]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "sysemu.h" | |
d33a1810 | 25 | #include "hw/hw.h" |
e22a25c9 | 26 | #include "gdbstub.h" |
05330448 AL |
27 | #include "kvm.h" |
28 | ||
f65ed4c1 AL |
29 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
30 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
31 | ||
05330448 AL |
32 | //#define DEBUG_KVM |
33 | ||
34 | #ifdef DEBUG_KVM | |
35 | #define dprintf(fmt, ...) \ | |
36 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
37 | #else | |
38 | #define dprintf(fmt, ...) \ | |
39 | do { } while (0) | |
40 | #endif | |
41 | ||
34fc643f AL |
42 | typedef struct KVMSlot |
43 | { | |
c227f099 AL |
44 | target_phys_addr_t start_addr; |
45 | ram_addr_t memory_size; | |
46 | ram_addr_t phys_offset; | |
34fc643f AL |
47 | int slot; |
48 | int flags; | |
49 | } KVMSlot; | |
05330448 | 50 | |
5832d1f2 AL |
51 | typedef struct kvm_dirty_log KVMDirtyLog; |
52 | ||
05330448 AL |
53 | int kvm_allowed = 0; |
54 | ||
55 | struct KVMState | |
56 | { | |
57 | KVMSlot slots[32]; | |
58 | int fd; | |
59 | int vmfd; | |
f65ed4c1 | 60 | int coalesced_mmio; |
62a2744c SY |
61 | #ifdef KVM_CAP_COALESCED_MMIO |
62 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
63 | #endif | |
e69917e2 | 64 | int broken_set_mem_region; |
4495d6a7 | 65 | int migration_log; |
a0fb002c | 66 | int vcpu_events; |
e22a25c9 AL |
67 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
68 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
69 | #endif | |
6f725c13 GC |
70 | int irqchip_in_kernel; |
71 | int pit_in_kernel; | |
05330448 AL |
72 | }; |
73 | ||
74 | static KVMState *kvm_state; | |
75 | ||
76 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
77 | { | |
78 | int i; | |
79 | ||
80 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
81 | /* KVM private memory slots */ |
82 | if (i >= 8 && i < 12) | |
83 | continue; | |
05330448 AL |
84 | if (s->slots[i].memory_size == 0) |
85 | return &s->slots[i]; | |
86 | } | |
87 | ||
d3f8d37f AL |
88 | fprintf(stderr, "%s: no free slot available\n", __func__); |
89 | abort(); | |
90 | } | |
91 | ||
92 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
93 | target_phys_addr_t start_addr, |
94 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
95 | { |
96 | int i; | |
97 | ||
98 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
99 | KVMSlot *mem = &s->slots[i]; | |
100 | ||
101 | if (start_addr == mem->start_addr && | |
102 | end_addr == mem->start_addr + mem->memory_size) { | |
103 | return mem; | |
104 | } | |
105 | } | |
106 | ||
05330448 AL |
107 | return NULL; |
108 | } | |
109 | ||
6152e2ae AL |
110 | /* |
111 | * Find overlapping slot with lowest start address | |
112 | */ | |
113 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
114 | target_phys_addr_t start_addr, |
115 | target_phys_addr_t end_addr) | |
05330448 | 116 | { |
6152e2ae | 117 | KVMSlot *found = NULL; |
05330448 AL |
118 | int i; |
119 | ||
120 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
121 | KVMSlot *mem = &s->slots[i]; | |
122 | ||
6152e2ae AL |
123 | if (mem->memory_size == 0 || |
124 | (found && found->start_addr < mem->start_addr)) { | |
125 | continue; | |
126 | } | |
127 | ||
128 | if (end_addr > mem->start_addr && | |
129 | start_addr < mem->start_addr + mem->memory_size) { | |
130 | found = mem; | |
131 | } | |
05330448 AL |
132 | } |
133 | ||
6152e2ae | 134 | return found; |
05330448 AL |
135 | } |
136 | ||
5832d1f2 AL |
137 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
138 | { | |
139 | struct kvm_userspace_memory_region mem; | |
140 | ||
141 | mem.slot = slot->slot; | |
142 | mem.guest_phys_addr = slot->start_addr; | |
143 | mem.memory_size = slot->memory_size; | |
5579c7f3 | 144 | mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); |
5832d1f2 | 145 | mem.flags = slot->flags; |
4495d6a7 JK |
146 | if (s->migration_log) { |
147 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
148 | } | |
5832d1f2 AL |
149 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
150 | } | |
151 | ||
8d2ba1fb JK |
152 | static void kvm_reset_vcpu(void *opaque) |
153 | { | |
154 | CPUState *env = opaque; | |
155 | ||
caa5af0f | 156 | kvm_arch_reset_vcpu(env); |
8d2ba1fb JK |
157 | if (kvm_arch_put_registers(env)) { |
158 | fprintf(stderr, "Fatal: kvm vcpu reset failed\n"); | |
159 | abort(); | |
160 | } | |
161 | } | |
5832d1f2 | 162 | |
6f725c13 GC |
163 | int kvm_irqchip_in_kernel(void) |
164 | { | |
165 | return kvm_state->irqchip_in_kernel; | |
166 | } | |
167 | ||
168 | int kvm_pit_in_kernel(void) | |
169 | { | |
170 | return kvm_state->pit_in_kernel; | |
171 | } | |
172 | ||
173 | ||
05330448 AL |
174 | int kvm_init_vcpu(CPUState *env) |
175 | { | |
176 | KVMState *s = kvm_state; | |
177 | long mmap_size; | |
178 | int ret; | |
179 | ||
180 | dprintf("kvm_init_vcpu\n"); | |
181 | ||
984b5181 | 182 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 AL |
183 | if (ret < 0) { |
184 | dprintf("kvm_create_vcpu failed\n"); | |
185 | goto err; | |
186 | } | |
187 | ||
188 | env->kvm_fd = ret; | |
189 | env->kvm_state = s; | |
190 | ||
191 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
192 | if (mmap_size < 0) { | |
193 | dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
194 | goto err; | |
195 | } | |
196 | ||
197 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
198 | env->kvm_fd, 0); | |
199 | if (env->kvm_run == MAP_FAILED) { | |
200 | ret = -errno; | |
201 | dprintf("mmap'ing vcpu state failed\n"); | |
202 | goto err; | |
203 | } | |
204 | ||
62a2744c SY |
205 | #ifdef KVM_CAP_COALESCED_MMIO |
206 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) | |
207 | s->coalesced_mmio_ring = (void *) env->kvm_run + | |
208 | s->coalesced_mmio * PAGE_SIZE; | |
209 | #endif | |
210 | ||
05330448 | 211 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 212 | if (ret == 0) { |
a08d4367 | 213 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 214 | kvm_arch_reset_vcpu(env); |
8d2ba1fb JK |
215 | ret = kvm_arch_put_registers(env); |
216 | } | |
05330448 AL |
217 | err: |
218 | return ret; | |
219 | } | |
220 | ||
5832d1f2 AL |
221 | /* |
222 | * dirty pages logging control | |
223 | */ | |
c227f099 AL |
224 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
225 | ram_addr_t size, int flags, int mask) | |
5832d1f2 AL |
226 | { |
227 | KVMState *s = kvm_state; | |
d3f8d37f | 228 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
4495d6a7 JK |
229 | int old_flags; |
230 | ||
5832d1f2 | 231 | if (mem == NULL) { |
d3f8d37f AL |
232 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
233 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
c227f099 | 234 | (target_phys_addr_t)(phys_addr + size - 1)); |
5832d1f2 AL |
235 | return -EINVAL; |
236 | } | |
237 | ||
4495d6a7 | 238 | old_flags = mem->flags; |
5832d1f2 | 239 | |
4495d6a7 | 240 | flags = (mem->flags & ~mask) | flags; |
5832d1f2 AL |
241 | mem->flags = flags; |
242 | ||
4495d6a7 JK |
243 | /* If nothing changed effectively, no need to issue ioctl */ |
244 | if (s->migration_log) { | |
245 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
246 | } | |
247 | if (flags == old_flags) { | |
248 | return 0; | |
249 | } | |
250 | ||
5832d1f2 AL |
251 | return kvm_set_user_memory_region(s, mem); |
252 | } | |
253 | ||
c227f099 | 254 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 255 | { |
d3f8d37f | 256 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
257 | KVM_MEM_LOG_DIRTY_PAGES, |
258 | KVM_MEM_LOG_DIRTY_PAGES); | |
259 | } | |
260 | ||
c227f099 | 261 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 262 | { |
d3f8d37f | 263 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
264 | 0, |
265 | KVM_MEM_LOG_DIRTY_PAGES); | |
266 | } | |
267 | ||
7b8f3b78 | 268 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
269 | { |
270 | KVMState *s = kvm_state; | |
271 | KVMSlot *mem; | |
272 | int i, err; | |
273 | ||
274 | s->migration_log = enable; | |
275 | ||
276 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
277 | mem = &s->slots[i]; | |
278 | ||
279 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
280 | continue; | |
281 | } | |
282 | err = kvm_set_user_memory_region(s, mem); | |
283 | if (err) { | |
284 | return err; | |
285 | } | |
286 | } | |
287 | return 0; | |
288 | } | |
289 | ||
96c1606b AG |
290 | static int test_le_bit(unsigned long nr, unsigned char *addr) |
291 | { | |
292 | return (addr[nr >> 3] >> (nr & 7)) & 1; | |
293 | } | |
294 | ||
5832d1f2 AL |
295 | /** |
296 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
297 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
298 | * This means all bits are set to dirty. | |
299 | * | |
d3f8d37f | 300 | * @start_add: start of logged region. |
5832d1f2 AL |
301 | * @end_addr: end of logged region. |
302 | */ | |
7b8f3b78 MT |
303 | static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
304 | target_phys_addr_t end_addr) | |
5832d1f2 AL |
305 | { |
306 | KVMState *s = kvm_state; | |
151f7749 | 307 | unsigned long size, allocated_size = 0; |
c227f099 AL |
308 | target_phys_addr_t phys_addr; |
309 | ram_addr_t addr; | |
151f7749 JK |
310 | KVMDirtyLog d; |
311 | KVMSlot *mem; | |
312 | int ret = 0; | |
5832d1f2 | 313 | |
151f7749 JK |
314 | d.dirty_bitmap = NULL; |
315 | while (start_addr < end_addr) { | |
316 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
317 | if (mem == NULL) { | |
318 | break; | |
319 | } | |
5832d1f2 | 320 | |
151f7749 JK |
321 | size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8; |
322 | if (!d.dirty_bitmap) { | |
323 | d.dirty_bitmap = qemu_malloc(size); | |
324 | } else if (size > allocated_size) { | |
325 | d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | |
326 | } | |
327 | allocated_size = size; | |
328 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 329 | |
151f7749 | 330 | d.slot = mem->slot; |
5832d1f2 | 331 | |
6e489f3f | 332 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
151f7749 JK |
333 | dprintf("ioctl failed %d\n", errno); |
334 | ret = -1; | |
335 | break; | |
336 | } | |
5832d1f2 | 337 | |
151f7749 JK |
338 | for (phys_addr = mem->start_addr, addr = mem->phys_offset; |
339 | phys_addr < mem->start_addr + mem->memory_size; | |
340 | phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
96c1606b | 341 | unsigned char *bitmap = (unsigned char *)d.dirty_bitmap; |
151f7749 | 342 | unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS; |
151f7749 | 343 | |
96c1606b | 344 | if (test_le_bit(nr, bitmap)) { |
151f7749 JK |
345 | cpu_physical_memory_set_dirty(addr); |
346 | } | |
347 | } | |
348 | start_addr = phys_addr; | |
5832d1f2 | 349 | } |
5832d1f2 | 350 | qemu_free(d.dirty_bitmap); |
151f7749 JK |
351 | |
352 | return ret; | |
5832d1f2 AL |
353 | } |
354 | ||
c227f099 | 355 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
356 | { |
357 | int ret = -ENOSYS; | |
358 | #ifdef KVM_CAP_COALESCED_MMIO | |
359 | KVMState *s = kvm_state; | |
360 | ||
361 | if (s->coalesced_mmio) { | |
362 | struct kvm_coalesced_mmio_zone zone; | |
363 | ||
364 | zone.addr = start; | |
365 | zone.size = size; | |
366 | ||
367 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
368 | } | |
369 | #endif | |
370 | ||
371 | return ret; | |
372 | } | |
373 | ||
c227f099 | 374 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
375 | { |
376 | int ret = -ENOSYS; | |
377 | #ifdef KVM_CAP_COALESCED_MMIO | |
378 | KVMState *s = kvm_state; | |
379 | ||
380 | if (s->coalesced_mmio) { | |
381 | struct kvm_coalesced_mmio_zone zone; | |
382 | ||
383 | zone.addr = start; | |
384 | zone.size = size; | |
385 | ||
386 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
387 | } | |
388 | #endif | |
389 | ||
390 | return ret; | |
391 | } | |
392 | ||
ad7b8b33 AL |
393 | int kvm_check_extension(KVMState *s, unsigned int extension) |
394 | { | |
395 | int ret; | |
396 | ||
397 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
398 | if (ret < 0) { | |
399 | ret = 0; | |
400 | } | |
401 | ||
402 | return ret; | |
403 | } | |
404 | ||
7b8f3b78 MT |
405 | static void kvm_set_phys_mem(target_phys_addr_t start_addr, |
406 | ram_addr_t size, | |
407 | ram_addr_t phys_offset) | |
46dbef6a MT |
408 | { |
409 | KVMState *s = kvm_state; | |
410 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
411 | KVMSlot *mem, old; | |
412 | int err; | |
413 | ||
414 | if (start_addr & ~TARGET_PAGE_MASK) { | |
415 | if (flags >= IO_MEM_UNASSIGNED) { | |
416 | if (!kvm_lookup_overlapping_slot(s, start_addr, | |
417 | start_addr + size)) { | |
418 | return; | |
419 | } | |
420 | fprintf(stderr, "Unaligned split of a KVM memory slot\n"); | |
421 | } else { | |
422 | fprintf(stderr, "Only page-aligned memory slots supported\n"); | |
423 | } | |
424 | abort(); | |
425 | } | |
426 | ||
427 | /* KVM does not support read-only slots */ | |
428 | phys_offset &= ~IO_MEM_ROM; | |
429 | ||
430 | while (1) { | |
431 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
432 | if (!mem) { | |
433 | break; | |
434 | } | |
435 | ||
436 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && | |
437 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
438 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
439 | /* The new slot fits into the existing one and comes with | |
440 | * identical parameters - nothing to be done. */ | |
441 | return; | |
442 | } | |
443 | ||
444 | old = *mem; | |
445 | ||
446 | /* unregister the overlapping slot */ | |
447 | mem->memory_size = 0; | |
448 | err = kvm_set_user_memory_region(s, mem); | |
449 | if (err) { | |
450 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
451 | __func__, strerror(-err)); | |
452 | abort(); | |
453 | } | |
454 | ||
455 | /* Workaround for older KVM versions: we can't join slots, even not by | |
456 | * unregistering the previous ones and then registering the larger | |
457 | * slot. We have to maintain the existing fragmentation. Sigh. | |
458 | * | |
459 | * This workaround assumes that the new slot starts at the same | |
460 | * address as the first existing one. If not or if some overlapping | |
461 | * slot comes around later, we will fail (not seen in practice so far) | |
462 | * - and actually require a recent KVM version. */ | |
463 | if (s->broken_set_mem_region && | |
464 | old.start_addr == start_addr && old.memory_size < size && | |
465 | flags < IO_MEM_UNASSIGNED) { | |
466 | mem = kvm_alloc_slot(s); | |
467 | mem->memory_size = old.memory_size; | |
468 | mem->start_addr = old.start_addr; | |
469 | mem->phys_offset = old.phys_offset; | |
470 | mem->flags = 0; | |
471 | ||
472 | err = kvm_set_user_memory_region(s, mem); | |
473 | if (err) { | |
474 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
475 | strerror(-err)); | |
476 | abort(); | |
477 | } | |
478 | ||
479 | start_addr += old.memory_size; | |
480 | phys_offset += old.memory_size; | |
481 | size -= old.memory_size; | |
482 | continue; | |
483 | } | |
484 | ||
485 | /* register prefix slot */ | |
486 | if (old.start_addr < start_addr) { | |
487 | mem = kvm_alloc_slot(s); | |
488 | mem->memory_size = start_addr - old.start_addr; | |
489 | mem->start_addr = old.start_addr; | |
490 | mem->phys_offset = old.phys_offset; | |
491 | mem->flags = 0; | |
492 | ||
493 | err = kvm_set_user_memory_region(s, mem); | |
494 | if (err) { | |
495 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
496 | __func__, strerror(-err)); | |
497 | abort(); | |
498 | } | |
499 | } | |
500 | ||
501 | /* register suffix slot */ | |
502 | if (old.start_addr + old.memory_size > start_addr + size) { | |
503 | ram_addr_t size_delta; | |
504 | ||
505 | mem = kvm_alloc_slot(s); | |
506 | mem->start_addr = start_addr + size; | |
507 | size_delta = mem->start_addr - old.start_addr; | |
508 | mem->memory_size = old.memory_size - size_delta; | |
509 | mem->phys_offset = old.phys_offset + size_delta; | |
510 | mem->flags = 0; | |
511 | ||
512 | err = kvm_set_user_memory_region(s, mem); | |
513 | if (err) { | |
514 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
515 | __func__, strerror(-err)); | |
516 | abort(); | |
517 | } | |
518 | } | |
519 | } | |
520 | ||
521 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
522 | if (!size) | |
523 | return; | |
524 | ||
525 | /* KVM does not need to know about this memory */ | |
526 | if (flags >= IO_MEM_UNASSIGNED) | |
527 | return; | |
528 | ||
529 | mem = kvm_alloc_slot(s); | |
530 | mem->memory_size = size; | |
531 | mem->start_addr = start_addr; | |
532 | mem->phys_offset = phys_offset; | |
533 | mem->flags = 0; | |
534 | ||
535 | err = kvm_set_user_memory_region(s, mem); | |
536 | if (err) { | |
537 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
538 | strerror(-err)); | |
539 | abort(); | |
540 | } | |
541 | } | |
542 | ||
7b8f3b78 MT |
543 | static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, |
544 | target_phys_addr_t start_addr, | |
545 | ram_addr_t size, | |
546 | ram_addr_t phys_offset) | |
547 | { | |
548 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
549 | } | |
550 | ||
551 | static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, | |
552 | target_phys_addr_t start_addr, | |
553 | target_phys_addr_t end_addr) | |
554 | { | |
555 | return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
556 | } | |
557 | ||
558 | static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, | |
559 | int enable) | |
560 | { | |
561 | return kvm_set_migration_log(enable); | |
562 | } | |
563 | ||
564 | static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { | |
565 | .set_memory = kvm_client_set_memory, | |
566 | .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, | |
567 | .migration_log = kvm_client_migration_log, | |
568 | }; | |
569 | ||
05330448 AL |
570 | int kvm_init(int smp_cpus) |
571 | { | |
168ccc11 JK |
572 | static const char upgrade_note[] = |
573 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
574 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 AL |
575 | KVMState *s; |
576 | int ret; | |
577 | int i; | |
578 | ||
9f8fd694 MM |
579 | if (smp_cpus > 1) { |
580 | fprintf(stderr, "No SMP KVM support, use '-smp 1'\n"); | |
05330448 | 581 | return -EINVAL; |
9f8fd694 | 582 | } |
05330448 AL |
583 | |
584 | s = qemu_mallocz(sizeof(KVMState)); | |
05330448 | 585 | |
e22a25c9 | 586 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 587 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 588 | #endif |
05330448 AL |
589 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
590 | s->slots[i].slot = i; | |
591 | ||
592 | s->vmfd = -1; | |
40ff6d7e | 593 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
594 | if (s->fd == -1) { |
595 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
596 | ret = -errno; | |
597 | goto err; | |
598 | } | |
599 | ||
600 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
601 | if (ret < KVM_API_VERSION) { | |
602 | if (ret > 0) | |
603 | ret = -EINVAL; | |
604 | fprintf(stderr, "kvm version too old\n"); | |
605 | goto err; | |
606 | } | |
607 | ||
608 | if (ret > KVM_API_VERSION) { | |
609 | ret = -EINVAL; | |
610 | fprintf(stderr, "kvm version not supported\n"); | |
611 | goto err; | |
612 | } | |
613 | ||
614 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
615 | if (s->vmfd < 0) | |
616 | goto err; | |
617 | ||
618 | /* initially, KVM allocated its own memory and we had to jump through | |
619 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
5579c7f3 | 620 | * just use a user allocated buffer so we can use regular pages |
05330448 AL |
621 | * unmodified. Make sure we have a sufficiently modern version of KVM. |
622 | */ | |
ad7b8b33 AL |
623 | if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { |
624 | ret = -EINVAL; | |
168ccc11 JK |
625 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", |
626 | upgrade_note); | |
05330448 AL |
627 | goto err; |
628 | } | |
629 | ||
d85dc283 AL |
630 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
631 | * destroyed properly. Since we rely on this capability, refuse to work | |
632 | * with any kernel without this capability. */ | |
ad7b8b33 AL |
633 | if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { |
634 | ret = -EINVAL; | |
d85dc283 AL |
635 | |
636 | fprintf(stderr, | |
168ccc11 JK |
637 | "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", |
638 | upgrade_note); | |
d85dc283 AL |
639 | goto err; |
640 | } | |
641 | ||
62a2744c | 642 | s->coalesced_mmio = 0; |
f65ed4c1 | 643 | #ifdef KVM_CAP_COALESCED_MMIO |
ad7b8b33 | 644 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
62a2744c | 645 | s->coalesced_mmio_ring = NULL; |
f65ed4c1 AL |
646 | #endif |
647 | ||
e69917e2 JK |
648 | s->broken_set_mem_region = 1; |
649 | #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS | |
650 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
651 | if (ret > 0) { | |
652 | s->broken_set_mem_region = 0; | |
653 | } | |
654 | #endif | |
655 | ||
a0fb002c JK |
656 | s->vcpu_events = 0; |
657 | #ifdef KVM_CAP_VCPU_EVENTS | |
658 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
659 | #endif | |
660 | ||
05330448 AL |
661 | ret = kvm_arch_init(s, smp_cpus); |
662 | if (ret < 0) | |
663 | goto err; | |
664 | ||
665 | kvm_state = s; | |
7b8f3b78 | 666 | cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); |
05330448 AL |
667 | |
668 | return 0; | |
669 | ||
670 | err: | |
671 | if (s) { | |
672 | if (s->vmfd != -1) | |
673 | close(s->vmfd); | |
674 | if (s->fd != -1) | |
675 | close(s->fd); | |
676 | } | |
677 | qemu_free(s); | |
678 | ||
679 | return ret; | |
680 | } | |
681 | ||
afcea8cb BS |
682 | static int kvm_handle_io(uint16_t port, void *data, int direction, int size, |
683 | uint32_t count) | |
05330448 AL |
684 | { |
685 | int i; | |
686 | uint8_t *ptr = data; | |
687 | ||
688 | for (i = 0; i < count; i++) { | |
689 | if (direction == KVM_EXIT_IO_IN) { | |
690 | switch (size) { | |
691 | case 1: | |
afcea8cb | 692 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
693 | break; |
694 | case 2: | |
afcea8cb | 695 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
696 | break; |
697 | case 4: | |
afcea8cb | 698 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
699 | break; |
700 | } | |
701 | } else { | |
702 | switch (size) { | |
703 | case 1: | |
afcea8cb | 704 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
705 | break; |
706 | case 2: | |
afcea8cb | 707 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
708 | break; |
709 | case 4: | |
afcea8cb | 710 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
711 | break; |
712 | } | |
713 | } | |
714 | ||
715 | ptr += size; | |
716 | } | |
717 | ||
718 | return 1; | |
719 | } | |
720 | ||
62a2744c | 721 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 AL |
722 | { |
723 | #ifdef KVM_CAP_COALESCED_MMIO | |
724 | KVMState *s = kvm_state; | |
62a2744c SY |
725 | if (s->coalesced_mmio_ring) { |
726 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
727 | while (ring->first != ring->last) { |
728 | struct kvm_coalesced_mmio *ent; | |
729 | ||
730 | ent = &ring->coalesced_mmio[ring->first]; | |
731 | ||
732 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
733 | /* FIXME smp_wmb() */ | |
734 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
735 | } | |
736 | } | |
737 | #endif | |
738 | } | |
739 | ||
4c0960c0 AK |
740 | void kvm_cpu_synchronize_state(CPUState *env) |
741 | { | |
9ded2744 | 742 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 743 | kvm_arch_get_registers(env); |
9ded2744 | 744 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
745 | } |
746 | } | |
747 | ||
05330448 AL |
748 | int kvm_cpu_exec(CPUState *env) |
749 | { | |
750 | struct kvm_run *run = env->kvm_run; | |
751 | int ret; | |
752 | ||
753 | dprintf("kvm_cpu_exec()\n"); | |
754 | ||
755 | do { | |
be214e6c | 756 | if (env->exit_request) { |
05330448 AL |
757 | dprintf("interrupt exit requested\n"); |
758 | ret = 0; | |
759 | break; | |
760 | } | |
761 | ||
9ded2744 | 762 | if (env->kvm_vcpu_dirty) { |
4c0960c0 | 763 | kvm_arch_put_registers(env); |
9ded2744 | 764 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
765 | } |
766 | ||
8c14c173 | 767 | kvm_arch_pre_run(env, run); |
d549db5a | 768 | qemu_mutex_unlock_iothread(); |
05330448 | 769 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
d549db5a | 770 | qemu_mutex_lock_iothread(); |
05330448 AL |
771 | kvm_arch_post_run(env, run); |
772 | ||
773 | if (ret == -EINTR || ret == -EAGAIN) { | |
774 | dprintf("io window exit\n"); | |
775 | ret = 0; | |
776 | break; | |
777 | } | |
778 | ||
779 | if (ret < 0) { | |
780 | dprintf("kvm run failed %s\n", strerror(-ret)); | |
781 | abort(); | |
782 | } | |
783 | ||
62a2744c | 784 | kvm_flush_coalesced_mmio_buffer(); |
f65ed4c1 | 785 | |
05330448 AL |
786 | ret = 0; /* exit loop */ |
787 | switch (run->exit_reason) { | |
788 | case KVM_EXIT_IO: | |
789 | dprintf("handle_io\n"); | |
afcea8cb | 790 | ret = kvm_handle_io(run->io.port, |
05330448 AL |
791 | (uint8_t *)run + run->io.data_offset, |
792 | run->io.direction, | |
793 | run->io.size, | |
794 | run->io.count); | |
795 | break; | |
796 | case KVM_EXIT_MMIO: | |
797 | dprintf("handle_mmio\n"); | |
798 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
799 | run->mmio.data, | |
800 | run->mmio.len, | |
801 | run->mmio.is_write); | |
802 | ret = 1; | |
803 | break; | |
804 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
805 | dprintf("irq_window_open\n"); | |
806 | break; | |
807 | case KVM_EXIT_SHUTDOWN: | |
808 | dprintf("shutdown\n"); | |
809 | qemu_system_reset_request(); | |
810 | ret = 1; | |
811 | break; | |
812 | case KVM_EXIT_UNKNOWN: | |
813 | dprintf("kvm_exit_unknown\n"); | |
814 | break; | |
815 | case KVM_EXIT_FAIL_ENTRY: | |
816 | dprintf("kvm_exit_fail_entry\n"); | |
817 | break; | |
818 | case KVM_EXIT_EXCEPTION: | |
819 | dprintf("kvm_exit_exception\n"); | |
820 | break; | |
821 | case KVM_EXIT_DEBUG: | |
822 | dprintf("kvm_exit_debug\n"); | |
e22a25c9 AL |
823 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
824 | if (kvm_arch_debug(&run->debug.arch)) { | |
825 | gdb_set_stop_cpu(env); | |
826 | vm_stop(EXCP_DEBUG); | |
827 | env->exception_index = EXCP_DEBUG; | |
828 | return 0; | |
829 | } | |
830 | /* re-enter, this exception was guest-internal */ | |
831 | ret = 1; | |
832 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
05330448 AL |
833 | break; |
834 | default: | |
835 | dprintf("kvm_arch_handle_exit\n"); | |
836 | ret = kvm_arch_handle_exit(env, run); | |
837 | break; | |
838 | } | |
839 | } while (ret > 0); | |
840 | ||
be214e6c AJ |
841 | if (env->exit_request) { |
842 | env->exit_request = 0; | |
becfc390 AL |
843 | env->exception_index = EXCP_INTERRUPT; |
844 | } | |
845 | ||
05330448 AL |
846 | return ret; |
847 | } | |
848 | ||
984b5181 | 849 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
850 | { |
851 | int ret; | |
984b5181 AL |
852 | void *arg; |
853 | va_list ap; | |
05330448 | 854 | |
984b5181 AL |
855 | va_start(ap, type); |
856 | arg = va_arg(ap, void *); | |
857 | va_end(ap); | |
858 | ||
859 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
860 | if (ret == -1) |
861 | ret = -errno; | |
862 | ||
863 | return ret; | |
864 | } | |
865 | ||
984b5181 | 866 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
867 | { |
868 | int ret; | |
984b5181 AL |
869 | void *arg; |
870 | va_list ap; | |
871 | ||
872 | va_start(ap, type); | |
873 | arg = va_arg(ap, void *); | |
874 | va_end(ap); | |
05330448 | 875 | |
984b5181 | 876 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
877 | if (ret == -1) |
878 | ret = -errno; | |
879 | ||
880 | return ret; | |
881 | } | |
882 | ||
984b5181 | 883 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
884 | { |
885 | int ret; | |
984b5181 AL |
886 | void *arg; |
887 | va_list ap; | |
888 | ||
889 | va_start(ap, type); | |
890 | arg = va_arg(ap, void *); | |
891 | va_end(ap); | |
05330448 | 892 | |
984b5181 | 893 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
894 | if (ret == -1) |
895 | ret = -errno; | |
896 | ||
897 | return ret; | |
898 | } | |
bd322087 AL |
899 | |
900 | int kvm_has_sync_mmu(void) | |
901 | { | |
a9c11522 | 902 | #ifdef KVM_CAP_SYNC_MMU |
bd322087 AL |
903 | KVMState *s = kvm_state; |
904 | ||
ad7b8b33 AL |
905 | return kvm_check_extension(s, KVM_CAP_SYNC_MMU); |
906 | #else | |
bd322087 | 907 | return 0; |
ad7b8b33 | 908 | #endif |
bd322087 | 909 | } |
e22a25c9 | 910 | |
a0fb002c JK |
911 | int kvm_has_vcpu_events(void) |
912 | { | |
913 | return kvm_state->vcpu_events; | |
914 | } | |
915 | ||
6f0437e8 JK |
916 | void kvm_setup_guest_memory(void *start, size_t size) |
917 | { | |
918 | if (!kvm_has_sync_mmu()) { | |
919 | #ifdef MADV_DONTFORK | |
920 | int ret = madvise(start, size, MADV_DONTFORK); | |
921 | ||
922 | if (ret) { | |
923 | perror("madvice"); | |
924 | exit(1); | |
925 | } | |
926 | #else | |
927 | fprintf(stderr, | |
928 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
929 | exit(1); | |
930 | #endif | |
931 | } | |
932 | } | |
933 | ||
e22a25c9 | 934 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
fc5d642f LC |
935 | static void on_vcpu(CPUState *env, void (*func)(void *data), void *data) |
936 | { | |
828566bc | 937 | #ifdef CONFIG_IOTHREAD |
a2eebe88 AS |
938 | if (env != cpu_single_env) { |
939 | abort(); | |
fc5d642f | 940 | } |
828566bc | 941 | #endif |
a2eebe88 | 942 | func(data); |
fc5d642f LC |
943 | } |
944 | ||
e22a25c9 AL |
945 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, |
946 | target_ulong pc) | |
947 | { | |
948 | struct kvm_sw_breakpoint *bp; | |
949 | ||
72cf2d4f | 950 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
e22a25c9 AL |
951 | if (bp->pc == pc) |
952 | return bp; | |
953 | } | |
954 | return NULL; | |
955 | } | |
956 | ||
957 | int kvm_sw_breakpoints_active(CPUState *env) | |
958 | { | |
72cf2d4f | 959 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
960 | } |
961 | ||
452e4751 GC |
962 | struct kvm_set_guest_debug_data { |
963 | struct kvm_guest_debug dbg; | |
964 | CPUState *env; | |
965 | int err; | |
966 | }; | |
967 | ||
968 | static void kvm_invoke_set_guest_debug(void *data) | |
969 | { | |
970 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 JK |
971 | CPUState *env = dbg_data->env; |
972 | ||
9ded2744 | 973 | if (env->kvm_vcpu_dirty) { |
b3807725 | 974 | kvm_arch_put_registers(env); |
9ded2744 | 975 | env->kvm_vcpu_dirty = 0; |
b3807725 JK |
976 | } |
977 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); | |
452e4751 GC |
978 | } |
979 | ||
e22a25c9 AL |
980 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
981 | { | |
452e4751 | 982 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 983 | |
452e4751 | 984 | data.dbg.control = 0; |
e22a25c9 | 985 | if (env->singlestep_enabled) |
452e4751 | 986 | data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
e22a25c9 | 987 | |
452e4751 GC |
988 | kvm_arch_update_guest_debug(env, &data.dbg); |
989 | data.dbg.control |= reinject_trap; | |
990 | data.env = env; | |
e22a25c9 | 991 | |
452e4751 GC |
992 | on_vcpu(env, kvm_invoke_set_guest_debug, &data); |
993 | return data.err; | |
e22a25c9 AL |
994 | } |
995 | ||
996 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
997 | target_ulong len, int type) | |
998 | { | |
999 | struct kvm_sw_breakpoint *bp; | |
1000 | CPUState *env; | |
1001 | int err; | |
1002 | ||
1003 | if (type == GDB_BREAKPOINT_SW) { | |
1004 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1005 | if (bp) { | |
1006 | bp->use_count++; | |
1007 | return 0; | |
1008 | } | |
1009 | ||
1010 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
1011 | if (!bp) | |
1012 | return -ENOMEM; | |
1013 | ||
1014 | bp->pc = addr; | |
1015 | bp->use_count = 1; | |
1016 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1017 | if (err) { | |
1018 | free(bp); | |
1019 | return err; | |
1020 | } | |
1021 | ||
72cf2d4f | 1022 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1023 | bp, entry); |
1024 | } else { | |
1025 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
1026 | if (err) | |
1027 | return err; | |
1028 | } | |
1029 | ||
1030 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1031 | err = kvm_update_guest_debug(env, 0); | |
1032 | if (err) | |
1033 | return err; | |
1034 | } | |
1035 | return 0; | |
1036 | } | |
1037 | ||
1038 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1039 | target_ulong len, int type) | |
1040 | { | |
1041 | struct kvm_sw_breakpoint *bp; | |
1042 | CPUState *env; | |
1043 | int err; | |
1044 | ||
1045 | if (type == GDB_BREAKPOINT_SW) { | |
1046 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1047 | if (!bp) | |
1048 | return -ENOENT; | |
1049 | ||
1050 | if (bp->use_count > 1) { | |
1051 | bp->use_count--; | |
1052 | return 0; | |
1053 | } | |
1054 | ||
1055 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1056 | if (err) | |
1057 | return err; | |
1058 | ||
72cf2d4f | 1059 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
1060 | qemu_free(bp); |
1061 | } else { | |
1062 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1063 | if (err) | |
1064 | return err; | |
1065 | } | |
1066 | ||
1067 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1068 | err = kvm_update_guest_debug(env, 0); | |
1069 | if (err) | |
1070 | return err; | |
1071 | } | |
1072 | return 0; | |
1073 | } | |
1074 | ||
1075 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1076 | { | |
1077 | struct kvm_sw_breakpoint *bp, *next; | |
1078 | KVMState *s = current_env->kvm_state; | |
1079 | CPUState *env; | |
1080 | ||
72cf2d4f | 1081 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1082 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1083 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1084 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1085 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | |
1086 | break; | |
1087 | } | |
1088 | } | |
1089 | } | |
1090 | kvm_arch_remove_all_hw_breakpoints(); | |
1091 | ||
1092 | for (env = first_cpu; env != NULL; env = env->next_cpu) | |
1093 | kvm_update_guest_debug(env, 0); | |
1094 | } | |
1095 | ||
1096 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1097 | ||
1098 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1099 | { | |
1100 | return -EINVAL; | |
1101 | } | |
1102 | ||
1103 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1104 | target_ulong len, int type) | |
1105 | { | |
1106 | return -EINVAL; | |
1107 | } | |
1108 | ||
1109 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1110 | target_ulong len, int type) | |
1111 | { | |
1112 | return -EINVAL; | |
1113 | } | |
1114 | ||
1115 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1116 | { | |
1117 | } | |
1118 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |