]> Git Repo - qemu.git/blame - kvm-all.c
Use 64bit pointer for dirty log
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <[email protected]>
5832d1f2 9 * Glauber Costa <[email protected]>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
24#include "sysemu.h"
d33a1810 25#include "hw/hw.h"
e22a25c9 26#include "gdbstub.h"
05330448
AL
27#include "kvm.h"
28
f65ed4c1
AL
29/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30#define PAGE_SIZE TARGET_PAGE_SIZE
31
05330448
AL
32//#define DEBUG_KVM
33
34#ifdef DEBUG_KVM
35#define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37#else
38#define dprintf(fmt, ...) \
39 do { } while (0)
40#endif
41
34fc643f
AL
42typedef struct KVMSlot
43{
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49} KVMSlot;
05330448 50
5832d1f2
AL
51typedef struct kvm_dirty_log KVMDirtyLog;
52
05330448
AL
53int kvm_allowed = 0;
54
55struct KVMState
56{
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
f65ed4c1 60 int coalesced_mmio;
e69917e2 61 int broken_set_mem_region;
4495d6a7 62 int migration_log;
e22a25c9
AL
63#ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65#endif
6f725c13
GC
66 int irqchip_in_kernel;
67 int pit_in_kernel;
05330448
AL
68};
69
70static KVMState *kvm_state;
71
72static KVMSlot *kvm_alloc_slot(KVMState *s)
73{
74 int i;
75
76 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
62d60e8c
AL
77 /* KVM private memory slots */
78 if (i >= 8 && i < 12)
79 continue;
05330448
AL
80 if (s->slots[i].memory_size == 0)
81 return &s->slots[i];
82 }
83
d3f8d37f
AL
84 fprintf(stderr, "%s: no free slot available\n", __func__);
85 abort();
86}
87
88static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89 target_phys_addr_t start_addr,
90 target_phys_addr_t end_addr)
91{
92 int i;
93
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 KVMSlot *mem = &s->slots[i];
96
97 if (start_addr == mem->start_addr &&
98 end_addr == mem->start_addr + mem->memory_size) {
99 return mem;
100 }
101 }
102
05330448
AL
103 return NULL;
104}
105
6152e2ae
AL
106/*
107 * Find overlapping slot with lowest start address
108 */
109static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
110 target_phys_addr_t start_addr,
111 target_phys_addr_t end_addr)
05330448 112{
6152e2ae 113 KVMSlot *found = NULL;
05330448
AL
114 int i;
115
116 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
117 KVMSlot *mem = &s->slots[i];
118
6152e2ae
AL
119 if (mem->memory_size == 0 ||
120 (found && found->start_addr < mem->start_addr)) {
121 continue;
122 }
123
124 if (end_addr > mem->start_addr &&
125 start_addr < mem->start_addr + mem->memory_size) {
126 found = mem;
127 }
05330448
AL
128 }
129
6152e2ae 130 return found;
05330448
AL
131}
132
5832d1f2
AL
133static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
134{
135 struct kvm_userspace_memory_region mem;
136
137 mem.slot = slot->slot;
138 mem.guest_phys_addr = slot->start_addr;
139 mem.memory_size = slot->memory_size;
5579c7f3 140 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
5832d1f2 141 mem.flags = slot->flags;
4495d6a7
JK
142 if (s->migration_log) {
143 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
144 }
5832d1f2
AL
145 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
146}
147
8d2ba1fb
JK
148static void kvm_reset_vcpu(void *opaque)
149{
150 CPUState *env = opaque;
151
152 if (kvm_arch_put_registers(env)) {
153 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
154 abort();
155 }
156}
5832d1f2 157
452e4751
GC
158static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
159{
160 if (env == cpu_single_env) {
161 func(data);
162 return;
163 }
164 abort();
165}
166
6f725c13
GC
167int kvm_irqchip_in_kernel(void)
168{
169 return kvm_state->irqchip_in_kernel;
170}
171
172int kvm_pit_in_kernel(void)
173{
174 return kvm_state->pit_in_kernel;
175}
176
177
05330448
AL
178int kvm_init_vcpu(CPUState *env)
179{
180 KVMState *s = kvm_state;
181 long mmap_size;
182 int ret;
183
184 dprintf("kvm_init_vcpu\n");
185
984b5181 186 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448
AL
187 if (ret < 0) {
188 dprintf("kvm_create_vcpu failed\n");
189 goto err;
190 }
191
192 env->kvm_fd = ret;
193 env->kvm_state = s;
194
195 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
196 if (mmap_size < 0) {
197 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
198 goto err;
199 }
200
201 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
202 env->kvm_fd, 0);
203 if (env->kvm_run == MAP_FAILED) {
204 ret = -errno;
205 dprintf("mmap'ing vcpu state failed\n");
206 goto err;
207 }
208
209 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 210 if (ret == 0) {
a08d4367 211 qemu_register_reset(kvm_reset_vcpu, env);
8d2ba1fb
JK
212 ret = kvm_arch_put_registers(env);
213 }
05330448
AL
214err:
215 return ret;
216}
217
f8d926e9
JK
218int kvm_put_mp_state(CPUState *env)
219{
220 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
221
222 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
223}
224
225int kvm_get_mp_state(CPUState *env)
226{
227 struct kvm_mp_state mp_state;
228 int ret;
229
230 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
231 if (ret < 0) {
232 return ret;
233 }
234 env->mp_state = mp_state.mp_state;
235 return 0;
236}
237
5832d1f2
AL
238/*
239 * dirty pages logging control
240 */
d3f8d37f 241static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
4495d6a7 242 ram_addr_t size, int flags, int mask)
5832d1f2
AL
243{
244 KVMState *s = kvm_state;
d3f8d37f 245 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
246 int old_flags;
247
5832d1f2 248 if (mem == NULL) {
d3f8d37f
AL
249 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
250 TARGET_FMT_plx "\n", __func__, phys_addr,
b80a55e6 251 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
252 return -EINVAL;
253 }
254
4495d6a7 255 old_flags = mem->flags;
5832d1f2 256
4495d6a7 257 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
258 mem->flags = flags;
259
4495d6a7
JK
260 /* If nothing changed effectively, no need to issue ioctl */
261 if (s->migration_log) {
262 flags |= KVM_MEM_LOG_DIRTY_PAGES;
263 }
264 if (flags == old_flags) {
265 return 0;
266 }
267
5832d1f2
AL
268 return kvm_set_user_memory_region(s, mem);
269}
270
d3f8d37f 271int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 272{
d3f8d37f 273 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
274 KVM_MEM_LOG_DIRTY_PAGES,
275 KVM_MEM_LOG_DIRTY_PAGES);
276}
277
d3f8d37f 278int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 279{
d3f8d37f 280 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
281 0,
282 KVM_MEM_LOG_DIRTY_PAGES);
283}
284
4495d6a7
JK
285int kvm_set_migration_log(int enable)
286{
287 KVMState *s = kvm_state;
288 KVMSlot *mem;
289 int i, err;
290
291 s->migration_log = enable;
292
293 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
294 mem = &s->slots[i];
295
296 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
297 continue;
298 }
299 err = kvm_set_user_memory_region(s, mem);
300 if (err) {
301 return err;
302 }
303 }
304 return 0;
305}
306
5832d1f2
AL
307/**
308 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
309 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
310 * This means all bits are set to dirty.
311 *
d3f8d37f 312 * @start_add: start of logged region.
5832d1f2
AL
313 * @end_addr: end of logged region.
314 */
151f7749
JK
315int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
316 target_phys_addr_t end_addr)
5832d1f2
AL
317{
318 KVMState *s = kvm_state;
151f7749
JK
319 unsigned long size, allocated_size = 0;
320 target_phys_addr_t phys_addr;
5832d1f2 321 ram_addr_t addr;
151f7749
JK
322 KVMDirtyLog d;
323 KVMSlot *mem;
324 int ret = 0;
bd836776 325 int r;
5832d1f2 326
151f7749
JK
327 d.dirty_bitmap = NULL;
328 while (start_addr < end_addr) {
329 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
330 if (mem == NULL) {
331 break;
332 }
5832d1f2 333
bd836776
AG
334 /* We didn't activate dirty logging? Don't care then. */
335 if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
336 continue;
337 }
338
151f7749
JK
339 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
340 if (!d.dirty_bitmap) {
341 d.dirty_bitmap = qemu_malloc(size);
342 } else if (size > allocated_size) {
343 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
344 }
345 allocated_size = size;
346 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 347
151f7749 348 d.slot = mem->slot;
5832d1f2 349
bd836776
AG
350 r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
351 if (r == -EINVAL) {
151f7749
JK
352 dprintf("ioctl failed %d\n", errno);
353 ret = -1;
354 break;
355 }
5832d1f2 356
151f7749
JK
357 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
358 phys_addr < mem->start_addr + mem->memory_size;
359 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1c7936e3 360 uint64_t *bitmap = (uint64_t *)d.dirty_bitmap;
151f7749
JK
361 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
362 unsigned word = nr / (sizeof(*bitmap) * 8);
363 unsigned bit = nr % (sizeof(*bitmap) * 8);
364
365 if ((bitmap[word] >> bit) & 1) {
366 cpu_physical_memory_set_dirty(addr);
bd836776
AG
367 } else if (r < 0) {
368 /* When our KVM implementation doesn't know about dirty logging
369 * we can just assume it's always dirty and be fine. */
370 cpu_physical_memory_set_dirty(addr);
151f7749
JK
371 }
372 }
373 start_addr = phys_addr;
5832d1f2 374 }
5832d1f2 375 qemu_free(d.dirty_bitmap);
151f7749
JK
376
377 return ret;
5832d1f2
AL
378}
379
f65ed4c1
AL
380int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
381{
382 int ret = -ENOSYS;
383#ifdef KVM_CAP_COALESCED_MMIO
384 KVMState *s = kvm_state;
385
386 if (s->coalesced_mmio) {
387 struct kvm_coalesced_mmio_zone zone;
388
389 zone.addr = start;
390 zone.size = size;
391
392 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
393 }
394#endif
395
396 return ret;
397}
398
399int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
400{
401 int ret = -ENOSYS;
402#ifdef KVM_CAP_COALESCED_MMIO
403 KVMState *s = kvm_state;
404
405 if (s->coalesced_mmio) {
406 struct kvm_coalesced_mmio_zone zone;
407
408 zone.addr = start;
409 zone.size = size;
410
411 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
412 }
413#endif
414
415 return ret;
416}
417
ad7b8b33
AL
418int kvm_check_extension(KVMState *s, unsigned int extension)
419{
420 int ret;
421
422 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
423 if (ret < 0) {
424 ret = 0;
425 }
426
427 return ret;
428}
429
05330448
AL
430int kvm_init(int smp_cpus)
431{
168ccc11
JK
432 static const char upgrade_note[] =
433 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
434 "(see http://sourceforge.net/projects/kvm).\n";
05330448
AL
435 KVMState *s;
436 int ret;
437 int i;
438
9f8fd694
MM
439 if (smp_cpus > 1) {
440 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
05330448 441 return -EINVAL;
9f8fd694 442 }
05330448
AL
443
444 s = qemu_mallocz(sizeof(KVMState));
05330448 445
e22a25c9
AL
446#ifdef KVM_CAP_SET_GUEST_DEBUG
447 TAILQ_INIT(&s->kvm_sw_breakpoints);
448#endif
05330448
AL
449 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
450 s->slots[i].slot = i;
451
452 s->vmfd = -1;
453 s->fd = open("/dev/kvm", O_RDWR);
454 if (s->fd == -1) {
455 fprintf(stderr, "Could not access KVM kernel module: %m\n");
456 ret = -errno;
457 goto err;
458 }
459
460 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
461 if (ret < KVM_API_VERSION) {
462 if (ret > 0)
463 ret = -EINVAL;
464 fprintf(stderr, "kvm version too old\n");
465 goto err;
466 }
467
468 if (ret > KVM_API_VERSION) {
469 ret = -EINVAL;
470 fprintf(stderr, "kvm version not supported\n");
471 goto err;
472 }
473
474 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
475 if (s->vmfd < 0)
476 goto err;
477
478 /* initially, KVM allocated its own memory and we had to jump through
479 * hooks to make phys_ram_base point to this. Modern versions of KVM
5579c7f3 480 * just use a user allocated buffer so we can use regular pages
05330448
AL
481 * unmodified. Make sure we have a sufficiently modern version of KVM.
482 */
ad7b8b33
AL
483 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
484 ret = -EINVAL;
168ccc11
JK
485 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
486 upgrade_note);
05330448
AL
487 goto err;
488 }
489
d85dc283
AL
490 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
491 * destroyed properly. Since we rely on this capability, refuse to work
492 * with any kernel without this capability. */
ad7b8b33
AL
493 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
494 ret = -EINVAL;
d85dc283
AL
495
496 fprintf(stderr,
168ccc11
JK
497 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
498 upgrade_note);
d85dc283
AL
499 goto err;
500 }
501
f65ed4c1 502#ifdef KVM_CAP_COALESCED_MMIO
ad7b8b33
AL
503 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
504#else
505 s->coalesced_mmio = 0;
f65ed4c1
AL
506#endif
507
e69917e2
JK
508 s->broken_set_mem_region = 1;
509#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
510 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
511 if (ret > 0) {
512 s->broken_set_mem_region = 0;
513 }
514#endif
515
05330448
AL
516 ret = kvm_arch_init(s, smp_cpus);
517 if (ret < 0)
518 goto err;
519
520 kvm_state = s;
521
522 return 0;
523
524err:
525 if (s) {
526 if (s->vmfd != -1)
527 close(s->vmfd);
528 if (s->fd != -1)
529 close(s->fd);
530 }
531 qemu_free(s);
532
533 return ret;
534}
535
536static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
537 int direction, int size, uint32_t count)
538{
539 int i;
540 uint8_t *ptr = data;
541
542 for (i = 0; i < count; i++) {
543 if (direction == KVM_EXIT_IO_IN) {
544 switch (size) {
545 case 1:
546 stb_p(ptr, cpu_inb(env, port));
547 break;
548 case 2:
549 stw_p(ptr, cpu_inw(env, port));
550 break;
551 case 4:
552 stl_p(ptr, cpu_inl(env, port));
553 break;
554 }
555 } else {
556 switch (size) {
557 case 1:
558 cpu_outb(env, port, ldub_p(ptr));
559 break;
560 case 2:
561 cpu_outw(env, port, lduw_p(ptr));
562 break;
563 case 4:
564 cpu_outl(env, port, ldl_p(ptr));
565 break;
566 }
567 }
568
569 ptr += size;
570 }
571
572 return 1;
573}
574
f65ed4c1
AL
575static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
576{
577#ifdef KVM_CAP_COALESCED_MMIO
578 KVMState *s = kvm_state;
579 if (s->coalesced_mmio) {
580 struct kvm_coalesced_mmio_ring *ring;
581
582 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
583 while (ring->first != ring->last) {
584 struct kvm_coalesced_mmio *ent;
585
586 ent = &ring->coalesced_mmio[ring->first];
587
588 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
589 /* FIXME smp_wmb() */
590 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
591 }
592 }
593#endif
594}
595
05330448
AL
596int kvm_cpu_exec(CPUState *env)
597{
598 struct kvm_run *run = env->kvm_run;
599 int ret;
600
601 dprintf("kvm_cpu_exec()\n");
602
603 do {
be214e6c 604 if (env->exit_request) {
05330448
AL
605 dprintf("interrupt exit requested\n");
606 ret = 0;
607 break;
608 }
609
8c14c173 610 kvm_arch_pre_run(env, run);
05330448
AL
611 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
612 kvm_arch_post_run(env, run);
613
614 if (ret == -EINTR || ret == -EAGAIN) {
615 dprintf("io window exit\n");
616 ret = 0;
617 break;
618 }
619
620 if (ret < 0) {
621 dprintf("kvm run failed %s\n", strerror(-ret));
622 abort();
623 }
624
f65ed4c1
AL
625 kvm_run_coalesced_mmio(env, run);
626
05330448
AL
627 ret = 0; /* exit loop */
628 switch (run->exit_reason) {
629 case KVM_EXIT_IO:
630 dprintf("handle_io\n");
631 ret = kvm_handle_io(env, run->io.port,
632 (uint8_t *)run + run->io.data_offset,
633 run->io.direction,
634 run->io.size,
635 run->io.count);
636 break;
637 case KVM_EXIT_MMIO:
638 dprintf("handle_mmio\n");
639 cpu_physical_memory_rw(run->mmio.phys_addr,
640 run->mmio.data,
641 run->mmio.len,
642 run->mmio.is_write);
643 ret = 1;
644 break;
645 case KVM_EXIT_IRQ_WINDOW_OPEN:
646 dprintf("irq_window_open\n");
647 break;
648 case KVM_EXIT_SHUTDOWN:
649 dprintf("shutdown\n");
650 qemu_system_reset_request();
651 ret = 1;
652 break;
653 case KVM_EXIT_UNKNOWN:
654 dprintf("kvm_exit_unknown\n");
655 break;
656 case KVM_EXIT_FAIL_ENTRY:
657 dprintf("kvm_exit_fail_entry\n");
658 break;
659 case KVM_EXIT_EXCEPTION:
660 dprintf("kvm_exit_exception\n");
661 break;
662 case KVM_EXIT_DEBUG:
663 dprintf("kvm_exit_debug\n");
e22a25c9
AL
664#ifdef KVM_CAP_SET_GUEST_DEBUG
665 if (kvm_arch_debug(&run->debug.arch)) {
666 gdb_set_stop_cpu(env);
667 vm_stop(EXCP_DEBUG);
668 env->exception_index = EXCP_DEBUG;
669 return 0;
670 }
671 /* re-enter, this exception was guest-internal */
672 ret = 1;
673#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
674 break;
675 default:
676 dprintf("kvm_arch_handle_exit\n");
677 ret = kvm_arch_handle_exit(env, run);
678 break;
679 }
680 } while (ret > 0);
681
be214e6c
AJ
682 if (env->exit_request) {
683 env->exit_request = 0;
becfc390
AL
684 env->exception_index = EXCP_INTERRUPT;
685 }
686
05330448
AL
687 return ret;
688}
689
690void kvm_set_phys_mem(target_phys_addr_t start_addr,
691 ram_addr_t size,
692 ram_addr_t phys_offset)
693{
694 KVMState *s = kvm_state;
695 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
6152e2ae
AL
696 KVMSlot *mem, old;
697 int err;
05330448 698
d3f8d37f 699 if (start_addr & ~TARGET_PAGE_MASK) {
e6f4afe0
JK
700 if (flags >= IO_MEM_UNASSIGNED) {
701 if (!kvm_lookup_overlapping_slot(s, start_addr,
702 start_addr + size)) {
703 return;
704 }
705 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
706 } else {
707 fprintf(stderr, "Only page-aligned memory slots supported\n");
708 }
d3f8d37f
AL
709 abort();
710 }
711
05330448
AL
712 /* KVM does not support read-only slots */
713 phys_offset &= ~IO_MEM_ROM;
714
6152e2ae
AL
715 while (1) {
716 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
717 if (!mem) {
718 break;
719 }
62d60e8c 720
6152e2ae
AL
721 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
722 (start_addr + size <= mem->start_addr + mem->memory_size) &&
723 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
724 /* The new slot fits into the existing one and comes with
725 * identical parameters - nothing to be done. */
05330448 726 return;
6152e2ae
AL
727 }
728
729 old = *mem;
730
731 /* unregister the overlapping slot */
732 mem->memory_size = 0;
733 err = kvm_set_user_memory_region(s, mem);
734 if (err) {
735 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
736 __func__, strerror(-err));
62d60e8c
AL
737 abort();
738 }
6152e2ae
AL
739
740 /* Workaround for older KVM versions: we can't join slots, even not by
741 * unregistering the previous ones and then registering the larger
742 * slot. We have to maintain the existing fragmentation. Sigh.
743 *
744 * This workaround assumes that the new slot starts at the same
745 * address as the first existing one. If not or if some overlapping
746 * slot comes around later, we will fail (not seen in practice so far)
747 * - and actually require a recent KVM version. */
e69917e2
JK
748 if (s->broken_set_mem_region &&
749 old.start_addr == start_addr && old.memory_size < size &&
6152e2ae
AL
750 flags < IO_MEM_UNASSIGNED) {
751 mem = kvm_alloc_slot(s);
752 mem->memory_size = old.memory_size;
753 mem->start_addr = old.start_addr;
754 mem->phys_offset = old.phys_offset;
755 mem->flags = 0;
756
757 err = kvm_set_user_memory_region(s, mem);
758 if (err) {
759 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
760 strerror(-err));
761 abort();
762 }
763
764 start_addr += old.memory_size;
765 phys_offset += old.memory_size;
766 size -= old.memory_size;
767 continue;
768 }
769
770 /* register prefix slot */
771 if (old.start_addr < start_addr) {
772 mem = kvm_alloc_slot(s);
773 mem->memory_size = start_addr - old.start_addr;
774 mem->start_addr = old.start_addr;
775 mem->phys_offset = old.phys_offset;
776 mem->flags = 0;
777
778 err = kvm_set_user_memory_region(s, mem);
779 if (err) {
780 fprintf(stderr, "%s: error registering prefix slot: %s\n",
781 __func__, strerror(-err));
782 abort();
783 }
784 }
785
786 /* register suffix slot */
787 if (old.start_addr + old.memory_size > start_addr + size) {
788 ram_addr_t size_delta;
789
790 mem = kvm_alloc_slot(s);
791 mem->start_addr = start_addr + size;
792 size_delta = mem->start_addr - old.start_addr;
793 mem->memory_size = old.memory_size - size_delta;
794 mem->phys_offset = old.phys_offset + size_delta;
795 mem->flags = 0;
796
797 err = kvm_set_user_memory_region(s, mem);
798 if (err) {
799 fprintf(stderr, "%s: error registering suffix slot: %s\n",
800 __func__, strerror(-err));
801 abort();
802 }
803 }
05330448 804 }
6152e2ae
AL
805
806 /* in case the KVM bug workaround already "consumed" the new slot */
807 if (!size)
808 return;
809
05330448
AL
810 /* KVM does not need to know about this memory */
811 if (flags >= IO_MEM_UNASSIGNED)
812 return;
813
814 mem = kvm_alloc_slot(s);
815 mem->memory_size = size;
34fc643f
AL
816 mem->start_addr = start_addr;
817 mem->phys_offset = phys_offset;
05330448
AL
818 mem->flags = 0;
819
6152e2ae
AL
820 err = kvm_set_user_memory_region(s, mem);
821 if (err) {
822 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
823 strerror(-err));
824 abort();
825 }
05330448
AL
826}
827
984b5181 828int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
829{
830 int ret;
984b5181
AL
831 void *arg;
832 va_list ap;
05330448 833
984b5181
AL
834 va_start(ap, type);
835 arg = va_arg(ap, void *);
836 va_end(ap);
837
838 ret = ioctl(s->fd, type, arg);
05330448
AL
839 if (ret == -1)
840 ret = -errno;
841
842 return ret;
843}
844
984b5181 845int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
846{
847 int ret;
984b5181
AL
848 void *arg;
849 va_list ap;
850
851 va_start(ap, type);
852 arg = va_arg(ap, void *);
853 va_end(ap);
05330448 854
984b5181 855 ret = ioctl(s->vmfd, type, arg);
05330448
AL
856 if (ret == -1)
857 ret = -errno;
858
859 return ret;
860}
861
984b5181 862int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
863{
864 int ret;
984b5181
AL
865 void *arg;
866 va_list ap;
867
868 va_start(ap, type);
869 arg = va_arg(ap, void *);
870 va_end(ap);
05330448 871
984b5181 872 ret = ioctl(env->kvm_fd, type, arg);
05330448
AL
873 if (ret == -1)
874 ret = -errno;
875
876 return ret;
877}
bd322087
AL
878
879int kvm_has_sync_mmu(void)
880{
a9c11522 881#ifdef KVM_CAP_SYNC_MMU
bd322087
AL
882 KVMState *s = kvm_state;
883
ad7b8b33
AL
884 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
885#else
bd322087 886 return 0;
ad7b8b33 887#endif
bd322087 888}
e22a25c9 889
6f0437e8
JK
890void kvm_setup_guest_memory(void *start, size_t size)
891{
892 if (!kvm_has_sync_mmu()) {
893#ifdef MADV_DONTFORK
894 int ret = madvise(start, size, MADV_DONTFORK);
895
896 if (ret) {
897 perror("madvice");
898 exit(1);
899 }
900#else
901 fprintf(stderr,
902 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
903 exit(1);
904#endif
905 }
906}
907
e22a25c9
AL
908#ifdef KVM_CAP_SET_GUEST_DEBUG
909struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
910 target_ulong pc)
911{
912 struct kvm_sw_breakpoint *bp;
913
914 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
915 if (bp->pc == pc)
916 return bp;
917 }
918 return NULL;
919}
920
921int kvm_sw_breakpoints_active(CPUState *env)
922{
923 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
924}
925
452e4751
GC
926struct kvm_set_guest_debug_data {
927 struct kvm_guest_debug dbg;
928 CPUState *env;
929 int err;
930};
931
932static void kvm_invoke_set_guest_debug(void *data)
933{
934 struct kvm_set_guest_debug_data *dbg_data = data;
935 dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
936}
937
e22a25c9
AL
938int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
939{
452e4751 940 struct kvm_set_guest_debug_data data;
e22a25c9 941
452e4751 942 data.dbg.control = 0;
e22a25c9 943 if (env->singlestep_enabled)
452e4751 944 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
e22a25c9 945
452e4751
GC
946 kvm_arch_update_guest_debug(env, &data.dbg);
947 data.dbg.control |= reinject_trap;
948 data.env = env;
e22a25c9 949
452e4751
GC
950 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
951 return data.err;
e22a25c9
AL
952}
953
954int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
955 target_ulong len, int type)
956{
957 struct kvm_sw_breakpoint *bp;
958 CPUState *env;
959 int err;
960
961 if (type == GDB_BREAKPOINT_SW) {
962 bp = kvm_find_sw_breakpoint(current_env, addr);
963 if (bp) {
964 bp->use_count++;
965 return 0;
966 }
967
968 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
969 if (!bp)
970 return -ENOMEM;
971
972 bp->pc = addr;
973 bp->use_count = 1;
974 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
975 if (err) {
976 free(bp);
977 return err;
978 }
979
980 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
981 bp, entry);
982 } else {
983 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
984 if (err)
985 return err;
986 }
987
988 for (env = first_cpu; env != NULL; env = env->next_cpu) {
989 err = kvm_update_guest_debug(env, 0);
990 if (err)
991 return err;
992 }
993 return 0;
994}
995
996int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
997 target_ulong len, int type)
998{
999 struct kvm_sw_breakpoint *bp;
1000 CPUState *env;
1001 int err;
1002
1003 if (type == GDB_BREAKPOINT_SW) {
1004 bp = kvm_find_sw_breakpoint(current_env, addr);
1005 if (!bp)
1006 return -ENOENT;
1007
1008 if (bp->use_count > 1) {
1009 bp->use_count--;
1010 return 0;
1011 }
1012
1013 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1014 if (err)
1015 return err;
1016
1017 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1018 qemu_free(bp);
1019 } else {
1020 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1021 if (err)
1022 return err;
1023 }
1024
1025 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1026 err = kvm_update_guest_debug(env, 0);
1027 if (err)
1028 return err;
1029 }
1030 return 0;
1031}
1032
1033void kvm_remove_all_breakpoints(CPUState *current_env)
1034{
1035 struct kvm_sw_breakpoint *bp, *next;
1036 KVMState *s = current_env->kvm_state;
1037 CPUState *env;
1038
1039 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1040 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1041 /* Try harder to find a CPU that currently sees the breakpoint. */
1042 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1043 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1044 break;
1045 }
1046 }
1047 }
1048 kvm_arch_remove_all_hw_breakpoints();
1049
1050 for (env = first_cpu; env != NULL; env = env->next_cpu)
1051 kvm_update_guest_debug(env, 0);
1052}
1053
1054#else /* !KVM_CAP_SET_GUEST_DEBUG */
1055
1056int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1057{
1058 return -EINVAL;
1059}
1060
1061int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1062 target_ulong len, int type)
1063{
1064 return -EINVAL;
1065}
1066
1067int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1068 target_ulong len, int type)
1069{
1070 return -EINVAL;
1071}
1072
1073void kvm_remove_all_breakpoints(CPUState *current_env)
1074{
1075}
1076#endif /* !KVM_CAP_SET_GUEST_DEBUG */
This page took 0.28005 seconds and 4 git commands to generate.