
9392 | env->spsr = cpsr_read(env); | |
9393 | /* Clear IT bits. */ | |
9394 | env->condexec_bits = 0; | |
9395 | /* Switch to the new mode, and to the correct instruction set. */ | |
9396 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; | |
88828bf1 CD |
9397 | |
9398 | /* This must be after mode switching. */ | |
9399 | new_el = arm_current_el(env); | |
9400 | ||
dea8378b PM |
9401 | /* Set new mode endianness */ |
9402 | env->uncached_cpsr &= ~CPSR_E; | |
4a2696c0 | 9403 | if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { |
dea8378b PM |
9404 | env->uncached_cpsr |= CPSR_E; |
9405 | } | |
829f9fd3 PM |
9406 | /* J and IL must always be cleared for exception entry */ |
9407 | env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); | |
dea8378b PM |
9408 | env->daif |= mask; |
9409 | ||
9410 | if (new_mode == ARM_CPU_MODE_HYP) { | |
9411 | env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; | |
9412 | env->elr_el[2] = env->regs[15]; | |
9413 | } else { | |
4a2696c0 | 9414 | /* CPSR.PAN is normally preserved preserved unless... */ |
f8af1143 | 9415 | if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { |
4a2696c0 RH |
9416 | switch (new_el) { |
9417 | case 3: | |
9418 | if (!arm_is_secure_below_el3(env)) { | |
9419 | /* ... the target is EL3, from non-secure state. */ | |
9420 | env->uncached_cpsr &= ~CPSR_PAN; | |
9421 | break; | |
9422 | } | |
9423 | /* ... the target is EL3, from secure state ... */ | |
9424 | /* fall through */ | |
9425 | case 1: | |
9426 | /* ... the target is EL1 and SCTLR.SPAN is 0. */ | |
9427 | if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { | |
9428 | env->uncached_cpsr |= CPSR_PAN; | |
9429 | } | |
9430 | break; | |
9431 | } | |
9432 | } | |
dea8378b PM |
9433 | /* |
9434 | * this is a lie, as there was no c1_sys on V4T/V5, but who cares | |
9435 | * and we should just guard the thumb mode on V4 | |
9436 | */ | |
9437 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
9438 | env->thumb = | |
9439 | (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; | |
9440 | } | |
9441 | env->regs[14] = env->regs[15] + offset; | |
9442 | } | |
9443 | env->regs[15] = newpc; | |
a8a79c7a | 9444 | arm_rebuild_hflags(env); |
dea8378b PM |
9445 | } |
9446 | ||
b9bc21ff PM |
9447 | static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) |
9448 | { | |
9449 | /* | |
9450 | * Handle exception entry to Hyp mode; this is sufficiently | |
9451 | * different to entry to other AArch32 modes that we handle it | |
9452 | * separately here. | |
9453 | * | |
9454 | * The vector table entry used is always the 0x14 Hyp mode entry point, | |
9455 | * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. | |
9456 | * The offset applied to the preferred return address is always zero | |
9457 | * (see DDI0487C.a section G1.12.3). | |
9458 | * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. | |
9459 | */ | |
9460 | uint32_t addr, mask; | |
9461 | ARMCPU *cpu = ARM_CPU(cs); | |
9462 | CPUARMState *env = &cpu->env; | |
9463 | ||
9464 | switch (cs->exception_index) { | |
9465 | case EXCP_UDEF: | |
9466 | addr = 0x04; | |
9467 | break; | |
9468 | case EXCP_SWI: | |
9469 | addr = 0x14; | |
9470 | break; | |
9471 | case EXCP_BKPT: | |
9472 | /* Fall through to prefetch abort. */ | |
9473 | case EXCP_PREFETCH_ABORT: | |
9474 | env->cp15.ifar_s = env->exception.vaddress; | |
9475 | qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", | |
9476 | (uint32_t)env->exception.vaddress); | |
9477 | addr = 0x0c; | |
9478 | break; | |
9479 | case EXCP_DATA_ABORT: | |
9480 | env->cp15.dfar_s = env->exception.vaddress; | |
9481 | qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", | |
9482 | (uint32_t)env->exception.vaddress); | |
9483 | addr = 0x10; | |
9484 | break; | |
9485 | case EXCP_IRQ: | |
9486 | addr = 0x18; | |
9487 | break; | |
9488 | case EXCP_FIQ: | |
9489 | addr = 0x1c; | |
9490 | break; | |
9491 | case EXCP_HVC: | |
9492 | addr = 0x08; | |
9493 | break; | |
9494 | case EXCP_HYP_TRAP: | |
9495 | addr = 0x14; | |
9bbb4ef9 | 9496 | break; |
b9bc21ff PM |
9497 | default: |
9498 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
9499 | } | |
9500 | ||
9501 | if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { | |
2ed08180 PM |
9502 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
9503 | /* | |
9504 | * QEMU syndrome values are v8-style. v7 has the IL bit | |
9505 | * UNK/SBZP for "field not valid" cases, where v8 uses RES1. | |
9506 | * If this is a v7 CPU, squash the IL bit in those cases. | |
9507 | */ | |
9508 | if (cs->exception_index == EXCP_PREFETCH_ABORT || | |
9509 | (cs->exception_index == EXCP_DATA_ABORT && | |
9510 | !(env->exception.syndrome & ARM_EL_ISV)) || | |
9511 | syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { | |
9512 | env->exception.syndrome &= ~ARM_EL_IL; | |
9513 | } | |
9514 | } | |
b9bc21ff PM |
9515 | env->cp15.esr_el[2] = env->exception.syndrome; |
9516 | } | |
9517 | ||
9518 | if (arm_current_el(env) != 2 && addr < 0x14) { | |
9519 | addr = 0x14; | |
9520 | } | |
9521 | ||
9522 | mask = 0; | |
9523 | if (!(env->cp15.scr_el3 & SCR_EA)) { | |
9524 | mask |= CPSR_A; | |
9525 | } | |
9526 | if (!(env->cp15.scr_el3 & SCR_IRQ)) { | |
9527 | mask |= CPSR_I; | |
9528 | } | |
9529 | if (!(env->cp15.scr_el3 & SCR_FIQ)) { | |
9530 | mask |= CPSR_F; | |
9531 | } | |
9532 | ||
9533 | addr += env->cp15.hvbar; | |
9534 | ||
9535 | take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); | |
9536 | } | |
9537 | ||
966f758c | 9538 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
b5ff1b31 | 9539 | { |
97a8ea5a AF |
9540 | ARMCPU *cpu = ARM_CPU(cs); |
9541 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
9542 | uint32_t addr; |
9543 | uint32_t mask; | |
9544 | int new_mode; | |
9545 | uint32_t offset; | |
16a906fd | 9546 | uint32_t moe; |
b5ff1b31 | 9547 | |
16a906fd | 9548 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
64b91e3f | 9549 | switch (syn_get_ec(env->exception.syndrome)) { |
16a906fd PM |
9550 | case EC_BREAKPOINT: |
9551 | case EC_BREAKPOINT_SAME_EL: | |
9552 | moe = 1; | |
9553 | break; | |
9554 | case EC_WATCHPOINT: | |
9555 | case EC_WATCHPOINT_SAME_EL: | |
9556 | moe = 10; | |
9557 | break; | |
9558 | case EC_AA32_BKPT: | |
9559 | moe = 3; | |
9560 | break; | |
9561 | case EC_VECTORCATCH: | |
9562 | moe = 5; | |
9563 | break; | |
9564 | default: | |
9565 | moe = 0; | |
9566 | break; | |
9567 | } | |
9568 | ||
9569 | if (moe) { | |
9570 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
9571 | } | |
9572 | ||
b9bc21ff PM |
9573 | if (env->exception.target_el == 2) { |
9574 | arm_cpu_do_interrupt_aarch32_hyp(cs); | |
9575 | return; | |
9576 | } | |
9577 | ||
27103424 | 9578 | switch (cs->exception_index) { |
b5ff1b31 FB |
9579 | case EXCP_UDEF: |
9580 | new_mode = ARM_CPU_MODE_UND; | |
9581 | addr = 0x04; | |
9582 | mask = CPSR_I; | |
9583 | if (env->thumb) | |
9584 | offset = 2; | |
9585 | else | |
9586 | offset = 4; | |
9587 | break; | |
9588 | case EXCP_SWI: | |
9589 | new_mode = ARM_CPU_MODE_SVC; | |
9590 | addr = 0x08; | |
9591 | mask = CPSR_I; | |
601d70b9 | 9592 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
9593 | offset = 0; |
9594 | break; | |
06c949e6 | 9595 | case EXCP_BKPT: |
9ee6e8bb PB |
9596 | /* Fall through to prefetch abort. */ |
9597 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 9598 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 9599 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 9600 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 9601 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
9602 | new_mode = ARM_CPU_MODE_ABT; |
9603 | addr = 0x0c; | |
9604 | mask = CPSR_A | CPSR_I; | |
9605 | offset = 4; | |
9606 | break; | |
9607 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 9608 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 9609 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 9610 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 9611 | env->exception.fsr, |
6cd8a264 | 9612 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
9613 | new_mode = ARM_CPU_MODE_ABT; |
9614 | addr = 0x10; | |
9615 | mask = CPSR_A | CPSR_I; | |
9616 | offset = 8; | |
9617 | break; | |
9618 | case EXCP_IRQ: | |
9619 | new_mode = ARM_CPU_MODE_IRQ; | |
9620 | addr = 0x18; | |
9621 | /* Disable IRQ and imprecise data aborts. */ | |
9622 | mask = CPSR_A | CPSR_I; | |
9623 | offset = 4; | |
de38d23b FA |
9624 | if (env->cp15.scr_el3 & SCR_IRQ) { |
9625 | /* IRQ routed to monitor mode */ | |
9626 | new_mode = ARM_CPU_MODE_MON; | |
9627 | mask |= CPSR_F; | |
9628 | } | |
b5ff1b31 FB |
9629 | break; |
9630 | case EXCP_FIQ: | |
9631 | new_mode = ARM_CPU_MODE_FIQ; | |
9632 | addr = 0x1c; | |
9633 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
9634 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
9635 | if (env->cp15.scr_el3 & SCR_FIQ) { |
9636 | /* FIQ routed to monitor mode */ | |
9637 | new_mode = ARM_CPU_MODE_MON; | |
9638 | } | |
b5ff1b31 FB |
9639 | offset = 4; |
9640 | break; | |
87a4b270 PM |
9641 | case EXCP_VIRQ: |
9642 | new_mode = ARM_CPU_MODE_IRQ; | |
9643 | addr = 0x18; | |
9644 | /* Disable IRQ and imprecise data aborts. */ | |
9645 | mask = CPSR_A | CPSR_I; | |
9646 | offset = 4; | |
9647 | break; | |
9648 | case EXCP_VFIQ: | |
9649 | new_mode = ARM_CPU_MODE_FIQ; | |
9650 | addr = 0x1c; | |
9651 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
9652 | mask = CPSR_A | CPSR_I | CPSR_F; | |
9653 | offset = 4; | |
9654 | break; | |
dbe9d163 FA |
9655 | case EXCP_SMC: |
9656 | new_mode = ARM_CPU_MODE_MON; | |
9657 | addr = 0x08; | |
9658 | mask = CPSR_A | CPSR_I | CPSR_F; | |
9659 | offset = 0; | |
9660 | break; | |
b5ff1b31 | 9661 | default: |
a47dddd7 | 9662 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
9663 | return; /* Never happens. Keep compiler happy. */ |
9664 | } | |
e89e51a1 FA |
9665 | |
9666 | if (new_mode == ARM_CPU_MODE_MON) { | |
9667 | addr += env->cp15.mvbar; | |
137feaa9 | 9668 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 9669 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 9670 | addr += 0xffff0000; |
8641136c NR |
9671 | } else { |
9672 | /* ARM v7 architectures provide a vector base address register to remap | |
9673 | * the interrupt vector table. | |
e89e51a1 | 9674 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
9675 | * Note: only bits 31:5 are valid. |
9676 | */ | |
fb6c91ba | 9677 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 9678 | } |
dbe9d163 FA |
9679 | |
9680 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
9681 | env->cp15.scr_el3 &= ~SCR_NS; | |
9682 | } | |
9683 | ||
dea8378b | 9684 | take_aarch32_exception(env, new_mode, mask, offset, addr); |
b5ff1b31 FB |
9685 | } |
9686 | ||
a65dabf7 PM |
9687 | static int aarch64_regnum(CPUARMState *env, int aarch32_reg) |
9688 | { | |
9689 | /* | |
9690 | * Return the register number of the AArch64 view of the AArch32 | |
9691 | * register @aarch32_reg. The CPUARMState CPSR is assumed to still | |
9692 | * be that of the AArch32 mode the exception came from. | |
9693 | */ | |
9694 | int mode = env->uncached_cpsr & CPSR_M; | |
9695 | ||
9696 | switch (aarch32_reg) { | |
9697 | case 0 ... 7: | |
9698 | return aarch32_reg; | |
9699 | case 8 ... 12: | |
9700 | return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; | |
9701 | case 13: | |
9702 | switch (mode) { | |
9703 | case ARM_CPU_MODE_USR: | |
9704 | case ARM_CPU_MODE_SYS: | |
9705 | return 13; | |
9706 | case ARM_CPU_MODE_HYP: | |
9707 | return 15; | |
9708 | case ARM_CPU_MODE_IRQ: | |
9709 | return 17; | |
9710 | case ARM_CPU_MODE_SVC: | |
9711 | return 19; | |
9712 | case ARM_CPU_MODE_ABT: | |
9713 | return 21; | |
9714 | case ARM_CPU_MODE_UND: | |
9715 | return 23; | |
9716 | case ARM_CPU_MODE_FIQ: | |
9717 | return 29; | |
9718 | default: | |
9719 | g_assert_not_reached(); | |
9720 | } | |
9721 | case 14: | |
9722 | switch (mode) { | |
9723 | case ARM_CPU_MODE_USR: | |
9724 | case ARM_CPU_MODE_SYS: | |
9725 | case ARM_CPU_MODE_HYP: | |
9726 | return 14; | |
9727 | case ARM_CPU_MODE_IRQ: | |
9728 | return 16; | |
9729 | case ARM_CPU_MODE_SVC: | |
9730 | return 18; | |
9731 | case ARM_CPU_MODE_ABT: | |
9732 | return 20; | |
9733 | case ARM_CPU_MODE_UND: | |
9734 | return 22; | |
9735 | case ARM_CPU_MODE_FIQ: | |
9736 | return 30; | |
9737 | default: | |
9738 | g_assert_not_reached(); | |
9739 | } | |
9740 | case 15: | |
9741 | return 31; | |
9742 | default: | |
9743 | g_assert_not_reached(); | |
9744 | } | |
9745 | } | |
9746 | ||
966f758c PM |
9747 | /* Handle exception entry to a target EL which is using AArch64 */ |
9748 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) | |
f3a9b694 PM |
9749 | { |
9750 | ARMCPU *cpu = ARM_CPU(cs); | |
9751 | CPUARMState *env = &cpu->env; | |
9752 | unsigned int new_el = env->exception.target_el; | |
9753 | target_ulong addr = env->cp15.vbar_el[new_el]; | |
9754 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | |
4a2696c0 | 9755 | unsigned int old_mode; |
0ab5953b | 9756 | unsigned int cur_el = arm_current_el(env); |
a65dabf7 | 9757 | int rt; |
0ab5953b | 9758 | |
9a05f7b6 RH |
9759 | /* |
9760 | * Note that new_el can never be 0. If cur_el is 0, then | |
9761 | * el0_a64 is is_a64(), else el0_a64 is ignored. | |
9762 | */ | |
9763 | aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); | |
f3a9b694 | 9764 | |
0ab5953b | 9765 | if (cur_el < new_el) { |
3d6f7617 PM |
9766 | /* Entry vector offset depends on whether the implemented EL |
9767 | * immediately lower than the target level is using AArch32 or AArch64 | |
9768 | */ | |
9769 | bool is_aa64; | |
cb092fbb | 9770 | uint64_t hcr; |
3d6f7617 PM |
9771 | |
9772 | switch (new_el) { | |
9773 | case 3: | |
9774 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; | |
9775 | break; | |
9776 | case 2: | |
cb092fbb RH |
9777 | hcr = arm_hcr_el2_eff(env); |
9778 | if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
9779 | is_aa64 = (hcr & HCR_RW) != 0; | |
9780 | break; | |
9781 | } | |
9782 | /* fall through */ | |
3d6f7617 PM |
9783 | case 1: |
9784 | is_aa64 = is_a64(env); | |
9785 | break; | |
9786 | default: | |
9787 | g_assert_not_reached(); | |
9788 | } | |
9789 | ||
9790 | if (is_aa64) { | |
f3a9b694 PM |
9791 | addr += 0x400; |
9792 | } else { | |
9793 | addr += 0x600; | |
9794 | } | |
9795 | } else if (pstate_read(env) & PSTATE_SP) { | |
9796 | addr += 0x200; | |
9797 | } | |
9798 | ||
f3a9b694 PM |
9799 | switch (cs->exception_index) { |
9800 | case EXCP_PREFETCH_ABORT: | |
9801 | case EXCP_DATA_ABORT: | |
9802 | env->cp15.far_el[new_el] = env->exception.vaddress; | |
9803 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
9804 | env->cp15.far_el[new_el]); | |
9805 | /* fall through */ | |
9806 | case EXCP_BKPT: | |
9807 | case EXCP_UDEF: | |
9808 | case EXCP_SWI: | |
9809 | case EXCP_HVC: | |
9810 | case EXCP_HYP_TRAP: | |
9811 | case EXCP_SMC: | |
a65dabf7 PM |
9812 | switch (syn_get_ec(env->exception.syndrome)) { |
9813 | case EC_ADVSIMDFPACCESSTRAP: | |
4be42f40 PM |
9814 | /* |
9815 | * QEMU internal FP/SIMD syndromes from AArch32 include the | |
9816 | * TA and coproc fields which are only exposed if the exception | |
9817 | * is taken to AArch32 Hyp mode. Mask them out to get a valid | |
9818 | * AArch64 format syndrome. | |
9819 | */ | |
9820 | env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); | |
a65dabf7 PM |
9821 | break; |
9822 | case EC_CP14RTTRAP: | |
9823 | case EC_CP15RTTRAP: | |
9824 | case EC_CP14DTTRAP: | |
9825 | /* | |
9826 | * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently | |
9827 | * the raw register field from the insn; when taking this to | |
9828 | * AArch64 we must convert it to the AArch64 view of the register | |
9829 | * number. Notice that we read a 4-bit AArch32 register number and | |
9830 | * write back a 5-bit AArch64 one. | |
9831 | */ | |
9832 | rt = extract32(env->exception.syndrome, 5, 4); | |
9833 | rt = aarch64_regnum(env, rt); | |
9834 | env->exception.syndrome = deposit32(env->exception.syndrome, | |
9835 | 5, 5, rt); | |
9836 | break; | |
9837 | case EC_CP15RRTTRAP: | |
9838 | case EC_CP14RRTTRAP: | |
9839 | /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ | |
9840 | rt = extract32(env->exception.syndrome, 5, 4); | |
9841 | rt = aarch64_regnum(env, rt); | |
9842 | env->exception.syndrome = deposit32(env->exception.syndrome, | |
9843 | 5, 5, rt); | |
9844 | rt = extract32(env->exception.syndrome, 10, 4); | |
9845 | rt = aarch64_regnum(env, rt); | |
9846 | env->exception.syndrome = deposit32(env->exception.syndrome, | |
9847 | 10, 5, rt); | |
9848 | break; | |
4be42f40 | 9849 | } |
f3a9b694 PM |
9850 | env->cp15.esr_el[new_el] = env->exception.syndrome; |
9851 | break; | |
9852 | case EXCP_IRQ: | |
9853 | case EXCP_VIRQ: | |
9854 | addr += 0x80; | |
9855 | break; | |
9856 | case EXCP_FIQ: | |
9857 | case EXCP_VFIQ: | |
9858 | addr += 0x100; | |
9859 | break; | |
f3a9b694 PM |
9860 | default: |
9861 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
9862 | } | |
9863 | ||
9864 | if (is_a64(env)) { | |
4a2696c0 | 9865 | old_mode = pstate_read(env); |
f3a9b694 PM |
9866 | aarch64_save_sp(env, arm_current_el(env)); |
9867 | env->elr_el[new_el] = env->pc; | |
9868 | } else { | |
4a2696c0 | 9869 | old_mode = cpsr_read(env); |
f3a9b694 PM |
9870 | env->elr_el[new_el] = env->regs[15]; |
9871 | ||
9872 | aarch64_sync_32_to_64(env); | |
9873 | ||
9874 | env->condexec_bits = 0; | |
9875 | } | |
4a2696c0 RH |
9876 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; |
9877 | ||
f3a9b694 PM |
9878 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", |
9879 | env->elr_el[new_el]); | |
9880 | ||
4a2696c0 RH |
9881 | if (cpu_isar_feature(aa64_pan, cpu)) { |
9882 | /* The value of PSTATE.PAN is normally preserved, except when ... */ | |
9883 | new_mode |= old_mode & PSTATE_PAN; | |
9884 | switch (new_el) { | |
9885 | case 2: | |
9886 | /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ | |
9887 | if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) | |
9888 | != (HCR_E2H | HCR_TGE)) { | |
9889 | break; | |
9890 | } | |
9891 | /* fall through */ | |
9892 | case 1: | |
9893 | /* ... the target is EL1 ... */ | |
9894 | /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ | |
9895 | if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { | |
9896 | new_mode |= PSTATE_PAN; | |
9897 | } | |
9898 | break; | |
9899 | } | |
9900 | } | |
34669338 RH |
9901 | if (cpu_isar_feature(aa64_mte, cpu)) { |
9902 | new_mode |= PSTATE_TCO; | |
9903 | } | |
4a2696c0 | 9904 | |
f3a9b694 PM |
9905 | pstate_write(env, PSTATE_DAIF | new_mode); |
9906 | env->aarch64 = 1; | |
9907 | aarch64_restore_sp(env, new_el); | |
a8a79c7a | 9908 | helper_rebuild_hflags_a64(env, new_el); |
f3a9b694 PM |
9909 | |
9910 | env->pc = addr; | |
9911 | ||
9912 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", | |
9913 | new_el, env->pc, pstate_read(env)); | |
966f758c PM |
9914 | } |
9915 | ||
ed6e6ba9 AB |
9916 | /* |
9917 | * Do semihosting call and set the appropriate return value. All the | |
9918 | * permission and validity checks have been done at translate time. | |
9919 | * | |
9920 | * We only see semihosting exceptions in TCG only as they are not | |
9921 | * trapped to the hypervisor in KVM. | |
9922 | */ | |
91f78c58 | 9923 | #ifdef CONFIG_TCG |
ed6e6ba9 AB |
9924 | static void handle_semihosting(CPUState *cs) |
9925 | { | |
904c04de PM |
9926 | ARMCPU *cpu = ARM_CPU(cs); |
9927 | CPUARMState *env = &cpu->env; | |
9928 | ||
9929 | if (is_a64(env)) { | |
ed6e6ba9 AB |
9930 | qemu_log_mask(CPU_LOG_INT, |
9931 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
9932 | env->xregs[0]); | |
0bb446d8 | 9933 | env->xregs[0] = do_common_semihosting(cs); |
4ff5ef9e | 9934 | env->pc += 4; |
904c04de | 9935 | } else { |
904c04de PM |
9936 | qemu_log_mask(CPU_LOG_INT, |
9937 | "...handling as semihosting call 0x%x\n", | |
9938 | env->regs[0]); | |
0bb446d8 | 9939 | env->regs[0] = do_common_semihosting(cs); |
4ff5ef9e | 9940 | env->regs[15] += env->thumb ? 2 : 4; |
904c04de PM |
9941 | } |
9942 | } | |
ed6e6ba9 | 9943 | #endif |
904c04de | 9944 | |
966f758c PM |
9945 | /* Handle a CPU exception for A and R profile CPUs. |
9946 | * Do any appropriate logging, handle PSCI calls, and then hand off | |
9947 | * to the AArch64-entry or AArch32-entry function depending on the | |
9948 | * target exception level's register width. | |
9949 | */ | |
9950 | void arm_cpu_do_interrupt(CPUState *cs) | |
9951 | { | |
9952 | ARMCPU *cpu = ARM_CPU(cs); | |
9953 | CPUARMState *env = &cpu->env; | |
9954 | unsigned int new_el = env->exception.target_el; | |
9955 | ||
531c60a9 | 9956 | assert(!arm_feature(env, ARM_FEATURE_M)); |
966f758c PM |
9957 | |
9958 | arm_log_exception(cs->exception_index); | |
9959 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), | |
9960 | new_el); | |
9961 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
9962 | && !excp_is_internal(cs->exception_index)) { | |
6568da45 | 9963 | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", |
64b91e3f | 9964 | syn_get_ec(env->exception.syndrome), |
966f758c PM |
9965 | env->exception.syndrome); |
9966 | } | |
9967 | ||
9968 | if (arm_is_psci_call(cpu, cs->exception_index)) { | |
9969 | arm_handle_psci_call(cpu); | |
9970 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
9971 | return; | |
9972 | } | |
9973 | ||
ed6e6ba9 AB |
9974 | /* |
9975 | * Semihosting semantics depend on the register width of the code | |
9976 | * that caused the exception, not the target exception level, so | |
9977 | * must be handled here. | |
966f758c | 9978 | */ |
ed6e6ba9 AB |
9979 | #ifdef CONFIG_TCG |
9980 | if (cs->exception_index == EXCP_SEMIHOST) { | |
9981 | handle_semihosting(cs); | |
904c04de PM |
9982 | return; |
9983 | } | |
ed6e6ba9 | 9984 | #endif |
904c04de | 9985 | |
b5c53d1b AL |
9986 | /* Hooks may change global state so BQL should be held, also the |
9987 | * BQL needs to be held for any modification of | |
9988 | * cs->interrupt_request. | |
9989 | */ | |
9990 | g_assert(qemu_mutex_iothread_locked()); | |
9991 | ||
9992 | arm_call_pre_el_change_hook(cpu); | |
9993 | ||
904c04de PM |
9994 | assert(!excp_is_internal(cs->exception_index)); |
9995 | if (arm_el_is_aa64(env, new_el)) { | |
966f758c PM |
9996 | arm_cpu_do_interrupt_aarch64(cs); |
9997 | } else { | |
9998 | arm_cpu_do_interrupt_aarch32(cs); | |
9999 | } | |
f3a9b694 | 10000 | |
bd7d00fc PM |
10001 | arm_call_el_change_hook(cpu); |
10002 | ||
f3a9b694 PM |
10003 | if (!kvm_enabled()) { |
10004 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
10005 | } | |
10006 | } | |
c47eaf9f | 10007 | #endif /* !CONFIG_USER_ONLY */ |
0480f69a | 10008 | |
aaec1432 RH |
10009 | uint64_t arm_sctlr(CPUARMState *env, int el) |
10010 | { | |
10011 | /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ | |
10012 | if (el == 0) { | |
10013 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); | |
b6ad6062 RDC |
10014 | el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) |
10015 | ? 2 : 1; | |
aaec1432 RH |
10016 | } |
10017 | return env->cp15.sctlr_el[el]; | |
10018 | } | |
c47eaf9f | 10019 | |
0480f69a | 10020 | /* Return the SCTLR value which controls this address translation regime */ |
aaec1432 | 10021 | static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) |
0480f69a PM |
10022 | { |
10023 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
10024 | } | |
10025 | ||
aaec1432 RH |
10026 | #ifndef CONFIG_USER_ONLY |
10027 | ||
0480f69a PM |
10028 | /* Return true if the specified stage of address translation is disabled */ |
10029 | static inline bool regime_translation_disabled(CPUARMState *env, | |
10030 | ARMMMUIdx mmu_idx) | |
10031 | { | |
e04a5752 RDC |
10032 | uint64_t hcr_el2; |
10033 | ||
29c483a5 | 10034 | if (arm_feature(env, ARM_FEATURE_M)) { |
ecf5e8ea | 10035 | switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & |
3bef7012 PM |
10036 | (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
10037 | case R_V7M_MPU_CTRL_ENABLE_MASK: | |
10038 | /* Enabled, but not for HardFault and NMI */ | |
62593718 | 10039 | return mmu_idx & ARM_MMU_IDX_M_NEGPRI; |
3bef7012 PM |
10040 | case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
10041 | /* Enabled for all cases */ | |
10042 | return false; | |
10043 | case 0: | |
10044 | default: | |
10045 | /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but | |
10046 | * we warned about that in armv7m_nvic.c when the guest set it. | |
10047 | */ | |
10048 | return true; | |
10049 | } | |
29c483a5 MD |
10050 | } |
10051 | ||
e04a5752 RDC |
10052 | hcr_el2 = arm_hcr_el2_eff(env); |
10053 | ||
97fa9350 | 10054 | if (mmu_idx == ARMMMUIdx_Stage2) { |
9d1bab33 | 10055 | /* HCR.DC means HCR.VM behaves as 1 */ |
e04a5752 | 10056 | return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; |
0480f69a | 10057 | } |
3d0e3080 | 10058 | |
e04a5752 | 10059 | if (hcr_el2 & HCR_TGE) { |
3d0e3080 PM |
10060 | /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ |
10061 | if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { | |
10062 | return true; | |
10063 | } | |
10064 | } | |
10065 | ||
e04a5752 | 10066 | if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { |
9d1bab33 PM |
10067 | /* HCR.DC means SCTLR_EL1.M behaves as 0 */ |
10068 | return true; | |
10069 | } | |
10070 | ||
0480f69a PM |
10071 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; |
10072 | } | |
10073 | ||
73462ddd PC |
10074 | static inline bool regime_translation_big_endian(CPUARMState *env, |
10075 | ARMMMUIdx mmu_idx) | |
10076 | { | |
10077 | return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; | |
10078 | } | |
10079 | ||
c47eaf9f PM |
10080 | /* Return the TTBR associated with this translation regime */ |
10081 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
10082 | int ttbrn) | |
10083 | { | |
97fa9350 | 10084 | if (mmu_idx == ARMMMUIdx_Stage2) { |
c47eaf9f PM |
10085 | return env->cp15.vttbr_el2; |
10086 | } | |
10087 | if (ttbrn == 0) { | |
10088 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
10089 | } else { | |
10090 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
10091 | } | |
10092 | } | |
10093 | ||
10094 | #endif /* !CONFIG_USER_ONLY */ | |
10095 | ||
8bd5c820 PM |
10096 | /* Convert a possible stage1+2 MMU index into the appropriate |
10097 | * stage 1 MMU index | |
10098 | */ | |
10099 | static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) | |
10100 | { | |
b9f6033c RH |
10101 | switch (mmu_idx) { |
10102 | case ARMMMUIdx_E10_0: | |
10103 | return ARMMMUIdx_Stage1_E0; | |
10104 | case ARMMMUIdx_E10_1: | |
10105 | return ARMMMUIdx_Stage1_E1; | |
452ef8cb RH |
10106 | case ARMMMUIdx_E10_1_PAN: |
10107 | return ARMMMUIdx_Stage1_E1_PAN; | |
b9f6033c RH |
10108 | default: |
10109 | return mmu_idx; | |
8bd5c820 | 10110 | } |
8bd5c820 PM |
10111 | } |
10112 | ||
0480f69a PM |
10113 | /* Return true if the translation regime is using LPAE format page tables */ |
10114 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
10115 | ARMMMUIdx mmu_idx) | |
10116 | { | |
10117 | int el = regime_el(env, mmu_idx); | |
10118 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
10119 | return true; | |
10120 | } | |
10121 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
10122 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
10123 | return true; | |
10124 | } | |
10125 | return false; | |
10126 | } | |
10127 | ||
deb2db99 AR |
10128 | /* Returns true if the stage 1 translation regime is using LPAE format page |
10129 | * tables. Used when raising alignment exceptions, whose FSR changes depending | |
10130 | * on whether the long or short descriptor format is in use. */ | |
10131 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) | |
30901475 | 10132 | { |
8bd5c820 | 10133 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
deb2db99 | 10134 | |
30901475 AB |
10135 | return regime_using_lpae_format(env, mmu_idx); |
10136 | } | |
10137 | ||
c47eaf9f | 10138 | #ifndef CONFIG_USER_ONLY |
0480f69a PM |
10139 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
10140 | { | |
10141 | switch (mmu_idx) { | |
fba37aed | 10142 | case ARMMMUIdx_SE10_0: |
b9f6033c | 10143 | case ARMMMUIdx_E20_0: |
b6ad6062 | 10144 | case ARMMMUIdx_SE20_0: |
2859d7b5 | 10145 | case ARMMMUIdx_Stage1_E0: |
e7b921c2 | 10146 | case ARMMMUIdx_MUser: |
871bec7c | 10147 | case ARMMMUIdx_MSUser: |
62593718 PM |
10148 | case ARMMMUIdx_MUserNegPri: |
10149 | case ARMMMUIdx_MSUserNegPri: | |
0480f69a PM |
10150 | return true; |
10151 | default: | |
10152 | return false; | |
01b98b68 RH |
10153 | case ARMMMUIdx_E10_0: |
10154 | case ARMMMUIdx_E10_1: | |
452ef8cb | 10155 | case ARMMMUIdx_E10_1_PAN: |
0480f69a PM |
10156 | g_assert_not_reached(); |
10157 | } | |
10158 | } | |
10159 | ||
0fbf5238 AJ |
10160 | /* Translate section/page access permissions to page |
10161 | * R/W protection flags | |
d76951b6 AJ |
10162 | * |
10163 | * @env: CPUARMState | |
10164 | * @mmu_idx: MMU index indicating required translation regime | |
10165 | * @ap: The 3-bit access permissions (AP[2:0]) | |
10166 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
10167 | */ |
10168 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
10169 | int ap, int domain_prot) | |
10170 | { | |
554b0b09 PM |
10171 | bool is_user = regime_is_user(env, mmu_idx); |
10172 | ||
10173 | if (domain_prot == 3) { | |
10174 | return PAGE_READ | PAGE_WRITE; | |
10175 | } | |
10176 | ||
554b0b09 PM |
10177 | switch (ap) { |
10178 | case 0: | |
10179 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
10180 | return 0; | |
10181 | } | |
554b0b09 PM |
10182 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
10183 | case SCTLR_S: | |
10184 | return is_user ? 0 : PAGE_READ; | |
10185 | case SCTLR_R: | |
10186 | return PAGE_READ; | |
10187 | default: | |
10188 | return 0; | |
10189 | } | |
10190 | case 1: | |
10191 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
10192 | case 2: | |
87c3d486 | 10193 | if (is_user) { |
0fbf5238 | 10194 | return PAGE_READ; |
87c3d486 | 10195 | } else { |
554b0b09 | 10196 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 10197 | } |
554b0b09 PM |
10198 | case 3: |
10199 | return PAGE_READ | PAGE_WRITE; | |
10200 | case 4: /* Reserved. */ | |
10201 | return 0; | |
10202 | case 5: | |
0fbf5238 | 10203 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 10204 | case 6: |
0fbf5238 | 10205 | return PAGE_READ; |
554b0b09 | 10206 | case 7: |
87c3d486 | 10207 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 10208 | return 0; |
87c3d486 | 10209 | } |
0fbf5238 | 10210 | return PAGE_READ; |
554b0b09 | 10211 | default: |
0fbf5238 | 10212 | g_assert_not_reached(); |
554b0b09 | 10213 | } |
b5ff1b31 FB |
10214 | } |
10215 | ||
d76951b6 AJ |
10216 | /* Translate section/page access permissions to page |
10217 | * R/W protection flags. | |
10218 | * | |
d76951b6 | 10219 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 10220 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 10221 | */ |
d8e052b3 | 10222 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 10223 | { |
d76951b6 AJ |
10224 | switch (ap) { |
10225 | case 0: | |
10226 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
10227 | case 1: | |
10228 | return PAGE_READ | PAGE_WRITE; | |
10229 | case 2: | |
10230 | return is_user ? 0 : PAGE_READ; | |
10231 | case 3: | |
10232 | return PAGE_READ; | |
10233 | default: | |
10234 | g_assert_not_reached(); | |
10235 | } | |
10236 | } | |
10237 | ||
d8e052b3 AJ |
10238 | static inline int |
10239 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
10240 | { | |
10241 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
10242 | } | |
10243 | ||
6ab1a5ee EI |
10244 | /* Translate S2 section/page access permissions to protection flags |
10245 | * | |
10246 | * @env: CPUARMState | |
10247 | * @s2ap: The 2-bit stage2 access permissions (S2AP) | |
ce3125be PM |
10248 | * @xn: XN (execute-never) bits |
10249 | * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 | |
6ab1a5ee | 10250 | */ |
ce3125be | 10251 | static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) |
6ab1a5ee EI |
10252 | { |
10253 | int prot = 0; | |
10254 | ||
10255 | if (s2ap & 1) { | |
10256 | prot |= PAGE_READ; | |
10257 | } | |
10258 | if (s2ap & 2) { | |
10259 | prot |= PAGE_WRITE; | |
10260 | } | |
ce3125be PM |
10261 | |
10262 | if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { | |
10263 | switch (xn) { | |
10264 | case 0: | |
dfda6837 | 10265 | prot |= PAGE_EXEC; |
ce3125be PM |
10266 | break; |
10267 | case 1: | |
10268 | if (s1_is_el0) { | |
10269 | prot |= PAGE_EXEC; | |
10270 | } | |
10271 | break; | |
10272 | case 2: | |
10273 | break; | |
10274 | case 3: | |
10275 | if (!s1_is_el0) { | |
10276 | prot |= PAGE_EXEC; | |
10277 | } | |
10278 | break; | |
10279 | default: | |
10280 | g_assert_not_reached(); | |
10281 | } | |
10282 | } else { | |
10283 | if (!extract32(xn, 1, 1)) { | |
10284 | if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { | |
10285 | prot |= PAGE_EXEC; | |
10286 | } | |
dfda6837 | 10287 | } |
6ab1a5ee EI |
10288 | } |
10289 | return prot; | |
10290 | } | |
10291 | ||
d8e052b3 AJ |
10292 | /* Translate section/page access permissions to protection flags |
10293 | * | |
10294 | * @env: CPUARMState | |
10295 | * @mmu_idx: MMU index indicating required translation regime | |
10296 | * @is_aa64: TRUE if AArch64 | |
10297 | * @ap: The 2-bit simple AP (AP[2:1]) | |
10298 | * @ns: NS (non-secure) bit | |
10299 | * @xn: XN (execute-never) bit | |
10300 | * @pxn: PXN (privileged execute-never) bit | |
10301 | */ | |
10302 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
10303 | int ap, int ns, int xn, int pxn) | |
10304 | { | |
10305 | bool is_user = regime_is_user(env, mmu_idx); | |
10306 | int prot_rw, user_rw; | |
10307 | bool have_wxn; | |
10308 | int wxn = 0; | |
10309 | ||
97fa9350 | 10310 | assert(mmu_idx != ARMMMUIdx_Stage2); |
d8e052b3 AJ |
10311 | |
10312 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
10313 | if (is_user) { | |
10314 | prot_rw = user_rw; | |
10315 | } else { | |
81636b70 | 10316 | if (user_rw && regime_is_pan(env, mmu_idx)) { |
f4e1dbc5 PM |
10317 | /* PAN forbids data accesses but doesn't affect insn fetch */ |
10318 | prot_rw = 0; | |
10319 | } else { | |
10320 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
81636b70 | 10321 | } |
d8e052b3 AJ |
10322 | } |
10323 | ||
10324 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
10325 | return prot_rw; | |
10326 | } | |
10327 | ||
10328 | /* TODO have_wxn should be replaced with | |
10329 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
10330 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
10331 | * compatible processors have EL2, which is required for [U]WXN. | |
10332 | */ | |
10333 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
10334 | ||
10335 | if (have_wxn) { | |
10336 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
10337 | } | |
10338 | ||
10339 | if (is_aa64) { | |
339370b9 RH |
10340 | if (regime_has_2_ranges(mmu_idx) && !is_user) { |
10341 | xn = pxn || (user_rw & PAGE_WRITE); | |
d8e052b3 AJ |
10342 | } |
10343 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
10344 | switch (regime_el(env, mmu_idx)) { | |
10345 | case 1: | |
10346 | case 3: | |
10347 | if (is_user) { | |
10348 | xn = xn || !(user_rw & PAGE_READ); | |
10349 | } else { | |
10350 | int uwxn = 0; | |
10351 | if (have_wxn) { | |
10352 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
10353 | } | |
10354 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
10355 | (uwxn && (user_rw & PAGE_WRITE)); | |
10356 | } | |
10357 | break; | |
10358 | case 2: | |
10359 | break; | |
10360 | } | |
10361 | } else { | |
10362 | xn = wxn = 0; | |
10363 | } | |
10364 | ||
10365 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
10366 | return prot_rw; | |
10367 | } | |
10368 | return prot_rw | PAGE_EXEC; | |
10369 | } | |
10370 | ||
0480f69a PM |
10371 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
10372 | uint32_t *table, uint32_t address) | |
b2fa1797 | 10373 | { |
0480f69a | 10374 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 10375 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 10376 | |
11f136ee FA |
10377 | if (address & tcr->mask) { |
10378 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
10379 | /* Translation table walk disabled for TTBR1 */ |
10380 | return false; | |
10381 | } | |
aef878be | 10382 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 10383 | } else { |
11f136ee | 10384 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
10385 | /* Translation table walk disabled for TTBR0 */ |
10386 | return false; | |
10387 | } | |
aef878be | 10388 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
10389 | } |
10390 | *table |= (address >> 18) & 0x3ffc; | |
10391 | return true; | |
b2fa1797 PB |
10392 | } |
10393 | ||
37785977 EI |
10394 | /* Translate a S1 pagetable walk through S2 if needed. */ |
10395 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, | |
3d4bd397 | 10396 | hwaddr addr, bool *is_secure, |
37785977 EI |
10397 | ARMMMUFaultInfo *fi) |
10398 | { | |
fee7aa46 | 10399 | if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && |
97fa9350 | 10400 | !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { |
37785977 EI |
10401 | target_ulong s2size; |
10402 | hwaddr s2pa; | |
10403 | int s2prot; | |
10404 | int ret; | |
eadb2feb | 10405 | ARMCacheAttrs cacheattrs = {}; |
3d4bd397 RDC |
10406 | MemTxAttrs txattrs = {}; |
10407 | ||
10408 | assert(!*is_secure); /* TODO: S-EL2 */ | |
37785977 | 10409 | |
59dff859 | 10410 | ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2, |
ff7de2fc | 10411 | false, |
59dff859 | 10412 | &s2pa, &txattrs, &s2prot, &s2size, fi, |
a6d6f37a | 10413 | &cacheattrs); |
37785977 | 10414 | if (ret) { |
3b39d734 | 10415 | assert(fi->type != ARMFault_None); |
37785977 EI |
10416 | fi->s2addr = addr; |
10417 | fi->stage2 = true; | |
10418 | fi->s1ptw = true; | |
10419 | return ~0; | |
10420 | } | |
e04a5752 RDC |
10421 | if ((arm_hcr_el2_eff(env) & HCR_PTW) && |
10422 | (cacheattrs.attrs & 0xf0) == 0) { | |
a6d6f37a RH |
10423 | /* |
10424 | * PTW set and S1 walk touched S2 Device memory: | |
10425 | * generate Permission fault. | |
10426 | */ | |
eadb2feb PM |
10427 | fi->type = ARMFault_Permission; |
10428 | fi->s2addr = addr; | |
10429 | fi->stage2 = true; | |
10430 | fi->s1ptw = true; | |
10431 | return ~0; | |
10432 | } | |
588c6dd1 RDC |
10433 | |
10434 | if (arm_is_secure_below_el3(env)) { | |
10435 | /* Check if page table walk is to secure or non-secure PA space. */ | |
10436 | if (*is_secure) { | |
10437 | *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); | |
10438 | } else { | |
10439 | *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); | |
10440 | } | |
10441 | } else { | |
10442 | assert(!*is_secure); | |
10443 | } | |
10444 | ||
37785977 EI |
10445 | addr = s2pa; |
10446 | } | |
10447 | return addr; | |
10448 | } | |
10449 | ||
14577270 | 10450 | /* All loads done in the course of a page table walk go through here. */ |
a614e698 | 10451 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
3795a6de | 10452 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
ebca90e4 | 10453 | { |
a614e698 EI |
10454 | ARMCPU *cpu = ARM_CPU(cs); |
10455 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 10456 | MemTxAttrs attrs = {}; |
3b39d734 | 10457 | MemTxResult result = MEMTX_OK; |
5ce4ff65 | 10458 | AddressSpace *as; |
3b39d734 | 10459 | uint32_t data; |
ebca90e4 | 10460 | |
3d4bd397 | 10461 | addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); |
ebca90e4 | 10462 | attrs.secure = is_secure; |
5ce4ff65 | 10463 | as = arm_addressspace(cs, attrs); |
a614e698 EI |
10464 | if (fi->s1ptw) { |
10465 | return 0; | |
10466 | } | |
73462ddd | 10467 | if (regime_translation_big_endian(env, mmu_idx)) { |
3b39d734 | 10468 | data = address_space_ldl_be(as, addr, attrs, &result); |
73462ddd | 10469 | } else { |
3b39d734 | 10470 | data = address_space_ldl_le(as, addr, attrs, &result); |
73462ddd | 10471 | } |
3b39d734 PM |
10472 | if (result == MEMTX_OK) { |
10473 | return data; | |
10474 | } | |
10475 | fi->type = ARMFault_SyncExternalOnWalk; | |
10476 | fi->ea = arm_extabort_type(result); | |
10477 | return 0; | |
ebca90e4 PM |
10478 | } |
10479 | ||
37785977 | 10480 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
3795a6de | 10481 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
ebca90e4 | 10482 | { |
37785977 EI |
10483 | ARMCPU *cpu = ARM_CPU(cs); |
10484 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 10485 | MemTxAttrs attrs = {}; |
3b39d734 | 10486 | MemTxResult result = MEMTX_OK; |
5ce4ff65 | 10487 | AddressSpace *as; |
9aea1ea3 | 10488 | uint64_t data; |
ebca90e4 | 10489 | |
3d4bd397 | 10490 | addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); |
ebca90e4 | 10491 | attrs.secure = is_secure; |
5ce4ff65 | 10492 | as = arm_addressspace(cs, attrs); |
37785977 EI |
10493 | if (fi->s1ptw) { |
10494 | return 0; | |
10495 | } | |
73462ddd | 10496 | if (regime_translation_big_endian(env, mmu_idx)) { |
3b39d734 | 10497 | data = address_space_ldq_be(as, addr, attrs, &result); |
73462ddd | 10498 | } else { |
3b39d734 PM |
10499 | data = address_space_ldq_le(as, addr, attrs, &result); |
10500 | } | |
10501 | if (result == MEMTX_OK) { | |
10502 | return data; | |
73462ddd | 10503 | } |
3b39d734 PM |
10504 | fi->type = ARMFault_SyncExternalOnWalk; |
10505 | fi->ea = arm_extabort_type(result); | |
10506 | return 0; | |
ebca90e4 PM |
10507 | } |
10508 | ||
b7cc4e82 | 10509 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
03ae85f8 | 10510 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 10511 | hwaddr *phys_ptr, int *prot, |
f989983e | 10512 | target_ulong *page_size, |
e14b5a23 | 10513 | ARMMMUFaultInfo *fi) |
b5ff1b31 | 10514 | { |
2fc0cc0e | 10515 | CPUState *cs = env_cpu(env); |
f989983e | 10516 | int level = 1; |
b5ff1b31 FB |
10517 | uint32_t table; |
10518 | uint32_t desc; | |
10519 | int type; | |
10520 | int ap; | |
e389be16 | 10521 | int domain = 0; |
dd4ebc2e | 10522 | int domain_prot; |
a8170e5e | 10523 | hwaddr phys_addr; |
0480f69a | 10524 | uint32_t dacr; |
b5ff1b31 | 10525 | |
9ee6e8bb PB |
10526 | /* Pagetable walk. */ |
10527 | /* Lookup l1 descriptor. */ | |
0480f69a | 10528 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 | 10529 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
f989983e | 10530 | fi->type = ARMFault_Translation; |
e389be16 FA |
10531 | goto do_fault; |
10532 | } | |
a614e698 | 10533 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10534 | mmu_idx, fi); |
3b39d734 PM |
10535 | if (fi->type != ARMFault_None) { |
10536 | goto do_fault; | |
10537 | } | |
9ee6e8bb | 10538 | type = (desc & 3); |
dd4ebc2e | 10539 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
10540 | if (regime_el(env, mmu_idx) == 1) { |
10541 | dacr = env->cp15.dacr_ns; | |
10542 | } else { | |
10543 | dacr = env->cp15.dacr_s; | |
10544 | } | |
10545 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 10546 | if (type == 0) { |
601d70b9 | 10547 | /* Section translation fault. */ |
f989983e | 10548 | fi->type = ARMFault_Translation; |
9ee6e8bb PB |
10549 | goto do_fault; |
10550 | } | |
f989983e PM |
10551 | if (type != 2) { |
10552 | level = 2; | |
10553 | } | |
dd4ebc2e | 10554 | if (domain_prot == 0 || domain_prot == 2) { |
f989983e | 10555 | fi->type = ARMFault_Domain; |
9ee6e8bb PB |
10556 | goto do_fault; |
10557 | } | |
10558 | if (type == 2) { | |
10559 | /* 1Mb section. */ | |
10560 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
10561 | ap = (desc >> 10) & 3; | |
d4c430a8 | 10562 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
10563 | } else { |
10564 | /* Lookup l2 entry. */ | |
554b0b09 PM |
10565 | if (type == 1) { |
10566 | /* Coarse pagetable. */ | |
10567 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
10568 | } else { | |
10569 | /* Fine pagetable. */ | |
10570 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
10571 | } | |
a614e698 | 10572 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10573 | mmu_idx, fi); |
3b39d734 PM |
10574 | if (fi->type != ARMFault_None) { |
10575 | goto do_fault; | |
10576 | } | |
9ee6e8bb PB |
10577 | switch (desc & 3) { |
10578 | case 0: /* Page translation fault. */ | |
f989983e | 10579 | fi->type = ARMFault_Translation; |
9ee6e8bb PB |
10580 | goto do_fault; |
10581 | case 1: /* 64k page. */ | |
10582 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
10583 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 10584 | *page_size = 0x10000; |
ce819861 | 10585 | break; |
9ee6e8bb PB |
10586 | case 2: /* 4k page. */ |
10587 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 10588 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 10589 | *page_size = 0x1000; |
ce819861 | 10590 | break; |
fc1891c7 | 10591 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 10592 | if (type == 1) { |
fc1891c7 PM |
10593 | /* ARMv6/XScale extended small page format */ |
10594 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
10595 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 10596 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 10597 | *page_size = 0x1000; |
554b0b09 | 10598 | } else { |
fc1891c7 PM |
10599 | /* UNPREDICTABLE in ARMv5; we choose to take a |
10600 | * page translation fault. | |
10601 | */ | |
f989983e | 10602 | fi->type = ARMFault_Translation; |
554b0b09 PM |
10603 | goto do_fault; |
10604 | } | |
10605 | } else { | |
10606 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 10607 | *page_size = 0x400; |
554b0b09 | 10608 | } |
9ee6e8bb | 10609 | ap = (desc >> 4) & 3; |
ce819861 PB |
10610 | break; |
10611 | default: | |
9ee6e8bb PB |
10612 | /* Never happens, but compiler isn't smart enough to tell. */ |
10613 | abort(); | |
ce819861 | 10614 | } |
9ee6e8bb | 10615 | } |
0fbf5238 AJ |
10616 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
10617 | *prot |= *prot ? PAGE_EXEC : 0; | |
10618 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb | 10619 | /* Access permission fault. */ |
f989983e | 10620 | fi->type = ARMFault_Permission; |
9ee6e8bb PB |
10621 | goto do_fault; |
10622 | } | |
10623 | *phys_ptr = phys_addr; | |
b7cc4e82 | 10624 | return false; |
9ee6e8bb | 10625 | do_fault: |
f989983e PM |
10626 | fi->domain = domain; |
10627 | fi->level = level; | |
b7cc4e82 | 10628 | return true; |
9ee6e8bb PB |
10629 | } |
10630 | ||
b7cc4e82 | 10631 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
03ae85f8 | 10632 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 10633 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
f06cf243 | 10634 | target_ulong *page_size, ARMMMUFaultInfo *fi) |
9ee6e8bb | 10635 | { |
2fc0cc0e | 10636 | CPUState *cs = env_cpu(env); |
0ae0326b | 10637 | ARMCPU *cpu = env_archcpu(env); |
f06cf243 | 10638 | int level = 1; |
9ee6e8bb PB |
10639 | uint32_t table; |
10640 | uint32_t desc; | |
10641 | uint32_t xn; | |
de9b05b8 | 10642 | uint32_t pxn = 0; |
9ee6e8bb PB |
10643 | int type; |
10644 | int ap; | |
de9b05b8 | 10645 | int domain = 0; |
dd4ebc2e | 10646 | int domain_prot; |
a8170e5e | 10647 | hwaddr phys_addr; |
0480f69a | 10648 | uint32_t dacr; |
8bf5b6a9 | 10649 | bool ns; |
9ee6e8bb PB |
10650 | |
10651 | /* Pagetable walk. */ | |
10652 | /* Lookup l1 descriptor. */ | |
0480f69a | 10653 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 | 10654 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
f06cf243 | 10655 | fi->type = ARMFault_Translation; |
e389be16 FA |
10656 | goto do_fault; |
10657 | } | |
a614e698 | 10658 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10659 | mmu_idx, fi); |
3b39d734 PM |
10660 | if (fi->type != ARMFault_None) { |
10661 | goto do_fault; | |
10662 | } | |
9ee6e8bb | 10663 | type = (desc & 3); |
0ae0326b | 10664 | if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { |
de9b05b8 PM |
10665 | /* Section translation fault, or attempt to use the encoding |
10666 | * which is Reserved on implementations without PXN. | |
10667 | */ | |
f06cf243 | 10668 | fi->type = ARMFault_Translation; |
9ee6e8bb | 10669 | goto do_fault; |
de9b05b8 PM |
10670 | } |
10671 | if ((type == 1) || !(desc & (1 << 18))) { | |
10672 | /* Page or Section. */ | |
dd4ebc2e | 10673 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 10674 | } |
0480f69a PM |
10675 | if (regime_el(env, mmu_idx) == 1) { |
10676 | dacr = env->cp15.dacr_ns; | |
10677 | } else { | |
10678 | dacr = env->cp15.dacr_s; | |
10679 | } | |
f06cf243 PM |
10680 | if (type == 1) { |
10681 | level = 2; | |
10682 | } | |
0480f69a | 10683 | domain_prot = (dacr >> (domain * 2)) & 3; |
dd4ebc2e | 10684 | if (domain_prot == 0 || domain_prot == 2) { |
f06cf243 PM |
10685 | /* Section or Page domain fault */ |
10686 | fi->type = ARMFault_Domain; | |
9ee6e8bb PB |
10687 | goto do_fault; |
10688 | } | |
de9b05b8 | 10689 | if (type != 1) { |
9ee6e8bb PB |
10690 | if (desc & (1 << 18)) { |
10691 | /* Supersection. */ | |
10692 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
10693 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
10694 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 10695 | *page_size = 0x1000000; |
b5ff1b31 | 10696 | } else { |
9ee6e8bb PB |
10697 | /* Section. */ |
10698 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 10699 | *page_size = 0x100000; |
b5ff1b31 | 10700 | } |
9ee6e8bb PB |
10701 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
10702 | xn = desc & (1 << 4); | |
de9b05b8 | 10703 | pxn = desc & 1; |
8bf5b6a9 | 10704 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 10705 | } else { |
0ae0326b | 10706 | if (cpu_isar_feature(aa32_pxn, cpu)) { |
de9b05b8 PM |
10707 | pxn = (desc >> 2) & 1; |
10708 | } | |
8bf5b6a9 | 10709 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
10710 | /* Lookup l2 entry. */ |
10711 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
a614e698 | 10712 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10713 | mmu_idx, fi); |
3b39d734 PM |
10714 | if (fi->type != ARMFault_None) { |
10715 | goto do_fault; | |
10716 | } | |
9ee6e8bb PB |
10717 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
10718 | switch (desc & 3) { | |
10719 | case 0: /* Page translation fault. */ | |
f06cf243 | 10720 | fi->type = ARMFault_Translation; |
b5ff1b31 | 10721 | goto do_fault; |
9ee6e8bb PB |
10722 | case 1: /* 64k page. */ |
10723 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
10724 | xn = desc & (1 << 15); | |
d4c430a8 | 10725 | *page_size = 0x10000; |
9ee6e8bb PB |
10726 | break; |
10727 | case 2: case 3: /* 4k page. */ | |
10728 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
10729 | xn = desc & 1; | |
d4c430a8 | 10730 | *page_size = 0x1000; |
9ee6e8bb PB |
10731 | break; |
10732 | default: | |
10733 | /* Never happens, but compiler isn't smart enough to tell. */ | |
10734 | abort(); | |
b5ff1b31 | 10735 | } |
9ee6e8bb | 10736 | } |
dd4ebc2e | 10737 | if (domain_prot == 3) { |
c0034328 JR |
10738 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
10739 | } else { | |
0480f69a | 10740 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
10741 | xn = 1; |
10742 | } | |
f06cf243 PM |
10743 | if (xn && access_type == MMU_INST_FETCH) { |
10744 | fi->type = ARMFault_Permission; | |
c0034328 | 10745 | goto do_fault; |
f06cf243 | 10746 | } |
9ee6e8bb | 10747 | |
d76951b6 AJ |
10748 | if (arm_feature(env, ARM_FEATURE_V6K) && |
10749 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
10750 | /* The simplified model uses AP[0] as an access control bit. */ | |
10751 | if ((ap & 1) == 0) { | |
10752 | /* Access flag fault. */ | |
f06cf243 | 10753 | fi->type = ARMFault_AccessFlag; |
d76951b6 AJ |
10754 | goto do_fault; |
10755 | } | |
10756 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
10757 | } else { | |
10758 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 10759 | } |
0fbf5238 AJ |
10760 | if (*prot && !xn) { |
10761 | *prot |= PAGE_EXEC; | |
10762 | } | |
10763 | if (!(*prot & (1 << access_type))) { | |
c0034328 | 10764 | /* Access permission fault. */ |
f06cf243 | 10765 | fi->type = ARMFault_Permission; |
c0034328 JR |
10766 | goto do_fault; |
10767 | } | |
3ad493fc | 10768 | } |
8bf5b6a9 PM |
10769 | if (ns) { |
10770 | /* The NS bit will (as required by the architecture) have no effect if | |
10771 | * the CPU doesn't support TZ or this is a non-secure translation | |
10772 | * regime, because the attribute will already be non-secure. | |
10773 | */ | |
10774 | attrs->secure = false; | |
10775 | } | |
9ee6e8bb | 10776 | *phys_ptr = phys_addr; |
b7cc4e82 | 10777 | return false; |
b5ff1b31 | 10778 | do_fault: |
f06cf243 PM |
10779 | fi->domain = domain; |
10780 | fi->level = level; | |
b7cc4e82 | 10781 | return true; |
b5ff1b31 FB |
10782 | } |
10783 | ||
1853d5a9 | 10784 | /* |
a0e966c9 | 10785 | * check_s2_mmu_setup |
1853d5a9 EI |
10786 | * @cpu: ARMCPU |
10787 | * @is_aa64: True if the translation regime is in AArch64 state | |
10788 | * @startlevel: Suggested starting level | |
10789 | * @inputsize: Bitsize of IPAs | |
10790 | * @stride: Page-table stride (See the ARM ARM) | |
10791 | * | |
a0e966c9 EI |
10792 | * Returns true if the suggested S2 translation parameters are OK and |
10793 | * false otherwise. | |
1853d5a9 | 10794 | */ |
a0e966c9 EI |
10795 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
10796 | int inputsize, int stride) | |
1853d5a9 | 10797 | { |
98d68ec2 EI |
10798 | const int grainsize = stride + 3; |
10799 | int startsizecheck; | |
10800 | ||
1853d5a9 EI |
10801 | /* Negative levels are never allowed. */ |
10802 | if (level < 0) { | |
10803 | return false; | |
10804 | } | |
10805 | ||
98d68ec2 EI |
10806 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
10807 | if (startsizecheck < 1 || startsizecheck > stride + 4) { | |
10808 | return false; | |
10809 | } | |
10810 | ||
1853d5a9 | 10811 | if (is_aa64) { |
3526423e | 10812 | CPUARMState *env = &cpu->env; |
1853d5a9 EI |
10813 | unsigned int pamax = arm_pamax(cpu); |
10814 | ||
10815 | switch (stride) { | |
10816 | case 13: /* 64KB Pages. */ | |
10817 | if (level == 0 || (level == 1 && pamax <= 42)) { | |
10818 | return false; | |
10819 | } | |
10820 | break; | |
10821 | case 11: /* 16KB Pages. */ | |
10822 | if (level == 0 || (level == 1 && pamax <= 40)) { | |
10823 | return false; | |
10824 | } | |
10825 | break; | |
10826 | case 9: /* 4KB Pages. */ | |
10827 | if (level == 0 && pamax <= 42) { | |
10828 | return false; | |
10829 | } | |
10830 | break; | |
10831 | default: | |
10832 | g_assert_not_reached(); | |
10833 | } | |
3526423e EI |
10834 | |
10835 | /* Inputsize checks. */ | |
10836 | if (inputsize > pamax && | |
10837 | (arm_el_is_aa64(env, 1) || inputsize > 40)) { | |
10838 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ | |
10839 | return false; | |
10840 | } | |
1853d5a9 | 10841 | } else { |
1853d5a9 EI |
10842 | /* AArch32 only supports 4KB pages. Assert on that. */ |
10843 | assert(stride == 9); | |
10844 | ||
10845 | if (level == 0) { | |
10846 | return false; | |
10847 | } | |
1853d5a9 EI |
10848 | } |
10849 | return true; | |
10850 | } | |
10851 | ||
5b2d261d AB |
10852 | /* Translate from the 4-bit stage 2 representation of |
10853 | * memory attributes (without cache-allocation hints) to | |
10854 | * the 8-bit representation of the stage 1 MAIR registers | |
10855 | * (which includes allocation hints). | |
10856 | * | |
10857 | * ref: shared/translation/attrs/S2AttrDecode() | |
10858 | * .../S2ConvertAttrsHints() | |
10859 | */ | |
10860 | static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) | |
10861 | { | |
10862 | uint8_t hiattr = extract32(s2attrs, 2, 2); | |
10863 | uint8_t loattr = extract32(s2attrs, 0, 2); | |
10864 | uint8_t hihint = 0, lohint = 0; | |
10865 | ||
10866 | if (hiattr != 0) { /* normal memory */ | |
e04a5752 | 10867 | if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ |
5b2d261d AB |
10868 | hiattr = loattr = 1; /* non-cacheable */ |
10869 | } else { | |
10870 | if (hiattr != 1) { /* Write-through or write-back */ | |
10871 | hihint = 3; /* RW allocate */ | |
10872 | } | |
10873 | if (loattr != 1) { /* Write-through or write-back */ | |
10874 | lohint = 3; /* RW allocate */ | |
10875 | } | |
10876 | } | |
10877 | } | |
10878 | ||
10879 | return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; | |
10880 | } | |
c47eaf9f | 10881 | #endif /* !CONFIG_USER_ONLY */ |
5b2d261d | 10882 | |
b830a5ee RH |
10883 | static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) |
10884 | { | |
10885 | if (regime_has_2_ranges(mmu_idx)) { | |
10886 | return extract64(tcr, 37, 2); | |
10887 | } else if (mmu_idx == ARMMMUIdx_Stage2) { | |
10888 | return 0; /* VTCR_EL2 */ | |
10889 | } else { | |
3e270f67 RH |
10890 | /* Replicate the single TBI bit so we always have 2 bits. */ |
10891 | return extract32(tcr, 20, 1) * 3; | |
b830a5ee RH |
10892 | } |
10893 | } | |
10894 | ||
10895 | static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) | |
10896 | { | |
10897 | if (regime_has_2_ranges(mmu_idx)) { | |
10898 | return extract64(tcr, 51, 2); | |
10899 | } else if (mmu_idx == ARMMMUIdx_Stage2) { | |
10900 | return 0; /* VTCR_EL2 */ | |
10901 | } else { | |
3e270f67 RH |
10902 | /* Replicate the single TBID bit so we always have 2 bits. */ |
10903 | return extract32(tcr, 29, 1) * 3; | |
b830a5ee RH |
10904 | } |
10905 | } | |
10906 | ||
81ae05fa RH |
10907 | static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) |
10908 | { | |
10909 | if (regime_has_2_ranges(mmu_idx)) { | |
10910 | return extract64(tcr, 57, 2); | |
10911 | } else { | |
10912 | /* Replicate the single TCMA bit so we always have 2 bits. */ | |
10913 | return extract32(tcr, 30, 1) * 3; | |
10914 | } | |
10915 | } | |
10916 | ||
b830a5ee RH |
10917 | ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, |
10918 | ARMMMUIdx mmu_idx, bool data) | |
ba97be9f RH |
10919 | { |
10920 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; | |
b830a5ee | 10921 | bool epd, hpd, using16k, using64k; |
c36c65ea | 10922 | int select, tsz, tbi, max_tsz; |
ba97be9f | 10923 | |
339370b9 | 10924 | if (!regime_has_2_ranges(mmu_idx)) { |
71d18164 | 10925 | select = 0; |
ba97be9f RH |
10926 | tsz = extract32(tcr, 0, 6); |
10927 | using64k = extract32(tcr, 14, 1); | |
10928 | using16k = extract32(tcr, 15, 1); | |
97fa9350 | 10929 | if (mmu_idx == ARMMMUIdx_Stage2) { |
ba97be9f | 10930 | /* VTCR_EL2 */ |
b830a5ee | 10931 | hpd = false; |
ba97be9f | 10932 | } else { |
ba97be9f RH |
10933 | hpd = extract32(tcr, 24, 1); |
10934 | } | |
10935 | epd = false; | |
ba97be9f | 10936 | } else { |
71d18164 RH |
10937 | /* |
10938 | * Bit 55 is always between the two regions, and is canonical for | |
10939 | * determining if address tagging is enabled. | |
10940 | */ | |
10941 | select = extract64(va, 55, 1); | |
10942 | if (!select) { | |
10943 | tsz = extract32(tcr, 0, 6); | |
10944 | epd = extract32(tcr, 7, 1); | |
10945 | using64k = extract32(tcr, 14, 1); | |
10946 | using16k = extract32(tcr, 15, 1); | |
71d18164 | 10947 | hpd = extract64(tcr, 41, 1); |
71d18164 RH |
10948 | } else { |
10949 | int tg = extract32(tcr, 30, 2); | |
10950 | using16k = tg == 1; | |
10951 | using64k = tg == 3; | |
10952 | tsz = extract32(tcr, 16, 6); | |
10953 | epd = extract32(tcr, 23, 1); | |
71d18164 | 10954 | hpd = extract64(tcr, 42, 1); |
71d18164 | 10955 | } |
ba97be9f | 10956 | } |
c36c65ea RDC |
10957 | |
10958 | if (cpu_isar_feature(aa64_st, env_archcpu(env))) { | |
10959 | max_tsz = 48 - using64k; | |
10960 | } else { | |
10961 | max_tsz = 39; | |
10962 | } | |
10963 | ||
10964 | tsz = MIN(tsz, max_tsz); | |
ba97be9f RH |
10965 | tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ |
10966 | ||
b830a5ee RH |
10967 | /* Present TBI as a composite with TBID. */ |
10968 | tbi = aa64_va_parameter_tbi(tcr, mmu_idx); | |
10969 | if (!data) { | |
10970 | tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
10971 | } | |
10972 | tbi = (tbi >> select) & 1; | |
10973 | ||
ba97be9f RH |
10974 | return (ARMVAParameters) { |
10975 | .tsz = tsz, | |
10976 | .select = select, | |
10977 | .tbi = tbi, | |
10978 | .epd = epd, | |
10979 | .hpd = hpd, | |
10980 | .using16k = using16k, | |
10981 | .using64k = using64k, | |
10982 | }; | |
10983 | } | |
10984 | ||
c47eaf9f | 10985 | #ifndef CONFIG_USER_ONLY |
ba97be9f RH |
10986 | static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, |
10987 | ARMMMUIdx mmu_idx) | |
10988 | { | |
10989 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; | |
10990 | uint32_t el = regime_el(env, mmu_idx); | |
10991 | int select, tsz; | |
10992 | bool epd, hpd; | |
10993 | ||
97fa9350 | 10994 | if (mmu_idx == ARMMMUIdx_Stage2) { |
ba97be9f RH |
10995 | /* VTCR */ |
10996 | bool sext = extract32(tcr, 4, 1); | |
10997 | bool sign = extract32(tcr, 3, 1); | |
10998 | ||
10999 | /* | |
11000 | * If the sign-extend bit is not the same as t0sz[3], the result | |
11001 | * is unpredictable. Flag this as a guest error. | |
11002 | */ | |
11003 | if (sign != sext) { | |
11004 | qemu_log_mask(LOG_GUEST_ERROR, | |
11005 | "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); | |
11006 | } | |
11007 | tsz = sextract32(tcr, 0, 4) + 8; | |
11008 | select = 0; | |
11009 | hpd = false; | |
11010 | epd = false; | |
11011 | } else if (el == 2) { | |
11012 | /* HTCR */ | |
11013 | tsz = extract32(tcr, 0, 3); | |
11014 | select = 0; | |
11015 | hpd = extract64(tcr, 24, 1); | |
11016 | epd = false; | |
11017 | } else { | |
11018 | int t0sz = extract32(tcr, 0, 3); | |
11019 | int t1sz = extract32(tcr, 16, 3); | |
11020 | ||
11021 | if (t1sz == 0) { | |
11022 | select = va > (0xffffffffu >> t0sz); | |
11023 | } else { | |
11024 | /* Note that we will detect errors later. */ | |
11025 | select = va >= ~(0xffffffffu >> t1sz); | |
11026 | } | |
11027 | if (!select) { | |
11028 | tsz = t0sz; | |
11029 | epd = extract32(tcr, 7, 1); | |
11030 | hpd = extract64(tcr, 41, 1); | |
11031 | } else { | |
11032 | tsz = t1sz; | |
11033 | epd = extract32(tcr, 23, 1); | |
11034 | hpd = extract64(tcr, 42, 1); | |
11035 | } | |
11036 | /* For aarch32, hpd0 is not enabled without t2e as well. */ | |
11037 | hpd &= extract32(tcr, 6, 1); | |
11038 | } | |
11039 | ||
11040 | return (ARMVAParameters) { | |
11041 | .tsz = tsz, | |
11042 | .select = select, | |
11043 | .epd = epd, | |
11044 | .hpd = hpd, | |
11045 | }; | |
11046 | } | |
11047 | ||
ff7de2fc PM |
11048 | /** |
11049 | * get_phys_addr_lpae: perform one stage of page table walk, LPAE format | |
11050 | * | |
11051 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, | |
11052 | * prot and page_size may not be filled in, and the populated fsr value provides | |
11053 | * information on why the translation aborted, in the format of a long-format | |
11054 | * DFSR/IFSR fault register, with the following caveats: | |
11055 | * * the WnR bit is never set (the caller must do this). | |
11056 | * | |
11057 | * @env: CPUARMState | |
11058 | * @address: virtual address to get physical address for | |
11059 | * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH | |
11060 | * @mmu_idx: MMU index indicating required translation regime | |
11061 | * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table | |
11062 | * walk), must be true if this is stage 2 of a stage 1+2 walk for an | |
11063 | * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. | |
11064 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
11065 | * @attrs: set to the memory transaction attributes to use | |
11066 | * @prot: set to the permissions for the page containing phys_ptr | |
11067 | * @page_size_ptr: set to the size of the page containing phys_ptr | |
11068 | * @fi: set to fault info if the translation fails | |
11069 | * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes | |
11070 | */ | |
98e87797 | 11071 | static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, |
03ae85f8 | 11072 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
ff7de2fc | 11073 | bool s1_is_el0, |
b7cc4e82 | 11074 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
da909b2c | 11075 | target_ulong *page_size_ptr, |
5b2d261d | 11076 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
3dde962f | 11077 | { |
2fc0cc0e | 11078 | ARMCPU *cpu = env_archcpu(env); |
1853d5a9 | 11079 | CPUState *cs = CPU(cpu); |
3dde962f | 11080 | /* Read an LPAE long-descriptor translation table. */ |
da909b2c | 11081 | ARMFaultType fault_type = ARMFault_Translation; |
1b4093ea | 11082 | uint32_t level; |
ba97be9f | 11083 | ARMVAParameters param; |
3dde962f | 11084 | uint64_t ttbr; |
dddb5223 | 11085 | hwaddr descaddr, indexmask, indexmask_grainsize; |
3dde962f | 11086 | uint32_t tableattrs; |
36d820af | 11087 | target_ulong page_size; |
3dde962f | 11088 | uint32_t attrs; |
ba97be9f RH |
11089 | int32_t stride; |
11090 | int addrsize, inputsize; | |
0480f69a | 11091 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 11092 | int ap, ns, xn, pxn; |
88e8add8 | 11093 | uint32_t el = regime_el(env, mmu_idx); |
6109769a | 11094 | uint64_t descaddrmask; |
6e99f762 | 11095 | bool aarch64 = arm_el_is_aa64(env, el); |
1bafc2ba | 11096 | bool guarded = false; |
0480f69a | 11097 | |
07d1be3b | 11098 | /* TODO: This code does not support shareability levels. */ |
6e99f762 | 11099 | if (aarch64) { |
ba97be9f RH |
11100 | param = aa64_va_parameters(env, address, mmu_idx, |
11101 | access_type != MMU_INST_FETCH); | |
1b4093ea | 11102 | level = 0; |
ba97be9f RH |
11103 | addrsize = 64 - 8 * param.tbi; |
11104 | inputsize = 64 - param.tsz; | |
d0a2cbce | 11105 | } else { |
ba97be9f | 11106 | param = aa32_va_parameters(env, address, mmu_idx); |
1b4093ea | 11107 | level = 1; |
97fa9350 | 11108 | addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); |
ba97be9f | 11109 | inputsize = addrsize - param.tsz; |
2c8dd318 | 11110 | } |
3dde962f | 11111 | |
ba97be9f RH |
11112 | /* |
11113 | * We determined the region when collecting the parameters, but we | |
11114 | * have not yet validated that the address is valid for the region. | |
11115 | * Extract the top bits and verify that they all match select. | |
36d820af RH |
11116 | * |
11117 | * For aa32, if inputsize == addrsize, then we have selected the | |
11118 | * region by exclusion in aa32_va_parameters and there is no more | |
11119 | * validation to do here. | |
11120 | */ | |
11121 | if (inputsize < addrsize) { | |
11122 | target_ulong top_bits = sextract64(address, inputsize, | |
11123 | addrsize - inputsize); | |
03f27724 | 11124 | if (-top_bits != param.select) { |
36d820af RH |
11125 | /* The gap between the two regions is a Translation fault */ |
11126 | fault_type = ARMFault_Translation; | |
11127 | goto do_fault; | |
11128 | } | |
3dde962f PM |
11129 | } |
11130 | ||
ba97be9f RH |
11131 | if (param.using64k) { |
11132 | stride = 13; | |
11133 | } else if (param.using16k) { | |
11134 | stride = 11; | |
11135 | } else { | |
11136 | stride = 9; | |
11137 | } | |
11138 | ||
3dde962f PM |
11139 | /* Note that QEMU ignores shareability and cacheability attributes, |
11140 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
11141 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
11142 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
11143 | * implement any ASID-like capability so we can ignore it (instead | |
11144 | * we will always flush the TLB any time the ASID is changed). | |
11145 | */ | |
ba97be9f | 11146 | ttbr = regime_ttbr(env, mmu_idx, param.select); |
3dde962f | 11147 | |
0480f69a | 11148 | /* Here we should have set up all the parameters for the translation: |
6e99f762 | 11149 | * inputsize, ttbr, epd, stride, tbi |
0480f69a PM |
11150 | */ |
11151 | ||
ba97be9f | 11152 | if (param.epd) { |
88e8add8 GB |
11153 | /* Translation table walk disabled => Translation fault on TLB miss |
11154 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
11155 | */ | |
3dde962f PM |
11156 | goto do_fault; |
11157 | } | |
11158 | ||
97fa9350 | 11159 | if (mmu_idx != ARMMMUIdx_Stage2) { |
1853d5a9 EI |
11160 | /* The starting level depends on the virtual address size (which can |
11161 | * be up to 48 bits) and the translation granule size. It indicates | |
11162 | * the number of strides (stride bits at a time) needed to | |
11163 | * consume the bits of the input address. In the pseudocode this is: | |
11164 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
11165 | * where their 'inputsize' is our 'inputsize', 'grainsize' is | |
11166 | * our 'stride + 3' and 'stride' is our 'stride'. | |
11167 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
11168 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride | |
11169 | * = 4 - (inputsize - 4) / stride; | |
11170 | */ | |
11171 | level = 4 - (inputsize - 4) / stride; | |
11172 | } else { | |
11173 | /* For stage 2 translations the starting level is specified by the | |
11174 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) | |
11175 | */ | |
1b4093ea SS |
11176 | uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
11177 | uint32_t startlevel; | |
1853d5a9 EI |
11178 | bool ok; |
11179 | ||
6e99f762 | 11180 | if (!aarch64 || stride == 9) { |
1853d5a9 | 11181 | /* AArch32 or 4KB pages */ |
1b4093ea | 11182 | startlevel = 2 - sl0; |
c36c65ea RDC |
11183 | |
11184 | if (cpu_isar_feature(aa64_st, cpu)) { | |
11185 | startlevel &= 3; | |
11186 | } | |
1853d5a9 EI |
11187 | } else { |
11188 | /* 16KB or 64KB pages */ | |
1b4093ea | 11189 | startlevel = 3 - sl0; |
1853d5a9 EI |
11190 | } |
11191 | ||
11192 | /* Check that the starting level is valid. */ | |
6e99f762 | 11193 | ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
1b4093ea | 11194 | inputsize, stride); |
1853d5a9 | 11195 | if (!ok) { |
da909b2c | 11196 | fault_type = ARMFault_Translation; |
1853d5a9 EI |
11197 | goto do_fault; |
11198 | } | |
1b4093ea | 11199 | level = startlevel; |
1853d5a9 | 11200 | } |
3dde962f | 11201 | |
dddb5223 SS |
11202 | indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
11203 | indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; | |
3dde962f PM |
11204 | |
11205 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 | 11206 | descaddr = extract64(ttbr, 0, 48); |
41a4bf1f PM |
11207 | /* |
11208 | * We rely on this masking to clear the RES0 bits at the bottom of the TTBR | |
11209 | * and also to mask out CnP (bit 0) which could validly be non-zero. | |
11210 | */ | |
dddb5223 | 11211 | descaddr &= ~indexmask; |
3dde962f | 11212 | |
6109769a | 11213 | /* The address field in the descriptor goes up to bit 39 for ARMv7 |
dddb5223 SS |
11214 | * but up to bit 47 for ARMv8, but we use the descaddrmask |
11215 | * up to bit 39 for AArch32, because we don't need other bits in that case | |
11216 | * to construct next descriptor address (anyway they should be all zeroes). | |
6109769a | 11217 | */ |
6e99f762 | 11218 | descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
dddb5223 | 11219 | ~indexmask_grainsize; |
6109769a | 11220 | |
ebca90e4 PM |
11221 | /* Secure accesses start with the page table in secure memory and |
11222 | * can be downgraded to non-secure at any step. Non-secure accesses | |
11223 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
11224 | * bits at each step. | |
11225 | */ | |
11226 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
11227 | for (;;) { |
11228 | uint64_t descriptor; | |
ebca90e4 | 11229 | bool nstable; |
3dde962f | 11230 | |
dddb5223 | 11231 | descaddr |= (address >> (stride * (4 - level))) & indexmask; |
2c8dd318 | 11232 | descaddr &= ~7ULL; |
ebca90e4 | 11233 | nstable = extract32(tableattrs, 4, 1); |
3795a6de | 11234 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); |
3b39d734 | 11235 | if (fi->type != ARMFault_None) { |
37785977 EI |
11236 | goto do_fault; |
11237 | } | |
11238 | ||
3dde962f PM |
11239 | if (!(descriptor & 1) || |
11240 | (!(descriptor & 2) && (level == 3))) { | |
11241 | /* Invalid, or the Reserved level 3 encoding */ | |
11242 | goto do_fault; | |
11243 | } | |
6109769a | 11244 | descaddr = descriptor & descaddrmask; |
3dde962f PM |
11245 | |
11246 | if ((descriptor & 2) && (level < 3)) { | |
037c13c5 | 11247 | /* Table entry. The top five bits are attributes which may |
3dde962f PM |
11248 | * propagate down through lower levels of the table (and |
11249 | * which are all arranged so that 0 means "no effect", so | |
11250 | * we can gather them up by ORing in the bits at each level). | |
11251 | */ | |
11252 | tableattrs |= extract64(descriptor, 59, 5); | |
11253 | level++; | |
dddb5223 | 11254 | indexmask = indexmask_grainsize; |
3dde962f PM |
11255 | continue; |
11256 | } | |
11257 | /* Block entry at level 1 or 2, or page entry at level 3. | |
11258 | * These are basically the same thing, although the number | |
11259 | * of bits we pull in from the vaddr varies. | |
11260 | */ | |
973a5434 | 11261 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
3dde962f | 11262 | descaddr |= (address & (page_size - 1)); |
6ab1a5ee | 11263 | /* Extract attributes from the descriptor */ |
d615efac IC |
11264 | attrs = extract64(descriptor, 2, 10) |
11265 | | (extract64(descriptor, 52, 12) << 10); | |
6ab1a5ee | 11266 | |
97fa9350 | 11267 | if (mmu_idx == ARMMMUIdx_Stage2) { |
6ab1a5ee EI |
11268 | /* Stage 2 table descriptors do not include any attribute fields */ |
11269 | break; | |
11270 | } | |
11271 | /* Merge in attributes from table descriptors */ | |
037c13c5 | 11272 | attrs |= nstable << 3; /* NS */ |
1bafc2ba | 11273 | guarded = extract64(descriptor, 50, 1); /* GP */ |
ba97be9f | 11274 | if (param.hpd) { |
037c13c5 RH |
11275 | /* HPD disables all the table attributes except NSTable. */ |
11276 | break; | |
11277 | } | |
11278 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
3dde962f PM |
11279 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
11280 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
11281 | */ | |
037c13c5 RH |
11282 | attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ |
11283 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ | |
3dde962f PM |
11284 | break; |
11285 | } | |
11286 | /* Here descaddr is the final physical address, and attributes | |
11287 | * are all in attrs. | |
11288 | */ | |
da909b2c | 11289 | fault_type = ARMFault_AccessFlag; |
3dde962f PM |
11290 | if ((attrs & (1 << 8)) == 0) { |
11291 | /* Access flag */ | |
11292 | goto do_fault; | |
11293 | } | |
d8e052b3 AJ |
11294 | |
11295 | ap = extract32(attrs, 4, 2); | |
d8e052b3 | 11296 | |
97fa9350 | 11297 | if (mmu_idx == ARMMMUIdx_Stage2) { |
6ab1a5ee | 11298 | ns = true; |
ce3125be PM |
11299 | xn = extract32(attrs, 11, 2); |
11300 | *prot = get_S2prot(env, ap, xn, s1_is_el0); | |
6ab1a5ee EI |
11301 | } else { |
11302 | ns = extract32(attrs, 3, 1); | |
ce3125be | 11303 | xn = extract32(attrs, 12, 1); |
6ab1a5ee | 11304 | pxn = extract32(attrs, 11, 1); |
6e99f762 | 11305 | *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
6ab1a5ee | 11306 | } |
d8e052b3 | 11307 | |
da909b2c | 11308 | fault_type = ARMFault_Permission; |
d8e052b3 | 11309 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
11310 | goto do_fault; |
11311 | } | |
3dde962f | 11312 | |
8bf5b6a9 PM |
11313 | if (ns) { |
11314 | /* The NS bit will (as required by the architecture) have no effect if | |
11315 | * the CPU doesn't support TZ or this is a non-secure translation | |
11316 | * regime, because the attribute will already be non-secure. | |
11317 | */ | |
11318 | txattrs->secure = false; | |
11319 | } | |
1bafc2ba RH |
11320 | /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ |
11321 | if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { | |
149d3b31 | 11322 | arm_tlb_bti_gp(txattrs) = true; |
1bafc2ba | 11323 | } |
5b2d261d | 11324 | |
7e98e21c RH |
11325 | if (mmu_idx == ARMMMUIdx_Stage2) { |
11326 | cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); | |
11327 | } else { | |
11328 | /* Index into MAIR registers for cache attributes */ | |
11329 | uint8_t attrindx = extract32(attrs, 0, 3); | |
11330 | uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; | |
11331 | assert(attrindx <= 7); | |
11332 | cacheattrs->attrs = extract64(mair, attrindx * 8, 8); | |
5b2d261d | 11333 | } |
7e98e21c | 11334 | cacheattrs->shareability = extract32(attrs, 6, 2); |
5b2d261d | 11335 | |
3dde962f PM |
11336 | *phys_ptr = descaddr; |
11337 | *page_size_ptr = page_size; | |
b7cc4e82 | 11338 | return false; |
3dde962f PM |
11339 | |
11340 | do_fault: | |
da909b2c PM |
11341 | fi->type = fault_type; |
11342 | fi->level = level; | |
37785977 | 11343 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
97fa9350 | 11344 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); |
b7cc4e82 | 11345 | return true; |
3dde962f PM |
11346 | } |
11347 | ||
f6bda88f PC |
11348 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
11349 | ARMMMUIdx mmu_idx, | |
11350 | int32_t address, int *prot) | |
11351 | { | |
3a00d560 MD |
11352 | if (!arm_feature(env, ARM_FEATURE_M)) { |
11353 | *prot = PAGE_READ | PAGE_WRITE; | |
11354 | switch (address) { | |
11355 | case 0xF0000000 ... 0xFFFFFFFF: | |
11356 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { | |
11357 | /* hivecs execing is ok */ | |
11358 | *prot |= PAGE_EXEC; | |
11359 | } | |
11360 | break; | |
11361 | case 0x00000000 ... 0x7FFFFFFF: | |
f6bda88f | 11362 | *prot |= PAGE_EXEC; |
3a00d560 MD |
11363 | break; |
11364 | } | |
11365 | } else { | |
11366 | /* Default system address map for M profile cores. | |
11367 | * The architecture specifies which regions are execute-never; | |
11368 | * at the MPU level no other checks are defined. | |
11369 | */ | |
11370 | switch (address) { | |
11371 | case 0x00000000 ... 0x1fffffff: /* ROM */ | |
11372 | case 0x20000000 ... 0x3fffffff: /* SRAM */ | |
11373 | case 0x60000000 ... 0x7fffffff: /* RAM */ | |
11374 | case 0x80000000 ... 0x9fffffff: /* RAM */ | |
11375 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
11376 | break; | |
11377 | case 0x40000000 ... 0x5fffffff: /* Peripheral */ | |
11378 | case 0xa0000000 ... 0xbfffffff: /* Device */ | |
11379 | case 0xc0000000 ... 0xdfffffff: /* Device */ | |
11380 | case 0xe0000000 ... 0xffffffff: /* System */ | |
11381 | *prot = PAGE_READ | PAGE_WRITE; | |
11382 | break; | |
11383 | default: | |
11384 | g_assert_not_reached(); | |
f6bda88f | 11385 | } |
f6bda88f | 11386 | } |
f6bda88f PC |
11387 | } |
11388 | ||
29c483a5 MD |
11389 | static bool pmsav7_use_background_region(ARMCPU *cpu, |
11390 | ARMMMUIdx mmu_idx, bool is_user) | |
11391 | { | |
11392 | /* Return true if we should use the default memory map as a | |
11393 | * "background" region if there are no hits against any MPU regions. | |
11394 | */ | |
11395 | CPUARMState *env = &cpu->env; | |
11396 | ||
11397 | if (is_user) { | |
11398 | return false; | |
11399 | } | |
11400 | ||
11401 | if (arm_feature(env, ARM_FEATURE_M)) { | |
ecf5e8ea PM |
11402 | return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] |
11403 | & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; | |
29c483a5 MD |
11404 | } else { |
11405 | return regime_sctlr(env, mmu_idx) & SCTLR_BR; | |
11406 | } | |
11407 | } | |
11408 | ||
38aaa60c PM |
11409 | static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
11410 | { | |
11411 | /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ | |
11412 | return arm_feature(env, ARM_FEATURE_M) && | |
11413 | extract32(address, 20, 12) == 0xe00; | |
11414 | } | |
11415 | ||
bf446a11 PM |
11416 | static inline bool m_is_system_region(CPUARMState *env, uint32_t address) |
11417 | { | |
11418 | /* True if address is in the M profile system region | |
11419 | * 0xe0000000 - 0xffffffff | |
11420 | */ | |
11421 | return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; | |
11422 | } | |
11423 | ||
f6bda88f | 11424 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
03ae85f8 | 11425 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
9375ad15 | 11426 | hwaddr *phys_ptr, int *prot, |
e5e40999 | 11427 | target_ulong *page_size, |
9375ad15 | 11428 | ARMMMUFaultInfo *fi) |
f6bda88f | 11429 | { |
2fc0cc0e | 11430 | ARMCPU *cpu = env_archcpu(env); |
f6bda88f PC |
11431 | int n; |
11432 | bool is_user = regime_is_user(env, mmu_idx); | |
11433 | ||
11434 | *phys_ptr = address; | |
e5e40999 | 11435 | *page_size = TARGET_PAGE_SIZE; |
f6bda88f PC |
11436 | *prot = 0; |
11437 | ||
38aaa60c PM |
11438 | if (regime_translation_disabled(env, mmu_idx) || |
11439 | m_is_ppb_region(env, address)) { | |
11440 | /* MPU disabled or M profile PPB access: use default memory map. | |
11441 | * The other case which uses the default memory map in the | |
11442 | * v7M ARM ARM pseudocode is exception vector reads from the vector | |
11443 | * table. In QEMU those accesses are done in arm_v7m_load_vector(), | |
11444 | * which always does a direct read using address_space_ldl(), rather | |
11445 | * than going via this function, so we don't need to check that here. | |
11446 | */ | |
f6bda88f PC |
11447 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
11448 | } else { /* MPU enabled */ | |
11449 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
11450 | /* region search */ | |
11451 | uint32_t base = env->pmsav7.drbar[n]; | |
11452 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
11453 | uint32_t rmask; | |
11454 | bool srdis = false; | |
11455 | ||
11456 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
11457 | continue; | |
11458 | } | |
11459 | ||
11460 | if (!rsize) { | |
c9f9f124 MD |
11461 | qemu_log_mask(LOG_GUEST_ERROR, |
11462 | "DRSR[%d]: Rsize field cannot be 0\n", n); | |
f6bda88f PC |
11463 | continue; |
11464 | } | |
11465 | rsize++; | |
11466 | rmask = (1ull << rsize) - 1; | |
11467 | ||
11468 | if (base & rmask) { | |
c9f9f124 MD |
11469 | qemu_log_mask(LOG_GUEST_ERROR, |
11470 | "DRBAR[%d]: 0x%" PRIx32 " misaligned " | |
11471 | "to DRSR region size, mask = 0x%" PRIx32 "\n", | |
11472 | n, base, rmask); | |
f6bda88f PC |
11473 | continue; |
11474 | } | |
11475 | ||
11476 | if (address < base || address > base + rmask) { | |
9d2b5a58 PM |
11477 | /* |
11478 | * Address not in this region. We must check whether the | |
11479 | * region covers addresses in the same page as our address. | |
11480 | * In that case we must not report a size that covers the | |
11481 | * whole page for a subsequent hit against a different MPU | |
11482 | * region or the background region, because it would result in | |
11483 | * incorrect TLB hits for subsequent accesses to addresses that | |
11484 | * are in this MPU region. | |
11485 | */ | |
11486 | if (ranges_overlap(base, rmask, | |
11487 | address & TARGET_PAGE_MASK, | |
11488 | TARGET_PAGE_SIZE)) { | |
11489 | *page_size = 1; | |
11490 | } | |
f6bda88f PC |
11491 | continue; |
11492 | } | |
11493 | ||
11494 | /* Region matched */ | |
11495 | ||
11496 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
11497 | int i, snd; | |
11498 | uint32_t srdis_mask; | |
11499 | ||
11500 | rsize -= 3; /* sub region size (power of 2) */ | |
11501 | snd = ((address - base) >> rsize) & 0x7; | |
11502 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
11503 | ||
11504 | srdis_mask = srdis ? 0x3 : 0x0; | |
11505 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
11506 | /* This will check in groups of 2, 4 and then 8, whether | |
11507 | * the subregion bits are consistent. rsize is incremented | |
11508 | * back up to give the region size, considering consistent | |
11509 | * adjacent subregions as one region. Stop testing if rsize | |
11510 | * is already big enough for an entire QEMU page. | |
11511 | */ | |
11512 | int snd_rounded = snd & ~(i - 1); | |
11513 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
11514 | snd_rounded + 8, i); | |
11515 | if (srdis_mask ^ srdis_multi) { | |
11516 | break; | |
11517 | } | |
11518 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
11519 | rsize++; | |
11520 | } | |
11521 | } | |
f6bda88f PC |
11522 | if (srdis) { |
11523 | continue; | |
11524 | } | |
e5e40999 PM |
11525 | if (rsize < TARGET_PAGE_BITS) { |
11526 | *page_size = 1 << rsize; | |
11527 | } | |
f6bda88f PC |
11528 | break; |
11529 | } | |
11530 | ||
11531 | if (n == -1) { /* no hits */ | |
29c483a5 | 11532 | if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
f6bda88f | 11533 | /* background fault */ |
9375ad15 | 11534 | fi->type = ARMFault_Background; |
f6bda88f PC |
11535 | return true; |
11536 | } | |
11537 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
11538 | } else { /* a MPU hit! */ | |
11539 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
bf446a11 PM |
11540 | uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
11541 | ||
11542 | if (m_is_system_region(env, address)) { | |
11543 | /* System space is always execute never */ | |
11544 | xn = 1; | |
11545 | } | |
f6bda88f PC |
11546 | |
11547 | if (is_user) { /* User mode AP bit decoding */ | |
11548 | switch (ap) { | |
11549 | case 0: | |
11550 | case 1: | |
11551 | case 5: | |
11552 | break; /* no access */ | |
11553 | case 3: | |
11554 | *prot |= PAGE_WRITE; | |
11555 | /* fall through */ | |
11556 | case 2: | |
11557 | case 6: | |
11558 | *prot |= PAGE_READ | PAGE_EXEC; | |
11559 | break; | |
8638f1ad PM |
11560 | case 7: |
11561 | /* for v7M, same as 6; for R profile a reserved value */ | |
11562 | if (arm_feature(env, ARM_FEATURE_M)) { | |
11563 | *prot |= PAGE_READ | PAGE_EXEC; | |
11564 | break; | |
11565 | } | |
11566 | /* fall through */ | |
f6bda88f PC |
11567 | default: |
11568 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
11569 | "DRACR[%d]: Bad value for AP bits: 0x%" |
11570 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
11571 | } |
11572 | } else { /* Priv. mode AP bits decoding */ | |
11573 | switch (ap) { | |
11574 | case 0: | |
11575 | break; /* no access */ | |
11576 | case 1: | |
11577 | case 2: | |
11578 | case 3: | |
11579 | *prot |= PAGE_WRITE; | |
11580 | /* fall through */ | |
11581 | case 5: | |
11582 | case 6: | |
11583 | *prot |= PAGE_READ | PAGE_EXEC; | |
11584 | break; | |
8638f1ad PM |
11585 | case 7: |
11586 | /* for v7M, same as 6; for R profile a reserved value */ | |
11587 | if (arm_feature(env, ARM_FEATURE_M)) { | |
11588 | *prot |= PAGE_READ | PAGE_EXEC; | |
11589 | break; | |
11590 | } | |
11591 | /* fall through */ | |
f6bda88f PC |
11592 | default: |
11593 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
11594 | "DRACR[%d]: Bad value for AP bits: 0x%" |
11595 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
11596 | } |
11597 | } | |
11598 | ||
11599 | /* execute never */ | |
bf446a11 | 11600 | if (xn) { |
f6bda88f PC |
11601 | *prot &= ~PAGE_EXEC; |
11602 | } | |
11603 | } | |
11604 | } | |
11605 | ||
9375ad15 PM |
11606 | fi->type = ARMFault_Permission; |
11607 | fi->level = 1; | |
f6bda88f PC |
11608 | return !(*prot & (1 << access_type)); |
11609 | } | |
11610 | ||
35337cc3 PM |
11611 | static bool v8m_is_sau_exempt(CPUARMState *env, |
11612 | uint32_t address, MMUAccessType access_type) | |
11613 | { | |
11614 | /* The architecture specifies that certain address ranges are | |
11615 | * exempt from v8M SAU/IDAU checks. | |
11616 | */ | |
11617 | return | |
11618 | (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || | |
11619 | (address >= 0xe0000000 && address <= 0xe0002fff) || | |
11620 | (address >= 0xe000e000 && address <= 0xe000efff) || | |
11621 | (address >= 0xe002e000 && address <= 0xe002efff) || | |
11622 | (address >= 0xe0040000 && address <= 0xe0041fff) || | |
11623 | (address >= 0xe00ff000 && address <= 0xe00fffff); | |
11624 | } | |
11625 | ||
787a7e76 | 11626 | void v8m_security_lookup(CPUARMState *env, uint32_t address, |
35337cc3 PM |
11627 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
11628 | V8M_SAttributes *sattrs) | |
11629 | { | |
11630 | /* Look up the security attributes for this address. Compare the | |
11631 | * pseudocode SecurityCheck() function. | |
11632 | * We assume the caller has zero-initialized *sattrs. | |
11633 | */ | |
2fc0cc0e | 11634 | ARMCPU *cpu = env_archcpu(env); |
35337cc3 | 11635 | int r; |
181962fd PM |
11636 | bool idau_exempt = false, idau_ns = true, idau_nsc = true; |
11637 | int idau_region = IREGION_NOTVALID; | |
72042435 PM |
11638 | uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
11639 | uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); | |
35337cc3 | 11640 | |
181962fd PM |
11641 | if (cpu->idau) { |
11642 | IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); | |
11643 | IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); | |
11644 | ||
11645 | iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, | |
11646 | &idau_nsc); | |
11647 | } | |
35337cc3 PM |
11648 | |
11649 | if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { | |
11650 | /* 0xf0000000..0xffffffff is always S for insn fetches */ | |
11651 | return; | |
11652 | } | |
11653 | ||
181962fd | 11654 | if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { |
35337cc3 PM |
11655 | sattrs->ns = !regime_is_secure(env, mmu_idx); |
11656 | return; | |
11657 | } | |
11658 | ||
181962fd PM |
11659 | if (idau_region != IREGION_NOTVALID) { |
11660 | sattrs->irvalid = true; | |
11661 | sattrs->iregion = idau_region; | |
11662 | } | |
11663 | ||
35337cc3 PM |
11664 | switch (env->sau.ctrl & 3) { |
11665 | case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ | |
11666 | break; | |
11667 | case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ | |
11668 | sattrs->ns = true; | |
11669 | break; | |
11670 | default: /* SAU.ENABLE == 1 */ | |
11671 | for (r = 0; r < cpu->sau_sregion; r++) { | |
11672 | if (env->sau.rlar[r] & 1) { | |
11673 | uint32_t base = env->sau.rbar[r] & ~0x1f; | |
11674 | uint32_t limit = env->sau.rlar[r] | 0x1f; | |
11675 | ||
11676 | if (base <= address && limit >= address) { | |
72042435 PM |
11677 | if (base > addr_page_base || limit < addr_page_limit) { |
11678 | sattrs->subpage = true; | |
11679 | } | |
35337cc3 PM |
11680 | if (sattrs->srvalid) { |
11681 | /* If we hit in more than one region then we must report | |
11682 | * as Secure, not NS-Callable, with no valid region | |
11683 | * number info. | |
11684 | */ | |
11685 | sattrs->ns = false; | |
11686 | sattrs->nsc = false; | |
11687 | sattrs->sregion = 0; | |
11688 | sattrs->srvalid = false; | |
11689 | break; | |
11690 | } else { | |
11691 | if (env->sau.rlar[r] & 2) { | |
11692 | sattrs->nsc = true; | |
11693 | } else { | |
11694 | sattrs->ns = true; | |
11695 | } | |
11696 | sattrs->srvalid = true; | |
11697 | sattrs->sregion = r; | |
11698 | } | |
9d2b5a58 PM |
11699 | } else { |
11700 | /* | |
11701 | * Address not in this region. We must check whether the | |
11702 | * region covers addresses in the same page as our address. | |
11703 | * In that case we must not report a size that covers the | |
11704 | * whole page for a subsequent hit against a different MPU | |
11705 | * region or the background region, because it would result | |
11706 | * in incorrect TLB hits for subsequent accesses to | |
11707 | * addresses that are in this MPU region. | |
11708 | */ | |
11709 | if (limit >= base && | |
11710 | ranges_overlap(base, limit - base + 1, | |
11711 | addr_page_base, | |
11712 | TARGET_PAGE_SIZE)) { | |
11713 | sattrs->subpage = true; | |
11714 | } | |
35337cc3 PM |
11715 | } |
11716 | } | |
11717 | } | |
7e3f1223 TR |
11718 | break; |
11719 | } | |
35337cc3 | 11720 | |
7e3f1223 TR |
11721 | /* |
11722 | * The IDAU will override the SAU lookup results if it specifies | |
11723 | * higher security than the SAU does. | |
11724 | */ | |
11725 | if (!idau_ns) { | |
11726 | if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { | |
11727 | sattrs->ns = false; | |
11728 | sattrs->nsc = idau_nsc; | |
181962fd | 11729 | } |
35337cc3 PM |
11730 | } |
11731 | } | |
11732 | ||
787a7e76 | 11733 | bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, |
54317c0f PM |
11734 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
11735 | hwaddr *phys_ptr, MemTxAttrs *txattrs, | |
72042435 PM |
11736 | int *prot, bool *is_subpage, |
11737 | ARMMMUFaultInfo *fi, uint32_t *mregion) | |
54317c0f PM |
11738 | { |
11739 | /* Perform a PMSAv8 MPU lookup (without also doing the SAU check | |
11740 | * that a full phys-to-virt translation does). | |
11741 | * mregion is (if not NULL) set to the region number which matched, | |
11742 | * or -1 if no region number is returned (MPU off, address did not | |
11743 | * hit a region, address hit in multiple regions). | |
72042435 PM |
11744 | * We set is_subpage to true if the region hit doesn't cover the |
11745 | * entire TARGET_PAGE the address is within. | |
54317c0f | 11746 | */ |
2fc0cc0e | 11747 | ARMCPU *cpu = env_archcpu(env); |
504e3cc3 | 11748 | bool is_user = regime_is_user(env, mmu_idx); |
62c58ee0 | 11749 | uint32_t secure = regime_is_secure(env, mmu_idx); |
504e3cc3 PM |
11750 | int n; |
11751 | int matchregion = -1; | |
11752 | bool hit = false; | |
72042435 PM |
11753 | uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
11754 | uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); | |
504e3cc3 | 11755 | |
72042435 | 11756 | *is_subpage = false; |
504e3cc3 PM |
11757 | *phys_ptr = address; |
11758 | *prot = 0; | |
54317c0f PM |
11759 | if (mregion) { |
11760 | *mregion = -1; | |
35337cc3 PM |
11761 | } |
11762 | ||
504e3cc3 PM |
11763 | /* Unlike the ARM ARM pseudocode, we don't need to check whether this |
11764 | * was an exception vector read from the vector table (which is always | |
11765 | * done using the default system address map), because those accesses | |
11766 | * are done in arm_v7m_load_vector(), which always does a direct | |
11767 | * read using address_space_ldl(), rather than going via this function. | |
11768 | */ | |
11769 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
11770 | hit = true; | |
11771 | } else if (m_is_ppb_region(env, address)) { | |
11772 | hit = true; | |
504e3cc3 | 11773 | } else { |
cff21316 PM |
11774 | if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
11775 | hit = true; | |
11776 | } | |
11777 | ||
504e3cc3 PM |
11778 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
11779 | /* region search */ | |
11780 | /* Note that the base address is bits [31:5] from the register | |
11781 | * with bits [4:0] all zeroes, but the limit address is bits | |
11782 | * [31:5] from the register with bits [4:0] all ones. | |
11783 | */ | |
62c58ee0 PM |
11784 | uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; |
11785 | uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; | |
504e3cc3 | 11786 | |
62c58ee0 | 11787 | if (!(env->pmsav8.rlar[secure][n] & 0x1)) { |
504e3cc3 PM |
11788 | /* Region disabled */ |
11789 | continue; | |
11790 | } | |
11791 | ||
11792 | if (address < base || address > limit) { | |
9d2b5a58 PM |
11793 | /* |
11794 | * Address not in this region. We must check whether the | |
11795 | * region covers addresses in the same page as our address. | |
11796 | * In that case we must not report a size that covers the | |
11797 | * whole page for a subsequent hit against a different MPU | |
11798 | * region or the background region, because it would result in | |
11799 | * incorrect TLB hits for subsequent accesses to addresses that | |
11800 | * are in this MPU region. | |
11801 | */ | |
11802 | if (limit >= base && | |
11803 | ranges_overlap(base, limit - base + 1, | |
11804 | addr_page_base, | |
11805 | TARGET_PAGE_SIZE)) { | |
11806 | *is_subpage = true; | |
11807 | } | |
504e3cc3 PM |
11808 | continue; |
11809 | } | |
11810 | ||
72042435 PM |
11811 | if (base > addr_page_base || limit < addr_page_limit) { |
11812 | *is_subpage = true; | |
11813 | } | |
11814 | ||
cff21316 | 11815 | if (matchregion != -1) { |
504e3cc3 PM |
11816 | /* Multiple regions match -- always a failure (unlike |
11817 | * PMSAv7 where highest-numbered-region wins) | |
11818 | */ | |
3f551b5b PM |
11819 | fi->type = ARMFault_Permission; |
11820 | fi->level = 1; | |
504e3cc3 PM |
11821 | return true; |
11822 | } | |
11823 | ||
11824 | matchregion = n; | |
11825 | hit = true; | |
504e3cc3 PM |
11826 | } |
11827 | } | |
11828 | ||
11829 | if (!hit) { | |
11830 | /* background fault */ | |
3f551b5b | 11831 | fi->type = ARMFault_Background; |
504e3cc3 PM |
11832 | return true; |
11833 | } | |
11834 | ||
11835 | if (matchregion == -1) { | |
11836 | /* hit using the background region */ | |
11837 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
11838 | } else { | |
62c58ee0 PM |
11839 | uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); |
11840 | uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); | |
cad8e2e3 PM |
11841 | bool pxn = false; |
11842 | ||
11843 | if (arm_feature(env, ARM_FEATURE_V8_1M)) { | |
11844 | pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); | |
11845 | } | |
504e3cc3 PM |
11846 | |
11847 | if (m_is_system_region(env, address)) { | |
11848 | /* System space is always execute never */ | |
11849 | xn = 1; | |
11850 | } | |
11851 | ||
11852 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); | |
cad8e2e3 | 11853 | if (*prot && !xn && !(pxn && !is_user)) { |
504e3cc3 PM |
11854 | *prot |= PAGE_EXEC; |
11855 | } | |
11856 | /* We don't need to look the attribute up in the MAIR0/MAIR1 | |
11857 | * registers because that only tells us about cacheability. | |
11858 | */ | |
54317c0f PM |
11859 | if (mregion) { |
11860 | *mregion = matchregion; | |
11861 | } | |
504e3cc3 PM |
11862 | } |
11863 | ||
3f551b5b PM |
11864 | fi->type = ARMFault_Permission; |
11865 | fi->level = 1; | |
504e3cc3 PM |
11866 | return !(*prot & (1 << access_type)); |
11867 | } | |
11868 | ||
54317c0f PM |
11869 | |
11870 | static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, | |
11871 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
11872 | hwaddr *phys_ptr, MemTxAttrs *txattrs, | |
72042435 PM |
11873 | int *prot, target_ulong *page_size, |
11874 | ARMMMUFaultInfo *fi) | |
54317c0f PM |
11875 | { |
11876 | uint32_t secure = regime_is_secure(env, mmu_idx); | |
11877 | V8M_SAttributes sattrs = {}; | |
72042435 PM |
11878 | bool ret; |
11879 | bool mpu_is_subpage; | |
54317c0f PM |
11880 | |
11881 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
11882 | v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); | |
11883 | if (access_type == MMU_INST_FETCH) { | |
11884 | /* Instruction fetches always use the MMU bank and the | |
11885 | * transaction attribute determined by the fetch address, | |
11886 | * regardless of CPU state. This is painful for QEMU | |
11887 | * to handle, because it would mean we need to encode | |
11888 | * into the mmu_idx not just the (user, negpri) information | |
11889 | * for the current security state but also that for the | |
11890 | * other security state, which would balloon the number | |
11891 | * of mmu_idx values needed alarmingly. | |
11892 | * Fortunately we can avoid this because it's not actually | |
11893 | * possible to arbitrarily execute code from memory with | |
11894 | * the wrong security attribute: it will always generate | |
11895 | * an exception of some kind or another, apart from the | |
11896 | * special case of an NS CPU executing an SG instruction | |
11897 | * in S&NSC memory. So we always just fail the translation | |
11898 | * here and sort things out in the exception handler | |
11899 | * (including possibly emulating an SG instruction). | |
11900 | */ | |
11901 | if (sattrs.ns != !secure) { | |
3f551b5b PM |
11902 | if (sattrs.nsc) { |
11903 | fi->type = ARMFault_QEMU_NSCExec; | |
11904 | } else { | |
11905 | fi->type = ARMFault_QEMU_SFault; | |
11906 | } | |
72042435 | 11907 | *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
54317c0f PM |
11908 | *phys_ptr = address; |
11909 | *prot = 0; | |
11910 | return true; | |
11911 | } | |
11912 | } else { | |
11913 | /* For data accesses we always use the MMU bank indicated | |
11914 | * by the current CPU state, but the security attributes | |
11915 | * might downgrade a secure access to nonsecure. | |
11916 | */ | |
11917 | if (sattrs.ns) { | |
11918 | txattrs->secure = false; | |
11919 | } else if (!secure) { | |
11920 | /* NS access to S memory must fault. | |
11921 | * Architecturally we should first check whether the | |
11922 | * MPU information for this address indicates that we | |
11923 | * are doing an unaligned access to Device memory, which | |
11924 | * should generate a UsageFault instead. QEMU does not | |
11925 | * currently check for that kind of unaligned access though. | |
11926 | * If we added it we would need to do so as a special case | |
11927 | * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). | |
11928 | */ | |
3f551b5b | 11929 | fi->type = ARMFault_QEMU_SFault; |
72042435 | 11930 | *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
54317c0f PM |
11931 | *phys_ptr = address; |
11932 | *prot = 0; | |
11933 | return true; | |
11934 | } | |
11935 | } | |
11936 | } | |
11937 | ||
72042435 PM |
11938 | ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, |
11939 | txattrs, prot, &mpu_is_subpage, fi, NULL); | |
72042435 PM |
11940 | *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; |
11941 | return ret; | |
54317c0f PM |
11942 | } |
11943 | ||
13689d43 | 11944 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
03ae85f8 | 11945 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
53a4e5c5 PM |
11946 | hwaddr *phys_ptr, int *prot, |
11947 | ARMMMUFaultInfo *fi) | |
9ee6e8bb PB |
11948 | { |
11949 | int n; | |
11950 | uint32_t mask; | |
11951 | uint32_t base; | |
0480f69a | 11952 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb | 11953 | |
3279adb9 PM |
11954 | if (regime_translation_disabled(env, mmu_idx)) { |
11955 | /* MPU disabled. */ | |
11956 | *phys_ptr = address; | |
11957 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
11958 | return false; | |
11959 | } | |
11960 | ||
9ee6e8bb PB |
11961 | *phys_ptr = address; |
11962 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 11963 | base = env->cp15.c6_region[n]; |
87c3d486 | 11964 | if ((base & 1) == 0) { |
554b0b09 | 11965 | continue; |
87c3d486 | 11966 | } |
554b0b09 PM |
11967 | mask = 1 << ((base >> 1) & 0x1f); |
11968 | /* Keep this shift separate from the above to avoid an | |
11969 | (undefined) << 32. */ | |
11970 | mask = (mask << 1) - 1; | |
87c3d486 | 11971 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 11972 | break; |
87c3d486 | 11973 | } |
9ee6e8bb | 11974 | } |
87c3d486 | 11975 | if (n < 0) { |
53a4e5c5 | 11976 | fi->type = ARMFault_Background; |
b7cc4e82 | 11977 | return true; |
87c3d486 | 11978 | } |
9ee6e8bb | 11979 | |
03ae85f8 | 11980 | if (access_type == MMU_INST_FETCH) { |
7e09797c | 11981 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 11982 | } else { |
7e09797c | 11983 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
11984 | } |
11985 | mask = (mask >> (n * 4)) & 0xf; | |
11986 | switch (mask) { | |
11987 | case 0: | |
53a4e5c5 PM |
11988 | fi->type = ARMFault_Permission; |
11989 | fi->level = 1; | |
b7cc4e82 | 11990 | return true; |
9ee6e8bb | 11991 | case 1: |
87c3d486 | 11992 | if (is_user) { |
53a4e5c5 PM |
11993 | fi->type = ARMFault_Permission; |
11994 | fi->level = 1; | |
b7cc4e82 | 11995 | return true; |
87c3d486 | 11996 | } |
554b0b09 PM |
11997 | *prot = PAGE_READ | PAGE_WRITE; |
11998 | break; | |
9ee6e8bb | 11999 | case 2: |
554b0b09 | 12000 | *prot = PAGE_READ; |
87c3d486 | 12001 | if (!is_user) { |
554b0b09 | 12002 | *prot |= PAGE_WRITE; |
87c3d486 | 12003 | } |
554b0b09 | 12004 | break; |
9ee6e8bb | 12005 | case 3: |
554b0b09 PM |
12006 | *prot = PAGE_READ | PAGE_WRITE; |
12007 | break; | |
9ee6e8bb | 12008 | case 5: |
87c3d486 | 12009 | if (is_user) { |
53a4e5c5 PM |
12010 | fi->type = ARMFault_Permission; |
12011 | fi->level = 1; | |
b7cc4e82 | 12012 | return true; |
87c3d486 | 12013 | } |
554b0b09 PM |
12014 | *prot = PAGE_READ; |
12015 | break; | |
9ee6e8bb | 12016 | case 6: |
554b0b09 PM |
12017 | *prot = PAGE_READ; |
12018 | break; | |
9ee6e8bb | 12019 | default: |
554b0b09 | 12020 | /* Bad permission. */ |
53a4e5c5 PM |
12021 | fi->type = ARMFault_Permission; |
12022 | fi->level = 1; | |
b7cc4e82 | 12023 | return true; |
9ee6e8bb | 12024 | } |
3ad493fc | 12025 | *prot |= PAGE_EXEC; |
b7cc4e82 | 12026 | return false; |
9ee6e8bb PB |
12027 | } |
12028 | ||
5b2d261d AB |
12029 | /* Combine either inner or outer cacheability attributes for normal |
12030 | * memory, according to table D4-42 and pseudocode procedure | |
12031 | * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). | |
12032 | * | |
12033 | * NB: only stage 1 includes allocation hints (RW bits), leading to | |
12034 | * some asymmetry. | |
12035 | */ | |
12036 | static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) | |
12037 | { | |
12038 | if (s1 == 4 || s2 == 4) { | |
12039 | /* non-cacheable has precedence */ | |
12040 | return 4; | |
12041 | } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { | |
12042 | /* stage 1 write-through takes precedence */ | |
12043 | return s1; | |
12044 | } else if (extract32(s2, 2, 2) == 2) { | |
12045 | /* stage 2 write-through takes precedence, but the allocation hint | |
12046 | * is still taken from stage 1 | |
12047 | */ | |
12048 | return (2 << 2) | extract32(s1, 0, 2); | |
12049 | } else { /* write-back */ | |
12050 | return s1; | |
12051 | } | |
12052 | } | |
12053 | ||
12054 | /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 | |
12055 | * and CombineS1S2Desc() | |
12056 | * | |
12057 | * @s1: Attributes from stage 1 walk | |
12058 | * @s2: Attributes from stage 2 walk | |
12059 | */ | |
12060 | static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) | |
12061 | { | |
337a03f0 | 12062 | uint8_t s1lo, s2lo, s1hi, s2hi; |
5b2d261d | 12063 | ARMCacheAttrs ret; |
337a03f0 RH |
12064 | bool tagged = false; |
12065 | ||
12066 | if (s1.attrs == 0xf0) { | |
12067 | tagged = true; | |
12068 | s1.attrs = 0xff; | |
12069 | } | |
12070 | ||
12071 | s1lo = extract32(s1.attrs, 0, 4); | |
12072 | s2lo = extract32(s2.attrs, 0, 4); | |
12073 | s1hi = extract32(s1.attrs, 4, 4); | |
12074 | s2hi = extract32(s2.attrs, 4, 4); | |
5b2d261d AB |
12075 | |
12076 | /* Combine shareability attributes (table D4-43) */ | |
12077 | if (s1.shareability == 2 || s2.shareability == 2) { | |
12078 | /* if either are outer-shareable, the result is outer-shareable */ | |
12079 | ret.shareability = 2; | |
12080 | } else if (s1.shareability == 3 || s2.shareability == 3) { | |
12081 | /* if either are inner-shareable, the result is inner-shareable */ | |
12082 | ret.shareability = 3; | |
12083 | } else { | |
12084 | /* both non-shareable */ | |
12085 | ret.shareability = 0; | |
12086 | } | |
12087 | ||
12088 | /* Combine memory type and cacheability attributes */ | |
12089 | if (s1hi == 0 || s2hi == 0) { | |
12090 | /* Device has precedence over normal */ | |
12091 | if (s1lo == 0 || s2lo == 0) { | |
12092 | /* nGnRnE has precedence over anything */ | |
12093 | ret.attrs = 0; | |
12094 | } else if (s1lo == 4 || s2lo == 4) { | |
12095 | /* non-Reordering has precedence over Reordering */ | |
12096 | ret.attrs = 4; /* nGnRE */ | |
12097 | } else if (s1lo == 8 || s2lo == 8) { | |
12098 | /* non-Gathering has precedence over Gathering */ | |
12099 | ret.attrs = 8; /* nGRE */ | |
12100 | } else { | |
12101 | ret.attrs = 0xc; /* GRE */ | |
12102 | } | |
12103 | ||
12104 | /* Any location for which the resultant memory type is any | |
12105 | * type of Device memory is always treated as Outer Shareable. | |
12106 | */ | |
12107 | ret.shareability = 2; | |
12108 | } else { /* Normal memory */ | |
12109 | /* Outer/inner cacheability combine independently */ | |
12110 | ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 | |
12111 | | combine_cacheattr_nibble(s1lo, s2lo); | |
12112 | ||
12113 | if (ret.attrs == 0x44) { | |
12114 | /* Any location for which the resultant memory type is Normal | |
12115 | * Inner Non-cacheable, Outer Non-cacheable is always treated | |
12116 | * as Outer Shareable. | |
12117 | */ | |
12118 | ret.shareability = 2; | |
12119 | } | |
12120 | } | |
12121 | ||
337a03f0 RH |
12122 | /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ |
12123 | if (tagged && ret.attrs == 0xff) { | |
12124 | ret.attrs = 0xf0; | |
12125 | } | |
12126 | ||
5b2d261d AB |
12127 | return ret; |
12128 | } | |
12129 | ||
12130 | ||
702a9357 PM |
12131 | /* get_phys_addr - get the physical address for this virtual address |
12132 | * | |
12133 | * Find the physical address corresponding to the given virtual address, | |
12134 | * by doing a translation table walk on MMU based systems or using the | |
12135 | * MPU state on MPU based systems. | |
12136 | * | |
b7cc4e82 PC |
12137 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
12138 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
12139 | * information on why the translation aborted, in the format of a |
12140 | * DFSR/IFSR fault register, with the following caveats: | |
12141 | * * we honour the short vs long DFSR format differences. | |
12142 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 12143 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
12144 | * value. |
12145 | * | |
12146 | * @env: CPUARMState | |
12147 | * @address: virtual address to get physical address for | |
12148 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 12149 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 12150 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 12151 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
12152 | * @prot: set to the permissions for the page containing phys_ptr |
12153 | * @page_size: set to the size of the page containing phys_ptr | |
5b2d261d AB |
12154 | * @fi: set to fault info if the translation fails |
12155 | * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes | |
702a9357 | 12156 | */ |
ebae861f PMD |
12157 | bool get_phys_addr(CPUARMState *env, target_ulong address, |
12158 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
12159 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
12160 | target_ulong *page_size, | |
12161 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) | |
9ee6e8bb | 12162 | { |
452ef8cb RH |
12163 | if (mmu_idx == ARMMMUIdx_E10_0 || |
12164 | mmu_idx == ARMMMUIdx_E10_1 || | |
12165 | mmu_idx == ARMMMUIdx_E10_1_PAN) { | |
9b539263 EI |
12166 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
12167 | * translations. | |
0480f69a | 12168 | */ |
9b539263 EI |
12169 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
12170 | hwaddr ipa; | |
12171 | int s2_prot; | |
12172 | int ret; | |
5b2d261d | 12173 | ARMCacheAttrs cacheattrs2 = {}; |
9b539263 EI |
12174 | |
12175 | ret = get_phys_addr(env, address, access_type, | |
8bd5c820 | 12176 | stage_1_mmu_idx(mmu_idx), &ipa, attrs, |
bc52bfeb | 12177 | prot, page_size, fi, cacheattrs); |
9b539263 EI |
12178 | |
12179 | /* If S1 fails or S2 is disabled, return early. */ | |
97fa9350 | 12180 | if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { |
9b539263 EI |
12181 | *phys_ptr = ipa; |
12182 | return ret; | |
12183 | } | |
12184 | ||
12185 | /* S1 is done. Now do S2 translation. */ | |
97fa9350 | 12186 | ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, |
ff7de2fc | 12187 | mmu_idx == ARMMMUIdx_E10_0, |
9b539263 | 12188 | phys_ptr, attrs, &s2_prot, |
7e98e21c | 12189 | page_size, fi, &cacheattrs2); |
9b539263 EI |
12190 | fi->s2addr = ipa; |
12191 | /* Combine the S1 and S2 perms. */ | |
12192 | *prot &= s2_prot; | |
5b2d261d | 12193 | |
7e98e21c RH |
12194 | /* If S2 fails, return early. */ |
12195 | if (ret) { | |
12196 | return ret; | |
5b2d261d AB |
12197 | } |
12198 | ||
7e98e21c | 12199 | /* Combine the S1 and S2 cache attributes. */ |
e04a5752 | 12200 | if (arm_hcr_el2_eff(env) & HCR_DC) { |
7e98e21c RH |
12201 | /* |
12202 | * HCR.DC forces the first stage attributes to | |
12203 | * Normal Non-Shareable, | |
12204 | * Inner Write-Back Read-Allocate Write-Allocate, | |
12205 | * Outer Write-Back Read-Allocate Write-Allocate. | |
337a03f0 | 12206 | * Do not overwrite Tagged within attrs. |
7e98e21c | 12207 | */ |
337a03f0 RH |
12208 | if (cacheattrs->attrs != 0xf0) { |
12209 | cacheattrs->attrs = 0xff; | |
12210 | } | |
7e98e21c RH |
12211 | cacheattrs->shareability = 0; |
12212 | } | |
12213 | *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); | |
12214 | return 0; | |
9b539263 EI |
12215 | } else { |
12216 | /* | |
12217 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | |
12218 | */ | |
8bd5c820 | 12219 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
9b539263 | 12220 | } |
0480f69a | 12221 | } |
d3649702 | 12222 | |
8bf5b6a9 PM |
12223 | /* The page table entries may downgrade secure to non-secure, but |
12224 | * cannot upgrade an non-secure translation regime's attributes | |
12225 | * to secure. | |
12226 | */ | |
12227 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 12228 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 12229 | |
0480f69a PM |
12230 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
12231 | * In v7 and earlier it affects all stage 1 translations. | |
12232 | */ | |
97fa9350 | 12233 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 |
0480f69a PM |
12234 | && !arm_feature(env, ARM_FEATURE_V8)) { |
12235 | if (regime_el(env, mmu_idx) == 3) { | |
12236 | address += env->cp15.fcseidr_s; | |
12237 | } else { | |
12238 | address += env->cp15.fcseidr_ns; | |
12239 | } | |
54bf36ed | 12240 | } |
9ee6e8bb | 12241 | |
3279adb9 | 12242 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
c9f9f124 | 12243 | bool ret; |
f6bda88f | 12244 | *page_size = TARGET_PAGE_SIZE; |
3279adb9 | 12245 | |
504e3cc3 PM |
12246 | if (arm_feature(env, ARM_FEATURE_V8)) { |
12247 | /* PMSAv8 */ | |
12248 | ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, | |
72042435 | 12249 | phys_ptr, attrs, prot, page_size, fi); |
504e3cc3 | 12250 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
3279adb9 PM |
12251 | /* PMSAv7 */ |
12252 | ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
e5e40999 | 12253 | phys_ptr, prot, page_size, fi); |
3279adb9 PM |
12254 | } else { |
12255 | /* Pre-v7 MPU */ | |
12256 | ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, | |
53a4e5c5 | 12257 | phys_ptr, prot, fi); |
3279adb9 PM |
12258 | } |
12259 | qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 | |
c9f9f124 | 12260 | " mmu_idx %u -> %s (prot %c%c%c)\n", |
709e4407 PM |
12261 | access_type == MMU_DATA_LOAD ? "reading" : |
12262 | (access_type == MMU_DATA_STORE ? "writing" : "execute"), | |
c9f9f124 MD |
12263 | (uint32_t)address, mmu_idx, |
12264 | ret ? "Miss" : "Hit", | |
12265 | *prot & PAGE_READ ? 'r' : '-', | |
12266 | *prot & PAGE_WRITE ? 'w' : '-', | |
12267 | *prot & PAGE_EXEC ? 'x' : '-'); | |
12268 | ||
12269 | return ret; | |
f6bda88f PC |
12270 | } |
12271 | ||
3279adb9 PM |
12272 | /* Definitely a real MMU, not an MPU */ |
12273 | ||
0480f69a | 12274 | if (regime_translation_disabled(env, mmu_idx)) { |
337a03f0 RH |
12275 | uint64_t hcr; |
12276 | uint8_t memattr; | |
12277 | ||
cebfb648 RH |
12278 | /* |
12279 | * MMU disabled. S1 addresses within aa64 translation regimes are | |
12280 | * still checked for bounds -- see AArch64.TranslateAddressS1Off. | |
12281 | */ | |
12282 | if (mmu_idx != ARMMMUIdx_Stage2) { | |
12283 | int r_el = regime_el(env, mmu_idx); | |
12284 | if (arm_el_is_aa64(env, r_el)) { | |
12285 | int pamax = arm_pamax(env_archcpu(env)); | |
12286 | uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; | |
12287 | int addrtop, tbi; | |
12288 | ||
12289 | tbi = aa64_va_parameter_tbi(tcr, mmu_idx); | |
12290 | if (access_type == MMU_INST_FETCH) { | |
12291 | tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
12292 | } | |
12293 | tbi = (tbi >> extract64(address, 55, 1)) & 1; | |
12294 | addrtop = (tbi ? 55 : 63); | |
12295 | ||
12296 | if (extract64(address, pamax, addrtop - pamax + 1) != 0) { | |
12297 | fi->type = ARMFault_AddressSize; | |
12298 | fi->level = 0; | |
12299 | fi->stage2 = false; | |
12300 | return 1; | |
12301 | } | |
12302 | ||
12303 | /* | |
12304 | * When TBI is disabled, we've just validated that all of the | |
12305 | * bits above PAMax are zero, so logically we only need to | |
12306 | * clear the top byte for TBI. But it's clearer to follow | |
12307 | * the pseudocode set of addrdesc.paddress. | |
12308 | */ | |
12309 | address = extract64(address, 0, 52); | |
12310 | } | |
12311 | } | |
9ee6e8bb | 12312 | *phys_ptr = address; |
3ad493fc | 12313 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 12314 | *page_size = TARGET_PAGE_SIZE; |
337a03f0 RH |
12315 | |
12316 | /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ | |
12317 | hcr = arm_hcr_el2_eff(env); | |
12318 | cacheattrs->shareability = 0; | |
12319 | if (hcr & HCR_DC) { | |
12320 | if (hcr & HCR_DCT) { | |
12321 | memattr = 0xf0; /* Tagged, Normal, WB, RWA */ | |
12322 | } else { | |
12323 | memattr = 0xff; /* Normal, WB, RWA */ | |
12324 | } | |
12325 | } else if (access_type == MMU_INST_FETCH) { | |
12326 | if (regime_sctlr(env, mmu_idx) & SCTLR_I) { | |
12327 | memattr = 0xee; /* Normal, WT, RA, NT */ | |
12328 | } else { | |
12329 | memattr = 0x44; /* Normal, NC, No */ | |
12330 | } | |
12331 | cacheattrs->shareability = 2; /* outer sharable */ | |
12332 | } else { | |
12333 | memattr = 0x00; /* Device, nGnRnE */ | |
12334 | } | |
12335 | cacheattrs->attrs = memattr; | |
9ee6e8bb | 12336 | return 0; |
0480f69a PM |
12337 | } |
12338 | ||
0480f69a | 12339 | if (regime_using_lpae_format(env, mmu_idx)) { |
ff7de2fc | 12340 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, |
bc52bfeb PM |
12341 | phys_ptr, attrs, prot, page_size, |
12342 | fi, cacheattrs); | |
0480f69a | 12343 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
bc52bfeb PM |
12344 | return get_phys_addr_v6(env, address, access_type, mmu_idx, |
12345 | phys_ptr, attrs, prot, page_size, fi); | |
9ee6e8bb | 12346 | } else { |
bc52bfeb | 12347 | return get_phys_addr_v5(env, address, access_type, mmu_idx, |
f989983e | 12348 | phys_ptr, prot, page_size, fi); |
9ee6e8bb PB |
12349 | } |
12350 | } | |
12351 | ||
0faea0c7 PM |
12352 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
12353 | MemTxAttrs *attrs) | |
b5ff1b31 | 12354 | { |
00b941e5 | 12355 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 12356 | CPUARMState *env = &cpu->env; |
a8170e5e | 12357 | hwaddr phys_addr; |
d4c430a8 | 12358 | target_ulong page_size; |
b5ff1b31 | 12359 | int prot; |
b7cc4e82 | 12360 | bool ret; |
e14b5a23 | 12361 | ARMMMUFaultInfo fi = {}; |
50494a27 | 12362 | ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
7e98e21c | 12363 | ARMCacheAttrs cacheattrs = {}; |
b5ff1b31 | 12364 | |
0faea0c7 PM |
12365 | *attrs = (MemTxAttrs) {}; |
12366 | ||
8bd5c820 | 12367 | ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, |
7e98e21c | 12368 | attrs, &prot, &page_size, &fi, &cacheattrs); |
b5ff1b31 | 12369 | |
b7cc4e82 | 12370 | if (ret) { |
b5ff1b31 | 12371 | return -1; |
00b941e5 | 12372 | } |
b5ff1b31 FB |
12373 | return phys_addr; |
12374 | } | |
12375 | ||
b5ff1b31 | 12376 | #endif |
6ddbc6e4 PB |
12377 | |
12378 | /* Note that signed overflow is undefined in C. The following routines are | |
12379 | careful to use unsigned types where modulo arithmetic is required. | |
12380 | Failure to do so _will_ break on newer gcc. */ | |
12381 | ||
12382 | /* Signed saturating arithmetic. */ | |
12383 | ||
1654b2d6 | 12384 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
12385 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
12386 | { | |
12387 | uint16_t res; | |
12388 | ||
12389 | res = a + b; | |
12390 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
12391 | if (a & 0x8000) | |
12392 | res = 0x8000; | |
12393 | else | |
12394 | res = 0x7fff; | |
12395 | } | |
12396 | return res; | |
12397 | } | |
12398 | ||
1654b2d6 | 12399 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
12400 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
12401 | { | |
12402 | uint8_t res; | |
12403 | ||
12404 | res = a + b; | |
12405 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
12406 | if (a & 0x80) | |
12407 | res = 0x80; | |
12408 | else | |
12409 | res = 0x7f; | |
12410 | } | |
12411 | return res; | |
12412 | } | |
12413 | ||
1654b2d6 | 12414 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
12415 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
12416 | { | |
12417 | uint16_t res; | |
12418 | ||
12419 | res = a - b; | |
12420 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
12421 | if (a & 0x8000) | |
12422 | res = 0x8000; | |
12423 | else | |
12424 | res = 0x7fff; | |
12425 | } | |
12426 | return res; | |
12427 | } | |
12428 | ||
1654b2d6 | 12429 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
12430 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
12431 | { | |
12432 | uint8_t res; | |
12433 | ||
12434 | res = a - b; | |
12435 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
12436 | if (a & 0x80) | |
12437 | res = 0x80; | |
12438 | else | |
12439 | res = 0x7f; | |
12440 | } | |
12441 | return res; | |
12442 | } | |
12443 | ||
12444 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
12445 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
12446 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
12447 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
12448 | #define PFX q | |
12449 | ||
12450 | #include "op_addsub.h" | |
12451 | ||
12452 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 12453 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
12454 | { |
12455 | uint16_t res; | |
12456 | res = a + b; | |
12457 | if (res < a) | |
12458 | res = 0xffff; | |
12459 | return res; | |
12460 | } | |
12461 | ||
460a09c1 | 12462 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 12463 | { |
4c4fd3f8 | 12464 | if (a > b) |
6ddbc6e4 PB |
12465 | return a - b; |
12466 | else | |
12467 | return 0; | |
12468 | } | |
12469 | ||
12470 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
12471 | { | |
12472 | uint8_t res; | |
12473 | res = a + b; | |
12474 | if (res < a) | |
12475 | res = 0xff; | |
12476 | return res; | |
12477 | } | |
12478 | ||
12479 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
12480 | { | |
4c4fd3f8 | 12481 | if (a > b) |
6ddbc6e4 PB |
12482 | return a - b; |
12483 | else | |
12484 | return 0; | |
12485 | } | |
12486 | ||
12487 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
12488 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
12489 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
12490 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
12491 | #define PFX uq | |
12492 | ||
12493 | #include "op_addsub.h" | |
12494 | ||
12495 | /* Signed modulo arithmetic. */ | |
12496 | #define SARITH16(a, b, n, op) do { \ | |
12497 | int32_t sum; \ | |
db6e2e65 | 12498 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
12499 | RESULT(sum, n, 16); \ |
12500 | if (sum >= 0) \ | |
12501 | ge |= 3 << (n * 2); \ | |
12502 | } while(0) | |
12503 | ||
12504 | #define SARITH8(a, b, n, op) do { \ | |
12505 | int32_t sum; \ | |
db6e2e65 | 12506 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
12507 | RESULT(sum, n, 8); \ |
12508 | if (sum >= 0) \ | |
12509 | ge |= 1 << n; \ | |
12510 | } while(0) | |
12511 | ||
12512 | ||
12513 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
12514 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
12515 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
12516 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
12517 | #define PFX s | |
12518 | #define ARITH_GE | |
12519 | ||
12520 | #include "op_addsub.h" | |
12521 | ||
12522 | /* Unsigned modulo arithmetic. */ | |
12523 | #define ADD16(a, b, n) do { \ | |
12524 | uint32_t sum; \ | |
12525 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
12526 | RESULT(sum, n, 16); \ | |
a87aa10b | 12527 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
12528 | ge |= 3 << (n * 2); \ |
12529 | } while(0) | |
12530 | ||
12531 | #define ADD8(a, b, n) do { \ | |
12532 | uint32_t sum; \ | |
12533 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
12534 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
12535 | if ((sum >> 8) == 1) \ |
12536 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
12537 | } while(0) |
12538 | ||
12539 | #define SUB16(a, b, n) do { \ | |
12540 | uint32_t sum; \ | |
12541 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
12542 | RESULT(sum, n, 16); \ | |
12543 | if ((sum >> 16) == 0) \ | |
12544 | ge |= 3 << (n * 2); \ | |
12545 | } while(0) | |
12546 | ||
12547 | #define SUB8(a, b, n) do { \ | |
12548 | uint32_t sum; \ | |
12549 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
12550 | RESULT(sum, n, 8); \ | |
12551 | if ((sum >> 8) == 0) \ | |
a87aa10b | 12552 | ge |= 1 << n; \ |
6ddbc6e4 PB |
12553 | } while(0) |
12554 | ||
12555 | #define PFX u | |
12556 | #define ARITH_GE | |
12557 | ||
12558 | #include "op_addsub.h" | |
12559 | ||
12560 | /* Halved signed arithmetic. */ | |
12561 | #define ADD16(a, b, n) \ | |
12562 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
12563 | #define SUB16(a, b, n) \ | |
12564 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
12565 | #define ADD8(a, b, n) \ | |
12566 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
12567 | #define SUB8(a, b, n) \ | |
12568 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
12569 | #define PFX sh | |
12570 | ||
12571 | #include "op_addsub.h" | |
12572 | ||
12573 | /* Halved unsigned arithmetic. */ | |
12574 | #define ADD16(a, b, n) \ | |
12575 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
12576 | #define SUB16(a, b, n) \ | |
12577 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
12578 | #define ADD8(a, b, n) \ | |
12579 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
12580 | #define SUB8(a, b, n) \ | |
12581 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
12582 | #define PFX uh | |
12583 | ||
12584 | #include "op_addsub.h" | |
12585 | ||
12586 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
12587 | { | |
12588 | if (a > b) | |
12589 | return a - b; | |
12590 | else | |
12591 | return b - a; | |
12592 | } | |
12593 | ||
12594 | /* Unsigned sum of absolute byte differences. */ | |
12595 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
12596 | { | |
12597 | uint32_t sum; | |
12598 | sum = do_usad(a, b); | |
12599 | sum += do_usad(a >> 8, b >> 8); | |
bdc3b6f5 | 12600 | sum += do_usad(a >> 16, b >> 16); |
6ddbc6e4 PB |
12601 | sum += do_usad(a >> 24, b >> 24); |
12602 | return sum; | |
12603 | } | |
12604 | ||
12605 | /* For ARMv6 SEL instruction. */ | |
12606 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
12607 | { | |
12608 | uint32_t mask; | |
12609 | ||
12610 | mask = 0; | |
12611 | if (flags & 1) | |
12612 | mask |= 0xff; | |
12613 | if (flags & 2) | |
12614 | mask |= 0xff00; | |
12615 | if (flags & 4) | |
12616 | mask |= 0xff0000; | |
12617 | if (flags & 8) | |
12618 | mask |= 0xff000000; | |
12619 | return (a & mask) | (b & ~mask); | |
12620 | } | |
12621 | ||
aa633469 PM |
12622 | /* CRC helpers. |
12623 | * The upper bytes of val (above the number specified by 'bytes') must have | |
12624 | * been zeroed out by the caller. | |
12625 | */ | |
eb0ecd5a WN |
12626 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
12627 | { | |
12628 | uint8_t buf[4]; | |
12629 | ||
aa633469 | 12630 | stl_le_p(buf, val); |
eb0ecd5a WN |
12631 | |
12632 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
12633 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
12634 | } | |
12635 | ||
12636 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
12637 | { | |
12638 | uint8_t buf[4]; | |
12639 | ||
aa633469 | 12640 | stl_le_p(buf, val); |
eb0ecd5a WN |
12641 | |
12642 | /* Linux crc32c converts the output to one's complement. */ | |
12643 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
12644 | } | |
a9e01311 RH |
12645 | |
12646 | /* Return the exception level to which FP-disabled exceptions should | |
12647 | * be taken, or 0 if FP is enabled. | |
12648 | */ | |
ced31551 | 12649 | int fp_exception_el(CPUARMState *env, int cur_el) |
a9e01311 | 12650 | { |
55faa212 | 12651 | #ifndef CONFIG_USER_ONLY |
a9e01311 RH |
12652 | /* CPACR and the CPTR registers don't exist before v6, so FP is |
12653 | * always accessible | |
12654 | */ | |
12655 | if (!arm_feature(env, ARM_FEATURE_V6)) { | |
12656 | return 0; | |
12657 | } | |
12658 | ||
d87513c0 PM |
12659 | if (arm_feature(env, ARM_FEATURE_M)) { |
12660 | /* CPACR can cause a NOCP UsageFault taken to current security state */ | |
12661 | if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { | |
12662 | return 1; | |
12663 | } | |
12664 | ||
12665 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { | |
12666 | if (!extract32(env->v7m.nsacr, 10, 1)) { | |
12667 | /* FP insns cause a NOCP UsageFault taken to Secure */ | |
12668 | return 3; | |
12669 | } | |
12670 | } | |
12671 | ||
12672 | return 0; | |
12673 | } | |
12674 | ||
a9e01311 RH |
12675 | /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: |
12676 | * 0, 2 : trap EL0 and EL1/PL1 accesses | |
12677 | * 1 : trap only EL0 accesses | |
12678 | * 3 : trap no accesses | |
c2ddb7cf | 12679 | * This register is ignored if E2H+TGE are both set. |
a9e01311 | 12680 | */ |
c2ddb7cf RH |
12681 | if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { |
12682 | int fpen = extract32(env->cp15.cpacr_el1, 20, 2); | |
12683 | ||
12684 | switch (fpen) { | |
12685 | case 0: | |
12686 | case 2: | |
12687 | if (cur_el == 0 || cur_el == 1) { | |
12688 | /* Trap to PL1, which might be EL1 or EL3 */ | |
12689 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
12690 | return 3; | |
12691 | } | |
12692 | return 1; | |
12693 | } | |
12694 | if (cur_el == 3 && !is_a64(env)) { | |
12695 | /* Secure PL1 running at EL3 */ | |
a9e01311 RH |
12696 | return 3; |
12697 | } | |
c2ddb7cf RH |
12698 | break; |
12699 | case 1: | |
12700 | if (cur_el == 0) { | |
12701 | return 1; | |
12702 | } | |
12703 | break; | |
12704 | case 3: | |
12705 | break; | |
a9e01311 | 12706 | } |
a9e01311 RH |
12707 | } |
12708 | ||
fc1120a7 PM |
12709 | /* |
12710 | * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode | |
12711 | * to control non-secure access to the FPU. It doesn't have any | |
12712 | * effect if EL3 is AArch64 or if EL3 doesn't exist at all. | |
12713 | */ | |
12714 | if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
12715 | cur_el <= 2 && !arm_is_secure_below_el3(env))) { | |
12716 | if (!extract32(env->cp15.nsacr, 10, 1)) { | |
12717 | /* FP insns act as UNDEF */ | |
12718 | return cur_el == 2 ? 2 : 1; | |
12719 | } | |
12720 | } | |
12721 | ||
a9e01311 RH |
12722 | /* For the CPTR registers we don't need to guard with an ARM_FEATURE |
12723 | * check because zero bits in the registers mean "don't trap". | |
12724 | */ | |
12725 | ||
12726 | /* CPTR_EL2 : present in v7VE or v8 */ | |
12727 | if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) | |
e6ef0169 | 12728 | && arm_is_el2_enabled(env)) { |
a9e01311 RH |
12729 | /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ |
12730 | return 2; | |
12731 | } | |
12732 | ||
12733 | /* CPTR_EL3 : present in v8 */ | |
12734 | if (extract32(env->cp15.cptr_el[3], 10, 1)) { | |
12735 | /* Trap all FP ops to EL3 */ | |
12736 | return 3; | |
12737 | } | |
55faa212 | 12738 | #endif |
a9e01311 RH |
12739 | return 0; |
12740 | } | |
12741 | ||
b9f6033c RH |
12742 | /* Return the exception level we're running at if this is our mmu_idx */ |
12743 | int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) | |
12744 | { | |
12745 | if (mmu_idx & ARM_MMU_IDX_M) { | |
12746 | return mmu_idx & ARM_MMU_IDX_M_PRIV; | |
12747 | } | |
12748 | ||
12749 | switch (mmu_idx) { | |
12750 | case ARMMMUIdx_E10_0: | |
12751 | case ARMMMUIdx_E20_0: | |
12752 | case ARMMMUIdx_SE10_0: | |
b6ad6062 | 12753 | case ARMMMUIdx_SE20_0: |
b9f6033c RH |
12754 | return 0; |
12755 | case ARMMMUIdx_E10_1: | |
452ef8cb | 12756 | case ARMMMUIdx_E10_1_PAN: |
b9f6033c | 12757 | case ARMMMUIdx_SE10_1: |
452ef8cb | 12758 | case ARMMMUIdx_SE10_1_PAN: |
b9f6033c RH |
12759 | return 1; |
12760 | case ARMMMUIdx_E2: | |
12761 | case ARMMMUIdx_E20_2: | |
452ef8cb | 12762 | case ARMMMUIdx_E20_2_PAN: |
b6ad6062 RDC |
12763 | case ARMMMUIdx_SE2: |
12764 | case ARMMMUIdx_SE20_2: | |
12765 | case ARMMMUIdx_SE20_2_PAN: | |
b9f6033c RH |
12766 | return 2; |
12767 | case ARMMMUIdx_SE3: | |
12768 | return 3; | |
12769 | default: | |
12770 | g_assert_not_reached(); | |
12771 | } | |
12772 | } | |
12773 | ||
7aab5a8c | 12774 | #ifndef CONFIG_TCG |
65e4655c RH |
12775 | ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) |
12776 | { | |
7aab5a8c | 12777 | g_assert_not_reached(); |
65e4655c | 12778 | } |
7aab5a8c | 12779 | #endif |
65e4655c | 12780 | |
164690b2 | 12781 | ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) |
65e4655c | 12782 | { |
b6ad6062 RDC |
12783 | ARMMMUIdx idx; |
12784 | uint64_t hcr; | |
12785 | ||
65e4655c | 12786 | if (arm_feature(env, ARM_FEATURE_M)) { |
50494a27 | 12787 | return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); |
65e4655c RH |
12788 | } |
12789 | ||
6003d980 | 12790 | /* See ARM pseudo-function ELIsInHost. */ |
b9f6033c RH |
12791 | switch (el) { |
12792 | case 0: | |
b6ad6062 RDC |
12793 | hcr = arm_hcr_el2_eff(env); |
12794 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
12795 | idx = ARMMMUIdx_E20_0; | |
12796 | } else { | |
12797 | idx = ARMMMUIdx_E10_0; | |
6003d980 | 12798 | } |
b6ad6062 | 12799 | break; |
b9f6033c | 12800 | case 1: |
66412260 | 12801 | if (env->pstate & PSTATE_PAN) { |
b6ad6062 RDC |
12802 | idx = ARMMMUIdx_E10_1_PAN; |
12803 | } else { | |
12804 | idx = ARMMMUIdx_E10_1; | |
66412260 | 12805 | } |
b6ad6062 | 12806 | break; |
b9f6033c | 12807 | case 2: |
6003d980 | 12808 | /* Note that TGE does not apply at EL2. */ |
b6ad6062 | 12809 | if (arm_hcr_el2_eff(env) & HCR_E2H) { |
66412260 | 12810 | if (env->pstate & PSTATE_PAN) { |
b6ad6062 RDC |
12811 | idx = ARMMMUIdx_E20_2_PAN; |
12812 | } else { | |
12813 | idx = ARMMMUIdx_E20_2; | |
66412260 | 12814 | } |
b6ad6062 RDC |
12815 | } else { |
12816 | idx = ARMMMUIdx_E2; | |
6003d980 | 12817 | } |
b6ad6062 | 12818 | break; |
b9f6033c RH |
12819 | case 3: |
12820 | return ARMMMUIdx_SE3; | |
12821 | default: | |
12822 | g_assert_not_reached(); | |
65e4655c | 12823 | } |
b6ad6062 RDC |
12824 | |
12825 | if (arm_is_secure_below_el3(env)) { | |
12826 | idx &= ~ARM_MMU_IDX_A_NS; | |
12827 | } | |
12828 | ||
12829 | return idx; | |
50494a27 RH |
12830 | } |
12831 | ||
164690b2 RH |
12832 | ARMMMUIdx arm_mmu_idx(CPUARMState *env) |
12833 | { | |
12834 | return arm_mmu_idx_el(env, arm_current_el(env)); | |
12835 | } | |
12836 | ||
64be86ab RH |
12837 | #ifndef CONFIG_USER_ONLY |
12838 | ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) | |
12839 | { | |
12840 | return stage_1_mmu_idx(arm_mmu_idx(env)); | |
12841 | } | |
12842 | #endif | |
12843 | ||
fdd1b228 RH |
12844 | static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, |
12845 | ARMMMUIdx mmu_idx, uint32_t flags) | |
12846 | { | |
12847 | flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); | |
12848 | flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, | |
12849 | arm_to_core_mmu_idx(mmu_idx)); | |
12850 | ||
fdd1b228 RH |
12851 | if (arm_singlestep_active(env)) { |
12852 | flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); | |
12853 | } | |
12854 | return flags; | |
12855 | } | |
12856 | ||
43eccfb6 RH |
12857 | static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, |
12858 | ARMMMUIdx mmu_idx, uint32_t flags) | |
12859 | { | |
8061a649 RH |
12860 | bool sctlr_b = arm_sctlr_b(env); |
12861 | ||
12862 | if (sctlr_b) { | |
12863 | flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); | |
12864 | } | |
12865 | if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { | |
12866 | flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); | |
12867 | } | |
43eccfb6 RH |
12868 | flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); |
12869 | ||
12870 | return rebuild_hflags_common(env, fp_el, mmu_idx, flags); | |
12871 | } | |
12872 | ||
6e33ced5 RH |
12873 | static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, |
12874 | ARMMMUIdx mmu_idx) | |
12875 | { | |
12876 | uint32_t flags = 0; | |
12877 | ||
12878 | if (arm_v7m_is_handler_mode(env)) { | |
79cabf1f | 12879 | flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); |
6e33ced5 RH |
12880 | } |
12881 | ||
12882 | /* | |
12883 | * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN | |
12884 | * is suppressing them because the requested execution priority | |
12885 | * is less than 0. | |
12886 | */ | |
12887 | if (arm_feature(env, ARM_FEATURE_V8) && | |
12888 | !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && | |
12889 | (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { | |
79cabf1f | 12890 | flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); |
6e33ced5 RH |
12891 | } |
12892 | ||
12893 | return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); | |
12894 | } | |
12895 | ||
83f4baef RH |
12896 | static uint32_t rebuild_hflags_aprofile(CPUARMState *env) |
12897 | { | |
12898 | int flags = 0; | |
12899 | ||
12900 | flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, | |
12901 | arm_debug_target_el(env)); | |
12902 | return flags; | |
12903 | } | |
12904 | ||
c747224c RH |
12905 | static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, |
12906 | ARMMMUIdx mmu_idx) | |
12907 | { | |
83f4baef | 12908 | uint32_t flags = rebuild_hflags_aprofile(env); |
0a54d68e RH |
12909 | |
12910 | if (arm_el_is_aa64(env, 1)) { | |
12911 | flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); | |
12912 | } | |
5bb0a20b MZ |
12913 | |
12914 | if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && | |
12915 | (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
12916 | flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); | |
12917 | } | |
12918 | ||
83f4baef | 12919 | return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); |
c747224c RH |
12920 | } |
12921 | ||
d4d7503a RH |
12922 | static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, |
12923 | ARMMMUIdx mmu_idx) | |
a9e01311 | 12924 | { |
83f4baef | 12925 | uint32_t flags = rebuild_hflags_aprofile(env); |
d4d7503a | 12926 | ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); |
b830a5ee | 12927 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; |
d4d7503a RH |
12928 | uint64_t sctlr; |
12929 | int tbii, tbid; | |
b9adaa70 | 12930 | |
d4d7503a | 12931 | flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); |
cd208a1c | 12932 | |
339370b9 | 12933 | /* Get control bits for tagged addresses. */ |
b830a5ee RH |
12934 | tbid = aa64_va_parameter_tbi(tcr, mmu_idx); |
12935 | tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
5d8634f5 | 12936 | |
d4d7503a RH |
12937 | flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); |
12938 | flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); | |
12939 | ||
12940 | if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { | |
12941 | int sve_el = sve_exception_el(env, el); | |
12942 | uint32_t zcr_len; | |
5d8634f5 | 12943 | |
d4d7503a RH |
12944 | /* |
12945 | * If SVE is disabled, but FP is enabled, | |
12946 | * then the effective len is 0. | |
12947 | */ | |
12948 | if (sve_el != 0 && fp_el == 0) { | |
12949 | zcr_len = 0; | |
12950 | } else { | |
12951 | zcr_len = sve_zcr_len_for_el(env, el); | |
5d8634f5 | 12952 | } |
d4d7503a RH |
12953 | flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); |
12954 | flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); | |
12955 | } | |
1db5e96c | 12956 | |
aaec1432 | 12957 | sctlr = regime_sctlr(env, stage1); |
1db5e96c | 12958 | |
8061a649 RH |
12959 | if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { |
12960 | flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); | |
12961 | } | |
12962 | ||
d4d7503a RH |
12963 | if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { |
12964 | /* | |
12965 | * In order to save space in flags, we record only whether | |
12966 | * pauth is "inactive", meaning all insns are implemented as | |
12967 | * a nop, or "active" when some action must be performed. | |
12968 | * The decision of which action to take is left to a helper. | |
12969 | */ | |
12970 | if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { | |
12971 | flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); | |
1db5e96c | 12972 | } |
d4d7503a | 12973 | } |
0816ef1b | 12974 | |
d4d7503a RH |
12975 | if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { |
12976 | /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ | |
12977 | if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { | |
12978 | flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); | |
0816ef1b | 12979 | } |
d4d7503a | 12980 | } |
08f1434a | 12981 | |
cc28fc30 | 12982 | /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ |
7a8014ab RH |
12983 | if (!(env->pstate & PSTATE_UAO)) { |
12984 | switch (mmu_idx) { | |
12985 | case ARMMMUIdx_E10_1: | |
12986 | case ARMMMUIdx_E10_1_PAN: | |
12987 | case ARMMMUIdx_SE10_1: | |
12988 | case ARMMMUIdx_SE10_1_PAN: | |
12989 | /* TODO: ARMv8.3-NV */ | |
cc28fc30 | 12990 | flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); |
7a8014ab RH |
12991 | break; |
12992 | case ARMMMUIdx_E20_2: | |
12993 | case ARMMMUIdx_E20_2_PAN: | |
b6ad6062 RDC |
12994 | case ARMMMUIdx_SE20_2: |
12995 | case ARMMMUIdx_SE20_2_PAN: | |
7a8014ab RH |
12996 | /* |
12997 | * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is | |
12998 | * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. | |
12999 | */ | |
13000 | if (env->cp15.hcr_el2 & HCR_TGE) { | |
13001 | flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); | |
13002 | } | |
13003 | break; | |
13004 | default: | |
13005 | break; | |
cc28fc30 | 13006 | } |
cc28fc30 RH |
13007 | } |
13008 | ||
81ae05fa RH |
13009 | if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { |
13010 | /* | |
13011 | * Set MTE_ACTIVE if any access may be Checked, and leave clear | |
13012 | * if all accesses must be Unchecked: | |
13013 | * 1) If no TBI, then there are no tags in the address to check, | |
13014 | * 2) If Tag Check Override, then all accesses are Unchecked, | |
13015 | * 3) If Tag Check Fail == 0, then Checked access have no effect, | |
13016 | * 4) If no Allocation Tag Access, then all accesses are Unchecked. | |
13017 | */ | |
13018 | if (allocation_tag_access_enabled(env, el, sctlr)) { | |
13019 | flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); | |
13020 | if (tbid | |
13021 | && !(env->pstate & PSTATE_TCO) | |
13022 | && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { | |
13023 | flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); | |
13024 | } | |
13025 | } | |
13026 | /* And again for unprivileged accesses, if required. */ | |
13027 | if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) | |
13028 | && tbid | |
13029 | && !(env->pstate & PSTATE_TCO) | |
cc97b001 | 13030 | && (sctlr & SCTLR_TCF) |
81ae05fa RH |
13031 | && allocation_tag_access_enabled(env, 0, sctlr)) { |
13032 | flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); | |
13033 | } | |
13034 | /* Cache TCMA as well as TBI. */ | |
13035 | flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, | |
13036 | aa64_va_parameter_tcma(tcr, mmu_idx)); | |
13037 | } | |
13038 | ||
d4d7503a RH |
13039 | return rebuild_hflags_common(env, fp_el, mmu_idx, flags); |
13040 | } | |
13041 | ||
3d74e2e9 RH |
13042 | static uint32_t rebuild_hflags_internal(CPUARMState *env) |
13043 | { | |
13044 | int el = arm_current_el(env); | |
13045 | int fp_el = fp_exception_el(env, el); | |
164690b2 | 13046 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
3d74e2e9 RH |
13047 | |
13048 | if (is_a64(env)) { | |
13049 | return rebuild_hflags_a64(env, el, fp_el, mmu_idx); | |
13050 | } else if (arm_feature(env, ARM_FEATURE_M)) { | |
13051 | return rebuild_hflags_m32(env, fp_el, mmu_idx); | |
13052 | } else { | |
13053 | return rebuild_hflags_a32(env, fp_el, mmu_idx); | |
13054 | } | |
13055 | } | |
13056 | ||
13057 | void arm_rebuild_hflags(CPUARMState *env) | |
13058 | { | |
13059 | env->hflags = rebuild_hflags_internal(env); | |
13060 | } | |
13061 | ||
19717e9b PM |
13062 | /* |
13063 | * If we have triggered a EL state change we can't rely on the | |
13064 | * translator having passed it to us, we need to recompute. | |
13065 | */ | |
13066 | void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) | |
13067 | { | |
13068 | int el = arm_current_el(env); | |
13069 | int fp_el = fp_exception_el(env, el); | |
13070 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13071 | env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); | |
13072 | } | |
13073 | ||
14f3c588 RH |
13074 | void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) |
13075 | { | |
13076 | int fp_el = fp_exception_el(env, el); | |
13077 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13078 | ||
13079 | env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); | |
13080 | } | |
13081 | ||
f80741d1 AB |
13082 | /* |
13083 | * If we have triggered a EL state change we can't rely on the | |
563152e0 | 13084 | * translator having passed it to us, we need to recompute. |
f80741d1 AB |
13085 | */ |
13086 | void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) | |
13087 | { | |
13088 | int el = arm_current_el(env); | |
13089 | int fp_el = fp_exception_el(env, el); | |
13090 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13091 | env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); | |
13092 | } | |
13093 | ||
14f3c588 RH |
13094 | void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) |
13095 | { | |
13096 | int fp_el = fp_exception_el(env, el); | |
13097 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13098 | ||
13099 | env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); | |
13100 | } | |
13101 | ||
13102 | void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) | |
13103 | { | |
13104 | int fp_el = fp_exception_el(env, el); | |
13105 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
13106 | ||
13107 | env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); | |
13108 | } | |
13109 | ||
0ee8b24a PMD |
13110 | static inline void assert_hflags_rebuild_correctly(CPUARMState *env) |
13111 | { | |
13112 | #ifdef CONFIG_DEBUG_TCG | |
13113 | uint32_t env_flags_current = env->hflags; | |
13114 | uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); | |
13115 | ||
13116 | if (unlikely(env_flags_current != env_flags_rebuilt)) { | |
13117 | fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", | |
13118 | env_flags_current, env_flags_rebuilt); | |
13119 | abort(); | |
13120 | } | |
13121 | #endif | |
13122 | } | |
13123 | ||
d4d7503a RH |
13124 | void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
13125 | target_ulong *cs_base, uint32_t *pflags) | |
13126 | { | |
e979972a RH |
13127 | uint32_t flags = env->hflags; |
13128 | uint32_t pstate_for_ss; | |
d4d7503a | 13129 | |
9b253fe5 | 13130 | *cs_base = 0; |
0ee8b24a | 13131 | assert_hflags_rebuild_correctly(env); |
3d74e2e9 | 13132 | |
e979972a | 13133 | if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { |
d4d7503a | 13134 | *pc = env->pc; |
d4d7503a | 13135 | if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { |
08f1434a RH |
13136 | flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); |
13137 | } | |
60e12c37 | 13138 | pstate_for_ss = env->pstate; |
a9e01311 RH |
13139 | } else { |
13140 | *pc = env->regs[15]; | |
6e33ced5 RH |
13141 | |
13142 | if (arm_feature(env, ARM_FEATURE_M)) { | |
9550d1bd RH |
13143 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && |
13144 | FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) | |
13145 | != env->v7m.secure) { | |
79cabf1f | 13146 | flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); |
9550d1bd RH |
13147 | } |
13148 | ||
13149 | if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && | |
13150 | (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || | |
13151 | (env->v7m.secure && | |
13152 | !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { | |
13153 | /* | |
13154 | * ASPEN is set, but FPCA/SFPA indicate that there is no | |
13155 | * active FP context; we must create a new FP context before | |
13156 | * executing any FP insn. | |
13157 | */ | |
79cabf1f | 13158 | flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); |
9550d1bd RH |
13159 | } |
13160 | ||
13161 | bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; | |
13162 | if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { | |
79cabf1f | 13163 | flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); |
9550d1bd | 13164 | } |
6e33ced5 | 13165 | } else { |
bbad7c62 RH |
13166 | /* |
13167 | * Note that XSCALE_CPAR shares bits with VECSTRIDE. | |
13168 | * Note that VECLEN+VECSTRIDE are RES0 for M-profile. | |
13169 | */ | |
13170 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
13171 | flags = FIELD_DP32(flags, TBFLAG_A32, | |
13172 | XSCALE_CPAR, env->cp15.c15_cpar); | |
13173 | } else { | |
13174 | flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, | |
13175 | env->vfp.vec_len); | |
13176 | flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, | |
13177 | env->vfp.vec_stride); | |
13178 | } | |
0a54d68e RH |
13179 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { |
13180 | flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); | |
13181 | } | |
6e33ced5 RH |
13182 | } |
13183 | ||
79cabf1f RH |
13184 | flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); |
13185 | flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); | |
60e12c37 | 13186 | pstate_for_ss = env->uncached_cpsr; |
d4d7503a | 13187 | } |
a9e01311 | 13188 | |
60e12c37 RH |
13189 | /* |
13190 | * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine | |
a9e01311 RH |
13191 | * states defined in the ARM ARM for software singlestep: |
13192 | * SS_ACTIVE PSTATE.SS State | |
13193 | * 0 x Inactive (the TB flag for SS is always 0) | |
13194 | * 1 0 Active-pending | |
13195 | * 1 1 Active-not-pending | |
fdd1b228 | 13196 | * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. |
a9e01311 | 13197 | */ |
60e12c37 RH |
13198 | if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && |
13199 | (pstate_for_ss & PSTATE_SS)) { | |
13200 | flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); | |
a9e01311 | 13201 | } |
a9e01311 | 13202 | |
b9adaa70 | 13203 | *pflags = flags; |
a9e01311 | 13204 | } |
0ab5953b RH |
13205 | |
13206 | #ifdef TARGET_AARCH64 | |
13207 | /* | |
13208 | * The manual says that when SVE is enabled and VQ is widened the | |
13209 | * implementation is allowed to zero the previously inaccessible | |
13210 | * portion of the registers. The corollary to that is that when | |
13211 | * SVE is enabled and VQ is narrowed we are also allowed to zero | |
13212 | * the now inaccessible portion of the registers. | |
13213 | * | |
13214 | * The intent of this is that no predicate bit beyond VQ is ever set. | |
13215 | * Which means that some operations on predicate registers themselves | |
13216 | * may operate on full uint64_t or even unrolled across the maximum | |
13217 | * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally | |
13218 | * may well be cheaper than conditionals to restrict the operation | |
13219 | * to the relevant portion of a uint16_t[16]. | |
13220 | */ | |
13221 | void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) | |
13222 | { | |
13223 | int i, j; | |
13224 | uint64_t pmask; | |
13225 | ||
13226 | assert(vq >= 1 && vq <= ARM_MAX_VQ); | |
2fc0cc0e | 13227 | assert(vq <= env_archcpu(env)->sve_max_vq); |
0ab5953b RH |
13228 | |
13229 | /* Zap the high bits of the zregs. */ | |
13230 | for (i = 0; i < 32; i++) { | |
13231 | memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); | |
13232 | } | |
13233 | ||
13234 | /* Zap the high bits of the pregs and ffr. */ | |
13235 | pmask = 0; | |
13236 | if (vq & 3) { | |
13237 | pmask = ~(-1ULL << (16 * (vq & 3))); | |
13238 | } | |
13239 | for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { | |
13240 | for (i = 0; i < 17; ++i) { | |
13241 | env->vfp.pregs[i].p[j] &= pmask; | |
13242 | } | |
13243 | pmask = 0; | |
13244 | } | |
13245 | } | |
13246 | ||
13247 | /* | |
13248 | * Notice a change in SVE vector size when changing EL. | |
13249 | */ | |
9a05f7b6 RH |
13250 | void aarch64_sve_change_el(CPUARMState *env, int old_el, |
13251 | int new_el, bool el0_a64) | |
0ab5953b | 13252 | { |
2fc0cc0e | 13253 | ARMCPU *cpu = env_archcpu(env); |
0ab5953b | 13254 | int old_len, new_len; |
9a05f7b6 | 13255 | bool old_a64, new_a64; |
0ab5953b RH |
13256 | |
13257 | /* Nothing to do if no SVE. */ | |
cd208a1c | 13258 | if (!cpu_isar_feature(aa64_sve, cpu)) { |
0ab5953b RH |
13259 | return; |
13260 | } | |
13261 | ||
13262 | /* Nothing to do if FP is disabled in either EL. */ | |
13263 | if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { | |
13264 | return; | |
13265 | } | |
13266 | ||
13267 | /* | |
13268 | * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped | |
13269 | * at ELx, or not available because the EL is in AArch32 state, then | |
13270 | * for all purposes other than a direct read, the ZCR_ELx.LEN field | |
13271 | * has an effective value of 0". | |
13272 | * | |
13273 | * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). | |
13274 | * If we ignore aa32 state, we would fail to see the vq4->vq0 transition | |
13275 | * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that | |
13276 | * we already have the correct register contents when encountering the | |
13277 | * vq0->vq0 transition between EL0->EL1. | |
13278 | */ | |
9a05f7b6 RH |
13279 | old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; |
13280 | old_len = (old_a64 && !sve_exception_el(env, old_el) | |
0ab5953b | 13281 | ? sve_zcr_len_for_el(env, old_el) : 0); |
9a05f7b6 RH |
13282 | new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; |
13283 | new_len = (new_a64 && !sve_exception_el(env, new_el) | |
0ab5953b RH |
13284 | ? sve_zcr_len_for_el(env, new_el) : 0); |
13285 | ||
13286 | /* When changing vector length, clear inaccessible state. */ | |
13287 | if (new_len < old_len) { | |
13288 | aarch64_sve_narrow_vq(env, new_len + 1); | |
13289 | } | |
13290 | } | |
13291 | #endif |