]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
05330448 | 25 | #include "sysemu.h" |
d33a1810 | 26 | #include "hw/hw.h" |
e22a25c9 | 27 | #include "gdbstub.h" |
05330448 | 28 | #include "kvm.h" |
8369e01c | 29 | #include "bswap.h" |
a01672d3 | 30 | #include "memory.h" |
80a1ea37 | 31 | #include "exec-memory.h" |
05330448 | 32 | |
d2f2b8a7 SH |
33 | /* This check must be after config-host.h is included */ |
34 | #ifdef CONFIG_EVENTFD | |
35 | #include <sys/eventfd.h> | |
36 | #endif | |
37 | ||
93148aa5 | 38 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
39 | #define PAGE_SIZE TARGET_PAGE_SIZE |
40 | ||
05330448 AL |
41 | //#define DEBUG_KVM |
42 | ||
43 | #ifdef DEBUG_KVM | |
8c0d577e | 44 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
45 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
46 | #else | |
8c0d577e | 47 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
48 | do { } while (0) |
49 | #endif | |
50 | ||
34fc643f AL |
51 | typedef struct KVMSlot |
52 | { | |
c227f099 AL |
53 | target_phys_addr_t start_addr; |
54 | ram_addr_t memory_size; | |
9f213ed9 | 55 | void *ram; |
34fc643f AL |
56 | int slot; |
57 | int flags; | |
58 | } KVMSlot; | |
05330448 | 59 | |
5832d1f2 AL |
60 | typedef struct kvm_dirty_log KVMDirtyLog; |
61 | ||
05330448 AL |
62 | struct KVMState |
63 | { | |
64 | KVMSlot slots[32]; | |
65 | int fd; | |
66 | int vmfd; | |
f65ed4c1 | 67 | int coalesced_mmio; |
62a2744c | 68 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 69 | bool coalesced_flush_in_progress; |
e69917e2 | 70 | int broken_set_mem_region; |
4495d6a7 | 71 | int migration_log; |
a0fb002c | 72 | int vcpu_events; |
b0b1d690 | 73 | int robust_singlestep; |
ff44f1a3 | 74 | int debugregs; |
e22a25c9 AL |
75 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
76 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
77 | #endif | |
6f725c13 | 78 | int pit_in_kernel; |
8a7c7393 | 79 | int pit_state2; |
f1665b21 | 80 | int xsave, xcrs; |
d2f2b8a7 | 81 | int many_ioeventfds; |
84b058d7 JK |
82 | int irqchip_inject_ioctl; |
83 | #ifdef KVM_CAP_IRQ_ROUTING | |
84 | struct kvm_irq_routing *irq_routes; | |
85 | int nr_allocated_irq_routes; | |
86 | uint32_t *used_gsi_bitmap; | |
87 | unsigned int max_gsi; | |
88 | #endif | |
05330448 AL |
89 | }; |
90 | ||
6a7af8cb | 91 | KVMState *kvm_state; |
3d4b2649 | 92 | bool kvm_kernel_irqchip; |
05330448 | 93 | |
94a8d39a JK |
94 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
95 | KVM_CAP_INFO(USER_MEMORY), | |
96 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
97 | KVM_CAP_LAST_INFO | |
98 | }; | |
99 | ||
05330448 AL |
100 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
101 | { | |
102 | int i; | |
103 | ||
104 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 105 | if (s->slots[i].memory_size == 0) { |
05330448 | 106 | return &s->slots[i]; |
a426e122 | 107 | } |
05330448 AL |
108 | } |
109 | ||
d3f8d37f AL |
110 | fprintf(stderr, "%s: no free slot available\n", __func__); |
111 | abort(); | |
112 | } | |
113 | ||
114 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
115 | target_phys_addr_t start_addr, |
116 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
117 | { |
118 | int i; | |
119 | ||
120 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
121 | KVMSlot *mem = &s->slots[i]; | |
122 | ||
123 | if (start_addr == mem->start_addr && | |
124 | end_addr == mem->start_addr + mem->memory_size) { | |
125 | return mem; | |
126 | } | |
127 | } | |
128 | ||
05330448 AL |
129 | return NULL; |
130 | } | |
131 | ||
6152e2ae AL |
132 | /* |
133 | * Find overlapping slot with lowest start address | |
134 | */ | |
135 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
136 | target_phys_addr_t start_addr, |
137 | target_phys_addr_t end_addr) | |
05330448 | 138 | { |
6152e2ae | 139 | KVMSlot *found = NULL; |
05330448 AL |
140 | int i; |
141 | ||
142 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
143 | KVMSlot *mem = &s->slots[i]; | |
144 | ||
6152e2ae AL |
145 | if (mem->memory_size == 0 || |
146 | (found && found->start_addr < mem->start_addr)) { | |
147 | continue; | |
148 | } | |
149 | ||
150 | if (end_addr > mem->start_addr && | |
151 | start_addr < mem->start_addr + mem->memory_size) { | |
152 | found = mem; | |
153 | } | |
05330448 AL |
154 | } |
155 | ||
6152e2ae | 156 | return found; |
05330448 AL |
157 | } |
158 | ||
9f213ed9 AK |
159 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
160 | target_phys_addr_t *phys_addr) | |
983dfc3b HY |
161 | { |
162 | int i; | |
163 | ||
164 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
165 | KVMSlot *mem = &s->slots[i]; | |
166 | ||
9f213ed9 AK |
167 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
168 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
169 | return 1; |
170 | } | |
171 | } | |
172 | ||
173 | return 0; | |
174 | } | |
175 | ||
5832d1f2 AL |
176 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
177 | { | |
178 | struct kvm_userspace_memory_region mem; | |
179 | ||
180 | mem.slot = slot->slot; | |
181 | mem.guest_phys_addr = slot->start_addr; | |
182 | mem.memory_size = slot->memory_size; | |
9f213ed9 | 183 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 184 | mem.flags = slot->flags; |
4495d6a7 JK |
185 | if (s->migration_log) { |
186 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
187 | } | |
5832d1f2 AL |
188 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
189 | } | |
190 | ||
8d2ba1fb JK |
191 | static void kvm_reset_vcpu(void *opaque) |
192 | { | |
9349b4f9 | 193 | CPUArchState *env = opaque; |
8d2ba1fb | 194 | |
caa5af0f | 195 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 196 | } |
5832d1f2 | 197 | |
6f725c13 GC |
198 | int kvm_pit_in_kernel(void) |
199 | { | |
200 | return kvm_state->pit_in_kernel; | |
201 | } | |
202 | ||
9349b4f9 | 203 | int kvm_init_vcpu(CPUArchState *env) |
05330448 AL |
204 | { |
205 | KVMState *s = kvm_state; | |
206 | long mmap_size; | |
207 | int ret; | |
208 | ||
8c0d577e | 209 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 210 | |
984b5181 | 211 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 | 212 | if (ret < 0) { |
8c0d577e | 213 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
214 | goto err; |
215 | } | |
216 | ||
217 | env->kvm_fd = ret; | |
218 | env->kvm_state = s; | |
d841b6c4 | 219 | env->kvm_vcpu_dirty = 1; |
05330448 AL |
220 | |
221 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
222 | if (mmap_size < 0) { | |
748a680b | 223 | ret = mmap_size; |
8c0d577e | 224 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
225 | goto err; |
226 | } | |
227 | ||
228 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
229 | env->kvm_fd, 0); | |
230 | if (env->kvm_run == MAP_FAILED) { | |
231 | ret = -errno; | |
8c0d577e | 232 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
233 | goto err; |
234 | } | |
235 | ||
a426e122 JK |
236 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
237 | s->coalesced_mmio_ring = | |
238 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
239 | } | |
62a2744c | 240 | |
05330448 | 241 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 242 | if (ret == 0) { |
a08d4367 | 243 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 244 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 245 | } |
05330448 AL |
246 | err: |
247 | return ret; | |
248 | } | |
249 | ||
5832d1f2 AL |
250 | /* |
251 | * dirty pages logging control | |
252 | */ | |
25254bbc MT |
253 | |
254 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
255 | { | |
256 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
257 | } | |
258 | ||
259 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
260 | { |
261 | KVMState *s = kvm_state; | |
25254bbc | 262 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
263 | int old_flags; |
264 | ||
4495d6a7 | 265 | old_flags = mem->flags; |
5832d1f2 | 266 | |
25254bbc | 267 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); |
5832d1f2 AL |
268 | mem->flags = flags; |
269 | ||
4495d6a7 JK |
270 | /* If nothing changed effectively, no need to issue ioctl */ |
271 | if (s->migration_log) { | |
272 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
273 | } | |
25254bbc | 274 | |
4495d6a7 | 275 | if (flags == old_flags) { |
25254bbc | 276 | return 0; |
4495d6a7 JK |
277 | } |
278 | ||
5832d1f2 AL |
279 | return kvm_set_user_memory_region(s, mem); |
280 | } | |
281 | ||
25254bbc MT |
282 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
283 | ram_addr_t size, bool log_dirty) | |
284 | { | |
285 | KVMState *s = kvm_state; | |
286 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
287 | ||
288 | if (mem == NULL) { | |
289 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
290 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
291 | (target_phys_addr_t)(phys_addr + size - 1)); | |
292 | return -EINVAL; | |
293 | } | |
294 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
295 | } | |
296 | ||
a01672d3 AK |
297 | static void kvm_log_start(MemoryListener *listener, |
298 | MemoryRegionSection *section) | |
5832d1f2 | 299 | { |
a01672d3 AK |
300 | int r; |
301 | ||
302 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
303 | section->size, true); | |
304 | if (r < 0) { | |
305 | abort(); | |
306 | } | |
5832d1f2 AL |
307 | } |
308 | ||
a01672d3 AK |
309 | static void kvm_log_stop(MemoryListener *listener, |
310 | MemoryRegionSection *section) | |
5832d1f2 | 311 | { |
a01672d3 AK |
312 | int r; |
313 | ||
314 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
315 | section->size, false); | |
316 | if (r < 0) { | |
317 | abort(); | |
318 | } | |
5832d1f2 AL |
319 | } |
320 | ||
7b8f3b78 | 321 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
322 | { |
323 | KVMState *s = kvm_state; | |
324 | KVMSlot *mem; | |
325 | int i, err; | |
326 | ||
327 | s->migration_log = enable; | |
328 | ||
329 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
330 | mem = &s->slots[i]; | |
331 | ||
70fedd76 AW |
332 | if (!mem->memory_size) { |
333 | continue; | |
334 | } | |
4495d6a7 JK |
335 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
336 | continue; | |
337 | } | |
338 | err = kvm_set_user_memory_region(s, mem); | |
339 | if (err) { | |
340 | return err; | |
341 | } | |
342 | } | |
343 | return 0; | |
344 | } | |
345 | ||
8369e01c | 346 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
347 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
348 | unsigned long *bitmap) | |
96c1606b | 349 | { |
8369e01c | 350 | unsigned int i, j; |
aa90fec7 BH |
351 | unsigned long page_number, c; |
352 | target_phys_addr_t addr, addr1; | |
ffcde12f | 353 | unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
8369e01c MT |
354 | |
355 | /* | |
356 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
357 | * especially when most of the memory is not dirty. | |
358 | */ | |
359 | for (i = 0; i < len; i++) { | |
360 | if (bitmap[i] != 0) { | |
361 | c = leul_to_cpu(bitmap[i]); | |
362 | do { | |
363 | j = ffsl(c) - 1; | |
364 | c &= ~(1ul << j); | |
365 | page_number = i * HOST_LONG_BITS + j; | |
366 | addr1 = page_number * TARGET_PAGE_SIZE; | |
ffcde12f | 367 | addr = section->offset_within_region + addr1; |
fd4aa979 | 368 | memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE); |
8369e01c MT |
369 | } while (c != 0); |
370 | } | |
371 | } | |
372 | return 0; | |
96c1606b AG |
373 | } |
374 | ||
8369e01c MT |
375 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
376 | ||
5832d1f2 AL |
377 | /** |
378 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
379 | * This function updates qemu's dirty bitmap using |
380 | * memory_region_set_dirty(). This means all bits are set | |
381 | * to dirty. | |
5832d1f2 | 382 | * |
d3f8d37f | 383 | * @start_add: start of logged region. |
5832d1f2 AL |
384 | * @end_addr: end of logged region. |
385 | */ | |
ffcde12f | 386 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
387 | { |
388 | KVMState *s = kvm_state; | |
151f7749 | 389 | unsigned long size, allocated_size = 0; |
151f7749 JK |
390 | KVMDirtyLog d; |
391 | KVMSlot *mem; | |
392 | int ret = 0; | |
ffcde12f AK |
393 | target_phys_addr_t start_addr = section->offset_within_address_space; |
394 | target_phys_addr_t end_addr = start_addr + section->size; | |
5832d1f2 | 395 | |
151f7749 JK |
396 | d.dirty_bitmap = NULL; |
397 | while (start_addr < end_addr) { | |
398 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
399 | if (mem == NULL) { | |
400 | break; | |
401 | } | |
5832d1f2 | 402 | |
51b0c606 MT |
403 | /* XXX bad kernel interface alert |
404 | * For dirty bitmap, kernel allocates array of size aligned to | |
405 | * bits-per-long. But for case when the kernel is 64bits and | |
406 | * the userspace is 32bits, userspace can't align to the same | |
407 | * bits-per-long, since sizeof(long) is different between kernel | |
408 | * and user space. This way, userspace will provide buffer which | |
409 | * may be 4 bytes less than the kernel will use, resulting in | |
410 | * userspace memory corruption (which is not detectable by valgrind | |
411 | * too, in most cases). | |
412 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
413 | * a hope that sizeof(long) wont become >8 any time soon. | |
414 | */ | |
415 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
416 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 417 | if (!d.dirty_bitmap) { |
7267c094 | 418 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 419 | } else if (size > allocated_size) { |
7267c094 | 420 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
421 | } |
422 | allocated_size = size; | |
423 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 424 | |
151f7749 | 425 | d.slot = mem->slot; |
5832d1f2 | 426 | |
6e489f3f | 427 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 428 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
429 | ret = -1; |
430 | break; | |
431 | } | |
5832d1f2 | 432 | |
ffcde12f | 433 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 434 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 435 | } |
7267c094 | 436 | g_free(d.dirty_bitmap); |
151f7749 JK |
437 | |
438 | return ret; | |
5832d1f2 AL |
439 | } |
440 | ||
c227f099 | 441 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
442 | { |
443 | int ret = -ENOSYS; | |
f65ed4c1 AL |
444 | KVMState *s = kvm_state; |
445 | ||
446 | if (s->coalesced_mmio) { | |
447 | struct kvm_coalesced_mmio_zone zone; | |
448 | ||
449 | zone.addr = start; | |
450 | zone.size = size; | |
7e680753 | 451 | zone.pad = 0; |
f65ed4c1 AL |
452 | |
453 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
454 | } | |
f65ed4c1 AL |
455 | |
456 | return ret; | |
457 | } | |
458 | ||
c227f099 | 459 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
460 | { |
461 | int ret = -ENOSYS; | |
f65ed4c1 AL |
462 | KVMState *s = kvm_state; |
463 | ||
464 | if (s->coalesced_mmio) { | |
465 | struct kvm_coalesced_mmio_zone zone; | |
466 | ||
467 | zone.addr = start; | |
468 | zone.size = size; | |
7e680753 | 469 | zone.pad = 0; |
f65ed4c1 AL |
470 | |
471 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
472 | } | |
f65ed4c1 AL |
473 | |
474 | return ret; | |
475 | } | |
476 | ||
ad7b8b33 AL |
477 | int kvm_check_extension(KVMState *s, unsigned int extension) |
478 | { | |
479 | int ret; | |
480 | ||
481 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
482 | if (ret < 0) { | |
483 | ret = 0; | |
484 | } | |
485 | ||
486 | return ret; | |
487 | } | |
488 | ||
d2f2b8a7 SH |
489 | static int kvm_check_many_ioeventfds(void) |
490 | { | |
d0dcac83 SH |
491 | /* Userspace can use ioeventfd for io notification. This requires a host |
492 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
493 | * support SIGIO it cannot interrupt the vcpu. | |
494 | * | |
495 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
496 | * can avoid creating too many ioeventfds. |
497 | */ | |
12d4536f | 498 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
499 | int ioeventfds[7]; |
500 | int i, ret = 0; | |
501 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
502 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
503 | if (ioeventfds[i] < 0) { | |
504 | break; | |
505 | } | |
506 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | |
507 | if (ret < 0) { | |
508 | close(ioeventfds[i]); | |
509 | break; | |
510 | } | |
511 | } | |
512 | ||
513 | /* Decide whether many devices are supported or not */ | |
514 | ret = i == ARRAY_SIZE(ioeventfds); | |
515 | ||
516 | while (i-- > 0) { | |
517 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | |
518 | close(ioeventfds[i]); | |
519 | } | |
520 | return ret; | |
521 | #else | |
522 | return 0; | |
523 | #endif | |
524 | } | |
525 | ||
94a8d39a JK |
526 | static const KVMCapabilityInfo * |
527 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
528 | { | |
529 | while (list->name) { | |
530 | if (!kvm_check_extension(s, list->value)) { | |
531 | return list; | |
532 | } | |
533 | list++; | |
534 | } | |
535 | return NULL; | |
536 | } | |
537 | ||
a01672d3 | 538 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
539 | { |
540 | KVMState *s = kvm_state; | |
46dbef6a MT |
541 | KVMSlot *mem, old; |
542 | int err; | |
a01672d3 AK |
543 | MemoryRegion *mr = section->mr; |
544 | bool log_dirty = memory_region_is_logging(mr); | |
545 | target_phys_addr_t start_addr = section->offset_within_address_space; | |
546 | ram_addr_t size = section->size; | |
9f213ed9 | 547 | void *ram = NULL; |
8f6f962b | 548 | unsigned delta; |
46dbef6a | 549 | |
14542fea GN |
550 | /* kvm works in page size chunks, but the function may be called |
551 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
552 | delta = TARGET_PAGE_ALIGN(size) - size; |
553 | if (delta > size) { | |
554 | return; | |
555 | } | |
556 | start_addr += delta; | |
557 | size -= delta; | |
558 | size &= TARGET_PAGE_MASK; | |
559 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
560 | return; | |
561 | } | |
46dbef6a | 562 | |
a01672d3 AK |
563 | if (!memory_region_is_ram(mr)) { |
564 | return; | |
9f213ed9 AK |
565 | } |
566 | ||
8f6f962b | 567 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 568 | |
46dbef6a MT |
569 | while (1) { |
570 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
571 | if (!mem) { | |
572 | break; | |
573 | } | |
574 | ||
a01672d3 | 575 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 576 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 577 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 578 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
579 | * identical parameters - update flags and done. */ |
580 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
581 | return; |
582 | } | |
583 | ||
584 | old = *mem; | |
585 | ||
3fbffb62 AK |
586 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
587 | kvm_physical_sync_dirty_bitmap(section); | |
588 | } | |
589 | ||
46dbef6a MT |
590 | /* unregister the overlapping slot */ |
591 | mem->memory_size = 0; | |
592 | err = kvm_set_user_memory_region(s, mem); | |
593 | if (err) { | |
594 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
595 | __func__, strerror(-err)); | |
596 | abort(); | |
597 | } | |
598 | ||
599 | /* Workaround for older KVM versions: we can't join slots, even not by | |
600 | * unregistering the previous ones and then registering the larger | |
601 | * slot. We have to maintain the existing fragmentation. Sigh. | |
602 | * | |
603 | * This workaround assumes that the new slot starts at the same | |
604 | * address as the first existing one. If not or if some overlapping | |
605 | * slot comes around later, we will fail (not seen in practice so far) | |
606 | * - and actually require a recent KVM version. */ | |
607 | if (s->broken_set_mem_region && | |
a01672d3 | 608 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
609 | mem = kvm_alloc_slot(s); |
610 | mem->memory_size = old.memory_size; | |
611 | mem->start_addr = old.start_addr; | |
9f213ed9 | 612 | mem->ram = old.ram; |
25254bbc | 613 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
614 | |
615 | err = kvm_set_user_memory_region(s, mem); | |
616 | if (err) { | |
617 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
618 | strerror(-err)); | |
619 | abort(); | |
620 | } | |
621 | ||
622 | start_addr += old.memory_size; | |
9f213ed9 | 623 | ram += old.memory_size; |
46dbef6a MT |
624 | size -= old.memory_size; |
625 | continue; | |
626 | } | |
627 | ||
628 | /* register prefix slot */ | |
629 | if (old.start_addr < start_addr) { | |
630 | mem = kvm_alloc_slot(s); | |
631 | mem->memory_size = start_addr - old.start_addr; | |
632 | mem->start_addr = old.start_addr; | |
9f213ed9 | 633 | mem->ram = old.ram; |
25254bbc | 634 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
635 | |
636 | err = kvm_set_user_memory_region(s, mem); | |
637 | if (err) { | |
638 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
639 | __func__, strerror(-err)); | |
d4d6868f AG |
640 | #ifdef TARGET_PPC |
641 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
642 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
643 | "PAGE_SIZE!\n", __func__); | |
644 | #endif | |
46dbef6a MT |
645 | abort(); |
646 | } | |
647 | } | |
648 | ||
649 | /* register suffix slot */ | |
650 | if (old.start_addr + old.memory_size > start_addr + size) { | |
651 | ram_addr_t size_delta; | |
652 | ||
653 | mem = kvm_alloc_slot(s); | |
654 | mem->start_addr = start_addr + size; | |
655 | size_delta = mem->start_addr - old.start_addr; | |
656 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 657 | mem->ram = old.ram + size_delta; |
25254bbc | 658 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
659 | |
660 | err = kvm_set_user_memory_region(s, mem); | |
661 | if (err) { | |
662 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
663 | __func__, strerror(-err)); | |
664 | abort(); | |
665 | } | |
666 | } | |
667 | } | |
668 | ||
669 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 670 | if (!size) { |
46dbef6a | 671 | return; |
a426e122 | 672 | } |
a01672d3 | 673 | if (!add) { |
46dbef6a | 674 | return; |
a426e122 | 675 | } |
46dbef6a MT |
676 | mem = kvm_alloc_slot(s); |
677 | mem->memory_size = size; | |
678 | mem->start_addr = start_addr; | |
9f213ed9 | 679 | mem->ram = ram; |
25254bbc | 680 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
681 | |
682 | err = kvm_set_user_memory_region(s, mem); | |
683 | if (err) { | |
684 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
685 | strerror(-err)); | |
686 | abort(); | |
687 | } | |
688 | } | |
689 | ||
50c1e149 AK |
690 | static void kvm_begin(MemoryListener *listener) |
691 | { | |
692 | } | |
693 | ||
694 | static void kvm_commit(MemoryListener *listener) | |
695 | { | |
696 | } | |
697 | ||
a01672d3 AK |
698 | static void kvm_region_add(MemoryListener *listener, |
699 | MemoryRegionSection *section) | |
700 | { | |
701 | kvm_set_phys_mem(section, true); | |
702 | } | |
703 | ||
704 | static void kvm_region_del(MemoryListener *listener, | |
705 | MemoryRegionSection *section) | |
706 | { | |
707 | kvm_set_phys_mem(section, false); | |
708 | } | |
709 | ||
50c1e149 AK |
710 | static void kvm_region_nop(MemoryListener *listener, |
711 | MemoryRegionSection *section) | |
712 | { | |
713 | } | |
714 | ||
a01672d3 AK |
715 | static void kvm_log_sync(MemoryListener *listener, |
716 | MemoryRegionSection *section) | |
7b8f3b78 | 717 | { |
a01672d3 AK |
718 | int r; |
719 | ||
ffcde12f | 720 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
721 | if (r < 0) { |
722 | abort(); | |
723 | } | |
7b8f3b78 MT |
724 | } |
725 | ||
a01672d3 | 726 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 727 | { |
a01672d3 AK |
728 | int r; |
729 | ||
730 | r = kvm_set_migration_log(1); | |
731 | assert(r >= 0); | |
7b8f3b78 MT |
732 | } |
733 | ||
a01672d3 | 734 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 735 | { |
a01672d3 AK |
736 | int r; |
737 | ||
738 | r = kvm_set_migration_log(0); | |
739 | assert(r >= 0); | |
7b8f3b78 MT |
740 | } |
741 | ||
80a1ea37 AK |
742 | static void kvm_mem_ioeventfd_add(MemoryRegionSection *section, |
743 | bool match_data, uint64_t data, int fd) | |
744 | { | |
745 | int r; | |
746 | ||
747 | assert(match_data && section->size == 4); | |
748 | ||
749 | r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space, | |
750 | data, true); | |
751 | if (r < 0) { | |
752 | abort(); | |
753 | } | |
754 | } | |
755 | ||
756 | static void kvm_mem_ioeventfd_del(MemoryRegionSection *section, | |
757 | bool match_data, uint64_t data, int fd) | |
758 | { | |
759 | int r; | |
760 | ||
761 | r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space, | |
762 | data, false); | |
763 | if (r < 0) { | |
764 | abort(); | |
765 | } | |
766 | } | |
767 | ||
768 | static void kvm_io_ioeventfd_add(MemoryRegionSection *section, | |
769 | bool match_data, uint64_t data, int fd) | |
770 | { | |
771 | int r; | |
772 | ||
773 | assert(match_data && section->size == 2); | |
774 | ||
775 | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | |
776 | data, true); | |
777 | if (r < 0) { | |
778 | abort(); | |
779 | } | |
780 | } | |
781 | ||
782 | static void kvm_io_ioeventfd_del(MemoryRegionSection *section, | |
783 | bool match_data, uint64_t data, int fd) | |
784 | ||
785 | { | |
786 | int r; | |
787 | ||
788 | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | |
789 | data, false); | |
790 | if (r < 0) { | |
791 | abort(); | |
792 | } | |
793 | } | |
794 | ||
795 | static void kvm_eventfd_add(MemoryListener *listener, | |
796 | MemoryRegionSection *section, | |
797 | bool match_data, uint64_t data, int fd) | |
798 | { | |
799 | if (section->address_space == get_system_memory()) { | |
800 | kvm_mem_ioeventfd_add(section, match_data, data, fd); | |
801 | } else { | |
802 | kvm_io_ioeventfd_add(section, match_data, data, fd); | |
803 | } | |
804 | } | |
805 | ||
806 | static void kvm_eventfd_del(MemoryListener *listener, | |
807 | MemoryRegionSection *section, | |
808 | bool match_data, uint64_t data, int fd) | |
809 | { | |
810 | if (section->address_space == get_system_memory()) { | |
811 | kvm_mem_ioeventfd_del(section, match_data, data, fd); | |
812 | } else { | |
813 | kvm_io_ioeventfd_del(section, match_data, data, fd); | |
814 | } | |
815 | } | |
816 | ||
a01672d3 | 817 | static MemoryListener kvm_memory_listener = { |
50c1e149 AK |
818 | .begin = kvm_begin, |
819 | .commit = kvm_commit, | |
a01672d3 AK |
820 | .region_add = kvm_region_add, |
821 | .region_del = kvm_region_del, | |
50c1e149 | 822 | .region_nop = kvm_region_nop, |
e5896b12 AP |
823 | .log_start = kvm_log_start, |
824 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
825 | .log_sync = kvm_log_sync, |
826 | .log_global_start = kvm_log_global_start, | |
827 | .log_global_stop = kvm_log_global_stop, | |
80a1ea37 AK |
828 | .eventfd_add = kvm_eventfd_add, |
829 | .eventfd_del = kvm_eventfd_del, | |
72e22d2f | 830 | .priority = 10, |
7b8f3b78 MT |
831 | }; |
832 | ||
9349b4f9 | 833 | static void kvm_handle_interrupt(CPUArchState *env, int mask) |
aa7f74d1 JK |
834 | { |
835 | env->interrupt_request |= mask; | |
836 | ||
837 | if (!qemu_cpu_is_self(env)) { | |
838 | qemu_cpu_kick(env); | |
839 | } | |
840 | } | |
841 | ||
84b058d7 JK |
842 | int kvm_irqchip_set_irq(KVMState *s, int irq, int level) |
843 | { | |
844 | struct kvm_irq_level event; | |
845 | int ret; | |
846 | ||
3d4b2649 | 847 | assert(kvm_irqchip_in_kernel()); |
84b058d7 JK |
848 | |
849 | event.level = level; | |
850 | event.irq = irq; | |
851 | ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event); | |
852 | if (ret < 0) { | |
853 | perror("kvm_set_irqchip_line"); | |
854 | abort(); | |
855 | } | |
856 | ||
857 | return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | |
858 | } | |
859 | ||
860 | #ifdef KVM_CAP_IRQ_ROUTING | |
861 | static void set_gsi(KVMState *s, unsigned int gsi) | |
862 | { | |
863 | assert(gsi < s->max_gsi); | |
864 | ||
865 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); | |
866 | } | |
867 | ||
868 | static void kvm_init_irq_routing(KVMState *s) | |
869 | { | |
870 | int gsi_count; | |
871 | ||
872 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
873 | if (gsi_count > 0) { | |
874 | unsigned int gsi_bits, i; | |
875 | ||
876 | /* Round up so we can search ints using ffs */ | |
877 | gsi_bits = (gsi_count + 31) / 32; | |
878 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); | |
879 | s->max_gsi = gsi_bits; | |
880 | ||
881 | /* Mark any over-allocated bits as already in use */ | |
882 | for (i = gsi_count; i < gsi_bits; i++) { | |
883 | set_gsi(s, i); | |
884 | } | |
885 | } | |
886 | ||
887 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
888 | s->nr_allocated_irq_routes = 0; | |
889 | ||
890 | kvm_arch_init_irq_routing(s); | |
891 | } | |
892 | ||
893 | static void kvm_add_routing_entry(KVMState *s, | |
894 | struct kvm_irq_routing_entry *entry) | |
895 | { | |
896 | struct kvm_irq_routing_entry *new; | |
897 | int n, size; | |
898 | ||
899 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
900 | n = s->nr_allocated_irq_routes * 2; | |
901 | if (n < 64) { | |
902 | n = 64; | |
903 | } | |
904 | size = sizeof(struct kvm_irq_routing); | |
905 | size += n * sizeof(*new); | |
906 | s->irq_routes = g_realloc(s->irq_routes, size); | |
907 | s->nr_allocated_irq_routes = n; | |
908 | } | |
909 | n = s->irq_routes->nr++; | |
910 | new = &s->irq_routes->entries[n]; | |
911 | memset(new, 0, sizeof(*new)); | |
912 | new->gsi = entry->gsi; | |
913 | new->type = entry->type; | |
914 | new->flags = entry->flags; | |
915 | new->u = entry->u; | |
916 | ||
917 | set_gsi(s, entry->gsi); | |
918 | } | |
919 | ||
920 | void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin) | |
921 | { | |
922 | struct kvm_irq_routing_entry e; | |
923 | ||
924 | e.gsi = irq; | |
925 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
926 | e.flags = 0; | |
927 | e.u.irqchip.irqchip = irqchip; | |
928 | e.u.irqchip.pin = pin; | |
929 | kvm_add_routing_entry(s, &e); | |
930 | } | |
931 | ||
932 | int kvm_irqchip_commit_routes(KVMState *s) | |
933 | { | |
934 | s->irq_routes->flags = 0; | |
935 | return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
936 | } | |
937 | ||
938 | #else /* !KVM_CAP_IRQ_ROUTING */ | |
939 | ||
940 | static void kvm_init_irq_routing(KVMState *s) | |
941 | { | |
942 | } | |
943 | #endif /* !KVM_CAP_IRQ_ROUTING */ | |
944 | ||
945 | static int kvm_irqchip_create(KVMState *s) | |
946 | { | |
947 | QemuOptsList *list = qemu_find_opts("machine"); | |
948 | int ret; | |
949 | ||
950 | if (QTAILQ_EMPTY(&list->head) || | |
951 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
952 | "kernel_irqchip", false) || | |
953 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | |
954 | return 0; | |
955 | } | |
956 | ||
957 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
958 | if (ret < 0) { | |
959 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
960 | return ret; | |
961 | } | |
962 | ||
963 | s->irqchip_inject_ioctl = KVM_IRQ_LINE; | |
964 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | |
965 | s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS; | |
966 | } | |
3d4b2649 | 967 | kvm_kernel_irqchip = true; |
84b058d7 JK |
968 | |
969 | kvm_init_irq_routing(s); | |
970 | ||
971 | return 0; | |
972 | } | |
973 | ||
cad1e282 | 974 | int kvm_init(void) |
05330448 | 975 | { |
168ccc11 JK |
976 | static const char upgrade_note[] = |
977 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
978 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 979 | KVMState *s; |
94a8d39a | 980 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
981 | int ret; |
982 | int i; | |
983 | ||
7267c094 | 984 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 985 | |
e22a25c9 | 986 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 987 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 988 | #endif |
a426e122 | 989 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 990 | s->slots[i].slot = i; |
a426e122 | 991 | } |
05330448 | 992 | s->vmfd = -1; |
40ff6d7e | 993 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
994 | if (s->fd == -1) { |
995 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
996 | ret = -errno; | |
997 | goto err; | |
998 | } | |
999 | ||
1000 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1001 | if (ret < KVM_API_VERSION) { | |
a426e122 | 1002 | if (ret > 0) { |
05330448 | 1003 | ret = -EINVAL; |
a426e122 | 1004 | } |
05330448 AL |
1005 | fprintf(stderr, "kvm version too old\n"); |
1006 | goto err; | |
1007 | } | |
1008 | ||
1009 | if (ret > KVM_API_VERSION) { | |
1010 | ret = -EINVAL; | |
1011 | fprintf(stderr, "kvm version not supported\n"); | |
1012 | goto err; | |
1013 | } | |
1014 | ||
1015 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
0104dcac AG |
1016 | if (s->vmfd < 0) { |
1017 | #ifdef TARGET_S390X | |
1018 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1019 | "your host kernel command line\n"); | |
1020 | #endif | |
db9eae1c | 1021 | ret = s->vmfd; |
05330448 | 1022 | goto err; |
0104dcac | 1023 | } |
05330448 | 1024 | |
94a8d39a JK |
1025 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1026 | if (!missing_cap) { | |
1027 | missing_cap = | |
1028 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1029 | } |
94a8d39a | 1030 | if (missing_cap) { |
ad7b8b33 | 1031 | ret = -EINVAL; |
94a8d39a JK |
1032 | fprintf(stderr, "kvm does not support %s\n%s", |
1033 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1034 | goto err; |
1035 | } | |
1036 | ||
ad7b8b33 | 1037 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1038 | |
e69917e2 | 1039 | s->broken_set_mem_region = 1; |
14a09518 | 1040 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1041 | if (ret > 0) { |
1042 | s->broken_set_mem_region = 0; | |
1043 | } | |
e69917e2 | 1044 | |
a0fb002c JK |
1045 | #ifdef KVM_CAP_VCPU_EVENTS |
1046 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1047 | #endif | |
1048 | ||
b0b1d690 JK |
1049 | s->robust_singlestep = |
1050 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1051 | |
ff44f1a3 JK |
1052 | #ifdef KVM_CAP_DEBUGREGS |
1053 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1054 | #endif | |
1055 | ||
f1665b21 SY |
1056 | #ifdef KVM_CAP_XSAVE |
1057 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1058 | #endif | |
1059 | ||
f1665b21 SY |
1060 | #ifdef KVM_CAP_XCRS |
1061 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1062 | #endif | |
1063 | ||
8a7c7393 JK |
1064 | #ifdef KVM_CAP_PIT_STATE2 |
1065 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1066 | #endif | |
1067 | ||
cad1e282 | 1068 | ret = kvm_arch_init(s); |
a426e122 | 1069 | if (ret < 0) { |
05330448 | 1070 | goto err; |
a426e122 | 1071 | } |
05330448 | 1072 | |
84b058d7 JK |
1073 | ret = kvm_irqchip_create(s); |
1074 | if (ret < 0) { | |
1075 | goto err; | |
1076 | } | |
1077 | ||
05330448 | 1078 | kvm_state = s; |
7376e582 | 1079 | memory_listener_register(&kvm_memory_listener, NULL); |
05330448 | 1080 | |
d2f2b8a7 SH |
1081 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1082 | ||
aa7f74d1 JK |
1083 | cpu_interrupt_handler = kvm_handle_interrupt; |
1084 | ||
05330448 AL |
1085 | return 0; |
1086 | ||
1087 | err: | |
1088 | if (s) { | |
db9eae1c | 1089 | if (s->vmfd >= 0) { |
05330448 | 1090 | close(s->vmfd); |
a426e122 JK |
1091 | } |
1092 | if (s->fd != -1) { | |
05330448 | 1093 | close(s->fd); |
a426e122 | 1094 | } |
05330448 | 1095 | } |
7267c094 | 1096 | g_free(s); |
05330448 AL |
1097 | |
1098 | return ret; | |
1099 | } | |
1100 | ||
b30e93e9 JK |
1101 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1102 | uint32_t count) | |
05330448 AL |
1103 | { |
1104 | int i; | |
1105 | uint8_t *ptr = data; | |
1106 | ||
1107 | for (i = 0; i < count; i++) { | |
1108 | if (direction == KVM_EXIT_IO_IN) { | |
1109 | switch (size) { | |
1110 | case 1: | |
afcea8cb | 1111 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
1112 | break; |
1113 | case 2: | |
afcea8cb | 1114 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
1115 | break; |
1116 | case 4: | |
afcea8cb | 1117 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
1118 | break; |
1119 | } | |
1120 | } else { | |
1121 | switch (size) { | |
1122 | case 1: | |
afcea8cb | 1123 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
1124 | break; |
1125 | case 2: | |
afcea8cb | 1126 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
1127 | break; |
1128 | case 4: | |
afcea8cb | 1129 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
1130 | break; |
1131 | } | |
1132 | } | |
1133 | ||
1134 | ptr += size; | |
1135 | } | |
05330448 AL |
1136 | } |
1137 | ||
9349b4f9 | 1138 | static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) |
7c80eef8 | 1139 | { |
bb44e0d1 | 1140 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1141 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1142 | int i; | |
1143 | ||
bb44e0d1 | 1144 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1145 | for (i = 0; i < run->internal.ndata; ++i) { |
1146 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1147 | i, (uint64_t)run->internal.data[i]); | |
1148 | } | |
bb44e0d1 JK |
1149 | } else { |
1150 | fprintf(stderr, "\n"); | |
7c80eef8 | 1151 | } |
7c80eef8 MT |
1152 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1153 | fprintf(stderr, "emulation failure\n"); | |
a426e122 | 1154 | if (!kvm_arch_stop_on_emulation_error(env)) { |
f5c848ee | 1155 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1156 | return EXCP_INTERRUPT; |
a426e122 | 1157 | } |
7c80eef8 MT |
1158 | } |
1159 | /* FIXME: Should trigger a qmp message to let management know | |
1160 | * something went wrong. | |
1161 | */ | |
73aaec4a | 1162 | return -1; |
7c80eef8 | 1163 | } |
7c80eef8 | 1164 | |
62a2744c | 1165 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1166 | { |
f65ed4c1 | 1167 | KVMState *s = kvm_state; |
1cae88b9 AK |
1168 | |
1169 | if (s->coalesced_flush_in_progress) { | |
1170 | return; | |
1171 | } | |
1172 | ||
1173 | s->coalesced_flush_in_progress = true; | |
1174 | ||
62a2744c SY |
1175 | if (s->coalesced_mmio_ring) { |
1176 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1177 | while (ring->first != ring->last) { |
1178 | struct kvm_coalesced_mmio *ent; | |
1179 | ||
1180 | ent = &ring->coalesced_mmio[ring->first]; | |
1181 | ||
1182 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1183 | smp_wmb(); |
f65ed4c1 AL |
1184 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1185 | } | |
1186 | } | |
1cae88b9 AK |
1187 | |
1188 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1189 | } |
1190 | ||
2705d56a | 1191 | static void do_kvm_cpu_synchronize_state(void *_env) |
4c0960c0 | 1192 | { |
9349b4f9 | 1193 | CPUArchState *env = _env; |
2705d56a | 1194 | |
9ded2744 | 1195 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 1196 | kvm_arch_get_registers(env); |
9ded2744 | 1197 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
1198 | } |
1199 | } | |
1200 | ||
9349b4f9 | 1201 | void kvm_cpu_synchronize_state(CPUArchState *env) |
2705d56a | 1202 | { |
a426e122 | 1203 | if (!env->kvm_vcpu_dirty) { |
2705d56a | 1204 | run_on_cpu(env, do_kvm_cpu_synchronize_state, env); |
a426e122 | 1205 | } |
2705d56a JK |
1206 | } |
1207 | ||
9349b4f9 | 1208 | void kvm_cpu_synchronize_post_reset(CPUArchState *env) |
ea375f9a JK |
1209 | { |
1210 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | |
1211 | env->kvm_vcpu_dirty = 0; | |
1212 | } | |
1213 | ||
9349b4f9 | 1214 | void kvm_cpu_synchronize_post_init(CPUArchState *env) |
ea375f9a JK |
1215 | { |
1216 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | |
1217 | env->kvm_vcpu_dirty = 0; | |
1218 | } | |
1219 | ||
9349b4f9 | 1220 | int kvm_cpu_exec(CPUArchState *env) |
05330448 AL |
1221 | { |
1222 | struct kvm_run *run = env->kvm_run; | |
7cbb533f | 1223 | int ret, run_ret; |
05330448 | 1224 | |
8c0d577e | 1225 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1226 | |
99036865 | 1227 | if (kvm_arch_process_async_events(env)) { |
9ccfac9e | 1228 | env->exit_request = 0; |
6792a57b | 1229 | return EXCP_HLT; |
9ccfac9e | 1230 | } |
0af691d7 | 1231 | |
9ccfac9e | 1232 | do { |
9ded2744 | 1233 | if (env->kvm_vcpu_dirty) { |
ea375f9a | 1234 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); |
9ded2744 | 1235 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
1236 | } |
1237 | ||
8c14c173 | 1238 | kvm_arch_pre_run(env, run); |
9ccfac9e JK |
1239 | if (env->exit_request) { |
1240 | DPRINTF("interrupt exit requested\n"); | |
1241 | /* | |
1242 | * KVM requires us to reenter the kernel after IO exits to complete | |
1243 | * instruction emulation. This self-signal will ensure that we | |
1244 | * leave ASAP again. | |
1245 | */ | |
1246 | qemu_cpu_kick_self(); | |
1247 | } | |
d549db5a | 1248 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1249 | |
7cbb533f | 1250 | run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
9ccfac9e | 1251 | |
d549db5a | 1252 | qemu_mutex_lock_iothread(); |
05330448 AL |
1253 | kvm_arch_post_run(env, run); |
1254 | ||
b0c883b5 JK |
1255 | kvm_flush_coalesced_mmio_buffer(); |
1256 | ||
7cbb533f | 1257 | if (run_ret < 0) { |
dc77d341 JK |
1258 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1259 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1260 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1261 | break; |
1262 | } | |
7b011fbc ME |
1263 | fprintf(stderr, "error: kvm run failed %s\n", |
1264 | strerror(-run_ret)); | |
05330448 AL |
1265 | abort(); |
1266 | } | |
1267 | ||
05330448 AL |
1268 | switch (run->exit_reason) { |
1269 | case KVM_EXIT_IO: | |
8c0d577e | 1270 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1271 | kvm_handle_io(run->io.port, |
1272 | (uint8_t *)run + run->io.data_offset, | |
1273 | run->io.direction, | |
1274 | run->io.size, | |
1275 | run->io.count); | |
d73cd8f4 | 1276 | ret = 0; |
05330448 AL |
1277 | break; |
1278 | case KVM_EXIT_MMIO: | |
8c0d577e | 1279 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1280 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1281 | run->mmio.data, | |
1282 | run->mmio.len, | |
1283 | run->mmio.is_write); | |
d73cd8f4 | 1284 | ret = 0; |
05330448 AL |
1285 | break; |
1286 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1287 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1288 | ret = EXCP_INTERRUPT; |
05330448 AL |
1289 | break; |
1290 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1291 | DPRINTF("shutdown\n"); |
05330448 | 1292 | qemu_system_reset_request(); |
d73cd8f4 | 1293 | ret = EXCP_INTERRUPT; |
05330448 AL |
1294 | break; |
1295 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1296 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1297 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1298 | ret = -1; |
05330448 | 1299 | break; |
7c80eef8 | 1300 | case KVM_EXIT_INTERNAL_ERROR: |
73aaec4a | 1301 | ret = kvm_handle_internal_error(env, run); |
7c80eef8 | 1302 | break; |
05330448 | 1303 | default: |
8c0d577e | 1304 | DPRINTF("kvm_arch_handle_exit\n"); |
05330448 AL |
1305 | ret = kvm_arch_handle_exit(env, run); |
1306 | break; | |
1307 | } | |
d73cd8f4 | 1308 | } while (ret == 0); |
05330448 | 1309 | |
73aaec4a | 1310 | if (ret < 0) { |
f5c848ee | 1311 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1312 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1313 | } |
1314 | ||
6792a57b | 1315 | env->exit_request = 0; |
05330448 AL |
1316 | return ret; |
1317 | } | |
1318 | ||
984b5181 | 1319 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1320 | { |
1321 | int ret; | |
984b5181 AL |
1322 | void *arg; |
1323 | va_list ap; | |
05330448 | 1324 | |
984b5181 AL |
1325 | va_start(ap, type); |
1326 | arg = va_arg(ap, void *); | |
1327 | va_end(ap); | |
1328 | ||
1329 | ret = ioctl(s->fd, type, arg); | |
a426e122 | 1330 | if (ret == -1) { |
05330448 | 1331 | ret = -errno; |
a426e122 | 1332 | } |
05330448 AL |
1333 | return ret; |
1334 | } | |
1335 | ||
984b5181 | 1336 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1337 | { |
1338 | int ret; | |
984b5181 AL |
1339 | void *arg; |
1340 | va_list ap; | |
1341 | ||
1342 | va_start(ap, type); | |
1343 | arg = va_arg(ap, void *); | |
1344 | va_end(ap); | |
05330448 | 1345 | |
984b5181 | 1346 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1347 | if (ret == -1) { |
05330448 | 1348 | ret = -errno; |
a426e122 | 1349 | } |
05330448 AL |
1350 | return ret; |
1351 | } | |
1352 | ||
9349b4f9 | 1353 | int kvm_vcpu_ioctl(CPUArchState *env, int type, ...) |
05330448 AL |
1354 | { |
1355 | int ret; | |
984b5181 AL |
1356 | void *arg; |
1357 | va_list ap; | |
1358 | ||
1359 | va_start(ap, type); | |
1360 | arg = va_arg(ap, void *); | |
1361 | va_end(ap); | |
05330448 | 1362 | |
984b5181 | 1363 | ret = ioctl(env->kvm_fd, type, arg); |
a426e122 | 1364 | if (ret == -1) { |
05330448 | 1365 | ret = -errno; |
a426e122 | 1366 | } |
05330448 AL |
1367 | return ret; |
1368 | } | |
bd322087 AL |
1369 | |
1370 | int kvm_has_sync_mmu(void) | |
1371 | { | |
94a8d39a | 1372 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1373 | } |
e22a25c9 | 1374 | |
a0fb002c JK |
1375 | int kvm_has_vcpu_events(void) |
1376 | { | |
1377 | return kvm_state->vcpu_events; | |
1378 | } | |
1379 | ||
b0b1d690 JK |
1380 | int kvm_has_robust_singlestep(void) |
1381 | { | |
1382 | return kvm_state->robust_singlestep; | |
1383 | } | |
1384 | ||
ff44f1a3 JK |
1385 | int kvm_has_debugregs(void) |
1386 | { | |
1387 | return kvm_state->debugregs; | |
1388 | } | |
1389 | ||
f1665b21 SY |
1390 | int kvm_has_xsave(void) |
1391 | { | |
1392 | return kvm_state->xsave; | |
1393 | } | |
1394 | ||
1395 | int kvm_has_xcrs(void) | |
1396 | { | |
1397 | return kvm_state->xcrs; | |
1398 | } | |
1399 | ||
8a7c7393 JK |
1400 | int kvm_has_pit_state2(void) |
1401 | { | |
1402 | return kvm_state->pit_state2; | |
1403 | } | |
1404 | ||
d2f2b8a7 SH |
1405 | int kvm_has_many_ioeventfds(void) |
1406 | { | |
1407 | if (!kvm_enabled()) { | |
1408 | return 0; | |
1409 | } | |
1410 | return kvm_state->many_ioeventfds; | |
1411 | } | |
1412 | ||
84b058d7 JK |
1413 | int kvm_has_gsi_routing(void) |
1414 | { | |
a9c5eb0d | 1415 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1416 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1417 | #else |
1418 | return false; | |
1419 | #endif | |
84b058d7 JK |
1420 | } |
1421 | ||
9b5b76d4 JK |
1422 | int kvm_allows_irq0_override(void) |
1423 | { | |
3d4b2649 | 1424 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); |
9b5b76d4 JK |
1425 | } |
1426 | ||
6f0437e8 JK |
1427 | void kvm_setup_guest_memory(void *start, size_t size) |
1428 | { | |
1429 | if (!kvm_has_sync_mmu()) { | |
e78815a5 | 1430 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1431 | |
1432 | if (ret) { | |
e78815a5 AF |
1433 | perror("qemu_madvise"); |
1434 | fprintf(stderr, | |
1435 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1436 | exit(1); |
1437 | } | |
6f0437e8 JK |
1438 | } |
1439 | } | |
1440 | ||
e22a25c9 | 1441 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
9349b4f9 | 1442 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env, |
e22a25c9 AL |
1443 | target_ulong pc) |
1444 | { | |
1445 | struct kvm_sw_breakpoint *bp; | |
1446 | ||
72cf2d4f | 1447 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1448 | if (bp->pc == pc) { |
e22a25c9 | 1449 | return bp; |
a426e122 | 1450 | } |
e22a25c9 AL |
1451 | } |
1452 | return NULL; | |
1453 | } | |
1454 | ||
9349b4f9 | 1455 | int kvm_sw_breakpoints_active(CPUArchState *env) |
e22a25c9 | 1456 | { |
72cf2d4f | 1457 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1458 | } |
1459 | ||
452e4751 GC |
1460 | struct kvm_set_guest_debug_data { |
1461 | struct kvm_guest_debug dbg; | |
9349b4f9 | 1462 | CPUArchState *env; |
452e4751 GC |
1463 | int err; |
1464 | }; | |
1465 | ||
1466 | static void kvm_invoke_set_guest_debug(void *data) | |
1467 | { | |
1468 | struct kvm_set_guest_debug_data *dbg_data = data; | |
9349b4f9 | 1469 | CPUArchState *env = dbg_data->env; |
b3807725 | 1470 | |
b3807725 | 1471 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
452e4751 GC |
1472 | } |
1473 | ||
9349b4f9 | 1474 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 | 1475 | { |
452e4751 | 1476 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1477 | |
b0b1d690 | 1478 | data.dbg.control = reinject_trap; |
e22a25c9 | 1479 | |
b0b1d690 JK |
1480 | if (env->singlestep_enabled) { |
1481 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1482 | } | |
452e4751 | 1483 | kvm_arch_update_guest_debug(env, &data.dbg); |
452e4751 | 1484 | data.env = env; |
e22a25c9 | 1485 | |
be41cbe0 | 1486 | run_on_cpu(env, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1487 | return data.err; |
e22a25c9 AL |
1488 | } |
1489 | ||
9349b4f9 | 1490 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1491 | target_ulong len, int type) |
1492 | { | |
1493 | struct kvm_sw_breakpoint *bp; | |
9349b4f9 | 1494 | CPUArchState *env; |
e22a25c9 AL |
1495 | int err; |
1496 | ||
1497 | if (type == GDB_BREAKPOINT_SW) { | |
1498 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1499 | if (bp) { | |
1500 | bp->use_count++; | |
1501 | return 0; | |
1502 | } | |
1503 | ||
7267c094 | 1504 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1505 | if (!bp) { |
e22a25c9 | 1506 | return -ENOMEM; |
a426e122 | 1507 | } |
e22a25c9 AL |
1508 | |
1509 | bp->pc = addr; | |
1510 | bp->use_count = 1; | |
1511 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1512 | if (err) { | |
7267c094 | 1513 | g_free(bp); |
e22a25c9 AL |
1514 | return err; |
1515 | } | |
1516 | ||
72cf2d4f | 1517 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1518 | bp, entry); |
1519 | } else { | |
1520 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1521 | if (err) { |
e22a25c9 | 1522 | return err; |
a426e122 | 1523 | } |
e22a25c9 AL |
1524 | } |
1525 | ||
1526 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1527 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1528 | if (err) { |
e22a25c9 | 1529 | return err; |
a426e122 | 1530 | } |
e22a25c9 AL |
1531 | } |
1532 | return 0; | |
1533 | } | |
1534 | ||
9349b4f9 | 1535 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1536 | target_ulong len, int type) |
1537 | { | |
1538 | struct kvm_sw_breakpoint *bp; | |
9349b4f9 | 1539 | CPUArchState *env; |
e22a25c9 AL |
1540 | int err; |
1541 | ||
1542 | if (type == GDB_BREAKPOINT_SW) { | |
1543 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
a426e122 | 1544 | if (!bp) { |
e22a25c9 | 1545 | return -ENOENT; |
a426e122 | 1546 | } |
e22a25c9 AL |
1547 | |
1548 | if (bp->use_count > 1) { | |
1549 | bp->use_count--; | |
1550 | return 0; | |
1551 | } | |
1552 | ||
1553 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
a426e122 | 1554 | if (err) { |
e22a25c9 | 1555 | return err; |
a426e122 | 1556 | } |
e22a25c9 | 1557 | |
72cf2d4f | 1558 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1559 | g_free(bp); |
e22a25c9 AL |
1560 | } else { |
1561 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1562 | if (err) { |
e22a25c9 | 1563 | return err; |
a426e122 | 1564 | } |
e22a25c9 AL |
1565 | } |
1566 | ||
1567 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1568 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1569 | if (err) { |
e22a25c9 | 1570 | return err; |
a426e122 | 1571 | } |
e22a25c9 AL |
1572 | } |
1573 | return 0; | |
1574 | } | |
1575 | ||
9349b4f9 | 1576 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 AL |
1577 | { |
1578 | struct kvm_sw_breakpoint *bp, *next; | |
1579 | KVMState *s = current_env->kvm_state; | |
9349b4f9 | 1580 | CPUArchState *env; |
e22a25c9 | 1581 | |
72cf2d4f | 1582 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1583 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1584 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1585 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
a426e122 | 1586 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { |
e22a25c9 | 1587 | break; |
a426e122 | 1588 | } |
e22a25c9 AL |
1589 | } |
1590 | } | |
1591 | } | |
1592 | kvm_arch_remove_all_hw_breakpoints(); | |
1593 | ||
a426e122 | 1594 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 1595 | kvm_update_guest_debug(env, 0); |
a426e122 | 1596 | } |
e22a25c9 AL |
1597 | } |
1598 | ||
1599 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1600 | ||
9349b4f9 | 1601 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 AL |
1602 | { |
1603 | return -EINVAL; | |
1604 | } | |
1605 | ||
9349b4f9 | 1606 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1607 | target_ulong len, int type) |
1608 | { | |
1609 | return -EINVAL; | |
1610 | } | |
1611 | ||
9349b4f9 | 1612 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1613 | target_ulong len, int type) |
1614 | { | |
1615 | return -EINVAL; | |
1616 | } | |
1617 | ||
9349b4f9 | 1618 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 AL |
1619 | { |
1620 | } | |
1621 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 1622 | |
9349b4f9 | 1623 | int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) |
cc84de95 MT |
1624 | { |
1625 | struct kvm_signal_mask *sigmask; | |
1626 | int r; | |
1627 | ||
a426e122 | 1628 | if (!sigset) { |
cc84de95 | 1629 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 1630 | } |
cc84de95 | 1631 | |
7267c094 | 1632 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
1633 | |
1634 | sigmask->len = 8; | |
1635 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1636 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
7267c094 | 1637 | g_free(sigmask); |
cc84de95 MT |
1638 | |
1639 | return r; | |
1640 | } | |
ca821806 | 1641 | |
44f1a3d8 CM |
1642 | int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) |
1643 | { | |
44f1a3d8 CM |
1644 | int ret; |
1645 | struct kvm_ioeventfd iofd; | |
1646 | ||
1647 | iofd.datamatch = val; | |
1648 | iofd.addr = addr; | |
1649 | iofd.len = 4; | |
1650 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; | |
1651 | iofd.fd = fd; | |
1652 | ||
1653 | if (!kvm_enabled()) { | |
1654 | return -ENOSYS; | |
1655 | } | |
1656 | ||
1657 | if (!assign) { | |
1658 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1659 | } | |
1660 | ||
1661 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
1662 | ||
1663 | if (ret < 0) { | |
1664 | return -errno; | |
1665 | } | |
1666 | ||
1667 | return 0; | |
44f1a3d8 CM |
1668 | } |
1669 | ||
ca821806 MT |
1670 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
1671 | { | |
1672 | struct kvm_ioeventfd kick = { | |
1673 | .datamatch = val, | |
1674 | .addr = addr, | |
1675 | .len = 2, | |
1676 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
1677 | .fd = fd, | |
1678 | }; | |
1679 | int r; | |
a426e122 | 1680 | if (!kvm_enabled()) { |
ca821806 | 1681 | return -ENOSYS; |
a426e122 JK |
1682 | } |
1683 | if (!assign) { | |
ca821806 | 1684 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
a426e122 | 1685 | } |
ca821806 | 1686 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
a426e122 | 1687 | if (r < 0) { |
ca821806 | 1688 | return r; |
a426e122 | 1689 | } |
ca821806 | 1690 | return 0; |
98c8573e | 1691 | } |
a1b87fe0 | 1692 | |
9349b4f9 | 1693 | int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr) |
a1b87fe0 JK |
1694 | { |
1695 | return kvm_arch_on_sigbus_vcpu(env, code, addr); | |
1696 | } | |
1697 | ||
1698 | int kvm_on_sigbus(int code, void *addr) | |
1699 | { | |
1700 | return kvm_arch_on_sigbus(code, addr); | |
1701 | } |