]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "sysemu.h" | |
e22a25c9 | 25 | #include "gdbstub.h" |
05330448 AL |
26 | #include "kvm.h" |
27 | ||
f65ed4c1 AL |
28 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
29 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
30 | ||
05330448 AL |
31 | //#define DEBUG_KVM |
32 | ||
33 | #ifdef DEBUG_KVM | |
34 | #define dprintf(fmt, ...) \ | |
35 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
36 | #else | |
37 | #define dprintf(fmt, ...) \ | |
38 | do { } while (0) | |
39 | #endif | |
40 | ||
34fc643f AL |
41 | typedef struct KVMSlot |
42 | { | |
43 | target_phys_addr_t start_addr; | |
44 | ram_addr_t memory_size; | |
45 | ram_addr_t phys_offset; | |
46 | int slot; | |
47 | int flags; | |
48 | } KVMSlot; | |
05330448 | 49 | |
5832d1f2 AL |
50 | typedef struct kvm_dirty_log KVMDirtyLog; |
51 | ||
05330448 AL |
52 | int kvm_allowed = 0; |
53 | ||
54 | struct KVMState | |
55 | { | |
56 | KVMSlot slots[32]; | |
57 | int fd; | |
58 | int vmfd; | |
f65ed4c1 | 59 | int coalesced_mmio; |
e22a25c9 AL |
60 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
61 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
62 | #endif | |
05330448 AL |
63 | }; |
64 | ||
65 | static KVMState *kvm_state; | |
66 | ||
67 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
68 | { | |
69 | int i; | |
70 | ||
71 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
72 | /* KVM private memory slots */ |
73 | if (i >= 8 && i < 12) | |
74 | continue; | |
05330448 AL |
75 | if (s->slots[i].memory_size == 0) |
76 | return &s->slots[i]; | |
77 | } | |
78 | ||
d3f8d37f AL |
79 | fprintf(stderr, "%s: no free slot available\n", __func__); |
80 | abort(); | |
81 | } | |
82 | ||
83 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
84 | target_phys_addr_t start_addr, | |
85 | target_phys_addr_t end_addr) | |
86 | { | |
87 | int i; | |
88 | ||
89 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
90 | KVMSlot *mem = &s->slots[i]; | |
91 | ||
92 | if (start_addr == mem->start_addr && | |
93 | end_addr == mem->start_addr + mem->memory_size) { | |
94 | return mem; | |
95 | } | |
96 | } | |
97 | ||
05330448 AL |
98 | return NULL; |
99 | } | |
100 | ||
6152e2ae AL |
101 | /* |
102 | * Find overlapping slot with lowest start address | |
103 | */ | |
104 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
105 | target_phys_addr_t start_addr, | |
106 | target_phys_addr_t end_addr) | |
05330448 | 107 | { |
6152e2ae | 108 | KVMSlot *found = NULL; |
05330448 AL |
109 | int i; |
110 | ||
111 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
112 | KVMSlot *mem = &s->slots[i]; | |
113 | ||
6152e2ae AL |
114 | if (mem->memory_size == 0 || |
115 | (found && found->start_addr < mem->start_addr)) { | |
116 | continue; | |
117 | } | |
118 | ||
119 | if (end_addr > mem->start_addr && | |
120 | start_addr < mem->start_addr + mem->memory_size) { | |
121 | found = mem; | |
122 | } | |
05330448 AL |
123 | } |
124 | ||
6152e2ae | 125 | return found; |
05330448 AL |
126 | } |
127 | ||
5832d1f2 AL |
128 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
129 | { | |
130 | struct kvm_userspace_memory_region mem; | |
131 | ||
132 | mem.slot = slot->slot; | |
133 | mem.guest_phys_addr = slot->start_addr; | |
134 | mem.memory_size = slot->memory_size; | |
5579c7f3 | 135 | mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); |
5832d1f2 AL |
136 | mem.flags = slot->flags; |
137 | ||
138 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
139 | } | |
140 | ||
141 | ||
05330448 AL |
142 | int kvm_init_vcpu(CPUState *env) |
143 | { | |
144 | KVMState *s = kvm_state; | |
145 | long mmap_size; | |
146 | int ret; | |
147 | ||
148 | dprintf("kvm_init_vcpu\n"); | |
149 | ||
984b5181 | 150 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 AL |
151 | if (ret < 0) { |
152 | dprintf("kvm_create_vcpu failed\n"); | |
153 | goto err; | |
154 | } | |
155 | ||
156 | env->kvm_fd = ret; | |
157 | env->kvm_state = s; | |
158 | ||
159 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
160 | if (mmap_size < 0) { | |
161 | dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
162 | goto err; | |
163 | } | |
164 | ||
165 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
166 | env->kvm_fd, 0); | |
167 | if (env->kvm_run == MAP_FAILED) { | |
168 | ret = -errno; | |
169 | dprintf("mmap'ing vcpu state failed\n"); | |
170 | goto err; | |
171 | } | |
172 | ||
173 | ret = kvm_arch_init_vcpu(env); | |
174 | ||
175 | err: | |
176 | return ret; | |
177 | } | |
178 | ||
f5d6f51b AL |
179 | int kvm_sync_vcpus(void) |
180 | { | |
181 | CPUState *env; | |
182 | ||
183 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
184 | int ret; | |
185 | ||
186 | ret = kvm_arch_put_registers(env); | |
187 | if (ret) | |
188 | return ret; | |
189 | } | |
190 | ||
191 | return 0; | |
192 | } | |
193 | ||
5832d1f2 AL |
194 | /* |
195 | * dirty pages logging control | |
196 | */ | |
d3f8d37f AL |
197 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
198 | ram_addr_t size, unsigned flags, | |
5832d1f2 AL |
199 | unsigned mask) |
200 | { | |
201 | KVMState *s = kvm_state; | |
d3f8d37f | 202 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
5832d1f2 | 203 | if (mem == NULL) { |
d3f8d37f AL |
204 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
205 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
206 | phys_addr + size - 1); | |
5832d1f2 AL |
207 | return -EINVAL; |
208 | } | |
209 | ||
210 | flags = (mem->flags & ~mask) | flags; | |
211 | /* Nothing changed, no need to issue ioctl */ | |
212 | if (flags == mem->flags) | |
213 | return 0; | |
214 | ||
215 | mem->flags = flags; | |
216 | ||
217 | return kvm_set_user_memory_region(s, mem); | |
218 | } | |
219 | ||
d3f8d37f | 220 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 221 | { |
d3f8d37f | 222 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
223 | KVM_MEM_LOG_DIRTY_PAGES, |
224 | KVM_MEM_LOG_DIRTY_PAGES); | |
225 | } | |
226 | ||
d3f8d37f | 227 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 228 | { |
d3f8d37f | 229 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
230 | 0, |
231 | KVM_MEM_LOG_DIRTY_PAGES); | |
232 | } | |
233 | ||
234 | /** | |
235 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
236 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
237 | * This means all bits are set to dirty. | |
238 | * | |
d3f8d37f | 239 | * @start_add: start of logged region. |
5832d1f2 AL |
240 | * @end_addr: end of logged region. |
241 | */ | |
d3f8d37f AL |
242 | void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
243 | target_phys_addr_t end_addr) | |
5832d1f2 AL |
244 | { |
245 | KVMState *s = kvm_state; | |
246 | KVMDirtyLog d; | |
d3f8d37f | 247 | KVMSlot *mem = kvm_lookup_matching_slot(s, start_addr, end_addr); |
5832d1f2 AL |
248 | unsigned long alloc_size; |
249 | ram_addr_t addr; | |
250 | target_phys_addr_t phys_addr = start_addr; | |
251 | ||
d3f8d37f AL |
252 | dprintf("sync addr: " TARGET_FMT_lx " into %lx\n", start_addr, |
253 | mem->phys_offset); | |
5832d1f2 | 254 | if (mem == NULL) { |
d3f8d37f AL |
255 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
256 | TARGET_FMT_plx "\n", __func__, phys_addr, end_addr - 1); | |
5832d1f2 AL |
257 | return; |
258 | } | |
259 | ||
260 | alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap); | |
261 | d.dirty_bitmap = qemu_mallocz(alloc_size); | |
262 | ||
5832d1f2 AL |
263 | d.slot = mem->slot; |
264 | dprintf("slot %d, phys_addr %llx, uaddr: %llx\n", | |
265 | d.slot, mem->start_addr, mem->phys_offset); | |
266 | ||
267 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | |
268 | dprintf("ioctl failed %d\n", errno); | |
269 | goto out; | |
270 | } | |
271 | ||
272 | phys_addr = start_addr; | |
273 | for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
274 | unsigned long *bitmap = (unsigned long *)d.dirty_bitmap; | |
275 | unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS; | |
276 | unsigned word = nr / (sizeof(*bitmap) * 8); | |
277 | unsigned bit = nr % (sizeof(*bitmap) * 8); | |
278 | if ((bitmap[word] >> bit) & 1) | |
279 | cpu_physical_memory_set_dirty(addr); | |
280 | } | |
281 | out: | |
282 | qemu_free(d.dirty_bitmap); | |
283 | } | |
284 | ||
f65ed4c1 AL |
285 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
286 | { | |
287 | int ret = -ENOSYS; | |
288 | #ifdef KVM_CAP_COALESCED_MMIO | |
289 | KVMState *s = kvm_state; | |
290 | ||
291 | if (s->coalesced_mmio) { | |
292 | struct kvm_coalesced_mmio_zone zone; | |
293 | ||
294 | zone.addr = start; | |
295 | zone.size = size; | |
296 | ||
297 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
298 | } | |
299 | #endif | |
300 | ||
301 | return ret; | |
302 | } | |
303 | ||
304 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | |
305 | { | |
306 | int ret = -ENOSYS; | |
307 | #ifdef KVM_CAP_COALESCED_MMIO | |
308 | KVMState *s = kvm_state; | |
309 | ||
310 | if (s->coalesced_mmio) { | |
311 | struct kvm_coalesced_mmio_zone zone; | |
312 | ||
313 | zone.addr = start; | |
314 | zone.size = size; | |
315 | ||
316 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
317 | } | |
318 | #endif | |
319 | ||
320 | return ret; | |
321 | } | |
322 | ||
05330448 AL |
323 | int kvm_init(int smp_cpus) |
324 | { | |
325 | KVMState *s; | |
326 | int ret; | |
327 | int i; | |
328 | ||
329 | if (smp_cpus > 1) | |
330 | return -EINVAL; | |
331 | ||
332 | s = qemu_mallocz(sizeof(KVMState)); | |
05330448 | 333 | |
e22a25c9 AL |
334 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
335 | TAILQ_INIT(&s->kvm_sw_breakpoints); | |
336 | #endif | |
05330448 AL |
337 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
338 | s->slots[i].slot = i; | |
339 | ||
340 | s->vmfd = -1; | |
341 | s->fd = open("/dev/kvm", O_RDWR); | |
342 | if (s->fd == -1) { | |
343 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
344 | ret = -errno; | |
345 | goto err; | |
346 | } | |
347 | ||
348 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
349 | if (ret < KVM_API_VERSION) { | |
350 | if (ret > 0) | |
351 | ret = -EINVAL; | |
352 | fprintf(stderr, "kvm version too old\n"); | |
353 | goto err; | |
354 | } | |
355 | ||
356 | if (ret > KVM_API_VERSION) { | |
357 | ret = -EINVAL; | |
358 | fprintf(stderr, "kvm version not supported\n"); | |
359 | goto err; | |
360 | } | |
361 | ||
362 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
363 | if (s->vmfd < 0) | |
364 | goto err; | |
365 | ||
366 | /* initially, KVM allocated its own memory and we had to jump through | |
367 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
5579c7f3 | 368 | * just use a user allocated buffer so we can use regular pages |
05330448 AL |
369 | * unmodified. Make sure we have a sufficiently modern version of KVM. |
370 | */ | |
984b5181 | 371 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY); |
05330448 AL |
372 | if (ret <= 0) { |
373 | if (ret == 0) | |
374 | ret = -EINVAL; | |
375 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n"); | |
376 | goto err; | |
377 | } | |
378 | ||
d85dc283 AL |
379 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
380 | * destroyed properly. Since we rely on this capability, refuse to work | |
381 | * with any kernel without this capability. */ | |
382 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, | |
383 | KVM_CAP_DESTROY_MEMORY_REGION_WORKS); | |
384 | if (ret <= 0) { | |
385 | if (ret == 0) | |
386 | ret = -EINVAL; | |
387 | ||
388 | fprintf(stderr, | |
389 | "KVM kernel module broken (DESTROY_MEMORY_REGION)\n" | |
390 | "Please upgrade to at least kvm-81.\n"); | |
391 | goto err; | |
392 | } | |
393 | ||
f65ed4c1 AL |
394 | s->coalesced_mmio = 0; |
395 | #ifdef KVM_CAP_COALESCED_MMIO | |
396 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_COALESCED_MMIO); | |
397 | if (ret > 0) | |
398 | s->coalesced_mmio = ret; | |
399 | #endif | |
400 | ||
05330448 AL |
401 | ret = kvm_arch_init(s, smp_cpus); |
402 | if (ret < 0) | |
403 | goto err; | |
404 | ||
405 | kvm_state = s; | |
406 | ||
407 | return 0; | |
408 | ||
409 | err: | |
410 | if (s) { | |
411 | if (s->vmfd != -1) | |
412 | close(s->vmfd); | |
413 | if (s->fd != -1) | |
414 | close(s->fd); | |
415 | } | |
416 | qemu_free(s); | |
417 | ||
418 | return ret; | |
419 | } | |
420 | ||
421 | static int kvm_handle_io(CPUState *env, uint16_t port, void *data, | |
422 | int direction, int size, uint32_t count) | |
423 | { | |
424 | int i; | |
425 | uint8_t *ptr = data; | |
426 | ||
427 | for (i = 0; i < count; i++) { | |
428 | if (direction == KVM_EXIT_IO_IN) { | |
429 | switch (size) { | |
430 | case 1: | |
431 | stb_p(ptr, cpu_inb(env, port)); | |
432 | break; | |
433 | case 2: | |
434 | stw_p(ptr, cpu_inw(env, port)); | |
435 | break; | |
436 | case 4: | |
437 | stl_p(ptr, cpu_inl(env, port)); | |
438 | break; | |
439 | } | |
440 | } else { | |
441 | switch (size) { | |
442 | case 1: | |
443 | cpu_outb(env, port, ldub_p(ptr)); | |
444 | break; | |
445 | case 2: | |
446 | cpu_outw(env, port, lduw_p(ptr)); | |
447 | break; | |
448 | case 4: | |
449 | cpu_outl(env, port, ldl_p(ptr)); | |
450 | break; | |
451 | } | |
452 | } | |
453 | ||
454 | ptr += size; | |
455 | } | |
456 | ||
457 | return 1; | |
458 | } | |
459 | ||
f65ed4c1 AL |
460 | static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run) |
461 | { | |
462 | #ifdef KVM_CAP_COALESCED_MMIO | |
463 | KVMState *s = kvm_state; | |
464 | if (s->coalesced_mmio) { | |
465 | struct kvm_coalesced_mmio_ring *ring; | |
466 | ||
467 | ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE); | |
468 | while (ring->first != ring->last) { | |
469 | struct kvm_coalesced_mmio *ent; | |
470 | ||
471 | ent = &ring->coalesced_mmio[ring->first]; | |
472 | ||
473 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
474 | /* FIXME smp_wmb() */ | |
475 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
476 | } | |
477 | } | |
478 | #endif | |
479 | } | |
480 | ||
05330448 AL |
481 | int kvm_cpu_exec(CPUState *env) |
482 | { | |
483 | struct kvm_run *run = env->kvm_run; | |
484 | int ret; | |
485 | ||
486 | dprintf("kvm_cpu_exec()\n"); | |
487 | ||
488 | do { | |
489 | kvm_arch_pre_run(env, run); | |
490 | ||
be214e6c | 491 | if (env->exit_request) { |
05330448 AL |
492 | dprintf("interrupt exit requested\n"); |
493 | ret = 0; | |
494 | break; | |
495 | } | |
496 | ||
497 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); | |
498 | kvm_arch_post_run(env, run); | |
499 | ||
500 | if (ret == -EINTR || ret == -EAGAIN) { | |
501 | dprintf("io window exit\n"); | |
502 | ret = 0; | |
503 | break; | |
504 | } | |
505 | ||
506 | if (ret < 0) { | |
507 | dprintf("kvm run failed %s\n", strerror(-ret)); | |
508 | abort(); | |
509 | } | |
510 | ||
f65ed4c1 AL |
511 | kvm_run_coalesced_mmio(env, run); |
512 | ||
05330448 AL |
513 | ret = 0; /* exit loop */ |
514 | switch (run->exit_reason) { | |
515 | case KVM_EXIT_IO: | |
516 | dprintf("handle_io\n"); | |
517 | ret = kvm_handle_io(env, run->io.port, | |
518 | (uint8_t *)run + run->io.data_offset, | |
519 | run->io.direction, | |
520 | run->io.size, | |
521 | run->io.count); | |
522 | break; | |
523 | case KVM_EXIT_MMIO: | |
524 | dprintf("handle_mmio\n"); | |
525 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
526 | run->mmio.data, | |
527 | run->mmio.len, | |
528 | run->mmio.is_write); | |
529 | ret = 1; | |
530 | break; | |
531 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
532 | dprintf("irq_window_open\n"); | |
533 | break; | |
534 | case KVM_EXIT_SHUTDOWN: | |
535 | dprintf("shutdown\n"); | |
536 | qemu_system_reset_request(); | |
537 | ret = 1; | |
538 | break; | |
539 | case KVM_EXIT_UNKNOWN: | |
540 | dprintf("kvm_exit_unknown\n"); | |
541 | break; | |
542 | case KVM_EXIT_FAIL_ENTRY: | |
543 | dprintf("kvm_exit_fail_entry\n"); | |
544 | break; | |
545 | case KVM_EXIT_EXCEPTION: | |
546 | dprintf("kvm_exit_exception\n"); | |
547 | break; | |
548 | case KVM_EXIT_DEBUG: | |
549 | dprintf("kvm_exit_debug\n"); | |
e22a25c9 AL |
550 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
551 | if (kvm_arch_debug(&run->debug.arch)) { | |
552 | gdb_set_stop_cpu(env); | |
553 | vm_stop(EXCP_DEBUG); | |
554 | env->exception_index = EXCP_DEBUG; | |
555 | return 0; | |
556 | } | |
557 | /* re-enter, this exception was guest-internal */ | |
558 | ret = 1; | |
559 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
05330448 AL |
560 | break; |
561 | default: | |
562 | dprintf("kvm_arch_handle_exit\n"); | |
563 | ret = kvm_arch_handle_exit(env, run); | |
564 | break; | |
565 | } | |
566 | } while (ret > 0); | |
567 | ||
be214e6c AJ |
568 | if (env->exit_request) { |
569 | env->exit_request = 0; | |
becfc390 AL |
570 | env->exception_index = EXCP_INTERRUPT; |
571 | } | |
572 | ||
05330448 AL |
573 | return ret; |
574 | } | |
575 | ||
576 | void kvm_set_phys_mem(target_phys_addr_t start_addr, | |
577 | ram_addr_t size, | |
578 | ram_addr_t phys_offset) | |
579 | { | |
580 | KVMState *s = kvm_state; | |
581 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
6152e2ae AL |
582 | KVMSlot *mem, old; |
583 | int err; | |
05330448 | 584 | |
d3f8d37f | 585 | if (start_addr & ~TARGET_PAGE_MASK) { |
e6f4afe0 JK |
586 | if (flags >= IO_MEM_UNASSIGNED) { |
587 | if (!kvm_lookup_overlapping_slot(s, start_addr, | |
588 | start_addr + size)) { | |
589 | return; | |
590 | } | |
591 | fprintf(stderr, "Unaligned split of a KVM memory slot\n"); | |
592 | } else { | |
593 | fprintf(stderr, "Only page-aligned memory slots supported\n"); | |
594 | } | |
d3f8d37f AL |
595 | abort(); |
596 | } | |
597 | ||
05330448 AL |
598 | /* KVM does not support read-only slots */ |
599 | phys_offset &= ~IO_MEM_ROM; | |
600 | ||
6152e2ae AL |
601 | while (1) { |
602 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
603 | if (!mem) { | |
604 | break; | |
605 | } | |
62d60e8c | 606 | |
6152e2ae AL |
607 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && |
608 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
609 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
610 | /* The new slot fits into the existing one and comes with | |
611 | * identical parameters - nothing to be done. */ | |
05330448 | 612 | return; |
6152e2ae AL |
613 | } |
614 | ||
615 | old = *mem; | |
616 | ||
617 | /* unregister the overlapping slot */ | |
618 | mem->memory_size = 0; | |
619 | err = kvm_set_user_memory_region(s, mem); | |
620 | if (err) { | |
621 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
622 | __func__, strerror(-err)); | |
62d60e8c AL |
623 | abort(); |
624 | } | |
6152e2ae AL |
625 | |
626 | /* Workaround for older KVM versions: we can't join slots, even not by | |
627 | * unregistering the previous ones and then registering the larger | |
628 | * slot. We have to maintain the existing fragmentation. Sigh. | |
629 | * | |
630 | * This workaround assumes that the new slot starts at the same | |
631 | * address as the first existing one. If not or if some overlapping | |
632 | * slot comes around later, we will fail (not seen in practice so far) | |
633 | * - and actually require a recent KVM version. */ | |
634 | if (old.start_addr == start_addr && old.memory_size < size && | |
635 | flags < IO_MEM_UNASSIGNED) { | |
636 | mem = kvm_alloc_slot(s); | |
637 | mem->memory_size = old.memory_size; | |
638 | mem->start_addr = old.start_addr; | |
639 | mem->phys_offset = old.phys_offset; | |
640 | mem->flags = 0; | |
641 | ||
642 | err = kvm_set_user_memory_region(s, mem); | |
643 | if (err) { | |
644 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
645 | strerror(-err)); | |
646 | abort(); | |
647 | } | |
648 | ||
649 | start_addr += old.memory_size; | |
650 | phys_offset += old.memory_size; | |
651 | size -= old.memory_size; | |
652 | continue; | |
653 | } | |
654 | ||
655 | /* register prefix slot */ | |
656 | if (old.start_addr < start_addr) { | |
657 | mem = kvm_alloc_slot(s); | |
658 | mem->memory_size = start_addr - old.start_addr; | |
659 | mem->start_addr = old.start_addr; | |
660 | mem->phys_offset = old.phys_offset; | |
661 | mem->flags = 0; | |
662 | ||
663 | err = kvm_set_user_memory_region(s, mem); | |
664 | if (err) { | |
665 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
666 | __func__, strerror(-err)); | |
667 | abort(); | |
668 | } | |
669 | } | |
670 | ||
671 | /* register suffix slot */ | |
672 | if (old.start_addr + old.memory_size > start_addr + size) { | |
673 | ram_addr_t size_delta; | |
674 | ||
675 | mem = kvm_alloc_slot(s); | |
676 | mem->start_addr = start_addr + size; | |
677 | size_delta = mem->start_addr - old.start_addr; | |
678 | mem->memory_size = old.memory_size - size_delta; | |
679 | mem->phys_offset = old.phys_offset + size_delta; | |
680 | mem->flags = 0; | |
681 | ||
682 | err = kvm_set_user_memory_region(s, mem); | |
683 | if (err) { | |
684 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
685 | __func__, strerror(-err)); | |
686 | abort(); | |
687 | } | |
688 | } | |
05330448 | 689 | } |
6152e2ae AL |
690 | |
691 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
692 | if (!size) | |
693 | return; | |
694 | ||
05330448 AL |
695 | /* KVM does not need to know about this memory */ |
696 | if (flags >= IO_MEM_UNASSIGNED) | |
697 | return; | |
698 | ||
699 | mem = kvm_alloc_slot(s); | |
700 | mem->memory_size = size; | |
34fc643f AL |
701 | mem->start_addr = start_addr; |
702 | mem->phys_offset = phys_offset; | |
05330448 AL |
703 | mem->flags = 0; |
704 | ||
6152e2ae AL |
705 | err = kvm_set_user_memory_region(s, mem); |
706 | if (err) { | |
707 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
708 | strerror(-err)); | |
709 | abort(); | |
710 | } | |
05330448 AL |
711 | } |
712 | ||
984b5181 | 713 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
714 | { |
715 | int ret; | |
984b5181 AL |
716 | void *arg; |
717 | va_list ap; | |
05330448 | 718 | |
984b5181 AL |
719 | va_start(ap, type); |
720 | arg = va_arg(ap, void *); | |
721 | va_end(ap); | |
722 | ||
723 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
724 | if (ret == -1) |
725 | ret = -errno; | |
726 | ||
727 | return ret; | |
728 | } | |
729 | ||
984b5181 | 730 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
731 | { |
732 | int ret; | |
984b5181 AL |
733 | void *arg; |
734 | va_list ap; | |
735 | ||
736 | va_start(ap, type); | |
737 | arg = va_arg(ap, void *); | |
738 | va_end(ap); | |
05330448 | 739 | |
984b5181 | 740 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
741 | if (ret == -1) |
742 | ret = -errno; | |
743 | ||
744 | return ret; | |
745 | } | |
746 | ||
984b5181 | 747 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
748 | { |
749 | int ret; | |
984b5181 AL |
750 | void *arg; |
751 | va_list ap; | |
752 | ||
753 | va_start(ap, type); | |
754 | arg = va_arg(ap, void *); | |
755 | va_end(ap); | |
05330448 | 756 | |
984b5181 | 757 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
758 | if (ret == -1) |
759 | ret = -errno; | |
760 | ||
761 | return ret; | |
762 | } | |
bd322087 AL |
763 | |
764 | int kvm_has_sync_mmu(void) | |
765 | { | |
a9c11522 | 766 | #ifdef KVM_CAP_SYNC_MMU |
bd322087 AL |
767 | KVMState *s = kvm_state; |
768 | ||
bd322087 AL |
769 | if (kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SYNC_MMU) > 0) |
770 | return 1; | |
771 | #endif | |
772 | ||
773 | return 0; | |
774 | } | |
e22a25c9 | 775 | |
6f0437e8 JK |
776 | void kvm_setup_guest_memory(void *start, size_t size) |
777 | { | |
778 | if (!kvm_has_sync_mmu()) { | |
779 | #ifdef MADV_DONTFORK | |
780 | int ret = madvise(start, size, MADV_DONTFORK); | |
781 | ||
782 | if (ret) { | |
783 | perror("madvice"); | |
784 | exit(1); | |
785 | } | |
786 | #else | |
787 | fprintf(stderr, | |
788 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
789 | exit(1); | |
790 | #endif | |
791 | } | |
792 | } | |
793 | ||
e22a25c9 AL |
794 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
795 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, | |
796 | target_ulong pc) | |
797 | { | |
798 | struct kvm_sw_breakpoint *bp; | |
799 | ||
800 | TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { | |
801 | if (bp->pc == pc) | |
802 | return bp; | |
803 | } | |
804 | return NULL; | |
805 | } | |
806 | ||
807 | int kvm_sw_breakpoints_active(CPUState *env) | |
808 | { | |
809 | return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); | |
810 | } | |
811 | ||
812 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
813 | { | |
814 | struct kvm_guest_debug dbg; | |
815 | ||
816 | dbg.control = 0; | |
817 | if (env->singlestep_enabled) | |
818 | dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
819 | ||
820 | kvm_arch_update_guest_debug(env, &dbg); | |
821 | dbg.control |= reinject_trap; | |
822 | ||
823 | return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg); | |
824 | } | |
825 | ||
826 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
827 | target_ulong len, int type) | |
828 | { | |
829 | struct kvm_sw_breakpoint *bp; | |
830 | CPUState *env; | |
831 | int err; | |
832 | ||
833 | if (type == GDB_BREAKPOINT_SW) { | |
834 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
835 | if (bp) { | |
836 | bp->use_count++; | |
837 | return 0; | |
838 | } | |
839 | ||
840 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
841 | if (!bp) | |
842 | return -ENOMEM; | |
843 | ||
844 | bp->pc = addr; | |
845 | bp->use_count = 1; | |
846 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
847 | if (err) { | |
848 | free(bp); | |
849 | return err; | |
850 | } | |
851 | ||
852 | TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, | |
853 | bp, entry); | |
854 | } else { | |
855 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
856 | if (err) | |
857 | return err; | |
858 | } | |
859 | ||
860 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
861 | err = kvm_update_guest_debug(env, 0); | |
862 | if (err) | |
863 | return err; | |
864 | } | |
865 | return 0; | |
866 | } | |
867 | ||
868 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
869 | target_ulong len, int type) | |
870 | { | |
871 | struct kvm_sw_breakpoint *bp; | |
872 | CPUState *env; | |
873 | int err; | |
874 | ||
875 | if (type == GDB_BREAKPOINT_SW) { | |
876 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
877 | if (!bp) | |
878 | return -ENOENT; | |
879 | ||
880 | if (bp->use_count > 1) { | |
881 | bp->use_count--; | |
882 | return 0; | |
883 | } | |
884 | ||
885 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
886 | if (err) | |
887 | return err; | |
888 | ||
889 | TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); | |
890 | qemu_free(bp); | |
891 | } else { | |
892 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
893 | if (err) | |
894 | return err; | |
895 | } | |
896 | ||
897 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
898 | err = kvm_update_guest_debug(env, 0); | |
899 | if (err) | |
900 | return err; | |
901 | } | |
902 | return 0; | |
903 | } | |
904 | ||
905 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
906 | { | |
907 | struct kvm_sw_breakpoint *bp, *next; | |
908 | KVMState *s = current_env->kvm_state; | |
909 | CPUState *env; | |
910 | ||
911 | TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
912 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { | |
913 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
914 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
915 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | |
916 | break; | |
917 | } | |
918 | } | |
919 | } | |
920 | kvm_arch_remove_all_hw_breakpoints(); | |
921 | ||
922 | for (env = first_cpu; env != NULL; env = env->next_cpu) | |
923 | kvm_update_guest_debug(env, 0); | |
924 | } | |
925 | ||
926 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
927 | ||
928 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
929 | { | |
930 | return -EINVAL; | |
931 | } | |
932 | ||
933 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
934 | target_ulong len, int type) | |
935 | { | |
936 | return -EINVAL; | |
937 | } | |
938 | ||
939 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
940 | target_ulong len, int type) | |
941 | { | |
942 | return -EINVAL; | |
943 | } | |
944 | ||
945 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
946 | { | |
947 | } | |
948 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |