]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
1de7afc9 PB |
24 | #include "qemu/atomic.h" |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
d33a1810 | 28 | #include "hw/hw.h" |
a2cb15b0 | 29 | #include "hw/pci/msi.h" |
022c62cb | 30 | #include "exec/gdbstub.h" |
9c17d615 | 31 | #include "sysemu/kvm.h" |
1de7afc9 | 32 | #include "qemu/bswap.h" |
022c62cb PB |
33 | #include "exec/memory.h" |
34 | #include "exec/address-spaces.h" | |
1de7afc9 | 35 | #include "qemu/event_notifier.h" |
05330448 | 36 | |
d2f2b8a7 SH |
37 | /* This check must be after config-host.h is included */ |
38 | #ifdef CONFIG_EVENTFD | |
39 | #include <sys/eventfd.h> | |
40 | #endif | |
41 | ||
62fe8331 CB |
42 | #ifdef CONFIG_VALGRIND_H |
43 | #include <valgrind/memcheck.h> | |
44 | #endif | |
45 | ||
93148aa5 | 46 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
47 | #define PAGE_SIZE TARGET_PAGE_SIZE |
48 | ||
05330448 AL |
49 | //#define DEBUG_KVM |
50 | ||
51 | #ifdef DEBUG_KVM | |
8c0d577e | 52 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
53 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
54 | #else | |
8c0d577e | 55 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
56 | do { } while (0) |
57 | #endif | |
58 | ||
04fa27f5 JK |
59 | #define KVM_MSI_HASHTAB_SIZE 256 |
60 | ||
34fc643f AL |
61 | typedef struct KVMSlot |
62 | { | |
a8170e5e | 63 | hwaddr start_addr; |
c227f099 | 64 | ram_addr_t memory_size; |
9f213ed9 | 65 | void *ram; |
34fc643f AL |
66 | int slot; |
67 | int flags; | |
68 | } KVMSlot; | |
05330448 | 69 | |
5832d1f2 AL |
70 | typedef struct kvm_dirty_log KVMDirtyLog; |
71 | ||
05330448 AL |
72 | struct KVMState |
73 | { | |
74 | KVMSlot slots[32]; | |
75 | int fd; | |
76 | int vmfd; | |
f65ed4c1 | 77 | int coalesced_mmio; |
62a2744c | 78 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 79 | bool coalesced_flush_in_progress; |
e69917e2 | 80 | int broken_set_mem_region; |
4495d6a7 | 81 | int migration_log; |
a0fb002c | 82 | int vcpu_events; |
b0b1d690 | 83 | int robust_singlestep; |
ff44f1a3 | 84 | int debugregs; |
e22a25c9 AL |
85 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
86 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
87 | #endif | |
8a7c7393 | 88 | int pit_state2; |
f1665b21 | 89 | int xsave, xcrs; |
d2f2b8a7 | 90 | int many_ioeventfds; |
3ab73842 | 91 | int intx_set_mask; |
92e4b519 DG |
92 | /* The man page (and posix) say ioctl numbers are signed int, but |
93 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
94 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 95 | unsigned irq_set_ioctl; |
84b058d7 JK |
96 | #ifdef KVM_CAP_IRQ_ROUTING |
97 | struct kvm_irq_routing *irq_routes; | |
98 | int nr_allocated_irq_routes; | |
99 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 100 | unsigned int gsi_count; |
04fa27f5 | 101 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 102 | bool direct_msi; |
84b058d7 | 103 | #endif |
05330448 AL |
104 | }; |
105 | ||
6a7af8cb | 106 | KVMState *kvm_state; |
3d4b2649 | 107 | bool kvm_kernel_irqchip; |
7ae26bd4 | 108 | bool kvm_async_interrupts_allowed; |
cc7e0ddf | 109 | bool kvm_irqfds_allowed; |
614e41bc | 110 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 111 | bool kvm_gsi_routing_allowed; |
13eed94e | 112 | bool kvm_allowed; |
05330448 | 113 | |
94a8d39a JK |
114 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
115 | KVM_CAP_INFO(USER_MEMORY), | |
116 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
117 | KVM_CAP_LAST_INFO | |
118 | }; | |
119 | ||
05330448 AL |
120 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
121 | { | |
122 | int i; | |
123 | ||
124 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 125 | if (s->slots[i].memory_size == 0) { |
05330448 | 126 | return &s->slots[i]; |
a426e122 | 127 | } |
05330448 AL |
128 | } |
129 | ||
d3f8d37f AL |
130 | fprintf(stderr, "%s: no free slot available\n", __func__); |
131 | abort(); | |
132 | } | |
133 | ||
134 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
a8170e5e AK |
135 | hwaddr start_addr, |
136 | hwaddr end_addr) | |
d3f8d37f AL |
137 | { |
138 | int i; | |
139 | ||
140 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
141 | KVMSlot *mem = &s->slots[i]; | |
142 | ||
143 | if (start_addr == mem->start_addr && | |
144 | end_addr == mem->start_addr + mem->memory_size) { | |
145 | return mem; | |
146 | } | |
147 | } | |
148 | ||
05330448 AL |
149 | return NULL; |
150 | } | |
151 | ||
6152e2ae AL |
152 | /* |
153 | * Find overlapping slot with lowest start address | |
154 | */ | |
155 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
a8170e5e AK |
156 | hwaddr start_addr, |
157 | hwaddr end_addr) | |
05330448 | 158 | { |
6152e2ae | 159 | KVMSlot *found = NULL; |
05330448 AL |
160 | int i; |
161 | ||
162 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
163 | KVMSlot *mem = &s->slots[i]; | |
164 | ||
6152e2ae AL |
165 | if (mem->memory_size == 0 || |
166 | (found && found->start_addr < mem->start_addr)) { | |
167 | continue; | |
168 | } | |
169 | ||
170 | if (end_addr > mem->start_addr && | |
171 | start_addr < mem->start_addr + mem->memory_size) { | |
172 | found = mem; | |
173 | } | |
05330448 AL |
174 | } |
175 | ||
6152e2ae | 176 | return found; |
05330448 AL |
177 | } |
178 | ||
9f213ed9 | 179 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 180 | hwaddr *phys_addr) |
983dfc3b HY |
181 | { |
182 | int i; | |
183 | ||
184 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
185 | KVMSlot *mem = &s->slots[i]; | |
186 | ||
9f213ed9 AK |
187 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
188 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
189 | return 1; |
190 | } | |
191 | } | |
192 | ||
193 | return 0; | |
194 | } | |
195 | ||
5832d1f2 AL |
196 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
197 | { | |
198 | struct kvm_userspace_memory_region mem; | |
199 | ||
200 | mem.slot = slot->slot; | |
201 | mem.guest_phys_addr = slot->start_addr; | |
202 | mem.memory_size = slot->memory_size; | |
9f213ed9 | 203 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 204 | mem.flags = slot->flags; |
4495d6a7 JK |
205 | if (s->migration_log) { |
206 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
207 | } | |
5832d1f2 AL |
208 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
209 | } | |
210 | ||
8d2ba1fb JK |
211 | static void kvm_reset_vcpu(void *opaque) |
212 | { | |
20d695a9 | 213 | CPUState *cpu = opaque; |
8d2ba1fb | 214 | |
20d695a9 | 215 | kvm_arch_reset_vcpu(cpu); |
8d2ba1fb | 216 | } |
5832d1f2 | 217 | |
504134d2 | 218 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
219 | { |
220 | KVMState *s = kvm_state; | |
221 | long mmap_size; | |
222 | int ret; | |
223 | ||
8c0d577e | 224 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 225 | |
b164e48e | 226 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); |
05330448 | 227 | if (ret < 0) { |
8c0d577e | 228 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
229 | goto err; |
230 | } | |
231 | ||
8737c51c | 232 | cpu->kvm_fd = ret; |
a60f24b5 | 233 | cpu->kvm_state = s; |
20d695a9 | 234 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
235 | |
236 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
237 | if (mmap_size < 0) { | |
748a680b | 238 | ret = mmap_size; |
8c0d577e | 239 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
240 | goto err; |
241 | } | |
242 | ||
f7575c96 | 243 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 244 | cpu->kvm_fd, 0); |
f7575c96 | 245 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 246 | ret = -errno; |
8c0d577e | 247 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
248 | goto err; |
249 | } | |
250 | ||
a426e122 JK |
251 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
252 | s->coalesced_mmio_ring = | |
f7575c96 | 253 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 254 | } |
62a2744c | 255 | |
20d695a9 | 256 | ret = kvm_arch_init_vcpu(cpu); |
8d2ba1fb | 257 | if (ret == 0) { |
20d695a9 AF |
258 | qemu_register_reset(kvm_reset_vcpu, cpu); |
259 | kvm_arch_reset_vcpu(cpu); | |
8d2ba1fb | 260 | } |
05330448 AL |
261 | err: |
262 | return ret; | |
263 | } | |
264 | ||
5832d1f2 AL |
265 | /* |
266 | * dirty pages logging control | |
267 | */ | |
25254bbc MT |
268 | |
269 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
270 | { | |
271 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
272 | } | |
273 | ||
274 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
275 | { |
276 | KVMState *s = kvm_state; | |
25254bbc | 277 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
278 | int old_flags; |
279 | ||
4495d6a7 | 280 | old_flags = mem->flags; |
5832d1f2 | 281 | |
25254bbc | 282 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); |
5832d1f2 AL |
283 | mem->flags = flags; |
284 | ||
4495d6a7 JK |
285 | /* If nothing changed effectively, no need to issue ioctl */ |
286 | if (s->migration_log) { | |
287 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
288 | } | |
25254bbc | 289 | |
4495d6a7 | 290 | if (flags == old_flags) { |
25254bbc | 291 | return 0; |
4495d6a7 JK |
292 | } |
293 | ||
5832d1f2 AL |
294 | return kvm_set_user_memory_region(s, mem); |
295 | } | |
296 | ||
a8170e5e | 297 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
25254bbc MT |
298 | ram_addr_t size, bool log_dirty) |
299 | { | |
300 | KVMState *s = kvm_state; | |
301 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
302 | ||
303 | if (mem == NULL) { | |
304 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
305 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
a8170e5e | 306 | (hwaddr)(phys_addr + size - 1)); |
25254bbc MT |
307 | return -EINVAL; |
308 | } | |
309 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
310 | } | |
311 | ||
a01672d3 AK |
312 | static void kvm_log_start(MemoryListener *listener, |
313 | MemoryRegionSection *section) | |
5832d1f2 | 314 | { |
a01672d3 AK |
315 | int r; |
316 | ||
317 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
318 | section->size, true); | |
319 | if (r < 0) { | |
320 | abort(); | |
321 | } | |
5832d1f2 AL |
322 | } |
323 | ||
a01672d3 AK |
324 | static void kvm_log_stop(MemoryListener *listener, |
325 | MemoryRegionSection *section) | |
5832d1f2 | 326 | { |
a01672d3 AK |
327 | int r; |
328 | ||
329 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
330 | section->size, false); | |
331 | if (r < 0) { | |
332 | abort(); | |
333 | } | |
5832d1f2 AL |
334 | } |
335 | ||
7b8f3b78 | 336 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
337 | { |
338 | KVMState *s = kvm_state; | |
339 | KVMSlot *mem; | |
340 | int i, err; | |
341 | ||
342 | s->migration_log = enable; | |
343 | ||
344 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
345 | mem = &s->slots[i]; | |
346 | ||
70fedd76 AW |
347 | if (!mem->memory_size) { |
348 | continue; | |
349 | } | |
4495d6a7 JK |
350 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
351 | continue; | |
352 | } | |
353 | err = kvm_set_user_memory_region(s, mem); | |
354 | if (err) { | |
355 | return err; | |
356 | } | |
357 | } | |
358 | return 0; | |
359 | } | |
360 | ||
8369e01c | 361 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
362 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
363 | unsigned long *bitmap) | |
96c1606b | 364 | { |
8369e01c | 365 | unsigned int i, j; |
aa90fec7 | 366 | unsigned long page_number, c; |
a8170e5e | 367 | hwaddr addr, addr1; |
752ced04 | 368 | unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
3145fcb6 | 369 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; |
8369e01c MT |
370 | |
371 | /* | |
372 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
373 | * especially when most of the memory is not dirty. | |
374 | */ | |
375 | for (i = 0; i < len; i++) { | |
376 | if (bitmap[i] != 0) { | |
377 | c = leul_to_cpu(bitmap[i]); | |
378 | do { | |
379 | j = ffsl(c) - 1; | |
380 | c &= ~(1ul << j); | |
3145fcb6 | 381 | page_number = (i * HOST_LONG_BITS + j) * hpratio; |
8369e01c | 382 | addr1 = page_number * TARGET_PAGE_SIZE; |
ffcde12f | 383 | addr = section->offset_within_region + addr1; |
3145fcb6 DG |
384 | memory_region_set_dirty(section->mr, addr, |
385 | TARGET_PAGE_SIZE * hpratio); | |
8369e01c MT |
386 | } while (c != 0); |
387 | } | |
388 | } | |
389 | return 0; | |
96c1606b AG |
390 | } |
391 | ||
8369e01c MT |
392 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
393 | ||
5832d1f2 AL |
394 | /** |
395 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
396 | * This function updates qemu's dirty bitmap using |
397 | * memory_region_set_dirty(). This means all bits are set | |
398 | * to dirty. | |
5832d1f2 | 399 | * |
d3f8d37f | 400 | * @start_add: start of logged region. |
5832d1f2 AL |
401 | * @end_addr: end of logged region. |
402 | */ | |
ffcde12f | 403 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
404 | { |
405 | KVMState *s = kvm_state; | |
151f7749 | 406 | unsigned long size, allocated_size = 0; |
151f7749 JK |
407 | KVMDirtyLog d; |
408 | KVMSlot *mem; | |
409 | int ret = 0; | |
a8170e5e AK |
410 | hwaddr start_addr = section->offset_within_address_space; |
411 | hwaddr end_addr = start_addr + section->size; | |
5832d1f2 | 412 | |
151f7749 JK |
413 | d.dirty_bitmap = NULL; |
414 | while (start_addr < end_addr) { | |
415 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
416 | if (mem == NULL) { | |
417 | break; | |
418 | } | |
5832d1f2 | 419 | |
51b0c606 MT |
420 | /* XXX bad kernel interface alert |
421 | * For dirty bitmap, kernel allocates array of size aligned to | |
422 | * bits-per-long. But for case when the kernel is 64bits and | |
423 | * the userspace is 32bits, userspace can't align to the same | |
424 | * bits-per-long, since sizeof(long) is different between kernel | |
425 | * and user space. This way, userspace will provide buffer which | |
426 | * may be 4 bytes less than the kernel will use, resulting in | |
427 | * userspace memory corruption (which is not detectable by valgrind | |
428 | * too, in most cases). | |
429 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
430 | * a hope that sizeof(long) wont become >8 any time soon. | |
431 | */ | |
432 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
433 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 434 | if (!d.dirty_bitmap) { |
7267c094 | 435 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 436 | } else if (size > allocated_size) { |
7267c094 | 437 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
438 | } |
439 | allocated_size = size; | |
440 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 441 | |
151f7749 | 442 | d.slot = mem->slot; |
5832d1f2 | 443 | |
6e489f3f | 444 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 445 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
446 | ret = -1; |
447 | break; | |
448 | } | |
5832d1f2 | 449 | |
ffcde12f | 450 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 451 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 452 | } |
7267c094 | 453 | g_free(d.dirty_bitmap); |
151f7749 JK |
454 | |
455 | return ret; | |
5832d1f2 AL |
456 | } |
457 | ||
95d2994a AK |
458 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
459 | MemoryRegionSection *secion, | |
a8170e5e | 460 | hwaddr start, hwaddr size) |
f65ed4c1 | 461 | { |
f65ed4c1 AL |
462 | KVMState *s = kvm_state; |
463 | ||
464 | if (s->coalesced_mmio) { | |
465 | struct kvm_coalesced_mmio_zone zone; | |
466 | ||
467 | zone.addr = start; | |
468 | zone.size = size; | |
7e680753 | 469 | zone.pad = 0; |
f65ed4c1 | 470 | |
95d2994a | 471 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 472 | } |
f65ed4c1 AL |
473 | } |
474 | ||
95d2994a AK |
475 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
476 | MemoryRegionSection *secion, | |
a8170e5e | 477 | hwaddr start, hwaddr size) |
f65ed4c1 | 478 | { |
f65ed4c1 AL |
479 | KVMState *s = kvm_state; |
480 | ||
481 | if (s->coalesced_mmio) { | |
482 | struct kvm_coalesced_mmio_zone zone; | |
483 | ||
484 | zone.addr = start; | |
485 | zone.size = size; | |
7e680753 | 486 | zone.pad = 0; |
f65ed4c1 | 487 | |
95d2994a | 488 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 489 | } |
f65ed4c1 AL |
490 | } |
491 | ||
ad7b8b33 AL |
492 | int kvm_check_extension(KVMState *s, unsigned int extension) |
493 | { | |
494 | int ret; | |
495 | ||
496 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
497 | if (ret < 0) { | |
498 | ret = 0; | |
499 | } | |
500 | ||
501 | return ret; | |
502 | } | |
503 | ||
44c3f8f7 | 504 | static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, |
41cb62c2 | 505 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
506 | { |
507 | int ret; | |
508 | struct kvm_ioeventfd iofd; | |
509 | ||
41cb62c2 | 510 | iofd.datamatch = datamatch ? val : 0; |
500ffd4a MT |
511 | iofd.addr = addr; |
512 | iofd.len = size; | |
41cb62c2 | 513 | iofd.flags = 0; |
500ffd4a MT |
514 | iofd.fd = fd; |
515 | ||
516 | if (!kvm_enabled()) { | |
517 | return -ENOSYS; | |
518 | } | |
519 | ||
41cb62c2 MT |
520 | if (datamatch) { |
521 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
522 | } | |
500ffd4a MT |
523 | if (!assign) { |
524 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
525 | } | |
526 | ||
527 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
528 | ||
529 | if (ret < 0) { | |
530 | return -errno; | |
531 | } | |
532 | ||
533 | return 0; | |
534 | } | |
535 | ||
44c3f8f7 | 536 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 537 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
538 | { |
539 | struct kvm_ioeventfd kick = { | |
41cb62c2 | 540 | .datamatch = datamatch ? val : 0, |
500ffd4a | 541 | .addr = addr, |
41cb62c2 | 542 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 543 | .len = size, |
500ffd4a MT |
544 | .fd = fd, |
545 | }; | |
546 | int r; | |
547 | if (!kvm_enabled()) { | |
548 | return -ENOSYS; | |
549 | } | |
41cb62c2 MT |
550 | if (datamatch) { |
551 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
552 | } | |
500ffd4a MT |
553 | if (!assign) { |
554 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
555 | } | |
556 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
557 | if (r < 0) { | |
558 | return r; | |
559 | } | |
560 | return 0; | |
561 | } | |
562 | ||
563 | ||
d2f2b8a7 SH |
564 | static int kvm_check_many_ioeventfds(void) |
565 | { | |
d0dcac83 SH |
566 | /* Userspace can use ioeventfd for io notification. This requires a host |
567 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
568 | * support SIGIO it cannot interrupt the vcpu. | |
569 | * | |
570 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
571 | * can avoid creating too many ioeventfds. |
572 | */ | |
12d4536f | 573 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
574 | int ioeventfds[7]; |
575 | int i, ret = 0; | |
576 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
577 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
578 | if (ioeventfds[i] < 0) { | |
579 | break; | |
580 | } | |
41cb62c2 | 581 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
582 | if (ret < 0) { |
583 | close(ioeventfds[i]); | |
584 | break; | |
585 | } | |
586 | } | |
587 | ||
588 | /* Decide whether many devices are supported or not */ | |
589 | ret = i == ARRAY_SIZE(ioeventfds); | |
590 | ||
591 | while (i-- > 0) { | |
41cb62c2 | 592 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
593 | close(ioeventfds[i]); |
594 | } | |
595 | return ret; | |
596 | #else | |
597 | return 0; | |
598 | #endif | |
599 | } | |
600 | ||
94a8d39a JK |
601 | static const KVMCapabilityInfo * |
602 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
603 | { | |
604 | while (list->name) { | |
605 | if (!kvm_check_extension(s, list->value)) { | |
606 | return list; | |
607 | } | |
608 | list++; | |
609 | } | |
610 | return NULL; | |
611 | } | |
612 | ||
a01672d3 | 613 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
614 | { |
615 | KVMState *s = kvm_state; | |
46dbef6a MT |
616 | KVMSlot *mem, old; |
617 | int err; | |
a01672d3 AK |
618 | MemoryRegion *mr = section->mr; |
619 | bool log_dirty = memory_region_is_logging(mr); | |
a8170e5e | 620 | hwaddr start_addr = section->offset_within_address_space; |
a01672d3 | 621 | ram_addr_t size = section->size; |
9f213ed9 | 622 | void *ram = NULL; |
8f6f962b | 623 | unsigned delta; |
46dbef6a | 624 | |
14542fea GN |
625 | /* kvm works in page size chunks, but the function may be called |
626 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
627 | delta = TARGET_PAGE_ALIGN(size) - size; |
628 | if (delta > size) { | |
629 | return; | |
630 | } | |
631 | start_addr += delta; | |
632 | size -= delta; | |
633 | size &= TARGET_PAGE_MASK; | |
634 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
635 | return; | |
636 | } | |
46dbef6a | 637 | |
a01672d3 AK |
638 | if (!memory_region_is_ram(mr)) { |
639 | return; | |
9f213ed9 AK |
640 | } |
641 | ||
8f6f962b | 642 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 643 | |
46dbef6a MT |
644 | while (1) { |
645 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
646 | if (!mem) { | |
647 | break; | |
648 | } | |
649 | ||
a01672d3 | 650 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 651 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 652 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 653 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
654 | * identical parameters - update flags and done. */ |
655 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
656 | return; |
657 | } | |
658 | ||
659 | old = *mem; | |
660 | ||
3fbffb62 AK |
661 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
662 | kvm_physical_sync_dirty_bitmap(section); | |
663 | } | |
664 | ||
46dbef6a MT |
665 | /* unregister the overlapping slot */ |
666 | mem->memory_size = 0; | |
667 | err = kvm_set_user_memory_region(s, mem); | |
668 | if (err) { | |
669 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
670 | __func__, strerror(-err)); | |
671 | abort(); | |
672 | } | |
673 | ||
674 | /* Workaround for older KVM versions: we can't join slots, even not by | |
675 | * unregistering the previous ones and then registering the larger | |
676 | * slot. We have to maintain the existing fragmentation. Sigh. | |
677 | * | |
678 | * This workaround assumes that the new slot starts at the same | |
679 | * address as the first existing one. If not or if some overlapping | |
680 | * slot comes around later, we will fail (not seen in practice so far) | |
681 | * - and actually require a recent KVM version. */ | |
682 | if (s->broken_set_mem_region && | |
a01672d3 | 683 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
684 | mem = kvm_alloc_slot(s); |
685 | mem->memory_size = old.memory_size; | |
686 | mem->start_addr = old.start_addr; | |
9f213ed9 | 687 | mem->ram = old.ram; |
25254bbc | 688 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
689 | |
690 | err = kvm_set_user_memory_region(s, mem); | |
691 | if (err) { | |
692 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
693 | strerror(-err)); | |
694 | abort(); | |
695 | } | |
696 | ||
697 | start_addr += old.memory_size; | |
9f213ed9 | 698 | ram += old.memory_size; |
46dbef6a MT |
699 | size -= old.memory_size; |
700 | continue; | |
701 | } | |
702 | ||
703 | /* register prefix slot */ | |
704 | if (old.start_addr < start_addr) { | |
705 | mem = kvm_alloc_slot(s); | |
706 | mem->memory_size = start_addr - old.start_addr; | |
707 | mem->start_addr = old.start_addr; | |
9f213ed9 | 708 | mem->ram = old.ram; |
25254bbc | 709 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
710 | |
711 | err = kvm_set_user_memory_region(s, mem); | |
712 | if (err) { | |
713 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
714 | __func__, strerror(-err)); | |
d4d6868f AG |
715 | #ifdef TARGET_PPC |
716 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
717 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
718 | "PAGE_SIZE!\n", __func__); | |
719 | #endif | |
46dbef6a MT |
720 | abort(); |
721 | } | |
722 | } | |
723 | ||
724 | /* register suffix slot */ | |
725 | if (old.start_addr + old.memory_size > start_addr + size) { | |
726 | ram_addr_t size_delta; | |
727 | ||
728 | mem = kvm_alloc_slot(s); | |
729 | mem->start_addr = start_addr + size; | |
730 | size_delta = mem->start_addr - old.start_addr; | |
731 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 732 | mem->ram = old.ram + size_delta; |
25254bbc | 733 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
734 | |
735 | err = kvm_set_user_memory_region(s, mem); | |
736 | if (err) { | |
737 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
738 | __func__, strerror(-err)); | |
739 | abort(); | |
740 | } | |
741 | } | |
742 | } | |
743 | ||
744 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 745 | if (!size) { |
46dbef6a | 746 | return; |
a426e122 | 747 | } |
a01672d3 | 748 | if (!add) { |
46dbef6a | 749 | return; |
a426e122 | 750 | } |
46dbef6a MT |
751 | mem = kvm_alloc_slot(s); |
752 | mem->memory_size = size; | |
753 | mem->start_addr = start_addr; | |
9f213ed9 | 754 | mem->ram = ram; |
25254bbc | 755 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
756 | |
757 | err = kvm_set_user_memory_region(s, mem); | |
758 | if (err) { | |
759 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
760 | strerror(-err)); | |
761 | abort(); | |
762 | } | |
763 | } | |
764 | ||
a01672d3 AK |
765 | static void kvm_region_add(MemoryListener *listener, |
766 | MemoryRegionSection *section) | |
767 | { | |
768 | kvm_set_phys_mem(section, true); | |
769 | } | |
770 | ||
771 | static void kvm_region_del(MemoryListener *listener, | |
772 | MemoryRegionSection *section) | |
773 | { | |
774 | kvm_set_phys_mem(section, false); | |
775 | } | |
776 | ||
777 | static void kvm_log_sync(MemoryListener *listener, | |
778 | MemoryRegionSection *section) | |
7b8f3b78 | 779 | { |
a01672d3 AK |
780 | int r; |
781 | ||
ffcde12f | 782 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
783 | if (r < 0) { |
784 | abort(); | |
785 | } | |
7b8f3b78 MT |
786 | } |
787 | ||
a01672d3 | 788 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 789 | { |
a01672d3 AK |
790 | int r; |
791 | ||
792 | r = kvm_set_migration_log(1); | |
793 | assert(r >= 0); | |
7b8f3b78 MT |
794 | } |
795 | ||
a01672d3 | 796 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 797 | { |
a01672d3 AK |
798 | int r; |
799 | ||
800 | r = kvm_set_migration_log(0); | |
801 | assert(r >= 0); | |
7b8f3b78 MT |
802 | } |
803 | ||
d22b096e AK |
804 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
805 | MemoryRegionSection *section, | |
806 | bool match_data, uint64_t data, | |
807 | EventNotifier *e) | |
808 | { | |
809 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
810 | int r; |
811 | ||
4b8f1c88 | 812 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
41cb62c2 | 813 | data, true, section->size, match_data); |
80a1ea37 AK |
814 | if (r < 0) { |
815 | abort(); | |
816 | } | |
817 | } | |
818 | ||
d22b096e AK |
819 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
820 | MemoryRegionSection *section, | |
821 | bool match_data, uint64_t data, | |
822 | EventNotifier *e) | |
80a1ea37 | 823 | { |
d22b096e | 824 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
825 | int r; |
826 | ||
4b8f1c88 | 827 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
41cb62c2 | 828 | data, false, section->size, match_data); |
80a1ea37 AK |
829 | if (r < 0) { |
830 | abort(); | |
831 | } | |
832 | } | |
833 | ||
d22b096e AK |
834 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
835 | MemoryRegionSection *section, | |
836 | bool match_data, uint64_t data, | |
837 | EventNotifier *e) | |
80a1ea37 | 838 | { |
d22b096e | 839 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
840 | int r; |
841 | ||
44c3f8f7 | 842 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
41cb62c2 | 843 | data, true, section->size, match_data); |
80a1ea37 AK |
844 | if (r < 0) { |
845 | abort(); | |
846 | } | |
847 | } | |
848 | ||
d22b096e AK |
849 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
850 | MemoryRegionSection *section, | |
851 | bool match_data, uint64_t data, | |
852 | EventNotifier *e) | |
80a1ea37 AK |
853 | |
854 | { | |
d22b096e | 855 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
856 | int r; |
857 | ||
44c3f8f7 | 858 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
41cb62c2 | 859 | data, false, section->size, match_data); |
80a1ea37 AK |
860 | if (r < 0) { |
861 | abort(); | |
862 | } | |
863 | } | |
864 | ||
a01672d3 AK |
865 | static MemoryListener kvm_memory_listener = { |
866 | .region_add = kvm_region_add, | |
867 | .region_del = kvm_region_del, | |
e5896b12 AP |
868 | .log_start = kvm_log_start, |
869 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
870 | .log_sync = kvm_log_sync, |
871 | .log_global_start = kvm_log_global_start, | |
872 | .log_global_stop = kvm_log_global_stop, | |
d22b096e AK |
873 | .eventfd_add = kvm_mem_ioeventfd_add, |
874 | .eventfd_del = kvm_mem_ioeventfd_del, | |
95d2994a AK |
875 | .coalesced_mmio_add = kvm_coalesce_mmio_region, |
876 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
d22b096e AK |
877 | .priority = 10, |
878 | }; | |
879 | ||
880 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
881 | .eventfd_add = kvm_io_ioeventfd_add, |
882 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 883 | .priority = 10, |
7b8f3b78 MT |
884 | }; |
885 | ||
c3affe56 | 886 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 887 | { |
259186a7 | 888 | cpu->interrupt_request |= mask; |
aa7f74d1 | 889 | |
60e82579 | 890 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 891 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
892 | } |
893 | } | |
894 | ||
3889c3fa | 895 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
896 | { |
897 | struct kvm_irq_level event; | |
898 | int ret; | |
899 | ||
7ae26bd4 | 900 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
901 | |
902 | event.level = level; | |
903 | event.irq = irq; | |
e333cd69 | 904 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 905 | if (ret < 0) { |
3889c3fa | 906 | perror("kvm_set_irq"); |
84b058d7 JK |
907 | abort(); |
908 | } | |
909 | ||
e333cd69 | 910 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
911 | } |
912 | ||
913 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
914 | typedef struct KVMMSIRoute { |
915 | struct kvm_irq_routing_entry kroute; | |
916 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
917 | } KVMMSIRoute; | |
918 | ||
84b058d7 JK |
919 | static void set_gsi(KVMState *s, unsigned int gsi) |
920 | { | |
84b058d7 JK |
921 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
922 | } | |
923 | ||
04fa27f5 JK |
924 | static void clear_gsi(KVMState *s, unsigned int gsi) |
925 | { | |
926 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
927 | } | |
928 | ||
84b058d7 JK |
929 | static void kvm_init_irq_routing(KVMState *s) |
930 | { | |
04fa27f5 | 931 | int gsi_count, i; |
84b058d7 JK |
932 | |
933 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
934 | if (gsi_count > 0) { | |
935 | unsigned int gsi_bits, i; | |
936 | ||
937 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 938 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 939 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 940 | s->gsi_count = gsi_count; |
84b058d7 JK |
941 | |
942 | /* Mark any over-allocated bits as already in use */ | |
943 | for (i = gsi_count; i < gsi_bits; i++) { | |
944 | set_gsi(s, i); | |
945 | } | |
946 | } | |
947 | ||
948 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
949 | s->nr_allocated_irq_routes = 0; | |
950 | ||
4a3adebb JK |
951 | if (!s->direct_msi) { |
952 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
953 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
954 | } | |
04fa27f5 JK |
955 | } |
956 | ||
84b058d7 JK |
957 | kvm_arch_init_irq_routing(s); |
958 | } | |
959 | ||
e7b20308 JK |
960 | static void kvm_irqchip_commit_routes(KVMState *s) |
961 | { | |
962 | int ret; | |
963 | ||
964 | s->irq_routes->flags = 0; | |
965 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
966 | assert(ret == 0); | |
967 | } | |
968 | ||
84b058d7 JK |
969 | static void kvm_add_routing_entry(KVMState *s, |
970 | struct kvm_irq_routing_entry *entry) | |
971 | { | |
972 | struct kvm_irq_routing_entry *new; | |
973 | int n, size; | |
974 | ||
975 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
976 | n = s->nr_allocated_irq_routes * 2; | |
977 | if (n < 64) { | |
978 | n = 64; | |
979 | } | |
980 | size = sizeof(struct kvm_irq_routing); | |
981 | size += n * sizeof(*new); | |
982 | s->irq_routes = g_realloc(s->irq_routes, size); | |
983 | s->nr_allocated_irq_routes = n; | |
984 | } | |
985 | n = s->irq_routes->nr++; | |
986 | new = &s->irq_routes->entries[n]; | |
987 | memset(new, 0, sizeof(*new)); | |
988 | new->gsi = entry->gsi; | |
989 | new->type = entry->type; | |
990 | new->flags = entry->flags; | |
991 | new->u = entry->u; | |
992 | ||
993 | set_gsi(s, entry->gsi); | |
e7b20308 JK |
994 | |
995 | kvm_irqchip_commit_routes(s); | |
84b058d7 JK |
996 | } |
997 | ||
cc57407e JK |
998 | static int kvm_update_routing_entry(KVMState *s, |
999 | struct kvm_irq_routing_entry *new_entry) | |
1000 | { | |
1001 | struct kvm_irq_routing_entry *entry; | |
1002 | int n; | |
1003 | ||
1004 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1005 | entry = &s->irq_routes->entries[n]; | |
1006 | if (entry->gsi != new_entry->gsi) { | |
1007 | continue; | |
1008 | } | |
1009 | ||
1010 | entry->type = new_entry->type; | |
1011 | entry->flags = new_entry->flags; | |
1012 | entry->u = new_entry->u; | |
1013 | ||
1014 | kvm_irqchip_commit_routes(s); | |
1015 | ||
1016 | return 0; | |
1017 | } | |
1018 | ||
1019 | return -ESRCH; | |
1020 | } | |
1021 | ||
1df186df | 1022 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 JK |
1023 | { |
1024 | struct kvm_irq_routing_entry e; | |
1025 | ||
4e2e4e63 JK |
1026 | assert(pin < s->gsi_count); |
1027 | ||
84b058d7 JK |
1028 | e.gsi = irq; |
1029 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1030 | e.flags = 0; | |
1031 | e.u.irqchip.irqchip = irqchip; | |
1032 | e.u.irqchip.pin = pin; | |
1033 | kvm_add_routing_entry(s, &e); | |
1034 | } | |
1035 | ||
1e2aa8be | 1036 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1037 | { |
1038 | struct kvm_irq_routing_entry *e; | |
1039 | int i; | |
1040 | ||
1041 | for (i = 0; i < s->irq_routes->nr; i++) { | |
1042 | e = &s->irq_routes->entries[i]; | |
1043 | if (e->gsi == virq) { | |
1044 | s->irq_routes->nr--; | |
1045 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1046 | } | |
1047 | } | |
1048 | clear_gsi(s, virq); | |
1049 | } | |
1050 | ||
1051 | static unsigned int kvm_hash_msi(uint32_t data) | |
1052 | { | |
1053 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1054 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1055 | return data & 0xff; | |
1056 | } | |
1057 | ||
1058 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1059 | { | |
1060 | KVMMSIRoute *route, *next; | |
1061 | unsigned int hash; | |
1062 | ||
1063 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1064 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1065 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1066 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1067 | g_free(route); | |
1068 | } | |
1069 | } | |
1070 | } | |
1071 | ||
1072 | static int kvm_irqchip_get_virq(KVMState *s) | |
1073 | { | |
1074 | uint32_t *word = s->used_gsi_bitmap; | |
1075 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1076 | int i, bit; | |
1077 | bool retry = true; | |
1078 | ||
1079 | again: | |
1080 | /* Return the lowest unused GSI in the bitmap */ | |
1081 | for (i = 0; i < max_words; i++) { | |
1082 | bit = ffs(~word[i]); | |
1083 | if (!bit) { | |
1084 | continue; | |
1085 | } | |
1086 | ||
1087 | return bit - 1 + i * 32; | |
1088 | } | |
4a3adebb | 1089 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1090 | retry = false; |
1091 | kvm_flush_dynamic_msi_routes(s); | |
1092 | goto again; | |
1093 | } | |
1094 | return -ENOSPC; | |
1095 | ||
1096 | } | |
1097 | ||
1098 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1099 | { | |
1100 | unsigned int hash = kvm_hash_msi(msg.data); | |
1101 | KVMMSIRoute *route; | |
1102 | ||
1103 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1104 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1105 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1106 | route->kroute.u.msi.data == msg.data) { | |
1107 | return route; | |
1108 | } | |
1109 | } | |
1110 | return NULL; | |
1111 | } | |
1112 | ||
1113 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1114 | { | |
4a3adebb | 1115 | struct kvm_msi msi; |
04fa27f5 JK |
1116 | KVMMSIRoute *route; |
1117 | ||
4a3adebb JK |
1118 | if (s->direct_msi) { |
1119 | msi.address_lo = (uint32_t)msg.address; | |
1120 | msi.address_hi = msg.address >> 32; | |
1121 | msi.data = msg.data; | |
1122 | msi.flags = 0; | |
1123 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1124 | ||
1125 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1126 | } | |
1127 | ||
04fa27f5 JK |
1128 | route = kvm_lookup_msi_route(s, msg); |
1129 | if (!route) { | |
e7b20308 | 1130 | int virq; |
04fa27f5 JK |
1131 | |
1132 | virq = kvm_irqchip_get_virq(s); | |
1133 | if (virq < 0) { | |
1134 | return virq; | |
1135 | } | |
1136 | ||
1137 | route = g_malloc(sizeof(KVMMSIRoute)); | |
1138 | route->kroute.gsi = virq; | |
1139 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1140 | route->kroute.flags = 0; | |
1141 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1142 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1143 | route->kroute.u.msi.data = msg.data; | |
1144 | ||
1145 | kvm_add_routing_entry(s, &route->kroute); | |
1146 | ||
1147 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1148 | entry); | |
04fa27f5 JK |
1149 | } |
1150 | ||
1151 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1152 | ||
3889c3fa | 1153 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1154 | } |
1155 | ||
92b4e489 JK |
1156 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1157 | { | |
1158 | struct kvm_irq_routing_entry kroute; | |
1159 | int virq; | |
1160 | ||
f3e1bed8 | 1161 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1162 | return -ENOSYS; |
1163 | } | |
1164 | ||
1165 | virq = kvm_irqchip_get_virq(s); | |
1166 | if (virq < 0) { | |
1167 | return virq; | |
1168 | } | |
1169 | ||
1170 | kroute.gsi = virq; | |
1171 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1172 | kroute.flags = 0; | |
1173 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1174 | kroute.u.msi.address_hi = msg.address >> 32; | |
1175 | kroute.u.msi.data = msg.data; | |
1176 | ||
1177 | kvm_add_routing_entry(s, &kroute); | |
1178 | ||
1179 | return virq; | |
1180 | } | |
1181 | ||
cc57407e JK |
1182 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1183 | { | |
1184 | struct kvm_irq_routing_entry kroute; | |
1185 | ||
1186 | if (!kvm_irqchip_in_kernel()) { | |
1187 | return -ENOSYS; | |
1188 | } | |
1189 | ||
1190 | kroute.gsi = virq; | |
1191 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1192 | kroute.flags = 0; | |
1193 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1194 | kroute.u.msi.address_hi = msg.address >> 32; | |
1195 | kroute.u.msi.data = msg.data; | |
1196 | ||
1197 | return kvm_update_routing_entry(s, &kroute); | |
1198 | } | |
1199 | ||
39853bbc JK |
1200 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1201 | { | |
1202 | struct kvm_irqfd irqfd = { | |
1203 | .fd = fd, | |
1204 | .gsi = virq, | |
1205 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1206 | }; | |
1207 | ||
cc7e0ddf | 1208 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1209 | return -ENOSYS; |
1210 | } | |
1211 | ||
1212 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1213 | } | |
1214 | ||
84b058d7 JK |
1215 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1216 | ||
1217 | static void kvm_init_irq_routing(KVMState *s) | |
1218 | { | |
1219 | } | |
04fa27f5 | 1220 | |
d3d3bef0 JK |
1221 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1222 | { | |
1223 | } | |
1224 | ||
04fa27f5 JK |
1225 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1226 | { | |
1227 | abort(); | |
1228 | } | |
92b4e489 JK |
1229 | |
1230 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1231 | { | |
df410675 | 1232 | return -ENOSYS; |
92b4e489 | 1233 | } |
39853bbc JK |
1234 | |
1235 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1236 | { | |
1237 | abort(); | |
1238 | } | |
dabe3143 MT |
1239 | |
1240 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1241 | { | |
1242 | return -ENOSYS; | |
1243 | } | |
84b058d7 JK |
1244 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1245 | ||
b131c74a | 1246 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
39853bbc | 1247 | { |
b131c74a | 1248 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); |
39853bbc JK |
1249 | } |
1250 | ||
b131c74a | 1251 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1252 | { |
b131c74a | 1253 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); |
15b2bd18 PB |
1254 | } |
1255 | ||
84b058d7 JK |
1256 | static int kvm_irqchip_create(KVMState *s) |
1257 | { | |
1258 | QemuOptsList *list = qemu_find_opts("machine"); | |
1259 | int ret; | |
1260 | ||
1261 | if (QTAILQ_EMPTY(&list->head) || | |
1262 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
a24b9106 | 1263 | "kernel_irqchip", true) || |
84b058d7 JK |
1264 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1265 | return 0; | |
1266 | } | |
1267 | ||
1268 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1269 | if (ret < 0) { | |
1270 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1271 | return ret; | |
1272 | } | |
1273 | ||
3d4b2649 | 1274 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1275 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1276 | * interrupt delivery (though the reverse is not necessarily true) | |
1277 | */ | |
1278 | kvm_async_interrupts_allowed = true; | |
84b058d7 JK |
1279 | |
1280 | kvm_init_irq_routing(s); | |
1281 | ||
1282 | return 0; | |
1283 | } | |
1284 | ||
3ed444e9 DH |
1285 | static int kvm_max_vcpus(KVMState *s) |
1286 | { | |
1287 | int ret; | |
1288 | ||
1289 | /* Find number of supported CPUs using the recommended | |
1290 | * procedure from the kernel API documentation to cope with | |
1291 | * older kernels that may be missing capabilities. | |
1292 | */ | |
1293 | ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1294 | if (ret) { | |
1295 | return ret; | |
1296 | } | |
1297 | ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1298 | if (ret) { | |
1299 | return ret; | |
1300 | } | |
1301 | ||
1302 | return 4; | |
1303 | } | |
1304 | ||
cad1e282 | 1305 | int kvm_init(void) |
05330448 | 1306 | { |
168ccc11 JK |
1307 | static const char upgrade_note[] = |
1308 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1309 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 1310 | KVMState *s; |
94a8d39a | 1311 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
1312 | int ret; |
1313 | int i; | |
3ed444e9 | 1314 | int max_vcpus; |
05330448 | 1315 | |
7267c094 | 1316 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 1317 | |
3145fcb6 DG |
1318 | /* |
1319 | * On systems where the kernel can support different base page | |
1320 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1321 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1322 | * page size for the system though. | |
1323 | */ | |
1324 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1325 | ||
e22a25c9 | 1326 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1327 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1328 | #endif |
a426e122 | 1329 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 1330 | s->slots[i].slot = i; |
a426e122 | 1331 | } |
05330448 | 1332 | s->vmfd = -1; |
40ff6d7e | 1333 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1334 | if (s->fd == -1) { |
1335 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1336 | ret = -errno; | |
1337 | goto err; | |
1338 | } | |
1339 | ||
1340 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1341 | if (ret < KVM_API_VERSION) { | |
a426e122 | 1342 | if (ret > 0) { |
05330448 | 1343 | ret = -EINVAL; |
a426e122 | 1344 | } |
05330448 AL |
1345 | fprintf(stderr, "kvm version too old\n"); |
1346 | goto err; | |
1347 | } | |
1348 | ||
1349 | if (ret > KVM_API_VERSION) { | |
1350 | ret = -EINVAL; | |
1351 | fprintf(stderr, "kvm version not supported\n"); | |
1352 | goto err; | |
1353 | } | |
1354 | ||
3ed444e9 DH |
1355 | max_vcpus = kvm_max_vcpus(s); |
1356 | if (smp_cpus > max_vcpus) { | |
1357 | ret = -EINVAL; | |
1358 | fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " | |
1359 | "supported by KVM (%d)\n", smp_cpus, max_vcpus); | |
1360 | goto err; | |
1361 | } | |
1362 | ||
05330448 | 1363 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
0104dcac AG |
1364 | if (s->vmfd < 0) { |
1365 | #ifdef TARGET_S390X | |
1366 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1367 | "your host kernel command line\n"); | |
1368 | #endif | |
db9eae1c | 1369 | ret = s->vmfd; |
05330448 | 1370 | goto err; |
0104dcac | 1371 | } |
05330448 | 1372 | |
94a8d39a JK |
1373 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1374 | if (!missing_cap) { | |
1375 | missing_cap = | |
1376 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1377 | } |
94a8d39a | 1378 | if (missing_cap) { |
ad7b8b33 | 1379 | ret = -EINVAL; |
94a8d39a JK |
1380 | fprintf(stderr, "kvm does not support %s\n%s", |
1381 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1382 | goto err; |
1383 | } | |
1384 | ||
ad7b8b33 | 1385 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1386 | |
e69917e2 | 1387 | s->broken_set_mem_region = 1; |
14a09518 | 1388 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1389 | if (ret > 0) { |
1390 | s->broken_set_mem_region = 0; | |
1391 | } | |
e69917e2 | 1392 | |
a0fb002c JK |
1393 | #ifdef KVM_CAP_VCPU_EVENTS |
1394 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1395 | #endif | |
1396 | ||
b0b1d690 JK |
1397 | s->robust_singlestep = |
1398 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1399 | |
ff44f1a3 JK |
1400 | #ifdef KVM_CAP_DEBUGREGS |
1401 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1402 | #endif | |
1403 | ||
f1665b21 SY |
1404 | #ifdef KVM_CAP_XSAVE |
1405 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1406 | #endif | |
1407 | ||
f1665b21 SY |
1408 | #ifdef KVM_CAP_XCRS |
1409 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1410 | #endif | |
1411 | ||
8a7c7393 JK |
1412 | #ifdef KVM_CAP_PIT_STATE2 |
1413 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1414 | #endif | |
1415 | ||
d3d3bef0 | 1416 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1417 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1418 | #endif |
4a3adebb | 1419 | |
3ab73842 JK |
1420 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1421 | ||
e333cd69 | 1422 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1423 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1424 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1425 | } |
1426 | ||
cad1e282 | 1427 | ret = kvm_arch_init(s); |
a426e122 | 1428 | if (ret < 0) { |
05330448 | 1429 | goto err; |
a426e122 | 1430 | } |
05330448 | 1431 | |
84b058d7 JK |
1432 | ret = kvm_irqchip_create(s); |
1433 | if (ret < 0) { | |
1434 | goto err; | |
1435 | } | |
1436 | ||
05330448 | 1437 | kvm_state = s; |
f6790af6 AK |
1438 | memory_listener_register(&kvm_memory_listener, &address_space_memory); |
1439 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
05330448 | 1440 | |
d2f2b8a7 SH |
1441 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1442 | ||
aa7f74d1 JK |
1443 | cpu_interrupt_handler = kvm_handle_interrupt; |
1444 | ||
05330448 AL |
1445 | return 0; |
1446 | ||
1447 | err: | |
6d1cc321 SW |
1448 | if (s->vmfd >= 0) { |
1449 | close(s->vmfd); | |
1450 | } | |
1451 | if (s->fd != -1) { | |
1452 | close(s->fd); | |
05330448 | 1453 | } |
7267c094 | 1454 | g_free(s); |
05330448 AL |
1455 | |
1456 | return ret; | |
1457 | } | |
1458 | ||
b30e93e9 JK |
1459 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1460 | uint32_t count) | |
05330448 AL |
1461 | { |
1462 | int i; | |
1463 | uint8_t *ptr = data; | |
1464 | ||
1465 | for (i = 0; i < count; i++) { | |
1466 | if (direction == KVM_EXIT_IO_IN) { | |
1467 | switch (size) { | |
1468 | case 1: | |
afcea8cb | 1469 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
1470 | break; |
1471 | case 2: | |
afcea8cb | 1472 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
1473 | break; |
1474 | case 4: | |
afcea8cb | 1475 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
1476 | break; |
1477 | } | |
1478 | } else { | |
1479 | switch (size) { | |
1480 | case 1: | |
afcea8cb | 1481 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
1482 | break; |
1483 | case 2: | |
afcea8cb | 1484 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
1485 | break; |
1486 | case 4: | |
afcea8cb | 1487 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
1488 | break; |
1489 | } | |
1490 | } | |
1491 | ||
1492 | ptr += size; | |
1493 | } | |
05330448 AL |
1494 | } |
1495 | ||
9349b4f9 | 1496 | static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) |
7c80eef8 | 1497 | { |
20d695a9 AF |
1498 | CPUState *cpu = ENV_GET_CPU(env); |
1499 | ||
bb44e0d1 | 1500 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1501 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1502 | int i; | |
1503 | ||
bb44e0d1 | 1504 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1505 | for (i = 0; i < run->internal.ndata; ++i) { |
1506 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1507 | i, (uint64_t)run->internal.data[i]); | |
1508 | } | |
bb44e0d1 JK |
1509 | } else { |
1510 | fprintf(stderr, "\n"); | |
7c80eef8 | 1511 | } |
7c80eef8 MT |
1512 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1513 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1514 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
f5c848ee | 1515 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1516 | return EXCP_INTERRUPT; |
a426e122 | 1517 | } |
7c80eef8 MT |
1518 | } |
1519 | /* FIXME: Should trigger a qmp message to let management know | |
1520 | * something went wrong. | |
1521 | */ | |
73aaec4a | 1522 | return -1; |
7c80eef8 | 1523 | } |
7c80eef8 | 1524 | |
62a2744c | 1525 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1526 | { |
f65ed4c1 | 1527 | KVMState *s = kvm_state; |
1cae88b9 AK |
1528 | |
1529 | if (s->coalesced_flush_in_progress) { | |
1530 | return; | |
1531 | } | |
1532 | ||
1533 | s->coalesced_flush_in_progress = true; | |
1534 | ||
62a2744c SY |
1535 | if (s->coalesced_mmio_ring) { |
1536 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1537 | while (ring->first != ring->last) { |
1538 | struct kvm_coalesced_mmio *ent; | |
1539 | ||
1540 | ent = &ring->coalesced_mmio[ring->first]; | |
1541 | ||
1542 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1543 | smp_wmb(); |
f65ed4c1 AL |
1544 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1545 | } | |
1546 | } | |
1cae88b9 AK |
1547 | |
1548 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1549 | } |
1550 | ||
20d695a9 | 1551 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1552 | { |
20d695a9 | 1553 | CPUState *cpu = arg; |
2705d56a | 1554 | |
20d695a9 AF |
1555 | if (!cpu->kvm_vcpu_dirty) { |
1556 | kvm_arch_get_registers(cpu); | |
1557 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1558 | } |
1559 | } | |
1560 | ||
9349b4f9 | 1561 | void kvm_cpu_synchronize_state(CPUArchState *env) |
2705d56a | 1562 | { |
f100f0b3 AF |
1563 | CPUState *cpu = ENV_GET_CPU(env); |
1564 | ||
20d695a9 AF |
1565 | if (!cpu->kvm_vcpu_dirty) { |
1566 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1567 | } |
2705d56a JK |
1568 | } |
1569 | ||
3f24a58f | 1570 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
ea375f9a | 1571 | { |
20d695a9 AF |
1572 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1573 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1574 | } |
1575 | ||
3f24a58f | 1576 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
ea375f9a | 1577 | { |
20d695a9 AF |
1578 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1579 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1580 | } |
1581 | ||
9349b4f9 | 1582 | int kvm_cpu_exec(CPUArchState *env) |
05330448 | 1583 | { |
20d695a9 | 1584 | CPUState *cpu = ENV_GET_CPU(env); |
f7575c96 | 1585 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1586 | int ret, run_ret; |
05330448 | 1587 | |
8c0d577e | 1588 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1589 | |
20d695a9 | 1590 | if (kvm_arch_process_async_events(cpu)) { |
fcd7d003 | 1591 | cpu->exit_request = 0; |
6792a57b | 1592 | return EXCP_HLT; |
9ccfac9e | 1593 | } |
0af691d7 | 1594 | |
9ccfac9e | 1595 | do { |
20d695a9 AF |
1596 | if (cpu->kvm_vcpu_dirty) { |
1597 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1598 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1599 | } |
1600 | ||
20d695a9 | 1601 | kvm_arch_pre_run(cpu, run); |
fcd7d003 | 1602 | if (cpu->exit_request) { |
9ccfac9e JK |
1603 | DPRINTF("interrupt exit requested\n"); |
1604 | /* | |
1605 | * KVM requires us to reenter the kernel after IO exits to complete | |
1606 | * instruction emulation. This self-signal will ensure that we | |
1607 | * leave ASAP again. | |
1608 | */ | |
1609 | qemu_cpu_kick_self(); | |
1610 | } | |
d549db5a | 1611 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1612 | |
1bc22652 | 1613 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1614 | |
d549db5a | 1615 | qemu_mutex_lock_iothread(); |
20d695a9 | 1616 | kvm_arch_post_run(cpu, run); |
05330448 | 1617 | |
7cbb533f | 1618 | if (run_ret < 0) { |
dc77d341 JK |
1619 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1620 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1621 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1622 | break; |
1623 | } | |
7b011fbc ME |
1624 | fprintf(stderr, "error: kvm run failed %s\n", |
1625 | strerror(-run_ret)); | |
05330448 AL |
1626 | abort(); |
1627 | } | |
1628 | ||
05330448 AL |
1629 | switch (run->exit_reason) { |
1630 | case KVM_EXIT_IO: | |
8c0d577e | 1631 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1632 | kvm_handle_io(run->io.port, |
1633 | (uint8_t *)run + run->io.data_offset, | |
1634 | run->io.direction, | |
1635 | run->io.size, | |
1636 | run->io.count); | |
d73cd8f4 | 1637 | ret = 0; |
05330448 AL |
1638 | break; |
1639 | case KVM_EXIT_MMIO: | |
8c0d577e | 1640 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1641 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1642 | run->mmio.data, | |
1643 | run->mmio.len, | |
1644 | run->mmio.is_write); | |
d73cd8f4 | 1645 | ret = 0; |
05330448 AL |
1646 | break; |
1647 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1648 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1649 | ret = EXCP_INTERRUPT; |
05330448 AL |
1650 | break; |
1651 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1652 | DPRINTF("shutdown\n"); |
05330448 | 1653 | qemu_system_reset_request(); |
d73cd8f4 | 1654 | ret = EXCP_INTERRUPT; |
05330448 AL |
1655 | break; |
1656 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1657 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1658 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1659 | ret = -1; |
05330448 | 1660 | break; |
7c80eef8 | 1661 | case KVM_EXIT_INTERNAL_ERROR: |
73aaec4a | 1662 | ret = kvm_handle_internal_error(env, run); |
7c80eef8 | 1663 | break; |
05330448 | 1664 | default: |
8c0d577e | 1665 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1666 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1667 | break; |
1668 | } | |
d73cd8f4 | 1669 | } while (ret == 0); |
05330448 | 1670 | |
73aaec4a | 1671 | if (ret < 0) { |
f5c848ee | 1672 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1673 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1674 | } |
1675 | ||
fcd7d003 | 1676 | cpu->exit_request = 0; |
05330448 AL |
1677 | return ret; |
1678 | } | |
1679 | ||
984b5181 | 1680 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1681 | { |
1682 | int ret; | |
984b5181 AL |
1683 | void *arg; |
1684 | va_list ap; | |
05330448 | 1685 | |
984b5181 AL |
1686 | va_start(ap, type); |
1687 | arg = va_arg(ap, void *); | |
1688 | va_end(ap); | |
1689 | ||
1690 | ret = ioctl(s->fd, type, arg); | |
a426e122 | 1691 | if (ret == -1) { |
05330448 | 1692 | ret = -errno; |
a426e122 | 1693 | } |
05330448 AL |
1694 | return ret; |
1695 | } | |
1696 | ||
984b5181 | 1697 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1698 | { |
1699 | int ret; | |
984b5181 AL |
1700 | void *arg; |
1701 | va_list ap; | |
1702 | ||
1703 | va_start(ap, type); | |
1704 | arg = va_arg(ap, void *); | |
1705 | va_end(ap); | |
05330448 | 1706 | |
984b5181 | 1707 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1708 | if (ret == -1) { |
05330448 | 1709 | ret = -errno; |
a426e122 | 1710 | } |
05330448 AL |
1711 | return ret; |
1712 | } | |
1713 | ||
1bc22652 | 1714 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
1715 | { |
1716 | int ret; | |
984b5181 AL |
1717 | void *arg; |
1718 | va_list ap; | |
1719 | ||
1720 | va_start(ap, type); | |
1721 | arg = va_arg(ap, void *); | |
1722 | va_end(ap); | |
05330448 | 1723 | |
8737c51c | 1724 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 1725 | if (ret == -1) { |
05330448 | 1726 | ret = -errno; |
a426e122 | 1727 | } |
05330448 AL |
1728 | return ret; |
1729 | } | |
bd322087 AL |
1730 | |
1731 | int kvm_has_sync_mmu(void) | |
1732 | { | |
94a8d39a | 1733 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1734 | } |
e22a25c9 | 1735 | |
a0fb002c JK |
1736 | int kvm_has_vcpu_events(void) |
1737 | { | |
1738 | return kvm_state->vcpu_events; | |
1739 | } | |
1740 | ||
b0b1d690 JK |
1741 | int kvm_has_robust_singlestep(void) |
1742 | { | |
1743 | return kvm_state->robust_singlestep; | |
1744 | } | |
1745 | ||
ff44f1a3 JK |
1746 | int kvm_has_debugregs(void) |
1747 | { | |
1748 | return kvm_state->debugregs; | |
1749 | } | |
1750 | ||
f1665b21 SY |
1751 | int kvm_has_xsave(void) |
1752 | { | |
1753 | return kvm_state->xsave; | |
1754 | } | |
1755 | ||
1756 | int kvm_has_xcrs(void) | |
1757 | { | |
1758 | return kvm_state->xcrs; | |
1759 | } | |
1760 | ||
8a7c7393 JK |
1761 | int kvm_has_pit_state2(void) |
1762 | { | |
1763 | return kvm_state->pit_state2; | |
1764 | } | |
1765 | ||
d2f2b8a7 SH |
1766 | int kvm_has_many_ioeventfds(void) |
1767 | { | |
1768 | if (!kvm_enabled()) { | |
1769 | return 0; | |
1770 | } | |
1771 | return kvm_state->many_ioeventfds; | |
1772 | } | |
1773 | ||
84b058d7 JK |
1774 | int kvm_has_gsi_routing(void) |
1775 | { | |
a9c5eb0d | 1776 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1777 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1778 | #else |
1779 | return false; | |
1780 | #endif | |
84b058d7 JK |
1781 | } |
1782 | ||
3ab73842 JK |
1783 | int kvm_has_intx_set_mask(void) |
1784 | { | |
1785 | return kvm_state->intx_set_mask; | |
1786 | } | |
1787 | ||
fdec9918 CB |
1788 | void *kvm_vmalloc(ram_addr_t size) |
1789 | { | |
1790 | #ifdef TARGET_S390X | |
1791 | void *mem; | |
1792 | ||
1793 | mem = kvm_arch_vmalloc(size); | |
1794 | if (mem) { | |
1795 | return mem; | |
1796 | } | |
1797 | #endif | |
1798 | return qemu_vmalloc(size); | |
1799 | } | |
1800 | ||
6f0437e8 JK |
1801 | void kvm_setup_guest_memory(void *start, size_t size) |
1802 | { | |
62fe8331 CB |
1803 | #ifdef CONFIG_VALGRIND_H |
1804 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1805 | #endif | |
6f0437e8 | 1806 | if (!kvm_has_sync_mmu()) { |
e78815a5 | 1807 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1808 | |
1809 | if (ret) { | |
e78815a5 AF |
1810 | perror("qemu_madvise"); |
1811 | fprintf(stderr, | |
1812 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1813 | exit(1); |
1814 | } | |
6f0437e8 JK |
1815 | } |
1816 | } | |
1817 | ||
e22a25c9 | 1818 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 1819 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
1820 | target_ulong pc) |
1821 | { | |
1822 | struct kvm_sw_breakpoint *bp; | |
1823 | ||
a60f24b5 | 1824 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1825 | if (bp->pc == pc) { |
e22a25c9 | 1826 | return bp; |
a426e122 | 1827 | } |
e22a25c9 AL |
1828 | } |
1829 | return NULL; | |
1830 | } | |
1831 | ||
a60f24b5 | 1832 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 1833 | { |
a60f24b5 | 1834 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1835 | } |
1836 | ||
452e4751 GC |
1837 | struct kvm_set_guest_debug_data { |
1838 | struct kvm_guest_debug dbg; | |
a60f24b5 | 1839 | CPUState *cpu; |
452e4751 GC |
1840 | int err; |
1841 | }; | |
1842 | ||
1843 | static void kvm_invoke_set_guest_debug(void *data) | |
1844 | { | |
1845 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 1846 | |
a60f24b5 AF |
1847 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
1848 | &dbg_data->dbg); | |
452e4751 GC |
1849 | } |
1850 | ||
9349b4f9 | 1851 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 | 1852 | { |
f100f0b3 | 1853 | CPUState *cpu = ENV_GET_CPU(env); |
452e4751 | 1854 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1855 | |
b0b1d690 | 1856 | data.dbg.control = reinject_trap; |
e22a25c9 | 1857 | |
b0b1d690 JK |
1858 | if (env->singlestep_enabled) { |
1859 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1860 | } | |
20d695a9 | 1861 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 1862 | data.cpu = cpu; |
e22a25c9 | 1863 | |
f100f0b3 | 1864 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1865 | return data.err; |
e22a25c9 AL |
1866 | } |
1867 | ||
9349b4f9 | 1868 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1869 | target_ulong len, int type) |
1870 | { | |
20d695a9 | 1871 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1872 | struct kvm_sw_breakpoint *bp; |
9349b4f9 | 1873 | CPUArchState *env; |
e22a25c9 AL |
1874 | int err; |
1875 | ||
1876 | if (type == GDB_BREAKPOINT_SW) { | |
a60f24b5 | 1877 | bp = kvm_find_sw_breakpoint(current_cpu, addr); |
e22a25c9 AL |
1878 | if (bp) { |
1879 | bp->use_count++; | |
1880 | return 0; | |
1881 | } | |
1882 | ||
7267c094 | 1883 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1884 | if (!bp) { |
e22a25c9 | 1885 | return -ENOMEM; |
a426e122 | 1886 | } |
e22a25c9 AL |
1887 | |
1888 | bp->pc = addr; | |
1889 | bp->use_count = 1; | |
20d695a9 | 1890 | err = kvm_arch_insert_sw_breakpoint(current_cpu, bp); |
e22a25c9 | 1891 | if (err) { |
7267c094 | 1892 | g_free(bp); |
e22a25c9 AL |
1893 | return err; |
1894 | } | |
1895 | ||
a60f24b5 | 1896 | QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1897 | bp, entry); |
1898 | } else { | |
1899 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1900 | if (err) { |
e22a25c9 | 1901 | return err; |
a426e122 | 1902 | } |
e22a25c9 AL |
1903 | } |
1904 | ||
1905 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1906 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1907 | if (err) { |
e22a25c9 | 1908 | return err; |
a426e122 | 1909 | } |
e22a25c9 AL |
1910 | } |
1911 | return 0; | |
1912 | } | |
1913 | ||
9349b4f9 | 1914 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1915 | target_ulong len, int type) |
1916 | { | |
20d695a9 | 1917 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1918 | struct kvm_sw_breakpoint *bp; |
9349b4f9 | 1919 | CPUArchState *env; |
e22a25c9 AL |
1920 | int err; |
1921 | ||
1922 | if (type == GDB_BREAKPOINT_SW) { | |
a60f24b5 | 1923 | bp = kvm_find_sw_breakpoint(current_cpu, addr); |
a426e122 | 1924 | if (!bp) { |
e22a25c9 | 1925 | return -ENOENT; |
a426e122 | 1926 | } |
e22a25c9 AL |
1927 | |
1928 | if (bp->use_count > 1) { | |
1929 | bp->use_count--; | |
1930 | return 0; | |
1931 | } | |
1932 | ||
20d695a9 | 1933 | err = kvm_arch_remove_sw_breakpoint(current_cpu, bp); |
a426e122 | 1934 | if (err) { |
e22a25c9 | 1935 | return err; |
a426e122 | 1936 | } |
e22a25c9 | 1937 | |
a60f24b5 | 1938 | QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1939 | g_free(bp); |
e22a25c9 AL |
1940 | } else { |
1941 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1942 | if (err) { |
e22a25c9 | 1943 | return err; |
a426e122 | 1944 | } |
e22a25c9 AL |
1945 | } |
1946 | ||
1947 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1948 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1949 | if (err) { |
e22a25c9 | 1950 | return err; |
a426e122 | 1951 | } |
e22a25c9 AL |
1952 | } |
1953 | return 0; | |
1954 | } | |
1955 | ||
9349b4f9 | 1956 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 | 1957 | { |
20d695a9 | 1958 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1959 | struct kvm_sw_breakpoint *bp, *next; |
a60f24b5 | 1960 | KVMState *s = current_cpu->kvm_state; |
9349b4f9 | 1961 | CPUArchState *env; |
20d695a9 | 1962 | CPUState *cpu; |
e22a25c9 | 1963 | |
72cf2d4f | 1964 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
20d695a9 | 1965 | if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) { |
e22a25c9 AL |
1966 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
1967 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
20d695a9 AF |
1968 | cpu = ENV_GET_CPU(env); |
1969 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { | |
e22a25c9 | 1970 | break; |
a426e122 | 1971 | } |
e22a25c9 AL |
1972 | } |
1973 | } | |
78021d6d JK |
1974 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
1975 | g_free(bp); | |
e22a25c9 AL |
1976 | } |
1977 | kvm_arch_remove_all_hw_breakpoints(); | |
1978 | ||
a426e122 | 1979 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 1980 | kvm_update_guest_debug(env, 0); |
a426e122 | 1981 | } |
e22a25c9 AL |
1982 | } |
1983 | ||
1984 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1985 | ||
9349b4f9 | 1986 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 AL |
1987 | { |
1988 | return -EINVAL; | |
1989 | } | |
1990 | ||
9349b4f9 | 1991 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1992 | target_ulong len, int type) |
1993 | { | |
1994 | return -EINVAL; | |
1995 | } | |
1996 | ||
9349b4f9 | 1997 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1998 | target_ulong len, int type) |
1999 | { | |
2000 | return -EINVAL; | |
2001 | } | |
2002 | ||
9349b4f9 | 2003 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 AL |
2004 | { |
2005 | } | |
2006 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2007 | |
9349b4f9 | 2008 | int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) |
cc84de95 | 2009 | { |
1bc22652 | 2010 | CPUState *cpu = ENV_GET_CPU(env); |
cc84de95 MT |
2011 | struct kvm_signal_mask *sigmask; |
2012 | int r; | |
2013 | ||
a426e122 | 2014 | if (!sigset) { |
1bc22652 | 2015 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 2016 | } |
cc84de95 | 2017 | |
7267c094 | 2018 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
2019 | |
2020 | sigmask->len = 8; | |
2021 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1bc22652 | 2022 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2023 | g_free(sigmask); |
cc84de95 MT |
2024 | |
2025 | return r; | |
2026 | } | |
290adf38 | 2027 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2028 | { |
20d695a9 | 2029 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
a1b87fe0 JK |
2030 | } |
2031 | ||
2032 | int kvm_on_sigbus(int code, void *addr) | |
2033 | { | |
2034 | return kvm_arch_on_sigbus(code, addr); | |
2035 | } |