]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "sysemu.h" | |
d33a1810 | 25 | #include "hw/hw.h" |
e22a25c9 | 26 | #include "gdbstub.h" |
05330448 AL |
27 | #include "kvm.h" |
28 | ||
f65ed4c1 AL |
29 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
30 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
31 | ||
05330448 AL |
32 | //#define DEBUG_KVM |
33 | ||
34 | #ifdef DEBUG_KVM | |
35 | #define dprintf(fmt, ...) \ | |
36 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
37 | #else | |
38 | #define dprintf(fmt, ...) \ | |
39 | do { } while (0) | |
40 | #endif | |
41 | ||
34fc643f AL |
42 | typedef struct KVMSlot |
43 | { | |
44 | target_phys_addr_t start_addr; | |
45 | ram_addr_t memory_size; | |
46 | ram_addr_t phys_offset; | |
47 | int slot; | |
48 | int flags; | |
49 | } KVMSlot; | |
05330448 | 50 | |
5832d1f2 AL |
51 | typedef struct kvm_dirty_log KVMDirtyLog; |
52 | ||
05330448 AL |
53 | int kvm_allowed = 0; |
54 | ||
55 | struct KVMState | |
56 | { | |
57 | KVMSlot slots[32]; | |
58 | int fd; | |
59 | int vmfd; | |
f65ed4c1 | 60 | int coalesced_mmio; |
e69917e2 | 61 | int broken_set_mem_region; |
4495d6a7 | 62 | int migration_log; |
e22a25c9 AL |
63 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
64 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
65 | #endif | |
6f725c13 GC |
66 | int irqchip_in_kernel; |
67 | int pit_in_kernel; | |
05330448 AL |
68 | }; |
69 | ||
70 | static KVMState *kvm_state; | |
71 | ||
72 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
73 | { | |
74 | int i; | |
75 | ||
76 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
77 | /* KVM private memory slots */ |
78 | if (i >= 8 && i < 12) | |
79 | continue; | |
05330448 AL |
80 | if (s->slots[i].memory_size == 0) |
81 | return &s->slots[i]; | |
82 | } | |
83 | ||
d3f8d37f AL |
84 | fprintf(stderr, "%s: no free slot available\n", __func__); |
85 | abort(); | |
86 | } | |
87 | ||
88 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
89 | target_phys_addr_t start_addr, | |
90 | target_phys_addr_t end_addr) | |
91 | { | |
92 | int i; | |
93 | ||
94 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
95 | KVMSlot *mem = &s->slots[i]; | |
96 | ||
97 | if (start_addr == mem->start_addr && | |
98 | end_addr == mem->start_addr + mem->memory_size) { | |
99 | return mem; | |
100 | } | |
101 | } | |
102 | ||
05330448 AL |
103 | return NULL; |
104 | } | |
105 | ||
6152e2ae AL |
106 | /* |
107 | * Find overlapping slot with lowest start address | |
108 | */ | |
109 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
110 | target_phys_addr_t start_addr, | |
111 | target_phys_addr_t end_addr) | |
05330448 | 112 | { |
6152e2ae | 113 | KVMSlot *found = NULL; |
05330448 AL |
114 | int i; |
115 | ||
116 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
117 | KVMSlot *mem = &s->slots[i]; | |
118 | ||
6152e2ae AL |
119 | if (mem->memory_size == 0 || |
120 | (found && found->start_addr < mem->start_addr)) { | |
121 | continue; | |
122 | } | |
123 | ||
124 | if (end_addr > mem->start_addr && | |
125 | start_addr < mem->start_addr + mem->memory_size) { | |
126 | found = mem; | |
127 | } | |
05330448 AL |
128 | } |
129 | ||
6152e2ae | 130 | return found; |
05330448 AL |
131 | } |
132 | ||
5832d1f2 AL |
133 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
134 | { | |
135 | struct kvm_userspace_memory_region mem; | |
136 | ||
137 | mem.slot = slot->slot; | |
138 | mem.guest_phys_addr = slot->start_addr; | |
139 | mem.memory_size = slot->memory_size; | |
5579c7f3 | 140 | mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); |
5832d1f2 | 141 | mem.flags = slot->flags; |
4495d6a7 JK |
142 | if (s->migration_log) { |
143 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
144 | } | |
5832d1f2 AL |
145 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
146 | } | |
147 | ||
8d2ba1fb JK |
148 | static void kvm_reset_vcpu(void *opaque) |
149 | { | |
150 | CPUState *env = opaque; | |
151 | ||
152 | if (kvm_arch_put_registers(env)) { | |
153 | fprintf(stderr, "Fatal: kvm vcpu reset failed\n"); | |
154 | abort(); | |
155 | } | |
156 | } | |
5832d1f2 | 157 | |
452e4751 GC |
158 | static void on_vcpu(CPUState *env, void (*func)(void *data), void *data) |
159 | { | |
160 | if (env == cpu_single_env) { | |
161 | func(data); | |
162 | return; | |
163 | } | |
164 | abort(); | |
165 | } | |
166 | ||
6f725c13 GC |
167 | int kvm_irqchip_in_kernel(void) |
168 | { | |
169 | return kvm_state->irqchip_in_kernel; | |
170 | } | |
171 | ||
172 | int kvm_pit_in_kernel(void) | |
173 | { | |
174 | return kvm_state->pit_in_kernel; | |
175 | } | |
176 | ||
177 | ||
05330448 AL |
178 | int kvm_init_vcpu(CPUState *env) |
179 | { | |
180 | KVMState *s = kvm_state; | |
181 | long mmap_size; | |
182 | int ret; | |
183 | ||
184 | dprintf("kvm_init_vcpu\n"); | |
185 | ||
984b5181 | 186 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 AL |
187 | if (ret < 0) { |
188 | dprintf("kvm_create_vcpu failed\n"); | |
189 | goto err; | |
190 | } | |
191 | ||
192 | env->kvm_fd = ret; | |
193 | env->kvm_state = s; | |
194 | ||
195 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
196 | if (mmap_size < 0) { | |
197 | dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
198 | goto err; | |
199 | } | |
200 | ||
201 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
202 | env->kvm_fd, 0); | |
203 | if (env->kvm_run == MAP_FAILED) { | |
204 | ret = -errno; | |
205 | dprintf("mmap'ing vcpu state failed\n"); | |
206 | goto err; | |
207 | } | |
208 | ||
209 | ret = kvm_arch_init_vcpu(env); | |
8d2ba1fb | 210 | if (ret == 0) { |
a08d4367 | 211 | qemu_register_reset(kvm_reset_vcpu, env); |
8d2ba1fb JK |
212 | ret = kvm_arch_put_registers(env); |
213 | } | |
05330448 AL |
214 | err: |
215 | return ret; | |
216 | } | |
217 | ||
f8d926e9 JK |
218 | int kvm_put_mp_state(CPUState *env) |
219 | { | |
220 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | |
221 | ||
222 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | |
223 | } | |
224 | ||
225 | int kvm_get_mp_state(CPUState *env) | |
226 | { | |
227 | struct kvm_mp_state mp_state; | |
228 | int ret; | |
229 | ||
230 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | |
231 | if (ret < 0) { | |
232 | return ret; | |
233 | } | |
234 | env->mp_state = mp_state.mp_state; | |
235 | return 0; | |
236 | } | |
237 | ||
5832d1f2 AL |
238 | /* |
239 | * dirty pages logging control | |
240 | */ | |
d3f8d37f | 241 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
4495d6a7 | 242 | ram_addr_t size, int flags, int mask) |
5832d1f2 AL |
243 | { |
244 | KVMState *s = kvm_state; | |
d3f8d37f | 245 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
4495d6a7 JK |
246 | int old_flags; |
247 | ||
5832d1f2 | 248 | if (mem == NULL) { |
d3f8d37f AL |
249 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
250 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
b80a55e6 | 251 | (target_phys_addr_t)(phys_addr + size - 1)); |
5832d1f2 AL |
252 | return -EINVAL; |
253 | } | |
254 | ||
4495d6a7 | 255 | old_flags = mem->flags; |
5832d1f2 | 256 | |
4495d6a7 | 257 | flags = (mem->flags & ~mask) | flags; |
5832d1f2 AL |
258 | mem->flags = flags; |
259 | ||
4495d6a7 JK |
260 | /* If nothing changed effectively, no need to issue ioctl */ |
261 | if (s->migration_log) { | |
262 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
263 | } | |
264 | if (flags == old_flags) { | |
265 | return 0; | |
266 | } | |
267 | ||
5832d1f2 AL |
268 | return kvm_set_user_memory_region(s, mem); |
269 | } | |
270 | ||
d3f8d37f | 271 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 272 | { |
d3f8d37f | 273 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
274 | KVM_MEM_LOG_DIRTY_PAGES, |
275 | KVM_MEM_LOG_DIRTY_PAGES); | |
276 | } | |
277 | ||
d3f8d37f | 278 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 279 | { |
d3f8d37f | 280 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
281 | 0, |
282 | KVM_MEM_LOG_DIRTY_PAGES); | |
283 | } | |
284 | ||
4495d6a7 JK |
285 | int kvm_set_migration_log(int enable) |
286 | { | |
287 | KVMState *s = kvm_state; | |
288 | KVMSlot *mem; | |
289 | int i, err; | |
290 | ||
291 | s->migration_log = enable; | |
292 | ||
293 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
294 | mem = &s->slots[i]; | |
295 | ||
296 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
297 | continue; | |
298 | } | |
299 | err = kvm_set_user_memory_region(s, mem); | |
300 | if (err) { | |
301 | return err; | |
302 | } | |
303 | } | |
304 | return 0; | |
305 | } | |
306 | ||
5832d1f2 AL |
307 | /** |
308 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
309 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
310 | * This means all bits are set to dirty. | |
311 | * | |
d3f8d37f | 312 | * @start_add: start of logged region. |
5832d1f2 AL |
313 | * @end_addr: end of logged region. |
314 | */ | |
151f7749 JK |
315 | int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
316 | target_phys_addr_t end_addr) | |
5832d1f2 AL |
317 | { |
318 | KVMState *s = kvm_state; | |
151f7749 JK |
319 | unsigned long size, allocated_size = 0; |
320 | target_phys_addr_t phys_addr; | |
5832d1f2 | 321 | ram_addr_t addr; |
151f7749 JK |
322 | KVMDirtyLog d; |
323 | KVMSlot *mem; | |
324 | int ret = 0; | |
bd836776 | 325 | int r; |
5832d1f2 | 326 | |
151f7749 JK |
327 | d.dirty_bitmap = NULL; |
328 | while (start_addr < end_addr) { | |
329 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
330 | if (mem == NULL) { | |
331 | break; | |
332 | } | |
5832d1f2 | 333 | |
bd836776 AG |
334 | /* We didn't activate dirty logging? Don't care then. */ |
335 | if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) { | |
336 | continue; | |
337 | } | |
338 | ||
151f7749 JK |
339 | size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8; |
340 | if (!d.dirty_bitmap) { | |
341 | d.dirty_bitmap = qemu_malloc(size); | |
342 | } else if (size > allocated_size) { | |
343 | d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | |
344 | } | |
345 | allocated_size = size; | |
346 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 347 | |
151f7749 | 348 | d.slot = mem->slot; |
5832d1f2 | 349 | |
bd836776 AG |
350 | r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); |
351 | if (r == -EINVAL) { | |
151f7749 JK |
352 | dprintf("ioctl failed %d\n", errno); |
353 | ret = -1; | |
354 | break; | |
355 | } | |
5832d1f2 | 356 | |
151f7749 JK |
357 | for (phys_addr = mem->start_addr, addr = mem->phys_offset; |
358 | phys_addr < mem->start_addr + mem->memory_size; | |
359 | phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1c7936e3 | 360 | uint64_t *bitmap = (uint64_t *)d.dirty_bitmap; |
151f7749 JK |
361 | unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS; |
362 | unsigned word = nr / (sizeof(*bitmap) * 8); | |
363 | unsigned bit = nr % (sizeof(*bitmap) * 8); | |
364 | ||
365 | if ((bitmap[word] >> bit) & 1) { | |
366 | cpu_physical_memory_set_dirty(addr); | |
bd836776 AG |
367 | } else if (r < 0) { |
368 | /* When our KVM implementation doesn't know about dirty logging | |
369 | * we can just assume it's always dirty and be fine. */ | |
370 | cpu_physical_memory_set_dirty(addr); | |
151f7749 JK |
371 | } |
372 | } | |
373 | start_addr = phys_addr; | |
5832d1f2 | 374 | } |
5832d1f2 | 375 | qemu_free(d.dirty_bitmap); |
151f7749 JK |
376 | |
377 | return ret; | |
5832d1f2 AL |
378 | } |
379 | ||
f65ed4c1 AL |
380 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
381 | { | |
382 | int ret = -ENOSYS; | |
383 | #ifdef KVM_CAP_COALESCED_MMIO | |
384 | KVMState *s = kvm_state; | |
385 | ||
386 | if (s->coalesced_mmio) { | |
387 | struct kvm_coalesced_mmio_zone zone; | |
388 | ||
389 | zone.addr = start; | |
390 | zone.size = size; | |
391 | ||
392 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
393 | } | |
394 | #endif | |
395 | ||
396 | return ret; | |
397 | } | |
398 | ||
399 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | |
400 | { | |
401 | int ret = -ENOSYS; | |
402 | #ifdef KVM_CAP_COALESCED_MMIO | |
403 | KVMState *s = kvm_state; | |
404 | ||
405 | if (s->coalesced_mmio) { | |
406 | struct kvm_coalesced_mmio_zone zone; | |
407 | ||
408 | zone.addr = start; | |
409 | zone.size = size; | |
410 | ||
411 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
412 | } | |
413 | #endif | |
414 | ||
415 | return ret; | |
416 | } | |
417 | ||
ad7b8b33 AL |
418 | int kvm_check_extension(KVMState *s, unsigned int extension) |
419 | { | |
420 | int ret; | |
421 | ||
422 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
423 | if (ret < 0) { | |
424 | ret = 0; | |
425 | } | |
426 | ||
427 | return ret; | |
428 | } | |
429 | ||
05330448 AL |
430 | int kvm_init(int smp_cpus) |
431 | { | |
168ccc11 JK |
432 | static const char upgrade_note[] = |
433 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
434 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 AL |
435 | KVMState *s; |
436 | int ret; | |
437 | int i; | |
438 | ||
9f8fd694 MM |
439 | if (smp_cpus > 1) { |
440 | fprintf(stderr, "No SMP KVM support, use '-smp 1'\n"); | |
05330448 | 441 | return -EINVAL; |
9f8fd694 | 442 | } |
05330448 AL |
443 | |
444 | s = qemu_mallocz(sizeof(KVMState)); | |
05330448 | 445 | |
e22a25c9 AL |
446 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
447 | TAILQ_INIT(&s->kvm_sw_breakpoints); | |
448 | #endif | |
05330448 AL |
449 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
450 | s->slots[i].slot = i; | |
451 | ||
452 | s->vmfd = -1; | |
453 | s->fd = open("/dev/kvm", O_RDWR); | |
454 | if (s->fd == -1) { | |
455 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
456 | ret = -errno; | |
457 | goto err; | |
458 | } | |
459 | ||
460 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
461 | if (ret < KVM_API_VERSION) { | |
462 | if (ret > 0) | |
463 | ret = -EINVAL; | |
464 | fprintf(stderr, "kvm version too old\n"); | |
465 | goto err; | |
466 | } | |
467 | ||
468 | if (ret > KVM_API_VERSION) { | |
469 | ret = -EINVAL; | |
470 | fprintf(stderr, "kvm version not supported\n"); | |
471 | goto err; | |
472 | } | |
473 | ||
474 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
475 | if (s->vmfd < 0) | |
476 | goto err; | |
477 | ||
478 | /* initially, KVM allocated its own memory and we had to jump through | |
479 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
5579c7f3 | 480 | * just use a user allocated buffer so we can use regular pages |
05330448 AL |
481 | * unmodified. Make sure we have a sufficiently modern version of KVM. |
482 | */ | |
ad7b8b33 AL |
483 | if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { |
484 | ret = -EINVAL; | |
168ccc11 JK |
485 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", |
486 | upgrade_note); | |
05330448 AL |
487 | goto err; |
488 | } | |
489 | ||
d85dc283 AL |
490 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
491 | * destroyed properly. Since we rely on this capability, refuse to work | |
492 | * with any kernel without this capability. */ | |
ad7b8b33 AL |
493 | if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { |
494 | ret = -EINVAL; | |
d85dc283 AL |
495 | |
496 | fprintf(stderr, | |
168ccc11 JK |
497 | "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", |
498 | upgrade_note); | |
d85dc283 AL |
499 | goto err; |
500 | } | |
501 | ||
f65ed4c1 | 502 | #ifdef KVM_CAP_COALESCED_MMIO |
ad7b8b33 AL |
503 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
504 | #else | |
505 | s->coalesced_mmio = 0; | |
f65ed4c1 AL |
506 | #endif |
507 | ||
e69917e2 JK |
508 | s->broken_set_mem_region = 1; |
509 | #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS | |
510 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
511 | if (ret > 0) { | |
512 | s->broken_set_mem_region = 0; | |
513 | } | |
514 | #endif | |
515 | ||
05330448 AL |
516 | ret = kvm_arch_init(s, smp_cpus); |
517 | if (ret < 0) | |
518 | goto err; | |
519 | ||
520 | kvm_state = s; | |
521 | ||
522 | return 0; | |
523 | ||
524 | err: | |
525 | if (s) { | |
526 | if (s->vmfd != -1) | |
527 | close(s->vmfd); | |
528 | if (s->fd != -1) | |
529 | close(s->fd); | |
530 | } | |
531 | qemu_free(s); | |
532 | ||
533 | return ret; | |
534 | } | |
535 | ||
536 | static int kvm_handle_io(CPUState *env, uint16_t port, void *data, | |
537 | int direction, int size, uint32_t count) | |
538 | { | |
539 | int i; | |
540 | uint8_t *ptr = data; | |
541 | ||
542 | for (i = 0; i < count; i++) { | |
543 | if (direction == KVM_EXIT_IO_IN) { | |
544 | switch (size) { | |
545 | case 1: | |
546 | stb_p(ptr, cpu_inb(env, port)); | |
547 | break; | |
548 | case 2: | |
549 | stw_p(ptr, cpu_inw(env, port)); | |
550 | break; | |
551 | case 4: | |
552 | stl_p(ptr, cpu_inl(env, port)); | |
553 | break; | |
554 | } | |
555 | } else { | |
556 | switch (size) { | |
557 | case 1: | |
558 | cpu_outb(env, port, ldub_p(ptr)); | |
559 | break; | |
560 | case 2: | |
561 | cpu_outw(env, port, lduw_p(ptr)); | |
562 | break; | |
563 | case 4: | |
564 | cpu_outl(env, port, ldl_p(ptr)); | |
565 | break; | |
566 | } | |
567 | } | |
568 | ||
569 | ptr += size; | |
570 | } | |
571 | ||
572 | return 1; | |
573 | } | |
574 | ||
f65ed4c1 AL |
575 | static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run) |
576 | { | |
577 | #ifdef KVM_CAP_COALESCED_MMIO | |
578 | KVMState *s = kvm_state; | |
579 | if (s->coalesced_mmio) { | |
580 | struct kvm_coalesced_mmio_ring *ring; | |
581 | ||
582 | ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE); | |
583 | while (ring->first != ring->last) { | |
584 | struct kvm_coalesced_mmio *ent; | |
585 | ||
586 | ent = &ring->coalesced_mmio[ring->first]; | |
587 | ||
588 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
589 | /* FIXME smp_wmb() */ | |
590 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
591 | } | |
592 | } | |
593 | #endif | |
594 | } | |
595 | ||
05330448 AL |
596 | int kvm_cpu_exec(CPUState *env) |
597 | { | |
598 | struct kvm_run *run = env->kvm_run; | |
599 | int ret; | |
600 | ||
601 | dprintf("kvm_cpu_exec()\n"); | |
602 | ||
603 | do { | |
be214e6c | 604 | if (env->exit_request) { |
05330448 AL |
605 | dprintf("interrupt exit requested\n"); |
606 | ret = 0; | |
607 | break; | |
608 | } | |
609 | ||
8c14c173 | 610 | kvm_arch_pre_run(env, run); |
05330448 AL |
611 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
612 | kvm_arch_post_run(env, run); | |
613 | ||
614 | if (ret == -EINTR || ret == -EAGAIN) { | |
615 | dprintf("io window exit\n"); | |
616 | ret = 0; | |
617 | break; | |
618 | } | |
619 | ||
620 | if (ret < 0) { | |
621 | dprintf("kvm run failed %s\n", strerror(-ret)); | |
622 | abort(); | |
623 | } | |
624 | ||
f65ed4c1 AL |
625 | kvm_run_coalesced_mmio(env, run); |
626 | ||
05330448 AL |
627 | ret = 0; /* exit loop */ |
628 | switch (run->exit_reason) { | |
629 | case KVM_EXIT_IO: | |
630 | dprintf("handle_io\n"); | |
631 | ret = kvm_handle_io(env, run->io.port, | |
632 | (uint8_t *)run + run->io.data_offset, | |
633 | run->io.direction, | |
634 | run->io.size, | |
635 | run->io.count); | |
636 | break; | |
637 | case KVM_EXIT_MMIO: | |
638 | dprintf("handle_mmio\n"); | |
639 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
640 | run->mmio.data, | |
641 | run->mmio.len, | |
642 | run->mmio.is_write); | |
643 | ret = 1; | |
644 | break; | |
645 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
646 | dprintf("irq_window_open\n"); | |
647 | break; | |
648 | case KVM_EXIT_SHUTDOWN: | |
649 | dprintf("shutdown\n"); | |
650 | qemu_system_reset_request(); | |
651 | ret = 1; | |
652 | break; | |
653 | case KVM_EXIT_UNKNOWN: | |
654 | dprintf("kvm_exit_unknown\n"); | |
655 | break; | |
656 | case KVM_EXIT_FAIL_ENTRY: | |
657 | dprintf("kvm_exit_fail_entry\n"); | |
658 | break; | |
659 | case KVM_EXIT_EXCEPTION: | |
660 | dprintf("kvm_exit_exception\n"); | |
661 | break; | |
662 | case KVM_EXIT_DEBUG: | |
663 | dprintf("kvm_exit_debug\n"); | |
e22a25c9 AL |
664 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
665 | if (kvm_arch_debug(&run->debug.arch)) { | |
666 | gdb_set_stop_cpu(env); | |
667 | vm_stop(EXCP_DEBUG); | |
668 | env->exception_index = EXCP_DEBUG; | |
669 | return 0; | |
670 | } | |
671 | /* re-enter, this exception was guest-internal */ | |
672 | ret = 1; | |
673 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
05330448 AL |
674 | break; |
675 | default: | |
676 | dprintf("kvm_arch_handle_exit\n"); | |
677 | ret = kvm_arch_handle_exit(env, run); | |
678 | break; | |
679 | } | |
680 | } while (ret > 0); | |
681 | ||
be214e6c AJ |
682 | if (env->exit_request) { |
683 | env->exit_request = 0; | |
becfc390 AL |
684 | env->exception_index = EXCP_INTERRUPT; |
685 | } | |
686 | ||
05330448 AL |
687 | return ret; |
688 | } | |
689 | ||
690 | void kvm_set_phys_mem(target_phys_addr_t start_addr, | |
691 | ram_addr_t size, | |
692 | ram_addr_t phys_offset) | |
693 | { | |
694 | KVMState *s = kvm_state; | |
695 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
6152e2ae AL |
696 | KVMSlot *mem, old; |
697 | int err; | |
05330448 | 698 | |
d3f8d37f | 699 | if (start_addr & ~TARGET_PAGE_MASK) { |
e6f4afe0 JK |
700 | if (flags >= IO_MEM_UNASSIGNED) { |
701 | if (!kvm_lookup_overlapping_slot(s, start_addr, | |
702 | start_addr + size)) { | |
703 | return; | |
704 | } | |
705 | fprintf(stderr, "Unaligned split of a KVM memory slot\n"); | |
706 | } else { | |
707 | fprintf(stderr, "Only page-aligned memory slots supported\n"); | |
708 | } | |
d3f8d37f AL |
709 | abort(); |
710 | } | |
711 | ||
05330448 AL |
712 | /* KVM does not support read-only slots */ |
713 | phys_offset &= ~IO_MEM_ROM; | |
714 | ||
6152e2ae AL |
715 | while (1) { |
716 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
717 | if (!mem) { | |
718 | break; | |
719 | } | |
62d60e8c | 720 | |
6152e2ae AL |
721 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && |
722 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
723 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
724 | /* The new slot fits into the existing one and comes with | |
725 | * identical parameters - nothing to be done. */ | |
05330448 | 726 | return; |
6152e2ae AL |
727 | } |
728 | ||
729 | old = *mem; | |
730 | ||
731 | /* unregister the overlapping slot */ | |
732 | mem->memory_size = 0; | |
733 | err = kvm_set_user_memory_region(s, mem); | |
734 | if (err) { | |
735 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
736 | __func__, strerror(-err)); | |
62d60e8c AL |
737 | abort(); |
738 | } | |
6152e2ae AL |
739 | |
740 | /* Workaround for older KVM versions: we can't join slots, even not by | |
741 | * unregistering the previous ones and then registering the larger | |
742 | * slot. We have to maintain the existing fragmentation. Sigh. | |
743 | * | |
744 | * This workaround assumes that the new slot starts at the same | |
745 | * address as the first existing one. If not or if some overlapping | |
746 | * slot comes around later, we will fail (not seen in practice so far) | |
747 | * - and actually require a recent KVM version. */ | |
e69917e2 JK |
748 | if (s->broken_set_mem_region && |
749 | old.start_addr == start_addr && old.memory_size < size && | |
6152e2ae AL |
750 | flags < IO_MEM_UNASSIGNED) { |
751 | mem = kvm_alloc_slot(s); | |
752 | mem->memory_size = old.memory_size; | |
753 | mem->start_addr = old.start_addr; | |
754 | mem->phys_offset = old.phys_offset; | |
755 | mem->flags = 0; | |
756 | ||
757 | err = kvm_set_user_memory_region(s, mem); | |
758 | if (err) { | |
759 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
760 | strerror(-err)); | |
761 | abort(); | |
762 | } | |
763 | ||
764 | start_addr += old.memory_size; | |
765 | phys_offset += old.memory_size; | |
766 | size -= old.memory_size; | |
767 | continue; | |
768 | } | |
769 | ||
770 | /* register prefix slot */ | |
771 | if (old.start_addr < start_addr) { | |
772 | mem = kvm_alloc_slot(s); | |
773 | mem->memory_size = start_addr - old.start_addr; | |
774 | mem->start_addr = old.start_addr; | |
775 | mem->phys_offset = old.phys_offset; | |
776 | mem->flags = 0; | |
777 | ||
778 | err = kvm_set_user_memory_region(s, mem); | |
779 | if (err) { | |
780 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
781 | __func__, strerror(-err)); | |
782 | abort(); | |
783 | } | |
784 | } | |
785 | ||
786 | /* register suffix slot */ | |
787 | if (old.start_addr + old.memory_size > start_addr + size) { | |
788 | ram_addr_t size_delta; | |
789 | ||
790 | mem = kvm_alloc_slot(s); | |
791 | mem->start_addr = start_addr + size; | |
792 | size_delta = mem->start_addr - old.start_addr; | |
793 | mem->memory_size = old.memory_size - size_delta; | |
794 | mem->phys_offset = old.phys_offset + size_delta; | |
795 | mem->flags = 0; | |
796 | ||
797 | err = kvm_set_user_memory_region(s, mem); | |
798 | if (err) { | |
799 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
800 | __func__, strerror(-err)); | |
801 | abort(); | |
802 | } | |
803 | } | |
05330448 | 804 | } |
6152e2ae AL |
805 | |
806 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
807 | if (!size) | |
808 | return; | |
809 | ||
05330448 AL |
810 | /* KVM does not need to know about this memory */ |
811 | if (flags >= IO_MEM_UNASSIGNED) | |
812 | return; | |
813 | ||
814 | mem = kvm_alloc_slot(s); | |
815 | mem->memory_size = size; | |
34fc643f AL |
816 | mem->start_addr = start_addr; |
817 | mem->phys_offset = phys_offset; | |
05330448 AL |
818 | mem->flags = 0; |
819 | ||
6152e2ae AL |
820 | err = kvm_set_user_memory_region(s, mem); |
821 | if (err) { | |
822 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
823 | strerror(-err)); | |
824 | abort(); | |
825 | } | |
05330448 AL |
826 | } |
827 | ||
984b5181 | 828 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
829 | { |
830 | int ret; | |
984b5181 AL |
831 | void *arg; |
832 | va_list ap; | |
05330448 | 833 | |
984b5181 AL |
834 | va_start(ap, type); |
835 | arg = va_arg(ap, void *); | |
836 | va_end(ap); | |
837 | ||
838 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
839 | if (ret == -1) |
840 | ret = -errno; | |
841 | ||
842 | return ret; | |
843 | } | |
844 | ||
984b5181 | 845 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
846 | { |
847 | int ret; | |
984b5181 AL |
848 | void *arg; |
849 | va_list ap; | |
850 | ||
851 | va_start(ap, type); | |
852 | arg = va_arg(ap, void *); | |
853 | va_end(ap); | |
05330448 | 854 | |
984b5181 | 855 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
856 | if (ret == -1) |
857 | ret = -errno; | |
858 | ||
859 | return ret; | |
860 | } | |
861 | ||
984b5181 | 862 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
863 | { |
864 | int ret; | |
984b5181 AL |
865 | void *arg; |
866 | va_list ap; | |
867 | ||
868 | va_start(ap, type); | |
869 | arg = va_arg(ap, void *); | |
870 | va_end(ap); | |
05330448 | 871 | |
984b5181 | 872 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
873 | if (ret == -1) |
874 | ret = -errno; | |
875 | ||
876 | return ret; | |
877 | } | |
bd322087 AL |
878 | |
879 | int kvm_has_sync_mmu(void) | |
880 | { | |
a9c11522 | 881 | #ifdef KVM_CAP_SYNC_MMU |
bd322087 AL |
882 | KVMState *s = kvm_state; |
883 | ||
ad7b8b33 AL |
884 | return kvm_check_extension(s, KVM_CAP_SYNC_MMU); |
885 | #else | |
bd322087 | 886 | return 0; |
ad7b8b33 | 887 | #endif |
bd322087 | 888 | } |
e22a25c9 | 889 | |
6f0437e8 JK |
890 | void kvm_setup_guest_memory(void *start, size_t size) |
891 | { | |
892 | if (!kvm_has_sync_mmu()) { | |
893 | #ifdef MADV_DONTFORK | |
894 | int ret = madvise(start, size, MADV_DONTFORK); | |
895 | ||
896 | if (ret) { | |
897 | perror("madvice"); | |
898 | exit(1); | |
899 | } | |
900 | #else | |
901 | fprintf(stderr, | |
902 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
903 | exit(1); | |
904 | #endif | |
905 | } | |
906 | } | |
907 | ||
e22a25c9 AL |
908 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
909 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, | |
910 | target_ulong pc) | |
911 | { | |
912 | struct kvm_sw_breakpoint *bp; | |
913 | ||
914 | TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { | |
915 | if (bp->pc == pc) | |
916 | return bp; | |
917 | } | |
918 | return NULL; | |
919 | } | |
920 | ||
921 | int kvm_sw_breakpoints_active(CPUState *env) | |
922 | { | |
923 | return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); | |
924 | } | |
925 | ||
452e4751 GC |
926 | struct kvm_set_guest_debug_data { |
927 | struct kvm_guest_debug dbg; | |
928 | CPUState *env; | |
929 | int err; | |
930 | }; | |
931 | ||
932 | static void kvm_invoke_set_guest_debug(void *data) | |
933 | { | |
934 | struct kvm_set_guest_debug_data *dbg_data = data; | |
935 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); | |
936 | } | |
937 | ||
e22a25c9 AL |
938 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
939 | { | |
452e4751 | 940 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 941 | |
452e4751 | 942 | data.dbg.control = 0; |
e22a25c9 | 943 | if (env->singlestep_enabled) |
452e4751 | 944 | data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
e22a25c9 | 945 | |
452e4751 GC |
946 | kvm_arch_update_guest_debug(env, &data.dbg); |
947 | data.dbg.control |= reinject_trap; | |
948 | data.env = env; | |
e22a25c9 | 949 | |
452e4751 GC |
950 | on_vcpu(env, kvm_invoke_set_guest_debug, &data); |
951 | return data.err; | |
e22a25c9 AL |
952 | } |
953 | ||
954 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
955 | target_ulong len, int type) | |
956 | { | |
957 | struct kvm_sw_breakpoint *bp; | |
958 | CPUState *env; | |
959 | int err; | |
960 | ||
961 | if (type == GDB_BREAKPOINT_SW) { | |
962 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
963 | if (bp) { | |
964 | bp->use_count++; | |
965 | return 0; | |
966 | } | |
967 | ||
968 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
969 | if (!bp) | |
970 | return -ENOMEM; | |
971 | ||
972 | bp->pc = addr; | |
973 | bp->use_count = 1; | |
974 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
975 | if (err) { | |
976 | free(bp); | |
977 | return err; | |
978 | } | |
979 | ||
980 | TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, | |
981 | bp, entry); | |
982 | } else { | |
983 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
984 | if (err) | |
985 | return err; | |
986 | } | |
987 | ||
988 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
989 | err = kvm_update_guest_debug(env, 0); | |
990 | if (err) | |
991 | return err; | |
992 | } | |
993 | return 0; | |
994 | } | |
995 | ||
996 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
997 | target_ulong len, int type) | |
998 | { | |
999 | struct kvm_sw_breakpoint *bp; | |
1000 | CPUState *env; | |
1001 | int err; | |
1002 | ||
1003 | if (type == GDB_BREAKPOINT_SW) { | |
1004 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1005 | if (!bp) | |
1006 | return -ENOENT; | |
1007 | ||
1008 | if (bp->use_count > 1) { | |
1009 | bp->use_count--; | |
1010 | return 0; | |
1011 | } | |
1012 | ||
1013 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1014 | if (err) | |
1015 | return err; | |
1016 | ||
1017 | TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); | |
1018 | qemu_free(bp); | |
1019 | } else { | |
1020 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1021 | if (err) | |
1022 | return err; | |
1023 | } | |
1024 | ||
1025 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1026 | err = kvm_update_guest_debug(env, 0); | |
1027 | if (err) | |
1028 | return err; | |
1029 | } | |
1030 | return 0; | |
1031 | } | |
1032 | ||
1033 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1034 | { | |
1035 | struct kvm_sw_breakpoint *bp, *next; | |
1036 | KVMState *s = current_env->kvm_state; | |
1037 | CPUState *env; | |
1038 | ||
1039 | TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
1040 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { | |
1041 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1042 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1043 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | |
1044 | break; | |
1045 | } | |
1046 | } | |
1047 | } | |
1048 | kvm_arch_remove_all_hw_breakpoints(); | |
1049 | ||
1050 | for (env = first_cpu; env != NULL; env = env->next_cpu) | |
1051 | kvm_update_guest_debug(env, 0); | |
1052 | } | |
1053 | ||
1054 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1055 | ||
1056 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1057 | { | |
1058 | return -EINVAL; | |
1059 | } | |
1060 | ||
1061 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1062 | target_ulong len, int type) | |
1063 | { | |
1064 | return -EINVAL; | |
1065 | } | |
1066 | ||
1067 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1068 | target_ulong len, int type) | |
1069 | { | |
1070 | return -EINVAL; | |
1071 | } | |
1072 | ||
1073 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1074 | { | |
1075 | } | |
1076 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |