]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
1de7afc9 PB |
24 | #include "qemu/atomic.h" |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
d33a1810 | 28 | #include "hw/hw.h" |
a2cb15b0 | 29 | #include "hw/pci/msi.h" |
022c62cb | 30 | #include "exec/gdbstub.h" |
9c17d615 | 31 | #include "sysemu/kvm.h" |
1de7afc9 | 32 | #include "qemu/bswap.h" |
022c62cb PB |
33 | #include "exec/memory.h" |
34 | #include "exec/address-spaces.h" | |
1de7afc9 | 35 | #include "qemu/event_notifier.h" |
9c775729 | 36 | #include "trace.h" |
05330448 | 37 | |
d2f2b8a7 SH |
38 | /* This check must be after config-host.h is included */ |
39 | #ifdef CONFIG_EVENTFD | |
40 | #include <sys/eventfd.h> | |
41 | #endif | |
42 | ||
62fe8331 CB |
43 | #ifdef CONFIG_VALGRIND_H |
44 | #include <valgrind/memcheck.h> | |
45 | #endif | |
46 | ||
93148aa5 | 47 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
48 | #define PAGE_SIZE TARGET_PAGE_SIZE |
49 | ||
05330448 AL |
50 | //#define DEBUG_KVM |
51 | ||
52 | #ifdef DEBUG_KVM | |
8c0d577e | 53 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
54 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
55 | #else | |
8c0d577e | 56 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
57 | do { } while (0) |
58 | #endif | |
59 | ||
04fa27f5 JK |
60 | #define KVM_MSI_HASHTAB_SIZE 256 |
61 | ||
34fc643f AL |
62 | typedef struct KVMSlot |
63 | { | |
a8170e5e | 64 | hwaddr start_addr; |
c227f099 | 65 | ram_addr_t memory_size; |
9f213ed9 | 66 | void *ram; |
34fc643f AL |
67 | int slot; |
68 | int flags; | |
69 | } KVMSlot; | |
05330448 | 70 | |
5832d1f2 AL |
71 | typedef struct kvm_dirty_log KVMDirtyLog; |
72 | ||
05330448 AL |
73 | struct KVMState |
74 | { | |
75 | KVMSlot slots[32]; | |
76 | int fd; | |
77 | int vmfd; | |
f65ed4c1 | 78 | int coalesced_mmio; |
62a2744c | 79 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 80 | bool coalesced_flush_in_progress; |
e69917e2 | 81 | int broken_set_mem_region; |
4495d6a7 | 82 | int migration_log; |
a0fb002c | 83 | int vcpu_events; |
b0b1d690 | 84 | int robust_singlestep; |
ff44f1a3 | 85 | int debugregs; |
e22a25c9 AL |
86 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
87 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
88 | #endif | |
8a7c7393 | 89 | int pit_state2; |
f1665b21 | 90 | int xsave, xcrs; |
d2f2b8a7 | 91 | int many_ioeventfds; |
3ab73842 | 92 | int intx_set_mask; |
92e4b519 DG |
93 | /* The man page (and posix) say ioctl numbers are signed int, but |
94 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
95 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 96 | unsigned irq_set_ioctl; |
84b058d7 JK |
97 | #ifdef KVM_CAP_IRQ_ROUTING |
98 | struct kvm_irq_routing *irq_routes; | |
99 | int nr_allocated_irq_routes; | |
100 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 101 | unsigned int gsi_count; |
04fa27f5 | 102 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 103 | bool direct_msi; |
84b058d7 | 104 | #endif |
05330448 AL |
105 | }; |
106 | ||
6a7af8cb | 107 | KVMState *kvm_state; |
3d4b2649 | 108 | bool kvm_kernel_irqchip; |
7ae26bd4 | 109 | bool kvm_async_interrupts_allowed; |
215e79c0 | 110 | bool kvm_halt_in_kernel_allowed; |
cc7e0ddf | 111 | bool kvm_irqfds_allowed; |
614e41bc | 112 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 113 | bool kvm_gsi_routing_allowed; |
76fe21de | 114 | bool kvm_gsi_direct_mapping; |
13eed94e | 115 | bool kvm_allowed; |
df9c8b75 | 116 | bool kvm_readonly_mem_allowed; |
05330448 | 117 | |
94a8d39a JK |
118 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
119 | KVM_CAP_INFO(USER_MEMORY), | |
120 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
121 | KVM_CAP_LAST_INFO | |
122 | }; | |
123 | ||
05330448 AL |
124 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
125 | { | |
126 | int i; | |
127 | ||
128 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 129 | if (s->slots[i].memory_size == 0) { |
05330448 | 130 | return &s->slots[i]; |
a426e122 | 131 | } |
05330448 AL |
132 | } |
133 | ||
d3f8d37f AL |
134 | fprintf(stderr, "%s: no free slot available\n", __func__); |
135 | abort(); | |
136 | } | |
137 | ||
138 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
a8170e5e AK |
139 | hwaddr start_addr, |
140 | hwaddr end_addr) | |
d3f8d37f AL |
141 | { |
142 | int i; | |
143 | ||
144 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
145 | KVMSlot *mem = &s->slots[i]; | |
146 | ||
147 | if (start_addr == mem->start_addr && | |
148 | end_addr == mem->start_addr + mem->memory_size) { | |
149 | return mem; | |
150 | } | |
151 | } | |
152 | ||
05330448 AL |
153 | return NULL; |
154 | } | |
155 | ||
6152e2ae AL |
156 | /* |
157 | * Find overlapping slot with lowest start address | |
158 | */ | |
159 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
a8170e5e AK |
160 | hwaddr start_addr, |
161 | hwaddr end_addr) | |
05330448 | 162 | { |
6152e2ae | 163 | KVMSlot *found = NULL; |
05330448 AL |
164 | int i; |
165 | ||
166 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
167 | KVMSlot *mem = &s->slots[i]; | |
168 | ||
6152e2ae AL |
169 | if (mem->memory_size == 0 || |
170 | (found && found->start_addr < mem->start_addr)) { | |
171 | continue; | |
172 | } | |
173 | ||
174 | if (end_addr > mem->start_addr && | |
175 | start_addr < mem->start_addr + mem->memory_size) { | |
176 | found = mem; | |
177 | } | |
05330448 AL |
178 | } |
179 | ||
6152e2ae | 180 | return found; |
05330448 AL |
181 | } |
182 | ||
9f213ed9 | 183 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 184 | hwaddr *phys_addr) |
983dfc3b HY |
185 | { |
186 | int i; | |
187 | ||
188 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
189 | KVMSlot *mem = &s->slots[i]; | |
190 | ||
9f213ed9 AK |
191 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
192 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
193 | return 1; |
194 | } | |
195 | } | |
196 | ||
197 | return 0; | |
198 | } | |
199 | ||
5832d1f2 AL |
200 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
201 | { | |
202 | struct kvm_userspace_memory_region mem; | |
203 | ||
204 | mem.slot = slot->slot; | |
205 | mem.guest_phys_addr = slot->start_addr; | |
9f213ed9 | 206 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 207 | mem.flags = slot->flags; |
4495d6a7 JK |
208 | if (s->migration_log) { |
209 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
210 | } | |
651eb0f4 XG |
211 | |
212 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
235e8982 JJ |
213 | /* Set the slot size to 0 before setting the slot to the desired |
214 | * value. This is needed based on KVM commit 75d61fbc. */ | |
215 | mem.memory_size = 0; | |
216 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
217 | } | |
218 | mem.memory_size = slot->memory_size; | |
5832d1f2 AL |
219 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
220 | } | |
221 | ||
8d2ba1fb JK |
222 | static void kvm_reset_vcpu(void *opaque) |
223 | { | |
20d695a9 | 224 | CPUState *cpu = opaque; |
8d2ba1fb | 225 | |
20d695a9 | 226 | kvm_arch_reset_vcpu(cpu); |
8d2ba1fb | 227 | } |
5832d1f2 | 228 | |
504134d2 | 229 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
230 | { |
231 | KVMState *s = kvm_state; | |
232 | long mmap_size; | |
233 | int ret; | |
234 | ||
8c0d577e | 235 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 236 | |
b164e48e | 237 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); |
05330448 | 238 | if (ret < 0) { |
8c0d577e | 239 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
240 | goto err; |
241 | } | |
242 | ||
8737c51c | 243 | cpu->kvm_fd = ret; |
a60f24b5 | 244 | cpu->kvm_state = s; |
20d695a9 | 245 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
246 | |
247 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
248 | if (mmap_size < 0) { | |
748a680b | 249 | ret = mmap_size; |
8c0d577e | 250 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
251 | goto err; |
252 | } | |
253 | ||
f7575c96 | 254 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 255 | cpu->kvm_fd, 0); |
f7575c96 | 256 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 257 | ret = -errno; |
8c0d577e | 258 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
259 | goto err; |
260 | } | |
261 | ||
a426e122 JK |
262 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
263 | s->coalesced_mmio_ring = | |
f7575c96 | 264 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 265 | } |
62a2744c | 266 | |
20d695a9 | 267 | ret = kvm_arch_init_vcpu(cpu); |
8d2ba1fb | 268 | if (ret == 0) { |
20d695a9 AF |
269 | qemu_register_reset(kvm_reset_vcpu, cpu); |
270 | kvm_arch_reset_vcpu(cpu); | |
8d2ba1fb | 271 | } |
05330448 AL |
272 | err: |
273 | return ret; | |
274 | } | |
275 | ||
5832d1f2 AL |
276 | /* |
277 | * dirty pages logging control | |
278 | */ | |
25254bbc | 279 | |
235e8982 | 280 | static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) |
25254bbc | 281 | { |
235e8982 JJ |
282 | int flags = 0; |
283 | flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
284 | if (readonly && kvm_readonly_mem_allowed) { | |
285 | flags |= KVM_MEM_READONLY; | |
286 | } | |
287 | return flags; | |
25254bbc MT |
288 | } |
289 | ||
290 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
291 | { |
292 | KVMState *s = kvm_state; | |
25254bbc | 293 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
294 | int old_flags; |
295 | ||
4495d6a7 | 296 | old_flags = mem->flags; |
5832d1f2 | 297 | |
235e8982 | 298 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); |
5832d1f2 AL |
299 | mem->flags = flags; |
300 | ||
4495d6a7 JK |
301 | /* If nothing changed effectively, no need to issue ioctl */ |
302 | if (s->migration_log) { | |
303 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
304 | } | |
25254bbc | 305 | |
4495d6a7 | 306 | if (flags == old_flags) { |
25254bbc | 307 | return 0; |
4495d6a7 JK |
308 | } |
309 | ||
5832d1f2 AL |
310 | return kvm_set_user_memory_region(s, mem); |
311 | } | |
312 | ||
a8170e5e | 313 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
25254bbc MT |
314 | ram_addr_t size, bool log_dirty) |
315 | { | |
316 | KVMState *s = kvm_state; | |
317 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
318 | ||
319 | if (mem == NULL) { | |
320 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
321 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
a8170e5e | 322 | (hwaddr)(phys_addr + size - 1)); |
25254bbc MT |
323 | return -EINVAL; |
324 | } | |
325 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
326 | } | |
327 | ||
a01672d3 AK |
328 | static void kvm_log_start(MemoryListener *listener, |
329 | MemoryRegionSection *section) | |
5832d1f2 | 330 | { |
a01672d3 AK |
331 | int r; |
332 | ||
333 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
052e87b0 | 334 | int128_get64(section->size), true); |
a01672d3 AK |
335 | if (r < 0) { |
336 | abort(); | |
337 | } | |
5832d1f2 AL |
338 | } |
339 | ||
a01672d3 AK |
340 | static void kvm_log_stop(MemoryListener *listener, |
341 | MemoryRegionSection *section) | |
5832d1f2 | 342 | { |
a01672d3 AK |
343 | int r; |
344 | ||
345 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
052e87b0 | 346 | int128_get64(section->size), false); |
a01672d3 AK |
347 | if (r < 0) { |
348 | abort(); | |
349 | } | |
5832d1f2 AL |
350 | } |
351 | ||
7b8f3b78 | 352 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
353 | { |
354 | KVMState *s = kvm_state; | |
355 | KVMSlot *mem; | |
356 | int i, err; | |
357 | ||
358 | s->migration_log = enable; | |
359 | ||
360 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
361 | mem = &s->slots[i]; | |
362 | ||
70fedd76 AW |
363 | if (!mem->memory_size) { |
364 | continue; | |
365 | } | |
4495d6a7 JK |
366 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
367 | continue; | |
368 | } | |
369 | err = kvm_set_user_memory_region(s, mem); | |
370 | if (err) { | |
371 | return err; | |
372 | } | |
373 | } | |
374 | return 0; | |
375 | } | |
376 | ||
8369e01c | 377 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
378 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
379 | unsigned long *bitmap) | |
96c1606b | 380 | { |
8369e01c | 381 | unsigned int i, j; |
aa90fec7 | 382 | unsigned long page_number, c; |
a8170e5e | 383 | hwaddr addr, addr1; |
052e87b0 PB |
384 | unsigned int pages = int128_get64(section->size) / getpagesize(); |
385 | unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; | |
3145fcb6 | 386 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; |
8369e01c MT |
387 | |
388 | /* | |
389 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
390 | * especially when most of the memory is not dirty. | |
391 | */ | |
392 | for (i = 0; i < len; i++) { | |
393 | if (bitmap[i] != 0) { | |
394 | c = leul_to_cpu(bitmap[i]); | |
395 | do { | |
396 | j = ffsl(c) - 1; | |
397 | c &= ~(1ul << j); | |
3145fcb6 | 398 | page_number = (i * HOST_LONG_BITS + j) * hpratio; |
8369e01c | 399 | addr1 = page_number * TARGET_PAGE_SIZE; |
ffcde12f | 400 | addr = section->offset_within_region + addr1; |
3145fcb6 DG |
401 | memory_region_set_dirty(section->mr, addr, |
402 | TARGET_PAGE_SIZE * hpratio); | |
8369e01c MT |
403 | } while (c != 0); |
404 | } | |
405 | } | |
406 | return 0; | |
96c1606b AG |
407 | } |
408 | ||
8369e01c MT |
409 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
410 | ||
5832d1f2 AL |
411 | /** |
412 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
413 | * This function updates qemu's dirty bitmap using |
414 | * memory_region_set_dirty(). This means all bits are set | |
415 | * to dirty. | |
5832d1f2 | 416 | * |
d3f8d37f | 417 | * @start_add: start of logged region. |
5832d1f2 AL |
418 | * @end_addr: end of logged region. |
419 | */ | |
ffcde12f | 420 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
421 | { |
422 | KVMState *s = kvm_state; | |
151f7749 | 423 | unsigned long size, allocated_size = 0; |
151f7749 JK |
424 | KVMDirtyLog d; |
425 | KVMSlot *mem; | |
426 | int ret = 0; | |
a8170e5e | 427 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 428 | hwaddr end_addr = start_addr + int128_get64(section->size); |
5832d1f2 | 429 | |
151f7749 JK |
430 | d.dirty_bitmap = NULL; |
431 | while (start_addr < end_addr) { | |
432 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
433 | if (mem == NULL) { | |
434 | break; | |
435 | } | |
5832d1f2 | 436 | |
51b0c606 MT |
437 | /* XXX bad kernel interface alert |
438 | * For dirty bitmap, kernel allocates array of size aligned to | |
439 | * bits-per-long. But for case when the kernel is 64bits and | |
440 | * the userspace is 32bits, userspace can't align to the same | |
441 | * bits-per-long, since sizeof(long) is different between kernel | |
442 | * and user space. This way, userspace will provide buffer which | |
443 | * may be 4 bytes less than the kernel will use, resulting in | |
444 | * userspace memory corruption (which is not detectable by valgrind | |
445 | * too, in most cases). | |
446 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
447 | * a hope that sizeof(long) wont become >8 any time soon. | |
448 | */ | |
449 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
450 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 451 | if (!d.dirty_bitmap) { |
7267c094 | 452 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 453 | } else if (size > allocated_size) { |
7267c094 | 454 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
455 | } |
456 | allocated_size = size; | |
457 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 458 | |
151f7749 | 459 | d.slot = mem->slot; |
5832d1f2 | 460 | |
6e489f3f | 461 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 462 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
463 | ret = -1; |
464 | break; | |
465 | } | |
5832d1f2 | 466 | |
ffcde12f | 467 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 468 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 469 | } |
7267c094 | 470 | g_free(d.dirty_bitmap); |
151f7749 JK |
471 | |
472 | return ret; | |
5832d1f2 AL |
473 | } |
474 | ||
95d2994a AK |
475 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
476 | MemoryRegionSection *secion, | |
a8170e5e | 477 | hwaddr start, hwaddr size) |
f65ed4c1 | 478 | { |
f65ed4c1 AL |
479 | KVMState *s = kvm_state; |
480 | ||
481 | if (s->coalesced_mmio) { | |
482 | struct kvm_coalesced_mmio_zone zone; | |
483 | ||
484 | zone.addr = start; | |
485 | zone.size = size; | |
7e680753 | 486 | zone.pad = 0; |
f65ed4c1 | 487 | |
95d2994a | 488 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 489 | } |
f65ed4c1 AL |
490 | } |
491 | ||
95d2994a AK |
492 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
493 | MemoryRegionSection *secion, | |
a8170e5e | 494 | hwaddr start, hwaddr size) |
f65ed4c1 | 495 | { |
f65ed4c1 AL |
496 | KVMState *s = kvm_state; |
497 | ||
498 | if (s->coalesced_mmio) { | |
499 | struct kvm_coalesced_mmio_zone zone; | |
500 | ||
501 | zone.addr = start; | |
502 | zone.size = size; | |
7e680753 | 503 | zone.pad = 0; |
f65ed4c1 | 504 | |
95d2994a | 505 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 506 | } |
f65ed4c1 AL |
507 | } |
508 | ||
ad7b8b33 AL |
509 | int kvm_check_extension(KVMState *s, unsigned int extension) |
510 | { | |
511 | int ret; | |
512 | ||
513 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
514 | if (ret < 0) { | |
515 | ret = 0; | |
516 | } | |
517 | ||
518 | return ret; | |
519 | } | |
520 | ||
44c3f8f7 | 521 | static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, |
41cb62c2 | 522 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
523 | { |
524 | int ret; | |
525 | struct kvm_ioeventfd iofd; | |
526 | ||
41cb62c2 | 527 | iofd.datamatch = datamatch ? val : 0; |
500ffd4a MT |
528 | iofd.addr = addr; |
529 | iofd.len = size; | |
41cb62c2 | 530 | iofd.flags = 0; |
500ffd4a MT |
531 | iofd.fd = fd; |
532 | ||
533 | if (!kvm_enabled()) { | |
534 | return -ENOSYS; | |
535 | } | |
536 | ||
41cb62c2 MT |
537 | if (datamatch) { |
538 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
539 | } | |
500ffd4a MT |
540 | if (!assign) { |
541 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
542 | } | |
543 | ||
544 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
545 | ||
546 | if (ret < 0) { | |
547 | return -errno; | |
548 | } | |
549 | ||
550 | return 0; | |
551 | } | |
552 | ||
44c3f8f7 | 553 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 554 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
555 | { |
556 | struct kvm_ioeventfd kick = { | |
41cb62c2 | 557 | .datamatch = datamatch ? val : 0, |
500ffd4a | 558 | .addr = addr, |
41cb62c2 | 559 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 560 | .len = size, |
500ffd4a MT |
561 | .fd = fd, |
562 | }; | |
563 | int r; | |
564 | if (!kvm_enabled()) { | |
565 | return -ENOSYS; | |
566 | } | |
41cb62c2 MT |
567 | if (datamatch) { |
568 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
569 | } | |
500ffd4a MT |
570 | if (!assign) { |
571 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
572 | } | |
573 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
574 | if (r < 0) { | |
575 | return r; | |
576 | } | |
577 | return 0; | |
578 | } | |
579 | ||
580 | ||
d2f2b8a7 SH |
581 | static int kvm_check_many_ioeventfds(void) |
582 | { | |
d0dcac83 SH |
583 | /* Userspace can use ioeventfd for io notification. This requires a host |
584 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
585 | * support SIGIO it cannot interrupt the vcpu. | |
586 | * | |
587 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
588 | * can avoid creating too many ioeventfds. |
589 | */ | |
12d4536f | 590 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
591 | int ioeventfds[7]; |
592 | int i, ret = 0; | |
593 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
594 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
595 | if (ioeventfds[i] < 0) { | |
596 | break; | |
597 | } | |
41cb62c2 | 598 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
599 | if (ret < 0) { |
600 | close(ioeventfds[i]); | |
601 | break; | |
602 | } | |
603 | } | |
604 | ||
605 | /* Decide whether many devices are supported or not */ | |
606 | ret = i == ARRAY_SIZE(ioeventfds); | |
607 | ||
608 | while (i-- > 0) { | |
41cb62c2 | 609 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
610 | close(ioeventfds[i]); |
611 | } | |
612 | return ret; | |
613 | #else | |
614 | return 0; | |
615 | #endif | |
616 | } | |
617 | ||
94a8d39a JK |
618 | static const KVMCapabilityInfo * |
619 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
620 | { | |
621 | while (list->name) { | |
622 | if (!kvm_check_extension(s, list->value)) { | |
623 | return list; | |
624 | } | |
625 | list++; | |
626 | } | |
627 | return NULL; | |
628 | } | |
629 | ||
a01672d3 | 630 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
631 | { |
632 | KVMState *s = kvm_state; | |
46dbef6a MT |
633 | KVMSlot *mem, old; |
634 | int err; | |
a01672d3 AK |
635 | MemoryRegion *mr = section->mr; |
636 | bool log_dirty = memory_region_is_logging(mr); | |
235e8982 JJ |
637 | bool writeable = !mr->readonly && !mr->rom_device; |
638 | bool readonly_flag = mr->readonly || memory_region_is_romd(mr); | |
a8170e5e | 639 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 640 | ram_addr_t size = int128_get64(section->size); |
9f213ed9 | 641 | void *ram = NULL; |
8f6f962b | 642 | unsigned delta; |
46dbef6a | 643 | |
14542fea GN |
644 | /* kvm works in page size chunks, but the function may be called |
645 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
646 | delta = TARGET_PAGE_ALIGN(size) - size; |
647 | if (delta > size) { | |
648 | return; | |
649 | } | |
650 | start_addr += delta; | |
651 | size -= delta; | |
652 | size &= TARGET_PAGE_MASK; | |
653 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
654 | return; | |
655 | } | |
46dbef6a | 656 | |
a01672d3 | 657 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
658 | if (writeable || !kvm_readonly_mem_allowed) { |
659 | return; | |
660 | } else if (!mr->romd_mode) { | |
661 | /* If the memory device is not in romd_mode, then we actually want | |
662 | * to remove the kvm memory slot so all accesses will trap. */ | |
663 | add = false; | |
664 | } | |
9f213ed9 AK |
665 | } |
666 | ||
8f6f962b | 667 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 668 | |
46dbef6a MT |
669 | while (1) { |
670 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
671 | if (!mem) { | |
672 | break; | |
673 | } | |
674 | ||
a01672d3 | 675 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 676 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 677 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 678 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
679 | * identical parameters - update flags and done. */ |
680 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
681 | return; |
682 | } | |
683 | ||
684 | old = *mem; | |
685 | ||
3fbffb62 AK |
686 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
687 | kvm_physical_sync_dirty_bitmap(section); | |
688 | } | |
689 | ||
46dbef6a MT |
690 | /* unregister the overlapping slot */ |
691 | mem->memory_size = 0; | |
692 | err = kvm_set_user_memory_region(s, mem); | |
693 | if (err) { | |
694 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
695 | __func__, strerror(-err)); | |
696 | abort(); | |
697 | } | |
698 | ||
699 | /* Workaround for older KVM versions: we can't join slots, even not by | |
700 | * unregistering the previous ones and then registering the larger | |
701 | * slot. We have to maintain the existing fragmentation. Sigh. | |
702 | * | |
703 | * This workaround assumes that the new slot starts at the same | |
704 | * address as the first existing one. If not or if some overlapping | |
705 | * slot comes around later, we will fail (not seen in practice so far) | |
706 | * - and actually require a recent KVM version. */ | |
707 | if (s->broken_set_mem_region && | |
a01672d3 | 708 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
709 | mem = kvm_alloc_slot(s); |
710 | mem->memory_size = old.memory_size; | |
711 | mem->start_addr = old.start_addr; | |
9f213ed9 | 712 | mem->ram = old.ram; |
235e8982 | 713 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
714 | |
715 | err = kvm_set_user_memory_region(s, mem); | |
716 | if (err) { | |
717 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
718 | strerror(-err)); | |
719 | abort(); | |
720 | } | |
721 | ||
722 | start_addr += old.memory_size; | |
9f213ed9 | 723 | ram += old.memory_size; |
46dbef6a MT |
724 | size -= old.memory_size; |
725 | continue; | |
726 | } | |
727 | ||
728 | /* register prefix slot */ | |
729 | if (old.start_addr < start_addr) { | |
730 | mem = kvm_alloc_slot(s); | |
731 | mem->memory_size = start_addr - old.start_addr; | |
732 | mem->start_addr = old.start_addr; | |
9f213ed9 | 733 | mem->ram = old.ram; |
235e8982 | 734 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
735 | |
736 | err = kvm_set_user_memory_region(s, mem); | |
737 | if (err) { | |
738 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
739 | __func__, strerror(-err)); | |
d4d6868f AG |
740 | #ifdef TARGET_PPC |
741 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
742 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
743 | "PAGE_SIZE!\n", __func__); | |
744 | #endif | |
46dbef6a MT |
745 | abort(); |
746 | } | |
747 | } | |
748 | ||
749 | /* register suffix slot */ | |
750 | if (old.start_addr + old.memory_size > start_addr + size) { | |
751 | ram_addr_t size_delta; | |
752 | ||
753 | mem = kvm_alloc_slot(s); | |
754 | mem->start_addr = start_addr + size; | |
755 | size_delta = mem->start_addr - old.start_addr; | |
756 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 757 | mem->ram = old.ram + size_delta; |
235e8982 | 758 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
759 | |
760 | err = kvm_set_user_memory_region(s, mem); | |
761 | if (err) { | |
762 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
763 | __func__, strerror(-err)); | |
764 | abort(); | |
765 | } | |
766 | } | |
767 | } | |
768 | ||
769 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 770 | if (!size) { |
46dbef6a | 771 | return; |
a426e122 | 772 | } |
a01672d3 | 773 | if (!add) { |
46dbef6a | 774 | return; |
a426e122 | 775 | } |
46dbef6a MT |
776 | mem = kvm_alloc_slot(s); |
777 | mem->memory_size = size; | |
778 | mem->start_addr = start_addr; | |
9f213ed9 | 779 | mem->ram = ram; |
235e8982 | 780 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
781 | |
782 | err = kvm_set_user_memory_region(s, mem); | |
783 | if (err) { | |
784 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
785 | strerror(-err)); | |
786 | abort(); | |
787 | } | |
788 | } | |
789 | ||
a01672d3 AK |
790 | static void kvm_region_add(MemoryListener *listener, |
791 | MemoryRegionSection *section) | |
792 | { | |
dfde4e6e | 793 | memory_region_ref(section->mr); |
a01672d3 AK |
794 | kvm_set_phys_mem(section, true); |
795 | } | |
796 | ||
797 | static void kvm_region_del(MemoryListener *listener, | |
798 | MemoryRegionSection *section) | |
799 | { | |
800 | kvm_set_phys_mem(section, false); | |
dfde4e6e | 801 | memory_region_unref(section->mr); |
a01672d3 AK |
802 | } |
803 | ||
804 | static void kvm_log_sync(MemoryListener *listener, | |
805 | MemoryRegionSection *section) | |
7b8f3b78 | 806 | { |
a01672d3 AK |
807 | int r; |
808 | ||
ffcde12f | 809 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
810 | if (r < 0) { |
811 | abort(); | |
812 | } | |
7b8f3b78 MT |
813 | } |
814 | ||
a01672d3 | 815 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 816 | { |
a01672d3 AK |
817 | int r; |
818 | ||
819 | r = kvm_set_migration_log(1); | |
820 | assert(r >= 0); | |
7b8f3b78 MT |
821 | } |
822 | ||
a01672d3 | 823 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 824 | { |
a01672d3 AK |
825 | int r; |
826 | ||
827 | r = kvm_set_migration_log(0); | |
828 | assert(r >= 0); | |
7b8f3b78 MT |
829 | } |
830 | ||
d22b096e AK |
831 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
832 | MemoryRegionSection *section, | |
833 | bool match_data, uint64_t data, | |
834 | EventNotifier *e) | |
835 | { | |
836 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
837 | int r; |
838 | ||
4b8f1c88 | 839 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
840 | data, true, int128_get64(section->size), |
841 | match_data); | |
80a1ea37 | 842 | if (r < 0) { |
fa4ba923 AK |
843 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
844 | __func__, strerror(-r)); | |
80a1ea37 AK |
845 | abort(); |
846 | } | |
847 | } | |
848 | ||
d22b096e AK |
849 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
850 | MemoryRegionSection *section, | |
851 | bool match_data, uint64_t data, | |
852 | EventNotifier *e) | |
80a1ea37 | 853 | { |
d22b096e | 854 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
855 | int r; |
856 | ||
4b8f1c88 | 857 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
858 | data, false, int128_get64(section->size), |
859 | match_data); | |
80a1ea37 AK |
860 | if (r < 0) { |
861 | abort(); | |
862 | } | |
863 | } | |
864 | ||
d22b096e AK |
865 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
866 | MemoryRegionSection *section, | |
867 | bool match_data, uint64_t data, | |
868 | EventNotifier *e) | |
80a1ea37 | 869 | { |
d22b096e | 870 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
871 | int r; |
872 | ||
44c3f8f7 | 873 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
874 | data, true, int128_get64(section->size), |
875 | match_data); | |
80a1ea37 | 876 | if (r < 0) { |
fa4ba923 AK |
877 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
878 | __func__, strerror(-r)); | |
80a1ea37 AK |
879 | abort(); |
880 | } | |
881 | } | |
882 | ||
d22b096e AK |
883 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
884 | MemoryRegionSection *section, | |
885 | bool match_data, uint64_t data, | |
886 | EventNotifier *e) | |
80a1ea37 AK |
887 | |
888 | { | |
d22b096e | 889 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
890 | int r; |
891 | ||
44c3f8f7 | 892 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
893 | data, false, int128_get64(section->size), |
894 | match_data); | |
80a1ea37 AK |
895 | if (r < 0) { |
896 | abort(); | |
897 | } | |
898 | } | |
899 | ||
a01672d3 AK |
900 | static MemoryListener kvm_memory_listener = { |
901 | .region_add = kvm_region_add, | |
902 | .region_del = kvm_region_del, | |
e5896b12 AP |
903 | .log_start = kvm_log_start, |
904 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
905 | .log_sync = kvm_log_sync, |
906 | .log_global_start = kvm_log_global_start, | |
907 | .log_global_stop = kvm_log_global_stop, | |
d22b096e AK |
908 | .eventfd_add = kvm_mem_ioeventfd_add, |
909 | .eventfd_del = kvm_mem_ioeventfd_del, | |
95d2994a AK |
910 | .coalesced_mmio_add = kvm_coalesce_mmio_region, |
911 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
d22b096e AK |
912 | .priority = 10, |
913 | }; | |
914 | ||
915 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
916 | .eventfd_add = kvm_io_ioeventfd_add, |
917 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 918 | .priority = 10, |
7b8f3b78 MT |
919 | }; |
920 | ||
c3affe56 | 921 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 922 | { |
259186a7 | 923 | cpu->interrupt_request |= mask; |
aa7f74d1 | 924 | |
60e82579 | 925 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 926 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
927 | } |
928 | } | |
929 | ||
3889c3fa | 930 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
931 | { |
932 | struct kvm_irq_level event; | |
933 | int ret; | |
934 | ||
7ae26bd4 | 935 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
936 | |
937 | event.level = level; | |
938 | event.irq = irq; | |
e333cd69 | 939 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 940 | if (ret < 0) { |
3889c3fa | 941 | perror("kvm_set_irq"); |
84b058d7 JK |
942 | abort(); |
943 | } | |
944 | ||
e333cd69 | 945 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
946 | } |
947 | ||
948 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
949 | typedef struct KVMMSIRoute { |
950 | struct kvm_irq_routing_entry kroute; | |
951 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
952 | } KVMMSIRoute; | |
953 | ||
84b058d7 JK |
954 | static void set_gsi(KVMState *s, unsigned int gsi) |
955 | { | |
84b058d7 JK |
956 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
957 | } | |
958 | ||
04fa27f5 JK |
959 | static void clear_gsi(KVMState *s, unsigned int gsi) |
960 | { | |
961 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
962 | } | |
963 | ||
7b774593 | 964 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 | 965 | { |
04fa27f5 | 966 | int gsi_count, i; |
84b058d7 JK |
967 | |
968 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
969 | if (gsi_count > 0) { | |
970 | unsigned int gsi_bits, i; | |
971 | ||
972 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 973 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 974 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 975 | s->gsi_count = gsi_count; |
84b058d7 JK |
976 | |
977 | /* Mark any over-allocated bits as already in use */ | |
978 | for (i = gsi_count; i < gsi_bits; i++) { | |
979 | set_gsi(s, i); | |
980 | } | |
981 | } | |
982 | ||
983 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
984 | s->nr_allocated_irq_routes = 0; | |
985 | ||
4a3adebb JK |
986 | if (!s->direct_msi) { |
987 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
988 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
989 | } | |
04fa27f5 JK |
990 | } |
991 | ||
84b058d7 JK |
992 | kvm_arch_init_irq_routing(s); |
993 | } | |
994 | ||
cb925cf9 | 995 | void kvm_irqchip_commit_routes(KVMState *s) |
e7b20308 JK |
996 | { |
997 | int ret; | |
998 | ||
999 | s->irq_routes->flags = 0; | |
1000 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
1001 | assert(ret == 0); | |
1002 | } | |
1003 | ||
84b058d7 JK |
1004 | static void kvm_add_routing_entry(KVMState *s, |
1005 | struct kvm_irq_routing_entry *entry) | |
1006 | { | |
1007 | struct kvm_irq_routing_entry *new; | |
1008 | int n, size; | |
1009 | ||
1010 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1011 | n = s->nr_allocated_irq_routes * 2; | |
1012 | if (n < 64) { | |
1013 | n = 64; | |
1014 | } | |
1015 | size = sizeof(struct kvm_irq_routing); | |
1016 | size += n * sizeof(*new); | |
1017 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1018 | s->nr_allocated_irq_routes = n; | |
1019 | } | |
1020 | n = s->irq_routes->nr++; | |
1021 | new = &s->irq_routes->entries[n]; | |
0fbc2074 MT |
1022 | |
1023 | *new = *entry; | |
84b058d7 JK |
1024 | |
1025 | set_gsi(s, entry->gsi); | |
1026 | } | |
1027 | ||
cc57407e JK |
1028 | static int kvm_update_routing_entry(KVMState *s, |
1029 | struct kvm_irq_routing_entry *new_entry) | |
1030 | { | |
1031 | struct kvm_irq_routing_entry *entry; | |
1032 | int n; | |
1033 | ||
1034 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1035 | entry = &s->irq_routes->entries[n]; | |
1036 | if (entry->gsi != new_entry->gsi) { | |
1037 | continue; | |
1038 | } | |
1039 | ||
40509f7f MT |
1040 | if(!memcmp(entry, new_entry, sizeof *entry)) { |
1041 | return 0; | |
1042 | } | |
1043 | ||
0fbc2074 | 1044 | *entry = *new_entry; |
cc57407e JK |
1045 | |
1046 | kvm_irqchip_commit_routes(s); | |
1047 | ||
1048 | return 0; | |
1049 | } | |
1050 | ||
1051 | return -ESRCH; | |
1052 | } | |
1053 | ||
1df186df | 1054 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 | 1055 | { |
0fbc2074 | 1056 | struct kvm_irq_routing_entry e = {}; |
84b058d7 | 1057 | |
4e2e4e63 JK |
1058 | assert(pin < s->gsi_count); |
1059 | ||
84b058d7 JK |
1060 | e.gsi = irq; |
1061 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1062 | e.flags = 0; | |
1063 | e.u.irqchip.irqchip = irqchip; | |
1064 | e.u.irqchip.pin = pin; | |
1065 | kvm_add_routing_entry(s, &e); | |
1066 | } | |
1067 | ||
1e2aa8be | 1068 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1069 | { |
1070 | struct kvm_irq_routing_entry *e; | |
1071 | int i; | |
1072 | ||
76fe21de AK |
1073 | if (kvm_gsi_direct_mapping()) { |
1074 | return; | |
1075 | } | |
1076 | ||
04fa27f5 JK |
1077 | for (i = 0; i < s->irq_routes->nr; i++) { |
1078 | e = &s->irq_routes->entries[i]; | |
1079 | if (e->gsi == virq) { | |
1080 | s->irq_routes->nr--; | |
1081 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1082 | } | |
1083 | } | |
1084 | clear_gsi(s, virq); | |
1085 | } | |
1086 | ||
1087 | static unsigned int kvm_hash_msi(uint32_t data) | |
1088 | { | |
1089 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1090 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1091 | return data & 0xff; | |
1092 | } | |
1093 | ||
1094 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1095 | { | |
1096 | KVMMSIRoute *route, *next; | |
1097 | unsigned int hash; | |
1098 | ||
1099 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1100 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1101 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1102 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1103 | g_free(route); | |
1104 | } | |
1105 | } | |
1106 | } | |
1107 | ||
1108 | static int kvm_irqchip_get_virq(KVMState *s) | |
1109 | { | |
1110 | uint32_t *word = s->used_gsi_bitmap; | |
1111 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1112 | int i, bit; | |
1113 | bool retry = true; | |
1114 | ||
1115 | again: | |
1116 | /* Return the lowest unused GSI in the bitmap */ | |
1117 | for (i = 0; i < max_words; i++) { | |
1118 | bit = ffs(~word[i]); | |
1119 | if (!bit) { | |
1120 | continue; | |
1121 | } | |
1122 | ||
1123 | return bit - 1 + i * 32; | |
1124 | } | |
4a3adebb | 1125 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1126 | retry = false; |
1127 | kvm_flush_dynamic_msi_routes(s); | |
1128 | goto again; | |
1129 | } | |
1130 | return -ENOSPC; | |
1131 | ||
1132 | } | |
1133 | ||
1134 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1135 | { | |
1136 | unsigned int hash = kvm_hash_msi(msg.data); | |
1137 | KVMMSIRoute *route; | |
1138 | ||
1139 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1140 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1141 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
d07cc1f1 | 1142 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
04fa27f5 JK |
1143 | return route; |
1144 | } | |
1145 | } | |
1146 | return NULL; | |
1147 | } | |
1148 | ||
1149 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1150 | { | |
4a3adebb | 1151 | struct kvm_msi msi; |
04fa27f5 JK |
1152 | KVMMSIRoute *route; |
1153 | ||
4a3adebb JK |
1154 | if (s->direct_msi) { |
1155 | msi.address_lo = (uint32_t)msg.address; | |
1156 | msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1157 | msi.data = le32_to_cpu(msg.data); |
4a3adebb JK |
1158 | msi.flags = 0; |
1159 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1160 | ||
1161 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1162 | } | |
1163 | ||
04fa27f5 JK |
1164 | route = kvm_lookup_msi_route(s, msg); |
1165 | if (!route) { | |
e7b20308 | 1166 | int virq; |
04fa27f5 JK |
1167 | |
1168 | virq = kvm_irqchip_get_virq(s); | |
1169 | if (virq < 0) { | |
1170 | return virq; | |
1171 | } | |
1172 | ||
0fbc2074 | 1173 | route = g_malloc0(sizeof(KVMMSIRoute)); |
04fa27f5 JK |
1174 | route->kroute.gsi = virq; |
1175 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1176 | route->kroute.flags = 0; | |
1177 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1178 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1179 | route->kroute.u.msi.data = le32_to_cpu(msg.data); |
04fa27f5 JK |
1180 | |
1181 | kvm_add_routing_entry(s, &route->kroute); | |
cb925cf9 | 1182 | kvm_irqchip_commit_routes(s); |
04fa27f5 JK |
1183 | |
1184 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1185 | entry); | |
04fa27f5 JK |
1186 | } |
1187 | ||
1188 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1189 | ||
3889c3fa | 1190 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1191 | } |
1192 | ||
92b4e489 JK |
1193 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1194 | { | |
0fbc2074 | 1195 | struct kvm_irq_routing_entry kroute = {}; |
92b4e489 JK |
1196 | int virq; |
1197 | ||
76fe21de AK |
1198 | if (kvm_gsi_direct_mapping()) { |
1199 | return msg.data & 0xffff; | |
1200 | } | |
1201 | ||
f3e1bed8 | 1202 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1203 | return -ENOSYS; |
1204 | } | |
1205 | ||
1206 | virq = kvm_irqchip_get_virq(s); | |
1207 | if (virq < 0) { | |
1208 | return virq; | |
1209 | } | |
1210 | ||
1211 | kroute.gsi = virq; | |
1212 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1213 | kroute.flags = 0; | |
1214 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1215 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1216 | kroute.u.msi.data = le32_to_cpu(msg.data); |
92b4e489 JK |
1217 | |
1218 | kvm_add_routing_entry(s, &kroute); | |
cb925cf9 | 1219 | kvm_irqchip_commit_routes(s); |
92b4e489 JK |
1220 | |
1221 | return virq; | |
1222 | } | |
1223 | ||
cc57407e JK |
1224 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1225 | { | |
0fbc2074 | 1226 | struct kvm_irq_routing_entry kroute = {}; |
cc57407e | 1227 | |
76fe21de AK |
1228 | if (kvm_gsi_direct_mapping()) { |
1229 | return 0; | |
1230 | } | |
1231 | ||
cc57407e JK |
1232 | if (!kvm_irqchip_in_kernel()) { |
1233 | return -ENOSYS; | |
1234 | } | |
1235 | ||
1236 | kroute.gsi = virq; | |
1237 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1238 | kroute.flags = 0; | |
1239 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1240 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1241 | kroute.u.msi.data = le32_to_cpu(msg.data); |
cc57407e JK |
1242 | |
1243 | return kvm_update_routing_entry(s, &kroute); | |
1244 | } | |
1245 | ||
ca916d37 VM |
1246 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, |
1247 | bool assign) | |
39853bbc JK |
1248 | { |
1249 | struct kvm_irqfd irqfd = { | |
1250 | .fd = fd, | |
1251 | .gsi = virq, | |
1252 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1253 | }; | |
1254 | ||
ca916d37 VM |
1255 | if (rfd != -1) { |
1256 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1257 | irqfd.resamplefd = rfd; | |
1258 | } | |
1259 | ||
cc7e0ddf | 1260 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1261 | return -ENOSYS; |
1262 | } | |
1263 | ||
1264 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1265 | } | |
1266 | ||
84b058d7 JK |
1267 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1268 | ||
7b774593 | 1269 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 JK |
1270 | { |
1271 | } | |
04fa27f5 | 1272 | |
d3d3bef0 JK |
1273 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1274 | { | |
1275 | } | |
1276 | ||
04fa27f5 JK |
1277 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1278 | { | |
1279 | abort(); | |
1280 | } | |
92b4e489 JK |
1281 | |
1282 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1283 | { | |
df410675 | 1284 | return -ENOSYS; |
92b4e489 | 1285 | } |
39853bbc JK |
1286 | |
1287 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1288 | { | |
1289 | abort(); | |
1290 | } | |
dabe3143 MT |
1291 | |
1292 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1293 | { | |
1294 | return -ENOSYS; | |
1295 | } | |
84b058d7 JK |
1296 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1297 | ||
ca916d37 VM |
1298 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
1299 | EventNotifier *rn, int virq) | |
39853bbc | 1300 | { |
ca916d37 VM |
1301 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), |
1302 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
39853bbc JK |
1303 | } |
1304 | ||
b131c74a | 1305 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1306 | { |
ca916d37 VM |
1307 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, |
1308 | false); | |
15b2bd18 PB |
1309 | } |
1310 | ||
84b058d7 JK |
1311 | static int kvm_irqchip_create(KVMState *s) |
1312 | { | |
84b058d7 JK |
1313 | int ret; |
1314 | ||
36ad0e94 | 1315 | if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) || |
84b058d7 JK |
1316 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1317 | return 0; | |
1318 | } | |
1319 | ||
1320 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1321 | if (ret < 0) { | |
1322 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1323 | return ret; | |
1324 | } | |
1325 | ||
3d4b2649 | 1326 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1327 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1328 | * interrupt delivery (though the reverse is not necessarily true) | |
1329 | */ | |
1330 | kvm_async_interrupts_allowed = true; | |
215e79c0 | 1331 | kvm_halt_in_kernel_allowed = true; |
84b058d7 JK |
1332 | |
1333 | kvm_init_irq_routing(s); | |
1334 | ||
1335 | return 0; | |
1336 | } | |
1337 | ||
670436ce AJ |
1338 | /* Find number of supported CPUs using the recommended |
1339 | * procedure from the kernel API documentation to cope with | |
1340 | * older kernels that may be missing capabilities. | |
1341 | */ | |
1342 | static int kvm_recommended_vcpus(KVMState *s) | |
3ed444e9 | 1343 | { |
670436ce AJ |
1344 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); |
1345 | return (ret) ? ret : 4; | |
1346 | } | |
3ed444e9 | 1347 | |
670436ce AJ |
1348 | static int kvm_max_vcpus(KVMState *s) |
1349 | { | |
1350 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1351 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
3ed444e9 DH |
1352 | } |
1353 | ||
cad1e282 | 1354 | int kvm_init(void) |
05330448 | 1355 | { |
168ccc11 JK |
1356 | static const char upgrade_note[] = |
1357 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1358 | "(see http://sourceforge.net/projects/kvm).\n"; | |
670436ce AJ |
1359 | struct { |
1360 | const char *name; | |
1361 | int num; | |
1362 | } num_cpus[] = { | |
1363 | { "SMP", smp_cpus }, | |
1364 | { "hotpluggable", max_cpus }, | |
1365 | { NULL, } | |
1366 | }, *nc = num_cpus; | |
1367 | int soft_vcpus_limit, hard_vcpus_limit; | |
05330448 | 1368 | KVMState *s; |
94a8d39a | 1369 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
1370 | int ret; |
1371 | int i; | |
1372 | ||
7267c094 | 1373 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 1374 | |
3145fcb6 DG |
1375 | /* |
1376 | * On systems where the kernel can support different base page | |
1377 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1378 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1379 | * page size for the system though. | |
1380 | */ | |
1381 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1382 | ||
e22a25c9 | 1383 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1384 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1385 | #endif |
a426e122 | 1386 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 1387 | s->slots[i].slot = i; |
a426e122 | 1388 | } |
05330448 | 1389 | s->vmfd = -1; |
40ff6d7e | 1390 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1391 | if (s->fd == -1) { |
1392 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1393 | ret = -errno; | |
1394 | goto err; | |
1395 | } | |
1396 | ||
1397 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1398 | if (ret < KVM_API_VERSION) { | |
a426e122 | 1399 | if (ret > 0) { |
05330448 | 1400 | ret = -EINVAL; |
a426e122 | 1401 | } |
05330448 AL |
1402 | fprintf(stderr, "kvm version too old\n"); |
1403 | goto err; | |
1404 | } | |
1405 | ||
1406 | if (ret > KVM_API_VERSION) { | |
1407 | ret = -EINVAL; | |
1408 | fprintf(stderr, "kvm version not supported\n"); | |
1409 | goto err; | |
1410 | } | |
1411 | ||
670436ce AJ |
1412 | /* check the vcpu limits */ |
1413 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1414 | hard_vcpus_limit = kvm_max_vcpus(s); | |
3ed444e9 | 1415 | |
670436ce AJ |
1416 | while (nc->name) { |
1417 | if (nc->num > soft_vcpus_limit) { | |
1418 | fprintf(stderr, | |
1419 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1420 | "the recommended cpus supported by KVM (%d)\n", | |
1421 | nc->name, nc->num, soft_vcpus_limit); | |
1422 | ||
1423 | if (nc->num > hard_vcpus_limit) { | |
1424 | ret = -EINVAL; | |
1425 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " | |
1426 | "the maximum cpus supported by KVM (%d)\n", | |
1427 | nc->name, nc->num, hard_vcpus_limit); | |
1428 | goto err; | |
1429 | } | |
1430 | } | |
1431 | nc++; | |
7dc52526 MT |
1432 | } |
1433 | ||
05330448 | 1434 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
0104dcac AG |
1435 | if (s->vmfd < 0) { |
1436 | #ifdef TARGET_S390X | |
1437 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1438 | "your host kernel command line\n"); | |
1439 | #endif | |
db9eae1c | 1440 | ret = s->vmfd; |
05330448 | 1441 | goto err; |
0104dcac | 1442 | } |
05330448 | 1443 | |
94a8d39a JK |
1444 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1445 | if (!missing_cap) { | |
1446 | missing_cap = | |
1447 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1448 | } |
94a8d39a | 1449 | if (missing_cap) { |
ad7b8b33 | 1450 | ret = -EINVAL; |
94a8d39a JK |
1451 | fprintf(stderr, "kvm does not support %s\n%s", |
1452 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1453 | goto err; |
1454 | } | |
1455 | ||
ad7b8b33 | 1456 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1457 | |
e69917e2 | 1458 | s->broken_set_mem_region = 1; |
14a09518 | 1459 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1460 | if (ret > 0) { |
1461 | s->broken_set_mem_region = 0; | |
1462 | } | |
e69917e2 | 1463 | |
a0fb002c JK |
1464 | #ifdef KVM_CAP_VCPU_EVENTS |
1465 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1466 | #endif | |
1467 | ||
b0b1d690 JK |
1468 | s->robust_singlestep = |
1469 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1470 | |
ff44f1a3 JK |
1471 | #ifdef KVM_CAP_DEBUGREGS |
1472 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1473 | #endif | |
1474 | ||
f1665b21 SY |
1475 | #ifdef KVM_CAP_XSAVE |
1476 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1477 | #endif | |
1478 | ||
f1665b21 SY |
1479 | #ifdef KVM_CAP_XCRS |
1480 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1481 | #endif | |
1482 | ||
8a7c7393 JK |
1483 | #ifdef KVM_CAP_PIT_STATE2 |
1484 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1485 | #endif | |
1486 | ||
d3d3bef0 | 1487 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1488 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1489 | #endif |
4a3adebb | 1490 | |
3ab73842 JK |
1491 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1492 | ||
e333cd69 | 1493 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1494 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1495 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1496 | } |
1497 | ||
df9c8b75 JJ |
1498 | #ifdef KVM_CAP_READONLY_MEM |
1499 | kvm_readonly_mem_allowed = | |
1500 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1501 | #endif | |
1502 | ||
cad1e282 | 1503 | ret = kvm_arch_init(s); |
a426e122 | 1504 | if (ret < 0) { |
05330448 | 1505 | goto err; |
a426e122 | 1506 | } |
05330448 | 1507 | |
84b058d7 JK |
1508 | ret = kvm_irqchip_create(s); |
1509 | if (ret < 0) { | |
1510 | goto err; | |
1511 | } | |
1512 | ||
05330448 | 1513 | kvm_state = s; |
f6790af6 AK |
1514 | memory_listener_register(&kvm_memory_listener, &address_space_memory); |
1515 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
05330448 | 1516 | |
d2f2b8a7 SH |
1517 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1518 | ||
aa7f74d1 JK |
1519 | cpu_interrupt_handler = kvm_handle_interrupt; |
1520 | ||
05330448 AL |
1521 | return 0; |
1522 | ||
1523 | err: | |
6d1cc321 SW |
1524 | if (s->vmfd >= 0) { |
1525 | close(s->vmfd); | |
1526 | } | |
1527 | if (s->fd != -1) { | |
1528 | close(s->fd); | |
05330448 | 1529 | } |
7267c094 | 1530 | g_free(s); |
05330448 AL |
1531 | |
1532 | return ret; | |
1533 | } | |
1534 | ||
b30e93e9 JK |
1535 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1536 | uint32_t count) | |
05330448 AL |
1537 | { |
1538 | int i; | |
1539 | uint8_t *ptr = data; | |
1540 | ||
1541 | for (i = 0; i < count; i++) { | |
354678c5 JK |
1542 | address_space_rw(&address_space_io, port, ptr, size, |
1543 | direction == KVM_EXIT_IO_OUT); | |
05330448 AL |
1544 | ptr += size; |
1545 | } | |
05330448 AL |
1546 | } |
1547 | ||
5326ab55 | 1548 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
7c80eef8 | 1549 | { |
bb44e0d1 | 1550 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1551 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1552 | int i; | |
1553 | ||
bb44e0d1 | 1554 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1555 | for (i = 0; i < run->internal.ndata; ++i) { |
1556 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1557 | i, (uint64_t)run->internal.data[i]); | |
1558 | } | |
bb44e0d1 JK |
1559 | } else { |
1560 | fprintf(stderr, "\n"); | |
7c80eef8 | 1561 | } |
7c80eef8 MT |
1562 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1563 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1564 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
878096ee | 1565 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1566 | return EXCP_INTERRUPT; |
a426e122 | 1567 | } |
7c80eef8 MT |
1568 | } |
1569 | /* FIXME: Should trigger a qmp message to let management know | |
1570 | * something went wrong. | |
1571 | */ | |
73aaec4a | 1572 | return -1; |
7c80eef8 | 1573 | } |
7c80eef8 | 1574 | |
62a2744c | 1575 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1576 | { |
f65ed4c1 | 1577 | KVMState *s = kvm_state; |
1cae88b9 AK |
1578 | |
1579 | if (s->coalesced_flush_in_progress) { | |
1580 | return; | |
1581 | } | |
1582 | ||
1583 | s->coalesced_flush_in_progress = true; | |
1584 | ||
62a2744c SY |
1585 | if (s->coalesced_mmio_ring) { |
1586 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1587 | while (ring->first != ring->last) { |
1588 | struct kvm_coalesced_mmio *ent; | |
1589 | ||
1590 | ent = &ring->coalesced_mmio[ring->first]; | |
1591 | ||
1592 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1593 | smp_wmb(); |
f65ed4c1 AL |
1594 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1595 | } | |
1596 | } | |
1cae88b9 AK |
1597 | |
1598 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1599 | } |
1600 | ||
20d695a9 | 1601 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1602 | { |
20d695a9 | 1603 | CPUState *cpu = arg; |
2705d56a | 1604 | |
20d695a9 AF |
1605 | if (!cpu->kvm_vcpu_dirty) { |
1606 | kvm_arch_get_registers(cpu); | |
1607 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1608 | } |
1609 | } | |
1610 | ||
dd1750d7 | 1611 | void kvm_cpu_synchronize_state(CPUState *cpu) |
2705d56a | 1612 | { |
20d695a9 AF |
1613 | if (!cpu->kvm_vcpu_dirty) { |
1614 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1615 | } |
2705d56a JK |
1616 | } |
1617 | ||
3f24a58f | 1618 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
ea375f9a | 1619 | { |
20d695a9 AF |
1620 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1621 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1622 | } |
1623 | ||
3f24a58f | 1624 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
ea375f9a | 1625 | { |
20d695a9 AF |
1626 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1627 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1628 | } |
1629 | ||
1458c363 | 1630 | int kvm_cpu_exec(CPUState *cpu) |
05330448 | 1631 | { |
f7575c96 | 1632 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1633 | int ret, run_ret; |
05330448 | 1634 | |
8c0d577e | 1635 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1636 | |
20d695a9 | 1637 | if (kvm_arch_process_async_events(cpu)) { |
fcd7d003 | 1638 | cpu->exit_request = 0; |
6792a57b | 1639 | return EXCP_HLT; |
9ccfac9e | 1640 | } |
0af691d7 | 1641 | |
9ccfac9e | 1642 | do { |
20d695a9 AF |
1643 | if (cpu->kvm_vcpu_dirty) { |
1644 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1645 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1646 | } |
1647 | ||
20d695a9 | 1648 | kvm_arch_pre_run(cpu, run); |
fcd7d003 | 1649 | if (cpu->exit_request) { |
9ccfac9e JK |
1650 | DPRINTF("interrupt exit requested\n"); |
1651 | /* | |
1652 | * KVM requires us to reenter the kernel after IO exits to complete | |
1653 | * instruction emulation. This self-signal will ensure that we | |
1654 | * leave ASAP again. | |
1655 | */ | |
1656 | qemu_cpu_kick_self(); | |
1657 | } | |
d549db5a | 1658 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1659 | |
1bc22652 | 1660 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1661 | |
d549db5a | 1662 | qemu_mutex_lock_iothread(); |
20d695a9 | 1663 | kvm_arch_post_run(cpu, run); |
05330448 | 1664 | |
7cbb533f | 1665 | if (run_ret < 0) { |
dc77d341 JK |
1666 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1667 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1668 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1669 | break; |
1670 | } | |
7b011fbc ME |
1671 | fprintf(stderr, "error: kvm run failed %s\n", |
1672 | strerror(-run_ret)); | |
05330448 AL |
1673 | abort(); |
1674 | } | |
1675 | ||
b76ac80a | 1676 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
1677 | switch (run->exit_reason) { |
1678 | case KVM_EXIT_IO: | |
8c0d577e | 1679 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1680 | kvm_handle_io(run->io.port, |
1681 | (uint8_t *)run + run->io.data_offset, | |
1682 | run->io.direction, | |
1683 | run->io.size, | |
1684 | run->io.count); | |
d73cd8f4 | 1685 | ret = 0; |
05330448 AL |
1686 | break; |
1687 | case KVM_EXIT_MMIO: | |
8c0d577e | 1688 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1689 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1690 | run->mmio.data, | |
1691 | run->mmio.len, | |
1692 | run->mmio.is_write); | |
d73cd8f4 | 1693 | ret = 0; |
05330448 AL |
1694 | break; |
1695 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1696 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1697 | ret = EXCP_INTERRUPT; |
05330448 AL |
1698 | break; |
1699 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1700 | DPRINTF("shutdown\n"); |
05330448 | 1701 | qemu_system_reset_request(); |
d73cd8f4 | 1702 | ret = EXCP_INTERRUPT; |
05330448 AL |
1703 | break; |
1704 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1705 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1706 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1707 | ret = -1; |
05330448 | 1708 | break; |
7c80eef8 | 1709 | case KVM_EXIT_INTERNAL_ERROR: |
5326ab55 | 1710 | ret = kvm_handle_internal_error(cpu, run); |
7c80eef8 | 1711 | break; |
05330448 | 1712 | default: |
8c0d577e | 1713 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1714 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1715 | break; |
1716 | } | |
d73cd8f4 | 1717 | } while (ret == 0); |
05330448 | 1718 | |
73aaec4a | 1719 | if (ret < 0) { |
878096ee | 1720 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1721 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1722 | } |
1723 | ||
fcd7d003 | 1724 | cpu->exit_request = 0; |
05330448 AL |
1725 | return ret; |
1726 | } | |
1727 | ||
984b5181 | 1728 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1729 | { |
1730 | int ret; | |
984b5181 AL |
1731 | void *arg; |
1732 | va_list ap; | |
05330448 | 1733 | |
984b5181 AL |
1734 | va_start(ap, type); |
1735 | arg = va_arg(ap, void *); | |
1736 | va_end(ap); | |
1737 | ||
9c775729 | 1738 | trace_kvm_ioctl(type, arg); |
984b5181 | 1739 | ret = ioctl(s->fd, type, arg); |
a426e122 | 1740 | if (ret == -1) { |
05330448 | 1741 | ret = -errno; |
a426e122 | 1742 | } |
05330448 AL |
1743 | return ret; |
1744 | } | |
1745 | ||
984b5181 | 1746 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1747 | { |
1748 | int ret; | |
984b5181 AL |
1749 | void *arg; |
1750 | va_list ap; | |
1751 | ||
1752 | va_start(ap, type); | |
1753 | arg = va_arg(ap, void *); | |
1754 | va_end(ap); | |
05330448 | 1755 | |
9c775729 | 1756 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 1757 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1758 | if (ret == -1) { |
05330448 | 1759 | ret = -errno; |
a426e122 | 1760 | } |
05330448 AL |
1761 | return ret; |
1762 | } | |
1763 | ||
1bc22652 | 1764 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
1765 | { |
1766 | int ret; | |
984b5181 AL |
1767 | void *arg; |
1768 | va_list ap; | |
1769 | ||
1770 | va_start(ap, type); | |
1771 | arg = va_arg(ap, void *); | |
1772 | va_end(ap); | |
05330448 | 1773 | |
9c775729 | 1774 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 1775 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 1776 | if (ret == -1) { |
05330448 | 1777 | ret = -errno; |
a426e122 | 1778 | } |
05330448 AL |
1779 | return ret; |
1780 | } | |
bd322087 AL |
1781 | |
1782 | int kvm_has_sync_mmu(void) | |
1783 | { | |
94a8d39a | 1784 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1785 | } |
e22a25c9 | 1786 | |
a0fb002c JK |
1787 | int kvm_has_vcpu_events(void) |
1788 | { | |
1789 | return kvm_state->vcpu_events; | |
1790 | } | |
1791 | ||
b0b1d690 JK |
1792 | int kvm_has_robust_singlestep(void) |
1793 | { | |
1794 | return kvm_state->robust_singlestep; | |
1795 | } | |
1796 | ||
ff44f1a3 JK |
1797 | int kvm_has_debugregs(void) |
1798 | { | |
1799 | return kvm_state->debugregs; | |
1800 | } | |
1801 | ||
f1665b21 SY |
1802 | int kvm_has_xsave(void) |
1803 | { | |
1804 | return kvm_state->xsave; | |
1805 | } | |
1806 | ||
1807 | int kvm_has_xcrs(void) | |
1808 | { | |
1809 | return kvm_state->xcrs; | |
1810 | } | |
1811 | ||
8a7c7393 JK |
1812 | int kvm_has_pit_state2(void) |
1813 | { | |
1814 | return kvm_state->pit_state2; | |
1815 | } | |
1816 | ||
d2f2b8a7 SH |
1817 | int kvm_has_many_ioeventfds(void) |
1818 | { | |
1819 | if (!kvm_enabled()) { | |
1820 | return 0; | |
1821 | } | |
1822 | return kvm_state->many_ioeventfds; | |
1823 | } | |
1824 | ||
84b058d7 JK |
1825 | int kvm_has_gsi_routing(void) |
1826 | { | |
a9c5eb0d | 1827 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1828 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1829 | #else |
1830 | return false; | |
1831 | #endif | |
84b058d7 JK |
1832 | } |
1833 | ||
3ab73842 JK |
1834 | int kvm_has_intx_set_mask(void) |
1835 | { | |
1836 | return kvm_state->intx_set_mask; | |
1837 | } | |
1838 | ||
6f0437e8 JK |
1839 | void kvm_setup_guest_memory(void *start, size_t size) |
1840 | { | |
62fe8331 CB |
1841 | #ifdef CONFIG_VALGRIND_H |
1842 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1843 | #endif | |
6f0437e8 | 1844 | if (!kvm_has_sync_mmu()) { |
e78815a5 | 1845 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1846 | |
1847 | if (ret) { | |
e78815a5 AF |
1848 | perror("qemu_madvise"); |
1849 | fprintf(stderr, | |
1850 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1851 | exit(1); |
1852 | } | |
6f0437e8 JK |
1853 | } |
1854 | } | |
1855 | ||
e22a25c9 | 1856 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 1857 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
1858 | target_ulong pc) |
1859 | { | |
1860 | struct kvm_sw_breakpoint *bp; | |
1861 | ||
a60f24b5 | 1862 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1863 | if (bp->pc == pc) { |
e22a25c9 | 1864 | return bp; |
a426e122 | 1865 | } |
e22a25c9 AL |
1866 | } |
1867 | return NULL; | |
1868 | } | |
1869 | ||
a60f24b5 | 1870 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 1871 | { |
a60f24b5 | 1872 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1873 | } |
1874 | ||
452e4751 GC |
1875 | struct kvm_set_guest_debug_data { |
1876 | struct kvm_guest_debug dbg; | |
a60f24b5 | 1877 | CPUState *cpu; |
452e4751 GC |
1878 | int err; |
1879 | }; | |
1880 | ||
1881 | static void kvm_invoke_set_guest_debug(void *data) | |
1882 | { | |
1883 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 1884 | |
a60f24b5 AF |
1885 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
1886 | &dbg_data->dbg); | |
452e4751 GC |
1887 | } |
1888 | ||
38e478ec | 1889 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 | 1890 | { |
452e4751 | 1891 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1892 | |
b0b1d690 | 1893 | data.dbg.control = reinject_trap; |
e22a25c9 | 1894 | |
ed2803da | 1895 | if (cpu->singlestep_enabled) { |
b0b1d690 JK |
1896 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
1897 | } | |
20d695a9 | 1898 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 1899 | data.cpu = cpu; |
e22a25c9 | 1900 | |
f100f0b3 | 1901 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1902 | return data.err; |
e22a25c9 AL |
1903 | } |
1904 | ||
62278814 | 1905 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
1906 | target_ulong len, int type) |
1907 | { | |
1908 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
1909 | int err; |
1910 | ||
1911 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 1912 | bp = kvm_find_sw_breakpoint(cpu, addr); |
e22a25c9 AL |
1913 | if (bp) { |
1914 | bp->use_count++; | |
1915 | return 0; | |
1916 | } | |
1917 | ||
7267c094 | 1918 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1919 | if (!bp) { |
e22a25c9 | 1920 | return -ENOMEM; |
a426e122 | 1921 | } |
e22a25c9 AL |
1922 | |
1923 | bp->pc = addr; | |
1924 | bp->use_count = 1; | |
80b7cd73 | 1925 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
e22a25c9 | 1926 | if (err) { |
7267c094 | 1927 | g_free(bp); |
e22a25c9 AL |
1928 | return err; |
1929 | } | |
1930 | ||
80b7cd73 | 1931 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
1932 | } else { |
1933 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1934 | if (err) { |
e22a25c9 | 1935 | return err; |
a426e122 | 1936 | } |
e22a25c9 AL |
1937 | } |
1938 | ||
bdc44640 | 1939 | CPU_FOREACH(cpu) { |
38e478ec | 1940 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 1941 | if (err) { |
e22a25c9 | 1942 | return err; |
a426e122 | 1943 | } |
e22a25c9 AL |
1944 | } |
1945 | return 0; | |
1946 | } | |
1947 | ||
62278814 | 1948 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
1949 | target_ulong len, int type) |
1950 | { | |
1951 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
1952 | int err; |
1953 | ||
1954 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 1955 | bp = kvm_find_sw_breakpoint(cpu, addr); |
a426e122 | 1956 | if (!bp) { |
e22a25c9 | 1957 | return -ENOENT; |
a426e122 | 1958 | } |
e22a25c9 AL |
1959 | |
1960 | if (bp->use_count > 1) { | |
1961 | bp->use_count--; | |
1962 | return 0; | |
1963 | } | |
1964 | ||
80b7cd73 | 1965 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
a426e122 | 1966 | if (err) { |
e22a25c9 | 1967 | return err; |
a426e122 | 1968 | } |
e22a25c9 | 1969 | |
80b7cd73 | 1970 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1971 | g_free(bp); |
e22a25c9 AL |
1972 | } else { |
1973 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1974 | if (err) { |
e22a25c9 | 1975 | return err; |
a426e122 | 1976 | } |
e22a25c9 AL |
1977 | } |
1978 | ||
bdc44640 | 1979 | CPU_FOREACH(cpu) { |
38e478ec | 1980 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 1981 | if (err) { |
e22a25c9 | 1982 | return err; |
a426e122 | 1983 | } |
e22a25c9 AL |
1984 | } |
1985 | return 0; | |
1986 | } | |
1987 | ||
1d5791f4 | 1988 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
1989 | { |
1990 | struct kvm_sw_breakpoint *bp, *next; | |
80b7cd73 | 1991 | KVMState *s = cpu->kvm_state; |
e22a25c9 | 1992 | |
72cf2d4f | 1993 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
80b7cd73 | 1994 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
e22a25c9 | 1995 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
bdc44640 | 1996 | CPU_FOREACH(cpu) { |
20d695a9 | 1997 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { |
e22a25c9 | 1998 | break; |
a426e122 | 1999 | } |
e22a25c9 AL |
2000 | } |
2001 | } | |
78021d6d JK |
2002 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2003 | g_free(bp); | |
e22a25c9 AL |
2004 | } |
2005 | kvm_arch_remove_all_hw_breakpoints(); | |
2006 | ||
bdc44640 | 2007 | CPU_FOREACH(cpu) { |
38e478ec | 2008 | kvm_update_guest_debug(cpu, 0); |
a426e122 | 2009 | } |
e22a25c9 AL |
2010 | } |
2011 | ||
2012 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2013 | ||
38e478ec | 2014 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 AL |
2015 | { |
2016 | return -EINVAL; | |
2017 | } | |
2018 | ||
62278814 | 2019 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2020 | target_ulong len, int type) |
2021 | { | |
2022 | return -EINVAL; | |
2023 | } | |
2024 | ||
62278814 | 2025 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2026 | target_ulong len, int type) |
2027 | { | |
2028 | return -EINVAL; | |
2029 | } | |
2030 | ||
1d5791f4 | 2031 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2032 | { |
2033 | } | |
2034 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2035 | |
491d6e80 | 2036 | int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
cc84de95 MT |
2037 | { |
2038 | struct kvm_signal_mask *sigmask; | |
2039 | int r; | |
2040 | ||
a426e122 | 2041 | if (!sigset) { |
1bc22652 | 2042 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 2043 | } |
cc84de95 | 2044 | |
7267c094 | 2045 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
2046 | |
2047 | sigmask->len = 8; | |
2048 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1bc22652 | 2049 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2050 | g_free(sigmask); |
cc84de95 MT |
2051 | |
2052 | return r; | |
2053 | } | |
290adf38 | 2054 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2055 | { |
20d695a9 | 2056 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
a1b87fe0 JK |
2057 | } |
2058 | ||
2059 | int kvm_on_sigbus(int code, void *addr) | |
2060 | { | |
2061 | return kvm_arch_on_sigbus(code, addr); | |
2062 | } |