]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
d38ea87a | 16 | #include "qemu/osdep.h" |
05330448 | 17 | #include <sys/ioctl.h> |
05330448 AL |
18 | |
19 | #include <linux/kvm.h> | |
20 | ||
1de7afc9 PB |
21 | #include "qemu/atomic.h" |
22 | #include "qemu/option.h" | |
23 | #include "qemu/config-file.h" | |
4b3cfe72 | 24 | #include "qemu/error-report.h" |
556969e9 | 25 | #include "qapi/error.h" |
a2cb15b0 | 26 | #include "hw/pci/msi.h" |
d1f6af6a | 27 | #include "hw/pci/msix.h" |
d426d9fb | 28 | #include "hw/s390x/adapter.h" |
022c62cb | 29 | #include "exec/gdbstub.h" |
8571ed35 | 30 | #include "sysemu/kvm_int.h" |
d2528bdc | 31 | #include "sysemu/cpus.h" |
1de7afc9 | 32 | #include "qemu/bswap.h" |
022c62cb | 33 | #include "exec/memory.h" |
747afd5b | 34 | #include "exec/ram_addr.h" |
022c62cb | 35 | #include "exec/address-spaces.h" |
1de7afc9 | 36 | #include "qemu/event_notifier.h" |
db725815 | 37 | #include "qemu/main-loop.h" |
92229a57 | 38 | #include "trace.h" |
197e3524 | 39 | #include "hw/irq.h" |
b20e3780 | 40 | #include "sysemu/sev.h" |
f5948942 | 41 | #include "sysemu/balloon.h" |
05330448 | 42 | |
135a129a AK |
43 | #include "hw/boards.h" |
44 | ||
d2f2b8a7 SH |
45 | /* This check must be after config-host.h is included */ |
46 | #ifdef CONFIG_EVENTFD | |
47 | #include <sys/eventfd.h> | |
48 | #endif | |
49 | ||
bc92e4e9 AJ |
50 | /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We |
51 | * need to use the real host PAGE_SIZE, as that's what KVM will use. | |
52 | */ | |
53 | #define PAGE_SIZE getpagesize() | |
f65ed4c1 | 54 | |
05330448 AL |
55 | //#define DEBUG_KVM |
56 | ||
57 | #ifdef DEBUG_KVM | |
8c0d577e | 58 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
59 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
60 | #else | |
8c0d577e | 61 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
62 | do { } while (0) |
63 | #endif | |
64 | ||
04fa27f5 JK |
65 | #define KVM_MSI_HASHTAB_SIZE 256 |
66 | ||
4c055ab5 GZ |
67 | struct KVMParkedVcpu { |
68 | unsigned long vcpu_id; | |
69 | int kvm_fd; | |
70 | QLIST_ENTRY(KVMParkedVcpu) node; | |
71 | }; | |
72 | ||
9d1c35df | 73 | struct KVMState |
05330448 | 74 | { |
fc02086b EH |
75 | AccelState parent_obj; |
76 | ||
fb541ca5 | 77 | int nr_slots; |
05330448 AL |
78 | int fd; |
79 | int vmfd; | |
f65ed4c1 | 80 | int coalesced_mmio; |
e6d34aee | 81 | int coalesced_pio; |
62a2744c | 82 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 83 | bool coalesced_flush_in_progress; |
a0fb002c | 84 | int vcpu_events; |
b0b1d690 | 85 | int robust_singlestep; |
ff44f1a3 | 86 | int debugregs; |
e22a25c9 | 87 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
b58deb34 | 88 | QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; |
e22a25c9 | 89 | #endif |
ebbfef2f | 90 | int max_nested_state_len; |
d2f2b8a7 | 91 | int many_ioeventfds; |
3ab73842 | 92 | int intx_set_mask; |
62dd4eda | 93 | bool sync_mmu; |
ff4aa114 | 94 | bool manual_dirty_log_protect; |
92e4b519 DG |
95 | /* The man page (and posix) say ioctl numbers are signed int, but |
96 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
97 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 98 | unsigned irq_set_ioctl; |
aed6efb9 | 99 | unsigned int sigmask_len; |
197e3524 | 100 | GHashTable *gsimap; |
84b058d7 JK |
101 | #ifdef KVM_CAP_IRQ_ROUTING |
102 | struct kvm_irq_routing *irq_routes; | |
103 | int nr_allocated_irq_routes; | |
8269fb70 | 104 | unsigned long *used_gsi_bitmap; |
4e2e4e63 | 105 | unsigned int gsi_count; |
b58deb34 | 106 | QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
84b058d7 | 107 | #endif |
7bbda04c | 108 | KVMMemoryListener memory_listener; |
4c055ab5 | 109 | QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; |
b20e3780 BS |
110 | |
111 | /* memory encryption */ | |
112 | void *memcrypt_handle; | |
54e89539 | 113 | int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); |
8072aae3 AK |
114 | |
115 | /* For "info mtree -f" to tell if an MR is registered in KVM */ | |
116 | int nr_as; | |
117 | struct KVMAs { | |
118 | KVMMemoryListener *ml; | |
119 | AddressSpace *as; | |
120 | } *as; | |
9d1c35df | 121 | }; |
05330448 | 122 | |
6a7af8cb | 123 | KVMState *kvm_state; |
3d4b2649 | 124 | bool kvm_kernel_irqchip; |
15eafc2e | 125 | bool kvm_split_irqchip; |
7ae26bd4 | 126 | bool kvm_async_interrupts_allowed; |
215e79c0 | 127 | bool kvm_halt_in_kernel_allowed; |
69e03ae6 | 128 | bool kvm_eventfds_allowed; |
cc7e0ddf | 129 | bool kvm_irqfds_allowed; |
f41389ae | 130 | bool kvm_resamplefds_allowed; |
614e41bc | 131 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 132 | bool kvm_gsi_routing_allowed; |
76fe21de | 133 | bool kvm_gsi_direct_mapping; |
13eed94e | 134 | bool kvm_allowed; |
df9c8b75 | 135 | bool kvm_readonly_mem_allowed; |
d0a073a1 | 136 | bool kvm_vm_attributes_allowed; |
50bf31b9 | 137 | bool kvm_direct_msi_allowed; |
35108223 | 138 | bool kvm_ioeventfd_any_length_allowed; |
767a554a | 139 | bool kvm_msi_use_devid; |
cf0f7cf9 | 140 | static bool kvm_immediate_exit; |
05330448 | 141 | |
94a8d39a JK |
142 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
143 | KVM_CAP_INFO(USER_MEMORY), | |
144 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
89de4b91 | 145 | KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), |
94a8d39a JK |
146 | KVM_CAP_LAST_INFO |
147 | }; | |
148 | ||
36adac49 PX |
149 | #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) |
150 | #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) | |
151 | ||
44f2e6c1 BR |
152 | int kvm_get_max_memslots(void) |
153 | { | |
154 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
155 | ||
156 | return s->nr_slots; | |
157 | } | |
158 | ||
b20e3780 BS |
159 | bool kvm_memcrypt_enabled(void) |
160 | { | |
161 | if (kvm_state && kvm_state->memcrypt_handle) { | |
162 | return true; | |
163 | } | |
164 | ||
165 | return false; | |
166 | } | |
167 | ||
54e89539 BS |
168 | int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) |
169 | { | |
170 | if (kvm_state->memcrypt_handle && | |
171 | kvm_state->memcrypt_encrypt_data) { | |
172 | return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, | |
173 | ptr, len); | |
174 | } | |
175 | ||
176 | return 1; | |
177 | } | |
178 | ||
36adac49 | 179 | /* Called with KVMMemoryListener.slots_lock held */ |
7bbda04c | 180 | static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) |
05330448 | 181 | { |
7bbda04c | 182 | KVMState *s = kvm_state; |
05330448 AL |
183 | int i; |
184 | ||
fb541ca5 | 185 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c PB |
186 | if (kml->slots[i].memory_size == 0) { |
187 | return &kml->slots[i]; | |
a426e122 | 188 | } |
05330448 AL |
189 | } |
190 | ||
b8865591 IM |
191 | return NULL; |
192 | } | |
193 | ||
194 | bool kvm_has_free_slot(MachineState *ms) | |
195 | { | |
7bbda04c | 196 | KVMState *s = KVM_STATE(ms->accelerator); |
36adac49 PX |
197 | bool result; |
198 | KVMMemoryListener *kml = &s->memory_listener; | |
199 | ||
200 | kvm_slots_lock(kml); | |
201 | result = !!kvm_get_free_slot(kml); | |
202 | kvm_slots_unlock(kml); | |
7bbda04c | 203 | |
36adac49 | 204 | return result; |
b8865591 IM |
205 | } |
206 | ||
36adac49 | 207 | /* Called with KVMMemoryListener.slots_lock held */ |
7bbda04c | 208 | static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) |
b8865591 | 209 | { |
7bbda04c | 210 | KVMSlot *slot = kvm_get_free_slot(kml); |
b8865591 IM |
211 | |
212 | if (slot) { | |
213 | return slot; | |
214 | } | |
215 | ||
d3f8d37f AL |
216 | fprintf(stderr, "%s: no free slot available\n", __func__); |
217 | abort(); | |
218 | } | |
219 | ||
7bbda04c | 220 | static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, |
a8170e5e | 221 | hwaddr start_addr, |
2747e716 | 222 | hwaddr size) |
d3f8d37f | 223 | { |
7bbda04c | 224 | KVMState *s = kvm_state; |
d3f8d37f AL |
225 | int i; |
226 | ||
fb541ca5 | 227 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c | 228 | KVMSlot *mem = &kml->slots[i]; |
d3f8d37f | 229 | |
2747e716 | 230 | if (start_addr == mem->start_addr && size == mem->memory_size) { |
d3f8d37f AL |
231 | return mem; |
232 | } | |
233 | } | |
234 | ||
05330448 AL |
235 | return NULL; |
236 | } | |
237 | ||
5ea69c2e DH |
238 | /* |
239 | * Calculate and align the start address and the size of the section. | |
240 | * Return the size. If the size is 0, the aligned section is empty. | |
241 | */ | |
242 | static hwaddr kvm_align_section(MemoryRegionSection *section, | |
243 | hwaddr *start) | |
244 | { | |
245 | hwaddr size = int128_get64(section->size); | |
a6ffc423 | 246 | hwaddr delta, aligned; |
5ea69c2e DH |
247 | |
248 | /* kvm works in page size chunks, but the function may be called | |
249 | with sub-page size and unaligned start address. Pad the start | |
250 | address to next and truncate size to previous page boundary. */ | |
a6ffc423 DH |
251 | aligned = ROUND_UP(section->offset_within_address_space, |
252 | qemu_real_host_page_size); | |
253 | delta = aligned - section->offset_within_address_space; | |
254 | *start = aligned; | |
5ea69c2e DH |
255 | if (delta > size) { |
256 | return 0; | |
257 | } | |
5ea69c2e | 258 | |
a6ffc423 | 259 | return (size - delta) & qemu_real_host_page_mask; |
5ea69c2e DH |
260 | } |
261 | ||
9f213ed9 | 262 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 263 | hwaddr *phys_addr) |
983dfc3b | 264 | { |
7bbda04c | 265 | KVMMemoryListener *kml = &s->memory_listener; |
36adac49 | 266 | int i, ret = 0; |
983dfc3b | 267 | |
36adac49 | 268 | kvm_slots_lock(kml); |
fb541ca5 | 269 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c | 270 | KVMSlot *mem = &kml->slots[i]; |
983dfc3b | 271 | |
9f213ed9 AK |
272 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
273 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
36adac49 PX |
274 | ret = 1; |
275 | break; | |
983dfc3b HY |
276 | } |
277 | } | |
36adac49 | 278 | kvm_slots_unlock(kml); |
983dfc3b | 279 | |
36adac49 | 280 | return ret; |
983dfc3b HY |
281 | } |
282 | ||
6c090d4a | 283 | static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) |
5832d1f2 | 284 | { |
7bbda04c | 285 | KVMState *s = kvm_state; |
5832d1f2 | 286 | struct kvm_userspace_memory_region mem; |
fe29141b | 287 | int ret; |
5832d1f2 | 288 | |
38bfe691 | 289 | mem.slot = slot->slot | (kml->as_id << 16); |
5832d1f2 | 290 | mem.guest_phys_addr = slot->start_addr; |
9f213ed9 | 291 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 292 | mem.flags = slot->flags; |
651eb0f4 | 293 | |
6c090d4a | 294 | if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { |
235e8982 JJ |
295 | /* Set the slot size to 0 before setting the slot to the desired |
296 | * value. This is needed based on KVM commit 75d61fbc. */ | |
297 | mem.memory_size = 0; | |
298 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
299 | } | |
300 | mem.memory_size = slot->memory_size; | |
fe29141b | 301 | ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
6c090d4a | 302 | slot->old_flags = mem.flags; |
fe29141b AK |
303 | trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, |
304 | mem.memory_size, mem.userspace_addr, ret); | |
305 | return ret; | |
5832d1f2 AL |
306 | } |
307 | ||
4c055ab5 GZ |
308 | int kvm_destroy_vcpu(CPUState *cpu) |
309 | { | |
310 | KVMState *s = kvm_state; | |
311 | long mmap_size; | |
312 | struct KVMParkedVcpu *vcpu = NULL; | |
313 | int ret = 0; | |
314 | ||
315 | DPRINTF("kvm_destroy_vcpu\n"); | |
316 | ||
b1115c99 LA |
317 | ret = kvm_arch_destroy_vcpu(cpu); |
318 | if (ret < 0) { | |
319 | goto err; | |
320 | } | |
321 | ||
4c055ab5 GZ |
322 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); |
323 | if (mmap_size < 0) { | |
324 | ret = mmap_size; | |
325 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
326 | goto err; | |
327 | } | |
328 | ||
329 | ret = munmap(cpu->kvm_run, mmap_size); | |
330 | if (ret < 0) { | |
331 | goto err; | |
332 | } | |
333 | ||
334 | vcpu = g_malloc0(sizeof(*vcpu)); | |
335 | vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); | |
336 | vcpu->kvm_fd = cpu->kvm_fd; | |
337 | QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); | |
338 | err: | |
339 | return ret; | |
340 | } | |
341 | ||
342 | static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) | |
343 | { | |
344 | struct KVMParkedVcpu *cpu; | |
345 | ||
346 | QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { | |
347 | if (cpu->vcpu_id == vcpu_id) { | |
348 | int kvm_fd; | |
349 | ||
350 | QLIST_REMOVE(cpu, node); | |
351 | kvm_fd = cpu->kvm_fd; | |
352 | g_free(cpu); | |
353 | return kvm_fd; | |
354 | } | |
355 | } | |
356 | ||
357 | return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); | |
358 | } | |
359 | ||
504134d2 | 360 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
361 | { |
362 | KVMState *s = kvm_state; | |
363 | long mmap_size; | |
364 | int ret; | |
365 | ||
8c0d577e | 366 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 367 | |
4c055ab5 | 368 | ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); |
05330448 | 369 | if (ret < 0) { |
8c0d577e | 370 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
371 | goto err; |
372 | } | |
373 | ||
8737c51c | 374 | cpu->kvm_fd = ret; |
a60f24b5 | 375 | cpu->kvm_state = s; |
99f31832 | 376 | cpu->vcpu_dirty = true; |
05330448 AL |
377 | |
378 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
379 | if (mmap_size < 0) { | |
748a680b | 380 | ret = mmap_size; |
8c0d577e | 381 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
382 | goto err; |
383 | } | |
384 | ||
f7575c96 | 385 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 386 | cpu->kvm_fd, 0); |
f7575c96 | 387 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 388 | ret = -errno; |
8c0d577e | 389 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
390 | goto err; |
391 | } | |
392 | ||
a426e122 JK |
393 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
394 | s->coalesced_mmio_ring = | |
f7575c96 | 395 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 396 | } |
62a2744c | 397 | |
20d695a9 | 398 | ret = kvm_arch_init_vcpu(cpu); |
05330448 AL |
399 | err: |
400 | return ret; | |
401 | } | |
402 | ||
5832d1f2 AL |
403 | /* |
404 | * dirty pages logging control | |
405 | */ | |
25254bbc | 406 | |
d6ff5cbc | 407 | static int kvm_mem_flags(MemoryRegion *mr) |
25254bbc | 408 | { |
d6ff5cbc | 409 | bool readonly = mr->readonly || memory_region_is_romd(mr); |
235e8982 | 410 | int flags = 0; |
d6ff5cbc AJ |
411 | |
412 | if (memory_region_get_dirty_log_mask(mr) != 0) { | |
413 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
414 | } | |
235e8982 JJ |
415 | if (readonly && kvm_readonly_mem_allowed) { |
416 | flags |= KVM_MEM_READONLY; | |
417 | } | |
418 | return flags; | |
25254bbc MT |
419 | } |
420 | ||
36adac49 | 421 | /* Called with KVMMemoryListener.slots_lock held */ |
7bbda04c PB |
422 | static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, |
423 | MemoryRegion *mr) | |
5832d1f2 | 424 | { |
d6ff5cbc | 425 | mem->flags = kvm_mem_flags(mr); |
5832d1f2 | 426 | |
4495d6a7 | 427 | /* If nothing changed effectively, no need to issue ioctl */ |
6c090d4a | 428 | if (mem->flags == mem->old_flags) { |
25254bbc | 429 | return 0; |
4495d6a7 JK |
430 | } |
431 | ||
6c090d4a | 432 | return kvm_set_user_memory_region(kml, mem, false); |
5832d1f2 AL |
433 | } |
434 | ||
7bbda04c PB |
435 | static int kvm_section_update_flags(KVMMemoryListener *kml, |
436 | MemoryRegionSection *section) | |
25254bbc | 437 | { |
343562e8 DH |
438 | hwaddr start_addr, size; |
439 | KVMSlot *mem; | |
36adac49 | 440 | int ret = 0; |
25254bbc | 441 | |
343562e8 DH |
442 | size = kvm_align_section(section, &start_addr); |
443 | if (!size) { | |
ea8cb1a8 | 444 | return 0; |
25254bbc | 445 | } |
343562e8 | 446 | |
36adac49 PX |
447 | kvm_slots_lock(kml); |
448 | ||
343562e8 DH |
449 | mem = kvm_lookup_matching_slot(kml, start_addr, size); |
450 | if (!mem) { | |
e377e87c | 451 | /* We don't have a slot if we want to trap every access. */ |
36adac49 | 452 | goto out; |
343562e8 DH |
453 | } |
454 | ||
36adac49 PX |
455 | ret = kvm_slot_update_flags(kml, mem, section->mr); |
456 | ||
457 | out: | |
458 | kvm_slots_unlock(kml); | |
459 | return ret; | |
25254bbc MT |
460 | } |
461 | ||
a01672d3 | 462 | static void kvm_log_start(MemoryListener *listener, |
b2dfd71c PB |
463 | MemoryRegionSection *section, |
464 | int old, int new) | |
5832d1f2 | 465 | { |
7bbda04c | 466 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
467 | int r; |
468 | ||
b2dfd71c PB |
469 | if (old != 0) { |
470 | return; | |
471 | } | |
472 | ||
7bbda04c | 473 | r = kvm_section_update_flags(kml, section); |
a01672d3 AK |
474 | if (r < 0) { |
475 | abort(); | |
476 | } | |
5832d1f2 AL |
477 | } |
478 | ||
a01672d3 | 479 | static void kvm_log_stop(MemoryListener *listener, |
b2dfd71c PB |
480 | MemoryRegionSection *section, |
481 | int old, int new) | |
5832d1f2 | 482 | { |
7bbda04c | 483 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
484 | int r; |
485 | ||
b2dfd71c PB |
486 | if (new != 0) { |
487 | return; | |
488 | } | |
489 | ||
7bbda04c | 490 | r = kvm_section_update_flags(kml, section); |
a01672d3 AK |
491 | if (r < 0) { |
492 | abort(); | |
493 | } | |
5832d1f2 AL |
494 | } |
495 | ||
8369e01c | 496 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
497 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
498 | unsigned long *bitmap) | |
96c1606b | 499 | { |
8e41fb63 FZ |
500 | ram_addr_t start = section->offset_within_region + |
501 | memory_region_get_ram_addr(section->mr); | |
5ff7fb77 JQ |
502 | ram_addr_t pages = int128_get64(section->size) / getpagesize(); |
503 | ||
504 | cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); | |
8369e01c | 505 | return 0; |
96c1606b AG |
506 | } |
507 | ||
8369e01c MT |
508 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
509 | ||
5832d1f2 | 510 | /** |
4a12a11a | 511 | * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space |
5832d1f2 | 512 | * |
4a12a11a PX |
513 | * This function will first try to fetch dirty bitmap from the kernel, |
514 | * and then updates qemu's dirty bitmap. | |
515 | * | |
36adac49 PX |
516 | * NOTE: caller must be with kml->slots_lock held. |
517 | * | |
4a12a11a PX |
518 | * @kml: the KVM memory listener object |
519 | * @section: the memory section to sync the dirty bitmap with | |
5832d1f2 | 520 | */ |
7bbda04c PB |
521 | static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, |
522 | MemoryRegionSection *section) | |
5832d1f2 AL |
523 | { |
524 | KVMState *s = kvm_state; | |
714f78c5 | 525 | struct kvm_dirty_log d = {}; |
151f7749 | 526 | KVMSlot *mem; |
67548f09 | 527 | hwaddr start_addr, size; |
36adac49 | 528 | int ret = 0; |
67548f09 DH |
529 | |
530 | size = kvm_align_section(section, &start_addr); | |
531 | if (size) { | |
532 | mem = kvm_lookup_matching_slot(kml, start_addr, size); | |
533 | if (!mem) { | |
e377e87c | 534 | /* We don't have a slot if we want to trap every access. */ |
36adac49 | 535 | goto out; |
151f7749 | 536 | } |
5832d1f2 | 537 | |
51b0c606 MT |
538 | /* XXX bad kernel interface alert |
539 | * For dirty bitmap, kernel allocates array of size aligned to | |
540 | * bits-per-long. But for case when the kernel is 64bits and | |
541 | * the userspace is 32bits, userspace can't align to the same | |
542 | * bits-per-long, since sizeof(long) is different between kernel | |
543 | * and user space. This way, userspace will provide buffer which | |
544 | * may be 4 bytes less than the kernel will use, resulting in | |
545 | * userspace memory corruption (which is not detectable by valgrind | |
546 | * too, in most cases). | |
547 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
cb8d4c8f | 548 | * a hope that sizeof(long) won't become >8 any time soon. |
51b0c606 MT |
549 | */ |
550 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
551 | /*HOST_LONG_BITS*/ 64) / 8; | |
9f4bf4ba PX |
552 | if (!mem->dirty_bmap) { |
553 | /* Allocate on the first log_sync, once and for all */ | |
554 | mem->dirty_bmap = g_malloc0(size); | |
555 | } | |
5832d1f2 | 556 | |
9f4bf4ba | 557 | d.dirty_bitmap = mem->dirty_bmap; |
38bfe691 | 558 | d.slot = mem->slot | (kml->as_id << 16); |
50212d63 | 559 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 560 | DPRINTF("ioctl failed %d\n", errno); |
36adac49 PX |
561 | ret = -1; |
562 | goto out; | |
151f7749 | 563 | } |
5832d1f2 | 564 | |
ffcde12f | 565 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
5832d1f2 | 566 | } |
36adac49 PX |
567 | out: |
568 | return ret; | |
5832d1f2 AL |
569 | } |
570 | ||
ff4aa114 PX |
571 | /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ |
572 | #define KVM_CLEAR_LOG_SHIFT 6 | |
573 | #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) | |
574 | #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) | |
575 | ||
576 | /** | |
577 | * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range | |
578 | * | |
579 | * NOTE: this will be a no-op if we haven't enabled manual dirty log | |
580 | * protection in the host kernel because in that case this operation | |
581 | * will be done within log_sync(). | |
582 | * | |
583 | * @kml: the kvm memory listener | |
584 | * @section: the memory range to clear dirty bitmap | |
585 | */ | |
586 | static int kvm_physical_log_clear(KVMMemoryListener *kml, | |
587 | MemoryRegionSection *section) | |
588 | { | |
589 | KVMState *s = kvm_state; | |
590 | struct kvm_clear_dirty_log d; | |
591 | uint64_t start, end, bmap_start, start_delta, bmap_npages, size; | |
592 | unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; | |
593 | KVMSlot *mem = NULL; | |
594 | int ret, i; | |
595 | ||
596 | if (!s->manual_dirty_log_protect) { | |
597 | /* No need to do explicit clear */ | |
598 | return 0; | |
599 | } | |
600 | ||
601 | start = section->offset_within_address_space; | |
602 | size = int128_get64(section->size); | |
603 | ||
604 | if (!size) { | |
605 | /* Nothing more we can do... */ | |
606 | return 0; | |
607 | } | |
608 | ||
609 | kvm_slots_lock(kml); | |
610 | ||
611 | /* Find any possible slot that covers the section */ | |
612 | for (i = 0; i < s->nr_slots; i++) { | |
613 | mem = &kml->slots[i]; | |
614 | if (mem->start_addr <= start && | |
615 | start + size <= mem->start_addr + mem->memory_size) { | |
616 | break; | |
617 | } | |
618 | } | |
619 | ||
620 | /* | |
621 | * We should always find one memslot until this point, otherwise | |
622 | * there could be something wrong from the upper layer | |
623 | */ | |
624 | assert(mem && i != s->nr_slots); | |
625 | ||
626 | /* | |
627 | * We need to extend either the start or the size or both to | |
628 | * satisfy the KVM interface requirement. Firstly, do the start | |
629 | * page alignment on 64 host pages | |
630 | */ | |
631 | bmap_start = (start - mem->start_addr) & KVM_CLEAR_LOG_MASK; | |
632 | start_delta = start - mem->start_addr - bmap_start; | |
633 | bmap_start /= psize; | |
634 | ||
635 | /* | |
636 | * The kernel interface has restriction on the size too, that either: | |
637 | * | |
638 | * (1) the size is 64 host pages aligned (just like the start), or | |
639 | * (2) the size fills up until the end of the KVM memslot. | |
640 | */ | |
641 | bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) | |
642 | << KVM_CLEAR_LOG_SHIFT; | |
643 | end = mem->memory_size / psize; | |
644 | if (bmap_npages > end - bmap_start) { | |
645 | bmap_npages = end - bmap_start; | |
646 | } | |
647 | start_delta /= psize; | |
648 | ||
649 | /* | |
650 | * Prepare the bitmap to clear dirty bits. Here we must guarantee | |
651 | * that we won't clear any unknown dirty bits otherwise we might | |
652 | * accidentally clear some set bits which are not yet synced from | |
653 | * the kernel into QEMU's bitmap, then we'll lose track of the | |
654 | * guest modifications upon those pages (which can directly lead | |
655 | * to guest data loss or panic after migration). | |
656 | * | |
657 | * Layout of the KVMSlot.dirty_bmap: | |
658 | * | |
659 | * |<-------- bmap_npages -----------..>| | |
660 | * [1] | |
661 | * start_delta size | |
662 | * |----------------|-------------|------------------|------------| | |
663 | * ^ ^ ^ ^ | |
664 | * | | | | | |
665 | * start bmap_start (start) end | |
666 | * of memslot of memslot | |
667 | * | |
668 | * [1] bmap_npages can be aligned to either 64 pages or the end of slot | |
669 | */ | |
670 | ||
671 | assert(bmap_start % BITS_PER_LONG == 0); | |
672 | /* We should never do log_clear before log_sync */ | |
673 | assert(mem->dirty_bmap); | |
674 | if (start_delta) { | |
675 | /* Slow path - we need to manipulate a temp bitmap */ | |
676 | bmap_clear = bitmap_new(bmap_npages); | |
677 | bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, | |
678 | bmap_start, start_delta + size / psize); | |
679 | /* | |
680 | * We need to fill the holes at start because that was not | |
681 | * specified by the caller and we extended the bitmap only for | |
682 | * 64 pages alignment | |
683 | */ | |
684 | bitmap_clear(bmap_clear, 0, start_delta); | |
685 | d.dirty_bitmap = bmap_clear; | |
686 | } else { | |
687 | /* Fast path - start address aligns well with BITS_PER_LONG */ | |
688 | d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); | |
689 | } | |
690 | ||
691 | d.first_page = bmap_start; | |
692 | /* It should never overflow. If it happens, say something */ | |
693 | assert(bmap_npages <= UINT32_MAX); | |
694 | d.num_pages = bmap_npages; | |
695 | d.slot = mem->slot | (kml->as_id << 16); | |
696 | ||
697 | if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { | |
698 | ret = -errno; | |
699 | error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " | |
700 | "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", | |
701 | __func__, d.slot, (uint64_t)d.first_page, | |
702 | (uint32_t)d.num_pages, ret); | |
703 | } else { | |
704 | ret = 0; | |
705 | trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); | |
706 | } | |
707 | ||
708 | /* | |
709 | * After we have updated the remote dirty bitmap, we update the | |
710 | * cached bitmap as well for the memslot, then if another user | |
711 | * clears the same region we know we shouldn't clear it again on | |
712 | * the remote otherwise it's data loss as well. | |
713 | */ | |
714 | bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, | |
715 | size / psize); | |
716 | /* This handles the NULL case well */ | |
717 | g_free(bmap_clear); | |
718 | ||
719 | kvm_slots_unlock(kml); | |
720 | ||
721 | return ret; | |
722 | } | |
723 | ||
95d2994a AK |
724 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
725 | MemoryRegionSection *secion, | |
a8170e5e | 726 | hwaddr start, hwaddr size) |
f65ed4c1 | 727 | { |
f65ed4c1 AL |
728 | KVMState *s = kvm_state; |
729 | ||
730 | if (s->coalesced_mmio) { | |
731 | struct kvm_coalesced_mmio_zone zone; | |
732 | ||
733 | zone.addr = start; | |
734 | zone.size = size; | |
7e680753 | 735 | zone.pad = 0; |
f65ed4c1 | 736 | |
95d2994a | 737 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 738 | } |
f65ed4c1 AL |
739 | } |
740 | ||
95d2994a AK |
741 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
742 | MemoryRegionSection *secion, | |
a8170e5e | 743 | hwaddr start, hwaddr size) |
f65ed4c1 | 744 | { |
f65ed4c1 AL |
745 | KVMState *s = kvm_state; |
746 | ||
747 | if (s->coalesced_mmio) { | |
748 | struct kvm_coalesced_mmio_zone zone; | |
749 | ||
750 | zone.addr = start; | |
751 | zone.size = size; | |
7e680753 | 752 | zone.pad = 0; |
f65ed4c1 | 753 | |
95d2994a | 754 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 755 | } |
f65ed4c1 AL |
756 | } |
757 | ||
e6d34aee PH |
758 | static void kvm_coalesce_pio_add(MemoryListener *listener, |
759 | MemoryRegionSection *section, | |
760 | hwaddr start, hwaddr size) | |
761 | { | |
762 | KVMState *s = kvm_state; | |
763 | ||
764 | if (s->coalesced_pio) { | |
765 | struct kvm_coalesced_mmio_zone zone; | |
766 | ||
767 | zone.addr = start; | |
768 | zone.size = size; | |
769 | zone.pio = 1; | |
770 | ||
771 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
772 | } | |
773 | } | |
774 | ||
775 | static void kvm_coalesce_pio_del(MemoryListener *listener, | |
776 | MemoryRegionSection *section, | |
777 | hwaddr start, hwaddr size) | |
778 | { | |
779 | KVMState *s = kvm_state; | |
780 | ||
781 | if (s->coalesced_pio) { | |
782 | struct kvm_coalesced_mmio_zone zone; | |
783 | ||
784 | zone.addr = start; | |
785 | zone.size = size; | |
786 | zone.pio = 1; | |
787 | ||
788 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
789 | } | |
790 | } | |
791 | ||
792 | static MemoryListener kvm_coalesced_pio_listener = { | |
793 | .coalesced_io_add = kvm_coalesce_pio_add, | |
794 | .coalesced_io_del = kvm_coalesce_pio_del, | |
795 | }; | |
796 | ||
ad7b8b33 AL |
797 | int kvm_check_extension(KVMState *s, unsigned int extension) |
798 | { | |
799 | int ret; | |
800 | ||
801 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
802 | if (ret < 0) { | |
803 | ret = 0; | |
804 | } | |
805 | ||
806 | return ret; | |
807 | } | |
808 | ||
7d0a07fa AG |
809 | int kvm_vm_check_extension(KVMState *s, unsigned int extension) |
810 | { | |
811 | int ret; | |
812 | ||
813 | ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
814 | if (ret < 0) { | |
815 | /* VM wide version not implemented, use global one instead */ | |
816 | ret = kvm_check_extension(s, extension); | |
817 | } | |
818 | ||
819 | return ret; | |
820 | } | |
821 | ||
b680c5ba GK |
822 | static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) |
823 | { | |
824 | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | |
825 | /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN | |
826 | * endianness, but the memory core hands them in target endianness. | |
827 | * For example, PPC is always treated as big-endian even if running | |
828 | * on KVM and on PPC64LE. Correct here. | |
829 | */ | |
830 | switch (size) { | |
831 | case 2: | |
832 | val = bswap16(val); | |
833 | break; | |
834 | case 4: | |
835 | val = bswap32(val); | |
836 | break; | |
837 | } | |
838 | #endif | |
839 | return val; | |
840 | } | |
841 | ||
584f2be7 | 842 | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, |
41cb62c2 | 843 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
844 | { |
845 | int ret; | |
03a96b83 TH |
846 | struct kvm_ioeventfd iofd = { |
847 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | |
848 | .addr = addr, | |
849 | .len = size, | |
850 | .flags = 0, | |
851 | .fd = fd, | |
852 | }; | |
500ffd4a | 853 | |
876d16cd DDAG |
854 | trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, |
855 | datamatch); | |
500ffd4a MT |
856 | if (!kvm_enabled()) { |
857 | return -ENOSYS; | |
858 | } | |
859 | ||
41cb62c2 MT |
860 | if (datamatch) { |
861 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
862 | } | |
500ffd4a MT |
863 | if (!assign) { |
864 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
865 | } | |
866 | ||
867 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
868 | ||
869 | if (ret < 0) { | |
870 | return -errno; | |
871 | } | |
872 | ||
873 | return 0; | |
874 | } | |
875 | ||
44c3f8f7 | 876 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 877 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
878 | { |
879 | struct kvm_ioeventfd kick = { | |
b680c5ba | 880 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, |
500ffd4a | 881 | .addr = addr, |
41cb62c2 | 882 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 883 | .len = size, |
500ffd4a MT |
884 | .fd = fd, |
885 | }; | |
886 | int r; | |
876d16cd | 887 | trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); |
500ffd4a MT |
888 | if (!kvm_enabled()) { |
889 | return -ENOSYS; | |
890 | } | |
41cb62c2 MT |
891 | if (datamatch) { |
892 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
893 | } | |
500ffd4a MT |
894 | if (!assign) { |
895 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
896 | } | |
897 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
898 | if (r < 0) { | |
899 | return r; | |
900 | } | |
901 | return 0; | |
902 | } | |
903 | ||
904 | ||
d2f2b8a7 SH |
905 | static int kvm_check_many_ioeventfds(void) |
906 | { | |
d0dcac83 SH |
907 | /* Userspace can use ioeventfd for io notification. This requires a host |
908 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
909 | * support SIGIO it cannot interrupt the vcpu. | |
910 | * | |
911 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
912 | * can avoid creating too many ioeventfds. |
913 | */ | |
12d4536f | 914 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
915 | int ioeventfds[7]; |
916 | int i, ret = 0; | |
917 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
918 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
919 | if (ioeventfds[i] < 0) { | |
920 | break; | |
921 | } | |
41cb62c2 | 922 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
923 | if (ret < 0) { |
924 | close(ioeventfds[i]); | |
925 | break; | |
926 | } | |
927 | } | |
928 | ||
929 | /* Decide whether many devices are supported or not */ | |
930 | ret = i == ARRAY_SIZE(ioeventfds); | |
931 | ||
932 | while (i-- > 0) { | |
41cb62c2 | 933 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
934 | close(ioeventfds[i]); |
935 | } | |
936 | return ret; | |
937 | #else | |
938 | return 0; | |
939 | #endif | |
940 | } | |
941 | ||
94a8d39a JK |
942 | static const KVMCapabilityInfo * |
943 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
944 | { | |
945 | while (list->name) { | |
946 | if (!kvm_check_extension(s, list->value)) { | |
947 | return list; | |
948 | } | |
949 | list++; | |
950 | } | |
951 | return NULL; | |
952 | } | |
953 | ||
7bbda04c PB |
954 | static void kvm_set_phys_mem(KVMMemoryListener *kml, |
955 | MemoryRegionSection *section, bool add) | |
46dbef6a | 956 | { |
f357f564 | 957 | KVMSlot *mem; |
46dbef6a | 958 | int err; |
a01672d3 | 959 | MemoryRegion *mr = section->mr; |
235e8982 | 960 | bool writeable = !mr->readonly && !mr->rom_device; |
5ea69c2e DH |
961 | hwaddr start_addr, size; |
962 | void *ram; | |
46dbef6a | 963 | |
a01672d3 | 964 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
965 | if (writeable || !kvm_readonly_mem_allowed) { |
966 | return; | |
967 | } else if (!mr->romd_mode) { | |
968 | /* If the memory device is not in romd_mode, then we actually want | |
969 | * to remove the kvm memory slot so all accesses will trap. */ | |
970 | add = false; | |
971 | } | |
9f213ed9 AK |
972 | } |
973 | ||
5ea69c2e DH |
974 | size = kvm_align_section(section, &start_addr); |
975 | if (!size) { | |
976 | return; | |
977 | } | |
978 | ||
bbfd3017 | 979 | /* use aligned delta to align the ram address */ |
5ea69c2e | 980 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + |
bbfd3017 | 981 | (start_addr - section->offset_within_address_space); |
a01672d3 | 982 | |
36adac49 PX |
983 | kvm_slots_lock(kml); |
984 | ||
f357f564 | 985 | if (!add) { |
90ed4bcc | 986 | mem = kvm_lookup_matching_slot(kml, start_addr, size); |
46dbef6a | 987 | if (!mem) { |
36adac49 | 988 | goto out; |
46dbef6a | 989 | } |
1bfbac4e | 990 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
7bbda04c | 991 | kvm_physical_sync_dirty_bitmap(kml, section); |
3fbffb62 AK |
992 | } |
993 | ||
f357f564 | 994 | /* unregister the slot */ |
9f4bf4ba PX |
995 | g_free(mem->dirty_bmap); |
996 | mem->dirty_bmap = NULL; | |
46dbef6a | 997 | mem->memory_size = 0; |
6c090d4a SZ |
998 | mem->flags = 0; |
999 | err = kvm_set_user_memory_region(kml, mem, false); | |
46dbef6a | 1000 | if (err) { |
1c4fdaba | 1001 | fprintf(stderr, "%s: error unregistering slot: %s\n", |
46dbef6a MT |
1002 | __func__, strerror(-err)); |
1003 | abort(); | |
1004 | } | |
36adac49 | 1005 | goto out; |
46dbef6a MT |
1006 | } |
1007 | ||
f357f564 | 1008 | /* register the new slot */ |
7bbda04c | 1009 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
1010 | mem->memory_size = size; |
1011 | mem->start_addr = start_addr; | |
9f213ed9 | 1012 | mem->ram = ram; |
d6ff5cbc | 1013 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 1014 | |
6c090d4a | 1015 | err = kvm_set_user_memory_region(kml, mem, true); |
46dbef6a MT |
1016 | if (err) { |
1017 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
1018 | strerror(-err)); | |
1019 | abort(); | |
1020 | } | |
36adac49 PX |
1021 | |
1022 | out: | |
1023 | kvm_slots_unlock(kml); | |
46dbef6a MT |
1024 | } |
1025 | ||
a01672d3 AK |
1026 | static void kvm_region_add(MemoryListener *listener, |
1027 | MemoryRegionSection *section) | |
1028 | { | |
7bbda04c PB |
1029 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
1030 | ||
dfde4e6e | 1031 | memory_region_ref(section->mr); |
7bbda04c | 1032 | kvm_set_phys_mem(kml, section, true); |
a01672d3 AK |
1033 | } |
1034 | ||
1035 | static void kvm_region_del(MemoryListener *listener, | |
1036 | MemoryRegionSection *section) | |
1037 | { | |
7bbda04c PB |
1038 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
1039 | ||
1040 | kvm_set_phys_mem(kml, section, false); | |
dfde4e6e | 1041 | memory_region_unref(section->mr); |
a01672d3 AK |
1042 | } |
1043 | ||
1044 | static void kvm_log_sync(MemoryListener *listener, | |
1045 | MemoryRegionSection *section) | |
7b8f3b78 | 1046 | { |
7bbda04c | 1047 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
1048 | int r; |
1049 | ||
36adac49 | 1050 | kvm_slots_lock(kml); |
7bbda04c | 1051 | r = kvm_physical_sync_dirty_bitmap(kml, section); |
36adac49 | 1052 | kvm_slots_unlock(kml); |
a01672d3 AK |
1053 | if (r < 0) { |
1054 | abort(); | |
1055 | } | |
7b8f3b78 MT |
1056 | } |
1057 | ||
ff4aa114 PX |
1058 | static void kvm_log_clear(MemoryListener *listener, |
1059 | MemoryRegionSection *section) | |
1060 | { | |
1061 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | |
1062 | int r; | |
1063 | ||
1064 | r = kvm_physical_log_clear(kml, section); | |
1065 | if (r < 0) { | |
1066 | error_report_once("%s: kvm log clear failed: mr=%s " | |
1067 | "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, | |
1068 | section->mr->name, section->offset_within_region, | |
1069 | int128_get64(section->size)); | |
1070 | abort(); | |
1071 | } | |
1072 | } | |
1073 | ||
d22b096e AK |
1074 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
1075 | MemoryRegionSection *section, | |
1076 | bool match_data, uint64_t data, | |
1077 | EventNotifier *e) | |
1078 | { | |
1079 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
1080 | int r; |
1081 | ||
4b8f1c88 | 1082 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
1083 | data, true, int128_get64(section->size), |
1084 | match_data); | |
80a1ea37 | 1085 | if (r < 0) { |
e346bcbf YK |
1086 | fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", |
1087 | __func__, strerror(-r), -r); | |
80a1ea37 AK |
1088 | abort(); |
1089 | } | |
1090 | } | |
1091 | ||
d22b096e AK |
1092 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
1093 | MemoryRegionSection *section, | |
1094 | bool match_data, uint64_t data, | |
1095 | EventNotifier *e) | |
80a1ea37 | 1096 | { |
d22b096e | 1097 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
1098 | int r; |
1099 | ||
4b8f1c88 | 1100 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
1101 | data, false, int128_get64(section->size), |
1102 | match_data); | |
80a1ea37 | 1103 | if (r < 0) { |
e346bcbf YK |
1104 | fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", |
1105 | __func__, strerror(-r), -r); | |
80a1ea37 AK |
1106 | abort(); |
1107 | } | |
1108 | } | |
1109 | ||
d22b096e AK |
1110 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
1111 | MemoryRegionSection *section, | |
1112 | bool match_data, uint64_t data, | |
1113 | EventNotifier *e) | |
80a1ea37 | 1114 | { |
d22b096e | 1115 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
1116 | int r; |
1117 | ||
44c3f8f7 | 1118 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
1119 | data, true, int128_get64(section->size), |
1120 | match_data); | |
80a1ea37 | 1121 | if (r < 0) { |
e346bcbf YK |
1122 | fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", |
1123 | __func__, strerror(-r), -r); | |
80a1ea37 AK |
1124 | abort(); |
1125 | } | |
1126 | } | |
1127 | ||
d22b096e AK |
1128 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
1129 | MemoryRegionSection *section, | |
1130 | bool match_data, uint64_t data, | |
1131 | EventNotifier *e) | |
80a1ea37 AK |
1132 | |
1133 | { | |
d22b096e | 1134 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
1135 | int r; |
1136 | ||
44c3f8f7 | 1137 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
1138 | data, false, int128_get64(section->size), |
1139 | match_data); | |
80a1ea37 | 1140 | if (r < 0) { |
e346bcbf YK |
1141 | fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", |
1142 | __func__, strerror(-r), -r); | |
80a1ea37 AK |
1143 | abort(); |
1144 | } | |
1145 | } | |
1146 | ||
38bfe691 PB |
1147 | void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, |
1148 | AddressSpace *as, int as_id) | |
7bbda04c PB |
1149 | { |
1150 | int i; | |
1151 | ||
36adac49 | 1152 | qemu_mutex_init(&kml->slots_lock); |
7bbda04c | 1153 | kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); |
38bfe691 | 1154 | kml->as_id = as_id; |
7bbda04c PB |
1155 | |
1156 | for (i = 0; i < s->nr_slots; i++) { | |
1157 | kml->slots[i].slot = i; | |
1158 | } | |
1159 | ||
1160 | kml->listener.region_add = kvm_region_add; | |
1161 | kml->listener.region_del = kvm_region_del; | |
1162 | kml->listener.log_start = kvm_log_start; | |
1163 | kml->listener.log_stop = kvm_log_stop; | |
1164 | kml->listener.log_sync = kvm_log_sync; | |
ff4aa114 | 1165 | kml->listener.log_clear = kvm_log_clear; |
7bbda04c PB |
1166 | kml->listener.priority = 10; |
1167 | ||
1168 | memory_listener_register(&kml->listener, as); | |
8072aae3 AK |
1169 | |
1170 | for (i = 0; i < s->nr_as; ++i) { | |
1171 | if (!s->as[i].as) { | |
1172 | s->as[i].as = as; | |
1173 | s->as[i].ml = kml; | |
1174 | break; | |
1175 | } | |
1176 | } | |
7bbda04c | 1177 | } |
d22b096e AK |
1178 | |
1179 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
1180 | .eventfd_add = kvm_io_ioeventfd_add, |
1181 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 1182 | .priority = 10, |
7b8f3b78 MT |
1183 | }; |
1184 | ||
3889c3fa | 1185 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
1186 | { |
1187 | struct kvm_irq_level event; | |
1188 | int ret; | |
1189 | ||
7ae26bd4 | 1190 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
1191 | |
1192 | event.level = level; | |
1193 | event.irq = irq; | |
e333cd69 | 1194 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 1195 | if (ret < 0) { |
3889c3fa | 1196 | perror("kvm_set_irq"); |
84b058d7 JK |
1197 | abort(); |
1198 | } | |
1199 | ||
e333cd69 | 1200 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
1201 | } |
1202 | ||
1203 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
1204 | typedef struct KVMMSIRoute { |
1205 | struct kvm_irq_routing_entry kroute; | |
1206 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
1207 | } KVMMSIRoute; | |
1208 | ||
84b058d7 JK |
1209 | static void set_gsi(KVMState *s, unsigned int gsi) |
1210 | { | |
8269fb70 | 1211 | set_bit(gsi, s->used_gsi_bitmap); |
84b058d7 JK |
1212 | } |
1213 | ||
04fa27f5 JK |
1214 | static void clear_gsi(KVMState *s, unsigned int gsi) |
1215 | { | |
8269fb70 | 1216 | clear_bit(gsi, s->used_gsi_bitmap); |
04fa27f5 JK |
1217 | } |
1218 | ||
7b774593 | 1219 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 | 1220 | { |
04fa27f5 | 1221 | int gsi_count, i; |
84b058d7 | 1222 | |
00008418 | 1223 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; |
84b058d7 | 1224 | if (gsi_count > 0) { |
84b058d7 | 1225 | /* Round up so we can search ints using ffs */ |
8269fb70 | 1226 | s->used_gsi_bitmap = bitmap_new(gsi_count); |
4e2e4e63 | 1227 | s->gsi_count = gsi_count; |
84b058d7 JK |
1228 | } |
1229 | ||
1230 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
1231 | s->nr_allocated_irq_routes = 0; | |
1232 | ||
50bf31b9 | 1233 | if (!kvm_direct_msi_allowed) { |
4a3adebb JK |
1234 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { |
1235 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
1236 | } | |
04fa27f5 JK |
1237 | } |
1238 | ||
84b058d7 JK |
1239 | kvm_arch_init_irq_routing(s); |
1240 | } | |
1241 | ||
cb925cf9 | 1242 | void kvm_irqchip_commit_routes(KVMState *s) |
e7b20308 JK |
1243 | { |
1244 | int ret; | |
1245 | ||
7005f7f8 PX |
1246 | if (kvm_gsi_direct_mapping()) { |
1247 | return; | |
1248 | } | |
1249 | ||
1250 | if (!kvm_gsi_routing_enabled()) { | |
1251 | return; | |
1252 | } | |
1253 | ||
e7b20308 | 1254 | s->irq_routes->flags = 0; |
54a6c11b | 1255 | trace_kvm_irqchip_commit_routes(); |
e7b20308 JK |
1256 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); |
1257 | assert(ret == 0); | |
1258 | } | |
1259 | ||
84b058d7 JK |
1260 | static void kvm_add_routing_entry(KVMState *s, |
1261 | struct kvm_irq_routing_entry *entry) | |
1262 | { | |
1263 | struct kvm_irq_routing_entry *new; | |
1264 | int n, size; | |
1265 | ||
1266 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1267 | n = s->nr_allocated_irq_routes * 2; | |
1268 | if (n < 64) { | |
1269 | n = 64; | |
1270 | } | |
1271 | size = sizeof(struct kvm_irq_routing); | |
1272 | size += n * sizeof(*new); | |
1273 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1274 | s->nr_allocated_irq_routes = n; | |
1275 | } | |
1276 | n = s->irq_routes->nr++; | |
1277 | new = &s->irq_routes->entries[n]; | |
0fbc2074 MT |
1278 | |
1279 | *new = *entry; | |
84b058d7 JK |
1280 | |
1281 | set_gsi(s, entry->gsi); | |
1282 | } | |
1283 | ||
cc57407e JK |
1284 | static int kvm_update_routing_entry(KVMState *s, |
1285 | struct kvm_irq_routing_entry *new_entry) | |
1286 | { | |
1287 | struct kvm_irq_routing_entry *entry; | |
1288 | int n; | |
1289 | ||
1290 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1291 | entry = &s->irq_routes->entries[n]; | |
1292 | if (entry->gsi != new_entry->gsi) { | |
1293 | continue; | |
1294 | } | |
1295 | ||
40509f7f MT |
1296 | if(!memcmp(entry, new_entry, sizeof *entry)) { |
1297 | return 0; | |
1298 | } | |
1299 | ||
0fbc2074 | 1300 | *entry = *new_entry; |
cc57407e | 1301 | |
cc57407e JK |
1302 | return 0; |
1303 | } | |
1304 | ||
1305 | return -ESRCH; | |
1306 | } | |
1307 | ||
1df186df | 1308 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 | 1309 | { |
0fbc2074 | 1310 | struct kvm_irq_routing_entry e = {}; |
84b058d7 | 1311 | |
4e2e4e63 JK |
1312 | assert(pin < s->gsi_count); |
1313 | ||
84b058d7 JK |
1314 | e.gsi = irq; |
1315 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1316 | e.flags = 0; | |
1317 | e.u.irqchip.irqchip = irqchip; | |
1318 | e.u.irqchip.pin = pin; | |
1319 | kvm_add_routing_entry(s, &e); | |
1320 | } | |
1321 | ||
1e2aa8be | 1322 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1323 | { |
1324 | struct kvm_irq_routing_entry *e; | |
1325 | int i; | |
1326 | ||
76fe21de AK |
1327 | if (kvm_gsi_direct_mapping()) { |
1328 | return; | |
1329 | } | |
1330 | ||
04fa27f5 JK |
1331 | for (i = 0; i < s->irq_routes->nr; i++) { |
1332 | e = &s->irq_routes->entries[i]; | |
1333 | if (e->gsi == virq) { | |
1334 | s->irq_routes->nr--; | |
1335 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1336 | } | |
1337 | } | |
1338 | clear_gsi(s, virq); | |
38d87493 | 1339 | kvm_arch_release_virq_post(virq); |
9ba35d0b | 1340 | trace_kvm_irqchip_release_virq(virq); |
04fa27f5 JK |
1341 | } |
1342 | ||
1343 | static unsigned int kvm_hash_msi(uint32_t data) | |
1344 | { | |
1345 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1346 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1347 | return data & 0xff; | |
1348 | } | |
1349 | ||
1350 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1351 | { | |
1352 | KVMMSIRoute *route, *next; | |
1353 | unsigned int hash; | |
1354 | ||
1355 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1356 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1357 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1358 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1359 | g_free(route); | |
1360 | } | |
1361 | } | |
1362 | } | |
1363 | ||
1364 | static int kvm_irqchip_get_virq(KVMState *s) | |
1365 | { | |
8269fb70 | 1366 | int next_virq; |
04fa27f5 | 1367 | |
bdf02631 WM |
1368 | /* |
1369 | * PIC and IOAPIC share the first 16 GSI numbers, thus the available | |
1370 | * GSI numbers are more than the number of IRQ route. Allocating a GSI | |
1371 | * number can succeed even though a new route entry cannot be added. | |
1372 | * When this happens, flush dynamic MSI entries to free IRQ route entries. | |
1373 | */ | |
50bf31b9 | 1374 | if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { |
bdf02631 WM |
1375 | kvm_flush_dynamic_msi_routes(s); |
1376 | } | |
1377 | ||
04fa27f5 | 1378 | /* Return the lowest unused GSI in the bitmap */ |
8269fb70 WY |
1379 | next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); |
1380 | if (next_virq >= s->gsi_count) { | |
1381 | return -ENOSPC; | |
1382 | } else { | |
1383 | return next_virq; | |
04fa27f5 | 1384 | } |
04fa27f5 JK |
1385 | } |
1386 | ||
1387 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1388 | { | |
1389 | unsigned int hash = kvm_hash_msi(msg.data); | |
1390 | KVMMSIRoute *route; | |
1391 | ||
1392 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1393 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1394 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
d07cc1f1 | 1395 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
04fa27f5 JK |
1396 | return route; |
1397 | } | |
1398 | } | |
1399 | return NULL; | |
1400 | } | |
1401 | ||
1402 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1403 | { | |
4a3adebb | 1404 | struct kvm_msi msi; |
04fa27f5 JK |
1405 | KVMMSIRoute *route; |
1406 | ||
50bf31b9 | 1407 | if (kvm_direct_msi_allowed) { |
4a3adebb JK |
1408 | msi.address_lo = (uint32_t)msg.address; |
1409 | msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1410 | msi.data = le32_to_cpu(msg.data); |
4a3adebb JK |
1411 | msi.flags = 0; |
1412 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1413 | ||
1414 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1415 | } | |
1416 | ||
04fa27f5 JK |
1417 | route = kvm_lookup_msi_route(s, msg); |
1418 | if (!route) { | |
e7b20308 | 1419 | int virq; |
04fa27f5 JK |
1420 | |
1421 | virq = kvm_irqchip_get_virq(s); | |
1422 | if (virq < 0) { | |
1423 | return virq; | |
1424 | } | |
1425 | ||
0fbc2074 | 1426 | route = g_malloc0(sizeof(KVMMSIRoute)); |
04fa27f5 JK |
1427 | route->kroute.gsi = virq; |
1428 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1429 | route->kroute.flags = 0; | |
1430 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1431 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1432 | route->kroute.u.msi.data = le32_to_cpu(msg.data); |
04fa27f5 JK |
1433 | |
1434 | kvm_add_routing_entry(s, &route->kroute); | |
cb925cf9 | 1435 | kvm_irqchip_commit_routes(s); |
04fa27f5 JK |
1436 | |
1437 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1438 | entry); | |
04fa27f5 JK |
1439 | } |
1440 | ||
1441 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1442 | ||
3889c3fa | 1443 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1444 | } |
1445 | ||
d1f6af6a | 1446 | int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) |
92b4e489 | 1447 | { |
0fbc2074 | 1448 | struct kvm_irq_routing_entry kroute = {}; |
92b4e489 | 1449 | int virq; |
d1f6af6a PX |
1450 | MSIMessage msg = {0, 0}; |
1451 | ||
88c725c7 | 1452 | if (pci_available && dev) { |
e1d4fb2d | 1453 | msg = pci_get_msi_message(dev, vector); |
d1f6af6a | 1454 | } |
92b4e489 | 1455 | |
76fe21de | 1456 | if (kvm_gsi_direct_mapping()) { |
1850b6b7 | 1457 | return kvm_arch_msi_data_to_gsi(msg.data); |
76fe21de AK |
1458 | } |
1459 | ||
f3e1bed8 | 1460 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1461 | return -ENOSYS; |
1462 | } | |
1463 | ||
1464 | virq = kvm_irqchip_get_virq(s); | |
1465 | if (virq < 0) { | |
1466 | return virq; | |
1467 | } | |
1468 | ||
1469 | kroute.gsi = virq; | |
1470 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1471 | kroute.flags = 0; | |
1472 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1473 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1474 | kroute.u.msi.data = le32_to_cpu(msg.data); |
88c725c7 | 1475 | if (pci_available && kvm_msi_devid_required()) { |
767a554a PF |
1476 | kroute.flags = KVM_MSI_VALID_DEVID; |
1477 | kroute.u.msi.devid = pci_requester_id(dev); | |
1478 | } | |
dc9f06ca | 1479 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { |
9e03a040 FB |
1480 | kvm_irqchip_release_virq(s, virq); |
1481 | return -EINVAL; | |
1482 | } | |
92b4e489 | 1483 | |
9ba35d0b PX |
1484 | trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", |
1485 | vector, virq); | |
54a6c11b | 1486 | |
92b4e489 | 1487 | kvm_add_routing_entry(s, &kroute); |
38d87493 | 1488 | kvm_arch_add_msi_route_post(&kroute, vector, dev); |
cb925cf9 | 1489 | kvm_irqchip_commit_routes(s); |
92b4e489 JK |
1490 | |
1491 | return virq; | |
1492 | } | |
1493 | ||
dc9f06ca PF |
1494 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, |
1495 | PCIDevice *dev) | |
cc57407e | 1496 | { |
0fbc2074 | 1497 | struct kvm_irq_routing_entry kroute = {}; |
cc57407e | 1498 | |
76fe21de AK |
1499 | if (kvm_gsi_direct_mapping()) { |
1500 | return 0; | |
1501 | } | |
1502 | ||
cc57407e JK |
1503 | if (!kvm_irqchip_in_kernel()) { |
1504 | return -ENOSYS; | |
1505 | } | |
1506 | ||
1507 | kroute.gsi = virq; | |
1508 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1509 | kroute.flags = 0; | |
1510 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1511 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1512 | kroute.u.msi.data = le32_to_cpu(msg.data); |
88c725c7 | 1513 | if (pci_available && kvm_msi_devid_required()) { |
767a554a PF |
1514 | kroute.flags = KVM_MSI_VALID_DEVID; |
1515 | kroute.u.msi.devid = pci_requester_id(dev); | |
1516 | } | |
dc9f06ca | 1517 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { |
9e03a040 FB |
1518 | return -EINVAL; |
1519 | } | |
cc57407e | 1520 | |
54a6c11b PX |
1521 | trace_kvm_irqchip_update_msi_route(virq); |
1522 | ||
cc57407e JK |
1523 | return kvm_update_routing_entry(s, &kroute); |
1524 | } | |
1525 | ||
ca916d37 VM |
1526 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, |
1527 | bool assign) | |
39853bbc JK |
1528 | { |
1529 | struct kvm_irqfd irqfd = { | |
1530 | .fd = fd, | |
1531 | .gsi = virq, | |
1532 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1533 | }; | |
1534 | ||
ca916d37 VM |
1535 | if (rfd != -1) { |
1536 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1537 | irqfd.resamplefd = rfd; | |
1538 | } | |
1539 | ||
cc7e0ddf | 1540 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1541 | return -ENOSYS; |
1542 | } | |
1543 | ||
1544 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1545 | } | |
1546 | ||
d426d9fb CH |
1547 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1548 | { | |
e9af2fef | 1549 | struct kvm_irq_routing_entry kroute = {}; |
d426d9fb CH |
1550 | int virq; |
1551 | ||
1552 | if (!kvm_gsi_routing_enabled()) { | |
1553 | return -ENOSYS; | |
1554 | } | |
1555 | ||
1556 | virq = kvm_irqchip_get_virq(s); | |
1557 | if (virq < 0) { | |
1558 | return virq; | |
1559 | } | |
1560 | ||
1561 | kroute.gsi = virq; | |
1562 | kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; | |
1563 | kroute.flags = 0; | |
1564 | kroute.u.adapter.summary_addr = adapter->summary_addr; | |
1565 | kroute.u.adapter.ind_addr = adapter->ind_addr; | |
1566 | kroute.u.adapter.summary_offset = adapter->summary_offset; | |
1567 | kroute.u.adapter.ind_offset = adapter->ind_offset; | |
1568 | kroute.u.adapter.adapter_id = adapter->adapter_id; | |
1569 | ||
1570 | kvm_add_routing_entry(s, &kroute); | |
d426d9fb CH |
1571 | |
1572 | return virq; | |
1573 | } | |
1574 | ||
977a8d9c AS |
1575 | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) |
1576 | { | |
1577 | struct kvm_irq_routing_entry kroute = {}; | |
1578 | int virq; | |
1579 | ||
1580 | if (!kvm_gsi_routing_enabled()) { | |
1581 | return -ENOSYS; | |
1582 | } | |
1583 | if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { | |
1584 | return -ENOSYS; | |
1585 | } | |
1586 | virq = kvm_irqchip_get_virq(s); | |
1587 | if (virq < 0) { | |
1588 | return virq; | |
1589 | } | |
1590 | ||
1591 | kroute.gsi = virq; | |
1592 | kroute.type = KVM_IRQ_ROUTING_HV_SINT; | |
1593 | kroute.flags = 0; | |
1594 | kroute.u.hv_sint.vcpu = vcpu; | |
1595 | kroute.u.hv_sint.sint = sint; | |
1596 | ||
1597 | kvm_add_routing_entry(s, &kroute); | |
1598 | kvm_irqchip_commit_routes(s); | |
1599 | ||
1600 | return virq; | |
1601 | } | |
1602 | ||
84b058d7 JK |
1603 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1604 | ||
7b774593 | 1605 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 JK |
1606 | { |
1607 | } | |
04fa27f5 | 1608 | |
d3d3bef0 JK |
1609 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1610 | { | |
1611 | } | |
1612 | ||
04fa27f5 JK |
1613 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1614 | { | |
1615 | abort(); | |
1616 | } | |
92b4e489 | 1617 | |
d1f6af6a | 1618 | int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) |
92b4e489 | 1619 | { |
df410675 | 1620 | return -ENOSYS; |
92b4e489 | 1621 | } |
39853bbc | 1622 | |
d426d9fb CH |
1623 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1624 | { | |
1625 | return -ENOSYS; | |
1626 | } | |
1627 | ||
977a8d9c AS |
1628 | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) |
1629 | { | |
1630 | return -ENOSYS; | |
1631 | } | |
1632 | ||
39853bbc JK |
1633 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1634 | { | |
1635 | abort(); | |
1636 | } | |
dabe3143 MT |
1637 | |
1638 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1639 | { | |
1640 | return -ENOSYS; | |
1641 | } | |
84b058d7 JK |
1642 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1643 | ||
1c9b71a7 EA |
1644 | int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, |
1645 | EventNotifier *rn, int virq) | |
39853bbc | 1646 | { |
ca916d37 VM |
1647 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), |
1648 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
39853bbc JK |
1649 | } |
1650 | ||
1c9b71a7 EA |
1651 | int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, |
1652 | int virq) | |
15b2bd18 | 1653 | { |
ca916d37 VM |
1654 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, |
1655 | false); | |
15b2bd18 PB |
1656 | } |
1657 | ||
197e3524 EA |
1658 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
1659 | EventNotifier *rn, qemu_irq irq) | |
1660 | { | |
1661 | gpointer key, gsi; | |
1662 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1663 | ||
1664 | if (!found) { | |
1665 | return -ENXIO; | |
1666 | } | |
1667 | return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); | |
1668 | } | |
1669 | ||
1670 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, | |
1671 | qemu_irq irq) | |
1672 | { | |
1673 | gpointer key, gsi; | |
1674 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1675 | ||
1676 | if (!found) { | |
1677 | return -ENXIO; | |
1678 | } | |
1679 | return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); | |
1680 | } | |
1681 | ||
1682 | void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) | |
1683 | { | |
1684 | g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); | |
1685 | } | |
1686 | ||
8db4936b | 1687 | static void kvm_irqchip_create(MachineState *machine, KVMState *s) |
84b058d7 | 1688 | { |
84b058d7 JK |
1689 | int ret; |
1690 | ||
8db4936b PB |
1691 | if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1692 | ; | |
1693 | } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { | |
1694 | ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); | |
1695 | if (ret < 0) { | |
1696 | fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); | |
1697 | exit(1); | |
1698 | } | |
1699 | } else { | |
1700 | return; | |
84b058d7 JK |
1701 | } |
1702 | ||
d6032e06 CD |
1703 | /* First probe and see if there's a arch-specific hook to create the |
1704 | * in-kernel irqchip for us */ | |
15eafc2e | 1705 | ret = kvm_arch_irqchip_create(machine, s); |
8db4936b | 1706 | if (ret == 0) { |
15eafc2e PB |
1707 | if (machine_kernel_irqchip_split(machine)) { |
1708 | perror("Split IRQ chip mode not supported."); | |
1709 | exit(1); | |
1710 | } else { | |
1711 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1712 | } | |
8db4936b PB |
1713 | } |
1714 | if (ret < 0) { | |
1715 | fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); | |
1716 | exit(1); | |
84b058d7 JK |
1717 | } |
1718 | ||
3d4b2649 | 1719 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1720 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1721 | * interrupt delivery (though the reverse is not necessarily true) | |
1722 | */ | |
1723 | kvm_async_interrupts_allowed = true; | |
215e79c0 | 1724 | kvm_halt_in_kernel_allowed = true; |
84b058d7 JK |
1725 | |
1726 | kvm_init_irq_routing(s); | |
1727 | ||
197e3524 | 1728 | s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); |
84b058d7 JK |
1729 | } |
1730 | ||
670436ce AJ |
1731 | /* Find number of supported CPUs using the recommended |
1732 | * procedure from the kernel API documentation to cope with | |
1733 | * older kernels that may be missing capabilities. | |
1734 | */ | |
1735 | static int kvm_recommended_vcpus(KVMState *s) | |
3ed444e9 | 1736 | { |
11748ba7 | 1737 | int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); |
670436ce AJ |
1738 | return (ret) ? ret : 4; |
1739 | } | |
3ed444e9 | 1740 | |
670436ce AJ |
1741 | static int kvm_max_vcpus(KVMState *s) |
1742 | { | |
1743 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1744 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
3ed444e9 DH |
1745 | } |
1746 | ||
f31e3266 GK |
1747 | static int kvm_max_vcpu_id(KVMState *s) |
1748 | { | |
1749 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); | |
1750 | return (ret) ? ret : kvm_max_vcpus(s); | |
1751 | } | |
1752 | ||
41264b38 GK |
1753 | bool kvm_vcpu_id_is_valid(int vcpu_id) |
1754 | { | |
1755 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
f31e3266 | 1756 | return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); |
41264b38 GK |
1757 | } |
1758 | ||
f6a1ef64 | 1759 | static int kvm_init(MachineState *ms) |
05330448 | 1760 | { |
f6a1ef64 | 1761 | MachineClass *mc = MACHINE_GET_CLASS(ms); |
168ccc11 JK |
1762 | static const char upgrade_note[] = |
1763 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1764 | "(see http://sourceforge.net/projects/kvm).\n"; | |
670436ce AJ |
1765 | struct { |
1766 | const char *name; | |
1767 | int num; | |
1768 | } num_cpus[] = { | |
5cc8767d LX |
1769 | { "SMP", ms->smp.cpus }, |
1770 | { "hotpluggable", ms->smp.max_cpus }, | |
670436ce AJ |
1771 | { NULL, } |
1772 | }, *nc = num_cpus; | |
1773 | int soft_vcpus_limit, hard_vcpus_limit; | |
05330448 | 1774 | KVMState *s; |
94a8d39a | 1775 | const KVMCapabilityInfo *missing_cap; |
05330448 | 1776 | int ret; |
7bbda04c | 1777 | int type = 0; |
135a129a | 1778 | const char *kvm_type; |
05330448 | 1779 | |
fc02086b | 1780 | s = KVM_STATE(ms->accelerator); |
05330448 | 1781 | |
3145fcb6 DG |
1782 | /* |
1783 | * On systems where the kernel can support different base page | |
1784 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1785 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1786 | * page size for the system though. | |
1787 | */ | |
1788 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1789 | ||
aed6efb9 JH |
1790 | s->sigmask_len = 8; |
1791 | ||
e22a25c9 | 1792 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1793 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1794 | #endif |
4c055ab5 | 1795 | QLIST_INIT(&s->kvm_parked_vcpus); |
05330448 | 1796 | s->vmfd = -1; |
40ff6d7e | 1797 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1798 | if (s->fd == -1) { |
1799 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1800 | ret = -errno; | |
1801 | goto err; | |
1802 | } | |
1803 | ||
1804 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1805 | if (ret < KVM_API_VERSION) { | |
0e1dac6c | 1806 | if (ret >= 0) { |
05330448 | 1807 | ret = -EINVAL; |
a426e122 | 1808 | } |
05330448 AL |
1809 | fprintf(stderr, "kvm version too old\n"); |
1810 | goto err; | |
1811 | } | |
1812 | ||
1813 | if (ret > KVM_API_VERSION) { | |
1814 | ret = -EINVAL; | |
1815 | fprintf(stderr, "kvm version not supported\n"); | |
1816 | goto err; | |
1817 | } | |
1818 | ||
cf0f7cf9 | 1819 | kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); |
fb541ca5 AW |
1820 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); |
1821 | ||
1822 | /* If unspecified, use the default value */ | |
1823 | if (!s->nr_slots) { | |
1824 | s->nr_slots = 32; | |
1825 | } | |
1826 | ||
8072aae3 AK |
1827 | s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); |
1828 | if (s->nr_as <= 1) { | |
1829 | s->nr_as = 1; | |
1830 | } | |
1831 | s->as = g_new0(struct KVMAs, s->nr_as); | |
1832 | ||
135a129a | 1833 | kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); |
f1e29879 | 1834 | if (mc->kvm_type) { |
dc0ca80e | 1835 | type = mc->kvm_type(ms, kvm_type); |
135a129a | 1836 | } else if (kvm_type) { |
0e1dac6c | 1837 | ret = -EINVAL; |
135a129a AK |
1838 | fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); |
1839 | goto err; | |
1840 | } | |
1841 | ||
94ccff13 | 1842 | do { |
135a129a | 1843 | ret = kvm_ioctl(s, KVM_CREATE_VM, type); |
94ccff13 TK |
1844 | } while (ret == -EINTR); |
1845 | ||
1846 | if (ret < 0) { | |
521f438e | 1847 | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, |
94ccff13 TK |
1848 | strerror(-ret)); |
1849 | ||
0104dcac | 1850 | #ifdef TARGET_S390X |
2c80e996 CH |
1851 | if (ret == -EINVAL) { |
1852 | fprintf(stderr, | |
1853 | "Host kernel setup problem detected. Please verify:\n"); | |
1854 | fprintf(stderr, "- for kernels supporting the switch_amode or" | |
1855 | " user_mode parameters, whether\n"); | |
1856 | fprintf(stderr, | |
1857 | " user space is running in primary address space\n"); | |
1858 | fprintf(stderr, | |
1859 | "- for kernels supporting the vm.allocate_pgste sysctl, " | |
1860 | "whether it is enabled\n"); | |
1861 | } | |
0104dcac | 1862 | #endif |
05330448 | 1863 | goto err; |
0104dcac | 1864 | } |
05330448 | 1865 | |
94ccff13 | 1866 | s->vmfd = ret; |
11748ba7 GK |
1867 | |
1868 | /* check the vcpu limits */ | |
1869 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1870 | hard_vcpus_limit = kvm_max_vcpus(s); | |
1871 | ||
1872 | while (nc->name) { | |
1873 | if (nc->num > soft_vcpus_limit) { | |
1874 | warn_report("Number of %s cpus requested (%d) exceeds " | |
1875 | "the recommended cpus supported by KVM (%d)", | |
1876 | nc->name, nc->num, soft_vcpus_limit); | |
1877 | ||
1878 | if (nc->num > hard_vcpus_limit) { | |
1879 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " | |
1880 | "the maximum cpus supported by KVM (%d)\n", | |
1881 | nc->name, nc->num, hard_vcpus_limit); | |
1882 | exit(1); | |
1883 | } | |
1884 | } | |
1885 | nc++; | |
1886 | } | |
1887 | ||
94a8d39a JK |
1888 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1889 | if (!missing_cap) { | |
1890 | missing_cap = | |
1891 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1892 | } |
94a8d39a | 1893 | if (missing_cap) { |
ad7b8b33 | 1894 | ret = -EINVAL; |
94a8d39a JK |
1895 | fprintf(stderr, "kvm does not support %s\n%s", |
1896 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1897 | goto err; |
1898 | } | |
1899 | ||
ad7b8b33 | 1900 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
e6d34aee PH |
1901 | s->coalesced_pio = s->coalesced_mmio && |
1902 | kvm_check_extension(s, KVM_CAP_COALESCED_PIO); | |
f65ed4c1 | 1903 | |
ff4aa114 PX |
1904 | s->manual_dirty_log_protect = |
1905 | kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); | |
1906 | if (s->manual_dirty_log_protect) { | |
1907 | ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); | |
1908 | if (ret) { | |
1909 | warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " | |
1910 | "but failed. Falling back to the legacy mode. "); | |
1911 | s->manual_dirty_log_protect = false; | |
1912 | } | |
1913 | } | |
1914 | ||
a0fb002c JK |
1915 | #ifdef KVM_CAP_VCPU_EVENTS |
1916 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1917 | #endif | |
1918 | ||
b0b1d690 JK |
1919 | s->robust_singlestep = |
1920 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1921 | |
ff44f1a3 JK |
1922 | #ifdef KVM_CAP_DEBUGREGS |
1923 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1924 | #endif | |
1925 | ||
ebbfef2f LA |
1926 | s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); |
1927 | ||
d3d3bef0 | 1928 | #ifdef KVM_CAP_IRQ_ROUTING |
50bf31b9 | 1929 | kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1930 | #endif |
4a3adebb | 1931 | |
3ab73842 JK |
1932 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1933 | ||
e333cd69 | 1934 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1935 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1936 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1937 | } |
1938 | ||
df9c8b75 JJ |
1939 | kvm_readonly_mem_allowed = |
1940 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
df9c8b75 | 1941 | |
69e03ae6 NN |
1942 | kvm_eventfds_allowed = |
1943 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); | |
1944 | ||
f41389ae EA |
1945 | kvm_irqfds_allowed = |
1946 | (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); | |
1947 | ||
1948 | kvm_resamplefds_allowed = | |
1949 | (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); | |
1950 | ||
d0a073a1 DD |
1951 | kvm_vm_attributes_allowed = |
1952 | (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); | |
1953 | ||
35108223 JW |
1954 | kvm_ioeventfd_any_length_allowed = |
1955 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); | |
1956 | ||
d870cfde GA |
1957 | kvm_state = s; |
1958 | ||
b20e3780 BS |
1959 | /* |
1960 | * if memory encryption object is specified then initialize the memory | |
1961 | * encryption context. | |
1962 | */ | |
1963 | if (ms->memory_encryption) { | |
1964 | kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); | |
1965 | if (!kvm_state->memcrypt_handle) { | |
1966 | ret = -1; | |
1967 | goto err; | |
1968 | } | |
54e89539 BS |
1969 | |
1970 | kvm_state->memcrypt_encrypt_data = sev_encrypt_data; | |
b20e3780 BS |
1971 | } |
1972 | ||
b16565b3 | 1973 | ret = kvm_arch_init(ms, s); |
a426e122 | 1974 | if (ret < 0) { |
05330448 | 1975 | goto err; |
a426e122 | 1976 | } |
05330448 | 1977 | |
8db4936b PB |
1978 | if (machine_kernel_irqchip_allowed(ms)) { |
1979 | kvm_irqchip_create(ms, s); | |
84b058d7 JK |
1980 | } |
1981 | ||
8c56c1a5 PF |
1982 | if (kvm_eventfds_allowed) { |
1983 | s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; | |
1984 | s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; | |
1985 | } | |
e6d34aee PH |
1986 | s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; |
1987 | s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; | |
7bbda04c PB |
1988 | |
1989 | kvm_memory_listener_register(s, &s->memory_listener, | |
38bfe691 | 1990 | &address_space_memory, 0); |
7bbda04c PB |
1991 | memory_listener_register(&kvm_io_listener, |
1992 | &address_space_io); | |
e6d34aee PH |
1993 | memory_listener_register(&kvm_coalesced_pio_listener, |
1994 | &address_space_io); | |
05330448 | 1995 | |
d2f2b8a7 SH |
1996 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1997 | ||
62dd4eda | 1998 | s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
f5948942 AW |
1999 | if (!s->sync_mmu) { |
2000 | qemu_balloon_inhibit(true); | |
2001 | } | |
62dd4eda | 2002 | |
05330448 AL |
2003 | return 0; |
2004 | ||
2005 | err: | |
0e1dac6c | 2006 | assert(ret < 0); |
6d1cc321 SW |
2007 | if (s->vmfd >= 0) { |
2008 | close(s->vmfd); | |
2009 | } | |
2010 | if (s->fd != -1) { | |
2011 | close(s->fd); | |
05330448 | 2012 | } |
7bbda04c | 2013 | g_free(s->memory_listener.slots); |
05330448 AL |
2014 | |
2015 | return ret; | |
2016 | } | |
2017 | ||
aed6efb9 JH |
2018 | void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) |
2019 | { | |
2020 | s->sigmask_len = sigmask_len; | |
2021 | } | |
2022 | ||
4c663752 PB |
2023 | static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, |
2024 | int size, uint32_t count) | |
05330448 AL |
2025 | { |
2026 | int i; | |
2027 | uint8_t *ptr = data; | |
2028 | ||
2029 | for (i = 0; i < count; i++) { | |
4c663752 | 2030 | address_space_rw(&address_space_io, port, attrs, |
5c9eb028 | 2031 | ptr, size, |
354678c5 | 2032 | direction == KVM_EXIT_IO_OUT); |
05330448 AL |
2033 | ptr += size; |
2034 | } | |
05330448 AL |
2035 | } |
2036 | ||
5326ab55 | 2037 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
7c80eef8 | 2038 | { |
977c7b6d RK |
2039 | fprintf(stderr, "KVM internal error. Suberror: %d\n", |
2040 | run->internal.suberror); | |
2041 | ||
7c80eef8 MT |
2042 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
2043 | int i; | |
2044 | ||
7c80eef8 MT |
2045 | for (i = 0; i < run->internal.ndata; ++i) { |
2046 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
2047 | i, (uint64_t)run->internal.data[i]); | |
2048 | } | |
2049 | } | |
7c80eef8 MT |
2050 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
2051 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 2052 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
90c84c56 | 2053 | cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); |
d73cd8f4 | 2054 | return EXCP_INTERRUPT; |
a426e122 | 2055 | } |
7c80eef8 MT |
2056 | } |
2057 | /* FIXME: Should trigger a qmp message to let management know | |
2058 | * something went wrong. | |
2059 | */ | |
73aaec4a | 2060 | return -1; |
7c80eef8 | 2061 | } |
7c80eef8 | 2062 | |
62a2744c | 2063 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 2064 | { |
f65ed4c1 | 2065 | KVMState *s = kvm_state; |
1cae88b9 AK |
2066 | |
2067 | if (s->coalesced_flush_in_progress) { | |
2068 | return; | |
2069 | } | |
2070 | ||
2071 | s->coalesced_flush_in_progress = true; | |
2072 | ||
62a2744c SY |
2073 | if (s->coalesced_mmio_ring) { |
2074 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
2075 | while (ring->first != ring->last) { |
2076 | struct kvm_coalesced_mmio *ent; | |
2077 | ||
2078 | ent = &ring->coalesced_mmio[ring->first]; | |
2079 | ||
e6d34aee PH |
2080 | if (ent->pio == 1) { |
2081 | address_space_rw(&address_space_io, ent->phys_addr, | |
2082 | MEMTXATTRS_UNSPECIFIED, ent->data, | |
2083 | ent->len, true); | |
2084 | } else { | |
2085 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
2086 | } | |
85199474 | 2087 | smp_wmb(); |
f65ed4c1 AL |
2088 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
2089 | } | |
2090 | } | |
1cae88b9 AK |
2091 | |
2092 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
2093 | } |
2094 | ||
14e6fe12 | 2095 | static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) |
4c0960c0 | 2096 | { |
99f31832 | 2097 | if (!cpu->vcpu_dirty) { |
20d695a9 | 2098 | kvm_arch_get_registers(cpu); |
99f31832 | 2099 | cpu->vcpu_dirty = true; |
4c0960c0 AK |
2100 | } |
2101 | } | |
2102 | ||
dd1750d7 | 2103 | void kvm_cpu_synchronize_state(CPUState *cpu) |
2705d56a | 2104 | { |
99f31832 | 2105 | if (!cpu->vcpu_dirty) { |
14e6fe12 | 2106 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); |
a426e122 | 2107 | } |
2705d56a JK |
2108 | } |
2109 | ||
14e6fe12 | 2110 | static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) |
ea375f9a | 2111 | { |
20d695a9 | 2112 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
99f31832 | 2113 | cpu->vcpu_dirty = false; |
ea375f9a JK |
2114 | } |
2115 | ||
c8e2085d DH |
2116 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
2117 | { | |
14e6fe12 | 2118 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); |
c8e2085d DH |
2119 | } |
2120 | ||
14e6fe12 | 2121 | static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) |
ea375f9a | 2122 | { |
20d695a9 | 2123 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
99f31832 | 2124 | cpu->vcpu_dirty = false; |
ea375f9a JK |
2125 | } |
2126 | ||
c8e2085d DH |
2127 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
2128 | { | |
14e6fe12 | 2129 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); |
c8e2085d DH |
2130 | } |
2131 | ||
75e972da DG |
2132 | static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) |
2133 | { | |
99f31832 | 2134 | cpu->vcpu_dirty = true; |
75e972da DG |
2135 | } |
2136 | ||
2137 | void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) | |
2138 | { | |
2139 | run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); | |
2140 | } | |
2141 | ||
2ae41db2 PB |
2142 | #ifdef KVM_HAVE_MCE_INJECTION |
2143 | static __thread void *pending_sigbus_addr; | |
2144 | static __thread int pending_sigbus_code; | |
2145 | static __thread bool have_sigbus_pending; | |
2146 | #endif | |
2147 | ||
cf0f7cf9 PB |
2148 | static void kvm_cpu_kick(CPUState *cpu) |
2149 | { | |
2150 | atomic_set(&cpu->kvm_run->immediate_exit, 1); | |
2151 | } | |
2152 | ||
2153 | static void kvm_cpu_kick_self(void) | |
2154 | { | |
2155 | if (kvm_immediate_exit) { | |
2156 | kvm_cpu_kick(current_cpu); | |
2157 | } else { | |
2158 | qemu_cpu_kick_self(); | |
2159 | } | |
2160 | } | |
2161 | ||
18268b60 PB |
2162 | static void kvm_eat_signals(CPUState *cpu) |
2163 | { | |
2164 | struct timespec ts = { 0, 0 }; | |
2165 | siginfo_t siginfo; | |
2166 | sigset_t waitset; | |
2167 | sigset_t chkset; | |
2168 | int r; | |
2169 | ||
cf0f7cf9 PB |
2170 | if (kvm_immediate_exit) { |
2171 | atomic_set(&cpu->kvm_run->immediate_exit, 0); | |
2172 | /* Write kvm_run->immediate_exit before the cpu->exit_request | |
2173 | * write in kvm_cpu_exec. | |
2174 | */ | |
2175 | smp_wmb(); | |
2176 | return; | |
2177 | } | |
2178 | ||
18268b60 PB |
2179 | sigemptyset(&waitset); |
2180 | sigaddset(&waitset, SIG_IPI); | |
2181 | ||
2182 | do { | |
2183 | r = sigtimedwait(&waitset, &siginfo, &ts); | |
2184 | if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | |
2185 | perror("sigtimedwait"); | |
2186 | exit(1); | |
2187 | } | |
2188 | ||
2189 | r = sigpending(&chkset); | |
2190 | if (r == -1) { | |
2191 | perror("sigpending"); | |
2192 | exit(1); | |
2193 | } | |
2194 | } while (sigismember(&chkset, SIG_IPI)); | |
2195 | } | |
2196 | ||
1458c363 | 2197 | int kvm_cpu_exec(CPUState *cpu) |
05330448 | 2198 | { |
f7575c96 | 2199 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 2200 | int ret, run_ret; |
05330448 | 2201 | |
8c0d577e | 2202 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 2203 | |
20d695a9 | 2204 | if (kvm_arch_process_async_events(cpu)) { |
c5c6679d | 2205 | atomic_set(&cpu->exit_request, 0); |
6792a57b | 2206 | return EXCP_HLT; |
9ccfac9e | 2207 | } |
0af691d7 | 2208 | |
4b8523ee | 2209 | qemu_mutex_unlock_iothread(); |
1d78a3c3 | 2210 | cpu_exec_start(cpu); |
4b8523ee | 2211 | |
9ccfac9e | 2212 | do { |
4c663752 PB |
2213 | MemTxAttrs attrs; |
2214 | ||
99f31832 | 2215 | if (cpu->vcpu_dirty) { |
20d695a9 | 2216 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); |
99f31832 | 2217 | cpu->vcpu_dirty = false; |
4c0960c0 AK |
2218 | } |
2219 | ||
20d695a9 | 2220 | kvm_arch_pre_run(cpu, run); |
c5c6679d | 2221 | if (atomic_read(&cpu->exit_request)) { |
9ccfac9e JK |
2222 | DPRINTF("interrupt exit requested\n"); |
2223 | /* | |
2224 | * KVM requires us to reenter the kernel after IO exits to complete | |
2225 | * instruction emulation. This self-signal will ensure that we | |
2226 | * leave ASAP again. | |
2227 | */ | |
cf0f7cf9 | 2228 | kvm_cpu_kick_self(); |
9ccfac9e | 2229 | } |
9ccfac9e | 2230 | |
cf0f7cf9 PB |
2231 | /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. |
2232 | * Matching barrier in kvm_eat_signals. | |
2233 | */ | |
2234 | smp_rmb(); | |
2235 | ||
1bc22652 | 2236 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 2237 | |
4c663752 | 2238 | attrs = kvm_arch_post_run(cpu, run); |
05330448 | 2239 | |
2ae41db2 PB |
2240 | #ifdef KVM_HAVE_MCE_INJECTION |
2241 | if (unlikely(have_sigbus_pending)) { | |
2242 | qemu_mutex_lock_iothread(); | |
2243 | kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, | |
2244 | pending_sigbus_addr); | |
2245 | have_sigbus_pending = false; | |
2246 | qemu_mutex_unlock_iothread(); | |
2247 | } | |
2248 | #endif | |
2249 | ||
7cbb533f | 2250 | if (run_ret < 0) { |
dc77d341 JK |
2251 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
2252 | DPRINTF("io window exit\n"); | |
18268b60 | 2253 | kvm_eat_signals(cpu); |
d73cd8f4 | 2254 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
2255 | break; |
2256 | } | |
7b011fbc ME |
2257 | fprintf(stderr, "error: kvm run failed %s\n", |
2258 | strerror(-run_ret)); | |
dae02ba5 LV |
2259 | #ifdef TARGET_PPC |
2260 | if (run_ret == -EBUSY) { | |
2261 | fprintf(stderr, | |
2262 | "This is probably because your SMT is enabled.\n" | |
2263 | "VCPU can only run on primary threads with all " | |
2264 | "secondary threads offline.\n"); | |
2265 | } | |
2266 | #endif | |
a85e130e PB |
2267 | ret = -1; |
2268 | break; | |
05330448 AL |
2269 | } |
2270 | ||
b76ac80a | 2271 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
2272 | switch (run->exit_reason) { |
2273 | case KVM_EXIT_IO: | |
8c0d577e | 2274 | DPRINTF("handle_io\n"); |
80b7d2ef | 2275 | /* Called outside BQL */ |
4c663752 | 2276 | kvm_handle_io(run->io.port, attrs, |
b30e93e9 JK |
2277 | (uint8_t *)run + run->io.data_offset, |
2278 | run->io.direction, | |
2279 | run->io.size, | |
2280 | run->io.count); | |
d73cd8f4 | 2281 | ret = 0; |
05330448 AL |
2282 | break; |
2283 | case KVM_EXIT_MMIO: | |
8c0d577e | 2284 | DPRINTF("handle_mmio\n"); |
de7ea885 | 2285 | /* Called outside BQL */ |
4c663752 PB |
2286 | address_space_rw(&address_space_memory, |
2287 | run->mmio.phys_addr, attrs, | |
2288 | run->mmio.data, | |
2289 | run->mmio.len, | |
2290 | run->mmio.is_write); | |
d73cd8f4 | 2291 | ret = 0; |
05330448 AL |
2292 | break; |
2293 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 2294 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 2295 | ret = EXCP_INTERRUPT; |
05330448 AL |
2296 | break; |
2297 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 2298 | DPRINTF("shutdown\n"); |
cf83f140 | 2299 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
d73cd8f4 | 2300 | ret = EXCP_INTERRUPT; |
05330448 AL |
2301 | break; |
2302 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
2303 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
2304 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 2305 | ret = -1; |
05330448 | 2306 | break; |
7c80eef8 | 2307 | case KVM_EXIT_INTERNAL_ERROR: |
5326ab55 | 2308 | ret = kvm_handle_internal_error(cpu, run); |
7c80eef8 | 2309 | break; |
99040447 PS |
2310 | case KVM_EXIT_SYSTEM_EVENT: |
2311 | switch (run->system_event.type) { | |
2312 | case KVM_SYSTEM_EVENT_SHUTDOWN: | |
cf83f140 | 2313 | qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); |
99040447 PS |
2314 | ret = EXCP_INTERRUPT; |
2315 | break; | |
2316 | case KVM_SYSTEM_EVENT_RESET: | |
cf83f140 | 2317 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
99040447 PS |
2318 | ret = EXCP_INTERRUPT; |
2319 | break; | |
7c207b90 | 2320 | case KVM_SYSTEM_EVENT_CRASH: |
d187e08d | 2321 | kvm_cpu_synchronize_state(cpu); |
7c207b90 | 2322 | qemu_mutex_lock_iothread(); |
c86f106b | 2323 | qemu_system_guest_panicked(cpu_get_crash_info(cpu)); |
7c207b90 AS |
2324 | qemu_mutex_unlock_iothread(); |
2325 | ret = 0; | |
2326 | break; | |
99040447 PS |
2327 | default: |
2328 | DPRINTF("kvm_arch_handle_exit\n"); | |
2329 | ret = kvm_arch_handle_exit(cpu, run); | |
2330 | break; | |
2331 | } | |
2332 | break; | |
05330448 | 2333 | default: |
8c0d577e | 2334 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 2335 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
2336 | break; |
2337 | } | |
d73cd8f4 | 2338 | } while (ret == 0); |
05330448 | 2339 | |
1d78a3c3 | 2340 | cpu_exec_end(cpu); |
4b8523ee JK |
2341 | qemu_mutex_lock_iothread(); |
2342 | ||
73aaec4a | 2343 | if (ret < 0) { |
90c84c56 | 2344 | cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); |
0461d5a6 | 2345 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
2346 | } |
2347 | ||
c5c6679d | 2348 | atomic_set(&cpu->exit_request, 0); |
05330448 AL |
2349 | return ret; |
2350 | } | |
2351 | ||
984b5181 | 2352 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
2353 | { |
2354 | int ret; | |
984b5181 AL |
2355 | void *arg; |
2356 | va_list ap; | |
05330448 | 2357 | |
984b5181 AL |
2358 | va_start(ap, type); |
2359 | arg = va_arg(ap, void *); | |
2360 | va_end(ap); | |
2361 | ||
9c775729 | 2362 | trace_kvm_ioctl(type, arg); |
984b5181 | 2363 | ret = ioctl(s->fd, type, arg); |
a426e122 | 2364 | if (ret == -1) { |
05330448 | 2365 | ret = -errno; |
a426e122 | 2366 | } |
05330448 AL |
2367 | return ret; |
2368 | } | |
2369 | ||
984b5181 | 2370 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
2371 | { |
2372 | int ret; | |
984b5181 AL |
2373 | void *arg; |
2374 | va_list ap; | |
2375 | ||
2376 | va_start(ap, type); | |
2377 | arg = va_arg(ap, void *); | |
2378 | va_end(ap); | |
05330448 | 2379 | |
9c775729 | 2380 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 2381 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 2382 | if (ret == -1) { |
05330448 | 2383 | ret = -errno; |
a426e122 | 2384 | } |
05330448 AL |
2385 | return ret; |
2386 | } | |
2387 | ||
1bc22652 | 2388 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
2389 | { |
2390 | int ret; | |
984b5181 AL |
2391 | void *arg; |
2392 | va_list ap; | |
2393 | ||
2394 | va_start(ap, type); | |
2395 | arg = va_arg(ap, void *); | |
2396 | va_end(ap); | |
05330448 | 2397 | |
9c775729 | 2398 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 2399 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 2400 | if (ret == -1) { |
05330448 | 2401 | ret = -errno; |
a426e122 | 2402 | } |
05330448 AL |
2403 | return ret; |
2404 | } | |
bd322087 | 2405 | |
0a6a7cca CD |
2406 | int kvm_device_ioctl(int fd, int type, ...) |
2407 | { | |
2408 | int ret; | |
2409 | void *arg; | |
2410 | va_list ap; | |
2411 | ||
2412 | va_start(ap, type); | |
2413 | arg = va_arg(ap, void *); | |
2414 | va_end(ap); | |
2415 | ||
2416 | trace_kvm_device_ioctl(fd, type, arg); | |
2417 | ret = ioctl(fd, type, arg); | |
2418 | if (ret == -1) { | |
2419 | ret = -errno; | |
2420 | } | |
2421 | return ret; | |
2422 | } | |
2423 | ||
d0a073a1 DD |
2424 | int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) |
2425 | { | |
2426 | int ret; | |
2427 | struct kvm_device_attr attribute = { | |
2428 | .group = group, | |
2429 | .attr = attr, | |
2430 | }; | |
2431 | ||
2432 | if (!kvm_vm_attributes_allowed) { | |
2433 | return 0; | |
2434 | } | |
2435 | ||
2436 | ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); | |
2437 | /* kvm returns 0 on success for HAS_DEVICE_ATTR */ | |
2438 | return ret ? 0 : 1; | |
2439 | } | |
2440 | ||
4b3cfe72 PF |
2441 | int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) |
2442 | { | |
2443 | struct kvm_device_attr attribute = { | |
2444 | .group = group, | |
2445 | .attr = attr, | |
2446 | .flags = 0, | |
2447 | }; | |
2448 | ||
2449 | return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; | |
2450 | } | |
2451 | ||
556969e9 EA |
2452 | int kvm_device_access(int fd, int group, uint64_t attr, |
2453 | void *val, bool write, Error **errp) | |
4b3cfe72 PF |
2454 | { |
2455 | struct kvm_device_attr kvmattr; | |
2456 | int err; | |
2457 | ||
2458 | kvmattr.flags = 0; | |
2459 | kvmattr.group = group; | |
2460 | kvmattr.attr = attr; | |
2461 | kvmattr.addr = (uintptr_t)val; | |
2462 | ||
2463 | err = kvm_device_ioctl(fd, | |
2464 | write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, | |
2465 | &kvmattr); | |
2466 | if (err < 0) { | |
556969e9 EA |
2467 | error_setg_errno(errp, -err, |
2468 | "KVM_%s_DEVICE_ATTR failed: Group %d " | |
2469 | "attr 0x%016" PRIx64, | |
2470 | write ? "SET" : "GET", group, attr); | |
4b3cfe72 | 2471 | } |
556969e9 | 2472 | return err; |
4b3cfe72 PF |
2473 | } |
2474 | ||
62dd4eda | 2475 | bool kvm_has_sync_mmu(void) |
bd322087 | 2476 | { |
62dd4eda | 2477 | return kvm_state->sync_mmu; |
bd322087 | 2478 | } |
e22a25c9 | 2479 | |
a0fb002c JK |
2480 | int kvm_has_vcpu_events(void) |
2481 | { | |
2482 | return kvm_state->vcpu_events; | |
2483 | } | |
2484 | ||
b0b1d690 JK |
2485 | int kvm_has_robust_singlestep(void) |
2486 | { | |
2487 | return kvm_state->robust_singlestep; | |
2488 | } | |
2489 | ||
ff44f1a3 JK |
2490 | int kvm_has_debugregs(void) |
2491 | { | |
2492 | return kvm_state->debugregs; | |
2493 | } | |
2494 | ||
ebbfef2f LA |
2495 | int kvm_max_nested_state_length(void) |
2496 | { | |
2497 | return kvm_state->max_nested_state_len; | |
2498 | } | |
2499 | ||
d2f2b8a7 SH |
2500 | int kvm_has_many_ioeventfds(void) |
2501 | { | |
2502 | if (!kvm_enabled()) { | |
2503 | return 0; | |
2504 | } | |
2505 | return kvm_state->many_ioeventfds; | |
2506 | } | |
2507 | ||
84b058d7 JK |
2508 | int kvm_has_gsi_routing(void) |
2509 | { | |
a9c5eb0d | 2510 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 2511 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
2512 | #else |
2513 | return false; | |
2514 | #endif | |
84b058d7 JK |
2515 | } |
2516 | ||
3ab73842 JK |
2517 | int kvm_has_intx_set_mask(void) |
2518 | { | |
2519 | return kvm_state->intx_set_mask; | |
2520 | } | |
2521 | ||
5d721b78 AG |
2522 | bool kvm_arm_supports_user_irq(void) |
2523 | { | |
2524 | return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); | |
2525 | } | |
2526 | ||
e22a25c9 | 2527 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 2528 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
2529 | target_ulong pc) |
2530 | { | |
2531 | struct kvm_sw_breakpoint *bp; | |
2532 | ||
a60f24b5 | 2533 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 2534 | if (bp->pc == pc) { |
e22a25c9 | 2535 | return bp; |
a426e122 | 2536 | } |
e22a25c9 AL |
2537 | } |
2538 | return NULL; | |
2539 | } | |
2540 | ||
a60f24b5 | 2541 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 2542 | { |
a60f24b5 | 2543 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
2544 | } |
2545 | ||
452e4751 GC |
2546 | struct kvm_set_guest_debug_data { |
2547 | struct kvm_guest_debug dbg; | |
452e4751 GC |
2548 | int err; |
2549 | }; | |
2550 | ||
14e6fe12 | 2551 | static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) |
452e4751 | 2552 | { |
14e6fe12 PB |
2553 | struct kvm_set_guest_debug_data *dbg_data = |
2554 | (struct kvm_set_guest_debug_data *) data.host_ptr; | |
b3807725 | 2555 | |
3c0ed2a3 | 2556 | dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, |
a60f24b5 | 2557 | &dbg_data->dbg); |
452e4751 GC |
2558 | } |
2559 | ||
38e478ec | 2560 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 | 2561 | { |
452e4751 | 2562 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 2563 | |
b0b1d690 | 2564 | data.dbg.control = reinject_trap; |
e22a25c9 | 2565 | |
ed2803da | 2566 | if (cpu->singlestep_enabled) { |
b0b1d690 JK |
2567 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
2568 | } | |
20d695a9 | 2569 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
e22a25c9 | 2570 | |
14e6fe12 PB |
2571 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, |
2572 | RUN_ON_CPU_HOST_PTR(&data)); | |
452e4751 | 2573 | return data.err; |
e22a25c9 AL |
2574 | } |
2575 | ||
62278814 | 2576 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2577 | target_ulong len, int type) |
2578 | { | |
2579 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2580 | int err; |
2581 | ||
2582 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2583 | bp = kvm_find_sw_breakpoint(cpu, addr); |
e22a25c9 AL |
2584 | if (bp) { |
2585 | bp->use_count++; | |
2586 | return 0; | |
2587 | } | |
2588 | ||
7267c094 | 2589 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
e22a25c9 AL |
2590 | bp->pc = addr; |
2591 | bp->use_count = 1; | |
80b7cd73 | 2592 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
e22a25c9 | 2593 | if (err) { |
7267c094 | 2594 | g_free(bp); |
e22a25c9 AL |
2595 | return err; |
2596 | } | |
2597 | ||
80b7cd73 | 2598 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
2599 | } else { |
2600 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 2601 | if (err) { |
e22a25c9 | 2602 | return err; |
a426e122 | 2603 | } |
e22a25c9 AL |
2604 | } |
2605 | ||
bdc44640 | 2606 | CPU_FOREACH(cpu) { |
38e478ec | 2607 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2608 | if (err) { |
e22a25c9 | 2609 | return err; |
a426e122 | 2610 | } |
e22a25c9 AL |
2611 | } |
2612 | return 0; | |
2613 | } | |
2614 | ||
62278814 | 2615 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2616 | target_ulong len, int type) |
2617 | { | |
2618 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2619 | int err; |
2620 | ||
2621 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2622 | bp = kvm_find_sw_breakpoint(cpu, addr); |
a426e122 | 2623 | if (!bp) { |
e22a25c9 | 2624 | return -ENOENT; |
a426e122 | 2625 | } |
e22a25c9 AL |
2626 | |
2627 | if (bp->use_count > 1) { | |
2628 | bp->use_count--; | |
2629 | return 0; | |
2630 | } | |
2631 | ||
80b7cd73 | 2632 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
a426e122 | 2633 | if (err) { |
e22a25c9 | 2634 | return err; |
a426e122 | 2635 | } |
e22a25c9 | 2636 | |
80b7cd73 | 2637 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 2638 | g_free(bp); |
e22a25c9 AL |
2639 | } else { |
2640 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 2641 | if (err) { |
e22a25c9 | 2642 | return err; |
a426e122 | 2643 | } |
e22a25c9 AL |
2644 | } |
2645 | ||
bdc44640 | 2646 | CPU_FOREACH(cpu) { |
38e478ec | 2647 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2648 | if (err) { |
e22a25c9 | 2649 | return err; |
a426e122 | 2650 | } |
e22a25c9 AL |
2651 | } |
2652 | return 0; | |
2653 | } | |
2654 | ||
1d5791f4 | 2655 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2656 | { |
2657 | struct kvm_sw_breakpoint *bp, *next; | |
80b7cd73 | 2658 | KVMState *s = cpu->kvm_state; |
dc54e252 | 2659 | CPUState *tmpcpu; |
e22a25c9 | 2660 | |
72cf2d4f | 2661 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
80b7cd73 | 2662 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
e22a25c9 | 2663 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
dc54e252 CG |
2664 | CPU_FOREACH(tmpcpu) { |
2665 | if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { | |
e22a25c9 | 2666 | break; |
a426e122 | 2667 | } |
e22a25c9 AL |
2668 | } |
2669 | } | |
78021d6d JK |
2670 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2671 | g_free(bp); | |
e22a25c9 AL |
2672 | } |
2673 | kvm_arch_remove_all_hw_breakpoints(); | |
2674 | ||
bdc44640 | 2675 | CPU_FOREACH(cpu) { |
38e478ec | 2676 | kvm_update_guest_debug(cpu, 0); |
a426e122 | 2677 | } |
e22a25c9 AL |
2678 | } |
2679 | ||
2680 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2681 | ||
38e478ec | 2682 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 AL |
2683 | { |
2684 | return -EINVAL; | |
2685 | } | |
2686 | ||
62278814 | 2687 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2688 | target_ulong len, int type) |
2689 | { | |
2690 | return -EINVAL; | |
2691 | } | |
2692 | ||
62278814 | 2693 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2694 | target_ulong len, int type) |
2695 | { | |
2696 | return -EINVAL; | |
2697 | } | |
2698 | ||
1d5791f4 | 2699 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2700 | { |
2701 | } | |
2702 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2703 | |
18268b60 | 2704 | static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
cc84de95 | 2705 | { |
aed6efb9 | 2706 | KVMState *s = kvm_state; |
cc84de95 MT |
2707 | struct kvm_signal_mask *sigmask; |
2708 | int r; | |
2709 | ||
7267c094 | 2710 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 | 2711 | |
aed6efb9 | 2712 | sigmask->len = s->sigmask_len; |
cc84de95 | 2713 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); |
1bc22652 | 2714 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2715 | g_free(sigmask); |
cc84de95 MT |
2716 | |
2717 | return r; | |
2718 | } | |
4d39892c | 2719 | |
cf0f7cf9 | 2720 | static void kvm_ipi_signal(int sig) |
18268b60 | 2721 | { |
cf0f7cf9 PB |
2722 | if (current_cpu) { |
2723 | assert(kvm_immediate_exit); | |
2724 | kvm_cpu_kick(current_cpu); | |
2725 | } | |
18268b60 PB |
2726 | } |
2727 | ||
2728 | void kvm_init_cpu_signals(CPUState *cpu) | |
2729 | { | |
2730 | int r; | |
2731 | sigset_t set; | |
2732 | struct sigaction sigact; | |
2733 | ||
2734 | memset(&sigact, 0, sizeof(sigact)); | |
cf0f7cf9 | 2735 | sigact.sa_handler = kvm_ipi_signal; |
18268b60 PB |
2736 | sigaction(SIG_IPI, &sigact, NULL); |
2737 | ||
2738 | pthread_sigmask(SIG_BLOCK, NULL, &set); | |
2739 | #if defined KVM_HAVE_MCE_INJECTION | |
2740 | sigdelset(&set, SIGBUS); | |
2741 | pthread_sigmask(SIG_SETMASK, &set, NULL); | |
2742 | #endif | |
2743 | sigdelset(&set, SIG_IPI); | |
cf0f7cf9 PB |
2744 | if (kvm_immediate_exit) { |
2745 | r = pthread_sigmask(SIG_SETMASK, &set, NULL); | |
2746 | } else { | |
2747 | r = kvm_set_signal_mask(cpu, &set); | |
2748 | } | |
18268b60 PB |
2749 | if (r) { |
2750 | fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | |
2751 | exit(1); | |
2752 | } | |
2753 | } | |
2754 | ||
2ae41db2 | 2755 | /* Called asynchronously in VCPU thread. */ |
290adf38 | 2756 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2757 | { |
2ae41db2 PB |
2758 | #ifdef KVM_HAVE_MCE_INJECTION |
2759 | if (have_sigbus_pending) { | |
2760 | return 1; | |
2761 | } | |
2762 | have_sigbus_pending = true; | |
2763 | pending_sigbus_addr = addr; | |
2764 | pending_sigbus_code = code; | |
2765 | atomic_set(&cpu->exit_request, 1); | |
2766 | return 0; | |
2767 | #else | |
2768 | return 1; | |
2769 | #endif | |
a1b87fe0 JK |
2770 | } |
2771 | ||
2ae41db2 | 2772 | /* Called synchronously (via signalfd) in main thread. */ |
a1b87fe0 JK |
2773 | int kvm_on_sigbus(int code, void *addr) |
2774 | { | |
2ae41db2 | 2775 | #ifdef KVM_HAVE_MCE_INJECTION |
4d39892c PB |
2776 | /* Action required MCE kills the process if SIGBUS is blocked. Because |
2777 | * that's what happens in the I/O thread, where we handle MCE via signalfd, | |
2778 | * we can only get action optional here. | |
2779 | */ | |
2780 | assert(code != BUS_MCEERR_AR); | |
2781 | kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); | |
2782 | return 0; | |
2ae41db2 PB |
2783 | #else |
2784 | return 1; | |
2785 | #endif | |
a1b87fe0 | 2786 | } |
0a6a7cca CD |
2787 | |
2788 | int kvm_create_device(KVMState *s, uint64_t type, bool test) | |
2789 | { | |
2790 | int ret; | |
2791 | struct kvm_create_device create_dev; | |
2792 | ||
2793 | create_dev.type = type; | |
2794 | create_dev.fd = -1; | |
2795 | create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; | |
2796 | ||
2797 | if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { | |
2798 | return -ENOTSUP; | |
2799 | } | |
2800 | ||
2801 | ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); | |
2802 | if (ret) { | |
2803 | return ret; | |
2804 | } | |
2805 | ||
2806 | return test ? 0 : create_dev.fd; | |
2807 | } | |
ada4135f | 2808 | |
29039acf PX |
2809 | bool kvm_device_supported(int vmfd, uint64_t type) |
2810 | { | |
2811 | struct kvm_create_device create_dev = { | |
2812 | .type = type, | |
2813 | .fd = -1, | |
2814 | .flags = KVM_CREATE_DEVICE_TEST, | |
2815 | }; | |
2816 | ||
2817 | if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { | |
2818 | return false; | |
2819 | } | |
2820 | ||
2821 | return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); | |
2822 | } | |
2823 | ||
ada4135f CH |
2824 | int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) |
2825 | { | |
2826 | struct kvm_one_reg reg; | |
2827 | int r; | |
2828 | ||
2829 | reg.id = id; | |
2830 | reg.addr = (uintptr_t) source; | |
2831 | r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
2832 | if (r) { | |
844a3d34 | 2833 | trace_kvm_failed_reg_set(id, strerror(-r)); |
ada4135f CH |
2834 | } |
2835 | return r; | |
2836 | } | |
2837 | ||
2838 | int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) | |
2839 | { | |
2840 | struct kvm_one_reg reg; | |
2841 | int r; | |
2842 | ||
2843 | reg.id = id; | |
2844 | reg.addr = (uintptr_t) target; | |
2845 | r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
2846 | if (r) { | |
844a3d34 | 2847 | trace_kvm_failed_reg_get(id, strerror(-r)); |
ada4135f CH |
2848 | } |
2849 | return r; | |
2850 | } | |
782c3f29 | 2851 | |
8072aae3 AK |
2852 | static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, |
2853 | hwaddr start_addr, hwaddr size) | |
2854 | { | |
2855 | KVMState *kvm = KVM_STATE(ms->accelerator); | |
2856 | int i; | |
2857 | ||
2858 | for (i = 0; i < kvm->nr_as; ++i) { | |
2859 | if (kvm->as[i].as == as && kvm->as[i].ml) { | |
2860 | return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, | |
2861 | start_addr, size); | |
2862 | } | |
2863 | } | |
2864 | ||
2865 | return false; | |
2866 | } | |
2867 | ||
782c3f29 EH |
2868 | static void kvm_accel_class_init(ObjectClass *oc, void *data) |
2869 | { | |
2870 | AccelClass *ac = ACCEL_CLASS(oc); | |
2871 | ac->name = "KVM"; | |
0d15da8e | 2872 | ac->init_machine = kvm_init; |
8072aae3 | 2873 | ac->has_memory = kvm_accel_has_memory; |
782c3f29 EH |
2874 | ac->allowed = &kvm_allowed; |
2875 | } | |
2876 | ||
2877 | static const TypeInfo kvm_accel_type = { | |
2878 | .name = TYPE_KVM_ACCEL, | |
2879 | .parent = TYPE_ACCEL, | |
2880 | .class_init = kvm_accel_class_init, | |
fc02086b | 2881 | .instance_size = sizeof(KVMState), |
782c3f29 EH |
2882 | }; |
2883 | ||
2884 | static void kvm_type_init(void) | |
2885 | { | |
2886 | type_register_static(&kvm_accel_type); | |
2887 | } | |
2888 | ||
2889 | type_init(kvm_type_init); |