]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
1de7afc9 PB |
24 | #include "qemu/atomic.h" |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
d33a1810 | 28 | #include "hw/hw.h" |
a2cb15b0 | 29 | #include "hw/pci/msi.h" |
022c62cb | 30 | #include "exec/gdbstub.h" |
9c17d615 | 31 | #include "sysemu/kvm.h" |
1de7afc9 | 32 | #include "qemu/bswap.h" |
022c62cb PB |
33 | #include "exec/memory.h" |
34 | #include "exec/address-spaces.h" | |
1de7afc9 | 35 | #include "qemu/event_notifier.h" |
9c775729 | 36 | #include "trace.h" |
05330448 | 37 | |
d2f2b8a7 SH |
38 | /* This check must be after config-host.h is included */ |
39 | #ifdef CONFIG_EVENTFD | |
40 | #include <sys/eventfd.h> | |
41 | #endif | |
42 | ||
62fe8331 CB |
43 | #ifdef CONFIG_VALGRIND_H |
44 | #include <valgrind/memcheck.h> | |
45 | #endif | |
46 | ||
93148aa5 | 47 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
48 | #define PAGE_SIZE TARGET_PAGE_SIZE |
49 | ||
05330448 AL |
50 | //#define DEBUG_KVM |
51 | ||
52 | #ifdef DEBUG_KVM | |
8c0d577e | 53 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
54 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
55 | #else | |
8c0d577e | 56 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
57 | do { } while (0) |
58 | #endif | |
59 | ||
04fa27f5 JK |
60 | #define KVM_MSI_HASHTAB_SIZE 256 |
61 | ||
34fc643f AL |
62 | typedef struct KVMSlot |
63 | { | |
a8170e5e | 64 | hwaddr start_addr; |
c227f099 | 65 | ram_addr_t memory_size; |
9f213ed9 | 66 | void *ram; |
34fc643f AL |
67 | int slot; |
68 | int flags; | |
69 | } KVMSlot; | |
05330448 | 70 | |
5832d1f2 AL |
71 | typedef struct kvm_dirty_log KVMDirtyLog; |
72 | ||
05330448 AL |
73 | struct KVMState |
74 | { | |
75 | KVMSlot slots[32]; | |
76 | int fd; | |
77 | int vmfd; | |
f65ed4c1 | 78 | int coalesced_mmio; |
62a2744c | 79 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 80 | bool coalesced_flush_in_progress; |
e69917e2 | 81 | int broken_set_mem_region; |
4495d6a7 | 82 | int migration_log; |
a0fb002c | 83 | int vcpu_events; |
b0b1d690 | 84 | int robust_singlestep; |
ff44f1a3 | 85 | int debugregs; |
e22a25c9 AL |
86 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
87 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
88 | #endif | |
8a7c7393 | 89 | int pit_state2; |
f1665b21 | 90 | int xsave, xcrs; |
d2f2b8a7 | 91 | int many_ioeventfds; |
3ab73842 | 92 | int intx_set_mask; |
92e4b519 DG |
93 | /* The man page (and posix) say ioctl numbers are signed int, but |
94 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
95 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 96 | unsigned irq_set_ioctl; |
84b058d7 JK |
97 | #ifdef KVM_CAP_IRQ_ROUTING |
98 | struct kvm_irq_routing *irq_routes; | |
99 | int nr_allocated_irq_routes; | |
100 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 101 | unsigned int gsi_count; |
04fa27f5 | 102 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 103 | bool direct_msi; |
84b058d7 | 104 | #endif |
05330448 AL |
105 | }; |
106 | ||
6a7af8cb | 107 | KVMState *kvm_state; |
3d4b2649 | 108 | bool kvm_kernel_irqchip; |
7ae26bd4 | 109 | bool kvm_async_interrupts_allowed; |
215e79c0 | 110 | bool kvm_halt_in_kernel_allowed; |
cc7e0ddf | 111 | bool kvm_irqfds_allowed; |
614e41bc | 112 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 113 | bool kvm_gsi_routing_allowed; |
13eed94e | 114 | bool kvm_allowed; |
df9c8b75 | 115 | bool kvm_readonly_mem_allowed; |
05330448 | 116 | |
94a8d39a JK |
117 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
118 | KVM_CAP_INFO(USER_MEMORY), | |
119 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
120 | KVM_CAP_LAST_INFO | |
121 | }; | |
122 | ||
05330448 AL |
123 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
124 | { | |
125 | int i; | |
126 | ||
127 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 128 | if (s->slots[i].memory_size == 0) { |
05330448 | 129 | return &s->slots[i]; |
a426e122 | 130 | } |
05330448 AL |
131 | } |
132 | ||
d3f8d37f AL |
133 | fprintf(stderr, "%s: no free slot available\n", __func__); |
134 | abort(); | |
135 | } | |
136 | ||
137 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
a8170e5e AK |
138 | hwaddr start_addr, |
139 | hwaddr end_addr) | |
d3f8d37f AL |
140 | { |
141 | int i; | |
142 | ||
143 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
144 | KVMSlot *mem = &s->slots[i]; | |
145 | ||
146 | if (start_addr == mem->start_addr && | |
147 | end_addr == mem->start_addr + mem->memory_size) { | |
148 | return mem; | |
149 | } | |
150 | } | |
151 | ||
05330448 AL |
152 | return NULL; |
153 | } | |
154 | ||
6152e2ae AL |
155 | /* |
156 | * Find overlapping slot with lowest start address | |
157 | */ | |
158 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
a8170e5e AK |
159 | hwaddr start_addr, |
160 | hwaddr end_addr) | |
05330448 | 161 | { |
6152e2ae | 162 | KVMSlot *found = NULL; |
05330448 AL |
163 | int i; |
164 | ||
165 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
166 | KVMSlot *mem = &s->slots[i]; | |
167 | ||
6152e2ae AL |
168 | if (mem->memory_size == 0 || |
169 | (found && found->start_addr < mem->start_addr)) { | |
170 | continue; | |
171 | } | |
172 | ||
173 | if (end_addr > mem->start_addr && | |
174 | start_addr < mem->start_addr + mem->memory_size) { | |
175 | found = mem; | |
176 | } | |
05330448 AL |
177 | } |
178 | ||
6152e2ae | 179 | return found; |
05330448 AL |
180 | } |
181 | ||
9f213ed9 | 182 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 183 | hwaddr *phys_addr) |
983dfc3b HY |
184 | { |
185 | int i; | |
186 | ||
187 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
188 | KVMSlot *mem = &s->slots[i]; | |
189 | ||
9f213ed9 AK |
190 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
191 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
192 | return 1; |
193 | } | |
194 | } | |
195 | ||
196 | return 0; | |
197 | } | |
198 | ||
5832d1f2 AL |
199 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
200 | { | |
201 | struct kvm_userspace_memory_region mem; | |
202 | ||
203 | mem.slot = slot->slot; | |
204 | mem.guest_phys_addr = slot->start_addr; | |
9f213ed9 | 205 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 206 | mem.flags = slot->flags; |
4495d6a7 JK |
207 | if (s->migration_log) { |
208 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
209 | } | |
651eb0f4 XG |
210 | |
211 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
235e8982 JJ |
212 | /* Set the slot size to 0 before setting the slot to the desired |
213 | * value. This is needed based on KVM commit 75d61fbc. */ | |
214 | mem.memory_size = 0; | |
215 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
216 | } | |
217 | mem.memory_size = slot->memory_size; | |
5832d1f2 AL |
218 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
219 | } | |
220 | ||
8d2ba1fb JK |
221 | static void kvm_reset_vcpu(void *opaque) |
222 | { | |
20d695a9 | 223 | CPUState *cpu = opaque; |
8d2ba1fb | 224 | |
20d695a9 | 225 | kvm_arch_reset_vcpu(cpu); |
8d2ba1fb | 226 | } |
5832d1f2 | 227 | |
504134d2 | 228 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
229 | { |
230 | KVMState *s = kvm_state; | |
231 | long mmap_size; | |
232 | int ret; | |
233 | ||
8c0d577e | 234 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 235 | |
b164e48e | 236 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); |
05330448 | 237 | if (ret < 0) { |
8c0d577e | 238 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
239 | goto err; |
240 | } | |
241 | ||
8737c51c | 242 | cpu->kvm_fd = ret; |
a60f24b5 | 243 | cpu->kvm_state = s; |
20d695a9 | 244 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
245 | |
246 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
247 | if (mmap_size < 0) { | |
748a680b | 248 | ret = mmap_size; |
8c0d577e | 249 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
250 | goto err; |
251 | } | |
252 | ||
f7575c96 | 253 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 254 | cpu->kvm_fd, 0); |
f7575c96 | 255 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 256 | ret = -errno; |
8c0d577e | 257 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
258 | goto err; |
259 | } | |
260 | ||
a426e122 JK |
261 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
262 | s->coalesced_mmio_ring = | |
f7575c96 | 263 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 264 | } |
62a2744c | 265 | |
20d695a9 | 266 | ret = kvm_arch_init_vcpu(cpu); |
8d2ba1fb | 267 | if (ret == 0) { |
20d695a9 AF |
268 | qemu_register_reset(kvm_reset_vcpu, cpu); |
269 | kvm_arch_reset_vcpu(cpu); | |
8d2ba1fb | 270 | } |
05330448 AL |
271 | err: |
272 | return ret; | |
273 | } | |
274 | ||
5832d1f2 AL |
275 | /* |
276 | * dirty pages logging control | |
277 | */ | |
25254bbc | 278 | |
235e8982 | 279 | static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) |
25254bbc | 280 | { |
235e8982 JJ |
281 | int flags = 0; |
282 | flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
283 | if (readonly && kvm_readonly_mem_allowed) { | |
284 | flags |= KVM_MEM_READONLY; | |
285 | } | |
286 | return flags; | |
25254bbc MT |
287 | } |
288 | ||
289 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
290 | { |
291 | KVMState *s = kvm_state; | |
25254bbc | 292 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
293 | int old_flags; |
294 | ||
4495d6a7 | 295 | old_flags = mem->flags; |
5832d1f2 | 296 | |
235e8982 | 297 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); |
5832d1f2 AL |
298 | mem->flags = flags; |
299 | ||
4495d6a7 JK |
300 | /* If nothing changed effectively, no need to issue ioctl */ |
301 | if (s->migration_log) { | |
302 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
303 | } | |
25254bbc | 304 | |
4495d6a7 | 305 | if (flags == old_flags) { |
25254bbc | 306 | return 0; |
4495d6a7 JK |
307 | } |
308 | ||
5832d1f2 AL |
309 | return kvm_set_user_memory_region(s, mem); |
310 | } | |
311 | ||
a8170e5e | 312 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
25254bbc MT |
313 | ram_addr_t size, bool log_dirty) |
314 | { | |
315 | KVMState *s = kvm_state; | |
316 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
317 | ||
318 | if (mem == NULL) { | |
319 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
320 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
a8170e5e | 321 | (hwaddr)(phys_addr + size - 1)); |
25254bbc MT |
322 | return -EINVAL; |
323 | } | |
324 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
325 | } | |
326 | ||
a01672d3 AK |
327 | static void kvm_log_start(MemoryListener *listener, |
328 | MemoryRegionSection *section) | |
5832d1f2 | 329 | { |
a01672d3 AK |
330 | int r; |
331 | ||
332 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
052e87b0 | 333 | int128_get64(section->size), true); |
a01672d3 AK |
334 | if (r < 0) { |
335 | abort(); | |
336 | } | |
5832d1f2 AL |
337 | } |
338 | ||
a01672d3 AK |
339 | static void kvm_log_stop(MemoryListener *listener, |
340 | MemoryRegionSection *section) | |
5832d1f2 | 341 | { |
a01672d3 AK |
342 | int r; |
343 | ||
344 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
052e87b0 | 345 | int128_get64(section->size), false); |
a01672d3 AK |
346 | if (r < 0) { |
347 | abort(); | |
348 | } | |
5832d1f2 AL |
349 | } |
350 | ||
7b8f3b78 | 351 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
352 | { |
353 | KVMState *s = kvm_state; | |
354 | KVMSlot *mem; | |
355 | int i, err; | |
356 | ||
357 | s->migration_log = enable; | |
358 | ||
359 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
360 | mem = &s->slots[i]; | |
361 | ||
70fedd76 AW |
362 | if (!mem->memory_size) { |
363 | continue; | |
364 | } | |
4495d6a7 JK |
365 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
366 | continue; | |
367 | } | |
368 | err = kvm_set_user_memory_region(s, mem); | |
369 | if (err) { | |
370 | return err; | |
371 | } | |
372 | } | |
373 | return 0; | |
374 | } | |
375 | ||
8369e01c | 376 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
377 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
378 | unsigned long *bitmap) | |
96c1606b | 379 | { |
8369e01c | 380 | unsigned int i, j; |
aa90fec7 | 381 | unsigned long page_number, c; |
a8170e5e | 382 | hwaddr addr, addr1; |
052e87b0 PB |
383 | unsigned int pages = int128_get64(section->size) / getpagesize(); |
384 | unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; | |
3145fcb6 | 385 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; |
8369e01c MT |
386 | |
387 | /* | |
388 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
389 | * especially when most of the memory is not dirty. | |
390 | */ | |
391 | for (i = 0; i < len; i++) { | |
392 | if (bitmap[i] != 0) { | |
393 | c = leul_to_cpu(bitmap[i]); | |
394 | do { | |
395 | j = ffsl(c) - 1; | |
396 | c &= ~(1ul << j); | |
3145fcb6 | 397 | page_number = (i * HOST_LONG_BITS + j) * hpratio; |
8369e01c | 398 | addr1 = page_number * TARGET_PAGE_SIZE; |
ffcde12f | 399 | addr = section->offset_within_region + addr1; |
3145fcb6 DG |
400 | memory_region_set_dirty(section->mr, addr, |
401 | TARGET_PAGE_SIZE * hpratio); | |
8369e01c MT |
402 | } while (c != 0); |
403 | } | |
404 | } | |
405 | return 0; | |
96c1606b AG |
406 | } |
407 | ||
8369e01c MT |
408 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
409 | ||
5832d1f2 AL |
410 | /** |
411 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
412 | * This function updates qemu's dirty bitmap using |
413 | * memory_region_set_dirty(). This means all bits are set | |
414 | * to dirty. | |
5832d1f2 | 415 | * |
d3f8d37f | 416 | * @start_add: start of logged region. |
5832d1f2 AL |
417 | * @end_addr: end of logged region. |
418 | */ | |
ffcde12f | 419 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
420 | { |
421 | KVMState *s = kvm_state; | |
151f7749 | 422 | unsigned long size, allocated_size = 0; |
151f7749 JK |
423 | KVMDirtyLog d; |
424 | KVMSlot *mem; | |
425 | int ret = 0; | |
a8170e5e | 426 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 427 | hwaddr end_addr = start_addr + int128_get64(section->size); |
5832d1f2 | 428 | |
151f7749 JK |
429 | d.dirty_bitmap = NULL; |
430 | while (start_addr < end_addr) { | |
431 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
432 | if (mem == NULL) { | |
433 | break; | |
434 | } | |
5832d1f2 | 435 | |
51b0c606 MT |
436 | /* XXX bad kernel interface alert |
437 | * For dirty bitmap, kernel allocates array of size aligned to | |
438 | * bits-per-long. But for case when the kernel is 64bits and | |
439 | * the userspace is 32bits, userspace can't align to the same | |
440 | * bits-per-long, since sizeof(long) is different between kernel | |
441 | * and user space. This way, userspace will provide buffer which | |
442 | * may be 4 bytes less than the kernel will use, resulting in | |
443 | * userspace memory corruption (which is not detectable by valgrind | |
444 | * too, in most cases). | |
445 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
446 | * a hope that sizeof(long) wont become >8 any time soon. | |
447 | */ | |
448 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
449 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 450 | if (!d.dirty_bitmap) { |
7267c094 | 451 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 452 | } else if (size > allocated_size) { |
7267c094 | 453 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
454 | } |
455 | allocated_size = size; | |
456 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 457 | |
151f7749 | 458 | d.slot = mem->slot; |
5832d1f2 | 459 | |
6e489f3f | 460 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 461 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
462 | ret = -1; |
463 | break; | |
464 | } | |
5832d1f2 | 465 | |
ffcde12f | 466 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 467 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 468 | } |
7267c094 | 469 | g_free(d.dirty_bitmap); |
151f7749 JK |
470 | |
471 | return ret; | |
5832d1f2 AL |
472 | } |
473 | ||
95d2994a AK |
474 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
475 | MemoryRegionSection *secion, | |
a8170e5e | 476 | hwaddr start, hwaddr size) |
f65ed4c1 | 477 | { |
f65ed4c1 AL |
478 | KVMState *s = kvm_state; |
479 | ||
480 | if (s->coalesced_mmio) { | |
481 | struct kvm_coalesced_mmio_zone zone; | |
482 | ||
483 | zone.addr = start; | |
484 | zone.size = size; | |
7e680753 | 485 | zone.pad = 0; |
f65ed4c1 | 486 | |
95d2994a | 487 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 488 | } |
f65ed4c1 AL |
489 | } |
490 | ||
95d2994a AK |
491 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
492 | MemoryRegionSection *secion, | |
a8170e5e | 493 | hwaddr start, hwaddr size) |
f65ed4c1 | 494 | { |
f65ed4c1 AL |
495 | KVMState *s = kvm_state; |
496 | ||
497 | if (s->coalesced_mmio) { | |
498 | struct kvm_coalesced_mmio_zone zone; | |
499 | ||
500 | zone.addr = start; | |
501 | zone.size = size; | |
7e680753 | 502 | zone.pad = 0; |
f65ed4c1 | 503 | |
95d2994a | 504 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 505 | } |
f65ed4c1 AL |
506 | } |
507 | ||
ad7b8b33 AL |
508 | int kvm_check_extension(KVMState *s, unsigned int extension) |
509 | { | |
510 | int ret; | |
511 | ||
512 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
513 | if (ret < 0) { | |
514 | ret = 0; | |
515 | } | |
516 | ||
517 | return ret; | |
518 | } | |
519 | ||
44c3f8f7 | 520 | static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, |
41cb62c2 | 521 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
522 | { |
523 | int ret; | |
524 | struct kvm_ioeventfd iofd; | |
525 | ||
41cb62c2 | 526 | iofd.datamatch = datamatch ? val : 0; |
500ffd4a MT |
527 | iofd.addr = addr; |
528 | iofd.len = size; | |
41cb62c2 | 529 | iofd.flags = 0; |
500ffd4a MT |
530 | iofd.fd = fd; |
531 | ||
532 | if (!kvm_enabled()) { | |
533 | return -ENOSYS; | |
534 | } | |
535 | ||
41cb62c2 MT |
536 | if (datamatch) { |
537 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
538 | } | |
500ffd4a MT |
539 | if (!assign) { |
540 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
541 | } | |
542 | ||
543 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
544 | ||
545 | if (ret < 0) { | |
546 | return -errno; | |
547 | } | |
548 | ||
549 | return 0; | |
550 | } | |
551 | ||
44c3f8f7 | 552 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 553 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
554 | { |
555 | struct kvm_ioeventfd kick = { | |
41cb62c2 | 556 | .datamatch = datamatch ? val : 0, |
500ffd4a | 557 | .addr = addr, |
41cb62c2 | 558 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 559 | .len = size, |
500ffd4a MT |
560 | .fd = fd, |
561 | }; | |
562 | int r; | |
563 | if (!kvm_enabled()) { | |
564 | return -ENOSYS; | |
565 | } | |
41cb62c2 MT |
566 | if (datamatch) { |
567 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
568 | } | |
500ffd4a MT |
569 | if (!assign) { |
570 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
571 | } | |
572 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
573 | if (r < 0) { | |
574 | return r; | |
575 | } | |
576 | return 0; | |
577 | } | |
578 | ||
579 | ||
d2f2b8a7 SH |
580 | static int kvm_check_many_ioeventfds(void) |
581 | { | |
d0dcac83 SH |
582 | /* Userspace can use ioeventfd for io notification. This requires a host |
583 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
584 | * support SIGIO it cannot interrupt the vcpu. | |
585 | * | |
586 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
587 | * can avoid creating too many ioeventfds. |
588 | */ | |
12d4536f | 589 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
590 | int ioeventfds[7]; |
591 | int i, ret = 0; | |
592 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
593 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
594 | if (ioeventfds[i] < 0) { | |
595 | break; | |
596 | } | |
41cb62c2 | 597 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
598 | if (ret < 0) { |
599 | close(ioeventfds[i]); | |
600 | break; | |
601 | } | |
602 | } | |
603 | ||
604 | /* Decide whether many devices are supported or not */ | |
605 | ret = i == ARRAY_SIZE(ioeventfds); | |
606 | ||
607 | while (i-- > 0) { | |
41cb62c2 | 608 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
609 | close(ioeventfds[i]); |
610 | } | |
611 | return ret; | |
612 | #else | |
613 | return 0; | |
614 | #endif | |
615 | } | |
616 | ||
94a8d39a JK |
617 | static const KVMCapabilityInfo * |
618 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
619 | { | |
620 | while (list->name) { | |
621 | if (!kvm_check_extension(s, list->value)) { | |
622 | return list; | |
623 | } | |
624 | list++; | |
625 | } | |
626 | return NULL; | |
627 | } | |
628 | ||
a01672d3 | 629 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
630 | { |
631 | KVMState *s = kvm_state; | |
46dbef6a MT |
632 | KVMSlot *mem, old; |
633 | int err; | |
a01672d3 AK |
634 | MemoryRegion *mr = section->mr; |
635 | bool log_dirty = memory_region_is_logging(mr); | |
235e8982 JJ |
636 | bool writeable = !mr->readonly && !mr->rom_device; |
637 | bool readonly_flag = mr->readonly || memory_region_is_romd(mr); | |
a8170e5e | 638 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 639 | ram_addr_t size = int128_get64(section->size); |
9f213ed9 | 640 | void *ram = NULL; |
8f6f962b | 641 | unsigned delta; |
46dbef6a | 642 | |
14542fea GN |
643 | /* kvm works in page size chunks, but the function may be called |
644 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
645 | delta = TARGET_PAGE_ALIGN(size) - size; |
646 | if (delta > size) { | |
647 | return; | |
648 | } | |
649 | start_addr += delta; | |
650 | size -= delta; | |
651 | size &= TARGET_PAGE_MASK; | |
652 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
653 | return; | |
654 | } | |
46dbef6a | 655 | |
a01672d3 | 656 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
657 | if (writeable || !kvm_readonly_mem_allowed) { |
658 | return; | |
659 | } else if (!mr->romd_mode) { | |
660 | /* If the memory device is not in romd_mode, then we actually want | |
661 | * to remove the kvm memory slot so all accesses will trap. */ | |
662 | add = false; | |
663 | } | |
9f213ed9 AK |
664 | } |
665 | ||
8f6f962b | 666 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 667 | |
46dbef6a MT |
668 | while (1) { |
669 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
670 | if (!mem) { | |
671 | break; | |
672 | } | |
673 | ||
a01672d3 | 674 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 675 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 676 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 677 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
678 | * identical parameters - update flags and done. */ |
679 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
680 | return; |
681 | } | |
682 | ||
683 | old = *mem; | |
684 | ||
3fbffb62 AK |
685 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
686 | kvm_physical_sync_dirty_bitmap(section); | |
687 | } | |
688 | ||
46dbef6a MT |
689 | /* unregister the overlapping slot */ |
690 | mem->memory_size = 0; | |
691 | err = kvm_set_user_memory_region(s, mem); | |
692 | if (err) { | |
693 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
694 | __func__, strerror(-err)); | |
695 | abort(); | |
696 | } | |
697 | ||
698 | /* Workaround for older KVM versions: we can't join slots, even not by | |
699 | * unregistering the previous ones and then registering the larger | |
700 | * slot. We have to maintain the existing fragmentation. Sigh. | |
701 | * | |
702 | * This workaround assumes that the new slot starts at the same | |
703 | * address as the first existing one. If not or if some overlapping | |
704 | * slot comes around later, we will fail (not seen in practice so far) | |
705 | * - and actually require a recent KVM version. */ | |
706 | if (s->broken_set_mem_region && | |
a01672d3 | 707 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
708 | mem = kvm_alloc_slot(s); |
709 | mem->memory_size = old.memory_size; | |
710 | mem->start_addr = old.start_addr; | |
9f213ed9 | 711 | mem->ram = old.ram; |
235e8982 | 712 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
713 | |
714 | err = kvm_set_user_memory_region(s, mem); | |
715 | if (err) { | |
716 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
717 | strerror(-err)); | |
718 | abort(); | |
719 | } | |
720 | ||
721 | start_addr += old.memory_size; | |
9f213ed9 | 722 | ram += old.memory_size; |
46dbef6a MT |
723 | size -= old.memory_size; |
724 | continue; | |
725 | } | |
726 | ||
727 | /* register prefix slot */ | |
728 | if (old.start_addr < start_addr) { | |
729 | mem = kvm_alloc_slot(s); | |
730 | mem->memory_size = start_addr - old.start_addr; | |
731 | mem->start_addr = old.start_addr; | |
9f213ed9 | 732 | mem->ram = old.ram; |
235e8982 | 733 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
734 | |
735 | err = kvm_set_user_memory_region(s, mem); | |
736 | if (err) { | |
737 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
738 | __func__, strerror(-err)); | |
d4d6868f AG |
739 | #ifdef TARGET_PPC |
740 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
741 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
742 | "PAGE_SIZE!\n", __func__); | |
743 | #endif | |
46dbef6a MT |
744 | abort(); |
745 | } | |
746 | } | |
747 | ||
748 | /* register suffix slot */ | |
749 | if (old.start_addr + old.memory_size > start_addr + size) { | |
750 | ram_addr_t size_delta; | |
751 | ||
752 | mem = kvm_alloc_slot(s); | |
753 | mem->start_addr = start_addr + size; | |
754 | size_delta = mem->start_addr - old.start_addr; | |
755 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 756 | mem->ram = old.ram + size_delta; |
235e8982 | 757 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
758 | |
759 | err = kvm_set_user_memory_region(s, mem); | |
760 | if (err) { | |
761 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
762 | __func__, strerror(-err)); | |
763 | abort(); | |
764 | } | |
765 | } | |
766 | } | |
767 | ||
768 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 769 | if (!size) { |
46dbef6a | 770 | return; |
a426e122 | 771 | } |
a01672d3 | 772 | if (!add) { |
46dbef6a | 773 | return; |
a426e122 | 774 | } |
46dbef6a MT |
775 | mem = kvm_alloc_slot(s); |
776 | mem->memory_size = size; | |
777 | mem->start_addr = start_addr; | |
9f213ed9 | 778 | mem->ram = ram; |
235e8982 | 779 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
780 | |
781 | err = kvm_set_user_memory_region(s, mem); | |
782 | if (err) { | |
783 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
784 | strerror(-err)); | |
785 | abort(); | |
786 | } | |
787 | } | |
788 | ||
a01672d3 AK |
789 | static void kvm_region_add(MemoryListener *listener, |
790 | MemoryRegionSection *section) | |
791 | { | |
792 | kvm_set_phys_mem(section, true); | |
793 | } | |
794 | ||
795 | static void kvm_region_del(MemoryListener *listener, | |
796 | MemoryRegionSection *section) | |
797 | { | |
798 | kvm_set_phys_mem(section, false); | |
799 | } | |
800 | ||
801 | static void kvm_log_sync(MemoryListener *listener, | |
802 | MemoryRegionSection *section) | |
7b8f3b78 | 803 | { |
a01672d3 AK |
804 | int r; |
805 | ||
ffcde12f | 806 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
807 | if (r < 0) { |
808 | abort(); | |
809 | } | |
7b8f3b78 MT |
810 | } |
811 | ||
a01672d3 | 812 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 813 | { |
a01672d3 AK |
814 | int r; |
815 | ||
816 | r = kvm_set_migration_log(1); | |
817 | assert(r >= 0); | |
7b8f3b78 MT |
818 | } |
819 | ||
a01672d3 | 820 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 821 | { |
a01672d3 AK |
822 | int r; |
823 | ||
824 | r = kvm_set_migration_log(0); | |
825 | assert(r >= 0); | |
7b8f3b78 MT |
826 | } |
827 | ||
d22b096e AK |
828 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
829 | MemoryRegionSection *section, | |
830 | bool match_data, uint64_t data, | |
831 | EventNotifier *e) | |
832 | { | |
833 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
834 | int r; |
835 | ||
4b8f1c88 | 836 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
837 | data, true, int128_get64(section->size), |
838 | match_data); | |
80a1ea37 AK |
839 | if (r < 0) { |
840 | abort(); | |
841 | } | |
842 | } | |
843 | ||
d22b096e AK |
844 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
845 | MemoryRegionSection *section, | |
846 | bool match_data, uint64_t data, | |
847 | EventNotifier *e) | |
80a1ea37 | 848 | { |
d22b096e | 849 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
850 | int r; |
851 | ||
4b8f1c88 | 852 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
853 | data, false, int128_get64(section->size), |
854 | match_data); | |
80a1ea37 AK |
855 | if (r < 0) { |
856 | abort(); | |
857 | } | |
858 | } | |
859 | ||
d22b096e AK |
860 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
861 | MemoryRegionSection *section, | |
862 | bool match_data, uint64_t data, | |
863 | EventNotifier *e) | |
80a1ea37 | 864 | { |
d22b096e | 865 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
866 | int r; |
867 | ||
44c3f8f7 | 868 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
869 | data, true, int128_get64(section->size), |
870 | match_data); | |
80a1ea37 AK |
871 | if (r < 0) { |
872 | abort(); | |
873 | } | |
874 | } | |
875 | ||
d22b096e AK |
876 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
877 | MemoryRegionSection *section, | |
878 | bool match_data, uint64_t data, | |
879 | EventNotifier *e) | |
80a1ea37 AK |
880 | |
881 | { | |
d22b096e | 882 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
883 | int r; |
884 | ||
44c3f8f7 | 885 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
886 | data, false, int128_get64(section->size), |
887 | match_data); | |
80a1ea37 AK |
888 | if (r < 0) { |
889 | abort(); | |
890 | } | |
891 | } | |
892 | ||
a01672d3 AK |
893 | static MemoryListener kvm_memory_listener = { |
894 | .region_add = kvm_region_add, | |
895 | .region_del = kvm_region_del, | |
e5896b12 AP |
896 | .log_start = kvm_log_start, |
897 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
898 | .log_sync = kvm_log_sync, |
899 | .log_global_start = kvm_log_global_start, | |
900 | .log_global_stop = kvm_log_global_stop, | |
d22b096e AK |
901 | .eventfd_add = kvm_mem_ioeventfd_add, |
902 | .eventfd_del = kvm_mem_ioeventfd_del, | |
95d2994a AK |
903 | .coalesced_mmio_add = kvm_coalesce_mmio_region, |
904 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
d22b096e AK |
905 | .priority = 10, |
906 | }; | |
907 | ||
908 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
909 | .eventfd_add = kvm_io_ioeventfd_add, |
910 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 911 | .priority = 10, |
7b8f3b78 MT |
912 | }; |
913 | ||
c3affe56 | 914 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 915 | { |
259186a7 | 916 | cpu->interrupt_request |= mask; |
aa7f74d1 | 917 | |
60e82579 | 918 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 919 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
920 | } |
921 | } | |
922 | ||
3889c3fa | 923 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
924 | { |
925 | struct kvm_irq_level event; | |
926 | int ret; | |
927 | ||
7ae26bd4 | 928 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
929 | |
930 | event.level = level; | |
931 | event.irq = irq; | |
e333cd69 | 932 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 933 | if (ret < 0) { |
3889c3fa | 934 | perror("kvm_set_irq"); |
84b058d7 JK |
935 | abort(); |
936 | } | |
937 | ||
e333cd69 | 938 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
939 | } |
940 | ||
941 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
942 | typedef struct KVMMSIRoute { |
943 | struct kvm_irq_routing_entry kroute; | |
944 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
945 | } KVMMSIRoute; | |
946 | ||
84b058d7 JK |
947 | static void set_gsi(KVMState *s, unsigned int gsi) |
948 | { | |
84b058d7 JK |
949 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
950 | } | |
951 | ||
04fa27f5 JK |
952 | static void clear_gsi(KVMState *s, unsigned int gsi) |
953 | { | |
954 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
955 | } | |
956 | ||
7b774593 | 957 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 | 958 | { |
04fa27f5 | 959 | int gsi_count, i; |
84b058d7 JK |
960 | |
961 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
962 | if (gsi_count > 0) { | |
963 | unsigned int gsi_bits, i; | |
964 | ||
965 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 966 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 967 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 968 | s->gsi_count = gsi_count; |
84b058d7 JK |
969 | |
970 | /* Mark any over-allocated bits as already in use */ | |
971 | for (i = gsi_count; i < gsi_bits; i++) { | |
972 | set_gsi(s, i); | |
973 | } | |
974 | } | |
975 | ||
976 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
977 | s->nr_allocated_irq_routes = 0; | |
978 | ||
4a3adebb JK |
979 | if (!s->direct_msi) { |
980 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
981 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
982 | } | |
04fa27f5 JK |
983 | } |
984 | ||
84b058d7 JK |
985 | kvm_arch_init_irq_routing(s); |
986 | } | |
987 | ||
e7b20308 JK |
988 | static void kvm_irqchip_commit_routes(KVMState *s) |
989 | { | |
990 | int ret; | |
991 | ||
992 | s->irq_routes->flags = 0; | |
993 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
994 | assert(ret == 0); | |
995 | } | |
996 | ||
84b058d7 JK |
997 | static void kvm_add_routing_entry(KVMState *s, |
998 | struct kvm_irq_routing_entry *entry) | |
999 | { | |
1000 | struct kvm_irq_routing_entry *new; | |
1001 | int n, size; | |
1002 | ||
1003 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1004 | n = s->nr_allocated_irq_routes * 2; | |
1005 | if (n < 64) { | |
1006 | n = 64; | |
1007 | } | |
1008 | size = sizeof(struct kvm_irq_routing); | |
1009 | size += n * sizeof(*new); | |
1010 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1011 | s->nr_allocated_irq_routes = n; | |
1012 | } | |
1013 | n = s->irq_routes->nr++; | |
1014 | new = &s->irq_routes->entries[n]; | |
1015 | memset(new, 0, sizeof(*new)); | |
1016 | new->gsi = entry->gsi; | |
1017 | new->type = entry->type; | |
1018 | new->flags = entry->flags; | |
1019 | new->u = entry->u; | |
1020 | ||
1021 | set_gsi(s, entry->gsi); | |
e7b20308 JK |
1022 | |
1023 | kvm_irqchip_commit_routes(s); | |
84b058d7 JK |
1024 | } |
1025 | ||
cc57407e JK |
1026 | static int kvm_update_routing_entry(KVMState *s, |
1027 | struct kvm_irq_routing_entry *new_entry) | |
1028 | { | |
1029 | struct kvm_irq_routing_entry *entry; | |
1030 | int n; | |
1031 | ||
1032 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1033 | entry = &s->irq_routes->entries[n]; | |
1034 | if (entry->gsi != new_entry->gsi) { | |
1035 | continue; | |
1036 | } | |
1037 | ||
1038 | entry->type = new_entry->type; | |
1039 | entry->flags = new_entry->flags; | |
1040 | entry->u = new_entry->u; | |
1041 | ||
1042 | kvm_irqchip_commit_routes(s); | |
1043 | ||
1044 | return 0; | |
1045 | } | |
1046 | ||
1047 | return -ESRCH; | |
1048 | } | |
1049 | ||
1df186df | 1050 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 JK |
1051 | { |
1052 | struct kvm_irq_routing_entry e; | |
1053 | ||
4e2e4e63 JK |
1054 | assert(pin < s->gsi_count); |
1055 | ||
84b058d7 JK |
1056 | e.gsi = irq; |
1057 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1058 | e.flags = 0; | |
1059 | e.u.irqchip.irqchip = irqchip; | |
1060 | e.u.irqchip.pin = pin; | |
1061 | kvm_add_routing_entry(s, &e); | |
1062 | } | |
1063 | ||
1e2aa8be | 1064 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1065 | { |
1066 | struct kvm_irq_routing_entry *e; | |
1067 | int i; | |
1068 | ||
1069 | for (i = 0; i < s->irq_routes->nr; i++) { | |
1070 | e = &s->irq_routes->entries[i]; | |
1071 | if (e->gsi == virq) { | |
1072 | s->irq_routes->nr--; | |
1073 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1074 | } | |
1075 | } | |
1076 | clear_gsi(s, virq); | |
1077 | } | |
1078 | ||
1079 | static unsigned int kvm_hash_msi(uint32_t data) | |
1080 | { | |
1081 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1082 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1083 | return data & 0xff; | |
1084 | } | |
1085 | ||
1086 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1087 | { | |
1088 | KVMMSIRoute *route, *next; | |
1089 | unsigned int hash; | |
1090 | ||
1091 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1092 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1093 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1094 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1095 | g_free(route); | |
1096 | } | |
1097 | } | |
1098 | } | |
1099 | ||
1100 | static int kvm_irqchip_get_virq(KVMState *s) | |
1101 | { | |
1102 | uint32_t *word = s->used_gsi_bitmap; | |
1103 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1104 | int i, bit; | |
1105 | bool retry = true; | |
1106 | ||
1107 | again: | |
1108 | /* Return the lowest unused GSI in the bitmap */ | |
1109 | for (i = 0; i < max_words; i++) { | |
1110 | bit = ffs(~word[i]); | |
1111 | if (!bit) { | |
1112 | continue; | |
1113 | } | |
1114 | ||
1115 | return bit - 1 + i * 32; | |
1116 | } | |
4a3adebb | 1117 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1118 | retry = false; |
1119 | kvm_flush_dynamic_msi_routes(s); | |
1120 | goto again; | |
1121 | } | |
1122 | return -ENOSPC; | |
1123 | ||
1124 | } | |
1125 | ||
1126 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1127 | { | |
1128 | unsigned int hash = kvm_hash_msi(msg.data); | |
1129 | KVMMSIRoute *route; | |
1130 | ||
1131 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1132 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1133 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1134 | route->kroute.u.msi.data == msg.data) { | |
1135 | return route; | |
1136 | } | |
1137 | } | |
1138 | return NULL; | |
1139 | } | |
1140 | ||
1141 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1142 | { | |
4a3adebb | 1143 | struct kvm_msi msi; |
04fa27f5 JK |
1144 | KVMMSIRoute *route; |
1145 | ||
4a3adebb JK |
1146 | if (s->direct_msi) { |
1147 | msi.address_lo = (uint32_t)msg.address; | |
1148 | msi.address_hi = msg.address >> 32; | |
1149 | msi.data = msg.data; | |
1150 | msi.flags = 0; | |
1151 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1152 | ||
1153 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1154 | } | |
1155 | ||
04fa27f5 JK |
1156 | route = kvm_lookup_msi_route(s, msg); |
1157 | if (!route) { | |
e7b20308 | 1158 | int virq; |
04fa27f5 JK |
1159 | |
1160 | virq = kvm_irqchip_get_virq(s); | |
1161 | if (virq < 0) { | |
1162 | return virq; | |
1163 | } | |
1164 | ||
1165 | route = g_malloc(sizeof(KVMMSIRoute)); | |
1166 | route->kroute.gsi = virq; | |
1167 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1168 | route->kroute.flags = 0; | |
1169 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1170 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1171 | route->kroute.u.msi.data = msg.data; | |
1172 | ||
1173 | kvm_add_routing_entry(s, &route->kroute); | |
1174 | ||
1175 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1176 | entry); | |
04fa27f5 JK |
1177 | } |
1178 | ||
1179 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1180 | ||
3889c3fa | 1181 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1182 | } |
1183 | ||
92b4e489 JK |
1184 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1185 | { | |
1186 | struct kvm_irq_routing_entry kroute; | |
1187 | int virq; | |
1188 | ||
f3e1bed8 | 1189 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1190 | return -ENOSYS; |
1191 | } | |
1192 | ||
1193 | virq = kvm_irqchip_get_virq(s); | |
1194 | if (virq < 0) { | |
1195 | return virq; | |
1196 | } | |
1197 | ||
1198 | kroute.gsi = virq; | |
1199 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1200 | kroute.flags = 0; | |
1201 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1202 | kroute.u.msi.address_hi = msg.address >> 32; | |
1203 | kroute.u.msi.data = msg.data; | |
1204 | ||
1205 | kvm_add_routing_entry(s, &kroute); | |
1206 | ||
1207 | return virq; | |
1208 | } | |
1209 | ||
cc57407e JK |
1210 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1211 | { | |
1212 | struct kvm_irq_routing_entry kroute; | |
1213 | ||
1214 | if (!kvm_irqchip_in_kernel()) { | |
1215 | return -ENOSYS; | |
1216 | } | |
1217 | ||
1218 | kroute.gsi = virq; | |
1219 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1220 | kroute.flags = 0; | |
1221 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1222 | kroute.u.msi.address_hi = msg.address >> 32; | |
1223 | kroute.u.msi.data = msg.data; | |
1224 | ||
1225 | return kvm_update_routing_entry(s, &kroute); | |
1226 | } | |
1227 | ||
39853bbc JK |
1228 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1229 | { | |
1230 | struct kvm_irqfd irqfd = { | |
1231 | .fd = fd, | |
1232 | .gsi = virq, | |
1233 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1234 | }; | |
1235 | ||
cc7e0ddf | 1236 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1237 | return -ENOSYS; |
1238 | } | |
1239 | ||
1240 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1241 | } | |
1242 | ||
84b058d7 JK |
1243 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1244 | ||
7b774593 | 1245 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 JK |
1246 | { |
1247 | } | |
04fa27f5 | 1248 | |
d3d3bef0 JK |
1249 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1250 | { | |
1251 | } | |
1252 | ||
04fa27f5 JK |
1253 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1254 | { | |
1255 | abort(); | |
1256 | } | |
92b4e489 JK |
1257 | |
1258 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1259 | { | |
df410675 | 1260 | return -ENOSYS; |
92b4e489 | 1261 | } |
39853bbc JK |
1262 | |
1263 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1264 | { | |
1265 | abort(); | |
1266 | } | |
dabe3143 MT |
1267 | |
1268 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1269 | { | |
1270 | return -ENOSYS; | |
1271 | } | |
84b058d7 JK |
1272 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1273 | ||
b131c74a | 1274 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
39853bbc | 1275 | { |
b131c74a | 1276 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); |
39853bbc JK |
1277 | } |
1278 | ||
b131c74a | 1279 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1280 | { |
b131c74a | 1281 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); |
15b2bd18 PB |
1282 | } |
1283 | ||
84b058d7 JK |
1284 | static int kvm_irqchip_create(KVMState *s) |
1285 | { | |
1286 | QemuOptsList *list = qemu_find_opts("machine"); | |
1287 | int ret; | |
1288 | ||
1289 | if (QTAILQ_EMPTY(&list->head) || | |
1290 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
a24b9106 | 1291 | "kernel_irqchip", true) || |
84b058d7 JK |
1292 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1293 | return 0; | |
1294 | } | |
1295 | ||
1296 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1297 | if (ret < 0) { | |
1298 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1299 | return ret; | |
1300 | } | |
1301 | ||
3d4b2649 | 1302 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1303 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1304 | * interrupt delivery (though the reverse is not necessarily true) | |
1305 | */ | |
1306 | kvm_async_interrupts_allowed = true; | |
215e79c0 | 1307 | kvm_halt_in_kernel_allowed = true; |
84b058d7 JK |
1308 | |
1309 | kvm_init_irq_routing(s); | |
1310 | ||
1311 | return 0; | |
1312 | } | |
1313 | ||
3ed444e9 DH |
1314 | static int kvm_max_vcpus(KVMState *s) |
1315 | { | |
1316 | int ret; | |
1317 | ||
1318 | /* Find number of supported CPUs using the recommended | |
1319 | * procedure from the kernel API documentation to cope with | |
1320 | * older kernels that may be missing capabilities. | |
1321 | */ | |
1322 | ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1323 | if (ret) { | |
1324 | return ret; | |
1325 | } | |
1326 | ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1327 | if (ret) { | |
1328 | return ret; | |
1329 | } | |
1330 | ||
1331 | return 4; | |
1332 | } | |
1333 | ||
cad1e282 | 1334 | int kvm_init(void) |
05330448 | 1335 | { |
168ccc11 JK |
1336 | static const char upgrade_note[] = |
1337 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1338 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 1339 | KVMState *s; |
94a8d39a | 1340 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
1341 | int ret; |
1342 | int i; | |
3ed444e9 | 1343 | int max_vcpus; |
05330448 | 1344 | |
7267c094 | 1345 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 1346 | |
3145fcb6 DG |
1347 | /* |
1348 | * On systems where the kernel can support different base page | |
1349 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1350 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1351 | * page size for the system though. | |
1352 | */ | |
1353 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1354 | ||
e22a25c9 | 1355 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1356 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1357 | #endif |
a426e122 | 1358 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 1359 | s->slots[i].slot = i; |
a426e122 | 1360 | } |
05330448 | 1361 | s->vmfd = -1; |
40ff6d7e | 1362 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1363 | if (s->fd == -1) { |
1364 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1365 | ret = -errno; | |
1366 | goto err; | |
1367 | } | |
1368 | ||
1369 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1370 | if (ret < KVM_API_VERSION) { | |
a426e122 | 1371 | if (ret > 0) { |
05330448 | 1372 | ret = -EINVAL; |
a426e122 | 1373 | } |
05330448 AL |
1374 | fprintf(stderr, "kvm version too old\n"); |
1375 | goto err; | |
1376 | } | |
1377 | ||
1378 | if (ret > KVM_API_VERSION) { | |
1379 | ret = -EINVAL; | |
1380 | fprintf(stderr, "kvm version not supported\n"); | |
1381 | goto err; | |
1382 | } | |
1383 | ||
3ed444e9 DH |
1384 | max_vcpus = kvm_max_vcpus(s); |
1385 | if (smp_cpus > max_vcpus) { | |
1386 | ret = -EINVAL; | |
1387 | fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " | |
1388 | "supported by KVM (%d)\n", smp_cpus, max_vcpus); | |
1389 | goto err; | |
1390 | } | |
1391 | ||
05330448 | 1392 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
0104dcac AG |
1393 | if (s->vmfd < 0) { |
1394 | #ifdef TARGET_S390X | |
1395 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1396 | "your host kernel command line\n"); | |
1397 | #endif | |
db9eae1c | 1398 | ret = s->vmfd; |
05330448 | 1399 | goto err; |
0104dcac | 1400 | } |
05330448 | 1401 | |
94a8d39a JK |
1402 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1403 | if (!missing_cap) { | |
1404 | missing_cap = | |
1405 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1406 | } |
94a8d39a | 1407 | if (missing_cap) { |
ad7b8b33 | 1408 | ret = -EINVAL; |
94a8d39a JK |
1409 | fprintf(stderr, "kvm does not support %s\n%s", |
1410 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1411 | goto err; |
1412 | } | |
1413 | ||
ad7b8b33 | 1414 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1415 | |
e69917e2 | 1416 | s->broken_set_mem_region = 1; |
14a09518 | 1417 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1418 | if (ret > 0) { |
1419 | s->broken_set_mem_region = 0; | |
1420 | } | |
e69917e2 | 1421 | |
a0fb002c JK |
1422 | #ifdef KVM_CAP_VCPU_EVENTS |
1423 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1424 | #endif | |
1425 | ||
b0b1d690 JK |
1426 | s->robust_singlestep = |
1427 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1428 | |
ff44f1a3 JK |
1429 | #ifdef KVM_CAP_DEBUGREGS |
1430 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1431 | #endif | |
1432 | ||
f1665b21 SY |
1433 | #ifdef KVM_CAP_XSAVE |
1434 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1435 | #endif | |
1436 | ||
f1665b21 SY |
1437 | #ifdef KVM_CAP_XCRS |
1438 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1439 | #endif | |
1440 | ||
8a7c7393 JK |
1441 | #ifdef KVM_CAP_PIT_STATE2 |
1442 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1443 | #endif | |
1444 | ||
d3d3bef0 | 1445 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1446 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1447 | #endif |
4a3adebb | 1448 | |
3ab73842 JK |
1449 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1450 | ||
e333cd69 | 1451 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1452 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1453 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1454 | } |
1455 | ||
df9c8b75 JJ |
1456 | #ifdef KVM_CAP_READONLY_MEM |
1457 | kvm_readonly_mem_allowed = | |
1458 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1459 | #endif | |
1460 | ||
cad1e282 | 1461 | ret = kvm_arch_init(s); |
a426e122 | 1462 | if (ret < 0) { |
05330448 | 1463 | goto err; |
a426e122 | 1464 | } |
05330448 | 1465 | |
84b058d7 JK |
1466 | ret = kvm_irqchip_create(s); |
1467 | if (ret < 0) { | |
1468 | goto err; | |
1469 | } | |
1470 | ||
05330448 | 1471 | kvm_state = s; |
f6790af6 AK |
1472 | memory_listener_register(&kvm_memory_listener, &address_space_memory); |
1473 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
05330448 | 1474 | |
d2f2b8a7 SH |
1475 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1476 | ||
aa7f74d1 JK |
1477 | cpu_interrupt_handler = kvm_handle_interrupt; |
1478 | ||
05330448 AL |
1479 | return 0; |
1480 | ||
1481 | err: | |
6d1cc321 SW |
1482 | if (s->vmfd >= 0) { |
1483 | close(s->vmfd); | |
1484 | } | |
1485 | if (s->fd != -1) { | |
1486 | close(s->fd); | |
05330448 | 1487 | } |
7267c094 | 1488 | g_free(s); |
05330448 AL |
1489 | |
1490 | return ret; | |
1491 | } | |
1492 | ||
b30e93e9 JK |
1493 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1494 | uint32_t count) | |
05330448 AL |
1495 | { |
1496 | int i; | |
1497 | uint8_t *ptr = data; | |
1498 | ||
1499 | for (i = 0; i < count; i++) { | |
1500 | if (direction == KVM_EXIT_IO_IN) { | |
1501 | switch (size) { | |
1502 | case 1: | |
afcea8cb | 1503 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
1504 | break; |
1505 | case 2: | |
afcea8cb | 1506 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
1507 | break; |
1508 | case 4: | |
afcea8cb | 1509 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
1510 | break; |
1511 | } | |
1512 | } else { | |
1513 | switch (size) { | |
1514 | case 1: | |
afcea8cb | 1515 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
1516 | break; |
1517 | case 2: | |
afcea8cb | 1518 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
1519 | break; |
1520 | case 4: | |
afcea8cb | 1521 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
1522 | break; |
1523 | } | |
1524 | } | |
1525 | ||
1526 | ptr += size; | |
1527 | } | |
05330448 AL |
1528 | } |
1529 | ||
5326ab55 | 1530 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
7c80eef8 | 1531 | { |
bb44e0d1 | 1532 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1533 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1534 | int i; | |
1535 | ||
bb44e0d1 | 1536 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1537 | for (i = 0; i < run->internal.ndata; ++i) { |
1538 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1539 | i, (uint64_t)run->internal.data[i]); | |
1540 | } | |
bb44e0d1 JK |
1541 | } else { |
1542 | fprintf(stderr, "\n"); | |
7c80eef8 | 1543 | } |
7c80eef8 MT |
1544 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1545 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1546 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
878096ee | 1547 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1548 | return EXCP_INTERRUPT; |
a426e122 | 1549 | } |
7c80eef8 MT |
1550 | } |
1551 | /* FIXME: Should trigger a qmp message to let management know | |
1552 | * something went wrong. | |
1553 | */ | |
73aaec4a | 1554 | return -1; |
7c80eef8 | 1555 | } |
7c80eef8 | 1556 | |
62a2744c | 1557 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1558 | { |
f65ed4c1 | 1559 | KVMState *s = kvm_state; |
1cae88b9 AK |
1560 | |
1561 | if (s->coalesced_flush_in_progress) { | |
1562 | return; | |
1563 | } | |
1564 | ||
1565 | s->coalesced_flush_in_progress = true; | |
1566 | ||
62a2744c SY |
1567 | if (s->coalesced_mmio_ring) { |
1568 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1569 | while (ring->first != ring->last) { |
1570 | struct kvm_coalesced_mmio *ent; | |
1571 | ||
1572 | ent = &ring->coalesced_mmio[ring->first]; | |
1573 | ||
1574 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1575 | smp_wmb(); |
f65ed4c1 AL |
1576 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1577 | } | |
1578 | } | |
1cae88b9 AK |
1579 | |
1580 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1581 | } |
1582 | ||
20d695a9 | 1583 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1584 | { |
20d695a9 | 1585 | CPUState *cpu = arg; |
2705d56a | 1586 | |
20d695a9 AF |
1587 | if (!cpu->kvm_vcpu_dirty) { |
1588 | kvm_arch_get_registers(cpu); | |
1589 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1590 | } |
1591 | } | |
1592 | ||
dd1750d7 | 1593 | void kvm_cpu_synchronize_state(CPUState *cpu) |
2705d56a | 1594 | { |
20d695a9 AF |
1595 | if (!cpu->kvm_vcpu_dirty) { |
1596 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1597 | } |
2705d56a JK |
1598 | } |
1599 | ||
3f24a58f | 1600 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
ea375f9a | 1601 | { |
20d695a9 AF |
1602 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1603 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1604 | } |
1605 | ||
3f24a58f | 1606 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
ea375f9a | 1607 | { |
20d695a9 AF |
1608 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1609 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1610 | } |
1611 | ||
1458c363 | 1612 | int kvm_cpu_exec(CPUState *cpu) |
05330448 | 1613 | { |
f7575c96 | 1614 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1615 | int ret, run_ret; |
05330448 | 1616 | |
8c0d577e | 1617 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1618 | |
20d695a9 | 1619 | if (kvm_arch_process_async_events(cpu)) { |
fcd7d003 | 1620 | cpu->exit_request = 0; |
6792a57b | 1621 | return EXCP_HLT; |
9ccfac9e | 1622 | } |
0af691d7 | 1623 | |
9ccfac9e | 1624 | do { |
20d695a9 AF |
1625 | if (cpu->kvm_vcpu_dirty) { |
1626 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1627 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1628 | } |
1629 | ||
20d695a9 | 1630 | kvm_arch_pre_run(cpu, run); |
fcd7d003 | 1631 | if (cpu->exit_request) { |
9ccfac9e JK |
1632 | DPRINTF("interrupt exit requested\n"); |
1633 | /* | |
1634 | * KVM requires us to reenter the kernel after IO exits to complete | |
1635 | * instruction emulation. This self-signal will ensure that we | |
1636 | * leave ASAP again. | |
1637 | */ | |
1638 | qemu_cpu_kick_self(); | |
1639 | } | |
d549db5a | 1640 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1641 | |
1bc22652 | 1642 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1643 | |
d549db5a | 1644 | qemu_mutex_lock_iothread(); |
20d695a9 | 1645 | kvm_arch_post_run(cpu, run); |
05330448 | 1646 | |
7cbb533f | 1647 | if (run_ret < 0) { |
dc77d341 JK |
1648 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1649 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1650 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1651 | break; |
1652 | } | |
7b011fbc ME |
1653 | fprintf(stderr, "error: kvm run failed %s\n", |
1654 | strerror(-run_ret)); | |
05330448 AL |
1655 | abort(); |
1656 | } | |
1657 | ||
b76ac80a | 1658 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
1659 | switch (run->exit_reason) { |
1660 | case KVM_EXIT_IO: | |
8c0d577e | 1661 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1662 | kvm_handle_io(run->io.port, |
1663 | (uint8_t *)run + run->io.data_offset, | |
1664 | run->io.direction, | |
1665 | run->io.size, | |
1666 | run->io.count); | |
d73cd8f4 | 1667 | ret = 0; |
05330448 AL |
1668 | break; |
1669 | case KVM_EXIT_MMIO: | |
8c0d577e | 1670 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1671 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1672 | run->mmio.data, | |
1673 | run->mmio.len, | |
1674 | run->mmio.is_write); | |
d73cd8f4 | 1675 | ret = 0; |
05330448 AL |
1676 | break; |
1677 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1678 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1679 | ret = EXCP_INTERRUPT; |
05330448 AL |
1680 | break; |
1681 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1682 | DPRINTF("shutdown\n"); |
05330448 | 1683 | qemu_system_reset_request(); |
d73cd8f4 | 1684 | ret = EXCP_INTERRUPT; |
05330448 AL |
1685 | break; |
1686 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1687 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1688 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1689 | ret = -1; |
05330448 | 1690 | break; |
7c80eef8 | 1691 | case KVM_EXIT_INTERNAL_ERROR: |
5326ab55 | 1692 | ret = kvm_handle_internal_error(cpu, run); |
7c80eef8 | 1693 | break; |
05330448 | 1694 | default: |
8c0d577e | 1695 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1696 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1697 | break; |
1698 | } | |
d73cd8f4 | 1699 | } while (ret == 0); |
05330448 | 1700 | |
73aaec4a | 1701 | if (ret < 0) { |
878096ee | 1702 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1703 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1704 | } |
1705 | ||
fcd7d003 | 1706 | cpu->exit_request = 0; |
05330448 AL |
1707 | return ret; |
1708 | } | |
1709 | ||
984b5181 | 1710 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1711 | { |
1712 | int ret; | |
984b5181 AL |
1713 | void *arg; |
1714 | va_list ap; | |
05330448 | 1715 | |
984b5181 AL |
1716 | va_start(ap, type); |
1717 | arg = va_arg(ap, void *); | |
1718 | va_end(ap); | |
1719 | ||
9c775729 | 1720 | trace_kvm_ioctl(type, arg); |
984b5181 | 1721 | ret = ioctl(s->fd, type, arg); |
a426e122 | 1722 | if (ret == -1) { |
05330448 | 1723 | ret = -errno; |
a426e122 | 1724 | } |
05330448 AL |
1725 | return ret; |
1726 | } | |
1727 | ||
984b5181 | 1728 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1729 | { |
1730 | int ret; | |
984b5181 AL |
1731 | void *arg; |
1732 | va_list ap; | |
1733 | ||
1734 | va_start(ap, type); | |
1735 | arg = va_arg(ap, void *); | |
1736 | va_end(ap); | |
05330448 | 1737 | |
9c775729 | 1738 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 1739 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1740 | if (ret == -1) { |
05330448 | 1741 | ret = -errno; |
a426e122 | 1742 | } |
05330448 AL |
1743 | return ret; |
1744 | } | |
1745 | ||
1bc22652 | 1746 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
1747 | { |
1748 | int ret; | |
984b5181 AL |
1749 | void *arg; |
1750 | va_list ap; | |
1751 | ||
1752 | va_start(ap, type); | |
1753 | arg = va_arg(ap, void *); | |
1754 | va_end(ap); | |
05330448 | 1755 | |
9c775729 | 1756 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 1757 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 1758 | if (ret == -1) { |
05330448 | 1759 | ret = -errno; |
a426e122 | 1760 | } |
05330448 AL |
1761 | return ret; |
1762 | } | |
bd322087 AL |
1763 | |
1764 | int kvm_has_sync_mmu(void) | |
1765 | { | |
94a8d39a | 1766 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1767 | } |
e22a25c9 | 1768 | |
a0fb002c JK |
1769 | int kvm_has_vcpu_events(void) |
1770 | { | |
1771 | return kvm_state->vcpu_events; | |
1772 | } | |
1773 | ||
b0b1d690 JK |
1774 | int kvm_has_robust_singlestep(void) |
1775 | { | |
1776 | return kvm_state->robust_singlestep; | |
1777 | } | |
1778 | ||
ff44f1a3 JK |
1779 | int kvm_has_debugregs(void) |
1780 | { | |
1781 | return kvm_state->debugregs; | |
1782 | } | |
1783 | ||
f1665b21 SY |
1784 | int kvm_has_xsave(void) |
1785 | { | |
1786 | return kvm_state->xsave; | |
1787 | } | |
1788 | ||
1789 | int kvm_has_xcrs(void) | |
1790 | { | |
1791 | return kvm_state->xcrs; | |
1792 | } | |
1793 | ||
8a7c7393 JK |
1794 | int kvm_has_pit_state2(void) |
1795 | { | |
1796 | return kvm_state->pit_state2; | |
1797 | } | |
1798 | ||
d2f2b8a7 SH |
1799 | int kvm_has_many_ioeventfds(void) |
1800 | { | |
1801 | if (!kvm_enabled()) { | |
1802 | return 0; | |
1803 | } | |
1804 | return kvm_state->many_ioeventfds; | |
1805 | } | |
1806 | ||
84b058d7 JK |
1807 | int kvm_has_gsi_routing(void) |
1808 | { | |
a9c5eb0d | 1809 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1810 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1811 | #else |
1812 | return false; | |
1813 | #endif | |
84b058d7 JK |
1814 | } |
1815 | ||
3ab73842 JK |
1816 | int kvm_has_intx_set_mask(void) |
1817 | { | |
1818 | return kvm_state->intx_set_mask; | |
1819 | } | |
1820 | ||
6eebf958 | 1821 | void *kvm_ram_alloc(ram_addr_t size) |
fdec9918 CB |
1822 | { |
1823 | #ifdef TARGET_S390X | |
1824 | void *mem; | |
1825 | ||
6eebf958 | 1826 | mem = kvm_arch_ram_alloc(size); |
fdec9918 CB |
1827 | if (mem) { |
1828 | return mem; | |
1829 | } | |
1830 | #endif | |
6eebf958 | 1831 | return qemu_anon_ram_alloc(size); |
fdec9918 CB |
1832 | } |
1833 | ||
6f0437e8 JK |
1834 | void kvm_setup_guest_memory(void *start, size_t size) |
1835 | { | |
62fe8331 CB |
1836 | #ifdef CONFIG_VALGRIND_H |
1837 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1838 | #endif | |
6f0437e8 | 1839 | if (!kvm_has_sync_mmu()) { |
e78815a5 | 1840 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1841 | |
1842 | if (ret) { | |
e78815a5 AF |
1843 | perror("qemu_madvise"); |
1844 | fprintf(stderr, | |
1845 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1846 | exit(1); |
1847 | } | |
6f0437e8 JK |
1848 | } |
1849 | } | |
1850 | ||
e22a25c9 | 1851 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 1852 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
1853 | target_ulong pc) |
1854 | { | |
1855 | struct kvm_sw_breakpoint *bp; | |
1856 | ||
a60f24b5 | 1857 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1858 | if (bp->pc == pc) { |
e22a25c9 | 1859 | return bp; |
a426e122 | 1860 | } |
e22a25c9 AL |
1861 | } |
1862 | return NULL; | |
1863 | } | |
1864 | ||
a60f24b5 | 1865 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 1866 | { |
a60f24b5 | 1867 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1868 | } |
1869 | ||
452e4751 GC |
1870 | struct kvm_set_guest_debug_data { |
1871 | struct kvm_guest_debug dbg; | |
a60f24b5 | 1872 | CPUState *cpu; |
452e4751 GC |
1873 | int err; |
1874 | }; | |
1875 | ||
1876 | static void kvm_invoke_set_guest_debug(void *data) | |
1877 | { | |
1878 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 1879 | |
a60f24b5 AF |
1880 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
1881 | &dbg_data->dbg); | |
452e4751 GC |
1882 | } |
1883 | ||
9349b4f9 | 1884 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 | 1885 | { |
f100f0b3 | 1886 | CPUState *cpu = ENV_GET_CPU(env); |
452e4751 | 1887 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1888 | |
b0b1d690 | 1889 | data.dbg.control = reinject_trap; |
e22a25c9 | 1890 | |
b0b1d690 JK |
1891 | if (env->singlestep_enabled) { |
1892 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1893 | } | |
20d695a9 | 1894 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 1895 | data.cpu = cpu; |
e22a25c9 | 1896 | |
f100f0b3 | 1897 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1898 | return data.err; |
e22a25c9 AL |
1899 | } |
1900 | ||
9349b4f9 | 1901 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1902 | target_ulong len, int type) |
1903 | { | |
20d695a9 | 1904 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1905 | struct kvm_sw_breakpoint *bp; |
9349b4f9 | 1906 | CPUArchState *env; |
e22a25c9 AL |
1907 | int err; |
1908 | ||
1909 | if (type == GDB_BREAKPOINT_SW) { | |
a60f24b5 | 1910 | bp = kvm_find_sw_breakpoint(current_cpu, addr); |
e22a25c9 AL |
1911 | if (bp) { |
1912 | bp->use_count++; | |
1913 | return 0; | |
1914 | } | |
1915 | ||
7267c094 | 1916 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1917 | if (!bp) { |
e22a25c9 | 1918 | return -ENOMEM; |
a426e122 | 1919 | } |
e22a25c9 AL |
1920 | |
1921 | bp->pc = addr; | |
1922 | bp->use_count = 1; | |
20d695a9 | 1923 | err = kvm_arch_insert_sw_breakpoint(current_cpu, bp); |
e22a25c9 | 1924 | if (err) { |
7267c094 | 1925 | g_free(bp); |
e22a25c9 AL |
1926 | return err; |
1927 | } | |
1928 | ||
a60f24b5 | 1929 | QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1930 | bp, entry); |
1931 | } else { | |
1932 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1933 | if (err) { |
e22a25c9 | 1934 | return err; |
a426e122 | 1935 | } |
e22a25c9 AL |
1936 | } |
1937 | ||
1938 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1939 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1940 | if (err) { |
e22a25c9 | 1941 | return err; |
a426e122 | 1942 | } |
e22a25c9 AL |
1943 | } |
1944 | return 0; | |
1945 | } | |
1946 | ||
9349b4f9 | 1947 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1948 | target_ulong len, int type) |
1949 | { | |
20d695a9 | 1950 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1951 | struct kvm_sw_breakpoint *bp; |
9349b4f9 | 1952 | CPUArchState *env; |
e22a25c9 AL |
1953 | int err; |
1954 | ||
1955 | if (type == GDB_BREAKPOINT_SW) { | |
a60f24b5 | 1956 | bp = kvm_find_sw_breakpoint(current_cpu, addr); |
a426e122 | 1957 | if (!bp) { |
e22a25c9 | 1958 | return -ENOENT; |
a426e122 | 1959 | } |
e22a25c9 AL |
1960 | |
1961 | if (bp->use_count > 1) { | |
1962 | bp->use_count--; | |
1963 | return 0; | |
1964 | } | |
1965 | ||
20d695a9 | 1966 | err = kvm_arch_remove_sw_breakpoint(current_cpu, bp); |
a426e122 | 1967 | if (err) { |
e22a25c9 | 1968 | return err; |
a426e122 | 1969 | } |
e22a25c9 | 1970 | |
a60f24b5 | 1971 | QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1972 | g_free(bp); |
e22a25c9 AL |
1973 | } else { |
1974 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1975 | if (err) { |
e22a25c9 | 1976 | return err; |
a426e122 | 1977 | } |
e22a25c9 AL |
1978 | } |
1979 | ||
1980 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1981 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1982 | if (err) { |
e22a25c9 | 1983 | return err; |
a426e122 | 1984 | } |
e22a25c9 AL |
1985 | } |
1986 | return 0; | |
1987 | } | |
1988 | ||
9349b4f9 | 1989 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 | 1990 | { |
20d695a9 | 1991 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1992 | struct kvm_sw_breakpoint *bp, *next; |
a60f24b5 | 1993 | KVMState *s = current_cpu->kvm_state; |
9349b4f9 | 1994 | CPUArchState *env; |
20d695a9 | 1995 | CPUState *cpu; |
e22a25c9 | 1996 | |
72cf2d4f | 1997 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
20d695a9 | 1998 | if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) { |
e22a25c9 AL |
1999 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
2000 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
20d695a9 AF |
2001 | cpu = ENV_GET_CPU(env); |
2002 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { | |
e22a25c9 | 2003 | break; |
a426e122 | 2004 | } |
e22a25c9 AL |
2005 | } |
2006 | } | |
78021d6d JK |
2007 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2008 | g_free(bp); | |
e22a25c9 AL |
2009 | } |
2010 | kvm_arch_remove_all_hw_breakpoints(); | |
2011 | ||
a426e122 | 2012 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 2013 | kvm_update_guest_debug(env, 0); |
a426e122 | 2014 | } |
e22a25c9 AL |
2015 | } |
2016 | ||
2017 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2018 | ||
9349b4f9 | 2019 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 AL |
2020 | { |
2021 | return -EINVAL; | |
2022 | } | |
2023 | ||
9349b4f9 | 2024 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
2025 | target_ulong len, int type) |
2026 | { | |
2027 | return -EINVAL; | |
2028 | } | |
2029 | ||
9349b4f9 | 2030 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
2031 | target_ulong len, int type) |
2032 | { | |
2033 | return -EINVAL; | |
2034 | } | |
2035 | ||
9349b4f9 | 2036 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 AL |
2037 | { |
2038 | } | |
2039 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2040 | |
491d6e80 | 2041 | int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
cc84de95 MT |
2042 | { |
2043 | struct kvm_signal_mask *sigmask; | |
2044 | int r; | |
2045 | ||
a426e122 | 2046 | if (!sigset) { |
1bc22652 | 2047 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 2048 | } |
cc84de95 | 2049 | |
7267c094 | 2050 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
2051 | |
2052 | sigmask->len = 8; | |
2053 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1bc22652 | 2054 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2055 | g_free(sigmask); |
cc84de95 MT |
2056 | |
2057 | return r; | |
2058 | } | |
290adf38 | 2059 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2060 | { |
20d695a9 | 2061 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
a1b87fe0 JK |
2062 | } |
2063 | ||
2064 | int kvm_on_sigbus(int code, void *addr) | |
2065 | { | |
2066 | return kvm_arch_on_sigbus(code, addr); | |
2067 | } |