]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
ebd063d1 PB |
25 | #include "qemu-option.h" |
26 | #include "qemu-config.h" | |
05330448 | 27 | #include "sysemu.h" |
d33a1810 | 28 | #include "hw/hw.h" |
04fa27f5 | 29 | #include "hw/msi.h" |
e22a25c9 | 30 | #include "gdbstub.h" |
05330448 | 31 | #include "kvm.h" |
8369e01c | 32 | #include "bswap.h" |
a01672d3 | 33 | #include "memory.h" |
80a1ea37 | 34 | #include "exec-memory.h" |
753d5e14 | 35 | #include "event_notifier.h" |
05330448 | 36 | |
d2f2b8a7 SH |
37 | /* This check must be after config-host.h is included */ |
38 | #ifdef CONFIG_EVENTFD | |
39 | #include <sys/eventfd.h> | |
40 | #endif | |
41 | ||
62fe8331 CB |
42 | #ifdef CONFIG_VALGRIND_H |
43 | #include <valgrind/memcheck.h> | |
44 | #endif | |
45 | ||
93148aa5 | 46 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
47 | #define PAGE_SIZE TARGET_PAGE_SIZE |
48 | ||
05330448 AL |
49 | //#define DEBUG_KVM |
50 | ||
51 | #ifdef DEBUG_KVM | |
8c0d577e | 52 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
53 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
54 | #else | |
8c0d577e | 55 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
56 | do { } while (0) |
57 | #endif | |
58 | ||
04fa27f5 JK |
59 | #define KVM_MSI_HASHTAB_SIZE 256 |
60 | ||
34fc643f AL |
61 | typedef struct KVMSlot |
62 | { | |
a8170e5e | 63 | hwaddr start_addr; |
c227f099 | 64 | ram_addr_t memory_size; |
9f213ed9 | 65 | void *ram; |
34fc643f AL |
66 | int slot; |
67 | int flags; | |
68 | } KVMSlot; | |
05330448 | 69 | |
5832d1f2 AL |
70 | typedef struct kvm_dirty_log KVMDirtyLog; |
71 | ||
05330448 AL |
72 | struct KVMState |
73 | { | |
74 | KVMSlot slots[32]; | |
75 | int fd; | |
76 | int vmfd; | |
f65ed4c1 | 77 | int coalesced_mmio; |
62a2744c | 78 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 79 | bool coalesced_flush_in_progress; |
e69917e2 | 80 | int broken_set_mem_region; |
4495d6a7 | 81 | int migration_log; |
a0fb002c | 82 | int vcpu_events; |
b0b1d690 | 83 | int robust_singlestep; |
ff44f1a3 | 84 | int debugregs; |
e22a25c9 AL |
85 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
86 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
87 | #endif | |
8a7c7393 | 88 | int pit_state2; |
f1665b21 | 89 | int xsave, xcrs; |
d2f2b8a7 | 90 | int many_ioeventfds; |
3ab73842 | 91 | int intx_set_mask; |
92e4b519 DG |
92 | /* The man page (and posix) say ioctl numbers are signed int, but |
93 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
94 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 95 | unsigned irq_set_ioctl; |
84b058d7 JK |
96 | #ifdef KVM_CAP_IRQ_ROUTING |
97 | struct kvm_irq_routing *irq_routes; | |
98 | int nr_allocated_irq_routes; | |
99 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 100 | unsigned int gsi_count; |
04fa27f5 | 101 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 102 | bool direct_msi; |
84b058d7 | 103 | #endif |
05330448 AL |
104 | }; |
105 | ||
6a7af8cb | 106 | KVMState *kvm_state; |
3d4b2649 | 107 | bool kvm_kernel_irqchip; |
7ae26bd4 | 108 | bool kvm_async_interrupts_allowed; |
cc7e0ddf | 109 | bool kvm_irqfds_allowed; |
614e41bc | 110 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 111 | bool kvm_gsi_routing_allowed; |
05330448 | 112 | |
94a8d39a JK |
113 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
114 | KVM_CAP_INFO(USER_MEMORY), | |
115 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
116 | KVM_CAP_LAST_INFO | |
117 | }; | |
118 | ||
05330448 AL |
119 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
120 | { | |
121 | int i; | |
122 | ||
123 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 124 | if (s->slots[i].memory_size == 0) { |
05330448 | 125 | return &s->slots[i]; |
a426e122 | 126 | } |
05330448 AL |
127 | } |
128 | ||
d3f8d37f AL |
129 | fprintf(stderr, "%s: no free slot available\n", __func__); |
130 | abort(); | |
131 | } | |
132 | ||
133 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
a8170e5e AK |
134 | hwaddr start_addr, |
135 | hwaddr end_addr) | |
d3f8d37f AL |
136 | { |
137 | int i; | |
138 | ||
139 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
140 | KVMSlot *mem = &s->slots[i]; | |
141 | ||
142 | if (start_addr == mem->start_addr && | |
143 | end_addr == mem->start_addr + mem->memory_size) { | |
144 | return mem; | |
145 | } | |
146 | } | |
147 | ||
05330448 AL |
148 | return NULL; |
149 | } | |
150 | ||
6152e2ae AL |
151 | /* |
152 | * Find overlapping slot with lowest start address | |
153 | */ | |
154 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
a8170e5e AK |
155 | hwaddr start_addr, |
156 | hwaddr end_addr) | |
05330448 | 157 | { |
6152e2ae | 158 | KVMSlot *found = NULL; |
05330448 AL |
159 | int i; |
160 | ||
161 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
162 | KVMSlot *mem = &s->slots[i]; | |
163 | ||
6152e2ae AL |
164 | if (mem->memory_size == 0 || |
165 | (found && found->start_addr < mem->start_addr)) { | |
166 | continue; | |
167 | } | |
168 | ||
169 | if (end_addr > mem->start_addr && | |
170 | start_addr < mem->start_addr + mem->memory_size) { | |
171 | found = mem; | |
172 | } | |
05330448 AL |
173 | } |
174 | ||
6152e2ae | 175 | return found; |
05330448 AL |
176 | } |
177 | ||
9f213ed9 | 178 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 179 | hwaddr *phys_addr) |
983dfc3b HY |
180 | { |
181 | int i; | |
182 | ||
183 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
184 | KVMSlot *mem = &s->slots[i]; | |
185 | ||
9f213ed9 AK |
186 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
187 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
188 | return 1; |
189 | } | |
190 | } | |
191 | ||
192 | return 0; | |
193 | } | |
194 | ||
5832d1f2 AL |
195 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
196 | { | |
197 | struct kvm_userspace_memory_region mem; | |
198 | ||
199 | mem.slot = slot->slot; | |
200 | mem.guest_phys_addr = slot->start_addr; | |
201 | mem.memory_size = slot->memory_size; | |
9f213ed9 | 202 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 203 | mem.flags = slot->flags; |
4495d6a7 JK |
204 | if (s->migration_log) { |
205 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
206 | } | |
5832d1f2 AL |
207 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
208 | } | |
209 | ||
8d2ba1fb JK |
210 | static void kvm_reset_vcpu(void *opaque) |
211 | { | |
20d695a9 | 212 | CPUState *cpu = opaque; |
8d2ba1fb | 213 | |
20d695a9 | 214 | kvm_arch_reset_vcpu(cpu); |
8d2ba1fb | 215 | } |
5832d1f2 | 216 | |
9349b4f9 | 217 | int kvm_init_vcpu(CPUArchState *env) |
05330448 | 218 | { |
8737c51c | 219 | CPUState *cpu = ENV_GET_CPU(env); |
05330448 AL |
220 | KVMState *s = kvm_state; |
221 | long mmap_size; | |
222 | int ret; | |
223 | ||
8c0d577e | 224 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 225 | |
984b5181 | 226 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 | 227 | if (ret < 0) { |
8c0d577e | 228 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
229 | goto err; |
230 | } | |
231 | ||
8737c51c | 232 | cpu->kvm_fd = ret; |
a60f24b5 | 233 | cpu->kvm_state = s; |
20d695a9 | 234 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
235 | |
236 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
237 | if (mmap_size < 0) { | |
748a680b | 238 | ret = mmap_size; |
8c0d577e | 239 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
240 | goto err; |
241 | } | |
242 | ||
243 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
8737c51c | 244 | cpu->kvm_fd, 0); |
05330448 AL |
245 | if (env->kvm_run == MAP_FAILED) { |
246 | ret = -errno; | |
8c0d577e | 247 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
248 | goto err; |
249 | } | |
250 | ||
a426e122 JK |
251 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
252 | s->coalesced_mmio_ring = | |
253 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
254 | } | |
62a2744c | 255 | |
20d695a9 | 256 | ret = kvm_arch_init_vcpu(cpu); |
8d2ba1fb | 257 | if (ret == 0) { |
20d695a9 AF |
258 | qemu_register_reset(kvm_reset_vcpu, cpu); |
259 | kvm_arch_reset_vcpu(cpu); | |
8d2ba1fb | 260 | } |
05330448 AL |
261 | err: |
262 | return ret; | |
263 | } | |
264 | ||
5832d1f2 AL |
265 | /* |
266 | * dirty pages logging control | |
267 | */ | |
25254bbc MT |
268 | |
269 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
270 | { | |
271 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
272 | } | |
273 | ||
274 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
275 | { |
276 | KVMState *s = kvm_state; | |
25254bbc | 277 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
278 | int old_flags; |
279 | ||
4495d6a7 | 280 | old_flags = mem->flags; |
5832d1f2 | 281 | |
25254bbc | 282 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); |
5832d1f2 AL |
283 | mem->flags = flags; |
284 | ||
4495d6a7 JK |
285 | /* If nothing changed effectively, no need to issue ioctl */ |
286 | if (s->migration_log) { | |
287 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
288 | } | |
25254bbc | 289 | |
4495d6a7 | 290 | if (flags == old_flags) { |
25254bbc | 291 | return 0; |
4495d6a7 JK |
292 | } |
293 | ||
5832d1f2 AL |
294 | return kvm_set_user_memory_region(s, mem); |
295 | } | |
296 | ||
a8170e5e | 297 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
25254bbc MT |
298 | ram_addr_t size, bool log_dirty) |
299 | { | |
300 | KVMState *s = kvm_state; | |
301 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
302 | ||
303 | if (mem == NULL) { | |
304 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
305 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
a8170e5e | 306 | (hwaddr)(phys_addr + size - 1)); |
25254bbc MT |
307 | return -EINVAL; |
308 | } | |
309 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
310 | } | |
311 | ||
a01672d3 AK |
312 | static void kvm_log_start(MemoryListener *listener, |
313 | MemoryRegionSection *section) | |
5832d1f2 | 314 | { |
a01672d3 AK |
315 | int r; |
316 | ||
317 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
318 | section->size, true); | |
319 | if (r < 0) { | |
320 | abort(); | |
321 | } | |
5832d1f2 AL |
322 | } |
323 | ||
a01672d3 AK |
324 | static void kvm_log_stop(MemoryListener *listener, |
325 | MemoryRegionSection *section) | |
5832d1f2 | 326 | { |
a01672d3 AK |
327 | int r; |
328 | ||
329 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
330 | section->size, false); | |
331 | if (r < 0) { | |
332 | abort(); | |
333 | } | |
5832d1f2 AL |
334 | } |
335 | ||
7b8f3b78 | 336 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
337 | { |
338 | KVMState *s = kvm_state; | |
339 | KVMSlot *mem; | |
340 | int i, err; | |
341 | ||
342 | s->migration_log = enable; | |
343 | ||
344 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
345 | mem = &s->slots[i]; | |
346 | ||
70fedd76 AW |
347 | if (!mem->memory_size) { |
348 | continue; | |
349 | } | |
4495d6a7 JK |
350 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
351 | continue; | |
352 | } | |
353 | err = kvm_set_user_memory_region(s, mem); | |
354 | if (err) { | |
355 | return err; | |
356 | } | |
357 | } | |
358 | return 0; | |
359 | } | |
360 | ||
8369e01c | 361 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
362 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
363 | unsigned long *bitmap) | |
96c1606b | 364 | { |
8369e01c | 365 | unsigned int i, j; |
aa90fec7 | 366 | unsigned long page_number, c; |
a8170e5e | 367 | hwaddr addr, addr1; |
752ced04 | 368 | unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
3145fcb6 | 369 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; |
8369e01c MT |
370 | |
371 | /* | |
372 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
373 | * especially when most of the memory is not dirty. | |
374 | */ | |
375 | for (i = 0; i < len; i++) { | |
376 | if (bitmap[i] != 0) { | |
377 | c = leul_to_cpu(bitmap[i]); | |
378 | do { | |
379 | j = ffsl(c) - 1; | |
380 | c &= ~(1ul << j); | |
3145fcb6 | 381 | page_number = (i * HOST_LONG_BITS + j) * hpratio; |
8369e01c | 382 | addr1 = page_number * TARGET_PAGE_SIZE; |
ffcde12f | 383 | addr = section->offset_within_region + addr1; |
3145fcb6 DG |
384 | memory_region_set_dirty(section->mr, addr, |
385 | TARGET_PAGE_SIZE * hpratio); | |
8369e01c MT |
386 | } while (c != 0); |
387 | } | |
388 | } | |
389 | return 0; | |
96c1606b AG |
390 | } |
391 | ||
8369e01c MT |
392 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
393 | ||
5832d1f2 AL |
394 | /** |
395 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
396 | * This function updates qemu's dirty bitmap using |
397 | * memory_region_set_dirty(). This means all bits are set | |
398 | * to dirty. | |
5832d1f2 | 399 | * |
d3f8d37f | 400 | * @start_add: start of logged region. |
5832d1f2 AL |
401 | * @end_addr: end of logged region. |
402 | */ | |
ffcde12f | 403 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
404 | { |
405 | KVMState *s = kvm_state; | |
151f7749 | 406 | unsigned long size, allocated_size = 0; |
151f7749 JK |
407 | KVMDirtyLog d; |
408 | KVMSlot *mem; | |
409 | int ret = 0; | |
a8170e5e AK |
410 | hwaddr start_addr = section->offset_within_address_space; |
411 | hwaddr end_addr = start_addr + section->size; | |
5832d1f2 | 412 | |
151f7749 JK |
413 | d.dirty_bitmap = NULL; |
414 | while (start_addr < end_addr) { | |
415 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
416 | if (mem == NULL) { | |
417 | break; | |
418 | } | |
5832d1f2 | 419 | |
51b0c606 MT |
420 | /* XXX bad kernel interface alert |
421 | * For dirty bitmap, kernel allocates array of size aligned to | |
422 | * bits-per-long. But for case when the kernel is 64bits and | |
423 | * the userspace is 32bits, userspace can't align to the same | |
424 | * bits-per-long, since sizeof(long) is different between kernel | |
425 | * and user space. This way, userspace will provide buffer which | |
426 | * may be 4 bytes less than the kernel will use, resulting in | |
427 | * userspace memory corruption (which is not detectable by valgrind | |
428 | * too, in most cases). | |
429 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
430 | * a hope that sizeof(long) wont become >8 any time soon. | |
431 | */ | |
432 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
433 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 434 | if (!d.dirty_bitmap) { |
7267c094 | 435 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 436 | } else if (size > allocated_size) { |
7267c094 | 437 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
438 | } |
439 | allocated_size = size; | |
440 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 441 | |
151f7749 | 442 | d.slot = mem->slot; |
5832d1f2 | 443 | |
6e489f3f | 444 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 445 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
446 | ret = -1; |
447 | break; | |
448 | } | |
5832d1f2 | 449 | |
ffcde12f | 450 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 451 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 452 | } |
7267c094 | 453 | g_free(d.dirty_bitmap); |
151f7749 JK |
454 | |
455 | return ret; | |
5832d1f2 AL |
456 | } |
457 | ||
95d2994a AK |
458 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
459 | MemoryRegionSection *secion, | |
a8170e5e | 460 | hwaddr start, hwaddr size) |
f65ed4c1 | 461 | { |
f65ed4c1 AL |
462 | KVMState *s = kvm_state; |
463 | ||
464 | if (s->coalesced_mmio) { | |
465 | struct kvm_coalesced_mmio_zone zone; | |
466 | ||
467 | zone.addr = start; | |
468 | zone.size = size; | |
7e680753 | 469 | zone.pad = 0; |
f65ed4c1 | 470 | |
95d2994a | 471 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 472 | } |
f65ed4c1 AL |
473 | } |
474 | ||
95d2994a AK |
475 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
476 | MemoryRegionSection *secion, | |
a8170e5e | 477 | hwaddr start, hwaddr size) |
f65ed4c1 | 478 | { |
f65ed4c1 AL |
479 | KVMState *s = kvm_state; |
480 | ||
481 | if (s->coalesced_mmio) { | |
482 | struct kvm_coalesced_mmio_zone zone; | |
483 | ||
484 | zone.addr = start; | |
485 | zone.size = size; | |
7e680753 | 486 | zone.pad = 0; |
f65ed4c1 | 487 | |
95d2994a | 488 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 489 | } |
f65ed4c1 AL |
490 | } |
491 | ||
ad7b8b33 AL |
492 | int kvm_check_extension(KVMState *s, unsigned int extension) |
493 | { | |
494 | int ret; | |
495 | ||
496 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
497 | if (ret < 0) { | |
498 | ret = 0; | |
499 | } | |
500 | ||
501 | return ret; | |
502 | } | |
503 | ||
d2f2b8a7 SH |
504 | static int kvm_check_many_ioeventfds(void) |
505 | { | |
d0dcac83 SH |
506 | /* Userspace can use ioeventfd for io notification. This requires a host |
507 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
508 | * support SIGIO it cannot interrupt the vcpu. | |
509 | * | |
510 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
511 | * can avoid creating too many ioeventfds. |
512 | */ | |
12d4536f | 513 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
514 | int ioeventfds[7]; |
515 | int i, ret = 0; | |
516 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
517 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
518 | if (ioeventfds[i] < 0) { | |
519 | break; | |
520 | } | |
521 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | |
522 | if (ret < 0) { | |
523 | close(ioeventfds[i]); | |
524 | break; | |
525 | } | |
526 | } | |
527 | ||
528 | /* Decide whether many devices are supported or not */ | |
529 | ret = i == ARRAY_SIZE(ioeventfds); | |
530 | ||
531 | while (i-- > 0) { | |
532 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | |
533 | close(ioeventfds[i]); | |
534 | } | |
535 | return ret; | |
536 | #else | |
537 | return 0; | |
538 | #endif | |
539 | } | |
540 | ||
94a8d39a JK |
541 | static const KVMCapabilityInfo * |
542 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
543 | { | |
544 | while (list->name) { | |
545 | if (!kvm_check_extension(s, list->value)) { | |
546 | return list; | |
547 | } | |
548 | list++; | |
549 | } | |
550 | return NULL; | |
551 | } | |
552 | ||
a01672d3 | 553 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
554 | { |
555 | KVMState *s = kvm_state; | |
46dbef6a MT |
556 | KVMSlot *mem, old; |
557 | int err; | |
a01672d3 AK |
558 | MemoryRegion *mr = section->mr; |
559 | bool log_dirty = memory_region_is_logging(mr); | |
a8170e5e | 560 | hwaddr start_addr = section->offset_within_address_space; |
a01672d3 | 561 | ram_addr_t size = section->size; |
9f213ed9 | 562 | void *ram = NULL; |
8f6f962b | 563 | unsigned delta; |
46dbef6a | 564 | |
14542fea GN |
565 | /* kvm works in page size chunks, but the function may be called |
566 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
567 | delta = TARGET_PAGE_ALIGN(size) - size; |
568 | if (delta > size) { | |
569 | return; | |
570 | } | |
571 | start_addr += delta; | |
572 | size -= delta; | |
573 | size &= TARGET_PAGE_MASK; | |
574 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
575 | return; | |
576 | } | |
46dbef6a | 577 | |
a01672d3 AK |
578 | if (!memory_region_is_ram(mr)) { |
579 | return; | |
9f213ed9 AK |
580 | } |
581 | ||
8f6f962b | 582 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 583 | |
46dbef6a MT |
584 | while (1) { |
585 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
586 | if (!mem) { | |
587 | break; | |
588 | } | |
589 | ||
a01672d3 | 590 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 591 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 592 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 593 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
594 | * identical parameters - update flags and done. */ |
595 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
596 | return; |
597 | } | |
598 | ||
599 | old = *mem; | |
600 | ||
3fbffb62 AK |
601 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
602 | kvm_physical_sync_dirty_bitmap(section); | |
603 | } | |
604 | ||
46dbef6a MT |
605 | /* unregister the overlapping slot */ |
606 | mem->memory_size = 0; | |
607 | err = kvm_set_user_memory_region(s, mem); | |
608 | if (err) { | |
609 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
610 | __func__, strerror(-err)); | |
611 | abort(); | |
612 | } | |
613 | ||
614 | /* Workaround for older KVM versions: we can't join slots, even not by | |
615 | * unregistering the previous ones and then registering the larger | |
616 | * slot. We have to maintain the existing fragmentation. Sigh. | |
617 | * | |
618 | * This workaround assumes that the new slot starts at the same | |
619 | * address as the first existing one. If not or if some overlapping | |
620 | * slot comes around later, we will fail (not seen in practice so far) | |
621 | * - and actually require a recent KVM version. */ | |
622 | if (s->broken_set_mem_region && | |
a01672d3 | 623 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
624 | mem = kvm_alloc_slot(s); |
625 | mem->memory_size = old.memory_size; | |
626 | mem->start_addr = old.start_addr; | |
9f213ed9 | 627 | mem->ram = old.ram; |
25254bbc | 628 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
629 | |
630 | err = kvm_set_user_memory_region(s, mem); | |
631 | if (err) { | |
632 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
633 | strerror(-err)); | |
634 | abort(); | |
635 | } | |
636 | ||
637 | start_addr += old.memory_size; | |
9f213ed9 | 638 | ram += old.memory_size; |
46dbef6a MT |
639 | size -= old.memory_size; |
640 | continue; | |
641 | } | |
642 | ||
643 | /* register prefix slot */ | |
644 | if (old.start_addr < start_addr) { | |
645 | mem = kvm_alloc_slot(s); | |
646 | mem->memory_size = start_addr - old.start_addr; | |
647 | mem->start_addr = old.start_addr; | |
9f213ed9 | 648 | mem->ram = old.ram; |
25254bbc | 649 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
650 | |
651 | err = kvm_set_user_memory_region(s, mem); | |
652 | if (err) { | |
653 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
654 | __func__, strerror(-err)); | |
d4d6868f AG |
655 | #ifdef TARGET_PPC |
656 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
657 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
658 | "PAGE_SIZE!\n", __func__); | |
659 | #endif | |
46dbef6a MT |
660 | abort(); |
661 | } | |
662 | } | |
663 | ||
664 | /* register suffix slot */ | |
665 | if (old.start_addr + old.memory_size > start_addr + size) { | |
666 | ram_addr_t size_delta; | |
667 | ||
668 | mem = kvm_alloc_slot(s); | |
669 | mem->start_addr = start_addr + size; | |
670 | size_delta = mem->start_addr - old.start_addr; | |
671 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 672 | mem->ram = old.ram + size_delta; |
25254bbc | 673 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
674 | |
675 | err = kvm_set_user_memory_region(s, mem); | |
676 | if (err) { | |
677 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
678 | __func__, strerror(-err)); | |
679 | abort(); | |
680 | } | |
681 | } | |
682 | } | |
683 | ||
684 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 685 | if (!size) { |
46dbef6a | 686 | return; |
a426e122 | 687 | } |
a01672d3 | 688 | if (!add) { |
46dbef6a | 689 | return; |
a426e122 | 690 | } |
46dbef6a MT |
691 | mem = kvm_alloc_slot(s); |
692 | mem->memory_size = size; | |
693 | mem->start_addr = start_addr; | |
9f213ed9 | 694 | mem->ram = ram; |
25254bbc | 695 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
696 | |
697 | err = kvm_set_user_memory_region(s, mem); | |
698 | if (err) { | |
699 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
700 | strerror(-err)); | |
701 | abort(); | |
702 | } | |
703 | } | |
704 | ||
a01672d3 AK |
705 | static void kvm_region_add(MemoryListener *listener, |
706 | MemoryRegionSection *section) | |
707 | { | |
708 | kvm_set_phys_mem(section, true); | |
709 | } | |
710 | ||
711 | static void kvm_region_del(MemoryListener *listener, | |
712 | MemoryRegionSection *section) | |
713 | { | |
714 | kvm_set_phys_mem(section, false); | |
715 | } | |
716 | ||
717 | static void kvm_log_sync(MemoryListener *listener, | |
718 | MemoryRegionSection *section) | |
7b8f3b78 | 719 | { |
a01672d3 AK |
720 | int r; |
721 | ||
ffcde12f | 722 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
723 | if (r < 0) { |
724 | abort(); | |
725 | } | |
7b8f3b78 MT |
726 | } |
727 | ||
a01672d3 | 728 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 729 | { |
a01672d3 AK |
730 | int r; |
731 | ||
732 | r = kvm_set_migration_log(1); | |
733 | assert(r >= 0); | |
7b8f3b78 MT |
734 | } |
735 | ||
a01672d3 | 736 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 737 | { |
a01672d3 AK |
738 | int r; |
739 | ||
740 | r = kvm_set_migration_log(0); | |
741 | assert(r >= 0); | |
7b8f3b78 MT |
742 | } |
743 | ||
d22b096e AK |
744 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
745 | MemoryRegionSection *section, | |
746 | bool match_data, uint64_t data, | |
747 | EventNotifier *e) | |
748 | { | |
749 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
750 | int r; |
751 | ||
4b8f1c88 | 752 | assert(match_data && section->size <= 8); |
80a1ea37 | 753 | |
4b8f1c88 MT |
754 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
755 | data, true, section->size); | |
80a1ea37 AK |
756 | if (r < 0) { |
757 | abort(); | |
758 | } | |
759 | } | |
760 | ||
d22b096e AK |
761 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
762 | MemoryRegionSection *section, | |
763 | bool match_data, uint64_t data, | |
764 | EventNotifier *e) | |
80a1ea37 | 765 | { |
d22b096e | 766 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
767 | int r; |
768 | ||
4b8f1c88 MT |
769 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
770 | data, false, section->size); | |
80a1ea37 AK |
771 | if (r < 0) { |
772 | abort(); | |
773 | } | |
774 | } | |
775 | ||
d22b096e AK |
776 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
777 | MemoryRegionSection *section, | |
778 | bool match_data, uint64_t data, | |
779 | EventNotifier *e) | |
80a1ea37 | 780 | { |
d22b096e | 781 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
782 | int r; |
783 | ||
784 | assert(match_data && section->size == 2); | |
785 | ||
786 | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | |
787 | data, true); | |
788 | if (r < 0) { | |
789 | abort(); | |
790 | } | |
791 | } | |
792 | ||
d22b096e AK |
793 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
794 | MemoryRegionSection *section, | |
795 | bool match_data, uint64_t data, | |
796 | EventNotifier *e) | |
80a1ea37 AK |
797 | |
798 | { | |
d22b096e | 799 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
800 | int r; |
801 | ||
802 | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | |
803 | data, false); | |
804 | if (r < 0) { | |
805 | abort(); | |
806 | } | |
807 | } | |
808 | ||
a01672d3 AK |
809 | static MemoryListener kvm_memory_listener = { |
810 | .region_add = kvm_region_add, | |
811 | .region_del = kvm_region_del, | |
e5896b12 AP |
812 | .log_start = kvm_log_start, |
813 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
814 | .log_sync = kvm_log_sync, |
815 | .log_global_start = kvm_log_global_start, | |
816 | .log_global_stop = kvm_log_global_stop, | |
d22b096e AK |
817 | .eventfd_add = kvm_mem_ioeventfd_add, |
818 | .eventfd_del = kvm_mem_ioeventfd_del, | |
95d2994a AK |
819 | .coalesced_mmio_add = kvm_coalesce_mmio_region, |
820 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
d22b096e AK |
821 | .priority = 10, |
822 | }; | |
823 | ||
824 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
825 | .eventfd_add = kvm_io_ioeventfd_add, |
826 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 827 | .priority = 10, |
7b8f3b78 MT |
828 | }; |
829 | ||
9349b4f9 | 830 | static void kvm_handle_interrupt(CPUArchState *env, int mask) |
aa7f74d1 | 831 | { |
60e82579 AF |
832 | CPUState *cpu = ENV_GET_CPU(env); |
833 | ||
aa7f74d1 JK |
834 | env->interrupt_request |= mask; |
835 | ||
60e82579 | 836 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 837 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
838 | } |
839 | } | |
840 | ||
3889c3fa | 841 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
842 | { |
843 | struct kvm_irq_level event; | |
844 | int ret; | |
845 | ||
7ae26bd4 | 846 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
847 | |
848 | event.level = level; | |
849 | event.irq = irq; | |
e333cd69 | 850 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 851 | if (ret < 0) { |
3889c3fa | 852 | perror("kvm_set_irq"); |
84b058d7 JK |
853 | abort(); |
854 | } | |
855 | ||
e333cd69 | 856 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
857 | } |
858 | ||
859 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
860 | typedef struct KVMMSIRoute { |
861 | struct kvm_irq_routing_entry kroute; | |
862 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
863 | } KVMMSIRoute; | |
864 | ||
84b058d7 JK |
865 | static void set_gsi(KVMState *s, unsigned int gsi) |
866 | { | |
84b058d7 JK |
867 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
868 | } | |
869 | ||
04fa27f5 JK |
870 | static void clear_gsi(KVMState *s, unsigned int gsi) |
871 | { | |
872 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
873 | } | |
874 | ||
84b058d7 JK |
875 | static void kvm_init_irq_routing(KVMState *s) |
876 | { | |
04fa27f5 | 877 | int gsi_count, i; |
84b058d7 JK |
878 | |
879 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
880 | if (gsi_count > 0) { | |
881 | unsigned int gsi_bits, i; | |
882 | ||
883 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 884 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 885 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 886 | s->gsi_count = gsi_count; |
84b058d7 JK |
887 | |
888 | /* Mark any over-allocated bits as already in use */ | |
889 | for (i = gsi_count; i < gsi_bits; i++) { | |
890 | set_gsi(s, i); | |
891 | } | |
892 | } | |
893 | ||
894 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
895 | s->nr_allocated_irq_routes = 0; | |
896 | ||
4a3adebb JK |
897 | if (!s->direct_msi) { |
898 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
899 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
900 | } | |
04fa27f5 JK |
901 | } |
902 | ||
84b058d7 JK |
903 | kvm_arch_init_irq_routing(s); |
904 | } | |
905 | ||
e7b20308 JK |
906 | static void kvm_irqchip_commit_routes(KVMState *s) |
907 | { | |
908 | int ret; | |
909 | ||
910 | s->irq_routes->flags = 0; | |
911 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
912 | assert(ret == 0); | |
913 | } | |
914 | ||
84b058d7 JK |
915 | static void kvm_add_routing_entry(KVMState *s, |
916 | struct kvm_irq_routing_entry *entry) | |
917 | { | |
918 | struct kvm_irq_routing_entry *new; | |
919 | int n, size; | |
920 | ||
921 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
922 | n = s->nr_allocated_irq_routes * 2; | |
923 | if (n < 64) { | |
924 | n = 64; | |
925 | } | |
926 | size = sizeof(struct kvm_irq_routing); | |
927 | size += n * sizeof(*new); | |
928 | s->irq_routes = g_realloc(s->irq_routes, size); | |
929 | s->nr_allocated_irq_routes = n; | |
930 | } | |
931 | n = s->irq_routes->nr++; | |
932 | new = &s->irq_routes->entries[n]; | |
933 | memset(new, 0, sizeof(*new)); | |
934 | new->gsi = entry->gsi; | |
935 | new->type = entry->type; | |
936 | new->flags = entry->flags; | |
937 | new->u = entry->u; | |
938 | ||
939 | set_gsi(s, entry->gsi); | |
e7b20308 JK |
940 | |
941 | kvm_irqchip_commit_routes(s); | |
84b058d7 JK |
942 | } |
943 | ||
cc57407e JK |
944 | static int kvm_update_routing_entry(KVMState *s, |
945 | struct kvm_irq_routing_entry *new_entry) | |
946 | { | |
947 | struct kvm_irq_routing_entry *entry; | |
948 | int n; | |
949 | ||
950 | for (n = 0; n < s->irq_routes->nr; n++) { | |
951 | entry = &s->irq_routes->entries[n]; | |
952 | if (entry->gsi != new_entry->gsi) { | |
953 | continue; | |
954 | } | |
955 | ||
956 | entry->type = new_entry->type; | |
957 | entry->flags = new_entry->flags; | |
958 | entry->u = new_entry->u; | |
959 | ||
960 | kvm_irqchip_commit_routes(s); | |
961 | ||
962 | return 0; | |
963 | } | |
964 | ||
965 | return -ESRCH; | |
966 | } | |
967 | ||
1df186df | 968 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 JK |
969 | { |
970 | struct kvm_irq_routing_entry e; | |
971 | ||
4e2e4e63 JK |
972 | assert(pin < s->gsi_count); |
973 | ||
84b058d7 JK |
974 | e.gsi = irq; |
975 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
976 | e.flags = 0; | |
977 | e.u.irqchip.irqchip = irqchip; | |
978 | e.u.irqchip.pin = pin; | |
979 | kvm_add_routing_entry(s, &e); | |
980 | } | |
981 | ||
1e2aa8be | 982 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
983 | { |
984 | struct kvm_irq_routing_entry *e; | |
985 | int i; | |
986 | ||
987 | for (i = 0; i < s->irq_routes->nr; i++) { | |
988 | e = &s->irq_routes->entries[i]; | |
989 | if (e->gsi == virq) { | |
990 | s->irq_routes->nr--; | |
991 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
992 | } | |
993 | } | |
994 | clear_gsi(s, virq); | |
e7b20308 JK |
995 | |
996 | kvm_irqchip_commit_routes(s); | |
04fa27f5 JK |
997 | } |
998 | ||
999 | static unsigned int kvm_hash_msi(uint32_t data) | |
1000 | { | |
1001 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1002 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1003 | return data & 0xff; | |
1004 | } | |
1005 | ||
1006 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1007 | { | |
1008 | KVMMSIRoute *route, *next; | |
1009 | unsigned int hash; | |
1010 | ||
1011 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1012 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1013 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1014 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1015 | g_free(route); | |
1016 | } | |
1017 | } | |
1018 | } | |
1019 | ||
1020 | static int kvm_irqchip_get_virq(KVMState *s) | |
1021 | { | |
1022 | uint32_t *word = s->used_gsi_bitmap; | |
1023 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1024 | int i, bit; | |
1025 | bool retry = true; | |
1026 | ||
1027 | again: | |
1028 | /* Return the lowest unused GSI in the bitmap */ | |
1029 | for (i = 0; i < max_words; i++) { | |
1030 | bit = ffs(~word[i]); | |
1031 | if (!bit) { | |
1032 | continue; | |
1033 | } | |
1034 | ||
1035 | return bit - 1 + i * 32; | |
1036 | } | |
4a3adebb | 1037 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1038 | retry = false; |
1039 | kvm_flush_dynamic_msi_routes(s); | |
1040 | goto again; | |
1041 | } | |
1042 | return -ENOSPC; | |
1043 | ||
1044 | } | |
1045 | ||
1046 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1047 | { | |
1048 | unsigned int hash = kvm_hash_msi(msg.data); | |
1049 | KVMMSIRoute *route; | |
1050 | ||
1051 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1052 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1053 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1054 | route->kroute.u.msi.data == msg.data) { | |
1055 | return route; | |
1056 | } | |
1057 | } | |
1058 | return NULL; | |
1059 | } | |
1060 | ||
1061 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1062 | { | |
4a3adebb | 1063 | struct kvm_msi msi; |
04fa27f5 JK |
1064 | KVMMSIRoute *route; |
1065 | ||
4a3adebb JK |
1066 | if (s->direct_msi) { |
1067 | msi.address_lo = (uint32_t)msg.address; | |
1068 | msi.address_hi = msg.address >> 32; | |
1069 | msi.data = msg.data; | |
1070 | msi.flags = 0; | |
1071 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1072 | ||
1073 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1074 | } | |
1075 | ||
04fa27f5 JK |
1076 | route = kvm_lookup_msi_route(s, msg); |
1077 | if (!route) { | |
e7b20308 | 1078 | int virq; |
04fa27f5 JK |
1079 | |
1080 | virq = kvm_irqchip_get_virq(s); | |
1081 | if (virq < 0) { | |
1082 | return virq; | |
1083 | } | |
1084 | ||
1085 | route = g_malloc(sizeof(KVMMSIRoute)); | |
1086 | route->kroute.gsi = virq; | |
1087 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1088 | route->kroute.flags = 0; | |
1089 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1090 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1091 | route->kroute.u.msi.data = msg.data; | |
1092 | ||
1093 | kvm_add_routing_entry(s, &route->kroute); | |
1094 | ||
1095 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1096 | entry); | |
04fa27f5 JK |
1097 | } |
1098 | ||
1099 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1100 | ||
3889c3fa | 1101 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1102 | } |
1103 | ||
92b4e489 JK |
1104 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1105 | { | |
1106 | struct kvm_irq_routing_entry kroute; | |
1107 | int virq; | |
1108 | ||
f3e1bed8 | 1109 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1110 | return -ENOSYS; |
1111 | } | |
1112 | ||
1113 | virq = kvm_irqchip_get_virq(s); | |
1114 | if (virq < 0) { | |
1115 | return virq; | |
1116 | } | |
1117 | ||
1118 | kroute.gsi = virq; | |
1119 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1120 | kroute.flags = 0; | |
1121 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1122 | kroute.u.msi.address_hi = msg.address >> 32; | |
1123 | kroute.u.msi.data = msg.data; | |
1124 | ||
1125 | kvm_add_routing_entry(s, &kroute); | |
1126 | ||
1127 | return virq; | |
1128 | } | |
1129 | ||
cc57407e JK |
1130 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1131 | { | |
1132 | struct kvm_irq_routing_entry kroute; | |
1133 | ||
1134 | if (!kvm_irqchip_in_kernel()) { | |
1135 | return -ENOSYS; | |
1136 | } | |
1137 | ||
1138 | kroute.gsi = virq; | |
1139 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1140 | kroute.flags = 0; | |
1141 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1142 | kroute.u.msi.address_hi = msg.address >> 32; | |
1143 | kroute.u.msi.data = msg.data; | |
1144 | ||
1145 | return kvm_update_routing_entry(s, &kroute); | |
1146 | } | |
1147 | ||
39853bbc JK |
1148 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1149 | { | |
1150 | struct kvm_irqfd irqfd = { | |
1151 | .fd = fd, | |
1152 | .gsi = virq, | |
1153 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1154 | }; | |
1155 | ||
cc7e0ddf | 1156 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1157 | return -ENOSYS; |
1158 | } | |
1159 | ||
1160 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1161 | } | |
1162 | ||
84b058d7 JK |
1163 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1164 | ||
1165 | static void kvm_init_irq_routing(KVMState *s) | |
1166 | { | |
1167 | } | |
04fa27f5 | 1168 | |
d3d3bef0 JK |
1169 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1170 | { | |
1171 | } | |
1172 | ||
04fa27f5 JK |
1173 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1174 | { | |
1175 | abort(); | |
1176 | } | |
92b4e489 JK |
1177 | |
1178 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1179 | { | |
df410675 | 1180 | return -ENOSYS; |
92b4e489 | 1181 | } |
39853bbc JK |
1182 | |
1183 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1184 | { | |
1185 | abort(); | |
1186 | } | |
84b058d7 JK |
1187 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1188 | ||
b131c74a | 1189 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
39853bbc | 1190 | { |
b131c74a | 1191 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); |
39853bbc JK |
1192 | } |
1193 | ||
b131c74a | 1194 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1195 | { |
b131c74a | 1196 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); |
15b2bd18 PB |
1197 | } |
1198 | ||
84b058d7 JK |
1199 | static int kvm_irqchip_create(KVMState *s) |
1200 | { | |
1201 | QemuOptsList *list = qemu_find_opts("machine"); | |
1202 | int ret; | |
1203 | ||
1204 | if (QTAILQ_EMPTY(&list->head) || | |
1205 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
a24b9106 | 1206 | "kernel_irqchip", true) || |
84b058d7 JK |
1207 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1208 | return 0; | |
1209 | } | |
1210 | ||
1211 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1212 | if (ret < 0) { | |
1213 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1214 | return ret; | |
1215 | } | |
1216 | ||
3d4b2649 | 1217 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1218 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1219 | * interrupt delivery (though the reverse is not necessarily true) | |
1220 | */ | |
1221 | kvm_async_interrupts_allowed = true; | |
84b058d7 JK |
1222 | |
1223 | kvm_init_irq_routing(s); | |
1224 | ||
1225 | return 0; | |
1226 | } | |
1227 | ||
3ed444e9 DH |
1228 | static int kvm_max_vcpus(KVMState *s) |
1229 | { | |
1230 | int ret; | |
1231 | ||
1232 | /* Find number of supported CPUs using the recommended | |
1233 | * procedure from the kernel API documentation to cope with | |
1234 | * older kernels that may be missing capabilities. | |
1235 | */ | |
1236 | ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1237 | if (ret) { | |
1238 | return ret; | |
1239 | } | |
1240 | ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1241 | if (ret) { | |
1242 | return ret; | |
1243 | } | |
1244 | ||
1245 | return 4; | |
1246 | } | |
1247 | ||
cad1e282 | 1248 | int kvm_init(void) |
05330448 | 1249 | { |
168ccc11 JK |
1250 | static const char upgrade_note[] = |
1251 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1252 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 1253 | KVMState *s; |
94a8d39a | 1254 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
1255 | int ret; |
1256 | int i; | |
3ed444e9 | 1257 | int max_vcpus; |
05330448 | 1258 | |
7267c094 | 1259 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 1260 | |
3145fcb6 DG |
1261 | /* |
1262 | * On systems where the kernel can support different base page | |
1263 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1264 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1265 | * page size for the system though. | |
1266 | */ | |
1267 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1268 | ||
e22a25c9 | 1269 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1270 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1271 | #endif |
a426e122 | 1272 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 1273 | s->slots[i].slot = i; |
a426e122 | 1274 | } |
05330448 | 1275 | s->vmfd = -1; |
40ff6d7e | 1276 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1277 | if (s->fd == -1) { |
1278 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1279 | ret = -errno; | |
1280 | goto err; | |
1281 | } | |
1282 | ||
1283 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1284 | if (ret < KVM_API_VERSION) { | |
a426e122 | 1285 | if (ret > 0) { |
05330448 | 1286 | ret = -EINVAL; |
a426e122 | 1287 | } |
05330448 AL |
1288 | fprintf(stderr, "kvm version too old\n"); |
1289 | goto err; | |
1290 | } | |
1291 | ||
1292 | if (ret > KVM_API_VERSION) { | |
1293 | ret = -EINVAL; | |
1294 | fprintf(stderr, "kvm version not supported\n"); | |
1295 | goto err; | |
1296 | } | |
1297 | ||
3ed444e9 DH |
1298 | max_vcpus = kvm_max_vcpus(s); |
1299 | if (smp_cpus > max_vcpus) { | |
1300 | ret = -EINVAL; | |
1301 | fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " | |
1302 | "supported by KVM (%d)\n", smp_cpus, max_vcpus); | |
1303 | goto err; | |
1304 | } | |
1305 | ||
05330448 | 1306 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
0104dcac AG |
1307 | if (s->vmfd < 0) { |
1308 | #ifdef TARGET_S390X | |
1309 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1310 | "your host kernel command line\n"); | |
1311 | #endif | |
db9eae1c | 1312 | ret = s->vmfd; |
05330448 | 1313 | goto err; |
0104dcac | 1314 | } |
05330448 | 1315 | |
94a8d39a JK |
1316 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1317 | if (!missing_cap) { | |
1318 | missing_cap = | |
1319 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1320 | } |
94a8d39a | 1321 | if (missing_cap) { |
ad7b8b33 | 1322 | ret = -EINVAL; |
94a8d39a JK |
1323 | fprintf(stderr, "kvm does not support %s\n%s", |
1324 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1325 | goto err; |
1326 | } | |
1327 | ||
ad7b8b33 | 1328 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1329 | |
e69917e2 | 1330 | s->broken_set_mem_region = 1; |
14a09518 | 1331 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1332 | if (ret > 0) { |
1333 | s->broken_set_mem_region = 0; | |
1334 | } | |
e69917e2 | 1335 | |
a0fb002c JK |
1336 | #ifdef KVM_CAP_VCPU_EVENTS |
1337 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1338 | #endif | |
1339 | ||
b0b1d690 JK |
1340 | s->robust_singlestep = |
1341 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1342 | |
ff44f1a3 JK |
1343 | #ifdef KVM_CAP_DEBUGREGS |
1344 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1345 | #endif | |
1346 | ||
f1665b21 SY |
1347 | #ifdef KVM_CAP_XSAVE |
1348 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1349 | #endif | |
1350 | ||
f1665b21 SY |
1351 | #ifdef KVM_CAP_XCRS |
1352 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1353 | #endif | |
1354 | ||
8a7c7393 JK |
1355 | #ifdef KVM_CAP_PIT_STATE2 |
1356 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1357 | #endif | |
1358 | ||
d3d3bef0 | 1359 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1360 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1361 | #endif |
4a3adebb | 1362 | |
3ab73842 JK |
1363 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1364 | ||
e333cd69 | 1365 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1366 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1367 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1368 | } |
1369 | ||
cad1e282 | 1370 | ret = kvm_arch_init(s); |
a426e122 | 1371 | if (ret < 0) { |
05330448 | 1372 | goto err; |
a426e122 | 1373 | } |
05330448 | 1374 | |
84b058d7 JK |
1375 | ret = kvm_irqchip_create(s); |
1376 | if (ret < 0) { | |
1377 | goto err; | |
1378 | } | |
1379 | ||
05330448 | 1380 | kvm_state = s; |
f6790af6 AK |
1381 | memory_listener_register(&kvm_memory_listener, &address_space_memory); |
1382 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
05330448 | 1383 | |
d2f2b8a7 SH |
1384 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1385 | ||
aa7f74d1 JK |
1386 | cpu_interrupt_handler = kvm_handle_interrupt; |
1387 | ||
05330448 AL |
1388 | return 0; |
1389 | ||
1390 | err: | |
6d1cc321 SW |
1391 | if (s->vmfd >= 0) { |
1392 | close(s->vmfd); | |
1393 | } | |
1394 | if (s->fd != -1) { | |
1395 | close(s->fd); | |
05330448 | 1396 | } |
7267c094 | 1397 | g_free(s); |
05330448 AL |
1398 | |
1399 | return ret; | |
1400 | } | |
1401 | ||
b30e93e9 JK |
1402 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1403 | uint32_t count) | |
05330448 AL |
1404 | { |
1405 | int i; | |
1406 | uint8_t *ptr = data; | |
1407 | ||
1408 | for (i = 0; i < count; i++) { | |
1409 | if (direction == KVM_EXIT_IO_IN) { | |
1410 | switch (size) { | |
1411 | case 1: | |
afcea8cb | 1412 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
1413 | break; |
1414 | case 2: | |
afcea8cb | 1415 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
1416 | break; |
1417 | case 4: | |
afcea8cb | 1418 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
1419 | break; |
1420 | } | |
1421 | } else { | |
1422 | switch (size) { | |
1423 | case 1: | |
afcea8cb | 1424 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
1425 | break; |
1426 | case 2: | |
afcea8cb | 1427 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
1428 | break; |
1429 | case 4: | |
afcea8cb | 1430 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
1431 | break; |
1432 | } | |
1433 | } | |
1434 | ||
1435 | ptr += size; | |
1436 | } | |
05330448 AL |
1437 | } |
1438 | ||
9349b4f9 | 1439 | static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) |
7c80eef8 | 1440 | { |
20d695a9 AF |
1441 | CPUState *cpu = ENV_GET_CPU(env); |
1442 | ||
bb44e0d1 | 1443 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1444 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1445 | int i; | |
1446 | ||
bb44e0d1 | 1447 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1448 | for (i = 0; i < run->internal.ndata; ++i) { |
1449 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1450 | i, (uint64_t)run->internal.data[i]); | |
1451 | } | |
bb44e0d1 JK |
1452 | } else { |
1453 | fprintf(stderr, "\n"); | |
7c80eef8 | 1454 | } |
7c80eef8 MT |
1455 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1456 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1457 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
f5c848ee | 1458 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1459 | return EXCP_INTERRUPT; |
a426e122 | 1460 | } |
7c80eef8 MT |
1461 | } |
1462 | /* FIXME: Should trigger a qmp message to let management know | |
1463 | * something went wrong. | |
1464 | */ | |
73aaec4a | 1465 | return -1; |
7c80eef8 | 1466 | } |
7c80eef8 | 1467 | |
62a2744c | 1468 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1469 | { |
f65ed4c1 | 1470 | KVMState *s = kvm_state; |
1cae88b9 AK |
1471 | |
1472 | if (s->coalesced_flush_in_progress) { | |
1473 | return; | |
1474 | } | |
1475 | ||
1476 | s->coalesced_flush_in_progress = true; | |
1477 | ||
62a2744c SY |
1478 | if (s->coalesced_mmio_ring) { |
1479 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1480 | while (ring->first != ring->last) { |
1481 | struct kvm_coalesced_mmio *ent; | |
1482 | ||
1483 | ent = &ring->coalesced_mmio[ring->first]; | |
1484 | ||
1485 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1486 | smp_wmb(); |
f65ed4c1 AL |
1487 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1488 | } | |
1489 | } | |
1cae88b9 AK |
1490 | |
1491 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1492 | } |
1493 | ||
20d695a9 | 1494 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1495 | { |
20d695a9 | 1496 | CPUState *cpu = arg; |
2705d56a | 1497 | |
20d695a9 AF |
1498 | if (!cpu->kvm_vcpu_dirty) { |
1499 | kvm_arch_get_registers(cpu); | |
1500 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1501 | } |
1502 | } | |
1503 | ||
9349b4f9 | 1504 | void kvm_cpu_synchronize_state(CPUArchState *env) |
2705d56a | 1505 | { |
f100f0b3 AF |
1506 | CPUState *cpu = ENV_GET_CPU(env); |
1507 | ||
20d695a9 AF |
1508 | if (!cpu->kvm_vcpu_dirty) { |
1509 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1510 | } |
2705d56a JK |
1511 | } |
1512 | ||
9349b4f9 | 1513 | void kvm_cpu_synchronize_post_reset(CPUArchState *env) |
ea375f9a | 1514 | { |
20d695a9 AF |
1515 | CPUState *cpu = ENV_GET_CPU(env); |
1516 | ||
1517 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); | |
1518 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1519 | } |
1520 | ||
9349b4f9 | 1521 | void kvm_cpu_synchronize_post_init(CPUArchState *env) |
ea375f9a | 1522 | { |
20d695a9 AF |
1523 | CPUState *cpu = ENV_GET_CPU(env); |
1524 | ||
1525 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); | |
1526 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1527 | } |
1528 | ||
9349b4f9 | 1529 | int kvm_cpu_exec(CPUArchState *env) |
05330448 | 1530 | { |
20d695a9 | 1531 | CPUState *cpu = ENV_GET_CPU(env); |
05330448 | 1532 | struct kvm_run *run = env->kvm_run; |
7cbb533f | 1533 | int ret, run_ret; |
05330448 | 1534 | |
8c0d577e | 1535 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1536 | |
20d695a9 | 1537 | if (kvm_arch_process_async_events(cpu)) { |
9ccfac9e | 1538 | env->exit_request = 0; |
6792a57b | 1539 | return EXCP_HLT; |
9ccfac9e | 1540 | } |
0af691d7 | 1541 | |
9ccfac9e | 1542 | do { |
20d695a9 AF |
1543 | if (cpu->kvm_vcpu_dirty) { |
1544 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1545 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1546 | } |
1547 | ||
20d695a9 | 1548 | kvm_arch_pre_run(cpu, run); |
9ccfac9e JK |
1549 | if (env->exit_request) { |
1550 | DPRINTF("interrupt exit requested\n"); | |
1551 | /* | |
1552 | * KVM requires us to reenter the kernel after IO exits to complete | |
1553 | * instruction emulation. This self-signal will ensure that we | |
1554 | * leave ASAP again. | |
1555 | */ | |
1556 | qemu_cpu_kick_self(); | |
1557 | } | |
d549db5a | 1558 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1559 | |
1bc22652 | 1560 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1561 | |
d549db5a | 1562 | qemu_mutex_lock_iothread(); |
20d695a9 | 1563 | kvm_arch_post_run(cpu, run); |
05330448 | 1564 | |
7cbb533f | 1565 | if (run_ret < 0) { |
dc77d341 JK |
1566 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1567 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1568 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1569 | break; |
1570 | } | |
7b011fbc ME |
1571 | fprintf(stderr, "error: kvm run failed %s\n", |
1572 | strerror(-run_ret)); | |
05330448 AL |
1573 | abort(); |
1574 | } | |
1575 | ||
05330448 AL |
1576 | switch (run->exit_reason) { |
1577 | case KVM_EXIT_IO: | |
8c0d577e | 1578 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1579 | kvm_handle_io(run->io.port, |
1580 | (uint8_t *)run + run->io.data_offset, | |
1581 | run->io.direction, | |
1582 | run->io.size, | |
1583 | run->io.count); | |
d73cd8f4 | 1584 | ret = 0; |
05330448 AL |
1585 | break; |
1586 | case KVM_EXIT_MMIO: | |
8c0d577e | 1587 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1588 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1589 | run->mmio.data, | |
1590 | run->mmio.len, | |
1591 | run->mmio.is_write); | |
d73cd8f4 | 1592 | ret = 0; |
05330448 AL |
1593 | break; |
1594 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1595 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1596 | ret = EXCP_INTERRUPT; |
05330448 AL |
1597 | break; |
1598 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1599 | DPRINTF("shutdown\n"); |
05330448 | 1600 | qemu_system_reset_request(); |
d73cd8f4 | 1601 | ret = EXCP_INTERRUPT; |
05330448 AL |
1602 | break; |
1603 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1604 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1605 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1606 | ret = -1; |
05330448 | 1607 | break; |
7c80eef8 | 1608 | case KVM_EXIT_INTERNAL_ERROR: |
73aaec4a | 1609 | ret = kvm_handle_internal_error(env, run); |
7c80eef8 | 1610 | break; |
05330448 | 1611 | default: |
8c0d577e | 1612 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1613 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1614 | break; |
1615 | } | |
d73cd8f4 | 1616 | } while (ret == 0); |
05330448 | 1617 | |
73aaec4a | 1618 | if (ret < 0) { |
f5c848ee | 1619 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1620 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1621 | } |
1622 | ||
6792a57b | 1623 | env->exit_request = 0; |
05330448 AL |
1624 | return ret; |
1625 | } | |
1626 | ||
984b5181 | 1627 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1628 | { |
1629 | int ret; | |
984b5181 AL |
1630 | void *arg; |
1631 | va_list ap; | |
05330448 | 1632 | |
984b5181 AL |
1633 | va_start(ap, type); |
1634 | arg = va_arg(ap, void *); | |
1635 | va_end(ap); | |
1636 | ||
1637 | ret = ioctl(s->fd, type, arg); | |
a426e122 | 1638 | if (ret == -1) { |
05330448 | 1639 | ret = -errno; |
a426e122 | 1640 | } |
05330448 AL |
1641 | return ret; |
1642 | } | |
1643 | ||
984b5181 | 1644 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1645 | { |
1646 | int ret; | |
984b5181 AL |
1647 | void *arg; |
1648 | va_list ap; | |
1649 | ||
1650 | va_start(ap, type); | |
1651 | arg = va_arg(ap, void *); | |
1652 | va_end(ap); | |
05330448 | 1653 | |
984b5181 | 1654 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1655 | if (ret == -1) { |
05330448 | 1656 | ret = -errno; |
a426e122 | 1657 | } |
05330448 AL |
1658 | return ret; |
1659 | } | |
1660 | ||
1bc22652 | 1661 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
1662 | { |
1663 | int ret; | |
984b5181 AL |
1664 | void *arg; |
1665 | va_list ap; | |
1666 | ||
1667 | va_start(ap, type); | |
1668 | arg = va_arg(ap, void *); | |
1669 | va_end(ap); | |
05330448 | 1670 | |
8737c51c | 1671 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 1672 | if (ret == -1) { |
05330448 | 1673 | ret = -errno; |
a426e122 | 1674 | } |
05330448 AL |
1675 | return ret; |
1676 | } | |
bd322087 AL |
1677 | |
1678 | int kvm_has_sync_mmu(void) | |
1679 | { | |
94a8d39a | 1680 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1681 | } |
e22a25c9 | 1682 | |
a0fb002c JK |
1683 | int kvm_has_vcpu_events(void) |
1684 | { | |
1685 | return kvm_state->vcpu_events; | |
1686 | } | |
1687 | ||
b0b1d690 JK |
1688 | int kvm_has_robust_singlestep(void) |
1689 | { | |
1690 | return kvm_state->robust_singlestep; | |
1691 | } | |
1692 | ||
ff44f1a3 JK |
1693 | int kvm_has_debugregs(void) |
1694 | { | |
1695 | return kvm_state->debugregs; | |
1696 | } | |
1697 | ||
f1665b21 SY |
1698 | int kvm_has_xsave(void) |
1699 | { | |
1700 | return kvm_state->xsave; | |
1701 | } | |
1702 | ||
1703 | int kvm_has_xcrs(void) | |
1704 | { | |
1705 | return kvm_state->xcrs; | |
1706 | } | |
1707 | ||
8a7c7393 JK |
1708 | int kvm_has_pit_state2(void) |
1709 | { | |
1710 | return kvm_state->pit_state2; | |
1711 | } | |
1712 | ||
d2f2b8a7 SH |
1713 | int kvm_has_many_ioeventfds(void) |
1714 | { | |
1715 | if (!kvm_enabled()) { | |
1716 | return 0; | |
1717 | } | |
1718 | return kvm_state->many_ioeventfds; | |
1719 | } | |
1720 | ||
84b058d7 JK |
1721 | int kvm_has_gsi_routing(void) |
1722 | { | |
a9c5eb0d | 1723 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1724 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1725 | #else |
1726 | return false; | |
1727 | #endif | |
84b058d7 JK |
1728 | } |
1729 | ||
3ab73842 JK |
1730 | int kvm_has_intx_set_mask(void) |
1731 | { | |
1732 | return kvm_state->intx_set_mask; | |
1733 | } | |
1734 | ||
fdec9918 CB |
1735 | void *kvm_vmalloc(ram_addr_t size) |
1736 | { | |
1737 | #ifdef TARGET_S390X | |
1738 | void *mem; | |
1739 | ||
1740 | mem = kvm_arch_vmalloc(size); | |
1741 | if (mem) { | |
1742 | return mem; | |
1743 | } | |
1744 | #endif | |
1745 | return qemu_vmalloc(size); | |
1746 | } | |
1747 | ||
6f0437e8 JK |
1748 | void kvm_setup_guest_memory(void *start, size_t size) |
1749 | { | |
62fe8331 CB |
1750 | #ifdef CONFIG_VALGRIND_H |
1751 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1752 | #endif | |
6f0437e8 | 1753 | if (!kvm_has_sync_mmu()) { |
e78815a5 | 1754 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1755 | |
1756 | if (ret) { | |
e78815a5 AF |
1757 | perror("qemu_madvise"); |
1758 | fprintf(stderr, | |
1759 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1760 | exit(1); |
1761 | } | |
6f0437e8 JK |
1762 | } |
1763 | } | |
1764 | ||
e22a25c9 | 1765 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 1766 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
1767 | target_ulong pc) |
1768 | { | |
1769 | struct kvm_sw_breakpoint *bp; | |
1770 | ||
a60f24b5 | 1771 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1772 | if (bp->pc == pc) { |
e22a25c9 | 1773 | return bp; |
a426e122 | 1774 | } |
e22a25c9 AL |
1775 | } |
1776 | return NULL; | |
1777 | } | |
1778 | ||
a60f24b5 | 1779 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 1780 | { |
a60f24b5 | 1781 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1782 | } |
1783 | ||
452e4751 GC |
1784 | struct kvm_set_guest_debug_data { |
1785 | struct kvm_guest_debug dbg; | |
a60f24b5 | 1786 | CPUState *cpu; |
452e4751 GC |
1787 | int err; |
1788 | }; | |
1789 | ||
1790 | static void kvm_invoke_set_guest_debug(void *data) | |
1791 | { | |
1792 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 1793 | |
a60f24b5 AF |
1794 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
1795 | &dbg_data->dbg); | |
452e4751 GC |
1796 | } |
1797 | ||
9349b4f9 | 1798 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 | 1799 | { |
f100f0b3 | 1800 | CPUState *cpu = ENV_GET_CPU(env); |
452e4751 | 1801 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1802 | |
b0b1d690 | 1803 | data.dbg.control = reinject_trap; |
e22a25c9 | 1804 | |
b0b1d690 JK |
1805 | if (env->singlestep_enabled) { |
1806 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1807 | } | |
20d695a9 | 1808 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 1809 | data.cpu = cpu; |
e22a25c9 | 1810 | |
f100f0b3 | 1811 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1812 | return data.err; |
e22a25c9 AL |
1813 | } |
1814 | ||
9349b4f9 | 1815 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1816 | target_ulong len, int type) |
1817 | { | |
20d695a9 | 1818 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1819 | struct kvm_sw_breakpoint *bp; |
9349b4f9 | 1820 | CPUArchState *env; |
e22a25c9 AL |
1821 | int err; |
1822 | ||
1823 | if (type == GDB_BREAKPOINT_SW) { | |
a60f24b5 | 1824 | bp = kvm_find_sw_breakpoint(current_cpu, addr); |
e22a25c9 AL |
1825 | if (bp) { |
1826 | bp->use_count++; | |
1827 | return 0; | |
1828 | } | |
1829 | ||
7267c094 | 1830 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1831 | if (!bp) { |
e22a25c9 | 1832 | return -ENOMEM; |
a426e122 | 1833 | } |
e22a25c9 AL |
1834 | |
1835 | bp->pc = addr; | |
1836 | bp->use_count = 1; | |
20d695a9 | 1837 | err = kvm_arch_insert_sw_breakpoint(current_cpu, bp); |
e22a25c9 | 1838 | if (err) { |
7267c094 | 1839 | g_free(bp); |
e22a25c9 AL |
1840 | return err; |
1841 | } | |
1842 | ||
a60f24b5 | 1843 | QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1844 | bp, entry); |
1845 | } else { | |
1846 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1847 | if (err) { |
e22a25c9 | 1848 | return err; |
a426e122 | 1849 | } |
e22a25c9 AL |
1850 | } |
1851 | ||
1852 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1853 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1854 | if (err) { |
e22a25c9 | 1855 | return err; |
a426e122 | 1856 | } |
e22a25c9 AL |
1857 | } |
1858 | return 0; | |
1859 | } | |
1860 | ||
9349b4f9 | 1861 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1862 | target_ulong len, int type) |
1863 | { | |
20d695a9 | 1864 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1865 | struct kvm_sw_breakpoint *bp; |
9349b4f9 | 1866 | CPUArchState *env; |
e22a25c9 AL |
1867 | int err; |
1868 | ||
1869 | if (type == GDB_BREAKPOINT_SW) { | |
a60f24b5 | 1870 | bp = kvm_find_sw_breakpoint(current_cpu, addr); |
a426e122 | 1871 | if (!bp) { |
e22a25c9 | 1872 | return -ENOENT; |
a426e122 | 1873 | } |
e22a25c9 AL |
1874 | |
1875 | if (bp->use_count > 1) { | |
1876 | bp->use_count--; | |
1877 | return 0; | |
1878 | } | |
1879 | ||
20d695a9 | 1880 | err = kvm_arch_remove_sw_breakpoint(current_cpu, bp); |
a426e122 | 1881 | if (err) { |
e22a25c9 | 1882 | return err; |
a426e122 | 1883 | } |
e22a25c9 | 1884 | |
a60f24b5 | 1885 | QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1886 | g_free(bp); |
e22a25c9 AL |
1887 | } else { |
1888 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1889 | if (err) { |
e22a25c9 | 1890 | return err; |
a426e122 | 1891 | } |
e22a25c9 AL |
1892 | } |
1893 | ||
1894 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1895 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1896 | if (err) { |
e22a25c9 | 1897 | return err; |
a426e122 | 1898 | } |
e22a25c9 AL |
1899 | } |
1900 | return 0; | |
1901 | } | |
1902 | ||
9349b4f9 | 1903 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 | 1904 | { |
20d695a9 | 1905 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1906 | struct kvm_sw_breakpoint *bp, *next; |
a60f24b5 | 1907 | KVMState *s = current_cpu->kvm_state; |
9349b4f9 | 1908 | CPUArchState *env; |
20d695a9 | 1909 | CPUState *cpu; |
e22a25c9 | 1910 | |
72cf2d4f | 1911 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
20d695a9 | 1912 | if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) { |
e22a25c9 AL |
1913 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
1914 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
20d695a9 AF |
1915 | cpu = ENV_GET_CPU(env); |
1916 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { | |
e22a25c9 | 1917 | break; |
a426e122 | 1918 | } |
e22a25c9 AL |
1919 | } |
1920 | } | |
78021d6d JK |
1921 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
1922 | g_free(bp); | |
e22a25c9 AL |
1923 | } |
1924 | kvm_arch_remove_all_hw_breakpoints(); | |
1925 | ||
a426e122 | 1926 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 1927 | kvm_update_guest_debug(env, 0); |
a426e122 | 1928 | } |
e22a25c9 AL |
1929 | } |
1930 | ||
1931 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1932 | ||
9349b4f9 | 1933 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 AL |
1934 | { |
1935 | return -EINVAL; | |
1936 | } | |
1937 | ||
9349b4f9 | 1938 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1939 | target_ulong len, int type) |
1940 | { | |
1941 | return -EINVAL; | |
1942 | } | |
1943 | ||
9349b4f9 | 1944 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1945 | target_ulong len, int type) |
1946 | { | |
1947 | return -EINVAL; | |
1948 | } | |
1949 | ||
9349b4f9 | 1950 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 AL |
1951 | { |
1952 | } | |
1953 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 1954 | |
9349b4f9 | 1955 | int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) |
cc84de95 | 1956 | { |
1bc22652 | 1957 | CPUState *cpu = ENV_GET_CPU(env); |
cc84de95 MT |
1958 | struct kvm_signal_mask *sigmask; |
1959 | int r; | |
1960 | ||
a426e122 | 1961 | if (!sigset) { |
1bc22652 | 1962 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 1963 | } |
cc84de95 | 1964 | |
7267c094 | 1965 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
1966 | |
1967 | sigmask->len = 8; | |
1968 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1bc22652 | 1969 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 1970 | g_free(sigmask); |
cc84de95 MT |
1971 | |
1972 | return r; | |
1973 | } | |
ca821806 | 1974 | |
4b8f1c88 MT |
1975 | int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign, |
1976 | uint32_t size) | |
44f1a3d8 | 1977 | { |
44f1a3d8 CM |
1978 | int ret; |
1979 | struct kvm_ioeventfd iofd; | |
1980 | ||
1981 | iofd.datamatch = val; | |
1982 | iofd.addr = addr; | |
4b8f1c88 | 1983 | iofd.len = size; |
44f1a3d8 CM |
1984 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; |
1985 | iofd.fd = fd; | |
1986 | ||
1987 | if (!kvm_enabled()) { | |
1988 | return -ENOSYS; | |
1989 | } | |
1990 | ||
1991 | if (!assign) { | |
1992 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1993 | } | |
1994 | ||
1995 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
1996 | ||
1997 | if (ret < 0) { | |
1998 | return -errno; | |
1999 | } | |
2000 | ||
2001 | return 0; | |
44f1a3d8 CM |
2002 | } |
2003 | ||
ca821806 MT |
2004 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
2005 | { | |
2006 | struct kvm_ioeventfd kick = { | |
2007 | .datamatch = val, | |
2008 | .addr = addr, | |
2009 | .len = 2, | |
2010 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
2011 | .fd = fd, | |
2012 | }; | |
2013 | int r; | |
a426e122 | 2014 | if (!kvm_enabled()) { |
ca821806 | 2015 | return -ENOSYS; |
a426e122 JK |
2016 | } |
2017 | if (!assign) { | |
ca821806 | 2018 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
a426e122 | 2019 | } |
ca821806 | 2020 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
a426e122 | 2021 | if (r < 0) { |
ca821806 | 2022 | return r; |
a426e122 | 2023 | } |
ca821806 | 2024 | return 0; |
98c8573e | 2025 | } |
a1b87fe0 | 2026 | |
9349b4f9 | 2027 | int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr) |
a1b87fe0 | 2028 | { |
20d695a9 AF |
2029 | CPUState *cpu = ENV_GET_CPU(env); |
2030 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); | |
a1b87fe0 JK |
2031 | } |
2032 | ||
2033 | int kvm_on_sigbus(int code, void *addr) | |
2034 | { | |
2035 | return kvm_arch_on_sigbus(code, addr); | |
2036 | } |