]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
05330448 | 25 | #include "sysemu.h" |
d33a1810 | 26 | #include "hw/hw.h" |
e22a25c9 | 27 | #include "gdbstub.h" |
05330448 AL |
28 | #include "kvm.h" |
29 | ||
f65ed4c1 AL |
30 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
31 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
32 | ||
05330448 AL |
33 | //#define DEBUG_KVM |
34 | ||
35 | #ifdef DEBUG_KVM | |
36 | #define dprintf(fmt, ...) \ | |
37 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
38 | #else | |
39 | #define dprintf(fmt, ...) \ | |
40 | do { } while (0) | |
41 | #endif | |
42 | ||
34fc643f AL |
43 | typedef struct KVMSlot |
44 | { | |
c227f099 AL |
45 | target_phys_addr_t start_addr; |
46 | ram_addr_t memory_size; | |
47 | ram_addr_t phys_offset; | |
34fc643f AL |
48 | int slot; |
49 | int flags; | |
50 | } KVMSlot; | |
05330448 | 51 | |
5832d1f2 AL |
52 | typedef struct kvm_dirty_log KVMDirtyLog; |
53 | ||
05330448 AL |
54 | int kvm_allowed = 0; |
55 | ||
56 | struct KVMState | |
57 | { | |
58 | KVMSlot slots[32]; | |
59 | int fd; | |
60 | int vmfd; | |
f65ed4c1 | 61 | int coalesced_mmio; |
62a2744c SY |
62 | #ifdef KVM_CAP_COALESCED_MMIO |
63 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
64 | #endif | |
e69917e2 | 65 | int broken_set_mem_region; |
4495d6a7 | 66 | int migration_log; |
a0fb002c | 67 | int vcpu_events; |
b0b1d690 | 68 | int robust_singlestep; |
e22a25c9 AL |
69 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
70 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
71 | #endif | |
6f725c13 GC |
72 | int irqchip_in_kernel; |
73 | int pit_in_kernel; | |
05330448 AL |
74 | }; |
75 | ||
76 | static KVMState *kvm_state; | |
77 | ||
78 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
79 | { | |
80 | int i; | |
81 | ||
82 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
83 | /* KVM private memory slots */ |
84 | if (i >= 8 && i < 12) | |
85 | continue; | |
05330448 AL |
86 | if (s->slots[i].memory_size == 0) |
87 | return &s->slots[i]; | |
88 | } | |
89 | ||
d3f8d37f AL |
90 | fprintf(stderr, "%s: no free slot available\n", __func__); |
91 | abort(); | |
92 | } | |
93 | ||
94 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
95 | target_phys_addr_t start_addr, |
96 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
97 | { |
98 | int i; | |
99 | ||
100 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
101 | KVMSlot *mem = &s->slots[i]; | |
102 | ||
103 | if (start_addr == mem->start_addr && | |
104 | end_addr == mem->start_addr + mem->memory_size) { | |
105 | return mem; | |
106 | } | |
107 | } | |
108 | ||
05330448 AL |
109 | return NULL; |
110 | } | |
111 | ||
6152e2ae AL |
112 | /* |
113 | * Find overlapping slot with lowest start address | |
114 | */ | |
115 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
116 | target_phys_addr_t start_addr, |
117 | target_phys_addr_t end_addr) | |
05330448 | 118 | { |
6152e2ae | 119 | KVMSlot *found = NULL; |
05330448 AL |
120 | int i; |
121 | ||
122 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
123 | KVMSlot *mem = &s->slots[i]; | |
124 | ||
6152e2ae AL |
125 | if (mem->memory_size == 0 || |
126 | (found && found->start_addr < mem->start_addr)) { | |
127 | continue; | |
128 | } | |
129 | ||
130 | if (end_addr > mem->start_addr && | |
131 | start_addr < mem->start_addr + mem->memory_size) { | |
132 | found = mem; | |
133 | } | |
05330448 AL |
134 | } |
135 | ||
6152e2ae | 136 | return found; |
05330448 AL |
137 | } |
138 | ||
5832d1f2 AL |
139 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
140 | { | |
141 | struct kvm_userspace_memory_region mem; | |
142 | ||
143 | mem.slot = slot->slot; | |
144 | mem.guest_phys_addr = slot->start_addr; | |
145 | mem.memory_size = slot->memory_size; | |
5579c7f3 | 146 | mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); |
5832d1f2 | 147 | mem.flags = slot->flags; |
4495d6a7 JK |
148 | if (s->migration_log) { |
149 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
150 | } | |
5832d1f2 AL |
151 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
152 | } | |
153 | ||
8d2ba1fb JK |
154 | static void kvm_reset_vcpu(void *opaque) |
155 | { | |
156 | CPUState *env = opaque; | |
157 | ||
caa5af0f | 158 | kvm_arch_reset_vcpu(env); |
8d2ba1fb JK |
159 | if (kvm_arch_put_registers(env)) { |
160 | fprintf(stderr, "Fatal: kvm vcpu reset failed\n"); | |
161 | abort(); | |
162 | } | |
163 | } | |
5832d1f2 | 164 | |
6f725c13 GC |
165 | int kvm_irqchip_in_kernel(void) |
166 | { | |
167 | return kvm_state->irqchip_in_kernel; | |
168 | } | |
169 | ||
170 | int kvm_pit_in_kernel(void) | |
171 | { | |
172 | return kvm_state->pit_in_kernel; | |
173 | } | |
174 | ||
175 | ||
05330448 AL |
176 | int kvm_init_vcpu(CPUState *env) |
177 | { | |
178 | KVMState *s = kvm_state; | |
179 | long mmap_size; | |
180 | int ret; | |
181 | ||
182 | dprintf("kvm_init_vcpu\n"); | |
183 | ||
984b5181 | 184 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 AL |
185 | if (ret < 0) { |
186 | dprintf("kvm_create_vcpu failed\n"); | |
187 | goto err; | |
188 | } | |
189 | ||
190 | env->kvm_fd = ret; | |
191 | env->kvm_state = s; | |
192 | ||
193 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
194 | if (mmap_size < 0) { | |
195 | dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
196 | goto err; | |
197 | } | |
198 | ||
199 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
200 | env->kvm_fd, 0); | |
201 | if (env->kvm_run == MAP_FAILED) { | |
202 | ret = -errno; | |
203 | dprintf("mmap'ing vcpu state failed\n"); | |
204 | goto err; | |
205 | } | |
206 | ||
62a2744c SY |
207 | #ifdef KVM_CAP_COALESCED_MMIO |
208 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) | |
209 | s->coalesced_mmio_ring = (void *) env->kvm_run + | |
210 | s->coalesced_mmio * PAGE_SIZE; | |
211 | #endif | |
212 | ||
05330448 | 213 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 214 | if (ret == 0) { |
a08d4367 | 215 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 216 | kvm_arch_reset_vcpu(env); |
8d2ba1fb JK |
217 | ret = kvm_arch_put_registers(env); |
218 | } | |
05330448 AL |
219 | err: |
220 | return ret; | |
221 | } | |
222 | ||
5832d1f2 AL |
223 | /* |
224 | * dirty pages logging control | |
225 | */ | |
c227f099 AL |
226 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
227 | ram_addr_t size, int flags, int mask) | |
5832d1f2 AL |
228 | { |
229 | KVMState *s = kvm_state; | |
d3f8d37f | 230 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
4495d6a7 JK |
231 | int old_flags; |
232 | ||
5832d1f2 | 233 | if (mem == NULL) { |
d3f8d37f AL |
234 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
235 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
c227f099 | 236 | (target_phys_addr_t)(phys_addr + size - 1)); |
5832d1f2 AL |
237 | return -EINVAL; |
238 | } | |
239 | ||
4495d6a7 | 240 | old_flags = mem->flags; |
5832d1f2 | 241 | |
4495d6a7 | 242 | flags = (mem->flags & ~mask) | flags; |
5832d1f2 AL |
243 | mem->flags = flags; |
244 | ||
4495d6a7 JK |
245 | /* If nothing changed effectively, no need to issue ioctl */ |
246 | if (s->migration_log) { | |
247 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
248 | } | |
249 | if (flags == old_flags) { | |
250 | return 0; | |
251 | } | |
252 | ||
5832d1f2 AL |
253 | return kvm_set_user_memory_region(s, mem); |
254 | } | |
255 | ||
c227f099 | 256 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 257 | { |
d3f8d37f | 258 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
259 | KVM_MEM_LOG_DIRTY_PAGES, |
260 | KVM_MEM_LOG_DIRTY_PAGES); | |
261 | } | |
262 | ||
c227f099 | 263 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 264 | { |
d3f8d37f | 265 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
266 | 0, |
267 | KVM_MEM_LOG_DIRTY_PAGES); | |
268 | } | |
269 | ||
7b8f3b78 | 270 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
271 | { |
272 | KVMState *s = kvm_state; | |
273 | KVMSlot *mem; | |
274 | int i, err; | |
275 | ||
276 | s->migration_log = enable; | |
277 | ||
278 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
279 | mem = &s->slots[i]; | |
280 | ||
281 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
282 | continue; | |
283 | } | |
284 | err = kvm_set_user_memory_region(s, mem); | |
285 | if (err) { | |
286 | return err; | |
287 | } | |
288 | } | |
289 | return 0; | |
290 | } | |
291 | ||
96c1606b AG |
292 | static int test_le_bit(unsigned long nr, unsigned char *addr) |
293 | { | |
294 | return (addr[nr >> 3] >> (nr & 7)) & 1; | |
295 | } | |
296 | ||
5832d1f2 AL |
297 | /** |
298 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
299 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
300 | * This means all bits are set to dirty. | |
301 | * | |
d3f8d37f | 302 | * @start_add: start of logged region. |
5832d1f2 AL |
303 | * @end_addr: end of logged region. |
304 | */ | |
7b8f3b78 MT |
305 | static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
306 | target_phys_addr_t end_addr) | |
5832d1f2 AL |
307 | { |
308 | KVMState *s = kvm_state; | |
151f7749 | 309 | unsigned long size, allocated_size = 0; |
c227f099 AL |
310 | target_phys_addr_t phys_addr; |
311 | ram_addr_t addr; | |
151f7749 JK |
312 | KVMDirtyLog d; |
313 | KVMSlot *mem; | |
314 | int ret = 0; | |
5832d1f2 | 315 | |
151f7749 JK |
316 | d.dirty_bitmap = NULL; |
317 | while (start_addr < end_addr) { | |
318 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
319 | if (mem == NULL) { | |
320 | break; | |
321 | } | |
5832d1f2 | 322 | |
151f7749 JK |
323 | size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8; |
324 | if (!d.dirty_bitmap) { | |
325 | d.dirty_bitmap = qemu_malloc(size); | |
326 | } else if (size > allocated_size) { | |
327 | d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | |
328 | } | |
329 | allocated_size = size; | |
330 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 331 | |
151f7749 | 332 | d.slot = mem->slot; |
5832d1f2 | 333 | |
6e489f3f | 334 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
151f7749 JK |
335 | dprintf("ioctl failed %d\n", errno); |
336 | ret = -1; | |
337 | break; | |
338 | } | |
5832d1f2 | 339 | |
151f7749 JK |
340 | for (phys_addr = mem->start_addr, addr = mem->phys_offset; |
341 | phys_addr < mem->start_addr + mem->memory_size; | |
342 | phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
96c1606b | 343 | unsigned char *bitmap = (unsigned char *)d.dirty_bitmap; |
151f7749 | 344 | unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS; |
151f7749 | 345 | |
96c1606b | 346 | if (test_le_bit(nr, bitmap)) { |
151f7749 JK |
347 | cpu_physical_memory_set_dirty(addr); |
348 | } | |
349 | } | |
350 | start_addr = phys_addr; | |
5832d1f2 | 351 | } |
5832d1f2 | 352 | qemu_free(d.dirty_bitmap); |
151f7749 JK |
353 | |
354 | return ret; | |
5832d1f2 AL |
355 | } |
356 | ||
c227f099 | 357 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
358 | { |
359 | int ret = -ENOSYS; | |
360 | #ifdef KVM_CAP_COALESCED_MMIO | |
361 | KVMState *s = kvm_state; | |
362 | ||
363 | if (s->coalesced_mmio) { | |
364 | struct kvm_coalesced_mmio_zone zone; | |
365 | ||
366 | zone.addr = start; | |
367 | zone.size = size; | |
368 | ||
369 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
370 | } | |
371 | #endif | |
372 | ||
373 | return ret; | |
374 | } | |
375 | ||
c227f099 | 376 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
377 | { |
378 | int ret = -ENOSYS; | |
379 | #ifdef KVM_CAP_COALESCED_MMIO | |
380 | KVMState *s = kvm_state; | |
381 | ||
382 | if (s->coalesced_mmio) { | |
383 | struct kvm_coalesced_mmio_zone zone; | |
384 | ||
385 | zone.addr = start; | |
386 | zone.size = size; | |
387 | ||
388 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
389 | } | |
390 | #endif | |
391 | ||
392 | return ret; | |
393 | } | |
394 | ||
ad7b8b33 AL |
395 | int kvm_check_extension(KVMState *s, unsigned int extension) |
396 | { | |
397 | int ret; | |
398 | ||
399 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
400 | if (ret < 0) { | |
401 | ret = 0; | |
402 | } | |
403 | ||
404 | return ret; | |
405 | } | |
406 | ||
7b8f3b78 MT |
407 | static void kvm_set_phys_mem(target_phys_addr_t start_addr, |
408 | ram_addr_t size, | |
409 | ram_addr_t phys_offset) | |
46dbef6a MT |
410 | { |
411 | KVMState *s = kvm_state; | |
412 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
413 | KVMSlot *mem, old; | |
414 | int err; | |
415 | ||
416 | if (start_addr & ~TARGET_PAGE_MASK) { | |
417 | if (flags >= IO_MEM_UNASSIGNED) { | |
418 | if (!kvm_lookup_overlapping_slot(s, start_addr, | |
419 | start_addr + size)) { | |
420 | return; | |
421 | } | |
422 | fprintf(stderr, "Unaligned split of a KVM memory slot\n"); | |
423 | } else { | |
424 | fprintf(stderr, "Only page-aligned memory slots supported\n"); | |
425 | } | |
426 | abort(); | |
427 | } | |
428 | ||
429 | /* KVM does not support read-only slots */ | |
430 | phys_offset &= ~IO_MEM_ROM; | |
431 | ||
432 | while (1) { | |
433 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
434 | if (!mem) { | |
435 | break; | |
436 | } | |
437 | ||
438 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && | |
439 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
440 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
441 | /* The new slot fits into the existing one and comes with | |
442 | * identical parameters - nothing to be done. */ | |
443 | return; | |
444 | } | |
445 | ||
446 | old = *mem; | |
447 | ||
448 | /* unregister the overlapping slot */ | |
449 | mem->memory_size = 0; | |
450 | err = kvm_set_user_memory_region(s, mem); | |
451 | if (err) { | |
452 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
453 | __func__, strerror(-err)); | |
454 | abort(); | |
455 | } | |
456 | ||
457 | /* Workaround for older KVM versions: we can't join slots, even not by | |
458 | * unregistering the previous ones and then registering the larger | |
459 | * slot. We have to maintain the existing fragmentation. Sigh. | |
460 | * | |
461 | * This workaround assumes that the new slot starts at the same | |
462 | * address as the first existing one. If not or if some overlapping | |
463 | * slot comes around later, we will fail (not seen in practice so far) | |
464 | * - and actually require a recent KVM version. */ | |
465 | if (s->broken_set_mem_region && | |
466 | old.start_addr == start_addr && old.memory_size < size && | |
467 | flags < IO_MEM_UNASSIGNED) { | |
468 | mem = kvm_alloc_slot(s); | |
469 | mem->memory_size = old.memory_size; | |
470 | mem->start_addr = old.start_addr; | |
471 | mem->phys_offset = old.phys_offset; | |
472 | mem->flags = 0; | |
473 | ||
474 | err = kvm_set_user_memory_region(s, mem); | |
475 | if (err) { | |
476 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
477 | strerror(-err)); | |
478 | abort(); | |
479 | } | |
480 | ||
481 | start_addr += old.memory_size; | |
482 | phys_offset += old.memory_size; | |
483 | size -= old.memory_size; | |
484 | continue; | |
485 | } | |
486 | ||
487 | /* register prefix slot */ | |
488 | if (old.start_addr < start_addr) { | |
489 | mem = kvm_alloc_slot(s); | |
490 | mem->memory_size = start_addr - old.start_addr; | |
491 | mem->start_addr = old.start_addr; | |
492 | mem->phys_offset = old.phys_offset; | |
493 | mem->flags = 0; | |
494 | ||
495 | err = kvm_set_user_memory_region(s, mem); | |
496 | if (err) { | |
497 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
498 | __func__, strerror(-err)); | |
499 | abort(); | |
500 | } | |
501 | } | |
502 | ||
503 | /* register suffix slot */ | |
504 | if (old.start_addr + old.memory_size > start_addr + size) { | |
505 | ram_addr_t size_delta; | |
506 | ||
507 | mem = kvm_alloc_slot(s); | |
508 | mem->start_addr = start_addr + size; | |
509 | size_delta = mem->start_addr - old.start_addr; | |
510 | mem->memory_size = old.memory_size - size_delta; | |
511 | mem->phys_offset = old.phys_offset + size_delta; | |
512 | mem->flags = 0; | |
513 | ||
514 | err = kvm_set_user_memory_region(s, mem); | |
515 | if (err) { | |
516 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
517 | __func__, strerror(-err)); | |
518 | abort(); | |
519 | } | |
520 | } | |
521 | } | |
522 | ||
523 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
524 | if (!size) | |
525 | return; | |
526 | ||
527 | /* KVM does not need to know about this memory */ | |
528 | if (flags >= IO_MEM_UNASSIGNED) | |
529 | return; | |
530 | ||
531 | mem = kvm_alloc_slot(s); | |
532 | mem->memory_size = size; | |
533 | mem->start_addr = start_addr; | |
534 | mem->phys_offset = phys_offset; | |
535 | mem->flags = 0; | |
536 | ||
537 | err = kvm_set_user_memory_region(s, mem); | |
538 | if (err) { | |
539 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
540 | strerror(-err)); | |
541 | abort(); | |
542 | } | |
543 | } | |
544 | ||
7b8f3b78 MT |
545 | static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, |
546 | target_phys_addr_t start_addr, | |
547 | ram_addr_t size, | |
548 | ram_addr_t phys_offset) | |
549 | { | |
550 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
551 | } | |
552 | ||
553 | static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, | |
554 | target_phys_addr_t start_addr, | |
555 | target_phys_addr_t end_addr) | |
556 | { | |
557 | return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
558 | } | |
559 | ||
560 | static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, | |
561 | int enable) | |
562 | { | |
563 | return kvm_set_migration_log(enable); | |
564 | } | |
565 | ||
566 | static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { | |
567 | .set_memory = kvm_client_set_memory, | |
568 | .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, | |
569 | .migration_log = kvm_client_migration_log, | |
570 | }; | |
571 | ||
05330448 AL |
572 | int kvm_init(int smp_cpus) |
573 | { | |
168ccc11 JK |
574 | static const char upgrade_note[] = |
575 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
576 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 AL |
577 | KVMState *s; |
578 | int ret; | |
579 | int i; | |
580 | ||
9f8fd694 MM |
581 | if (smp_cpus > 1) { |
582 | fprintf(stderr, "No SMP KVM support, use '-smp 1'\n"); | |
05330448 | 583 | return -EINVAL; |
9f8fd694 | 584 | } |
05330448 AL |
585 | |
586 | s = qemu_mallocz(sizeof(KVMState)); | |
05330448 | 587 | |
e22a25c9 | 588 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 589 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 590 | #endif |
05330448 AL |
591 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
592 | s->slots[i].slot = i; | |
593 | ||
594 | s->vmfd = -1; | |
40ff6d7e | 595 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
596 | if (s->fd == -1) { |
597 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
598 | ret = -errno; | |
599 | goto err; | |
600 | } | |
601 | ||
602 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
603 | if (ret < KVM_API_VERSION) { | |
604 | if (ret > 0) | |
605 | ret = -EINVAL; | |
606 | fprintf(stderr, "kvm version too old\n"); | |
607 | goto err; | |
608 | } | |
609 | ||
610 | if (ret > KVM_API_VERSION) { | |
611 | ret = -EINVAL; | |
612 | fprintf(stderr, "kvm version not supported\n"); | |
613 | goto err; | |
614 | } | |
615 | ||
616 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
617 | if (s->vmfd < 0) | |
618 | goto err; | |
619 | ||
620 | /* initially, KVM allocated its own memory and we had to jump through | |
621 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
5579c7f3 | 622 | * just use a user allocated buffer so we can use regular pages |
05330448 AL |
623 | * unmodified. Make sure we have a sufficiently modern version of KVM. |
624 | */ | |
ad7b8b33 AL |
625 | if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { |
626 | ret = -EINVAL; | |
168ccc11 JK |
627 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", |
628 | upgrade_note); | |
05330448 AL |
629 | goto err; |
630 | } | |
631 | ||
d85dc283 AL |
632 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
633 | * destroyed properly. Since we rely on this capability, refuse to work | |
634 | * with any kernel without this capability. */ | |
ad7b8b33 AL |
635 | if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { |
636 | ret = -EINVAL; | |
d85dc283 AL |
637 | |
638 | fprintf(stderr, | |
168ccc11 JK |
639 | "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", |
640 | upgrade_note); | |
d85dc283 AL |
641 | goto err; |
642 | } | |
643 | ||
62a2744c | 644 | s->coalesced_mmio = 0; |
f65ed4c1 | 645 | #ifdef KVM_CAP_COALESCED_MMIO |
ad7b8b33 | 646 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
62a2744c | 647 | s->coalesced_mmio_ring = NULL; |
f65ed4c1 AL |
648 | #endif |
649 | ||
e69917e2 JK |
650 | s->broken_set_mem_region = 1; |
651 | #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS | |
652 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
653 | if (ret > 0) { | |
654 | s->broken_set_mem_region = 0; | |
655 | } | |
656 | #endif | |
657 | ||
a0fb002c JK |
658 | s->vcpu_events = 0; |
659 | #ifdef KVM_CAP_VCPU_EVENTS | |
660 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
661 | #endif | |
662 | ||
b0b1d690 JK |
663 | s->robust_singlestep = 0; |
664 | #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP | |
665 | s->robust_singlestep = | |
666 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
667 | #endif | |
668 | ||
05330448 AL |
669 | ret = kvm_arch_init(s, smp_cpus); |
670 | if (ret < 0) | |
671 | goto err; | |
672 | ||
673 | kvm_state = s; | |
7b8f3b78 | 674 | cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); |
05330448 AL |
675 | |
676 | return 0; | |
677 | ||
678 | err: | |
679 | if (s) { | |
680 | if (s->vmfd != -1) | |
681 | close(s->vmfd); | |
682 | if (s->fd != -1) | |
683 | close(s->fd); | |
684 | } | |
685 | qemu_free(s); | |
686 | ||
687 | return ret; | |
688 | } | |
689 | ||
afcea8cb BS |
690 | static int kvm_handle_io(uint16_t port, void *data, int direction, int size, |
691 | uint32_t count) | |
05330448 AL |
692 | { |
693 | int i; | |
694 | uint8_t *ptr = data; | |
695 | ||
696 | for (i = 0; i < count; i++) { | |
697 | if (direction == KVM_EXIT_IO_IN) { | |
698 | switch (size) { | |
699 | case 1: | |
afcea8cb | 700 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
701 | break; |
702 | case 2: | |
afcea8cb | 703 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
704 | break; |
705 | case 4: | |
afcea8cb | 706 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
707 | break; |
708 | } | |
709 | } else { | |
710 | switch (size) { | |
711 | case 1: | |
afcea8cb | 712 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
713 | break; |
714 | case 2: | |
afcea8cb | 715 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
716 | break; |
717 | case 4: | |
afcea8cb | 718 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
719 | break; |
720 | } | |
721 | } | |
722 | ||
723 | ptr += size; | |
724 | } | |
725 | ||
726 | return 1; | |
727 | } | |
728 | ||
62a2744c | 729 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 AL |
730 | { |
731 | #ifdef KVM_CAP_COALESCED_MMIO | |
732 | KVMState *s = kvm_state; | |
62a2744c SY |
733 | if (s->coalesced_mmio_ring) { |
734 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
735 | while (ring->first != ring->last) { |
736 | struct kvm_coalesced_mmio *ent; | |
737 | ||
738 | ent = &ring->coalesced_mmio[ring->first]; | |
739 | ||
740 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 741 | smp_wmb(); |
f65ed4c1 AL |
742 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
743 | } | |
744 | } | |
745 | #endif | |
746 | } | |
747 | ||
4c0960c0 AK |
748 | void kvm_cpu_synchronize_state(CPUState *env) |
749 | { | |
9ded2744 | 750 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 751 | kvm_arch_get_registers(env); |
9ded2744 | 752 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
753 | } |
754 | } | |
755 | ||
05330448 AL |
756 | int kvm_cpu_exec(CPUState *env) |
757 | { | |
758 | struct kvm_run *run = env->kvm_run; | |
759 | int ret; | |
760 | ||
761 | dprintf("kvm_cpu_exec()\n"); | |
762 | ||
763 | do { | |
6312b928 | 764 | #ifndef CONFIG_IOTHREAD |
be214e6c | 765 | if (env->exit_request) { |
05330448 AL |
766 | dprintf("interrupt exit requested\n"); |
767 | ret = 0; | |
768 | break; | |
769 | } | |
6312b928 | 770 | #endif |
05330448 | 771 | |
9ded2744 | 772 | if (env->kvm_vcpu_dirty) { |
4c0960c0 | 773 | kvm_arch_put_registers(env); |
9ded2744 | 774 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
775 | } |
776 | ||
8c14c173 | 777 | kvm_arch_pre_run(env, run); |
d549db5a | 778 | qemu_mutex_unlock_iothread(); |
05330448 | 779 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
d549db5a | 780 | qemu_mutex_lock_iothread(); |
05330448 AL |
781 | kvm_arch_post_run(env, run); |
782 | ||
783 | if (ret == -EINTR || ret == -EAGAIN) { | |
cc84de95 | 784 | cpu_exit(env); |
05330448 AL |
785 | dprintf("io window exit\n"); |
786 | ret = 0; | |
787 | break; | |
788 | } | |
789 | ||
790 | if (ret < 0) { | |
791 | dprintf("kvm run failed %s\n", strerror(-ret)); | |
792 | abort(); | |
793 | } | |
794 | ||
62a2744c | 795 | kvm_flush_coalesced_mmio_buffer(); |
f65ed4c1 | 796 | |
05330448 AL |
797 | ret = 0; /* exit loop */ |
798 | switch (run->exit_reason) { | |
799 | case KVM_EXIT_IO: | |
800 | dprintf("handle_io\n"); | |
afcea8cb | 801 | ret = kvm_handle_io(run->io.port, |
05330448 AL |
802 | (uint8_t *)run + run->io.data_offset, |
803 | run->io.direction, | |
804 | run->io.size, | |
805 | run->io.count); | |
806 | break; | |
807 | case KVM_EXIT_MMIO: | |
808 | dprintf("handle_mmio\n"); | |
809 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
810 | run->mmio.data, | |
811 | run->mmio.len, | |
812 | run->mmio.is_write); | |
813 | ret = 1; | |
814 | break; | |
815 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
816 | dprintf("irq_window_open\n"); | |
817 | break; | |
818 | case KVM_EXIT_SHUTDOWN: | |
819 | dprintf("shutdown\n"); | |
820 | qemu_system_reset_request(); | |
821 | ret = 1; | |
822 | break; | |
823 | case KVM_EXIT_UNKNOWN: | |
824 | dprintf("kvm_exit_unknown\n"); | |
825 | break; | |
826 | case KVM_EXIT_FAIL_ENTRY: | |
827 | dprintf("kvm_exit_fail_entry\n"); | |
828 | break; | |
829 | case KVM_EXIT_EXCEPTION: | |
830 | dprintf("kvm_exit_exception\n"); | |
831 | break; | |
832 | case KVM_EXIT_DEBUG: | |
833 | dprintf("kvm_exit_debug\n"); | |
e22a25c9 AL |
834 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
835 | if (kvm_arch_debug(&run->debug.arch)) { | |
836 | gdb_set_stop_cpu(env); | |
837 | vm_stop(EXCP_DEBUG); | |
838 | env->exception_index = EXCP_DEBUG; | |
839 | return 0; | |
840 | } | |
841 | /* re-enter, this exception was guest-internal */ | |
842 | ret = 1; | |
843 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
05330448 AL |
844 | break; |
845 | default: | |
846 | dprintf("kvm_arch_handle_exit\n"); | |
847 | ret = kvm_arch_handle_exit(env, run); | |
848 | break; | |
849 | } | |
850 | } while (ret > 0); | |
851 | ||
be214e6c AJ |
852 | if (env->exit_request) { |
853 | env->exit_request = 0; | |
becfc390 AL |
854 | env->exception_index = EXCP_INTERRUPT; |
855 | } | |
856 | ||
05330448 AL |
857 | return ret; |
858 | } | |
859 | ||
984b5181 | 860 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
861 | { |
862 | int ret; | |
984b5181 AL |
863 | void *arg; |
864 | va_list ap; | |
05330448 | 865 | |
984b5181 AL |
866 | va_start(ap, type); |
867 | arg = va_arg(ap, void *); | |
868 | va_end(ap); | |
869 | ||
870 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
871 | if (ret == -1) |
872 | ret = -errno; | |
873 | ||
874 | return ret; | |
875 | } | |
876 | ||
984b5181 | 877 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
878 | { |
879 | int ret; | |
984b5181 AL |
880 | void *arg; |
881 | va_list ap; | |
882 | ||
883 | va_start(ap, type); | |
884 | arg = va_arg(ap, void *); | |
885 | va_end(ap); | |
05330448 | 886 | |
984b5181 | 887 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
888 | if (ret == -1) |
889 | ret = -errno; | |
890 | ||
891 | return ret; | |
892 | } | |
893 | ||
984b5181 | 894 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
895 | { |
896 | int ret; | |
984b5181 AL |
897 | void *arg; |
898 | va_list ap; | |
899 | ||
900 | va_start(ap, type); | |
901 | arg = va_arg(ap, void *); | |
902 | va_end(ap); | |
05330448 | 903 | |
984b5181 | 904 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
905 | if (ret == -1) |
906 | ret = -errno; | |
907 | ||
908 | return ret; | |
909 | } | |
bd322087 AL |
910 | |
911 | int kvm_has_sync_mmu(void) | |
912 | { | |
a9c11522 | 913 | #ifdef KVM_CAP_SYNC_MMU |
bd322087 AL |
914 | KVMState *s = kvm_state; |
915 | ||
ad7b8b33 AL |
916 | return kvm_check_extension(s, KVM_CAP_SYNC_MMU); |
917 | #else | |
bd322087 | 918 | return 0; |
ad7b8b33 | 919 | #endif |
bd322087 | 920 | } |
e22a25c9 | 921 | |
a0fb002c JK |
922 | int kvm_has_vcpu_events(void) |
923 | { | |
924 | return kvm_state->vcpu_events; | |
925 | } | |
926 | ||
b0b1d690 JK |
927 | int kvm_has_robust_singlestep(void) |
928 | { | |
929 | return kvm_state->robust_singlestep; | |
930 | } | |
931 | ||
6f0437e8 JK |
932 | void kvm_setup_guest_memory(void *start, size_t size) |
933 | { | |
934 | if (!kvm_has_sync_mmu()) { | |
935 | #ifdef MADV_DONTFORK | |
936 | int ret = madvise(start, size, MADV_DONTFORK); | |
937 | ||
938 | if (ret) { | |
939 | perror("madvice"); | |
940 | exit(1); | |
941 | } | |
942 | #else | |
943 | fprintf(stderr, | |
944 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
945 | exit(1); | |
946 | #endif | |
947 | } | |
948 | } | |
949 | ||
e22a25c9 | 950 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
fc5d642f LC |
951 | static void on_vcpu(CPUState *env, void (*func)(void *data), void *data) |
952 | { | |
828566bc | 953 | #ifdef CONFIG_IOTHREAD |
a2eebe88 AS |
954 | if (env != cpu_single_env) { |
955 | abort(); | |
fc5d642f | 956 | } |
828566bc | 957 | #endif |
a2eebe88 | 958 | func(data); |
fc5d642f LC |
959 | } |
960 | ||
e22a25c9 AL |
961 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, |
962 | target_ulong pc) | |
963 | { | |
964 | struct kvm_sw_breakpoint *bp; | |
965 | ||
72cf2d4f | 966 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
e22a25c9 AL |
967 | if (bp->pc == pc) |
968 | return bp; | |
969 | } | |
970 | return NULL; | |
971 | } | |
972 | ||
973 | int kvm_sw_breakpoints_active(CPUState *env) | |
974 | { | |
72cf2d4f | 975 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
976 | } |
977 | ||
452e4751 GC |
978 | struct kvm_set_guest_debug_data { |
979 | struct kvm_guest_debug dbg; | |
980 | CPUState *env; | |
981 | int err; | |
982 | }; | |
983 | ||
984 | static void kvm_invoke_set_guest_debug(void *data) | |
985 | { | |
986 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 JK |
987 | CPUState *env = dbg_data->env; |
988 | ||
b3807725 | 989 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
452e4751 GC |
990 | } |
991 | ||
e22a25c9 AL |
992 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
993 | { | |
452e4751 | 994 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 995 | |
b0b1d690 | 996 | data.dbg.control = reinject_trap; |
e22a25c9 | 997 | |
b0b1d690 JK |
998 | if (env->singlestep_enabled) { |
999 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1000 | } | |
452e4751 | 1001 | kvm_arch_update_guest_debug(env, &data.dbg); |
452e4751 | 1002 | data.env = env; |
e22a25c9 | 1003 | |
452e4751 GC |
1004 | on_vcpu(env, kvm_invoke_set_guest_debug, &data); |
1005 | return data.err; | |
e22a25c9 AL |
1006 | } |
1007 | ||
1008 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1009 | target_ulong len, int type) | |
1010 | { | |
1011 | struct kvm_sw_breakpoint *bp; | |
1012 | CPUState *env; | |
1013 | int err; | |
1014 | ||
1015 | if (type == GDB_BREAKPOINT_SW) { | |
1016 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1017 | if (bp) { | |
1018 | bp->use_count++; | |
1019 | return 0; | |
1020 | } | |
1021 | ||
1022 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
1023 | if (!bp) | |
1024 | return -ENOMEM; | |
1025 | ||
1026 | bp->pc = addr; | |
1027 | bp->use_count = 1; | |
1028 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1029 | if (err) { | |
1030 | free(bp); | |
1031 | return err; | |
1032 | } | |
1033 | ||
72cf2d4f | 1034 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1035 | bp, entry); |
1036 | } else { | |
1037 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
1038 | if (err) | |
1039 | return err; | |
1040 | } | |
1041 | ||
1042 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1043 | err = kvm_update_guest_debug(env, 0); | |
1044 | if (err) | |
1045 | return err; | |
1046 | } | |
1047 | return 0; | |
1048 | } | |
1049 | ||
1050 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1051 | target_ulong len, int type) | |
1052 | { | |
1053 | struct kvm_sw_breakpoint *bp; | |
1054 | CPUState *env; | |
1055 | int err; | |
1056 | ||
1057 | if (type == GDB_BREAKPOINT_SW) { | |
1058 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1059 | if (!bp) | |
1060 | return -ENOENT; | |
1061 | ||
1062 | if (bp->use_count > 1) { | |
1063 | bp->use_count--; | |
1064 | return 0; | |
1065 | } | |
1066 | ||
1067 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1068 | if (err) | |
1069 | return err; | |
1070 | ||
72cf2d4f | 1071 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
1072 | qemu_free(bp); |
1073 | } else { | |
1074 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1075 | if (err) | |
1076 | return err; | |
1077 | } | |
1078 | ||
1079 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1080 | err = kvm_update_guest_debug(env, 0); | |
1081 | if (err) | |
1082 | return err; | |
1083 | } | |
1084 | return 0; | |
1085 | } | |
1086 | ||
1087 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1088 | { | |
1089 | struct kvm_sw_breakpoint *bp, *next; | |
1090 | KVMState *s = current_env->kvm_state; | |
1091 | CPUState *env; | |
1092 | ||
72cf2d4f | 1093 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1094 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1095 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1096 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1097 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | |
1098 | break; | |
1099 | } | |
1100 | } | |
1101 | } | |
1102 | kvm_arch_remove_all_hw_breakpoints(); | |
1103 | ||
1104 | for (env = first_cpu; env != NULL; env = env->next_cpu) | |
1105 | kvm_update_guest_debug(env, 0); | |
1106 | } | |
1107 | ||
1108 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1109 | ||
1110 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1111 | { | |
1112 | return -EINVAL; | |
1113 | } | |
1114 | ||
1115 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1116 | target_ulong len, int type) | |
1117 | { | |
1118 | return -EINVAL; | |
1119 | } | |
1120 | ||
1121 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1122 | target_ulong len, int type) | |
1123 | { | |
1124 | return -EINVAL; | |
1125 | } | |
1126 | ||
1127 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1128 | { | |
1129 | } | |
1130 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 MT |
1131 | |
1132 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) | |
1133 | { | |
1134 | struct kvm_signal_mask *sigmask; | |
1135 | int r; | |
1136 | ||
1137 | if (!sigset) | |
1138 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); | |
1139 | ||
1140 | sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
1141 | ||
1142 | sigmask->len = 8; | |
1143 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1144 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
1145 | free(sigmask); | |
1146 | ||
1147 | return r; | |
1148 | } |