]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
1de7afc9 PB |
24 | #include "qemu/atomic.h" |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
d33a1810 | 28 | #include "hw/hw.h" |
a2cb15b0 | 29 | #include "hw/pci/msi.h" |
022c62cb | 30 | #include "exec/gdbstub.h" |
9c17d615 | 31 | #include "sysemu/kvm.h" |
1de7afc9 | 32 | #include "qemu/bswap.h" |
022c62cb PB |
33 | #include "exec/memory.h" |
34 | #include "exec/address-spaces.h" | |
1de7afc9 | 35 | #include "qemu/event_notifier.h" |
9c775729 | 36 | #include "trace.h" |
05330448 | 37 | |
d2f2b8a7 SH |
38 | /* This check must be after config-host.h is included */ |
39 | #ifdef CONFIG_EVENTFD | |
40 | #include <sys/eventfd.h> | |
41 | #endif | |
42 | ||
62fe8331 CB |
43 | #ifdef CONFIG_VALGRIND_H |
44 | #include <valgrind/memcheck.h> | |
45 | #endif | |
46 | ||
93148aa5 | 47 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
48 | #define PAGE_SIZE TARGET_PAGE_SIZE |
49 | ||
05330448 AL |
50 | //#define DEBUG_KVM |
51 | ||
52 | #ifdef DEBUG_KVM | |
8c0d577e | 53 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
54 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
55 | #else | |
8c0d577e | 56 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
57 | do { } while (0) |
58 | #endif | |
59 | ||
04fa27f5 JK |
60 | #define KVM_MSI_HASHTAB_SIZE 256 |
61 | ||
34fc643f AL |
62 | typedef struct KVMSlot |
63 | { | |
a8170e5e | 64 | hwaddr start_addr; |
c227f099 | 65 | ram_addr_t memory_size; |
9f213ed9 | 66 | void *ram; |
34fc643f AL |
67 | int slot; |
68 | int flags; | |
69 | } KVMSlot; | |
05330448 | 70 | |
5832d1f2 AL |
71 | typedef struct kvm_dirty_log KVMDirtyLog; |
72 | ||
05330448 AL |
73 | struct KVMState |
74 | { | |
fb541ca5 AW |
75 | KVMSlot *slots; |
76 | int nr_slots; | |
05330448 AL |
77 | int fd; |
78 | int vmfd; | |
f65ed4c1 | 79 | int coalesced_mmio; |
62a2744c | 80 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 81 | bool coalesced_flush_in_progress; |
e69917e2 | 82 | int broken_set_mem_region; |
4495d6a7 | 83 | int migration_log; |
a0fb002c | 84 | int vcpu_events; |
b0b1d690 | 85 | int robust_singlestep; |
ff44f1a3 | 86 | int debugregs; |
e22a25c9 AL |
87 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
88 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
89 | #endif | |
8a7c7393 | 90 | int pit_state2; |
f1665b21 | 91 | int xsave, xcrs; |
d2f2b8a7 | 92 | int many_ioeventfds; |
3ab73842 | 93 | int intx_set_mask; |
92e4b519 DG |
94 | /* The man page (and posix) say ioctl numbers are signed int, but |
95 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
96 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 97 | unsigned irq_set_ioctl; |
84b058d7 JK |
98 | #ifdef KVM_CAP_IRQ_ROUTING |
99 | struct kvm_irq_routing *irq_routes; | |
100 | int nr_allocated_irq_routes; | |
101 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 102 | unsigned int gsi_count; |
04fa27f5 | 103 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 104 | bool direct_msi; |
84b058d7 | 105 | #endif |
05330448 AL |
106 | }; |
107 | ||
6a7af8cb | 108 | KVMState *kvm_state; |
3d4b2649 | 109 | bool kvm_kernel_irqchip; |
7ae26bd4 | 110 | bool kvm_async_interrupts_allowed; |
215e79c0 | 111 | bool kvm_halt_in_kernel_allowed; |
cc7e0ddf | 112 | bool kvm_irqfds_allowed; |
614e41bc | 113 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 114 | bool kvm_gsi_routing_allowed; |
76fe21de | 115 | bool kvm_gsi_direct_mapping; |
13eed94e | 116 | bool kvm_allowed; |
df9c8b75 | 117 | bool kvm_readonly_mem_allowed; |
05330448 | 118 | |
94a8d39a JK |
119 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
120 | KVM_CAP_INFO(USER_MEMORY), | |
121 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
122 | KVM_CAP_LAST_INFO | |
123 | }; | |
124 | ||
05330448 AL |
125 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
126 | { | |
127 | int i; | |
128 | ||
fb541ca5 | 129 | for (i = 0; i < s->nr_slots; i++) { |
a426e122 | 130 | if (s->slots[i].memory_size == 0) { |
05330448 | 131 | return &s->slots[i]; |
a426e122 | 132 | } |
05330448 AL |
133 | } |
134 | ||
d3f8d37f AL |
135 | fprintf(stderr, "%s: no free slot available\n", __func__); |
136 | abort(); | |
137 | } | |
138 | ||
139 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
a8170e5e AK |
140 | hwaddr start_addr, |
141 | hwaddr end_addr) | |
d3f8d37f AL |
142 | { |
143 | int i; | |
144 | ||
fb541ca5 | 145 | for (i = 0; i < s->nr_slots; i++) { |
d3f8d37f AL |
146 | KVMSlot *mem = &s->slots[i]; |
147 | ||
148 | if (start_addr == mem->start_addr && | |
149 | end_addr == mem->start_addr + mem->memory_size) { | |
150 | return mem; | |
151 | } | |
152 | } | |
153 | ||
05330448 AL |
154 | return NULL; |
155 | } | |
156 | ||
6152e2ae AL |
157 | /* |
158 | * Find overlapping slot with lowest start address | |
159 | */ | |
160 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
a8170e5e AK |
161 | hwaddr start_addr, |
162 | hwaddr end_addr) | |
05330448 | 163 | { |
6152e2ae | 164 | KVMSlot *found = NULL; |
05330448 AL |
165 | int i; |
166 | ||
fb541ca5 | 167 | for (i = 0; i < s->nr_slots; i++) { |
05330448 AL |
168 | KVMSlot *mem = &s->slots[i]; |
169 | ||
6152e2ae AL |
170 | if (mem->memory_size == 0 || |
171 | (found && found->start_addr < mem->start_addr)) { | |
172 | continue; | |
173 | } | |
174 | ||
175 | if (end_addr > mem->start_addr && | |
176 | start_addr < mem->start_addr + mem->memory_size) { | |
177 | found = mem; | |
178 | } | |
05330448 AL |
179 | } |
180 | ||
6152e2ae | 181 | return found; |
05330448 AL |
182 | } |
183 | ||
9f213ed9 | 184 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 185 | hwaddr *phys_addr) |
983dfc3b HY |
186 | { |
187 | int i; | |
188 | ||
fb541ca5 | 189 | for (i = 0; i < s->nr_slots; i++) { |
983dfc3b HY |
190 | KVMSlot *mem = &s->slots[i]; |
191 | ||
9f213ed9 AK |
192 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
193 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
194 | return 1; |
195 | } | |
196 | } | |
197 | ||
198 | return 0; | |
199 | } | |
200 | ||
5832d1f2 AL |
201 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
202 | { | |
203 | struct kvm_userspace_memory_region mem; | |
204 | ||
205 | mem.slot = slot->slot; | |
206 | mem.guest_phys_addr = slot->start_addr; | |
9f213ed9 | 207 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 208 | mem.flags = slot->flags; |
4495d6a7 JK |
209 | if (s->migration_log) { |
210 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
211 | } | |
651eb0f4 XG |
212 | |
213 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
235e8982 JJ |
214 | /* Set the slot size to 0 before setting the slot to the desired |
215 | * value. This is needed based on KVM commit 75d61fbc. */ | |
216 | mem.memory_size = 0; | |
217 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
218 | } | |
219 | mem.memory_size = slot->memory_size; | |
5832d1f2 AL |
220 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
221 | } | |
222 | ||
8d2ba1fb JK |
223 | static void kvm_reset_vcpu(void *opaque) |
224 | { | |
20d695a9 | 225 | CPUState *cpu = opaque; |
8d2ba1fb | 226 | |
20d695a9 | 227 | kvm_arch_reset_vcpu(cpu); |
8d2ba1fb | 228 | } |
5832d1f2 | 229 | |
504134d2 | 230 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
231 | { |
232 | KVMState *s = kvm_state; | |
233 | long mmap_size; | |
234 | int ret; | |
235 | ||
8c0d577e | 236 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 237 | |
b164e48e | 238 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); |
05330448 | 239 | if (ret < 0) { |
8c0d577e | 240 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
241 | goto err; |
242 | } | |
243 | ||
8737c51c | 244 | cpu->kvm_fd = ret; |
a60f24b5 | 245 | cpu->kvm_state = s; |
20d695a9 | 246 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
247 | |
248 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
249 | if (mmap_size < 0) { | |
748a680b | 250 | ret = mmap_size; |
8c0d577e | 251 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
252 | goto err; |
253 | } | |
254 | ||
f7575c96 | 255 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 256 | cpu->kvm_fd, 0); |
f7575c96 | 257 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 258 | ret = -errno; |
8c0d577e | 259 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
260 | goto err; |
261 | } | |
262 | ||
a426e122 JK |
263 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
264 | s->coalesced_mmio_ring = | |
f7575c96 | 265 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 266 | } |
62a2744c | 267 | |
20d695a9 | 268 | ret = kvm_arch_init_vcpu(cpu); |
8d2ba1fb | 269 | if (ret == 0) { |
20d695a9 AF |
270 | qemu_register_reset(kvm_reset_vcpu, cpu); |
271 | kvm_arch_reset_vcpu(cpu); | |
8d2ba1fb | 272 | } |
05330448 AL |
273 | err: |
274 | return ret; | |
275 | } | |
276 | ||
5832d1f2 AL |
277 | /* |
278 | * dirty pages logging control | |
279 | */ | |
25254bbc | 280 | |
235e8982 | 281 | static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) |
25254bbc | 282 | { |
235e8982 JJ |
283 | int flags = 0; |
284 | flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
285 | if (readonly && kvm_readonly_mem_allowed) { | |
286 | flags |= KVM_MEM_READONLY; | |
287 | } | |
288 | return flags; | |
25254bbc MT |
289 | } |
290 | ||
291 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
292 | { |
293 | KVMState *s = kvm_state; | |
25254bbc | 294 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
295 | int old_flags; |
296 | ||
4495d6a7 | 297 | old_flags = mem->flags; |
5832d1f2 | 298 | |
235e8982 | 299 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); |
5832d1f2 AL |
300 | mem->flags = flags; |
301 | ||
4495d6a7 JK |
302 | /* If nothing changed effectively, no need to issue ioctl */ |
303 | if (s->migration_log) { | |
304 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
305 | } | |
25254bbc | 306 | |
4495d6a7 | 307 | if (flags == old_flags) { |
25254bbc | 308 | return 0; |
4495d6a7 JK |
309 | } |
310 | ||
5832d1f2 AL |
311 | return kvm_set_user_memory_region(s, mem); |
312 | } | |
313 | ||
a8170e5e | 314 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
25254bbc MT |
315 | ram_addr_t size, bool log_dirty) |
316 | { | |
317 | KVMState *s = kvm_state; | |
318 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
319 | ||
320 | if (mem == NULL) { | |
321 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
322 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
a8170e5e | 323 | (hwaddr)(phys_addr + size - 1)); |
25254bbc MT |
324 | return -EINVAL; |
325 | } | |
326 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
327 | } | |
328 | ||
a01672d3 AK |
329 | static void kvm_log_start(MemoryListener *listener, |
330 | MemoryRegionSection *section) | |
5832d1f2 | 331 | { |
a01672d3 AK |
332 | int r; |
333 | ||
334 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
052e87b0 | 335 | int128_get64(section->size), true); |
a01672d3 AK |
336 | if (r < 0) { |
337 | abort(); | |
338 | } | |
5832d1f2 AL |
339 | } |
340 | ||
a01672d3 AK |
341 | static void kvm_log_stop(MemoryListener *listener, |
342 | MemoryRegionSection *section) | |
5832d1f2 | 343 | { |
a01672d3 AK |
344 | int r; |
345 | ||
346 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
052e87b0 | 347 | int128_get64(section->size), false); |
a01672d3 AK |
348 | if (r < 0) { |
349 | abort(); | |
350 | } | |
5832d1f2 AL |
351 | } |
352 | ||
7b8f3b78 | 353 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
354 | { |
355 | KVMState *s = kvm_state; | |
356 | KVMSlot *mem; | |
357 | int i, err; | |
358 | ||
359 | s->migration_log = enable; | |
360 | ||
fb541ca5 | 361 | for (i = 0; i < s->nr_slots; i++) { |
4495d6a7 JK |
362 | mem = &s->slots[i]; |
363 | ||
70fedd76 AW |
364 | if (!mem->memory_size) { |
365 | continue; | |
366 | } | |
4495d6a7 JK |
367 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
368 | continue; | |
369 | } | |
370 | err = kvm_set_user_memory_region(s, mem); | |
371 | if (err) { | |
372 | return err; | |
373 | } | |
374 | } | |
375 | return 0; | |
376 | } | |
377 | ||
8369e01c | 378 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
379 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
380 | unsigned long *bitmap) | |
96c1606b | 381 | { |
8369e01c | 382 | unsigned int i, j; |
aa90fec7 | 383 | unsigned long page_number, c; |
a8170e5e | 384 | hwaddr addr, addr1; |
052e87b0 PB |
385 | unsigned int pages = int128_get64(section->size) / getpagesize(); |
386 | unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; | |
3145fcb6 | 387 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; |
8369e01c MT |
388 | |
389 | /* | |
390 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
391 | * especially when most of the memory is not dirty. | |
392 | */ | |
393 | for (i = 0; i < len; i++) { | |
394 | if (bitmap[i] != 0) { | |
395 | c = leul_to_cpu(bitmap[i]); | |
396 | do { | |
397 | j = ffsl(c) - 1; | |
398 | c &= ~(1ul << j); | |
3145fcb6 | 399 | page_number = (i * HOST_LONG_BITS + j) * hpratio; |
8369e01c | 400 | addr1 = page_number * TARGET_PAGE_SIZE; |
ffcde12f | 401 | addr = section->offset_within_region + addr1; |
3145fcb6 DG |
402 | memory_region_set_dirty(section->mr, addr, |
403 | TARGET_PAGE_SIZE * hpratio); | |
8369e01c MT |
404 | } while (c != 0); |
405 | } | |
406 | } | |
407 | return 0; | |
96c1606b AG |
408 | } |
409 | ||
8369e01c MT |
410 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
411 | ||
5832d1f2 AL |
412 | /** |
413 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
414 | * This function updates qemu's dirty bitmap using |
415 | * memory_region_set_dirty(). This means all bits are set | |
416 | * to dirty. | |
5832d1f2 | 417 | * |
d3f8d37f | 418 | * @start_add: start of logged region. |
5832d1f2 AL |
419 | * @end_addr: end of logged region. |
420 | */ | |
ffcde12f | 421 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
422 | { |
423 | KVMState *s = kvm_state; | |
151f7749 | 424 | unsigned long size, allocated_size = 0; |
151f7749 JK |
425 | KVMDirtyLog d; |
426 | KVMSlot *mem; | |
427 | int ret = 0; | |
a8170e5e | 428 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 429 | hwaddr end_addr = start_addr + int128_get64(section->size); |
5832d1f2 | 430 | |
151f7749 JK |
431 | d.dirty_bitmap = NULL; |
432 | while (start_addr < end_addr) { | |
433 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
434 | if (mem == NULL) { | |
435 | break; | |
436 | } | |
5832d1f2 | 437 | |
51b0c606 MT |
438 | /* XXX bad kernel interface alert |
439 | * For dirty bitmap, kernel allocates array of size aligned to | |
440 | * bits-per-long. But for case when the kernel is 64bits and | |
441 | * the userspace is 32bits, userspace can't align to the same | |
442 | * bits-per-long, since sizeof(long) is different between kernel | |
443 | * and user space. This way, userspace will provide buffer which | |
444 | * may be 4 bytes less than the kernel will use, resulting in | |
445 | * userspace memory corruption (which is not detectable by valgrind | |
446 | * too, in most cases). | |
447 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
448 | * a hope that sizeof(long) wont become >8 any time soon. | |
449 | */ | |
450 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
451 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 452 | if (!d.dirty_bitmap) { |
7267c094 | 453 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 454 | } else if (size > allocated_size) { |
7267c094 | 455 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
456 | } |
457 | allocated_size = size; | |
458 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 459 | |
151f7749 | 460 | d.slot = mem->slot; |
5832d1f2 | 461 | |
6e489f3f | 462 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 463 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
464 | ret = -1; |
465 | break; | |
466 | } | |
5832d1f2 | 467 | |
ffcde12f | 468 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 469 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 470 | } |
7267c094 | 471 | g_free(d.dirty_bitmap); |
151f7749 JK |
472 | |
473 | return ret; | |
5832d1f2 AL |
474 | } |
475 | ||
95d2994a AK |
476 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
477 | MemoryRegionSection *secion, | |
a8170e5e | 478 | hwaddr start, hwaddr size) |
f65ed4c1 | 479 | { |
f65ed4c1 AL |
480 | KVMState *s = kvm_state; |
481 | ||
482 | if (s->coalesced_mmio) { | |
483 | struct kvm_coalesced_mmio_zone zone; | |
484 | ||
485 | zone.addr = start; | |
486 | zone.size = size; | |
7e680753 | 487 | zone.pad = 0; |
f65ed4c1 | 488 | |
95d2994a | 489 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 490 | } |
f65ed4c1 AL |
491 | } |
492 | ||
95d2994a AK |
493 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
494 | MemoryRegionSection *secion, | |
a8170e5e | 495 | hwaddr start, hwaddr size) |
f65ed4c1 | 496 | { |
f65ed4c1 AL |
497 | KVMState *s = kvm_state; |
498 | ||
499 | if (s->coalesced_mmio) { | |
500 | struct kvm_coalesced_mmio_zone zone; | |
501 | ||
502 | zone.addr = start; | |
503 | zone.size = size; | |
7e680753 | 504 | zone.pad = 0; |
f65ed4c1 | 505 | |
95d2994a | 506 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 507 | } |
f65ed4c1 AL |
508 | } |
509 | ||
ad7b8b33 AL |
510 | int kvm_check_extension(KVMState *s, unsigned int extension) |
511 | { | |
512 | int ret; | |
513 | ||
514 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
515 | if (ret < 0) { | |
516 | ret = 0; | |
517 | } | |
518 | ||
519 | return ret; | |
520 | } | |
521 | ||
44c3f8f7 | 522 | static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, |
41cb62c2 | 523 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
524 | { |
525 | int ret; | |
526 | struct kvm_ioeventfd iofd; | |
527 | ||
41cb62c2 | 528 | iofd.datamatch = datamatch ? val : 0; |
500ffd4a MT |
529 | iofd.addr = addr; |
530 | iofd.len = size; | |
41cb62c2 | 531 | iofd.flags = 0; |
500ffd4a MT |
532 | iofd.fd = fd; |
533 | ||
534 | if (!kvm_enabled()) { | |
535 | return -ENOSYS; | |
536 | } | |
537 | ||
41cb62c2 MT |
538 | if (datamatch) { |
539 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
540 | } | |
500ffd4a MT |
541 | if (!assign) { |
542 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
543 | } | |
544 | ||
545 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
546 | ||
547 | if (ret < 0) { | |
548 | return -errno; | |
549 | } | |
550 | ||
551 | return 0; | |
552 | } | |
553 | ||
44c3f8f7 | 554 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 555 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
556 | { |
557 | struct kvm_ioeventfd kick = { | |
41cb62c2 | 558 | .datamatch = datamatch ? val : 0, |
500ffd4a | 559 | .addr = addr, |
41cb62c2 | 560 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 561 | .len = size, |
500ffd4a MT |
562 | .fd = fd, |
563 | }; | |
564 | int r; | |
565 | if (!kvm_enabled()) { | |
566 | return -ENOSYS; | |
567 | } | |
41cb62c2 MT |
568 | if (datamatch) { |
569 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
570 | } | |
500ffd4a MT |
571 | if (!assign) { |
572 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
573 | } | |
574 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
575 | if (r < 0) { | |
576 | return r; | |
577 | } | |
578 | return 0; | |
579 | } | |
580 | ||
581 | ||
d2f2b8a7 SH |
582 | static int kvm_check_many_ioeventfds(void) |
583 | { | |
d0dcac83 SH |
584 | /* Userspace can use ioeventfd for io notification. This requires a host |
585 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
586 | * support SIGIO it cannot interrupt the vcpu. | |
587 | * | |
588 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
589 | * can avoid creating too many ioeventfds. |
590 | */ | |
12d4536f | 591 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
592 | int ioeventfds[7]; |
593 | int i, ret = 0; | |
594 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
595 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
596 | if (ioeventfds[i] < 0) { | |
597 | break; | |
598 | } | |
41cb62c2 | 599 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
600 | if (ret < 0) { |
601 | close(ioeventfds[i]); | |
602 | break; | |
603 | } | |
604 | } | |
605 | ||
606 | /* Decide whether many devices are supported or not */ | |
607 | ret = i == ARRAY_SIZE(ioeventfds); | |
608 | ||
609 | while (i-- > 0) { | |
41cb62c2 | 610 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
611 | close(ioeventfds[i]); |
612 | } | |
613 | return ret; | |
614 | #else | |
615 | return 0; | |
616 | #endif | |
617 | } | |
618 | ||
94a8d39a JK |
619 | static const KVMCapabilityInfo * |
620 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
621 | { | |
622 | while (list->name) { | |
623 | if (!kvm_check_extension(s, list->value)) { | |
624 | return list; | |
625 | } | |
626 | list++; | |
627 | } | |
628 | return NULL; | |
629 | } | |
630 | ||
a01672d3 | 631 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
632 | { |
633 | KVMState *s = kvm_state; | |
46dbef6a MT |
634 | KVMSlot *mem, old; |
635 | int err; | |
a01672d3 AK |
636 | MemoryRegion *mr = section->mr; |
637 | bool log_dirty = memory_region_is_logging(mr); | |
235e8982 JJ |
638 | bool writeable = !mr->readonly && !mr->rom_device; |
639 | bool readonly_flag = mr->readonly || memory_region_is_romd(mr); | |
a8170e5e | 640 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 641 | ram_addr_t size = int128_get64(section->size); |
9f213ed9 | 642 | void *ram = NULL; |
8f6f962b | 643 | unsigned delta; |
46dbef6a | 644 | |
14542fea GN |
645 | /* kvm works in page size chunks, but the function may be called |
646 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
647 | delta = TARGET_PAGE_ALIGN(size) - size; |
648 | if (delta > size) { | |
649 | return; | |
650 | } | |
651 | start_addr += delta; | |
652 | size -= delta; | |
653 | size &= TARGET_PAGE_MASK; | |
654 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
655 | return; | |
656 | } | |
46dbef6a | 657 | |
a01672d3 | 658 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
659 | if (writeable || !kvm_readonly_mem_allowed) { |
660 | return; | |
661 | } else if (!mr->romd_mode) { | |
662 | /* If the memory device is not in romd_mode, then we actually want | |
663 | * to remove the kvm memory slot so all accesses will trap. */ | |
664 | add = false; | |
665 | } | |
9f213ed9 AK |
666 | } |
667 | ||
8f6f962b | 668 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 669 | |
46dbef6a MT |
670 | while (1) { |
671 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
672 | if (!mem) { | |
673 | break; | |
674 | } | |
675 | ||
a01672d3 | 676 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 677 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 678 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 679 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
680 | * identical parameters - update flags and done. */ |
681 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
682 | return; |
683 | } | |
684 | ||
685 | old = *mem; | |
686 | ||
3fbffb62 AK |
687 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
688 | kvm_physical_sync_dirty_bitmap(section); | |
689 | } | |
690 | ||
46dbef6a MT |
691 | /* unregister the overlapping slot */ |
692 | mem->memory_size = 0; | |
693 | err = kvm_set_user_memory_region(s, mem); | |
694 | if (err) { | |
695 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
696 | __func__, strerror(-err)); | |
697 | abort(); | |
698 | } | |
699 | ||
700 | /* Workaround for older KVM versions: we can't join slots, even not by | |
701 | * unregistering the previous ones and then registering the larger | |
702 | * slot. We have to maintain the existing fragmentation. Sigh. | |
703 | * | |
704 | * This workaround assumes that the new slot starts at the same | |
705 | * address as the first existing one. If not or if some overlapping | |
706 | * slot comes around later, we will fail (not seen in practice so far) | |
707 | * - and actually require a recent KVM version. */ | |
708 | if (s->broken_set_mem_region && | |
a01672d3 | 709 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
710 | mem = kvm_alloc_slot(s); |
711 | mem->memory_size = old.memory_size; | |
712 | mem->start_addr = old.start_addr; | |
9f213ed9 | 713 | mem->ram = old.ram; |
235e8982 | 714 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
715 | |
716 | err = kvm_set_user_memory_region(s, mem); | |
717 | if (err) { | |
718 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
719 | strerror(-err)); | |
720 | abort(); | |
721 | } | |
722 | ||
723 | start_addr += old.memory_size; | |
9f213ed9 | 724 | ram += old.memory_size; |
46dbef6a MT |
725 | size -= old.memory_size; |
726 | continue; | |
727 | } | |
728 | ||
729 | /* register prefix slot */ | |
730 | if (old.start_addr < start_addr) { | |
731 | mem = kvm_alloc_slot(s); | |
732 | mem->memory_size = start_addr - old.start_addr; | |
733 | mem->start_addr = old.start_addr; | |
9f213ed9 | 734 | mem->ram = old.ram; |
235e8982 | 735 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
736 | |
737 | err = kvm_set_user_memory_region(s, mem); | |
738 | if (err) { | |
739 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
740 | __func__, strerror(-err)); | |
d4d6868f AG |
741 | #ifdef TARGET_PPC |
742 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
743 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
744 | "PAGE_SIZE!\n", __func__); | |
745 | #endif | |
46dbef6a MT |
746 | abort(); |
747 | } | |
748 | } | |
749 | ||
750 | /* register suffix slot */ | |
751 | if (old.start_addr + old.memory_size > start_addr + size) { | |
752 | ram_addr_t size_delta; | |
753 | ||
754 | mem = kvm_alloc_slot(s); | |
755 | mem->start_addr = start_addr + size; | |
756 | size_delta = mem->start_addr - old.start_addr; | |
757 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 758 | mem->ram = old.ram + size_delta; |
235e8982 | 759 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
760 | |
761 | err = kvm_set_user_memory_region(s, mem); | |
762 | if (err) { | |
763 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
764 | __func__, strerror(-err)); | |
765 | abort(); | |
766 | } | |
767 | } | |
768 | } | |
769 | ||
770 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 771 | if (!size) { |
46dbef6a | 772 | return; |
a426e122 | 773 | } |
a01672d3 | 774 | if (!add) { |
46dbef6a | 775 | return; |
a426e122 | 776 | } |
46dbef6a MT |
777 | mem = kvm_alloc_slot(s); |
778 | mem->memory_size = size; | |
779 | mem->start_addr = start_addr; | |
9f213ed9 | 780 | mem->ram = ram; |
235e8982 | 781 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
782 | |
783 | err = kvm_set_user_memory_region(s, mem); | |
784 | if (err) { | |
785 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
786 | strerror(-err)); | |
787 | abort(); | |
788 | } | |
789 | } | |
790 | ||
a01672d3 AK |
791 | static void kvm_region_add(MemoryListener *listener, |
792 | MemoryRegionSection *section) | |
793 | { | |
dfde4e6e | 794 | memory_region_ref(section->mr); |
a01672d3 AK |
795 | kvm_set_phys_mem(section, true); |
796 | } | |
797 | ||
798 | static void kvm_region_del(MemoryListener *listener, | |
799 | MemoryRegionSection *section) | |
800 | { | |
801 | kvm_set_phys_mem(section, false); | |
dfde4e6e | 802 | memory_region_unref(section->mr); |
a01672d3 AK |
803 | } |
804 | ||
805 | static void kvm_log_sync(MemoryListener *listener, | |
806 | MemoryRegionSection *section) | |
7b8f3b78 | 807 | { |
a01672d3 AK |
808 | int r; |
809 | ||
ffcde12f | 810 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
811 | if (r < 0) { |
812 | abort(); | |
813 | } | |
7b8f3b78 MT |
814 | } |
815 | ||
a01672d3 | 816 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 817 | { |
a01672d3 AK |
818 | int r; |
819 | ||
820 | r = kvm_set_migration_log(1); | |
821 | assert(r >= 0); | |
7b8f3b78 MT |
822 | } |
823 | ||
a01672d3 | 824 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 825 | { |
a01672d3 AK |
826 | int r; |
827 | ||
828 | r = kvm_set_migration_log(0); | |
829 | assert(r >= 0); | |
7b8f3b78 MT |
830 | } |
831 | ||
d22b096e AK |
832 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
833 | MemoryRegionSection *section, | |
834 | bool match_data, uint64_t data, | |
835 | EventNotifier *e) | |
836 | { | |
837 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
838 | int r; |
839 | ||
4b8f1c88 | 840 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
841 | data, true, int128_get64(section->size), |
842 | match_data); | |
80a1ea37 | 843 | if (r < 0) { |
fa4ba923 AK |
844 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
845 | __func__, strerror(-r)); | |
80a1ea37 AK |
846 | abort(); |
847 | } | |
848 | } | |
849 | ||
d22b096e AK |
850 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
851 | MemoryRegionSection *section, | |
852 | bool match_data, uint64_t data, | |
853 | EventNotifier *e) | |
80a1ea37 | 854 | { |
d22b096e | 855 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
856 | int r; |
857 | ||
4b8f1c88 | 858 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
859 | data, false, int128_get64(section->size), |
860 | match_data); | |
80a1ea37 AK |
861 | if (r < 0) { |
862 | abort(); | |
863 | } | |
864 | } | |
865 | ||
d22b096e AK |
866 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
867 | MemoryRegionSection *section, | |
868 | bool match_data, uint64_t data, | |
869 | EventNotifier *e) | |
80a1ea37 | 870 | { |
d22b096e | 871 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
872 | int r; |
873 | ||
44c3f8f7 | 874 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
875 | data, true, int128_get64(section->size), |
876 | match_data); | |
80a1ea37 | 877 | if (r < 0) { |
fa4ba923 AK |
878 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
879 | __func__, strerror(-r)); | |
80a1ea37 AK |
880 | abort(); |
881 | } | |
882 | } | |
883 | ||
d22b096e AK |
884 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
885 | MemoryRegionSection *section, | |
886 | bool match_data, uint64_t data, | |
887 | EventNotifier *e) | |
80a1ea37 AK |
888 | |
889 | { | |
d22b096e | 890 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
891 | int r; |
892 | ||
44c3f8f7 | 893 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
894 | data, false, int128_get64(section->size), |
895 | match_data); | |
80a1ea37 AK |
896 | if (r < 0) { |
897 | abort(); | |
898 | } | |
899 | } | |
900 | ||
a01672d3 AK |
901 | static MemoryListener kvm_memory_listener = { |
902 | .region_add = kvm_region_add, | |
903 | .region_del = kvm_region_del, | |
e5896b12 AP |
904 | .log_start = kvm_log_start, |
905 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
906 | .log_sync = kvm_log_sync, |
907 | .log_global_start = kvm_log_global_start, | |
908 | .log_global_stop = kvm_log_global_stop, | |
d22b096e AK |
909 | .eventfd_add = kvm_mem_ioeventfd_add, |
910 | .eventfd_del = kvm_mem_ioeventfd_del, | |
95d2994a AK |
911 | .coalesced_mmio_add = kvm_coalesce_mmio_region, |
912 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
d22b096e AK |
913 | .priority = 10, |
914 | }; | |
915 | ||
916 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
917 | .eventfd_add = kvm_io_ioeventfd_add, |
918 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 919 | .priority = 10, |
7b8f3b78 MT |
920 | }; |
921 | ||
c3affe56 | 922 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 923 | { |
259186a7 | 924 | cpu->interrupt_request |= mask; |
aa7f74d1 | 925 | |
60e82579 | 926 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 927 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
928 | } |
929 | } | |
930 | ||
3889c3fa | 931 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
932 | { |
933 | struct kvm_irq_level event; | |
934 | int ret; | |
935 | ||
7ae26bd4 | 936 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
937 | |
938 | event.level = level; | |
939 | event.irq = irq; | |
e333cd69 | 940 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 941 | if (ret < 0) { |
3889c3fa | 942 | perror("kvm_set_irq"); |
84b058d7 JK |
943 | abort(); |
944 | } | |
945 | ||
e333cd69 | 946 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
947 | } |
948 | ||
949 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
950 | typedef struct KVMMSIRoute { |
951 | struct kvm_irq_routing_entry kroute; | |
952 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
953 | } KVMMSIRoute; | |
954 | ||
84b058d7 JK |
955 | static void set_gsi(KVMState *s, unsigned int gsi) |
956 | { | |
84b058d7 JK |
957 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
958 | } | |
959 | ||
04fa27f5 JK |
960 | static void clear_gsi(KVMState *s, unsigned int gsi) |
961 | { | |
962 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
963 | } | |
964 | ||
7b774593 | 965 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 | 966 | { |
04fa27f5 | 967 | int gsi_count, i; |
84b058d7 JK |
968 | |
969 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
970 | if (gsi_count > 0) { | |
971 | unsigned int gsi_bits, i; | |
972 | ||
973 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 974 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 975 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 976 | s->gsi_count = gsi_count; |
84b058d7 JK |
977 | |
978 | /* Mark any over-allocated bits as already in use */ | |
979 | for (i = gsi_count; i < gsi_bits; i++) { | |
980 | set_gsi(s, i); | |
981 | } | |
982 | } | |
983 | ||
984 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
985 | s->nr_allocated_irq_routes = 0; | |
986 | ||
4a3adebb JK |
987 | if (!s->direct_msi) { |
988 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
989 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
990 | } | |
04fa27f5 JK |
991 | } |
992 | ||
84b058d7 JK |
993 | kvm_arch_init_irq_routing(s); |
994 | } | |
995 | ||
cb925cf9 | 996 | void kvm_irqchip_commit_routes(KVMState *s) |
e7b20308 JK |
997 | { |
998 | int ret; | |
999 | ||
1000 | s->irq_routes->flags = 0; | |
1001 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
1002 | assert(ret == 0); | |
1003 | } | |
1004 | ||
84b058d7 JK |
1005 | static void kvm_add_routing_entry(KVMState *s, |
1006 | struct kvm_irq_routing_entry *entry) | |
1007 | { | |
1008 | struct kvm_irq_routing_entry *new; | |
1009 | int n, size; | |
1010 | ||
1011 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1012 | n = s->nr_allocated_irq_routes * 2; | |
1013 | if (n < 64) { | |
1014 | n = 64; | |
1015 | } | |
1016 | size = sizeof(struct kvm_irq_routing); | |
1017 | size += n * sizeof(*new); | |
1018 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1019 | s->nr_allocated_irq_routes = n; | |
1020 | } | |
1021 | n = s->irq_routes->nr++; | |
1022 | new = &s->irq_routes->entries[n]; | |
0fbc2074 MT |
1023 | |
1024 | *new = *entry; | |
84b058d7 JK |
1025 | |
1026 | set_gsi(s, entry->gsi); | |
1027 | } | |
1028 | ||
cc57407e JK |
1029 | static int kvm_update_routing_entry(KVMState *s, |
1030 | struct kvm_irq_routing_entry *new_entry) | |
1031 | { | |
1032 | struct kvm_irq_routing_entry *entry; | |
1033 | int n; | |
1034 | ||
1035 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1036 | entry = &s->irq_routes->entries[n]; | |
1037 | if (entry->gsi != new_entry->gsi) { | |
1038 | continue; | |
1039 | } | |
1040 | ||
40509f7f MT |
1041 | if(!memcmp(entry, new_entry, sizeof *entry)) { |
1042 | return 0; | |
1043 | } | |
1044 | ||
0fbc2074 | 1045 | *entry = *new_entry; |
cc57407e JK |
1046 | |
1047 | kvm_irqchip_commit_routes(s); | |
1048 | ||
1049 | return 0; | |
1050 | } | |
1051 | ||
1052 | return -ESRCH; | |
1053 | } | |
1054 | ||
1df186df | 1055 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 | 1056 | { |
0fbc2074 | 1057 | struct kvm_irq_routing_entry e = {}; |
84b058d7 | 1058 | |
4e2e4e63 JK |
1059 | assert(pin < s->gsi_count); |
1060 | ||
84b058d7 JK |
1061 | e.gsi = irq; |
1062 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1063 | e.flags = 0; | |
1064 | e.u.irqchip.irqchip = irqchip; | |
1065 | e.u.irqchip.pin = pin; | |
1066 | kvm_add_routing_entry(s, &e); | |
1067 | } | |
1068 | ||
1e2aa8be | 1069 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1070 | { |
1071 | struct kvm_irq_routing_entry *e; | |
1072 | int i; | |
1073 | ||
76fe21de AK |
1074 | if (kvm_gsi_direct_mapping()) { |
1075 | return; | |
1076 | } | |
1077 | ||
04fa27f5 JK |
1078 | for (i = 0; i < s->irq_routes->nr; i++) { |
1079 | e = &s->irq_routes->entries[i]; | |
1080 | if (e->gsi == virq) { | |
1081 | s->irq_routes->nr--; | |
1082 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1083 | } | |
1084 | } | |
1085 | clear_gsi(s, virq); | |
1086 | } | |
1087 | ||
1088 | static unsigned int kvm_hash_msi(uint32_t data) | |
1089 | { | |
1090 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1091 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1092 | return data & 0xff; | |
1093 | } | |
1094 | ||
1095 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1096 | { | |
1097 | KVMMSIRoute *route, *next; | |
1098 | unsigned int hash; | |
1099 | ||
1100 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1101 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1102 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1103 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1104 | g_free(route); | |
1105 | } | |
1106 | } | |
1107 | } | |
1108 | ||
1109 | static int kvm_irqchip_get_virq(KVMState *s) | |
1110 | { | |
1111 | uint32_t *word = s->used_gsi_bitmap; | |
1112 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1113 | int i, bit; | |
1114 | bool retry = true; | |
1115 | ||
1116 | again: | |
1117 | /* Return the lowest unused GSI in the bitmap */ | |
1118 | for (i = 0; i < max_words; i++) { | |
1119 | bit = ffs(~word[i]); | |
1120 | if (!bit) { | |
1121 | continue; | |
1122 | } | |
1123 | ||
1124 | return bit - 1 + i * 32; | |
1125 | } | |
4a3adebb | 1126 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1127 | retry = false; |
1128 | kvm_flush_dynamic_msi_routes(s); | |
1129 | goto again; | |
1130 | } | |
1131 | return -ENOSPC; | |
1132 | ||
1133 | } | |
1134 | ||
1135 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1136 | { | |
1137 | unsigned int hash = kvm_hash_msi(msg.data); | |
1138 | KVMMSIRoute *route; | |
1139 | ||
1140 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1141 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1142 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
d07cc1f1 | 1143 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
04fa27f5 JK |
1144 | return route; |
1145 | } | |
1146 | } | |
1147 | return NULL; | |
1148 | } | |
1149 | ||
1150 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1151 | { | |
4a3adebb | 1152 | struct kvm_msi msi; |
04fa27f5 JK |
1153 | KVMMSIRoute *route; |
1154 | ||
4a3adebb JK |
1155 | if (s->direct_msi) { |
1156 | msi.address_lo = (uint32_t)msg.address; | |
1157 | msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1158 | msi.data = le32_to_cpu(msg.data); |
4a3adebb JK |
1159 | msi.flags = 0; |
1160 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1161 | ||
1162 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1163 | } | |
1164 | ||
04fa27f5 JK |
1165 | route = kvm_lookup_msi_route(s, msg); |
1166 | if (!route) { | |
e7b20308 | 1167 | int virq; |
04fa27f5 JK |
1168 | |
1169 | virq = kvm_irqchip_get_virq(s); | |
1170 | if (virq < 0) { | |
1171 | return virq; | |
1172 | } | |
1173 | ||
0fbc2074 | 1174 | route = g_malloc0(sizeof(KVMMSIRoute)); |
04fa27f5 JK |
1175 | route->kroute.gsi = virq; |
1176 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1177 | route->kroute.flags = 0; | |
1178 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1179 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1180 | route->kroute.u.msi.data = le32_to_cpu(msg.data); |
04fa27f5 JK |
1181 | |
1182 | kvm_add_routing_entry(s, &route->kroute); | |
cb925cf9 | 1183 | kvm_irqchip_commit_routes(s); |
04fa27f5 JK |
1184 | |
1185 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1186 | entry); | |
04fa27f5 JK |
1187 | } |
1188 | ||
1189 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1190 | ||
3889c3fa | 1191 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1192 | } |
1193 | ||
92b4e489 JK |
1194 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1195 | { | |
0fbc2074 | 1196 | struct kvm_irq_routing_entry kroute = {}; |
92b4e489 JK |
1197 | int virq; |
1198 | ||
76fe21de AK |
1199 | if (kvm_gsi_direct_mapping()) { |
1200 | return msg.data & 0xffff; | |
1201 | } | |
1202 | ||
f3e1bed8 | 1203 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1204 | return -ENOSYS; |
1205 | } | |
1206 | ||
1207 | virq = kvm_irqchip_get_virq(s); | |
1208 | if (virq < 0) { | |
1209 | return virq; | |
1210 | } | |
1211 | ||
1212 | kroute.gsi = virq; | |
1213 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1214 | kroute.flags = 0; | |
1215 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1216 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1217 | kroute.u.msi.data = le32_to_cpu(msg.data); |
92b4e489 JK |
1218 | |
1219 | kvm_add_routing_entry(s, &kroute); | |
cb925cf9 | 1220 | kvm_irqchip_commit_routes(s); |
92b4e489 JK |
1221 | |
1222 | return virq; | |
1223 | } | |
1224 | ||
cc57407e JK |
1225 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1226 | { | |
0fbc2074 | 1227 | struct kvm_irq_routing_entry kroute = {}; |
cc57407e | 1228 | |
76fe21de AK |
1229 | if (kvm_gsi_direct_mapping()) { |
1230 | return 0; | |
1231 | } | |
1232 | ||
cc57407e JK |
1233 | if (!kvm_irqchip_in_kernel()) { |
1234 | return -ENOSYS; | |
1235 | } | |
1236 | ||
1237 | kroute.gsi = virq; | |
1238 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1239 | kroute.flags = 0; | |
1240 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1241 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1242 | kroute.u.msi.data = le32_to_cpu(msg.data); |
cc57407e JK |
1243 | |
1244 | return kvm_update_routing_entry(s, &kroute); | |
1245 | } | |
1246 | ||
ca916d37 VM |
1247 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, |
1248 | bool assign) | |
39853bbc JK |
1249 | { |
1250 | struct kvm_irqfd irqfd = { | |
1251 | .fd = fd, | |
1252 | .gsi = virq, | |
1253 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1254 | }; | |
1255 | ||
ca916d37 VM |
1256 | if (rfd != -1) { |
1257 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1258 | irqfd.resamplefd = rfd; | |
1259 | } | |
1260 | ||
cc7e0ddf | 1261 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1262 | return -ENOSYS; |
1263 | } | |
1264 | ||
1265 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1266 | } | |
1267 | ||
84b058d7 JK |
1268 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1269 | ||
7b774593 | 1270 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 JK |
1271 | { |
1272 | } | |
04fa27f5 | 1273 | |
d3d3bef0 JK |
1274 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1275 | { | |
1276 | } | |
1277 | ||
04fa27f5 JK |
1278 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1279 | { | |
1280 | abort(); | |
1281 | } | |
92b4e489 JK |
1282 | |
1283 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1284 | { | |
df410675 | 1285 | return -ENOSYS; |
92b4e489 | 1286 | } |
39853bbc JK |
1287 | |
1288 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1289 | { | |
1290 | abort(); | |
1291 | } | |
dabe3143 MT |
1292 | |
1293 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1294 | { | |
1295 | return -ENOSYS; | |
1296 | } | |
84b058d7 JK |
1297 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1298 | ||
ca916d37 VM |
1299 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
1300 | EventNotifier *rn, int virq) | |
39853bbc | 1301 | { |
ca916d37 VM |
1302 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), |
1303 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
39853bbc JK |
1304 | } |
1305 | ||
b131c74a | 1306 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1307 | { |
ca916d37 VM |
1308 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, |
1309 | false); | |
15b2bd18 PB |
1310 | } |
1311 | ||
84b058d7 JK |
1312 | static int kvm_irqchip_create(KVMState *s) |
1313 | { | |
84b058d7 JK |
1314 | int ret; |
1315 | ||
36ad0e94 | 1316 | if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) || |
84b058d7 JK |
1317 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1318 | return 0; | |
1319 | } | |
1320 | ||
1321 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1322 | if (ret < 0) { | |
1323 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1324 | return ret; | |
1325 | } | |
1326 | ||
3d4b2649 | 1327 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1328 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1329 | * interrupt delivery (though the reverse is not necessarily true) | |
1330 | */ | |
1331 | kvm_async_interrupts_allowed = true; | |
215e79c0 | 1332 | kvm_halt_in_kernel_allowed = true; |
84b058d7 JK |
1333 | |
1334 | kvm_init_irq_routing(s); | |
1335 | ||
1336 | return 0; | |
1337 | } | |
1338 | ||
670436ce AJ |
1339 | /* Find number of supported CPUs using the recommended |
1340 | * procedure from the kernel API documentation to cope with | |
1341 | * older kernels that may be missing capabilities. | |
1342 | */ | |
1343 | static int kvm_recommended_vcpus(KVMState *s) | |
3ed444e9 | 1344 | { |
670436ce AJ |
1345 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); |
1346 | return (ret) ? ret : 4; | |
1347 | } | |
3ed444e9 | 1348 | |
670436ce AJ |
1349 | static int kvm_max_vcpus(KVMState *s) |
1350 | { | |
1351 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1352 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
3ed444e9 DH |
1353 | } |
1354 | ||
cad1e282 | 1355 | int kvm_init(void) |
05330448 | 1356 | { |
168ccc11 JK |
1357 | static const char upgrade_note[] = |
1358 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1359 | "(see http://sourceforge.net/projects/kvm).\n"; | |
670436ce AJ |
1360 | struct { |
1361 | const char *name; | |
1362 | int num; | |
1363 | } num_cpus[] = { | |
1364 | { "SMP", smp_cpus }, | |
1365 | { "hotpluggable", max_cpus }, | |
1366 | { NULL, } | |
1367 | }, *nc = num_cpus; | |
1368 | int soft_vcpus_limit, hard_vcpus_limit; | |
05330448 | 1369 | KVMState *s; |
94a8d39a | 1370 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
1371 | int ret; |
1372 | int i; | |
1373 | ||
7267c094 | 1374 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 1375 | |
3145fcb6 DG |
1376 | /* |
1377 | * On systems where the kernel can support different base page | |
1378 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1379 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1380 | * page size for the system though. | |
1381 | */ | |
1382 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1383 | ||
e22a25c9 | 1384 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1385 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1386 | #endif |
05330448 | 1387 | s->vmfd = -1; |
40ff6d7e | 1388 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1389 | if (s->fd == -1) { |
1390 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1391 | ret = -errno; | |
1392 | goto err; | |
1393 | } | |
1394 | ||
1395 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1396 | if (ret < KVM_API_VERSION) { | |
a426e122 | 1397 | if (ret > 0) { |
05330448 | 1398 | ret = -EINVAL; |
a426e122 | 1399 | } |
05330448 AL |
1400 | fprintf(stderr, "kvm version too old\n"); |
1401 | goto err; | |
1402 | } | |
1403 | ||
1404 | if (ret > KVM_API_VERSION) { | |
1405 | ret = -EINVAL; | |
1406 | fprintf(stderr, "kvm version not supported\n"); | |
1407 | goto err; | |
1408 | } | |
1409 | ||
fb541ca5 AW |
1410 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); |
1411 | ||
1412 | /* If unspecified, use the default value */ | |
1413 | if (!s->nr_slots) { | |
1414 | s->nr_slots = 32; | |
1415 | } | |
1416 | ||
1417 | s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); | |
1418 | ||
1419 | for (i = 0; i < s->nr_slots; i++) { | |
1420 | s->slots[i].slot = i; | |
1421 | } | |
1422 | ||
670436ce AJ |
1423 | /* check the vcpu limits */ |
1424 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1425 | hard_vcpus_limit = kvm_max_vcpus(s); | |
3ed444e9 | 1426 | |
670436ce AJ |
1427 | while (nc->name) { |
1428 | if (nc->num > soft_vcpus_limit) { | |
1429 | fprintf(stderr, | |
1430 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1431 | "the recommended cpus supported by KVM (%d)\n", | |
1432 | nc->name, nc->num, soft_vcpus_limit); | |
1433 | ||
1434 | if (nc->num > hard_vcpus_limit) { | |
1435 | ret = -EINVAL; | |
1436 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " | |
1437 | "the maximum cpus supported by KVM (%d)\n", | |
1438 | nc->name, nc->num, hard_vcpus_limit); | |
1439 | goto err; | |
1440 | } | |
1441 | } | |
1442 | nc++; | |
7dc52526 MT |
1443 | } |
1444 | ||
05330448 | 1445 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
0104dcac AG |
1446 | if (s->vmfd < 0) { |
1447 | #ifdef TARGET_S390X | |
1448 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1449 | "your host kernel command line\n"); | |
1450 | #endif | |
db9eae1c | 1451 | ret = s->vmfd; |
05330448 | 1452 | goto err; |
0104dcac | 1453 | } |
05330448 | 1454 | |
94a8d39a JK |
1455 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1456 | if (!missing_cap) { | |
1457 | missing_cap = | |
1458 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1459 | } |
94a8d39a | 1460 | if (missing_cap) { |
ad7b8b33 | 1461 | ret = -EINVAL; |
94a8d39a JK |
1462 | fprintf(stderr, "kvm does not support %s\n%s", |
1463 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1464 | goto err; |
1465 | } | |
1466 | ||
ad7b8b33 | 1467 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1468 | |
e69917e2 | 1469 | s->broken_set_mem_region = 1; |
14a09518 | 1470 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1471 | if (ret > 0) { |
1472 | s->broken_set_mem_region = 0; | |
1473 | } | |
e69917e2 | 1474 | |
a0fb002c JK |
1475 | #ifdef KVM_CAP_VCPU_EVENTS |
1476 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1477 | #endif | |
1478 | ||
b0b1d690 JK |
1479 | s->robust_singlestep = |
1480 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1481 | |
ff44f1a3 JK |
1482 | #ifdef KVM_CAP_DEBUGREGS |
1483 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1484 | #endif | |
1485 | ||
f1665b21 SY |
1486 | #ifdef KVM_CAP_XSAVE |
1487 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1488 | #endif | |
1489 | ||
f1665b21 SY |
1490 | #ifdef KVM_CAP_XCRS |
1491 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1492 | #endif | |
1493 | ||
8a7c7393 JK |
1494 | #ifdef KVM_CAP_PIT_STATE2 |
1495 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1496 | #endif | |
1497 | ||
d3d3bef0 | 1498 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1499 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1500 | #endif |
4a3adebb | 1501 | |
3ab73842 JK |
1502 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1503 | ||
e333cd69 | 1504 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1505 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1506 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1507 | } |
1508 | ||
df9c8b75 JJ |
1509 | #ifdef KVM_CAP_READONLY_MEM |
1510 | kvm_readonly_mem_allowed = | |
1511 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1512 | #endif | |
1513 | ||
cad1e282 | 1514 | ret = kvm_arch_init(s); |
a426e122 | 1515 | if (ret < 0) { |
05330448 | 1516 | goto err; |
a426e122 | 1517 | } |
05330448 | 1518 | |
84b058d7 JK |
1519 | ret = kvm_irqchip_create(s); |
1520 | if (ret < 0) { | |
1521 | goto err; | |
1522 | } | |
1523 | ||
05330448 | 1524 | kvm_state = s; |
f6790af6 AK |
1525 | memory_listener_register(&kvm_memory_listener, &address_space_memory); |
1526 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
05330448 | 1527 | |
d2f2b8a7 SH |
1528 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1529 | ||
aa7f74d1 JK |
1530 | cpu_interrupt_handler = kvm_handle_interrupt; |
1531 | ||
05330448 AL |
1532 | return 0; |
1533 | ||
1534 | err: | |
6d1cc321 SW |
1535 | if (s->vmfd >= 0) { |
1536 | close(s->vmfd); | |
1537 | } | |
1538 | if (s->fd != -1) { | |
1539 | close(s->fd); | |
05330448 | 1540 | } |
fb541ca5 | 1541 | g_free(s->slots); |
7267c094 | 1542 | g_free(s); |
05330448 AL |
1543 | |
1544 | return ret; | |
1545 | } | |
1546 | ||
b30e93e9 JK |
1547 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1548 | uint32_t count) | |
05330448 AL |
1549 | { |
1550 | int i; | |
1551 | uint8_t *ptr = data; | |
1552 | ||
1553 | for (i = 0; i < count; i++) { | |
354678c5 JK |
1554 | address_space_rw(&address_space_io, port, ptr, size, |
1555 | direction == KVM_EXIT_IO_OUT); | |
05330448 AL |
1556 | ptr += size; |
1557 | } | |
05330448 AL |
1558 | } |
1559 | ||
5326ab55 | 1560 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
7c80eef8 | 1561 | { |
bb44e0d1 | 1562 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1563 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1564 | int i; | |
1565 | ||
bb44e0d1 | 1566 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1567 | for (i = 0; i < run->internal.ndata; ++i) { |
1568 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1569 | i, (uint64_t)run->internal.data[i]); | |
1570 | } | |
bb44e0d1 JK |
1571 | } else { |
1572 | fprintf(stderr, "\n"); | |
7c80eef8 | 1573 | } |
7c80eef8 MT |
1574 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1575 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1576 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
878096ee | 1577 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1578 | return EXCP_INTERRUPT; |
a426e122 | 1579 | } |
7c80eef8 MT |
1580 | } |
1581 | /* FIXME: Should trigger a qmp message to let management know | |
1582 | * something went wrong. | |
1583 | */ | |
73aaec4a | 1584 | return -1; |
7c80eef8 | 1585 | } |
7c80eef8 | 1586 | |
62a2744c | 1587 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1588 | { |
f65ed4c1 | 1589 | KVMState *s = kvm_state; |
1cae88b9 AK |
1590 | |
1591 | if (s->coalesced_flush_in_progress) { | |
1592 | return; | |
1593 | } | |
1594 | ||
1595 | s->coalesced_flush_in_progress = true; | |
1596 | ||
62a2744c SY |
1597 | if (s->coalesced_mmio_ring) { |
1598 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1599 | while (ring->first != ring->last) { |
1600 | struct kvm_coalesced_mmio *ent; | |
1601 | ||
1602 | ent = &ring->coalesced_mmio[ring->first]; | |
1603 | ||
1604 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1605 | smp_wmb(); |
f65ed4c1 AL |
1606 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1607 | } | |
1608 | } | |
1cae88b9 AK |
1609 | |
1610 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1611 | } |
1612 | ||
20d695a9 | 1613 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1614 | { |
20d695a9 | 1615 | CPUState *cpu = arg; |
2705d56a | 1616 | |
20d695a9 AF |
1617 | if (!cpu->kvm_vcpu_dirty) { |
1618 | kvm_arch_get_registers(cpu); | |
1619 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1620 | } |
1621 | } | |
1622 | ||
dd1750d7 | 1623 | void kvm_cpu_synchronize_state(CPUState *cpu) |
2705d56a | 1624 | { |
20d695a9 AF |
1625 | if (!cpu->kvm_vcpu_dirty) { |
1626 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1627 | } |
2705d56a JK |
1628 | } |
1629 | ||
3f24a58f | 1630 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
ea375f9a | 1631 | { |
20d695a9 AF |
1632 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1633 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1634 | } |
1635 | ||
3f24a58f | 1636 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
ea375f9a | 1637 | { |
20d695a9 AF |
1638 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1639 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1640 | } |
1641 | ||
1458c363 | 1642 | int kvm_cpu_exec(CPUState *cpu) |
05330448 | 1643 | { |
f7575c96 | 1644 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1645 | int ret, run_ret; |
05330448 | 1646 | |
8c0d577e | 1647 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1648 | |
20d695a9 | 1649 | if (kvm_arch_process_async_events(cpu)) { |
fcd7d003 | 1650 | cpu->exit_request = 0; |
6792a57b | 1651 | return EXCP_HLT; |
9ccfac9e | 1652 | } |
0af691d7 | 1653 | |
9ccfac9e | 1654 | do { |
20d695a9 AF |
1655 | if (cpu->kvm_vcpu_dirty) { |
1656 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1657 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1658 | } |
1659 | ||
20d695a9 | 1660 | kvm_arch_pre_run(cpu, run); |
fcd7d003 | 1661 | if (cpu->exit_request) { |
9ccfac9e JK |
1662 | DPRINTF("interrupt exit requested\n"); |
1663 | /* | |
1664 | * KVM requires us to reenter the kernel after IO exits to complete | |
1665 | * instruction emulation. This self-signal will ensure that we | |
1666 | * leave ASAP again. | |
1667 | */ | |
1668 | qemu_cpu_kick_self(); | |
1669 | } | |
d549db5a | 1670 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1671 | |
1bc22652 | 1672 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1673 | |
d549db5a | 1674 | qemu_mutex_lock_iothread(); |
20d695a9 | 1675 | kvm_arch_post_run(cpu, run); |
05330448 | 1676 | |
7cbb533f | 1677 | if (run_ret < 0) { |
dc77d341 JK |
1678 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1679 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1680 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1681 | break; |
1682 | } | |
7b011fbc ME |
1683 | fprintf(stderr, "error: kvm run failed %s\n", |
1684 | strerror(-run_ret)); | |
05330448 AL |
1685 | abort(); |
1686 | } | |
1687 | ||
b76ac80a | 1688 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
1689 | switch (run->exit_reason) { |
1690 | case KVM_EXIT_IO: | |
8c0d577e | 1691 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1692 | kvm_handle_io(run->io.port, |
1693 | (uint8_t *)run + run->io.data_offset, | |
1694 | run->io.direction, | |
1695 | run->io.size, | |
1696 | run->io.count); | |
d73cd8f4 | 1697 | ret = 0; |
05330448 AL |
1698 | break; |
1699 | case KVM_EXIT_MMIO: | |
8c0d577e | 1700 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1701 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1702 | run->mmio.data, | |
1703 | run->mmio.len, | |
1704 | run->mmio.is_write); | |
d73cd8f4 | 1705 | ret = 0; |
05330448 AL |
1706 | break; |
1707 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1708 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1709 | ret = EXCP_INTERRUPT; |
05330448 AL |
1710 | break; |
1711 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1712 | DPRINTF("shutdown\n"); |
05330448 | 1713 | qemu_system_reset_request(); |
d73cd8f4 | 1714 | ret = EXCP_INTERRUPT; |
05330448 AL |
1715 | break; |
1716 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1717 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1718 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1719 | ret = -1; |
05330448 | 1720 | break; |
7c80eef8 | 1721 | case KVM_EXIT_INTERNAL_ERROR: |
5326ab55 | 1722 | ret = kvm_handle_internal_error(cpu, run); |
7c80eef8 | 1723 | break; |
05330448 | 1724 | default: |
8c0d577e | 1725 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1726 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1727 | break; |
1728 | } | |
d73cd8f4 | 1729 | } while (ret == 0); |
05330448 | 1730 | |
73aaec4a | 1731 | if (ret < 0) { |
878096ee | 1732 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1733 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1734 | } |
1735 | ||
fcd7d003 | 1736 | cpu->exit_request = 0; |
05330448 AL |
1737 | return ret; |
1738 | } | |
1739 | ||
984b5181 | 1740 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1741 | { |
1742 | int ret; | |
984b5181 AL |
1743 | void *arg; |
1744 | va_list ap; | |
05330448 | 1745 | |
984b5181 AL |
1746 | va_start(ap, type); |
1747 | arg = va_arg(ap, void *); | |
1748 | va_end(ap); | |
1749 | ||
9c775729 | 1750 | trace_kvm_ioctl(type, arg); |
984b5181 | 1751 | ret = ioctl(s->fd, type, arg); |
a426e122 | 1752 | if (ret == -1) { |
05330448 | 1753 | ret = -errno; |
a426e122 | 1754 | } |
05330448 AL |
1755 | return ret; |
1756 | } | |
1757 | ||
984b5181 | 1758 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1759 | { |
1760 | int ret; | |
984b5181 AL |
1761 | void *arg; |
1762 | va_list ap; | |
1763 | ||
1764 | va_start(ap, type); | |
1765 | arg = va_arg(ap, void *); | |
1766 | va_end(ap); | |
05330448 | 1767 | |
9c775729 | 1768 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 1769 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1770 | if (ret == -1) { |
05330448 | 1771 | ret = -errno; |
a426e122 | 1772 | } |
05330448 AL |
1773 | return ret; |
1774 | } | |
1775 | ||
1bc22652 | 1776 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
1777 | { |
1778 | int ret; | |
984b5181 AL |
1779 | void *arg; |
1780 | va_list ap; | |
1781 | ||
1782 | va_start(ap, type); | |
1783 | arg = va_arg(ap, void *); | |
1784 | va_end(ap); | |
05330448 | 1785 | |
9c775729 | 1786 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 1787 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 1788 | if (ret == -1) { |
05330448 | 1789 | ret = -errno; |
a426e122 | 1790 | } |
05330448 AL |
1791 | return ret; |
1792 | } | |
bd322087 AL |
1793 | |
1794 | int kvm_has_sync_mmu(void) | |
1795 | { | |
94a8d39a | 1796 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1797 | } |
e22a25c9 | 1798 | |
a0fb002c JK |
1799 | int kvm_has_vcpu_events(void) |
1800 | { | |
1801 | return kvm_state->vcpu_events; | |
1802 | } | |
1803 | ||
b0b1d690 JK |
1804 | int kvm_has_robust_singlestep(void) |
1805 | { | |
1806 | return kvm_state->robust_singlestep; | |
1807 | } | |
1808 | ||
ff44f1a3 JK |
1809 | int kvm_has_debugregs(void) |
1810 | { | |
1811 | return kvm_state->debugregs; | |
1812 | } | |
1813 | ||
f1665b21 SY |
1814 | int kvm_has_xsave(void) |
1815 | { | |
1816 | return kvm_state->xsave; | |
1817 | } | |
1818 | ||
1819 | int kvm_has_xcrs(void) | |
1820 | { | |
1821 | return kvm_state->xcrs; | |
1822 | } | |
1823 | ||
8a7c7393 JK |
1824 | int kvm_has_pit_state2(void) |
1825 | { | |
1826 | return kvm_state->pit_state2; | |
1827 | } | |
1828 | ||
d2f2b8a7 SH |
1829 | int kvm_has_many_ioeventfds(void) |
1830 | { | |
1831 | if (!kvm_enabled()) { | |
1832 | return 0; | |
1833 | } | |
1834 | return kvm_state->many_ioeventfds; | |
1835 | } | |
1836 | ||
84b058d7 JK |
1837 | int kvm_has_gsi_routing(void) |
1838 | { | |
a9c5eb0d | 1839 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1840 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1841 | #else |
1842 | return false; | |
1843 | #endif | |
84b058d7 JK |
1844 | } |
1845 | ||
3ab73842 JK |
1846 | int kvm_has_intx_set_mask(void) |
1847 | { | |
1848 | return kvm_state->intx_set_mask; | |
1849 | } | |
1850 | ||
6f0437e8 JK |
1851 | void kvm_setup_guest_memory(void *start, size_t size) |
1852 | { | |
62fe8331 CB |
1853 | #ifdef CONFIG_VALGRIND_H |
1854 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1855 | #endif | |
6f0437e8 | 1856 | if (!kvm_has_sync_mmu()) { |
e78815a5 | 1857 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1858 | |
1859 | if (ret) { | |
e78815a5 AF |
1860 | perror("qemu_madvise"); |
1861 | fprintf(stderr, | |
1862 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1863 | exit(1); |
1864 | } | |
6f0437e8 JK |
1865 | } |
1866 | } | |
1867 | ||
e22a25c9 | 1868 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 1869 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
1870 | target_ulong pc) |
1871 | { | |
1872 | struct kvm_sw_breakpoint *bp; | |
1873 | ||
a60f24b5 | 1874 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1875 | if (bp->pc == pc) { |
e22a25c9 | 1876 | return bp; |
a426e122 | 1877 | } |
e22a25c9 AL |
1878 | } |
1879 | return NULL; | |
1880 | } | |
1881 | ||
a60f24b5 | 1882 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 1883 | { |
a60f24b5 | 1884 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1885 | } |
1886 | ||
452e4751 GC |
1887 | struct kvm_set_guest_debug_data { |
1888 | struct kvm_guest_debug dbg; | |
a60f24b5 | 1889 | CPUState *cpu; |
452e4751 GC |
1890 | int err; |
1891 | }; | |
1892 | ||
1893 | static void kvm_invoke_set_guest_debug(void *data) | |
1894 | { | |
1895 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 1896 | |
a60f24b5 AF |
1897 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
1898 | &dbg_data->dbg); | |
452e4751 GC |
1899 | } |
1900 | ||
38e478ec | 1901 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 | 1902 | { |
452e4751 | 1903 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1904 | |
b0b1d690 | 1905 | data.dbg.control = reinject_trap; |
e22a25c9 | 1906 | |
ed2803da | 1907 | if (cpu->singlestep_enabled) { |
b0b1d690 JK |
1908 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
1909 | } | |
20d695a9 | 1910 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 1911 | data.cpu = cpu; |
e22a25c9 | 1912 | |
f100f0b3 | 1913 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1914 | return data.err; |
e22a25c9 AL |
1915 | } |
1916 | ||
62278814 | 1917 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
1918 | target_ulong len, int type) |
1919 | { | |
1920 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
1921 | int err; |
1922 | ||
1923 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 1924 | bp = kvm_find_sw_breakpoint(cpu, addr); |
e22a25c9 AL |
1925 | if (bp) { |
1926 | bp->use_count++; | |
1927 | return 0; | |
1928 | } | |
1929 | ||
7267c094 | 1930 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1931 | if (!bp) { |
e22a25c9 | 1932 | return -ENOMEM; |
a426e122 | 1933 | } |
e22a25c9 AL |
1934 | |
1935 | bp->pc = addr; | |
1936 | bp->use_count = 1; | |
80b7cd73 | 1937 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
e22a25c9 | 1938 | if (err) { |
7267c094 | 1939 | g_free(bp); |
e22a25c9 AL |
1940 | return err; |
1941 | } | |
1942 | ||
80b7cd73 | 1943 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
1944 | } else { |
1945 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1946 | if (err) { |
e22a25c9 | 1947 | return err; |
a426e122 | 1948 | } |
e22a25c9 AL |
1949 | } |
1950 | ||
bdc44640 | 1951 | CPU_FOREACH(cpu) { |
38e478ec | 1952 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 1953 | if (err) { |
e22a25c9 | 1954 | return err; |
a426e122 | 1955 | } |
e22a25c9 AL |
1956 | } |
1957 | return 0; | |
1958 | } | |
1959 | ||
62278814 | 1960 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
1961 | target_ulong len, int type) |
1962 | { | |
1963 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
1964 | int err; |
1965 | ||
1966 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 1967 | bp = kvm_find_sw_breakpoint(cpu, addr); |
a426e122 | 1968 | if (!bp) { |
e22a25c9 | 1969 | return -ENOENT; |
a426e122 | 1970 | } |
e22a25c9 AL |
1971 | |
1972 | if (bp->use_count > 1) { | |
1973 | bp->use_count--; | |
1974 | return 0; | |
1975 | } | |
1976 | ||
80b7cd73 | 1977 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
a426e122 | 1978 | if (err) { |
e22a25c9 | 1979 | return err; |
a426e122 | 1980 | } |
e22a25c9 | 1981 | |
80b7cd73 | 1982 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1983 | g_free(bp); |
e22a25c9 AL |
1984 | } else { |
1985 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1986 | if (err) { |
e22a25c9 | 1987 | return err; |
a426e122 | 1988 | } |
e22a25c9 AL |
1989 | } |
1990 | ||
bdc44640 | 1991 | CPU_FOREACH(cpu) { |
38e478ec | 1992 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 1993 | if (err) { |
e22a25c9 | 1994 | return err; |
a426e122 | 1995 | } |
e22a25c9 AL |
1996 | } |
1997 | return 0; | |
1998 | } | |
1999 | ||
1d5791f4 | 2000 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2001 | { |
2002 | struct kvm_sw_breakpoint *bp, *next; | |
80b7cd73 | 2003 | KVMState *s = cpu->kvm_state; |
e22a25c9 | 2004 | |
72cf2d4f | 2005 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
80b7cd73 | 2006 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
e22a25c9 | 2007 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
bdc44640 | 2008 | CPU_FOREACH(cpu) { |
20d695a9 | 2009 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { |
e22a25c9 | 2010 | break; |
a426e122 | 2011 | } |
e22a25c9 AL |
2012 | } |
2013 | } | |
78021d6d JK |
2014 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2015 | g_free(bp); | |
e22a25c9 AL |
2016 | } |
2017 | kvm_arch_remove_all_hw_breakpoints(); | |
2018 | ||
bdc44640 | 2019 | CPU_FOREACH(cpu) { |
38e478ec | 2020 | kvm_update_guest_debug(cpu, 0); |
a426e122 | 2021 | } |
e22a25c9 AL |
2022 | } |
2023 | ||
2024 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2025 | ||
38e478ec | 2026 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 AL |
2027 | { |
2028 | return -EINVAL; | |
2029 | } | |
2030 | ||
62278814 | 2031 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2032 | target_ulong len, int type) |
2033 | { | |
2034 | return -EINVAL; | |
2035 | } | |
2036 | ||
62278814 | 2037 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2038 | target_ulong len, int type) |
2039 | { | |
2040 | return -EINVAL; | |
2041 | } | |
2042 | ||
1d5791f4 | 2043 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2044 | { |
2045 | } | |
2046 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2047 | |
491d6e80 | 2048 | int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
cc84de95 MT |
2049 | { |
2050 | struct kvm_signal_mask *sigmask; | |
2051 | int r; | |
2052 | ||
a426e122 | 2053 | if (!sigset) { |
1bc22652 | 2054 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 2055 | } |
cc84de95 | 2056 | |
7267c094 | 2057 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
2058 | |
2059 | sigmask->len = 8; | |
2060 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1bc22652 | 2061 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2062 | g_free(sigmask); |
cc84de95 MT |
2063 | |
2064 | return r; | |
2065 | } | |
290adf38 | 2066 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2067 | { |
20d695a9 | 2068 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
a1b87fe0 JK |
2069 | } |
2070 | ||
2071 | int kvm_on_sigbus(int code, void *addr) | |
2072 | { | |
2073 | return kvm_arch_on_sigbus(code, addr); | |
2074 | } |