]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
05330448 | 25 | #include "sysemu.h" |
d33a1810 | 26 | #include "hw/hw.h" |
e22a25c9 | 27 | #include "gdbstub.h" |
05330448 | 28 | #include "kvm.h" |
8369e01c | 29 | #include "bswap.h" |
a01672d3 | 30 | #include "memory.h" |
05330448 | 31 | |
d2f2b8a7 SH |
32 | /* This check must be after config-host.h is included */ |
33 | #ifdef CONFIG_EVENTFD | |
34 | #include <sys/eventfd.h> | |
35 | #endif | |
36 | ||
f65ed4c1 AL |
37 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
38 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
39 | ||
05330448 AL |
40 | //#define DEBUG_KVM |
41 | ||
42 | #ifdef DEBUG_KVM | |
8c0d577e | 43 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
44 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
45 | #else | |
8c0d577e | 46 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
47 | do { } while (0) |
48 | #endif | |
49 | ||
34fc643f AL |
50 | typedef struct KVMSlot |
51 | { | |
c227f099 AL |
52 | target_phys_addr_t start_addr; |
53 | ram_addr_t memory_size; | |
9f213ed9 | 54 | void *ram; |
34fc643f AL |
55 | int slot; |
56 | int flags; | |
57 | } KVMSlot; | |
05330448 | 58 | |
5832d1f2 AL |
59 | typedef struct kvm_dirty_log KVMDirtyLog; |
60 | ||
05330448 AL |
61 | struct KVMState |
62 | { | |
63 | KVMSlot slots[32]; | |
64 | int fd; | |
65 | int vmfd; | |
f65ed4c1 | 66 | int coalesced_mmio; |
62a2744c | 67 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 68 | bool coalesced_flush_in_progress; |
e69917e2 | 69 | int broken_set_mem_region; |
4495d6a7 | 70 | int migration_log; |
a0fb002c | 71 | int vcpu_events; |
b0b1d690 | 72 | int robust_singlestep; |
ff44f1a3 | 73 | int debugregs; |
e22a25c9 AL |
74 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
75 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
76 | #endif | |
6f725c13 GC |
77 | int irqchip_in_kernel; |
78 | int pit_in_kernel; | |
f1665b21 | 79 | int xsave, xcrs; |
d2f2b8a7 | 80 | int many_ioeventfds; |
84b058d7 JK |
81 | int irqchip_inject_ioctl; |
82 | #ifdef KVM_CAP_IRQ_ROUTING | |
83 | struct kvm_irq_routing *irq_routes; | |
84 | int nr_allocated_irq_routes; | |
85 | uint32_t *used_gsi_bitmap; | |
86 | unsigned int max_gsi; | |
87 | #endif | |
05330448 AL |
88 | }; |
89 | ||
6a7af8cb | 90 | KVMState *kvm_state; |
05330448 | 91 | |
94a8d39a JK |
92 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
93 | KVM_CAP_INFO(USER_MEMORY), | |
94 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
95 | KVM_CAP_LAST_INFO | |
96 | }; | |
97 | ||
05330448 AL |
98 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
99 | { | |
100 | int i; | |
101 | ||
102 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 103 | if (s->slots[i].memory_size == 0) { |
05330448 | 104 | return &s->slots[i]; |
a426e122 | 105 | } |
05330448 AL |
106 | } |
107 | ||
d3f8d37f AL |
108 | fprintf(stderr, "%s: no free slot available\n", __func__); |
109 | abort(); | |
110 | } | |
111 | ||
112 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
113 | target_phys_addr_t start_addr, |
114 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
115 | { |
116 | int i; | |
117 | ||
118 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
119 | KVMSlot *mem = &s->slots[i]; | |
120 | ||
121 | if (start_addr == mem->start_addr && | |
122 | end_addr == mem->start_addr + mem->memory_size) { | |
123 | return mem; | |
124 | } | |
125 | } | |
126 | ||
05330448 AL |
127 | return NULL; |
128 | } | |
129 | ||
6152e2ae AL |
130 | /* |
131 | * Find overlapping slot with lowest start address | |
132 | */ | |
133 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
134 | target_phys_addr_t start_addr, |
135 | target_phys_addr_t end_addr) | |
05330448 | 136 | { |
6152e2ae | 137 | KVMSlot *found = NULL; |
05330448 AL |
138 | int i; |
139 | ||
140 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
141 | KVMSlot *mem = &s->slots[i]; | |
142 | ||
6152e2ae AL |
143 | if (mem->memory_size == 0 || |
144 | (found && found->start_addr < mem->start_addr)) { | |
145 | continue; | |
146 | } | |
147 | ||
148 | if (end_addr > mem->start_addr && | |
149 | start_addr < mem->start_addr + mem->memory_size) { | |
150 | found = mem; | |
151 | } | |
05330448 AL |
152 | } |
153 | ||
6152e2ae | 154 | return found; |
05330448 AL |
155 | } |
156 | ||
9f213ed9 AK |
157 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
158 | target_phys_addr_t *phys_addr) | |
983dfc3b HY |
159 | { |
160 | int i; | |
161 | ||
162 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
163 | KVMSlot *mem = &s->slots[i]; | |
164 | ||
9f213ed9 AK |
165 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
166 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
167 | return 1; |
168 | } | |
169 | } | |
170 | ||
171 | return 0; | |
172 | } | |
173 | ||
5832d1f2 AL |
174 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
175 | { | |
176 | struct kvm_userspace_memory_region mem; | |
177 | ||
178 | mem.slot = slot->slot; | |
179 | mem.guest_phys_addr = slot->start_addr; | |
180 | mem.memory_size = slot->memory_size; | |
9f213ed9 | 181 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 182 | mem.flags = slot->flags; |
4495d6a7 JK |
183 | if (s->migration_log) { |
184 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
185 | } | |
5832d1f2 AL |
186 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
187 | } | |
188 | ||
8d2ba1fb JK |
189 | static void kvm_reset_vcpu(void *opaque) |
190 | { | |
191 | CPUState *env = opaque; | |
192 | ||
caa5af0f | 193 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 194 | } |
5832d1f2 | 195 | |
6f725c13 GC |
196 | int kvm_irqchip_in_kernel(void) |
197 | { | |
198 | return kvm_state->irqchip_in_kernel; | |
199 | } | |
200 | ||
201 | int kvm_pit_in_kernel(void) | |
202 | { | |
203 | return kvm_state->pit_in_kernel; | |
204 | } | |
205 | ||
05330448 AL |
206 | int kvm_init_vcpu(CPUState *env) |
207 | { | |
208 | KVMState *s = kvm_state; | |
209 | long mmap_size; | |
210 | int ret; | |
211 | ||
8c0d577e | 212 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 213 | |
984b5181 | 214 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 | 215 | if (ret < 0) { |
8c0d577e | 216 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
217 | goto err; |
218 | } | |
219 | ||
220 | env->kvm_fd = ret; | |
221 | env->kvm_state = s; | |
d841b6c4 | 222 | env->kvm_vcpu_dirty = 1; |
05330448 AL |
223 | |
224 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
225 | if (mmap_size < 0) { | |
748a680b | 226 | ret = mmap_size; |
8c0d577e | 227 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
228 | goto err; |
229 | } | |
230 | ||
231 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
232 | env->kvm_fd, 0); | |
233 | if (env->kvm_run == MAP_FAILED) { | |
234 | ret = -errno; | |
8c0d577e | 235 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
236 | goto err; |
237 | } | |
238 | ||
a426e122 JK |
239 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
240 | s->coalesced_mmio_ring = | |
241 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
242 | } | |
62a2744c | 243 | |
05330448 | 244 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 245 | if (ret == 0) { |
a08d4367 | 246 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 247 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 248 | } |
05330448 AL |
249 | err: |
250 | return ret; | |
251 | } | |
252 | ||
5832d1f2 AL |
253 | /* |
254 | * dirty pages logging control | |
255 | */ | |
25254bbc MT |
256 | |
257 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
258 | { | |
259 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
260 | } | |
261 | ||
262 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
263 | { |
264 | KVMState *s = kvm_state; | |
25254bbc | 265 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
266 | int old_flags; |
267 | ||
4495d6a7 | 268 | old_flags = mem->flags; |
5832d1f2 | 269 | |
25254bbc | 270 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); |
5832d1f2 AL |
271 | mem->flags = flags; |
272 | ||
4495d6a7 JK |
273 | /* If nothing changed effectively, no need to issue ioctl */ |
274 | if (s->migration_log) { | |
275 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
276 | } | |
25254bbc | 277 | |
4495d6a7 | 278 | if (flags == old_flags) { |
25254bbc | 279 | return 0; |
4495d6a7 JK |
280 | } |
281 | ||
5832d1f2 AL |
282 | return kvm_set_user_memory_region(s, mem); |
283 | } | |
284 | ||
25254bbc MT |
285 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
286 | ram_addr_t size, bool log_dirty) | |
287 | { | |
288 | KVMState *s = kvm_state; | |
289 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
290 | ||
291 | if (mem == NULL) { | |
292 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
293 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
294 | (target_phys_addr_t)(phys_addr + size - 1)); | |
295 | return -EINVAL; | |
296 | } | |
297 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
298 | } | |
299 | ||
a01672d3 AK |
300 | static void kvm_log_start(MemoryListener *listener, |
301 | MemoryRegionSection *section) | |
5832d1f2 | 302 | { |
a01672d3 AK |
303 | int r; |
304 | ||
305 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
306 | section->size, true); | |
307 | if (r < 0) { | |
308 | abort(); | |
309 | } | |
5832d1f2 AL |
310 | } |
311 | ||
a01672d3 AK |
312 | static void kvm_log_stop(MemoryListener *listener, |
313 | MemoryRegionSection *section) | |
5832d1f2 | 314 | { |
a01672d3 AK |
315 | int r; |
316 | ||
317 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
318 | section->size, false); | |
319 | if (r < 0) { | |
320 | abort(); | |
321 | } | |
5832d1f2 AL |
322 | } |
323 | ||
7b8f3b78 | 324 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
325 | { |
326 | KVMState *s = kvm_state; | |
327 | KVMSlot *mem; | |
328 | int i, err; | |
329 | ||
330 | s->migration_log = enable; | |
331 | ||
332 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
333 | mem = &s->slots[i]; | |
334 | ||
70fedd76 AW |
335 | if (!mem->memory_size) { |
336 | continue; | |
337 | } | |
4495d6a7 JK |
338 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
339 | continue; | |
340 | } | |
341 | err = kvm_set_user_memory_region(s, mem); | |
342 | if (err) { | |
343 | return err; | |
344 | } | |
345 | } | |
346 | return 0; | |
347 | } | |
348 | ||
8369e01c | 349 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
350 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
351 | unsigned long *bitmap) | |
96c1606b | 352 | { |
8369e01c | 353 | unsigned int i, j; |
aa90fec7 BH |
354 | unsigned long page_number, c; |
355 | target_phys_addr_t addr, addr1; | |
ffcde12f | 356 | unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
8369e01c MT |
357 | |
358 | /* | |
359 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
360 | * especially when most of the memory is not dirty. | |
361 | */ | |
362 | for (i = 0; i < len; i++) { | |
363 | if (bitmap[i] != 0) { | |
364 | c = leul_to_cpu(bitmap[i]); | |
365 | do { | |
366 | j = ffsl(c) - 1; | |
367 | c &= ~(1ul << j); | |
368 | page_number = i * HOST_LONG_BITS + j; | |
369 | addr1 = page_number * TARGET_PAGE_SIZE; | |
ffcde12f | 370 | addr = section->offset_within_region + addr1; |
fd4aa979 | 371 | memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE); |
8369e01c MT |
372 | } while (c != 0); |
373 | } | |
374 | } | |
375 | return 0; | |
96c1606b AG |
376 | } |
377 | ||
8369e01c MT |
378 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
379 | ||
5832d1f2 AL |
380 | /** |
381 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
382 | * This function updates qemu's dirty bitmap using |
383 | * memory_region_set_dirty(). This means all bits are set | |
384 | * to dirty. | |
5832d1f2 | 385 | * |
d3f8d37f | 386 | * @start_add: start of logged region. |
5832d1f2 AL |
387 | * @end_addr: end of logged region. |
388 | */ | |
ffcde12f | 389 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
390 | { |
391 | KVMState *s = kvm_state; | |
151f7749 | 392 | unsigned long size, allocated_size = 0; |
151f7749 JK |
393 | KVMDirtyLog d; |
394 | KVMSlot *mem; | |
395 | int ret = 0; | |
ffcde12f AK |
396 | target_phys_addr_t start_addr = section->offset_within_address_space; |
397 | target_phys_addr_t end_addr = start_addr + section->size; | |
5832d1f2 | 398 | |
151f7749 JK |
399 | d.dirty_bitmap = NULL; |
400 | while (start_addr < end_addr) { | |
401 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
402 | if (mem == NULL) { | |
403 | break; | |
404 | } | |
5832d1f2 | 405 | |
51b0c606 MT |
406 | /* XXX bad kernel interface alert |
407 | * For dirty bitmap, kernel allocates array of size aligned to | |
408 | * bits-per-long. But for case when the kernel is 64bits and | |
409 | * the userspace is 32bits, userspace can't align to the same | |
410 | * bits-per-long, since sizeof(long) is different between kernel | |
411 | * and user space. This way, userspace will provide buffer which | |
412 | * may be 4 bytes less than the kernel will use, resulting in | |
413 | * userspace memory corruption (which is not detectable by valgrind | |
414 | * too, in most cases). | |
415 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
416 | * a hope that sizeof(long) wont become >8 any time soon. | |
417 | */ | |
418 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
419 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 420 | if (!d.dirty_bitmap) { |
7267c094 | 421 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 422 | } else if (size > allocated_size) { |
7267c094 | 423 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
424 | } |
425 | allocated_size = size; | |
426 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 427 | |
151f7749 | 428 | d.slot = mem->slot; |
5832d1f2 | 429 | |
6e489f3f | 430 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 431 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
432 | ret = -1; |
433 | break; | |
434 | } | |
5832d1f2 | 435 | |
ffcde12f | 436 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 437 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 438 | } |
7267c094 | 439 | g_free(d.dirty_bitmap); |
151f7749 JK |
440 | |
441 | return ret; | |
5832d1f2 AL |
442 | } |
443 | ||
c227f099 | 444 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
445 | { |
446 | int ret = -ENOSYS; | |
f65ed4c1 AL |
447 | KVMState *s = kvm_state; |
448 | ||
449 | if (s->coalesced_mmio) { | |
450 | struct kvm_coalesced_mmio_zone zone; | |
451 | ||
452 | zone.addr = start; | |
453 | zone.size = size; | |
454 | ||
455 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
456 | } | |
f65ed4c1 AL |
457 | |
458 | return ret; | |
459 | } | |
460 | ||
c227f099 | 461 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
462 | { |
463 | int ret = -ENOSYS; | |
f65ed4c1 AL |
464 | KVMState *s = kvm_state; |
465 | ||
466 | if (s->coalesced_mmio) { | |
467 | struct kvm_coalesced_mmio_zone zone; | |
468 | ||
469 | zone.addr = start; | |
470 | zone.size = size; | |
471 | ||
472 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
473 | } | |
f65ed4c1 AL |
474 | |
475 | return ret; | |
476 | } | |
477 | ||
ad7b8b33 AL |
478 | int kvm_check_extension(KVMState *s, unsigned int extension) |
479 | { | |
480 | int ret; | |
481 | ||
482 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
483 | if (ret < 0) { | |
484 | ret = 0; | |
485 | } | |
486 | ||
487 | return ret; | |
488 | } | |
489 | ||
d2f2b8a7 SH |
490 | static int kvm_check_many_ioeventfds(void) |
491 | { | |
d0dcac83 SH |
492 | /* Userspace can use ioeventfd for io notification. This requires a host |
493 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
494 | * support SIGIO it cannot interrupt the vcpu. | |
495 | * | |
496 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
497 | * can avoid creating too many ioeventfds. |
498 | */ | |
12d4536f | 499 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
500 | int ioeventfds[7]; |
501 | int i, ret = 0; | |
502 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
503 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
504 | if (ioeventfds[i] < 0) { | |
505 | break; | |
506 | } | |
507 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | |
508 | if (ret < 0) { | |
509 | close(ioeventfds[i]); | |
510 | break; | |
511 | } | |
512 | } | |
513 | ||
514 | /* Decide whether many devices are supported or not */ | |
515 | ret = i == ARRAY_SIZE(ioeventfds); | |
516 | ||
517 | while (i-- > 0) { | |
518 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | |
519 | close(ioeventfds[i]); | |
520 | } | |
521 | return ret; | |
522 | #else | |
523 | return 0; | |
524 | #endif | |
525 | } | |
526 | ||
94a8d39a JK |
527 | static const KVMCapabilityInfo * |
528 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
529 | { | |
530 | while (list->name) { | |
531 | if (!kvm_check_extension(s, list->value)) { | |
532 | return list; | |
533 | } | |
534 | list++; | |
535 | } | |
536 | return NULL; | |
537 | } | |
538 | ||
a01672d3 | 539 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
540 | { |
541 | KVMState *s = kvm_state; | |
46dbef6a MT |
542 | KVMSlot *mem, old; |
543 | int err; | |
a01672d3 AK |
544 | MemoryRegion *mr = section->mr; |
545 | bool log_dirty = memory_region_is_logging(mr); | |
546 | target_phys_addr_t start_addr = section->offset_within_address_space; | |
547 | ram_addr_t size = section->size; | |
9f213ed9 | 548 | void *ram = NULL; |
46dbef6a | 549 | |
14542fea GN |
550 | /* kvm works in page size chunks, but the function may be called |
551 | with sub-page size and unaligned start address. */ | |
552 | size = TARGET_PAGE_ALIGN(size); | |
553 | start_addr = TARGET_PAGE_ALIGN(start_addr); | |
46dbef6a | 554 | |
a01672d3 AK |
555 | if (!memory_region_is_ram(mr)) { |
556 | return; | |
9f213ed9 AK |
557 | } |
558 | ||
a01672d3 AK |
559 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region; |
560 | ||
46dbef6a MT |
561 | while (1) { |
562 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
563 | if (!mem) { | |
564 | break; | |
565 | } | |
566 | ||
a01672d3 | 567 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 568 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 569 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 570 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
571 | * identical parameters - update flags and done. */ |
572 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
573 | return; |
574 | } | |
575 | ||
576 | old = *mem; | |
577 | ||
3fbffb62 AK |
578 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
579 | kvm_physical_sync_dirty_bitmap(section); | |
580 | } | |
581 | ||
46dbef6a MT |
582 | /* unregister the overlapping slot */ |
583 | mem->memory_size = 0; | |
584 | err = kvm_set_user_memory_region(s, mem); | |
585 | if (err) { | |
586 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
587 | __func__, strerror(-err)); | |
588 | abort(); | |
589 | } | |
590 | ||
591 | /* Workaround for older KVM versions: we can't join slots, even not by | |
592 | * unregistering the previous ones and then registering the larger | |
593 | * slot. We have to maintain the existing fragmentation. Sigh. | |
594 | * | |
595 | * This workaround assumes that the new slot starts at the same | |
596 | * address as the first existing one. If not or if some overlapping | |
597 | * slot comes around later, we will fail (not seen in practice so far) | |
598 | * - and actually require a recent KVM version. */ | |
599 | if (s->broken_set_mem_region && | |
a01672d3 | 600 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
601 | mem = kvm_alloc_slot(s); |
602 | mem->memory_size = old.memory_size; | |
603 | mem->start_addr = old.start_addr; | |
9f213ed9 | 604 | mem->ram = old.ram; |
25254bbc | 605 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
606 | |
607 | err = kvm_set_user_memory_region(s, mem); | |
608 | if (err) { | |
609 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
610 | strerror(-err)); | |
611 | abort(); | |
612 | } | |
613 | ||
614 | start_addr += old.memory_size; | |
9f213ed9 | 615 | ram += old.memory_size; |
46dbef6a MT |
616 | size -= old.memory_size; |
617 | continue; | |
618 | } | |
619 | ||
620 | /* register prefix slot */ | |
621 | if (old.start_addr < start_addr) { | |
622 | mem = kvm_alloc_slot(s); | |
623 | mem->memory_size = start_addr - old.start_addr; | |
624 | mem->start_addr = old.start_addr; | |
9f213ed9 | 625 | mem->ram = old.ram; |
25254bbc | 626 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
627 | |
628 | err = kvm_set_user_memory_region(s, mem); | |
629 | if (err) { | |
630 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
631 | __func__, strerror(-err)); | |
d4d6868f AG |
632 | #ifdef TARGET_PPC |
633 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
634 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
635 | "PAGE_SIZE!\n", __func__); | |
636 | #endif | |
46dbef6a MT |
637 | abort(); |
638 | } | |
639 | } | |
640 | ||
641 | /* register suffix slot */ | |
642 | if (old.start_addr + old.memory_size > start_addr + size) { | |
643 | ram_addr_t size_delta; | |
644 | ||
645 | mem = kvm_alloc_slot(s); | |
646 | mem->start_addr = start_addr + size; | |
647 | size_delta = mem->start_addr - old.start_addr; | |
648 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 649 | mem->ram = old.ram + size_delta; |
25254bbc | 650 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
651 | |
652 | err = kvm_set_user_memory_region(s, mem); | |
653 | if (err) { | |
654 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
655 | __func__, strerror(-err)); | |
656 | abort(); | |
657 | } | |
658 | } | |
659 | } | |
660 | ||
661 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 662 | if (!size) { |
46dbef6a | 663 | return; |
a426e122 | 664 | } |
a01672d3 | 665 | if (!add) { |
46dbef6a | 666 | return; |
a426e122 | 667 | } |
46dbef6a MT |
668 | mem = kvm_alloc_slot(s); |
669 | mem->memory_size = size; | |
670 | mem->start_addr = start_addr; | |
9f213ed9 | 671 | mem->ram = ram; |
25254bbc | 672 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
673 | |
674 | err = kvm_set_user_memory_region(s, mem); | |
675 | if (err) { | |
676 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
677 | strerror(-err)); | |
678 | abort(); | |
679 | } | |
680 | } | |
681 | ||
a01672d3 AK |
682 | static void kvm_region_add(MemoryListener *listener, |
683 | MemoryRegionSection *section) | |
684 | { | |
685 | kvm_set_phys_mem(section, true); | |
686 | } | |
687 | ||
688 | static void kvm_region_del(MemoryListener *listener, | |
689 | MemoryRegionSection *section) | |
690 | { | |
691 | kvm_set_phys_mem(section, false); | |
692 | } | |
693 | ||
694 | static void kvm_log_sync(MemoryListener *listener, | |
695 | MemoryRegionSection *section) | |
7b8f3b78 | 696 | { |
a01672d3 AK |
697 | int r; |
698 | ||
ffcde12f | 699 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
700 | if (r < 0) { |
701 | abort(); | |
702 | } | |
7b8f3b78 MT |
703 | } |
704 | ||
a01672d3 | 705 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 706 | { |
a01672d3 AK |
707 | int r; |
708 | ||
709 | r = kvm_set_migration_log(1); | |
710 | assert(r >= 0); | |
7b8f3b78 MT |
711 | } |
712 | ||
a01672d3 | 713 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 714 | { |
a01672d3 AK |
715 | int r; |
716 | ||
717 | r = kvm_set_migration_log(0); | |
718 | assert(r >= 0); | |
7b8f3b78 MT |
719 | } |
720 | ||
a01672d3 AK |
721 | static MemoryListener kvm_memory_listener = { |
722 | .region_add = kvm_region_add, | |
723 | .region_del = kvm_region_del, | |
e5896b12 AP |
724 | .log_start = kvm_log_start, |
725 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
726 | .log_sync = kvm_log_sync, |
727 | .log_global_start = kvm_log_global_start, | |
728 | .log_global_stop = kvm_log_global_stop, | |
7b8f3b78 MT |
729 | }; |
730 | ||
aa7f74d1 JK |
731 | static void kvm_handle_interrupt(CPUState *env, int mask) |
732 | { | |
733 | env->interrupt_request |= mask; | |
734 | ||
735 | if (!qemu_cpu_is_self(env)) { | |
736 | qemu_cpu_kick(env); | |
737 | } | |
738 | } | |
739 | ||
84b058d7 JK |
740 | int kvm_irqchip_set_irq(KVMState *s, int irq, int level) |
741 | { | |
742 | struct kvm_irq_level event; | |
743 | int ret; | |
744 | ||
745 | assert(s->irqchip_in_kernel); | |
746 | ||
747 | event.level = level; | |
748 | event.irq = irq; | |
749 | ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event); | |
750 | if (ret < 0) { | |
751 | perror("kvm_set_irqchip_line"); | |
752 | abort(); | |
753 | } | |
754 | ||
755 | return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | |
756 | } | |
757 | ||
758 | #ifdef KVM_CAP_IRQ_ROUTING | |
759 | static void set_gsi(KVMState *s, unsigned int gsi) | |
760 | { | |
761 | assert(gsi < s->max_gsi); | |
762 | ||
763 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); | |
764 | } | |
765 | ||
766 | static void kvm_init_irq_routing(KVMState *s) | |
767 | { | |
768 | int gsi_count; | |
769 | ||
770 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
771 | if (gsi_count > 0) { | |
772 | unsigned int gsi_bits, i; | |
773 | ||
774 | /* Round up so we can search ints using ffs */ | |
775 | gsi_bits = (gsi_count + 31) / 32; | |
776 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); | |
777 | s->max_gsi = gsi_bits; | |
778 | ||
779 | /* Mark any over-allocated bits as already in use */ | |
780 | for (i = gsi_count; i < gsi_bits; i++) { | |
781 | set_gsi(s, i); | |
782 | } | |
783 | } | |
784 | ||
785 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
786 | s->nr_allocated_irq_routes = 0; | |
787 | ||
788 | kvm_arch_init_irq_routing(s); | |
789 | } | |
790 | ||
791 | static void kvm_add_routing_entry(KVMState *s, | |
792 | struct kvm_irq_routing_entry *entry) | |
793 | { | |
794 | struct kvm_irq_routing_entry *new; | |
795 | int n, size; | |
796 | ||
797 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
798 | n = s->nr_allocated_irq_routes * 2; | |
799 | if (n < 64) { | |
800 | n = 64; | |
801 | } | |
802 | size = sizeof(struct kvm_irq_routing); | |
803 | size += n * sizeof(*new); | |
804 | s->irq_routes = g_realloc(s->irq_routes, size); | |
805 | s->nr_allocated_irq_routes = n; | |
806 | } | |
807 | n = s->irq_routes->nr++; | |
808 | new = &s->irq_routes->entries[n]; | |
809 | memset(new, 0, sizeof(*new)); | |
810 | new->gsi = entry->gsi; | |
811 | new->type = entry->type; | |
812 | new->flags = entry->flags; | |
813 | new->u = entry->u; | |
814 | ||
815 | set_gsi(s, entry->gsi); | |
816 | } | |
817 | ||
818 | void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin) | |
819 | { | |
820 | struct kvm_irq_routing_entry e; | |
821 | ||
822 | e.gsi = irq; | |
823 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
824 | e.flags = 0; | |
825 | e.u.irqchip.irqchip = irqchip; | |
826 | e.u.irqchip.pin = pin; | |
827 | kvm_add_routing_entry(s, &e); | |
828 | } | |
829 | ||
830 | int kvm_irqchip_commit_routes(KVMState *s) | |
831 | { | |
832 | s->irq_routes->flags = 0; | |
833 | return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
834 | } | |
835 | ||
836 | #else /* !KVM_CAP_IRQ_ROUTING */ | |
837 | ||
838 | static void kvm_init_irq_routing(KVMState *s) | |
839 | { | |
840 | } | |
841 | #endif /* !KVM_CAP_IRQ_ROUTING */ | |
842 | ||
843 | static int kvm_irqchip_create(KVMState *s) | |
844 | { | |
845 | QemuOptsList *list = qemu_find_opts("machine"); | |
846 | int ret; | |
847 | ||
848 | if (QTAILQ_EMPTY(&list->head) || | |
849 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
850 | "kernel_irqchip", false) || | |
851 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | |
852 | return 0; | |
853 | } | |
854 | ||
855 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
856 | if (ret < 0) { | |
857 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
858 | return ret; | |
859 | } | |
860 | ||
861 | s->irqchip_inject_ioctl = KVM_IRQ_LINE; | |
862 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | |
863 | s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS; | |
864 | } | |
865 | s->irqchip_in_kernel = 1; | |
866 | ||
867 | kvm_init_irq_routing(s); | |
868 | ||
869 | return 0; | |
870 | } | |
871 | ||
cad1e282 | 872 | int kvm_init(void) |
05330448 | 873 | { |
168ccc11 JK |
874 | static const char upgrade_note[] = |
875 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
876 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 877 | KVMState *s; |
94a8d39a | 878 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
879 | int ret; |
880 | int i; | |
881 | ||
7267c094 | 882 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 883 | |
e22a25c9 | 884 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 885 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 886 | #endif |
a426e122 | 887 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 888 | s->slots[i].slot = i; |
a426e122 | 889 | } |
05330448 | 890 | s->vmfd = -1; |
40ff6d7e | 891 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
892 | if (s->fd == -1) { |
893 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
894 | ret = -errno; | |
895 | goto err; | |
896 | } | |
897 | ||
898 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
899 | if (ret < KVM_API_VERSION) { | |
a426e122 | 900 | if (ret > 0) { |
05330448 | 901 | ret = -EINVAL; |
a426e122 | 902 | } |
05330448 AL |
903 | fprintf(stderr, "kvm version too old\n"); |
904 | goto err; | |
905 | } | |
906 | ||
907 | if (ret > KVM_API_VERSION) { | |
908 | ret = -EINVAL; | |
909 | fprintf(stderr, "kvm version not supported\n"); | |
910 | goto err; | |
911 | } | |
912 | ||
913 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
0104dcac AG |
914 | if (s->vmfd < 0) { |
915 | #ifdef TARGET_S390X | |
916 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
917 | "your host kernel command line\n"); | |
918 | #endif | |
db9eae1c | 919 | ret = s->vmfd; |
05330448 | 920 | goto err; |
0104dcac | 921 | } |
05330448 | 922 | |
94a8d39a JK |
923 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
924 | if (!missing_cap) { | |
925 | missing_cap = | |
926 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 927 | } |
94a8d39a | 928 | if (missing_cap) { |
ad7b8b33 | 929 | ret = -EINVAL; |
94a8d39a JK |
930 | fprintf(stderr, "kvm does not support %s\n%s", |
931 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
932 | goto err; |
933 | } | |
934 | ||
ad7b8b33 | 935 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 936 | |
e69917e2 | 937 | s->broken_set_mem_region = 1; |
14a09518 | 938 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
939 | if (ret > 0) { |
940 | s->broken_set_mem_region = 0; | |
941 | } | |
e69917e2 | 942 | |
a0fb002c JK |
943 | #ifdef KVM_CAP_VCPU_EVENTS |
944 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
945 | #endif | |
946 | ||
b0b1d690 JK |
947 | s->robust_singlestep = |
948 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 949 | |
ff44f1a3 JK |
950 | #ifdef KVM_CAP_DEBUGREGS |
951 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
952 | #endif | |
953 | ||
f1665b21 SY |
954 | #ifdef KVM_CAP_XSAVE |
955 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
956 | #endif | |
957 | ||
f1665b21 SY |
958 | #ifdef KVM_CAP_XCRS |
959 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
960 | #endif | |
961 | ||
cad1e282 | 962 | ret = kvm_arch_init(s); |
a426e122 | 963 | if (ret < 0) { |
05330448 | 964 | goto err; |
a426e122 | 965 | } |
05330448 | 966 | |
84b058d7 JK |
967 | ret = kvm_irqchip_create(s); |
968 | if (ret < 0) { | |
969 | goto err; | |
970 | } | |
971 | ||
05330448 | 972 | kvm_state = s; |
a01672d3 | 973 | memory_listener_register(&kvm_memory_listener); |
05330448 | 974 | |
d2f2b8a7 SH |
975 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
976 | ||
aa7f74d1 JK |
977 | cpu_interrupt_handler = kvm_handle_interrupt; |
978 | ||
05330448 AL |
979 | return 0; |
980 | ||
981 | err: | |
982 | if (s) { | |
db9eae1c | 983 | if (s->vmfd >= 0) { |
05330448 | 984 | close(s->vmfd); |
a426e122 JK |
985 | } |
986 | if (s->fd != -1) { | |
05330448 | 987 | close(s->fd); |
a426e122 | 988 | } |
05330448 | 989 | } |
7267c094 | 990 | g_free(s); |
05330448 AL |
991 | |
992 | return ret; | |
993 | } | |
994 | ||
b30e93e9 JK |
995 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
996 | uint32_t count) | |
05330448 AL |
997 | { |
998 | int i; | |
999 | uint8_t *ptr = data; | |
1000 | ||
1001 | for (i = 0; i < count; i++) { | |
1002 | if (direction == KVM_EXIT_IO_IN) { | |
1003 | switch (size) { | |
1004 | case 1: | |
afcea8cb | 1005 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
1006 | break; |
1007 | case 2: | |
afcea8cb | 1008 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
1009 | break; |
1010 | case 4: | |
afcea8cb | 1011 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
1012 | break; |
1013 | } | |
1014 | } else { | |
1015 | switch (size) { | |
1016 | case 1: | |
afcea8cb | 1017 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
1018 | break; |
1019 | case 2: | |
afcea8cb | 1020 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
1021 | break; |
1022 | case 4: | |
afcea8cb | 1023 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
1024 | break; |
1025 | } | |
1026 | } | |
1027 | ||
1028 | ptr += size; | |
1029 | } | |
05330448 AL |
1030 | } |
1031 | ||
73aaec4a | 1032 | static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run) |
7c80eef8 | 1033 | { |
bb44e0d1 | 1034 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1035 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1036 | int i; | |
1037 | ||
bb44e0d1 | 1038 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1039 | for (i = 0; i < run->internal.ndata; ++i) { |
1040 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1041 | i, (uint64_t)run->internal.data[i]); | |
1042 | } | |
bb44e0d1 JK |
1043 | } else { |
1044 | fprintf(stderr, "\n"); | |
7c80eef8 | 1045 | } |
7c80eef8 MT |
1046 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1047 | fprintf(stderr, "emulation failure\n"); | |
a426e122 | 1048 | if (!kvm_arch_stop_on_emulation_error(env)) { |
f5c848ee | 1049 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1050 | return EXCP_INTERRUPT; |
a426e122 | 1051 | } |
7c80eef8 MT |
1052 | } |
1053 | /* FIXME: Should trigger a qmp message to let management know | |
1054 | * something went wrong. | |
1055 | */ | |
73aaec4a | 1056 | return -1; |
7c80eef8 | 1057 | } |
7c80eef8 | 1058 | |
62a2744c | 1059 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1060 | { |
f65ed4c1 | 1061 | KVMState *s = kvm_state; |
1cae88b9 AK |
1062 | |
1063 | if (s->coalesced_flush_in_progress) { | |
1064 | return; | |
1065 | } | |
1066 | ||
1067 | s->coalesced_flush_in_progress = true; | |
1068 | ||
62a2744c SY |
1069 | if (s->coalesced_mmio_ring) { |
1070 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1071 | while (ring->first != ring->last) { |
1072 | struct kvm_coalesced_mmio *ent; | |
1073 | ||
1074 | ent = &ring->coalesced_mmio[ring->first]; | |
1075 | ||
1076 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1077 | smp_wmb(); |
f65ed4c1 AL |
1078 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1079 | } | |
1080 | } | |
1cae88b9 AK |
1081 | |
1082 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1083 | } |
1084 | ||
2705d56a | 1085 | static void do_kvm_cpu_synchronize_state(void *_env) |
4c0960c0 | 1086 | { |
2705d56a JK |
1087 | CPUState *env = _env; |
1088 | ||
9ded2744 | 1089 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 1090 | kvm_arch_get_registers(env); |
9ded2744 | 1091 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
1092 | } |
1093 | } | |
1094 | ||
2705d56a JK |
1095 | void kvm_cpu_synchronize_state(CPUState *env) |
1096 | { | |
a426e122 | 1097 | if (!env->kvm_vcpu_dirty) { |
2705d56a | 1098 | run_on_cpu(env, do_kvm_cpu_synchronize_state, env); |
a426e122 | 1099 | } |
2705d56a JK |
1100 | } |
1101 | ||
ea375f9a JK |
1102 | void kvm_cpu_synchronize_post_reset(CPUState *env) |
1103 | { | |
1104 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | |
1105 | env->kvm_vcpu_dirty = 0; | |
1106 | } | |
1107 | ||
1108 | void kvm_cpu_synchronize_post_init(CPUState *env) | |
1109 | { | |
1110 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | |
1111 | env->kvm_vcpu_dirty = 0; | |
1112 | } | |
1113 | ||
05330448 AL |
1114 | int kvm_cpu_exec(CPUState *env) |
1115 | { | |
1116 | struct kvm_run *run = env->kvm_run; | |
7cbb533f | 1117 | int ret, run_ret; |
05330448 | 1118 | |
8c0d577e | 1119 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1120 | |
99036865 | 1121 | if (kvm_arch_process_async_events(env)) { |
9ccfac9e | 1122 | env->exit_request = 0; |
6792a57b | 1123 | return EXCP_HLT; |
9ccfac9e | 1124 | } |
0af691d7 | 1125 | |
6792a57b JK |
1126 | cpu_single_env = env; |
1127 | ||
9ccfac9e | 1128 | do { |
9ded2744 | 1129 | if (env->kvm_vcpu_dirty) { |
ea375f9a | 1130 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); |
9ded2744 | 1131 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
1132 | } |
1133 | ||
8c14c173 | 1134 | kvm_arch_pre_run(env, run); |
9ccfac9e JK |
1135 | if (env->exit_request) { |
1136 | DPRINTF("interrupt exit requested\n"); | |
1137 | /* | |
1138 | * KVM requires us to reenter the kernel after IO exits to complete | |
1139 | * instruction emulation. This self-signal will ensure that we | |
1140 | * leave ASAP again. | |
1141 | */ | |
1142 | qemu_cpu_kick_self(); | |
1143 | } | |
273faf1b | 1144 | cpu_single_env = NULL; |
d549db5a | 1145 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1146 | |
7cbb533f | 1147 | run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
9ccfac9e | 1148 | |
d549db5a | 1149 | qemu_mutex_lock_iothread(); |
273faf1b | 1150 | cpu_single_env = env; |
05330448 AL |
1151 | kvm_arch_post_run(env, run); |
1152 | ||
b0c883b5 JK |
1153 | kvm_flush_coalesced_mmio_buffer(); |
1154 | ||
7cbb533f | 1155 | if (run_ret < 0) { |
dc77d341 JK |
1156 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1157 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1158 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1159 | break; |
1160 | } | |
7b011fbc ME |
1161 | fprintf(stderr, "error: kvm run failed %s\n", |
1162 | strerror(-run_ret)); | |
05330448 AL |
1163 | abort(); |
1164 | } | |
1165 | ||
05330448 AL |
1166 | switch (run->exit_reason) { |
1167 | case KVM_EXIT_IO: | |
8c0d577e | 1168 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1169 | kvm_handle_io(run->io.port, |
1170 | (uint8_t *)run + run->io.data_offset, | |
1171 | run->io.direction, | |
1172 | run->io.size, | |
1173 | run->io.count); | |
d73cd8f4 | 1174 | ret = 0; |
05330448 AL |
1175 | break; |
1176 | case KVM_EXIT_MMIO: | |
8c0d577e | 1177 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1178 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1179 | run->mmio.data, | |
1180 | run->mmio.len, | |
1181 | run->mmio.is_write); | |
d73cd8f4 | 1182 | ret = 0; |
05330448 AL |
1183 | break; |
1184 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1185 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1186 | ret = EXCP_INTERRUPT; |
05330448 AL |
1187 | break; |
1188 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1189 | DPRINTF("shutdown\n"); |
05330448 | 1190 | qemu_system_reset_request(); |
d73cd8f4 | 1191 | ret = EXCP_INTERRUPT; |
05330448 AL |
1192 | break; |
1193 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1194 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1195 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1196 | ret = -1; |
05330448 | 1197 | break; |
7c80eef8 | 1198 | case KVM_EXIT_INTERNAL_ERROR: |
73aaec4a | 1199 | ret = kvm_handle_internal_error(env, run); |
7c80eef8 | 1200 | break; |
05330448 | 1201 | default: |
8c0d577e | 1202 | DPRINTF("kvm_arch_handle_exit\n"); |
05330448 AL |
1203 | ret = kvm_arch_handle_exit(env, run); |
1204 | break; | |
1205 | } | |
d73cd8f4 | 1206 | } while (ret == 0); |
05330448 | 1207 | |
73aaec4a | 1208 | if (ret < 0) { |
f5c848ee | 1209 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1210 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1211 | } |
1212 | ||
6792a57b JK |
1213 | env->exit_request = 0; |
1214 | cpu_single_env = NULL; | |
05330448 AL |
1215 | return ret; |
1216 | } | |
1217 | ||
984b5181 | 1218 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1219 | { |
1220 | int ret; | |
984b5181 AL |
1221 | void *arg; |
1222 | va_list ap; | |
05330448 | 1223 | |
984b5181 AL |
1224 | va_start(ap, type); |
1225 | arg = va_arg(ap, void *); | |
1226 | va_end(ap); | |
1227 | ||
1228 | ret = ioctl(s->fd, type, arg); | |
a426e122 | 1229 | if (ret == -1) { |
05330448 | 1230 | ret = -errno; |
a426e122 | 1231 | } |
05330448 AL |
1232 | return ret; |
1233 | } | |
1234 | ||
984b5181 | 1235 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1236 | { |
1237 | int ret; | |
984b5181 AL |
1238 | void *arg; |
1239 | va_list ap; | |
1240 | ||
1241 | va_start(ap, type); | |
1242 | arg = va_arg(ap, void *); | |
1243 | va_end(ap); | |
05330448 | 1244 | |
984b5181 | 1245 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1246 | if (ret == -1) { |
05330448 | 1247 | ret = -errno; |
a426e122 | 1248 | } |
05330448 AL |
1249 | return ret; |
1250 | } | |
1251 | ||
984b5181 | 1252 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
1253 | { |
1254 | int ret; | |
984b5181 AL |
1255 | void *arg; |
1256 | va_list ap; | |
1257 | ||
1258 | va_start(ap, type); | |
1259 | arg = va_arg(ap, void *); | |
1260 | va_end(ap); | |
05330448 | 1261 | |
984b5181 | 1262 | ret = ioctl(env->kvm_fd, type, arg); |
a426e122 | 1263 | if (ret == -1) { |
05330448 | 1264 | ret = -errno; |
a426e122 | 1265 | } |
05330448 AL |
1266 | return ret; |
1267 | } | |
bd322087 AL |
1268 | |
1269 | int kvm_has_sync_mmu(void) | |
1270 | { | |
94a8d39a | 1271 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1272 | } |
e22a25c9 | 1273 | |
a0fb002c JK |
1274 | int kvm_has_vcpu_events(void) |
1275 | { | |
1276 | return kvm_state->vcpu_events; | |
1277 | } | |
1278 | ||
b0b1d690 JK |
1279 | int kvm_has_robust_singlestep(void) |
1280 | { | |
1281 | return kvm_state->robust_singlestep; | |
1282 | } | |
1283 | ||
ff44f1a3 JK |
1284 | int kvm_has_debugregs(void) |
1285 | { | |
1286 | return kvm_state->debugregs; | |
1287 | } | |
1288 | ||
f1665b21 SY |
1289 | int kvm_has_xsave(void) |
1290 | { | |
1291 | return kvm_state->xsave; | |
1292 | } | |
1293 | ||
1294 | int kvm_has_xcrs(void) | |
1295 | { | |
1296 | return kvm_state->xcrs; | |
1297 | } | |
1298 | ||
d2f2b8a7 SH |
1299 | int kvm_has_many_ioeventfds(void) |
1300 | { | |
1301 | if (!kvm_enabled()) { | |
1302 | return 0; | |
1303 | } | |
1304 | return kvm_state->many_ioeventfds; | |
1305 | } | |
1306 | ||
84b058d7 JK |
1307 | int kvm_has_gsi_routing(void) |
1308 | { | |
1309 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); | |
1310 | } | |
1311 | ||
9b5b76d4 JK |
1312 | int kvm_allows_irq0_override(void) |
1313 | { | |
1314 | return !kvm_enabled() || !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
1315 | } | |
1316 | ||
6f0437e8 JK |
1317 | void kvm_setup_guest_memory(void *start, size_t size) |
1318 | { | |
1319 | if (!kvm_has_sync_mmu()) { | |
e78815a5 | 1320 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1321 | |
1322 | if (ret) { | |
e78815a5 AF |
1323 | perror("qemu_madvise"); |
1324 | fprintf(stderr, | |
1325 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1326 | exit(1); |
1327 | } | |
6f0437e8 JK |
1328 | } |
1329 | } | |
1330 | ||
e22a25c9 AL |
1331 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
1332 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, | |
1333 | target_ulong pc) | |
1334 | { | |
1335 | struct kvm_sw_breakpoint *bp; | |
1336 | ||
72cf2d4f | 1337 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1338 | if (bp->pc == pc) { |
e22a25c9 | 1339 | return bp; |
a426e122 | 1340 | } |
e22a25c9 AL |
1341 | } |
1342 | return NULL; | |
1343 | } | |
1344 | ||
1345 | int kvm_sw_breakpoints_active(CPUState *env) | |
1346 | { | |
72cf2d4f | 1347 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1348 | } |
1349 | ||
452e4751 GC |
1350 | struct kvm_set_guest_debug_data { |
1351 | struct kvm_guest_debug dbg; | |
1352 | CPUState *env; | |
1353 | int err; | |
1354 | }; | |
1355 | ||
1356 | static void kvm_invoke_set_guest_debug(void *data) | |
1357 | { | |
1358 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 JK |
1359 | CPUState *env = dbg_data->env; |
1360 | ||
b3807725 | 1361 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
452e4751 GC |
1362 | } |
1363 | ||
e22a25c9 AL |
1364 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
1365 | { | |
452e4751 | 1366 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1367 | |
b0b1d690 | 1368 | data.dbg.control = reinject_trap; |
e22a25c9 | 1369 | |
b0b1d690 JK |
1370 | if (env->singlestep_enabled) { |
1371 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1372 | } | |
452e4751 | 1373 | kvm_arch_update_guest_debug(env, &data.dbg); |
452e4751 | 1374 | data.env = env; |
e22a25c9 | 1375 | |
be41cbe0 | 1376 | run_on_cpu(env, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1377 | return data.err; |
e22a25c9 AL |
1378 | } |
1379 | ||
1380 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1381 | target_ulong len, int type) | |
1382 | { | |
1383 | struct kvm_sw_breakpoint *bp; | |
1384 | CPUState *env; | |
1385 | int err; | |
1386 | ||
1387 | if (type == GDB_BREAKPOINT_SW) { | |
1388 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1389 | if (bp) { | |
1390 | bp->use_count++; | |
1391 | return 0; | |
1392 | } | |
1393 | ||
7267c094 | 1394 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1395 | if (!bp) { |
e22a25c9 | 1396 | return -ENOMEM; |
a426e122 | 1397 | } |
e22a25c9 AL |
1398 | |
1399 | bp->pc = addr; | |
1400 | bp->use_count = 1; | |
1401 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1402 | if (err) { | |
7267c094 | 1403 | g_free(bp); |
e22a25c9 AL |
1404 | return err; |
1405 | } | |
1406 | ||
72cf2d4f | 1407 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1408 | bp, entry); |
1409 | } else { | |
1410 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1411 | if (err) { |
e22a25c9 | 1412 | return err; |
a426e122 | 1413 | } |
e22a25c9 AL |
1414 | } |
1415 | ||
1416 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1417 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1418 | if (err) { |
e22a25c9 | 1419 | return err; |
a426e122 | 1420 | } |
e22a25c9 AL |
1421 | } |
1422 | return 0; | |
1423 | } | |
1424 | ||
1425 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1426 | target_ulong len, int type) | |
1427 | { | |
1428 | struct kvm_sw_breakpoint *bp; | |
1429 | CPUState *env; | |
1430 | int err; | |
1431 | ||
1432 | if (type == GDB_BREAKPOINT_SW) { | |
1433 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
a426e122 | 1434 | if (!bp) { |
e22a25c9 | 1435 | return -ENOENT; |
a426e122 | 1436 | } |
e22a25c9 AL |
1437 | |
1438 | if (bp->use_count > 1) { | |
1439 | bp->use_count--; | |
1440 | return 0; | |
1441 | } | |
1442 | ||
1443 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
a426e122 | 1444 | if (err) { |
e22a25c9 | 1445 | return err; |
a426e122 | 1446 | } |
e22a25c9 | 1447 | |
72cf2d4f | 1448 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1449 | g_free(bp); |
e22a25c9 AL |
1450 | } else { |
1451 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1452 | if (err) { |
e22a25c9 | 1453 | return err; |
a426e122 | 1454 | } |
e22a25c9 AL |
1455 | } |
1456 | ||
1457 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1458 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1459 | if (err) { |
e22a25c9 | 1460 | return err; |
a426e122 | 1461 | } |
e22a25c9 AL |
1462 | } |
1463 | return 0; | |
1464 | } | |
1465 | ||
1466 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1467 | { | |
1468 | struct kvm_sw_breakpoint *bp, *next; | |
1469 | KVMState *s = current_env->kvm_state; | |
1470 | CPUState *env; | |
1471 | ||
72cf2d4f | 1472 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1473 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1474 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1475 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
a426e122 | 1476 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { |
e22a25c9 | 1477 | break; |
a426e122 | 1478 | } |
e22a25c9 AL |
1479 | } |
1480 | } | |
1481 | } | |
1482 | kvm_arch_remove_all_hw_breakpoints(); | |
1483 | ||
a426e122 | 1484 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 1485 | kvm_update_guest_debug(env, 0); |
a426e122 | 1486 | } |
e22a25c9 AL |
1487 | } |
1488 | ||
1489 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1490 | ||
1491 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1492 | { | |
1493 | return -EINVAL; | |
1494 | } | |
1495 | ||
1496 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1497 | target_ulong len, int type) | |
1498 | { | |
1499 | return -EINVAL; | |
1500 | } | |
1501 | ||
1502 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1503 | target_ulong len, int type) | |
1504 | { | |
1505 | return -EINVAL; | |
1506 | } | |
1507 | ||
1508 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1509 | { | |
1510 | } | |
1511 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 MT |
1512 | |
1513 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) | |
1514 | { | |
1515 | struct kvm_signal_mask *sigmask; | |
1516 | int r; | |
1517 | ||
a426e122 | 1518 | if (!sigset) { |
cc84de95 | 1519 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 1520 | } |
cc84de95 | 1521 | |
7267c094 | 1522 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
1523 | |
1524 | sigmask->len = 8; | |
1525 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1526 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
7267c094 | 1527 | g_free(sigmask); |
cc84de95 MT |
1528 | |
1529 | return r; | |
1530 | } | |
ca821806 | 1531 | |
44f1a3d8 CM |
1532 | int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) |
1533 | { | |
44f1a3d8 CM |
1534 | int ret; |
1535 | struct kvm_ioeventfd iofd; | |
1536 | ||
1537 | iofd.datamatch = val; | |
1538 | iofd.addr = addr; | |
1539 | iofd.len = 4; | |
1540 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; | |
1541 | iofd.fd = fd; | |
1542 | ||
1543 | if (!kvm_enabled()) { | |
1544 | return -ENOSYS; | |
1545 | } | |
1546 | ||
1547 | if (!assign) { | |
1548 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1549 | } | |
1550 | ||
1551 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
1552 | ||
1553 | if (ret < 0) { | |
1554 | return -errno; | |
1555 | } | |
1556 | ||
1557 | return 0; | |
44f1a3d8 CM |
1558 | } |
1559 | ||
ca821806 MT |
1560 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
1561 | { | |
1562 | struct kvm_ioeventfd kick = { | |
1563 | .datamatch = val, | |
1564 | .addr = addr, | |
1565 | .len = 2, | |
1566 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
1567 | .fd = fd, | |
1568 | }; | |
1569 | int r; | |
a426e122 | 1570 | if (!kvm_enabled()) { |
ca821806 | 1571 | return -ENOSYS; |
a426e122 JK |
1572 | } |
1573 | if (!assign) { | |
ca821806 | 1574 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
a426e122 | 1575 | } |
ca821806 | 1576 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
a426e122 | 1577 | if (r < 0) { |
ca821806 | 1578 | return r; |
a426e122 | 1579 | } |
ca821806 | 1580 | return 0; |
98c8573e | 1581 | } |
a1b87fe0 JK |
1582 | |
1583 | int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) | |
1584 | { | |
1585 | return kvm_arch_on_sigbus_vcpu(env, code, addr); | |
1586 | } | |
1587 | ||
1588 | int kvm_on_sigbus(int code, void *addr) | |
1589 | { | |
1590 | return kvm_arch_on_sigbus(code, addr); | |
1591 | } |