]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
1de7afc9 PB |
24 | #include "qemu/atomic.h" |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
782c3f29 | 28 | #include "sysemu/accel.h" |
d33a1810 | 29 | #include "hw/hw.h" |
a2cb15b0 | 30 | #include "hw/pci/msi.h" |
d426d9fb | 31 | #include "hw/s390x/adapter.h" |
022c62cb | 32 | #include "exec/gdbstub.h" |
9c17d615 | 33 | #include "sysemu/kvm.h" |
1de7afc9 | 34 | #include "qemu/bswap.h" |
022c62cb | 35 | #include "exec/memory.h" |
747afd5b | 36 | #include "exec/ram_addr.h" |
022c62cb | 37 | #include "exec/address-spaces.h" |
1de7afc9 | 38 | #include "qemu/event_notifier.h" |
9c775729 | 39 | #include "trace.h" |
05330448 | 40 | |
135a129a AK |
41 | #include "hw/boards.h" |
42 | ||
d2f2b8a7 SH |
43 | /* This check must be after config-host.h is included */ |
44 | #ifdef CONFIG_EVENTFD | |
45 | #include <sys/eventfd.h> | |
46 | #endif | |
47 | ||
93148aa5 | 48 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
49 | #define PAGE_SIZE TARGET_PAGE_SIZE |
50 | ||
05330448 AL |
51 | //#define DEBUG_KVM |
52 | ||
53 | #ifdef DEBUG_KVM | |
8c0d577e | 54 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
55 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
56 | #else | |
8c0d577e | 57 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
58 | do { } while (0) |
59 | #endif | |
60 | ||
04fa27f5 JK |
61 | #define KVM_MSI_HASHTAB_SIZE 256 |
62 | ||
34fc643f AL |
63 | typedef struct KVMSlot |
64 | { | |
a8170e5e | 65 | hwaddr start_addr; |
c227f099 | 66 | ram_addr_t memory_size; |
9f213ed9 | 67 | void *ram; |
34fc643f AL |
68 | int slot; |
69 | int flags; | |
70 | } KVMSlot; | |
05330448 | 71 | |
5832d1f2 AL |
72 | typedef struct kvm_dirty_log KVMDirtyLog; |
73 | ||
9d1c35df | 74 | struct KVMState |
05330448 | 75 | { |
fc02086b EH |
76 | AccelState parent_obj; |
77 | ||
fb541ca5 AW |
78 | KVMSlot *slots; |
79 | int nr_slots; | |
05330448 AL |
80 | int fd; |
81 | int vmfd; | |
f65ed4c1 | 82 | int coalesced_mmio; |
62a2744c | 83 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 84 | bool coalesced_flush_in_progress; |
e69917e2 | 85 | int broken_set_mem_region; |
4495d6a7 | 86 | int migration_log; |
a0fb002c | 87 | int vcpu_events; |
b0b1d690 | 88 | int robust_singlestep; |
ff44f1a3 | 89 | int debugregs; |
e22a25c9 AL |
90 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
91 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
92 | #endif | |
8a7c7393 | 93 | int pit_state2; |
f1665b21 | 94 | int xsave, xcrs; |
d2f2b8a7 | 95 | int many_ioeventfds; |
3ab73842 | 96 | int intx_set_mask; |
92e4b519 DG |
97 | /* The man page (and posix) say ioctl numbers are signed int, but |
98 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
99 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 100 | unsigned irq_set_ioctl; |
aed6efb9 | 101 | unsigned int sigmask_len; |
84b058d7 JK |
102 | #ifdef KVM_CAP_IRQ_ROUTING |
103 | struct kvm_irq_routing *irq_routes; | |
104 | int nr_allocated_irq_routes; | |
105 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 106 | unsigned int gsi_count; |
04fa27f5 | 107 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 108 | bool direct_msi; |
84b058d7 | 109 | #endif |
9d1c35df | 110 | }; |
05330448 | 111 | |
782c3f29 EH |
112 | #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm") |
113 | ||
fc02086b EH |
114 | #define KVM_STATE(obj) \ |
115 | OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL) | |
116 | ||
6a7af8cb | 117 | KVMState *kvm_state; |
3d4b2649 | 118 | bool kvm_kernel_irqchip; |
7ae26bd4 | 119 | bool kvm_async_interrupts_allowed; |
215e79c0 | 120 | bool kvm_halt_in_kernel_allowed; |
69e03ae6 | 121 | bool kvm_eventfds_allowed; |
cc7e0ddf | 122 | bool kvm_irqfds_allowed; |
f41389ae | 123 | bool kvm_resamplefds_allowed; |
614e41bc | 124 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 125 | bool kvm_gsi_routing_allowed; |
76fe21de | 126 | bool kvm_gsi_direct_mapping; |
13eed94e | 127 | bool kvm_allowed; |
df9c8b75 | 128 | bool kvm_readonly_mem_allowed; |
d0a073a1 | 129 | bool kvm_vm_attributes_allowed; |
05330448 | 130 | |
94a8d39a JK |
131 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
132 | KVM_CAP_INFO(USER_MEMORY), | |
133 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
134 | KVM_CAP_LAST_INFO | |
135 | }; | |
136 | ||
b8865591 | 137 | static KVMSlot *kvm_get_free_slot(KVMState *s) |
05330448 AL |
138 | { |
139 | int i; | |
140 | ||
fb541ca5 | 141 | for (i = 0; i < s->nr_slots; i++) { |
a426e122 | 142 | if (s->slots[i].memory_size == 0) { |
05330448 | 143 | return &s->slots[i]; |
a426e122 | 144 | } |
05330448 AL |
145 | } |
146 | ||
b8865591 IM |
147 | return NULL; |
148 | } | |
149 | ||
150 | bool kvm_has_free_slot(MachineState *ms) | |
151 | { | |
152 | return kvm_get_free_slot(KVM_STATE(ms->accelerator)); | |
153 | } | |
154 | ||
155 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
156 | { | |
157 | KVMSlot *slot = kvm_get_free_slot(s); | |
158 | ||
159 | if (slot) { | |
160 | return slot; | |
161 | } | |
162 | ||
d3f8d37f AL |
163 | fprintf(stderr, "%s: no free slot available\n", __func__); |
164 | abort(); | |
165 | } | |
166 | ||
167 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
a8170e5e AK |
168 | hwaddr start_addr, |
169 | hwaddr end_addr) | |
d3f8d37f AL |
170 | { |
171 | int i; | |
172 | ||
fb541ca5 | 173 | for (i = 0; i < s->nr_slots; i++) { |
d3f8d37f AL |
174 | KVMSlot *mem = &s->slots[i]; |
175 | ||
176 | if (start_addr == mem->start_addr && | |
177 | end_addr == mem->start_addr + mem->memory_size) { | |
178 | return mem; | |
179 | } | |
180 | } | |
181 | ||
05330448 AL |
182 | return NULL; |
183 | } | |
184 | ||
6152e2ae AL |
185 | /* |
186 | * Find overlapping slot with lowest start address | |
187 | */ | |
188 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
a8170e5e AK |
189 | hwaddr start_addr, |
190 | hwaddr end_addr) | |
05330448 | 191 | { |
6152e2ae | 192 | KVMSlot *found = NULL; |
05330448 AL |
193 | int i; |
194 | ||
fb541ca5 | 195 | for (i = 0; i < s->nr_slots; i++) { |
05330448 AL |
196 | KVMSlot *mem = &s->slots[i]; |
197 | ||
6152e2ae AL |
198 | if (mem->memory_size == 0 || |
199 | (found && found->start_addr < mem->start_addr)) { | |
200 | continue; | |
201 | } | |
202 | ||
203 | if (end_addr > mem->start_addr && | |
204 | start_addr < mem->start_addr + mem->memory_size) { | |
205 | found = mem; | |
206 | } | |
05330448 AL |
207 | } |
208 | ||
6152e2ae | 209 | return found; |
05330448 AL |
210 | } |
211 | ||
9f213ed9 | 212 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 213 | hwaddr *phys_addr) |
983dfc3b HY |
214 | { |
215 | int i; | |
216 | ||
fb541ca5 | 217 | for (i = 0; i < s->nr_slots; i++) { |
983dfc3b HY |
218 | KVMSlot *mem = &s->slots[i]; |
219 | ||
9f213ed9 AK |
220 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
221 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
222 | return 1; |
223 | } | |
224 | } | |
225 | ||
226 | return 0; | |
227 | } | |
228 | ||
5832d1f2 AL |
229 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
230 | { | |
231 | struct kvm_userspace_memory_region mem; | |
232 | ||
233 | mem.slot = slot->slot; | |
234 | mem.guest_phys_addr = slot->start_addr; | |
9f213ed9 | 235 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 236 | mem.flags = slot->flags; |
4495d6a7 JK |
237 | if (s->migration_log) { |
238 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
239 | } | |
651eb0f4 XG |
240 | |
241 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
235e8982 JJ |
242 | /* Set the slot size to 0 before setting the slot to the desired |
243 | * value. This is needed based on KVM commit 75d61fbc. */ | |
244 | mem.memory_size = 0; | |
245 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
246 | } | |
247 | mem.memory_size = slot->memory_size; | |
5832d1f2 AL |
248 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
249 | } | |
250 | ||
504134d2 | 251 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
252 | { |
253 | KVMState *s = kvm_state; | |
254 | long mmap_size; | |
255 | int ret; | |
256 | ||
8c0d577e | 257 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 258 | |
b164e48e | 259 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); |
05330448 | 260 | if (ret < 0) { |
8c0d577e | 261 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
262 | goto err; |
263 | } | |
264 | ||
8737c51c | 265 | cpu->kvm_fd = ret; |
a60f24b5 | 266 | cpu->kvm_state = s; |
20d695a9 | 267 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
268 | |
269 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
270 | if (mmap_size < 0) { | |
748a680b | 271 | ret = mmap_size; |
8c0d577e | 272 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
273 | goto err; |
274 | } | |
275 | ||
f7575c96 | 276 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 277 | cpu->kvm_fd, 0); |
f7575c96 | 278 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 279 | ret = -errno; |
8c0d577e | 280 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
281 | goto err; |
282 | } | |
283 | ||
a426e122 JK |
284 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
285 | s->coalesced_mmio_ring = | |
f7575c96 | 286 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 287 | } |
62a2744c | 288 | |
20d695a9 | 289 | ret = kvm_arch_init_vcpu(cpu); |
05330448 AL |
290 | err: |
291 | return ret; | |
292 | } | |
293 | ||
5832d1f2 AL |
294 | /* |
295 | * dirty pages logging control | |
296 | */ | |
25254bbc | 297 | |
235e8982 | 298 | static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) |
25254bbc | 299 | { |
235e8982 JJ |
300 | int flags = 0; |
301 | flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
302 | if (readonly && kvm_readonly_mem_allowed) { | |
303 | flags |= KVM_MEM_READONLY; | |
304 | } | |
305 | return flags; | |
25254bbc MT |
306 | } |
307 | ||
308 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
309 | { |
310 | KVMState *s = kvm_state; | |
25254bbc | 311 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
312 | int old_flags; |
313 | ||
4495d6a7 | 314 | old_flags = mem->flags; |
5832d1f2 | 315 | |
235e8982 | 316 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); |
5832d1f2 AL |
317 | mem->flags = flags; |
318 | ||
4495d6a7 JK |
319 | /* If nothing changed effectively, no need to issue ioctl */ |
320 | if (s->migration_log) { | |
321 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
322 | } | |
25254bbc | 323 | |
4495d6a7 | 324 | if (flags == old_flags) { |
25254bbc | 325 | return 0; |
4495d6a7 JK |
326 | } |
327 | ||
5832d1f2 AL |
328 | return kvm_set_user_memory_region(s, mem); |
329 | } | |
330 | ||
a8170e5e | 331 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
25254bbc MT |
332 | ram_addr_t size, bool log_dirty) |
333 | { | |
334 | KVMState *s = kvm_state; | |
335 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
336 | ||
337 | if (mem == NULL) { | |
ea8cb1a8 PB |
338 | return 0; |
339 | } else { | |
340 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
25254bbc | 341 | } |
25254bbc MT |
342 | } |
343 | ||
a01672d3 | 344 | static void kvm_log_start(MemoryListener *listener, |
b2dfd71c PB |
345 | MemoryRegionSection *section, |
346 | int old, int new) | |
5832d1f2 | 347 | { |
a01672d3 AK |
348 | int r; |
349 | ||
b2dfd71c PB |
350 | if (old != 0) { |
351 | return; | |
352 | } | |
353 | ||
a01672d3 | 354 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, |
052e87b0 | 355 | int128_get64(section->size), true); |
a01672d3 AK |
356 | if (r < 0) { |
357 | abort(); | |
358 | } | |
5832d1f2 AL |
359 | } |
360 | ||
a01672d3 | 361 | static void kvm_log_stop(MemoryListener *listener, |
b2dfd71c PB |
362 | MemoryRegionSection *section, |
363 | int old, int new) | |
5832d1f2 | 364 | { |
a01672d3 AK |
365 | int r; |
366 | ||
b2dfd71c PB |
367 | if (new != 0) { |
368 | return; | |
369 | } | |
370 | ||
a01672d3 | 371 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, |
052e87b0 | 372 | int128_get64(section->size), false); |
a01672d3 AK |
373 | if (r < 0) { |
374 | abort(); | |
375 | } | |
5832d1f2 AL |
376 | } |
377 | ||
8c1ac475 | 378 | static int kvm_set_migration_log(bool enable) |
4495d6a7 JK |
379 | { |
380 | KVMState *s = kvm_state; | |
381 | KVMSlot *mem; | |
382 | int i, err; | |
383 | ||
384 | s->migration_log = enable; | |
385 | ||
fb541ca5 | 386 | for (i = 0; i < s->nr_slots; i++) { |
4495d6a7 JK |
387 | mem = &s->slots[i]; |
388 | ||
70fedd76 AW |
389 | if (!mem->memory_size) { |
390 | continue; | |
391 | } | |
4495d6a7 JK |
392 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
393 | continue; | |
394 | } | |
395 | err = kvm_set_user_memory_region(s, mem); | |
396 | if (err) { | |
397 | return err; | |
398 | } | |
399 | } | |
400 | return 0; | |
401 | } | |
402 | ||
8369e01c | 403 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
404 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
405 | unsigned long *bitmap) | |
96c1606b | 406 | { |
c9dd46fc | 407 | ram_addr_t start = section->offset_within_region + section->mr->ram_addr; |
5ff7fb77 JQ |
408 | ram_addr_t pages = int128_get64(section->size) / getpagesize(); |
409 | ||
410 | cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); | |
8369e01c | 411 | return 0; |
96c1606b AG |
412 | } |
413 | ||
8369e01c MT |
414 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
415 | ||
5832d1f2 AL |
416 | /** |
417 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
418 | * This function updates qemu's dirty bitmap using |
419 | * memory_region_set_dirty(). This means all bits are set | |
420 | * to dirty. | |
5832d1f2 | 421 | * |
d3f8d37f | 422 | * @start_add: start of logged region. |
5832d1f2 AL |
423 | * @end_addr: end of logged region. |
424 | */ | |
ffcde12f | 425 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
426 | { |
427 | KVMState *s = kvm_state; | |
151f7749 | 428 | unsigned long size, allocated_size = 0; |
d229b985 | 429 | KVMDirtyLog d = {}; |
151f7749 JK |
430 | KVMSlot *mem; |
431 | int ret = 0; | |
a8170e5e | 432 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 433 | hwaddr end_addr = start_addr + int128_get64(section->size); |
5832d1f2 | 434 | |
151f7749 JK |
435 | d.dirty_bitmap = NULL; |
436 | while (start_addr < end_addr) { | |
437 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
438 | if (mem == NULL) { | |
439 | break; | |
440 | } | |
5832d1f2 | 441 | |
51b0c606 MT |
442 | /* XXX bad kernel interface alert |
443 | * For dirty bitmap, kernel allocates array of size aligned to | |
444 | * bits-per-long. But for case when the kernel is 64bits and | |
445 | * the userspace is 32bits, userspace can't align to the same | |
446 | * bits-per-long, since sizeof(long) is different between kernel | |
447 | * and user space. This way, userspace will provide buffer which | |
448 | * may be 4 bytes less than the kernel will use, resulting in | |
449 | * userspace memory corruption (which is not detectable by valgrind | |
450 | * too, in most cases). | |
451 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
452 | * a hope that sizeof(long) wont become >8 any time soon. | |
453 | */ | |
454 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
455 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 456 | if (!d.dirty_bitmap) { |
7267c094 | 457 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 458 | } else if (size > allocated_size) { |
7267c094 | 459 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
460 | } |
461 | allocated_size = size; | |
462 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 463 | |
151f7749 | 464 | d.slot = mem->slot; |
5832d1f2 | 465 | |
50212d63 | 466 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 467 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
468 | ret = -1; |
469 | break; | |
470 | } | |
5832d1f2 | 471 | |
ffcde12f | 472 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 473 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 474 | } |
7267c094 | 475 | g_free(d.dirty_bitmap); |
151f7749 JK |
476 | |
477 | return ret; | |
5832d1f2 AL |
478 | } |
479 | ||
95d2994a AK |
480 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
481 | MemoryRegionSection *secion, | |
a8170e5e | 482 | hwaddr start, hwaddr size) |
f65ed4c1 | 483 | { |
f65ed4c1 AL |
484 | KVMState *s = kvm_state; |
485 | ||
486 | if (s->coalesced_mmio) { | |
487 | struct kvm_coalesced_mmio_zone zone; | |
488 | ||
489 | zone.addr = start; | |
490 | zone.size = size; | |
7e680753 | 491 | zone.pad = 0; |
f65ed4c1 | 492 | |
95d2994a | 493 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 494 | } |
f65ed4c1 AL |
495 | } |
496 | ||
95d2994a AK |
497 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
498 | MemoryRegionSection *secion, | |
a8170e5e | 499 | hwaddr start, hwaddr size) |
f65ed4c1 | 500 | { |
f65ed4c1 AL |
501 | KVMState *s = kvm_state; |
502 | ||
503 | if (s->coalesced_mmio) { | |
504 | struct kvm_coalesced_mmio_zone zone; | |
505 | ||
506 | zone.addr = start; | |
507 | zone.size = size; | |
7e680753 | 508 | zone.pad = 0; |
f65ed4c1 | 509 | |
95d2994a | 510 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 511 | } |
f65ed4c1 AL |
512 | } |
513 | ||
ad7b8b33 AL |
514 | int kvm_check_extension(KVMState *s, unsigned int extension) |
515 | { | |
516 | int ret; | |
517 | ||
518 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
519 | if (ret < 0) { | |
520 | ret = 0; | |
521 | } | |
522 | ||
523 | return ret; | |
524 | } | |
525 | ||
7d0a07fa AG |
526 | int kvm_vm_check_extension(KVMState *s, unsigned int extension) |
527 | { | |
528 | int ret; | |
529 | ||
530 | ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
531 | if (ret < 0) { | |
532 | /* VM wide version not implemented, use global one instead */ | |
533 | ret = kvm_check_extension(s, extension); | |
534 | } | |
535 | ||
536 | return ret; | |
537 | } | |
538 | ||
b680c5ba GK |
539 | static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) |
540 | { | |
541 | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | |
542 | /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN | |
543 | * endianness, but the memory core hands them in target endianness. | |
544 | * For example, PPC is always treated as big-endian even if running | |
545 | * on KVM and on PPC64LE. Correct here. | |
546 | */ | |
547 | switch (size) { | |
548 | case 2: | |
549 | val = bswap16(val); | |
550 | break; | |
551 | case 4: | |
552 | val = bswap32(val); | |
553 | break; | |
554 | } | |
555 | #endif | |
556 | return val; | |
557 | } | |
558 | ||
584f2be7 | 559 | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, |
41cb62c2 | 560 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
561 | { |
562 | int ret; | |
03a96b83 TH |
563 | struct kvm_ioeventfd iofd = { |
564 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | |
565 | .addr = addr, | |
566 | .len = size, | |
567 | .flags = 0, | |
568 | .fd = fd, | |
569 | }; | |
500ffd4a MT |
570 | |
571 | if (!kvm_enabled()) { | |
572 | return -ENOSYS; | |
573 | } | |
574 | ||
41cb62c2 MT |
575 | if (datamatch) { |
576 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
577 | } | |
500ffd4a MT |
578 | if (!assign) { |
579 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
580 | } | |
581 | ||
582 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
583 | ||
584 | if (ret < 0) { | |
585 | return -errno; | |
586 | } | |
587 | ||
588 | return 0; | |
589 | } | |
590 | ||
44c3f8f7 | 591 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 592 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
593 | { |
594 | struct kvm_ioeventfd kick = { | |
b680c5ba | 595 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, |
500ffd4a | 596 | .addr = addr, |
41cb62c2 | 597 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 598 | .len = size, |
500ffd4a MT |
599 | .fd = fd, |
600 | }; | |
601 | int r; | |
602 | if (!kvm_enabled()) { | |
603 | return -ENOSYS; | |
604 | } | |
41cb62c2 MT |
605 | if (datamatch) { |
606 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
607 | } | |
500ffd4a MT |
608 | if (!assign) { |
609 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
610 | } | |
611 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
612 | if (r < 0) { | |
613 | return r; | |
614 | } | |
615 | return 0; | |
616 | } | |
617 | ||
618 | ||
d2f2b8a7 SH |
619 | static int kvm_check_many_ioeventfds(void) |
620 | { | |
d0dcac83 SH |
621 | /* Userspace can use ioeventfd for io notification. This requires a host |
622 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
623 | * support SIGIO it cannot interrupt the vcpu. | |
624 | * | |
625 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
626 | * can avoid creating too many ioeventfds. |
627 | */ | |
12d4536f | 628 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
629 | int ioeventfds[7]; |
630 | int i, ret = 0; | |
631 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
632 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
633 | if (ioeventfds[i] < 0) { | |
634 | break; | |
635 | } | |
41cb62c2 | 636 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
637 | if (ret < 0) { |
638 | close(ioeventfds[i]); | |
639 | break; | |
640 | } | |
641 | } | |
642 | ||
643 | /* Decide whether many devices are supported or not */ | |
644 | ret = i == ARRAY_SIZE(ioeventfds); | |
645 | ||
646 | while (i-- > 0) { | |
41cb62c2 | 647 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
648 | close(ioeventfds[i]); |
649 | } | |
650 | return ret; | |
651 | #else | |
652 | return 0; | |
653 | #endif | |
654 | } | |
655 | ||
94a8d39a JK |
656 | static const KVMCapabilityInfo * |
657 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
658 | { | |
659 | while (list->name) { | |
660 | if (!kvm_check_extension(s, list->value)) { | |
661 | return list; | |
662 | } | |
663 | list++; | |
664 | } | |
665 | return NULL; | |
666 | } | |
667 | ||
a01672d3 | 668 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
669 | { |
670 | KVMState *s = kvm_state; | |
46dbef6a MT |
671 | KVMSlot *mem, old; |
672 | int err; | |
a01672d3 | 673 | MemoryRegion *mr = section->mr; |
2d1a35be PB |
674 | bool log_dirty = |
675 | memory_region_get_dirty_log_mask(mr) & ~(1 << DIRTY_MEMORY_MIGRATION); | |
235e8982 JJ |
676 | bool writeable = !mr->readonly && !mr->rom_device; |
677 | bool readonly_flag = mr->readonly || memory_region_is_romd(mr); | |
a8170e5e | 678 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 679 | ram_addr_t size = int128_get64(section->size); |
9f213ed9 | 680 | void *ram = NULL; |
8f6f962b | 681 | unsigned delta; |
46dbef6a | 682 | |
14542fea | 683 | /* kvm works in page size chunks, but the function may be called |
f2a64032 AG |
684 | with sub-page size and unaligned start address. Pad the start |
685 | address to next and truncate size to previous page boundary. */ | |
686 | delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK)); | |
687 | delta &= ~TARGET_PAGE_MASK; | |
8f6f962b AK |
688 | if (delta > size) { |
689 | return; | |
690 | } | |
691 | start_addr += delta; | |
692 | size -= delta; | |
693 | size &= TARGET_PAGE_MASK; | |
694 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
695 | return; | |
696 | } | |
46dbef6a | 697 | |
a01672d3 | 698 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
699 | if (writeable || !kvm_readonly_mem_allowed) { |
700 | return; | |
701 | } else if (!mr->romd_mode) { | |
702 | /* If the memory device is not in romd_mode, then we actually want | |
703 | * to remove the kvm memory slot so all accesses will trap. */ | |
704 | add = false; | |
705 | } | |
9f213ed9 AK |
706 | } |
707 | ||
8f6f962b | 708 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 709 | |
46dbef6a MT |
710 | while (1) { |
711 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
712 | if (!mem) { | |
713 | break; | |
714 | } | |
715 | ||
a01672d3 | 716 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 717 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 718 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 719 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
720 | * identical parameters - update flags and done. */ |
721 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
722 | return; |
723 | } | |
724 | ||
725 | old = *mem; | |
726 | ||
4cc856fa | 727 | if ((mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || s->migration_log) { |
3fbffb62 AK |
728 | kvm_physical_sync_dirty_bitmap(section); |
729 | } | |
730 | ||
46dbef6a MT |
731 | /* unregister the overlapping slot */ |
732 | mem->memory_size = 0; | |
733 | err = kvm_set_user_memory_region(s, mem); | |
734 | if (err) { | |
735 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
736 | __func__, strerror(-err)); | |
737 | abort(); | |
738 | } | |
739 | ||
740 | /* Workaround for older KVM versions: we can't join slots, even not by | |
741 | * unregistering the previous ones and then registering the larger | |
742 | * slot. We have to maintain the existing fragmentation. Sigh. | |
743 | * | |
744 | * This workaround assumes that the new slot starts at the same | |
745 | * address as the first existing one. If not or if some overlapping | |
746 | * slot comes around later, we will fail (not seen in practice so far) | |
747 | * - and actually require a recent KVM version. */ | |
748 | if (s->broken_set_mem_region && | |
a01672d3 | 749 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
750 | mem = kvm_alloc_slot(s); |
751 | mem->memory_size = old.memory_size; | |
752 | mem->start_addr = old.start_addr; | |
9f213ed9 | 753 | mem->ram = old.ram; |
235e8982 | 754 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
755 | |
756 | err = kvm_set_user_memory_region(s, mem); | |
757 | if (err) { | |
758 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
759 | strerror(-err)); | |
760 | abort(); | |
761 | } | |
762 | ||
763 | start_addr += old.memory_size; | |
9f213ed9 | 764 | ram += old.memory_size; |
46dbef6a MT |
765 | size -= old.memory_size; |
766 | continue; | |
767 | } | |
768 | ||
769 | /* register prefix slot */ | |
770 | if (old.start_addr < start_addr) { | |
771 | mem = kvm_alloc_slot(s); | |
772 | mem->memory_size = start_addr - old.start_addr; | |
773 | mem->start_addr = old.start_addr; | |
9f213ed9 | 774 | mem->ram = old.ram; |
235e8982 | 775 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
776 | |
777 | err = kvm_set_user_memory_region(s, mem); | |
778 | if (err) { | |
779 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
780 | __func__, strerror(-err)); | |
d4d6868f AG |
781 | #ifdef TARGET_PPC |
782 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
783 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
784 | "PAGE_SIZE!\n", __func__); | |
785 | #endif | |
46dbef6a MT |
786 | abort(); |
787 | } | |
788 | } | |
789 | ||
790 | /* register suffix slot */ | |
791 | if (old.start_addr + old.memory_size > start_addr + size) { | |
792 | ram_addr_t size_delta; | |
793 | ||
794 | mem = kvm_alloc_slot(s); | |
795 | mem->start_addr = start_addr + size; | |
796 | size_delta = mem->start_addr - old.start_addr; | |
797 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 798 | mem->ram = old.ram + size_delta; |
235e8982 | 799 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
800 | |
801 | err = kvm_set_user_memory_region(s, mem); | |
802 | if (err) { | |
803 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
804 | __func__, strerror(-err)); | |
805 | abort(); | |
806 | } | |
807 | } | |
808 | } | |
809 | ||
810 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 811 | if (!size) { |
46dbef6a | 812 | return; |
a426e122 | 813 | } |
a01672d3 | 814 | if (!add) { |
46dbef6a | 815 | return; |
a426e122 | 816 | } |
46dbef6a MT |
817 | mem = kvm_alloc_slot(s); |
818 | mem->memory_size = size; | |
819 | mem->start_addr = start_addr; | |
9f213ed9 | 820 | mem->ram = ram; |
235e8982 | 821 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
822 | |
823 | err = kvm_set_user_memory_region(s, mem); | |
824 | if (err) { | |
825 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
826 | strerror(-err)); | |
827 | abort(); | |
828 | } | |
829 | } | |
830 | ||
a01672d3 AK |
831 | static void kvm_region_add(MemoryListener *listener, |
832 | MemoryRegionSection *section) | |
833 | { | |
dfde4e6e | 834 | memory_region_ref(section->mr); |
a01672d3 AK |
835 | kvm_set_phys_mem(section, true); |
836 | } | |
837 | ||
838 | static void kvm_region_del(MemoryListener *listener, | |
839 | MemoryRegionSection *section) | |
840 | { | |
841 | kvm_set_phys_mem(section, false); | |
dfde4e6e | 842 | memory_region_unref(section->mr); |
a01672d3 AK |
843 | } |
844 | ||
845 | static void kvm_log_sync(MemoryListener *listener, | |
846 | MemoryRegionSection *section) | |
7b8f3b78 | 847 | { |
a01672d3 AK |
848 | int r; |
849 | ||
ffcde12f | 850 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
851 | if (r < 0) { |
852 | abort(); | |
853 | } | |
7b8f3b78 MT |
854 | } |
855 | ||
a01672d3 | 856 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 857 | { |
a01672d3 AK |
858 | int r; |
859 | ||
860 | r = kvm_set_migration_log(1); | |
861 | assert(r >= 0); | |
7b8f3b78 MT |
862 | } |
863 | ||
a01672d3 | 864 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 865 | { |
a01672d3 AK |
866 | int r; |
867 | ||
868 | r = kvm_set_migration_log(0); | |
869 | assert(r >= 0); | |
7b8f3b78 MT |
870 | } |
871 | ||
d22b096e AK |
872 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
873 | MemoryRegionSection *section, | |
874 | bool match_data, uint64_t data, | |
875 | EventNotifier *e) | |
876 | { | |
877 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
878 | int r; |
879 | ||
4b8f1c88 | 880 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
881 | data, true, int128_get64(section->size), |
882 | match_data); | |
80a1ea37 | 883 | if (r < 0) { |
fa4ba923 AK |
884 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
885 | __func__, strerror(-r)); | |
80a1ea37 AK |
886 | abort(); |
887 | } | |
888 | } | |
889 | ||
d22b096e AK |
890 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
891 | MemoryRegionSection *section, | |
892 | bool match_data, uint64_t data, | |
893 | EventNotifier *e) | |
80a1ea37 | 894 | { |
d22b096e | 895 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
896 | int r; |
897 | ||
4b8f1c88 | 898 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
899 | data, false, int128_get64(section->size), |
900 | match_data); | |
80a1ea37 AK |
901 | if (r < 0) { |
902 | abort(); | |
903 | } | |
904 | } | |
905 | ||
d22b096e AK |
906 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
907 | MemoryRegionSection *section, | |
908 | bool match_data, uint64_t data, | |
909 | EventNotifier *e) | |
80a1ea37 | 910 | { |
d22b096e | 911 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
912 | int r; |
913 | ||
44c3f8f7 | 914 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
915 | data, true, int128_get64(section->size), |
916 | match_data); | |
80a1ea37 | 917 | if (r < 0) { |
fa4ba923 AK |
918 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
919 | __func__, strerror(-r)); | |
80a1ea37 AK |
920 | abort(); |
921 | } | |
922 | } | |
923 | ||
d22b096e AK |
924 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
925 | MemoryRegionSection *section, | |
926 | bool match_data, uint64_t data, | |
927 | EventNotifier *e) | |
80a1ea37 AK |
928 | |
929 | { | |
d22b096e | 930 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
931 | int r; |
932 | ||
44c3f8f7 | 933 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
934 | data, false, int128_get64(section->size), |
935 | match_data); | |
80a1ea37 AK |
936 | if (r < 0) { |
937 | abort(); | |
938 | } | |
939 | } | |
940 | ||
a01672d3 AK |
941 | static MemoryListener kvm_memory_listener = { |
942 | .region_add = kvm_region_add, | |
943 | .region_del = kvm_region_del, | |
e5896b12 AP |
944 | .log_start = kvm_log_start, |
945 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
946 | .log_sync = kvm_log_sync, |
947 | .log_global_start = kvm_log_global_start, | |
948 | .log_global_stop = kvm_log_global_stop, | |
d22b096e AK |
949 | .eventfd_add = kvm_mem_ioeventfd_add, |
950 | .eventfd_del = kvm_mem_ioeventfd_del, | |
95d2994a AK |
951 | .coalesced_mmio_add = kvm_coalesce_mmio_region, |
952 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
d22b096e AK |
953 | .priority = 10, |
954 | }; | |
955 | ||
956 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
957 | .eventfd_add = kvm_io_ioeventfd_add, |
958 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 959 | .priority = 10, |
7b8f3b78 MT |
960 | }; |
961 | ||
c3affe56 | 962 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 963 | { |
259186a7 | 964 | cpu->interrupt_request |= mask; |
aa7f74d1 | 965 | |
60e82579 | 966 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 967 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
968 | } |
969 | } | |
970 | ||
3889c3fa | 971 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
972 | { |
973 | struct kvm_irq_level event; | |
974 | int ret; | |
975 | ||
7ae26bd4 | 976 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
977 | |
978 | event.level = level; | |
979 | event.irq = irq; | |
e333cd69 | 980 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 981 | if (ret < 0) { |
3889c3fa | 982 | perror("kvm_set_irq"); |
84b058d7 JK |
983 | abort(); |
984 | } | |
985 | ||
e333cd69 | 986 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
987 | } |
988 | ||
989 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
990 | typedef struct KVMMSIRoute { |
991 | struct kvm_irq_routing_entry kroute; | |
992 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
993 | } KVMMSIRoute; | |
994 | ||
84b058d7 JK |
995 | static void set_gsi(KVMState *s, unsigned int gsi) |
996 | { | |
84b058d7 JK |
997 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
998 | } | |
999 | ||
04fa27f5 JK |
1000 | static void clear_gsi(KVMState *s, unsigned int gsi) |
1001 | { | |
1002 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
1003 | } | |
1004 | ||
7b774593 | 1005 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 | 1006 | { |
04fa27f5 | 1007 | int gsi_count, i; |
84b058d7 | 1008 | |
00008418 | 1009 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; |
84b058d7 JK |
1010 | if (gsi_count > 0) { |
1011 | unsigned int gsi_bits, i; | |
1012 | ||
1013 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 1014 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 1015 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 1016 | s->gsi_count = gsi_count; |
84b058d7 JK |
1017 | |
1018 | /* Mark any over-allocated bits as already in use */ | |
1019 | for (i = gsi_count; i < gsi_bits; i++) { | |
1020 | set_gsi(s, i); | |
1021 | } | |
1022 | } | |
1023 | ||
1024 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
1025 | s->nr_allocated_irq_routes = 0; | |
1026 | ||
4a3adebb JK |
1027 | if (!s->direct_msi) { |
1028 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
1029 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
1030 | } | |
04fa27f5 JK |
1031 | } |
1032 | ||
84b058d7 JK |
1033 | kvm_arch_init_irq_routing(s); |
1034 | } | |
1035 | ||
cb925cf9 | 1036 | void kvm_irqchip_commit_routes(KVMState *s) |
e7b20308 JK |
1037 | { |
1038 | int ret; | |
1039 | ||
1040 | s->irq_routes->flags = 0; | |
1041 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
1042 | assert(ret == 0); | |
1043 | } | |
1044 | ||
84b058d7 JK |
1045 | static void kvm_add_routing_entry(KVMState *s, |
1046 | struct kvm_irq_routing_entry *entry) | |
1047 | { | |
1048 | struct kvm_irq_routing_entry *new; | |
1049 | int n, size; | |
1050 | ||
1051 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1052 | n = s->nr_allocated_irq_routes * 2; | |
1053 | if (n < 64) { | |
1054 | n = 64; | |
1055 | } | |
1056 | size = sizeof(struct kvm_irq_routing); | |
1057 | size += n * sizeof(*new); | |
1058 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1059 | s->nr_allocated_irq_routes = n; | |
1060 | } | |
1061 | n = s->irq_routes->nr++; | |
1062 | new = &s->irq_routes->entries[n]; | |
0fbc2074 MT |
1063 | |
1064 | *new = *entry; | |
84b058d7 JK |
1065 | |
1066 | set_gsi(s, entry->gsi); | |
1067 | } | |
1068 | ||
cc57407e JK |
1069 | static int kvm_update_routing_entry(KVMState *s, |
1070 | struct kvm_irq_routing_entry *new_entry) | |
1071 | { | |
1072 | struct kvm_irq_routing_entry *entry; | |
1073 | int n; | |
1074 | ||
1075 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1076 | entry = &s->irq_routes->entries[n]; | |
1077 | if (entry->gsi != new_entry->gsi) { | |
1078 | continue; | |
1079 | } | |
1080 | ||
40509f7f MT |
1081 | if(!memcmp(entry, new_entry, sizeof *entry)) { |
1082 | return 0; | |
1083 | } | |
1084 | ||
0fbc2074 | 1085 | *entry = *new_entry; |
cc57407e JK |
1086 | |
1087 | kvm_irqchip_commit_routes(s); | |
1088 | ||
1089 | return 0; | |
1090 | } | |
1091 | ||
1092 | return -ESRCH; | |
1093 | } | |
1094 | ||
1df186df | 1095 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 | 1096 | { |
0fbc2074 | 1097 | struct kvm_irq_routing_entry e = {}; |
84b058d7 | 1098 | |
4e2e4e63 JK |
1099 | assert(pin < s->gsi_count); |
1100 | ||
84b058d7 JK |
1101 | e.gsi = irq; |
1102 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1103 | e.flags = 0; | |
1104 | e.u.irqchip.irqchip = irqchip; | |
1105 | e.u.irqchip.pin = pin; | |
1106 | kvm_add_routing_entry(s, &e); | |
1107 | } | |
1108 | ||
1e2aa8be | 1109 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1110 | { |
1111 | struct kvm_irq_routing_entry *e; | |
1112 | int i; | |
1113 | ||
76fe21de AK |
1114 | if (kvm_gsi_direct_mapping()) { |
1115 | return; | |
1116 | } | |
1117 | ||
04fa27f5 JK |
1118 | for (i = 0; i < s->irq_routes->nr; i++) { |
1119 | e = &s->irq_routes->entries[i]; | |
1120 | if (e->gsi == virq) { | |
1121 | s->irq_routes->nr--; | |
1122 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1123 | } | |
1124 | } | |
1125 | clear_gsi(s, virq); | |
1126 | } | |
1127 | ||
1128 | static unsigned int kvm_hash_msi(uint32_t data) | |
1129 | { | |
1130 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1131 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1132 | return data & 0xff; | |
1133 | } | |
1134 | ||
1135 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1136 | { | |
1137 | KVMMSIRoute *route, *next; | |
1138 | unsigned int hash; | |
1139 | ||
1140 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1141 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1142 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1143 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1144 | g_free(route); | |
1145 | } | |
1146 | } | |
1147 | } | |
1148 | ||
1149 | static int kvm_irqchip_get_virq(KVMState *s) | |
1150 | { | |
1151 | uint32_t *word = s->used_gsi_bitmap; | |
1152 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
bd2a8884 | 1153 | int i, zeroes; |
04fa27f5 JK |
1154 | bool retry = true; |
1155 | ||
1156 | again: | |
1157 | /* Return the lowest unused GSI in the bitmap */ | |
1158 | for (i = 0; i < max_words; i++) { | |
bd2a8884 SH |
1159 | zeroes = ctz32(~word[i]); |
1160 | if (zeroes == 32) { | |
04fa27f5 JK |
1161 | continue; |
1162 | } | |
1163 | ||
bd2a8884 | 1164 | return zeroes + i * 32; |
04fa27f5 | 1165 | } |
4a3adebb | 1166 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1167 | retry = false; |
1168 | kvm_flush_dynamic_msi_routes(s); | |
1169 | goto again; | |
1170 | } | |
1171 | return -ENOSPC; | |
1172 | ||
1173 | } | |
1174 | ||
1175 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1176 | { | |
1177 | unsigned int hash = kvm_hash_msi(msg.data); | |
1178 | KVMMSIRoute *route; | |
1179 | ||
1180 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1181 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1182 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
d07cc1f1 | 1183 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
04fa27f5 JK |
1184 | return route; |
1185 | } | |
1186 | } | |
1187 | return NULL; | |
1188 | } | |
1189 | ||
1190 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1191 | { | |
4a3adebb | 1192 | struct kvm_msi msi; |
04fa27f5 JK |
1193 | KVMMSIRoute *route; |
1194 | ||
4a3adebb JK |
1195 | if (s->direct_msi) { |
1196 | msi.address_lo = (uint32_t)msg.address; | |
1197 | msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1198 | msi.data = le32_to_cpu(msg.data); |
4a3adebb JK |
1199 | msi.flags = 0; |
1200 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1201 | ||
1202 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1203 | } | |
1204 | ||
04fa27f5 JK |
1205 | route = kvm_lookup_msi_route(s, msg); |
1206 | if (!route) { | |
e7b20308 | 1207 | int virq; |
04fa27f5 JK |
1208 | |
1209 | virq = kvm_irqchip_get_virq(s); | |
1210 | if (virq < 0) { | |
1211 | return virq; | |
1212 | } | |
1213 | ||
0fbc2074 | 1214 | route = g_malloc0(sizeof(KVMMSIRoute)); |
04fa27f5 JK |
1215 | route->kroute.gsi = virq; |
1216 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1217 | route->kroute.flags = 0; | |
1218 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1219 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1220 | route->kroute.u.msi.data = le32_to_cpu(msg.data); |
04fa27f5 JK |
1221 | |
1222 | kvm_add_routing_entry(s, &route->kroute); | |
cb925cf9 | 1223 | kvm_irqchip_commit_routes(s); |
04fa27f5 JK |
1224 | |
1225 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1226 | entry); | |
04fa27f5 JK |
1227 | } |
1228 | ||
1229 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1230 | ||
3889c3fa | 1231 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1232 | } |
1233 | ||
92b4e489 JK |
1234 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1235 | { | |
0fbc2074 | 1236 | struct kvm_irq_routing_entry kroute = {}; |
92b4e489 JK |
1237 | int virq; |
1238 | ||
76fe21de | 1239 | if (kvm_gsi_direct_mapping()) { |
1850b6b7 | 1240 | return kvm_arch_msi_data_to_gsi(msg.data); |
76fe21de AK |
1241 | } |
1242 | ||
f3e1bed8 | 1243 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1244 | return -ENOSYS; |
1245 | } | |
1246 | ||
1247 | virq = kvm_irqchip_get_virq(s); | |
1248 | if (virq < 0) { | |
1249 | return virq; | |
1250 | } | |
1251 | ||
1252 | kroute.gsi = virq; | |
1253 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1254 | kroute.flags = 0; | |
1255 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1256 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1257 | kroute.u.msi.data = le32_to_cpu(msg.data); |
9e03a040 FB |
1258 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) { |
1259 | kvm_irqchip_release_virq(s, virq); | |
1260 | return -EINVAL; | |
1261 | } | |
92b4e489 JK |
1262 | |
1263 | kvm_add_routing_entry(s, &kroute); | |
cb925cf9 | 1264 | kvm_irqchip_commit_routes(s); |
92b4e489 JK |
1265 | |
1266 | return virq; | |
1267 | } | |
1268 | ||
cc57407e JK |
1269 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1270 | { | |
0fbc2074 | 1271 | struct kvm_irq_routing_entry kroute = {}; |
cc57407e | 1272 | |
76fe21de AK |
1273 | if (kvm_gsi_direct_mapping()) { |
1274 | return 0; | |
1275 | } | |
1276 | ||
cc57407e JK |
1277 | if (!kvm_irqchip_in_kernel()) { |
1278 | return -ENOSYS; | |
1279 | } | |
1280 | ||
1281 | kroute.gsi = virq; | |
1282 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1283 | kroute.flags = 0; | |
1284 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1285 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1286 | kroute.u.msi.data = le32_to_cpu(msg.data); |
9e03a040 FB |
1287 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) { |
1288 | return -EINVAL; | |
1289 | } | |
cc57407e JK |
1290 | |
1291 | return kvm_update_routing_entry(s, &kroute); | |
1292 | } | |
1293 | ||
ca916d37 VM |
1294 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, |
1295 | bool assign) | |
39853bbc JK |
1296 | { |
1297 | struct kvm_irqfd irqfd = { | |
1298 | .fd = fd, | |
1299 | .gsi = virq, | |
1300 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1301 | }; | |
1302 | ||
ca916d37 VM |
1303 | if (rfd != -1) { |
1304 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1305 | irqfd.resamplefd = rfd; | |
1306 | } | |
1307 | ||
cc7e0ddf | 1308 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1309 | return -ENOSYS; |
1310 | } | |
1311 | ||
1312 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1313 | } | |
1314 | ||
d426d9fb CH |
1315 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1316 | { | |
e9af2fef | 1317 | struct kvm_irq_routing_entry kroute = {}; |
d426d9fb CH |
1318 | int virq; |
1319 | ||
1320 | if (!kvm_gsi_routing_enabled()) { | |
1321 | return -ENOSYS; | |
1322 | } | |
1323 | ||
1324 | virq = kvm_irqchip_get_virq(s); | |
1325 | if (virq < 0) { | |
1326 | return virq; | |
1327 | } | |
1328 | ||
1329 | kroute.gsi = virq; | |
1330 | kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; | |
1331 | kroute.flags = 0; | |
1332 | kroute.u.adapter.summary_addr = adapter->summary_addr; | |
1333 | kroute.u.adapter.ind_addr = adapter->ind_addr; | |
1334 | kroute.u.adapter.summary_offset = adapter->summary_offset; | |
1335 | kroute.u.adapter.ind_offset = adapter->ind_offset; | |
1336 | kroute.u.adapter.adapter_id = adapter->adapter_id; | |
1337 | ||
1338 | kvm_add_routing_entry(s, &kroute); | |
1339 | kvm_irqchip_commit_routes(s); | |
1340 | ||
1341 | return virq; | |
1342 | } | |
1343 | ||
84b058d7 JK |
1344 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1345 | ||
7b774593 | 1346 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 JK |
1347 | { |
1348 | } | |
04fa27f5 | 1349 | |
d3d3bef0 JK |
1350 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1351 | { | |
1352 | } | |
1353 | ||
04fa27f5 JK |
1354 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1355 | { | |
1356 | abort(); | |
1357 | } | |
92b4e489 JK |
1358 | |
1359 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1360 | { | |
df410675 | 1361 | return -ENOSYS; |
92b4e489 | 1362 | } |
39853bbc | 1363 | |
d426d9fb CH |
1364 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1365 | { | |
1366 | return -ENOSYS; | |
1367 | } | |
1368 | ||
39853bbc JK |
1369 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1370 | { | |
1371 | abort(); | |
1372 | } | |
dabe3143 MT |
1373 | |
1374 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1375 | { | |
1376 | return -ENOSYS; | |
1377 | } | |
84b058d7 JK |
1378 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1379 | ||
ca916d37 VM |
1380 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
1381 | EventNotifier *rn, int virq) | |
39853bbc | 1382 | { |
ca916d37 VM |
1383 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), |
1384 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
39853bbc JK |
1385 | } |
1386 | ||
b131c74a | 1387 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1388 | { |
ca916d37 VM |
1389 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, |
1390 | false); | |
15b2bd18 PB |
1391 | } |
1392 | ||
446f16a6 | 1393 | static int kvm_irqchip_create(MachineState *machine, KVMState *s) |
84b058d7 | 1394 | { |
84b058d7 JK |
1395 | int ret; |
1396 | ||
446f16a6 | 1397 | if (!machine_kernel_irqchip_allowed(machine) || |
d426d9fb CH |
1398 | (!kvm_check_extension(s, KVM_CAP_IRQCHIP) && |
1399 | (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) { | |
84b058d7 JK |
1400 | return 0; |
1401 | } | |
1402 | ||
d6032e06 CD |
1403 | /* First probe and see if there's a arch-specific hook to create the |
1404 | * in-kernel irqchip for us */ | |
1405 | ret = kvm_arch_irqchip_create(s); | |
84b058d7 | 1406 | if (ret < 0) { |
84b058d7 | 1407 | return ret; |
d6032e06 CD |
1408 | } else if (ret == 0) { |
1409 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1410 | if (ret < 0) { | |
1411 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1412 | return ret; | |
1413 | } | |
84b058d7 JK |
1414 | } |
1415 | ||
3d4b2649 | 1416 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1417 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1418 | * interrupt delivery (though the reverse is not necessarily true) | |
1419 | */ | |
1420 | kvm_async_interrupts_allowed = true; | |
215e79c0 | 1421 | kvm_halt_in_kernel_allowed = true; |
84b058d7 JK |
1422 | |
1423 | kvm_init_irq_routing(s); | |
1424 | ||
1425 | return 0; | |
1426 | } | |
1427 | ||
670436ce AJ |
1428 | /* Find number of supported CPUs using the recommended |
1429 | * procedure from the kernel API documentation to cope with | |
1430 | * older kernels that may be missing capabilities. | |
1431 | */ | |
1432 | static int kvm_recommended_vcpus(KVMState *s) | |
3ed444e9 | 1433 | { |
670436ce AJ |
1434 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); |
1435 | return (ret) ? ret : 4; | |
1436 | } | |
3ed444e9 | 1437 | |
670436ce AJ |
1438 | static int kvm_max_vcpus(KVMState *s) |
1439 | { | |
1440 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1441 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
3ed444e9 DH |
1442 | } |
1443 | ||
f6a1ef64 | 1444 | static int kvm_init(MachineState *ms) |
05330448 | 1445 | { |
f6a1ef64 | 1446 | MachineClass *mc = MACHINE_GET_CLASS(ms); |
168ccc11 JK |
1447 | static const char upgrade_note[] = |
1448 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1449 | "(see http://sourceforge.net/projects/kvm).\n"; | |
670436ce AJ |
1450 | struct { |
1451 | const char *name; | |
1452 | int num; | |
1453 | } num_cpus[] = { | |
1454 | { "SMP", smp_cpus }, | |
1455 | { "hotpluggable", max_cpus }, | |
1456 | { NULL, } | |
1457 | }, *nc = num_cpus; | |
1458 | int soft_vcpus_limit, hard_vcpus_limit; | |
05330448 | 1459 | KVMState *s; |
94a8d39a | 1460 | const KVMCapabilityInfo *missing_cap; |
05330448 | 1461 | int ret; |
135a129a AK |
1462 | int i, type = 0; |
1463 | const char *kvm_type; | |
05330448 | 1464 | |
fc02086b | 1465 | s = KVM_STATE(ms->accelerator); |
05330448 | 1466 | |
3145fcb6 DG |
1467 | /* |
1468 | * On systems where the kernel can support different base page | |
1469 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1470 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1471 | * page size for the system though. | |
1472 | */ | |
1473 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
47c16ed5 | 1474 | page_size_init(); |
3145fcb6 | 1475 | |
aed6efb9 JH |
1476 | s->sigmask_len = 8; |
1477 | ||
e22a25c9 | 1478 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1479 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1480 | #endif |
05330448 | 1481 | s->vmfd = -1; |
40ff6d7e | 1482 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1483 | if (s->fd == -1) { |
1484 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1485 | ret = -errno; | |
1486 | goto err; | |
1487 | } | |
1488 | ||
1489 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1490 | if (ret < KVM_API_VERSION) { | |
0e1dac6c | 1491 | if (ret >= 0) { |
05330448 | 1492 | ret = -EINVAL; |
a426e122 | 1493 | } |
05330448 AL |
1494 | fprintf(stderr, "kvm version too old\n"); |
1495 | goto err; | |
1496 | } | |
1497 | ||
1498 | if (ret > KVM_API_VERSION) { | |
1499 | ret = -EINVAL; | |
1500 | fprintf(stderr, "kvm version not supported\n"); | |
1501 | goto err; | |
1502 | } | |
1503 | ||
fb541ca5 AW |
1504 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); |
1505 | ||
1506 | /* If unspecified, use the default value */ | |
1507 | if (!s->nr_slots) { | |
1508 | s->nr_slots = 32; | |
1509 | } | |
1510 | ||
1511 | s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); | |
1512 | ||
1513 | for (i = 0; i < s->nr_slots; i++) { | |
1514 | s->slots[i].slot = i; | |
1515 | } | |
1516 | ||
670436ce AJ |
1517 | /* check the vcpu limits */ |
1518 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1519 | hard_vcpus_limit = kvm_max_vcpus(s); | |
3ed444e9 | 1520 | |
670436ce AJ |
1521 | while (nc->name) { |
1522 | if (nc->num > soft_vcpus_limit) { | |
1523 | fprintf(stderr, | |
1524 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1525 | "the recommended cpus supported by KVM (%d)\n", | |
1526 | nc->name, nc->num, soft_vcpus_limit); | |
1527 | ||
1528 | if (nc->num > hard_vcpus_limit) { | |
670436ce AJ |
1529 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " |
1530 | "the maximum cpus supported by KVM (%d)\n", | |
1531 | nc->name, nc->num, hard_vcpus_limit); | |
9ba3cf54 | 1532 | exit(1); |
670436ce AJ |
1533 | } |
1534 | } | |
1535 | nc++; | |
7dc52526 MT |
1536 | } |
1537 | ||
135a129a | 1538 | kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); |
f1e29879 MA |
1539 | if (mc->kvm_type) { |
1540 | type = mc->kvm_type(kvm_type); | |
135a129a | 1541 | } else if (kvm_type) { |
0e1dac6c | 1542 | ret = -EINVAL; |
135a129a AK |
1543 | fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); |
1544 | goto err; | |
1545 | } | |
1546 | ||
94ccff13 | 1547 | do { |
135a129a | 1548 | ret = kvm_ioctl(s, KVM_CREATE_VM, type); |
94ccff13 TK |
1549 | } while (ret == -EINTR); |
1550 | ||
1551 | if (ret < 0) { | |
521f438e | 1552 | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, |
94ccff13 TK |
1553 | strerror(-ret)); |
1554 | ||
0104dcac | 1555 | #ifdef TARGET_S390X |
2c80e996 CH |
1556 | if (ret == -EINVAL) { |
1557 | fprintf(stderr, | |
1558 | "Host kernel setup problem detected. Please verify:\n"); | |
1559 | fprintf(stderr, "- for kernels supporting the switch_amode or" | |
1560 | " user_mode parameters, whether\n"); | |
1561 | fprintf(stderr, | |
1562 | " user space is running in primary address space\n"); | |
1563 | fprintf(stderr, | |
1564 | "- for kernels supporting the vm.allocate_pgste sysctl, " | |
1565 | "whether it is enabled\n"); | |
1566 | } | |
0104dcac | 1567 | #endif |
05330448 | 1568 | goto err; |
0104dcac | 1569 | } |
05330448 | 1570 | |
94ccff13 | 1571 | s->vmfd = ret; |
94a8d39a JK |
1572 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1573 | if (!missing_cap) { | |
1574 | missing_cap = | |
1575 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1576 | } |
94a8d39a | 1577 | if (missing_cap) { |
ad7b8b33 | 1578 | ret = -EINVAL; |
94a8d39a JK |
1579 | fprintf(stderr, "kvm does not support %s\n%s", |
1580 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1581 | goto err; |
1582 | } | |
1583 | ||
ad7b8b33 | 1584 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1585 | |
e69917e2 | 1586 | s->broken_set_mem_region = 1; |
14a09518 | 1587 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1588 | if (ret > 0) { |
1589 | s->broken_set_mem_region = 0; | |
1590 | } | |
e69917e2 | 1591 | |
a0fb002c JK |
1592 | #ifdef KVM_CAP_VCPU_EVENTS |
1593 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1594 | #endif | |
1595 | ||
b0b1d690 JK |
1596 | s->robust_singlestep = |
1597 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1598 | |
ff44f1a3 JK |
1599 | #ifdef KVM_CAP_DEBUGREGS |
1600 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1601 | #endif | |
1602 | ||
f1665b21 SY |
1603 | #ifdef KVM_CAP_XSAVE |
1604 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1605 | #endif | |
1606 | ||
f1665b21 SY |
1607 | #ifdef KVM_CAP_XCRS |
1608 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1609 | #endif | |
1610 | ||
8a7c7393 JK |
1611 | #ifdef KVM_CAP_PIT_STATE2 |
1612 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1613 | #endif | |
1614 | ||
d3d3bef0 | 1615 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1616 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1617 | #endif |
4a3adebb | 1618 | |
3ab73842 JK |
1619 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1620 | ||
e333cd69 | 1621 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1622 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1623 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1624 | } |
1625 | ||
df9c8b75 JJ |
1626 | #ifdef KVM_CAP_READONLY_MEM |
1627 | kvm_readonly_mem_allowed = | |
1628 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1629 | #endif | |
1630 | ||
69e03ae6 NN |
1631 | kvm_eventfds_allowed = |
1632 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); | |
1633 | ||
f41389ae EA |
1634 | kvm_irqfds_allowed = |
1635 | (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); | |
1636 | ||
1637 | kvm_resamplefds_allowed = | |
1638 | (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); | |
1639 | ||
d0a073a1 DD |
1640 | kvm_vm_attributes_allowed = |
1641 | (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); | |
1642 | ||
b16565b3 | 1643 | ret = kvm_arch_init(ms, s); |
a426e122 | 1644 | if (ret < 0) { |
05330448 | 1645 | goto err; |
a426e122 | 1646 | } |
05330448 | 1647 | |
446f16a6 | 1648 | ret = kvm_irqchip_create(ms, s); |
84b058d7 JK |
1649 | if (ret < 0) { |
1650 | goto err; | |
1651 | } | |
1652 | ||
05330448 | 1653 | kvm_state = s; |
f6790af6 AK |
1654 | memory_listener_register(&kvm_memory_listener, &address_space_memory); |
1655 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
05330448 | 1656 | |
d2f2b8a7 SH |
1657 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1658 | ||
aa7f74d1 JK |
1659 | cpu_interrupt_handler = kvm_handle_interrupt; |
1660 | ||
05330448 AL |
1661 | return 0; |
1662 | ||
1663 | err: | |
0e1dac6c | 1664 | assert(ret < 0); |
6d1cc321 SW |
1665 | if (s->vmfd >= 0) { |
1666 | close(s->vmfd); | |
1667 | } | |
1668 | if (s->fd != -1) { | |
1669 | close(s->fd); | |
05330448 | 1670 | } |
fb541ca5 | 1671 | g_free(s->slots); |
05330448 AL |
1672 | |
1673 | return ret; | |
1674 | } | |
1675 | ||
aed6efb9 JH |
1676 | void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) |
1677 | { | |
1678 | s->sigmask_len = sigmask_len; | |
1679 | } | |
1680 | ||
4c663752 PB |
1681 | static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, |
1682 | int size, uint32_t count) | |
05330448 AL |
1683 | { |
1684 | int i; | |
1685 | uint8_t *ptr = data; | |
1686 | ||
1687 | for (i = 0; i < count; i++) { | |
4c663752 | 1688 | address_space_rw(&address_space_io, port, attrs, |
5c9eb028 | 1689 | ptr, size, |
354678c5 | 1690 | direction == KVM_EXIT_IO_OUT); |
05330448 AL |
1691 | ptr += size; |
1692 | } | |
05330448 AL |
1693 | } |
1694 | ||
5326ab55 | 1695 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
7c80eef8 | 1696 | { |
977c7b6d RK |
1697 | fprintf(stderr, "KVM internal error. Suberror: %d\n", |
1698 | run->internal.suberror); | |
1699 | ||
7c80eef8 MT |
1700 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1701 | int i; | |
1702 | ||
7c80eef8 MT |
1703 | for (i = 0; i < run->internal.ndata; ++i) { |
1704 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1705 | i, (uint64_t)run->internal.data[i]); | |
1706 | } | |
1707 | } | |
7c80eef8 MT |
1708 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1709 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1710 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
878096ee | 1711 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1712 | return EXCP_INTERRUPT; |
a426e122 | 1713 | } |
7c80eef8 MT |
1714 | } |
1715 | /* FIXME: Should trigger a qmp message to let management know | |
1716 | * something went wrong. | |
1717 | */ | |
73aaec4a | 1718 | return -1; |
7c80eef8 | 1719 | } |
7c80eef8 | 1720 | |
62a2744c | 1721 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1722 | { |
f65ed4c1 | 1723 | KVMState *s = kvm_state; |
1cae88b9 AK |
1724 | |
1725 | if (s->coalesced_flush_in_progress) { | |
1726 | return; | |
1727 | } | |
1728 | ||
1729 | s->coalesced_flush_in_progress = true; | |
1730 | ||
62a2744c SY |
1731 | if (s->coalesced_mmio_ring) { |
1732 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1733 | while (ring->first != ring->last) { |
1734 | struct kvm_coalesced_mmio *ent; | |
1735 | ||
1736 | ent = &ring->coalesced_mmio[ring->first]; | |
1737 | ||
1738 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1739 | smp_wmb(); |
f65ed4c1 AL |
1740 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1741 | } | |
1742 | } | |
1cae88b9 AK |
1743 | |
1744 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1745 | } |
1746 | ||
20d695a9 | 1747 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1748 | { |
20d695a9 | 1749 | CPUState *cpu = arg; |
2705d56a | 1750 | |
20d695a9 AF |
1751 | if (!cpu->kvm_vcpu_dirty) { |
1752 | kvm_arch_get_registers(cpu); | |
1753 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1754 | } |
1755 | } | |
1756 | ||
dd1750d7 | 1757 | void kvm_cpu_synchronize_state(CPUState *cpu) |
2705d56a | 1758 | { |
20d695a9 AF |
1759 | if (!cpu->kvm_vcpu_dirty) { |
1760 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1761 | } |
2705d56a JK |
1762 | } |
1763 | ||
c8e2085d | 1764 | static void do_kvm_cpu_synchronize_post_reset(void *arg) |
ea375f9a | 1765 | { |
c8e2085d DH |
1766 | CPUState *cpu = arg; |
1767 | ||
20d695a9 AF |
1768 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1769 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1770 | } |
1771 | ||
c8e2085d DH |
1772 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
1773 | { | |
1774 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu); | |
1775 | } | |
1776 | ||
1777 | static void do_kvm_cpu_synchronize_post_init(void *arg) | |
ea375f9a | 1778 | { |
c8e2085d DH |
1779 | CPUState *cpu = arg; |
1780 | ||
20d695a9 AF |
1781 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1782 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1783 | } |
1784 | ||
c8e2085d DH |
1785 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
1786 | { | |
1787 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu); | |
1788 | } | |
1789 | ||
de9d61e8 MT |
1790 | void kvm_cpu_clean_state(CPUState *cpu) |
1791 | { | |
1792 | cpu->kvm_vcpu_dirty = false; | |
1793 | } | |
1794 | ||
1458c363 | 1795 | int kvm_cpu_exec(CPUState *cpu) |
05330448 | 1796 | { |
f7575c96 | 1797 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1798 | int ret, run_ret; |
05330448 | 1799 | |
8c0d577e | 1800 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1801 | |
20d695a9 | 1802 | if (kvm_arch_process_async_events(cpu)) { |
fcd7d003 | 1803 | cpu->exit_request = 0; |
6792a57b | 1804 | return EXCP_HLT; |
9ccfac9e | 1805 | } |
0af691d7 | 1806 | |
9ccfac9e | 1807 | do { |
4c663752 PB |
1808 | MemTxAttrs attrs; |
1809 | ||
20d695a9 AF |
1810 | if (cpu->kvm_vcpu_dirty) { |
1811 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1812 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1813 | } |
1814 | ||
20d695a9 | 1815 | kvm_arch_pre_run(cpu, run); |
fcd7d003 | 1816 | if (cpu->exit_request) { |
9ccfac9e JK |
1817 | DPRINTF("interrupt exit requested\n"); |
1818 | /* | |
1819 | * KVM requires us to reenter the kernel after IO exits to complete | |
1820 | * instruction emulation. This self-signal will ensure that we | |
1821 | * leave ASAP again. | |
1822 | */ | |
1823 | qemu_cpu_kick_self(); | |
1824 | } | |
d549db5a | 1825 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1826 | |
1bc22652 | 1827 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1828 | |
d549db5a | 1829 | qemu_mutex_lock_iothread(); |
4c663752 | 1830 | attrs = kvm_arch_post_run(cpu, run); |
05330448 | 1831 | |
7cbb533f | 1832 | if (run_ret < 0) { |
dc77d341 JK |
1833 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1834 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1835 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1836 | break; |
1837 | } | |
7b011fbc ME |
1838 | fprintf(stderr, "error: kvm run failed %s\n", |
1839 | strerror(-run_ret)); | |
dae02ba5 LV |
1840 | #ifdef TARGET_PPC |
1841 | if (run_ret == -EBUSY) { | |
1842 | fprintf(stderr, | |
1843 | "This is probably because your SMT is enabled.\n" | |
1844 | "VCPU can only run on primary threads with all " | |
1845 | "secondary threads offline.\n"); | |
1846 | } | |
1847 | #endif | |
a85e130e PB |
1848 | ret = -1; |
1849 | break; | |
05330448 AL |
1850 | } |
1851 | ||
b76ac80a | 1852 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
1853 | switch (run->exit_reason) { |
1854 | case KVM_EXIT_IO: | |
8c0d577e | 1855 | DPRINTF("handle_io\n"); |
4c663752 | 1856 | kvm_handle_io(run->io.port, attrs, |
b30e93e9 JK |
1857 | (uint8_t *)run + run->io.data_offset, |
1858 | run->io.direction, | |
1859 | run->io.size, | |
1860 | run->io.count); | |
d73cd8f4 | 1861 | ret = 0; |
05330448 AL |
1862 | break; |
1863 | case KVM_EXIT_MMIO: | |
8c0d577e | 1864 | DPRINTF("handle_mmio\n"); |
4c663752 PB |
1865 | address_space_rw(&address_space_memory, |
1866 | run->mmio.phys_addr, attrs, | |
1867 | run->mmio.data, | |
1868 | run->mmio.len, | |
1869 | run->mmio.is_write); | |
d73cd8f4 | 1870 | ret = 0; |
05330448 AL |
1871 | break; |
1872 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1873 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1874 | ret = EXCP_INTERRUPT; |
05330448 AL |
1875 | break; |
1876 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1877 | DPRINTF("shutdown\n"); |
05330448 | 1878 | qemu_system_reset_request(); |
d73cd8f4 | 1879 | ret = EXCP_INTERRUPT; |
05330448 AL |
1880 | break; |
1881 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1882 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1883 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1884 | ret = -1; |
05330448 | 1885 | break; |
7c80eef8 | 1886 | case KVM_EXIT_INTERNAL_ERROR: |
5326ab55 | 1887 | ret = kvm_handle_internal_error(cpu, run); |
7c80eef8 | 1888 | break; |
99040447 PS |
1889 | case KVM_EXIT_SYSTEM_EVENT: |
1890 | switch (run->system_event.type) { | |
1891 | case KVM_SYSTEM_EVENT_SHUTDOWN: | |
1892 | qemu_system_shutdown_request(); | |
1893 | ret = EXCP_INTERRUPT; | |
1894 | break; | |
1895 | case KVM_SYSTEM_EVENT_RESET: | |
1896 | qemu_system_reset_request(); | |
1897 | ret = EXCP_INTERRUPT; | |
1898 | break; | |
1899 | default: | |
1900 | DPRINTF("kvm_arch_handle_exit\n"); | |
1901 | ret = kvm_arch_handle_exit(cpu, run); | |
1902 | break; | |
1903 | } | |
1904 | break; | |
05330448 | 1905 | default: |
8c0d577e | 1906 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1907 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1908 | break; |
1909 | } | |
d73cd8f4 | 1910 | } while (ret == 0); |
05330448 | 1911 | |
73aaec4a | 1912 | if (ret < 0) { |
878096ee | 1913 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1914 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1915 | } |
1916 | ||
fcd7d003 | 1917 | cpu->exit_request = 0; |
05330448 AL |
1918 | return ret; |
1919 | } | |
1920 | ||
984b5181 | 1921 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1922 | { |
1923 | int ret; | |
984b5181 AL |
1924 | void *arg; |
1925 | va_list ap; | |
05330448 | 1926 | |
984b5181 AL |
1927 | va_start(ap, type); |
1928 | arg = va_arg(ap, void *); | |
1929 | va_end(ap); | |
1930 | ||
9c775729 | 1931 | trace_kvm_ioctl(type, arg); |
984b5181 | 1932 | ret = ioctl(s->fd, type, arg); |
a426e122 | 1933 | if (ret == -1) { |
05330448 | 1934 | ret = -errno; |
a426e122 | 1935 | } |
05330448 AL |
1936 | return ret; |
1937 | } | |
1938 | ||
984b5181 | 1939 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1940 | { |
1941 | int ret; | |
984b5181 AL |
1942 | void *arg; |
1943 | va_list ap; | |
1944 | ||
1945 | va_start(ap, type); | |
1946 | arg = va_arg(ap, void *); | |
1947 | va_end(ap); | |
05330448 | 1948 | |
9c775729 | 1949 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 1950 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1951 | if (ret == -1) { |
05330448 | 1952 | ret = -errno; |
a426e122 | 1953 | } |
05330448 AL |
1954 | return ret; |
1955 | } | |
1956 | ||
1bc22652 | 1957 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
1958 | { |
1959 | int ret; | |
984b5181 AL |
1960 | void *arg; |
1961 | va_list ap; | |
1962 | ||
1963 | va_start(ap, type); | |
1964 | arg = va_arg(ap, void *); | |
1965 | va_end(ap); | |
05330448 | 1966 | |
9c775729 | 1967 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 1968 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 1969 | if (ret == -1) { |
05330448 | 1970 | ret = -errno; |
a426e122 | 1971 | } |
05330448 AL |
1972 | return ret; |
1973 | } | |
bd322087 | 1974 | |
0a6a7cca CD |
1975 | int kvm_device_ioctl(int fd, int type, ...) |
1976 | { | |
1977 | int ret; | |
1978 | void *arg; | |
1979 | va_list ap; | |
1980 | ||
1981 | va_start(ap, type); | |
1982 | arg = va_arg(ap, void *); | |
1983 | va_end(ap); | |
1984 | ||
1985 | trace_kvm_device_ioctl(fd, type, arg); | |
1986 | ret = ioctl(fd, type, arg); | |
1987 | if (ret == -1) { | |
1988 | ret = -errno; | |
1989 | } | |
1990 | return ret; | |
1991 | } | |
1992 | ||
d0a073a1 DD |
1993 | int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) |
1994 | { | |
1995 | int ret; | |
1996 | struct kvm_device_attr attribute = { | |
1997 | .group = group, | |
1998 | .attr = attr, | |
1999 | }; | |
2000 | ||
2001 | if (!kvm_vm_attributes_allowed) { | |
2002 | return 0; | |
2003 | } | |
2004 | ||
2005 | ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); | |
2006 | /* kvm returns 0 on success for HAS_DEVICE_ATTR */ | |
2007 | return ret ? 0 : 1; | |
2008 | } | |
2009 | ||
bd322087 AL |
2010 | int kvm_has_sync_mmu(void) |
2011 | { | |
94a8d39a | 2012 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 2013 | } |
e22a25c9 | 2014 | |
a0fb002c JK |
2015 | int kvm_has_vcpu_events(void) |
2016 | { | |
2017 | return kvm_state->vcpu_events; | |
2018 | } | |
2019 | ||
b0b1d690 JK |
2020 | int kvm_has_robust_singlestep(void) |
2021 | { | |
2022 | return kvm_state->robust_singlestep; | |
2023 | } | |
2024 | ||
ff44f1a3 JK |
2025 | int kvm_has_debugregs(void) |
2026 | { | |
2027 | return kvm_state->debugregs; | |
2028 | } | |
2029 | ||
f1665b21 SY |
2030 | int kvm_has_xsave(void) |
2031 | { | |
2032 | return kvm_state->xsave; | |
2033 | } | |
2034 | ||
2035 | int kvm_has_xcrs(void) | |
2036 | { | |
2037 | return kvm_state->xcrs; | |
2038 | } | |
2039 | ||
8a7c7393 JK |
2040 | int kvm_has_pit_state2(void) |
2041 | { | |
2042 | return kvm_state->pit_state2; | |
2043 | } | |
2044 | ||
d2f2b8a7 SH |
2045 | int kvm_has_many_ioeventfds(void) |
2046 | { | |
2047 | if (!kvm_enabled()) { | |
2048 | return 0; | |
2049 | } | |
2050 | return kvm_state->many_ioeventfds; | |
2051 | } | |
2052 | ||
84b058d7 JK |
2053 | int kvm_has_gsi_routing(void) |
2054 | { | |
a9c5eb0d | 2055 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 2056 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
2057 | #else |
2058 | return false; | |
2059 | #endif | |
84b058d7 JK |
2060 | } |
2061 | ||
3ab73842 JK |
2062 | int kvm_has_intx_set_mask(void) |
2063 | { | |
2064 | return kvm_state->intx_set_mask; | |
2065 | } | |
2066 | ||
6f0437e8 JK |
2067 | void kvm_setup_guest_memory(void *start, size_t size) |
2068 | { | |
2069 | if (!kvm_has_sync_mmu()) { | |
e78815a5 | 2070 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
2071 | |
2072 | if (ret) { | |
e78815a5 AF |
2073 | perror("qemu_madvise"); |
2074 | fprintf(stderr, | |
2075 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
2076 | exit(1); |
2077 | } | |
6f0437e8 JK |
2078 | } |
2079 | } | |
2080 | ||
e22a25c9 | 2081 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 2082 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
2083 | target_ulong pc) |
2084 | { | |
2085 | struct kvm_sw_breakpoint *bp; | |
2086 | ||
a60f24b5 | 2087 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 2088 | if (bp->pc == pc) { |
e22a25c9 | 2089 | return bp; |
a426e122 | 2090 | } |
e22a25c9 AL |
2091 | } |
2092 | return NULL; | |
2093 | } | |
2094 | ||
a60f24b5 | 2095 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 2096 | { |
a60f24b5 | 2097 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
2098 | } |
2099 | ||
452e4751 GC |
2100 | struct kvm_set_guest_debug_data { |
2101 | struct kvm_guest_debug dbg; | |
a60f24b5 | 2102 | CPUState *cpu; |
452e4751 GC |
2103 | int err; |
2104 | }; | |
2105 | ||
2106 | static void kvm_invoke_set_guest_debug(void *data) | |
2107 | { | |
2108 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 2109 | |
a60f24b5 AF |
2110 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
2111 | &dbg_data->dbg); | |
452e4751 GC |
2112 | } |
2113 | ||
38e478ec | 2114 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 | 2115 | { |
452e4751 | 2116 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 2117 | |
b0b1d690 | 2118 | data.dbg.control = reinject_trap; |
e22a25c9 | 2119 | |
ed2803da | 2120 | if (cpu->singlestep_enabled) { |
b0b1d690 JK |
2121 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
2122 | } | |
20d695a9 | 2123 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 2124 | data.cpu = cpu; |
e22a25c9 | 2125 | |
f100f0b3 | 2126 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 2127 | return data.err; |
e22a25c9 AL |
2128 | } |
2129 | ||
62278814 | 2130 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2131 | target_ulong len, int type) |
2132 | { | |
2133 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2134 | int err; |
2135 | ||
2136 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2137 | bp = kvm_find_sw_breakpoint(cpu, addr); |
e22a25c9 AL |
2138 | if (bp) { |
2139 | bp->use_count++; | |
2140 | return 0; | |
2141 | } | |
2142 | ||
7267c094 | 2143 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
e22a25c9 AL |
2144 | bp->pc = addr; |
2145 | bp->use_count = 1; | |
80b7cd73 | 2146 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
e22a25c9 | 2147 | if (err) { |
7267c094 | 2148 | g_free(bp); |
e22a25c9 AL |
2149 | return err; |
2150 | } | |
2151 | ||
80b7cd73 | 2152 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
2153 | } else { |
2154 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 2155 | if (err) { |
e22a25c9 | 2156 | return err; |
a426e122 | 2157 | } |
e22a25c9 AL |
2158 | } |
2159 | ||
bdc44640 | 2160 | CPU_FOREACH(cpu) { |
38e478ec | 2161 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2162 | if (err) { |
e22a25c9 | 2163 | return err; |
a426e122 | 2164 | } |
e22a25c9 AL |
2165 | } |
2166 | return 0; | |
2167 | } | |
2168 | ||
62278814 | 2169 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2170 | target_ulong len, int type) |
2171 | { | |
2172 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2173 | int err; |
2174 | ||
2175 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2176 | bp = kvm_find_sw_breakpoint(cpu, addr); |
a426e122 | 2177 | if (!bp) { |
e22a25c9 | 2178 | return -ENOENT; |
a426e122 | 2179 | } |
e22a25c9 AL |
2180 | |
2181 | if (bp->use_count > 1) { | |
2182 | bp->use_count--; | |
2183 | return 0; | |
2184 | } | |
2185 | ||
80b7cd73 | 2186 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
a426e122 | 2187 | if (err) { |
e22a25c9 | 2188 | return err; |
a426e122 | 2189 | } |
e22a25c9 | 2190 | |
80b7cd73 | 2191 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 2192 | g_free(bp); |
e22a25c9 AL |
2193 | } else { |
2194 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 2195 | if (err) { |
e22a25c9 | 2196 | return err; |
a426e122 | 2197 | } |
e22a25c9 AL |
2198 | } |
2199 | ||
bdc44640 | 2200 | CPU_FOREACH(cpu) { |
38e478ec | 2201 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2202 | if (err) { |
e22a25c9 | 2203 | return err; |
a426e122 | 2204 | } |
e22a25c9 AL |
2205 | } |
2206 | return 0; | |
2207 | } | |
2208 | ||
1d5791f4 | 2209 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2210 | { |
2211 | struct kvm_sw_breakpoint *bp, *next; | |
80b7cd73 | 2212 | KVMState *s = cpu->kvm_state; |
dc54e252 | 2213 | CPUState *tmpcpu; |
e22a25c9 | 2214 | |
72cf2d4f | 2215 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
80b7cd73 | 2216 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
e22a25c9 | 2217 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
dc54e252 CG |
2218 | CPU_FOREACH(tmpcpu) { |
2219 | if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { | |
e22a25c9 | 2220 | break; |
a426e122 | 2221 | } |
e22a25c9 AL |
2222 | } |
2223 | } | |
78021d6d JK |
2224 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2225 | g_free(bp); | |
e22a25c9 AL |
2226 | } |
2227 | kvm_arch_remove_all_hw_breakpoints(); | |
2228 | ||
bdc44640 | 2229 | CPU_FOREACH(cpu) { |
38e478ec | 2230 | kvm_update_guest_debug(cpu, 0); |
a426e122 | 2231 | } |
e22a25c9 AL |
2232 | } |
2233 | ||
2234 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2235 | ||
38e478ec | 2236 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 AL |
2237 | { |
2238 | return -EINVAL; | |
2239 | } | |
2240 | ||
62278814 | 2241 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2242 | target_ulong len, int type) |
2243 | { | |
2244 | return -EINVAL; | |
2245 | } | |
2246 | ||
62278814 | 2247 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2248 | target_ulong len, int type) |
2249 | { | |
2250 | return -EINVAL; | |
2251 | } | |
2252 | ||
1d5791f4 | 2253 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2254 | { |
2255 | } | |
2256 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2257 | |
491d6e80 | 2258 | int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
cc84de95 | 2259 | { |
aed6efb9 | 2260 | KVMState *s = kvm_state; |
cc84de95 MT |
2261 | struct kvm_signal_mask *sigmask; |
2262 | int r; | |
2263 | ||
a426e122 | 2264 | if (!sigset) { |
1bc22652 | 2265 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 2266 | } |
cc84de95 | 2267 | |
7267c094 | 2268 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 | 2269 | |
aed6efb9 | 2270 | sigmask->len = s->sigmask_len; |
cc84de95 | 2271 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); |
1bc22652 | 2272 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2273 | g_free(sigmask); |
cc84de95 MT |
2274 | |
2275 | return r; | |
2276 | } | |
290adf38 | 2277 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2278 | { |
20d695a9 | 2279 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
a1b87fe0 JK |
2280 | } |
2281 | ||
2282 | int kvm_on_sigbus(int code, void *addr) | |
2283 | { | |
2284 | return kvm_arch_on_sigbus(code, addr); | |
2285 | } | |
0a6a7cca CD |
2286 | |
2287 | int kvm_create_device(KVMState *s, uint64_t type, bool test) | |
2288 | { | |
2289 | int ret; | |
2290 | struct kvm_create_device create_dev; | |
2291 | ||
2292 | create_dev.type = type; | |
2293 | create_dev.fd = -1; | |
2294 | create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; | |
2295 | ||
2296 | if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { | |
2297 | return -ENOTSUP; | |
2298 | } | |
2299 | ||
2300 | ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); | |
2301 | if (ret) { | |
2302 | return ret; | |
2303 | } | |
2304 | ||
2305 | return test ? 0 : create_dev.fd; | |
2306 | } | |
ada4135f CH |
2307 | |
2308 | int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) | |
2309 | { | |
2310 | struct kvm_one_reg reg; | |
2311 | int r; | |
2312 | ||
2313 | reg.id = id; | |
2314 | reg.addr = (uintptr_t) source; | |
2315 | r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
2316 | if (r) { | |
2317 | trace_kvm_failed_reg_set(id, strerror(r)); | |
2318 | } | |
2319 | return r; | |
2320 | } | |
2321 | ||
2322 | int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) | |
2323 | { | |
2324 | struct kvm_one_reg reg; | |
2325 | int r; | |
2326 | ||
2327 | reg.id = id; | |
2328 | reg.addr = (uintptr_t) target; | |
2329 | r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
2330 | if (r) { | |
2331 | trace_kvm_failed_reg_get(id, strerror(r)); | |
2332 | } | |
2333 | return r; | |
2334 | } | |
782c3f29 EH |
2335 | |
2336 | static void kvm_accel_class_init(ObjectClass *oc, void *data) | |
2337 | { | |
2338 | AccelClass *ac = ACCEL_CLASS(oc); | |
2339 | ac->name = "KVM"; | |
0d15da8e | 2340 | ac->init_machine = kvm_init; |
782c3f29 EH |
2341 | ac->allowed = &kvm_allowed; |
2342 | } | |
2343 | ||
2344 | static const TypeInfo kvm_accel_type = { | |
2345 | .name = TYPE_KVM_ACCEL, | |
2346 | .parent = TYPE_ACCEL, | |
2347 | .class_init = kvm_accel_class_init, | |
fc02086b | 2348 | .instance_size = sizeof(KVMState), |
782c3f29 EH |
2349 | }; |
2350 | ||
2351 | static void kvm_type_init(void) | |
2352 | { | |
2353 | type_register_static(&kvm_accel_type); | |
2354 | } | |
2355 | ||
2356 | type_init(kvm_type_init); |