]>
Commit | Line | Data |
---|---|---|
74c21bd0 | 1 | #include "qemu/osdep.h" |
194cbc49 | 2 | #include "trace.h" |
b5ff1b31 | 3 | #include "cpu.h" |
ccd38087 | 4 | #include "internals.h" |
022c62cb | 5 | #include "exec/gdbstub.h" |
2ef6175a | 6 | #include "exec/helper-proto.h" |
1de7afc9 | 7 | #include "qemu/host-utils.h" |
78027bb6 | 8 | #include "sysemu/arch_init.h" |
9c17d615 | 9 | #include "sysemu/sysemu.h" |
1de7afc9 | 10 | #include "qemu/bitops.h" |
eb0ecd5a | 11 | #include "qemu/crc32c.h" |
63c91552 | 12 | #include "exec/exec-all.h" |
f08b6170 | 13 | #include "exec/cpu_ldst.h" |
1d854765 | 14 | #include "arm_ldst.h" |
eb0ecd5a | 15 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 16 | #include "exec/semihost.h" |
f3a9b694 | 17 | #include "sysemu/kvm.h" |
0b03bdfc | 18 | |
352c98e5 LV |
19 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
20 | ||
4a501606 | 21 | #ifndef CONFIG_USER_ONLY |
5b2d261d AB |
22 | /* Cacheability and shareability attributes for a memory access */ |
23 | typedef struct ARMCacheAttrs { | |
24 | unsigned int attrs:8; /* as in the MAIR register encoding */ | |
25 | unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ | |
26 | } ARMCacheAttrs; | |
27 | ||
af51f566 | 28 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
03ae85f8 | 29 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
af51f566 | 30 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
e14b5a23 | 31 | target_ulong *page_size, uint32_t *fsr, |
5b2d261d | 32 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); |
7c2cb42b | 33 | |
37785977 | 34 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
03ae85f8 | 35 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
37785977 EI |
36 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
37 | target_ulong *page_size_ptr, uint32_t *fsr, | |
5b2d261d | 38 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); |
37785977 | 39 | |
35337cc3 PM |
40 | /* Security attributes for an address, as returned by v8m_security_lookup. */ |
41 | typedef struct V8M_SAttributes { | |
42 | bool ns; | |
43 | bool nsc; | |
44 | uint8_t sregion; | |
45 | bool srvalid; | |
46 | uint8_t iregion; | |
47 | bool irvalid; | |
48 | } V8M_SAttributes; | |
49 | ||
333e10c5 PM |
50 | static void v8m_security_lookup(CPUARMState *env, uint32_t address, |
51 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
52 | V8M_SAttributes *sattrs); | |
53 | ||
7c2cb42b AF |
54 | /* Definitions for the PMCCNTR and PMCR registers */ |
55 | #define PMCRD 0x8 | |
56 | #define PMCRC 0x4 | |
57 | #define PMCRE 0x1 | |
4a501606 PM |
58 | #endif |
59 | ||
0ecb72a5 | 60 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
61 | { |
62 | int nregs; | |
63 | ||
64 | /* VFP data registers are always little-endian. */ | |
65 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
66 | if (reg < nregs) { | |
67 | stfq_le_p(buf, env->vfp.regs[reg]); | |
68 | return 8; | |
69 | } | |
70 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
71 | /* Aliases for Q regs. */ | |
72 | nregs += 16; | |
73 | if (reg < nregs) { | |
74 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
75 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
76 | return 16; | |
77 | } | |
78 | } | |
79 | switch (reg - nregs) { | |
80 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
81 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
82 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
83 | } | |
84 | return 0; | |
85 | } | |
86 | ||
0ecb72a5 | 87 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
88 | { |
89 | int nregs; | |
90 | ||
91 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
92 | if (reg < nregs) { | |
93 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
94 | return 8; | |
95 | } | |
96 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
97 | nregs += 16; | |
98 | if (reg < nregs) { | |
99 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
100 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
101 | return 16; | |
102 | } | |
103 | } | |
104 | switch (reg - nregs) { | |
105 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
106 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 107 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
108 | } |
109 | return 0; | |
110 | } | |
111 | ||
6a669427 PM |
112 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
113 | { | |
114 | switch (reg) { | |
115 | case 0 ... 31: | |
116 | /* 128 bit FP register */ | |
117 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
118 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
119 | return 16; | |
120 | case 32: | |
121 | /* FPSR */ | |
122 | stl_p(buf, vfp_get_fpsr(env)); | |
123 | return 4; | |
124 | case 33: | |
125 | /* FPCR */ | |
126 | stl_p(buf, vfp_get_fpcr(env)); | |
127 | return 4; | |
128 | default: | |
129 | return 0; | |
130 | } | |
131 | } | |
132 | ||
133 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
134 | { | |
135 | switch (reg) { | |
136 | case 0 ... 31: | |
137 | /* 128 bit FP register */ | |
138 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
139 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
140 | return 16; | |
141 | case 32: | |
142 | /* FPSR */ | |
143 | vfp_set_fpsr(env, ldl_p(buf)); | |
144 | return 4; | |
145 | case 33: | |
146 | /* FPCR */ | |
147 | vfp_set_fpcr(env, ldl_p(buf)); | |
148 | return 4; | |
149 | default: | |
150 | return 0; | |
151 | } | |
152 | } | |
153 | ||
c4241c7d | 154 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 155 | { |
375421cc | 156 | assert(ri->fieldoffset); |
67ed771d | 157 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 158 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 159 | } else { |
c4241c7d | 160 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 161 | } |
d4e6df63 PM |
162 | } |
163 | ||
c4241c7d PM |
164 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
165 | uint64_t value) | |
d4e6df63 | 166 | { |
375421cc | 167 | assert(ri->fieldoffset); |
67ed771d | 168 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
169 | CPREG_FIELD64(env, ri) = value; |
170 | } else { | |
171 | CPREG_FIELD32(env, ri) = value; | |
172 | } | |
d4e6df63 PM |
173 | } |
174 | ||
11f136ee FA |
175 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
176 | { | |
177 | return (char *)env + ri->fieldoffset; | |
178 | } | |
179 | ||
49a66191 | 180 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 181 | { |
59a1c327 | 182 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 183 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 184 | return ri->resetvalue; |
721fae12 | 185 | } else if (ri->raw_readfn) { |
59a1c327 | 186 | return ri->raw_readfn(env, ri); |
721fae12 | 187 | } else if (ri->readfn) { |
59a1c327 | 188 | return ri->readfn(env, ri); |
721fae12 | 189 | } else { |
59a1c327 | 190 | return raw_read(env, ri); |
721fae12 | 191 | } |
721fae12 PM |
192 | } |
193 | ||
59a1c327 | 194 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 195 | uint64_t v) |
721fae12 PM |
196 | { |
197 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
198 | * Note that constant registers are treated as write-ignored; the |
199 | * caller should check for success by whether a readback gives the | |
200 | * value written. | |
201 | */ | |
202 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 203 | return; |
721fae12 | 204 | } else if (ri->raw_writefn) { |
c4241c7d | 205 | ri->raw_writefn(env, ri, v); |
721fae12 | 206 | } else if (ri->writefn) { |
c4241c7d | 207 | ri->writefn(env, ri, v); |
721fae12 | 208 | } else { |
afb2530f | 209 | raw_write(env, ri, v); |
721fae12 | 210 | } |
721fae12 PM |
211 | } |
212 | ||
375421cc PM |
213 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
214 | { | |
215 | /* Return true if the regdef would cause an assertion if you called | |
216 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
217 | * program bug for it not to have the NO_RAW flag). | |
218 | * NB that returning false here doesn't necessarily mean that calling | |
219 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
220 | * read/write access functions which are safe for raw use" from "has | |
221 | * read/write access functions which have side effects but has forgotten | |
222 | * to provide raw access functions". | |
223 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
224 | * and assertions in raw_read()/raw_write(). | |
225 | */ | |
226 | if ((ri->type & ARM_CP_CONST) || | |
227 | ri->fieldoffset || | |
228 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
229 | return false; | |
230 | } | |
231 | return true; | |
232 | } | |
233 | ||
721fae12 PM |
234 | bool write_cpustate_to_list(ARMCPU *cpu) |
235 | { | |
236 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
237 | int i; | |
238 | bool ok = true; | |
239 | ||
240 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
241 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
242 | const ARMCPRegInfo *ri; | |
59a1c327 | 243 | |
60322b39 | 244 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
245 | if (!ri) { |
246 | ok = false; | |
247 | continue; | |
248 | } | |
7a0e58fa | 249 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
250 | continue; |
251 | } | |
59a1c327 | 252 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
253 | } |
254 | return ok; | |
255 | } | |
256 | ||
257 | bool write_list_to_cpustate(ARMCPU *cpu) | |
258 | { | |
259 | int i; | |
260 | bool ok = true; | |
261 | ||
262 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
263 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
264 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
265 | const ARMCPRegInfo *ri; |
266 | ||
60322b39 | 267 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
268 | if (!ri) { |
269 | ok = false; | |
270 | continue; | |
271 | } | |
7a0e58fa | 272 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
273 | continue; |
274 | } | |
275 | /* Write value and confirm it reads back as written | |
276 | * (to catch read-only registers and partially read-only | |
277 | * registers where the incoming migration value doesn't match) | |
278 | */ | |
59a1c327 PM |
279 | write_raw_cp_reg(&cpu->env, ri, v); |
280 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
281 | ok = false; |
282 | } | |
283 | } | |
284 | return ok; | |
285 | } | |
286 | ||
287 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
288 | { | |
289 | ARMCPU *cpu = opaque; | |
290 | uint64_t regidx; | |
291 | const ARMCPRegInfo *ri; | |
292 | ||
293 | regidx = *(uint32_t *)key; | |
60322b39 | 294 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 295 | |
7a0e58fa | 296 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
297 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
298 | /* The value array need not be initialized at this point */ | |
299 | cpu->cpreg_array_len++; | |
300 | } | |
301 | } | |
302 | ||
303 | static void count_cpreg(gpointer key, gpointer opaque) | |
304 | { | |
305 | ARMCPU *cpu = opaque; | |
306 | uint64_t regidx; | |
307 | const ARMCPRegInfo *ri; | |
308 | ||
309 | regidx = *(uint32_t *)key; | |
60322b39 | 310 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 311 | |
7a0e58fa | 312 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
313 | cpu->cpreg_array_len++; |
314 | } | |
315 | } | |
316 | ||
317 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
318 | { | |
cbf239b7 AR |
319 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
320 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 321 | |
cbf239b7 AR |
322 | if (aidx > bidx) { |
323 | return 1; | |
324 | } | |
325 | if (aidx < bidx) { | |
326 | return -1; | |
327 | } | |
328 | return 0; | |
721fae12 PM |
329 | } |
330 | ||
331 | void init_cpreg_list(ARMCPU *cpu) | |
332 | { | |
333 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
334 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
335 | */ | |
57b6d95e | 336 | GList *keys; |
721fae12 PM |
337 | int arraylen; |
338 | ||
57b6d95e | 339 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
340 | keys = g_list_sort(keys, cpreg_key_compare); |
341 | ||
342 | cpu->cpreg_array_len = 0; | |
343 | ||
344 | g_list_foreach(keys, count_cpreg, cpu); | |
345 | ||
346 | arraylen = cpu->cpreg_array_len; | |
347 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
348 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
349 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
350 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
351 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
352 | cpu->cpreg_array_len = 0; | |
353 | ||
354 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
355 | ||
356 | assert(cpu->cpreg_array_len == arraylen); | |
357 | ||
358 | g_list_free(keys); | |
359 | } | |
360 | ||
68e9c2fe EI |
361 | /* |
362 | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but | |
363 | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. | |
364 | * | |
365 | * access_el3_aa32ns: Used to check AArch32 register views. | |
366 | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. | |
367 | */ | |
368 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
3f208fd7 PM |
369 | const ARMCPRegInfo *ri, |
370 | bool isread) | |
68e9c2fe EI |
371 | { |
372 | bool secure = arm_is_secure_below_el3(env); | |
373 | ||
374 | assert(!arm_el_is_aa64(env, 3)); | |
375 | if (secure) { | |
376 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
377 | } | |
378 | return CP_ACCESS_OK; | |
379 | } | |
380 | ||
381 | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, | |
3f208fd7 PM |
382 | const ARMCPRegInfo *ri, |
383 | bool isread) | |
68e9c2fe EI |
384 | { |
385 | if (!arm_el_is_aa64(env, 3)) { | |
3f208fd7 | 386 | return access_el3_aa32ns(env, ri, isread); |
68e9c2fe EI |
387 | } |
388 | return CP_ACCESS_OK; | |
389 | } | |
390 | ||
5513c3ab PM |
391 | /* Some secure-only AArch32 registers trap to EL3 if used from |
392 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). | |
393 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. | |
394 | * We assume that the .access field is set to PL1_RW. | |
395 | */ | |
396 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, | |
3f208fd7 PM |
397 | const ARMCPRegInfo *ri, |
398 | bool isread) | |
5513c3ab PM |
399 | { |
400 | if (arm_current_el(env) == 3) { | |
401 | return CP_ACCESS_OK; | |
402 | } | |
403 | if (arm_is_secure_below_el3(env)) { | |
404 | return CP_ACCESS_TRAP_EL3; | |
405 | } | |
406 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ | |
407 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
408 | } | |
409 | ||
187f678d PM |
410 | /* Check for traps to "powerdown debug" registers, which are controlled |
411 | * by MDCR.TDOSA | |
412 | */ | |
413 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, | |
414 | bool isread) | |
415 | { | |
416 | int el = arm_current_el(env); | |
417 | ||
418 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) | |
419 | && !arm_is_secure_below_el3(env)) { | |
420 | return CP_ACCESS_TRAP_EL2; | |
421 | } | |
422 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { | |
423 | return CP_ACCESS_TRAP_EL3; | |
424 | } | |
425 | return CP_ACCESS_OK; | |
426 | } | |
427 | ||
91b0a238 PM |
428 | /* Check for traps to "debug ROM" registers, which are controlled |
429 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. | |
430 | */ | |
431 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, | |
432 | bool isread) | |
433 | { | |
434 | int el = arm_current_el(env); | |
435 | ||
436 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) | |
437 | && !arm_is_secure_below_el3(env)) { | |
438 | return CP_ACCESS_TRAP_EL2; | |
439 | } | |
440 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
441 | return CP_ACCESS_TRAP_EL3; | |
442 | } | |
443 | return CP_ACCESS_OK; | |
444 | } | |
445 | ||
d6c8cf81 PM |
446 | /* Check for traps to general debug registers, which are controlled |
447 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. | |
448 | */ | |
449 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, | |
450 | bool isread) | |
451 | { | |
452 | int el = arm_current_el(env); | |
453 | ||
454 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) | |
455 | && !arm_is_secure_below_el3(env)) { | |
456 | return CP_ACCESS_TRAP_EL2; | |
457 | } | |
458 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
459 | return CP_ACCESS_TRAP_EL3; | |
460 | } | |
461 | return CP_ACCESS_OK; | |
462 | } | |
463 | ||
1fce1ba9 PM |
464 | /* Check for traps to performance monitor registers, which are controlled |
465 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. | |
466 | */ | |
467 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, | |
468 | bool isread) | |
469 | { | |
470 | int el = arm_current_el(env); | |
471 | ||
472 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) | |
473 | && !arm_is_secure_below_el3(env)) { | |
474 | return CP_ACCESS_TRAP_EL2; | |
475 | } | |
476 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
477 | return CP_ACCESS_TRAP_EL3; | |
478 | } | |
479 | return CP_ACCESS_OK; | |
480 | } | |
481 | ||
c4241c7d | 482 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 483 | { |
00c8cb0a AF |
484 | ARMCPU *cpu = arm_env_get_cpu(env); |
485 | ||
8d5c773e | 486 | raw_write(env, ri, value); |
d10eb08f | 487 | tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
488 | } |
489 | ||
c4241c7d | 490 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 491 | { |
00c8cb0a AF |
492 | ARMCPU *cpu = arm_env_get_cpu(env); |
493 | ||
8d5c773e | 494 | if (raw_read(env, ri) != value) { |
08de207b PM |
495 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
496 | * not modified virtual addresses, so this causes a TLB flush. | |
497 | */ | |
d10eb08f | 498 | tlb_flush(CPU(cpu)); |
8d5c773e | 499 | raw_write(env, ri, value); |
08de207b | 500 | } |
08de207b | 501 | } |
c4241c7d PM |
502 | |
503 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
504 | uint64_t value) | |
08de207b | 505 | { |
00c8cb0a AF |
506 | ARMCPU *cpu = arm_env_get_cpu(env); |
507 | ||
452a0955 | 508 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) |
014406b5 | 509 | && !extended_addresses_enabled(env)) { |
08de207b PM |
510 | /* For VMSA (when not using the LPAE long descriptor page table |
511 | * format) this register includes the ASID, so do a TLB flush. | |
512 | * For PMSA it is purely a process ID and no action is needed. | |
513 | */ | |
d10eb08f | 514 | tlb_flush(CPU(cpu)); |
08de207b | 515 | } |
8d5c773e | 516 | raw_write(env, ri, value); |
08de207b PM |
517 | } |
518 | ||
c4241c7d PM |
519 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
520 | uint64_t value) | |
d929823f PM |
521 | { |
522 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
523 | ARMCPU *cpu = arm_env_get_cpu(env); |
524 | ||
d10eb08f | 525 | tlb_flush(CPU(cpu)); |
d929823f PM |
526 | } |
527 | ||
c4241c7d PM |
528 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
529 | uint64_t value) | |
d929823f PM |
530 | { |
531 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
532 | ARMCPU *cpu = arm_env_get_cpu(env); |
533 | ||
534 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
535 | } |
536 | ||
c4241c7d PM |
537 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
538 | uint64_t value) | |
d929823f PM |
539 | { |
540 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
541 | ARMCPU *cpu = arm_env_get_cpu(env); |
542 | ||
d10eb08f | 543 | tlb_flush(CPU(cpu)); |
d929823f PM |
544 | } |
545 | ||
c4241c7d PM |
546 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
547 | uint64_t value) | |
d929823f PM |
548 | { |
549 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
550 | ARMCPU *cpu = arm_env_get_cpu(env); |
551 | ||
552 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
553 | } |
554 | ||
fa439fc5 PM |
555 | /* IS variants of TLB operations must affect all cores */ |
556 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
557 | uint64_t value) | |
558 | { | |
a67cf277 | 559 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 560 | |
a67cf277 | 561 | tlb_flush_all_cpus_synced(cs); |
fa439fc5 PM |
562 | } |
563 | ||
564 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
565 | uint64_t value) | |
566 | { | |
a67cf277 | 567 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 568 | |
a67cf277 | 569 | tlb_flush_all_cpus_synced(cs); |
fa439fc5 PM |
570 | } |
571 | ||
572 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
573 | uint64_t value) | |
574 | { | |
a67cf277 | 575 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 576 | |
a67cf277 | 577 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
fa439fc5 PM |
578 | } |
579 | ||
580 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
581 | uint64_t value) | |
582 | { | |
a67cf277 | 583 | CPUState *cs = ENV_GET_CPU(env); |
fa439fc5 | 584 | |
a67cf277 | 585 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
fa439fc5 PM |
586 | } |
587 | ||
541ef8c2 SS |
588 | static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
589 | uint64_t value) | |
590 | { | |
591 | CPUState *cs = ENV_GET_CPU(env); | |
592 | ||
0336cbf8 | 593 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
594 | ARMMMUIdxBit_S12NSE1 | |
595 | ARMMMUIdxBit_S12NSE0 | | |
596 | ARMMMUIdxBit_S2NS); | |
541ef8c2 SS |
597 | } |
598 | ||
599 | static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
600 | uint64_t value) | |
601 | { | |
a67cf277 | 602 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 | 603 | |
a67cf277 | 604 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
8bd5c820 PM |
605 | ARMMMUIdxBit_S12NSE1 | |
606 | ARMMMUIdxBit_S12NSE0 | | |
607 | ARMMMUIdxBit_S2NS); | |
541ef8c2 SS |
608 | } |
609 | ||
610 | static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
611 | uint64_t value) | |
612 | { | |
613 | /* Invalidate by IPA. This has to invalidate any structures that | |
614 | * contain only stage 2 translation information, but does not need | |
615 | * to apply to structures that contain combined stage 1 and stage 2 | |
616 | * translation information. | |
617 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
618 | */ | |
619 | CPUState *cs = ENV_GET_CPU(env); | |
620 | uint64_t pageaddr; | |
621 | ||
622 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
623 | return; | |
624 | } | |
625 | ||
626 | pageaddr = sextract64(value << 12, 0, 40); | |
627 | ||
8bd5c820 | 628 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
541ef8c2 SS |
629 | } |
630 | ||
631 | static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
632 | uint64_t value) | |
633 | { | |
a67cf277 | 634 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 SS |
635 | uint64_t pageaddr; |
636 | ||
637 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
638 | return; | |
639 | } | |
640 | ||
641 | pageaddr = sextract64(value << 12, 0, 40); | |
642 | ||
a67cf277 | 643 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 644 | ARMMMUIdxBit_S2NS); |
541ef8c2 SS |
645 | } |
646 | ||
647 | static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
648 | uint64_t value) | |
649 | { | |
650 | CPUState *cs = ENV_GET_CPU(env); | |
651 | ||
8bd5c820 | 652 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
653 | } |
654 | ||
655 | static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
656 | uint64_t value) | |
657 | { | |
a67cf277 | 658 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 | 659 | |
8bd5c820 | 660 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
661 | } |
662 | ||
663 | static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
664 | uint64_t value) | |
665 | { | |
666 | CPUState *cs = ENV_GET_CPU(env); | |
667 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); | |
668 | ||
8bd5c820 | 669 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
670 | } |
671 | ||
672 | static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
673 | uint64_t value) | |
674 | { | |
a67cf277 | 675 | CPUState *cs = ENV_GET_CPU(env); |
541ef8c2 SS |
676 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
677 | ||
a67cf277 | 678 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 679 | ARMMMUIdxBit_S1E2); |
541ef8c2 SS |
680 | } |
681 | ||
e9aa6c21 | 682 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
683 | /* Define the secure and non-secure FCSE identifier CP registers |
684 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
685 | * the secure register to be properly reset and migrated. There is also no | |
686 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
687 | */ | |
688 | { .name = "FCSEIDR(NS)", | |
689 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
690 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
691 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
692 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
693 | { .name = "FCSEIDR(S)", | |
694 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
695 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
696 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 697 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
698 | /* Define the secure and non-secure context identifier CP registers |
699 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
700 | * the secure register to be properly reset and migrated. In the | |
701 | * non-secure case, the 32-bit register will have reset and migration | |
702 | * disabled during registration as it is handled by the 64-bit instance. | |
703 | */ | |
704 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 705 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
706 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
707 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
708 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
709 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
710 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
711 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
712 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 713 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
714 | REGINFO_SENTINEL |
715 | }; | |
716 | ||
717 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
718 | /* NB: Some of these registers exist in v8 but with more precise | |
719 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
720 | */ | |
721 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
722 | { .name = "DACR", |
723 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
724 | .access = PL1_RW, .resetvalue = 0, | |
725 | .writefn = dacr_write, .raw_writefn = raw_write, | |
726 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
727 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
728 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
729 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 730 | */ |
a903c449 EI |
731 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
732 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
733 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
734 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
735 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
736 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
737 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 738 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
739 | /* Cache maintenance ops; some of this space may be overridden later. */ |
740 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
741 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
742 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
743 | REGINFO_SENTINEL |
744 | }; | |
745 | ||
7d57f408 PM |
746 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
747 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
748 | * over-broad. | |
749 | */ | |
750 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
751 | .access = PL1_W, .type = ARM_CP_WFI }, | |
752 | REGINFO_SENTINEL | |
753 | }; | |
754 | ||
755 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
756 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
757 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
758 | */ | |
759 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
760 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
761 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
762 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
763 | * OMAPCP will override this space. | |
764 | */ | |
765 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
766 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
767 | .resetvalue = 0 }, | |
768 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
769 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
770 | .resetvalue = 0 }, | |
776d4e5c PM |
771 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
772 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 773 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 774 | .resetvalue = 0 }, |
50300698 PM |
775 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
776 | * implementing it as RAZ means the "debug architecture version" bits | |
777 | * will read as a reserved value, which should cause Linux to not try | |
778 | * to use the debug hardware. | |
779 | */ | |
780 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
781 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
782 | /* MMU TLB control. Note that the wildcarding means we cover not just |
783 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
784 | */ | |
785 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
786 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 787 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
788 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
789 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 790 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
791 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
792 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 793 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
794 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
795 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 796 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
797 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
798 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
799 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
800 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
801 | REGINFO_SENTINEL |
802 | }; | |
803 | ||
c4241c7d PM |
804 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
805 | uint64_t value) | |
2771db27 | 806 | { |
f0aff255 FA |
807 | uint32_t mask = 0; |
808 | ||
809 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
810 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
811 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
812 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
813 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
814 | */ | |
815 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
816 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
817 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
818 | ||
819 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
820 | /* ASEDIS [31] bit is RAO/WI */ | |
821 | value |= (1 << 31); | |
822 | } | |
823 | ||
824 | /* VFPv3 and upwards with NEON implement 32 double precision | |
825 | * registers (D0-D31). | |
826 | */ | |
827 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
828 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
829 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
830 | value |= (1 << 30); | |
831 | } | |
832 | } | |
833 | value &= mask; | |
2771db27 | 834 | } |
7ebd5f2e | 835 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
836 | } |
837 | ||
3f208fd7 PM |
838 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
839 | bool isread) | |
c6f19164 GB |
840 | { |
841 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
842 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
843 | if (arm_current_el(env) == 1 && | |
844 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
845 | return CP_ACCESS_TRAP_EL2; | |
846 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
847 | } else if (arm_current_el(env) < 3 && | |
848 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
849 | return CP_ACCESS_TRAP_EL3; | |
850 | } | |
851 | } | |
852 | ||
853 | return CP_ACCESS_OK; | |
854 | } | |
855 | ||
3f208fd7 PM |
856 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
857 | bool isread) | |
c6f19164 GB |
858 | { |
859 | /* Check if CPTR accesses are set to trap to EL3 */ | |
860 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
861 | return CP_ACCESS_TRAP_EL3; | |
862 | } | |
863 | ||
864 | return CP_ACCESS_OK; | |
865 | } | |
866 | ||
7d57f408 PM |
867 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
868 | /* prefetch by MVA in v6, NOP in v7 */ | |
869 | { .name = "MVA_prefetch", | |
870 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
871 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
872 | /* We need to break the TB after ISB to execute self-modifying code |
873 | * correctly and also to take any pending interrupts immediately. | |
874 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
875 | */ | |
7d57f408 | 876 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 877 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 878 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 879 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 880 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 881 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 882 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 883 | .access = PL1_RW, |
b848ce2b FA |
884 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
885 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
886 | .resetvalue = 0, }, |
887 | /* Watchpoint Fault Address Register : should actually only be present | |
888 | * for 1136, 1176, 11MPCore. | |
889 | */ | |
890 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
891 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 892 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 893 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 894 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 895 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
896 | REGINFO_SENTINEL |
897 | }; | |
898 | ||
3f208fd7 PM |
899 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
900 | bool isread) | |
200ac0ef | 901 | { |
3b163b01 | 902 | /* Performance monitor registers user accessibility is controlled |
1fce1ba9 PM |
903 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
904 | * trapping to EL2 or EL3 for other accesses. | |
200ac0ef | 905 | */ |
1fce1ba9 PM |
906 | int el = arm_current_el(env); |
907 | ||
6ecd0b6b | 908 | if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { |
fcd25206 | 909 | return CP_ACCESS_TRAP; |
200ac0ef | 910 | } |
1fce1ba9 PM |
911 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
912 | && !arm_is_secure_below_el3(env)) { | |
913 | return CP_ACCESS_TRAP_EL2; | |
914 | } | |
915 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
916 | return CP_ACCESS_TRAP_EL3; | |
917 | } | |
918 | ||
fcd25206 | 919 | return CP_ACCESS_OK; |
200ac0ef PM |
920 | } |
921 | ||
6ecd0b6b AB |
922 | static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, |
923 | const ARMCPRegInfo *ri, | |
924 | bool isread) | |
925 | { | |
926 | /* ER: event counter read trap control */ | |
927 | if (arm_feature(env, ARM_FEATURE_V8) | |
928 | && arm_current_el(env) == 0 | |
929 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 | |
930 | && isread) { | |
931 | return CP_ACCESS_OK; | |
932 | } | |
933 | ||
934 | return pmreg_access(env, ri, isread); | |
935 | } | |
936 | ||
937 | static CPAccessResult pmreg_access_swinc(CPUARMState *env, | |
938 | const ARMCPRegInfo *ri, | |
939 | bool isread) | |
940 | { | |
941 | /* SW: software increment write trap control */ | |
942 | if (arm_feature(env, ARM_FEATURE_V8) | |
943 | && arm_current_el(env) == 0 | |
944 | && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 | |
945 | && !isread) { | |
946 | return CP_ACCESS_OK; | |
947 | } | |
948 | ||
949 | return pmreg_access(env, ri, isread); | |
950 | } | |
951 | ||
7c2cb42b | 952 | #ifndef CONFIG_USER_ONLY |
87124fde | 953 | |
6ecd0b6b AB |
954 | static CPAccessResult pmreg_access_selr(CPUARMState *env, |
955 | const ARMCPRegInfo *ri, | |
956 | bool isread) | |
957 | { | |
958 | /* ER: event counter read trap control */ | |
959 | if (arm_feature(env, ARM_FEATURE_V8) | |
960 | && arm_current_el(env) == 0 | |
961 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { | |
962 | return CP_ACCESS_OK; | |
963 | } | |
964 | ||
965 | return pmreg_access(env, ri, isread); | |
966 | } | |
967 | ||
968 | static CPAccessResult pmreg_access_ccntr(CPUARMState *env, | |
969 | const ARMCPRegInfo *ri, | |
970 | bool isread) | |
971 | { | |
972 | /* CR: cycle counter read trap control */ | |
973 | if (arm_feature(env, ARM_FEATURE_V8) | |
974 | && arm_current_el(env) == 0 | |
975 | && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 | |
976 | && isread) { | |
977 | return CP_ACCESS_OK; | |
978 | } | |
979 | ||
980 | return pmreg_access(env, ri, isread); | |
981 | } | |
982 | ||
87124fde AF |
983 | static inline bool arm_ccnt_enabled(CPUARMState *env) |
984 | { | |
985 | /* This does not support checking PMCCFILTR_EL0 register */ | |
986 | ||
987 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
988 | return false; | |
989 | } | |
990 | ||
991 | return true; | |
992 | } | |
993 | ||
ec7b4ce4 AF |
994 | void pmccntr_sync(CPUARMState *env) |
995 | { | |
996 | uint64_t temp_ticks; | |
997 | ||
352c98e5 LV |
998 | temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
999 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
ec7b4ce4 AF |
1000 | |
1001 | if (env->cp15.c9_pmcr & PMCRD) { | |
1002 | /* Increment once every 64 processor clock cycles */ | |
1003 | temp_ticks /= 64; | |
1004 | } | |
1005 | ||
1006 | if (arm_ccnt_enabled(env)) { | |
1007 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
1008 | } | |
1009 | } | |
1010 | ||
c4241c7d PM |
1011 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1012 | uint64_t value) | |
200ac0ef | 1013 | { |
942a155b | 1014 | pmccntr_sync(env); |
7c2cb42b AF |
1015 | |
1016 | if (value & PMCRC) { | |
1017 | /* The counter has been reset */ | |
1018 | env->cp15.c15_ccnt = 0; | |
1019 | } | |
1020 | ||
200ac0ef PM |
1021 | /* only the DP, X, D and E bits are writable */ |
1022 | env->cp15.c9_pmcr &= ~0x39; | |
1023 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 1024 | |
942a155b | 1025 | pmccntr_sync(env); |
7c2cb42b AF |
1026 | } |
1027 | ||
1028 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1029 | { | |
c92c0687 | 1030 | uint64_t total_ticks; |
7c2cb42b | 1031 | |
942a155b | 1032 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
1033 | /* Counter is disabled, do not change value */ |
1034 | return env->cp15.c15_ccnt; | |
1035 | } | |
1036 | ||
352c98e5 LV |
1037 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
1038 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
1039 | |
1040 | if (env->cp15.c9_pmcr & PMCRD) { | |
1041 | /* Increment once every 64 processor clock cycles */ | |
1042 | total_ticks /= 64; | |
1043 | } | |
1044 | return total_ticks - env->cp15.c15_ccnt; | |
1045 | } | |
1046 | ||
6b040780 WH |
1047 | static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1048 | uint64_t value) | |
1049 | { | |
1050 | /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and | |
1051 | * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the | |
1052 | * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are | |
1053 | * accessed. | |
1054 | */ | |
1055 | env->cp15.c9_pmselr = value & 0x1f; | |
1056 | } | |
1057 | ||
7c2cb42b AF |
1058 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1059 | uint64_t value) | |
1060 | { | |
c92c0687 | 1061 | uint64_t total_ticks; |
7c2cb42b | 1062 | |
942a155b | 1063 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
1064 | /* Counter is disabled, set the absolute value */ |
1065 | env->cp15.c15_ccnt = value; | |
1066 | return; | |
1067 | } | |
1068 | ||
352c98e5 LV |
1069 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
1070 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
1071 | |
1072 | if (env->cp15.c9_pmcr & PMCRD) { | |
1073 | /* Increment once every 64 processor clock cycles */ | |
1074 | total_ticks /= 64; | |
1075 | } | |
1076 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 1077 | } |
421c7ebd PC |
1078 | |
1079 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1080 | uint64_t value) | |
1081 | { | |
1082 | uint64_t cur_val = pmccntr_read(env, NULL); | |
1083 | ||
1084 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
1085 | } | |
1086 | ||
ec7b4ce4 AF |
1087 | #else /* CONFIG_USER_ONLY */ |
1088 | ||
1089 | void pmccntr_sync(CPUARMState *env) | |
1090 | { | |
1091 | } | |
1092 | ||
7c2cb42b | 1093 | #endif |
200ac0ef | 1094 | |
0614601c AF |
1095 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1096 | uint64_t value) | |
1097 | { | |
1098 | pmccntr_sync(env); | |
1099 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
1100 | pmccntr_sync(env); | |
1101 | } | |
1102 | ||
c4241c7d | 1103 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1104 | uint64_t value) |
1105 | { | |
200ac0ef PM |
1106 | value &= (1 << 31); |
1107 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
1108 | } |
1109 | ||
c4241c7d PM |
1110 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1111 | uint64_t value) | |
200ac0ef | 1112 | { |
200ac0ef PM |
1113 | value &= (1 << 31); |
1114 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
1115 | } |
1116 | ||
c4241c7d PM |
1117 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1118 | uint64_t value) | |
200ac0ef | 1119 | { |
200ac0ef | 1120 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
1121 | } |
1122 | ||
c4241c7d PM |
1123 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1124 | uint64_t value) | |
200ac0ef | 1125 | { |
fdb86656 WH |
1126 | /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when |
1127 | * PMSELR value is equal to or greater than the number of implemented | |
1128 | * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. | |
1129 | */ | |
1130 | if (env->cp15.c9_pmselr == 0x1f) { | |
1131 | pmccfiltr_write(env, ri, value); | |
1132 | } | |
1133 | } | |
1134 | ||
1135 | static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1136 | { | |
1137 | /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER | |
1138 | * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). | |
1139 | */ | |
1140 | if (env->cp15.c9_pmselr == 0x1f) { | |
1141 | return env->cp15.pmccfiltr_el0; | |
1142 | } else { | |
1143 | return 0; | |
1144 | } | |
200ac0ef PM |
1145 | } |
1146 | ||
c4241c7d | 1147 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1148 | uint64_t value) |
1149 | { | |
6ecd0b6b AB |
1150 | if (arm_feature(env, ARM_FEATURE_V8)) { |
1151 | env->cp15.c9_pmuserenr = value & 0xf; | |
1152 | } else { | |
1153 | env->cp15.c9_pmuserenr = value & 1; | |
1154 | } | |
200ac0ef PM |
1155 | } |
1156 | ||
c4241c7d PM |
1157 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1158 | uint64_t value) | |
200ac0ef PM |
1159 | { |
1160 | /* We have no event counters so only the C bit can be changed */ | |
1161 | value &= (1 << 31); | |
1162 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
1163 | } |
1164 | ||
c4241c7d PM |
1165 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1166 | uint64_t value) | |
200ac0ef PM |
1167 | { |
1168 | value &= (1 << 31); | |
1169 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
1170 | } |
1171 | ||
c4241c7d PM |
1172 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1173 | uint64_t value) | |
8641136c | 1174 | { |
a505d7fe PM |
1175 | /* Note that even though the AArch64 view of this register has bits |
1176 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
1177 | * architectural requirements for bits which are RES0 only in some | |
1178 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
1179 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
1180 | */ | |
855ea66d | 1181 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
1182 | } |
1183 | ||
64e0e2de EI |
1184 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1185 | { | |
1186 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
1187 | * For bits that vary between AArch32/64, code needs to check the | |
1188 | * current execution mode before directly using the feature bit. | |
1189 | */ | |
1190 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
1191 | ||
1192 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
1193 | valid_mask &= ~SCR_HCE; | |
1194 | ||
1195 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
1196 | * supported if EL2 exists. The bit is UNK/SBZP when | |
1197 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
1198 | * when EL2 is unavailable. | |
4eb27640 | 1199 | * On ARMv8, this bit is always available. |
64e0e2de | 1200 | */ |
4eb27640 GB |
1201 | if (arm_feature(env, ARM_FEATURE_V7) && |
1202 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
1203 | valid_mask &= ~SCR_SMD; |
1204 | } | |
1205 | } | |
1206 | ||
1207 | /* Clear all-context RES0 bits. */ | |
1208 | value &= valid_mask; | |
1209 | raw_write(env, ri, value); | |
1210 | } | |
1211 | ||
c4241c7d | 1212 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
1213 | { |
1214 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
1215 | |
1216 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
1217 | * bank | |
1218 | */ | |
1219 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
1220 | ri->secure & ARM_CP_SECSTATE_S); | |
1221 | ||
1222 | return cpu->ccsidr[index]; | |
776d4e5c PM |
1223 | } |
1224 | ||
c4241c7d PM |
1225 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1226 | uint64_t value) | |
776d4e5c | 1227 | { |
8d5c773e | 1228 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
1229 | } |
1230 | ||
1090b9c6 PM |
1231 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1232 | { | |
1233 | CPUState *cs = ENV_GET_CPU(env); | |
1234 | uint64_t ret = 0; | |
1235 | ||
1236 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
1237 | ret |= CPSR_I; | |
1238 | } | |
1239 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
1240 | ret |= CPSR_F; | |
1241 | } | |
1242 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
1243 | return ret; | |
1244 | } | |
1245 | ||
e9aa6c21 | 1246 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
1247 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
1248 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
1249 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
1250 | /* Performance monitors are implementation defined in v7, |
1251 | * but with an ARM recommended set of registers, which we | |
1252 | * follow (although we don't actually implement any counters) | |
1253 | * | |
1254 | * Performance registers fall into three categories: | |
1255 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
1256 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
1257 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
1258 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
1259 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
1260 | */ | |
1261 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1262 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 1263 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
1264 | .writefn = pmcntenset_write, |
1265 | .accessfn = pmreg_access, | |
1266 | .raw_writefn = raw_write }, | |
8521466b AF |
1267 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
1268 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
1269 | .access = PL0_RW, .accessfn = pmreg_access, | |
1270 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
1271 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 1272 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
1273 | .access = PL0_RW, |
1274 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
1275 | .accessfn = pmreg_access, |
1276 | .writefn = pmcntenclr_write, | |
7a0e58fa | 1277 | .type = ARM_CP_ALIAS }, |
8521466b AF |
1278 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
1279 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
1280 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 1281 | .type = ARM_CP_ALIAS, |
8521466b AF |
1282 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
1283 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
1284 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
1285 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
1286 | .accessfn = pmreg_access, |
1287 | .writefn = pmovsr_write, | |
1288 | .raw_writefn = raw_write }, | |
978364f1 AF |
1289 | { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
1290 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, | |
1291 | .access = PL0_RW, .accessfn = pmreg_access, | |
1292 | .type = ARM_CP_ALIAS, | |
1293 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
1294 | .writefn = pmovsr_write, | |
1295 | .raw_writefn = raw_write }, | |
fcd25206 | 1296 | /* Unimplemented so WI. */ |
200ac0ef | 1297 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
6ecd0b6b | 1298 | .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, |
7c2cb42b | 1299 | #ifndef CONFIG_USER_ONLY |
6b040780 WH |
1300 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
1301 | .access = PL0_RW, .type = ARM_CP_ALIAS, | |
1302 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), | |
6ecd0b6b | 1303 | .accessfn = pmreg_access_selr, .writefn = pmselr_write, |
6b040780 WH |
1304 | .raw_writefn = raw_write}, |
1305 | { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, | |
1306 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, | |
6ecd0b6b | 1307 | .access = PL0_RW, .accessfn = pmreg_access_selr, |
6b040780 WH |
1308 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), |
1309 | .writefn = pmselr_write, .raw_writefn = raw_write, }, | |
200ac0ef | 1310 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 1311 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 1312 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
6ecd0b6b | 1313 | .accessfn = pmreg_access_ccntr }, |
8521466b AF |
1314 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
1315 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
6ecd0b6b | 1316 | .access = PL0_RW, .accessfn = pmreg_access_ccntr, |
8521466b AF |
1317 | .type = ARM_CP_IO, |
1318 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 1319 | #endif |
8521466b AF |
1320 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
1321 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 1322 | .writefn = pmccfiltr_write, |
8521466b AF |
1323 | .access = PL0_RW, .accessfn = pmreg_access, |
1324 | .type = ARM_CP_IO, | |
1325 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
1326 | .resetvalue = 0, }, | |
200ac0ef | 1327 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
fdb86656 WH |
1328 | .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, |
1329 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, | |
1330 | { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, | |
1331 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, | |
1332 | .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, | |
1333 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, | |
fcd25206 | 1334 | /* Unimplemented, RAZ/WI. */ |
200ac0ef | 1335 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 | 1336 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
6ecd0b6b | 1337 | .accessfn = pmreg_access_xevcntr }, |
200ac0ef | 1338 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1fce1ba9 | 1339 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
200ac0ef PM |
1340 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1341 | .resetvalue = 0, | |
d4e6df63 | 1342 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
8a83ffc2 AF |
1343 | { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
1344 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, | |
1fce1ba9 | 1345 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
8a83ffc2 AF |
1346 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1347 | .resetvalue = 0, | |
1348 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
200ac0ef | 1349 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1fce1ba9 | 1350 | .access = PL1_RW, .accessfn = access_tpm, |
e6ec5457 WH |
1351 | .type = ARM_CP_ALIAS, |
1352 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), | |
200ac0ef | 1353 | .resetvalue = 0, |
d4e6df63 | 1354 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
e6ec5457 WH |
1355 | { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, |
1356 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, | |
1357 | .access = PL1_RW, .accessfn = access_tpm, | |
1358 | .type = ARM_CP_IO, | |
1359 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
1360 | .writefn = pmintenset_write, .raw_writefn = raw_write, | |
1361 | .resetvalue = 0x0 }, | |
200ac0ef | 1362 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
1fce1ba9 | 1363 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
200ac0ef | 1364 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 1365 | .writefn = pmintenclr_write, }, |
978364f1 AF |
1366 | { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
1367 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, | |
1fce1ba9 | 1368 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
978364f1 AF |
1369 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
1370 | .writefn = pmintenclr_write }, | |
7da845b0 PM |
1371 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
1372 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 1373 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
1374 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
1375 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1376 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1377 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1378 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1379 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1380 | * just RAZ for all cores: | |
1381 | */ | |
0ff644a7 PM |
1382 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1383 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1384 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1385 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1386 | * choose to RAZ/WI for all cores. | |
1387 | */ | |
1388 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1389 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1390 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1391 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1392 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1393 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1394 | /* MAIR can just read-as-written because we don't implement caches |
1395 | * and so don't need to care about memory attributes. | |
1396 | */ | |
1397 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1398 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1399 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 | 1400 | .resetvalue = 0 }, |
4cfb8ad8 PM |
1401 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
1402 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
1403 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
1404 | .resetvalue = 0 }, | |
b0fe2427 PM |
1405 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
1406 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1407 | */ |
1281f8e3 | 1408 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1409 | * allows them to assign the correct fieldoffset based on the endianness |
1410 | * handled in the field definitions. | |
1411 | */ | |
a903c449 | 1412 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1413 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1414 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1415 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1416 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1417 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1418 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1419 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1420 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1421 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1422 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1423 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1424 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1425 | /* 32 bit ITLB invalidates */ |
1426 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1427 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1428 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1429 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1430 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1431 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1432 | /* 32 bit DTLB invalidates */ |
1433 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1434 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1435 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1436 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1437 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1438 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1439 | /* 32 bit TLB invalidates */ |
1440 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1441 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1442 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1443 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1444 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1445 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1446 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1447 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1448 | REGINFO_SENTINEL |
1449 | }; | |
1450 | ||
1451 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1452 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1453 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1454 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1455 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1456 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1457 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1458 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1459 | .writefn = tlbiasid_is_write }, |
995939a6 | 1460 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1461 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1462 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1463 | REGINFO_SENTINEL |
1464 | }; | |
1465 | ||
c4241c7d PM |
1466 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1467 | uint64_t value) | |
c326b979 PM |
1468 | { |
1469 | value &= 1; | |
1470 | env->teecr = value; | |
c326b979 PM |
1471 | } |
1472 | ||
3f208fd7 PM |
1473 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1474 | bool isread) | |
c326b979 | 1475 | { |
dcbff19b | 1476 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1477 | return CP_ACCESS_TRAP; |
c326b979 | 1478 | } |
92611c00 | 1479 | return CP_ACCESS_OK; |
c326b979 PM |
1480 | } |
1481 | ||
1482 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1483 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1484 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1485 | .resetvalue = 0, | |
1486 | .writefn = teecr_write }, | |
1487 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1488 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1489 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1490 | REGINFO_SENTINEL |
1491 | }; | |
1492 | ||
4d31c596 | 1493 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1494 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1495 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1496 | .access = PL0_RW, | |
54bf36ed | 1497 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1498 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1499 | .access = PL0_RW, | |
54bf36ed FA |
1500 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1501 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1502 | .resetfn = arm_cp_reset_ignore }, |
1503 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1504 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1505 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1506 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1507 | .resetvalue = 0}, | |
4d31c596 PM |
1508 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1509 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1510 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1511 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1512 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1513 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1514 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1515 | .access = PL1_RW, |
54bf36ed FA |
1516 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1517 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1518 | .access = PL1_RW, | |
1519 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1520 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1521 | .resetvalue = 0 }, | |
4d31c596 PM |
1522 | REGINFO_SENTINEL |
1523 | }; | |
1524 | ||
55d284af PM |
1525 | #ifndef CONFIG_USER_ONLY |
1526 | ||
3f208fd7 PM |
1527 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1528 | bool isread) | |
00108f2d | 1529 | { |
75502672 PM |
1530 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
1531 | * Writable only at the highest implemented exception level. | |
1532 | */ | |
1533 | int el = arm_current_el(env); | |
1534 | ||
1535 | switch (el) { | |
1536 | case 0: | |
1537 | if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
1538 | return CP_ACCESS_TRAP; | |
1539 | } | |
1540 | break; | |
1541 | case 1: | |
1542 | if (!isread && ri->state == ARM_CP_STATE_AA32 && | |
1543 | arm_is_secure_below_el3(env)) { | |
1544 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ | |
1545 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1546 | } | |
1547 | break; | |
1548 | case 2: | |
1549 | case 3: | |
1550 | break; | |
00108f2d | 1551 | } |
75502672 PM |
1552 | |
1553 | if (!isread && el < arm_highest_el(env)) { | |
1554 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1555 | } | |
1556 | ||
00108f2d PM |
1557 | return CP_ACCESS_OK; |
1558 | } | |
1559 | ||
3f208fd7 PM |
1560 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
1561 | bool isread) | |
00108f2d | 1562 | { |
0b6440af EI |
1563 | unsigned int cur_el = arm_current_el(env); |
1564 | bool secure = arm_is_secure(env); | |
1565 | ||
00108f2d | 1566 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1567 | if (cur_el == 0 && |
00108f2d PM |
1568 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1569 | return CP_ACCESS_TRAP; | |
1570 | } | |
0b6440af EI |
1571 | |
1572 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1573 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1574 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1575 | return CP_ACCESS_TRAP_EL2; | |
1576 | } | |
00108f2d PM |
1577 | return CP_ACCESS_OK; |
1578 | } | |
1579 | ||
3f208fd7 PM |
1580 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
1581 | bool isread) | |
00108f2d | 1582 | { |
0b6440af EI |
1583 | unsigned int cur_el = arm_current_el(env); |
1584 | bool secure = arm_is_secure(env); | |
1585 | ||
00108f2d PM |
1586 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1587 | * EL0[PV]TEN is zero. | |
1588 | */ | |
0b6440af | 1589 | if (cur_el == 0 && |
00108f2d PM |
1590 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1591 | return CP_ACCESS_TRAP; | |
1592 | } | |
0b6440af EI |
1593 | |
1594 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1595 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1596 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1597 | return CP_ACCESS_TRAP_EL2; | |
1598 | } | |
00108f2d PM |
1599 | return CP_ACCESS_OK; |
1600 | } | |
1601 | ||
1602 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
3f208fd7 PM |
1603 | const ARMCPRegInfo *ri, |
1604 | bool isread) | |
00108f2d | 1605 | { |
3f208fd7 | 1606 | return gt_counter_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1607 | } |
1608 | ||
1609 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
3f208fd7 PM |
1610 | const ARMCPRegInfo *ri, |
1611 | bool isread) | |
00108f2d | 1612 | { |
3f208fd7 | 1613 | return gt_counter_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1614 | } |
1615 | ||
3f208fd7 PM |
1616 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1617 | bool isread) | |
00108f2d | 1618 | { |
3f208fd7 | 1619 | return gt_timer_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1620 | } |
1621 | ||
3f208fd7 PM |
1622 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1623 | bool isread) | |
00108f2d | 1624 | { |
3f208fd7 | 1625 | return gt_timer_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1626 | } |
1627 | ||
b4d3978c | 1628 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
3f208fd7 PM |
1629 | const ARMCPRegInfo *ri, |
1630 | bool isread) | |
b4d3978c PM |
1631 | { |
1632 | /* The AArch64 register view of the secure physical timer is | |
1633 | * always accessible from EL3, and configurably accessible from | |
1634 | * Secure EL1. | |
1635 | */ | |
1636 | switch (arm_current_el(env)) { | |
1637 | case 1: | |
1638 | if (!arm_is_secure(env)) { | |
1639 | return CP_ACCESS_TRAP; | |
1640 | } | |
1641 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
1642 | return CP_ACCESS_TRAP_EL3; | |
1643 | } | |
1644 | return CP_ACCESS_OK; | |
1645 | case 0: | |
1646 | case 2: | |
1647 | return CP_ACCESS_TRAP; | |
1648 | case 3: | |
1649 | return CP_ACCESS_OK; | |
1650 | default: | |
1651 | g_assert_not_reached(); | |
1652 | } | |
1653 | } | |
1654 | ||
55d284af PM |
1655 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1656 | { | |
bc72ad67 | 1657 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1658 | } |
1659 | ||
1660 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1661 | { | |
1662 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1663 | ||
1664 | if (gt->ctl & 1) { | |
1665 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1666 | * reset timer to when ISTATUS next has to change | |
1667 | */ | |
edac4d8a EI |
1668 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1669 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1670 | uint64_t count = gt_get_countervalue(&cpu->env); |
1671 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1672 | int istatus = count - offset >= gt->cval; |
55d284af | 1673 | uint64_t nexttick; |
194cbc49 | 1674 | int irqstate; |
55d284af PM |
1675 | |
1676 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
194cbc49 PM |
1677 | |
1678 | irqstate = (istatus && !(gt->ctl & 2)); | |
1679 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
1680 | ||
55d284af PM |
1681 | if (istatus) { |
1682 | /* Next transition is when count rolls back over to zero */ | |
1683 | nexttick = UINT64_MAX; | |
1684 | } else { | |
1685 | /* Next transition is when we hit cval */ | |
edac4d8a | 1686 | nexttick = gt->cval + offset; |
55d284af PM |
1687 | } |
1688 | /* Note that the desired next expiry time might be beyond the | |
1689 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1690 | * set the timer for as far in the future as possible. When the | |
1691 | * timer expires we will reset the timer for any remaining period. | |
1692 | */ | |
1693 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1694 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1695 | } | |
bc72ad67 | 1696 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
194cbc49 | 1697 | trace_arm_gt_recalc(timeridx, irqstate, nexttick); |
55d284af PM |
1698 | } else { |
1699 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1700 | gt->ctl &= ~4; | |
1701 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1702 | timer_del(cpu->gt_timer[timeridx]); |
194cbc49 | 1703 | trace_arm_gt_recalc_disabled(timeridx); |
55d284af PM |
1704 | } |
1705 | } | |
1706 | ||
0e3eca4c EI |
1707 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1708 | int timeridx) | |
55d284af PM |
1709 | { |
1710 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1711 | |
bc72ad67 | 1712 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1713 | } |
1714 | ||
c4241c7d | 1715 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1716 | { |
c4241c7d | 1717 | return gt_get_countervalue(env); |
55d284af PM |
1718 | } |
1719 | ||
edac4d8a EI |
1720 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1721 | { | |
1722 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1723 | } | |
1724 | ||
c4241c7d | 1725 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1726 | int timeridx, |
c4241c7d | 1727 | uint64_t value) |
55d284af | 1728 | { |
194cbc49 | 1729 | trace_arm_gt_cval_write(timeridx, value); |
55d284af PM |
1730 | env->cp15.c14_timer[timeridx].cval = value; |
1731 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1732 | } |
c4241c7d | 1733 | |
0e3eca4c EI |
1734 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1735 | int timeridx) | |
55d284af | 1736 | { |
edac4d8a | 1737 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1738 | |
c4241c7d | 1739 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1740 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1741 | } |
1742 | ||
c4241c7d | 1743 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1744 | int timeridx, |
c4241c7d | 1745 | uint64_t value) |
55d284af | 1746 | { |
edac4d8a | 1747 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1748 | |
194cbc49 | 1749 | trace_arm_gt_tval_write(timeridx, value); |
edac4d8a | 1750 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1751 | sextract64(value, 0, 32); |
55d284af | 1752 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1753 | } |
1754 | ||
c4241c7d | 1755 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1756 | int timeridx, |
c4241c7d | 1757 | uint64_t value) |
55d284af PM |
1758 | { |
1759 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1760 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1761 | ||
194cbc49 | 1762 | trace_arm_gt_ctl_write(timeridx, value); |
d3afacc7 | 1763 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1764 | if ((oldval ^ value) & 1) { |
1765 | /* Enable toggled */ | |
1766 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1767 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1768 | /* IMASK toggled: don't need to recalculate, |
1769 | * just set the interrupt line based on ISTATUS | |
1770 | */ | |
194cbc49 PM |
1771 | int irqstate = (oldval & 4) && !(value & 2); |
1772 | ||
1773 | trace_arm_gt_imask_toggle(timeridx, irqstate); | |
1774 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
55d284af | 1775 | } |
55d284af PM |
1776 | } |
1777 | ||
0e3eca4c EI |
1778 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1779 | { | |
1780 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1781 | } | |
1782 | ||
1783 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1784 | uint64_t value) | |
1785 | { | |
1786 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1787 | } | |
1788 | ||
1789 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1790 | { | |
1791 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1792 | } | |
1793 | ||
1794 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1795 | uint64_t value) | |
1796 | { | |
1797 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1798 | } | |
1799 | ||
1800 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1801 | uint64_t value) | |
1802 | { | |
1803 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1804 | } | |
1805 | ||
1806 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1807 | { | |
1808 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1809 | } | |
1810 | ||
1811 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1812 | uint64_t value) | |
1813 | { | |
1814 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1815 | } | |
1816 | ||
1817 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1818 | { | |
1819 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1820 | } | |
1821 | ||
1822 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1823 | uint64_t value) | |
1824 | { | |
1825 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1826 | } | |
1827 | ||
1828 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1829 | uint64_t value) | |
1830 | { | |
1831 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1832 | } | |
1833 | ||
edac4d8a EI |
1834 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1835 | uint64_t value) | |
1836 | { | |
1837 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1838 | ||
194cbc49 | 1839 | trace_arm_gt_cntvoff_write(value); |
edac4d8a EI |
1840 | raw_write(env, ri, value); |
1841 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1842 | } | |
1843 | ||
b0e66d95 EI |
1844 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1845 | { | |
1846 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1847 | } | |
1848 | ||
1849 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1850 | uint64_t value) | |
1851 | { | |
1852 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1853 | } | |
1854 | ||
1855 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1856 | { | |
1857 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1858 | } | |
1859 | ||
1860 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1861 | uint64_t value) | |
1862 | { | |
1863 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1864 | } | |
1865 | ||
1866 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1867 | uint64_t value) | |
1868 | { | |
1869 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1870 | } | |
1871 | ||
b4d3978c PM |
1872 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1873 | { | |
1874 | gt_timer_reset(env, ri, GTIMER_SEC); | |
1875 | } | |
1876 | ||
1877 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1878 | uint64_t value) | |
1879 | { | |
1880 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
1881 | } | |
1882 | ||
1883 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1884 | { | |
1885 | return gt_tval_read(env, ri, GTIMER_SEC); | |
1886 | } | |
1887 | ||
1888 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1889 | uint64_t value) | |
1890 | { | |
1891 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
1892 | } | |
1893 | ||
1894 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1895 | uint64_t value) | |
1896 | { | |
1897 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
1898 | } | |
1899 | ||
55d284af PM |
1900 | void arm_gt_ptimer_cb(void *opaque) |
1901 | { | |
1902 | ARMCPU *cpu = opaque; | |
1903 | ||
1904 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1905 | } | |
1906 | ||
1907 | void arm_gt_vtimer_cb(void *opaque) | |
1908 | { | |
1909 | ARMCPU *cpu = opaque; | |
1910 | ||
1911 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1912 | } | |
1913 | ||
b0e66d95 EI |
1914 | void arm_gt_htimer_cb(void *opaque) |
1915 | { | |
1916 | ARMCPU *cpu = opaque; | |
1917 | ||
1918 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1919 | } | |
1920 | ||
b4d3978c PM |
1921 | void arm_gt_stimer_cb(void *opaque) |
1922 | { | |
1923 | ARMCPU *cpu = opaque; | |
1924 | ||
1925 | gt_recalc_timer(cpu, GTIMER_SEC); | |
1926 | } | |
1927 | ||
55d284af PM |
1928 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1929 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1930 | * of software; writing it doesn't actually change the timer frequency. | |
1931 | * Our reset value matches the fixed frequency we implement the timer at. | |
1932 | */ | |
1933 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1934 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1935 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1936 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1937 | }, |
1938 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1939 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1940 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1941 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1942 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1943 | }, |
1944 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1945 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1946 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1947 | .access = PL1_RW, |
1948 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1949 | .resetvalue = 0, | |
1950 | }, | |
1951 | /* per-timer control */ | |
1952 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 1953 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1954 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1955 | .accessfn = gt_ptimer_access, |
1956 | .fieldoffset = offsetoflow32(CPUARMState, | |
1957 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1958 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 | 1959 | }, |
9ff9dd3c PM |
1960 | { .name = "CNTP_CTL(S)", |
1961 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1962 | .secure = ARM_CP_SECSTATE_S, | |
1963 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | |
1964 | .accessfn = gt_ptimer_access, | |
1965 | .fieldoffset = offsetoflow32(CPUARMState, | |
1966 | cp15.c14_timer[GTIMER_SEC].ctl), | |
1967 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1968 | }, | |
a7adc4b7 PM |
1969 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
1970 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1971 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1972 | .accessfn = gt_ptimer_access, |
55d284af PM |
1973 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1974 | .resetvalue = 0, | |
0e3eca4c | 1975 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1976 | }, |
1977 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1978 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1979 | .accessfn = gt_vtimer_access, |
1980 | .fieldoffset = offsetoflow32(CPUARMState, | |
1981 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1982 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1983 | }, |
1984 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1985 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1986 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1987 | .accessfn = gt_vtimer_access, |
55d284af PM |
1988 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1989 | .resetvalue = 0, | |
0e3eca4c | 1990 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1991 | }, |
1992 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1993 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 1994 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1995 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1996 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1997 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 1998 | }, |
9ff9dd3c PM |
1999 | { .name = "CNTP_TVAL(S)", |
2000 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2001 | .secure = ARM_CP_SECSTATE_S, | |
2002 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
2003 | .accessfn = gt_ptimer_access, | |
2004 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
2005 | }, | |
a7adc4b7 PM |
2006 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
2007 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 2008 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
2009 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
2010 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 2011 | }, |
55d284af | 2012 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2013 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 2014 | .accessfn = gt_vtimer_access, |
0e3eca4c | 2015 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 2016 | }, |
a7adc4b7 PM |
2017 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
2018 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 2019 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
2020 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
2021 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 2022 | }, |
55d284af PM |
2023 | /* The counter itself */ |
2024 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 2025 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 2026 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
2027 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
2028 | }, | |
2029 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
2030 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 2031 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 2032 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
2033 | }, |
2034 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 2035 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 2036 | .accessfn = gt_vct_access, |
edac4d8a | 2037 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
2038 | }, |
2039 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
2040 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 2041 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 2042 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
2043 | }, |
2044 | /* Comparison value, indicating when the timer goes off */ | |
2045 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 2046 | .secure = ARM_CP_SECSTATE_NS, |
55d284af | 2047 | .access = PL1_RW | PL0_R, |
7a0e58fa | 2048 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 2049 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 2050 | .accessfn = gt_ptimer_access, |
0e3eca4c | 2051 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 | 2052 | }, |
9ff9dd3c PM |
2053 | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
2054 | .secure = ARM_CP_SECSTATE_S, | |
2055 | .access = PL1_RW | PL0_R, | |
2056 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | |
2057 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
2058 | .accessfn = gt_ptimer_access, | |
2059 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
2060 | }, | |
a7adc4b7 PM |
2061 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
2062 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
2063 | .access = PL1_RW | PL0_R, | |
2064 | .type = ARM_CP_IO, | |
2065 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 2066 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 2067 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
2068 | }, |
2069 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
2070 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 2071 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 2072 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 2073 | .accessfn = gt_vtimer_access, |
0e3eca4c | 2074 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
2075 | }, |
2076 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
2077 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
2078 | .access = PL1_RW | PL0_R, | |
2079 | .type = ARM_CP_IO, | |
2080 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
2081 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 2082 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af | 2083 | }, |
b4d3978c PM |
2084 | /* Secure timer -- this is actually restricted to only EL3 |
2085 | * and configurably Secure-EL1 via the accessfn. | |
2086 | */ | |
2087 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
2088 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
2089 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
2090 | .accessfn = gt_stimer_access, | |
2091 | .readfn = gt_sec_tval_read, | |
2092 | .writefn = gt_sec_tval_write, | |
2093 | .resetfn = gt_sec_timer_reset, | |
2094 | }, | |
2095 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
2096 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
2097 | .type = ARM_CP_IO, .access = PL1_RW, | |
2098 | .accessfn = gt_stimer_access, | |
2099 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
2100 | .resetvalue = 0, | |
2101 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
2102 | }, | |
2103 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
2104 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
2105 | .type = ARM_CP_IO, .access = PL1_RW, | |
2106 | .accessfn = gt_stimer_access, | |
2107 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
2108 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
2109 | }, | |
55d284af PM |
2110 | REGINFO_SENTINEL |
2111 | }; | |
2112 | ||
2113 | #else | |
2114 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 2115 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
2116 | * so instead just don't register any of them. |
2117 | */ | |
6cc7a3ae | 2118 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
2119 | REGINFO_SENTINEL |
2120 | }; | |
2121 | ||
55d284af PM |
2122 | #endif |
2123 | ||
c4241c7d | 2124 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 2125 | { |
891a2fe7 | 2126 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 2127 | raw_write(env, ri, value); |
891a2fe7 | 2128 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 2129 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 2130 | } else { |
8d5c773e | 2131 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 2132 | } |
4a501606 PM |
2133 | } |
2134 | ||
2135 | #ifndef CONFIG_USER_ONLY | |
2136 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 2137 | |
3f208fd7 PM |
2138 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2139 | bool isread) | |
92611c00 PM |
2140 | { |
2141 | if (ri->opc2 & 4) { | |
87562e4f PM |
2142 | /* The ATS12NSO* operations must trap to EL3 if executed in |
2143 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
2144 | * They are simply UNDEF if executed from NS EL1. | |
2145 | * They function normally from EL2 or EL3. | |
92611c00 | 2146 | */ |
87562e4f PM |
2147 | if (arm_current_el(env) == 1) { |
2148 | if (arm_is_secure_below_el3(env)) { | |
2149 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
2150 | } | |
2151 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2152 | } | |
92611c00 PM |
2153 | } |
2154 | return CP_ACCESS_OK; | |
2155 | } | |
2156 | ||
060e8a48 | 2157 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
03ae85f8 | 2158 | MMUAccessType access_type, ARMMMUIdx mmu_idx) |
4a501606 | 2159 | { |
a8170e5e | 2160 | hwaddr phys_addr; |
4a501606 PM |
2161 | target_ulong page_size; |
2162 | int prot; | |
b7cc4e82 PC |
2163 | uint32_t fsr; |
2164 | bool ret; | |
01c097f7 | 2165 | uint64_t par64; |
8bf5b6a9 | 2166 | MemTxAttrs attrs = {}; |
e14b5a23 | 2167 | ARMMMUFaultInfo fi = {}; |
5b2d261d | 2168 | ARMCacheAttrs cacheattrs = {}; |
4a501606 | 2169 | |
5b2d261d AB |
2170 | ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, |
2171 | &prot, &page_size, &fsr, &fi, &cacheattrs); | |
702a9357 | 2172 | if (extended_addresses_enabled(env)) { |
b7cc4e82 | 2173 | /* fsr is a DFSR/IFSR value for the long descriptor |
702a9357 PM |
2174 | * translation table format, but with WnR always clear. |
2175 | * Convert it to a 64-bit PAR. | |
2176 | */ | |
01c097f7 | 2177 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 2178 | if (!ret) { |
702a9357 | 2179 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
2180 | if (!attrs.secure) { |
2181 | par64 |= (1 << 9); /* NS */ | |
2182 | } | |
5b2d261d AB |
2183 | par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ |
2184 | par64 |= cacheattrs.shareability << 7; /* SH */ | |
4a501606 | 2185 | } else { |
702a9357 | 2186 | par64 |= 1; /* F */ |
b7cc4e82 | 2187 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
2188 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
2189 | * implement virtualization and therefore there can't be a stage 2 | |
2190 | * fault. | |
2191 | */ | |
4a501606 PM |
2192 | } |
2193 | } else { | |
b7cc4e82 | 2194 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
2195 | * translation table format (with WnR always clear). |
2196 | * Convert it to a 32-bit PAR. | |
2197 | */ | |
b7cc4e82 | 2198 | if (!ret) { |
702a9357 PM |
2199 | /* We do not set any attribute bits in the PAR */ |
2200 | if (page_size == (1 << 24) | |
2201 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 2202 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 2203 | } else { |
01c097f7 | 2204 | par64 = phys_addr & 0xfffff000; |
702a9357 | 2205 | } |
8bf5b6a9 PM |
2206 | if (!attrs.secure) { |
2207 | par64 |= (1 << 9); /* NS */ | |
2208 | } | |
702a9357 | 2209 | } else { |
b7cc4e82 PC |
2210 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
2211 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 2212 | } |
4a501606 | 2213 | } |
060e8a48 PM |
2214 | return par64; |
2215 | } | |
2216 | ||
2217 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
2218 | { | |
03ae85f8 | 2219 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
060e8a48 | 2220 | uint64_t par64; |
d3649702 PM |
2221 | ARMMMUIdx mmu_idx; |
2222 | int el = arm_current_el(env); | |
2223 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 2224 | |
d3649702 PM |
2225 | switch (ri->opc2 & 6) { |
2226 | case 0: | |
2227 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
2228 | switch (el) { | |
2229 | case 3: | |
2230 | mmu_idx = ARMMMUIdx_S1E3; | |
2231 | break; | |
2232 | case 2: | |
2233 | mmu_idx = ARMMMUIdx_S1NSE1; | |
2234 | break; | |
2235 | case 1: | |
2236 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2237 | break; | |
2238 | default: | |
2239 | g_assert_not_reached(); | |
2240 | } | |
2241 | break; | |
2242 | case 2: | |
2243 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
2244 | switch (el) { | |
2245 | case 3: | |
2246 | mmu_idx = ARMMMUIdx_S1SE0; | |
2247 | break; | |
2248 | case 2: | |
2249 | mmu_idx = ARMMMUIdx_S1NSE0; | |
2250 | break; | |
2251 | case 1: | |
2252 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2253 | break; | |
2254 | default: | |
2255 | g_assert_not_reached(); | |
2256 | } | |
2257 | break; | |
2258 | case 4: | |
2259 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
2260 | mmu_idx = ARMMMUIdx_S12NSE1; | |
2261 | break; | |
2262 | case 6: | |
2263 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
2264 | mmu_idx = ARMMMUIdx_S12NSE0; | |
2265 | break; | |
2266 | default: | |
2267 | g_assert_not_reached(); | |
2268 | } | |
2269 | ||
2270 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
2271 | |
2272 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 2273 | } |
060e8a48 | 2274 | |
14db7fe0 PM |
2275 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2276 | uint64_t value) | |
2277 | { | |
03ae85f8 | 2278 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
14db7fe0 PM |
2279 | uint64_t par64; |
2280 | ||
2281 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | |
2282 | ||
2283 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
2284 | } | |
2285 | ||
3f208fd7 PM |
2286 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2287 | bool isread) | |
2a47df95 PM |
2288 | { |
2289 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
2290 | return CP_ACCESS_TRAP; | |
2291 | } | |
2292 | return CP_ACCESS_OK; | |
2293 | } | |
2294 | ||
060e8a48 PM |
2295 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
2296 | uint64_t value) | |
2297 | { | |
03ae85f8 | 2298 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
d3649702 PM |
2299 | ARMMMUIdx mmu_idx; |
2300 | int secure = arm_is_secure_below_el3(env); | |
2301 | ||
2302 | switch (ri->opc2 & 6) { | |
2303 | case 0: | |
2304 | switch (ri->opc1) { | |
2305 | case 0: /* AT S1E1R, AT S1E1W */ | |
2306 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2307 | break; | |
2308 | case 4: /* AT S1E2R, AT S1E2W */ | |
2309 | mmu_idx = ARMMMUIdx_S1E2; | |
2310 | break; | |
2311 | case 6: /* AT S1E3R, AT S1E3W */ | |
2312 | mmu_idx = ARMMMUIdx_S1E3; | |
2313 | break; | |
2314 | default: | |
2315 | g_assert_not_reached(); | |
2316 | } | |
2317 | break; | |
2318 | case 2: /* AT S1E0R, AT S1E0W */ | |
2319 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2320 | break; | |
2321 | case 4: /* AT S12E1R, AT S12E1W */ | |
2a47df95 | 2322 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
d3649702 PM |
2323 | break; |
2324 | case 6: /* AT S12E0R, AT S12E0W */ | |
2a47df95 | 2325 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
d3649702 PM |
2326 | break; |
2327 | default: | |
2328 | g_assert_not_reached(); | |
2329 | } | |
060e8a48 | 2330 | |
d3649702 | 2331 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 2332 | } |
4a501606 PM |
2333 | #endif |
2334 | ||
2335 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
2336 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2337 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
2338 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
2339 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
2340 | .writefn = par_write }, |
2341 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 2342 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 2343 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 2344 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 2345 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
2346 | #endif |
2347 | REGINFO_SENTINEL | |
2348 | }; | |
2349 | ||
18032bec PM |
2350 | /* Return basic MPU access permission bits. */ |
2351 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
2352 | { | |
2353 | uint32_t ret; | |
2354 | uint32_t mask; | |
2355 | int i; | |
2356 | ret = 0; | |
2357 | mask = 3; | |
2358 | for (i = 0; i < 16; i += 2) { | |
2359 | ret |= (val >> i) & mask; | |
2360 | mask <<= 2; | |
2361 | } | |
2362 | return ret; | |
2363 | } | |
2364 | ||
2365 | /* Pad basic MPU access permission bits to extended format. */ | |
2366 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
2367 | { | |
2368 | uint32_t ret; | |
2369 | uint32_t mask; | |
2370 | int i; | |
2371 | ret = 0; | |
2372 | mask = 3; | |
2373 | for (i = 0; i < 16; i += 2) { | |
2374 | ret |= (val & mask) << i; | |
2375 | mask <<= 2; | |
2376 | } | |
2377 | return ret; | |
2378 | } | |
2379 | ||
c4241c7d PM |
2380 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2381 | uint64_t value) | |
18032bec | 2382 | { |
7e09797c | 2383 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2384 | } |
2385 | ||
c4241c7d | 2386 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2387 | { |
7e09797c | 2388 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
2389 | } |
2390 | ||
c4241c7d PM |
2391 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2392 | uint64_t value) | |
18032bec | 2393 | { |
7e09797c | 2394 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2395 | } |
2396 | ||
c4241c7d | 2397 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2398 | { |
7e09797c | 2399 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
2400 | } |
2401 | ||
6cb0b013 PC |
2402 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2403 | { | |
2404 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2405 | ||
2406 | if (!u32p) { | |
2407 | return 0; | |
2408 | } | |
2409 | ||
1bc04a88 | 2410 | u32p += env->pmsav7.rnr[M_REG_NS]; |
6cb0b013 PC |
2411 | return *u32p; |
2412 | } | |
2413 | ||
2414 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2415 | uint64_t value) | |
2416 | { | |
2417 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2418 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2419 | ||
2420 | if (!u32p) { | |
2421 | return; | |
2422 | } | |
2423 | ||
1bc04a88 | 2424 | u32p += env->pmsav7.rnr[M_REG_NS]; |
d10eb08f | 2425 | tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ |
6cb0b013 PC |
2426 | *u32p = value; |
2427 | } | |
2428 | ||
6cb0b013 PC |
2429 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2430 | uint64_t value) | |
2431 | { | |
2432 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2433 | uint32_t nrgs = cpu->pmsav7_dregion; | |
2434 | ||
2435 | if (value >= nrgs) { | |
2436 | qemu_log_mask(LOG_GUEST_ERROR, | |
2437 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
2438 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
2439 | return; | |
2440 | } | |
2441 | ||
2442 | raw_write(env, ri, value); | |
2443 | } | |
2444 | ||
2445 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
69ceea64 PM |
2446 | /* Reset for all these registers is handled in arm_cpu_reset(), |
2447 | * because the PMSAv7 is also used by M-profile CPUs, which do | |
2448 | * not register cpregs but still need the state to be reset. | |
2449 | */ | |
6cb0b013 PC |
2450 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
2451 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2452 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
69ceea64 PM |
2453 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2454 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2455 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
2456 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2457 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
69ceea64 PM |
2458 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2459 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2460 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
2461 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2462 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
69ceea64 PM |
2463 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
2464 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2465 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
2466 | .access = PL1_RW, | |
1bc04a88 | 2467 | .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), |
69ceea64 PM |
2468 | .writefn = pmsav7_rgnr_write, |
2469 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
2470 | REGINFO_SENTINEL |
2471 | }; | |
2472 | ||
18032bec PM |
2473 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
2474 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2475 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2476 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
2477 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
2478 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2479 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2480 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
2481 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
2482 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2483 | .access = PL1_RW, | |
7e09797c PM |
2484 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
2485 | .resetvalue = 0, }, | |
18032bec PM |
2486 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
2487 | .access = PL1_RW, | |
7e09797c PM |
2488 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
2489 | .resetvalue = 0, }, | |
ecce5c3c PM |
2490 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2491 | .access = PL1_RW, | |
2492 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
2493 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2494 | .access = PL1_RW, | |
2495 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 2496 | /* Protection region base and size registers */ |
e508a92b PM |
2497 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
2498 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2499 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
2500 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
2501 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2502 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
2503 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
2504 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2505 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
2506 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
2507 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2508 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
2509 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
2510 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2511 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
2512 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
2513 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2514 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
2515 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
2516 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2517 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
2518 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
2519 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2520 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
2521 | REGINFO_SENTINEL |
2522 | }; | |
2523 | ||
c4241c7d PM |
2524 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2525 | uint64_t value) | |
ecce5c3c | 2526 | { |
11f136ee | 2527 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
2528 | int maskshift = extract32(value, 0, 3); |
2529 | ||
e389be16 FA |
2530 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2531 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
2532 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
2533 | * using Long-desciptor translation table format */ | |
2534 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
2535 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2536 | /* In an implementation that includes the Security Extensions | |
2537 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
2538 | * Short-descriptor translation table format. | |
2539 | */ | |
2540 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
2541 | } else { | |
2542 | value &= TTBCR_N; | |
2543 | } | |
e42c4db3 | 2544 | } |
e389be16 | 2545 | |
b6af0975 | 2546 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 2547 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 2548 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
2549 | * for long-descriptor tables the TCR fields are used differently |
2550 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 2551 | */ |
11f136ee FA |
2552 | tcr->raw_tcr = value; |
2553 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
2554 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
2555 | } |
2556 | ||
c4241c7d PM |
2557 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2558 | uint64_t value) | |
d4e6df63 | 2559 | { |
00c8cb0a AF |
2560 | ARMCPU *cpu = arm_env_get_cpu(env); |
2561 | ||
d4e6df63 PM |
2562 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2563 | /* With LPAE the TTBCR could result in a change of ASID | |
2564 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2565 | */ | |
d10eb08f | 2566 | tlb_flush(CPU(cpu)); |
d4e6df63 | 2567 | } |
c4241c7d | 2568 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2569 | } |
2570 | ||
ecce5c3c PM |
2571 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2572 | { | |
11f136ee FA |
2573 | TCR *tcr = raw_ptr(env, ri); |
2574 | ||
2575 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2576 | * the TCR being reset. | |
2577 | */ | |
2578 | tcr->raw_tcr = 0; | |
2579 | tcr->mask = 0; | |
2580 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2581 | } |
2582 | ||
cb2e37df PM |
2583 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2584 | uint64_t value) | |
2585 | { | |
00c8cb0a | 2586 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2587 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2588 | |
cb2e37df | 2589 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
d10eb08f | 2590 | tlb_flush(CPU(cpu)); |
11f136ee | 2591 | tcr->raw_tcr = value; |
cb2e37df PM |
2592 | } |
2593 | ||
327ed10f PM |
2594 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2595 | uint64_t value) | |
2596 | { | |
2597 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2598 | * must flush the TLB. | |
2599 | */ | |
2600 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2601 | ARMCPU *cpu = arm_env_get_cpu(env); |
2602 | ||
d10eb08f | 2603 | tlb_flush(CPU(cpu)); |
327ed10f PM |
2604 | } |
2605 | raw_write(env, ri, value); | |
2606 | } | |
2607 | ||
b698e9cf EI |
2608 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2609 | uint64_t value) | |
2610 | { | |
2611 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2612 | CPUState *cs = CPU(cpu); | |
2613 | ||
2614 | /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ | |
2615 | if (raw_read(env, ri) != value) { | |
0336cbf8 | 2616 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
2617 | ARMMMUIdxBit_S12NSE1 | |
2618 | ARMMMUIdxBit_S12NSE0 | | |
2619 | ARMMMUIdxBit_S2NS); | |
b698e9cf EI |
2620 | raw_write(env, ri, value); |
2621 | } | |
2622 | } | |
2623 | ||
8e5d75c9 | 2624 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2625 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2626 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2627 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2628 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2629 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2630 | .access = PL1_RW, .resetvalue = 0, |
2631 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2632 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2633 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2634 | .access = PL1_RW, .resetvalue = 0, | |
2635 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2636 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2637 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2638 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2639 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2640 | .resetvalue = 0, }, | |
2641 | REGINFO_SENTINEL | |
2642 | }; | |
2643 | ||
2644 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2645 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2646 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2647 | .access = PL1_RW, | |
d81c519c | 2648 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2649 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2650 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2651 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2652 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2653 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2654 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2655 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2656 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2657 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2658 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2659 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2660 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2661 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2662 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2663 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2664 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2665 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2666 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2667 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2668 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2669 | REGINFO_SENTINEL |
2670 | }; | |
2671 | ||
c4241c7d PM |
2672 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2673 | uint64_t value) | |
1047b9d7 PM |
2674 | { |
2675 | env->cp15.c15_ticonfig = value & 0xe7; | |
2676 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2677 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2678 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2679 | } |
2680 | ||
c4241c7d PM |
2681 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2682 | uint64_t value) | |
1047b9d7 PM |
2683 | { |
2684 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2685 | } |
2686 | ||
c4241c7d PM |
2687 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2688 | uint64_t value) | |
1047b9d7 PM |
2689 | { |
2690 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2691 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2692 | } |
2693 | ||
c4241c7d PM |
2694 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2695 | uint64_t value) | |
c4804214 PM |
2696 | { |
2697 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2698 | * containing a dirty line; cache flush operations have to reset these. | |
2699 | */ | |
2700 | env->cp15.c15_i_max = 0x000; | |
2701 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2702 | } |
2703 | ||
18032bec PM |
2704 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2705 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2706 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2707 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2708 | .resetvalue = 0, }, |
1047b9d7 PM |
2709 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2710 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2711 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2712 | .access = PL1_RW, | |
2713 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2714 | .writefn = omap_ticonfig_write }, | |
2715 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2716 | .access = PL1_RW, | |
2717 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2718 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2719 | .access = PL1_RW, .resetvalue = 0xff0, | |
2720 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2721 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2722 | .access = PL1_RW, | |
2723 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2724 | .writefn = omap_threadid_write }, | |
2725 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2726 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2727 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2728 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2729 | /* TODO: Peripheral port remap register: | |
2730 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2731 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2732 | * when MMU is off. | |
2733 | */ | |
c4804214 | 2734 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2735 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2736 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2737 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2738 | { .name = "C9", .cp = 15, .crn = 9, |
2739 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2740 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2741 | REGINFO_SENTINEL |
2742 | }; | |
2743 | ||
c4241c7d PM |
2744 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2745 | uint64_t value) | |
1047b9d7 | 2746 | { |
c0f4af17 | 2747 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2748 | } |
2749 | ||
2750 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2751 | { .name = "XSCALE_CPAR", | |
2752 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2753 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2754 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2755 | { .name = "XSCALE_AUXCR", |
2756 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2757 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2758 | .resetvalue = 0, }, | |
3b771579 PM |
2759 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2760 | * and hope the guest does not really rely on cache behaviour. | |
2761 | */ | |
2762 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2763 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2764 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2765 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2766 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2767 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2768 | { .name = "XSCALE_DCACHE_LOCK", | |
2769 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2770 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2771 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2772 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2773 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2774 | REGINFO_SENTINEL |
2775 | }; | |
2776 | ||
2777 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2778 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2779 | * implementation of this implementation-defined space. | |
2780 | * Ideally this should eventually disappear in favour of actually | |
2781 | * implementing the correct behaviour for all cores. | |
2782 | */ | |
2783 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2784 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2785 | .access = PL1_RW, |
7a0e58fa | 2786 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2787 | .resetvalue = 0 }, |
18032bec PM |
2788 | REGINFO_SENTINEL |
2789 | }; | |
2790 | ||
c4804214 PM |
2791 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2792 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2793 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2794 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2795 | .resetvalue = 0 }, |
c4804214 PM |
2796 | REGINFO_SENTINEL |
2797 | }; | |
2798 | ||
2799 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2800 | /* We never have a a block transfer operation in progress */ | |
2801 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2802 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2803 | .resetvalue = 0 }, |
30b05bba PM |
2804 | /* The cache ops themselves: these all NOP for QEMU */ |
2805 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2806 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2807 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2808 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2809 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2810 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2811 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2812 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2813 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2814 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2815 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2816 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2817 | REGINFO_SENTINEL |
2818 | }; | |
2819 | ||
2820 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2821 | /* The cache test-and-clean instructions always return (1 << 30) | |
2822 | * to indicate that there are no dirty cache lines. | |
2823 | */ | |
2824 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2825 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2826 | .resetvalue = (1 << 30) }, |
c4804214 | 2827 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2828 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2829 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2830 | REGINFO_SENTINEL |
2831 | }; | |
2832 | ||
34f90529 PM |
2833 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2834 | /* Ignore ReadBuffer accesses */ | |
2835 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2836 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2837 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2838 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2839 | REGINFO_SENTINEL |
2840 | }; | |
2841 | ||
731de9e6 EI |
2842 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2843 | { | |
2844 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2845 | unsigned int cur_el = arm_current_el(env); | |
2846 | bool secure = arm_is_secure(env); | |
2847 | ||
2848 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2849 | return env->cp15.vpidr_el2; | |
2850 | } | |
2851 | return raw_read(env, ri); | |
2852 | } | |
2853 | ||
06a7e647 | 2854 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 2855 | { |
eb5e1d3c PF |
2856 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2857 | uint64_t mpidr = cpu->mp_affinity; | |
2858 | ||
81bdde9d | 2859 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2860 | mpidr |= (1U << 31); |
81bdde9d PM |
2861 | /* Cores which are uniprocessor (non-coherent) |
2862 | * but still implement the MP extensions set | |
a8e81b31 | 2863 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2864 | */ |
a8e81b31 PC |
2865 | if (cpu->mp_is_up) { |
2866 | mpidr |= (1u << 30); | |
2867 | } | |
81bdde9d | 2868 | } |
c4241c7d | 2869 | return mpidr; |
81bdde9d PM |
2870 | } |
2871 | ||
06a7e647 EI |
2872 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2873 | { | |
f0d574d6 EI |
2874 | unsigned int cur_el = arm_current_el(env); |
2875 | bool secure = arm_is_secure(env); | |
2876 | ||
2877 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2878 | return env->cp15.vmpidr_el2; | |
2879 | } | |
06a7e647 EI |
2880 | return mpidr_read_val(env); |
2881 | } | |
2882 | ||
81bdde9d | 2883 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
4b7fff2f PM |
2884 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2885 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2886 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2887 | REGINFO_SENTINEL |
2888 | }; | |
2889 | ||
7ac681cf | 2890 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2891 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2892 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2893 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2894 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2895 | .resetvalue = 0 }, |
b0fe2427 | 2896 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2897 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2898 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2899 | .resetvalue = 0 }, |
891a2fe7 | 2900 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2901 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2902 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2903 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2904 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2905 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2906 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2907 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2908 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2909 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2910 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2911 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2912 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2913 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2914 | REGINFO_SENTINEL |
2915 | }; | |
2916 | ||
c4241c7d | 2917 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2918 | { |
c4241c7d | 2919 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2920 | } |
2921 | ||
c4241c7d PM |
2922 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2923 | uint64_t value) | |
b0d2b7d0 PM |
2924 | { |
2925 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2926 | } |
2927 | ||
c4241c7d | 2928 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2929 | { |
c4241c7d | 2930 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2931 | } |
2932 | ||
c4241c7d PM |
2933 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2934 | uint64_t value) | |
b0d2b7d0 PM |
2935 | { |
2936 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2937 | } |
2938 | ||
3f208fd7 PM |
2939 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2940 | bool isread) | |
c2b820fe | 2941 | { |
137feaa9 | 2942 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2943 | return CP_ACCESS_TRAP; |
2944 | } | |
2945 | return CP_ACCESS_OK; | |
2946 | } | |
2947 | ||
2948 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2949 | uint64_t value) | |
2950 | { | |
2951 | env->daif = value & PSTATE_DAIF; | |
2952 | } | |
2953 | ||
8af35c37 | 2954 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
3f208fd7 PM |
2955 | const ARMCPRegInfo *ri, |
2956 | bool isread) | |
8af35c37 PM |
2957 | { |
2958 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2959 | * SCTLR_EL1.UCI is set. | |
2960 | */ | |
137feaa9 | 2961 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2962 | return CP_ACCESS_TRAP; |
2963 | } | |
2964 | return CP_ACCESS_OK; | |
2965 | } | |
2966 | ||
dbb1fb27 AB |
2967 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2968 | * Page D4-1736 (DDI0487A.b) | |
2969 | */ | |
2970 | ||
fd3ed969 PM |
2971 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2972 | uint64_t value) | |
168aa23b | 2973 | { |
a67cf277 | 2974 | CPUState *cs = ENV_GET_CPU(env); |
dbb1fb27 | 2975 | |
fd3ed969 | 2976 | if (arm_is_secure_below_el3(env)) { |
0336cbf8 | 2977 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
2978 | ARMMMUIdxBit_S1SE1 | |
2979 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 | 2980 | } else { |
0336cbf8 | 2981 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
2982 | ARMMMUIdxBit_S12NSE1 | |
2983 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 | 2984 | } |
168aa23b PM |
2985 | } |
2986 | ||
fd3ed969 PM |
2987 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2988 | uint64_t value) | |
168aa23b | 2989 | { |
a67cf277 | 2990 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 | 2991 | bool sec = arm_is_secure_below_el3(env); |
dbb1fb27 | 2992 | |
a67cf277 AB |
2993 | if (sec) { |
2994 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
2995 | ARMMMUIdxBit_S1SE1 | |
2996 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
2997 | } else { |
2998 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
2999 | ARMMMUIdxBit_S12NSE1 | |
3000 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 | 3001 | } |
168aa23b PM |
3002 | } |
3003 | ||
fd3ed969 PM |
3004 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3005 | uint64_t value) | |
168aa23b | 3006 | { |
fd3ed969 PM |
3007 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
3008 | * stage 2 translations, whereas most other scopes only invalidate | |
3009 | * stage 1 translations. | |
3010 | */ | |
00c8cb0a | 3011 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 PM |
3012 | CPUState *cs = CPU(cpu); |
3013 | ||
3014 | if (arm_is_secure_below_el3(env)) { | |
0336cbf8 | 3015 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3016 | ARMMMUIdxBit_S1SE1 | |
3017 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 PM |
3018 | } else { |
3019 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
0336cbf8 | 3020 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3021 | ARMMMUIdxBit_S12NSE1 | |
3022 | ARMMMUIdxBit_S12NSE0 | | |
3023 | ARMMMUIdxBit_S2NS); | |
fd3ed969 | 3024 | } else { |
0336cbf8 | 3025 | tlb_flush_by_mmuidx(cs, |
8bd5c820 PM |
3026 | ARMMMUIdxBit_S12NSE1 | |
3027 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 PM |
3028 | } |
3029 | } | |
168aa23b PM |
3030 | } |
3031 | ||
fd3ed969 | 3032 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
3033 | uint64_t value) |
3034 | { | |
fd3ed969 PM |
3035 | ARMCPU *cpu = arm_env_get_cpu(env); |
3036 | CPUState *cs = CPU(cpu); | |
3037 | ||
8bd5c820 | 3038 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
fd3ed969 PM |
3039 | } |
3040 | ||
43efaa33 PM |
3041 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3042 | uint64_t value) | |
3043 | { | |
3044 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3045 | CPUState *cs = CPU(cpu); | |
3046 | ||
8bd5c820 | 3047 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3048 | } |
3049 | ||
fd3ed969 PM |
3050 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3051 | uint64_t value) | |
3052 | { | |
3053 | /* Note that the 'ALL' scope must invalidate both stage 1 and | |
3054 | * stage 2 translations, whereas most other scopes only invalidate | |
3055 | * stage 1 translations. | |
3056 | */ | |
a67cf277 | 3057 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 PM |
3058 | bool sec = arm_is_secure_below_el3(env); |
3059 | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); | |
a67cf277 AB |
3060 | |
3061 | if (sec) { | |
3062 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3063 | ARMMMUIdxBit_S1SE1 | |
3064 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
3065 | } else if (has_el2) { |
3066 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3067 | ARMMMUIdxBit_S12NSE1 | |
3068 | ARMMMUIdxBit_S12NSE0 | | |
3069 | ARMMMUIdxBit_S2NS); | |
a67cf277 AB |
3070 | } else { |
3071 | tlb_flush_by_mmuidx_all_cpus_synced(cs, | |
8bd5c820 PM |
3072 | ARMMMUIdxBit_S12NSE1 | |
3073 | ARMMMUIdxBit_S12NSE0); | |
fa439fc5 PM |
3074 | } |
3075 | } | |
3076 | ||
2bfb9d75 PM |
3077 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3078 | uint64_t value) | |
3079 | { | |
a67cf277 | 3080 | CPUState *cs = ENV_GET_CPU(env); |
2bfb9d75 | 3081 | |
8bd5c820 | 3082 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
2bfb9d75 PM |
3083 | } |
3084 | ||
43efaa33 PM |
3085 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3086 | uint64_t value) | |
3087 | { | |
a67cf277 | 3088 | CPUState *cs = ENV_GET_CPU(env); |
43efaa33 | 3089 | |
8bd5c820 | 3090 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3091 | } |
3092 | ||
fd3ed969 PM |
3093 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3094 | uint64_t value) | |
3095 | { | |
3096 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
3097 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
3098 | * since we don't support flush-for-specific-ASID-only or | |
3099 | * flush-last-level-only. | |
3100 | */ | |
3101 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3102 | CPUState *cs = CPU(cpu); | |
3103 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3104 | ||
3105 | if (arm_is_secure_below_el3(env)) { | |
0336cbf8 | 3106 | tlb_flush_page_by_mmuidx(cs, pageaddr, |
8bd5c820 PM |
3107 | ARMMMUIdxBit_S1SE1 | |
3108 | ARMMMUIdxBit_S1SE0); | |
fd3ed969 | 3109 | } else { |
0336cbf8 | 3110 | tlb_flush_page_by_mmuidx(cs, pageaddr, |
8bd5c820 PM |
3111 | ARMMMUIdxBit_S12NSE1 | |
3112 | ARMMMUIdxBit_S12NSE0); | |
fd3ed969 PM |
3113 | } |
3114 | } | |
3115 | ||
3116 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3117 | uint64_t value) | |
fa439fc5 | 3118 | { |
fd3ed969 PM |
3119 | /* Invalidate by VA, EL2 |
3120 | * Currently handles both VAE2 and VALE2, since we don't support | |
3121 | * flush-last-level-only. | |
3122 | */ | |
3123 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3124 | CPUState *cs = CPU(cpu); | |
3125 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3126 | ||
8bd5c820 | 3127 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
fd3ed969 PM |
3128 | } |
3129 | ||
43efaa33 PM |
3130 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3131 | uint64_t value) | |
3132 | { | |
3133 | /* Invalidate by VA, EL3 | |
3134 | * Currently handles both VAE3 and VALE3, since we don't support | |
3135 | * flush-last-level-only. | |
3136 | */ | |
3137 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3138 | CPUState *cs = CPU(cpu); | |
3139 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3140 | ||
8bd5c820 | 3141 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3142 | } |
3143 | ||
fd3ed969 PM |
3144 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3145 | uint64_t value) | |
3146 | { | |
a67cf277 AB |
3147 | ARMCPU *cpu = arm_env_get_cpu(env); |
3148 | CPUState *cs = CPU(cpu); | |
fd3ed969 | 3149 | bool sec = arm_is_secure_below_el3(env); |
fa439fc5 PM |
3150 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
3151 | ||
a67cf277 AB |
3152 | if (sec) { |
3153 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, | |
8bd5c820 PM |
3154 | ARMMMUIdxBit_S1SE1 | |
3155 | ARMMMUIdxBit_S1SE0); | |
a67cf277 AB |
3156 | } else { |
3157 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, | |
8bd5c820 PM |
3158 | ARMMMUIdxBit_S12NSE1 | |
3159 | ARMMMUIdxBit_S12NSE0); | |
fa439fc5 PM |
3160 | } |
3161 | } | |
3162 | ||
fd3ed969 PM |
3163 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3164 | uint64_t value) | |
fa439fc5 | 3165 | { |
a67cf277 | 3166 | CPUState *cs = ENV_GET_CPU(env); |
fd3ed969 | 3167 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
fa439fc5 | 3168 | |
a67cf277 | 3169 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3170 | ARMMMUIdxBit_S1E2); |
fa439fc5 PM |
3171 | } |
3172 | ||
43efaa33 PM |
3173 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3174 | uint64_t value) | |
3175 | { | |
a67cf277 | 3176 | CPUState *cs = ENV_GET_CPU(env); |
43efaa33 PM |
3177 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
3178 | ||
a67cf277 | 3179 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3180 | ARMMMUIdxBit_S1E3); |
43efaa33 PM |
3181 | } |
3182 | ||
cea66e91 PM |
3183 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3184 | uint64_t value) | |
3185 | { | |
3186 | /* Invalidate by IPA. This has to invalidate any structures that | |
3187 | * contain only stage 2 translation information, but does not need | |
3188 | * to apply to structures that contain combined stage 1 and stage 2 | |
3189 | * translation information. | |
3190 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
3191 | */ | |
3192 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3193 | CPUState *cs = CPU(cpu); | |
3194 | uint64_t pageaddr; | |
3195 | ||
3196 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
3197 | return; | |
3198 | } | |
3199 | ||
3200 | pageaddr = sextract64(value << 12, 0, 48); | |
3201 | ||
8bd5c820 | 3202 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
cea66e91 PM |
3203 | } |
3204 | ||
3205 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3206 | uint64_t value) | |
3207 | { | |
a67cf277 | 3208 | CPUState *cs = ENV_GET_CPU(env); |
cea66e91 PM |
3209 | uint64_t pageaddr; |
3210 | ||
3211 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
3212 | return; | |
3213 | } | |
3214 | ||
3215 | pageaddr = sextract64(value << 12, 0, 48); | |
3216 | ||
a67cf277 | 3217 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
8bd5c820 | 3218 | ARMMMUIdxBit_S2NS); |
cea66e91 PM |
3219 | } |
3220 | ||
3f208fd7 PM |
3221 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3222 | bool isread) | |
aca3f40b PM |
3223 | { |
3224 | /* We don't implement EL2, so the only control on DC ZVA is the | |
3225 | * bit in the SCTLR which can prohibit access for EL0. | |
3226 | */ | |
137feaa9 | 3227 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
3228 | return CP_ACCESS_TRAP; |
3229 | } | |
3230 | return CP_ACCESS_OK; | |
3231 | } | |
3232 | ||
3233 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3234 | { | |
3235 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3236 | int dzp_bit = 1 << 4; | |
3237 | ||
3238 | /* DZP indicates whether DC ZVA access is allowed */ | |
3f208fd7 | 3239 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
aca3f40b PM |
3240 | dzp_bit = 0; |
3241 | } | |
3242 | return cpu->dcz_blocksize | dzp_bit; | |
3243 | } | |
3244 | ||
3f208fd7 PM |
3245 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3246 | bool isread) | |
f502cfc2 | 3247 | { |
cdcf1405 | 3248 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
3249 | /* Access to SP_EL0 is undefined if it's being used as |
3250 | * the stack pointer. | |
3251 | */ | |
3252 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3253 | } | |
3254 | return CP_ACCESS_OK; | |
3255 | } | |
3256 | ||
3257 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3258 | { | |
3259 | return env->pstate & PSTATE_SP; | |
3260 | } | |
3261 | ||
3262 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
3263 | { | |
3264 | update_spsel(env, val); | |
3265 | } | |
3266 | ||
137feaa9 FA |
3267 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3268 | uint64_t value) | |
3269 | { | |
3270 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3271 | ||
3272 | if (raw_read(env, ri) == value) { | |
3273 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
3274 | * to do a lot of pointless SCTLR writes. | |
3275 | */ | |
3276 | return; | |
3277 | } | |
3278 | ||
06312feb PM |
3279 | if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { |
3280 | /* M bit is RAZ/WI for PMSA with no MPU implemented */ | |
3281 | value &= ~SCTLR_M; | |
3282 | } | |
3283 | ||
137feaa9 FA |
3284 | raw_write(env, ri, value); |
3285 | /* ??? Lots of these bits are not implemented. */ | |
3286 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
d10eb08f | 3287 | tlb_flush(CPU(cpu)); |
137feaa9 FA |
3288 | } |
3289 | ||
3f208fd7 PM |
3290 | static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3291 | bool isread) | |
03fbf20f PM |
3292 | { |
3293 | if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { | |
f2cae609 | 3294 | return CP_ACCESS_TRAP_FP_EL2; |
03fbf20f PM |
3295 | } |
3296 | if (env->cp15.cptr_el[3] & CPTR_TFP) { | |
f2cae609 | 3297 | return CP_ACCESS_TRAP_FP_EL3; |
03fbf20f PM |
3298 | } |
3299 | return CP_ACCESS_OK; | |
3300 | } | |
3301 | ||
a8d64e73 PM |
3302 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3303 | uint64_t value) | |
3304 | { | |
3305 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; | |
3306 | } | |
3307 | ||
b0d2b7d0 PM |
3308 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
3309 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
3310 | * significantly for system emulation of AArch64 CPUs. | |
3311 | */ | |
3312 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
3313 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
3314 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
3315 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
3316 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 3317 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
3318 | .access = PL0_RW, .accessfn = aa64_daif_access, |
3319 | .fieldoffset = offsetof(CPUARMState, daif), | |
3320 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
3321 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
3322 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
3323 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
3324 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
3325 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
3326 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
3327 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
3328 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 3329 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
3330 | .readfn = aa64_dczid_read }, |
3331 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
3332 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
3333 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
3334 | #ifndef CONFIG_USER_ONLY | |
3335 | /* Avoid overhead of an access check that always passes in user-mode */ | |
3336 | .accessfn = aa64_zva_access, | |
3337 | #endif | |
3338 | }, | |
0eef9d98 PM |
3339 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
3340 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
3341 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
3342 | /* Cache ops: all NOPs since we don't emulate caches */ |
3343 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
3344 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3345 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3346 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
3347 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3348 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3349 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
3350 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
3351 | .access = PL0_W, .type = ARM_CP_NOP, | |
3352 | .accessfn = aa64_cacheop_access }, | |
3353 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
3354 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3355 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3356 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
3357 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3358 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3359 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
3360 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
3361 | .access = PL0_W, .type = ARM_CP_NOP, | |
3362 | .accessfn = aa64_cacheop_access }, | |
3363 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
3364 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3365 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3366 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
3367 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
3368 | .access = PL0_W, .type = ARM_CP_NOP, | |
3369 | .accessfn = aa64_cacheop_access }, | |
3370 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
3371 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
3372 | .access = PL0_W, .type = ARM_CP_NOP, | |
3373 | .accessfn = aa64_cacheop_access }, | |
3374 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
3375 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3376 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
3377 | /* TLBI operations */ |
3378 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 3379 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 3380 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3381 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3382 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3383 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 3384 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3385 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3386 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3387 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 3388 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3389 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3390 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3391 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 3392 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3393 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3394 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3395 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3396 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3397 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3398 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3399 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3400 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3401 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3402 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3403 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 3404 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3405 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3406 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3407 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 3408 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3409 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3410 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3411 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 3412 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3413 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3414 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3415 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 3416 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3417 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3418 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3419 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3420 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3421 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3422 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3423 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3424 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3425 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
3426 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
3427 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3428 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3429 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
3430 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
3431 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3432 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3433 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
83ddf975 PM |
3434 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
3435 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3436 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3437 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
3438 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
3439 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
3440 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3441 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
3442 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
3443 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3444 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3445 | .writefn = tlbi_aa64_ipas2e1_write }, | |
3446 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | |
3447 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3448 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3449 | .writefn = tlbi_aa64_ipas2e1_write }, | |
83ddf975 PM |
3450 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
3451 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3452 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3453 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
3454 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
3455 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
3456 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3457 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
3458 | #ifndef CONFIG_USER_ONLY |
3459 | /* 64 bit address translation operations */ | |
3460 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
3461 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 3462 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3463 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
3464 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 3465 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3466 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
3467 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 3468 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3469 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
3470 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 3471 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2a47df95 | 3472 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 3473 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
2a47df95 PM |
3474 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3475 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3476 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
2a47df95 PM |
3477 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3478 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3479 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
2a47df95 PM |
3480 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3481 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3482 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
2a47df95 PM |
3483 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3484 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | |
3485 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
3486 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
3487 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3488 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | |
3489 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
3490 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
c96fc9b5 EI |
3491 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
3492 | .type = ARM_CP_ALIAS, | |
3493 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
3494 | .access = PL1_RW, .resetvalue = 0, | |
3495 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
3496 | .writefn = par_write }, | |
19525524 | 3497 | #endif |
995939a6 | 3498 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 3499 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3500 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 3501 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3502 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 3503 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 3504 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3505 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 3506 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3507 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
541ef8c2 SS |
3508 | { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
3509 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3510 | .writefn = tlbimva_hyp_write }, | |
3511 | { .name = "TLBIMVALHIS", | |
3512 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3513 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3514 | .writefn = tlbimva_hyp_is_write }, | |
3515 | { .name = "TLBIIPAS2", | |
3516 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3517 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3518 | .writefn = tlbiipas2_write }, | |
3519 | { .name = "TLBIIPAS2IS", | |
3520 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3521 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3522 | .writefn = tlbiipas2_is_write }, | |
3523 | { .name = "TLBIIPAS2L", | |
3524 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3525 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3526 | .writefn = tlbiipas2_write }, | |
3527 | { .name = "TLBIIPAS2LIS", | |
3528 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3529 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3530 | .writefn = tlbiipas2_is_write }, | |
9449fdf6 PM |
3531 | /* 32 bit cache operations */ |
3532 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3533 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3534 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
3535 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3536 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3537 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3538 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
3539 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3540 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
3541 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3542 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
3543 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3544 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3545 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3546 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3547 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3548 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
3549 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3550 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3551 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3552 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
3553 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3554 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
3555 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3556 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3557 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3558 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
3559 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
3560 | .access = PL1_RW, .resetvalue = 0, | |
3561 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3562 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
3563 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 3564 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3565 | .type = ARM_CP_ALIAS, |
a0618a19 | 3566 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
3567 | .access = PL1_RW, |
3568 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 3569 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3570 | .type = ARM_CP_ALIAS, |
a65f1de9 | 3571 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3572 | .access = PL1_RW, |
3573 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, | |
f502cfc2 PM |
3574 | /* We rely on the access checks not allowing the guest to write to the |
3575 | * state field when SPSel indicates that it's being used as the stack | |
3576 | * pointer. | |
3577 | */ | |
3578 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
3579 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
3580 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 3581 | .type = ARM_CP_ALIAS, |
f502cfc2 | 3582 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
3583 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
3584 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3585 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3586 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
3587 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
3588 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 3589 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 3590 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
03fbf20f PM |
3591 | { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
3592 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, | |
3593 | .type = ARM_CP_ALIAS, | |
3594 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), | |
3595 | .access = PL2_RW, .accessfn = fpexc32_access }, | |
6a43e0b6 PM |
3596 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
3597 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
3598 | .access = PL2_RW, .resetvalue = 0, | |
3599 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3600 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3601 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | |
3602 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
3603 | .access = PL2_RW, .resetvalue = 0, | |
3604 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
3605 | { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, | |
3606 | .type = ARM_CP_ALIAS, | |
3607 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, | |
3608 | .access = PL2_RW, | |
3609 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, | |
3610 | { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, | |
3611 | .type = ARM_CP_ALIAS, | |
3612 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, | |
3613 | .access = PL2_RW, | |
3614 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, | |
3615 | { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, | |
3616 | .type = ARM_CP_ALIAS, | |
3617 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, | |
3618 | .access = PL2_RW, | |
3619 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, | |
3620 | { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, | |
3621 | .type = ARM_CP_ALIAS, | |
3622 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, | |
3623 | .access = PL2_RW, | |
3624 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, | |
a8d64e73 PM |
3625 | { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
3626 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, | |
3627 | .resetvalue = 0, | |
3628 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, | |
3629 | { .name = "SDCR", .type = ARM_CP_ALIAS, | |
3630 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, | |
3631 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, | |
3632 | .writefn = sdcr_write, | |
3633 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, | |
b0d2b7d0 PM |
3634 | REGINFO_SENTINEL |
3635 | }; | |
3636 | ||
d42e3c26 | 3637 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 3638 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
3639 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3640 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3641 | .access = PL2_RW, | |
3642 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 3643 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3644 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
3645 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
3646 | .access = PL2_RW, | |
3647 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
3648 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3649 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3650 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
3651 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3652 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3653 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3654 | .resetvalue = 0 }, | |
3655 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3656 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3657 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2179ef95 PM |
3658 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3659 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3660 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3661 | .resetvalue = 0 }, | |
3662 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3663 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3664 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3665 | .resetvalue = 0 }, | |
37cd6c24 PM |
3666 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3667 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3668 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3669 | .resetvalue = 0 }, | |
3670 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3671 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3672 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3673 | .resetvalue = 0 }, | |
06ec4c8c EI |
3674 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3675 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3676 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e9c2fe EI |
3677 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
3678 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3679 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3680 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b698e9cf EI |
3681 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3682 | .cp = 15, .opc1 = 6, .crm = 2, | |
3683 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3684 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | |
3685 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3686 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3687 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
3688 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3689 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3690 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
3691 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3692 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3693 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
3694 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3695 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3696 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3697 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3698 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3699 | .resetvalue = 0 }, | |
0b6440af EI |
3700 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3701 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3702 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
3703 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3704 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3705 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3706 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3707 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3708 | .resetvalue = 0 }, | |
b0e66d95 EI |
3709 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3710 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3711 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3712 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3713 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3714 | .resetvalue = 0 }, | |
3715 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3716 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3717 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3718 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3719 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3720 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
14cc7b54 SF |
3721 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
3722 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
d6c8cf81 PM |
3723 | .access = PL2_RW, .accessfn = access_tda, |
3724 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
59e05530 EI |
3725 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
3726 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3727 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3728 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2a5a9abd AF |
3729 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
3730 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
3731 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
3732 | REGINFO_SENTINEL |
3733 | }; | |
3734 | ||
f149e3e8 EI |
3735 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
3736 | { | |
3737 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3738 | uint64_t valid_mask = HCR_MASK; | |
3739 | ||
3740 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3741 | valid_mask &= ~HCR_HCD; | |
77077a83 JK |
3742 | } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
3743 | /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. | |
3744 | * However, if we're using the SMC PSCI conduit then QEMU is | |
3745 | * effectively acting like EL3 firmware and so the guest at | |
3746 | * EL2 should retain the ability to prevent EL1 from being | |
3747 | * able to make SMC calls into the ersatz firmware, so in | |
3748 | * that case HCR.TSC should be read/write. | |
3749 | */ | |
f149e3e8 EI |
3750 | valid_mask &= ~HCR_TSC; |
3751 | } | |
3752 | ||
3753 | /* Clear RES0 bits. */ | |
3754 | value &= valid_mask; | |
3755 | ||
3756 | /* These bits change the MMU setup: | |
3757 | * HCR_VM enables stage 2 translation | |
3758 | * HCR_PTW forbids certain page-table setups | |
3759 | * HCR_DC Disables stage1 and enables stage2 translation | |
3760 | */ | |
3761 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
d10eb08f | 3762 | tlb_flush(CPU(cpu)); |
f149e3e8 EI |
3763 | } |
3764 | raw_write(env, ri, value); | |
3765 | } | |
3766 | ||
4771cd01 | 3767 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
3768 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
3769 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
3770 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
3771 | .writefn = hcr_write }, | |
3b685ba7 | 3772 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3773 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3774 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
3775 | .access = PL2_RW, | |
3776 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 3777 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
3778 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
3779 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
63b60551 EI |
3780 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
3781 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
3782 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 3783 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3784 | .type = ARM_CP_ALIAS, |
3b685ba7 | 3785 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3786 | .access = PL2_RW, |
3787 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, | |
d42e3c26 EI |
3788 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3789 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3790 | .access = PL2_RW, .writefn = vbar_write, | |
3791 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
3792 | .resetvalue = 0 }, | |
884b4dee GB |
3793 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
3794 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3795 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3796 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
3797 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3798 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3799 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3800 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
3801 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3802 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3803 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
3804 | .resetvalue = 0 }, | |
3805 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3806 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3807 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3808 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
3809 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3810 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3811 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3812 | .resetvalue = 0 }, | |
3813 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
3814 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3815 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3816 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3817 | .resetvalue = 0 }, | |
37cd6c24 PM |
3818 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3819 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3820 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3821 | .resetvalue = 0 }, | |
3822 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3823 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3824 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3825 | .resetvalue = 0 }, | |
06ec4c8c EI |
3826 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3827 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
3828 | .access = PL2_RW, |
3829 | /* no .writefn needed as this can't cause an ASID change; | |
3830 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
3831 | */ | |
06ec4c8c | 3832 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
68e9c2fe EI |
3833 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
3834 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 | 3835 | .type = ARM_CP_ALIAS, |
68e9c2fe EI |
3836 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
3837 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
3838 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
3839 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 PM |
3840 | .access = PL2_RW, |
3841 | /* no .writefn needed as this can't cause an ASID change; | |
3842 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
3843 | */ | |
68e9c2fe | 3844 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
b698e9cf EI |
3845 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3846 | .cp = 15, .opc1 = 6, .crm = 2, | |
3847 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
3848 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3849 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
3850 | .writefn = vttbr_write }, | |
3851 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3852 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3853 | .access = PL2_RW, .writefn = vttbr_write, | |
3854 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
3855 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3856 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3857 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3858 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
3859 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3860 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3861 | .access = PL2_RW, .resetvalue = 0, | |
3862 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
3863 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3864 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3865 | .access = PL2_RW, .resetvalue = 0, | |
3866 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
3867 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3868 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 3869 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
541ef8c2 SS |
3870 | { .name = "TLBIALLNSNH", |
3871 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3872 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3873 | .writefn = tlbiall_nsnh_write }, | |
3874 | { .name = "TLBIALLNSNHIS", | |
3875 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3876 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3877 | .writefn = tlbiall_nsnh_is_write }, | |
3878 | { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3879 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3880 | .writefn = tlbiall_hyp_write }, | |
3881 | { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3882 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3883 | .writefn = tlbiall_hyp_is_write }, | |
3884 | { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3885 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3886 | .writefn = tlbimva_hyp_write }, | |
3887 | { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3888 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3889 | .writefn = tlbimva_hyp_is_write }, | |
51da9014 EI |
3890 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
3891 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3892 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3893 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
3894 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
3895 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3896 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3897 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
3898 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
3899 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
3900 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3901 | .writefn = tlbi_aa64_vae2_write }, | |
3902 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
3903 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3904 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3905 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
3906 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
3907 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3908 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3909 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
3910 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
3911 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3912 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3913 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 3914 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
3915 | /* Unlike the other EL2-related AT operations, these must |
3916 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
3917 | * define them here rather than with the rest of the AT ops. | |
3918 | */ | |
3919 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
3920 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3921 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3922 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3923 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | |
3924 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3925 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3926 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
14db7fe0 PM |
3927 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
3928 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
3929 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
3930 | * to behave as if SCR.NS was 1. | |
3931 | */ | |
3932 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3933 | .access = PL2_W, | |
3934 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
3935 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3936 | .access = PL2_W, | |
3937 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
0b6440af EI |
3938 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3939 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3940 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
3941 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
3942 | * both ARMv7 and ARMv8. | |
3943 | */ | |
3944 | .access = PL2_RW, .resetvalue = 3, | |
3945 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
3946 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3947 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3948 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
3949 | .writefn = gt_cntvoff_write, | |
3950 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
3951 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3952 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
3953 | .writefn = gt_cntvoff_write, | |
3954 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
3955 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3956 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3957 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3958 | .type = ARM_CP_IO, .access = PL2_RW, | |
3959 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3960 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3961 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3962 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
3963 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3964 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3965 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
d44ec156 | 3966 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
b0e66d95 EI |
3967 | .resetfn = gt_hyp_timer_reset, |
3968 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
3969 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3970 | .type = ARM_CP_IO, | |
3971 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3972 | .access = PL2_RW, | |
3973 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
3974 | .resetvalue = 0, | |
3975 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 3976 | #endif |
14cc7b54 SF |
3977 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
3978 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we | |
3979 | * don't impelment any PMU event counters, so using zero as a reset | |
3980 | * value for MDCR_EL2 is okay | |
3981 | */ | |
3982 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, | |
3983 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
3984 | .access = PL2_RW, .resetvalue = 0, | |
3985 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, | |
59e05530 EI |
3986 | { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
3987 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3988 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3989 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
3990 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, | |
3991 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3992 | .access = PL2_RW, | |
3993 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
2a5a9abd AF |
3994 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
3995 | .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
3996 | .access = PL2_RW, | |
3997 | .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, | |
3b685ba7 EI |
3998 | REGINFO_SENTINEL |
3999 | }; | |
4000 | ||
2f027fc5 PM |
4001 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4002 | bool isread) | |
4003 | { | |
4004 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. | |
4005 | * At Secure EL1 it traps to EL3. | |
4006 | */ | |
4007 | if (arm_current_el(env) == 3) { | |
4008 | return CP_ACCESS_OK; | |
4009 | } | |
4010 | if (arm_is_secure_below_el3(env)) { | |
4011 | return CP_ACCESS_TRAP_EL3; | |
4012 | } | |
4013 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ | |
4014 | if (isread) { | |
4015 | return CP_ACCESS_OK; | |
4016 | } | |
4017 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
4018 | } | |
4019 | ||
60fb1a87 GB |
4020 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
4021 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
4022 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
4023 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
4024 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 4025 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 | 4026 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
efe4a274 PM |
4027 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
4028 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 4029 | .writefn = scr_write }, |
60fb1a87 GB |
4030 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
4031 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
4032 | .access = PL3_RW, .resetvalue = 0, | |
4033 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
4034 | { .name = "SDER", | |
4035 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
4036 | .access = PL3_RW, .resetvalue = 0, | |
4037 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
60fb1a87 | 4038 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
efe4a274 PM |
4039 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
4040 | .writefn = vbar_write, .resetvalue = 0, | |
60fb1a87 | 4041 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
7dd8c9af FA |
4042 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
4043 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
4044 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
4045 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
4046 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
4047 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
4048 | .access = PL3_RW, |
4049 | /* no .writefn needed as this can't cause an ASID change; | |
811595a2 PM |
4050 | * we must provide a .raw_writefn and .resetfn because we handle |
4051 | * reset and migration for the AArch32 TTBCR(S), which might be | |
4052 | * using mask and base_mask. | |
6459b94c | 4053 | */ |
811595a2 | 4054 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee | 4055 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
81547d66 | 4056 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 4057 | .type = ARM_CP_ALIAS, |
81547d66 EI |
4058 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
4059 | .access = PL3_RW, | |
4060 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 4061 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
4062 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
4063 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
4064 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
4065 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
4066 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 4067 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 4068 | .type = ARM_CP_ALIAS, |
81547d66 | 4069 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
4070 | .access = PL3_RW, |
4071 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, | |
a1ba125c EI |
4072 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
4073 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
4074 | .access = PL3_RW, .writefn = vbar_write, | |
4075 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
4076 | .resetvalue = 0 }, | |
c6f19164 GB |
4077 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
4078 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
4079 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
4080 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
4081 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
4082 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
4083 | .access = PL3_RW, .resetvalue = 0, | |
4084 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
4085 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
4086 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
4087 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4088 | .resetvalue = 0 }, | |
37cd6c24 PM |
4089 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
4090 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
4091 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4092 | .resetvalue = 0 }, | |
4093 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
4094 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
4095 | .access = PL3_RW, .type = ARM_CP_CONST, | |
4096 | .resetvalue = 0 }, | |
43efaa33 PM |
4097 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
4098 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
4099 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4100 | .writefn = tlbi_aa64_alle3is_write }, | |
4101 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
4102 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
4103 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4104 | .writefn = tlbi_aa64_vae3is_write }, | |
4105 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
4106 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
4107 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4108 | .writefn = tlbi_aa64_vae3is_write }, | |
4109 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
4110 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
4111 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4112 | .writefn = tlbi_aa64_alle3_write }, | |
4113 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
4114 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
4115 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4116 | .writefn = tlbi_aa64_vae3_write }, | |
4117 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
4118 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
4119 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
4120 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
4121 | REGINFO_SENTINEL |
4122 | }; | |
4123 | ||
3f208fd7 PM |
4124 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4125 | bool isread) | |
7da845b0 PM |
4126 | { |
4127 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
4128 | * but the AArch32 CTR has its own reginfo struct) | |
4129 | */ | |
137feaa9 | 4130 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
4131 | return CP_ACCESS_TRAP; |
4132 | } | |
4133 | return CP_ACCESS_OK; | |
4134 | } | |
4135 | ||
1424ca8d DM |
4136 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4137 | uint64_t value) | |
4138 | { | |
4139 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be | |
4140 | * read via a bit in OSLSR_EL1. | |
4141 | */ | |
4142 | int oslock; | |
4143 | ||
4144 | if (ri->state == ARM_CP_STATE_AA32) { | |
4145 | oslock = (value == 0xC5ACCE55); | |
4146 | } else { | |
4147 | oslock = value & 1; | |
4148 | } | |
4149 | ||
4150 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); | |
4151 | } | |
4152 | ||
50300698 | 4153 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 4154 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
4155 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
4156 | * unlike DBGDRAR it is never accessible from EL0. | |
4157 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
4158 | * accessor. | |
50300698 PM |
4159 | */ |
4160 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
91b0a238 PM |
4161 | .access = PL0_R, .accessfn = access_tdra, |
4162 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
4163 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
4164 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
91b0a238 PM |
4165 | .access = PL1_R, .accessfn = access_tdra, |
4166 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 | 4167 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
91b0a238 PM |
4168 | .access = PL0_R, .accessfn = access_tdra, |
4169 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 4170 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
4171 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
4172 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
d6c8cf81 | 4173 | .access = PL1_RW, .accessfn = access_tda, |
0e5e8935 PM |
4174 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
4175 | .resetvalue = 0 }, | |
5e8b12ff PM |
4176 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
4177 | * We don't implement the configurable EL0 access. | |
4178 | */ | |
4179 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
4180 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 4181 | .type = ARM_CP_ALIAS, |
d6c8cf81 | 4182 | .access = PL1_R, .accessfn = access_tda, |
b061a82b | 4183 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
10aae104 PM |
4184 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
4185 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1424ca8d | 4186 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
187f678d | 4187 | .accessfn = access_tdosa, |
1424ca8d DM |
4188 | .writefn = oslar_write }, |
4189 | { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, | |
4190 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, | |
4191 | .access = PL1_R, .resetvalue = 10, | |
187f678d | 4192 | .accessfn = access_tdosa, |
1424ca8d | 4193 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
5e8b12ff PM |
4194 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
4195 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
4196 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
187f678d PM |
4197 | .access = PL1_RW, .accessfn = access_tdosa, |
4198 | .type = ARM_CP_NOP }, | |
5e8b12ff PM |
4199 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
4200 | * implement vector catch debug events yet. | |
4201 | */ | |
4202 | { .name = "DBGVCR", | |
4203 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
d6c8cf81 PM |
4204 | .access = PL1_RW, .accessfn = access_tda, |
4205 | .type = ARM_CP_NOP }, | |
4d2ec4da PM |
4206 | /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor |
4207 | * to save and restore a 32-bit guest's DBGVCR) | |
4208 | */ | |
4209 | { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, | |
4210 | .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, | |
4211 | .access = PL2_RW, .accessfn = access_tda, | |
4212 | .type = ARM_CP_NOP }, | |
5dbdc434 PM |
4213 | /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications |
4214 | * Channel but Linux may try to access this register. The 32-bit | |
4215 | * alias is DBGDCCINT. | |
4216 | */ | |
4217 | { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, | |
4218 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
4219 | .access = PL1_RW, .accessfn = access_tda, | |
4220 | .type = ARM_CP_NOP }, | |
50300698 PM |
4221 | REGINFO_SENTINEL |
4222 | }; | |
4223 | ||
4224 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
4225 | /* 64 bit access versions of the (dummy) debug registers */ | |
4226 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
4227 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
4228 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
4229 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
4230 | REGINFO_SENTINEL | |
4231 | }; | |
4232 | ||
9ee98ce8 PM |
4233 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
4234 | { | |
4235 | CPUARMState *env = &cpu->env; | |
4236 | vaddr len = 0; | |
4237 | vaddr wvr = env->cp15.dbgwvr[n]; | |
4238 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
4239 | int mask; | |
4240 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
4241 | ||
4242 | if (env->cpu_watchpoint[n]) { | |
4243 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
4244 | env->cpu_watchpoint[n] = NULL; | |
4245 | } | |
4246 | ||
4247 | if (!extract64(wcr, 0, 1)) { | |
4248 | /* E bit clear : watchpoint disabled */ | |
4249 | return; | |
4250 | } | |
4251 | ||
4252 | switch (extract64(wcr, 3, 2)) { | |
4253 | case 0: | |
4254 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
4255 | return; | |
4256 | case 1: | |
4257 | flags |= BP_MEM_READ; | |
4258 | break; | |
4259 | case 2: | |
4260 | flags |= BP_MEM_WRITE; | |
4261 | break; | |
4262 | case 3: | |
4263 | flags |= BP_MEM_ACCESS; | |
4264 | break; | |
4265 | } | |
4266 | ||
4267 | /* Attempts to use both MASK and BAS fields simultaneously are | |
4268 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
4269 | * thus generating a watchpoint for every byte in the masked region. | |
4270 | */ | |
4271 | mask = extract64(wcr, 24, 4); | |
4272 | if (mask == 1 || mask == 2) { | |
4273 | /* Reserved values of MASK; we must act as if the mask value was | |
4274 | * some non-reserved value, or as if the watchpoint were disabled. | |
4275 | * We choose the latter. | |
4276 | */ | |
4277 | return; | |
4278 | } else if (mask) { | |
4279 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
4280 | len = 1ULL << mask; | |
4281 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
4282 | * whether the watchpoint fires when the unmasked bits match; we opt | |
4283 | * to generate the exceptions. | |
4284 | */ | |
4285 | wvr &= ~(len - 1); | |
4286 | } else { | |
4287 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
4288 | int bas = extract64(wcr, 5, 8); | |
4289 | int basstart; | |
4290 | ||
4291 | if (bas == 0) { | |
4292 | /* This must act as if the watchpoint is disabled */ | |
4293 | return; | |
4294 | } | |
4295 | ||
4296 | if (extract64(wvr, 2, 1)) { | |
4297 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
4298 | * ignored, and BAS[3:0] define which bytes to watch. | |
4299 | */ | |
4300 | bas &= 0xf; | |
4301 | } | |
4302 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
4303 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
4304 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
4305 | * We choose to ignore any non-zero bits after the first range of 1s. | |
4306 | */ | |
4307 | basstart = ctz32(bas); | |
4308 | len = cto32(bas >> basstart); | |
4309 | wvr += basstart; | |
4310 | } | |
4311 | ||
4312 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
4313 | &env->cpu_watchpoint[n]); | |
4314 | } | |
4315 | ||
4316 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
4317 | { | |
4318 | int i; | |
4319 | CPUARMState *env = &cpu->env; | |
4320 | ||
4321 | /* Completely clear out existing QEMU watchpoints and our array, to | |
4322 | * avoid possible stale entries following migration load. | |
4323 | */ | |
4324 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
4325 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
4326 | ||
4327 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
4328 | hw_watchpoint_update(cpu, i); | |
4329 | } | |
4330 | } | |
4331 | ||
4332 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4333 | uint64_t value) | |
4334 | { | |
4335 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4336 | int i = ri->crm; | |
4337 | ||
4338 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
4339 | * register reads and behaves as if values written are sign extended. | |
4340 | * Bits [1:0] are RES0. | |
4341 | */ | |
4342 | value = sextract64(value, 0, 49) & ~3ULL; | |
4343 | ||
4344 | raw_write(env, ri, value); | |
4345 | hw_watchpoint_update(cpu, i); | |
4346 | } | |
4347 | ||
4348 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4349 | uint64_t value) | |
4350 | { | |
4351 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4352 | int i = ri->crm; | |
4353 | ||
4354 | raw_write(env, ri, value); | |
4355 | hw_watchpoint_update(cpu, i); | |
4356 | } | |
4357 | ||
46747d15 PM |
4358 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
4359 | { | |
4360 | CPUARMState *env = &cpu->env; | |
4361 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
4362 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
4363 | vaddr addr; | |
4364 | int bt; | |
4365 | int flags = BP_CPU; | |
4366 | ||
4367 | if (env->cpu_breakpoint[n]) { | |
4368 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
4369 | env->cpu_breakpoint[n] = NULL; | |
4370 | } | |
4371 | ||
4372 | if (!extract64(bcr, 0, 1)) { | |
4373 | /* E bit clear : watchpoint disabled */ | |
4374 | return; | |
4375 | } | |
4376 | ||
4377 | bt = extract64(bcr, 20, 4); | |
4378 | ||
4379 | switch (bt) { | |
4380 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
4381 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
4382 | qemu_log_mask(LOG_UNIMP, | |
4383 | "arm: address mismatch breakpoint types not implemented"); | |
4384 | return; | |
4385 | case 0: /* unlinked address match */ | |
4386 | case 1: /* linked address match */ | |
4387 | { | |
4388 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
4389 | * we behave as if the register was sign extended. Bits [1:0] are | |
4390 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
4391 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
4392 | * a bp will fire if the addresses covered by the bp and the addresses | |
4393 | * covered by the insn overlap but the insn doesn't start at the | |
4394 | * start of the bp address range. We choose to require the insn and | |
4395 | * the bp to have the same address. The constraints on writing to | |
4396 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
4397 | * 0b0000 => no breakpoint | |
4398 | * 0b0011 => breakpoint on addr | |
4399 | * 0b1100 => breakpoint on addr + 2 | |
4400 | * 0b1111 => breakpoint on addr | |
4401 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
4402 | */ | |
4403 | int bas = extract64(bcr, 5, 4); | |
4404 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
4405 | if (bas == 0) { | |
4406 | return; | |
4407 | } | |
4408 | if (bas == 0xc) { | |
4409 | addr += 2; | |
4410 | } | |
4411 | break; | |
4412 | } | |
4413 | case 2: /* unlinked context ID match */ | |
4414 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
4415 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
4416 | qemu_log_mask(LOG_UNIMP, | |
4417 | "arm: unlinked context breakpoint types not implemented"); | |
4418 | return; | |
4419 | case 9: /* linked VMID match (reserved if no EL2) */ | |
4420 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
4421 | case 3: /* linked context ID match */ | |
4422 | default: | |
4423 | /* We must generate no events for Linked context matches (unless | |
4424 | * they are linked to by some other bp/wp, which is handled in | |
4425 | * updates for the linking bp/wp). We choose to also generate no events | |
4426 | * for reserved values. | |
4427 | */ | |
4428 | return; | |
4429 | } | |
4430 | ||
4431 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
4432 | } | |
4433 | ||
4434 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
4435 | { | |
4436 | int i; | |
4437 | CPUARMState *env = &cpu->env; | |
4438 | ||
4439 | /* Completely clear out existing QEMU breakpoints and our array, to | |
4440 | * avoid possible stale entries following migration load. | |
4441 | */ | |
4442 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
4443 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
4444 | ||
4445 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
4446 | hw_breakpoint_update(cpu, i); | |
4447 | } | |
4448 | } | |
4449 | ||
4450 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4451 | uint64_t value) | |
4452 | { | |
4453 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4454 | int i = ri->crm; | |
4455 | ||
4456 | raw_write(env, ri, value); | |
4457 | hw_breakpoint_update(cpu, i); | |
4458 | } | |
4459 | ||
4460 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4461 | uint64_t value) | |
4462 | { | |
4463 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4464 | int i = ri->crm; | |
4465 | ||
4466 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
4467 | * copy of BAS[0]. | |
4468 | */ | |
4469 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
4470 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
4471 | ||
4472 | raw_write(env, ri, value); | |
4473 | hw_breakpoint_update(cpu, i); | |
4474 | } | |
4475 | ||
50300698 | 4476 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 4477 | { |
50300698 PM |
4478 | /* Define v7 and v8 architectural debug registers. |
4479 | * These are just dummy implementations for now. | |
0b45451e PM |
4480 | */ |
4481 | int i; | |
3ff6fc91 | 4482 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
4483 | ARMCPRegInfo dbgdidr = { |
4484 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d6c8cf81 PM |
4485 | .access = PL0_R, .accessfn = access_tda, |
4486 | .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
48eb3ae6 PM |
4487 | }; |
4488 | ||
3ff6fc91 | 4489 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
4490 | brps = extract32(cpu->dbgdidr, 24, 4); |
4491 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
4492 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
4493 | ||
4494 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
4495 | |
4496 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
4497 | * of the debug registers such as number of breakpoints; | |
4498 | * check that if they both exist then they agree. | |
4499 | */ | |
4500 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
4501 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
4502 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 4503 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 4504 | } |
0b45451e | 4505 | |
48eb3ae6 | 4506 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
4507 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
4508 | ||
4509 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
4510 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
4511 | } | |
4512 | ||
48eb3ae6 | 4513 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 4514 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
4515 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
4516 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
d6c8cf81 | 4517 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4518 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
4519 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
4520 | }, | |
10aae104 PM |
4521 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
4522 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
d6c8cf81 | 4523 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4524 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
4525 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
4526 | }, | |
48eb3ae6 PM |
4527 | REGINFO_SENTINEL |
4528 | }; | |
4529 | define_arm_cp_regs(cpu, dbgregs); | |
4530 | } | |
4531 | ||
4532 | for (i = 0; i < wrps + 1; i++) { | |
4533 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
4534 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
4535 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
d6c8cf81 | 4536 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4537 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
4538 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
4539 | }, | |
10aae104 PM |
4540 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
4541 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
d6c8cf81 | 4542 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4543 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
4544 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
4545 | }, | |
4546 | REGINFO_SENTINEL | |
0b45451e PM |
4547 | }; |
4548 | define_arm_cp_regs(cpu, dbgregs); | |
4549 | } | |
4550 | } | |
4551 | ||
2ceb98c0 PM |
4552 | void register_cp_regs_for_features(ARMCPU *cpu) |
4553 | { | |
4554 | /* Register all the coprocessor registers based on feature bits */ | |
4555 | CPUARMState *env = &cpu->env; | |
4556 | if (arm_feature(env, ARM_FEATURE_M)) { | |
4557 | /* M profile has no coprocessor registers */ | |
4558 | return; | |
4559 | } | |
4560 | ||
e9aa6c21 | 4561 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
4562 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
4563 | /* Must go early as it is full of wildcards that may be | |
4564 | * overridden by later definitions. | |
4565 | */ | |
4566 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
4567 | } | |
4568 | ||
7d57f408 | 4569 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
4570 | /* The ID registers all have impdef reset values */ |
4571 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
4572 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
4573 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
4574 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4575 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
4576 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
4577 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
4578 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4579 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
4580 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
4581 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
4582 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4583 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
4584 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
4585 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
4586 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4587 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
4588 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
4589 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
4590 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4591 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
4592 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
4593 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
4594 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4595 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
4596 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
4597 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
4598 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4599 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
4600 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
4601 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
4602 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4603 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
4604 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
4605 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
4606 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4607 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
4608 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
4609 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
4610 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4611 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
4612 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
4613 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
4614 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4615 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
4616 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
4617 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
4618 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4619 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
4620 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
4621 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
4622 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4623 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
4624 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
4625 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
4626 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4627 | .resetvalue = cpu->id_isar5 }, |
e20d84c1 PM |
4628 | { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
4629 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, | |
4630 | .access = PL1_R, .type = ARM_CP_CONST, | |
4631 | .resetvalue = cpu->id_mmfr4 }, | |
4632 | /* 7 is as yet unallocated and must RAZ */ | |
4633 | { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, | |
4634 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, | |
4635 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
4636 | .resetvalue = 0 }, |
4637 | REGINFO_SENTINEL | |
4638 | }; | |
4639 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
4640 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
4641 | } else { | |
4642 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
4643 | } | |
4d31c596 PM |
4644 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
4645 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
4646 | } | |
5e5cf9e3 | 4647 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
452a0955 | 4648 | !arm_feature(env, ARM_FEATURE_PMSA)) { |
995939a6 PM |
4649 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
4650 | } | |
e9aa6c21 | 4651 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 4652 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
4653 | * field as main ID register, and we implement only the cycle |
4654 | * count register. | |
200ac0ef | 4655 | */ |
7c2cb42b | 4656 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
4657 | ARMCPRegInfo pmcr = { |
4658 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 4659 | .access = PL0_RW, |
7a0e58fa | 4660 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 4661 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
4662 | .accessfn = pmreg_access, .writefn = pmcr_write, |
4663 | .raw_writefn = raw_write, | |
200ac0ef | 4664 | }; |
8521466b AF |
4665 | ARMCPRegInfo pmcr64 = { |
4666 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
4667 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
4668 | .access = PL0_RW, .accessfn = pmreg_access, | |
4669 | .type = ARM_CP_IO, | |
4670 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
4671 | .resetvalue = cpu->midr & 0xff000000, | |
4672 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
4673 | }; | |
7c2cb42b | 4674 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 4675 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 4676 | #endif |
776d4e5c | 4677 | ARMCPRegInfo clidr = { |
7da845b0 PM |
4678 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
4679 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
4680 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
4681 | }; | |
776d4e5c | 4682 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 4683 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 4684 | define_debug_regs(cpu); |
7d57f408 PM |
4685 | } else { |
4686 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 4687 | } |
b0d2b7d0 | 4688 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e20d84c1 PM |
4689 | /* AArch64 ID registers, which all have impdef reset values. |
4690 | * Note that within the ID register ranges the unused slots | |
4691 | * must all RAZ, not UNDEF; future architecture versions may | |
4692 | * define new registers here. | |
4693 | */ | |
e60cef86 PM |
4694 | ARMCPRegInfo v8_idregs[] = { |
4695 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4696 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
4697 | .access = PL1_R, .type = ARM_CP_CONST, | |
4698 | .resetvalue = cpu->id_aa64pfr0 }, | |
4699 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4700 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
4701 | .access = PL1_R, .type = ARM_CP_CONST, | |
4702 | .resetvalue = cpu->id_aa64pfr1}, | |
e20d84c1 PM |
4703 | { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4704 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, | |
4705 | .access = PL1_R, .type = ARM_CP_CONST, | |
4706 | .resetvalue = 0 }, | |
4707 | { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4708 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, | |
4709 | .access = PL1_R, .type = ARM_CP_CONST, | |
4710 | .resetvalue = 0 }, | |
4711 | { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4712 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, | |
4713 | .access = PL1_R, .type = ARM_CP_CONST, | |
4714 | .resetvalue = 0 }, | |
4715 | { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4716 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, | |
4717 | .access = PL1_R, .type = ARM_CP_CONST, | |
4718 | .resetvalue = 0 }, | |
4719 | { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4720 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, | |
4721 | .access = PL1_R, .type = ARM_CP_CONST, | |
4722 | .resetvalue = 0 }, | |
4723 | { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4724 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, | |
4725 | .access = PL1_R, .type = ARM_CP_CONST, | |
4726 | .resetvalue = 0 }, | |
e60cef86 PM |
4727 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
4728 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
4729 | .access = PL1_R, .type = ARM_CP_CONST, | |
d6f02ce3 | 4730 | .resetvalue = cpu->id_aa64dfr0 }, |
e60cef86 PM |
4731 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
4732 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
4733 | .access = PL1_R, .type = ARM_CP_CONST, | |
4734 | .resetvalue = cpu->id_aa64dfr1 }, | |
e20d84c1 PM |
4735 | { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4736 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, | |
4737 | .access = PL1_R, .type = ARM_CP_CONST, | |
4738 | .resetvalue = 0 }, | |
4739 | { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4740 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, | |
4741 | .access = PL1_R, .type = ARM_CP_CONST, | |
4742 | .resetvalue = 0 }, | |
e60cef86 PM |
4743 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
4744 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
4745 | .access = PL1_R, .type = ARM_CP_CONST, | |
4746 | .resetvalue = cpu->id_aa64afr0 }, | |
4747 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4748 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
4749 | .access = PL1_R, .type = ARM_CP_CONST, | |
4750 | .resetvalue = cpu->id_aa64afr1 }, | |
e20d84c1 PM |
4751 | { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4752 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, | |
4753 | .access = PL1_R, .type = ARM_CP_CONST, | |
4754 | .resetvalue = 0 }, | |
4755 | { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4756 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, | |
4757 | .access = PL1_R, .type = ARM_CP_CONST, | |
4758 | .resetvalue = 0 }, | |
e60cef86 PM |
4759 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
4760 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
4761 | .access = PL1_R, .type = ARM_CP_CONST, | |
4762 | .resetvalue = cpu->id_aa64isar0 }, | |
4763 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
4764 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
4765 | .access = PL1_R, .type = ARM_CP_CONST, | |
4766 | .resetvalue = cpu->id_aa64isar1 }, | |
e20d84c1 PM |
4767 | { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4768 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, | |
4769 | .access = PL1_R, .type = ARM_CP_CONST, | |
4770 | .resetvalue = 0 }, | |
4771 | { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4772 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, | |
4773 | .access = PL1_R, .type = ARM_CP_CONST, | |
4774 | .resetvalue = 0 }, | |
4775 | { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4776 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, | |
4777 | .access = PL1_R, .type = ARM_CP_CONST, | |
4778 | .resetvalue = 0 }, | |
4779 | { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4780 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, | |
4781 | .access = PL1_R, .type = ARM_CP_CONST, | |
4782 | .resetvalue = 0 }, | |
4783 | { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4784 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, | |
4785 | .access = PL1_R, .type = ARM_CP_CONST, | |
4786 | .resetvalue = 0 }, | |
4787 | { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4788 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, | |
4789 | .access = PL1_R, .type = ARM_CP_CONST, | |
4790 | .resetvalue = 0 }, | |
e60cef86 PM |
4791 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
4792 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
4793 | .access = PL1_R, .type = ARM_CP_CONST, | |
4794 | .resetvalue = cpu->id_aa64mmfr0 }, | |
4795 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4796 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
4797 | .access = PL1_R, .type = ARM_CP_CONST, | |
4798 | .resetvalue = cpu->id_aa64mmfr1 }, | |
e20d84c1 PM |
4799 | { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4800 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, | |
4801 | .access = PL1_R, .type = ARM_CP_CONST, | |
4802 | .resetvalue = 0 }, | |
4803 | { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4804 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, | |
4805 | .access = PL1_R, .type = ARM_CP_CONST, | |
4806 | .resetvalue = 0 }, | |
4807 | { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4808 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, | |
4809 | .access = PL1_R, .type = ARM_CP_CONST, | |
4810 | .resetvalue = 0 }, | |
4811 | { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4812 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, | |
4813 | .access = PL1_R, .type = ARM_CP_CONST, | |
4814 | .resetvalue = 0 }, | |
4815 | { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4816 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, | |
4817 | .access = PL1_R, .type = ARM_CP_CONST, | |
4818 | .resetvalue = 0 }, | |
4819 | { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4820 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, | |
4821 | .access = PL1_R, .type = ARM_CP_CONST, | |
4822 | .resetvalue = 0 }, | |
a50c0f51 PM |
4823 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
4824 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
4825 | .access = PL1_R, .type = ARM_CP_CONST, | |
4826 | .resetvalue = cpu->mvfr0 }, | |
4827 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4828 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
4829 | .access = PL1_R, .type = ARM_CP_CONST, | |
4830 | .resetvalue = cpu->mvfr1 }, | |
4831 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
4832 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
4833 | .access = PL1_R, .type = ARM_CP_CONST, | |
4834 | .resetvalue = cpu->mvfr2 }, | |
e20d84c1 PM |
4835 | { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4836 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, | |
4837 | .access = PL1_R, .type = ARM_CP_CONST, | |
4838 | .resetvalue = 0 }, | |
4839 | { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4840 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, | |
4841 | .access = PL1_R, .type = ARM_CP_CONST, | |
4842 | .resetvalue = 0 }, | |
4843 | { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4844 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, | |
4845 | .access = PL1_R, .type = ARM_CP_CONST, | |
4846 | .resetvalue = 0 }, | |
4847 | { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4848 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, | |
4849 | .access = PL1_R, .type = ARM_CP_CONST, | |
4850 | .resetvalue = 0 }, | |
4851 | { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4852 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, | |
4853 | .access = PL1_R, .type = ARM_CP_CONST, | |
4854 | .resetvalue = 0 }, | |
4054bfa9 AF |
4855 | { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
4856 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, | |
4857 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4858 | .resetvalue = cpu->pmceid0 }, | |
4859 | { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, | |
4860 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, | |
4861 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4862 | .resetvalue = cpu->pmceid0 }, | |
4863 | { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, | |
4864 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, | |
4865 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4866 | .resetvalue = cpu->pmceid1 }, | |
4867 | { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, | |
4868 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, | |
4869 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4870 | .resetvalue = cpu->pmceid1 }, | |
e60cef86 PM |
4871 | REGINFO_SENTINEL |
4872 | }; | |
be8e8128 GB |
4873 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
4874 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
4875 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
4876 | ARMCPRegInfo rvbar = { | |
4877 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4878 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
4879 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
4880 | }; | |
4881 | define_one_arm_cp_reg(cpu, &rvbar); | |
4882 | } | |
e60cef86 | 4883 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
4884 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
4885 | } | |
3b685ba7 | 4886 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
f0d574d6 | 4887 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
4888 | ARMCPRegInfo vpidr_regs[] = { |
4889 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
4890 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4891 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4892 | .resetvalue = cpu->midr, | |
4893 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
4894 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4895 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4896 | .access = PL2_RW, .resetvalue = cpu->midr, | |
4897 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4898 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
4899 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4900 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4901 | .resetvalue = vmpidr_def, | |
4902 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
4903 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4904 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4905 | .access = PL2_RW, | |
4906 | .resetvalue = vmpidr_def, | |
4907 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
731de9e6 EI |
4908 | REGINFO_SENTINEL |
4909 | }; | |
4910 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4911 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
4912 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
4913 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
4914 | ARMCPRegInfo rvbar = { | |
4915 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
4916 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
4917 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
4918 | }; | |
4919 | define_one_arm_cp_reg(cpu, &rvbar); | |
4920 | } | |
d42e3c26 EI |
4921 | } else { |
4922 | /* If EL2 is missing but higher ELs are enabled, we need to | |
4923 | * register the no_el2 reginfos. | |
4924 | */ | |
4925 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
f0d574d6 EI |
4926 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
4927 | * of MIDR_EL1 and MPIDR_EL1. | |
731de9e6 EI |
4928 | */ |
4929 | ARMCPRegInfo vpidr_regs[] = { | |
4930 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | |
4931 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4932 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4933 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, | |
4934 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4935 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
4936 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4937 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4938 | .type = ARM_CP_NO_RAW, | |
4939 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | |
731de9e6 EI |
4940 | REGINFO_SENTINEL |
4941 | }; | |
4942 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4943 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 4944 | } |
3b685ba7 | 4945 | } |
81547d66 | 4946 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 4947 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
e24fdd23 PM |
4948 | ARMCPRegInfo el3_regs[] = { |
4949 | { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
4950 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
4951 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, | |
4952 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, | |
4953 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
4954 | .access = PL3_RW, | |
4955 | .raw_writefn = raw_write, .writefn = sctlr_write, | |
4956 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), | |
4957 | .resetvalue = cpu->reset_sctlr }, | |
4958 | REGINFO_SENTINEL | |
be8e8128 | 4959 | }; |
e24fdd23 PM |
4960 | |
4961 | define_arm_cp_regs(cpu, el3_regs); | |
81547d66 | 4962 | } |
2f027fc5 PM |
4963 | /* The behaviour of NSACR is sufficiently various that we don't |
4964 | * try to describe it in a single reginfo: | |
4965 | * if EL3 is 64 bit, then trap to EL3 from S EL1, | |
4966 | * reads as constant 0xc00 from NS EL1 and NS EL2 | |
4967 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 | |
4968 | * if v7 without EL3, register doesn't exist | |
4969 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 | |
4970 | */ | |
4971 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
4972 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
4973 | ARMCPRegInfo nsacr = { | |
4974 | .name = "NSACR", .type = ARM_CP_CONST, | |
4975 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4976 | .access = PL1_RW, .accessfn = nsacr_access, | |
4977 | .resetvalue = 0xc00 | |
4978 | }; | |
4979 | define_one_arm_cp_reg(cpu, &nsacr); | |
4980 | } else { | |
4981 | ARMCPRegInfo nsacr = { | |
4982 | .name = "NSACR", | |
4983 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4984 | .access = PL3_RW | PL1_R, | |
4985 | .resetvalue = 0, | |
4986 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) | |
4987 | }; | |
4988 | define_one_arm_cp_reg(cpu, &nsacr); | |
4989 | } | |
4990 | } else { | |
4991 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
4992 | ARMCPRegInfo nsacr = { | |
4993 | .name = "NSACR", .type = ARM_CP_CONST, | |
4994 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4995 | .access = PL1_R, | |
4996 | .resetvalue = 0xc00 | |
4997 | }; | |
4998 | define_one_arm_cp_reg(cpu, &nsacr); | |
4999 | } | |
5000 | } | |
5001 | ||
452a0955 | 5002 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
6cb0b013 PC |
5003 | if (arm_feature(env, ARM_FEATURE_V6)) { |
5004 | /* PMSAv6 not implemented */ | |
5005 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
5006 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
5007 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
5008 | } else { | |
5009 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
5010 | } | |
18032bec | 5011 | } else { |
8e5d75c9 | 5012 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
5013 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
5014 | } | |
c326b979 PM |
5015 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
5016 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
5017 | } | |
6cc7a3ae PM |
5018 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
5019 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
5020 | } | |
4a501606 PM |
5021 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
5022 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
5023 | } | |
c4804214 PM |
5024 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
5025 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
5026 | } | |
5027 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
5028 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
5029 | } | |
5030 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
5031 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
5032 | } | |
18032bec PM |
5033 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
5034 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
5035 | } | |
34f90529 PM |
5036 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
5037 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
5038 | } | |
1047b9d7 PM |
5039 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
5040 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
5041 | } | |
5042 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
5043 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
5044 | } | |
7ac681cf PM |
5045 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
5046 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
5047 | } | |
7884849c PM |
5048 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
5049 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
5050 | * be read-only (ie write causes UNDEF exception). | |
5051 | */ | |
5052 | { | |
00a29f3d PM |
5053 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
5054 | /* Pre-v8 MIDR space. | |
5055 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
5056 | * of the TI925 behaviour where writes to another register can |
5057 | * cause the MIDR value to change. | |
97ce8d61 PC |
5058 | * |
5059 | * Unimplemented registers in the c15 0 0 0 space default to | |
5060 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
5061 | * and friends override accordingly. | |
7884849c PM |
5062 | */ |
5063 | { .name = "MIDR", | |
97ce8d61 | 5064 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 5065 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 5066 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 5067 | .readfn = midr_read, |
97ce8d61 PC |
5068 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
5069 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
5070 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
5071 | { .name = "DUMMY", | |
5072 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
5073 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5074 | { .name = "DUMMY", | |
5075 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
5076 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5077 | { .name = "DUMMY", | |
5078 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
5079 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5080 | { .name = "DUMMY", | |
5081 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
5082 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5083 | { .name = "DUMMY", | |
5084 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
5085 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5086 | REGINFO_SENTINEL | |
5087 | }; | |
00a29f3d | 5088 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
5089 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
5090 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
5091 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
5092 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
5093 | .readfn = midr_read }, | |
ac00c79f SF |
5094 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
5095 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
5096 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
5097 | .access = PL1_R, .resetvalue = cpu->midr }, | |
5098 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
5099 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
5100 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
5101 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
5102 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 5103 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
5104 | REGINFO_SENTINEL |
5105 | }; | |
5106 | ARMCPRegInfo id_cp_reginfo[] = { | |
5107 | /* These are common to v8 and pre-v8 */ | |
5108 | { .name = "CTR", | |
5109 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
5110 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
5111 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
5112 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
5113 | .access = PL0_R, .accessfn = ctr_el0_access, | |
5114 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
5115 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
5116 | { .name = "TCMTR", | |
5117 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
5118 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
5119 | REGINFO_SENTINEL |
5120 | }; | |
8085ce63 PC |
5121 | /* TLBTR is specific to VMSA */ |
5122 | ARMCPRegInfo id_tlbtr_reginfo = { | |
5123 | .name = "TLBTR", | |
5124 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
5125 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
5126 | }; | |
3281af81 PC |
5127 | /* MPUIR is specific to PMSA V6+ */ |
5128 | ARMCPRegInfo id_mpuir_reginfo = { | |
5129 | .name = "MPUIR", | |
5130 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
5131 | .access = PL1_R, .type = ARM_CP_CONST, | |
5132 | .resetvalue = cpu->pmsav7_dregion << 8 | |
5133 | }; | |
7884849c PM |
5134 | ARMCPRegInfo crn0_wi_reginfo = { |
5135 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
5136 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
5137 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
5138 | }; | |
5139 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
5140 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
5141 | ARMCPRegInfo *r; | |
5142 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
5143 | * whole space. Then update the specific ID registers to allow write |
5144 | * access, so that they ignore writes rather than causing them to | |
5145 | * UNDEF. | |
7884849c PM |
5146 | */ |
5147 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
5148 | for (r = id_pre_v8_midr_cp_reginfo; |
5149 | r->type != ARM_CP_SENTINEL; r++) { | |
5150 | r->access = PL1_RW; | |
5151 | } | |
7884849c PM |
5152 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
5153 | r->access = PL1_RW; | |
7884849c | 5154 | } |
8085ce63 | 5155 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 5156 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 5157 | } |
00a29f3d PM |
5158 | if (arm_feature(env, ARM_FEATURE_V8)) { |
5159 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
5160 | } else { | |
5161 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
5162 | } | |
a703eda1 | 5163 | define_arm_cp_regs(cpu, id_cp_reginfo); |
452a0955 | 5164 | if (!arm_feature(env, ARM_FEATURE_PMSA)) { |
8085ce63 | 5165 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
3281af81 PC |
5166 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
5167 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 5168 | } |
7884849c PM |
5169 | } |
5170 | ||
97ce8d61 PC |
5171 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
5172 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
5173 | } | |
5174 | ||
2771db27 | 5175 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
5176 | ARMCPRegInfo auxcr_reginfo[] = { |
5177 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
5178 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
5179 | .access = PL1_RW, .type = ARM_CP_CONST, | |
5180 | .resetvalue = cpu->reset_auxcr }, | |
5181 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | |
5182 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
5183 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5184 | .resetvalue = 0 }, | |
5185 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
5186 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
5187 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5188 | .resetvalue = 0 }, | |
5189 | REGINFO_SENTINEL | |
2771db27 | 5190 | }; |
834a6c69 | 5191 | define_arm_cp_regs(cpu, auxcr_reginfo); |
2771db27 PM |
5192 | } |
5193 | ||
d8ba780b | 5194 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
5195 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
5196 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
5197 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
5198 | | extract64(cpu->reset_cbar, 32, 12); | |
5199 | ARMCPRegInfo cbar_reginfo[] = { | |
5200 | { .name = "CBAR", | |
5201 | .type = ARM_CP_CONST, | |
5202 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
5203 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
5204 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
5205 | .type = ARM_CP_CONST, | |
5206 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
5207 | .access = PL1_R, .resetvalue = cbar32 }, | |
5208 | REGINFO_SENTINEL | |
5209 | }; | |
5210 | /* We don't implement a r/w 64 bit CBAR currently */ | |
5211 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
5212 | define_arm_cp_regs(cpu, cbar_reginfo); | |
5213 | } else { | |
5214 | ARMCPRegInfo cbar = { | |
5215 | .name = "CBAR", | |
5216 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
5217 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
5218 | .fieldoffset = offsetof(CPUARMState, | |
5219 | cp15.c15_config_base_address) | |
5220 | }; | |
5221 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
5222 | cbar.access = PL1_R; | |
5223 | cbar.fieldoffset = 0; | |
5224 | cbar.type = ARM_CP_CONST; | |
5225 | } | |
5226 | define_one_arm_cp_reg(cpu, &cbar); | |
5227 | } | |
d8ba780b PC |
5228 | } |
5229 | ||
91db4642 CLG |
5230 | if (arm_feature(env, ARM_FEATURE_VBAR)) { |
5231 | ARMCPRegInfo vbar_cp_reginfo[] = { | |
5232 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, | |
5233 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
5234 | .access = PL1_RW, .writefn = vbar_write, | |
5235 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), | |
5236 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
5237 | .resetvalue = 0 }, | |
5238 | REGINFO_SENTINEL | |
5239 | }; | |
5240 | define_arm_cp_regs(cpu, vbar_cp_reginfo); | |
5241 | } | |
5242 | ||
2771db27 PM |
5243 | /* Generic registers whose values depend on the implementation */ |
5244 | { | |
5245 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 5246 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
5247 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
5248 | .access = PL1_RW, | |
5249 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
5250 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
5251 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
5252 | .raw_writefn = raw_write, | |
2771db27 PM |
5253 | }; |
5254 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
5255 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
5256 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
5257 | * an MMU enable to execute from cache. Imitate this behaviour. | |
5258 | */ | |
5259 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
5260 | } | |
5261 | define_one_arm_cp_reg(cpu, &sctlr); | |
5262 | } | |
2ceb98c0 PM |
5263 | } |
5264 | ||
14969266 AF |
5265 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
5266 | { | |
22169d41 | 5267 | CPUState *cs = CPU(cpu); |
14969266 AF |
5268 | CPUARMState *env = &cpu->env; |
5269 | ||
6a669427 PM |
5270 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
5271 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
5272 | aarch64_fpu_gdb_set_reg, | |
5273 | 34, "aarch64-fpu.xml", 0); | |
5274 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 5275 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5276 | 51, "arm-neon.xml", 0); |
5277 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 5278 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5279 | 35, "arm-vfp3.xml", 0); |
5280 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 5281 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5282 | 19, "arm-vfp.xml", 0); |
5283 | } | |
40f137e1 PB |
5284 | } |
5285 | ||
777dc784 PM |
5286 | /* Sort alphabetically by type name, except for "any". */ |
5287 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 5288 | { |
777dc784 PM |
5289 | ObjectClass *class_a = (ObjectClass *)a; |
5290 | ObjectClass *class_b = (ObjectClass *)b; | |
5291 | const char *name_a, *name_b; | |
5adb4839 | 5292 | |
777dc784 PM |
5293 | name_a = object_class_get_name(class_a); |
5294 | name_b = object_class_get_name(class_b); | |
51492fd1 | 5295 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 5296 | return 1; |
51492fd1 | 5297 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
5298 | return -1; |
5299 | } else { | |
5300 | return strcmp(name_a, name_b); | |
5adb4839 PB |
5301 | } |
5302 | } | |
5303 | ||
777dc784 | 5304 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 5305 | { |
777dc784 | 5306 | ObjectClass *oc = data; |
92a31361 | 5307 | CPUListState *s = user_data; |
51492fd1 AF |
5308 | const char *typename; |
5309 | char *name; | |
3371d272 | 5310 | |
51492fd1 AF |
5311 | typename = object_class_get_name(oc); |
5312 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 5313 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
5314 | name); |
5315 | g_free(name); | |
777dc784 PM |
5316 | } |
5317 | ||
5318 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
5319 | { | |
92a31361 | 5320 | CPUListState s = { |
777dc784 PM |
5321 | .file = f, |
5322 | .cpu_fprintf = cpu_fprintf, | |
5323 | }; | |
5324 | GSList *list; | |
5325 | ||
5326 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5327 | list = g_slist_sort(list, arm_cpu_list_compare); | |
5328 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
5329 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
5330 | g_slist_free(list); | |
a96c0514 PM |
5331 | #ifdef CONFIG_KVM |
5332 | /* The 'host' CPU type is dynamically registered only if KVM is | |
5333 | * enabled, so we have to special-case it here: | |
5334 | */ | |
5335 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
5336 | #endif | |
40f137e1 PB |
5337 | } |
5338 | ||
78027bb6 CR |
5339 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
5340 | { | |
5341 | ObjectClass *oc = data; | |
5342 | CpuDefinitionInfoList **cpu_list = user_data; | |
5343 | CpuDefinitionInfoList *entry; | |
5344 | CpuDefinitionInfo *info; | |
5345 | const char *typename; | |
5346 | ||
5347 | typename = object_class_get_name(oc); | |
5348 | info = g_malloc0(sizeof(*info)); | |
5349 | info->name = g_strndup(typename, | |
5350 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
8ed877b7 | 5351 | info->q_typename = g_strdup(typename); |
78027bb6 CR |
5352 | |
5353 | entry = g_malloc0(sizeof(*entry)); | |
5354 | entry->value = info; | |
5355 | entry->next = *cpu_list; | |
5356 | *cpu_list = entry; | |
5357 | } | |
5358 | ||
5359 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
5360 | { | |
5361 | CpuDefinitionInfoList *cpu_list = NULL; | |
5362 | GSList *list; | |
5363 | ||
5364 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5365 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
5366 | g_slist_free(list); | |
5367 | ||
5368 | return cpu_list; | |
5369 | } | |
5370 | ||
6e6efd61 | 5371 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 5372 | void *opaque, int state, int secstate, |
f5a0a5a5 | 5373 | int crm, int opc1, int opc2) |
6e6efd61 PM |
5374 | { |
5375 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
5376 | * add a single reginfo struct to the hash table. | |
5377 | */ | |
5378 | uint32_t *key = g_new(uint32_t, 1); | |
5379 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
5380 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
5381 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
5382 | ||
5383 | /* Reset the secure state to the specific incoming state. This is | |
5384 | * necessary as the register may have been defined with both states. | |
5385 | */ | |
5386 | r2->secure = secstate; | |
5387 | ||
5388 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5389 | /* Register is banked (using both entries in array). | |
5390 | * Overwriting fieldoffset as the array is only used to define | |
5391 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 5392 | */ |
3f3c82a5 FA |
5393 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
5394 | } | |
5395 | ||
5396 | if (state == ARM_CP_STATE_AA32) { | |
5397 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5398 | /* If the register is banked then we don't need to migrate or | |
5399 | * reset the 32-bit instance in certain cases: | |
5400 | * | |
5401 | * 1) If the register has both 32-bit and 64-bit instances then we | |
5402 | * can count on the 64-bit instance taking care of the | |
5403 | * non-secure bank. | |
5404 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
5405 | * taking care of the secure bank. This requires that separate | |
5406 | * 32 and 64-bit definitions are provided. | |
5407 | */ | |
5408 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
5409 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 5410 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
5411 | } |
5412 | } else if ((secstate != r->secure) && !ns) { | |
5413 | /* The register is not banked so we only want to allow migration of | |
5414 | * the non-secure instance. | |
5415 | */ | |
7a0e58fa | 5416 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 5417 | } |
3f3c82a5 FA |
5418 | |
5419 | if (r->state == ARM_CP_STATE_BOTH) { | |
5420 | /* We assume it is a cp15 register if the .cp field is left unset. | |
5421 | */ | |
5422 | if (r2->cp == 0) { | |
5423 | r2->cp = 15; | |
5424 | } | |
5425 | ||
f5a0a5a5 | 5426 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
5427 | if (r2->fieldoffset) { |
5428 | r2->fieldoffset += sizeof(uint32_t); | |
5429 | } | |
f5a0a5a5 | 5430 | #endif |
3f3c82a5 | 5431 | } |
f5a0a5a5 PM |
5432 | } |
5433 | if (state == ARM_CP_STATE_AA64) { | |
5434 | /* To allow abbreviation of ARMCPRegInfo | |
5435 | * definitions, we treat cp == 0 as equivalent to | |
5436 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
5437 | * STATE_BOTH definitions are also always "standard |
5438 | * sysreg" in their AArch64 view (the .cp value may | |
5439 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 5440 | */ |
58a1d8ce | 5441 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
5442 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
5443 | } | |
5444 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
5445 | r2->opc0, opc1, opc2); | |
5446 | } else { | |
51a79b03 | 5447 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 5448 | } |
6e6efd61 PM |
5449 | if (opaque) { |
5450 | r2->opaque = opaque; | |
5451 | } | |
67ed771d PM |
5452 | /* reginfo passed to helpers is correct for the actual access, |
5453 | * and is never ARM_CP_STATE_BOTH: | |
5454 | */ | |
5455 | r2->state = state; | |
6e6efd61 PM |
5456 | /* Make sure reginfo passed to helpers for wildcarded regs |
5457 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
5458 | */ | |
5459 | r2->crm = crm; | |
5460 | r2->opc1 = opc1; | |
5461 | r2->opc2 = opc2; | |
5462 | /* By convention, for wildcarded registers only the first | |
5463 | * entry is used for migration; the others are marked as | |
7a0e58fa | 5464 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 5465 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 5466 | * never migratable and not even raw-accessible. |
6e6efd61 | 5467 | */ |
7a0e58fa PM |
5468 | if ((r->type & ARM_CP_SPECIAL)) { |
5469 | r2->type |= ARM_CP_NO_RAW; | |
5470 | } | |
5471 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
5472 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
5473 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 5474 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
5475 | } |
5476 | ||
375421cc PM |
5477 | /* Check that raw accesses are either forbidden or handled. Note that |
5478 | * we can't assert this earlier because the setup of fieldoffset for | |
5479 | * banked registers has to be done first. | |
5480 | */ | |
5481 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
5482 | assert(!raw_accessors_invalid(r2)); | |
5483 | } | |
5484 | ||
6e6efd61 PM |
5485 | /* Overriding of an existing definition must be explicitly |
5486 | * requested. | |
5487 | */ | |
5488 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
5489 | ARMCPRegInfo *oldreg; | |
5490 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
5491 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
5492 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
5493 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
5494 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
5495 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
5496 | oldreg->name, r2->name); | |
5497 | g_assert_not_reached(); | |
5498 | } | |
5499 | } | |
5500 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
5501 | } | |
5502 | ||
5503 | ||
4b6a83fb PM |
5504 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
5505 | const ARMCPRegInfo *r, void *opaque) | |
5506 | { | |
5507 | /* Define implementations of coprocessor registers. | |
5508 | * We store these in a hashtable because typically | |
5509 | * there are less than 150 registers in a space which | |
5510 | * is 16*16*16*8*8 = 262144 in size. | |
5511 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
5512 | * If a register is defined twice then the second definition is | |
5513 | * used, so this can be used to define some generic registers and | |
5514 | * then override them with implementation specific variations. | |
5515 | * At least one of the original and the second definition should | |
5516 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
5517 | * against accidental use. | |
f5a0a5a5 PM |
5518 | * |
5519 | * The state field defines whether the register is to be | |
5520 | * visible in the AArch32 or AArch64 execution state. If the | |
5521 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
5522 | * reginfo structure for the AArch32 view, which sees the lower | |
5523 | * 32 bits of the 64 bit register. | |
5524 | * | |
5525 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
5526 | * be wildcarded. AArch64 registers are always considered to be 64 | |
5527 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
5528 | * the register, if any. | |
4b6a83fb | 5529 | */ |
f5a0a5a5 | 5530 | int crm, opc1, opc2, state; |
4b6a83fb PM |
5531 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
5532 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
5533 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
5534 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
5535 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
5536 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
5537 | /* 64 bit registers have only CRm and Opc1 fields */ | |
5538 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
5539 | /* op0 only exists in the AArch64 encodings */ |
5540 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
5541 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
5542 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
5543 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
5544 | * encodes a minimum access level for the register. We roll this | |
5545 | * runtime check into our general permission check code, so check | |
5546 | * here that the reginfo's specified permissions are strict enough | |
5547 | * to encompass the generic architectural permission check. | |
5548 | */ | |
5549 | if (r->state != ARM_CP_STATE_AA32) { | |
5550 | int mask = 0; | |
5551 | switch (r->opc1) { | |
5552 | case 0: case 1: case 2: | |
5553 | /* min_EL EL1 */ | |
5554 | mask = PL1_RW; | |
5555 | break; | |
5556 | case 3: | |
5557 | /* min_EL EL0 */ | |
5558 | mask = PL0_RW; | |
5559 | break; | |
5560 | case 4: | |
5561 | /* min_EL EL2 */ | |
5562 | mask = PL2_RW; | |
5563 | break; | |
5564 | case 5: | |
5565 | /* unallocated encoding, so not possible */ | |
5566 | assert(false); | |
5567 | break; | |
5568 | case 6: | |
5569 | /* min_EL EL3 */ | |
5570 | mask = PL3_RW; | |
5571 | break; | |
5572 | case 7: | |
5573 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
5574 | mask = PL1_RW; | |
5575 | break; | |
5576 | default: | |
5577 | /* broken reginfo with out-of-range opc1 */ | |
5578 | assert(false); | |
5579 | break; | |
5580 | } | |
5581 | /* assert our permissions are not too lax (stricter is fine) */ | |
5582 | assert((r->access & ~mask) == 0); | |
5583 | } | |
5584 | ||
4b6a83fb PM |
5585 | /* Check that the register definition has enough info to handle |
5586 | * reads and writes if they are permitted. | |
5587 | */ | |
5588 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
5589 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
5590 | assert((r->fieldoffset || |
5591 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5592 | r->readfn); | |
4b6a83fb PM |
5593 | } |
5594 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
5595 | assert((r->fieldoffset || |
5596 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5597 | r->writefn); | |
4b6a83fb PM |
5598 | } |
5599 | } | |
5600 | /* Bad type field probably means missing sentinel at end of reg list */ | |
5601 | assert(cptype_valid(r->type)); | |
5602 | for (crm = crmmin; crm <= crmmax; crm++) { | |
5603 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
5604 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
5605 | for (state = ARM_CP_STATE_AA32; |
5606 | state <= ARM_CP_STATE_AA64; state++) { | |
5607 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
5608 | continue; | |
5609 | } | |
3f3c82a5 FA |
5610 | if (state == ARM_CP_STATE_AA32) { |
5611 | /* Under AArch32 CP registers can be common | |
5612 | * (same for secure and non-secure world) or banked. | |
5613 | */ | |
5614 | switch (r->secure) { | |
5615 | case ARM_CP_SECSTATE_S: | |
5616 | case ARM_CP_SECSTATE_NS: | |
5617 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5618 | r->secure, crm, opc1, opc2); | |
5619 | break; | |
5620 | default: | |
5621 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5622 | ARM_CP_SECSTATE_S, | |
5623 | crm, opc1, opc2); | |
5624 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5625 | ARM_CP_SECSTATE_NS, | |
5626 | crm, opc1, opc2); | |
5627 | break; | |
5628 | } | |
5629 | } else { | |
5630 | /* AArch64 registers get mapped to non-secure instance | |
5631 | * of AArch32 */ | |
5632 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5633 | ARM_CP_SECSTATE_NS, | |
5634 | crm, opc1, opc2); | |
5635 | } | |
f5a0a5a5 | 5636 | } |
4b6a83fb PM |
5637 | } |
5638 | } | |
5639 | } | |
5640 | } | |
5641 | ||
5642 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
5643 | const ARMCPRegInfo *regs, void *opaque) | |
5644 | { | |
5645 | /* Define a whole list of registers */ | |
5646 | const ARMCPRegInfo *r; | |
5647 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
5648 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
5649 | } | |
5650 | } | |
5651 | ||
60322b39 | 5652 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 5653 | { |
60322b39 | 5654 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
5655 | } |
5656 | ||
c4241c7d PM |
5657 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
5658 | uint64_t value) | |
4b6a83fb PM |
5659 | { |
5660 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
5661 | } |
5662 | ||
c4241c7d | 5663 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
5664 | { |
5665 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
5666 | return 0; |
5667 | } | |
5668 | ||
f5a0a5a5 PM |
5669 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
5670 | { | |
5671 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
5672 | } | |
5673 | ||
af393ffc | 5674 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
37064a8b PM |
5675 | { |
5676 | /* Return true if it is not valid for us to switch to | |
5677 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
5678 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
5679 | */ | |
af393ffc PM |
5680 | |
5681 | /* Changes to or from Hyp via MSR and CPS are illegal. */ | |
5682 | if (write_type == CPSRWriteByInstr && | |
5683 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || | |
5684 | mode == ARM_CPU_MODE_HYP)) { | |
5685 | return 1; | |
5686 | } | |
5687 | ||
37064a8b PM |
5688 | switch (mode) { |
5689 | case ARM_CPU_MODE_USR: | |
10eacda7 | 5690 | return 0; |
37064a8b PM |
5691 | case ARM_CPU_MODE_SYS: |
5692 | case ARM_CPU_MODE_SVC: | |
5693 | case ARM_CPU_MODE_ABT: | |
5694 | case ARM_CPU_MODE_UND: | |
5695 | case ARM_CPU_MODE_IRQ: | |
5696 | case ARM_CPU_MODE_FIQ: | |
52ff951b PM |
5697 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
5698 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) | |
5699 | */ | |
10eacda7 PM |
5700 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
5701 | * and CPS are treated as illegal mode changes. | |
5702 | */ | |
5703 | if (write_type == CPSRWriteByInstr && | |
5704 | (env->cp15.hcr_el2 & HCR_TGE) && | |
5705 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && | |
5706 | !arm_is_secure_below_el3(env)) { | |
5707 | return 1; | |
5708 | } | |
37064a8b | 5709 | return 0; |
e6c8fc07 PM |
5710 | case ARM_CPU_MODE_HYP: |
5711 | return !arm_feature(env, ARM_FEATURE_EL2) | |
5712 | || arm_current_el(env) < 2 || arm_is_secure(env); | |
027fc527 | 5713 | case ARM_CPU_MODE_MON: |
58ae2d1f | 5714 | return arm_current_el(env) < 3; |
37064a8b PM |
5715 | default: |
5716 | return 1; | |
5717 | } | |
5718 | } | |
5719 | ||
2f4a40e5 AZ |
5720 | uint32_t cpsr_read(CPUARMState *env) |
5721 | { | |
5722 | int ZF; | |
6fbe23d5 PB |
5723 | ZF = (env->ZF == 0); |
5724 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
5725 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
5726 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
5727 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 5728 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
5729 | } |
5730 | ||
50866ba5 PM |
5731 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
5732 | CPSRWriteType write_type) | |
2f4a40e5 | 5733 | { |
6e8801f9 FA |
5734 | uint32_t changed_daif; |
5735 | ||
2f4a40e5 | 5736 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
5737 | env->ZF = (~val) & CPSR_Z; |
5738 | env->NF = val; | |
2f4a40e5 AZ |
5739 | env->CF = (val >> 29) & 1; |
5740 | env->VF = (val << 3) & 0x80000000; | |
5741 | } | |
5742 | if (mask & CPSR_Q) | |
5743 | env->QF = ((val & CPSR_Q) != 0); | |
5744 | if (mask & CPSR_T) | |
5745 | env->thumb = ((val & CPSR_T) != 0); | |
5746 | if (mask & CPSR_IT_0_1) { | |
5747 | env->condexec_bits &= ~3; | |
5748 | env->condexec_bits |= (val >> 25) & 3; | |
5749 | } | |
5750 | if (mask & CPSR_IT_2_7) { | |
5751 | env->condexec_bits &= 3; | |
5752 | env->condexec_bits |= (val >> 8) & 0xfc; | |
5753 | } | |
5754 | if (mask & CPSR_GE) { | |
5755 | env->GE = (val >> 16) & 0xf; | |
5756 | } | |
5757 | ||
6e8801f9 FA |
5758 | /* In a V7 implementation that includes the security extensions but does |
5759 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
5760 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
5761 | * bits respectively. | |
5762 | * | |
5763 | * In a V8 implementation, it is permitted for privileged software to | |
5764 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
5765 | */ | |
f8c88bbc | 5766 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
6e8801f9 FA |
5767 | arm_feature(env, ARM_FEATURE_EL3) && |
5768 | !arm_feature(env, ARM_FEATURE_EL2) && | |
5769 | !arm_is_secure(env)) { | |
5770 | ||
5771 | changed_daif = (env->daif ^ val) & mask; | |
5772 | ||
5773 | if (changed_daif & CPSR_A) { | |
5774 | /* Check to see if we are allowed to change the masking of async | |
5775 | * abort exceptions from a non-secure state. | |
5776 | */ | |
5777 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
5778 | qemu_log_mask(LOG_GUEST_ERROR, | |
5779 | "Ignoring attempt to switch CPSR_A flag from " | |
5780 | "non-secure world with SCR.AW bit clear\n"); | |
5781 | mask &= ~CPSR_A; | |
5782 | } | |
5783 | } | |
5784 | ||
5785 | if (changed_daif & CPSR_F) { | |
5786 | /* Check to see if we are allowed to change the masking of FIQ | |
5787 | * exceptions from a non-secure state. | |
5788 | */ | |
5789 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
5790 | qemu_log_mask(LOG_GUEST_ERROR, | |
5791 | "Ignoring attempt to switch CPSR_F flag from " | |
5792 | "non-secure world with SCR.FW bit clear\n"); | |
5793 | mask &= ~CPSR_F; | |
5794 | } | |
5795 | ||
5796 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
5797 | * If this bit is set software is not allowed to mask | |
5798 | * FIQs, but is allowed to set CPSR_F to 0. | |
5799 | */ | |
5800 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
5801 | (val & CPSR_F)) { | |
5802 | qemu_log_mask(LOG_GUEST_ERROR, | |
5803 | "Ignoring attempt to enable CPSR_F flag " | |
5804 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
5805 | mask &= ~CPSR_F; | |
5806 | } | |
5807 | } | |
5808 | } | |
5809 | ||
4cc35614 PM |
5810 | env->daif &= ~(CPSR_AIF & mask); |
5811 | env->daif |= val & CPSR_AIF & mask; | |
5812 | ||
f8c88bbc PM |
5813 | if (write_type != CPSRWriteRaw && |
5814 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { | |
8c4f0eb9 PM |
5815 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
5816 | /* Note that we can only get here in USR mode if this is a | |
5817 | * gdb stub write; for this case we follow the architectural | |
5818 | * behaviour for guest writes in USR mode of ignoring an attempt | |
5819 | * to switch mode. (Those are caught by translate.c for writes | |
5820 | * triggered by guest instructions.) | |
5821 | */ | |
5822 | mask &= ~CPSR_M; | |
5823 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { | |
81907a58 PM |
5824 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
5825 | * v7, and has defined behaviour in v8: | |
5826 | * + leave CPSR.M untouched | |
5827 | * + allow changes to the other CPSR fields | |
5828 | * + set PSTATE.IL | |
5829 | * For user changes via the GDB stub, we don't set PSTATE.IL, | |
5830 | * as this would be unnecessarily harsh for a user error. | |
37064a8b PM |
5831 | */ |
5832 | mask &= ~CPSR_M; | |
81907a58 PM |
5833 | if (write_type != CPSRWriteByGDBStub && |
5834 | arm_feature(env, ARM_FEATURE_V8)) { | |
5835 | mask |= CPSR_IL; | |
5836 | val |= CPSR_IL; | |
5837 | } | |
37064a8b PM |
5838 | } else { |
5839 | switch_mode(env, val & CPSR_M); | |
5840 | } | |
2f4a40e5 AZ |
5841 | } |
5842 | mask &= ~CACHED_CPSR_BITS; | |
5843 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
5844 | } | |
5845 | ||
b26eefb6 PB |
5846 | /* Sign/zero extend */ |
5847 | uint32_t HELPER(sxtb16)(uint32_t x) | |
5848 | { | |
5849 | uint32_t res; | |
5850 | res = (uint16_t)(int8_t)x; | |
5851 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
5852 | return res; | |
5853 | } | |
5854 | ||
5855 | uint32_t HELPER(uxtb16)(uint32_t x) | |
5856 | { | |
5857 | uint32_t res; | |
5858 | res = (uint16_t)(uint8_t)x; | |
5859 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
5860 | return res; | |
5861 | } | |
5862 | ||
3670669c PB |
5863 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
5864 | { | |
5865 | if (den == 0) | |
5866 | return 0; | |
686eeb93 AJ |
5867 | if (num == INT_MIN && den == -1) |
5868 | return INT_MIN; | |
3670669c PB |
5869 | return num / den; |
5870 | } | |
5871 | ||
5872 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
5873 | { | |
5874 | if (den == 0) | |
5875 | return 0; | |
5876 | return num / den; | |
5877 | } | |
5878 | ||
5879 | uint32_t HELPER(rbit)(uint32_t x) | |
5880 | { | |
42fedbca | 5881 | return revbit32(x); |
3670669c PB |
5882 | } |
5883 | ||
5fafdf24 | 5884 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 5885 | |
9ee6e8bb | 5886 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 5887 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 5888 | { |
a47dddd7 AF |
5889 | ARMCPU *cpu = arm_env_get_cpu(env); |
5890 | ||
5891 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
5892 | } |
5893 | ||
0ecb72a5 | 5894 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 5895 | { |
a47dddd7 AF |
5896 | ARMCPU *cpu = arm_env_get_cpu(env); |
5897 | ||
5898 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
5899 | return 0; |
5900 | } | |
5901 | ||
fb602cb7 PM |
5902 | void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) |
5903 | { | |
5904 | /* translate.c should never generate calls here in user-only mode */ | |
5905 | g_assert_not_reached(); | |
5906 | } | |
5907 | ||
3e3fa230 PM |
5908 | void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) |
5909 | { | |
5910 | /* translate.c should never generate calls here in user-only mode */ | |
5911 | g_assert_not_reached(); | |
5912 | } | |
5913 | ||
0ecb72a5 | 5914 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 5915 | { |
a47dddd7 AF |
5916 | ARMCPU *cpu = arm_env_get_cpu(env); |
5917 | ||
5918 | if (mode != ARM_CPU_MODE_USR) { | |
5919 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
5920 | } | |
b5ff1b31 FB |
5921 | } |
5922 | ||
012a906b GB |
5923 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5924 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
5925 | { |
5926 | return 1; | |
5927 | } | |
5928 | ||
ce02049d GB |
5929 | void aarch64_sync_64_to_32(CPUARMState *env) |
5930 | { | |
5931 | g_assert_not_reached(); | |
5932 | } | |
5933 | ||
b5ff1b31 FB |
5934 | #else |
5935 | ||
0ecb72a5 | 5936 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
5937 | { |
5938 | int old_mode; | |
5939 | int i; | |
5940 | ||
5941 | old_mode = env->uncached_cpsr & CPSR_M; | |
5942 | if (mode == old_mode) | |
5943 | return; | |
5944 | ||
5945 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
5946 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5947 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5948 | } else if (mode == ARM_CPU_MODE_FIQ) { |
5949 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5950 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5951 | } |
5952 | ||
f5206413 | 5953 | i = bank_number(old_mode); |
b5ff1b31 FB |
5954 | env->banked_r13[i] = env->regs[13]; |
5955 | env->banked_r14[i] = env->regs[14]; | |
5956 | env->banked_spsr[i] = env->spsr; | |
5957 | ||
f5206413 | 5958 | i = bank_number(mode); |
b5ff1b31 FB |
5959 | env->regs[13] = env->banked_r13[i]; |
5960 | env->regs[14] = env->banked_r14[i]; | |
5961 | env->spsr = env->banked_spsr[i]; | |
5962 | } | |
5963 | ||
0eeb17d6 GB |
5964 | /* Physical Interrupt Target EL Lookup Table |
5965 | * | |
5966 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
5967 | * | |
5968 | * The below multi-dimensional table is used for looking up the target | |
5969 | * exception level given numerous condition criteria. Specifically, the | |
5970 | * target EL is based on SCR and HCR routing controls as well as the | |
5971 | * currently executing EL and secure state. | |
5972 | * | |
5973 | * Dimensions: | |
5974 | * target_el_table[2][2][2][2][2][4] | |
5975 | * | | | | | +--- Current EL | |
5976 | * | | | | +------ Non-secure(0)/Secure(1) | |
5977 | * | | | +--------- HCR mask override | |
5978 | * | | +------------ SCR exec state control | |
5979 | * | +--------------- SCR mask override | |
5980 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
5981 | * | |
5982 | * The table values are as such: | |
5983 | * 0-3 = EL0-EL3 | |
5984 | * -1 = Cannot occur | |
5985 | * | |
5986 | * The ARM ARM target EL table includes entries indicating that an "exception | |
5987 | * is not taken". The two cases where this is applicable are: | |
5988 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
5989 | * routed to EL3. | |
5990 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
5991 | * routed to EL2. | |
5992 | * In these two cases, the below table contain a target of EL1. This value is | |
5993 | * returned as it is expected that the consumer of the table data will check | |
5994 | * for "target EL >= current EL" to ensure the exception is not taken. | |
5995 | * | |
5996 | * SCR HCR | |
5997 | * 64 EA AMO From | |
5998 | * BIT IRQ IMO Non-secure Secure | |
5999 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
6000 | */ | |
82c39f6a | 6001 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
6002 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
6003 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
6004 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
6005 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
6006 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
6007 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
6008 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
6009 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
6010 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
6011 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
6012 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
6013 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
6014 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
6015 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
6016 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
6017 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
6018 | }; | |
6019 | ||
6020 | /* | |
6021 | * Determine the target EL for physical exceptions | |
6022 | */ | |
012a906b GB |
6023 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
6024 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
6025 | { |
6026 | CPUARMState *env = cs->env_ptr; | |
2cde031f | 6027 | int rw; |
0eeb17d6 GB |
6028 | int scr; |
6029 | int hcr; | |
6030 | int target_el; | |
2cde031f SS |
6031 | /* Is the highest EL AArch64? */ |
6032 | int is64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
6033 | ||
6034 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
6035 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
6036 | } else { | |
6037 | /* Either EL2 is the highest EL (and so the EL2 register width | |
6038 | * is given by is64); or there is no EL2 or EL3, in which case | |
6039 | * the value of 'rw' does not affect the table lookup anyway. | |
6040 | */ | |
6041 | rw = is64; | |
6042 | } | |
0eeb17d6 GB |
6043 | |
6044 | switch (excp_idx) { | |
6045 | case EXCP_IRQ: | |
6046 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
6047 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
6048 | break; | |
6049 | case EXCP_FIQ: | |
6050 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
6051 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
6052 | break; | |
6053 | default: | |
6054 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
6055 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
6056 | break; | |
6057 | }; | |
6058 | ||
6059 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
6060 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
6061 | ||
6062 | /* Perform a table-lookup for the target EL given the current state */ | |
6063 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
6064 | ||
6065 | assert(target_el > 0); | |
6066 | ||
6067 | return target_el; | |
6068 | } | |
6069 | ||
9ee6e8bb PB |
6070 | static void v7m_push(CPUARMState *env, uint32_t val) |
6071 | { | |
70d74660 AF |
6072 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
6073 | ||
9ee6e8bb | 6074 | env->regs[13] -= 4; |
ab1da857 | 6075 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
6076 | } |
6077 | ||
fb602cb7 PM |
6078 | /* Return true if we're using the process stack pointer (not the MSP) */ |
6079 | static bool v7m_using_psp(CPUARMState *env) | |
6080 | { | |
6081 | /* Handler mode always uses the main stack; for thread mode | |
6082 | * the CONTROL.SPSEL bit determines the answer. | |
6083 | * Note that in v7M it is not possible to be in Handler mode with | |
6084 | * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. | |
6085 | */ | |
6086 | return !arm_v7m_is_handler_mode(env) && | |
6087 | env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; | |
6088 | } | |
6089 | ||
3f0cddee PM |
6090 | /* Write to v7M CONTROL.SPSEL bit for the specified security bank. |
6091 | * This may change the current stack pointer between Main and Process | |
6092 | * stack pointers if it is done for the CONTROL register for the current | |
6093 | * security state. | |
de2db7ec | 6094 | */ |
3f0cddee PM |
6095 | static void write_v7m_control_spsel_for_secstate(CPUARMState *env, |
6096 | bool new_spsel, | |
6097 | bool secstate) | |
9ee6e8bb | 6098 | { |
3f0cddee | 6099 | bool old_is_psp = v7m_using_psp(env); |
de2db7ec | 6100 | |
3f0cddee PM |
6101 | env->v7m.control[secstate] = |
6102 | deposit32(env->v7m.control[secstate], | |
de2db7ec PM |
6103 | R_V7M_CONTROL_SPSEL_SHIFT, |
6104 | R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); | |
6105 | ||
3f0cddee PM |
6106 | if (secstate == env->v7m.secure) { |
6107 | bool new_is_psp = v7m_using_psp(env); | |
6108 | uint32_t tmp; | |
abc24d86 | 6109 | |
3f0cddee PM |
6110 | if (old_is_psp != new_is_psp) { |
6111 | tmp = env->v7m.other_sp; | |
6112 | env->v7m.other_sp = env->regs[13]; | |
6113 | env->regs[13] = tmp; | |
6114 | } | |
de2db7ec PM |
6115 | } |
6116 | } | |
6117 | ||
3f0cddee PM |
6118 | /* Write to v7M CONTROL.SPSEL bit. This may change the current |
6119 | * stack pointer between Main and Process stack pointers. | |
6120 | */ | |
6121 | static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) | |
6122 | { | |
6123 | write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); | |
6124 | } | |
6125 | ||
de2db7ec PM |
6126 | void write_v7m_exception(CPUARMState *env, uint32_t new_exc) |
6127 | { | |
6128 | /* Write a new value to v7m.exception, thus transitioning into or out | |
6129 | * of Handler mode; this may result in a change of active stack pointer. | |
6130 | */ | |
6131 | bool new_is_psp, old_is_psp = v7m_using_psp(env); | |
6132 | uint32_t tmp; | |
abc24d86 | 6133 | |
de2db7ec PM |
6134 | env->v7m.exception = new_exc; |
6135 | ||
6136 | new_is_psp = v7m_using_psp(env); | |
6137 | ||
6138 | if (old_is_psp != new_is_psp) { | |
6139 | tmp = env->v7m.other_sp; | |
6140 | env->v7m.other_sp = env->regs[13]; | |
6141 | env->regs[13] = tmp; | |
9ee6e8bb PB |
6142 | } |
6143 | } | |
6144 | ||
fb602cb7 PM |
6145 | /* Switch M profile security state between NS and S */ |
6146 | static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) | |
6147 | { | |
6148 | uint32_t new_ss_msp, new_ss_psp; | |
6149 | ||
6150 | if (env->v7m.secure == new_secstate) { | |
6151 | return; | |
6152 | } | |
6153 | ||
6154 | /* All the banked state is accessed by looking at env->v7m.secure | |
6155 | * except for the stack pointer; rearrange the SP appropriately. | |
6156 | */ | |
6157 | new_ss_msp = env->v7m.other_ss_msp; | |
6158 | new_ss_psp = env->v7m.other_ss_psp; | |
6159 | ||
6160 | if (v7m_using_psp(env)) { | |
6161 | env->v7m.other_ss_psp = env->regs[13]; | |
6162 | env->v7m.other_ss_msp = env->v7m.other_sp; | |
6163 | } else { | |
6164 | env->v7m.other_ss_msp = env->regs[13]; | |
6165 | env->v7m.other_ss_psp = env->v7m.other_sp; | |
6166 | } | |
6167 | ||
6168 | env->v7m.secure = new_secstate; | |
6169 | ||
6170 | if (v7m_using_psp(env)) { | |
6171 | env->regs[13] = new_ss_psp; | |
6172 | env->v7m.other_sp = new_ss_msp; | |
6173 | } else { | |
6174 | env->regs[13] = new_ss_msp; | |
6175 | env->v7m.other_sp = new_ss_psp; | |
6176 | } | |
6177 | } | |
6178 | ||
6179 | void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) | |
6180 | { | |
6181 | /* Handle v7M BXNS: | |
6182 | * - if the return value is a magic value, do exception return (like BX) | |
6183 | * - otherwise bit 0 of the return value is the target security state | |
6184 | */ | |
d02a8698 PM |
6185 | uint32_t min_magic; |
6186 | ||
6187 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6188 | /* Covers FNC_RETURN and EXC_RETURN magic */ | |
6189 | min_magic = FNC_RETURN_MIN_MAGIC; | |
6190 | } else { | |
6191 | /* EXC_RETURN magic only */ | |
6192 | min_magic = EXC_RETURN_MIN_MAGIC; | |
6193 | } | |
6194 | ||
6195 | if (dest >= min_magic) { | |
fb602cb7 PM |
6196 | /* This is an exception return magic value; put it where |
6197 | * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. | |
6198 | * Note that if we ever add gen_ss_advance() singlestep support to | |
6199 | * M profile this should count as an "instruction execution complete" | |
6200 | * event (compare gen_bx_excret_final_code()). | |
6201 | */ | |
6202 | env->regs[15] = dest & ~1; | |
6203 | env->thumb = dest & 1; | |
6204 | HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); | |
6205 | /* notreached */ | |
6206 | } | |
6207 | ||
6208 | /* translate.c should have made BXNS UNDEF unless we're secure */ | |
6209 | assert(env->v7m.secure); | |
6210 | ||
6211 | switch_v7m_security_state(env, dest & 1); | |
6212 | env->thumb = 1; | |
6213 | env->regs[15] = dest & ~1; | |
6214 | } | |
6215 | ||
3e3fa230 PM |
6216 | void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) |
6217 | { | |
6218 | /* Handle v7M BLXNS: | |
6219 | * - bit 0 of the destination address is the target security state | |
6220 | */ | |
6221 | ||
6222 | /* At this point regs[15] is the address just after the BLXNS */ | |
6223 | uint32_t nextinst = env->regs[15] | 1; | |
6224 | uint32_t sp = env->regs[13] - 8; | |
6225 | uint32_t saved_psr; | |
6226 | ||
6227 | /* translate.c will have made BLXNS UNDEF unless we're secure */ | |
6228 | assert(env->v7m.secure); | |
6229 | ||
6230 | if (dest & 1) { | |
6231 | /* target is Secure, so this is just a normal BLX, | |
6232 | * except that the low bit doesn't indicate Thumb/not. | |
6233 | */ | |
6234 | env->regs[14] = nextinst; | |
6235 | env->thumb = 1; | |
6236 | env->regs[15] = dest & ~1; | |
6237 | return; | |
6238 | } | |
6239 | ||
6240 | /* Target is non-secure: first push a stack frame */ | |
6241 | if (!QEMU_IS_ALIGNED(sp, 8)) { | |
6242 | qemu_log_mask(LOG_GUEST_ERROR, | |
6243 | "BLXNS with misaligned SP is UNPREDICTABLE\n"); | |
6244 | } | |
6245 | ||
6246 | saved_psr = env->v7m.exception; | |
6247 | if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { | |
6248 | saved_psr |= XPSR_SFPA; | |
6249 | } | |
6250 | ||
6251 | /* Note that these stores can throw exceptions on MPU faults */ | |
6252 | cpu_stl_data(env, sp, nextinst); | |
6253 | cpu_stl_data(env, sp + 4, saved_psr); | |
6254 | ||
6255 | env->regs[13] = sp; | |
6256 | env->regs[14] = 0xfeffffff; | |
6257 | if (arm_v7m_is_handler_mode(env)) { | |
6258 | /* Write a dummy value to IPSR, to avoid leaking the current secure | |
6259 | * exception number to non-secure code. This is guaranteed not | |
6260 | * to cause write_v7m_exception() to actually change stacks. | |
6261 | */ | |
6262 | write_v7m_exception(env, 1); | |
6263 | } | |
6264 | switch_v7m_security_state(env, 0); | |
6265 | env->thumb = 1; | |
6266 | env->regs[15] = dest; | |
6267 | } | |
6268 | ||
5b522399 PM |
6269 | static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, |
6270 | bool spsel) | |
6271 | { | |
6272 | /* Return a pointer to the location where we currently store the | |
6273 | * stack pointer for the requested security state and thread mode. | |
6274 | * This pointer will become invalid if the CPU state is updated | |
6275 | * such that the stack pointers are switched around (eg changing | |
6276 | * the SPSEL control bit). | |
6277 | * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). | |
6278 | * Unlike that pseudocode, we require the caller to pass us in the | |
6279 | * SPSEL control bit value; this is because we also use this | |
6280 | * function in handling of pushing of the callee-saves registers | |
6281 | * part of the v8M stack frame (pseudocode PushCalleeStack()), | |
6282 | * and in the tailchain codepath the SPSEL bit comes from the exception | |
6283 | * return magic LR value from the previous exception. The pseudocode | |
6284 | * opencodes the stack-selection in PushCalleeStack(), but we prefer | |
6285 | * to make this utility function generic enough to do the job. | |
6286 | */ | |
6287 | bool want_psp = threadmode && spsel; | |
6288 | ||
6289 | if (secure == env->v7m.secure) { | |
de2db7ec PM |
6290 | if (want_psp == v7m_using_psp(env)) { |
6291 | return &env->regs[13]; | |
6292 | } else { | |
6293 | return &env->v7m.other_sp; | |
6294 | } | |
5b522399 PM |
6295 | } else { |
6296 | if (want_psp) { | |
6297 | return &env->v7m.other_ss_psp; | |
6298 | } else { | |
6299 | return &env->v7m.other_ss_msp; | |
6300 | } | |
6301 | } | |
6302 | } | |
6303 | ||
d3392718 | 6304 | static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure) |
39ae2474 PM |
6305 | { |
6306 | CPUState *cs = CPU(cpu); | |
6307 | CPUARMState *env = &cpu->env; | |
6308 | MemTxResult result; | |
d3392718 | 6309 | hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4; |
39ae2474 PM |
6310 | uint32_t addr; |
6311 | ||
6312 | addr = address_space_ldl(cs->as, vec, | |
6313 | MEMTXATTRS_UNSPECIFIED, &result); | |
6314 | if (result != MEMTX_OK) { | |
6315 | /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, | |
6316 | * which would then be immediately followed by our failing to load | |
6317 | * the entry vector for that HardFault, which is a Lockup case. | |
6318 | * Since we don't model Lockup, we just report this guest error | |
6319 | * via cpu_abort(). | |
6320 | */ | |
d3392718 PM |
6321 | cpu_abort(cs, "Failed to read from %s exception vector table " |
6322 | "entry %08x\n", targets_secure ? "secure" : "nonsecure", | |
6323 | (unsigned)vec); | |
39ae2474 PM |
6324 | } |
6325 | return addr; | |
6326 | } | |
6327 | ||
d3392718 PM |
6328 | static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain) |
6329 | { | |
6330 | /* For v8M, push the callee-saves register part of the stack frame. | |
6331 | * Compare the v8M pseudocode PushCalleeStack(). | |
6332 | * In the tailchaining case this may not be the current stack. | |
6333 | */ | |
6334 | CPUARMState *env = &cpu->env; | |
6335 | CPUState *cs = CPU(cpu); | |
6336 | uint32_t *frame_sp_p; | |
6337 | uint32_t frameptr; | |
6338 | ||
6339 | if (dotailchain) { | |
6340 | frame_sp_p = get_v7m_sp_ptr(env, true, | |
6341 | lr & R_V7M_EXCRET_MODE_MASK, | |
6342 | lr & R_V7M_EXCRET_SPSEL_MASK); | |
6343 | } else { | |
6344 | frame_sp_p = &env->regs[13]; | |
6345 | } | |
6346 | ||
6347 | frameptr = *frame_sp_p - 0x28; | |
6348 | ||
6349 | stl_phys(cs->as, frameptr, 0xfefa125b); | |
6350 | stl_phys(cs->as, frameptr + 0x8, env->regs[4]); | |
6351 | stl_phys(cs->as, frameptr + 0xc, env->regs[5]); | |
6352 | stl_phys(cs->as, frameptr + 0x10, env->regs[6]); | |
6353 | stl_phys(cs->as, frameptr + 0x14, env->regs[7]); | |
6354 | stl_phys(cs->as, frameptr + 0x18, env->regs[8]); | |
6355 | stl_phys(cs->as, frameptr + 0x1c, env->regs[9]); | |
6356 | stl_phys(cs->as, frameptr + 0x20, env->regs[10]); | |
6357 | stl_phys(cs->as, frameptr + 0x24, env->regs[11]); | |
6358 | ||
6359 | *frame_sp_p = frameptr; | |
6360 | } | |
6361 | ||
6362 | static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain) | |
39ae2474 PM |
6363 | { |
6364 | /* Do the "take the exception" parts of exception entry, | |
6365 | * but not the pushing of state to the stack. This is | |
6366 | * similar to the pseudocode ExceptionTaken() function. | |
6367 | */ | |
6368 | CPUARMState *env = &cpu->env; | |
6369 | uint32_t addr; | |
d3392718 PM |
6370 | bool targets_secure; |
6371 | ||
6372 | targets_secure = armv7m_nvic_acknowledge_irq(env->nvic); | |
6373 | ||
6374 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
6375 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && | |
6376 | (lr & R_V7M_EXCRET_S_MASK)) { | |
6377 | /* The background code (the owner of the registers in the | |
6378 | * exception frame) is Secure. This means it may either already | |
6379 | * have or now needs to push callee-saves registers. | |
6380 | */ | |
6381 | if (targets_secure) { | |
6382 | if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { | |
6383 | /* We took an exception from Secure to NonSecure | |
6384 | * (which means the callee-saved registers got stacked) | |
6385 | * and are now tailchaining to a Secure exception. | |
6386 | * Clear DCRS so eventual return from this Secure | |
6387 | * exception unstacks the callee-saved registers. | |
6388 | */ | |
6389 | lr &= ~R_V7M_EXCRET_DCRS_MASK; | |
6390 | } | |
6391 | } else { | |
6392 | /* We're going to a non-secure exception; push the | |
6393 | * callee-saves registers to the stack now, if they're | |
6394 | * not already saved. | |
6395 | */ | |
6396 | if (lr & R_V7M_EXCRET_DCRS_MASK && | |
6397 | !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { | |
6398 | v7m_push_callee_stack(cpu, lr, dotailchain); | |
6399 | } | |
6400 | lr |= R_V7M_EXCRET_DCRS_MASK; | |
6401 | } | |
6402 | } | |
6403 | ||
6404 | lr &= ~R_V7M_EXCRET_ES_MASK; | |
6405 | if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6406 | lr |= R_V7M_EXCRET_ES_MASK; | |
6407 | } | |
6408 | lr &= ~R_V7M_EXCRET_SPSEL_MASK; | |
6409 | if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { | |
6410 | lr |= R_V7M_EXCRET_SPSEL_MASK; | |
6411 | } | |
6412 | ||
6413 | /* Clear registers if necessary to prevent non-secure exception | |
6414 | * code being able to see register values from secure code. | |
6415 | * Where register values become architecturally UNKNOWN we leave | |
6416 | * them with their previous values. | |
6417 | */ | |
6418 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6419 | if (!targets_secure) { | |
6420 | /* Always clear the caller-saved registers (they have been | |
6421 | * pushed to the stack earlier in v7m_push_stack()). | |
6422 | * Clear callee-saved registers if the background code is | |
6423 | * Secure (in which case these regs were saved in | |
6424 | * v7m_push_callee_stack()). | |
6425 | */ | |
6426 | int i; | |
6427 | ||
6428 | for (i = 0; i < 13; i++) { | |
6429 | /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ | |
6430 | if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { | |
6431 | env->regs[i] = 0; | |
6432 | } | |
6433 | } | |
6434 | /* Clear EAPSR */ | |
6435 | xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); | |
6436 | } | |
6437 | } | |
6438 | } | |
39ae2474 | 6439 | |
d3392718 PM |
6440 | /* Switch to target security state -- must do this before writing SPSEL */ |
6441 | switch_v7m_security_state(env, targets_secure); | |
de2db7ec | 6442 | write_v7m_control_spsel(env, 0); |
dc3c4c14 | 6443 | arm_clear_exclusive(env); |
39ae2474 PM |
6444 | /* Clear IT bits */ |
6445 | env->condexec_bits = 0; | |
6446 | env->regs[14] = lr; | |
d3392718 | 6447 | addr = arm_v7m_load_vector(cpu, targets_secure); |
39ae2474 PM |
6448 | env->regs[15] = addr & 0xfffffffe; |
6449 | env->thumb = addr & 1; | |
6450 | } | |
6451 | ||
6452 | static void v7m_push_stack(ARMCPU *cpu) | |
6453 | { | |
6454 | /* Do the "set up stack frame" part of exception entry, | |
6455 | * similar to pseudocode PushStack(). | |
6456 | */ | |
6457 | CPUARMState *env = &cpu->env; | |
6458 | uint32_t xpsr = xpsr_read(env); | |
6459 | ||
6460 | /* Align stack pointer if the guest wants that */ | |
9d40cd8a PM |
6461 | if ((env->regs[13] & 4) && |
6462 | (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { | |
39ae2474 | 6463 | env->regs[13] -= 4; |
987ab45e | 6464 | xpsr |= XPSR_SPREALIGN; |
39ae2474 PM |
6465 | } |
6466 | /* Switch to the handler mode. */ | |
6467 | v7m_push(env, xpsr); | |
6468 | v7m_push(env, env->regs[15]); | |
6469 | v7m_push(env, env->regs[14]); | |
6470 | v7m_push(env, env->regs[12]); | |
6471 | v7m_push(env, env->regs[3]); | |
6472 | v7m_push(env, env->regs[2]); | |
6473 | v7m_push(env, env->regs[1]); | |
6474 | v7m_push(env, env->regs[0]); | |
6475 | } | |
6476 | ||
aa488fe3 | 6477 | static void do_v7m_exception_exit(ARMCPU *cpu) |
9ee6e8bb | 6478 | { |
aa488fe3 | 6479 | CPUARMState *env = &cpu->env; |
5b522399 | 6480 | CPUState *cs = CPU(cpu); |
351e527a | 6481 | uint32_t excret; |
9ee6e8bb | 6482 | uint32_t xpsr; |
aa488fe3 | 6483 | bool ufault = false; |
bfb2eb52 PM |
6484 | bool sfault = false; |
6485 | bool return_to_sp_process; | |
6486 | bool return_to_handler; | |
aa488fe3 | 6487 | bool rettobase = false; |
5cb18069 | 6488 | bool exc_secure = false; |
5b522399 | 6489 | bool return_to_secure; |
aa488fe3 | 6490 | |
d02a8698 PM |
6491 | /* If we're not in Handler mode then jumps to magic exception-exit |
6492 | * addresses don't have magic behaviour. However for the v8M | |
6493 | * security extensions the magic secure-function-return has to | |
6494 | * work in thread mode too, so to avoid doing an extra check in | |
6495 | * the generated code we allow exception-exit magic to also cause the | |
6496 | * internal exception and bring us here in thread mode. Correct code | |
6497 | * will never try to do this (the following insn fetch will always | |
6498 | * fault) so we the overhead of having taken an unnecessary exception | |
6499 | * doesn't matter. | |
aa488fe3 | 6500 | */ |
d02a8698 PM |
6501 | if (!arm_v7m_is_handler_mode(env)) { |
6502 | return; | |
6503 | } | |
aa488fe3 PM |
6504 | |
6505 | /* In the spec pseudocode ExceptionReturn() is called directly | |
6506 | * from BXWritePC() and gets the full target PC value including | |
6507 | * bit zero. In QEMU's implementation we treat it as a normal | |
6508 | * jump-to-register (which is then caught later on), and so split | |
6509 | * the target value up between env->regs[15] and env->thumb in | |
6510 | * gen_bx(). Reconstitute it. | |
6511 | */ | |
351e527a | 6512 | excret = env->regs[15]; |
aa488fe3 | 6513 | if (env->thumb) { |
351e527a | 6514 | excret |= 1; |
aa488fe3 PM |
6515 | } |
6516 | ||
6517 | qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 | |
6518 | " previous exception %d\n", | |
351e527a | 6519 | excret, env->v7m.exception); |
aa488fe3 | 6520 | |
351e527a | 6521 | if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { |
aa488fe3 | 6522 | qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " |
351e527a PM |
6523 | "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", |
6524 | excret); | |
aa488fe3 PM |
6525 | } |
6526 | ||
bfb2eb52 PM |
6527 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
6528 | /* EXC_RETURN.ES validation check (R_SMFL). We must do this before | |
6529 | * we pick which FAULTMASK to clear. | |
6530 | */ | |
6531 | if (!env->v7m.secure && | |
6532 | ((excret & R_V7M_EXCRET_ES_MASK) || | |
6533 | !(excret & R_V7M_EXCRET_DCRS_MASK))) { | |
6534 | sfault = 1; | |
6535 | /* For all other purposes, treat ES as 0 (R_HXSR) */ | |
6536 | excret &= ~R_V7M_EXCRET_ES_MASK; | |
6537 | } | |
6538 | } | |
6539 | ||
a20ee600 | 6540 | if (env->v7m.exception != ARMV7M_EXCP_NMI) { |
42a6686b PM |
6541 | /* Auto-clear FAULTMASK on return from other than NMI. |
6542 | * If the security extension is implemented then this only | |
6543 | * happens if the raw execution priority is >= 0; the | |
6544 | * value of the ES bit in the exception return value indicates | |
6545 | * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) | |
6546 | */ | |
6547 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
5cb18069 | 6548 | exc_secure = excret & R_V7M_EXCRET_ES_MASK; |
42a6686b | 6549 | if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { |
5cb18069 | 6550 | env->v7m.faultmask[exc_secure] = 0; |
42a6686b PM |
6551 | } |
6552 | } else { | |
6553 | env->v7m.faultmask[M_REG_NS] = 0; | |
6554 | } | |
a20ee600 | 6555 | } |
aa488fe3 | 6556 | |
5cb18069 PM |
6557 | switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, |
6558 | exc_secure)) { | |
aa488fe3 PM |
6559 | case -1: |
6560 | /* attempt to exit an exception that isn't active */ | |
6561 | ufault = true; | |
6562 | break; | |
6563 | case 0: | |
6564 | /* still an irq active now */ | |
6565 | break; | |
6566 | case 1: | |
6567 | /* we returned to base exception level, no nesting. | |
6568 | * (In the pseudocode this is written using "NestedActivation != 1" | |
6569 | * where we have 'rettobase == false'.) | |
6570 | */ | |
6571 | rettobase = true; | |
6572 | break; | |
6573 | default: | |
6574 | g_assert_not_reached(); | |
6575 | } | |
6576 | ||
bfb2eb52 PM |
6577 | return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); |
6578 | return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; | |
5b522399 PM |
6579 | return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && |
6580 | (excret & R_V7M_EXCRET_S_MASK); | |
6581 | ||
bfb2eb52 PM |
6582 | if (arm_feature(env, ARM_FEATURE_V8)) { |
6583 | if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
6584 | /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); | |
6585 | * we choose to take the UsageFault. | |
6586 | */ | |
6587 | if ((excret & R_V7M_EXCRET_S_MASK) || | |
6588 | (excret & R_V7M_EXCRET_ES_MASK) || | |
6589 | !(excret & R_V7M_EXCRET_DCRS_MASK)) { | |
6590 | ufault = true; | |
6591 | } | |
6592 | } | |
6593 | if (excret & R_V7M_EXCRET_RES0_MASK) { | |
aa488fe3 PM |
6594 | ufault = true; |
6595 | } | |
bfb2eb52 PM |
6596 | } else { |
6597 | /* For v7M we only recognize certain combinations of the low bits */ | |
6598 | switch (excret & 0xf) { | |
6599 | case 1: /* Return to Handler */ | |
6600 | break; | |
6601 | case 13: /* Return to Thread using Process stack */ | |
6602 | case 9: /* Return to Thread using Main stack */ | |
6603 | /* We only need to check NONBASETHRDENA for v7M, because in | |
6604 | * v8M this bit does not exist (it is RES1). | |
6605 | */ | |
6606 | if (!rettobase && | |
6607 | !(env->v7m.ccr[env->v7m.secure] & | |
6608 | R_V7M_CCR_NONBASETHRDENA_MASK)) { | |
6609 | ufault = true; | |
6610 | } | |
6611 | break; | |
6612 | default: | |
6613 | ufault = true; | |
6614 | } | |
6615 | } | |
6616 | ||
6617 | if (sfault) { | |
6618 | env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; | |
6619 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
d3392718 | 6620 | v7m_exception_taken(cpu, excret, true); |
bfb2eb52 PM |
6621 | qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
6622 | "stackframe: failed EXC_RETURN.ES validity check\n"); | |
6623 | return; | |
aa488fe3 PM |
6624 | } |
6625 | ||
6626 | if (ufault) { | |
6627 | /* Bad exception return: instead of popping the exception | |
6628 | * stack, directly take a usage fault on the current stack. | |
6629 | */ | |
334e8dad | 6630 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
2fb50a33 | 6631 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
d3392718 | 6632 | v7m_exception_taken(cpu, excret, true); |
aa488fe3 PM |
6633 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " |
6634 | "stackframe: failed exception return integrity check\n"); | |
6635 | return; | |
a20ee600 | 6636 | } |
9ee6e8bb | 6637 | |
de2db7ec PM |
6638 | /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in |
6639 | * Handler mode (and will be until we write the new XPSR.Interrupt | |
6640 | * field) this does not switch around the current stack pointer. | |
5b522399 | 6641 | */ |
3f0cddee | 6642 | write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); |
5b522399 | 6643 | |
3919e60b PM |
6644 | switch_v7m_security_state(env, return_to_secure); |
6645 | ||
5b522399 PM |
6646 | { |
6647 | /* The stack pointer we should be reading the exception frame from | |
6648 | * depends on bits in the magic exception return type value (and | |
6649 | * for v8M isn't necessarily the stack pointer we will eventually | |
6650 | * end up resuming execution with). Get a pointer to the location | |
6651 | * in the CPU state struct where the SP we need is currently being | |
6652 | * stored; we will use and modify it in place. | |
6653 | * We use this limited C variable scope so we don't accidentally | |
6654 | * use 'frame_sp_p' after we do something that makes it invalid. | |
fcf83ab1 | 6655 | */ |
5b522399 PM |
6656 | uint32_t *frame_sp_p = get_v7m_sp_ptr(env, |
6657 | return_to_secure, | |
6658 | !return_to_handler, | |
6659 | return_to_sp_process); | |
6660 | uint32_t frameptr = *frame_sp_p; | |
6661 | ||
cb484f9a PM |
6662 | if (!QEMU_IS_ALIGNED(frameptr, 8) && |
6663 | arm_feature(env, ARM_FEATURE_V8)) { | |
6664 | qemu_log_mask(LOG_GUEST_ERROR, | |
6665 | "M profile exception return with non-8-aligned SP " | |
6666 | "for destination state is UNPREDICTABLE\n"); | |
6667 | } | |
6668 | ||
907bedb3 PM |
6669 | /* Do we need to pop callee-saved registers? */ |
6670 | if (return_to_secure && | |
6671 | ((excret & R_V7M_EXCRET_ES_MASK) == 0 || | |
6672 | (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { | |
6673 | uint32_t expected_sig = 0xfefa125b; | |
6674 | uint32_t actual_sig = ldl_phys(cs->as, frameptr); | |
6675 | ||
6676 | if (expected_sig != actual_sig) { | |
6677 | /* Take a SecureFault on the current stack */ | |
6678 | env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; | |
6679 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
d3392718 | 6680 | v7m_exception_taken(cpu, excret, true); |
907bedb3 PM |
6681 | qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
6682 | "stackframe: failed exception return integrity " | |
6683 | "signature check\n"); | |
6684 | return; | |
6685 | } | |
6686 | ||
6687 | env->regs[4] = ldl_phys(cs->as, frameptr + 0x8); | |
6688 | env->regs[5] = ldl_phys(cs->as, frameptr + 0xc); | |
6689 | env->regs[6] = ldl_phys(cs->as, frameptr + 0x10); | |
6690 | env->regs[7] = ldl_phys(cs->as, frameptr + 0x14); | |
6691 | env->regs[8] = ldl_phys(cs->as, frameptr + 0x18); | |
6692 | env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c); | |
6693 | env->regs[10] = ldl_phys(cs->as, frameptr + 0x20); | |
6694 | env->regs[11] = ldl_phys(cs->as, frameptr + 0x24); | |
6695 | ||
6696 | frameptr += 0x28; | |
6697 | } | |
6698 | ||
5b522399 PM |
6699 | /* Pop registers. TODO: make these accesses use the correct |
6700 | * attributes and address space (S/NS, priv/unpriv) and handle | |
6701 | * memory transaction failures. | |
6702 | */ | |
6703 | env->regs[0] = ldl_phys(cs->as, frameptr); | |
6704 | env->regs[1] = ldl_phys(cs->as, frameptr + 0x4); | |
6705 | env->regs[2] = ldl_phys(cs->as, frameptr + 0x8); | |
6706 | env->regs[3] = ldl_phys(cs->as, frameptr + 0xc); | |
6707 | env->regs[12] = ldl_phys(cs->as, frameptr + 0x10); | |
6708 | env->regs[14] = ldl_phys(cs->as, frameptr + 0x14); | |
6709 | env->regs[15] = ldl_phys(cs->as, frameptr + 0x18); | |
4e4259d3 PM |
6710 | |
6711 | /* Returning from an exception with a PC with bit 0 set is defined | |
6712 | * behaviour on v8M (bit 0 is ignored), but for v7M it was specified | |
6713 | * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore | |
6714 | * the lsbit, and there are several RTOSes out there which incorrectly | |
6715 | * assume the r15 in the stack frame should be a Thumb-style "lsbit | |
6716 | * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but | |
6717 | * complain about the badly behaved guest. | |
6718 | */ | |
5b522399 | 6719 | if (env->regs[15] & 1) { |
5b522399 | 6720 | env->regs[15] &= ~1U; |
4e4259d3 PM |
6721 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
6722 | qemu_log_mask(LOG_GUEST_ERROR, | |
6723 | "M profile return from interrupt with misaligned " | |
6724 | "PC is UNPREDICTABLE on v7M\n"); | |
6725 | } | |
5b522399 | 6726 | } |
4e4259d3 | 6727 | |
5b522399 PM |
6728 | xpsr = ldl_phys(cs->as, frameptr + 0x1c); |
6729 | ||
224e0c30 PM |
6730 | if (arm_feature(env, ARM_FEATURE_V8)) { |
6731 | /* For v8M we have to check whether the xPSR exception field | |
6732 | * matches the EXCRET value for return to handler/thread | |
6733 | * before we commit to changing the SP and xPSR. | |
6734 | */ | |
6735 | bool will_be_handler = (xpsr & XPSR_EXCP) != 0; | |
6736 | if (return_to_handler != will_be_handler) { | |
6737 | /* Take an INVPC UsageFault on the current stack. | |
6738 | * By this point we will have switched to the security state | |
6739 | * for the background state, so this UsageFault will target | |
6740 | * that state. | |
6741 | */ | |
6742 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, | |
6743 | env->v7m.secure); | |
6744 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; | |
d3392718 | 6745 | v7m_exception_taken(cpu, excret, true); |
224e0c30 PM |
6746 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " |
6747 | "stackframe: failed exception return integrity " | |
6748 | "check\n"); | |
6749 | return; | |
6750 | } | |
6751 | } | |
6752 | ||
5b522399 PM |
6753 | /* Commit to consuming the stack frame */ |
6754 | frameptr += 0x20; | |
6755 | /* Undo stack alignment (the SPREALIGN bit indicates that the original | |
6756 | * pre-exception SP was not 8-aligned and we added a padding word to | |
6757 | * align it, so we undo this by ORing in the bit that increases it | |
6758 | * from the current 8-aligned value to the 8-unaligned value. (Adding 4 | |
6759 | * would work too but a logical OR is how the pseudocode specifies it.) | |
6760 | */ | |
6761 | if (xpsr & XPSR_SPREALIGN) { | |
6762 | frameptr |= 4; | |
6763 | } | |
6764 | *frame_sp_p = frameptr; | |
fcf83ab1 | 6765 | } |
5b522399 | 6766 | /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ |
987ab45e | 6767 | xpsr_write(env, xpsr, ~XPSR_SPREALIGN); |
aa488fe3 PM |
6768 | |
6769 | /* The restored xPSR exception field will be zero if we're | |
6770 | * resuming in Thread mode. If that doesn't match what the | |
351e527a | 6771 | * exception return excret specified then this is a UsageFault. |
224e0c30 | 6772 | * v7M requires we make this check here; v8M did it earlier. |
aa488fe3 | 6773 | */ |
15b3f556 | 6774 | if (return_to_handler != arm_v7m_is_handler_mode(env)) { |
224e0c30 PM |
6775 | /* Take an INVPC UsageFault by pushing the stack again; |
6776 | * we know we're v7M so this is never a Secure UsageFault. | |
2fb50a33 | 6777 | */ |
224e0c30 | 6778 | assert(!arm_feature(env, ARM_FEATURE_V8)); |
2fb50a33 | 6779 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); |
334e8dad | 6780 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
aa488fe3 | 6781 | v7m_push_stack(cpu); |
d3392718 | 6782 | v7m_exception_taken(cpu, excret, false); |
aa488fe3 PM |
6783 | qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " |
6784 | "failed exception return integrity check\n"); | |
6785 | return; | |
6786 | } | |
6787 | ||
6788 | /* Otherwise, we have a successful exception exit. */ | |
dc3c4c14 | 6789 | arm_clear_exclusive(env); |
aa488fe3 | 6790 | qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); |
9ee6e8bb PB |
6791 | } |
6792 | ||
d02a8698 PM |
6793 | static bool do_v7m_function_return(ARMCPU *cpu) |
6794 | { | |
6795 | /* v8M security extensions magic function return. | |
6796 | * We may either: | |
6797 | * (1) throw an exception (longjump) | |
6798 | * (2) return true if we successfully handled the function return | |
6799 | * (3) return false if we failed a consistency check and have | |
6800 | * pended a UsageFault that needs to be taken now | |
6801 | * | |
6802 | * At this point the magic return value is split between env->regs[15] | |
6803 | * and env->thumb. We don't bother to reconstitute it because we don't | |
6804 | * need it (all values are handled the same way). | |
6805 | */ | |
6806 | CPUARMState *env = &cpu->env; | |
6807 | uint32_t newpc, newpsr, newpsr_exc; | |
6808 | ||
6809 | qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); | |
6810 | ||
6811 | { | |
6812 | bool threadmode, spsel; | |
6813 | TCGMemOpIdx oi; | |
6814 | ARMMMUIdx mmu_idx; | |
6815 | uint32_t *frame_sp_p; | |
6816 | uint32_t frameptr; | |
6817 | ||
6818 | /* Pull the return address and IPSR from the Secure stack */ | |
6819 | threadmode = !arm_v7m_is_handler_mode(env); | |
6820 | spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; | |
6821 | ||
6822 | frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); | |
6823 | frameptr = *frame_sp_p; | |
6824 | ||
6825 | /* These loads may throw an exception (for MPU faults). We want to | |
6826 | * do them as secure, so work out what MMU index that is. | |
6827 | */ | |
6828 | mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); | |
6829 | oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); | |
6830 | newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); | |
6831 | newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); | |
6832 | ||
6833 | /* Consistency checks on new IPSR */ | |
6834 | newpsr_exc = newpsr & XPSR_EXCP; | |
6835 | if (!((env->v7m.exception == 0 && newpsr_exc == 0) || | |
6836 | (env->v7m.exception == 1 && newpsr_exc != 0))) { | |
6837 | /* Pend the fault and tell our caller to take it */ | |
6838 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; | |
6839 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, | |
6840 | env->v7m.secure); | |
6841 | qemu_log_mask(CPU_LOG_INT, | |
6842 | "...taking INVPC UsageFault: " | |
6843 | "IPSR consistency check failed\n"); | |
6844 | return false; | |
6845 | } | |
6846 | ||
6847 | *frame_sp_p = frameptr + 8; | |
6848 | } | |
6849 | ||
6850 | /* This invalidates frame_sp_p */ | |
6851 | switch_v7m_security_state(env, true); | |
6852 | env->v7m.exception = newpsr_exc; | |
6853 | env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; | |
6854 | if (newpsr & XPSR_SFPA) { | |
6855 | env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; | |
6856 | } | |
6857 | xpsr_write(env, 0, XPSR_IT); | |
6858 | env->thumb = newpc & 1; | |
6859 | env->regs[15] = newpc & ~1; | |
6860 | ||
6861 | qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); | |
6862 | return true; | |
6863 | } | |
6864 | ||
27a7ea8a PB |
6865 | static void arm_log_exception(int idx) |
6866 | { | |
6867 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
6868 | const char *exc = NULL; | |
2c4a7cc5 PM |
6869 | static const char * const excnames[] = { |
6870 | [EXCP_UDEF] = "Undefined Instruction", | |
6871 | [EXCP_SWI] = "SVC", | |
6872 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
6873 | [EXCP_DATA_ABORT] = "Data Abort", | |
6874 | [EXCP_IRQ] = "IRQ", | |
6875 | [EXCP_FIQ] = "FIQ", | |
6876 | [EXCP_BKPT] = "Breakpoint", | |
6877 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
6878 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
6879 | [EXCP_HVC] = "Hypervisor Call", | |
6880 | [EXCP_HYP_TRAP] = "Hypervisor Trap", | |
6881 | [EXCP_SMC] = "Secure Monitor Call", | |
6882 | [EXCP_VIRQ] = "Virtual IRQ", | |
6883 | [EXCP_VFIQ] = "Virtual FIQ", | |
6884 | [EXCP_SEMIHOST] = "Semihosting call", | |
6885 | [EXCP_NOCP] = "v7M NOCP UsageFault", | |
6886 | [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", | |
6887 | }; | |
27a7ea8a PB |
6888 | |
6889 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
6890 | exc = excnames[idx]; | |
6891 | } | |
6892 | if (!exc) { | |
6893 | exc = "unknown"; | |
6894 | } | |
6895 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
6896 | } | |
6897 | } | |
6898 | ||
333e10c5 PM |
6899 | static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, |
6900 | uint32_t addr, uint16_t *insn) | |
6901 | { | |
6902 | /* Load a 16-bit portion of a v7M instruction, returning true on success, | |
6903 | * or false on failure (in which case we will have pended the appropriate | |
6904 | * exception). | |
6905 | * We need to do the instruction fetch's MPU and SAU checks | |
6906 | * like this because there is no MMU index that would allow | |
6907 | * doing the load with a single function call. Instead we must | |
6908 | * first check that the security attributes permit the load | |
6909 | * and that they don't mismatch on the two halves of the instruction, | |
6910 | * and then we do the load as a secure load (ie using the security | |
6911 | * attributes of the address, not the CPU, as architecturally required). | |
6912 | */ | |
6913 | CPUState *cs = CPU(cpu); | |
6914 | CPUARMState *env = &cpu->env; | |
6915 | V8M_SAttributes sattrs = {}; | |
6916 | MemTxAttrs attrs = {}; | |
6917 | ARMMMUFaultInfo fi = {}; | |
6918 | MemTxResult txres; | |
6919 | target_ulong page_size; | |
6920 | hwaddr physaddr; | |
6921 | int prot; | |
6922 | uint32_t fsr; | |
6923 | ||
6924 | v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); | |
6925 | if (!sattrs.nsc || sattrs.ns) { | |
6926 | /* This must be the second half of the insn, and it straddles a | |
6927 | * region boundary with the second half not being S&NSC. | |
6928 | */ | |
6929 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
6930 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
6931 | qemu_log_mask(CPU_LOG_INT, | |
6932 | "...really SecureFault with SFSR.INVEP\n"); | |
6933 | return false; | |
6934 | } | |
6935 | if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, | |
5b2d261d | 6936 | &physaddr, &attrs, &prot, &page_size, &fsr, &fi, NULL)) { |
333e10c5 PM |
6937 | /* the MPU lookup failed */ |
6938 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; | |
6939 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); | |
6940 | qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); | |
6941 | return false; | |
6942 | } | |
6943 | *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, | |
6944 | attrs, &txres); | |
6945 | if (txres != MEMTX_OK) { | |
6946 | env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; | |
6947 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); | |
6948 | qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); | |
6949 | return false; | |
6950 | } | |
6951 | return true; | |
6952 | } | |
6953 | ||
6954 | static bool v7m_handle_execute_nsc(ARMCPU *cpu) | |
6955 | { | |
6956 | /* Check whether this attempt to execute code in a Secure & NS-Callable | |
6957 | * memory region is for an SG instruction; if so, then emulate the | |
6958 | * effect of the SG instruction and return true. Otherwise pend | |
6959 | * the correct kind of exception and return false. | |
6960 | */ | |
6961 | CPUARMState *env = &cpu->env; | |
6962 | ARMMMUIdx mmu_idx; | |
6963 | uint16_t insn; | |
6964 | ||
6965 | /* We should never get here unless get_phys_addr_pmsav8() caused | |
6966 | * an exception for NS executing in S&NSC memory. | |
6967 | */ | |
6968 | assert(!env->v7m.secure); | |
6969 | assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); | |
6970 | ||
6971 | /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ | |
6972 | mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); | |
6973 | ||
6974 | if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { | |
6975 | return false; | |
6976 | } | |
6977 | ||
6978 | if (!env->thumb) { | |
6979 | goto gen_invep; | |
6980 | } | |
6981 | ||
6982 | if (insn != 0xe97f) { | |
6983 | /* Not an SG instruction first half (we choose the IMPDEF | |
6984 | * early-SG-check option). | |
6985 | */ | |
6986 | goto gen_invep; | |
6987 | } | |
6988 | ||
6989 | if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { | |
6990 | return false; | |
6991 | } | |
6992 | ||
6993 | if (insn != 0xe97f) { | |
6994 | /* Not an SG instruction second half (yes, both halves of the SG | |
6995 | * insn have the same hex value) | |
6996 | */ | |
6997 | goto gen_invep; | |
6998 | } | |
6999 | ||
7000 | /* OK, we have confirmed that we really have an SG instruction. | |
7001 | * We know we're NS in S memory so don't need to repeat those checks. | |
7002 | */ | |
7003 | qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 | |
7004 | ", executing it\n", env->regs[15]); | |
7005 | env->regs[14] &= ~1; | |
7006 | switch_v7m_security_state(env, true); | |
7007 | xpsr_write(env, 0, XPSR_IT); | |
7008 | env->regs[15] += 4; | |
7009 | return true; | |
7010 | ||
7011 | gen_invep: | |
7012 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
7013 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
7014 | qemu_log_mask(CPU_LOG_INT, | |
7015 | "...really SecureFault with SFSR.INVEP\n"); | |
7016 | return false; | |
7017 | } | |
7018 | ||
e6f010cc | 7019 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 7020 | { |
e6f010cc AF |
7021 | ARMCPU *cpu = ARM_CPU(cs); |
7022 | CPUARMState *env = &cpu->env; | |
9ee6e8bb | 7023 | uint32_t lr; |
9ee6e8bb | 7024 | |
27103424 | 7025 | arm_log_exception(cs->exception_index); |
3f1beaca | 7026 | |
9ee6e8bb PB |
7027 | /* For exceptions we just mark as pending on the NVIC, and let that |
7028 | handle it. */ | |
27103424 | 7029 | switch (cs->exception_index) { |
9ee6e8bb | 7030 | case EXCP_UDEF: |
2fb50a33 | 7031 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 7032 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; |
a25dc805 | 7033 | break; |
7517748e | 7034 | case EXCP_NOCP: |
2fb50a33 | 7035 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 7036 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; |
a25dc805 | 7037 | break; |
e13886e3 | 7038 | case EXCP_INVSTATE: |
2fb50a33 | 7039 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
334e8dad | 7040 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; |
e13886e3 | 7041 | break; |
9ee6e8bb | 7042 | case EXCP_SWI: |
314e2296 | 7043 | /* The PC already points to the next instruction. */ |
2fb50a33 | 7044 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); |
a25dc805 | 7045 | break; |
9ee6e8bb PB |
7046 | case EXCP_PREFETCH_ABORT: |
7047 | case EXCP_DATA_ABORT: | |
5dd0641d MD |
7048 | /* Note that for M profile we don't have a guest facing FSR, but |
7049 | * the env->exception.fsr will be populated by the code that | |
7050 | * raises the fault, in the A profile short-descriptor format. | |
abf1172f | 7051 | */ |
5dd0641d | 7052 | switch (env->exception.fsr & 0xf) { |
35337cc3 PM |
7053 | case M_FAKE_FSR_NSC_EXEC: |
7054 | /* Exception generated when we try to execute code at an address | |
7055 | * which is marked as Secure & Non-Secure Callable and the CPU | |
7056 | * is in the Non-Secure state. The only instruction which can | |
7057 | * be executed like this is SG (and that only if both halves of | |
7058 | * the SG instruction have the same security attributes.) | |
7059 | * Everything else must generate an INVEP SecureFault, so we | |
7060 | * emulate the SG instruction here. | |
35337cc3 | 7061 | */ |
333e10c5 PM |
7062 | if (v7m_handle_execute_nsc(cpu)) { |
7063 | return; | |
7064 | } | |
35337cc3 PM |
7065 | break; |
7066 | case M_FAKE_FSR_SFAULT: | |
7067 | /* Various flavours of SecureFault for attempts to execute or | |
7068 | * access data in the wrong security state. | |
7069 | */ | |
7070 | switch (cs->exception_index) { | |
7071 | case EXCP_PREFETCH_ABORT: | |
7072 | if (env->v7m.secure) { | |
7073 | env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; | |
7074 | qemu_log_mask(CPU_LOG_INT, | |
7075 | "...really SecureFault with SFSR.INVTRAN\n"); | |
7076 | } else { | |
7077 | env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; | |
7078 | qemu_log_mask(CPU_LOG_INT, | |
7079 | "...really SecureFault with SFSR.INVEP\n"); | |
7080 | } | |
7081 | break; | |
7082 | case EXCP_DATA_ABORT: | |
7083 | /* This must be an NS access to S memory */ | |
7084 | env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; | |
7085 | qemu_log_mask(CPU_LOG_INT, | |
7086 | "...really SecureFault with SFSR.AUVIOL\n"); | |
7087 | break; | |
7088 | } | |
7089 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); | |
7090 | break; | |
5dd0641d MD |
7091 | case 0x8: /* External Abort */ |
7092 | switch (cs->exception_index) { | |
7093 | case EXCP_PREFETCH_ABORT: | |
c6158878 PM |
7094 | env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; |
7095 | qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); | |
5dd0641d MD |
7096 | break; |
7097 | case EXCP_DATA_ABORT: | |
334e8dad | 7098 | env->v7m.cfsr[M_REG_NS] |= |
c6158878 | 7099 | (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); |
5dd0641d MD |
7100 | env->v7m.bfar = env->exception.vaddress; |
7101 | qemu_log_mask(CPU_LOG_INT, | |
c6158878 | 7102 | "...with CFSR.PRECISERR and BFAR 0x%x\n", |
5dd0641d MD |
7103 | env->v7m.bfar); |
7104 | break; | |
7105 | } | |
2fb50a33 | 7106 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); |
5dd0641d MD |
7107 | break; |
7108 | default: | |
7109 | /* All other FSR values are either MPU faults or "can't happen | |
7110 | * for M profile" cases. | |
7111 | */ | |
7112 | switch (cs->exception_index) { | |
7113 | case EXCP_PREFETCH_ABORT: | |
334e8dad | 7114 | env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; |
5dd0641d MD |
7115 | qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); |
7116 | break; | |
7117 | case EXCP_DATA_ABORT: | |
334e8dad | 7118 | env->v7m.cfsr[env->v7m.secure] |= |
5dd0641d | 7119 | (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); |
c51a5cfc | 7120 | env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; |
5dd0641d MD |
7121 | qemu_log_mask(CPU_LOG_INT, |
7122 | "...with CFSR.DACCVIOL and MMFAR 0x%x\n", | |
c51a5cfc | 7123 | env->v7m.mmfar[env->v7m.secure]); |
5dd0641d MD |
7124 | break; |
7125 | } | |
2fb50a33 PM |
7126 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, |
7127 | env->v7m.secure); | |
5dd0641d MD |
7128 | break; |
7129 | } | |
a25dc805 | 7130 | break; |
9ee6e8bb | 7131 | case EXCP_BKPT: |
cfe67cef | 7132 | if (semihosting_enabled()) { |
2ad207d4 | 7133 | int nr; |
f9fd40eb | 7134 | nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; |
2ad207d4 PB |
7135 | if (nr == 0xab) { |
7136 | env->regs[15] += 2; | |
205ace55 CC |
7137 | qemu_log_mask(CPU_LOG_INT, |
7138 | "...handling as semihosting call 0x%x\n", | |
7139 | env->regs[0]); | |
2ad207d4 PB |
7140 | env->regs[0] = do_arm_semihosting(env); |
7141 | return; | |
7142 | } | |
7143 | } | |
2fb50a33 | 7144 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); |
a25dc805 | 7145 | break; |
9ee6e8bb | 7146 | case EXCP_IRQ: |
9ee6e8bb PB |
7147 | break; |
7148 | case EXCP_EXCEPTION_EXIT: | |
d02a8698 PM |
7149 | if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { |
7150 | /* Must be v8M security extension function return */ | |
7151 | assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); | |
7152 | assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); | |
7153 | if (do_v7m_function_return(cpu)) { | |
7154 | return; | |
7155 | } | |
7156 | } else { | |
7157 | do_v7m_exception_exit(cpu); | |
7158 | return; | |
7159 | } | |
7160 | break; | |
9ee6e8bb | 7161 | default: |
a47dddd7 | 7162 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
7163 | return; /* Never happens. Keep compiler happy. */ |
7164 | } | |
7165 | ||
d3392718 PM |
7166 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7167 | lr = R_V7M_EXCRET_RES1_MASK | | |
7168 | R_V7M_EXCRET_DCRS_MASK | | |
7169 | R_V7M_EXCRET_FTYPE_MASK; | |
7170 | /* The S bit indicates whether we should return to Secure | |
7171 | * or NonSecure (ie our current state). | |
7172 | * The ES bit indicates whether we're taking this exception | |
7173 | * to Secure or NonSecure (ie our target state). We set it | |
7174 | * later, in v7m_exception_taken(). | |
7175 | * The SPSEL bit is also set in v7m_exception_taken() for v8M. | |
7176 | * This corresponds to the ARM ARM pseudocode for v8M setting | |
7177 | * some LR bits in PushStack() and some in ExceptionTaken(); | |
7178 | * the distinction matters for the tailchain cases where we | |
7179 | * can take an exception without pushing the stack. | |
7180 | */ | |
7181 | if (env->v7m.secure) { | |
7182 | lr |= R_V7M_EXCRET_S_MASK; | |
7183 | } | |
7184 | } else { | |
7185 | lr = R_V7M_EXCRET_RES1_MASK | | |
7186 | R_V7M_EXCRET_S_MASK | | |
7187 | R_V7M_EXCRET_DCRS_MASK | | |
7188 | R_V7M_EXCRET_FTYPE_MASK | | |
7189 | R_V7M_EXCRET_ES_MASK; | |
7190 | if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { | |
7191 | lr |= R_V7M_EXCRET_SPSEL_MASK; | |
7192 | } | |
bd70b29b | 7193 | } |
15b3f556 | 7194 | if (!arm_v7m_is_handler_mode(env)) { |
4d1e7a47 | 7195 | lr |= R_V7M_EXCRET_MODE_MASK; |
bd70b29b PM |
7196 | } |
7197 | ||
39ae2474 | 7198 | v7m_push_stack(cpu); |
d3392718 | 7199 | v7m_exception_taken(cpu, lr, false); |
a25dc805 | 7200 | qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); |
9ee6e8bb PB |
7201 | } |
7202 | ||
ce02049d GB |
7203 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
7204 | * register set. This is necessary when switching between AArch32 and AArch64 | |
7205 | * execution state. | |
7206 | */ | |
7207 | void aarch64_sync_32_to_64(CPUARMState *env) | |
7208 | { | |
7209 | int i; | |
7210 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
7211 | ||
7212 | /* We can blanket copy R[0:7] to X[0:7] */ | |
7213 | for (i = 0; i < 8; i++) { | |
7214 | env->xregs[i] = env->regs[i]; | |
7215 | } | |
7216 | ||
7217 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
7218 | * Otherwise, they come from the banked user regs. | |
7219 | */ | |
7220 | if (mode == ARM_CPU_MODE_FIQ) { | |
7221 | for (i = 8; i < 13; i++) { | |
7222 | env->xregs[i] = env->usr_regs[i - 8]; | |
7223 | } | |
7224 | } else { | |
7225 | for (i = 8; i < 13; i++) { | |
7226 | env->xregs[i] = env->regs[i]; | |
7227 | } | |
7228 | } | |
7229 | ||
7230 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
7231 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
7232 | * from the mode banked register. | |
7233 | */ | |
7234 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
7235 | env->xregs[13] = env->regs[13]; | |
7236 | env->xregs[14] = env->regs[14]; | |
7237 | } else { | |
7238 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
7239 | /* HYP is an exception in that it is copied from r14 */ | |
7240 | if (mode == ARM_CPU_MODE_HYP) { | |
7241 | env->xregs[14] = env->regs[14]; | |
7242 | } else { | |
7243 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
7244 | } | |
7245 | } | |
7246 | ||
7247 | if (mode == ARM_CPU_MODE_HYP) { | |
7248 | env->xregs[15] = env->regs[13]; | |
7249 | } else { | |
7250 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
7251 | } | |
7252 | ||
7253 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
7254 | env->xregs[16] = env->regs[14]; |
7255 | env->xregs[17] = env->regs[13]; | |
ce02049d | 7256 | } else { |
3a9148d0 SS |
7257 | env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; |
7258 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
ce02049d GB |
7259 | } |
7260 | ||
7261 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
7262 | env->xregs[18] = env->regs[14]; |
7263 | env->xregs[19] = env->regs[13]; | |
ce02049d | 7264 | } else { |
3a9148d0 SS |
7265 | env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; |
7266 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
ce02049d GB |
7267 | } |
7268 | ||
7269 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
7270 | env->xregs[20] = env->regs[14]; |
7271 | env->xregs[21] = env->regs[13]; | |
ce02049d | 7272 | } else { |
3a9148d0 SS |
7273 | env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; |
7274 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
ce02049d GB |
7275 | } |
7276 | ||
7277 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
7278 | env->xregs[22] = env->regs[14]; |
7279 | env->xregs[23] = env->regs[13]; | |
ce02049d | 7280 | } else { |
3a9148d0 SS |
7281 | env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; |
7282 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
ce02049d GB |
7283 | } |
7284 | ||
7285 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
7286 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
7287 | * FIQ bank for r8-r14. | |
7288 | */ | |
7289 | if (mode == ARM_CPU_MODE_FIQ) { | |
7290 | for (i = 24; i < 31; i++) { | |
7291 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
7292 | } | |
7293 | } else { | |
7294 | for (i = 24; i < 29; i++) { | |
7295 | env->xregs[i] = env->fiq_regs[i - 24]; | |
7296 | } | |
7297 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
7298 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
7299 | } | |
7300 | ||
7301 | env->pc = env->regs[15]; | |
7302 | } | |
7303 | ||
7304 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
7305 | * register set. This is necessary when switching between AArch32 and AArch64 | |
7306 | * execution state. | |
7307 | */ | |
7308 | void aarch64_sync_64_to_32(CPUARMState *env) | |
7309 | { | |
7310 | int i; | |
7311 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
7312 | ||
7313 | /* We can blanket copy X[0:7] to R[0:7] */ | |
7314 | for (i = 0; i < 8; i++) { | |
7315 | env->regs[i] = env->xregs[i]; | |
7316 | } | |
7317 | ||
7318 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
7319 | * Otherwise, we copy x8-x12 into the banked user regs. | |
7320 | */ | |
7321 | if (mode == ARM_CPU_MODE_FIQ) { | |
7322 | for (i = 8; i < 13; i++) { | |
7323 | env->usr_regs[i - 8] = env->xregs[i]; | |
7324 | } | |
7325 | } else { | |
7326 | for (i = 8; i < 13; i++) { | |
7327 | env->regs[i] = env->xregs[i]; | |
7328 | } | |
7329 | } | |
7330 | ||
7331 | /* Registers r13 & r14 depend on the current mode. | |
7332 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
7333 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
7334 | * for the mode. | |
7335 | */ | |
7336 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
7337 | env->regs[13] = env->xregs[13]; | |
7338 | env->regs[14] = env->xregs[14]; | |
7339 | } else { | |
7340 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
7341 | ||
7342 | /* HYP is an exception in that it does not have its own banked r14 but | |
7343 | * shares the USR r14 | |
7344 | */ | |
7345 | if (mode == ARM_CPU_MODE_HYP) { | |
7346 | env->regs[14] = env->xregs[14]; | |
7347 | } else { | |
7348 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
7349 | } | |
7350 | } | |
7351 | ||
7352 | if (mode == ARM_CPU_MODE_HYP) { | |
7353 | env->regs[13] = env->xregs[15]; | |
7354 | } else { | |
7355 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
7356 | } | |
7357 | ||
7358 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
7359 | env->regs[14] = env->xregs[16]; |
7360 | env->regs[13] = env->xregs[17]; | |
ce02049d | 7361 | } else { |
3a9148d0 SS |
7362 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
7363 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
ce02049d GB |
7364 | } |
7365 | ||
7366 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
7367 | env->regs[14] = env->xregs[18]; |
7368 | env->regs[13] = env->xregs[19]; | |
ce02049d | 7369 | } else { |
3a9148d0 SS |
7370 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
7371 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
ce02049d GB |
7372 | } |
7373 | ||
7374 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
7375 | env->regs[14] = env->xregs[20]; |
7376 | env->regs[13] = env->xregs[21]; | |
ce02049d | 7377 | } else { |
3a9148d0 SS |
7378 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
7379 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
7380 | } |
7381 | ||
7382 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
7383 | env->regs[14] = env->xregs[22]; |
7384 | env->regs[13] = env->xregs[23]; | |
ce02049d | 7385 | } else { |
3a9148d0 SS |
7386 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
7387 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
ce02049d GB |
7388 | } |
7389 | ||
7390 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
7391 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
7392 | * FIQ bank for r8-r14. | |
7393 | */ | |
7394 | if (mode == ARM_CPU_MODE_FIQ) { | |
7395 | for (i = 24; i < 31; i++) { | |
7396 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
7397 | } | |
7398 | } else { | |
7399 | for (i = 24; i < 29; i++) { | |
7400 | env->fiq_regs[i - 24] = env->xregs[i]; | |
7401 | } | |
7402 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
7403 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
7404 | } | |
7405 | ||
7406 | env->regs[15] = env->pc; | |
7407 | } | |
7408 | ||
966f758c | 7409 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
b5ff1b31 | 7410 | { |
97a8ea5a AF |
7411 | ARMCPU *cpu = ARM_CPU(cs); |
7412 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
7413 | uint32_t addr; |
7414 | uint32_t mask; | |
7415 | int new_mode; | |
7416 | uint32_t offset; | |
16a906fd | 7417 | uint32_t moe; |
b5ff1b31 | 7418 | |
16a906fd PM |
7419 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
7420 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
7421 | case EC_BREAKPOINT: | |
7422 | case EC_BREAKPOINT_SAME_EL: | |
7423 | moe = 1; | |
7424 | break; | |
7425 | case EC_WATCHPOINT: | |
7426 | case EC_WATCHPOINT_SAME_EL: | |
7427 | moe = 10; | |
7428 | break; | |
7429 | case EC_AA32_BKPT: | |
7430 | moe = 3; | |
7431 | break; | |
7432 | case EC_VECTORCATCH: | |
7433 | moe = 5; | |
7434 | break; | |
7435 | default: | |
7436 | moe = 0; | |
7437 | break; | |
7438 | } | |
7439 | ||
7440 | if (moe) { | |
7441 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
7442 | } | |
7443 | ||
b5ff1b31 | 7444 | /* TODO: Vectored interrupt controller. */ |
27103424 | 7445 | switch (cs->exception_index) { |
b5ff1b31 FB |
7446 | case EXCP_UDEF: |
7447 | new_mode = ARM_CPU_MODE_UND; | |
7448 | addr = 0x04; | |
7449 | mask = CPSR_I; | |
7450 | if (env->thumb) | |
7451 | offset = 2; | |
7452 | else | |
7453 | offset = 4; | |
7454 | break; | |
7455 | case EXCP_SWI: | |
7456 | new_mode = ARM_CPU_MODE_SVC; | |
7457 | addr = 0x08; | |
7458 | mask = CPSR_I; | |
601d70b9 | 7459 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
7460 | offset = 0; |
7461 | break; | |
06c949e6 | 7462 | case EXCP_BKPT: |
abf1172f | 7463 | env->exception.fsr = 2; |
9ee6e8bb PB |
7464 | /* Fall through to prefetch abort. */ |
7465 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 7466 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 7467 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 7468 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 7469 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
7470 | new_mode = ARM_CPU_MODE_ABT; |
7471 | addr = 0x0c; | |
7472 | mask = CPSR_A | CPSR_I; | |
7473 | offset = 4; | |
7474 | break; | |
7475 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 7476 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 7477 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 7478 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 7479 | env->exception.fsr, |
6cd8a264 | 7480 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
7481 | new_mode = ARM_CPU_MODE_ABT; |
7482 | addr = 0x10; | |
7483 | mask = CPSR_A | CPSR_I; | |
7484 | offset = 8; | |
7485 | break; | |
7486 | case EXCP_IRQ: | |
7487 | new_mode = ARM_CPU_MODE_IRQ; | |
7488 | addr = 0x18; | |
7489 | /* Disable IRQ and imprecise data aborts. */ | |
7490 | mask = CPSR_A | CPSR_I; | |
7491 | offset = 4; | |
de38d23b FA |
7492 | if (env->cp15.scr_el3 & SCR_IRQ) { |
7493 | /* IRQ routed to monitor mode */ | |
7494 | new_mode = ARM_CPU_MODE_MON; | |
7495 | mask |= CPSR_F; | |
7496 | } | |
b5ff1b31 FB |
7497 | break; |
7498 | case EXCP_FIQ: | |
7499 | new_mode = ARM_CPU_MODE_FIQ; | |
7500 | addr = 0x1c; | |
7501 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
7502 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
7503 | if (env->cp15.scr_el3 & SCR_FIQ) { |
7504 | /* FIQ routed to monitor mode */ | |
7505 | new_mode = ARM_CPU_MODE_MON; | |
7506 | } | |
b5ff1b31 FB |
7507 | offset = 4; |
7508 | break; | |
87a4b270 PM |
7509 | case EXCP_VIRQ: |
7510 | new_mode = ARM_CPU_MODE_IRQ; | |
7511 | addr = 0x18; | |
7512 | /* Disable IRQ and imprecise data aborts. */ | |
7513 | mask = CPSR_A | CPSR_I; | |
7514 | offset = 4; | |
7515 | break; | |
7516 | case EXCP_VFIQ: | |
7517 | new_mode = ARM_CPU_MODE_FIQ; | |
7518 | addr = 0x1c; | |
7519 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
7520 | mask = CPSR_A | CPSR_I | CPSR_F; | |
7521 | offset = 4; | |
7522 | break; | |
dbe9d163 FA |
7523 | case EXCP_SMC: |
7524 | new_mode = ARM_CPU_MODE_MON; | |
7525 | addr = 0x08; | |
7526 | mask = CPSR_A | CPSR_I | CPSR_F; | |
7527 | offset = 0; | |
7528 | break; | |
b5ff1b31 | 7529 | default: |
a47dddd7 | 7530 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
7531 | return; /* Never happens. Keep compiler happy. */ |
7532 | } | |
e89e51a1 FA |
7533 | |
7534 | if (new_mode == ARM_CPU_MODE_MON) { | |
7535 | addr += env->cp15.mvbar; | |
137feaa9 | 7536 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 7537 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 7538 | addr += 0xffff0000; |
8641136c NR |
7539 | } else { |
7540 | /* ARM v7 architectures provide a vector base address register to remap | |
7541 | * the interrupt vector table. | |
e89e51a1 | 7542 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
7543 | * Note: only bits 31:5 are valid. |
7544 | */ | |
fb6c91ba | 7545 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 7546 | } |
dbe9d163 FA |
7547 | |
7548 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
7549 | env->cp15.scr_el3 &= ~SCR_NS; | |
7550 | } | |
7551 | ||
b5ff1b31 | 7552 | switch_mode (env, new_mode); |
662cefb7 PM |
7553 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
7554 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
7555 | */ | |
7556 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 7557 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
7558 | /* Clear IT bits. */ |
7559 | env->condexec_bits = 0; | |
30a8cac1 | 7560 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 7561 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
73462ddd PC |
7562 | /* Set new mode endianness */ |
7563 | env->uncached_cpsr &= ~CPSR_E; | |
7564 | if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { | |
3823b9db | 7565 | env->uncached_cpsr |= CPSR_E; |
73462ddd | 7566 | } |
4cc35614 | 7567 | env->daif |= mask; |
be5e7a76 DES |
7568 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
7569 | * and we should just guard the thumb mode on V4 */ | |
7570 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 7571 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 7572 | } |
b5ff1b31 FB |
7573 | env->regs[14] = env->regs[15] + offset; |
7574 | env->regs[15] = addr; | |
b5ff1b31 FB |
7575 | } |
7576 | ||
966f758c PM |
7577 | /* Handle exception entry to a target EL which is using AArch64 */ |
7578 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) | |
f3a9b694 PM |
7579 | { |
7580 | ARMCPU *cpu = ARM_CPU(cs); | |
7581 | CPUARMState *env = &cpu->env; | |
7582 | unsigned int new_el = env->exception.target_el; | |
7583 | target_ulong addr = env->cp15.vbar_el[new_el]; | |
7584 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | |
7585 | ||
7586 | if (arm_current_el(env) < new_el) { | |
3d6f7617 PM |
7587 | /* Entry vector offset depends on whether the implemented EL |
7588 | * immediately lower than the target level is using AArch32 or AArch64 | |
7589 | */ | |
7590 | bool is_aa64; | |
7591 | ||
7592 | switch (new_el) { | |
7593 | case 3: | |
7594 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; | |
7595 | break; | |
7596 | case 2: | |
7597 | is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; | |
7598 | break; | |
7599 | case 1: | |
7600 | is_aa64 = is_a64(env); | |
7601 | break; | |
7602 | default: | |
7603 | g_assert_not_reached(); | |
7604 | } | |
7605 | ||
7606 | if (is_aa64) { | |
f3a9b694 PM |
7607 | addr += 0x400; |
7608 | } else { | |
7609 | addr += 0x600; | |
7610 | } | |
7611 | } else if (pstate_read(env) & PSTATE_SP) { | |
7612 | addr += 0x200; | |
7613 | } | |
7614 | ||
f3a9b694 PM |
7615 | switch (cs->exception_index) { |
7616 | case EXCP_PREFETCH_ABORT: | |
7617 | case EXCP_DATA_ABORT: | |
7618 | env->cp15.far_el[new_el] = env->exception.vaddress; | |
7619 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
7620 | env->cp15.far_el[new_el]); | |
7621 | /* fall through */ | |
7622 | case EXCP_BKPT: | |
7623 | case EXCP_UDEF: | |
7624 | case EXCP_SWI: | |
7625 | case EXCP_HVC: | |
7626 | case EXCP_HYP_TRAP: | |
7627 | case EXCP_SMC: | |
7628 | env->cp15.esr_el[new_el] = env->exception.syndrome; | |
7629 | break; | |
7630 | case EXCP_IRQ: | |
7631 | case EXCP_VIRQ: | |
7632 | addr += 0x80; | |
7633 | break; | |
7634 | case EXCP_FIQ: | |
7635 | case EXCP_VFIQ: | |
7636 | addr += 0x100; | |
7637 | break; | |
7638 | case EXCP_SEMIHOST: | |
7639 | qemu_log_mask(CPU_LOG_INT, | |
7640 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
7641 | env->xregs[0]); | |
7642 | env->xregs[0] = do_arm_semihosting(env); | |
7643 | return; | |
7644 | default: | |
7645 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
7646 | } | |
7647 | ||
7648 | if (is_a64(env)) { | |
7649 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); | |
7650 | aarch64_save_sp(env, arm_current_el(env)); | |
7651 | env->elr_el[new_el] = env->pc; | |
7652 | } else { | |
7653 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); | |
f3a9b694 PM |
7654 | env->elr_el[new_el] = env->regs[15]; |
7655 | ||
7656 | aarch64_sync_32_to_64(env); | |
7657 | ||
7658 | env->condexec_bits = 0; | |
7659 | } | |
7660 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", | |
7661 | env->elr_el[new_el]); | |
7662 | ||
7663 | pstate_write(env, PSTATE_DAIF | new_mode); | |
7664 | env->aarch64 = 1; | |
7665 | aarch64_restore_sp(env, new_el); | |
7666 | ||
7667 | env->pc = addr; | |
7668 | ||
7669 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", | |
7670 | new_el, env->pc, pstate_read(env)); | |
966f758c PM |
7671 | } |
7672 | ||
904c04de PM |
7673 | static inline bool check_for_semihosting(CPUState *cs) |
7674 | { | |
7675 | /* Check whether this exception is a semihosting call; if so | |
7676 | * then handle it and return true; otherwise return false. | |
7677 | */ | |
7678 | ARMCPU *cpu = ARM_CPU(cs); | |
7679 | CPUARMState *env = &cpu->env; | |
7680 | ||
7681 | if (is_a64(env)) { | |
7682 | if (cs->exception_index == EXCP_SEMIHOST) { | |
7683 | /* This is always the 64-bit semihosting exception. | |
7684 | * The "is this usermode" and "is semihosting enabled" | |
7685 | * checks have been done at translate time. | |
7686 | */ | |
7687 | qemu_log_mask(CPU_LOG_INT, | |
7688 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
7689 | env->xregs[0]); | |
7690 | env->xregs[0] = do_arm_semihosting(env); | |
7691 | return true; | |
7692 | } | |
7693 | return false; | |
7694 | } else { | |
7695 | uint32_t imm; | |
7696 | ||
7697 | /* Only intercept calls from privileged modes, to provide some | |
7698 | * semblance of security. | |
7699 | */ | |
19a6e31c PM |
7700 | if (cs->exception_index != EXCP_SEMIHOST && |
7701 | (!semihosting_enabled() || | |
7702 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { | |
904c04de PM |
7703 | return false; |
7704 | } | |
7705 | ||
7706 | switch (cs->exception_index) { | |
19a6e31c PM |
7707 | case EXCP_SEMIHOST: |
7708 | /* This is always a semihosting call; the "is this usermode" | |
7709 | * and "is semihosting enabled" checks have been done at | |
7710 | * translate time. | |
7711 | */ | |
7712 | break; | |
904c04de PM |
7713 | case EXCP_SWI: |
7714 | /* Check for semihosting interrupt. */ | |
7715 | if (env->thumb) { | |
f9fd40eb | 7716 | imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) |
904c04de PM |
7717 | & 0xff; |
7718 | if (imm == 0xab) { | |
7719 | break; | |
7720 | } | |
7721 | } else { | |
f9fd40eb | 7722 | imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) |
904c04de PM |
7723 | & 0xffffff; |
7724 | if (imm == 0x123456) { | |
7725 | break; | |
7726 | } | |
7727 | } | |
7728 | return false; | |
7729 | case EXCP_BKPT: | |
7730 | /* See if this is a semihosting syscall. */ | |
7731 | if (env->thumb) { | |
f9fd40eb | 7732 | imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) |
904c04de PM |
7733 | & 0xff; |
7734 | if (imm == 0xab) { | |
7735 | env->regs[15] += 2; | |
7736 | break; | |
7737 | } | |
7738 | } | |
7739 | return false; | |
7740 | default: | |
7741 | return false; | |
7742 | } | |
7743 | ||
7744 | qemu_log_mask(CPU_LOG_INT, | |
7745 | "...handling as semihosting call 0x%x\n", | |
7746 | env->regs[0]); | |
7747 | env->regs[0] = do_arm_semihosting(env); | |
7748 | return true; | |
7749 | } | |
7750 | } | |
7751 | ||
966f758c PM |
7752 | /* Handle a CPU exception for A and R profile CPUs. |
7753 | * Do any appropriate logging, handle PSCI calls, and then hand off | |
7754 | * to the AArch64-entry or AArch32-entry function depending on the | |
7755 | * target exception level's register width. | |
7756 | */ | |
7757 | void arm_cpu_do_interrupt(CPUState *cs) | |
7758 | { | |
7759 | ARMCPU *cpu = ARM_CPU(cs); | |
7760 | CPUARMState *env = &cpu->env; | |
7761 | unsigned int new_el = env->exception.target_el; | |
7762 | ||
531c60a9 | 7763 | assert(!arm_feature(env, ARM_FEATURE_M)); |
966f758c PM |
7764 | |
7765 | arm_log_exception(cs->exception_index); | |
7766 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), | |
7767 | new_el); | |
7768 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
7769 | && !excp_is_internal(cs->exception_index)) { | |
6568da45 | 7770 | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", |
966f758c PM |
7771 | env->exception.syndrome >> ARM_EL_EC_SHIFT, |
7772 | env->exception.syndrome); | |
7773 | } | |
7774 | ||
7775 | if (arm_is_psci_call(cpu, cs->exception_index)) { | |
7776 | arm_handle_psci_call(cpu); | |
7777 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
7778 | return; | |
7779 | } | |
7780 | ||
904c04de PM |
7781 | /* Semihosting semantics depend on the register width of the |
7782 | * code that caused the exception, not the target exception level, | |
7783 | * so must be handled here. | |
966f758c | 7784 | */ |
904c04de PM |
7785 | if (check_for_semihosting(cs)) { |
7786 | return; | |
7787 | } | |
7788 | ||
7789 | assert(!excp_is_internal(cs->exception_index)); | |
7790 | if (arm_el_is_aa64(env, new_el)) { | |
966f758c PM |
7791 | arm_cpu_do_interrupt_aarch64(cs); |
7792 | } else { | |
7793 | arm_cpu_do_interrupt_aarch32(cs); | |
7794 | } | |
f3a9b694 | 7795 | |
8d04fb55 JK |
7796 | /* Hooks may change global state so BQL should be held, also the |
7797 | * BQL needs to be held for any modification of | |
7798 | * cs->interrupt_request. | |
7799 | */ | |
7800 | g_assert(qemu_mutex_iothread_locked()); | |
7801 | ||
bd7d00fc PM |
7802 | arm_call_el_change_hook(cpu); |
7803 | ||
f3a9b694 PM |
7804 | if (!kvm_enabled()) { |
7805 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
7806 | } | |
7807 | } | |
0480f69a PM |
7808 | |
7809 | /* Return the exception level which controls this address translation regime */ | |
7810 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7811 | { | |
7812 | switch (mmu_idx) { | |
7813 | case ARMMMUIdx_S2NS: | |
7814 | case ARMMMUIdx_S1E2: | |
7815 | return 2; | |
7816 | case ARMMMUIdx_S1E3: | |
7817 | return 3; | |
7818 | case ARMMMUIdx_S1SE0: | |
7819 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
7820 | case ARMMMUIdx_S1SE1: | |
7821 | case ARMMMUIdx_S1NSE0: | |
7822 | case ARMMMUIdx_S1NSE1: | |
e7b921c2 | 7823 | case ARMMMUIdx_MPriv: |
3bef7012 | 7824 | case ARMMMUIdx_MNegPri: |
e7b921c2 | 7825 | case ARMMMUIdx_MUser: |
66787c78 PM |
7826 | case ARMMMUIdx_MSPriv: |
7827 | case ARMMMUIdx_MSNegPri: | |
7828 | case ARMMMUIdx_MSUser: | |
0480f69a PM |
7829 | return 1; |
7830 | default: | |
7831 | g_assert_not_reached(); | |
7832 | } | |
7833 | } | |
7834 | ||
7835 | /* Return the SCTLR value which controls this address translation regime */ | |
7836 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7837 | { | |
7838 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
7839 | } | |
7840 | ||
7841 | /* Return true if the specified stage of address translation is disabled */ | |
7842 | static inline bool regime_translation_disabled(CPUARMState *env, | |
7843 | ARMMMUIdx mmu_idx) | |
7844 | { | |
29c483a5 | 7845 | if (arm_feature(env, ARM_FEATURE_M)) { |
ecf5e8ea | 7846 | switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & |
3bef7012 PM |
7847 | (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
7848 | case R_V7M_MPU_CTRL_ENABLE_MASK: | |
7849 | /* Enabled, but not for HardFault and NMI */ | |
66787c78 PM |
7850 | return mmu_idx == ARMMMUIdx_MNegPri || |
7851 | mmu_idx == ARMMMUIdx_MSNegPri; | |
3bef7012 PM |
7852 | case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
7853 | /* Enabled for all cases */ | |
7854 | return false; | |
7855 | case 0: | |
7856 | default: | |
7857 | /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but | |
7858 | * we warned about that in armv7m_nvic.c when the guest set it. | |
7859 | */ | |
7860 | return true; | |
7861 | } | |
29c483a5 MD |
7862 | } |
7863 | ||
0480f69a PM |
7864 | if (mmu_idx == ARMMMUIdx_S2NS) { |
7865 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
7866 | } | |
7867 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
7868 | } | |
7869 | ||
73462ddd PC |
7870 | static inline bool regime_translation_big_endian(CPUARMState *env, |
7871 | ARMMMUIdx mmu_idx) | |
7872 | { | |
7873 | return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; | |
7874 | } | |
7875 | ||
0480f69a PM |
7876 | /* Return the TCR controlling this translation regime */ |
7877 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7878 | { | |
7879 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
68e9c2fe | 7880 | return &env->cp15.vtcr_el2; |
0480f69a PM |
7881 | } |
7882 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
7883 | } | |
7884 | ||
8bd5c820 PM |
7885 | /* Convert a possible stage1+2 MMU index into the appropriate |
7886 | * stage 1 MMU index | |
7887 | */ | |
7888 | static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) | |
7889 | { | |
7890 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { | |
7891 | mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); | |
7892 | } | |
7893 | return mmu_idx; | |
7894 | } | |
7895 | ||
86fb3fa4 TH |
7896 | /* Returns TBI0 value for current regime el */ |
7897 | uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7898 | { | |
7899 | TCR *tcr; | |
7900 | uint32_t el; | |
7901 | ||
7902 | /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert | |
8bd5c820 PM |
7903 | * a stage 1+2 mmu index into the appropriate stage 1 mmu index. |
7904 | */ | |
7905 | mmu_idx = stage_1_mmu_idx(mmu_idx); | |
86fb3fa4 TH |
7906 | |
7907 | tcr = regime_tcr(env, mmu_idx); | |
7908 | el = regime_el(env, mmu_idx); | |
7909 | ||
7910 | if (el > 1) { | |
7911 | return extract64(tcr->raw_tcr, 20, 1); | |
7912 | } else { | |
7913 | return extract64(tcr->raw_tcr, 37, 1); | |
7914 | } | |
7915 | } | |
7916 | ||
7917 | /* Returns TBI1 value for current regime el */ | |
7918 | uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) | |
7919 | { | |
7920 | TCR *tcr; | |
7921 | uint32_t el; | |
7922 | ||
7923 | /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert | |
8bd5c820 PM |
7924 | * a stage 1+2 mmu index into the appropriate stage 1 mmu index. |
7925 | */ | |
7926 | mmu_idx = stage_1_mmu_idx(mmu_idx); | |
86fb3fa4 TH |
7927 | |
7928 | tcr = regime_tcr(env, mmu_idx); | |
7929 | el = regime_el(env, mmu_idx); | |
7930 | ||
7931 | if (el > 1) { | |
7932 | return 0; | |
7933 | } else { | |
7934 | return extract64(tcr->raw_tcr, 38, 1); | |
7935 | } | |
7936 | } | |
7937 | ||
aef878be GB |
7938 | /* Return the TTBR associated with this translation regime */ |
7939 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
7940 | int ttbrn) | |
7941 | { | |
7942 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
b698e9cf | 7943 | return env->cp15.vttbr_el2; |
aef878be GB |
7944 | } |
7945 | if (ttbrn == 0) { | |
7946 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
7947 | } else { | |
7948 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
7949 | } | |
7950 | } | |
7951 | ||
0480f69a PM |
7952 | /* Return true if the translation regime is using LPAE format page tables */ |
7953 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
7954 | ARMMMUIdx mmu_idx) | |
7955 | { | |
7956 | int el = regime_el(env, mmu_idx); | |
7957 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
7958 | return true; | |
7959 | } | |
7960 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
7961 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
7962 | return true; | |
7963 | } | |
7964 | return false; | |
7965 | } | |
7966 | ||
deb2db99 AR |
7967 | /* Returns true if the stage 1 translation regime is using LPAE format page |
7968 | * tables. Used when raising alignment exceptions, whose FSR changes depending | |
7969 | * on whether the long or short descriptor format is in use. */ | |
7970 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) | |
30901475 | 7971 | { |
8bd5c820 | 7972 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
deb2db99 | 7973 | |
30901475 AB |
7974 | return regime_using_lpae_format(env, mmu_idx); |
7975 | } | |
7976 | ||
0480f69a PM |
7977 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
7978 | { | |
7979 | switch (mmu_idx) { | |
7980 | case ARMMMUIdx_S1SE0: | |
7981 | case ARMMMUIdx_S1NSE0: | |
e7b921c2 | 7982 | case ARMMMUIdx_MUser: |
0480f69a PM |
7983 | return true; |
7984 | default: | |
7985 | return false; | |
7986 | case ARMMMUIdx_S12NSE0: | |
7987 | case ARMMMUIdx_S12NSE1: | |
7988 | g_assert_not_reached(); | |
7989 | } | |
7990 | } | |
7991 | ||
0fbf5238 AJ |
7992 | /* Translate section/page access permissions to page |
7993 | * R/W protection flags | |
d76951b6 AJ |
7994 | * |
7995 | * @env: CPUARMState | |
7996 | * @mmu_idx: MMU index indicating required translation regime | |
7997 | * @ap: The 3-bit access permissions (AP[2:0]) | |
7998 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
7999 | */ |
8000 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
8001 | int ap, int domain_prot) | |
8002 | { | |
554b0b09 PM |
8003 | bool is_user = regime_is_user(env, mmu_idx); |
8004 | ||
8005 | if (domain_prot == 3) { | |
8006 | return PAGE_READ | PAGE_WRITE; | |
8007 | } | |
8008 | ||
554b0b09 PM |
8009 | switch (ap) { |
8010 | case 0: | |
8011 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
8012 | return 0; | |
8013 | } | |
554b0b09 PM |
8014 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
8015 | case SCTLR_S: | |
8016 | return is_user ? 0 : PAGE_READ; | |
8017 | case SCTLR_R: | |
8018 | return PAGE_READ; | |
8019 | default: | |
8020 | return 0; | |
8021 | } | |
8022 | case 1: | |
8023 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
8024 | case 2: | |
87c3d486 | 8025 | if (is_user) { |
0fbf5238 | 8026 | return PAGE_READ; |
87c3d486 | 8027 | } else { |
554b0b09 | 8028 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 8029 | } |
554b0b09 PM |
8030 | case 3: |
8031 | return PAGE_READ | PAGE_WRITE; | |
8032 | case 4: /* Reserved. */ | |
8033 | return 0; | |
8034 | case 5: | |
0fbf5238 | 8035 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 8036 | case 6: |
0fbf5238 | 8037 | return PAGE_READ; |
554b0b09 | 8038 | case 7: |
87c3d486 | 8039 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 8040 | return 0; |
87c3d486 | 8041 | } |
0fbf5238 | 8042 | return PAGE_READ; |
554b0b09 | 8043 | default: |
0fbf5238 | 8044 | g_assert_not_reached(); |
554b0b09 | 8045 | } |
b5ff1b31 FB |
8046 | } |
8047 | ||
d76951b6 AJ |
8048 | /* Translate section/page access permissions to page |
8049 | * R/W protection flags. | |
8050 | * | |
d76951b6 | 8051 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 8052 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 8053 | */ |
d8e052b3 | 8054 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 8055 | { |
d76951b6 AJ |
8056 | switch (ap) { |
8057 | case 0: | |
8058 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
8059 | case 1: | |
8060 | return PAGE_READ | PAGE_WRITE; | |
8061 | case 2: | |
8062 | return is_user ? 0 : PAGE_READ; | |
8063 | case 3: | |
8064 | return PAGE_READ; | |
8065 | default: | |
8066 | g_assert_not_reached(); | |
8067 | } | |
8068 | } | |
8069 | ||
d8e052b3 AJ |
8070 | static inline int |
8071 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
8072 | { | |
8073 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
8074 | } | |
8075 | ||
6ab1a5ee EI |
8076 | /* Translate S2 section/page access permissions to protection flags |
8077 | * | |
8078 | * @env: CPUARMState | |
8079 | * @s2ap: The 2-bit stage2 access permissions (S2AP) | |
8080 | * @xn: XN (execute-never) bit | |
8081 | */ | |
8082 | static int get_S2prot(CPUARMState *env, int s2ap, int xn) | |
8083 | { | |
8084 | int prot = 0; | |
8085 | ||
8086 | if (s2ap & 1) { | |
8087 | prot |= PAGE_READ; | |
8088 | } | |
8089 | if (s2ap & 2) { | |
8090 | prot |= PAGE_WRITE; | |
8091 | } | |
8092 | if (!xn) { | |
dfda6837 SS |
8093 | if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
8094 | prot |= PAGE_EXEC; | |
8095 | } | |
6ab1a5ee EI |
8096 | } |
8097 | return prot; | |
8098 | } | |
8099 | ||
d8e052b3 AJ |
8100 | /* Translate section/page access permissions to protection flags |
8101 | * | |
8102 | * @env: CPUARMState | |
8103 | * @mmu_idx: MMU index indicating required translation regime | |
8104 | * @is_aa64: TRUE if AArch64 | |
8105 | * @ap: The 2-bit simple AP (AP[2:1]) | |
8106 | * @ns: NS (non-secure) bit | |
8107 | * @xn: XN (execute-never) bit | |
8108 | * @pxn: PXN (privileged execute-never) bit | |
8109 | */ | |
8110 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
8111 | int ap, int ns, int xn, int pxn) | |
8112 | { | |
8113 | bool is_user = regime_is_user(env, mmu_idx); | |
8114 | int prot_rw, user_rw; | |
8115 | bool have_wxn; | |
8116 | int wxn = 0; | |
8117 | ||
8118 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
8119 | ||
8120 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
8121 | if (is_user) { | |
8122 | prot_rw = user_rw; | |
8123 | } else { | |
8124 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
8125 | } | |
8126 | ||
8127 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
8128 | return prot_rw; | |
8129 | } | |
8130 | ||
8131 | /* TODO have_wxn should be replaced with | |
8132 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
8133 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
8134 | * compatible processors have EL2, which is required for [U]WXN. | |
8135 | */ | |
8136 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
8137 | ||
8138 | if (have_wxn) { | |
8139 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
8140 | } | |
8141 | ||
8142 | if (is_aa64) { | |
8143 | switch (regime_el(env, mmu_idx)) { | |
8144 | case 1: | |
8145 | if (!is_user) { | |
8146 | xn = pxn || (user_rw & PAGE_WRITE); | |
8147 | } | |
8148 | break; | |
8149 | case 2: | |
8150 | case 3: | |
8151 | break; | |
8152 | } | |
8153 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
8154 | switch (regime_el(env, mmu_idx)) { | |
8155 | case 1: | |
8156 | case 3: | |
8157 | if (is_user) { | |
8158 | xn = xn || !(user_rw & PAGE_READ); | |
8159 | } else { | |
8160 | int uwxn = 0; | |
8161 | if (have_wxn) { | |
8162 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
8163 | } | |
8164 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
8165 | (uwxn && (user_rw & PAGE_WRITE)); | |
8166 | } | |
8167 | break; | |
8168 | case 2: | |
8169 | break; | |
8170 | } | |
8171 | } else { | |
8172 | xn = wxn = 0; | |
8173 | } | |
8174 | ||
8175 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
8176 | return prot_rw; | |
8177 | } | |
8178 | return prot_rw | PAGE_EXEC; | |
8179 | } | |
8180 | ||
0480f69a PM |
8181 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
8182 | uint32_t *table, uint32_t address) | |
b2fa1797 | 8183 | { |
0480f69a | 8184 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 8185 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 8186 | |
11f136ee FA |
8187 | if (address & tcr->mask) { |
8188 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
8189 | /* Translation table walk disabled for TTBR1 */ |
8190 | return false; | |
8191 | } | |
aef878be | 8192 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 8193 | } else { |
11f136ee | 8194 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
8195 | /* Translation table walk disabled for TTBR0 */ |
8196 | return false; | |
8197 | } | |
aef878be | 8198 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
8199 | } |
8200 | *table |= (address >> 18) & 0x3ffc; | |
8201 | return true; | |
b2fa1797 PB |
8202 | } |
8203 | ||
37785977 EI |
8204 | /* Translate a S1 pagetable walk through S2 if needed. */ |
8205 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, | |
8206 | hwaddr addr, MemTxAttrs txattrs, | |
8207 | uint32_t *fsr, | |
8208 | ARMMMUFaultInfo *fi) | |
8209 | { | |
8210 | if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && | |
8211 | !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
8212 | target_ulong s2size; | |
8213 | hwaddr s2pa; | |
8214 | int s2prot; | |
8215 | int ret; | |
8216 | ||
8217 | ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, | |
5b2d261d | 8218 | &txattrs, &s2prot, &s2size, fsr, fi, NULL); |
37785977 EI |
8219 | if (ret) { |
8220 | fi->s2addr = addr; | |
8221 | fi->stage2 = true; | |
8222 | fi->s1ptw = true; | |
8223 | return ~0; | |
8224 | } | |
8225 | addr = s2pa; | |
8226 | } | |
8227 | return addr; | |
8228 | } | |
8229 | ||
ebca90e4 PM |
8230 | /* All loads done in the course of a page table walk go through here. |
8231 | * TODO: rather than ignoring errors from physical memory reads (which | |
8232 | * are external aborts in ARM terminology) we should propagate this | |
8233 | * error out so that we can turn it into a Data Abort if this walk | |
8234 | * was being done for a CPU load/store or an address translation instruction | |
8235 | * (but not if it was for a debug access). | |
8236 | */ | |
a614e698 EI |
8237 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
8238 | ARMMMUIdx mmu_idx, uint32_t *fsr, | |
8239 | ARMMMUFaultInfo *fi) | |
ebca90e4 | 8240 | { |
a614e698 EI |
8241 | ARMCPU *cpu = ARM_CPU(cs); |
8242 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 8243 | MemTxAttrs attrs = {}; |
5ce4ff65 | 8244 | AddressSpace *as; |
ebca90e4 PM |
8245 | |
8246 | attrs.secure = is_secure; | |
5ce4ff65 | 8247 | as = arm_addressspace(cs, attrs); |
a614e698 EI |
8248 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
8249 | if (fi->s1ptw) { | |
8250 | return 0; | |
8251 | } | |
73462ddd PC |
8252 | if (regime_translation_big_endian(env, mmu_idx)) { |
8253 | return address_space_ldl_be(as, addr, attrs, NULL); | |
8254 | } else { | |
8255 | return address_space_ldl_le(as, addr, attrs, NULL); | |
8256 | } | |
ebca90e4 PM |
8257 | } |
8258 | ||
37785977 EI |
8259 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
8260 | ARMMMUIdx mmu_idx, uint32_t *fsr, | |
8261 | ARMMMUFaultInfo *fi) | |
ebca90e4 | 8262 | { |
37785977 EI |
8263 | ARMCPU *cpu = ARM_CPU(cs); |
8264 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 8265 | MemTxAttrs attrs = {}; |
5ce4ff65 | 8266 | AddressSpace *as; |
ebca90e4 PM |
8267 | |
8268 | attrs.secure = is_secure; | |
5ce4ff65 | 8269 | as = arm_addressspace(cs, attrs); |
37785977 EI |
8270 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
8271 | if (fi->s1ptw) { | |
8272 | return 0; | |
8273 | } | |
73462ddd PC |
8274 | if (regime_translation_big_endian(env, mmu_idx)) { |
8275 | return address_space_ldq_be(as, addr, attrs, NULL); | |
8276 | } else { | |
8277 | return address_space_ldq_le(as, addr, attrs, NULL); | |
8278 | } | |
ebca90e4 PM |
8279 | } |
8280 | ||
b7cc4e82 | 8281 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
03ae85f8 | 8282 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8283 | hwaddr *phys_ptr, int *prot, |
e14b5a23 EI |
8284 | target_ulong *page_size, uint32_t *fsr, |
8285 | ARMMMUFaultInfo *fi) | |
b5ff1b31 | 8286 | { |
70d74660 | 8287 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
8288 | int code; |
8289 | uint32_t table; | |
8290 | uint32_t desc; | |
8291 | int type; | |
8292 | int ap; | |
e389be16 | 8293 | int domain = 0; |
dd4ebc2e | 8294 | int domain_prot; |
a8170e5e | 8295 | hwaddr phys_addr; |
0480f69a | 8296 | uint32_t dacr; |
b5ff1b31 | 8297 | |
9ee6e8bb PB |
8298 | /* Pagetable walk. */ |
8299 | /* Lookup l1 descriptor. */ | |
0480f69a | 8300 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
8301 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
8302 | code = 5; | |
8303 | goto do_fault; | |
8304 | } | |
a614e698 EI |
8305 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
8306 | mmu_idx, fsr, fi); | |
9ee6e8bb | 8307 | type = (desc & 3); |
dd4ebc2e | 8308 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
8309 | if (regime_el(env, mmu_idx) == 1) { |
8310 | dacr = env->cp15.dacr_ns; | |
8311 | } else { | |
8312 | dacr = env->cp15.dacr_s; | |
8313 | } | |
8314 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 8315 | if (type == 0) { |
601d70b9 | 8316 | /* Section translation fault. */ |
9ee6e8bb PB |
8317 | code = 5; |
8318 | goto do_fault; | |
8319 | } | |
dd4ebc2e | 8320 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
8321 | if (type == 2) |
8322 | code = 9; /* Section domain fault. */ | |
8323 | else | |
8324 | code = 11; /* Page domain fault. */ | |
8325 | goto do_fault; | |
8326 | } | |
8327 | if (type == 2) { | |
8328 | /* 1Mb section. */ | |
8329 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
8330 | ap = (desc >> 10) & 3; | |
8331 | code = 13; | |
d4c430a8 | 8332 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
8333 | } else { |
8334 | /* Lookup l2 entry. */ | |
554b0b09 PM |
8335 | if (type == 1) { |
8336 | /* Coarse pagetable. */ | |
8337 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
8338 | } else { | |
8339 | /* Fine pagetable. */ | |
8340 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
8341 | } | |
a614e698 EI |
8342 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
8343 | mmu_idx, fsr, fi); | |
9ee6e8bb PB |
8344 | switch (desc & 3) { |
8345 | case 0: /* Page translation fault. */ | |
8346 | code = 7; | |
8347 | goto do_fault; | |
8348 | case 1: /* 64k page. */ | |
8349 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
8350 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 8351 | *page_size = 0x10000; |
ce819861 | 8352 | break; |
9ee6e8bb PB |
8353 | case 2: /* 4k page. */ |
8354 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 8355 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 8356 | *page_size = 0x1000; |
ce819861 | 8357 | break; |
fc1891c7 | 8358 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 8359 | if (type == 1) { |
fc1891c7 PM |
8360 | /* ARMv6/XScale extended small page format */ |
8361 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
8362 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 8363 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 8364 | *page_size = 0x1000; |
554b0b09 | 8365 | } else { |
fc1891c7 PM |
8366 | /* UNPREDICTABLE in ARMv5; we choose to take a |
8367 | * page translation fault. | |
8368 | */ | |
554b0b09 PM |
8369 | code = 7; |
8370 | goto do_fault; | |
8371 | } | |
8372 | } else { | |
8373 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 8374 | *page_size = 0x400; |
554b0b09 | 8375 | } |
9ee6e8bb | 8376 | ap = (desc >> 4) & 3; |
ce819861 PB |
8377 | break; |
8378 | default: | |
9ee6e8bb PB |
8379 | /* Never happens, but compiler isn't smart enough to tell. */ |
8380 | abort(); | |
ce819861 | 8381 | } |
9ee6e8bb PB |
8382 | code = 15; |
8383 | } | |
0fbf5238 AJ |
8384 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
8385 | *prot |= *prot ? PAGE_EXEC : 0; | |
8386 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
8387 | /* Access permission fault. */ |
8388 | goto do_fault; | |
8389 | } | |
8390 | *phys_ptr = phys_addr; | |
b7cc4e82 | 8391 | return false; |
9ee6e8bb | 8392 | do_fault: |
b7cc4e82 PC |
8393 | *fsr = code | (domain << 4); |
8394 | return true; | |
9ee6e8bb PB |
8395 | } |
8396 | ||
b7cc4e82 | 8397 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
03ae85f8 | 8398 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8399 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
e14b5a23 EI |
8400 | target_ulong *page_size, uint32_t *fsr, |
8401 | ARMMMUFaultInfo *fi) | |
9ee6e8bb | 8402 | { |
70d74660 | 8403 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
8404 | int code; |
8405 | uint32_t table; | |
8406 | uint32_t desc; | |
8407 | uint32_t xn; | |
de9b05b8 | 8408 | uint32_t pxn = 0; |
9ee6e8bb PB |
8409 | int type; |
8410 | int ap; | |
de9b05b8 | 8411 | int domain = 0; |
dd4ebc2e | 8412 | int domain_prot; |
a8170e5e | 8413 | hwaddr phys_addr; |
0480f69a | 8414 | uint32_t dacr; |
8bf5b6a9 | 8415 | bool ns; |
9ee6e8bb PB |
8416 | |
8417 | /* Pagetable walk. */ | |
8418 | /* Lookup l1 descriptor. */ | |
0480f69a | 8419 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
8420 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
8421 | code = 5; | |
8422 | goto do_fault; | |
8423 | } | |
a614e698 EI |
8424 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
8425 | mmu_idx, fsr, fi); | |
9ee6e8bb | 8426 | type = (desc & 3); |
de9b05b8 PM |
8427 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
8428 | /* Section translation fault, or attempt to use the encoding | |
8429 | * which is Reserved on implementations without PXN. | |
8430 | */ | |
9ee6e8bb | 8431 | code = 5; |
9ee6e8bb | 8432 | goto do_fault; |
de9b05b8 PM |
8433 | } |
8434 | if ((type == 1) || !(desc & (1 << 18))) { | |
8435 | /* Page or Section. */ | |
dd4ebc2e | 8436 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 8437 | } |
0480f69a PM |
8438 | if (regime_el(env, mmu_idx) == 1) { |
8439 | dacr = env->cp15.dacr_ns; | |
8440 | } else { | |
8441 | dacr = env->cp15.dacr_s; | |
8442 | } | |
8443 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 8444 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 8445 | if (type != 1) { |
9ee6e8bb | 8446 | code = 9; /* Section domain fault. */ |
de9b05b8 | 8447 | } else { |
9ee6e8bb | 8448 | code = 11; /* Page domain fault. */ |
de9b05b8 | 8449 | } |
9ee6e8bb PB |
8450 | goto do_fault; |
8451 | } | |
de9b05b8 | 8452 | if (type != 1) { |
9ee6e8bb PB |
8453 | if (desc & (1 << 18)) { |
8454 | /* Supersection. */ | |
8455 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
8456 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
8457 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 8458 | *page_size = 0x1000000; |
b5ff1b31 | 8459 | } else { |
9ee6e8bb PB |
8460 | /* Section. */ |
8461 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 8462 | *page_size = 0x100000; |
b5ff1b31 | 8463 | } |
9ee6e8bb PB |
8464 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
8465 | xn = desc & (1 << 4); | |
de9b05b8 | 8466 | pxn = desc & 1; |
9ee6e8bb | 8467 | code = 13; |
8bf5b6a9 | 8468 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 8469 | } else { |
de9b05b8 PM |
8470 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
8471 | pxn = (desc >> 2) & 1; | |
8472 | } | |
8bf5b6a9 | 8473 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
8474 | /* Lookup l2 entry. */ |
8475 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
a614e698 EI |
8476 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
8477 | mmu_idx, fsr, fi); | |
9ee6e8bb PB |
8478 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
8479 | switch (desc & 3) { | |
8480 | case 0: /* Page translation fault. */ | |
8481 | code = 7; | |
b5ff1b31 | 8482 | goto do_fault; |
9ee6e8bb PB |
8483 | case 1: /* 64k page. */ |
8484 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
8485 | xn = desc & (1 << 15); | |
d4c430a8 | 8486 | *page_size = 0x10000; |
9ee6e8bb PB |
8487 | break; |
8488 | case 2: case 3: /* 4k page. */ | |
8489 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
8490 | xn = desc & 1; | |
d4c430a8 | 8491 | *page_size = 0x1000; |
9ee6e8bb PB |
8492 | break; |
8493 | default: | |
8494 | /* Never happens, but compiler isn't smart enough to tell. */ | |
8495 | abort(); | |
b5ff1b31 | 8496 | } |
9ee6e8bb PB |
8497 | code = 15; |
8498 | } | |
dd4ebc2e | 8499 | if (domain_prot == 3) { |
c0034328 JR |
8500 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
8501 | } else { | |
0480f69a | 8502 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
8503 | xn = 1; |
8504 | } | |
03ae85f8 | 8505 | if (xn && access_type == MMU_INST_FETCH) |
c0034328 | 8506 | goto do_fault; |
9ee6e8bb | 8507 | |
d76951b6 AJ |
8508 | if (arm_feature(env, ARM_FEATURE_V6K) && |
8509 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
8510 | /* The simplified model uses AP[0] as an access control bit. */ | |
8511 | if ((ap & 1) == 0) { | |
8512 | /* Access flag fault. */ | |
8513 | code = (code == 15) ? 6 : 3; | |
8514 | goto do_fault; | |
8515 | } | |
8516 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
8517 | } else { | |
8518 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 8519 | } |
0fbf5238 AJ |
8520 | if (*prot && !xn) { |
8521 | *prot |= PAGE_EXEC; | |
8522 | } | |
8523 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
8524 | /* Access permission fault. */ |
8525 | goto do_fault; | |
8526 | } | |
3ad493fc | 8527 | } |
8bf5b6a9 PM |
8528 | if (ns) { |
8529 | /* The NS bit will (as required by the architecture) have no effect if | |
8530 | * the CPU doesn't support TZ or this is a non-secure translation | |
8531 | * regime, because the attribute will already be non-secure. | |
8532 | */ | |
8533 | attrs->secure = false; | |
8534 | } | |
9ee6e8bb | 8535 | *phys_ptr = phys_addr; |
b7cc4e82 | 8536 | return false; |
b5ff1b31 | 8537 | do_fault: |
b7cc4e82 PC |
8538 | *fsr = code | (domain << 4); |
8539 | return true; | |
b5ff1b31 FB |
8540 | } |
8541 | ||
3dde962f PM |
8542 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
8543 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
8544 | */ | |
8545 | typedef enum { | |
8546 | translation_fault = 1, | |
8547 | access_fault = 2, | |
8548 | permission_fault = 3, | |
8549 | } MMUFaultType; | |
8550 | ||
1853d5a9 | 8551 | /* |
a0e966c9 | 8552 | * check_s2_mmu_setup |
1853d5a9 EI |
8553 | * @cpu: ARMCPU |
8554 | * @is_aa64: True if the translation regime is in AArch64 state | |
8555 | * @startlevel: Suggested starting level | |
8556 | * @inputsize: Bitsize of IPAs | |
8557 | * @stride: Page-table stride (See the ARM ARM) | |
8558 | * | |
a0e966c9 EI |
8559 | * Returns true if the suggested S2 translation parameters are OK and |
8560 | * false otherwise. | |
1853d5a9 | 8561 | */ |
a0e966c9 EI |
8562 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
8563 | int inputsize, int stride) | |
1853d5a9 | 8564 | { |
98d68ec2 EI |
8565 | const int grainsize = stride + 3; |
8566 | int startsizecheck; | |
8567 | ||
1853d5a9 EI |
8568 | /* Negative levels are never allowed. */ |
8569 | if (level < 0) { | |
8570 | return false; | |
8571 | } | |
8572 | ||
98d68ec2 EI |
8573 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
8574 | if (startsizecheck < 1 || startsizecheck > stride + 4) { | |
8575 | return false; | |
8576 | } | |
8577 | ||
1853d5a9 | 8578 | if (is_aa64) { |
3526423e | 8579 | CPUARMState *env = &cpu->env; |
1853d5a9 EI |
8580 | unsigned int pamax = arm_pamax(cpu); |
8581 | ||
8582 | switch (stride) { | |
8583 | case 13: /* 64KB Pages. */ | |
8584 | if (level == 0 || (level == 1 && pamax <= 42)) { | |
8585 | return false; | |
8586 | } | |
8587 | break; | |
8588 | case 11: /* 16KB Pages. */ | |
8589 | if (level == 0 || (level == 1 && pamax <= 40)) { | |
8590 | return false; | |
8591 | } | |
8592 | break; | |
8593 | case 9: /* 4KB Pages. */ | |
8594 | if (level == 0 && pamax <= 42) { | |
8595 | return false; | |
8596 | } | |
8597 | break; | |
8598 | default: | |
8599 | g_assert_not_reached(); | |
8600 | } | |
3526423e EI |
8601 | |
8602 | /* Inputsize checks. */ | |
8603 | if (inputsize > pamax && | |
8604 | (arm_el_is_aa64(env, 1) || inputsize > 40)) { | |
8605 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ | |
8606 | return false; | |
8607 | } | |
1853d5a9 | 8608 | } else { |
1853d5a9 EI |
8609 | /* AArch32 only supports 4KB pages. Assert on that. */ |
8610 | assert(stride == 9); | |
8611 | ||
8612 | if (level == 0) { | |
8613 | return false; | |
8614 | } | |
1853d5a9 EI |
8615 | } |
8616 | return true; | |
8617 | } | |
8618 | ||
5b2d261d AB |
8619 | /* Translate from the 4-bit stage 2 representation of |
8620 | * memory attributes (without cache-allocation hints) to | |
8621 | * the 8-bit representation of the stage 1 MAIR registers | |
8622 | * (which includes allocation hints). | |
8623 | * | |
8624 | * ref: shared/translation/attrs/S2AttrDecode() | |
8625 | * .../S2ConvertAttrsHints() | |
8626 | */ | |
8627 | static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) | |
8628 | { | |
8629 | uint8_t hiattr = extract32(s2attrs, 2, 2); | |
8630 | uint8_t loattr = extract32(s2attrs, 0, 2); | |
8631 | uint8_t hihint = 0, lohint = 0; | |
8632 | ||
8633 | if (hiattr != 0) { /* normal memory */ | |
8634 | if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ | |
8635 | hiattr = loattr = 1; /* non-cacheable */ | |
8636 | } else { | |
8637 | if (hiattr != 1) { /* Write-through or write-back */ | |
8638 | hihint = 3; /* RW allocate */ | |
8639 | } | |
8640 | if (loattr != 1) { /* Write-through or write-back */ | |
8641 | lohint = 3; /* RW allocate */ | |
8642 | } | |
8643 | } | |
8644 | } | |
8645 | ||
8646 | return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; | |
8647 | } | |
8648 | ||
b7cc4e82 | 8649 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
03ae85f8 | 8650 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 8651 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
e14b5a23 | 8652 | target_ulong *page_size_ptr, uint32_t *fsr, |
5b2d261d | 8653 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
3dde962f | 8654 | { |
1853d5a9 EI |
8655 | ARMCPU *cpu = arm_env_get_cpu(env); |
8656 | CPUState *cs = CPU(cpu); | |
3dde962f PM |
8657 | /* Read an LPAE long-descriptor translation table. */ |
8658 | MMUFaultType fault_type = translation_fault; | |
1b4093ea | 8659 | uint32_t level; |
0c5fbf3b | 8660 | uint32_t epd = 0; |
1f4c8c18 | 8661 | int32_t t0sz, t1sz; |
2c8dd318 | 8662 | uint32_t tg; |
3dde962f PM |
8663 | uint64_t ttbr; |
8664 | int ttbr_select; | |
dddb5223 | 8665 | hwaddr descaddr, indexmask, indexmask_grainsize; |
3dde962f PM |
8666 | uint32_t tableattrs; |
8667 | target_ulong page_size; | |
8668 | uint32_t attrs; | |
973a5434 | 8669 | int32_t stride = 9; |
6e99f762 | 8670 | int32_t addrsize; |
4ca6a051 | 8671 | int inputsize; |
2c8dd318 | 8672 | int32_t tbi = 0; |
0480f69a | 8673 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 8674 | int ap, ns, xn, pxn; |
88e8add8 GB |
8675 | uint32_t el = regime_el(env, mmu_idx); |
8676 | bool ttbr1_valid = true; | |
6109769a | 8677 | uint64_t descaddrmask; |
6e99f762 | 8678 | bool aarch64 = arm_el_is_aa64(env, el); |
0480f69a PM |
8679 | |
8680 | /* TODO: | |
88e8add8 GB |
8681 | * This code does not handle the different format TCR for VTCR_EL2. |
8682 | * This code also does not support shareability levels. | |
8683 | * Attribute and permission bit handling should also be checked when adding | |
8684 | * support for those page table walks. | |
0480f69a | 8685 | */ |
6e99f762 | 8686 | if (aarch64) { |
1b4093ea | 8687 | level = 0; |
6e99f762 | 8688 | addrsize = 64; |
88e8add8 | 8689 | if (el > 1) { |
1edee470 EI |
8690 | if (mmu_idx != ARMMMUIdx_S2NS) { |
8691 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
8692 | } | |
88e8add8 GB |
8693 | } else { |
8694 | if (extract64(address, 55, 1)) { | |
8695 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
8696 | } else { | |
8697 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
8698 | } | |
8699 | } | |
2c8dd318 | 8700 | tbi *= 8; |
88e8add8 GB |
8701 | |
8702 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
8703 | * invalid. | |
8704 | */ | |
8705 | if (el > 1) { | |
8706 | ttbr1_valid = false; | |
8707 | } | |
d0a2cbce | 8708 | } else { |
1b4093ea | 8709 | level = 1; |
6e99f762 | 8710 | addrsize = 32; |
d0a2cbce PM |
8711 | /* There is no TTBR1 for EL2 */ |
8712 | if (el == 2) { | |
8713 | ttbr1_valid = false; | |
8714 | } | |
2c8dd318 | 8715 | } |
3dde962f PM |
8716 | |
8717 | /* Determine whether this address is in the region controlled by | |
8718 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
8719 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
8720 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
8721 | */ | |
6e99f762 | 8722 | if (aarch64) { |
4ee38098 EI |
8723 | /* AArch64 translation. */ |
8724 | t0sz = extract32(tcr->raw_tcr, 0, 6); | |
2c8dd318 RH |
8725 | t0sz = MIN(t0sz, 39); |
8726 | t0sz = MAX(t0sz, 16); | |
4ee38098 EI |
8727 | } else if (mmu_idx != ARMMMUIdx_S2NS) { |
8728 | /* AArch32 stage 1 translation. */ | |
8729 | t0sz = extract32(tcr->raw_tcr, 0, 3); | |
8730 | } else { | |
8731 | /* AArch32 stage 2 translation. */ | |
8732 | bool sext = extract32(tcr->raw_tcr, 4, 1); | |
8733 | bool sign = extract32(tcr->raw_tcr, 3, 1); | |
6e99f762 SS |
8734 | /* Address size is 40-bit for a stage 2 translation, |
8735 | * and t0sz can be negative (from -8 to 7), | |
8736 | * so we need to adjust it to use the TTBR selecting logic below. | |
8737 | */ | |
8738 | addrsize = 40; | |
8739 | t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; | |
4ee38098 EI |
8740 | |
8741 | /* If the sign-extend bit is not the same as t0sz[3], the result | |
8742 | * is unpredictable. Flag this as a guest error. */ | |
8743 | if (sign != sext) { | |
8744 | qemu_log_mask(LOG_GUEST_ERROR, | |
39cba610 | 8745 | "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); |
4ee38098 | 8746 | } |
2c8dd318 | 8747 | } |
1f4c8c18 | 8748 | t1sz = extract32(tcr->raw_tcr, 16, 6); |
6e99f762 | 8749 | if (aarch64) { |
2c8dd318 RH |
8750 | t1sz = MIN(t1sz, 39); |
8751 | t1sz = MAX(t1sz, 16); | |
8752 | } | |
6e99f762 | 8753 | if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { |
3dde962f PM |
8754 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
8755 | ttbr_select = 0; | |
88e8add8 | 8756 | } else if (ttbr1_valid && t1sz && |
6e99f762 | 8757 | !extract64(~address, addrsize - t1sz, t1sz - tbi)) { |
3dde962f PM |
8758 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
8759 | ttbr_select = 1; | |
8760 | } else if (!t0sz) { | |
8761 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
8762 | ttbr_select = 0; | |
88e8add8 | 8763 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
8764 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
8765 | ttbr_select = 1; | |
8766 | } else { | |
8767 | /* in the gap between the two regions, this is a Translation fault */ | |
8768 | fault_type = translation_fault; | |
8769 | goto do_fault; | |
8770 | } | |
8771 | ||
8772 | /* Note that QEMU ignores shareability and cacheability attributes, | |
8773 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
8774 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
8775 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
8776 | * implement any ASID-like capability so we can ignore it (instead | |
8777 | * we will always flush the TLB any time the ASID is changed). | |
8778 | */ | |
8779 | if (ttbr_select == 0) { | |
aef878be | 8780 | ttbr = regime_ttbr(env, mmu_idx, 0); |
0c5fbf3b EI |
8781 | if (el < 2) { |
8782 | epd = extract32(tcr->raw_tcr, 7, 1); | |
8783 | } | |
6e99f762 | 8784 | inputsize = addrsize - t0sz; |
2c8dd318 | 8785 | |
11f136ee | 8786 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 | 8787 | if (tg == 1) { /* 64KB pages */ |
973a5434 | 8788 | stride = 13; |
2c8dd318 RH |
8789 | } |
8790 | if (tg == 2) { /* 16KB pages */ | |
973a5434 | 8791 | stride = 11; |
2c8dd318 | 8792 | } |
3dde962f | 8793 | } else { |
88e8add8 GB |
8794 | /* We should only be here if TTBR1 is valid */ |
8795 | assert(ttbr1_valid); | |
8796 | ||
aef878be | 8797 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 8798 | epd = extract32(tcr->raw_tcr, 23, 1); |
6e99f762 | 8799 | inputsize = addrsize - t1sz; |
2c8dd318 | 8800 | |
11f136ee | 8801 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 | 8802 | if (tg == 3) { /* 64KB pages */ |
973a5434 | 8803 | stride = 13; |
2c8dd318 RH |
8804 | } |
8805 | if (tg == 1) { /* 16KB pages */ | |
973a5434 | 8806 | stride = 11; |
2c8dd318 | 8807 | } |
3dde962f PM |
8808 | } |
8809 | ||
0480f69a | 8810 | /* Here we should have set up all the parameters for the translation: |
6e99f762 | 8811 | * inputsize, ttbr, epd, stride, tbi |
0480f69a PM |
8812 | */ |
8813 | ||
3dde962f | 8814 | if (epd) { |
88e8add8 GB |
8815 | /* Translation table walk disabled => Translation fault on TLB miss |
8816 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
8817 | */ | |
3dde962f PM |
8818 | goto do_fault; |
8819 | } | |
8820 | ||
1853d5a9 EI |
8821 | if (mmu_idx != ARMMMUIdx_S2NS) { |
8822 | /* The starting level depends on the virtual address size (which can | |
8823 | * be up to 48 bits) and the translation granule size. It indicates | |
8824 | * the number of strides (stride bits at a time) needed to | |
8825 | * consume the bits of the input address. In the pseudocode this is: | |
8826 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
8827 | * where their 'inputsize' is our 'inputsize', 'grainsize' is | |
8828 | * our 'stride + 3' and 'stride' is our 'stride'. | |
8829 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
8830 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride | |
8831 | * = 4 - (inputsize - 4) / stride; | |
8832 | */ | |
8833 | level = 4 - (inputsize - 4) / stride; | |
8834 | } else { | |
8835 | /* For stage 2 translations the starting level is specified by the | |
8836 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) | |
8837 | */ | |
1b4093ea SS |
8838 | uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
8839 | uint32_t startlevel; | |
1853d5a9 EI |
8840 | bool ok; |
8841 | ||
6e99f762 | 8842 | if (!aarch64 || stride == 9) { |
1853d5a9 | 8843 | /* AArch32 or 4KB pages */ |
1b4093ea | 8844 | startlevel = 2 - sl0; |
1853d5a9 EI |
8845 | } else { |
8846 | /* 16KB or 64KB pages */ | |
1b4093ea | 8847 | startlevel = 3 - sl0; |
1853d5a9 EI |
8848 | } |
8849 | ||
8850 | /* Check that the starting level is valid. */ | |
6e99f762 | 8851 | ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
1b4093ea | 8852 | inputsize, stride); |
1853d5a9 | 8853 | if (!ok) { |
1853d5a9 EI |
8854 | fault_type = translation_fault; |
8855 | goto do_fault; | |
8856 | } | |
1b4093ea | 8857 | level = startlevel; |
1853d5a9 | 8858 | } |
3dde962f | 8859 | |
dddb5223 SS |
8860 | indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
8861 | indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; | |
3dde962f PM |
8862 | |
8863 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 | 8864 | descaddr = extract64(ttbr, 0, 48); |
dddb5223 | 8865 | descaddr &= ~indexmask; |
3dde962f | 8866 | |
6109769a | 8867 | /* The address field in the descriptor goes up to bit 39 for ARMv7 |
dddb5223 SS |
8868 | * but up to bit 47 for ARMv8, but we use the descaddrmask |
8869 | * up to bit 39 for AArch32, because we don't need other bits in that case | |
8870 | * to construct next descriptor address (anyway they should be all zeroes). | |
6109769a | 8871 | */ |
6e99f762 | 8872 | descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
dddb5223 | 8873 | ~indexmask_grainsize; |
6109769a | 8874 | |
ebca90e4 PM |
8875 | /* Secure accesses start with the page table in secure memory and |
8876 | * can be downgraded to non-secure at any step. Non-secure accesses | |
8877 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
8878 | * bits at each step. | |
8879 | */ | |
8880 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
8881 | for (;;) { |
8882 | uint64_t descriptor; | |
ebca90e4 | 8883 | bool nstable; |
3dde962f | 8884 | |
dddb5223 | 8885 | descaddr |= (address >> (stride * (4 - level))) & indexmask; |
2c8dd318 | 8886 | descaddr &= ~7ULL; |
ebca90e4 | 8887 | nstable = extract32(tableattrs, 4, 1); |
37785977 EI |
8888 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); |
8889 | if (fi->s1ptw) { | |
8890 | goto do_fault; | |
8891 | } | |
8892 | ||
3dde962f PM |
8893 | if (!(descriptor & 1) || |
8894 | (!(descriptor & 2) && (level == 3))) { | |
8895 | /* Invalid, or the Reserved level 3 encoding */ | |
8896 | goto do_fault; | |
8897 | } | |
6109769a | 8898 | descaddr = descriptor & descaddrmask; |
3dde962f PM |
8899 | |
8900 | if ((descriptor & 2) && (level < 3)) { | |
8901 | /* Table entry. The top five bits are attributes which may | |
8902 | * propagate down through lower levels of the table (and | |
8903 | * which are all arranged so that 0 means "no effect", so | |
8904 | * we can gather them up by ORing in the bits at each level). | |
8905 | */ | |
8906 | tableattrs |= extract64(descriptor, 59, 5); | |
8907 | level++; | |
dddb5223 | 8908 | indexmask = indexmask_grainsize; |
3dde962f PM |
8909 | continue; |
8910 | } | |
8911 | /* Block entry at level 1 or 2, or page entry at level 3. | |
8912 | * These are basically the same thing, although the number | |
8913 | * of bits we pull in from the vaddr varies. | |
8914 | */ | |
973a5434 | 8915 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
3dde962f | 8916 | descaddr |= (address & (page_size - 1)); |
6ab1a5ee | 8917 | /* Extract attributes from the descriptor */ |
d615efac IC |
8918 | attrs = extract64(descriptor, 2, 10) |
8919 | | (extract64(descriptor, 52, 12) << 10); | |
6ab1a5ee EI |
8920 | |
8921 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
8922 | /* Stage 2 table descriptors do not include any attribute fields */ | |
8923 | break; | |
8924 | } | |
8925 | /* Merge in attributes from table descriptors */ | |
3dde962f PM |
8926 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
8927 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
8928 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
8929 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
8930 | */ | |
8931 | if (extract32(tableattrs, 2, 1)) { | |
8932 | attrs &= ~(1 << 4); | |
8933 | } | |
ebca90e4 | 8934 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
8935 | break; |
8936 | } | |
8937 | /* Here descaddr is the final physical address, and attributes | |
8938 | * are all in attrs. | |
8939 | */ | |
8940 | fault_type = access_fault; | |
8941 | if ((attrs & (1 << 8)) == 0) { | |
8942 | /* Access flag */ | |
8943 | goto do_fault; | |
8944 | } | |
d8e052b3 AJ |
8945 | |
8946 | ap = extract32(attrs, 4, 2); | |
d8e052b3 | 8947 | xn = extract32(attrs, 12, 1); |
d8e052b3 | 8948 | |
6ab1a5ee EI |
8949 | if (mmu_idx == ARMMMUIdx_S2NS) { |
8950 | ns = true; | |
8951 | *prot = get_S2prot(env, ap, xn); | |
8952 | } else { | |
8953 | ns = extract32(attrs, 3, 1); | |
8954 | pxn = extract32(attrs, 11, 1); | |
6e99f762 | 8955 | *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
6ab1a5ee | 8956 | } |
d8e052b3 | 8957 | |
3dde962f | 8958 | fault_type = permission_fault; |
d8e052b3 | 8959 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
8960 | goto do_fault; |
8961 | } | |
3dde962f | 8962 | |
8bf5b6a9 PM |
8963 | if (ns) { |
8964 | /* The NS bit will (as required by the architecture) have no effect if | |
8965 | * the CPU doesn't support TZ or this is a non-secure translation | |
8966 | * regime, because the attribute will already be non-secure. | |
8967 | */ | |
8968 | txattrs->secure = false; | |
8969 | } | |
5b2d261d AB |
8970 | |
8971 | if (cacheattrs != NULL) { | |
8972 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
8973 | cacheattrs->attrs = convert_stage2_attrs(env, | |
8974 | extract32(attrs, 0, 4)); | |
8975 | } else { | |
8976 | /* Index into MAIR registers for cache attributes */ | |
8977 | uint8_t attrindx = extract32(attrs, 0, 3); | |
8978 | uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; | |
8979 | assert(attrindx <= 7); | |
8980 | cacheattrs->attrs = extract64(mair, attrindx * 8, 8); | |
8981 | } | |
8982 | cacheattrs->shareability = extract32(attrs, 6, 2); | |
8983 | } | |
8984 | ||
3dde962f PM |
8985 | *phys_ptr = descaddr; |
8986 | *page_size_ptr = page_size; | |
b7cc4e82 | 8987 | return false; |
3dde962f PM |
8988 | |
8989 | do_fault: | |
8990 | /* Long-descriptor format IFSR/DFSR value */ | |
b7cc4e82 | 8991 | *fsr = (1 << 9) | (fault_type << 2) | level; |
37785977 EI |
8992 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
8993 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); | |
b7cc4e82 | 8994 | return true; |
3dde962f PM |
8995 | } |
8996 | ||
f6bda88f PC |
8997 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
8998 | ARMMMUIdx mmu_idx, | |
8999 | int32_t address, int *prot) | |
9000 | { | |
3a00d560 MD |
9001 | if (!arm_feature(env, ARM_FEATURE_M)) { |
9002 | *prot = PAGE_READ | PAGE_WRITE; | |
9003 | switch (address) { | |
9004 | case 0xF0000000 ... 0xFFFFFFFF: | |
9005 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { | |
9006 | /* hivecs execing is ok */ | |
9007 | *prot |= PAGE_EXEC; | |
9008 | } | |
9009 | break; | |
9010 | case 0x00000000 ... 0x7FFFFFFF: | |
f6bda88f | 9011 | *prot |= PAGE_EXEC; |
3a00d560 MD |
9012 | break; |
9013 | } | |
9014 | } else { | |
9015 | /* Default system address map for M profile cores. | |
9016 | * The architecture specifies which regions are execute-never; | |
9017 | * at the MPU level no other checks are defined. | |
9018 | */ | |
9019 | switch (address) { | |
9020 | case 0x00000000 ... 0x1fffffff: /* ROM */ | |
9021 | case 0x20000000 ... 0x3fffffff: /* SRAM */ | |
9022 | case 0x60000000 ... 0x7fffffff: /* RAM */ | |
9023 | case 0x80000000 ... 0x9fffffff: /* RAM */ | |
9024 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
9025 | break; | |
9026 | case 0x40000000 ... 0x5fffffff: /* Peripheral */ | |
9027 | case 0xa0000000 ... 0xbfffffff: /* Device */ | |
9028 | case 0xc0000000 ... 0xdfffffff: /* Device */ | |
9029 | case 0xe0000000 ... 0xffffffff: /* System */ | |
9030 | *prot = PAGE_READ | PAGE_WRITE; | |
9031 | break; | |
9032 | default: | |
9033 | g_assert_not_reached(); | |
f6bda88f | 9034 | } |
f6bda88f | 9035 | } |
f6bda88f PC |
9036 | } |
9037 | ||
29c483a5 MD |
9038 | static bool pmsav7_use_background_region(ARMCPU *cpu, |
9039 | ARMMMUIdx mmu_idx, bool is_user) | |
9040 | { | |
9041 | /* Return true if we should use the default memory map as a | |
9042 | * "background" region if there are no hits against any MPU regions. | |
9043 | */ | |
9044 | CPUARMState *env = &cpu->env; | |
9045 | ||
9046 | if (is_user) { | |
9047 | return false; | |
9048 | } | |
9049 | ||
9050 | if (arm_feature(env, ARM_FEATURE_M)) { | |
ecf5e8ea PM |
9051 | return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] |
9052 | & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; | |
29c483a5 MD |
9053 | } else { |
9054 | return regime_sctlr(env, mmu_idx) & SCTLR_BR; | |
9055 | } | |
9056 | } | |
9057 | ||
38aaa60c PM |
9058 | static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
9059 | { | |
9060 | /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ | |
9061 | return arm_feature(env, ARM_FEATURE_M) && | |
9062 | extract32(address, 20, 12) == 0xe00; | |
9063 | } | |
9064 | ||
bf446a11 PM |
9065 | static inline bool m_is_system_region(CPUARMState *env, uint32_t address) |
9066 | { | |
9067 | /* True if address is in the M profile system region | |
9068 | * 0xe0000000 - 0xffffffff | |
9069 | */ | |
9070 | return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; | |
9071 | } | |
9072 | ||
f6bda88f | 9073 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
03ae85f8 | 9074 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
f6bda88f PC |
9075 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) |
9076 | { | |
9077 | ARMCPU *cpu = arm_env_get_cpu(env); | |
9078 | int n; | |
9079 | bool is_user = regime_is_user(env, mmu_idx); | |
9080 | ||
9081 | *phys_ptr = address; | |
9082 | *prot = 0; | |
9083 | ||
38aaa60c PM |
9084 | if (regime_translation_disabled(env, mmu_idx) || |
9085 | m_is_ppb_region(env, address)) { | |
9086 | /* MPU disabled or M profile PPB access: use default memory map. | |
9087 | * The other case which uses the default memory map in the | |
9088 | * v7M ARM ARM pseudocode is exception vector reads from the vector | |
9089 | * table. In QEMU those accesses are done in arm_v7m_load_vector(), | |
9090 | * which always does a direct read using address_space_ldl(), rather | |
9091 | * than going via this function, so we don't need to check that here. | |
9092 | */ | |
f6bda88f PC |
9093 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
9094 | } else { /* MPU enabled */ | |
9095 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
9096 | /* region search */ | |
9097 | uint32_t base = env->pmsav7.drbar[n]; | |
9098 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
9099 | uint32_t rmask; | |
9100 | bool srdis = false; | |
9101 | ||
9102 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
9103 | continue; | |
9104 | } | |
9105 | ||
9106 | if (!rsize) { | |
c9f9f124 MD |
9107 | qemu_log_mask(LOG_GUEST_ERROR, |
9108 | "DRSR[%d]: Rsize field cannot be 0\n", n); | |
f6bda88f PC |
9109 | continue; |
9110 | } | |
9111 | rsize++; | |
9112 | rmask = (1ull << rsize) - 1; | |
9113 | ||
9114 | if (base & rmask) { | |
c9f9f124 MD |
9115 | qemu_log_mask(LOG_GUEST_ERROR, |
9116 | "DRBAR[%d]: 0x%" PRIx32 " misaligned " | |
9117 | "to DRSR region size, mask = 0x%" PRIx32 "\n", | |
9118 | n, base, rmask); | |
f6bda88f PC |
9119 | continue; |
9120 | } | |
9121 | ||
9122 | if (address < base || address > base + rmask) { | |
9123 | continue; | |
9124 | } | |
9125 | ||
9126 | /* Region matched */ | |
9127 | ||
9128 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
9129 | int i, snd; | |
9130 | uint32_t srdis_mask; | |
9131 | ||
9132 | rsize -= 3; /* sub region size (power of 2) */ | |
9133 | snd = ((address - base) >> rsize) & 0x7; | |
9134 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
9135 | ||
9136 | srdis_mask = srdis ? 0x3 : 0x0; | |
9137 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
9138 | /* This will check in groups of 2, 4 and then 8, whether | |
9139 | * the subregion bits are consistent. rsize is incremented | |
9140 | * back up to give the region size, considering consistent | |
9141 | * adjacent subregions as one region. Stop testing if rsize | |
9142 | * is already big enough for an entire QEMU page. | |
9143 | */ | |
9144 | int snd_rounded = snd & ~(i - 1); | |
9145 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
9146 | snd_rounded + 8, i); | |
9147 | if (srdis_mask ^ srdis_multi) { | |
9148 | break; | |
9149 | } | |
9150 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
9151 | rsize++; | |
9152 | } | |
9153 | } | |
9154 | if (rsize < TARGET_PAGE_BITS) { | |
c9f9f124 MD |
9155 | qemu_log_mask(LOG_UNIMP, |
9156 | "DRSR[%d]: No support for MPU (sub)region " | |
f6bda88f | 9157 | "alignment of %" PRIu32 " bits. Minimum is %d\n", |
c9f9f124 | 9158 | n, rsize, TARGET_PAGE_BITS); |
f6bda88f PC |
9159 | continue; |
9160 | } | |
9161 | if (srdis) { | |
9162 | continue; | |
9163 | } | |
9164 | break; | |
9165 | } | |
9166 | ||
9167 | if (n == -1) { /* no hits */ | |
29c483a5 | 9168 | if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
f6bda88f PC |
9169 | /* background fault */ |
9170 | *fsr = 0; | |
9171 | return true; | |
9172 | } | |
9173 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
9174 | } else { /* a MPU hit! */ | |
9175 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
bf446a11 PM |
9176 | uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
9177 | ||
9178 | if (m_is_system_region(env, address)) { | |
9179 | /* System space is always execute never */ | |
9180 | xn = 1; | |
9181 | } | |
f6bda88f PC |
9182 | |
9183 | if (is_user) { /* User mode AP bit decoding */ | |
9184 | switch (ap) { | |
9185 | case 0: | |
9186 | case 1: | |
9187 | case 5: | |
9188 | break; /* no access */ | |
9189 | case 3: | |
9190 | *prot |= PAGE_WRITE; | |
9191 | /* fall through */ | |
9192 | case 2: | |
9193 | case 6: | |
9194 | *prot |= PAGE_READ | PAGE_EXEC; | |
9195 | break; | |
9196 | default: | |
9197 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
9198 | "DRACR[%d]: Bad value for AP bits: 0x%" |
9199 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
9200 | } |
9201 | } else { /* Priv. mode AP bits decoding */ | |
9202 | switch (ap) { | |
9203 | case 0: | |
9204 | break; /* no access */ | |
9205 | case 1: | |
9206 | case 2: | |
9207 | case 3: | |
9208 | *prot |= PAGE_WRITE; | |
9209 | /* fall through */ | |
9210 | case 5: | |
9211 | case 6: | |
9212 | *prot |= PAGE_READ | PAGE_EXEC; | |
9213 | break; | |
9214 | default: | |
9215 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
9216 | "DRACR[%d]: Bad value for AP bits: 0x%" |
9217 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
9218 | } |
9219 | } | |
9220 | ||
9221 | /* execute never */ | |
bf446a11 | 9222 | if (xn) { |
f6bda88f PC |
9223 | *prot &= ~PAGE_EXEC; |
9224 | } | |
9225 | } | |
9226 | } | |
9227 | ||
9228 | *fsr = 0x00d; /* Permission fault */ | |
9229 | return !(*prot & (1 << access_type)); | |
9230 | } | |
9231 | ||
35337cc3 PM |
9232 | static bool v8m_is_sau_exempt(CPUARMState *env, |
9233 | uint32_t address, MMUAccessType access_type) | |
9234 | { | |
9235 | /* The architecture specifies that certain address ranges are | |
9236 | * exempt from v8M SAU/IDAU checks. | |
9237 | */ | |
9238 | return | |
9239 | (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || | |
9240 | (address >= 0xe0000000 && address <= 0xe0002fff) || | |
9241 | (address >= 0xe000e000 && address <= 0xe000efff) || | |
9242 | (address >= 0xe002e000 && address <= 0xe002efff) || | |
9243 | (address >= 0xe0040000 && address <= 0xe0041fff) || | |
9244 | (address >= 0xe00ff000 && address <= 0xe00fffff); | |
9245 | } | |
9246 | ||
9247 | static void v8m_security_lookup(CPUARMState *env, uint32_t address, | |
9248 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
9249 | V8M_SAttributes *sattrs) | |
9250 | { | |
9251 | /* Look up the security attributes for this address. Compare the | |
9252 | * pseudocode SecurityCheck() function. | |
9253 | * We assume the caller has zero-initialized *sattrs. | |
9254 | */ | |
9255 | ARMCPU *cpu = arm_env_get_cpu(env); | |
9256 | int r; | |
9257 | ||
9258 | /* TODO: implement IDAU */ | |
9259 | ||
9260 | if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { | |
9261 | /* 0xf0000000..0xffffffff is always S for insn fetches */ | |
9262 | return; | |
9263 | } | |
9264 | ||
9265 | if (v8m_is_sau_exempt(env, address, access_type)) { | |
9266 | sattrs->ns = !regime_is_secure(env, mmu_idx); | |
9267 | return; | |
9268 | } | |
9269 | ||
9270 | switch (env->sau.ctrl & 3) { | |
9271 | case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ | |
9272 | break; | |
9273 | case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ | |
9274 | sattrs->ns = true; | |
9275 | break; | |
9276 | default: /* SAU.ENABLE == 1 */ | |
9277 | for (r = 0; r < cpu->sau_sregion; r++) { | |
9278 | if (env->sau.rlar[r] & 1) { | |
9279 | uint32_t base = env->sau.rbar[r] & ~0x1f; | |
9280 | uint32_t limit = env->sau.rlar[r] | 0x1f; | |
9281 | ||
9282 | if (base <= address && limit >= address) { | |
9283 | if (sattrs->srvalid) { | |
9284 | /* If we hit in more than one region then we must report | |
9285 | * as Secure, not NS-Callable, with no valid region | |
9286 | * number info. | |
9287 | */ | |
9288 | sattrs->ns = false; | |
9289 | sattrs->nsc = false; | |
9290 | sattrs->sregion = 0; | |
9291 | sattrs->srvalid = false; | |
9292 | break; | |
9293 | } else { | |
9294 | if (env->sau.rlar[r] & 2) { | |
9295 | sattrs->nsc = true; | |
9296 | } else { | |
9297 | sattrs->ns = true; | |
9298 | } | |
9299 | sattrs->srvalid = true; | |
9300 | sattrs->sregion = r; | |
9301 | } | |
9302 | } | |
9303 | } | |
9304 | } | |
9305 | ||
9306 | /* TODO when we support the IDAU then it may override the result here */ | |
9307 | break; | |
9308 | } | |
9309 | } | |
9310 | ||
504e3cc3 PM |
9311 | static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, |
9312 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
35337cc3 PM |
9313 | hwaddr *phys_ptr, MemTxAttrs *txattrs, |
9314 | int *prot, uint32_t *fsr) | |
504e3cc3 PM |
9315 | { |
9316 | ARMCPU *cpu = arm_env_get_cpu(env); | |
9317 | bool is_user = regime_is_user(env, mmu_idx); | |
62c58ee0 | 9318 | uint32_t secure = regime_is_secure(env, mmu_idx); |
504e3cc3 PM |
9319 | int n; |
9320 | int matchregion = -1; | |
9321 | bool hit = false; | |
35337cc3 | 9322 | V8M_SAttributes sattrs = {}; |
504e3cc3 PM |
9323 | |
9324 | *phys_ptr = address; | |
9325 | *prot = 0; | |
9326 | ||
35337cc3 PM |
9327 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
9328 | v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); | |
9329 | if (access_type == MMU_INST_FETCH) { | |
9330 | /* Instruction fetches always use the MMU bank and the | |
9331 | * transaction attribute determined by the fetch address, | |
9332 | * regardless of CPU state. This is painful for QEMU | |
9333 | * to handle, because it would mean we need to encode | |
9334 | * into the mmu_idx not just the (user, negpri) information | |
9335 | * for the current security state but also that for the | |
9336 | * other security state, which would balloon the number | |
9337 | * of mmu_idx values needed alarmingly. | |
9338 | * Fortunately we can avoid this because it's not actually | |
9339 | * possible to arbitrarily execute code from memory with | |
9340 | * the wrong security attribute: it will always generate | |
9341 | * an exception of some kind or another, apart from the | |
9342 | * special case of an NS CPU executing an SG instruction | |
9343 | * in S&NSC memory. So we always just fail the translation | |
9344 | * here and sort things out in the exception handler | |
9345 | * (including possibly emulating an SG instruction). | |
9346 | */ | |
9347 | if (sattrs.ns != !secure) { | |
9348 | *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT; | |
9349 | return true; | |
9350 | } | |
9351 | } else { | |
9352 | /* For data accesses we always use the MMU bank indicated | |
9353 | * by the current CPU state, but the security attributes | |
9354 | * might downgrade a secure access to nonsecure. | |
9355 | */ | |
9356 | if (sattrs.ns) { | |
9357 | txattrs->secure = false; | |
9358 | } else if (!secure) { | |
9359 | /* NS access to S memory must fault. | |
9360 | * Architecturally we should first check whether the | |
9361 | * MPU information for this address indicates that we | |
9362 | * are doing an unaligned access to Device memory, which | |
9363 | * should generate a UsageFault instead. QEMU does not | |
9364 | * currently check for that kind of unaligned access though. | |
9365 | * If we added it we would need to do so as a special case | |
9366 | * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). | |
9367 | */ | |
9368 | *fsr = M_FAKE_FSR_SFAULT; | |
9369 | return true; | |
9370 | } | |
9371 | } | |
9372 | } | |
9373 | ||
504e3cc3 PM |
9374 | /* Unlike the ARM ARM pseudocode, we don't need to check whether this |
9375 | * was an exception vector read from the vector table (which is always | |
9376 | * done using the default system address map), because those accesses | |
9377 | * are done in arm_v7m_load_vector(), which always does a direct | |
9378 | * read using address_space_ldl(), rather than going via this function. | |
9379 | */ | |
9380 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
9381 | hit = true; | |
9382 | } else if (m_is_ppb_region(env, address)) { | |
9383 | hit = true; | |
9384 | } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { | |
9385 | hit = true; | |
9386 | } else { | |
9387 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
9388 | /* region search */ | |
9389 | /* Note that the base address is bits [31:5] from the register | |
9390 | * with bits [4:0] all zeroes, but the limit address is bits | |
9391 | * [31:5] from the register with bits [4:0] all ones. | |
9392 | */ | |
62c58ee0 PM |
9393 | uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; |
9394 | uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; | |
504e3cc3 | 9395 | |
62c58ee0 | 9396 | if (!(env->pmsav8.rlar[secure][n] & 0x1)) { |
504e3cc3 PM |
9397 | /* Region disabled */ |
9398 | continue; | |
9399 | } | |
9400 | ||
9401 | if (address < base || address > limit) { | |
9402 | continue; | |
9403 | } | |
9404 | ||
9405 | if (hit) { | |
9406 | /* Multiple regions match -- always a failure (unlike | |
9407 | * PMSAv7 where highest-numbered-region wins) | |
9408 | */ | |
9409 | *fsr = 0x00d; /* permission fault */ | |
9410 | return true; | |
9411 | } | |
9412 | ||
9413 | matchregion = n; | |
9414 | hit = true; | |
9415 | ||
9416 | if (base & ~TARGET_PAGE_MASK) { | |
9417 | qemu_log_mask(LOG_UNIMP, | |
9418 | "MPU_RBAR[%d]: No support for MPU region base" | |
9419 | "address of 0x%" PRIx32 ". Minimum alignment is " | |
9420 | "%d\n", | |
9421 | n, base, TARGET_PAGE_BITS); | |
9422 | continue; | |
9423 | } | |
9424 | if ((limit + 1) & ~TARGET_PAGE_MASK) { | |
9425 | qemu_log_mask(LOG_UNIMP, | |
9426 | "MPU_RBAR[%d]: No support for MPU region limit" | |
9427 | "address of 0x%" PRIx32 ". Minimum alignment is " | |
9428 | "%d\n", | |
9429 | n, limit, TARGET_PAGE_BITS); | |
9430 | continue; | |
9431 | } | |
9432 | } | |
9433 | } | |
9434 | ||
9435 | if (!hit) { | |
9436 | /* background fault */ | |
9437 | *fsr = 0; | |
9438 | return true; | |
9439 | } | |
9440 | ||
9441 | if (matchregion == -1) { | |
9442 | /* hit using the background region */ | |
9443 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
9444 | } else { | |
62c58ee0 PM |
9445 | uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); |
9446 | uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); | |
504e3cc3 PM |
9447 | |
9448 | if (m_is_system_region(env, address)) { | |
9449 | /* System space is always execute never */ | |
9450 | xn = 1; | |
9451 | } | |
9452 | ||
9453 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); | |
9454 | if (*prot && !xn) { | |
9455 | *prot |= PAGE_EXEC; | |
9456 | } | |
9457 | /* We don't need to look the attribute up in the MAIR0/MAIR1 | |
9458 | * registers because that only tells us about cacheability. | |
9459 | */ | |
9460 | } | |
9461 | ||
9462 | *fsr = 0x00d; /* Permission fault */ | |
9463 | return !(*prot & (1 << access_type)); | |
9464 | } | |
9465 | ||
13689d43 | 9466 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
03ae85f8 | 9467 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
13689d43 | 9468 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) |
9ee6e8bb PB |
9469 | { |
9470 | int n; | |
9471 | uint32_t mask; | |
9472 | uint32_t base; | |
0480f69a | 9473 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb | 9474 | |
3279adb9 PM |
9475 | if (regime_translation_disabled(env, mmu_idx)) { |
9476 | /* MPU disabled. */ | |
9477 | *phys_ptr = address; | |
9478 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
9479 | return false; | |
9480 | } | |
9481 | ||
9ee6e8bb PB |
9482 | *phys_ptr = address; |
9483 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 9484 | base = env->cp15.c6_region[n]; |
87c3d486 | 9485 | if ((base & 1) == 0) { |
554b0b09 | 9486 | continue; |
87c3d486 | 9487 | } |
554b0b09 PM |
9488 | mask = 1 << ((base >> 1) & 0x1f); |
9489 | /* Keep this shift separate from the above to avoid an | |
9490 | (undefined) << 32. */ | |
9491 | mask = (mask << 1) - 1; | |
87c3d486 | 9492 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 9493 | break; |
87c3d486 | 9494 | } |
9ee6e8bb | 9495 | } |
87c3d486 | 9496 | if (n < 0) { |
b7cc4e82 PC |
9497 | *fsr = 2; |
9498 | return true; | |
87c3d486 | 9499 | } |
9ee6e8bb | 9500 | |
03ae85f8 | 9501 | if (access_type == MMU_INST_FETCH) { |
7e09797c | 9502 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 9503 | } else { |
7e09797c | 9504 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
9505 | } |
9506 | mask = (mask >> (n * 4)) & 0xf; | |
9507 | switch (mask) { | |
9508 | case 0: | |
b7cc4e82 PC |
9509 | *fsr = 1; |
9510 | return true; | |
9ee6e8bb | 9511 | case 1: |
87c3d486 | 9512 | if (is_user) { |
b7cc4e82 PC |
9513 | *fsr = 1; |
9514 | return true; | |
87c3d486 | 9515 | } |
554b0b09 PM |
9516 | *prot = PAGE_READ | PAGE_WRITE; |
9517 | break; | |
9ee6e8bb | 9518 | case 2: |
554b0b09 | 9519 | *prot = PAGE_READ; |
87c3d486 | 9520 | if (!is_user) { |
554b0b09 | 9521 | *prot |= PAGE_WRITE; |
87c3d486 | 9522 | } |
554b0b09 | 9523 | break; |
9ee6e8bb | 9524 | case 3: |
554b0b09 PM |
9525 | *prot = PAGE_READ | PAGE_WRITE; |
9526 | break; | |
9ee6e8bb | 9527 | case 5: |
87c3d486 | 9528 | if (is_user) { |
b7cc4e82 PC |
9529 | *fsr = 1; |
9530 | return true; | |
87c3d486 | 9531 | } |
554b0b09 PM |
9532 | *prot = PAGE_READ; |
9533 | break; | |
9ee6e8bb | 9534 | case 6: |
554b0b09 PM |
9535 | *prot = PAGE_READ; |
9536 | break; | |
9ee6e8bb | 9537 | default: |
554b0b09 | 9538 | /* Bad permission. */ |
b7cc4e82 PC |
9539 | *fsr = 1; |
9540 | return true; | |
9ee6e8bb | 9541 | } |
3ad493fc | 9542 | *prot |= PAGE_EXEC; |
b7cc4e82 | 9543 | return false; |
9ee6e8bb PB |
9544 | } |
9545 | ||
5b2d261d AB |
9546 | /* Combine either inner or outer cacheability attributes for normal |
9547 | * memory, according to table D4-42 and pseudocode procedure | |
9548 | * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). | |
9549 | * | |
9550 | * NB: only stage 1 includes allocation hints (RW bits), leading to | |
9551 | * some asymmetry. | |
9552 | */ | |
9553 | static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) | |
9554 | { | |
9555 | if (s1 == 4 || s2 == 4) { | |
9556 | /* non-cacheable has precedence */ | |
9557 | return 4; | |
9558 | } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { | |
9559 | /* stage 1 write-through takes precedence */ | |
9560 | return s1; | |
9561 | } else if (extract32(s2, 2, 2) == 2) { | |
9562 | /* stage 2 write-through takes precedence, but the allocation hint | |
9563 | * is still taken from stage 1 | |
9564 | */ | |
9565 | return (2 << 2) | extract32(s1, 0, 2); | |
9566 | } else { /* write-back */ | |
9567 | return s1; | |
9568 | } | |
9569 | } | |
9570 | ||
9571 | /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 | |
9572 | * and CombineS1S2Desc() | |
9573 | * | |
9574 | * @s1: Attributes from stage 1 walk | |
9575 | * @s2: Attributes from stage 2 walk | |
9576 | */ | |
9577 | static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) | |
9578 | { | |
9579 | uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); | |
9580 | uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); | |
9581 | ARMCacheAttrs ret; | |
9582 | ||
9583 | /* Combine shareability attributes (table D4-43) */ | |
9584 | if (s1.shareability == 2 || s2.shareability == 2) { | |
9585 | /* if either are outer-shareable, the result is outer-shareable */ | |
9586 | ret.shareability = 2; | |
9587 | } else if (s1.shareability == 3 || s2.shareability == 3) { | |
9588 | /* if either are inner-shareable, the result is inner-shareable */ | |
9589 | ret.shareability = 3; | |
9590 | } else { | |
9591 | /* both non-shareable */ | |
9592 | ret.shareability = 0; | |
9593 | } | |
9594 | ||
9595 | /* Combine memory type and cacheability attributes */ | |
9596 | if (s1hi == 0 || s2hi == 0) { | |
9597 | /* Device has precedence over normal */ | |
9598 | if (s1lo == 0 || s2lo == 0) { | |
9599 | /* nGnRnE has precedence over anything */ | |
9600 | ret.attrs = 0; | |
9601 | } else if (s1lo == 4 || s2lo == 4) { | |
9602 | /* non-Reordering has precedence over Reordering */ | |
9603 | ret.attrs = 4; /* nGnRE */ | |
9604 | } else if (s1lo == 8 || s2lo == 8) { | |
9605 | /* non-Gathering has precedence over Gathering */ | |
9606 | ret.attrs = 8; /* nGRE */ | |
9607 | } else { | |
9608 | ret.attrs = 0xc; /* GRE */ | |
9609 | } | |
9610 | ||
9611 | /* Any location for which the resultant memory type is any | |
9612 | * type of Device memory is always treated as Outer Shareable. | |
9613 | */ | |
9614 | ret.shareability = 2; | |
9615 | } else { /* Normal memory */ | |
9616 | /* Outer/inner cacheability combine independently */ | |
9617 | ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 | |
9618 | | combine_cacheattr_nibble(s1lo, s2lo); | |
9619 | ||
9620 | if (ret.attrs == 0x44) { | |
9621 | /* Any location for which the resultant memory type is Normal | |
9622 | * Inner Non-cacheable, Outer Non-cacheable is always treated | |
9623 | * as Outer Shareable. | |
9624 | */ | |
9625 | ret.shareability = 2; | |
9626 | } | |
9627 | } | |
9628 | ||
9629 | return ret; | |
9630 | } | |
9631 | ||
9632 | ||
702a9357 PM |
9633 | /* get_phys_addr - get the physical address for this virtual address |
9634 | * | |
9635 | * Find the physical address corresponding to the given virtual address, | |
9636 | * by doing a translation table walk on MMU based systems or using the | |
9637 | * MPU state on MPU based systems. | |
9638 | * | |
b7cc4e82 PC |
9639 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
9640 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
9641 | * information on why the translation aborted, in the format of a |
9642 | * DFSR/IFSR fault register, with the following caveats: | |
9643 | * * we honour the short vs long DFSR format differences. | |
9644 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 9645 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
9646 | * value. |
9647 | * | |
9648 | * @env: CPUARMState | |
9649 | * @address: virtual address to get physical address for | |
9650 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 9651 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 9652 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 9653 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
9654 | * @prot: set to the permissions for the page containing phys_ptr |
9655 | * @page_size: set to the size of the page containing phys_ptr | |
b7cc4e82 | 9656 | * @fsr: set to the DFSR/IFSR value on failure |
5b2d261d AB |
9657 | * @fi: set to fault info if the translation fails |
9658 | * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes | |
702a9357 | 9659 | */ |
af51f566 | 9660 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
03ae85f8 | 9661 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
af51f566 | 9662 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
e14b5a23 | 9663 | target_ulong *page_size, uint32_t *fsr, |
5b2d261d | 9664 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
9ee6e8bb | 9665 | { |
0480f69a | 9666 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
9b539263 EI |
9667 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
9668 | * translations. | |
0480f69a | 9669 | */ |
9b539263 EI |
9670 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
9671 | hwaddr ipa; | |
9672 | int s2_prot; | |
9673 | int ret; | |
5b2d261d | 9674 | ARMCacheAttrs cacheattrs2 = {}; |
9b539263 EI |
9675 | |
9676 | ret = get_phys_addr(env, address, access_type, | |
8bd5c820 | 9677 | stage_1_mmu_idx(mmu_idx), &ipa, attrs, |
5b2d261d | 9678 | prot, page_size, fsr, fi, cacheattrs); |
9b539263 EI |
9679 | |
9680 | /* If S1 fails or S2 is disabled, return early. */ | |
9681 | if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
9682 | *phys_ptr = ipa; | |
9683 | return ret; | |
9684 | } | |
9685 | ||
9686 | /* S1 is done. Now do S2 translation. */ | |
9687 | ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, | |
9688 | phys_ptr, attrs, &s2_prot, | |
5b2d261d AB |
9689 | page_size, fsr, fi, |
9690 | cacheattrs != NULL ? &cacheattrs2 : NULL); | |
9b539263 EI |
9691 | fi->s2addr = ipa; |
9692 | /* Combine the S1 and S2 perms. */ | |
9693 | *prot &= s2_prot; | |
5b2d261d AB |
9694 | |
9695 | /* Combine the S1 and S2 cache attributes, if needed */ | |
9696 | if (!ret && cacheattrs != NULL) { | |
9697 | *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); | |
9698 | } | |
9699 | ||
9b539263 EI |
9700 | return ret; |
9701 | } else { | |
9702 | /* | |
9703 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | |
9704 | */ | |
8bd5c820 | 9705 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
9b539263 | 9706 | } |
0480f69a | 9707 | } |
d3649702 | 9708 | |
8bf5b6a9 PM |
9709 | /* The page table entries may downgrade secure to non-secure, but |
9710 | * cannot upgrade an non-secure translation regime's attributes | |
9711 | * to secure. | |
9712 | */ | |
9713 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 9714 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 9715 | |
0480f69a PM |
9716 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
9717 | * In v7 and earlier it affects all stage 1 translations. | |
9718 | */ | |
9719 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
9720 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
9721 | if (regime_el(env, mmu_idx) == 3) { | |
9722 | address += env->cp15.fcseidr_s; | |
9723 | } else { | |
9724 | address += env->cp15.fcseidr_ns; | |
9725 | } | |
54bf36ed | 9726 | } |
9ee6e8bb | 9727 | |
3279adb9 | 9728 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
c9f9f124 | 9729 | bool ret; |
f6bda88f | 9730 | *page_size = TARGET_PAGE_SIZE; |
3279adb9 | 9731 | |
504e3cc3 PM |
9732 | if (arm_feature(env, ARM_FEATURE_V8)) { |
9733 | /* PMSAv8 */ | |
9734 | ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, | |
35337cc3 | 9735 | phys_ptr, attrs, prot, fsr); |
504e3cc3 | 9736 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
3279adb9 PM |
9737 | /* PMSAv7 */ |
9738 | ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
9739 | phys_ptr, prot, fsr); | |
9740 | } else { | |
9741 | /* Pre-v7 MPU */ | |
9742 | ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, | |
9743 | phys_ptr, prot, fsr); | |
9744 | } | |
9745 | qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 | |
c9f9f124 | 9746 | " mmu_idx %u -> %s (prot %c%c%c)\n", |
709e4407 PM |
9747 | access_type == MMU_DATA_LOAD ? "reading" : |
9748 | (access_type == MMU_DATA_STORE ? "writing" : "execute"), | |
c9f9f124 MD |
9749 | (uint32_t)address, mmu_idx, |
9750 | ret ? "Miss" : "Hit", | |
9751 | *prot & PAGE_READ ? 'r' : '-', | |
9752 | *prot & PAGE_WRITE ? 'w' : '-', | |
9753 | *prot & PAGE_EXEC ? 'x' : '-'); | |
9754 | ||
9755 | return ret; | |
f6bda88f PC |
9756 | } |
9757 | ||
3279adb9 PM |
9758 | /* Definitely a real MMU, not an MPU */ |
9759 | ||
0480f69a | 9760 | if (regime_translation_disabled(env, mmu_idx)) { |
3279adb9 | 9761 | /* MMU disabled. */ |
9ee6e8bb | 9762 | *phys_ptr = address; |
3ad493fc | 9763 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 9764 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 9765 | return 0; |
0480f69a PM |
9766 | } |
9767 | ||
0480f69a PM |
9768 | if (regime_using_lpae_format(env, mmu_idx)) { |
9769 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
5b2d261d | 9770 | attrs, prot, page_size, fsr, fi, cacheattrs); |
0480f69a PM |
9771 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
9772 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
e14b5a23 | 9773 | attrs, prot, page_size, fsr, fi); |
9ee6e8bb | 9774 | } else { |
0480f69a | 9775 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
e14b5a23 | 9776 | prot, page_size, fsr, fi); |
9ee6e8bb PB |
9777 | } |
9778 | } | |
9779 | ||
8c6084bf | 9780 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
9781 | * to the TLB. Return false on success, or true on failure. Populate |
9782 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 9783 | */ |
b7cc4e82 | 9784 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
03ae85f8 | 9785 | MMUAccessType access_type, int mmu_idx, uint32_t *fsr, |
e14b5a23 | 9786 | ARMMMUFaultInfo *fi) |
b5ff1b31 | 9787 | { |
7510454e AF |
9788 | ARMCPU *cpu = ARM_CPU(cs); |
9789 | CPUARMState *env = &cpu->env; | |
a8170e5e | 9790 | hwaddr phys_addr; |
d4c430a8 | 9791 | target_ulong page_size; |
b5ff1b31 | 9792 | int prot; |
d3649702 | 9793 | int ret; |
8bf5b6a9 | 9794 | MemTxAttrs attrs = {}; |
b5ff1b31 | 9795 | |
8bd5c820 PM |
9796 | ret = get_phys_addr(env, address, access_type, |
9797 | core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, | |
5b2d261d | 9798 | &attrs, &prot, &page_size, fsr, fi, NULL); |
b7cc4e82 | 9799 | if (!ret) { |
b5ff1b31 | 9800 | /* Map a single [sub]page. */ |
dcd82c11 AB |
9801 | phys_addr &= TARGET_PAGE_MASK; |
9802 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
9803 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
9804 | prot, mmu_idx, page_size); | |
d4c430a8 | 9805 | return 0; |
b5ff1b31 FB |
9806 | } |
9807 | ||
8c6084bf | 9808 | return ret; |
b5ff1b31 FB |
9809 | } |
9810 | ||
0faea0c7 PM |
9811 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
9812 | MemTxAttrs *attrs) | |
b5ff1b31 | 9813 | { |
00b941e5 | 9814 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 9815 | CPUARMState *env = &cpu->env; |
a8170e5e | 9816 | hwaddr phys_addr; |
d4c430a8 | 9817 | target_ulong page_size; |
b5ff1b31 | 9818 | int prot; |
b7cc4e82 PC |
9819 | bool ret; |
9820 | uint32_t fsr; | |
e14b5a23 | 9821 | ARMMMUFaultInfo fi = {}; |
8bd5c820 | 9822 | ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); |
b5ff1b31 | 9823 | |
0faea0c7 PM |
9824 | *attrs = (MemTxAttrs) {}; |
9825 | ||
8bd5c820 | 9826 | ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, |
5b2d261d | 9827 | attrs, &prot, &page_size, &fsr, &fi, NULL); |
b5ff1b31 | 9828 | |
b7cc4e82 | 9829 | if (ret) { |
b5ff1b31 | 9830 | return -1; |
00b941e5 | 9831 | } |
b5ff1b31 FB |
9832 | return phys_addr; |
9833 | } | |
9834 | ||
0ecb72a5 | 9835 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 9836 | { |
58117c9b MD |
9837 | uint32_t mask; |
9838 | unsigned el = arm_current_el(env); | |
9839 | ||
9840 | /* First handle registers which unprivileged can read */ | |
9841 | ||
9842 | switch (reg) { | |
9843 | case 0 ... 7: /* xPSR sub-fields */ | |
9844 | mask = 0; | |
9845 | if ((reg & 1) && el) { | |
987ab45e | 9846 | mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ |
58117c9b MD |
9847 | } |
9848 | if (!(reg & 4)) { | |
987ab45e | 9849 | mask |= XPSR_NZCV | XPSR_Q; /* APSR */ |
58117c9b MD |
9850 | } |
9851 | /* EPSR reads as zero */ | |
9852 | return xpsr_read(env) & mask; | |
9853 | break; | |
9854 | case 20: /* CONTROL */ | |
8bfc26ea | 9855 | return env->v7m.control[env->v7m.secure]; |
50f11062 PM |
9856 | case 0x94: /* CONTROL_NS */ |
9857 | /* We have to handle this here because unprivileged Secure code | |
9858 | * can read the NS CONTROL register. | |
9859 | */ | |
9860 | if (!env->v7m.secure) { | |
9861 | return 0; | |
9862 | } | |
9863 | return env->v7m.control[M_REG_NS]; | |
58117c9b MD |
9864 | } |
9865 | ||
9866 | if (el == 0) { | |
9867 | return 0; /* unprivileged reads others as zero */ | |
9868 | } | |
a47dddd7 | 9869 | |
50f11062 PM |
9870 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
9871 | switch (reg) { | |
9872 | case 0x88: /* MSP_NS */ | |
9873 | if (!env->v7m.secure) { | |
9874 | return 0; | |
9875 | } | |
9876 | return env->v7m.other_ss_msp; | |
9877 | case 0x89: /* PSP_NS */ | |
9878 | if (!env->v7m.secure) { | |
9879 | return 0; | |
9880 | } | |
9881 | return env->v7m.other_ss_psp; | |
9882 | case 0x90: /* PRIMASK_NS */ | |
9883 | if (!env->v7m.secure) { | |
9884 | return 0; | |
9885 | } | |
9886 | return env->v7m.primask[M_REG_NS]; | |
9887 | case 0x91: /* BASEPRI_NS */ | |
9888 | if (!env->v7m.secure) { | |
9889 | return 0; | |
9890 | } | |
9891 | return env->v7m.basepri[M_REG_NS]; | |
9892 | case 0x93: /* FAULTMASK_NS */ | |
9893 | if (!env->v7m.secure) { | |
9894 | return 0; | |
9895 | } | |
9896 | return env->v7m.faultmask[M_REG_NS]; | |
9897 | case 0x98: /* SP_NS */ | |
9898 | { | |
9899 | /* This gives the non-secure SP selected based on whether we're | |
9900 | * currently in handler mode or not, using the NS CONTROL.SPSEL. | |
9901 | */ | |
9902 | bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; | |
9903 | ||
9904 | if (!env->v7m.secure) { | |
9905 | return 0; | |
9906 | } | |
9907 | if (!arm_v7m_is_handler_mode(env) && spsel) { | |
9908 | return env->v7m.other_ss_psp; | |
9909 | } else { | |
9910 | return env->v7m.other_ss_msp; | |
9911 | } | |
9912 | } | |
9913 | default: | |
9914 | break; | |
9915 | } | |
9916 | } | |
9917 | ||
9ee6e8bb | 9918 | switch (reg) { |
9ee6e8bb | 9919 | case 8: /* MSP */ |
8bfc26ea | 9920 | return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? |
abc24d86 | 9921 | env->v7m.other_sp : env->regs[13]; |
9ee6e8bb | 9922 | case 9: /* PSP */ |
8bfc26ea | 9923 | return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? |
abc24d86 | 9924 | env->regs[13] : env->v7m.other_sp; |
9ee6e8bb | 9925 | case 16: /* PRIMASK */ |
6d804834 | 9926 | return env->v7m.primask[env->v7m.secure]; |
82845826 SH |
9927 | case 17: /* BASEPRI */ |
9928 | case 18: /* BASEPRI_MAX */ | |
acf94941 | 9929 | return env->v7m.basepri[env->v7m.secure]; |
82845826 | 9930 | case 19: /* FAULTMASK */ |
42a6686b | 9931 | return env->v7m.faultmask[env->v7m.secure]; |
9ee6e8bb | 9932 | default: |
58117c9b MD |
9933 | qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" |
9934 | " register %d\n", reg); | |
9ee6e8bb PB |
9935 | return 0; |
9936 | } | |
9937 | } | |
9938 | ||
b28b3377 PM |
9939 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) |
9940 | { | |
9941 | /* We're passed bits [11..0] of the instruction; extract | |
9942 | * SYSm and the mask bits. | |
9943 | * Invalid combinations of SYSm and mask are UNPREDICTABLE; | |
9944 | * we choose to treat them as if the mask bits were valid. | |
9945 | * NB that the pseudocode 'mask' variable is bits [11..10], | |
9946 | * whereas ours is [11..8]. | |
9947 | */ | |
9948 | uint32_t mask = extract32(maskreg, 8, 4); | |
9949 | uint32_t reg = extract32(maskreg, 0, 8); | |
9950 | ||
58117c9b MD |
9951 | if (arm_current_el(env) == 0 && reg > 7) { |
9952 | /* only xPSR sub-fields may be written by unprivileged */ | |
9953 | return; | |
9954 | } | |
a47dddd7 | 9955 | |
50f11062 PM |
9956 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
9957 | switch (reg) { | |
9958 | case 0x88: /* MSP_NS */ | |
9959 | if (!env->v7m.secure) { | |
9960 | return; | |
9961 | } | |
9962 | env->v7m.other_ss_msp = val; | |
9963 | return; | |
9964 | case 0x89: /* PSP_NS */ | |
9965 | if (!env->v7m.secure) { | |
9966 | return; | |
9967 | } | |
9968 | env->v7m.other_ss_psp = val; | |
9969 | return; | |
9970 | case 0x90: /* PRIMASK_NS */ | |
9971 | if (!env->v7m.secure) { | |
9972 | return; | |
9973 | } | |
9974 | env->v7m.primask[M_REG_NS] = val & 1; | |
9975 | return; | |
9976 | case 0x91: /* BASEPRI_NS */ | |
9977 | if (!env->v7m.secure) { | |
9978 | return; | |
9979 | } | |
9980 | env->v7m.basepri[M_REG_NS] = val & 0xff; | |
9981 | return; | |
9982 | case 0x93: /* FAULTMASK_NS */ | |
9983 | if (!env->v7m.secure) { | |
9984 | return; | |
9985 | } | |
9986 | env->v7m.faultmask[M_REG_NS] = val & 1; | |
9987 | return; | |
9988 | case 0x98: /* SP_NS */ | |
9989 | { | |
9990 | /* This gives the non-secure SP selected based on whether we're | |
9991 | * currently in handler mode or not, using the NS CONTROL.SPSEL. | |
9992 | */ | |
9993 | bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; | |
9994 | ||
9995 | if (!env->v7m.secure) { | |
9996 | return; | |
9997 | } | |
9998 | if (!arm_v7m_is_handler_mode(env) && spsel) { | |
9999 | env->v7m.other_ss_psp = val; | |
10000 | } else { | |
10001 | env->v7m.other_ss_msp = val; | |
10002 | } | |
10003 | return; | |
10004 | } | |
10005 | default: | |
10006 | break; | |
10007 | } | |
10008 | } | |
10009 | ||
9ee6e8bb | 10010 | switch (reg) { |
58117c9b MD |
10011 | case 0 ... 7: /* xPSR sub-fields */ |
10012 | /* only APSR is actually writable */ | |
b28b3377 PM |
10013 | if (!(reg & 4)) { |
10014 | uint32_t apsrmask = 0; | |
10015 | ||
10016 | if (mask & 8) { | |
987ab45e | 10017 | apsrmask |= XPSR_NZCV | XPSR_Q; |
b28b3377 PM |
10018 | } |
10019 | if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { | |
987ab45e | 10020 | apsrmask |= XPSR_GE; |
b28b3377 PM |
10021 | } |
10022 | xpsr_write(env, val, apsrmask); | |
58117c9b | 10023 | } |
9ee6e8bb PB |
10024 | break; |
10025 | case 8: /* MSP */ | |
8bfc26ea | 10026 | if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { |
9ee6e8bb | 10027 | env->v7m.other_sp = val; |
abc24d86 | 10028 | } else { |
9ee6e8bb | 10029 | env->regs[13] = val; |
abc24d86 | 10030 | } |
9ee6e8bb PB |
10031 | break; |
10032 | case 9: /* PSP */ | |
8bfc26ea | 10033 | if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { |
9ee6e8bb | 10034 | env->regs[13] = val; |
abc24d86 | 10035 | } else { |
9ee6e8bb | 10036 | env->v7m.other_sp = val; |
abc24d86 | 10037 | } |
9ee6e8bb PB |
10038 | break; |
10039 | case 16: /* PRIMASK */ | |
6d804834 | 10040 | env->v7m.primask[env->v7m.secure] = val & 1; |
9ee6e8bb | 10041 | break; |
82845826 | 10042 | case 17: /* BASEPRI */ |
acf94941 | 10043 | env->v7m.basepri[env->v7m.secure] = val & 0xff; |
9ee6e8bb | 10044 | break; |
82845826 | 10045 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb | 10046 | val &= 0xff; |
acf94941 PM |
10047 | if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] |
10048 | || env->v7m.basepri[env->v7m.secure] == 0)) { | |
10049 | env->v7m.basepri[env->v7m.secure] = val; | |
10050 | } | |
9ee6e8bb | 10051 | break; |
82845826 | 10052 | case 19: /* FAULTMASK */ |
42a6686b | 10053 | env->v7m.faultmask[env->v7m.secure] = val & 1; |
82845826 | 10054 | break; |
9ee6e8bb | 10055 | case 20: /* CONTROL */ |
792dac30 PM |
10056 | /* Writing to the SPSEL bit only has an effect if we are in |
10057 | * thread mode; other bits can be updated by any privileged code. | |
de2db7ec | 10058 | * write_v7m_control_spsel() deals with updating the SPSEL bit in |
792dac30 PM |
10059 | * env->v7m.control, so we only need update the others. |
10060 | */ | |
15b3f556 | 10061 | if (!arm_v7m_is_handler_mode(env)) { |
de2db7ec | 10062 | write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); |
792dac30 | 10063 | } |
8bfc26ea PM |
10064 | env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; |
10065 | env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; | |
9ee6e8bb PB |
10066 | break; |
10067 | default: | |
58117c9b MD |
10068 | qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" |
10069 | " register %d\n", reg); | |
9ee6e8bb PB |
10070 | return; |
10071 | } | |
10072 | } | |
10073 | ||
b5ff1b31 | 10074 | #endif |
6ddbc6e4 | 10075 | |
aca3f40b PM |
10076 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
10077 | { | |
10078 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
10079 | * Note that we do not implement the (architecturally mandated) | |
10080 | * alignment fault for attempts to use this on Device memory | |
10081 | * (which matches the usual QEMU behaviour of not implementing either | |
10082 | * alignment faults or any memory attribute handling). | |
10083 | */ | |
10084 | ||
10085 | ARMCPU *cpu = arm_env_get_cpu(env); | |
10086 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
10087 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
10088 | ||
10089 | #ifndef CONFIG_USER_ONLY | |
10090 | { | |
10091 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
10092 | * the block size so we might have to do more than one TLB lookup. | |
10093 | * We know that in fact for any v8 CPU the page size is at least 4K | |
10094 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
10095 | * 1K as an artefact of legacy v5 subpage support being present in the | |
10096 | * same QEMU executable. | |
10097 | */ | |
10098 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
10099 | void *hostaddr[maxidx]; | |
10100 | int try, i; | |
97ed5ccd | 10101 | unsigned mmu_idx = cpu_mmu_index(env, false); |
3972ef6f | 10102 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
aca3f40b PM |
10103 | |
10104 | for (try = 0; try < 2; try++) { | |
10105 | ||
10106 | for (i = 0; i < maxidx; i++) { | |
10107 | hostaddr[i] = tlb_vaddr_to_host(env, | |
10108 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 10109 | 1, mmu_idx); |
aca3f40b PM |
10110 | if (!hostaddr[i]) { |
10111 | break; | |
10112 | } | |
10113 | } | |
10114 | if (i == maxidx) { | |
10115 | /* If it's all in the TLB it's fair game for just writing to; | |
10116 | * we know we don't need to update dirty status, etc. | |
10117 | */ | |
10118 | for (i = 0; i < maxidx - 1; i++) { | |
10119 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
10120 | } | |
10121 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
10122 | return; | |
10123 | } | |
10124 | /* OK, try a store and see if we can populate the tlb. This | |
10125 | * might cause an exception if the memory isn't writable, | |
10126 | * in which case we will longjmp out of here. We must for | |
10127 | * this purpose use the actual register value passed to us | |
10128 | * so that we get the fault address right. | |
10129 | */ | |
01ecaf43 | 10130 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); |
aca3f40b PM |
10131 | /* Now we can populate the other TLB entries, if any */ |
10132 | for (i = 0; i < maxidx; i++) { | |
10133 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
10134 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
01ecaf43 | 10135 | helper_ret_stb_mmu(env, va, 0, oi, GETPC()); |
aca3f40b PM |
10136 | } |
10137 | } | |
10138 | } | |
10139 | ||
10140 | /* Slow path (probably attempt to do this to an I/O device or | |
10141 | * similar, or clearing of a block of code we have translations | |
10142 | * cached for). Just do a series of byte writes as the architecture | |
10143 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
10144 | * memset(), unmap() sequence here because: | |
10145 | * + we'd need to account for the blocksize being larger than a page | |
10146 | * + the direct-RAM access case is almost always going to be dealt | |
10147 | * with in the fastpath code above, so there's no speed benefit | |
10148 | * + we would have to deal with the map returning NULL because the | |
10149 | * bounce buffer was in use | |
10150 | */ | |
10151 | for (i = 0; i < blocklen; i++) { | |
01ecaf43 | 10152 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); |
aca3f40b PM |
10153 | } |
10154 | } | |
10155 | #else | |
10156 | memset(g2h(vaddr), 0, blocklen); | |
10157 | #endif | |
10158 | } | |
10159 | ||
6ddbc6e4 PB |
10160 | /* Note that signed overflow is undefined in C. The following routines are |
10161 | careful to use unsigned types where modulo arithmetic is required. | |
10162 | Failure to do so _will_ break on newer gcc. */ | |
10163 | ||
10164 | /* Signed saturating arithmetic. */ | |
10165 | ||
1654b2d6 | 10166 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
10167 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
10168 | { | |
10169 | uint16_t res; | |
10170 | ||
10171 | res = a + b; | |
10172 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
10173 | if (a & 0x8000) | |
10174 | res = 0x8000; | |
10175 | else | |
10176 | res = 0x7fff; | |
10177 | } | |
10178 | return res; | |
10179 | } | |
10180 | ||
1654b2d6 | 10181 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
10182 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
10183 | { | |
10184 | uint8_t res; | |
10185 | ||
10186 | res = a + b; | |
10187 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
10188 | if (a & 0x80) | |
10189 | res = 0x80; | |
10190 | else | |
10191 | res = 0x7f; | |
10192 | } | |
10193 | return res; | |
10194 | } | |
10195 | ||
1654b2d6 | 10196 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
10197 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
10198 | { | |
10199 | uint16_t res; | |
10200 | ||
10201 | res = a - b; | |
10202 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
10203 | if (a & 0x8000) | |
10204 | res = 0x8000; | |
10205 | else | |
10206 | res = 0x7fff; | |
10207 | } | |
10208 | return res; | |
10209 | } | |
10210 | ||
1654b2d6 | 10211 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
10212 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
10213 | { | |
10214 | uint8_t res; | |
10215 | ||
10216 | res = a - b; | |
10217 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
10218 | if (a & 0x80) | |
10219 | res = 0x80; | |
10220 | else | |
10221 | res = 0x7f; | |
10222 | } | |
10223 | return res; | |
10224 | } | |
10225 | ||
10226 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
10227 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
10228 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
10229 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
10230 | #define PFX q | |
10231 | ||
10232 | #include "op_addsub.h" | |
10233 | ||
10234 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 10235 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
10236 | { |
10237 | uint16_t res; | |
10238 | res = a + b; | |
10239 | if (res < a) | |
10240 | res = 0xffff; | |
10241 | return res; | |
10242 | } | |
10243 | ||
460a09c1 | 10244 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 10245 | { |
4c4fd3f8 | 10246 | if (a > b) |
6ddbc6e4 PB |
10247 | return a - b; |
10248 | else | |
10249 | return 0; | |
10250 | } | |
10251 | ||
10252 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
10253 | { | |
10254 | uint8_t res; | |
10255 | res = a + b; | |
10256 | if (res < a) | |
10257 | res = 0xff; | |
10258 | return res; | |
10259 | } | |
10260 | ||
10261 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
10262 | { | |
4c4fd3f8 | 10263 | if (a > b) |
6ddbc6e4 PB |
10264 | return a - b; |
10265 | else | |
10266 | return 0; | |
10267 | } | |
10268 | ||
10269 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
10270 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
10271 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
10272 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
10273 | #define PFX uq | |
10274 | ||
10275 | #include "op_addsub.h" | |
10276 | ||
10277 | /* Signed modulo arithmetic. */ | |
10278 | #define SARITH16(a, b, n, op) do { \ | |
10279 | int32_t sum; \ | |
db6e2e65 | 10280 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
10281 | RESULT(sum, n, 16); \ |
10282 | if (sum >= 0) \ | |
10283 | ge |= 3 << (n * 2); \ | |
10284 | } while(0) | |
10285 | ||
10286 | #define SARITH8(a, b, n, op) do { \ | |
10287 | int32_t sum; \ | |
db6e2e65 | 10288 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
10289 | RESULT(sum, n, 8); \ |
10290 | if (sum >= 0) \ | |
10291 | ge |= 1 << n; \ | |
10292 | } while(0) | |
10293 | ||
10294 | ||
10295 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
10296 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
10297 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
10298 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
10299 | #define PFX s | |
10300 | #define ARITH_GE | |
10301 | ||
10302 | #include "op_addsub.h" | |
10303 | ||
10304 | /* Unsigned modulo arithmetic. */ | |
10305 | #define ADD16(a, b, n) do { \ | |
10306 | uint32_t sum; \ | |
10307 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
10308 | RESULT(sum, n, 16); \ | |
a87aa10b | 10309 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
10310 | ge |= 3 << (n * 2); \ |
10311 | } while(0) | |
10312 | ||
10313 | #define ADD8(a, b, n) do { \ | |
10314 | uint32_t sum; \ | |
10315 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
10316 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
10317 | if ((sum >> 8) == 1) \ |
10318 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
10319 | } while(0) |
10320 | ||
10321 | #define SUB16(a, b, n) do { \ | |
10322 | uint32_t sum; \ | |
10323 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
10324 | RESULT(sum, n, 16); \ | |
10325 | if ((sum >> 16) == 0) \ | |
10326 | ge |= 3 << (n * 2); \ | |
10327 | } while(0) | |
10328 | ||
10329 | #define SUB8(a, b, n) do { \ | |
10330 | uint32_t sum; \ | |
10331 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
10332 | RESULT(sum, n, 8); \ | |
10333 | if ((sum >> 8) == 0) \ | |
a87aa10b | 10334 | ge |= 1 << n; \ |
6ddbc6e4 PB |
10335 | } while(0) |
10336 | ||
10337 | #define PFX u | |
10338 | #define ARITH_GE | |
10339 | ||
10340 | #include "op_addsub.h" | |
10341 | ||
10342 | /* Halved signed arithmetic. */ | |
10343 | #define ADD16(a, b, n) \ | |
10344 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
10345 | #define SUB16(a, b, n) \ | |
10346 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
10347 | #define ADD8(a, b, n) \ | |
10348 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
10349 | #define SUB8(a, b, n) \ | |
10350 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
10351 | #define PFX sh | |
10352 | ||
10353 | #include "op_addsub.h" | |
10354 | ||
10355 | /* Halved unsigned arithmetic. */ | |
10356 | #define ADD16(a, b, n) \ | |
10357 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
10358 | #define SUB16(a, b, n) \ | |
10359 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
10360 | #define ADD8(a, b, n) \ | |
10361 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
10362 | #define SUB8(a, b, n) \ | |
10363 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
10364 | #define PFX uh | |
10365 | ||
10366 | #include "op_addsub.h" | |
10367 | ||
10368 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
10369 | { | |
10370 | if (a > b) | |
10371 | return a - b; | |
10372 | else | |
10373 | return b - a; | |
10374 | } | |
10375 | ||
10376 | /* Unsigned sum of absolute byte differences. */ | |
10377 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
10378 | { | |
10379 | uint32_t sum; | |
10380 | sum = do_usad(a, b); | |
10381 | sum += do_usad(a >> 8, b >> 8); | |
10382 | sum += do_usad(a >> 16, b >>16); | |
10383 | sum += do_usad(a >> 24, b >> 24); | |
10384 | return sum; | |
10385 | } | |
10386 | ||
10387 | /* For ARMv6 SEL instruction. */ | |
10388 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
10389 | { | |
10390 | uint32_t mask; | |
10391 | ||
10392 | mask = 0; | |
10393 | if (flags & 1) | |
10394 | mask |= 0xff; | |
10395 | if (flags & 2) | |
10396 | mask |= 0xff00; | |
10397 | if (flags & 4) | |
10398 | mask |= 0xff0000; | |
10399 | if (flags & 8) | |
10400 | mask |= 0xff000000; | |
10401 | return (a & mask) | (b & ~mask); | |
10402 | } | |
10403 | ||
b90372ad PM |
10404 | /* VFP support. We follow the convention used for VFP instructions: |
10405 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
10406 | "d" suffix. */ |
10407 | ||
10408 | /* Convert host exception flags to vfp form. */ | |
10409 | static inline int vfp_exceptbits_from_host(int host_bits) | |
10410 | { | |
10411 | int target_bits = 0; | |
10412 | ||
10413 | if (host_bits & float_flag_invalid) | |
10414 | target_bits |= 1; | |
10415 | if (host_bits & float_flag_divbyzero) | |
10416 | target_bits |= 2; | |
10417 | if (host_bits & float_flag_overflow) | |
10418 | target_bits |= 4; | |
36802b6b | 10419 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
10420 | target_bits |= 8; |
10421 | if (host_bits & float_flag_inexact) | |
10422 | target_bits |= 0x10; | |
cecd8504 PM |
10423 | if (host_bits & float_flag_input_denormal) |
10424 | target_bits |= 0x80; | |
4373f3ce PB |
10425 | return target_bits; |
10426 | } | |
10427 | ||
0ecb72a5 | 10428 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
10429 | { |
10430 | int i; | |
10431 | uint32_t fpscr; | |
10432 | ||
10433 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
10434 | | (env->vfp.vec_len << 16) | |
10435 | | (env->vfp.vec_stride << 20); | |
10436 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 10437 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
10438 | fpscr |= vfp_exceptbits_from_host(i); |
10439 | return fpscr; | |
10440 | } | |
10441 | ||
0ecb72a5 | 10442 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
10443 | { |
10444 | return HELPER(vfp_get_fpscr)(env); | |
10445 | } | |
10446 | ||
4373f3ce PB |
10447 | /* Convert vfp exception flags to target form. */ |
10448 | static inline int vfp_exceptbits_to_host(int target_bits) | |
10449 | { | |
10450 | int host_bits = 0; | |
10451 | ||
10452 | if (target_bits & 1) | |
10453 | host_bits |= float_flag_invalid; | |
10454 | if (target_bits & 2) | |
10455 | host_bits |= float_flag_divbyzero; | |
10456 | if (target_bits & 4) | |
10457 | host_bits |= float_flag_overflow; | |
10458 | if (target_bits & 8) | |
10459 | host_bits |= float_flag_underflow; | |
10460 | if (target_bits & 0x10) | |
10461 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
10462 | if (target_bits & 0x80) |
10463 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
10464 | return host_bits; |
10465 | } | |
10466 | ||
0ecb72a5 | 10467 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
10468 | { |
10469 | int i; | |
10470 | uint32_t changed; | |
10471 | ||
10472 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
10473 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
10474 | env->vfp.vec_len = (val >> 16) & 7; | |
10475 | env->vfp.vec_stride = (val >> 20) & 3; | |
10476 | ||
10477 | changed ^= val; | |
10478 | if (changed & (3 << 22)) { | |
10479 | i = (val >> 22) & 3; | |
10480 | switch (i) { | |
4d3da0f3 | 10481 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
10482 | i = float_round_nearest_even; |
10483 | break; | |
4d3da0f3 | 10484 | case FPROUNDING_POSINF: |
4373f3ce PB |
10485 | i = float_round_up; |
10486 | break; | |
4d3da0f3 | 10487 | case FPROUNDING_NEGINF: |
4373f3ce PB |
10488 | i = float_round_down; |
10489 | break; | |
4d3da0f3 | 10490 | case FPROUNDING_ZERO: |
4373f3ce PB |
10491 | i = float_round_to_zero; |
10492 | break; | |
10493 | } | |
10494 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
10495 | } | |
cecd8504 | 10496 | if (changed & (1 << 24)) { |
fe76d976 | 10497 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
10498 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
10499 | } | |
5c7908ed PB |
10500 | if (changed & (1 << 25)) |
10501 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 10502 | |
b12c390b | 10503 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 10504 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 10505 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
10506 | } |
10507 | ||
0ecb72a5 | 10508 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
10509 | { |
10510 | HELPER(vfp_set_fpscr)(env, val); | |
10511 | } | |
10512 | ||
4373f3ce PB |
10513 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
10514 | ||
10515 | #define VFP_BINOP(name) \ | |
ae1857ec | 10516 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 10517 | { \ |
ae1857ec PM |
10518 | float_status *fpst = fpstp; \ |
10519 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 10520 | } \ |
ae1857ec | 10521 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 10522 | { \ |
ae1857ec PM |
10523 | float_status *fpst = fpstp; \ |
10524 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
10525 | } |
10526 | VFP_BINOP(add) | |
10527 | VFP_BINOP(sub) | |
10528 | VFP_BINOP(mul) | |
10529 | VFP_BINOP(div) | |
f71a2ae5 PM |
10530 | VFP_BINOP(min) |
10531 | VFP_BINOP(max) | |
10532 | VFP_BINOP(minnum) | |
10533 | VFP_BINOP(maxnum) | |
4373f3ce PB |
10534 | #undef VFP_BINOP |
10535 | ||
10536 | float32 VFP_HELPER(neg, s)(float32 a) | |
10537 | { | |
10538 | return float32_chs(a); | |
10539 | } | |
10540 | ||
10541 | float64 VFP_HELPER(neg, d)(float64 a) | |
10542 | { | |
66230e0d | 10543 | return float64_chs(a); |
4373f3ce PB |
10544 | } |
10545 | ||
10546 | float32 VFP_HELPER(abs, s)(float32 a) | |
10547 | { | |
10548 | return float32_abs(a); | |
10549 | } | |
10550 | ||
10551 | float64 VFP_HELPER(abs, d)(float64 a) | |
10552 | { | |
66230e0d | 10553 | return float64_abs(a); |
4373f3ce PB |
10554 | } |
10555 | ||
0ecb72a5 | 10556 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
10557 | { |
10558 | return float32_sqrt(a, &env->vfp.fp_status); | |
10559 | } | |
10560 | ||
0ecb72a5 | 10561 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
10562 | { |
10563 | return float64_sqrt(a, &env->vfp.fp_status); | |
10564 | } | |
10565 | ||
10566 | /* XXX: check quiet/signaling case */ | |
10567 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 10568 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
10569 | { \ |
10570 | uint32_t flags; \ | |
10571 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
10572 | case 0: flags = 0x6; break; \ | |
10573 | case -1: flags = 0x8; break; \ | |
10574 | case 1: flags = 0x2; break; \ | |
10575 | default: case 2: flags = 0x3; break; \ | |
10576 | } \ | |
10577 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
10578 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
10579 | } \ | |
0ecb72a5 | 10580 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
10581 | { \ |
10582 | uint32_t flags; \ | |
10583 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
10584 | case 0: flags = 0x6; break; \ | |
10585 | case -1: flags = 0x8; break; \ | |
10586 | case 1: flags = 0x2; break; \ | |
10587 | default: case 2: flags = 0x3; break; \ | |
10588 | } \ | |
10589 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
10590 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
10591 | } | |
10592 | DO_VFP_cmp(s, float32) | |
10593 | DO_VFP_cmp(d, float64) | |
10594 | #undef DO_VFP_cmp | |
10595 | ||
5500b06c | 10596 | /* Integer to float and float to integer conversions */ |
4373f3ce | 10597 | |
5500b06c PM |
10598 | #define CONV_ITOF(name, fsz, sign) \ |
10599 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
10600 | { \ | |
10601 | float_status *fpst = fpstp; \ | |
85836979 | 10602 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
10603 | } |
10604 | ||
5500b06c PM |
10605 | #define CONV_FTOI(name, fsz, sign, round) \ |
10606 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
10607 | { \ | |
10608 | float_status *fpst = fpstp; \ | |
10609 | if (float##fsz##_is_any_nan(x)) { \ | |
10610 | float_raise(float_flag_invalid, fpst); \ | |
10611 | return 0; \ | |
10612 | } \ | |
10613 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
10614 | } |
10615 | ||
5500b06c PM |
10616 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
10617 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
10618 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
10619 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 10620 | |
5500b06c PM |
10621 | FLOAT_CONVS(si, s, 32, ) |
10622 | FLOAT_CONVS(si, d, 64, ) | |
10623 | FLOAT_CONVS(ui, s, 32, u) | |
10624 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 10625 | |
5500b06c PM |
10626 | #undef CONV_ITOF |
10627 | #undef CONV_FTOI | |
10628 | #undef FLOAT_CONVS | |
4373f3ce PB |
10629 | |
10630 | /* floating point conversion */ | |
0ecb72a5 | 10631 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 10632 | { |
2d627737 PM |
10633 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
10634 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
10635 | * a quiet NaN by forcing the most significant frac bit to 1. | |
10636 | */ | |
af39bc8c | 10637 | return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
4373f3ce PB |
10638 | } |
10639 | ||
0ecb72a5 | 10640 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 10641 | { |
2d627737 PM |
10642 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
10643 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
10644 | * a quiet NaN by forcing the most significant frac bit to 1. | |
10645 | */ | |
af39bc8c | 10646 | return float32_maybe_silence_nan(r, &env->vfp.fp_status); |
4373f3ce PB |
10647 | } |
10648 | ||
10649 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 10650 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
10651 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
10652 | void *fpstp) \ | |
4373f3ce | 10653 | { \ |
5500b06c | 10654 | float_status *fpst = fpstp; \ |
622465e1 | 10655 | float##fsz tmp; \ |
8ed697e8 | 10656 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 10657 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
10658 | } |
10659 | ||
abe66f70 PM |
10660 | /* Notice that we want only input-denormal exception flags from the |
10661 | * scalbn operation: the other possible flags (overflow+inexact if | |
10662 | * we overflow to infinity, output-denormal) aren't correct for the | |
10663 | * complete scale-and-convert operation. | |
10664 | */ | |
16d5b3ca WN |
10665 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
10666 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
10667 | uint32_t shift, \ | |
10668 | void *fpstp) \ | |
4373f3ce | 10669 | { \ |
5500b06c | 10670 | float_status *fpst = fpstp; \ |
abe66f70 | 10671 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
10672 | float##fsz tmp; \ |
10673 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 10674 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 10675 | return 0; \ |
09d9487f | 10676 | } \ |
5500b06c | 10677 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
10678 | old_exc_flags |= get_float_exception_flags(fpst) \ |
10679 | & float_flag_input_denormal; \ | |
10680 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 10681 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
10682 | } |
10683 | ||
16d5b3ca WN |
10684 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
10685 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
10686 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
10687 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
10688 | ||
10689 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
10690 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
10691 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 10692 | |
8ed697e8 WN |
10693 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
10694 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 10695 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
10696 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
10697 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 10698 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
10699 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
10700 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 10701 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
10702 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
10703 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 10704 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 10705 | #undef VFP_CONV_FIX |
16d5b3ca WN |
10706 | #undef VFP_CONV_FIX_FLOAT |
10707 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 10708 | |
52a1f6a3 AG |
10709 | /* Set the current fp rounding mode and return the old one. |
10710 | * The argument is a softfloat float_round_ value. | |
10711 | */ | |
10712 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
10713 | { | |
10714 | float_status *fp_status = &env->vfp.fp_status; | |
10715 | ||
10716 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
10717 | set_float_rounding_mode(rmode, fp_status); | |
10718 | ||
10719 | return prev_rmode; | |
10720 | } | |
10721 | ||
43630e58 WN |
10722 | /* Set the current fp rounding mode in the standard fp status and return |
10723 | * the old one. This is for NEON instructions that need to change the | |
10724 | * rounding mode but wish to use the standard FPSCR values for everything | |
10725 | * else. Always set the rounding mode back to the correct value after | |
10726 | * modifying it. | |
10727 | * The argument is a softfloat float_round_ value. | |
10728 | */ | |
10729 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
10730 | { | |
10731 | float_status *fp_status = &env->vfp.standard_fp_status; | |
10732 | ||
10733 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
10734 | set_float_rounding_mode(rmode, fp_status); | |
10735 | ||
10736 | return prev_rmode; | |
10737 | } | |
10738 | ||
60011498 | 10739 | /* Half precision conversions. */ |
0ecb72a5 | 10740 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 10741 | { |
60011498 | 10742 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
10743 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
10744 | if (ieee) { | |
af39bc8c | 10745 | return float32_maybe_silence_nan(r, s); |
fb91678d PM |
10746 | } |
10747 | return r; | |
60011498 PB |
10748 | } |
10749 | ||
0ecb72a5 | 10750 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 10751 | { |
60011498 | 10752 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
10753 | float16 r = float32_to_float16(a, ieee, s); |
10754 | if (ieee) { | |
af39bc8c | 10755 | r = float16_maybe_silence_nan(r, s); |
fb91678d PM |
10756 | } |
10757 | return float16_val(r); | |
60011498 PB |
10758 | } |
10759 | ||
0ecb72a5 | 10760 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
10761 | { |
10762 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
10763 | } | |
10764 | ||
0ecb72a5 | 10765 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
10766 | { |
10767 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
10768 | } | |
10769 | ||
0ecb72a5 | 10770 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
10771 | { |
10772 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
10773 | } | |
10774 | ||
0ecb72a5 | 10775 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
10776 | { |
10777 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
10778 | } | |
10779 | ||
8900aad2 PM |
10780 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
10781 | { | |
10782 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
10783 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
10784 | if (ieee) { | |
af39bc8c | 10785 | return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
8900aad2 PM |
10786 | } |
10787 | return r; | |
10788 | } | |
10789 | ||
10790 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
10791 | { | |
10792 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
10793 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
10794 | if (ieee) { | |
af39bc8c | 10795 | r = float16_maybe_silence_nan(r, &env->vfp.fp_status); |
8900aad2 PM |
10796 | } |
10797 | return float16_val(r); | |
10798 | } | |
10799 | ||
dda3ec49 | 10800 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
10801 | #define float32_three make_float32(0x40400000) |
10802 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 10803 | |
0ecb72a5 | 10804 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 10805 | { |
dda3ec49 PM |
10806 | float_status *s = &env->vfp.standard_fp_status; |
10807 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
10808 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
10809 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
10810 | float_raise(float_flag_input_denormal, s); | |
10811 | } | |
dda3ec49 PM |
10812 | return float32_two; |
10813 | } | |
10814 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
10815 | } |
10816 | ||
0ecb72a5 | 10817 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 10818 | { |
71826966 | 10819 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
10820 | float32 product; |
10821 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
10822 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
10823 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
10824 | float_raise(float_flag_input_denormal, s); | |
10825 | } | |
6aae3df1 | 10826 | return float32_one_point_five; |
9ea62f57 | 10827 | } |
6aae3df1 PM |
10828 | product = float32_mul(a, b, s); |
10829 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
10830 | } |
10831 | ||
8f8e3aa4 PB |
10832 | /* NEON helpers. */ |
10833 | ||
56bf4fe2 CL |
10834 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
10835 | * int->float conversions at run-time. */ | |
10836 | #define float64_256 make_float64(0x4070000000000000LL) | |
10837 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
10838 | #define float32_maxnorm make_float32(0x7f7fffff) |
10839 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 10840 | |
b6d4443a AB |
10841 | /* Reciprocal functions |
10842 | * | |
10843 | * The algorithm that must be used to calculate the estimate | |
10844 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 10845 | */ |
b6d4443a AB |
10846 | |
10847 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 10848 | { |
1146a817 PM |
10849 | /* These calculations mustn't set any fp exception flags, |
10850 | * so we use a local copy of the fp_status. | |
10851 | */ | |
b6d4443a | 10852 | float_status dummy_status = *real_fp_status; |
1146a817 | 10853 | float_status *s = &dummy_status; |
fe0e4872 CL |
10854 | /* q = (int)(a * 512.0) */ |
10855 | float64 q = float64_mul(float64_512, a, s); | |
10856 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
10857 | ||
10858 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
10859 | q = int64_to_float64(q_int, s); | |
10860 | q = float64_add(q, float64_half, s); | |
10861 | q = float64_div(q, float64_512, s); | |
10862 | q = float64_div(float64_one, q, s); | |
10863 | ||
10864 | /* s = (int)(256.0 * r + 0.5) */ | |
10865 | q = float64_mul(q, float64_256, s); | |
10866 | q = float64_add(q, float64_half, s); | |
10867 | q_int = float64_to_int64_round_to_zero(q, s); | |
10868 | ||
10869 | /* return (double)s / 256.0 */ | |
10870 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
10871 | } | |
10872 | ||
b6d4443a AB |
10873 | /* Common wrapper to call recip_estimate */ |
10874 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 10875 | { |
b6d4443a AB |
10876 | uint64_t val64 = float64_val(num); |
10877 | uint64_t frac = extract64(val64, 0, 52); | |
10878 | int64_t exp = extract64(val64, 52, 11); | |
10879 | uint64_t sbit; | |
10880 | float64 scaled, estimate; | |
fe0e4872 | 10881 | |
b6d4443a AB |
10882 | /* Generate the scaled number for the estimate function */ |
10883 | if (exp == 0) { | |
10884 | if (extract64(frac, 51, 1) == 0) { | |
10885 | exp = -1; | |
10886 | frac = extract64(frac, 0, 50) << 2; | |
10887 | } else { | |
10888 | frac = extract64(frac, 0, 51) << 1; | |
10889 | } | |
10890 | } | |
fe0e4872 | 10891 | |
b6d4443a AB |
10892 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
10893 | scaled = make_float64((0x3feULL << 52) | |
10894 | | extract64(frac, 44, 8) << 44); | |
10895 | ||
10896 | estimate = recip_estimate(scaled, fpst); | |
10897 | ||
10898 | /* Build new result */ | |
10899 | val64 = float64_val(estimate); | |
10900 | sbit = 0x8000000000000000ULL & val64; | |
10901 | exp = off - exp; | |
10902 | frac = extract64(val64, 0, 52); | |
10903 | ||
10904 | if (exp == 0) { | |
10905 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
10906 | } else if (exp == -1) { | |
10907 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
10908 | exp = 0; | |
10909 | } | |
10910 | ||
10911 | return make_float64(sbit | (exp << 52) | frac); | |
10912 | } | |
10913 | ||
10914 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
10915 | { | |
10916 | switch (fpst->float_rounding_mode) { | |
10917 | case float_round_nearest_even: /* Round to Nearest */ | |
10918 | return true; | |
10919 | case float_round_up: /* Round to +Inf */ | |
10920 | return !sign_bit; | |
10921 | case float_round_down: /* Round to -Inf */ | |
10922 | return sign_bit; | |
10923 | case float_round_to_zero: /* Round to Zero */ | |
10924 | return false; | |
10925 | } | |
10926 | ||
10927 | g_assert_not_reached(); | |
10928 | } | |
10929 | ||
10930 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
10931 | { | |
10932 | float_status *fpst = fpstp; | |
10933 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
10934 | uint32_t f32_val = float32_val(f32); | |
10935 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
10936 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
10937 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
10938 | float64 f64, r64; | |
10939 | uint64_t r64_val; | |
10940 | int64_t r64_exp; | |
10941 | uint64_t r64_frac; | |
10942 | ||
10943 | if (float32_is_any_nan(f32)) { | |
10944 | float32 nan = f32; | |
af39bc8c | 10945 | if (float32_is_signaling_nan(f32, fpst)) { |
b6d4443a | 10946 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 10947 | nan = float32_maybe_silence_nan(f32, fpst); |
fe0e4872 | 10948 | } |
b6d4443a | 10949 | if (fpst->default_nan_mode) { |
af39bc8c | 10950 | nan = float32_default_nan(fpst); |
43fe9bdb | 10951 | } |
b6d4443a AB |
10952 | return nan; |
10953 | } else if (float32_is_infinity(f32)) { | |
10954 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
10955 | } else if (float32_is_zero(f32)) { | |
10956 | float_raise(float_flag_divbyzero, fpst); | |
10957 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
10958 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
10959 | /* Abs(value) < 2.0^-128 */ | |
10960 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
10961 | if (round_to_inf(fpst, f32_sbit)) { | |
10962 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
10963 | } else { | |
10964 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
10965 | } | |
10966 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
10967 | float_raise(float_flag_underflow, fpst); | |
10968 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
10969 | } |
10970 | ||
fe0e4872 | 10971 | |
b6d4443a AB |
10972 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
10973 | r64 = call_recip_estimate(f64, 253, fpst); | |
10974 | r64_val = float64_val(r64); | |
10975 | r64_exp = extract64(r64_val, 52, 11); | |
10976 | r64_frac = extract64(r64_val, 0, 52); | |
10977 | ||
10978 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
10979 | return make_float32(f32_sbit | | |
10980 | (r64_exp & 0xff) << 23 | | |
10981 | extract64(r64_frac, 29, 24)); | |
10982 | } | |
10983 | ||
10984 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
10985 | { | |
10986 | float_status *fpst = fpstp; | |
10987 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
10988 | uint64_t f64_val = float64_val(f64); | |
10989 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
10990 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
10991 | float64 r64; | |
10992 | uint64_t r64_val; | |
10993 | int64_t r64_exp; | |
10994 | uint64_t r64_frac; | |
10995 | ||
10996 | /* Deal with any special cases */ | |
10997 | if (float64_is_any_nan(f64)) { | |
10998 | float64 nan = f64; | |
af39bc8c | 10999 | if (float64_is_signaling_nan(f64, fpst)) { |
b6d4443a | 11000 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 11001 | nan = float64_maybe_silence_nan(f64, fpst); |
b6d4443a AB |
11002 | } |
11003 | if (fpst->default_nan_mode) { | |
af39bc8c | 11004 | nan = float64_default_nan(fpst); |
b6d4443a AB |
11005 | } |
11006 | return nan; | |
11007 | } else if (float64_is_infinity(f64)) { | |
11008 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
11009 | } else if (float64_is_zero(f64)) { | |
11010 | float_raise(float_flag_divbyzero, fpst); | |
11011 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
11012 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
11013 | /* Abs(value) < 2.0^-1024 */ | |
11014 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
11015 | if (round_to_inf(fpst, f64_sbit)) { | |
11016 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
11017 | } else { | |
11018 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
11019 | } | |
fc1792e9 | 11020 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
11021 | float_raise(float_flag_underflow, fpst); |
11022 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
11023 | } | |
fe0e4872 | 11024 | |
b6d4443a AB |
11025 | r64 = call_recip_estimate(f64, 2045, fpst); |
11026 | r64_val = float64_val(r64); | |
11027 | r64_exp = extract64(r64_val, 52, 11); | |
11028 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 11029 | |
b6d4443a AB |
11030 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
11031 | return make_float64(f64_sbit | | |
11032 | ((r64_exp & 0x7ff) << 52) | | |
11033 | r64_frac); | |
4373f3ce PB |
11034 | } |
11035 | ||
e07be5d2 CL |
11036 | /* The algorithm that must be used to calculate the estimate |
11037 | * is specified by the ARM ARM. | |
11038 | */ | |
c2fb418e | 11039 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 11040 | { |
1146a817 PM |
11041 | /* These calculations mustn't set any fp exception flags, |
11042 | * so we use a local copy of the fp_status. | |
11043 | */ | |
c2fb418e | 11044 | float_status dummy_status = *real_fp_status; |
1146a817 | 11045 | float_status *s = &dummy_status; |
e07be5d2 CL |
11046 | float64 q; |
11047 | int64_t q_int; | |
11048 | ||
11049 | if (float64_lt(a, float64_half, s)) { | |
11050 | /* range 0.25 <= a < 0.5 */ | |
11051 | ||
11052 | /* a in units of 1/512 rounded down */ | |
11053 | /* q0 = (int)(a * 512.0); */ | |
11054 | q = float64_mul(float64_512, a, s); | |
11055 | q_int = float64_to_int64_round_to_zero(q, s); | |
11056 | ||
11057 | /* reciprocal root r */ | |
11058 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
11059 | q = int64_to_float64(q_int, s); | |
11060 | q = float64_add(q, float64_half, s); | |
11061 | q = float64_div(q, float64_512, s); | |
11062 | q = float64_sqrt(q, s); | |
11063 | q = float64_div(float64_one, q, s); | |
11064 | } else { | |
11065 | /* range 0.5 <= a < 1.0 */ | |
11066 | ||
11067 | /* a in units of 1/256 rounded down */ | |
11068 | /* q1 = (int)(a * 256.0); */ | |
11069 | q = float64_mul(float64_256, a, s); | |
11070 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
11071 | ||
11072 | /* reciprocal root r */ | |
11073 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
11074 | q = int64_to_float64(q_int, s); | |
11075 | q = float64_add(q, float64_half, s); | |
11076 | q = float64_div(q, float64_256, s); | |
11077 | q = float64_sqrt(q, s); | |
11078 | q = float64_div(float64_one, q, s); | |
11079 | } | |
11080 | /* r in units of 1/256 rounded to nearest */ | |
11081 | /* s = (int)(256.0 * r + 0.5); */ | |
11082 | ||
11083 | q = float64_mul(q, float64_256,s ); | |
11084 | q = float64_add(q, float64_half, s); | |
11085 | q_int = float64_to_int64_round_to_zero(q, s); | |
11086 | ||
11087 | /* return (double)s / 256.0;*/ | |
11088 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
11089 | } | |
11090 | ||
c2fb418e | 11091 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 11092 | { |
c2fb418e AB |
11093 | float_status *s = fpstp; |
11094 | float32 f32 = float32_squash_input_denormal(input, s); | |
11095 | uint32_t val = float32_val(f32); | |
11096 | uint32_t f32_sbit = 0x80000000 & val; | |
11097 | int32_t f32_exp = extract32(val, 23, 8); | |
11098 | uint32_t f32_frac = extract32(val, 0, 23); | |
11099 | uint64_t f64_frac; | |
11100 | uint64_t val64; | |
e07be5d2 CL |
11101 | int result_exp; |
11102 | float64 f64; | |
e07be5d2 | 11103 | |
c2fb418e AB |
11104 | if (float32_is_any_nan(f32)) { |
11105 | float32 nan = f32; | |
af39bc8c | 11106 | if (float32_is_signaling_nan(f32, s)) { |
e07be5d2 | 11107 | float_raise(float_flag_invalid, s); |
af39bc8c | 11108 | nan = float32_maybe_silence_nan(f32, s); |
e07be5d2 | 11109 | } |
c2fb418e | 11110 | if (s->default_nan_mode) { |
af39bc8c | 11111 | nan = float32_default_nan(s); |
43fe9bdb | 11112 | } |
c2fb418e AB |
11113 | return nan; |
11114 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 11115 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
11116 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
11117 | } else if (float32_is_neg(f32)) { | |
e07be5d2 | 11118 | float_raise(float_flag_invalid, s); |
af39bc8c | 11119 | return float32_default_nan(s); |
c2fb418e | 11120 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
11121 | return float32_zero; |
11122 | } | |
11123 | ||
c2fb418e | 11124 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 11125 | * preserving the parity of the exponent. */ |
c2fb418e AB |
11126 | |
11127 | f64_frac = ((uint64_t) f32_frac) << 29; | |
11128 | if (f32_exp == 0) { | |
11129 | while (extract64(f64_frac, 51, 1) == 0) { | |
11130 | f64_frac = f64_frac << 1; | |
11131 | f32_exp = f32_exp-1; | |
11132 | } | |
11133 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
11134 | } | |
11135 | ||
11136 | if (extract64(f32_exp, 0, 1) == 0) { | |
11137 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 11138 | | (0x3feULL << 52) |
c2fb418e | 11139 | | f64_frac); |
e07be5d2 | 11140 | } else { |
c2fb418e | 11141 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 11142 | | (0x3fdULL << 52) |
c2fb418e | 11143 | | f64_frac); |
e07be5d2 CL |
11144 | } |
11145 | ||
c2fb418e | 11146 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 11147 | |
c2fb418e | 11148 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
11149 | |
11150 | val64 = float64_val(f64); | |
11151 | ||
26cc6abf | 11152 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
11153 | | ((val64 >> 29) & 0x7fffff); |
11154 | return make_float32(val); | |
4373f3ce PB |
11155 | } |
11156 | ||
c2fb418e AB |
11157 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
11158 | { | |
11159 | float_status *s = fpstp; | |
11160 | float64 f64 = float64_squash_input_denormal(input, s); | |
11161 | uint64_t val = float64_val(f64); | |
11162 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
11163 | int64_t f64_exp = extract64(val, 52, 11); | |
11164 | uint64_t f64_frac = extract64(val, 0, 52); | |
11165 | int64_t result_exp; | |
11166 | uint64_t result_frac; | |
11167 | ||
11168 | if (float64_is_any_nan(f64)) { | |
11169 | float64 nan = f64; | |
af39bc8c | 11170 | if (float64_is_signaling_nan(f64, s)) { |
c2fb418e | 11171 | float_raise(float_flag_invalid, s); |
af39bc8c | 11172 | nan = float64_maybe_silence_nan(f64, s); |
c2fb418e AB |
11173 | } |
11174 | if (s->default_nan_mode) { | |
af39bc8c | 11175 | nan = float64_default_nan(s); |
c2fb418e AB |
11176 | } |
11177 | return nan; | |
11178 | } else if (float64_is_zero(f64)) { | |
11179 | float_raise(float_flag_divbyzero, s); | |
11180 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
11181 | } else if (float64_is_neg(f64)) { | |
11182 | float_raise(float_flag_invalid, s); | |
af39bc8c | 11183 | return float64_default_nan(s); |
c2fb418e AB |
11184 | } else if (float64_is_infinity(f64)) { |
11185 | return float64_zero; | |
11186 | } | |
11187 | ||
11188 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
11189 | * preserving the parity of the exponent. */ | |
11190 | ||
11191 | if (f64_exp == 0) { | |
11192 | while (extract64(f64_frac, 51, 1) == 0) { | |
11193 | f64_frac = f64_frac << 1; | |
11194 | f64_exp = f64_exp - 1; | |
11195 | } | |
11196 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
11197 | } | |
11198 | ||
11199 | if (extract64(f64_exp, 0, 1) == 0) { | |
11200 | f64 = make_float64(f64_sbit | |
11201 | | (0x3feULL << 52) | |
11202 | | f64_frac); | |
11203 | } else { | |
11204 | f64 = make_float64(f64_sbit | |
11205 | | (0x3fdULL << 52) | |
11206 | | f64_frac); | |
11207 | } | |
11208 | ||
11209 | result_exp = (3068 - f64_exp) / 2; | |
11210 | ||
11211 | f64 = recip_sqrt_estimate(f64, s); | |
11212 | ||
11213 | result_frac = extract64(float64_val(f64), 0, 52); | |
11214 | ||
11215 | return make_float64(f64_sbit | | |
11216 | ((result_exp & 0x7ff) << 52) | | |
11217 | result_frac); | |
11218 | } | |
11219 | ||
b6d4443a | 11220 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 11221 | { |
b6d4443a | 11222 | float_status *s = fpstp; |
fe0e4872 CL |
11223 | float64 f64; |
11224 | ||
11225 | if ((a & 0x80000000) == 0) { | |
11226 | return 0xffffffff; | |
11227 | } | |
11228 | ||
11229 | f64 = make_float64((0x3feULL << 52) | |
11230 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
11231 | ||
b6d4443a | 11232 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
11233 | |
11234 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
11235 | } |
11236 | ||
c2fb418e | 11237 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 11238 | { |
c2fb418e | 11239 | float_status *fpst = fpstp; |
e07be5d2 CL |
11240 | float64 f64; |
11241 | ||
11242 | if ((a & 0xc0000000) == 0) { | |
11243 | return 0xffffffff; | |
11244 | } | |
11245 | ||
11246 | if (a & 0x80000000) { | |
11247 | f64 = make_float64((0x3feULL << 52) | |
11248 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
11249 | } else { /* bits 31-30 == '01' */ | |
11250 | f64 = make_float64((0x3fdULL << 52) | |
11251 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
11252 | } | |
11253 | ||
c2fb418e | 11254 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
11255 | |
11256 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 11257 | } |
fe1479c3 | 11258 | |
da97f52c PM |
11259 | /* VFPv4 fused multiply-accumulate */ |
11260 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
11261 | { | |
11262 | float_status *fpst = fpstp; | |
11263 | return float32_muladd(a, b, c, 0, fpst); | |
11264 | } | |
11265 | ||
11266 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
11267 | { | |
11268 | float_status *fpst = fpstp; | |
11269 | return float64_muladd(a, b, c, 0, fpst); | |
11270 | } | |
d9b0848d PM |
11271 | |
11272 | /* ARMv8 round to integral */ | |
11273 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
11274 | { | |
11275 | return float32_round_to_int(x, fp_status); | |
11276 | } | |
11277 | ||
11278 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
11279 | { | |
11280 | return float64_round_to_int(x, fp_status); | |
11281 | } | |
11282 | ||
11283 | float32 HELPER(rints)(float32 x, void *fp_status) | |
11284 | { | |
11285 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
11286 | float32 ret; | |
11287 | ||
11288 | ret = float32_round_to_int(x, fp_status); | |
11289 | ||
11290 | /* Suppress any inexact exceptions the conversion produced */ | |
11291 | if (!(old_flags & float_flag_inexact)) { | |
11292 | new_flags = get_float_exception_flags(fp_status); | |
11293 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
11294 | } | |
11295 | ||
11296 | return ret; | |
11297 | } | |
11298 | ||
11299 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
11300 | { | |
11301 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
11302 | float64 ret; | |
11303 | ||
11304 | ret = float64_round_to_int(x, fp_status); | |
11305 | ||
11306 | new_flags = get_float_exception_flags(fp_status); | |
11307 | ||
11308 | /* Suppress any inexact exceptions the conversion produced */ | |
11309 | if (!(old_flags & float_flag_inexact)) { | |
11310 | new_flags = get_float_exception_flags(fp_status); | |
11311 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
11312 | } | |
11313 | ||
11314 | return ret; | |
11315 | } | |
9972da66 WN |
11316 | |
11317 | /* Convert ARM rounding mode to softfloat */ | |
11318 | int arm_rmode_to_sf(int rmode) | |
11319 | { | |
11320 | switch (rmode) { | |
11321 | case FPROUNDING_TIEAWAY: | |
11322 | rmode = float_round_ties_away; | |
11323 | break; | |
11324 | case FPROUNDING_ODD: | |
11325 | /* FIXME: add support for TIEAWAY and ODD */ | |
11326 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
11327 | rmode); | |
11328 | case FPROUNDING_TIEEVEN: | |
11329 | default: | |
11330 | rmode = float_round_nearest_even; | |
11331 | break; | |
11332 | case FPROUNDING_POSINF: | |
11333 | rmode = float_round_up; | |
11334 | break; | |
11335 | case FPROUNDING_NEGINF: | |
11336 | rmode = float_round_down; | |
11337 | break; | |
11338 | case FPROUNDING_ZERO: | |
11339 | rmode = float_round_to_zero; | |
11340 | break; | |
11341 | } | |
11342 | return rmode; | |
11343 | } | |
eb0ecd5a | 11344 | |
aa633469 PM |
11345 | /* CRC helpers. |
11346 | * The upper bytes of val (above the number specified by 'bytes') must have | |
11347 | * been zeroed out by the caller. | |
11348 | */ | |
eb0ecd5a WN |
11349 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
11350 | { | |
11351 | uint8_t buf[4]; | |
11352 | ||
aa633469 | 11353 | stl_le_p(buf, val); |
eb0ecd5a WN |
11354 | |
11355 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
11356 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
11357 | } | |
11358 | ||
11359 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
11360 | { | |
11361 | uint8_t buf[4]; | |
11362 | ||
aa633469 | 11363 | stl_le_p(buf, val); |
eb0ecd5a WN |
11364 | |
11365 | /* Linux crc32c converts the output to one's complement. */ | |
11366 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
11367 | } |