]>
Commit | Line | Data |
---|---|---|
ed3baad1 PMD |
1 | /* |
2 | * ARM generic helpers. | |
3 | * | |
4 | * This code is licensed under the GNU GPL v2 or later. | |
5 | * | |
6 | * SPDX-License-Identifier: GPL-2.0-or-later | |
7 | */ | |
db725815 | 8 | |
74c21bd0 | 9 | #include "qemu/osdep.h" |
63159601 | 10 | #include "qemu/units.h" |
181962fd | 11 | #include "target/arm/idau.h" |
194cbc49 | 12 | #include "trace.h" |
b5ff1b31 | 13 | #include "cpu.h" |
ccd38087 | 14 | #include "internals.h" |
022c62cb | 15 | #include "exec/gdbstub.h" |
2ef6175a | 16 | #include "exec/helper-proto.h" |
1de7afc9 | 17 | #include "qemu/host-utils.h" |
db725815 | 18 | #include "qemu/main-loop.h" |
1de7afc9 | 19 | #include "qemu/bitops.h" |
eb0ecd5a | 20 | #include "qemu/crc32c.h" |
0442428a | 21 | #include "qemu/qemu-print.h" |
63c91552 | 22 | #include "exec/exec-all.h" |
eb0ecd5a | 23 | #include <zlib.h> /* For crc32 */ |
64552b6b | 24 | #include "hw/irq.h" |
f1672e6f | 25 | #include "hw/semihosting/semihost.h" |
b2e23725 | 26 | #include "sysemu/cpus.h" |
f3a9b694 | 27 | #include "sysemu/kvm.h" |
2a609df8 | 28 | #include "sysemu/tcg.h" |
9d2b5a58 | 29 | #include "qemu/range.h" |
7f7b4e7a | 30 | #include "qapi/qapi-commands-machine-target.h" |
de390645 RH |
31 | #include "qapi/error.h" |
32 | #include "qemu/guest-random.h" | |
91f78c58 PMD |
33 | #ifdef CONFIG_TCG |
34 | #include "arm_ldst.h" | |
7aab5a8c | 35 | #include "exec/cpu_ldst.h" |
91f78c58 | 36 | #endif |
0b03bdfc | 37 | |
352c98e5 LV |
38 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
39 | ||
4a501606 | 40 | #ifndef CONFIG_USER_ONLY |
7c2cb42b | 41 | |
37785977 | 42 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
03ae85f8 | 43 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
37785977 | 44 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
da909b2c | 45 | target_ulong *page_size_ptr, |
5b2d261d | 46 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); |
4a501606 PM |
47 | #endif |
48 | ||
affdb64d PM |
49 | static void switch_mode(CPUARMState *env, int mode); |
50 | ||
a010bdbe | 51 | static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) |
56aebc89 | 52 | { |
a6627f5f RH |
53 | ARMCPU *cpu = env_archcpu(env); |
54 | int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; | |
56aebc89 PB |
55 | |
56 | /* VFP data registers are always little-endian. */ | |
56aebc89 | 57 | if (reg < nregs) { |
a010bdbe | 58 | return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); |
56aebc89 PB |
59 | } |
60 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
61 | /* Aliases for Q regs. */ | |
62 | nregs += 16; | |
63 | if (reg < nregs) { | |
9a2b5256 | 64 | uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
a010bdbe | 65 | return gdb_get_reg128(buf, q[0], q[1]); |
56aebc89 PB |
66 | } |
67 | } | |
68 | switch (reg - nregs) { | |
a010bdbe AB |
69 | case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; |
70 | case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; | |
71 | case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; | |
56aebc89 PB |
72 | } |
73 | return 0; | |
74 | } | |
75 | ||
0ecb72a5 | 76 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 | 77 | { |
a6627f5f RH |
78 | ARMCPU *cpu = env_archcpu(env); |
79 | int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; | |
56aebc89 | 80 | |
56aebc89 | 81 | if (reg < nregs) { |
9a2b5256 | 82 | *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); |
56aebc89 PB |
83 | return 8; |
84 | } | |
85 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
86 | nregs += 16; | |
87 | if (reg < nregs) { | |
9a2b5256 RH |
88 | uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
89 | q[0] = ldq_le_p(buf); | |
90 | q[1] = ldq_le_p(buf + 8); | |
56aebc89 PB |
91 | return 16; |
92 | } | |
93 | } | |
94 | switch (reg - nregs) { | |
95 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
b0a909a4 | 96 | case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; |
71b3c3de | 97 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
98 | } |
99 | return 0; | |
100 | } | |
101 | ||
a010bdbe | 102 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) |
6a669427 PM |
103 | { |
104 | switch (reg) { | |
105 | case 0 ... 31: | |
8b1ca58c AB |
106 | { |
107 | /* 128 bit FP register - quads are in LE order */ | |
108 | uint64_t *q = aa64_vfp_qreg(env, reg); | |
109 | return gdb_get_reg128(buf, q[1], q[0]); | |
110 | } | |
6a669427 PM |
111 | case 32: |
112 | /* FPSR */ | |
8b1ca58c | 113 | return gdb_get_reg32(buf, vfp_get_fpsr(env)); |
6a669427 PM |
114 | case 33: |
115 | /* FPCR */ | |
8b1ca58c | 116 | return gdb_get_reg32(buf,vfp_get_fpcr(env)); |
6a669427 PM |
117 | default: |
118 | return 0; | |
119 | } | |
120 | } | |
121 | ||
122 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
123 | { | |
124 | switch (reg) { | |
125 | case 0 ... 31: | |
126 | /* 128 bit FP register */ | |
9a2b5256 RH |
127 | { |
128 | uint64_t *q = aa64_vfp_qreg(env, reg); | |
129 | q[0] = ldq_le_p(buf); | |
130 | q[1] = ldq_le_p(buf + 8); | |
131 | return 16; | |
132 | } | |
6a669427 PM |
133 | case 32: |
134 | /* FPSR */ | |
135 | vfp_set_fpsr(env, ldl_p(buf)); | |
136 | return 4; | |
137 | case 33: | |
138 | /* FPCR */ | |
139 | vfp_set_fpcr(env, ldl_p(buf)); | |
140 | return 4; | |
141 | default: | |
142 | return 0; | |
143 | } | |
144 | } | |
145 | ||
c4241c7d | 146 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 147 | { |
375421cc | 148 | assert(ri->fieldoffset); |
67ed771d | 149 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 150 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 151 | } else { |
c4241c7d | 152 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 153 | } |
d4e6df63 PM |
154 | } |
155 | ||
c4241c7d PM |
156 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
157 | uint64_t value) | |
d4e6df63 | 158 | { |
375421cc | 159 | assert(ri->fieldoffset); |
67ed771d | 160 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
161 | CPREG_FIELD64(env, ri) = value; |
162 | } else { | |
163 | CPREG_FIELD32(env, ri) = value; | |
164 | } | |
d4e6df63 PM |
165 | } |
166 | ||
11f136ee FA |
167 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
168 | { | |
169 | return (char *)env + ri->fieldoffset; | |
170 | } | |
171 | ||
49a66191 | 172 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 173 | { |
59a1c327 | 174 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 175 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 176 | return ri->resetvalue; |
721fae12 | 177 | } else if (ri->raw_readfn) { |
59a1c327 | 178 | return ri->raw_readfn(env, ri); |
721fae12 | 179 | } else if (ri->readfn) { |
59a1c327 | 180 | return ri->readfn(env, ri); |
721fae12 | 181 | } else { |
59a1c327 | 182 | return raw_read(env, ri); |
721fae12 | 183 | } |
721fae12 PM |
184 | } |
185 | ||
59a1c327 | 186 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 187 | uint64_t v) |
721fae12 PM |
188 | { |
189 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
190 | * Note that constant registers are treated as write-ignored; the |
191 | * caller should check for success by whether a readback gives the | |
192 | * value written. | |
193 | */ | |
194 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 195 | return; |
721fae12 | 196 | } else if (ri->raw_writefn) { |
c4241c7d | 197 | ri->raw_writefn(env, ri, v); |
721fae12 | 198 | } else if (ri->writefn) { |
c4241c7d | 199 | ri->writefn(env, ri, v); |
721fae12 | 200 | } else { |
afb2530f | 201 | raw_write(env, ri, v); |
721fae12 | 202 | } |
721fae12 PM |
203 | } |
204 | ||
d12379c5 AB |
205 | /** |
206 | * arm_get/set_gdb_*: get/set a gdb register | |
207 | * @env: the CPU state | |
208 | * @buf: a buffer to copy to/from | |
209 | * @reg: register number (offset from start of group) | |
210 | * | |
211 | * We return the number of bytes copied | |
212 | */ | |
213 | ||
a010bdbe | 214 | static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) |
200bf5b7 | 215 | { |
2fc0cc0e | 216 | ARMCPU *cpu = env_archcpu(env); |
200bf5b7 AB |
217 | const ARMCPRegInfo *ri; |
218 | uint32_t key; | |
219 | ||
448d4d14 | 220 | key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; |
200bf5b7 AB |
221 | ri = get_arm_cp_reginfo(cpu->cp_regs, key); |
222 | if (ri) { | |
223 | if (cpreg_field_is_64bit(ri)) { | |
224 | return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); | |
225 | } else { | |
226 | return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); | |
227 | } | |
228 | } | |
229 | return 0; | |
230 | } | |
231 | ||
232 | static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) | |
233 | { | |
234 | return 0; | |
235 | } | |
236 | ||
d12379c5 AB |
237 | #ifdef TARGET_AARCH64 |
238 | static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) | |
239 | { | |
240 | ARMCPU *cpu = env_archcpu(env); | |
241 | ||
242 | switch (reg) { | |
243 | /* The first 32 registers are the zregs */ | |
244 | case 0 ... 31: | |
245 | { | |
246 | int vq, len = 0; | |
247 | for (vq = 0; vq < cpu->sve_max_vq; vq++) { | |
248 | len += gdb_get_reg128(buf, | |
249 | env->vfp.zregs[reg].d[vq * 2 + 1], | |
250 | env->vfp.zregs[reg].d[vq * 2]); | |
251 | } | |
252 | return len; | |
253 | } | |
254 | case 32: | |
255 | return gdb_get_reg32(buf, vfp_get_fpsr(env)); | |
256 | case 33: | |
257 | return gdb_get_reg32(buf, vfp_get_fpcr(env)); | |
258 | /* then 16 predicates and the ffr */ | |
259 | case 34 ... 50: | |
260 | { | |
261 | int preg = reg - 34; | |
262 | int vq, len = 0; | |
263 | for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { | |
264 | len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); | |
265 | } | |
266 | return len; | |
267 | } | |
268 | case 51: | |
269 | { | |
270 | /* | |
271 | * We report in Vector Granules (VG) which is 64bit in a Z reg | |
272 | * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. | |
273 | */ | |
274 | int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; | |
275 | return gdb_get_reg32(buf, vq * 2); | |
276 | } | |
277 | default: | |
278 | /* gdbstub asked for something out our range */ | |
279 | qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); | |
280 | break; | |
281 | } | |
282 | ||
283 | return 0; | |
284 | } | |
285 | ||
286 | static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) | |
287 | { | |
288 | ARMCPU *cpu = env_archcpu(env); | |
289 | ||
290 | /* The first 32 registers are the zregs */ | |
291 | switch (reg) { | |
292 | /* The first 32 registers are the zregs */ | |
293 | case 0 ... 31: | |
294 | { | |
295 | int vq, len = 0; | |
296 | uint64_t *p = (uint64_t *) buf; | |
297 | for (vq = 0; vq < cpu->sve_max_vq; vq++) { | |
298 | env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; | |
299 | env->vfp.zregs[reg].d[vq * 2] = *p++; | |
300 | len += 16; | |
301 | } | |
302 | return len; | |
303 | } | |
304 | case 32: | |
305 | vfp_set_fpsr(env, *(uint32_t *)buf); | |
306 | return 4; | |
307 | case 33: | |
308 | vfp_set_fpcr(env, *(uint32_t *)buf); | |
309 | return 4; | |
310 | case 34 ... 50: | |
311 | { | |
312 | int preg = reg - 34; | |
313 | int vq, len = 0; | |
314 | uint64_t *p = (uint64_t *) buf; | |
315 | for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { | |
316 | env->vfp.pregs[preg].p[vq / 4] = *p++; | |
317 | len += 8; | |
318 | } | |
319 | return len; | |
320 | } | |
321 | case 51: | |
322 | /* cannot set vg via gdbstub */ | |
323 | return 0; | |
324 | default: | |
325 | /* gdbstub asked for something out our range */ | |
326 | break; | |
327 | } | |
328 | ||
329 | return 0; | |
330 | } | |
331 | #endif /* TARGET_AARCH64 */ | |
332 | ||
375421cc PM |
333 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
334 | { | |
335 | /* Return true if the regdef would cause an assertion if you called | |
336 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
337 | * program bug for it not to have the NO_RAW flag). | |
338 | * NB that returning false here doesn't necessarily mean that calling | |
339 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
340 | * read/write access functions which are safe for raw use" from "has | |
341 | * read/write access functions which have side effects but has forgotten | |
342 | * to provide raw access functions". | |
343 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
344 | * and assertions in raw_read()/raw_write(). | |
345 | */ | |
346 | if ((ri->type & ARM_CP_CONST) || | |
347 | ri->fieldoffset || | |
348 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
349 | return false; | |
350 | } | |
351 | return true; | |
352 | } | |
353 | ||
b698e4ee | 354 | bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) |
721fae12 PM |
355 | { |
356 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
357 | int i; | |
358 | bool ok = true; | |
359 | ||
360 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
361 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
362 | const ARMCPRegInfo *ri; | |
b698e4ee | 363 | uint64_t newval; |
59a1c327 | 364 | |
60322b39 | 365 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
366 | if (!ri) { |
367 | ok = false; | |
368 | continue; | |
369 | } | |
7a0e58fa | 370 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
371 | continue; |
372 | } | |
b698e4ee PM |
373 | |
374 | newval = read_raw_cp_reg(&cpu->env, ri); | |
375 | if (kvm_sync) { | |
376 | /* | |
377 | * Only sync if the previous list->cpustate sync succeeded. | |
378 | * Rather than tracking the success/failure state for every | |
379 | * item in the list, we just recheck "does the raw write we must | |
380 | * have made in write_list_to_cpustate() read back OK" here. | |
381 | */ | |
382 | uint64_t oldval = cpu->cpreg_values[i]; | |
383 | ||
384 | if (oldval == newval) { | |
385 | continue; | |
386 | } | |
387 | ||
388 | write_raw_cp_reg(&cpu->env, ri, oldval); | |
389 | if (read_raw_cp_reg(&cpu->env, ri) != oldval) { | |
390 | continue; | |
391 | } | |
392 | ||
393 | write_raw_cp_reg(&cpu->env, ri, newval); | |
394 | } | |
395 | cpu->cpreg_values[i] = newval; | |
721fae12 PM |
396 | } |
397 | return ok; | |
398 | } | |
399 | ||
400 | bool write_list_to_cpustate(ARMCPU *cpu) | |
401 | { | |
402 | int i; | |
403 | bool ok = true; | |
404 | ||
405 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
406 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
407 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
408 | const ARMCPRegInfo *ri; |
409 | ||
60322b39 | 410 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
411 | if (!ri) { |
412 | ok = false; | |
413 | continue; | |
414 | } | |
7a0e58fa | 415 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
416 | continue; |
417 | } | |
418 | /* Write value and confirm it reads back as written | |
419 | * (to catch read-only registers and partially read-only | |
420 | * registers where the incoming migration value doesn't match) | |
421 | */ | |
59a1c327 PM |
422 | write_raw_cp_reg(&cpu->env, ri, v); |
423 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
424 | ok = false; |
425 | } | |
426 | } | |
427 | return ok; | |
428 | } | |
429 | ||
430 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
431 | { | |
432 | ARMCPU *cpu = opaque; | |
433 | uint64_t regidx; | |
434 | const ARMCPRegInfo *ri; | |
435 | ||
436 | regidx = *(uint32_t *)key; | |
60322b39 | 437 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 438 | |
7a0e58fa | 439 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
440 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
441 | /* The value array need not be initialized at this point */ | |
442 | cpu->cpreg_array_len++; | |
443 | } | |
444 | } | |
445 | ||
446 | static void count_cpreg(gpointer key, gpointer opaque) | |
447 | { | |
448 | ARMCPU *cpu = opaque; | |
449 | uint64_t regidx; | |
450 | const ARMCPRegInfo *ri; | |
451 | ||
452 | regidx = *(uint32_t *)key; | |
60322b39 | 453 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 454 | |
7a0e58fa | 455 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
456 | cpu->cpreg_array_len++; |
457 | } | |
458 | } | |
459 | ||
460 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
461 | { | |
cbf239b7 AR |
462 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
463 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 464 | |
cbf239b7 AR |
465 | if (aidx > bidx) { |
466 | return 1; | |
467 | } | |
468 | if (aidx < bidx) { | |
469 | return -1; | |
470 | } | |
471 | return 0; | |
721fae12 PM |
472 | } |
473 | ||
474 | void init_cpreg_list(ARMCPU *cpu) | |
475 | { | |
476 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
477 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
478 | */ | |
57b6d95e | 479 | GList *keys; |
721fae12 PM |
480 | int arraylen; |
481 | ||
57b6d95e | 482 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
483 | keys = g_list_sort(keys, cpreg_key_compare); |
484 | ||
485 | cpu->cpreg_array_len = 0; | |
486 | ||
487 | g_list_foreach(keys, count_cpreg, cpu); | |
488 | ||
489 | arraylen = cpu->cpreg_array_len; | |
490 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
491 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
492 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
493 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
494 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
495 | cpu->cpreg_array_len = 0; | |
496 | ||
497 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
498 | ||
499 | assert(cpu->cpreg_array_len == arraylen); | |
500 | ||
501 | g_list_free(keys); | |
502 | } | |
503 | ||
68e9c2fe EI |
504 | /* |
505 | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but | |
506 | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. | |
507 | * | |
508 | * access_el3_aa32ns: Used to check AArch32 register views. | |
509 | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. | |
510 | */ | |
511 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
3f208fd7 PM |
512 | const ARMCPRegInfo *ri, |
513 | bool isread) | |
68e9c2fe EI |
514 | { |
515 | bool secure = arm_is_secure_below_el3(env); | |
516 | ||
517 | assert(!arm_el_is_aa64(env, 3)); | |
518 | if (secure) { | |
519 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
520 | } | |
521 | return CP_ACCESS_OK; | |
522 | } | |
523 | ||
524 | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, | |
3f208fd7 PM |
525 | const ARMCPRegInfo *ri, |
526 | bool isread) | |
68e9c2fe EI |
527 | { |
528 | if (!arm_el_is_aa64(env, 3)) { | |
3f208fd7 | 529 | return access_el3_aa32ns(env, ri, isread); |
68e9c2fe EI |
530 | } |
531 | return CP_ACCESS_OK; | |
532 | } | |
533 | ||
5513c3ab PM |
534 | /* Some secure-only AArch32 registers trap to EL3 if used from |
535 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). | |
536 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. | |
537 | * We assume that the .access field is set to PL1_RW. | |
538 | */ | |
539 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, | |
3f208fd7 PM |
540 | const ARMCPRegInfo *ri, |
541 | bool isread) | |
5513c3ab PM |
542 | { |
543 | if (arm_current_el(env) == 3) { | |
544 | return CP_ACCESS_OK; | |
545 | } | |
546 | if (arm_is_secure_below_el3(env)) { | |
547 | return CP_ACCESS_TRAP_EL3; | |
548 | } | |
549 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ | |
550 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
551 | } | |
552 | ||
187f678d PM |
553 | /* Check for traps to "powerdown debug" registers, which are controlled |
554 | * by MDCR.TDOSA | |
555 | */ | |
556 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, | |
557 | bool isread) | |
558 | { | |
559 | int el = arm_current_el(env); | |
30ac6339 PM |
560 | bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || |
561 | (env->cp15.mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 562 | (arm_hcr_el2_eff(env) & HCR_TGE); |
187f678d | 563 | |
30ac6339 | 564 | if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { |
187f678d PM |
565 | return CP_ACCESS_TRAP_EL2; |
566 | } | |
567 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { | |
568 | return CP_ACCESS_TRAP_EL3; | |
569 | } | |
570 | return CP_ACCESS_OK; | |
571 | } | |
572 | ||
91b0a238 PM |
573 | /* Check for traps to "debug ROM" registers, which are controlled |
574 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. | |
575 | */ | |
576 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, | |
577 | bool isread) | |
578 | { | |
579 | int el = arm_current_el(env); | |
30ac6339 PM |
580 | bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || |
581 | (env->cp15.mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 582 | (arm_hcr_el2_eff(env) & HCR_TGE); |
91b0a238 | 583 | |
30ac6339 | 584 | if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { |
91b0a238 PM |
585 | return CP_ACCESS_TRAP_EL2; |
586 | } | |
587 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
588 | return CP_ACCESS_TRAP_EL3; | |
589 | } | |
590 | return CP_ACCESS_OK; | |
591 | } | |
592 | ||
d6c8cf81 PM |
593 | /* Check for traps to general debug registers, which are controlled |
594 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. | |
595 | */ | |
596 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, | |
597 | bool isread) | |
598 | { | |
599 | int el = arm_current_el(env); | |
30ac6339 PM |
600 | bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || |
601 | (env->cp15.mdcr_el2 & MDCR_TDE) || | |
7c208e0f | 602 | (arm_hcr_el2_eff(env) & HCR_TGE); |
d6c8cf81 | 603 | |
30ac6339 | 604 | if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { |
d6c8cf81 PM |
605 | return CP_ACCESS_TRAP_EL2; |
606 | } | |
607 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
608 | return CP_ACCESS_TRAP_EL3; | |
609 | } | |
610 | return CP_ACCESS_OK; | |
611 | } | |
612 | ||
1fce1ba9 PM |
613 | /* Check for traps to performance monitor registers, which are controlled |
614 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. | |
615 | */ | |
616 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, | |
617 | bool isread) | |
618 | { | |
619 | int el = arm_current_el(env); | |
620 | ||
621 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) | |
622 | && !arm_is_secure_below_el3(env)) { | |
623 | return CP_ACCESS_TRAP_EL2; | |
624 | } | |
625 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
626 | return CP_ACCESS_TRAP_EL3; | |
627 | } | |
628 | return CP_ACCESS_OK; | |
629 | } | |
630 | ||
84929218 RH |
631 | /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ |
632 | static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, | |
633 | bool isread) | |
634 | { | |
635 | if (arm_current_el(env) == 1) { | |
636 | uint64_t trap = isread ? HCR_TRVM : HCR_TVM; | |
637 | if (arm_hcr_el2_eff(env) & trap) { | |
638 | return CP_ACCESS_TRAP_EL2; | |
639 | } | |
640 | } | |
641 | return CP_ACCESS_OK; | |
642 | } | |
643 | ||
1803d271 RH |
644 | /* Check for traps from EL1 due to HCR_EL2.TSW. */ |
645 | static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, | |
646 | bool isread) | |
647 | { | |
648 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { | |
649 | return CP_ACCESS_TRAP_EL2; | |
650 | } | |
651 | return CP_ACCESS_OK; | |
652 | } | |
653 | ||
99602377 RH |
654 | /* Check for traps from EL1 due to HCR_EL2.TACR. */ |
655 | static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, | |
656 | bool isread) | |
657 | { | |
658 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { | |
659 | return CP_ACCESS_TRAP_EL2; | |
660 | } | |
661 | return CP_ACCESS_OK; | |
662 | } | |
663 | ||
30881b73 RH |
664 | /* Check for traps from EL1 due to HCR_EL2.TTLB. */ |
665 | static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, | |
666 | bool isread) | |
667 | { | |
668 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { | |
669 | return CP_ACCESS_TRAP_EL2; | |
670 | } | |
671 | return CP_ACCESS_OK; | |
672 | } | |
673 | ||
c4241c7d | 674 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 675 | { |
2fc0cc0e | 676 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 677 | |
8d5c773e | 678 | raw_write(env, ri, value); |
d10eb08f | 679 | tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
680 | } |
681 | ||
c4241c7d | 682 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 683 | { |
2fc0cc0e | 684 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 685 | |
8d5c773e | 686 | if (raw_read(env, ri) != value) { |
08de207b PM |
687 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
688 | * not modified virtual addresses, so this causes a TLB flush. | |
689 | */ | |
d10eb08f | 690 | tlb_flush(CPU(cpu)); |
8d5c773e | 691 | raw_write(env, ri, value); |
08de207b | 692 | } |
08de207b | 693 | } |
c4241c7d PM |
694 | |
695 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
696 | uint64_t value) | |
08de207b | 697 | { |
2fc0cc0e | 698 | ARMCPU *cpu = env_archcpu(env); |
00c8cb0a | 699 | |
452a0955 | 700 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) |
014406b5 | 701 | && !extended_addresses_enabled(env)) { |
08de207b PM |
702 | /* For VMSA (when not using the LPAE long descriptor page table |
703 | * format) this register includes the ASID, so do a TLB flush. | |
704 | * For PMSA it is purely a process ID and no action is needed. | |
705 | */ | |
d10eb08f | 706 | tlb_flush(CPU(cpu)); |
08de207b | 707 | } |
8d5c773e | 708 | raw_write(env, ri, value); |
08de207b PM |
709 | } |
710 | ||
b4ab8ce9 PM |
711 | /* IS variants of TLB operations must affect all cores */ |
712 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
713 | uint64_t value) | |
714 | { | |
29a0af61 | 715 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
716 | |
717 | tlb_flush_all_cpus_synced(cs); | |
718 | } | |
719 | ||
720 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
721 | uint64_t value) | |
722 | { | |
29a0af61 | 723 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
724 | |
725 | tlb_flush_all_cpus_synced(cs); | |
726 | } | |
727 | ||
728 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
729 | uint64_t value) | |
730 | { | |
29a0af61 | 731 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
732 | |
733 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); | |
734 | } | |
735 | ||
736 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
737 | uint64_t value) | |
738 | { | |
29a0af61 | 739 | CPUState *cs = env_cpu(env); |
b4ab8ce9 PM |
740 | |
741 | tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); | |
742 | } | |
743 | ||
744 | /* | |
745 | * Non-IS variants of TLB operations are upgraded to | |
746 | * IS versions if we are at NS EL1 and HCR_EL2.FB is set to | |
747 | * force broadcast of these operations. | |
748 | */ | |
749 | static bool tlb_force_broadcast(CPUARMState *env) | |
750 | { | |
751 | return (env->cp15.hcr_el2 & HCR_FB) && | |
752 | arm_current_el(env) == 1 && arm_is_secure_below_el3(env); | |
753 | } | |
754 | ||
c4241c7d PM |
755 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
756 | uint64_t value) | |
d929823f PM |
757 | { |
758 | /* Invalidate all (TLBIALL) */ | |
527db2be | 759 | CPUState *cs = env_cpu(env); |
00c8cb0a | 760 | |
b4ab8ce9 | 761 | if (tlb_force_broadcast(env)) { |
527db2be RH |
762 | tlb_flush_all_cpus_synced(cs); |
763 | } else { | |
764 | tlb_flush(cs); | |
b4ab8ce9 | 765 | } |
d929823f PM |
766 | } |
767 | ||
c4241c7d PM |
768 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
769 | uint64_t value) | |
d929823f PM |
770 | { |
771 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
527db2be | 772 | CPUState *cs = env_cpu(env); |
31b030d4 | 773 | |
527db2be | 774 | value &= TARGET_PAGE_MASK; |
b4ab8ce9 | 775 | if (tlb_force_broadcast(env)) { |
527db2be RH |
776 | tlb_flush_page_all_cpus_synced(cs, value); |
777 | } else { | |
778 | tlb_flush_page(cs, value); | |
b4ab8ce9 | 779 | } |
d929823f PM |
780 | } |
781 | ||
c4241c7d PM |
782 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
783 | uint64_t value) | |
d929823f PM |
784 | { |
785 | /* Invalidate by ASID (TLBIASID) */ | |
527db2be | 786 | CPUState *cs = env_cpu(env); |
00c8cb0a | 787 | |
b4ab8ce9 | 788 | if (tlb_force_broadcast(env)) { |
527db2be RH |
789 | tlb_flush_all_cpus_synced(cs); |
790 | } else { | |
791 | tlb_flush(cs); | |
b4ab8ce9 | 792 | } |
d929823f PM |
793 | } |
794 | ||
c4241c7d PM |
795 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
796 | uint64_t value) | |
d929823f PM |
797 | { |
798 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
527db2be | 799 | CPUState *cs = env_cpu(env); |
31b030d4 | 800 | |
527db2be | 801 | value &= TARGET_PAGE_MASK; |
b4ab8ce9 | 802 | if (tlb_force_broadcast(env)) { |
527db2be RH |
803 | tlb_flush_page_all_cpus_synced(cs, value); |
804 | } else { | |
805 | tlb_flush_page(cs, value); | |
b4ab8ce9 | 806 | } |
fa439fc5 PM |
807 | } |
808 | ||
541ef8c2 SS |
809 | static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
810 | uint64_t value) | |
811 | { | |
29a0af61 | 812 | CPUState *cs = env_cpu(env); |
541ef8c2 | 813 | |
0336cbf8 | 814 | tlb_flush_by_mmuidx(cs, |
01b98b68 | 815 | ARMMMUIdxBit_E10_1 | |
452ef8cb | 816 | ARMMMUIdxBit_E10_1_PAN | |
01b98b68 | 817 | ARMMMUIdxBit_E10_0 | |
97fa9350 | 818 | ARMMMUIdxBit_Stage2); |
541ef8c2 SS |
819 | } |
820 | ||
821 | static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
822 | uint64_t value) | |
823 | { | |
29a0af61 | 824 | CPUState *cs = env_cpu(env); |
541ef8c2 | 825 | |
a67cf277 | 826 | tlb_flush_by_mmuidx_all_cpus_synced(cs, |
01b98b68 | 827 | ARMMMUIdxBit_E10_1 | |
452ef8cb | 828 | ARMMMUIdxBit_E10_1_PAN | |
01b98b68 | 829 | ARMMMUIdxBit_E10_0 | |
97fa9350 | 830 | ARMMMUIdxBit_Stage2); |
541ef8c2 SS |
831 | } |
832 | ||
833 | static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
834 | uint64_t value) | |
835 | { | |
836 | /* Invalidate by IPA. This has to invalidate any structures that | |
837 | * contain only stage 2 translation information, but does not need | |
838 | * to apply to structures that contain combined stage 1 and stage 2 | |
839 | * translation information. | |
840 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
841 | */ | |
29a0af61 | 842 | CPUState *cs = env_cpu(env); |
541ef8c2 SS |
843 | uint64_t pageaddr; |
844 | ||
845 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
846 | return; | |
847 | } | |
848 | ||
849 | pageaddr = sextract64(value << 12, 0, 40); | |
850 | ||
97fa9350 | 851 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); |
541ef8c2 SS |
852 | } |
853 | ||
854 | static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
855 | uint64_t value) | |
856 | { | |
29a0af61 | 857 | CPUState *cs = env_cpu(env); |
541ef8c2 SS |
858 | uint64_t pageaddr; |
859 | ||
860 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
861 | return; | |
862 | } | |
863 | ||
864 | pageaddr = sextract64(value << 12, 0, 40); | |
865 | ||
a67cf277 | 866 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
97fa9350 | 867 | ARMMMUIdxBit_Stage2); |
541ef8c2 SS |
868 | } |
869 | ||
870 | static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
871 | uint64_t value) | |
872 | { | |
29a0af61 | 873 | CPUState *cs = env_cpu(env); |
541ef8c2 | 874 | |
e013b741 | 875 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); |
541ef8c2 SS |
876 | } |
877 | ||
878 | static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
879 | uint64_t value) | |
880 | { | |
29a0af61 | 881 | CPUState *cs = env_cpu(env); |
541ef8c2 | 882 | |
e013b741 | 883 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); |
541ef8c2 SS |
884 | } |
885 | ||
886 | static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
887 | uint64_t value) | |
888 | { | |
29a0af61 | 889 | CPUState *cs = env_cpu(env); |
541ef8c2 SS |
890 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
891 | ||
e013b741 | 892 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); |
541ef8c2 SS |
893 | } |
894 | ||
895 | static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
896 | uint64_t value) | |
897 | { | |
29a0af61 | 898 | CPUState *cs = env_cpu(env); |
541ef8c2 SS |
899 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
900 | ||
a67cf277 | 901 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
e013b741 | 902 | ARMMMUIdxBit_E2); |
541ef8c2 SS |
903 | } |
904 | ||
e9aa6c21 | 905 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
906 | /* Define the secure and non-secure FCSE identifier CP registers |
907 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
908 | * the secure register to be properly reset and migrated. There is also no | |
909 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
910 | */ | |
9c513e78 | 911 | { .name = "FCSEIDR", |
54bf36ed FA |
912 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
913 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
914 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
915 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
9c513e78 | 916 | { .name = "FCSEIDR_S", |
54bf36ed FA |
917 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
918 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
919 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 920 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
921 | /* Define the secure and non-secure context identifier CP registers |
922 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
923 | * the secure register to be properly reset and migrated. In the | |
924 | * non-secure case, the 32-bit register will have reset and migration | |
925 | * disabled during registration as it is handled by the 64-bit instance. | |
926 | */ | |
927 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 928 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
84929218 RH |
929 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
930 | .secure = ARM_CP_SECSTATE_NS, | |
54bf36ed FA |
931 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), |
932 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
9c513e78 | 933 | { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, |
54bf36ed | 934 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
84929218 RH |
935 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
936 | .secure = ARM_CP_SECSTATE_S, | |
54bf36ed | 937 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), |
d4e6df63 | 938 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
939 | REGINFO_SENTINEL |
940 | }; | |
941 | ||
942 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
943 | /* NB: Some of these registers exist in v8 but with more precise | |
944 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
945 | */ | |
946 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
947 | { .name = "DACR", |
948 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
84929218 | 949 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
0c17d68c FA |
950 | .writefn = dacr_write, .raw_writefn = raw_write, |
951 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
952 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
953 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
954 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 955 | */ |
a903c449 EI |
956 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
957 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
958 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
959 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
960 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
961 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
962 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 963 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
964 | /* Cache maintenance ops; some of this space may be overridden later. */ |
965 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
966 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
967 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
968 | REGINFO_SENTINEL |
969 | }; | |
970 | ||
7d57f408 PM |
971 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
972 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
973 | * over-broad. | |
974 | */ | |
975 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
976 | .access = PL1_W, .type = ARM_CP_WFI }, | |
977 | REGINFO_SENTINEL | |
978 | }; | |
979 | ||
980 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
981 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
982 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
983 | */ | |
984 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
985 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
986 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
987 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
988 | * OMAPCP will override this space. | |
989 | */ | |
990 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
991 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
992 | .resetvalue = 0 }, | |
993 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
994 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
995 | .resetvalue = 0 }, | |
776d4e5c PM |
996 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
997 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 998 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 999 | .resetvalue = 0 }, |
50300698 PM |
1000 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
1001 | * implementing it as RAZ means the "debug architecture version" bits | |
1002 | * will read as a reserved value, which should cause Linux to not try | |
1003 | * to use the debug hardware. | |
1004 | */ | |
1005 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1006 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
1007 | /* MMU TLB control. Note that the wildcarding means we cover not just |
1008 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
1009 | */ | |
1010 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
1011 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 1012 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
1013 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
1014 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 1015 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
1016 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
1017 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 1018 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
1019 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
1020 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 1021 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
1022 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
1023 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
1024 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
1025 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
1026 | REGINFO_SENTINEL |
1027 | }; | |
1028 | ||
c4241c7d PM |
1029 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1030 | uint64_t value) | |
2771db27 | 1031 | { |
f0aff255 FA |
1032 | uint32_t mask = 0; |
1033 | ||
1034 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
1035 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
1036 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
1037 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
1038 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
1039 | */ | |
7fbc6a40 | 1040 | if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { |
f0aff255 FA |
1041 | /* VFP coprocessor: cp10 & cp11 [23:20] */ |
1042 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
1043 | ||
1044 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
1045 | /* ASEDIS [31] bit is RAO/WI */ | |
1046 | value |= (1 << 31); | |
1047 | } | |
1048 | ||
1049 | /* VFPv3 and upwards with NEON implement 32 double precision | |
1050 | * registers (D0-D31). | |
1051 | */ | |
a6627f5f | 1052 | if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { |
f0aff255 FA |
1053 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ |
1054 | value |= (1 << 30); | |
1055 | } | |
1056 | } | |
1057 | value &= mask; | |
2771db27 | 1058 | } |
fc1120a7 PM |
1059 | |
1060 | /* | |
1061 | * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 | |
1062 | * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. | |
1063 | */ | |
1064 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
1065 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
1066 | value &= ~(0xf << 20); | |
1067 | value |= env->cp15.cpacr_el1 & (0xf << 20); | |
1068 | } | |
1069 | ||
7ebd5f2e | 1070 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
1071 | } |
1072 | ||
fc1120a7 PM |
1073 | static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1074 | { | |
1075 | /* | |
1076 | * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 | |
1077 | * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. | |
1078 | */ | |
1079 | uint64_t value = env->cp15.cpacr_el1; | |
1080 | ||
1081 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
1082 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
1083 | value &= ~(0xf << 20); | |
1084 | } | |
1085 | return value; | |
1086 | } | |
1087 | ||
1088 | ||
5deac39c PM |
1089 | static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1090 | { | |
1091 | /* Call cpacr_write() so that we reset with the correct RAO bits set | |
1092 | * for our CPU features. | |
1093 | */ | |
1094 | cpacr_write(env, ri, 0); | |
1095 | } | |
1096 | ||
3f208fd7 PM |
1097 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1098 | bool isread) | |
c6f19164 GB |
1099 | { |
1100 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
1101 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
1102 | if (arm_current_el(env) == 1 && | |
1103 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
1104 | return CP_ACCESS_TRAP_EL2; | |
1105 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
1106 | } else if (arm_current_el(env) < 3 && | |
1107 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
1108 | return CP_ACCESS_TRAP_EL3; | |
1109 | } | |
1110 | } | |
1111 | ||
1112 | return CP_ACCESS_OK; | |
1113 | } | |
1114 | ||
3f208fd7 PM |
1115 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1116 | bool isread) | |
c6f19164 GB |
1117 | { |
1118 | /* Check if CPTR accesses are set to trap to EL3 */ | |
1119 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
1120 | return CP_ACCESS_TRAP_EL3; | |
1121 | } | |
1122 | ||
1123 | return CP_ACCESS_OK; | |
1124 | } | |
1125 | ||
7d57f408 PM |
1126 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
1127 | /* prefetch by MVA in v6, NOP in v7 */ | |
1128 | { .name = "MVA_prefetch", | |
1129 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
1130 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
1131 | /* We need to break the TB after ISB to execute self-modifying code |
1132 | * correctly and also to take any pending interrupts immediately. | |
1133 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
1134 | */ | |
7d57f408 | 1135 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 1136 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 1137 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 1138 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 1139 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 1140 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 1141 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
84929218 | 1142 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
b848ce2b FA |
1143 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
1144 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
1145 | .resetvalue = 0, }, |
1146 | /* Watchpoint Fault Address Register : should actually only be present | |
1147 | * for 1136, 1176, 11MPCore. | |
1148 | */ | |
1149 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1150 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 1151 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 1152 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 1153 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
fc1120a7 | 1154 | .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, |
7d57f408 PM |
1155 | REGINFO_SENTINEL |
1156 | }; | |
1157 | ||
7ece99b1 AL |
1158 | /* Definitions for the PMU registers */ |
1159 | #define PMCRN_MASK 0xf800 | |
1160 | #define PMCRN_SHIFT 11 | |
f4efb4b2 | 1161 | #define PMCRLC 0x40 |
a1ed04dd PM |
1162 | #define PMCRDP 0x20 |
1163 | #define PMCRX 0x10 | |
7ece99b1 AL |
1164 | #define PMCRD 0x8 |
1165 | #define PMCRC 0x4 | |
5ecdd3e4 | 1166 | #define PMCRP 0x2 |
7ece99b1 | 1167 | #define PMCRE 0x1 |
62d96ff4 PM |
1168 | /* |
1169 | * Mask of PMCR bits writeable by guest (not including WO bits like C, P, | |
1170 | * which can be written as 1 to trigger behaviour but which stay RAZ). | |
1171 | */ | |
1172 | #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) | |
7ece99b1 | 1173 | |
033614c4 AL |
1174 | #define PMXEVTYPER_P 0x80000000 |
1175 | #define PMXEVTYPER_U 0x40000000 | |
1176 | #define PMXEVTYPER_NSK 0x20000000 | |
1177 | #define PMXEVTYPER_NSU 0x10000000 | |
1178 | #define PMXEVTYPER_NSH 0x08000000 | |
1179 | #define PMXEVTYPER_M 0x04000000 | |
1180 | #define PMXEVTYPER_MT 0x02000000 | |
1181 | #define PMXEVTYPER_EVTCOUNT 0x0000ffff | |
1182 | #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ | |
1183 | PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ | |
1184 | PMXEVTYPER_M | PMXEVTYPER_MT | \ | |
1185 | PMXEVTYPER_EVTCOUNT) | |
1186 | ||
4b8afa1f AL |
1187 | #define PMCCFILTR 0xf8000000 |
1188 | #define PMCCFILTR_M PMXEVTYPER_M | |
1189 | #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) | |
1190 | ||
7ece99b1 AL |
1191 | static inline uint32_t pmu_num_counters(CPUARMState *env) |
1192 | { | |
1193 | return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; | |
1194 | } | |
1195 | ||
1196 | /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ | |
1197 | static inline uint64_t pmu_counter_mask(CPUARMState *env) | |
1198 | { | |
1199 | return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); | |
1200 | } | |
1201 | ||
57a4a11b AL |
1202 | typedef struct pm_event { |
1203 | uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ | |
1204 | /* If the event is supported on this CPU (used to generate PMCEID[01]) */ | |
1205 | bool (*supported)(CPUARMState *); | |
1206 | /* | |
1207 | * Retrieve the current count of the underlying event. The programmed | |
1208 | * counters hold a difference from the return value from this function | |
1209 | */ | |
1210 | uint64_t (*get_count)(CPUARMState *); | |
4e7beb0c AL |
1211 | /* |
1212 | * Return how many nanoseconds it will take (at a minimum) for count events | |
1213 | * to occur. A negative value indicates the counter will never overflow, or | |
1214 | * that the counter has otherwise arranged for the overflow bit to be set | |
1215 | * and the PMU interrupt to be raised on overflow. | |
1216 | */ | |
1217 | int64_t (*ns_per_count)(uint64_t); | |
57a4a11b AL |
1218 | } pm_event; |
1219 | ||
b2e23725 AL |
1220 | static bool event_always_supported(CPUARMState *env) |
1221 | { | |
1222 | return true; | |
1223 | } | |
1224 | ||
0d4bfd7d AL |
1225 | static uint64_t swinc_get_count(CPUARMState *env) |
1226 | { | |
1227 | /* | |
1228 | * SW_INCR events are written directly to the pmevcntr's by writes to | |
1229 | * PMSWINC, so there is no underlying count maintained by the PMU itself | |
1230 | */ | |
1231 | return 0; | |
1232 | } | |
1233 | ||
4e7beb0c AL |
1234 | static int64_t swinc_ns_per(uint64_t ignored) |
1235 | { | |
1236 | return -1; | |
1237 | } | |
1238 | ||
b2e23725 AL |
1239 | /* |
1240 | * Return the underlying cycle count for the PMU cycle counters. If we're in | |
1241 | * usermode, simply return 0. | |
1242 | */ | |
1243 | static uint64_t cycles_get_count(CPUARMState *env) | |
1244 | { | |
1245 | #ifndef CONFIG_USER_ONLY | |
1246 | return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), | |
1247 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
1248 | #else | |
1249 | return cpu_get_host_ticks(); | |
1250 | #endif | |
1251 | } | |
1252 | ||
1253 | #ifndef CONFIG_USER_ONLY | |
4e7beb0c AL |
1254 | static int64_t cycles_ns_per(uint64_t cycles) |
1255 | { | |
1256 | return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; | |
1257 | } | |
1258 | ||
b2e23725 AL |
1259 | static bool instructions_supported(CPUARMState *env) |
1260 | { | |
1261 | return use_icount == 1 /* Precise instruction counting */; | |
1262 | } | |
1263 | ||
1264 | static uint64_t instructions_get_count(CPUARMState *env) | |
1265 | { | |
1266 | return (uint64_t)cpu_get_icount_raw(); | |
1267 | } | |
4e7beb0c AL |
1268 | |
1269 | static int64_t instructions_ns_per(uint64_t icount) | |
1270 | { | |
1271 | return cpu_icount_to_ns((int64_t)icount); | |
1272 | } | |
b2e23725 AL |
1273 | #endif |
1274 | ||
0727f63b PM |
1275 | static bool pmu_8_1_events_supported(CPUARMState *env) |
1276 | { | |
1277 | /* For events which are supported in any v8.1 PMU */ | |
1278 | return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); | |
1279 | } | |
1280 | ||
15dd1ebd PM |
1281 | static bool pmu_8_4_events_supported(CPUARMState *env) |
1282 | { | |
1283 | /* For events which are supported in any v8.1 PMU */ | |
1284 | return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); | |
1285 | } | |
1286 | ||
0727f63b PM |
1287 | static uint64_t zero_event_get_count(CPUARMState *env) |
1288 | { | |
1289 | /* For events which on QEMU never fire, so their count is always zero */ | |
1290 | return 0; | |
1291 | } | |
1292 | ||
1293 | static int64_t zero_event_ns_per(uint64_t cycles) | |
1294 | { | |
1295 | /* An event which never fires can never overflow */ | |
1296 | return -1; | |
1297 | } | |
1298 | ||
57a4a11b | 1299 | static const pm_event pm_events[] = { |
0d4bfd7d AL |
1300 | { .number = 0x000, /* SW_INCR */ |
1301 | .supported = event_always_supported, | |
1302 | .get_count = swinc_get_count, | |
4e7beb0c | 1303 | .ns_per_count = swinc_ns_per, |
0d4bfd7d | 1304 | }, |
b2e23725 AL |
1305 | #ifndef CONFIG_USER_ONLY |
1306 | { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ | |
1307 | .supported = instructions_supported, | |
1308 | .get_count = instructions_get_count, | |
4e7beb0c | 1309 | .ns_per_count = instructions_ns_per, |
b2e23725 AL |
1310 | }, |
1311 | { .number = 0x011, /* CPU_CYCLES, Cycle */ | |
1312 | .supported = event_always_supported, | |
1313 | .get_count = cycles_get_count, | |
4e7beb0c | 1314 | .ns_per_count = cycles_ns_per, |
0727f63b | 1315 | }, |
b2e23725 | 1316 | #endif |
0727f63b PM |
1317 | { .number = 0x023, /* STALL_FRONTEND */ |
1318 | .supported = pmu_8_1_events_supported, | |
1319 | .get_count = zero_event_get_count, | |
1320 | .ns_per_count = zero_event_ns_per, | |
1321 | }, | |
1322 | { .number = 0x024, /* STALL_BACKEND */ | |
1323 | .supported = pmu_8_1_events_supported, | |
1324 | .get_count = zero_event_get_count, | |
1325 | .ns_per_count = zero_event_ns_per, | |
1326 | }, | |
15dd1ebd PM |
1327 | { .number = 0x03c, /* STALL */ |
1328 | .supported = pmu_8_4_events_supported, | |
1329 | .get_count = zero_event_get_count, | |
1330 | .ns_per_count = zero_event_ns_per, | |
1331 | }, | |
57a4a11b AL |
1332 | }; |
1333 | ||
1334 | /* | |
1335 | * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of | |
1336 | * events (i.e. the statistical profiling extension), this implementation | |
1337 | * should first be updated to something sparse instead of the current | |
1338 | * supported_event_map[] array. | |
1339 | */ | |
15dd1ebd | 1340 | #define MAX_EVENT_ID 0x3c |
57a4a11b AL |
1341 | #define UNSUPPORTED_EVENT UINT16_MAX |
1342 | static uint16_t supported_event_map[MAX_EVENT_ID + 1]; | |
1343 | ||
1344 | /* | |
bf8d0969 AL |
1345 | * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map |
1346 | * of ARM event numbers to indices in our pm_events array. | |
57a4a11b AL |
1347 | * |
1348 | * Note: Events in the 0x40XX range are not currently supported. | |
1349 | */ | |
bf8d0969 | 1350 | void pmu_init(ARMCPU *cpu) |
57a4a11b | 1351 | { |
57a4a11b AL |
1352 | unsigned int i; |
1353 | ||
bf8d0969 AL |
1354 | /* |
1355 | * Empty supported_event_map and cpu->pmceid[01] before adding supported | |
1356 | * events to them | |
1357 | */ | |
57a4a11b AL |
1358 | for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { |
1359 | supported_event_map[i] = UNSUPPORTED_EVENT; | |
1360 | } | |
bf8d0969 AL |
1361 | cpu->pmceid0 = 0; |
1362 | cpu->pmceid1 = 0; | |
57a4a11b AL |
1363 | |
1364 | for (i = 0; i < ARRAY_SIZE(pm_events); i++) { | |
1365 | const pm_event *cnt = &pm_events[i]; | |
1366 | assert(cnt->number <= MAX_EVENT_ID); | |
1367 | /* We do not currently support events in the 0x40xx range */ | |
1368 | assert(cnt->number <= 0x3f); | |
1369 | ||
bf8d0969 | 1370 | if (cnt->supported(&cpu->env)) { |
57a4a11b | 1371 | supported_event_map[cnt->number] = i; |
67da43d6 | 1372 | uint64_t event_mask = 1ULL << (cnt->number & 0x1f); |
bf8d0969 AL |
1373 | if (cnt->number & 0x20) { |
1374 | cpu->pmceid1 |= event_mask; | |
1375 | } else { | |
1376 | cpu->pmceid0 |= event_mask; | |
1377 | } | |
57a4a11b AL |
1378 | } |
1379 | } | |
57a4a11b AL |
1380 | } |
1381 | ||
5ecdd3e4 AL |
1382 | /* |
1383 | * Check at runtime whether a PMU event is supported for the current machine | |
1384 | */ | |
1385 | static bool event_supported(uint16_t number) | |
1386 | { | |
1387 | if (number > MAX_EVENT_ID) { | |
1388 | return false; | |
1389 | } | |
1390 | return supported_event_map[number] != UNSUPPORTED_EVENT; | |
1391 | } | |
1392 | ||
3f208fd7 PM |
1393 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1394 | bool isread) | |
200ac0ef | 1395 | { |
3b163b01 | 1396 | /* Performance monitor registers user accessibility is controlled |
1fce1ba9 PM |
1397 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
1398 | * trapping to EL2 or EL3 for other accesses. | |
200ac0ef | 1399 | */ |
1fce1ba9 PM |
1400 | int el = arm_current_el(env); |
1401 | ||
6ecd0b6b | 1402 | if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { |
fcd25206 | 1403 | return CP_ACCESS_TRAP; |
200ac0ef | 1404 | } |
1fce1ba9 PM |
1405 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
1406 | && !arm_is_secure_below_el3(env)) { | |
1407 | return CP_ACCESS_TRAP_EL2; | |
1408 | } | |
1409 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
1410 | return CP_ACCESS_TRAP_EL3; | |
1411 | } | |
1412 | ||
fcd25206 | 1413 | return CP_ACCESS_OK; |
200ac0ef PM |
1414 | } |
1415 | ||
6ecd0b6b AB |
1416 | static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, |
1417 | const ARMCPRegInfo *ri, | |
1418 | bool isread) | |
1419 | { | |
1420 | /* ER: event counter read trap control */ | |
1421 | if (arm_feature(env, ARM_FEATURE_V8) | |
1422 | && arm_current_el(env) == 0 | |
1423 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 | |
1424 | && isread) { | |
1425 | return CP_ACCESS_OK; | |
1426 | } | |
1427 | ||
1428 | return pmreg_access(env, ri, isread); | |
1429 | } | |
1430 | ||
1431 | static CPAccessResult pmreg_access_swinc(CPUARMState *env, | |
1432 | const ARMCPRegInfo *ri, | |
1433 | bool isread) | |
1434 | { | |
1435 | /* SW: software increment write trap control */ | |
1436 | if (arm_feature(env, ARM_FEATURE_V8) | |
1437 | && arm_current_el(env) == 0 | |
1438 | && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 | |
1439 | && !isread) { | |
1440 | return CP_ACCESS_OK; | |
1441 | } | |
1442 | ||
1443 | return pmreg_access(env, ri, isread); | |
1444 | } | |
1445 | ||
6ecd0b6b AB |
1446 | static CPAccessResult pmreg_access_selr(CPUARMState *env, |
1447 | const ARMCPRegInfo *ri, | |
1448 | bool isread) | |
1449 | { | |
1450 | /* ER: event counter read trap control */ | |
1451 | if (arm_feature(env, ARM_FEATURE_V8) | |
1452 | && arm_current_el(env) == 0 | |
1453 | && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { | |
1454 | return CP_ACCESS_OK; | |
1455 | } | |
1456 | ||
1457 | return pmreg_access(env, ri, isread); | |
1458 | } | |
1459 | ||
1460 | static CPAccessResult pmreg_access_ccntr(CPUARMState *env, | |
1461 | const ARMCPRegInfo *ri, | |
1462 | bool isread) | |
1463 | { | |
1464 | /* CR: cycle counter read trap control */ | |
1465 | if (arm_feature(env, ARM_FEATURE_V8) | |
1466 | && arm_current_el(env) == 0 | |
1467 | && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 | |
1468 | && isread) { | |
1469 | return CP_ACCESS_OK; | |
1470 | } | |
1471 | ||
1472 | return pmreg_access(env, ri, isread); | |
1473 | } | |
1474 | ||
033614c4 AL |
1475 | /* Returns true if the counter (pass 31 for PMCCNTR) should count events using |
1476 | * the current EL, security state, and register configuration. | |
1477 | */ | |
1478 | static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) | |
87124fde | 1479 | { |
033614c4 AL |
1480 | uint64_t filter; |
1481 | bool e, p, u, nsk, nsu, nsh, m; | |
1482 | bool enabled, prohibited, filtered; | |
1483 | bool secure = arm_is_secure(env); | |
1484 | int el = arm_current_el(env); | |
1485 | uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; | |
87124fde | 1486 | |
cbbb3041 AJ |
1487 | if (!arm_feature(env, ARM_FEATURE_PMU)) { |
1488 | return false; | |
1489 | } | |
1490 | ||
033614c4 AL |
1491 | if (!arm_feature(env, ARM_FEATURE_EL2) || |
1492 | (counter < hpmn || counter == 31)) { | |
1493 | e = env->cp15.c9_pmcr & PMCRE; | |
1494 | } else { | |
1495 | e = env->cp15.mdcr_el2 & MDCR_HPME; | |
87124fde | 1496 | } |
033614c4 | 1497 | enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); |
87124fde | 1498 | |
033614c4 AL |
1499 | if (!secure) { |
1500 | if (el == 2 && (counter < hpmn || counter == 31)) { | |
1501 | prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; | |
1502 | } else { | |
1503 | prohibited = false; | |
1504 | } | |
1505 | } else { | |
1506 | prohibited = arm_feature(env, ARM_FEATURE_EL3) && | |
1507 | (env->cp15.mdcr_el3 & MDCR_SPME); | |
1508 | } | |
1509 | ||
1510 | if (prohibited && counter == 31) { | |
1511 | prohibited = env->cp15.c9_pmcr & PMCRDP; | |
1512 | } | |
1513 | ||
5ecdd3e4 AL |
1514 | if (counter == 31) { |
1515 | filter = env->cp15.pmccfiltr_el0; | |
1516 | } else { | |
1517 | filter = env->cp15.c14_pmevtyper[counter]; | |
1518 | } | |
033614c4 AL |
1519 | |
1520 | p = filter & PMXEVTYPER_P; | |
1521 | u = filter & PMXEVTYPER_U; | |
1522 | nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); | |
1523 | nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); | |
1524 | nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); | |
1525 | m = arm_el_is_aa64(env, 1) && | |
1526 | arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); | |
1527 | ||
1528 | if (el == 0) { | |
1529 | filtered = secure ? u : u != nsu; | |
1530 | } else if (el == 1) { | |
1531 | filtered = secure ? p : p != nsk; | |
1532 | } else if (el == 2) { | |
1533 | filtered = !nsh; | |
1534 | } else { /* EL3 */ | |
1535 | filtered = m != p; | |
1536 | } | |
1537 | ||
5ecdd3e4 AL |
1538 | if (counter != 31) { |
1539 | /* | |
1540 | * If not checking PMCCNTR, ensure the counter is setup to an event we | |
1541 | * support | |
1542 | */ | |
1543 | uint16_t event = filter & PMXEVTYPER_EVTCOUNT; | |
1544 | if (!event_supported(event)) { | |
1545 | return false; | |
1546 | } | |
1547 | } | |
1548 | ||
033614c4 | 1549 | return enabled && !prohibited && !filtered; |
87124fde | 1550 | } |
033614c4 | 1551 | |
f4efb4b2 AL |
1552 | static void pmu_update_irq(CPUARMState *env) |
1553 | { | |
2fc0cc0e | 1554 | ARMCPU *cpu = env_archcpu(env); |
f4efb4b2 AL |
1555 | qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && |
1556 | (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); | |
1557 | } | |
1558 | ||
5d05b9d4 AL |
1559 | /* |
1560 | * Ensure c15_ccnt is the guest-visible count so that operations such as | |
1561 | * enabling/disabling the counter or filtering, modifying the count itself, | |
1562 | * etc. can be done logically. This is essentially a no-op if the counter is | |
1563 | * not enabled at the time of the call. | |
1564 | */ | |
f2b2f53f | 1565 | static void pmccntr_op_start(CPUARMState *env) |
ec7b4ce4 | 1566 | { |
b2e23725 | 1567 | uint64_t cycles = cycles_get_count(env); |
ec7b4ce4 | 1568 | |
033614c4 | 1569 | if (pmu_counter_enabled(env, 31)) { |
5d05b9d4 AL |
1570 | uint64_t eff_cycles = cycles; |
1571 | if (env->cp15.c9_pmcr & PMCRD) { | |
1572 | /* Increment once every 64 processor clock cycles */ | |
1573 | eff_cycles /= 64; | |
1574 | } | |
1575 | ||
f4efb4b2 AL |
1576 | uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; |
1577 | ||
1578 | uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ | |
1579 | 1ull << 63 : 1ull << 31; | |
1580 | if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { | |
1581 | env->cp15.c9_pmovsr |= (1 << 31); | |
1582 | pmu_update_irq(env); | |
1583 | } | |
1584 | ||
1585 | env->cp15.c15_ccnt = new_pmccntr; | |
ec7b4ce4 | 1586 | } |
5d05b9d4 AL |
1587 | env->cp15.c15_ccnt_delta = cycles; |
1588 | } | |
ec7b4ce4 | 1589 | |
5d05b9d4 AL |
1590 | /* |
1591 | * If PMCCNTR is enabled, recalculate the delta between the clock and the | |
1592 | * guest-visible count. A call to pmccntr_op_finish should follow every call to | |
1593 | * pmccntr_op_start. | |
1594 | */ | |
f2b2f53f | 1595 | static void pmccntr_op_finish(CPUARMState *env) |
5d05b9d4 | 1596 | { |
033614c4 | 1597 | if (pmu_counter_enabled(env, 31)) { |
4e7beb0c AL |
1598 | #ifndef CONFIG_USER_ONLY |
1599 | /* Calculate when the counter will next overflow */ | |
1600 | uint64_t remaining_cycles = -env->cp15.c15_ccnt; | |
1601 | if (!(env->cp15.c9_pmcr & PMCRLC)) { | |
1602 | remaining_cycles = (uint32_t)remaining_cycles; | |
1603 | } | |
1604 | int64_t overflow_in = cycles_ns_per(remaining_cycles); | |
1605 | ||
1606 | if (overflow_in > 0) { | |
1607 | int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
1608 | overflow_in; | |
2fc0cc0e | 1609 | ARMCPU *cpu = env_archcpu(env); |
4e7beb0c AL |
1610 | timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
1611 | } | |
1612 | #endif | |
5d05b9d4 | 1613 | |
4e7beb0c | 1614 | uint64_t prev_cycles = env->cp15.c15_ccnt_delta; |
5d05b9d4 AL |
1615 | if (env->cp15.c9_pmcr & PMCRD) { |
1616 | /* Increment once every 64 processor clock cycles */ | |
1617 | prev_cycles /= 64; | |
1618 | } | |
5d05b9d4 | 1619 | env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; |
ec7b4ce4 AF |
1620 | } |
1621 | } | |
1622 | ||
5ecdd3e4 AL |
1623 | static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) |
1624 | { | |
1625 | ||
1626 | uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; | |
1627 | uint64_t count = 0; | |
1628 | if (event_supported(event)) { | |
1629 | uint16_t event_idx = supported_event_map[event]; | |
1630 | count = pm_events[event_idx].get_count(env); | |
1631 | } | |
1632 | ||
1633 | if (pmu_counter_enabled(env, counter)) { | |
f4efb4b2 AL |
1634 | uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; |
1635 | ||
1636 | if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { | |
1637 | env->cp15.c9_pmovsr |= (1 << counter); | |
1638 | pmu_update_irq(env); | |
1639 | } | |
1640 | env->cp15.c14_pmevcntr[counter] = new_pmevcntr; | |
5ecdd3e4 AL |
1641 | } |
1642 | env->cp15.c14_pmevcntr_delta[counter] = count; | |
1643 | } | |
1644 | ||
1645 | static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) | |
1646 | { | |
1647 | if (pmu_counter_enabled(env, counter)) { | |
4e7beb0c AL |
1648 | #ifndef CONFIG_USER_ONLY |
1649 | uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; | |
1650 | uint16_t event_idx = supported_event_map[event]; | |
1651 | uint64_t delta = UINT32_MAX - | |
1652 | (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; | |
1653 | int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); | |
1654 | ||
1655 | if (overflow_in > 0) { | |
1656 | int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
1657 | overflow_in; | |
2fc0cc0e | 1658 | ARMCPU *cpu = env_archcpu(env); |
4e7beb0c AL |
1659 | timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
1660 | } | |
1661 | #endif | |
1662 | ||
5ecdd3e4 AL |
1663 | env->cp15.c14_pmevcntr_delta[counter] -= |
1664 | env->cp15.c14_pmevcntr[counter]; | |
1665 | } | |
1666 | } | |
1667 | ||
5d05b9d4 AL |
1668 | void pmu_op_start(CPUARMState *env) |
1669 | { | |
5ecdd3e4 | 1670 | unsigned int i; |
5d05b9d4 | 1671 | pmccntr_op_start(env); |
5ecdd3e4 AL |
1672 | for (i = 0; i < pmu_num_counters(env); i++) { |
1673 | pmevcntr_op_start(env, i); | |
1674 | } | |
5d05b9d4 AL |
1675 | } |
1676 | ||
1677 | void pmu_op_finish(CPUARMState *env) | |
1678 | { | |
5ecdd3e4 | 1679 | unsigned int i; |
5d05b9d4 | 1680 | pmccntr_op_finish(env); |
5ecdd3e4 AL |
1681 | for (i = 0; i < pmu_num_counters(env); i++) { |
1682 | pmevcntr_op_finish(env, i); | |
1683 | } | |
5d05b9d4 AL |
1684 | } |
1685 | ||
033614c4 AL |
1686 | void pmu_pre_el_change(ARMCPU *cpu, void *ignored) |
1687 | { | |
1688 | pmu_op_start(&cpu->env); | |
1689 | } | |
1690 | ||
1691 | void pmu_post_el_change(ARMCPU *cpu, void *ignored) | |
1692 | { | |
1693 | pmu_op_finish(&cpu->env); | |
1694 | } | |
1695 | ||
4e7beb0c AL |
1696 | void arm_pmu_timer_cb(void *opaque) |
1697 | { | |
1698 | ARMCPU *cpu = opaque; | |
1699 | ||
1700 | /* | |
1701 | * Update all the counter values based on the current underlying counts, | |
1702 | * triggering interrupts to be raised, if necessary. pmu_op_finish() also | |
1703 | * has the effect of setting the cpu->pmu_timer to the next earliest time a | |
1704 | * counter may expire. | |
1705 | */ | |
1706 | pmu_op_start(&cpu->env); | |
1707 | pmu_op_finish(&cpu->env); | |
1708 | } | |
1709 | ||
c4241c7d PM |
1710 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1711 | uint64_t value) | |
200ac0ef | 1712 | { |
5d05b9d4 | 1713 | pmu_op_start(env); |
7c2cb42b AF |
1714 | |
1715 | if (value & PMCRC) { | |
1716 | /* The counter has been reset */ | |
1717 | env->cp15.c15_ccnt = 0; | |
1718 | } | |
1719 | ||
5ecdd3e4 AL |
1720 | if (value & PMCRP) { |
1721 | unsigned int i; | |
1722 | for (i = 0; i < pmu_num_counters(env); i++) { | |
1723 | env->cp15.c14_pmevcntr[i] = 0; | |
1724 | } | |
1725 | } | |
1726 | ||
62d96ff4 PM |
1727 | env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; |
1728 | env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); | |
7c2cb42b | 1729 | |
5d05b9d4 | 1730 | pmu_op_finish(env); |
7c2cb42b AF |
1731 | } |
1732 | ||
0d4bfd7d AL |
1733 | static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1734 | uint64_t value) | |
1735 | { | |
1736 | unsigned int i; | |
1737 | for (i = 0; i < pmu_num_counters(env); i++) { | |
1738 | /* Increment a counter's count iff: */ | |
1739 | if ((value & (1 << i)) && /* counter's bit is set */ | |
1740 | /* counter is enabled and not filtered */ | |
1741 | pmu_counter_enabled(env, i) && | |
1742 | /* counter is SW_INCR */ | |
1743 | (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { | |
1744 | pmevcntr_op_start(env, i); | |
f4efb4b2 AL |
1745 | |
1746 | /* | |
1747 | * Detect if this write causes an overflow since we can't predict | |
1748 | * PMSWINC overflows like we can for other events | |
1749 | */ | |
1750 | uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; | |
1751 | ||
1752 | if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { | |
1753 | env->cp15.c9_pmovsr |= (1 << i); | |
1754 | pmu_update_irq(env); | |
1755 | } | |
1756 | ||
1757 | env->cp15.c14_pmevcntr[i] = new_pmswinc; | |
1758 | ||
0d4bfd7d AL |
1759 | pmevcntr_op_finish(env, i); |
1760 | } | |
1761 | } | |
1762 | } | |
1763 | ||
7c2cb42b AF |
1764 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1765 | { | |
5d05b9d4 AL |
1766 | uint64_t ret; |
1767 | pmccntr_op_start(env); | |
1768 | ret = env->cp15.c15_ccnt; | |
1769 | pmccntr_op_finish(env); | |
1770 | return ret; | |
7c2cb42b AF |
1771 | } |
1772 | ||
6b040780 WH |
1773 | static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1774 | uint64_t value) | |
1775 | { | |
1776 | /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and | |
1777 | * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the | |
1778 | * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are | |
1779 | * accessed. | |
1780 | */ | |
1781 | env->cp15.c9_pmselr = value & 0x1f; | |
1782 | } | |
1783 | ||
7c2cb42b AF |
1784 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1785 | uint64_t value) | |
1786 | { | |
5d05b9d4 AL |
1787 | pmccntr_op_start(env); |
1788 | env->cp15.c15_ccnt = value; | |
1789 | pmccntr_op_finish(env); | |
200ac0ef | 1790 | } |
421c7ebd PC |
1791 | |
1792 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1793 | uint64_t value) | |
1794 | { | |
1795 | uint64_t cur_val = pmccntr_read(env, NULL); | |
1796 | ||
1797 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
1798 | } | |
1799 | ||
0614601c AF |
1800 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1801 | uint64_t value) | |
1802 | { | |
5d05b9d4 | 1803 | pmccntr_op_start(env); |
4b8afa1f AL |
1804 | env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; |
1805 | pmccntr_op_finish(env); | |
1806 | } | |
1807 | ||
1808 | static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, | |
1809 | uint64_t value) | |
1810 | { | |
1811 | pmccntr_op_start(env); | |
1812 | /* M is not accessible from AArch32 */ | |
1813 | env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | | |
1814 | (value & PMCCFILTR); | |
5d05b9d4 | 1815 | pmccntr_op_finish(env); |
0614601c AF |
1816 | } |
1817 | ||
4b8afa1f AL |
1818 | static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) |
1819 | { | |
1820 | /* M is not visible in AArch32 */ | |
1821 | return env->cp15.pmccfiltr_el0 & PMCCFILTR; | |
1822 | } | |
1823 | ||
c4241c7d | 1824 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1825 | uint64_t value) |
1826 | { | |
7ece99b1 | 1827 | value &= pmu_counter_mask(env); |
200ac0ef | 1828 | env->cp15.c9_pmcnten |= value; |
200ac0ef PM |
1829 | } |
1830 | ||
c4241c7d PM |
1831 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1832 | uint64_t value) | |
200ac0ef | 1833 | { |
7ece99b1 | 1834 | value &= pmu_counter_mask(env); |
200ac0ef | 1835 | env->cp15.c9_pmcnten &= ~value; |
200ac0ef PM |
1836 | } |
1837 | ||
c4241c7d PM |
1838 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1839 | uint64_t value) | |
200ac0ef | 1840 | { |
599b71e2 | 1841 | value &= pmu_counter_mask(env); |
200ac0ef | 1842 | env->cp15.c9_pmovsr &= ~value; |
f4efb4b2 | 1843 | pmu_update_irq(env); |
200ac0ef PM |
1844 | } |
1845 | ||
327dd510 AL |
1846 | static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1847 | uint64_t value) | |
1848 | { | |
1849 | value &= pmu_counter_mask(env); | |
1850 | env->cp15.c9_pmovsr |= value; | |
f4efb4b2 | 1851 | pmu_update_irq(env); |
327dd510 AL |
1852 | } |
1853 | ||
5ecdd3e4 AL |
1854 | static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1855 | uint64_t value, const uint8_t counter) | |
200ac0ef | 1856 | { |
5ecdd3e4 AL |
1857 | if (counter == 31) { |
1858 | pmccfiltr_write(env, ri, value); | |
1859 | } else if (counter < pmu_num_counters(env)) { | |
1860 | pmevcntr_op_start(env, counter); | |
1861 | ||
1862 | /* | |
1863 | * If this counter's event type is changing, store the current | |
1864 | * underlying count for the new type in c14_pmevcntr_delta[counter] so | |
1865 | * pmevcntr_op_finish has the correct baseline when it converts back to | |
1866 | * a delta. | |
1867 | */ | |
1868 | uint16_t old_event = env->cp15.c14_pmevtyper[counter] & | |
1869 | PMXEVTYPER_EVTCOUNT; | |
1870 | uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; | |
1871 | if (old_event != new_event) { | |
1872 | uint64_t count = 0; | |
1873 | if (event_supported(new_event)) { | |
1874 | uint16_t event_idx = supported_event_map[new_event]; | |
1875 | count = pm_events[event_idx].get_count(env); | |
1876 | } | |
1877 | env->cp15.c14_pmevcntr_delta[counter] = count; | |
1878 | } | |
1879 | ||
1880 | env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; | |
1881 | pmevcntr_op_finish(env, counter); | |
1882 | } | |
fdb86656 WH |
1883 | /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when |
1884 | * PMSELR value is equal to or greater than the number of implemented | |
1885 | * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. | |
1886 | */ | |
5ecdd3e4 AL |
1887 | } |
1888 | ||
1889 | static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1890 | const uint8_t counter) | |
1891 | { | |
1892 | if (counter == 31) { | |
1893 | return env->cp15.pmccfiltr_el0; | |
1894 | } else if (counter < pmu_num_counters(env)) { | |
1895 | return env->cp15.c14_pmevtyper[counter]; | |
1896 | } else { | |
1897 | /* | |
1898 | * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER | |
1899 | * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). | |
1900 | */ | |
1901 | return 0; | |
1902 | } | |
1903 | } | |
1904 | ||
1905 | static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, | |
1906 | uint64_t value) | |
1907 | { | |
1908 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1909 | pmevtyper_write(env, ri, value, counter); | |
1910 | } | |
1911 | ||
1912 | static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, | |
1913 | uint64_t value) | |
1914 | { | |
1915 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1916 | env->cp15.c14_pmevtyper[counter] = value; | |
1917 | ||
1918 | /* | |
1919 | * pmevtyper_rawwrite is called between a pair of pmu_op_start and | |
1920 | * pmu_op_finish calls when loading saved state for a migration. Because | |
1921 | * we're potentially updating the type of event here, the value written to | |
1922 | * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a | |
1923 | * different counter type. Therefore, we need to set this value to the | |
1924 | * current count for the counter type we're writing so that pmu_op_finish | |
1925 | * has the correct count for its calculation. | |
1926 | */ | |
1927 | uint16_t event = value & PMXEVTYPER_EVTCOUNT; | |
1928 | if (event_supported(event)) { | |
1929 | uint16_t event_idx = supported_event_map[event]; | |
1930 | env->cp15.c14_pmevcntr_delta[counter] = | |
1931 | pm_events[event_idx].get_count(env); | |
fdb86656 WH |
1932 | } |
1933 | } | |
1934 | ||
5ecdd3e4 AL |
1935 | static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
1936 | { | |
1937 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1938 | return pmevtyper_read(env, ri, counter); | |
1939 | } | |
1940 | ||
1941 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1942 | uint64_t value) | |
1943 | { | |
1944 | pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); | |
1945 | } | |
1946 | ||
fdb86656 WH |
1947 | static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1948 | { | |
5ecdd3e4 AL |
1949 | return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); |
1950 | } | |
1951 | ||
1952 | static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1953 | uint64_t value, uint8_t counter) | |
1954 | { | |
1955 | if (counter < pmu_num_counters(env)) { | |
1956 | pmevcntr_op_start(env, counter); | |
1957 | env->cp15.c14_pmevcntr[counter] = value; | |
1958 | pmevcntr_op_finish(env, counter); | |
1959 | } | |
1960 | /* | |
1961 | * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR | |
1962 | * are CONSTRAINED UNPREDICTABLE. | |
fdb86656 | 1963 | */ |
5ecdd3e4 AL |
1964 | } |
1965 | ||
1966 | static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1967 | uint8_t counter) | |
1968 | { | |
1969 | if (counter < pmu_num_counters(env)) { | |
1970 | uint64_t ret; | |
1971 | pmevcntr_op_start(env, counter); | |
1972 | ret = env->cp15.c14_pmevcntr[counter]; | |
1973 | pmevcntr_op_finish(env, counter); | |
1974 | return ret; | |
fdb86656 | 1975 | } else { |
5ecdd3e4 AL |
1976 | /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR |
1977 | * are CONSTRAINED UNPREDICTABLE. */ | |
fdb86656 WH |
1978 | return 0; |
1979 | } | |
200ac0ef PM |
1980 | } |
1981 | ||
5ecdd3e4 AL |
1982 | static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, |
1983 | uint64_t value) | |
1984 | { | |
1985 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1986 | pmevcntr_write(env, ri, value, counter); | |
1987 | } | |
1988 | ||
1989 | static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) | |
1990 | { | |
1991 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1992 | return pmevcntr_read(env, ri, counter); | |
1993 | } | |
1994 | ||
1995 | static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, | |
1996 | uint64_t value) | |
1997 | { | |
1998 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
1999 | assert(counter < pmu_num_counters(env)); | |
2000 | env->cp15.c14_pmevcntr[counter] = value; | |
2001 | pmevcntr_write(env, ri, value, counter); | |
2002 | } | |
2003 | ||
2004 | static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) | |
2005 | { | |
2006 | uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); | |
2007 | assert(counter < pmu_num_counters(env)); | |
2008 | return env->cp15.c14_pmevcntr[counter]; | |
2009 | } | |
2010 | ||
2011 | static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2012 | uint64_t value) | |
2013 | { | |
2014 | pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); | |
2015 | } | |
2016 | ||
2017 | static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2018 | { | |
2019 | return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); | |
2020 | } | |
2021 | ||
c4241c7d | 2022 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
2023 | uint64_t value) |
2024 | { | |
6ecd0b6b AB |
2025 | if (arm_feature(env, ARM_FEATURE_V8)) { |
2026 | env->cp15.c9_pmuserenr = value & 0xf; | |
2027 | } else { | |
2028 | env->cp15.c9_pmuserenr = value & 1; | |
2029 | } | |
200ac0ef PM |
2030 | } |
2031 | ||
c4241c7d PM |
2032 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2033 | uint64_t value) | |
200ac0ef PM |
2034 | { |
2035 | /* We have no event counters so only the C bit can be changed */ | |
7ece99b1 | 2036 | value &= pmu_counter_mask(env); |
200ac0ef | 2037 | env->cp15.c9_pminten |= value; |
f4efb4b2 | 2038 | pmu_update_irq(env); |
200ac0ef PM |
2039 | } |
2040 | ||
c4241c7d PM |
2041 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2042 | uint64_t value) | |
200ac0ef | 2043 | { |
7ece99b1 | 2044 | value &= pmu_counter_mask(env); |
200ac0ef | 2045 | env->cp15.c9_pminten &= ~value; |
f4efb4b2 | 2046 | pmu_update_irq(env); |
200ac0ef PM |
2047 | } |
2048 | ||
c4241c7d PM |
2049 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2050 | uint64_t value) | |
8641136c | 2051 | { |
a505d7fe PM |
2052 | /* Note that even though the AArch64 view of this register has bits |
2053 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
2054 | * architectural requirements for bits which are RES0 only in some | |
2055 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
2056 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
2057 | */ | |
855ea66d | 2058 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
2059 | } |
2060 | ||
64e0e2de EI |
2061 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
2062 | { | |
ea22747c RH |
2063 | /* Begin with base v8.0 state. */ |
2064 | uint32_t valid_mask = 0x3fff; | |
2fc0cc0e | 2065 | ARMCPU *cpu = env_archcpu(env); |
ea22747c RH |
2066 | |
2067 | if (arm_el_is_aa64(env, 3)) { | |
2068 | value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ | |
2069 | valid_mask &= ~SCR_NET; | |
2070 | } else { | |
2071 | valid_mask &= ~(SCR_RW | SCR_ST); | |
2072 | } | |
64e0e2de EI |
2073 | |
2074 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
2075 | valid_mask &= ~SCR_HCE; | |
2076 | ||
2077 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
2078 | * supported if EL2 exists. The bit is UNK/SBZP when | |
2079 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
2080 | * when EL2 is unavailable. | |
4eb27640 | 2081 | * On ARMv8, this bit is always available. |
64e0e2de | 2082 | */ |
4eb27640 GB |
2083 | if (arm_feature(env, ARM_FEATURE_V7) && |
2084 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
2085 | valid_mask &= ~SCR_SMD; |
2086 | } | |
2087 | } | |
2d7137c1 RH |
2088 | if (cpu_isar_feature(aa64_lor, cpu)) { |
2089 | valid_mask |= SCR_TLOR; | |
2090 | } | |
ef682cdb RH |
2091 | if (cpu_isar_feature(aa64_pauth, cpu)) { |
2092 | valid_mask |= SCR_API | SCR_APK; | |
2093 | } | |
64e0e2de EI |
2094 | |
2095 | /* Clear all-context RES0 bits. */ | |
2096 | value &= valid_mask; | |
2097 | raw_write(env, ri, value); | |
2098 | } | |
2099 | ||
630fcd4d MZ |
2100 | static CPAccessResult access_aa64_tid2(CPUARMState *env, |
2101 | const ARMCPRegInfo *ri, | |
2102 | bool isread) | |
2103 | { | |
2104 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { | |
2105 | return CP_ACCESS_TRAP_EL2; | |
2106 | } | |
2107 | ||
2108 | return CP_ACCESS_OK; | |
2109 | } | |
2110 | ||
c4241c7d | 2111 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c | 2112 | { |
2fc0cc0e | 2113 | ARMCPU *cpu = env_archcpu(env); |
b85a1fd6 FA |
2114 | |
2115 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
2116 | * bank | |
2117 | */ | |
2118 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
2119 | ri->secure & ARM_CP_SECSTATE_S); | |
2120 | ||
2121 | return cpu->ccsidr[index]; | |
776d4e5c PM |
2122 | } |
2123 | ||
c4241c7d PM |
2124 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2125 | uint64_t value) | |
776d4e5c | 2126 | { |
8d5c773e | 2127 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
2128 | } |
2129 | ||
1090b9c6 PM |
2130 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2131 | { | |
29a0af61 | 2132 | CPUState *cs = env_cpu(env); |
f7778444 | 2133 | uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
1090b9c6 | 2134 | uint64_t ret = 0; |
7cf95aed MZ |
2135 | bool allow_virt = (arm_current_el(env) == 1 && |
2136 | (!arm_is_secure_below_el3(env) || | |
2137 | (env->cp15.scr_el3 & SCR_EEL2))); | |
1090b9c6 | 2138 | |
7cf95aed | 2139 | if (allow_virt && (hcr_el2 & HCR_IMO)) { |
636540e9 PM |
2140 | if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { |
2141 | ret |= CPSR_I; | |
2142 | } | |
2143 | } else { | |
2144 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
2145 | ret |= CPSR_I; | |
2146 | } | |
1090b9c6 | 2147 | } |
636540e9 | 2148 | |
7cf95aed | 2149 | if (allow_virt && (hcr_el2 & HCR_FMO)) { |
636540e9 PM |
2150 | if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { |
2151 | ret |= CPSR_F; | |
2152 | } | |
2153 | } else { | |
2154 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
2155 | ret |= CPSR_F; | |
2156 | } | |
1090b9c6 | 2157 | } |
636540e9 | 2158 | |
1090b9c6 PM |
2159 | /* External aborts are not possible in QEMU so A bit is always clear */ |
2160 | return ret; | |
2161 | } | |
2162 | ||
93fbc983 MZ |
2163 | static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, |
2164 | bool isread) | |
2165 | { | |
2166 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { | |
2167 | return CP_ACCESS_TRAP_EL2; | |
2168 | } | |
2169 | ||
2170 | return CP_ACCESS_OK; | |
2171 | } | |
2172 | ||
2173 | static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, | |
2174 | bool isread) | |
2175 | { | |
2176 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
2177 | return access_aa64_tid1(env, ri, isread); | |
2178 | } | |
2179 | ||
2180 | return CP_ACCESS_OK; | |
2181 | } | |
2182 | ||
e9aa6c21 | 2183 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
2184 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
2185 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
2186 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
2187 | /* Performance monitors are implementation defined in v7, |
2188 | * but with an ARM recommended set of registers, which we | |
ac689a2e | 2189 | * follow. |
200ac0ef PM |
2190 | * |
2191 | * Performance registers fall into three categories: | |
2192 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
2193 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
2194 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
2195 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
2196 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
2197 | */ | |
2198 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2199 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 2200 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
2201 | .writefn = pmcntenset_write, |
2202 | .accessfn = pmreg_access, | |
2203 | .raw_writefn = raw_write }, | |
8521466b AF |
2204 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
2205 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
2206 | .access = PL0_RW, .accessfn = pmreg_access, | |
2207 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
2208 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 2209 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
2210 | .access = PL0_RW, |
2211 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
2212 | .accessfn = pmreg_access, |
2213 | .writefn = pmcntenclr_write, | |
7a0e58fa | 2214 | .type = ARM_CP_ALIAS }, |
8521466b AF |
2215 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
2216 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
2217 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 2218 | .type = ARM_CP_ALIAS, |
8521466b AF |
2219 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
2220 | .writefn = pmcntenclr_write }, | |
200ac0ef | 2221 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
f4efb4b2 | 2222 | .access = PL0_RW, .type = ARM_CP_IO, |
e4e91a21 | 2223 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
fcd25206 PM |
2224 | .accessfn = pmreg_access, |
2225 | .writefn = pmovsr_write, | |
2226 | .raw_writefn = raw_write }, | |
978364f1 AF |
2227 | { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
2228 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, | |
2229 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 2230 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
978364f1 AF |
2231 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
2232 | .writefn = pmovsr_write, | |
2233 | .raw_writefn = raw_write }, | |
200ac0ef | 2234 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
f4efb4b2 AL |
2235 | .access = PL0_W, .accessfn = pmreg_access_swinc, |
2236 | .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
0d4bfd7d AL |
2237 | .writefn = pmswinc_write }, |
2238 | { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, | |
2239 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, | |
f4efb4b2 AL |
2240 | .access = PL0_W, .accessfn = pmreg_access_swinc, |
2241 | .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
0d4bfd7d | 2242 | .writefn = pmswinc_write }, |
6b040780 WH |
2243 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
2244 | .access = PL0_RW, .type = ARM_CP_ALIAS, | |
2245 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), | |
6ecd0b6b | 2246 | .accessfn = pmreg_access_selr, .writefn = pmselr_write, |
6b040780 WH |
2247 | .raw_writefn = raw_write}, |
2248 | { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, | |
2249 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, | |
6ecd0b6b | 2250 | .access = PL0_RW, .accessfn = pmreg_access_selr, |
6b040780 WH |
2251 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), |
2252 | .writefn = pmselr_write, .raw_writefn = raw_write, }, | |
200ac0ef | 2253 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
169c8938 | 2254 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, |
421c7ebd | 2255 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
6ecd0b6b | 2256 | .accessfn = pmreg_access_ccntr }, |
8521466b AF |
2257 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
2258 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
6ecd0b6b | 2259 | .access = PL0_RW, .accessfn = pmreg_access_ccntr, |
8521466b | 2260 | .type = ARM_CP_IO, |
980ebe87 AL |
2261 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), |
2262 | .readfn = pmccntr_read, .writefn = pmccntr_write, | |
2263 | .raw_readfn = raw_read, .raw_writefn = raw_write, }, | |
4b8afa1f AL |
2264 | { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, |
2265 | .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, | |
2266 | .access = PL0_RW, .accessfn = pmreg_access, | |
2267 | .type = ARM_CP_ALIAS | ARM_CP_IO, | |
2268 | .resetvalue = 0, }, | |
8521466b AF |
2269 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
2270 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
980ebe87 | 2271 | .writefn = pmccfiltr_write, .raw_writefn = raw_write, |
8521466b AF |
2272 | .access = PL0_RW, .accessfn = pmreg_access, |
2273 | .type = ARM_CP_IO, | |
2274 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
2275 | .resetvalue = 0, }, | |
200ac0ef | 2276 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
5ecdd3e4 AL |
2277 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
2278 | .accessfn = pmreg_access, | |
fdb86656 WH |
2279 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
2280 | { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, | |
2281 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, | |
5ecdd3e4 AL |
2282 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
2283 | .accessfn = pmreg_access, | |
fdb86656 | 2284 | .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
200ac0ef | 2285 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
5ecdd3e4 AL |
2286 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
2287 | .accessfn = pmreg_access_xevcntr, | |
2288 | .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, | |
2289 | { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, | |
2290 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, | |
2291 | .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
2292 | .accessfn = pmreg_access_xevcntr, | |
2293 | .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, | |
200ac0ef | 2294 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1fce1ba9 | 2295 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
e4e91a21 | 2296 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), |
200ac0ef | 2297 | .resetvalue = 0, |
d4e6df63 | 2298 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
8a83ffc2 AF |
2299 | { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
2300 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, | |
1fce1ba9 | 2301 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
8a83ffc2 AF |
2302 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
2303 | .resetvalue = 0, | |
2304 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
200ac0ef | 2305 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1fce1ba9 | 2306 | .access = PL1_RW, .accessfn = access_tpm, |
b7d793ad | 2307 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
e6ec5457 | 2308 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), |
200ac0ef | 2309 | .resetvalue = 0, |
d4e6df63 | 2310 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
e6ec5457 WH |
2311 | { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, |
2312 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, | |
2313 | .access = PL1_RW, .accessfn = access_tpm, | |
2314 | .type = ARM_CP_IO, | |
2315 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
2316 | .writefn = pmintenset_write, .raw_writefn = raw_write, | |
2317 | .resetvalue = 0x0 }, | |
200ac0ef | 2318 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
fc5f6856 AL |
2319 | .access = PL1_RW, .accessfn = access_tpm, |
2320 | .type = ARM_CP_ALIAS | ARM_CP_IO, | |
200ac0ef | 2321 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 2322 | .writefn = pmintenclr_write, }, |
978364f1 AF |
2323 | { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
2324 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, | |
fc5f6856 AL |
2325 | .access = PL1_RW, .accessfn = access_tpm, |
2326 | .type = ARM_CP_ALIAS | ARM_CP_IO, | |
978364f1 AF |
2327 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
2328 | .writefn = pmintenclr_write }, | |
7da845b0 PM |
2329 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
2330 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
630fcd4d MZ |
2331 | .access = PL1_R, |
2332 | .accessfn = access_aa64_tid2, | |
2333 | .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, | |
7da845b0 PM |
2334 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
2335 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
630fcd4d MZ |
2336 | .access = PL1_RW, |
2337 | .accessfn = access_aa64_tid2, | |
2338 | .writefn = csselr_write, .resetvalue = 0, | |
b85a1fd6 FA |
2339 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), |
2340 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
2341 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
2342 | * just RAZ for all cores: | |
2343 | */ | |
0ff644a7 PM |
2344 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
2345 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
93fbc983 MZ |
2346 | .access = PL1_R, .type = ARM_CP_CONST, |
2347 | .accessfn = access_aa64_tid1, | |
2348 | .resetvalue = 0 }, | |
f32cdad5 PM |
2349 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
2350 | * choose to RAZ/WI for all cores. | |
2351 | */ | |
2352 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
2353 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
84929218 RH |
2354 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2355 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
f32cdad5 PM |
2356 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, |
2357 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
84929218 RH |
2358 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2359 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
2360 | /* MAIR can just read-as-written because we don't implement caches |
2361 | * and so don't need to care about memory attributes. | |
2362 | */ | |
2363 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
2364 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
84929218 RH |
2365 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
2366 | .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), | |
b0fe2427 | 2367 | .resetvalue = 0 }, |
4cfb8ad8 PM |
2368 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
2369 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
2370 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
2371 | .resetvalue = 0 }, | |
b0fe2427 PM |
2372 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
2373 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 2374 | */ |
1281f8e3 | 2375 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
2376 | * allows them to assign the correct fieldoffset based on the endianness |
2377 | * handled in the field definitions. | |
2378 | */ | |
a903c449 | 2379 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
84929218 RH |
2380 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, |
2381 | .access = PL1_RW, .accessfn = access_tvm_trvm, | |
be693c87 GB |
2382 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
2383 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 2384 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 2385 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
84929218 RH |
2386 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, |
2387 | .access = PL1_RW, .accessfn = access_tvm_trvm, | |
be693c87 GB |
2388 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
2389 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 2390 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
2391 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
2392 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2393 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
2394 | /* 32 bit ITLB invalidates */ |
2395 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
30881b73 RH |
2396 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2397 | .writefn = tlbiall_write }, | |
995939a6 | 2398 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
30881b73 RH |
2399 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2400 | .writefn = tlbimva_write }, | |
995939a6 | 2401 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
30881b73 RH |
2402 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2403 | .writefn = tlbiasid_write }, | |
995939a6 PM |
2404 | /* 32 bit DTLB invalidates */ |
2405 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
30881b73 RH |
2406 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2407 | .writefn = tlbiall_write }, | |
995939a6 | 2408 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
30881b73 RH |
2409 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2410 | .writefn = tlbimva_write }, | |
995939a6 | 2411 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
30881b73 RH |
2412 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2413 | .writefn = tlbiasid_write }, | |
995939a6 PM |
2414 | /* 32 bit TLB invalidates */ |
2415 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
30881b73 RH |
2416 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2417 | .writefn = tlbiall_write }, | |
995939a6 | 2418 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
30881b73 RH |
2419 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2420 | .writefn = tlbimva_write }, | |
995939a6 | 2421 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
30881b73 RH |
2422 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2423 | .writefn = tlbiasid_write }, | |
995939a6 | 2424 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
30881b73 RH |
2425 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2426 | .writefn = tlbimvaa_write }, | |
995939a6 PM |
2427 | REGINFO_SENTINEL |
2428 | }; | |
2429 | ||
2430 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
2431 | /* 32 bit TLB invalidates, Inner Shareable */ | |
2432 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
30881b73 RH |
2433 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2434 | .writefn = tlbiall_is_write }, | |
995939a6 | 2435 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
30881b73 RH |
2436 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
2437 | .writefn = tlbimva_is_write }, | |
995939a6 | 2438 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
30881b73 | 2439 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 2440 | .writefn = tlbiasid_is_write }, |
995939a6 | 2441 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
30881b73 | 2442 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 2443 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
2444 | REGINFO_SENTINEL |
2445 | }; | |
2446 | ||
327dd510 AL |
2447 | static const ARMCPRegInfo pmovsset_cp_reginfo[] = { |
2448 | /* PMOVSSET is not implemented in v7 before v7ve */ | |
2449 | { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, | |
2450 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 2451 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
327dd510 AL |
2452 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
2453 | .writefn = pmovsset_write, | |
2454 | .raw_writefn = raw_write }, | |
2455 | { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, | |
2456 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, | |
2457 | .access = PL0_RW, .accessfn = pmreg_access, | |
f4efb4b2 | 2458 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
327dd510 AL |
2459 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
2460 | .writefn = pmovsset_write, | |
2461 | .raw_writefn = raw_write }, | |
2462 | REGINFO_SENTINEL | |
2463 | }; | |
2464 | ||
c4241c7d PM |
2465 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2466 | uint64_t value) | |
c326b979 PM |
2467 | { |
2468 | value &= 1; | |
2469 | env->teecr = value; | |
c326b979 PM |
2470 | } |
2471 | ||
3f208fd7 PM |
2472 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2473 | bool isread) | |
c326b979 | 2474 | { |
dcbff19b | 2475 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 2476 | return CP_ACCESS_TRAP; |
c326b979 | 2477 | } |
92611c00 | 2478 | return CP_ACCESS_OK; |
c326b979 PM |
2479 | } |
2480 | ||
2481 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
2482 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
2483 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
2484 | .resetvalue = 0, | |
2485 | .writefn = teecr_write }, | |
2486 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
2487 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 2488 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
2489 | REGINFO_SENTINEL |
2490 | }; | |
2491 | ||
4d31c596 | 2492 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
2493 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
2494 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
2495 | .access = PL0_RW, | |
54bf36ed | 2496 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
2497 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
2498 | .access = PL0_RW, | |
54bf36ed FA |
2499 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
2500 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
2501 | .resetfn = arm_cp_reset_ignore }, |
2502 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
2503 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
2504 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
2505 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
2506 | .resetvalue = 0}, | |
4d31c596 PM |
2507 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
2508 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
2509 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
2510 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 2511 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 2512 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 2513 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 2514 | .access = PL1_RW, |
54bf36ed FA |
2515 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
2516 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
2517 | .access = PL1_RW, | |
2518 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
2519 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
2520 | .resetvalue = 0 }, | |
4d31c596 PM |
2521 | REGINFO_SENTINEL |
2522 | }; | |
2523 | ||
55d284af PM |
2524 | #ifndef CONFIG_USER_ONLY |
2525 | ||
3f208fd7 PM |
2526 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2527 | bool isread) | |
00108f2d | 2528 | { |
75502672 PM |
2529 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
2530 | * Writable only at the highest implemented exception level. | |
2531 | */ | |
2532 | int el = arm_current_el(env); | |
5bc84371 RH |
2533 | uint64_t hcr; |
2534 | uint32_t cntkctl; | |
75502672 PM |
2535 | |
2536 | switch (el) { | |
2537 | case 0: | |
5bc84371 RH |
2538 | hcr = arm_hcr_el2_eff(env); |
2539 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2540 | cntkctl = env->cp15.cnthctl_el2; | |
2541 | } else { | |
2542 | cntkctl = env->cp15.c14_cntkctl; | |
2543 | } | |
2544 | if (!extract32(cntkctl, 0, 2)) { | |
75502672 PM |
2545 | return CP_ACCESS_TRAP; |
2546 | } | |
2547 | break; | |
2548 | case 1: | |
2549 | if (!isread && ri->state == ARM_CP_STATE_AA32 && | |
2550 | arm_is_secure_below_el3(env)) { | |
2551 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ | |
2552 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2553 | } | |
2554 | break; | |
2555 | case 2: | |
2556 | case 3: | |
2557 | break; | |
00108f2d | 2558 | } |
75502672 PM |
2559 | |
2560 | if (!isread && el < arm_highest_el(env)) { | |
2561 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2562 | } | |
2563 | ||
00108f2d PM |
2564 | return CP_ACCESS_OK; |
2565 | } | |
2566 | ||
3f208fd7 PM |
2567 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
2568 | bool isread) | |
00108f2d | 2569 | { |
0b6440af EI |
2570 | unsigned int cur_el = arm_current_el(env); |
2571 | bool secure = arm_is_secure(env); | |
5bc84371 | 2572 | uint64_t hcr = arm_hcr_el2_eff(env); |
0b6440af | 2573 | |
5bc84371 RH |
2574 | switch (cur_el) { |
2575 | case 0: | |
2576 | /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ | |
2577 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2578 | return (extract32(env->cp15.cnthctl_el2, timeridx, 1) | |
2579 | ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); | |
2580 | } | |
0b6440af | 2581 | |
5bc84371 RH |
2582 | /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ |
2583 | if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |
2584 | return CP_ACCESS_TRAP; | |
2585 | } | |
2586 | ||
2587 | /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ | |
2588 | if (hcr & HCR_E2H) { | |
2589 | if (timeridx == GTIMER_PHYS && | |
2590 | !extract32(env->cp15.cnthctl_el2, 10, 1)) { | |
2591 | return CP_ACCESS_TRAP_EL2; | |
2592 | } | |
2593 | } else { | |
2594 | /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ | |
2595 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
2596 | timeridx == GTIMER_PHYS && !secure && | |
2597 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
2598 | return CP_ACCESS_TRAP_EL2; | |
2599 | } | |
2600 | } | |
2601 | break; | |
2602 | ||
2603 | case 1: | |
2604 | /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ | |
2605 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
2606 | timeridx == GTIMER_PHYS && !secure && | |
2607 | (hcr & HCR_E2H | |
2608 | ? !extract32(env->cp15.cnthctl_el2, 10, 1) | |
2609 | : !extract32(env->cp15.cnthctl_el2, 0, 1))) { | |
2610 | return CP_ACCESS_TRAP_EL2; | |
2611 | } | |
2612 | break; | |
0b6440af | 2613 | } |
00108f2d PM |
2614 | return CP_ACCESS_OK; |
2615 | } | |
2616 | ||
3f208fd7 PM |
2617 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
2618 | bool isread) | |
00108f2d | 2619 | { |
0b6440af EI |
2620 | unsigned int cur_el = arm_current_el(env); |
2621 | bool secure = arm_is_secure(env); | |
5bc84371 | 2622 | uint64_t hcr = arm_hcr_el2_eff(env); |
0b6440af | 2623 | |
5bc84371 RH |
2624 | switch (cur_el) { |
2625 | case 0: | |
2626 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2627 | /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ | |
2628 | return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) | |
2629 | ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); | |
2630 | } | |
0b6440af | 2631 | |
5bc84371 RH |
2632 | /* |
2633 | * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from | |
2634 | * EL0 if EL0[PV]TEN is zero. | |
2635 | */ | |
2636 | if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
2637 | return CP_ACCESS_TRAP; | |
2638 | } | |
2639 | /* fall through */ | |
2640 | ||
2641 | case 1: | |
2642 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
2643 | timeridx == GTIMER_PHYS && !secure) { | |
2644 | if (hcr & HCR_E2H) { | |
2645 | /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ | |
2646 | if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { | |
2647 | return CP_ACCESS_TRAP_EL2; | |
2648 | } | |
2649 | } else { | |
2650 | /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ | |
2651 | if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
2652 | return CP_ACCESS_TRAP_EL2; | |
2653 | } | |
2654 | } | |
2655 | } | |
2656 | break; | |
0b6440af | 2657 | } |
00108f2d PM |
2658 | return CP_ACCESS_OK; |
2659 | } | |
2660 | ||
2661 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
3f208fd7 PM |
2662 | const ARMCPRegInfo *ri, |
2663 | bool isread) | |
00108f2d | 2664 | { |
3f208fd7 | 2665 | return gt_counter_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
2666 | } |
2667 | ||
2668 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
3f208fd7 PM |
2669 | const ARMCPRegInfo *ri, |
2670 | bool isread) | |
00108f2d | 2671 | { |
3f208fd7 | 2672 | return gt_counter_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
2673 | } |
2674 | ||
3f208fd7 PM |
2675 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2676 | bool isread) | |
00108f2d | 2677 | { |
3f208fd7 | 2678 | return gt_timer_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
2679 | } |
2680 | ||
3f208fd7 PM |
2681 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2682 | bool isread) | |
00108f2d | 2683 | { |
3f208fd7 | 2684 | return gt_timer_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
2685 | } |
2686 | ||
b4d3978c | 2687 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
3f208fd7 PM |
2688 | const ARMCPRegInfo *ri, |
2689 | bool isread) | |
b4d3978c PM |
2690 | { |
2691 | /* The AArch64 register view of the secure physical timer is | |
2692 | * always accessible from EL3, and configurably accessible from | |
2693 | * Secure EL1. | |
2694 | */ | |
2695 | switch (arm_current_el(env)) { | |
2696 | case 1: | |
2697 | if (!arm_is_secure(env)) { | |
2698 | return CP_ACCESS_TRAP; | |
2699 | } | |
2700 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
2701 | return CP_ACCESS_TRAP_EL3; | |
2702 | } | |
2703 | return CP_ACCESS_OK; | |
2704 | case 0: | |
2705 | case 2: | |
2706 | return CP_ACCESS_TRAP; | |
2707 | case 3: | |
2708 | return CP_ACCESS_OK; | |
2709 | default: | |
2710 | g_assert_not_reached(); | |
2711 | } | |
2712 | } | |
2713 | ||
55d284af PM |
2714 | static uint64_t gt_get_countervalue(CPUARMState *env) |
2715 | { | |
7def8754 AJ |
2716 | ARMCPU *cpu = env_archcpu(env); |
2717 | ||
2718 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); | |
55d284af PM |
2719 | } |
2720 | ||
2721 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
2722 | { | |
2723 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
2724 | ||
2725 | if (gt->ctl & 1) { | |
2726 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
2727 | * reset timer to when ISTATUS next has to change | |
2728 | */ | |
edac4d8a EI |
2729 | uint64_t offset = timeridx == GTIMER_VIRT ? |
2730 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
2731 | uint64_t count = gt_get_countervalue(&cpu->env); |
2732 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 2733 | int istatus = count - offset >= gt->cval; |
55d284af | 2734 | uint64_t nexttick; |
194cbc49 | 2735 | int irqstate; |
55d284af PM |
2736 | |
2737 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
194cbc49 PM |
2738 | |
2739 | irqstate = (istatus && !(gt->ctl & 2)); | |
2740 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
2741 | ||
55d284af PM |
2742 | if (istatus) { |
2743 | /* Next transition is when count rolls back over to zero */ | |
2744 | nexttick = UINT64_MAX; | |
2745 | } else { | |
2746 | /* Next transition is when we hit cval */ | |
edac4d8a | 2747 | nexttick = gt->cval + offset; |
55d284af PM |
2748 | } |
2749 | /* Note that the desired next expiry time might be beyond the | |
2750 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
2751 | * set the timer for as far in the future as possible. When the | |
2752 | * timer expires we will reset the timer for any remaining period. | |
2753 | */ | |
7def8754 | 2754 | if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { |
4a0245b6 AJ |
2755 | timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); |
2756 | } else { | |
2757 | timer_mod(cpu->gt_timer[timeridx], nexttick); | |
55d284af | 2758 | } |
194cbc49 | 2759 | trace_arm_gt_recalc(timeridx, irqstate, nexttick); |
55d284af PM |
2760 | } else { |
2761 | /* Timer disabled: ISTATUS and timer output always clear */ | |
2762 | gt->ctl &= ~4; | |
2763 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 2764 | timer_del(cpu->gt_timer[timeridx]); |
194cbc49 | 2765 | trace_arm_gt_recalc_disabled(timeridx); |
55d284af PM |
2766 | } |
2767 | } | |
2768 | ||
0e3eca4c EI |
2769 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
2770 | int timeridx) | |
55d284af | 2771 | { |
2fc0cc0e | 2772 | ARMCPU *cpu = env_archcpu(env); |
55d284af | 2773 | |
bc72ad67 | 2774 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
2775 | } |
2776 | ||
c4241c7d | 2777 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 2778 | { |
c4241c7d | 2779 | return gt_get_countervalue(env); |
55d284af PM |
2780 | } |
2781 | ||
53d1f856 RH |
2782 | static uint64_t gt_virt_cnt_offset(CPUARMState *env) |
2783 | { | |
2784 | uint64_t hcr; | |
2785 | ||
2786 | switch (arm_current_el(env)) { | |
2787 | case 2: | |
2788 | hcr = arm_hcr_el2_eff(env); | |
2789 | if (hcr & HCR_E2H) { | |
2790 | return 0; | |
2791 | } | |
2792 | break; | |
2793 | case 0: | |
2794 | hcr = arm_hcr_el2_eff(env); | |
2795 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
2796 | return 0; | |
2797 | } | |
2798 | break; | |
2799 | } | |
2800 | ||
2801 | return env->cp15.cntvoff_el2; | |
2802 | } | |
2803 | ||
edac4d8a EI |
2804 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2805 | { | |
53d1f856 | 2806 | return gt_get_countervalue(env) - gt_virt_cnt_offset(env); |
edac4d8a EI |
2807 | } |
2808 | ||
c4241c7d | 2809 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2810 | int timeridx, |
c4241c7d | 2811 | uint64_t value) |
55d284af | 2812 | { |
194cbc49 | 2813 | trace_arm_gt_cval_write(timeridx, value); |
55d284af | 2814 | env->cp15.c14_timer[timeridx].cval = value; |
2fc0cc0e | 2815 | gt_recalc_timer(env_archcpu(env), timeridx); |
55d284af | 2816 | } |
c4241c7d | 2817 | |
0e3eca4c EI |
2818 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
2819 | int timeridx) | |
55d284af | 2820 | { |
53d1f856 RH |
2821 | uint64_t offset = 0; |
2822 | ||
2823 | switch (timeridx) { | |
2824 | case GTIMER_VIRT: | |
8c94b071 | 2825 | case GTIMER_HYPVIRT: |
53d1f856 RH |
2826 | offset = gt_virt_cnt_offset(env); |
2827 | break; | |
2828 | } | |
55d284af | 2829 | |
c4241c7d | 2830 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 2831 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
2832 | } |
2833 | ||
c4241c7d | 2834 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2835 | int timeridx, |
c4241c7d | 2836 | uint64_t value) |
55d284af | 2837 | { |
53d1f856 RH |
2838 | uint64_t offset = 0; |
2839 | ||
2840 | switch (timeridx) { | |
2841 | case GTIMER_VIRT: | |
8c94b071 | 2842 | case GTIMER_HYPVIRT: |
53d1f856 RH |
2843 | offset = gt_virt_cnt_offset(env); |
2844 | break; | |
2845 | } | |
55d284af | 2846 | |
194cbc49 | 2847 | trace_arm_gt_tval_write(timeridx, value); |
edac4d8a | 2848 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 2849 | sextract64(value, 0, 32); |
2fc0cc0e | 2850 | gt_recalc_timer(env_archcpu(env), timeridx); |
55d284af PM |
2851 | } |
2852 | ||
c4241c7d | 2853 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 2854 | int timeridx, |
c4241c7d | 2855 | uint64_t value) |
55d284af | 2856 | { |
2fc0cc0e | 2857 | ARMCPU *cpu = env_archcpu(env); |
55d284af PM |
2858 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
2859 | ||
194cbc49 | 2860 | trace_arm_gt_ctl_write(timeridx, value); |
d3afacc7 | 2861 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
2862 | if ((oldval ^ value) & 1) { |
2863 | /* Enable toggled */ | |
2864 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 2865 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
2866 | /* IMASK toggled: don't need to recalculate, |
2867 | * just set the interrupt line based on ISTATUS | |
2868 | */ | |
194cbc49 PM |
2869 | int irqstate = (oldval & 4) && !(value & 2); |
2870 | ||
2871 | trace_arm_gt_imask_toggle(timeridx, irqstate); | |
2872 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); | |
55d284af | 2873 | } |
55d284af PM |
2874 | } |
2875 | ||
0e3eca4c EI |
2876 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2877 | { | |
2878 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
2879 | } | |
2880 | ||
2881 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2882 | uint64_t value) | |
2883 | { | |
2884 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
2885 | } | |
2886 | ||
2887 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2888 | { | |
2889 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
2890 | } | |
2891 | ||
2892 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2893 | uint64_t value) | |
2894 | { | |
2895 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
2896 | } | |
2897 | ||
2898 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2899 | uint64_t value) | |
2900 | { | |
2901 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
2902 | } | |
2903 | ||
bb5972e4 RH |
2904 | static int gt_phys_redir_timeridx(CPUARMState *env) |
2905 | { | |
2906 | switch (arm_mmu_idx(env)) { | |
2907 | case ARMMMUIdx_E20_0: | |
2908 | case ARMMMUIdx_E20_2: | |
452ef8cb | 2909 | case ARMMMUIdx_E20_2_PAN: |
bb5972e4 RH |
2910 | return GTIMER_HYP; |
2911 | default: | |
2912 | return GTIMER_PHYS; | |
2913 | } | |
2914 | } | |
2915 | ||
2916 | static int gt_virt_redir_timeridx(CPUARMState *env) | |
2917 | { | |
2918 | switch (arm_mmu_idx(env)) { | |
2919 | case ARMMMUIdx_E20_0: | |
2920 | case ARMMMUIdx_E20_2: | |
452ef8cb | 2921 | case ARMMMUIdx_E20_2_PAN: |
bb5972e4 RH |
2922 | return GTIMER_HYPVIRT; |
2923 | default: | |
2924 | return GTIMER_VIRT; | |
2925 | } | |
2926 | } | |
2927 | ||
2928 | static uint64_t gt_phys_redir_cval_read(CPUARMState *env, | |
2929 | const ARMCPRegInfo *ri) | |
2930 | { | |
2931 | int timeridx = gt_phys_redir_timeridx(env); | |
2932 | return env->cp15.c14_timer[timeridx].cval; | |
2933 | } | |
2934 | ||
2935 | static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2936 | uint64_t value) | |
2937 | { | |
2938 | int timeridx = gt_phys_redir_timeridx(env); | |
2939 | gt_cval_write(env, ri, timeridx, value); | |
2940 | } | |
2941 | ||
2942 | static uint64_t gt_phys_redir_tval_read(CPUARMState *env, | |
2943 | const ARMCPRegInfo *ri) | |
2944 | { | |
2945 | int timeridx = gt_phys_redir_timeridx(env); | |
2946 | return gt_tval_read(env, ri, timeridx); | |
2947 | } | |
2948 | ||
2949 | static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2950 | uint64_t value) | |
2951 | { | |
2952 | int timeridx = gt_phys_redir_timeridx(env); | |
2953 | gt_tval_write(env, ri, timeridx, value); | |
2954 | } | |
2955 | ||
2956 | static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, | |
2957 | const ARMCPRegInfo *ri) | |
2958 | { | |
2959 | int timeridx = gt_phys_redir_timeridx(env); | |
2960 | return env->cp15.c14_timer[timeridx].ctl; | |
2961 | } | |
2962 | ||
2963 | static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2964 | uint64_t value) | |
2965 | { | |
2966 | int timeridx = gt_phys_redir_timeridx(env); | |
2967 | gt_ctl_write(env, ri, timeridx, value); | |
2968 | } | |
2969 | ||
0e3eca4c EI |
2970 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2971 | { | |
2972 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
2973 | } | |
2974 | ||
2975 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2976 | uint64_t value) | |
2977 | { | |
2978 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
2979 | } | |
2980 | ||
2981 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2982 | { | |
2983 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
2984 | } | |
2985 | ||
2986 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2987 | uint64_t value) | |
2988 | { | |
2989 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
2990 | } | |
2991 | ||
2992 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2993 | uint64_t value) | |
2994 | { | |
2995 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
2996 | } | |
2997 | ||
edac4d8a EI |
2998 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2999 | uint64_t value) | |
3000 | { | |
2fc0cc0e | 3001 | ARMCPU *cpu = env_archcpu(env); |
edac4d8a | 3002 | |
194cbc49 | 3003 | trace_arm_gt_cntvoff_write(value); |
edac4d8a EI |
3004 | raw_write(env, ri, value); |
3005 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
3006 | } | |
3007 | ||
bb5972e4 RH |
3008 | static uint64_t gt_virt_redir_cval_read(CPUARMState *env, |
3009 | const ARMCPRegInfo *ri) | |
3010 | { | |
3011 | int timeridx = gt_virt_redir_timeridx(env); | |
3012 | return env->cp15.c14_timer[timeridx].cval; | |
3013 | } | |
3014 | ||
3015 | static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3016 | uint64_t value) | |
3017 | { | |
3018 | int timeridx = gt_virt_redir_timeridx(env); | |
3019 | gt_cval_write(env, ri, timeridx, value); | |
3020 | } | |
3021 | ||
3022 | static uint64_t gt_virt_redir_tval_read(CPUARMState *env, | |
3023 | const ARMCPRegInfo *ri) | |
3024 | { | |
3025 | int timeridx = gt_virt_redir_timeridx(env); | |
3026 | return gt_tval_read(env, ri, timeridx); | |
3027 | } | |
3028 | ||
3029 | static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3030 | uint64_t value) | |
3031 | { | |
3032 | int timeridx = gt_virt_redir_timeridx(env); | |
3033 | gt_tval_write(env, ri, timeridx, value); | |
3034 | } | |
3035 | ||
3036 | static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, | |
3037 | const ARMCPRegInfo *ri) | |
3038 | { | |
3039 | int timeridx = gt_virt_redir_timeridx(env); | |
3040 | return env->cp15.c14_timer[timeridx].ctl; | |
3041 | } | |
3042 | ||
3043 | static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3044 | uint64_t value) | |
3045 | { | |
3046 | int timeridx = gt_virt_redir_timeridx(env); | |
3047 | gt_ctl_write(env, ri, timeridx, value); | |
3048 | } | |
3049 | ||
b0e66d95 EI |
3050 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3051 | { | |
3052 | gt_timer_reset(env, ri, GTIMER_HYP); | |
3053 | } | |
3054 | ||
3055 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3056 | uint64_t value) | |
3057 | { | |
3058 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
3059 | } | |
3060 | ||
3061 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3062 | { | |
3063 | return gt_tval_read(env, ri, GTIMER_HYP); | |
3064 | } | |
3065 | ||
3066 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3067 | uint64_t value) | |
3068 | { | |
3069 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
3070 | } | |
3071 | ||
3072 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3073 | uint64_t value) | |
3074 | { | |
3075 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
3076 | } | |
3077 | ||
b4d3978c PM |
3078 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3079 | { | |
3080 | gt_timer_reset(env, ri, GTIMER_SEC); | |
3081 | } | |
3082 | ||
3083 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3084 | uint64_t value) | |
3085 | { | |
3086 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
3087 | } | |
3088 | ||
3089 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3090 | { | |
3091 | return gt_tval_read(env, ri, GTIMER_SEC); | |
3092 | } | |
3093 | ||
3094 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3095 | uint64_t value) | |
3096 | { | |
3097 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
3098 | } | |
3099 | ||
3100 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3101 | uint64_t value) | |
3102 | { | |
3103 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
3104 | } | |
3105 | ||
8c94b071 RH |
3106 | static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3107 | { | |
3108 | gt_timer_reset(env, ri, GTIMER_HYPVIRT); | |
3109 | } | |
3110 | ||
3111 | static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3112 | uint64_t value) | |
3113 | { | |
3114 | gt_cval_write(env, ri, GTIMER_HYPVIRT, value); | |
3115 | } | |
3116 | ||
3117 | static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3118 | { | |
3119 | return gt_tval_read(env, ri, GTIMER_HYPVIRT); | |
3120 | } | |
3121 | ||
3122 | static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3123 | uint64_t value) | |
3124 | { | |
3125 | gt_tval_write(env, ri, GTIMER_HYPVIRT, value); | |
3126 | } | |
3127 | ||
3128 | static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3129 | uint64_t value) | |
3130 | { | |
3131 | gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); | |
3132 | } | |
3133 | ||
55d284af PM |
3134 | void arm_gt_ptimer_cb(void *opaque) |
3135 | { | |
3136 | ARMCPU *cpu = opaque; | |
3137 | ||
3138 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
3139 | } | |
3140 | ||
3141 | void arm_gt_vtimer_cb(void *opaque) | |
3142 | { | |
3143 | ARMCPU *cpu = opaque; | |
3144 | ||
3145 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
3146 | } | |
3147 | ||
b0e66d95 EI |
3148 | void arm_gt_htimer_cb(void *opaque) |
3149 | { | |
3150 | ARMCPU *cpu = opaque; | |
3151 | ||
3152 | gt_recalc_timer(cpu, GTIMER_HYP); | |
3153 | } | |
3154 | ||
b4d3978c PM |
3155 | void arm_gt_stimer_cb(void *opaque) |
3156 | { | |
3157 | ARMCPU *cpu = opaque; | |
3158 | ||
3159 | gt_recalc_timer(cpu, GTIMER_SEC); | |
3160 | } | |
3161 | ||
8c94b071 RH |
3162 | void arm_gt_hvtimer_cb(void *opaque) |
3163 | { | |
3164 | ARMCPU *cpu = opaque; | |
3165 | ||
3166 | gt_recalc_timer(cpu, GTIMER_HYPVIRT); | |
3167 | } | |
3168 | ||
96eec6b2 AJ |
3169 | static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) |
3170 | { | |
3171 | ARMCPU *cpu = env_archcpu(env); | |
3172 | ||
3173 | cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; | |
3174 | } | |
3175 | ||
55d284af PM |
3176 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
3177 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
3178 | * of software; writing it doesn't actually change the timer frequency. | |
3179 | * Our reset value matches the fixed frequency we implement the timer at. | |
3180 | */ | |
3181 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 3182 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
3183 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
3184 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
3185 | }, |
3186 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
3187 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
3188 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af | 3189 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
96eec6b2 | 3190 | .resetfn = arm_gt_cntfrq_reset, |
55d284af PM |
3191 | }, |
3192 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
3193 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
3194 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
3195 | .access = PL1_RW, |
3196 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
3197 | .resetvalue = 0, | |
3198 | }, | |
3199 | /* per-timer control */ | |
3200 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 3201 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 3202 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
a7adc4b7 PM |
3203 | .accessfn = gt_ptimer_access, |
3204 | .fieldoffset = offsetoflow32(CPUARMState, | |
3205 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
bb5972e4 RH |
3206 | .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, |
3207 | .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, | |
a7adc4b7 | 3208 | }, |
9c513e78 | 3209 | { .name = "CNTP_CTL_S", |
9ff9dd3c PM |
3210 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
3211 | .secure = ARM_CP_SECSTATE_S, | |
daf1dc5f | 3212 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
9ff9dd3c PM |
3213 | .accessfn = gt_ptimer_access, |
3214 | .fieldoffset = offsetoflow32(CPUARMState, | |
3215 | cp15.c14_timer[GTIMER_SEC].ctl), | |
3216 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
3217 | }, | |
a7adc4b7 PM |
3218 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
3219 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
daf1dc5f | 3220 | .type = ARM_CP_IO, .access = PL0_RW, |
a7adc4b7 | 3221 | .accessfn = gt_ptimer_access, |
55d284af PM |
3222 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
3223 | .resetvalue = 0, | |
bb5972e4 RH |
3224 | .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, |
3225 | .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, | |
55d284af PM |
3226 | }, |
3227 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
daf1dc5f | 3228 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
a7adc4b7 PM |
3229 | .accessfn = gt_vtimer_access, |
3230 | .fieldoffset = offsetoflow32(CPUARMState, | |
3231 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
bb5972e4 RH |
3232 | .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, |
3233 | .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, | |
a7adc4b7 PM |
3234 | }, |
3235 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
3236 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
daf1dc5f | 3237 | .type = ARM_CP_IO, .access = PL0_RW, |
a7adc4b7 | 3238 | .accessfn = gt_vtimer_access, |
55d284af PM |
3239 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
3240 | .resetvalue = 0, | |
bb5972e4 RH |
3241 | .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, |
3242 | .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, | |
55d284af PM |
3243 | }, |
3244 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
3245 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 3246 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 3247 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
00108f2d | 3248 | .accessfn = gt_ptimer_access, |
bb5972e4 | 3249 | .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, |
55d284af | 3250 | }, |
9c513e78 | 3251 | { .name = "CNTP_TVAL_S", |
9ff9dd3c PM |
3252 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
3253 | .secure = ARM_CP_SECSTATE_S, | |
daf1dc5f | 3254 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
9ff9dd3c PM |
3255 | .accessfn = gt_ptimer_access, |
3256 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
3257 | }, | |
a7adc4b7 PM |
3258 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
3259 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
daf1dc5f | 3260 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
0e3eca4c | 3261 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
bb5972e4 | 3262 | .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, |
a7adc4b7 | 3263 | }, |
55d284af | 3264 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
daf1dc5f | 3265 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
00108f2d | 3266 | .accessfn = gt_vtimer_access, |
bb5972e4 | 3267 | .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, |
55d284af | 3268 | }, |
a7adc4b7 PM |
3269 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
3270 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
daf1dc5f | 3271 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
0e3eca4c | 3272 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
bb5972e4 | 3273 | .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, |
a7adc4b7 | 3274 | }, |
55d284af PM |
3275 | /* The counter itself */ |
3276 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 3277 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 3278 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
3279 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
3280 | }, | |
3281 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
3282 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 3283 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 3284 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
3285 | }, |
3286 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 3287 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 3288 | .accessfn = gt_vct_access, |
edac4d8a | 3289 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
3290 | }, |
3291 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
3292 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 3293 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 3294 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
3295 | }, |
3296 | /* Comparison value, indicating when the timer goes off */ | |
3297 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 3298 | .secure = ARM_CP_SECSTATE_NS, |
daf1dc5f | 3299 | .access = PL0_RW, |
7a0e58fa | 3300 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 3301 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 3302 | .accessfn = gt_ptimer_access, |
bb5972e4 RH |
3303 | .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, |
3304 | .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, | |
a7adc4b7 | 3305 | }, |
9c513e78 | 3306 | { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, |
9ff9dd3c | 3307 | .secure = ARM_CP_SECSTATE_S, |
daf1dc5f | 3308 | .access = PL0_RW, |
9ff9dd3c PM |
3309 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
3310 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
3311 | .accessfn = gt_ptimer_access, | |
3312 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
3313 | }, | |
a7adc4b7 PM |
3314 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
3315 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
daf1dc5f | 3316 | .access = PL0_RW, |
a7adc4b7 PM |
3317 | .type = ARM_CP_IO, |
3318 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 3319 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
bb5972e4 RH |
3320 | .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, |
3321 | .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, | |
55d284af PM |
3322 | }, |
3323 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
daf1dc5f | 3324 | .access = PL0_RW, |
7a0e58fa | 3325 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 3326 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 3327 | .accessfn = gt_vtimer_access, |
bb5972e4 RH |
3328 | .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, |
3329 | .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, | |
a7adc4b7 PM |
3330 | }, |
3331 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
3332 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
daf1dc5f | 3333 | .access = PL0_RW, |
a7adc4b7 PM |
3334 | .type = ARM_CP_IO, |
3335 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
3336 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
bb5972e4 RH |
3337 | .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, |
3338 | .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, | |
55d284af | 3339 | }, |
b4d3978c PM |
3340 | /* Secure timer -- this is actually restricted to only EL3 |
3341 | * and configurably Secure-EL1 via the accessfn. | |
3342 | */ | |
3343 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
3344 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
3345 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
3346 | .accessfn = gt_stimer_access, | |
3347 | .readfn = gt_sec_tval_read, | |
3348 | .writefn = gt_sec_tval_write, | |
3349 | .resetfn = gt_sec_timer_reset, | |
3350 | }, | |
3351 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
3352 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
3353 | .type = ARM_CP_IO, .access = PL1_RW, | |
3354 | .accessfn = gt_stimer_access, | |
3355 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
3356 | .resetvalue = 0, | |
3357 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
3358 | }, | |
3359 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
3360 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
3361 | .type = ARM_CP_IO, .access = PL1_RW, | |
3362 | .accessfn = gt_stimer_access, | |
3363 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
3364 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
3365 | }, | |
55d284af PM |
3366 | REGINFO_SENTINEL |
3367 | }; | |
3368 | ||
bb5972e4 RH |
3369 | static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3370 | bool isread) | |
3371 | { | |
3372 | if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { | |
3373 | return CP_ACCESS_TRAP; | |
3374 | } | |
3375 | return CP_ACCESS_OK; | |
3376 | } | |
3377 | ||
55d284af | 3378 | #else |
26c4a83b AB |
3379 | |
3380 | /* In user-mode most of the generic timer registers are inaccessible | |
3381 | * however modern kernels (4.12+) allow access to cntvct_el0 | |
55d284af | 3382 | */ |
26c4a83b AB |
3383 | |
3384 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3385 | { | |
7def8754 AJ |
3386 | ARMCPU *cpu = env_archcpu(env); |
3387 | ||
26c4a83b AB |
3388 | /* Currently we have no support for QEMUTimer in linux-user so we |
3389 | * can't call gt_get_countervalue(env), instead we directly | |
3390 | * call the lower level functions. | |
3391 | */ | |
7def8754 | 3392 | return cpu_get_clock() / gt_cntfrq_period_ns(cpu); |
26c4a83b AB |
3393 | } |
3394 | ||
6cc7a3ae | 3395 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
26c4a83b AB |
3396 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, |
3397 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
3398 | .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, | |
3399 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), | |
3400 | .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, | |
3401 | }, | |
3402 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
3403 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
3404 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, | |
3405 | .readfn = gt_virt_cnt_read, | |
3406 | }, | |
6cc7a3ae PM |
3407 | REGINFO_SENTINEL |
3408 | }; | |
3409 | ||
55d284af PM |
3410 | #endif |
3411 | ||
c4241c7d | 3412 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 3413 | { |
891a2fe7 | 3414 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 3415 | raw_write(env, ri, value); |
891a2fe7 | 3416 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 3417 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 3418 | } else { |
8d5c773e | 3419 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 3420 | } |
4a501606 PM |
3421 | } |
3422 | ||
3423 | #ifndef CONFIG_USER_ONLY | |
3424 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 3425 | |
3f208fd7 PM |
3426 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3427 | bool isread) | |
92611c00 PM |
3428 | { |
3429 | if (ri->opc2 & 4) { | |
87562e4f PM |
3430 | /* The ATS12NSO* operations must trap to EL3 if executed in |
3431 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
3432 | * They are simply UNDEF if executed from NS EL1. | |
3433 | * They function normally from EL2 or EL3. | |
92611c00 | 3434 | */ |
87562e4f PM |
3435 | if (arm_current_el(env) == 1) { |
3436 | if (arm_is_secure_below_el3(env)) { | |
3437 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
3438 | } | |
3439 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3440 | } | |
92611c00 PM |
3441 | } |
3442 | return CP_ACCESS_OK; | |
3443 | } | |
3444 | ||
060e8a48 | 3445 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
03ae85f8 | 3446 | MMUAccessType access_type, ARMMMUIdx mmu_idx) |
4a501606 | 3447 | { |
a8170e5e | 3448 | hwaddr phys_addr; |
4a501606 PM |
3449 | target_ulong page_size; |
3450 | int prot; | |
b7cc4e82 | 3451 | bool ret; |
01c097f7 | 3452 | uint64_t par64; |
1313e2d7 | 3453 | bool format64 = false; |
8bf5b6a9 | 3454 | MemTxAttrs attrs = {}; |
e14b5a23 | 3455 | ARMMMUFaultInfo fi = {}; |
5b2d261d | 3456 | ARMCacheAttrs cacheattrs = {}; |
4a501606 | 3457 | |
5b2d261d | 3458 | ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, |
bc52bfeb | 3459 | &prot, &page_size, &fi, &cacheattrs); |
1313e2d7 | 3460 | |
0710b2fa PM |
3461 | if (ret) { |
3462 | /* | |
3463 | * Some kinds of translation fault must cause exceptions rather | |
3464 | * than being reported in the PAR. | |
3465 | */ | |
3466 | int current_el = arm_current_el(env); | |
3467 | int target_el; | |
3468 | uint32_t syn, fsr, fsc; | |
3469 | bool take_exc = false; | |
3470 | ||
3471 | if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) | |
fee7aa46 | 3472 | && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { |
0710b2fa PM |
3473 | /* |
3474 | * Synchronous stage 2 fault on an access made as part of the | |
3475 | * translation table walk for AT S1E0* or AT S1E1* insn | |
3476 | * executed from NS EL1. If this is a synchronous external abort | |
3477 | * and SCR_EL3.EA == 1, then we take a synchronous external abort | |
3478 | * to EL3. Otherwise the fault is taken as an exception to EL2, | |
3479 | * and HPFAR_EL2 holds the faulting IPA. | |
3480 | */ | |
3481 | if (fi.type == ARMFault_SyncExternalOnWalk && | |
3482 | (env->cp15.scr_el3 & SCR_EA)) { | |
3483 | target_el = 3; | |
3484 | } else { | |
3485 | env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; | |
3486 | target_el = 2; | |
3487 | } | |
3488 | take_exc = true; | |
3489 | } else if (fi.type == ARMFault_SyncExternalOnWalk) { | |
3490 | /* | |
3491 | * Synchronous external aborts during a translation table walk | |
3492 | * are taken as Data Abort exceptions. | |
3493 | */ | |
3494 | if (fi.stage2) { | |
3495 | if (current_el == 3) { | |
3496 | target_el = 3; | |
3497 | } else { | |
3498 | target_el = 2; | |
3499 | } | |
3500 | } else { | |
3501 | target_el = exception_target_el(env); | |
3502 | } | |
3503 | take_exc = true; | |
3504 | } | |
3505 | ||
3506 | if (take_exc) { | |
3507 | /* Construct FSR and FSC using same logic as arm_deliver_fault() */ | |
3508 | if (target_el == 2 || arm_el_is_aa64(env, target_el) || | |
3509 | arm_s1_regime_using_lpae_format(env, mmu_idx)) { | |
3510 | fsr = arm_fi_to_lfsc(&fi); | |
3511 | fsc = extract32(fsr, 0, 6); | |
3512 | } else { | |
3513 | fsr = arm_fi_to_sfsc(&fi); | |
3514 | fsc = 0x3f; | |
3515 | } | |
3516 | /* | |
3517 | * Report exception with ESR indicating a fault due to a | |
3518 | * translation table walk for a cache maintenance instruction. | |
3519 | */ | |
3520 | syn = syn_data_abort_no_iss(current_el == target_el, | |
3521 | fi.ea, 1, fi.s1ptw, 1, fsc); | |
3522 | env->exception.vaddress = value; | |
3523 | env->exception.fsr = fsr; | |
3524 | raise_exception(env, EXCP_DATA_ABORT, syn, target_el); | |
3525 | } | |
3526 | } | |
3527 | ||
1313e2d7 EI |
3528 | if (is_a64(env)) { |
3529 | format64 = true; | |
3530 | } else if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
3531 | /* | |
3532 | * ATS1Cxx: | |
3533 | * * TTBCR.EAE determines whether the result is returned using the | |
3534 | * 32-bit or the 64-bit PAR format | |
3535 | * * Instructions executed in Hyp mode always use the 64bit format | |
3536 | * | |
3537 | * ATS1S2NSOxx uses the 64bit format if any of the following is true: | |
3538 | * * The Non-secure TTBCR.EAE bit is set to 1 | |
3539 | * * The implementation includes EL2, and the value of HCR.VM is 1 | |
3540 | * | |
9d1bab33 PM |
3541 | * (Note that HCR.DC makes HCR.VM behave as if it is 1.) |
3542 | * | |
23463e0e | 3543 | * ATS1Hx always uses the 64bit format. |
1313e2d7 EI |
3544 | */ |
3545 | format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); | |
3546 | ||
3547 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
452ef8cb RH |
3548 | if (mmu_idx == ARMMMUIdx_E10_0 || |
3549 | mmu_idx == ARMMMUIdx_E10_1 || | |
3550 | mmu_idx == ARMMMUIdx_E10_1_PAN) { | |
9d1bab33 | 3551 | format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); |
1313e2d7 EI |
3552 | } else { |
3553 | format64 |= arm_current_el(env) == 2; | |
3554 | } | |
3555 | } | |
3556 | } | |
3557 | ||
3558 | if (format64) { | |
5efe9ed4 | 3559 | /* Create a 64-bit PAR */ |
01c097f7 | 3560 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 3561 | if (!ret) { |
702a9357 | 3562 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
3563 | if (!attrs.secure) { |
3564 | par64 |= (1 << 9); /* NS */ | |
3565 | } | |
5b2d261d AB |
3566 | par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ |
3567 | par64 |= cacheattrs.shareability << 7; /* SH */ | |
4a501606 | 3568 | } else { |
5efe9ed4 PM |
3569 | uint32_t fsr = arm_fi_to_lfsc(&fi); |
3570 | ||
702a9357 | 3571 | par64 |= 1; /* F */ |
b7cc4e82 | 3572 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
0f7b791b PM |
3573 | if (fi.stage2) { |
3574 | par64 |= (1 << 9); /* S */ | |
3575 | } | |
3576 | if (fi.s1ptw) { | |
3577 | par64 |= (1 << 8); /* PTW */ | |
3578 | } | |
4a501606 PM |
3579 | } |
3580 | } else { | |
b7cc4e82 | 3581 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
3582 | * translation table format (with WnR always clear). |
3583 | * Convert it to a 32-bit PAR. | |
3584 | */ | |
b7cc4e82 | 3585 | if (!ret) { |
702a9357 PM |
3586 | /* We do not set any attribute bits in the PAR */ |
3587 | if (page_size == (1 << 24) | |
3588 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 3589 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 3590 | } else { |
01c097f7 | 3591 | par64 = phys_addr & 0xfffff000; |
702a9357 | 3592 | } |
8bf5b6a9 PM |
3593 | if (!attrs.secure) { |
3594 | par64 |= (1 << 9); /* NS */ | |
3595 | } | |
702a9357 | 3596 | } else { |
5efe9ed4 PM |
3597 | uint32_t fsr = arm_fi_to_sfsc(&fi); |
3598 | ||
b7cc4e82 PC |
3599 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
3600 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 3601 | } |
4a501606 | 3602 | } |
060e8a48 PM |
3603 | return par64; |
3604 | } | |
3605 | ||
3606 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
3607 | { | |
03ae85f8 | 3608 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
060e8a48 | 3609 | uint64_t par64; |
d3649702 PM |
3610 | ARMMMUIdx mmu_idx; |
3611 | int el = arm_current_el(env); | |
3612 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 3613 | |
d3649702 PM |
3614 | switch (ri->opc2 & 6) { |
3615 | case 0: | |
04b07d29 | 3616 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ |
d3649702 PM |
3617 | switch (el) { |
3618 | case 3: | |
127b2b08 | 3619 | mmu_idx = ARMMMUIdx_SE3; |
d3649702 PM |
3620 | break; |
3621 | case 2: | |
04b07d29 RH |
3622 | g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ |
3623 | /* fall through */ | |
d3649702 | 3624 | case 1: |
04b07d29 RH |
3625 | if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { |
3626 | mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN | |
3627 | : ARMMMUIdx_Stage1_E1_PAN); | |
3628 | } else { | |
3629 | mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; | |
3630 | } | |
d3649702 PM |
3631 | break; |
3632 | default: | |
3633 | g_assert_not_reached(); | |
3634 | } | |
3635 | break; | |
3636 | case 2: | |
3637 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
3638 | switch (el) { | |
3639 | case 3: | |
fba37aed | 3640 | mmu_idx = ARMMMUIdx_SE10_0; |
d3649702 PM |
3641 | break; |
3642 | case 2: | |
2859d7b5 | 3643 | mmu_idx = ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3644 | break; |
3645 | case 1: | |
fba37aed | 3646 | mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3647 | break; |
3648 | default: | |
3649 | g_assert_not_reached(); | |
3650 | } | |
3651 | break; | |
3652 | case 4: | |
3653 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
01b98b68 | 3654 | mmu_idx = ARMMMUIdx_E10_1; |
d3649702 PM |
3655 | break; |
3656 | case 6: | |
3657 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
01b98b68 | 3658 | mmu_idx = ARMMMUIdx_E10_0; |
d3649702 PM |
3659 | break; |
3660 | default: | |
3661 | g_assert_not_reached(); | |
3662 | } | |
3663 | ||
3664 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
3665 | |
3666 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 3667 | } |
060e8a48 | 3668 | |
14db7fe0 PM |
3669 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3670 | uint64_t value) | |
3671 | { | |
03ae85f8 | 3672 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
14db7fe0 PM |
3673 | uint64_t par64; |
3674 | ||
e013b741 | 3675 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); |
14db7fe0 PM |
3676 | |
3677 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
3678 | } | |
3679 | ||
3f208fd7 PM |
3680 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3681 | bool isread) | |
2a47df95 PM |
3682 | { |
3683 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
3684 | return CP_ACCESS_TRAP; | |
3685 | } | |
3686 | return CP_ACCESS_OK; | |
3687 | } | |
3688 | ||
060e8a48 PM |
3689 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
3690 | uint64_t value) | |
3691 | { | |
03ae85f8 | 3692 | MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
d3649702 PM |
3693 | ARMMMUIdx mmu_idx; |
3694 | int secure = arm_is_secure_below_el3(env); | |
3695 | ||
3696 | switch (ri->opc2 & 6) { | |
3697 | case 0: | |
3698 | switch (ri->opc1) { | |
04b07d29 RH |
3699 | case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ |
3700 | if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { | |
3701 | mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN | |
3702 | : ARMMMUIdx_Stage1_E1_PAN); | |
3703 | } else { | |
3704 | mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; | |
3705 | } | |
d3649702 PM |
3706 | break; |
3707 | case 4: /* AT S1E2R, AT S1E2W */ | |
e013b741 | 3708 | mmu_idx = ARMMMUIdx_E2; |
d3649702 PM |
3709 | break; |
3710 | case 6: /* AT S1E3R, AT S1E3W */ | |
127b2b08 | 3711 | mmu_idx = ARMMMUIdx_SE3; |
d3649702 PM |
3712 | break; |
3713 | default: | |
3714 | g_assert_not_reached(); | |
3715 | } | |
3716 | break; | |
3717 | case 2: /* AT S1E0R, AT S1E0W */ | |
fba37aed | 3718 | mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; |
d3649702 PM |
3719 | break; |
3720 | case 4: /* AT S12E1R, AT S12E1W */ | |
fba37aed | 3721 | mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; |
d3649702 PM |
3722 | break; |
3723 | case 6: /* AT S12E0R, AT S12E0W */ | |
fba37aed | 3724 | mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; |
d3649702 PM |
3725 | break; |
3726 | default: | |
3727 | g_assert_not_reached(); | |
3728 | } | |
060e8a48 | 3729 | |
d3649702 | 3730 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 3731 | } |
4a501606 PM |
3732 | #endif |
3733 | ||
3734 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
3735 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
3736 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
3737 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
3738 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
3739 | .writefn = par_write }, |
3740 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 3741 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 3742 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 3743 | .access = PL1_W, .accessfn = ats_access, |
0710b2fa | 3744 | .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
4a501606 PM |
3745 | #endif |
3746 | REGINFO_SENTINEL | |
3747 | }; | |
3748 | ||
18032bec PM |
3749 | /* Return basic MPU access permission bits. */ |
3750 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
3751 | { | |
3752 | uint32_t ret; | |
3753 | uint32_t mask; | |
3754 | int i; | |
3755 | ret = 0; | |
3756 | mask = 3; | |
3757 | for (i = 0; i < 16; i += 2) { | |
3758 | ret |= (val >> i) & mask; | |
3759 | mask <<= 2; | |
3760 | } | |
3761 | return ret; | |
3762 | } | |
3763 | ||
3764 | /* Pad basic MPU access permission bits to extended format. */ | |
3765 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
3766 | { | |
3767 | uint32_t ret; | |
3768 | uint32_t mask; | |
3769 | int i; | |
3770 | ret = 0; | |
3771 | mask = 3; | |
3772 | for (i = 0; i < 16; i += 2) { | |
3773 | ret |= (val & mask) << i; | |
3774 | mask <<= 2; | |
3775 | } | |
3776 | return ret; | |
3777 | } | |
3778 | ||
c4241c7d PM |
3779 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3780 | uint64_t value) | |
18032bec | 3781 | { |
7e09797c | 3782 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
3783 | } |
3784 | ||
c4241c7d | 3785 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 3786 | { |
7e09797c | 3787 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
3788 | } |
3789 | ||
c4241c7d PM |
3790 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3791 | uint64_t value) | |
18032bec | 3792 | { |
7e09797c | 3793 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
3794 | } |
3795 | ||
c4241c7d | 3796 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 3797 | { |
7e09797c | 3798 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
3799 | } |
3800 | ||
6cb0b013 PC |
3801 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
3802 | { | |
3803 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
3804 | ||
3805 | if (!u32p) { | |
3806 | return 0; | |
3807 | } | |
3808 | ||
1bc04a88 | 3809 | u32p += env->pmsav7.rnr[M_REG_NS]; |
6cb0b013 PC |
3810 | return *u32p; |
3811 | } | |
3812 | ||
3813 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3814 | uint64_t value) | |
3815 | { | |
2fc0cc0e | 3816 | ARMCPU *cpu = env_archcpu(env); |
6cb0b013 PC |
3817 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
3818 | ||
3819 | if (!u32p) { | |
3820 | return; | |
3821 | } | |
3822 | ||
1bc04a88 | 3823 | u32p += env->pmsav7.rnr[M_REG_NS]; |
d10eb08f | 3824 | tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ |
6cb0b013 PC |
3825 | *u32p = value; |
3826 | } | |
3827 | ||
6cb0b013 PC |
3828 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3829 | uint64_t value) | |
3830 | { | |
2fc0cc0e | 3831 | ARMCPU *cpu = env_archcpu(env); |
6cb0b013 PC |
3832 | uint32_t nrgs = cpu->pmsav7_dregion; |
3833 | ||
3834 | if (value >= nrgs) { | |
3835 | qemu_log_mask(LOG_GUEST_ERROR, | |
3836 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
3837 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
3838 | return; | |
3839 | } | |
3840 | ||
3841 | raw_write(env, ri, value); | |
3842 | } | |
3843 | ||
3844 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
69ceea64 PM |
3845 | /* Reset for all these registers is handled in arm_cpu_reset(), |
3846 | * because the PMSAv7 is also used by M-profile CPUs, which do | |
3847 | * not register cpregs but still need the state to be reset. | |
3848 | */ | |
6cb0b013 PC |
3849 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
3850 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3851 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
69ceea64 PM |
3852 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3853 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3854 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
3855 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3856 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
69ceea64 PM |
3857 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3858 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3859 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
3860 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
3861 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
69ceea64 PM |
3862 | .readfn = pmsav7_read, .writefn = pmsav7_write, |
3863 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3864 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
3865 | .access = PL1_RW, | |
1bc04a88 | 3866 | .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), |
69ceea64 PM |
3867 | .writefn = pmsav7_rgnr_write, |
3868 | .resetfn = arm_cp_reset_ignore }, | |
6cb0b013 PC |
3869 | REGINFO_SENTINEL |
3870 | }; | |
3871 | ||
18032bec PM |
3872 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
3873 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 3874 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 3875 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
3876 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
3877 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 3878 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 3879 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
3880 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
3881 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
3882 | .access = PL1_RW, | |
7e09797c PM |
3883 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
3884 | .resetvalue = 0, }, | |
18032bec PM |
3885 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
3886 | .access = PL1_RW, | |
7e09797c PM |
3887 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
3888 | .resetvalue = 0, }, | |
ecce5c3c PM |
3889 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
3890 | .access = PL1_RW, | |
3891 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
3892 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
3893 | .access = PL1_RW, | |
3894 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 3895 | /* Protection region base and size registers */ |
e508a92b PM |
3896 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
3897 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3898 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
3899 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
3900 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3901 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
3902 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
3903 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3904 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
3905 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
3906 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3907 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
3908 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
3909 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3910 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
3911 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
3912 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3913 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
3914 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
3915 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3916 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
3917 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
3918 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
3919 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
3920 | REGINFO_SENTINEL |
3921 | }; | |
3922 | ||
c4241c7d PM |
3923 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3924 | uint64_t value) | |
ecce5c3c | 3925 | { |
11f136ee | 3926 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
3927 | int maskshift = extract32(value, 0, 3); |
3928 | ||
e389be16 FA |
3929 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
3930 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
3931 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
3932 | * using Long-desciptor translation table format */ | |
3933 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
3934 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3935 | /* In an implementation that includes the Security Extensions | |
3936 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
3937 | * Short-descriptor translation table format. | |
3938 | */ | |
3939 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
3940 | } else { | |
3941 | value &= TTBCR_N; | |
3942 | } | |
e42c4db3 | 3943 | } |
e389be16 | 3944 | |
b6af0975 | 3945 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 3946 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 3947 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
3948 | * for long-descriptor tables the TCR fields are used differently |
3949 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 3950 | */ |
11f136ee FA |
3951 | tcr->raw_tcr = value; |
3952 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
3953 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
3954 | } |
3955 | ||
c4241c7d PM |
3956 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3957 | uint64_t value) | |
d4e6df63 | 3958 | { |
2fc0cc0e | 3959 | ARMCPU *cpu = env_archcpu(env); |
ab638a32 | 3960 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 3961 | |
d4e6df63 PM |
3962 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
3963 | /* With LPAE the TTBCR could result in a change of ASID | |
3964 | * via the TTBCR.A1 bit, so do a TLB flush. | |
3965 | */ | |
d10eb08f | 3966 | tlb_flush(CPU(cpu)); |
d4e6df63 | 3967 | } |
ab638a32 RH |
3968 | /* Preserve the high half of TCR_EL1, set via TTBCR2. */ |
3969 | value = deposit64(tcr->raw_tcr, 0, 32, value); | |
c4241c7d | 3970 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
3971 | } |
3972 | ||
ecce5c3c PM |
3973 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
3974 | { | |
11f136ee FA |
3975 | TCR *tcr = raw_ptr(env, ri); |
3976 | ||
3977 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
3978 | * the TCR being reset. | |
3979 | */ | |
3980 | tcr->raw_tcr = 0; | |
3981 | tcr->mask = 0; | |
3982 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
3983 | } |
3984 | ||
d06dc933 | 3985 | static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, |
cb2e37df PM |
3986 | uint64_t value) |
3987 | { | |
2fc0cc0e | 3988 | ARMCPU *cpu = env_archcpu(env); |
11f136ee | 3989 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 3990 | |
cb2e37df | 3991 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
d10eb08f | 3992 | tlb_flush(CPU(cpu)); |
11f136ee | 3993 | tcr->raw_tcr = value; |
cb2e37df PM |
3994 | } |
3995 | ||
327ed10f PM |
3996 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3997 | uint64_t value) | |
3998 | { | |
93f379b0 RH |
3999 | /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ |
4000 | if (cpreg_field_is_64bit(ri) && | |
4001 | extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { | |
2fc0cc0e | 4002 | ARMCPU *cpu = env_archcpu(env); |
d10eb08f | 4003 | tlb_flush(CPU(cpu)); |
327ed10f PM |
4004 | } |
4005 | raw_write(env, ri, value); | |
4006 | } | |
4007 | ||
ed30da8e RH |
4008 | static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4009 | uint64_t value) | |
4010 | { | |
d06dc933 RH |
4011 | /* |
4012 | * If we are running with E2&0 regime, then an ASID is active. | |
4013 | * Flush if that might be changing. Note we're not checking | |
4014 | * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that | |
4015 | * holds the active ASID, only checking the field that might. | |
4016 | */ | |
4017 | if (extract64(raw_read(env, ri) ^ value, 48, 16) && | |
4018 | (arm_hcr_el2_eff(env) & HCR_E2H)) { | |
4019 | tlb_flush_by_mmuidx(env_cpu(env), | |
452ef8cb RH |
4020 | ARMMMUIdxBit_E20_2 | |
4021 | ARMMMUIdxBit_E20_2_PAN | | |
4022 | ARMMMUIdxBit_E20_0); | |
d06dc933 | 4023 | } |
ed30da8e RH |
4024 | raw_write(env, ri, value); |
4025 | } | |
4026 | ||
b698e9cf EI |
4027 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4028 | uint64_t value) | |
4029 | { | |
2fc0cc0e | 4030 | ARMCPU *cpu = env_archcpu(env); |
b698e9cf EI |
4031 | CPUState *cs = CPU(cpu); |
4032 | ||
97fa9350 RH |
4033 | /* |
4034 | * A change in VMID to the stage2 page table (Stage2) invalidates | |
4035 | * the combined stage 1&2 tlbs (EL10_1 and EL10_0). | |
4036 | */ | |
b698e9cf | 4037 | if (raw_read(env, ri) != value) { |
0336cbf8 | 4038 | tlb_flush_by_mmuidx(cs, |
01b98b68 | 4039 | ARMMMUIdxBit_E10_1 | |
452ef8cb | 4040 | ARMMMUIdxBit_E10_1_PAN | |
01b98b68 | 4041 | ARMMMUIdxBit_E10_0 | |
97fa9350 | 4042 | ARMMMUIdxBit_Stage2); |
b698e9cf EI |
4043 | raw_write(env, ri, value); |
4044 | } | |
4045 | } | |
4046 | ||
8e5d75c9 | 4047 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 4048 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
84929218 | 4049 | .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, |
4a7e2d73 | 4050 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 4051 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 4052 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
84929218 | 4053 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
88ca1c2d FA |
4054 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), |
4055 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 | 4056 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
84929218 | 4057 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
8e5d75c9 PC |
4058 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), |
4059 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
4060 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
4061 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
84929218 RH |
4062 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4063 | .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
8e5d75c9 PC |
4064 | .resetvalue = 0, }, |
4065 | REGINFO_SENTINEL | |
4066 | }; | |
4067 | ||
4068 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
4069 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
4070 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
84929218 | 4071 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
d81c519c | 4072 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 4073 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af | 4074 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
84929218 RH |
4075 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4076 | .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
7dd8c9af FA |
4077 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
4078 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 4079 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af | 4080 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
84929218 RH |
4081 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4082 | .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
7dd8c9af FA |
4083 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
4084 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
4085 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
4086 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
84929218 RH |
4087 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4088 | .writefn = vmsa_tcr_el12_write, | |
cb2e37df | 4089 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, |
11f136ee | 4090 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 4091 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
84929218 RH |
4092 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4093 | .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, | |
b061a82b | 4094 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
4095 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
4096 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
4097 | REGINFO_SENTINEL |
4098 | }; | |
4099 | ||
ab638a32 RH |
4100 | /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing |
4101 | * qemu tlbs nor adjusting cached masks. | |
4102 | */ | |
4103 | static const ARMCPRegInfo ttbcr2_reginfo = { | |
4104 | .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, | |
84929218 RH |
4105 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4106 | .type = ARM_CP_ALIAS, | |
ab638a32 RH |
4107 | .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), |
4108 | offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, | |
4109 | }; | |
4110 | ||
c4241c7d PM |
4111 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4112 | uint64_t value) | |
1047b9d7 PM |
4113 | { |
4114 | env->cp15.c15_ticonfig = value & 0xe7; | |
4115 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
4116 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
4117 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
4118 | } |
4119 | ||
c4241c7d PM |
4120 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4121 | uint64_t value) | |
1047b9d7 PM |
4122 | { |
4123 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
4124 | } |
4125 | ||
c4241c7d PM |
4126 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4127 | uint64_t value) | |
1047b9d7 PM |
4128 | { |
4129 | /* Wait-for-interrupt (deprecated) */ | |
2fc0cc0e | 4130 | cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
4131 | } |
4132 | ||
c4241c7d PM |
4133 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4134 | uint64_t value) | |
c4804214 PM |
4135 | { |
4136 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
4137 | * containing a dirty line; cache flush operations have to reset these. | |
4138 | */ | |
4139 | env->cp15.c15_i_max = 0x000; | |
4140 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
4141 | } |
4142 | ||
18032bec PM |
4143 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
4144 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
4145 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 4146 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 4147 | .resetvalue = 0, }, |
1047b9d7 PM |
4148 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
4149 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
4150 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
4151 | .access = PL1_RW, | |
4152 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
4153 | .writefn = omap_ticonfig_write }, | |
4154 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
4155 | .access = PL1_RW, | |
4156 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
4157 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
4158 | .access = PL1_RW, .resetvalue = 0xff0, | |
4159 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
4160 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
4161 | .access = PL1_RW, | |
4162 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
4163 | .writefn = omap_threadid_write }, | |
4164 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
4165 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 4166 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
4167 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
4168 | /* TODO: Peripheral port remap register: | |
4169 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
4170 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
4171 | * when MMU is off. | |
4172 | */ | |
c4804214 | 4173 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 4174 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 4175 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 4176 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
4177 | { .name = "C9", .cp = 15, .crn = 9, |
4178 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
4179 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
4180 | REGINFO_SENTINEL |
4181 | }; | |
4182 | ||
c4241c7d PM |
4183 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4184 | uint64_t value) | |
1047b9d7 | 4185 | { |
c0f4af17 | 4186 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
4187 | } |
4188 | ||
4189 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
4190 | { .name = "XSCALE_CPAR", | |
4191 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
4192 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
4193 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
4194 | { .name = "XSCALE_AUXCR", |
4195 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
4196 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
4197 | .resetvalue = 0, }, | |
3b771579 PM |
4198 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
4199 | * and hope the guest does not really rely on cache behaviour. | |
4200 | */ | |
4201 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
4202 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
4203 | .access = PL1_W, .type = ARM_CP_NOP }, | |
4204 | { .name = "XSCALE_UNLOCK_ICACHE", | |
4205 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
4206 | .access = PL1_W, .type = ARM_CP_NOP }, | |
4207 | { .name = "XSCALE_DCACHE_LOCK", | |
4208 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
4209 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
4210 | { .name = "XSCALE_UNLOCK_DCACHE", | |
4211 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
4212 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
4213 | REGINFO_SENTINEL |
4214 | }; | |
4215 | ||
4216 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
4217 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
4218 | * implementation of this implementation-defined space. | |
4219 | * Ideally this should eventually disappear in favour of actually | |
4220 | * implementing the correct behaviour for all cores. | |
4221 | */ | |
4222 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
4223 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 4224 | .access = PL1_RW, |
7a0e58fa | 4225 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 4226 | .resetvalue = 0 }, |
18032bec PM |
4227 | REGINFO_SENTINEL |
4228 | }; | |
4229 | ||
c4804214 PM |
4230 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
4231 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
4232 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 4233 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4234 | .resetvalue = 0 }, |
c4804214 PM |
4235 | REGINFO_SENTINEL |
4236 | }; | |
4237 | ||
4238 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
4239 | /* We never have a a block transfer operation in progress */ | |
4240 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 4241 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4242 | .resetvalue = 0 }, |
30b05bba PM |
4243 | /* The cache ops themselves: these all NOP for QEMU */ |
4244 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
4245 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4246 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
4247 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4248 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
4249 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4250 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
4251 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4252 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
4253 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
4254 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
4255 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
4256 | REGINFO_SENTINEL |
4257 | }; | |
4258 | ||
4259 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
4260 | /* The cache test-and-clean instructions always return (1 << 30) | |
4261 | * to indicate that there are no dirty cache lines. | |
4262 | */ | |
4263 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 4264 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4265 | .resetvalue = (1 << 30) }, |
c4804214 | 4266 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 4267 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 4268 | .resetvalue = (1 << 30) }, |
c4804214 PM |
4269 | REGINFO_SENTINEL |
4270 | }; | |
4271 | ||
34f90529 PM |
4272 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
4273 | /* Ignore ReadBuffer accesses */ | |
4274 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
4275 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 4276 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 4277 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
4278 | REGINFO_SENTINEL |
4279 | }; | |
4280 | ||
731de9e6 EI |
4281 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4282 | { | |
2fc0cc0e | 4283 | ARMCPU *cpu = env_archcpu(env); |
731de9e6 EI |
4284 | unsigned int cur_el = arm_current_el(env); |
4285 | bool secure = arm_is_secure(env); | |
4286 | ||
4287 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
4288 | return env->cp15.vpidr_el2; | |
4289 | } | |
4290 | return raw_read(env, ri); | |
4291 | } | |
4292 | ||
06a7e647 | 4293 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 4294 | { |
2fc0cc0e | 4295 | ARMCPU *cpu = env_archcpu(env); |
eb5e1d3c PF |
4296 | uint64_t mpidr = cpu->mp_affinity; |
4297 | ||
81bdde9d | 4298 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 4299 | mpidr |= (1U << 31); |
81bdde9d PM |
4300 | /* Cores which are uniprocessor (non-coherent) |
4301 | * but still implement the MP extensions set | |
a8e81b31 | 4302 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 4303 | */ |
a8e81b31 PC |
4304 | if (cpu->mp_is_up) { |
4305 | mpidr |= (1u << 30); | |
4306 | } | |
81bdde9d | 4307 | } |
c4241c7d | 4308 | return mpidr; |
81bdde9d PM |
4309 | } |
4310 | ||
06a7e647 EI |
4311 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4312 | { | |
f0d574d6 EI |
4313 | unsigned int cur_el = arm_current_el(env); |
4314 | bool secure = arm_is_secure(env); | |
4315 | ||
4316 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
4317 | return env->cp15.vmpidr_el2; | |
4318 | } | |
06a7e647 EI |
4319 | return mpidr_read_val(env); |
4320 | } | |
4321 | ||
7ac681cf | 4322 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 4323 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
4324 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
4325 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
84929218 RH |
4326 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4327 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 | 4328 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 4329 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
84929218 RH |
4330 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4331 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
891a2fe7 | 4332 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
4333 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
4334 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
4335 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 4336 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
84929218 RH |
4337 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4338 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
7dd8c9af FA |
4339 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
4340 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 4341 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 4342 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
84929218 RH |
4343 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
4344 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
7dd8c9af FA |
4345 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
4346 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 4347 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
4348 | REGINFO_SENTINEL |
4349 | }; | |
4350 | ||
c4241c7d | 4351 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 4352 | { |
c4241c7d | 4353 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
4354 | } |
4355 | ||
c4241c7d PM |
4356 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4357 | uint64_t value) | |
b0d2b7d0 PM |
4358 | { |
4359 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
4360 | } |
4361 | ||
c4241c7d | 4362 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 4363 | { |
c4241c7d | 4364 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
4365 | } |
4366 | ||
c4241c7d PM |
4367 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4368 | uint64_t value) | |
b0d2b7d0 PM |
4369 | { |
4370 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
4371 | } |
4372 | ||
3f208fd7 PM |
4373 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4374 | bool isread) | |
c2b820fe | 4375 | { |
aaec1432 | 4376 | if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { |
c2b820fe PM |
4377 | return CP_ACCESS_TRAP; |
4378 | } | |
4379 | return CP_ACCESS_OK; | |
4380 | } | |
4381 | ||
4382 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4383 | uint64_t value) | |
4384 | { | |
4385 | env->daif = value & PSTATE_DAIF; | |
4386 | } | |
4387 | ||
220f508f RH |
4388 | static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4389 | { | |
4390 | return env->pstate & PSTATE_PAN; | |
4391 | } | |
4392 | ||
4393 | static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4394 | uint64_t value) | |
4395 | { | |
4396 | env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); | |
4397 | } | |
4398 | ||
4399 | static const ARMCPRegInfo pan_reginfo = { | |
4400 | .name = "PAN", .state = ARM_CP_STATE_AA64, | |
4401 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, | |
4402 | .type = ARM_CP_NO_RAW, .access = PL1_RW, | |
4403 | .readfn = aa64_pan_read, .writefn = aa64_pan_write | |
4404 | }; | |
4405 | ||
9eeb7a1c RH |
4406 | static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) |
4407 | { | |
4408 | return env->pstate & PSTATE_UAO; | |
4409 | } | |
4410 | ||
4411 | static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4412 | uint64_t value) | |
4413 | { | |
4414 | env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); | |
4415 | } | |
4416 | ||
4417 | static const ARMCPRegInfo uao_reginfo = { | |
4418 | .name = "UAO", .state = ARM_CP_STATE_AA64, | |
4419 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, | |
4420 | .type = ARM_CP_NO_RAW, .access = PL1_RW, | |
4421 | .readfn = aa64_uao_read, .writefn = aa64_uao_write | |
4422 | }; | |
4423 | ||
38262d8a RH |
4424 | static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, |
4425 | const ARMCPRegInfo *ri, | |
4426 | bool isread) | |
8af35c37 | 4427 | { |
38262d8a RH |
4428 | /* Cache invalidate/clean to Point of Coherency or Persistence... */ |
4429 | switch (arm_current_el(env)) { | |
4430 | case 0: | |
4431 | /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ | |
4432 | if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { | |
4433 | return CP_ACCESS_TRAP; | |
4434 | } | |
4435 | /* fall through */ | |
4436 | case 1: | |
4437 | /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ | |
4438 | if (arm_hcr_el2_eff(env) & HCR_TPCP) { | |
4439 | return CP_ACCESS_TRAP_EL2; | |
4440 | } | |
4441 | break; | |
8af35c37 PM |
4442 | } |
4443 | return CP_ACCESS_OK; | |
4444 | } | |
4445 | ||
38262d8a | 4446 | static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, |
1bed4d2e RH |
4447 | const ARMCPRegInfo *ri, |
4448 | bool isread) | |
4449 | { | |
38262d8a | 4450 | /* Cache invalidate/clean to Point of Unification... */ |
1bed4d2e RH |
4451 | switch (arm_current_el(env)) { |
4452 | case 0: | |
4453 | /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ | |
4454 | if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { | |
4455 | return CP_ACCESS_TRAP; | |
4456 | } | |
4457 | /* fall through */ | |
4458 | case 1: | |
38262d8a RH |
4459 | /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ |
4460 | if (arm_hcr_el2_eff(env) & HCR_TPU) { | |
1bed4d2e RH |
4461 | return CP_ACCESS_TRAP_EL2; |
4462 | } | |
4463 | break; | |
4464 | } | |
4465 | return CP_ACCESS_OK; | |
4466 | } | |
4467 | ||
dbb1fb27 AB |
4468 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
4469 | * Page D4-1736 (DDI0487A.b) | |
4470 | */ | |
4471 | ||
b7e0730d RH |
4472 | static int vae1_tlbmask(CPUARMState *env) |
4473 | { | |
85d0dc9f | 4474 | /* Since we exclude secure first, we may read HCR_EL2 directly. */ |
b7e0730d | 4475 | if (arm_is_secure_below_el3(env)) { |
452ef8cb RH |
4476 | return ARMMMUIdxBit_SE10_1 | |
4477 | ARMMMUIdxBit_SE10_1_PAN | | |
4478 | ARMMMUIdxBit_SE10_0; | |
85d0dc9f RH |
4479 | } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) |
4480 | == (HCR_E2H | HCR_TGE)) { | |
452ef8cb RH |
4481 | return ARMMMUIdxBit_E20_2 | |
4482 | ARMMMUIdxBit_E20_2_PAN | | |
4483 | ARMMMUIdxBit_E20_0; | |
b7e0730d | 4484 | } else { |
452ef8cb RH |
4485 | return ARMMMUIdxBit_E10_1 | |
4486 | ARMMMUIdxBit_E10_1_PAN | | |
4487 | ARMMMUIdxBit_E10_0; | |
b7e0730d RH |
4488 | } |
4489 | } | |
4490 | ||
fd3ed969 PM |
4491 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4492 | uint64_t value) | |
168aa23b | 4493 | { |
29a0af61 | 4494 | CPUState *cs = env_cpu(env); |
b7e0730d | 4495 | int mask = vae1_tlbmask(env); |
dbb1fb27 | 4496 | |
b7e0730d | 4497 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
168aa23b PM |
4498 | } |
4499 | ||
b4ab8ce9 PM |
4500 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4501 | uint64_t value) | |
4502 | { | |
29a0af61 | 4503 | CPUState *cs = env_cpu(env); |
b7e0730d | 4504 | int mask = vae1_tlbmask(env); |
b4ab8ce9 PM |
4505 | |
4506 | if (tlb_force_broadcast(env)) { | |
527db2be RH |
4507 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
4508 | } else { | |
4509 | tlb_flush_by_mmuidx(cs, mask); | |
b4ab8ce9 | 4510 | } |
b4ab8ce9 PM |
4511 | } |
4512 | ||
90c19cdf | 4513 | static int alle1_tlbmask(CPUARMState *env) |
168aa23b | 4514 | { |
90c19cdf RH |
4515 | /* |
4516 | * Note that the 'ALL' scope must invalidate both stage 1 and | |
fd3ed969 PM |
4517 | * stage 2 translations, whereas most other scopes only invalidate |
4518 | * stage 1 translations. | |
4519 | */ | |
fd3ed969 | 4520 | if (arm_is_secure_below_el3(env)) { |
452ef8cb RH |
4521 | return ARMMMUIdxBit_SE10_1 | |
4522 | ARMMMUIdxBit_SE10_1_PAN | | |
4523 | ARMMMUIdxBit_SE10_0; | |
90c19cdf | 4524 | } else if (arm_feature(env, ARM_FEATURE_EL2)) { |
452ef8cb RH |
4525 | return ARMMMUIdxBit_E10_1 | |
4526 | ARMMMUIdxBit_E10_1_PAN | | |
4527 | ARMMMUIdxBit_E10_0 | | |
4528 | ARMMMUIdxBit_Stage2; | |
fd3ed969 | 4529 | } else { |
452ef8cb RH |
4530 | return ARMMMUIdxBit_E10_1 | |
4531 | ARMMMUIdxBit_E10_1_PAN | | |
4532 | ARMMMUIdxBit_E10_0; | |
fd3ed969 | 4533 | } |
168aa23b PM |
4534 | } |
4535 | ||
85d0dc9f RH |
4536 | static int e2_tlbmask(CPUARMState *env) |
4537 | { | |
4538 | /* TODO: ARMv8.4-SecEL2 */ | |
452ef8cb RH |
4539 | return ARMMMUIdxBit_E20_0 | |
4540 | ARMMMUIdxBit_E20_2 | | |
4541 | ARMMMUIdxBit_E20_2_PAN | | |
4542 | ARMMMUIdxBit_E2; | |
85d0dc9f RH |
4543 | } |
4544 | ||
90c19cdf RH |
4545 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4546 | uint64_t value) | |
4547 | { | |
4548 | CPUState *cs = env_cpu(env); | |
4549 | int mask = alle1_tlbmask(env); | |
4550 | ||
4551 | tlb_flush_by_mmuidx(cs, mask); | |
4552 | } | |
4553 | ||
fd3ed969 | 4554 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
4555 | uint64_t value) |
4556 | { | |
85d0dc9f RH |
4557 | CPUState *cs = env_cpu(env); |
4558 | int mask = e2_tlbmask(env); | |
fd3ed969 | 4559 | |
85d0dc9f | 4560 | tlb_flush_by_mmuidx(cs, mask); |
fd3ed969 PM |
4561 | } |
4562 | ||
43efaa33 PM |
4563 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4564 | uint64_t value) | |
4565 | { | |
2fc0cc0e | 4566 | ARMCPU *cpu = env_archcpu(env); |
43efaa33 PM |
4567 | CPUState *cs = CPU(cpu); |
4568 | ||
127b2b08 | 4569 | tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4570 | } |
4571 | ||
fd3ed969 PM |
4572 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4573 | uint64_t value) | |
4574 | { | |
29a0af61 | 4575 | CPUState *cs = env_cpu(env); |
90c19cdf RH |
4576 | int mask = alle1_tlbmask(env); |
4577 | ||
4578 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); | |
fa439fc5 PM |
4579 | } |
4580 | ||
2bfb9d75 PM |
4581 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4582 | uint64_t value) | |
4583 | { | |
29a0af61 | 4584 | CPUState *cs = env_cpu(env); |
85d0dc9f | 4585 | int mask = e2_tlbmask(env); |
2bfb9d75 | 4586 | |
85d0dc9f | 4587 | tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); |
2bfb9d75 PM |
4588 | } |
4589 | ||
43efaa33 PM |
4590 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4591 | uint64_t value) | |
4592 | { | |
29a0af61 | 4593 | CPUState *cs = env_cpu(env); |
43efaa33 | 4594 | |
127b2b08 | 4595 | tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4596 | } |
4597 | ||
fd3ed969 PM |
4598 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4599 | uint64_t value) | |
fa439fc5 | 4600 | { |
fd3ed969 PM |
4601 | /* Invalidate by VA, EL2 |
4602 | * Currently handles both VAE2 and VALE2, since we don't support | |
4603 | * flush-last-level-only. | |
4604 | */ | |
85d0dc9f RH |
4605 | CPUState *cs = env_cpu(env); |
4606 | int mask = e2_tlbmask(env); | |
fd3ed969 PM |
4607 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
4608 | ||
85d0dc9f | 4609 | tlb_flush_page_by_mmuidx(cs, pageaddr, mask); |
fd3ed969 PM |
4610 | } |
4611 | ||
43efaa33 PM |
4612 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4613 | uint64_t value) | |
4614 | { | |
4615 | /* Invalidate by VA, EL3 | |
4616 | * Currently handles both VAE3 and VALE3, since we don't support | |
4617 | * flush-last-level-only. | |
4618 | */ | |
2fc0cc0e | 4619 | ARMCPU *cpu = env_archcpu(env); |
43efaa33 PM |
4620 | CPUState *cs = CPU(cpu); |
4621 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
4622 | ||
127b2b08 | 4623 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); |
43efaa33 PM |
4624 | } |
4625 | ||
fd3ed969 PM |
4626 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4627 | uint64_t value) | |
4628 | { | |
90c19cdf RH |
4629 | CPUState *cs = env_cpu(env); |
4630 | int mask = vae1_tlbmask(env); | |
fa439fc5 PM |
4631 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
4632 | ||
90c19cdf | 4633 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); |
fa439fc5 PM |
4634 | } |
4635 | ||
b4ab8ce9 PM |
4636 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4637 | uint64_t value) | |
4638 | { | |
4639 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
4640 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
4641 | * since we don't support flush-for-specific-ASID-only or | |
4642 | * flush-last-level-only. | |
4643 | */ | |
90c19cdf RH |
4644 | CPUState *cs = env_cpu(env); |
4645 | int mask = vae1_tlbmask(env); | |
b4ab8ce9 PM |
4646 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
4647 | ||
4648 | if (tlb_force_broadcast(env)) { | |
527db2be RH |
4649 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); |
4650 | } else { | |
4651 | tlb_flush_page_by_mmuidx(cs, pageaddr, mask); | |
b4ab8ce9 | 4652 | } |
b4ab8ce9 PM |
4653 | } |
4654 | ||
fd3ed969 PM |
4655 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4656 | uint64_t value) | |
fa439fc5 | 4657 | { |
29a0af61 | 4658 | CPUState *cs = env_cpu(env); |
fd3ed969 | 4659 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
fa439fc5 | 4660 | |
a67cf277 | 4661 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
e013b741 | 4662 | ARMMMUIdxBit_E2); |
fa439fc5 PM |
4663 | } |
4664 | ||
43efaa33 PM |
4665 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4666 | uint64_t value) | |
4667 | { | |
29a0af61 | 4668 | CPUState *cs = env_cpu(env); |
43efaa33 PM |
4669 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
4670 | ||
a67cf277 | 4671 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
127b2b08 | 4672 | ARMMMUIdxBit_SE3); |
43efaa33 PM |
4673 | } |
4674 | ||
cea66e91 PM |
4675 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4676 | uint64_t value) | |
4677 | { | |
4678 | /* Invalidate by IPA. This has to invalidate any structures that | |
4679 | * contain only stage 2 translation information, but does not need | |
4680 | * to apply to structures that contain combined stage 1 and stage 2 | |
4681 | * translation information. | |
4682 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
4683 | */ | |
2fc0cc0e | 4684 | ARMCPU *cpu = env_archcpu(env); |
cea66e91 PM |
4685 | CPUState *cs = CPU(cpu); |
4686 | uint64_t pageaddr; | |
4687 | ||
4688 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
4689 | return; | |
4690 | } | |
4691 | ||
4692 | pageaddr = sextract64(value << 12, 0, 48); | |
4693 | ||
97fa9350 | 4694 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); |
cea66e91 PM |
4695 | } |
4696 | ||
4697 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4698 | uint64_t value) | |
4699 | { | |
29a0af61 | 4700 | CPUState *cs = env_cpu(env); |
cea66e91 PM |
4701 | uint64_t pageaddr; |
4702 | ||
4703 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
4704 | return; | |
4705 | } | |
4706 | ||
4707 | pageaddr = sextract64(value << 12, 0, 48); | |
4708 | ||
a67cf277 | 4709 | tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
97fa9350 | 4710 | ARMMMUIdxBit_Stage2); |
cea66e91 PM |
4711 | } |
4712 | ||
3f208fd7 PM |
4713 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4714 | bool isread) | |
aca3f40b | 4715 | { |
4351cb72 RH |
4716 | int cur_el = arm_current_el(env); |
4717 | ||
4718 | if (cur_el < 2) { | |
4719 | uint64_t hcr = arm_hcr_el2_eff(env); | |
4720 | ||
4721 | if (cur_el == 0) { | |
4722 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
4723 | if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { | |
4724 | return CP_ACCESS_TRAP_EL2; | |
4725 | } | |
4726 | } else { | |
4727 | if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { | |
4728 | return CP_ACCESS_TRAP; | |
4729 | } | |
4730 | if (hcr & HCR_TDZ) { | |
4731 | return CP_ACCESS_TRAP_EL2; | |
4732 | } | |
4733 | } | |
4734 | } else if (hcr & HCR_TDZ) { | |
4735 | return CP_ACCESS_TRAP_EL2; | |
4736 | } | |
aca3f40b PM |
4737 | } |
4738 | return CP_ACCESS_OK; | |
4739 | } | |
4740 | ||
4741 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
4742 | { | |
2fc0cc0e | 4743 | ARMCPU *cpu = env_archcpu(env); |
aca3f40b PM |
4744 | int dzp_bit = 1 << 4; |
4745 | ||
4746 | /* DZP indicates whether DC ZVA access is allowed */ | |
3f208fd7 | 4747 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
aca3f40b PM |
4748 | dzp_bit = 0; |
4749 | } | |
4750 | return cpu->dcz_blocksize | dzp_bit; | |
4751 | } | |
4752 | ||
3f208fd7 PM |
4753 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4754 | bool isread) | |
f502cfc2 | 4755 | { |
cdcf1405 | 4756 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
4757 | /* Access to SP_EL0 is undefined if it's being used as |
4758 | * the stack pointer. | |
4759 | */ | |
4760 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
4761 | } | |
4762 | return CP_ACCESS_OK; | |
4763 | } | |
4764 | ||
4765 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
4766 | { | |
4767 | return env->pstate & PSTATE_SP; | |
4768 | } | |
4769 | ||
4770 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
4771 | { | |
4772 | update_spsel(env, val); | |
4773 | } | |
4774 | ||
137feaa9 FA |
4775 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4776 | uint64_t value) | |
4777 | { | |
2fc0cc0e | 4778 | ARMCPU *cpu = env_archcpu(env); |
137feaa9 FA |
4779 | |
4780 | if (raw_read(env, ri) == value) { | |
4781 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
4782 | * to do a lot of pointless SCTLR writes. | |
4783 | */ | |
4784 | return; | |
4785 | } | |
4786 | ||
06312feb PM |
4787 | if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { |
4788 | /* M bit is RAZ/WI for PMSA with no MPU implemented */ | |
4789 | value &= ~SCTLR_M; | |
4790 | } | |
4791 | ||
137feaa9 FA |
4792 | raw_write(env, ri, value); |
4793 | /* ??? Lots of these bits are not implemented. */ | |
4794 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
d10eb08f | 4795 | tlb_flush(CPU(cpu)); |
2e5dcf36 RH |
4796 | |
4797 | if (ri->type & ARM_CP_SUPPRESS_TB_END) { | |
4798 | /* | |
4799 | * Normally we would always end the TB on an SCTLR write; see the | |
4800 | * comment in ARMCPRegInfo sctlr initialization below for why Xscale | |
4801 | * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild | |
4802 | * of hflags from the translator, so do it here. | |
4803 | */ | |
4804 | arm_rebuild_hflags(env); | |
4805 | } | |
137feaa9 FA |
4806 | } |
4807 | ||
3f208fd7 PM |
4808 | static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
4809 | bool isread) | |
03fbf20f PM |
4810 | { |
4811 | if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { | |
f2cae609 | 4812 | return CP_ACCESS_TRAP_FP_EL2; |
03fbf20f PM |
4813 | } |
4814 | if (env->cp15.cptr_el[3] & CPTR_TFP) { | |
f2cae609 | 4815 | return CP_ACCESS_TRAP_FP_EL3; |
03fbf20f PM |
4816 | } |
4817 | return CP_ACCESS_OK; | |
4818 | } | |
4819 | ||
a8d64e73 PM |
4820 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
4821 | uint64_t value) | |
4822 | { | |
4823 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; | |
4824 | } | |
4825 | ||
b0d2b7d0 PM |
4826 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
4827 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
4828 | * significantly for system emulation of AArch64 CPUs. | |
4829 | */ | |
4830 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
4831 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
4832 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
4833 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
4834 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 4835 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
4836 | .access = PL0_RW, .accessfn = aa64_daif_access, |
4837 | .fieldoffset = offsetof(CPUARMState, daif), | |
4838 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
4839 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
4840 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
b916c9c3 | 4841 | .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
fe03d45f | 4842 | .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
b0d2b7d0 PM |
4843 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, |
4844 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
b916c9c3 | 4845 | .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
fe03d45f | 4846 | .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
b0d2b7d0 PM |
4847 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
4848 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 4849 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
4850 | .readfn = aa64_dczid_read }, |
4851 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
4852 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
4853 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
4854 | #ifndef CONFIG_USER_ONLY | |
4855 | /* Avoid overhead of an access check that always passes in user-mode */ | |
4856 | .accessfn = aa64_zva_access, | |
4857 | #endif | |
4858 | }, | |
0eef9d98 PM |
4859 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
4860 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
4861 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
4862 | /* Cache ops: all NOPs since we don't emulate caches */ |
4863 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
4864 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
38262d8a RH |
4865 | .access = PL1_W, .type = ARM_CP_NOP, |
4866 | .accessfn = aa64_cacheop_pou_access }, | |
8af35c37 PM |
4867 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, |
4868 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
38262d8a RH |
4869 | .access = PL1_W, .type = ARM_CP_NOP, |
4870 | .accessfn = aa64_cacheop_pou_access }, | |
8af35c37 PM |
4871 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, |
4872 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
4873 | .access = PL0_W, .type = ARM_CP_NOP, | |
38262d8a | 4874 | .accessfn = aa64_cacheop_pou_access }, |
8af35c37 PM |
4875 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, |
4876 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1bed4d2e RH |
4877 | .access = PL1_W, .accessfn = aa64_cacheop_poc_access, |
4878 | .type = ARM_CP_NOP }, | |
8af35c37 PM |
4879 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, |
4880 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
1803d271 | 4881 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
8af35c37 PM |
4882 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, |
4883 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
4884 | .access = PL0_W, .type = ARM_CP_NOP, | |
1bed4d2e | 4885 | .accessfn = aa64_cacheop_poc_access }, |
8af35c37 PM |
4886 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, |
4887 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
1803d271 | 4888 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
8af35c37 PM |
4889 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, |
4890 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
4891 | .access = PL0_W, .type = ARM_CP_NOP, | |
38262d8a | 4892 | .accessfn = aa64_cacheop_pou_access }, |
8af35c37 PM |
4893 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, |
4894 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
4895 | .access = PL0_W, .type = ARM_CP_NOP, | |
1bed4d2e | 4896 | .accessfn = aa64_cacheop_poc_access }, |
8af35c37 PM |
4897 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, |
4898 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
1803d271 | 4899 | .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, |
168aa23b PM |
4900 | /* TLBI operations */ |
4901 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 4902 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
30881b73 | 4903 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4904 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 4905 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4906 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
30881b73 | 4907 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4908 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4909 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4910 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
30881b73 | 4911 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4912 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 4913 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4914 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
30881b73 | 4915 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4916 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4917 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4918 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
30881b73 | 4919 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4920 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4921 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4922 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
30881b73 | 4923 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4924 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 4925 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4926 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
30881b73 | 4927 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4928 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 4929 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4930 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
30881b73 | 4931 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4932 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4933 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4934 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
30881b73 | 4935 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4936 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 4937 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4938 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
30881b73 | 4939 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4940 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4941 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4942 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
30881b73 | 4943 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4944 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 4945 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 4946 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
30881b73 | 4947 | .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, |
fd3ed969 | 4948 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
4949 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
4950 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
4951 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4952 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
4953 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
4954 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
4955 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4956 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
83ddf975 PM |
4957 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
4958 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
4959 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 4960 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
4961 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
4962 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
4963 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4964 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
4965 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
4966 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
4967 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4968 | .writefn = tlbi_aa64_ipas2e1_write }, | |
4969 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | |
4970 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
4971 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4972 | .writefn = tlbi_aa64_ipas2e1_write }, | |
83ddf975 PM |
4973 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
4974 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
4975 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 4976 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
4977 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
4978 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
4979 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
4980 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
4981 | #ifndef CONFIG_USER_ONLY |
4982 | /* 64 bit address translation operations */ | |
4983 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
4984 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
0710b2fa PM |
4985 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4986 | .writefn = ats_write64 }, | |
19525524 PM |
4987 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
4988 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
0710b2fa PM |
4989 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4990 | .writefn = ats_write64 }, | |
19525524 PM |
4991 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
4992 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
0710b2fa PM |
4993 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4994 | .writefn = ats_write64 }, | |
19525524 PM |
4995 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
4996 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
0710b2fa PM |
4997 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
4998 | .writefn = ats_write64 }, | |
2a47df95 | 4999 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 5000 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
0710b2fa PM |
5001 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5002 | .writefn = ats_write64 }, | |
2a47df95 | 5003 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, |
7a379c7e | 5004 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
0710b2fa PM |
5005 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5006 | .writefn = ats_write64 }, | |
2a47df95 | 5007 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 5008 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
0710b2fa PM |
5009 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5010 | .writefn = ats_write64 }, | |
2a47df95 | 5011 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, |
7a379c7e | 5012 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
0710b2fa PM |
5013 | .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5014 | .writefn = ats_write64 }, | |
2a47df95 PM |
5015 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ |
5016 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
5017 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
0710b2fa PM |
5018 | .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5019 | .writefn = ats_write64 }, | |
2a47df95 PM |
5020 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, |
5021 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
0710b2fa PM |
5022 | .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, |
5023 | .writefn = ats_write64 }, | |
c96fc9b5 EI |
5024 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
5025 | .type = ARM_CP_ALIAS, | |
5026 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
5027 | .access = PL1_RW, .resetvalue = 0, | |
5028 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
5029 | .writefn = par_write }, | |
19525524 | 5030 | #endif |
995939a6 | 5031 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 5032 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
30881b73 RH |
5033 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
5034 | .writefn = tlbimva_is_write }, | |
9449fdf6 | 5035 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
30881b73 | 5036 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
fa439fc5 | 5037 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 5038 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
30881b73 RH |
5039 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
5040 | .writefn = tlbimva_write }, | |
9449fdf6 | 5041 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
30881b73 RH |
5042 | .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, |
5043 | .writefn = tlbimvaa_write }, | |
541ef8c2 SS |
5044 | { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
5045 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5046 | .writefn = tlbimva_hyp_write }, | |
5047 | { .name = "TLBIMVALHIS", | |
5048 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
5049 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5050 | .writefn = tlbimva_hyp_is_write }, | |
5051 | { .name = "TLBIIPAS2", | |
5052 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
5053 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5054 | .writefn = tlbiipas2_write }, | |
5055 | { .name = "TLBIIPAS2IS", | |
5056 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
5057 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5058 | .writefn = tlbiipas2_is_write }, | |
5059 | { .name = "TLBIIPAS2L", | |
5060 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
5061 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5062 | .writefn = tlbiipas2_write }, | |
5063 | { .name = "TLBIIPAS2LIS", | |
5064 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
5065 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5066 | .writefn = tlbiipas2_is_write }, | |
9449fdf6 PM |
5067 | /* 32 bit cache operations */ |
5068 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
38262d8a | 5069 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 PM |
5070 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, |
5071 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5072 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
38262d8a | 5073 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 | 5074 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, |
38262d8a | 5075 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 PM |
5076 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, |
5077 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5078 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
5079 | .type = ARM_CP_NOP, .access = PL1_W }, | |
5080 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1bed4d2e | 5081 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5082 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
1803d271 | 5083 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5084 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, |
1bed4d2e | 5085 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5086 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
1803d271 | 5087 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5088 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, |
38262d8a | 5089 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, |
9449fdf6 | 5090 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, |
1bed4d2e | 5091 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, |
9449fdf6 | 5092 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
1803d271 | 5093 | .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, |
9449fdf6 | 5094 | /* MMU Domain access control / MPU write buffer control */ |
0c17d68c | 5095 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
84929218 | 5096 | .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, |
0c17d68c FA |
5097 | .writefn = dacr_write, .raw_writefn = raw_write, |
5098 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
5099 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 5100 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5101 | .type = ARM_CP_ALIAS, |
a0618a19 | 5102 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
5103 | .access = PL1_RW, |
5104 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 5105 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5106 | .type = ARM_CP_ALIAS, |
a65f1de9 | 5107 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5108 | .access = PL1_RW, |
5109 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, | |
f502cfc2 PM |
5110 | /* We rely on the access checks not allowing the guest to write to the |
5111 | * state field when SPSel indicates that it's being used as the stack | |
5112 | * pointer. | |
5113 | */ | |
5114 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
5115 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
5116 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 5117 | .type = ARM_CP_ALIAS, |
f502cfc2 | 5118 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
5119 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
5120 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 5121 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 5122 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
5123 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
5124 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 5125 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 5126 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
03fbf20f PM |
5127 | { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
5128 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, | |
5129 | .type = ARM_CP_ALIAS, | |
5130 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), | |
5131 | .access = PL2_RW, .accessfn = fpexc32_access }, | |
6a43e0b6 PM |
5132 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
5133 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
5134 | .access = PL2_RW, .resetvalue = 0, | |
5135 | .writefn = dacr_write, .raw_writefn = raw_write, | |
5136 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
5137 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | |
5138 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
5139 | .access = PL2_RW, .resetvalue = 0, | |
5140 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
5141 | { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, | |
5142 | .type = ARM_CP_ALIAS, | |
5143 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, | |
5144 | .access = PL2_RW, | |
5145 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, | |
5146 | { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, | |
5147 | .type = ARM_CP_ALIAS, | |
5148 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, | |
5149 | .access = PL2_RW, | |
5150 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, | |
5151 | { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, | |
5152 | .type = ARM_CP_ALIAS, | |
5153 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, | |
5154 | .access = PL2_RW, | |
5155 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, | |
5156 | { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, | |
5157 | .type = ARM_CP_ALIAS, | |
5158 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, | |
5159 | .access = PL2_RW, | |
5160 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, | |
a8d64e73 PM |
5161 | { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
5162 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, | |
5163 | .resetvalue = 0, | |
5164 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, | |
5165 | { .name = "SDCR", .type = ARM_CP_ALIAS, | |
5166 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, | |
5167 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, | |
5168 | .writefn = sdcr_write, | |
5169 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, | |
b0d2b7d0 PM |
5170 | REGINFO_SENTINEL |
5171 | }; | |
5172 | ||
d42e3c26 | 5173 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 5174 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d79e0c06 | 5175 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, |
d42e3c26 EI |
5176 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
5177 | .access = PL2_RW, | |
5178 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
ce4afed8 | 5179 | { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, |
7a0e58fa | 5180 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
5181 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
5182 | .access = PL2_RW, | |
ce4afed8 | 5183 | .type = ARM_CP_CONST, .resetvalue = 0 }, |
831a2fca PM |
5184 | { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, |
5185 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, | |
5186 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e78e33 PM |
5187 | { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, |
5188 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, | |
5189 | .access = PL2_RW, | |
5190 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
c6f19164 GB |
5191 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
5192 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
5193 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
5194 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5195 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
5196 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5197 | .resetvalue = 0 }, | |
5198 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
b5ede85b | 5199 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
95f949ac | 5200 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
2179ef95 PM |
5201 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5202 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
5203 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5204 | .resetvalue = 0 }, | |
55b53c71 | 5205 | { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, |
b5ede85b | 5206 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
2179ef95 PM |
5207 | .access = PL2_RW, .type = ARM_CP_CONST, |
5208 | .resetvalue = 0 }, | |
37cd6c24 PM |
5209 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
5210 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
5211 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5212 | .resetvalue = 0 }, | |
5213 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
5214 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
5215 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5216 | .resetvalue = 0 }, | |
06ec4c8c EI |
5217 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
5218 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
5219 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e9c2fe EI |
5220 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
5221 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
5222 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
5223 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b698e9cf EI |
5224 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
5225 | .cp = 15, .opc1 = 6, .crm = 2, | |
5226 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
5227 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | |
5228 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
5229 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
5230 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
5231 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
5232 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
5233 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
5234 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
5235 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
5236 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
5237 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
5238 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
5239 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5240 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
5241 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
5242 | .resetvalue = 0 }, | |
0b6440af EI |
5243 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
5244 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
5245 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
5246 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
5247 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
5248 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5249 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
5250 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
5251 | .resetvalue = 0 }, | |
b0e66d95 EI |
5252 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
5253 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
5254 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5255 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
5256 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
5257 | .resetvalue = 0 }, | |
5258 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
5259 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
5260 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5261 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
5262 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
5263 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
14cc7b54 SF |
5264 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
5265 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
d6c8cf81 PM |
5266 | .access = PL2_RW, .accessfn = access_tda, |
5267 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
59e05530 EI |
5268 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
5269 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
5270 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
5271 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2a5a9abd AF |
5272 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
5273 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
5274 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
cba517c3 PM |
5275 | { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, |
5276 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
5277 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5278 | { .name = "HIFAR", .state = ARM_CP_STATE_AA32, | |
5279 | .type = ARM_CP_CONST, | |
5280 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, | |
5281 | .access = PL2_RW, .resetvalue = 0 }, | |
d42e3c26 EI |
5282 | REGINFO_SENTINEL |
5283 | }; | |
5284 | ||
ce4afed8 PM |
5285 | /* Ditto, but for registers which exist in ARMv8 but not v7 */ |
5286 | static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { | |
5287 | { .name = "HCR2", .state = ARM_CP_STATE_AA32, | |
5288 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, | |
5289 | .access = PL2_RW, | |
5290 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
5291 | REGINFO_SENTINEL | |
5292 | }; | |
5293 | ||
d1fb4da2 | 5294 | static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) |
f149e3e8 | 5295 | { |
2fc0cc0e | 5296 | ARMCPU *cpu = env_archcpu(env); |
d1fb4da2 RH |
5297 | |
5298 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
5299 | valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ | |
5300 | } else { | |
5301 | valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ | |
5302 | } | |
f149e3e8 EI |
5303 | |
5304 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
5305 | valid_mask &= ~HCR_HCD; | |
77077a83 JK |
5306 | } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
5307 | /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. | |
5308 | * However, if we're using the SMC PSCI conduit then QEMU is | |
5309 | * effectively acting like EL3 firmware and so the guest at | |
5310 | * EL2 should retain the ability to prevent EL1 from being | |
5311 | * able to make SMC calls into the ersatz firmware, so in | |
5312 | * that case HCR.TSC should be read/write. | |
5313 | */ | |
f149e3e8 EI |
5314 | valid_mask &= ~HCR_TSC; |
5315 | } | |
d1fb4da2 RH |
5316 | |
5317 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
5318 | if (cpu_isar_feature(aa64_vh, cpu)) { | |
5319 | valid_mask |= HCR_E2H; | |
5320 | } | |
5321 | if (cpu_isar_feature(aa64_lor, cpu)) { | |
5322 | valid_mask |= HCR_TLOR; | |
5323 | } | |
5324 | if (cpu_isar_feature(aa64_pauth, cpu)) { | |
5325 | valid_mask |= HCR_API | HCR_APK; | |
5326 | } | |
ef682cdb | 5327 | } |
f149e3e8 EI |
5328 | |
5329 | /* Clear RES0 bits. */ | |
5330 | value &= valid_mask; | |
5331 | ||
5332 | /* These bits change the MMU setup: | |
5333 | * HCR_VM enables stage 2 translation | |
5334 | * HCR_PTW forbids certain page-table setups | |
5335 | * HCR_DC Disables stage1 and enables stage2 translation | |
5336 | */ | |
ce4afed8 | 5337 | if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { |
d10eb08f | 5338 | tlb_flush(CPU(cpu)); |
f149e3e8 | 5339 | } |
ce4afed8 | 5340 | env->cp15.hcr_el2 = value; |
89430fc6 PM |
5341 | |
5342 | /* | |
5343 | * Updates to VI and VF require us to update the status of | |
5344 | * virtual interrupts, which are the logical OR of these bits | |
5345 | * and the state of the input lines from the GIC. (This requires | |
5346 | * that we have the iothread lock, which is done by marking the | |
5347 | * reginfo structs as ARM_CP_IO.) | |
5348 | * Note that if a write to HCR pends a VIRQ or VFIQ it is never | |
5349 | * possible for it to be taken immediately, because VIRQ and | |
5350 | * VFIQ are masked unless running at EL0 or EL1, and HCR | |
5351 | * can only be written at EL2. | |
5352 | */ | |
5353 | g_assert(qemu_mutex_iothread_locked()); | |
5354 | arm_cpu_update_virq(cpu); | |
5355 | arm_cpu_update_vfiq(cpu); | |
ce4afed8 PM |
5356 | } |
5357 | ||
d1fb4da2 RH |
5358 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
5359 | { | |
5360 | do_hcr_write(env, value, 0); | |
5361 | } | |
5362 | ||
ce4afed8 PM |
5363 | static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, |
5364 | uint64_t value) | |
5365 | { | |
5366 | /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ | |
5367 | value = deposit64(env->cp15.hcr_el2, 32, 32, value); | |
d1fb4da2 | 5368 | do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); |
ce4afed8 PM |
5369 | } |
5370 | ||
5371 | static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, | |
5372 | uint64_t value) | |
5373 | { | |
5374 | /* Handle HCR write, i.e. write to low half of HCR_EL2 */ | |
5375 | value = deposit64(env->cp15.hcr_el2, 0, 32, value); | |
d1fb4da2 | 5376 | do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); |
f149e3e8 EI |
5377 | } |
5378 | ||
f7778444 RH |
5379 | /* |
5380 | * Return the effective value of HCR_EL2. | |
5381 | * Bits that are not included here: | |
5382 | * RW (read from SCR_EL3.RW as needed) | |
5383 | */ | |
5384 | uint64_t arm_hcr_el2_eff(CPUARMState *env) | |
5385 | { | |
5386 | uint64_t ret = env->cp15.hcr_el2; | |
5387 | ||
5388 | if (arm_is_secure_below_el3(env)) { | |
5389 | /* | |
5390 | * "This register has no effect if EL2 is not enabled in the | |
5391 | * current Security state". This is ARMv8.4-SecEL2 speak for | |
5392 | * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). | |
5393 | * | |
5394 | * Prior to that, the language was "In an implementation that | |
5395 | * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves | |
5396 | * as if this field is 0 for all purposes other than a direct | |
5397 | * read or write access of HCR_EL2". With lots of enumeration | |
5398 | * on a per-field basis. In current QEMU, this is condition | |
5399 | * is arm_is_secure_below_el3. | |
5400 | * | |
5401 | * Since the v8.4 language applies to the entire register, and | |
5402 | * appears to be backward compatible, use that. | |
5403 | */ | |
4990e1d3 RH |
5404 | return 0; |
5405 | } | |
5406 | ||
5407 | /* | |
5408 | * For a cpu that supports both aarch64 and aarch32, we can set bits | |
5409 | * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. | |
5410 | * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. | |
5411 | */ | |
5412 | if (!arm_el_is_aa64(env, 2)) { | |
5413 | uint64_t aa32_valid; | |
5414 | ||
5415 | /* | |
5416 | * These bits are up-to-date as of ARMv8.6. | |
5417 | * For HCR, it's easiest to list just the 2 bits that are invalid. | |
5418 | * For HCR2, list those that are valid. | |
5419 | */ | |
5420 | aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); | |
5421 | aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | | |
5422 | HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); | |
5423 | ret &= aa32_valid; | |
5424 | } | |
5425 | ||
5426 | if (ret & HCR_TGE) { | |
5427 | /* These bits are up-to-date as of ARMv8.6. */ | |
f7778444 RH |
5428 | if (ret & HCR_E2H) { |
5429 | ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | | |
5430 | HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | | |
5431 | HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | | |
4990e1d3 RH |
5432 | HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | |
5433 | HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | | |
5434 | HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); | |
f7778444 RH |
5435 | } else { |
5436 | ret |= HCR_FMO | HCR_IMO | HCR_AMO; | |
5437 | } | |
5438 | ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | | |
5439 | HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | | |
5440 | HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | | |
5441 | HCR_TLOR); | |
5442 | } | |
5443 | ||
5444 | return ret; | |
5445 | } | |
5446 | ||
fc1120a7 PM |
5447 | static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
5448 | uint64_t value) | |
5449 | { | |
5450 | /* | |
5451 | * For A-profile AArch32 EL3, if NSACR.CP10 | |
5452 | * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. | |
5453 | */ | |
5454 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
5455 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
5456 | value &= ~(0x3 << 10); | |
5457 | value |= env->cp15.cptr_el[2] & (0x3 << 10); | |
5458 | } | |
5459 | env->cp15.cptr_el[2] = value; | |
5460 | } | |
5461 | ||
5462 | static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
5463 | { | |
5464 | /* | |
5465 | * For A-profile AArch32 EL3, if NSACR.CP10 | |
5466 | * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. | |
5467 | */ | |
5468 | uint64_t value = env->cp15.cptr_el[2]; | |
5469 | ||
5470 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
5471 | !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { | |
5472 | value |= 0x3 << 10; | |
5473 | } | |
5474 | return value; | |
5475 | } | |
5476 | ||
4771cd01 | 5477 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 | 5478 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
89430fc6 | 5479 | .type = ARM_CP_IO, |
f149e3e8 EI |
5480 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
5481 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
c624ea0f | 5482 | .writefn = hcr_write }, |
ce4afed8 | 5483 | { .name = "HCR", .state = ARM_CP_STATE_AA32, |
89430fc6 | 5484 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
ce4afed8 PM |
5485 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
5486 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
c624ea0f | 5487 | .writefn = hcr_writelow }, |
831a2fca PM |
5488 | { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, |
5489 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, | |
5490 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3b685ba7 | 5491 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5492 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
5493 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
5494 | .access = PL2_RW, | |
5495 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
68e78e33 | 5496 | { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, |
f2c30f42 EI |
5497 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
5498 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
cba517c3 | 5499 | { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, |
63b60551 EI |
5500 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, |
5501 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
cba517c3 PM |
5502 | { .name = "HIFAR", .state = ARM_CP_STATE_AA32, |
5503 | .type = ARM_CP_ALIAS, | |
5504 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, | |
5505 | .access = PL2_RW, | |
5506 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 5507 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5508 | .type = ARM_CP_ALIAS, |
3b685ba7 | 5509 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5510 | .access = PL2_RW, |
5511 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, | |
d79e0c06 | 5512 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, |
d42e3c26 EI |
5513 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
5514 | .access = PL2_RW, .writefn = vbar_write, | |
5515 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
5516 | .resetvalue = 0 }, | |
884b4dee GB |
5517 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
5518 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 5519 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 5520 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
5521 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
5522 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
5523 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
fc1120a7 PM |
5524 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), |
5525 | .readfn = cptr_el2_read, .writefn = cptr_el2_write }, | |
95f949ac EI |
5526 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5527 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
5528 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
5529 | .resetvalue = 0 }, | |
5530 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
b5ede85b | 5531 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
95f949ac EI |
5532 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
5533 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
5534 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
5535 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
5536 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5537 | .resetvalue = 0 }, | |
5538 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
55b53c71 | 5539 | { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, |
b5ede85b | 5540 | .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
2179ef95 PM |
5541 | .access = PL2_RW, .type = ARM_CP_CONST, |
5542 | .resetvalue = 0 }, | |
37cd6c24 PM |
5543 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
5544 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
5545 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5546 | .resetvalue = 0 }, | |
5547 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
5548 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
5549 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5550 | .resetvalue = 0 }, | |
06ec4c8c EI |
5551 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
5552 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
d06dc933 RH |
5553 | .access = PL2_RW, .writefn = vmsa_tcr_el12_write, |
5554 | /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ | |
06ec4c8c | 5555 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
68e9c2fe EI |
5556 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
5557 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 | 5558 | .type = ARM_CP_ALIAS, |
68e9c2fe EI |
5559 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
5560 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
5561 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
5562 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 PM |
5563 | .access = PL2_RW, |
5564 | /* no .writefn needed as this can't cause an ASID change; | |
5565 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
5566 | */ | |
68e9c2fe | 5567 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
b698e9cf EI |
5568 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
5569 | .cp = 15, .opc1 = 6, .crm = 2, | |
5570 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
5571 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
5572 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
5573 | .writefn = vttbr_write }, | |
5574 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
5575 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
5576 | .access = PL2_RW, .writefn = vttbr_write, | |
5577 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
5578 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
5579 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
5580 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
5581 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
5582 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
5583 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
5584 | .access = PL2_RW, .resetvalue = 0, | |
5585 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
5586 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
5587 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
ed30da8e | 5588 | .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, |
a57633c0 EI |
5589 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
5590 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
5591 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 5592 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
541ef8c2 SS |
5593 | { .name = "TLBIALLNSNH", |
5594 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
5595 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5596 | .writefn = tlbiall_nsnh_write }, | |
5597 | { .name = "TLBIALLNSNHIS", | |
5598 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
5599 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5600 | .writefn = tlbiall_nsnh_is_write }, | |
5601 | { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
5602 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5603 | .writefn = tlbiall_hyp_write }, | |
5604 | { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
5605 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5606 | .writefn = tlbiall_hyp_is_write }, | |
5607 | { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
5608 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5609 | .writefn = tlbimva_hyp_write }, | |
5610 | { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
5611 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
5612 | .writefn = tlbimva_hyp_is_write }, | |
51da9014 EI |
5613 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
5614 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
5615 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 5616 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
5617 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
5618 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
5619 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 5620 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
5621 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
5622 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
5623 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
5624 | .writefn = tlbi_aa64_vae2_write }, | |
5625 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
5626 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
5627 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
5628 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
5629 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
5630 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
5631 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 5632 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
5633 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
5634 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
5635 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
5636 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 5637 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
5638 | /* Unlike the other EL2-related AT operations, these must |
5639 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
5640 | * define them here rather than with the rest of the AT ops. | |
5641 | */ | |
5642 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
5643 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
5644 | .access = PL2_W, .accessfn = at_s1e2_access, | |
0710b2fa | 5645 | .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, |
2a47df95 PM |
5646 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, |
5647 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
5648 | .access = PL2_W, .accessfn = at_s1e2_access, | |
0710b2fa | 5649 | .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, |
14db7fe0 PM |
5650 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
5651 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
5652 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
5653 | * to behave as if SCR.NS was 1. | |
5654 | */ | |
5655 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
5656 | .access = PL2_W, | |
0710b2fa | 5657 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
14db7fe0 PM |
5658 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
5659 | .access = PL2_W, | |
0710b2fa | 5660 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, |
0b6440af EI |
5661 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
5662 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
5663 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
5664 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
5665 | * both ARMv7 and ARMv8. | |
5666 | */ | |
5667 | .access = PL2_RW, .resetvalue = 3, | |
5668 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
5669 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
5670 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
5671 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
5672 | .writefn = gt_cntvoff_write, | |
5673 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
5674 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
5675 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
5676 | .writefn = gt_cntvoff_write, | |
5677 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
5678 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
5679 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
5680 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
5681 | .type = ARM_CP_IO, .access = PL2_RW, | |
5682 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
5683 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
5684 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
5685 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
5686 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
5687 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
5688 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
d44ec156 | 5689 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
b0e66d95 EI |
5690 | .resetfn = gt_hyp_timer_reset, |
5691 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
5692 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
5693 | .type = ARM_CP_IO, | |
5694 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
5695 | .access = PL2_RW, | |
5696 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
5697 | .resetvalue = 0, | |
5698 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 5699 | #endif |
14cc7b54 SF |
5700 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
5701 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we | |
5ecdd3e4 | 5702 | * don't implement any PMU event counters, so using zero as a reset |
14cc7b54 SF |
5703 | * value for MDCR_EL2 is okay |
5704 | */ | |
5705 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, | |
5706 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
5707 | .access = PL2_RW, .resetvalue = 0, | |
5708 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, | |
59e05530 EI |
5709 | { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
5710 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
5711 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
5712 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
5713 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, | |
5714 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
5715 | .access = PL2_RW, | |
5716 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
2a5a9abd AF |
5717 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
5718 | .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
5719 | .access = PL2_RW, | |
5720 | .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, | |
3b685ba7 EI |
5721 | REGINFO_SENTINEL |
5722 | }; | |
5723 | ||
ce4afed8 PM |
5724 | static const ARMCPRegInfo el2_v8_cp_reginfo[] = { |
5725 | { .name = "HCR2", .state = ARM_CP_STATE_AA32, | |
89430fc6 | 5726 | .type = ARM_CP_ALIAS | ARM_CP_IO, |
ce4afed8 PM |
5727 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, |
5728 | .access = PL2_RW, | |
5729 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), | |
5730 | .writefn = hcr_writehigh }, | |
5731 | REGINFO_SENTINEL | |
5732 | }; | |
5733 | ||
2f027fc5 PM |
5734 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
5735 | bool isread) | |
5736 | { | |
5737 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. | |
5738 | * At Secure EL1 it traps to EL3. | |
5739 | */ | |
5740 | if (arm_current_el(env) == 3) { | |
5741 | return CP_ACCESS_OK; | |
5742 | } | |
5743 | if (arm_is_secure_below_el3(env)) { | |
5744 | return CP_ACCESS_TRAP_EL3; | |
5745 | } | |
5746 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ | |
5747 | if (isread) { | |
5748 | return CP_ACCESS_OK; | |
5749 | } | |
5750 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
5751 | } | |
5752 | ||
60fb1a87 GB |
5753 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
5754 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
5755 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
5756 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
5757 | .resetvalue = 0, .writefn = scr_write }, | |
f80741d1 | 5758 | { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, |
60fb1a87 | 5759 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
efe4a274 PM |
5760 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
5761 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 5762 | .writefn = scr_write }, |
60fb1a87 GB |
5763 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
5764 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
5765 | .access = PL3_RW, .resetvalue = 0, | |
5766 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
5767 | { .name = "SDER", | |
5768 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
5769 | .access = PL3_RW, .resetvalue = 0, | |
5770 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
60fb1a87 | 5771 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
efe4a274 PM |
5772 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
5773 | .writefn = vbar_write, .resetvalue = 0, | |
60fb1a87 | 5774 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
7dd8c9af FA |
5775 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
5776 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
f478847f | 5777 | .access = PL3_RW, .resetvalue = 0, |
7dd8c9af | 5778 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, |
11f136ee FA |
5779 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
5780 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
5781 | .access = PL3_RW, |
5782 | /* no .writefn needed as this can't cause an ASID change; | |
811595a2 PM |
5783 | * we must provide a .raw_writefn and .resetfn because we handle |
5784 | * reset and migration for the AArch32 TTBCR(S), which might be | |
5785 | * using mask and base_mask. | |
6459b94c | 5786 | */ |
811595a2 | 5787 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee | 5788 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
81547d66 | 5789 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5790 | .type = ARM_CP_ALIAS, |
81547d66 EI |
5791 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
5792 | .access = PL3_RW, | |
5793 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 5794 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
5795 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
5796 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
5797 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
5798 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
5799 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 5800 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 5801 | .type = ARM_CP_ALIAS, |
81547d66 | 5802 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
5803 | .access = PL3_RW, |
5804 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, | |
a1ba125c EI |
5805 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
5806 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
5807 | .access = PL3_RW, .writefn = vbar_write, | |
5808 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
5809 | .resetvalue = 0 }, | |
c6f19164 GB |
5810 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
5811 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
5812 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
5813 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
5814 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
5815 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
5816 | .access = PL3_RW, .resetvalue = 0, | |
5817 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
5818 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
5819 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
5820 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5821 | .resetvalue = 0 }, | |
37cd6c24 PM |
5822 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
5823 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
5824 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5825 | .resetvalue = 0 }, | |
5826 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
5827 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
5828 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5829 | .resetvalue = 0 }, | |
43efaa33 PM |
5830 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
5831 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
5832 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5833 | .writefn = tlbi_aa64_alle3is_write }, | |
5834 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
5835 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
5836 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5837 | .writefn = tlbi_aa64_vae3is_write }, | |
5838 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
5839 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
5840 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5841 | .writefn = tlbi_aa64_vae3is_write }, | |
5842 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
5843 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
5844 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5845 | .writefn = tlbi_aa64_alle3_write }, | |
5846 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
5847 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
5848 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5849 | .writefn = tlbi_aa64_vae3_write }, | |
5850 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
5851 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
5852 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
5853 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
5854 | REGINFO_SENTINEL |
5855 | }; | |
5856 | ||
e2cce18f RH |
5857 | #ifndef CONFIG_USER_ONLY |
5858 | /* Test if system register redirection is to occur in the current state. */ | |
5859 | static bool redirect_for_e2h(CPUARMState *env) | |
5860 | { | |
5861 | return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); | |
5862 | } | |
5863 | ||
5864 | static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
5865 | { | |
5866 | CPReadFn *readfn; | |
5867 | ||
5868 | if (redirect_for_e2h(env)) { | |
5869 | /* Switch to the saved EL2 version of the register. */ | |
5870 | ri = ri->opaque; | |
5871 | readfn = ri->readfn; | |
5872 | } else { | |
5873 | readfn = ri->orig_readfn; | |
5874 | } | |
5875 | if (readfn == NULL) { | |
5876 | readfn = raw_read; | |
5877 | } | |
5878 | return readfn(env, ri); | |
5879 | } | |
5880 | ||
5881 | static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
5882 | uint64_t value) | |
5883 | { | |
5884 | CPWriteFn *writefn; | |
5885 | ||
5886 | if (redirect_for_e2h(env)) { | |
5887 | /* Switch to the saved EL2 version of the register. */ | |
5888 | ri = ri->opaque; | |
5889 | writefn = ri->writefn; | |
5890 | } else { | |
5891 | writefn = ri->orig_writefn; | |
5892 | } | |
5893 | if (writefn == NULL) { | |
5894 | writefn = raw_write; | |
5895 | } | |
5896 | writefn(env, ri, value); | |
5897 | } | |
5898 | ||
5899 | static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) | |
5900 | { | |
5901 | struct E2HAlias { | |
5902 | uint32_t src_key, dst_key, new_key; | |
5903 | const char *src_name, *dst_name, *new_name; | |
5904 | bool (*feature)(const ARMISARegisters *id); | |
5905 | }; | |
5906 | ||
5907 | #define K(op0, op1, crn, crm, op2) \ | |
5908 | ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) | |
5909 | ||
5910 | static const struct E2HAlias aliases[] = { | |
5911 | { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), | |
5912 | "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, | |
5913 | { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), | |
5914 | "CPACR", "CPTR_EL2", "CPACR_EL12" }, | |
5915 | { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), | |
5916 | "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, | |
5917 | { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), | |
5918 | "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, | |
5919 | { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), | |
5920 | "TCR_EL1", "TCR_EL2", "TCR_EL12" }, | |
5921 | { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), | |
5922 | "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, | |
5923 | { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), | |
5924 | "ELR_EL1", "ELR_EL2", "ELR_EL12" }, | |
5925 | { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), | |
5926 | "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, | |
5927 | { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), | |
5928 | "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, | |
5929 | { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), | |
5930 | "ESR_EL1", "ESR_EL2", "ESR_EL12" }, | |
5931 | { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), | |
5932 | "FAR_EL1", "FAR_EL2", "FAR_EL12" }, | |
5933 | { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), | |
5934 | "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, | |
5935 | { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), | |
5936 | "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, | |
5937 | { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), | |
5938 | "VBAR", "VBAR_EL2", "VBAR_EL12" }, | |
5939 | { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), | |
5940 | "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, | |
5941 | { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), | |
5942 | "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, | |
5943 | ||
5944 | /* | |
5945 | * Note that redirection of ZCR is mentioned in the description | |
5946 | * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but | |
5947 | * not in the summary table. | |
5948 | */ | |
5949 | { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), | |
5950 | "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, | |
5951 | ||
5952 | /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ | |
5953 | /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ | |
5954 | }; | |
5955 | #undef K | |
5956 | ||
5957 | size_t i; | |
5958 | ||
5959 | for (i = 0; i < ARRAY_SIZE(aliases); i++) { | |
5960 | const struct E2HAlias *a = &aliases[i]; | |
5961 | ARMCPRegInfo *src_reg, *dst_reg; | |
5962 | ||
5963 | if (a->feature && !a->feature(&cpu->isar)) { | |
5964 | continue; | |
5965 | } | |
5966 | ||
5967 | src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); | |
5968 | dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); | |
5969 | g_assert(src_reg != NULL); | |
5970 | g_assert(dst_reg != NULL); | |
5971 | ||
5972 | /* Cross-compare names to detect typos in the keys. */ | |
5973 | g_assert(strcmp(src_reg->name, a->src_name) == 0); | |
5974 | g_assert(strcmp(dst_reg->name, a->dst_name) == 0); | |
5975 | ||
5976 | /* None of the core system registers use opaque; we will. */ | |
5977 | g_assert(src_reg->opaque == NULL); | |
5978 | ||
5979 | /* Create alias before redirection so we dup the right data. */ | |
5980 | if (a->new_key) { | |
5981 | ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); | |
5982 | uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); | |
5983 | bool ok; | |
5984 | ||
5985 | new_reg->name = a->new_name; | |
5986 | new_reg->type |= ARM_CP_ALIAS; | |
5987 | /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ | |
5988 | new_reg->access &= PL2_RW | PL3_RW; | |
5989 | ||
5990 | ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); | |
5991 | g_assert(ok); | |
5992 | } | |
5993 | ||
5994 | src_reg->opaque = dst_reg; | |
5995 | src_reg->orig_readfn = src_reg->readfn ?: raw_read; | |
5996 | src_reg->orig_writefn = src_reg->writefn ?: raw_write; | |
5997 | if (!src_reg->raw_readfn) { | |
5998 | src_reg->raw_readfn = raw_read; | |
5999 | } | |
6000 | if (!src_reg->raw_writefn) { | |
6001 | src_reg->raw_writefn = raw_write; | |
6002 | } | |
6003 | src_reg->readfn = el2_e2h_read; | |
6004 | src_reg->writefn = el2_e2h_write; | |
6005 | } | |
6006 | } | |
6007 | #endif | |
6008 | ||
3f208fd7 PM |
6009 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
6010 | bool isread) | |
7da845b0 | 6011 | { |
97475a89 RH |
6012 | int cur_el = arm_current_el(env); |
6013 | ||
6014 | if (cur_el < 2) { | |
6015 | uint64_t hcr = arm_hcr_el2_eff(env); | |
6016 | ||
6017 | if (cur_el == 0) { | |
6018 | if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { | |
6019 | if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { | |
6020 | return CP_ACCESS_TRAP_EL2; | |
6021 | } | |
6022 | } else { | |
6023 | if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { | |
6024 | return CP_ACCESS_TRAP; | |
6025 | } | |
6026 | if (hcr & HCR_TID2) { | |
6027 | return CP_ACCESS_TRAP_EL2; | |
6028 | } | |
6029 | } | |
6030 | } else if (hcr & HCR_TID2) { | |
6031 | return CP_ACCESS_TRAP_EL2; | |
6032 | } | |
7da845b0 | 6033 | } |
630fcd4d MZ |
6034 | |
6035 | if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { | |
6036 | return CP_ACCESS_TRAP_EL2; | |
6037 | } | |
6038 | ||
7da845b0 PM |
6039 | return CP_ACCESS_OK; |
6040 | } | |
6041 | ||
1424ca8d DM |
6042 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
6043 | uint64_t value) | |
6044 | { | |
6045 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be | |
6046 | * read via a bit in OSLSR_EL1. | |
6047 | */ | |
6048 | int oslock; | |
6049 | ||
6050 | if (ri->state == ARM_CP_STATE_AA32) { | |
6051 | oslock = (value == 0xC5ACCE55); | |
6052 | } else { | |
6053 | oslock = value & 1; | |
6054 | } | |
6055 | ||
6056 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); | |
6057 | } | |
6058 | ||
50300698 | 6059 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 6060 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
6061 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
6062 | * unlike DBGDRAR it is never accessible from EL0. | |
6063 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
6064 | * accessor. | |
50300698 PM |
6065 | */ |
6066 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
91b0a238 PM |
6067 | .access = PL0_R, .accessfn = access_tdra, |
6068 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
6069 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
6070 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
91b0a238 PM |
6071 | .access = PL1_R, .accessfn = access_tdra, |
6072 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 | 6073 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
91b0a238 PM |
6074 | .access = PL0_R, .accessfn = access_tdra, |
6075 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 6076 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
6077 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
6078 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
d6c8cf81 | 6079 | .access = PL1_RW, .accessfn = access_tda, |
0e5e8935 PM |
6080 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
6081 | .resetvalue = 0 }, | |
5e8b12ff PM |
6082 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
6083 | * We don't implement the configurable EL0 access. | |
6084 | */ | |
6085 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
6086 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 6087 | .type = ARM_CP_ALIAS, |
d6c8cf81 | 6088 | .access = PL1_R, .accessfn = access_tda, |
b061a82b | 6089 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
10aae104 PM |
6090 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
6091 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1424ca8d | 6092 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
187f678d | 6093 | .accessfn = access_tdosa, |
1424ca8d DM |
6094 | .writefn = oslar_write }, |
6095 | { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, | |
6096 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, | |
6097 | .access = PL1_R, .resetvalue = 10, | |
187f678d | 6098 | .accessfn = access_tdosa, |
1424ca8d | 6099 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
5e8b12ff PM |
6100 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
6101 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
6102 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
187f678d PM |
6103 | .access = PL1_RW, .accessfn = access_tdosa, |
6104 | .type = ARM_CP_NOP }, | |
5e8b12ff PM |
6105 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
6106 | * implement vector catch debug events yet. | |
6107 | */ | |
6108 | { .name = "DBGVCR", | |
6109 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
d6c8cf81 PM |
6110 | .access = PL1_RW, .accessfn = access_tda, |
6111 | .type = ARM_CP_NOP }, | |
4d2ec4da PM |
6112 | /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor |
6113 | * to save and restore a 32-bit guest's DBGVCR) | |
6114 | */ | |
6115 | { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, | |
6116 | .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, | |
6117 | .access = PL2_RW, .accessfn = access_tda, | |
6118 | .type = ARM_CP_NOP }, | |
5dbdc434 PM |
6119 | /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications |
6120 | * Channel but Linux may try to access this register. The 32-bit | |
6121 | * alias is DBGDCCINT. | |
6122 | */ | |
6123 | { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, | |
6124 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
6125 | .access = PL1_RW, .accessfn = access_tda, | |
6126 | .type = ARM_CP_NOP }, | |
50300698 PM |
6127 | REGINFO_SENTINEL |
6128 | }; | |
6129 | ||
6130 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
6131 | /* 64 bit access versions of the (dummy) debug registers */ | |
6132 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
6133 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
6134 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
6135 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
6136 | REGINFO_SENTINEL | |
6137 | }; | |
6138 | ||
60eed086 RH |
6139 | /* Return the exception level to which exceptions should be taken |
6140 | * via SVEAccessTrap. If an exception should be routed through | |
6141 | * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should | |
6142 | * take care of raising that exception. | |
6143 | * C.f. the ARM pseudocode function CheckSVEEnabled. | |
5be5e8ed | 6144 | */ |
ced31551 | 6145 | int sve_exception_el(CPUARMState *env, int el) |
5be5e8ed RH |
6146 | { |
6147 | #ifndef CONFIG_USER_ONLY | |
c2ddb7cf RH |
6148 | uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
6149 | ||
6150 | if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
60eed086 RH |
6151 | bool disabled = false; |
6152 | ||
6153 | /* The CPACR.ZEN controls traps to EL1: | |
6154 | * 0, 2 : trap EL0 and EL1 accesses | |
6155 | * 1 : trap only EL0 accesses | |
6156 | * 3 : trap no accesses | |
6157 | */ | |
6158 | if (!extract32(env->cp15.cpacr_el1, 16, 1)) { | |
6159 | disabled = true; | |
6160 | } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { | |
2de7ace2 | 6161 | disabled = el == 0; |
5be5e8ed | 6162 | } |
60eed086 RH |
6163 | if (disabled) { |
6164 | /* route_to_el2 */ | |
c2ddb7cf | 6165 | return hcr_el2 & HCR_TGE ? 2 : 1; |
5be5e8ed | 6166 | } |
5be5e8ed | 6167 | |
60eed086 RH |
6168 | /* Check CPACR.FPEN. */ |
6169 | if (!extract32(env->cp15.cpacr_el1, 20, 1)) { | |
6170 | disabled = true; | |
6171 | } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { | |
2de7ace2 | 6172 | disabled = el == 0; |
5be5e8ed | 6173 | } |
60eed086 RH |
6174 | if (disabled) { |
6175 | return 0; | |
5be5e8ed | 6176 | } |
5be5e8ed RH |
6177 | } |
6178 | ||
60eed086 RH |
6179 | /* CPTR_EL2. Since TZ and TFP are positive, |
6180 | * they will be zero when EL2 is not present. | |
6181 | */ | |
2de7ace2 | 6182 | if (el <= 2 && !arm_is_secure_below_el3(env)) { |
60eed086 RH |
6183 | if (env->cp15.cptr_el[2] & CPTR_TZ) { |
6184 | return 2; | |
6185 | } | |
6186 | if (env->cp15.cptr_el[2] & CPTR_TFP) { | |
6187 | return 0; | |
6188 | } | |
5be5e8ed RH |
6189 | } |
6190 | ||
60eed086 RH |
6191 | /* CPTR_EL3. Since EZ is negative we must check for EL3. */ |
6192 | if (arm_feature(env, ARM_FEATURE_EL3) | |
6193 | && !(env->cp15.cptr_el[3] & CPTR_EZ)) { | |
5be5e8ed RH |
6194 | return 3; |
6195 | } | |
6196 | #endif | |
6197 | return 0; | |
6198 | } | |
6199 | ||
0df9142d AJ |
6200 | static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) |
6201 | { | |
6e553f2a | 6202 | uint32_t end_len; |
0df9142d | 6203 | |
6e553f2a RH |
6204 | end_len = start_len &= 0xf; |
6205 | if (!test_bit(start_len, cpu->sve_vq_map)) { | |
6206 | end_len = find_last_bit(cpu->sve_vq_map, start_len); | |
6207 | assert(end_len < start_len); | |
6208 | } | |
6209 | return end_len; | |
0df9142d AJ |
6210 | } |
6211 | ||
0ab5953b RH |
6212 | /* |
6213 | * Given that SVE is enabled, return the vector length for EL. | |
6214 | */ | |
ced31551 | 6215 | uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) |
0ab5953b | 6216 | { |
2fc0cc0e | 6217 | ARMCPU *cpu = env_archcpu(env); |
0ab5953b RH |
6218 | uint32_t zcr_len = cpu->sve_max_vq - 1; |
6219 | ||
6220 | if (el <= 1) { | |
6221 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); | |
6222 | } | |
6a02a732 | 6223 | if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { |
0ab5953b RH |
6224 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); |
6225 | } | |
6a02a732 | 6226 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0ab5953b RH |
6227 | zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); |
6228 | } | |
0df9142d AJ |
6229 | |
6230 | return sve_zcr_get_valid_len(cpu, zcr_len); | |
0ab5953b RH |
6231 | } |
6232 | ||
5be5e8ed RH |
6233 | static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
6234 | uint64_t value) | |
6235 | { | |
0ab5953b RH |
6236 | int cur_el = arm_current_el(env); |
6237 | int old_len = sve_zcr_len_for_el(env, cur_el); | |
6238 | int new_len; | |
6239 | ||
5be5e8ed | 6240 | /* Bits other than [3:0] are RAZ/WI. */ |
7b351d98 | 6241 | QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); |
5be5e8ed | 6242 | raw_write(env, ri, value & 0xf); |
0ab5953b RH |
6243 | |
6244 | /* | |
6245 | * Because we arrived here, we know both FP and SVE are enabled; | |
6246 | * otherwise we would have trapped access to the ZCR_ELn register. | |
6247 | */ | |
6248 | new_len = sve_zcr_len_for_el(env, cur_el); | |
6249 | if (new_len < old_len) { | |
6250 | aarch64_sve_narrow_vq(env, new_len + 1); | |
6251 | } | |
5be5e8ed RH |
6252 | } |
6253 | ||
6254 | static const ARMCPRegInfo zcr_el1_reginfo = { | |
6255 | .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, | |
6256 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, | |
11d7870b | 6257 | .access = PL1_RW, .type = ARM_CP_SVE, |
5be5e8ed RH |
6258 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), |
6259 | .writefn = zcr_write, .raw_writefn = raw_write | |
6260 | }; | |
6261 | ||
6262 | static const ARMCPRegInfo zcr_el2_reginfo = { | |
6263 | .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, | |
6264 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, | |
11d7870b | 6265 | .access = PL2_RW, .type = ARM_CP_SVE, |
5be5e8ed RH |
6266 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), |
6267 | .writefn = zcr_write, .raw_writefn = raw_write | |
6268 | }; | |
6269 | ||
6270 | static const ARMCPRegInfo zcr_no_el2_reginfo = { | |
6271 | .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, | |
6272 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, | |
11d7870b | 6273 | .access = PL2_RW, .type = ARM_CP_SVE, |
5be5e8ed RH |
6274 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore |
6275 | }; | |
6276 | ||
6277 | static const ARMCPRegInfo zcr_el3_reginfo = { | |
6278 | .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, | |
6279 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, | |
11d7870b | 6280 | .access = PL3_RW, .type = ARM_CP_SVE, |
5be5e8ed RH |
6281 | .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), |
6282 | .writefn = zcr_write, .raw_writefn = raw_write | |
6283 | }; | |
6284 | ||
9ee98ce8 PM |
6285 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
6286 | { | |
6287 | CPUARMState *env = &cpu->env; | |
6288 | vaddr len = 0; | |
6289 | vaddr wvr = env->cp15.dbgwvr[n]; | |
6290 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
6291 | int mask; | |
6292 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
6293 | ||
6294 | if (env->cpu_watchpoint[n]) { | |
6295 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
6296 | env->cpu_watchpoint[n] = NULL; | |
6297 | } | |
6298 | ||
6299 | if (!extract64(wcr, 0, 1)) { | |
6300 | /* E bit clear : watchpoint disabled */ | |
6301 | return; | |
6302 | } | |
6303 | ||
6304 | switch (extract64(wcr, 3, 2)) { | |
6305 | case 0: | |
6306 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
6307 | return; | |
6308 | case 1: | |
6309 | flags |= BP_MEM_READ; | |
6310 | break; | |
6311 | case 2: | |
6312 | flags |= BP_MEM_WRITE; | |
6313 | break; | |
6314 | case 3: | |
6315 | flags |= BP_MEM_ACCESS; | |
6316 | break; | |
6317 | } | |
6318 | ||
6319 | /* Attempts to use both MASK and BAS fields simultaneously are | |
6320 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
6321 | * thus generating a watchpoint for every byte in the masked region. | |
6322 | */ | |
6323 | mask = extract64(wcr, 24, 4); | |
6324 | if (mask == 1 || mask == 2) { | |
6325 | /* Reserved values of MASK; we must act as if the mask value was | |
6326 | * some non-reserved value, or as if the watchpoint were disabled. | |
6327 | * We choose the latter. | |
6328 | */ | |
6329 | return; | |
6330 | } else if (mask) { | |
6331 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
6332 | len = 1ULL << mask; | |
6333 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
6334 | * whether the watchpoint fires when the unmasked bits match; we opt | |
6335 | * to generate the exceptions. | |
6336 | */ | |
6337 | wvr &= ~(len - 1); | |
6338 | } else { | |
6339 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
6340 | int bas = extract64(wcr, 5, 8); | |
6341 | int basstart; | |
6342 | ||
9ee98ce8 PM |
6343 | if (extract64(wvr, 2, 1)) { |
6344 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
6345 | * ignored, and BAS[3:0] define which bytes to watch. | |
6346 | */ | |
6347 | bas &= 0xf; | |
6348 | } | |
ae1111d4 RH |
6349 | |
6350 | if (bas == 0) { | |
6351 | /* This must act as if the watchpoint is disabled */ | |
6352 | return; | |
6353 | } | |
6354 | ||
9ee98ce8 PM |
6355 | /* The BAS bits are supposed to be programmed to indicate a contiguous |
6356 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
6357 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
6358 | * We choose to ignore any non-zero bits after the first range of 1s. | |
6359 | */ | |
6360 | basstart = ctz32(bas); | |
6361 | len = cto32(bas >> basstart); | |
6362 | wvr += basstart; | |
6363 | } | |
6364 | ||
6365 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
6366 | &env->cpu_watchpoint[n]); | |
6367 | } | |
6368 | ||
6369 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
6370 | { | |
6371 | int i; | |
6372 | CPUARMState *env = &cpu->env; | |
6373 | ||
6374 | /* Completely clear out existing QEMU watchpoints and our array, to | |
6375 | * avoid possible stale entries following migration load. | |
6376 | */ | |
6377 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
6378 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
6379 | ||
6380 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
6381 | hw_watchpoint_update(cpu, i); | |
6382 | } | |
6383 | } | |
6384 | ||
6385 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6386 | uint64_t value) | |
6387 | { | |
2fc0cc0e | 6388 | ARMCPU *cpu = env_archcpu(env); |
9ee98ce8 PM |
6389 | int i = ri->crm; |
6390 | ||
6391 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
6392 | * register reads and behaves as if values written are sign extended. | |
6393 | * Bits [1:0] are RES0. | |
6394 | */ | |
6395 | value = sextract64(value, 0, 49) & ~3ULL; | |
6396 | ||
6397 | raw_write(env, ri, value); | |
6398 | hw_watchpoint_update(cpu, i); | |
6399 | } | |
6400 | ||
6401 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6402 | uint64_t value) | |
6403 | { | |
2fc0cc0e | 6404 | ARMCPU *cpu = env_archcpu(env); |
9ee98ce8 PM |
6405 | int i = ri->crm; |
6406 | ||
6407 | raw_write(env, ri, value); | |
6408 | hw_watchpoint_update(cpu, i); | |
6409 | } | |
6410 | ||
46747d15 PM |
6411 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
6412 | { | |
6413 | CPUARMState *env = &cpu->env; | |
6414 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
6415 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
6416 | vaddr addr; | |
6417 | int bt; | |
6418 | int flags = BP_CPU; | |
6419 | ||
6420 | if (env->cpu_breakpoint[n]) { | |
6421 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
6422 | env->cpu_breakpoint[n] = NULL; | |
6423 | } | |
6424 | ||
6425 | if (!extract64(bcr, 0, 1)) { | |
6426 | /* E bit clear : watchpoint disabled */ | |
6427 | return; | |
6428 | } | |
6429 | ||
6430 | bt = extract64(bcr, 20, 4); | |
6431 | ||
6432 | switch (bt) { | |
6433 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
6434 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
6435 | qemu_log_mask(LOG_UNIMP, | |
0221c8fd | 6436 | "arm: address mismatch breakpoint types not implemented\n"); |
46747d15 PM |
6437 | return; |
6438 | case 0: /* unlinked address match */ | |
6439 | case 1: /* linked address match */ | |
6440 | { | |
6441 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
6442 | * we behave as if the register was sign extended. Bits [1:0] are | |
6443 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
6444 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
6445 | * a bp will fire if the addresses covered by the bp and the addresses | |
6446 | * covered by the insn overlap but the insn doesn't start at the | |
6447 | * start of the bp address range. We choose to require the insn and | |
6448 | * the bp to have the same address. The constraints on writing to | |
6449 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
6450 | * 0b0000 => no breakpoint | |
6451 | * 0b0011 => breakpoint on addr | |
6452 | * 0b1100 => breakpoint on addr + 2 | |
6453 | * 0b1111 => breakpoint on addr | |
6454 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
6455 | */ | |
6456 | int bas = extract64(bcr, 5, 4); | |
6457 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
6458 | if (bas == 0) { | |
6459 | return; | |
6460 | } | |
6461 | if (bas == 0xc) { | |
6462 | addr += 2; | |
6463 | } | |
6464 | break; | |
6465 | } | |
6466 | case 2: /* unlinked context ID match */ | |
6467 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
6468 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
6469 | qemu_log_mask(LOG_UNIMP, | |
0221c8fd | 6470 | "arm: unlinked context breakpoint types not implemented\n"); |
46747d15 PM |
6471 | return; |
6472 | case 9: /* linked VMID match (reserved if no EL2) */ | |
6473 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
6474 | case 3: /* linked context ID match */ | |
6475 | default: | |
6476 | /* We must generate no events for Linked context matches (unless | |
6477 | * they are linked to by some other bp/wp, which is handled in | |
6478 | * updates for the linking bp/wp). We choose to also generate no events | |
6479 | * for reserved values. | |
6480 | */ | |
6481 | return; | |
6482 | } | |
6483 | ||
6484 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
6485 | } | |
6486 | ||
6487 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
6488 | { | |
6489 | int i; | |
6490 | CPUARMState *env = &cpu->env; | |
6491 | ||
6492 | /* Completely clear out existing QEMU breakpoints and our array, to | |
6493 | * avoid possible stale entries following migration load. | |
6494 | */ | |
6495 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
6496 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
6497 | ||
6498 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
6499 | hw_breakpoint_update(cpu, i); | |
6500 | } | |
6501 | } | |
6502 | ||
6503 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6504 | uint64_t value) | |
6505 | { | |
2fc0cc0e | 6506 | ARMCPU *cpu = env_archcpu(env); |
46747d15 PM |
6507 | int i = ri->crm; |
6508 | ||
6509 | raw_write(env, ri, value); | |
6510 | hw_breakpoint_update(cpu, i); | |
6511 | } | |
6512 | ||
6513 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
6514 | uint64_t value) | |
6515 | { | |
2fc0cc0e | 6516 | ARMCPU *cpu = env_archcpu(env); |
46747d15 PM |
6517 | int i = ri->crm; |
6518 | ||
6519 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
6520 | * copy of BAS[0]. | |
6521 | */ | |
6522 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
6523 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
6524 | ||
6525 | raw_write(env, ri, value); | |
6526 | hw_breakpoint_update(cpu, i); | |
6527 | } | |
6528 | ||
50300698 | 6529 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 6530 | { |
50300698 PM |
6531 | /* Define v7 and v8 architectural debug registers. |
6532 | * These are just dummy implementations for now. | |
0b45451e PM |
6533 | */ |
6534 | int i; | |
3ff6fc91 | 6535 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
6536 | ARMCPRegInfo dbgdidr = { |
6537 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d6c8cf81 | 6538 | .access = PL0_R, .accessfn = access_tda, |
4426d361 | 6539 | .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, |
48eb3ae6 PM |
6540 | }; |
6541 | ||
3ff6fc91 | 6542 | /* Note that all these register fields hold "number of Xs minus 1". */ |
88ce6c6e PM |
6543 | brps = arm_num_brps(cpu); |
6544 | wrps = arm_num_wrps(cpu); | |
6545 | ctx_cmps = arm_num_ctx_cmps(cpu); | |
3ff6fc91 PM |
6546 | |
6547 | assert(ctx_cmps <= brps); | |
48eb3ae6 | 6548 | |
48eb3ae6 | 6549 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
6550 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
6551 | ||
6552 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
6553 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
6554 | } | |
6555 | ||
88ce6c6e | 6556 | for (i = 0; i < brps; i++) { |
0b45451e | 6557 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
6558 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
6559 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
d6c8cf81 | 6560 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
6561 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
6562 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
6563 | }, | |
10aae104 PM |
6564 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
6565 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
d6c8cf81 | 6566 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
6567 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
6568 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
6569 | }, | |
48eb3ae6 PM |
6570 | REGINFO_SENTINEL |
6571 | }; | |
6572 | define_arm_cp_regs(cpu, dbgregs); | |
6573 | } | |
6574 | ||
88ce6c6e | 6575 | for (i = 0; i < wrps; i++) { |
48eb3ae6 | 6576 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
6577 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
6578 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
d6c8cf81 | 6579 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
6580 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
6581 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
6582 | }, | |
10aae104 PM |
6583 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
6584 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
d6c8cf81 | 6585 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
6586 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
6587 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
6588 | }, | |
6589 | REGINFO_SENTINEL | |
0b45451e PM |
6590 | }; |
6591 | define_arm_cp_regs(cpu, dbgregs); | |
6592 | } | |
6593 | } | |
6594 | ||
24183fb6 PM |
6595 | static void define_pmu_regs(ARMCPU *cpu) |
6596 | { | |
6597 | /* | |
6598 | * v7 performance monitor control register: same implementor | |
6599 | * field as main ID register, and we implement four counters in | |
6600 | * addition to the cycle count register. | |
6601 | */ | |
6602 | unsigned int i, pmcrn = 4; | |
6603 | ARMCPRegInfo pmcr = { | |
6604 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
6605 | .access = PL0_RW, | |
6606 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6607 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), | |
6608 | .accessfn = pmreg_access, .writefn = pmcr_write, | |
6609 | .raw_writefn = raw_write, | |
6610 | }; | |
6611 | ARMCPRegInfo pmcr64 = { | |
6612 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
6613 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
6614 | .access = PL0_RW, .accessfn = pmreg_access, | |
6615 | .type = ARM_CP_IO, | |
6616 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
62d96ff4 PM |
6617 | .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | |
6618 | PMCRLC, | |
24183fb6 PM |
6619 | .writefn = pmcr_write, .raw_writefn = raw_write, |
6620 | }; | |
6621 | define_one_arm_cp_reg(cpu, &pmcr); | |
6622 | define_one_arm_cp_reg(cpu, &pmcr64); | |
6623 | for (i = 0; i < pmcrn; i++) { | |
6624 | char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); | |
6625 | char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); | |
6626 | char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); | |
6627 | char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); | |
6628 | ARMCPRegInfo pmev_regs[] = { | |
6629 | { .name = pmevcntr_name, .cp = 15, .crn = 14, | |
6630 | .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, | |
6631 | .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6632 | .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, | |
6633 | .accessfn = pmreg_access }, | |
6634 | { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, | |
6635 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), | |
6636 | .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, | |
6637 | .type = ARM_CP_IO, | |
6638 | .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, | |
6639 | .raw_readfn = pmevcntr_rawread, | |
6640 | .raw_writefn = pmevcntr_rawwrite }, | |
6641 | { .name = pmevtyper_name, .cp = 15, .crn = 14, | |
6642 | .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, | |
6643 | .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, | |
6644 | .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, | |
6645 | .accessfn = pmreg_access }, | |
6646 | { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, | |
6647 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), | |
6648 | .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, | |
6649 | .type = ARM_CP_IO, | |
6650 | .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, | |
6651 | .raw_writefn = pmevtyper_rawwrite }, | |
6652 | REGINFO_SENTINEL | |
6653 | }; | |
6654 | define_arm_cp_regs(cpu, pmev_regs); | |
6655 | g_free(pmevcntr_name); | |
6656 | g_free(pmevcntr_el0_name); | |
6657 | g_free(pmevtyper_name); | |
6658 | g_free(pmevtyper_el0_name); | |
6659 | } | |
a6179538 | 6660 | if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { |
24183fb6 PM |
6661 | ARMCPRegInfo v81_pmu_regs[] = { |
6662 | { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, | |
6663 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, | |
6664 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6665 | .resetvalue = extract64(cpu->pmceid0, 32, 32) }, | |
6666 | { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, | |
6667 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, | |
6668 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6669 | .resetvalue = extract64(cpu->pmceid1, 32, 32) }, | |
6670 | REGINFO_SENTINEL | |
6671 | }; | |
6672 | define_arm_cp_regs(cpu, v81_pmu_regs); | |
6673 | } | |
15dd1ebd PM |
6674 | if (cpu_isar_feature(any_pmu_8_4, cpu)) { |
6675 | static const ARMCPRegInfo v84_pmmir = { | |
6676 | .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, | |
6677 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, | |
6678 | .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
6679 | .resetvalue = 0 | |
6680 | }; | |
6681 | define_one_arm_cp_reg(cpu, &v84_pmmir); | |
6682 | } | |
24183fb6 PM |
6683 | } |
6684 | ||
96a8b92e PM |
6685 | /* We don't know until after realize whether there's a GICv3 |
6686 | * attached, and that is what registers the gicv3 sysregs. | |
6687 | * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 | |
6688 | * at runtime. | |
6689 | */ | |
6690 | static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
6691 | { | |
2fc0cc0e | 6692 | ARMCPU *cpu = env_archcpu(env); |
96a8b92e PM |
6693 | uint64_t pfr1 = cpu->id_pfr1; |
6694 | ||
6695 | if (env->gicv3state) { | |
6696 | pfr1 |= 1 << 28; | |
6697 | } | |
6698 | return pfr1; | |
6699 | } | |
6700 | ||
976b99b6 | 6701 | #ifndef CONFIG_USER_ONLY |
96a8b92e PM |
6702 | static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) |
6703 | { | |
2fc0cc0e | 6704 | ARMCPU *cpu = env_archcpu(env); |
47576b94 | 6705 | uint64_t pfr0 = cpu->isar.id_aa64pfr0; |
96a8b92e PM |
6706 | |
6707 | if (env->gicv3state) { | |
6708 | pfr0 |= 1 << 24; | |
6709 | } | |
6710 | return pfr0; | |
6711 | } | |
976b99b6 | 6712 | #endif |
96a8b92e | 6713 | |
2d7137c1 RH |
6714 | /* Shared logic between LORID and the rest of the LOR* registers. |
6715 | * Secure state has already been delt with. | |
6716 | */ | |
6717 | static CPAccessResult access_lor_ns(CPUARMState *env) | |
6718 | { | |
6719 | int el = arm_current_el(env); | |
6720 | ||
6721 | if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { | |
6722 | return CP_ACCESS_TRAP_EL2; | |
6723 | } | |
6724 | if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { | |
6725 | return CP_ACCESS_TRAP_EL3; | |
6726 | } | |
6727 | return CP_ACCESS_OK; | |
6728 | } | |
6729 | ||
6730 | static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, | |
6731 | bool isread) | |
6732 | { | |
6733 | if (arm_is_secure_below_el3(env)) { | |
6734 | /* Access ok in secure mode. */ | |
6735 | return CP_ACCESS_OK; | |
6736 | } | |
6737 | return access_lor_ns(env); | |
6738 | } | |
6739 | ||
6740 | static CPAccessResult access_lor_other(CPUARMState *env, | |
6741 | const ARMCPRegInfo *ri, bool isread) | |
6742 | { | |
6743 | if (arm_is_secure_below_el3(env)) { | |
6744 | /* Access denied in secure mode. */ | |
6745 | return CP_ACCESS_TRAP; | |
6746 | } | |
6747 | return access_lor_ns(env); | |
6748 | } | |
6749 | ||
d8564ee4 RH |
6750 | /* |
6751 | * A trivial implementation of ARMv8.1-LOR leaves all of these | |
6752 | * registers fixed at 0, which indicates that there are zero | |
6753 | * supported Limited Ordering regions. | |
6754 | */ | |
6755 | static const ARMCPRegInfo lor_reginfo[] = { | |
6756 | { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, | |
6757 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, | |
6758 | .access = PL1_RW, .accessfn = access_lor_other, | |
6759 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6760 | { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, | |
6761 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, | |
6762 | .access = PL1_RW, .accessfn = access_lor_other, | |
6763 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6764 | { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, | |
6765 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, | |
6766 | .access = PL1_RW, .accessfn = access_lor_other, | |
6767 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6768 | { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, | |
6769 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, | |
6770 | .access = PL1_RW, .accessfn = access_lor_other, | |
6771 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6772 | { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, | |
6773 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, | |
6774 | .access = PL1_R, .accessfn = access_lorid, | |
6775 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
6776 | REGINFO_SENTINEL | |
6777 | }; | |
6778 | ||
967aa94f RH |
6779 | #ifdef TARGET_AARCH64 |
6780 | static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, | |
6781 | bool isread) | |
6782 | { | |
6783 | int el = arm_current_el(env); | |
6784 | ||
6785 | if (el < 2 && | |
6786 | arm_feature(env, ARM_FEATURE_EL2) && | |
6787 | !(arm_hcr_el2_eff(env) & HCR_APK)) { | |
6788 | return CP_ACCESS_TRAP_EL2; | |
6789 | } | |
6790 | if (el < 3 && | |
6791 | arm_feature(env, ARM_FEATURE_EL3) && | |
6792 | !(env->cp15.scr_el3 & SCR_APK)) { | |
6793 | return CP_ACCESS_TRAP_EL3; | |
6794 | } | |
6795 | return CP_ACCESS_OK; | |
6796 | } | |
6797 | ||
6798 | static const ARMCPRegInfo pauth_reginfo[] = { | |
6799 | { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, | |
6800 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, | |
6801 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6802 | .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, |
967aa94f RH |
6803 | { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6804 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, | |
6805 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6806 | .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, |
967aa94f RH |
6807 | { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6808 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, | |
6809 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6810 | .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, |
967aa94f RH |
6811 | { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6812 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, | |
6813 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6814 | .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, |
967aa94f RH |
6815 | { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6816 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, | |
6817 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6818 | .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, |
967aa94f RH |
6819 | { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6820 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, | |
6821 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6822 | .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, |
967aa94f RH |
6823 | { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6824 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, | |
6825 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6826 | .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, |
967aa94f RH |
6827 | { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6828 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, | |
6829 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6830 | .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, |
967aa94f RH |
6831 | { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
6832 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, | |
6833 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6834 | .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, |
967aa94f RH |
6835 | { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
6836 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, | |
6837 | .access = PL1_RW, .accessfn = access_pauth, | |
108b3ba8 | 6838 | .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, |
967aa94f RH |
6839 | REGINFO_SENTINEL |
6840 | }; | |
de390645 RH |
6841 | |
6842 | static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) | |
6843 | { | |
6844 | Error *err = NULL; | |
6845 | uint64_t ret; | |
6846 | ||
6847 | /* Success sets NZCV = 0000. */ | |
6848 | env->NF = env->CF = env->VF = 0, env->ZF = 1; | |
6849 | ||
6850 | if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { | |
6851 | /* | |
6852 | * ??? Failed, for unknown reasons in the crypto subsystem. | |
6853 | * The best we can do is log the reason and return the | |
6854 | * timed-out indication to the guest. There is no reason | |
6855 | * we know to expect this failure to be transitory, so the | |
6856 | * guest may well hang retrying the operation. | |
6857 | */ | |
6858 | qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", | |
6859 | ri->name, error_get_pretty(err)); | |
6860 | error_free(err); | |
6861 | ||
6862 | env->ZF = 0; /* NZCF = 0100 */ | |
6863 | return 0; | |
6864 | } | |
6865 | return ret; | |
6866 | } | |
6867 | ||
6868 | /* We do not support re-seeding, so the two registers operate the same. */ | |
6869 | static const ARMCPRegInfo rndr_reginfo[] = { | |
6870 | { .name = "RNDR", .state = ARM_CP_STATE_AA64, | |
6871 | .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, | |
6872 | .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, | |
6873 | .access = PL0_R, .readfn = rndr_readfn }, | |
6874 | { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, | |
6875 | .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, | |
6876 | .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, | |
6877 | .access = PL0_R, .readfn = rndr_readfn }, | |
6878 | REGINFO_SENTINEL | |
6879 | }; | |
0d57b499 BM |
6880 | |
6881 | #ifndef CONFIG_USER_ONLY | |
6882 | static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, | |
6883 | uint64_t value) | |
6884 | { | |
6885 | ARMCPU *cpu = env_archcpu(env); | |
6886 | /* CTR_EL0 System register -> DminLine, bits [19:16] */ | |
6887 | uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); | |
6888 | uint64_t vaddr_in = (uint64_t) value; | |
6889 | uint64_t vaddr = vaddr_in & ~(dline_size - 1); | |
6890 | void *haddr; | |
6891 | int mem_idx = cpu_mmu_index(env, false); | |
6892 | ||
6893 | /* This won't be crossing page boundaries */ | |
6894 | haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); | |
6895 | if (haddr) { | |
6896 | ||
6897 | ram_addr_t offset; | |
6898 | MemoryRegion *mr; | |
6899 | ||
6900 | /* RCU lock is already being held */ | |
6901 | mr = memory_region_from_host(haddr, &offset); | |
6902 | ||
6903 | if (mr) { | |
6904 | memory_region_do_writeback(mr, offset, dline_size); | |
6905 | } | |
6906 | } | |
6907 | } | |
6908 | ||
6909 | static const ARMCPRegInfo dcpop_reg[] = { | |
6910 | { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, | |
6911 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, | |
6912 | .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, | |
1bed4d2e | 6913 | .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, |
0d57b499 BM |
6914 | REGINFO_SENTINEL |
6915 | }; | |
6916 | ||
6917 | static const ARMCPRegInfo dcpodp_reg[] = { | |
6918 | { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, | |
6919 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, | |
6920 | .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, | |
1bed4d2e | 6921 | .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, |
0d57b499 BM |
6922 | REGINFO_SENTINEL |
6923 | }; | |
6924 | #endif /*CONFIG_USER_ONLY*/ | |
6925 | ||
967aa94f RH |
6926 | #endif |
6927 | ||
cb570bd3 RH |
6928 | static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, |
6929 | bool isread) | |
6930 | { | |
6931 | int el = arm_current_el(env); | |
6932 | ||
6933 | if (el == 0) { | |
6934 | uint64_t sctlr = arm_sctlr(env, el); | |
6935 | if (!(sctlr & SCTLR_EnRCTX)) { | |
6936 | return CP_ACCESS_TRAP; | |
6937 | } | |
6938 | } else if (el == 1) { | |
6939 | uint64_t hcr = arm_hcr_el2_eff(env); | |
6940 | if (hcr & HCR_NV) { | |
6941 | return CP_ACCESS_TRAP_EL2; | |
6942 | } | |
6943 | } | |
6944 | return CP_ACCESS_OK; | |
6945 | } | |
6946 | ||
6947 | static const ARMCPRegInfo predinv_reginfo[] = { | |
6948 | { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, | |
6949 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, | |
6950 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
6951 | { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, | |
6952 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, | |
6953 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
6954 | { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, | |
6955 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, | |
6956 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
6957 | /* | |
6958 | * Note the AArch32 opcodes have a different OPC1. | |
6959 | */ | |
6960 | { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, | |
6961 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, | |
6962 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
6963 | { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, | |
6964 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, | |
6965 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
6966 | { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, | |
6967 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, | |
6968 | .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, | |
6969 | REGINFO_SENTINEL | |
6970 | }; | |
6971 | ||
957e6155 PM |
6972 | static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) |
6973 | { | |
6974 | /* Read the high 32 bits of the current CCSIDR */ | |
6975 | return extract64(ccsidr_read(env, ri), 32, 32); | |
6976 | } | |
6977 | ||
6978 | static const ARMCPRegInfo ccsidr2_reginfo[] = { | |
6979 | { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, | |
6980 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, | |
6981 | .access = PL1_R, | |
6982 | .accessfn = access_aa64_tid2, | |
6983 | .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, | |
6984 | REGINFO_SENTINEL | |
6985 | }; | |
6986 | ||
6a4ef4e5 MZ |
6987 | static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, |
6988 | bool isread) | |
6989 | { | |
6990 | if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { | |
6991 | return CP_ACCESS_TRAP_EL2; | |
6992 | } | |
6993 | ||
6994 | return CP_ACCESS_OK; | |
6995 | } | |
6996 | ||
6997 | static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, | |
6998 | bool isread) | |
6999 | { | |
7000 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
7001 | return access_aa64_tid3(env, ri, isread); | |
7002 | } | |
7003 | ||
7004 | return CP_ACCESS_OK; | |
7005 | } | |
7006 | ||
f96f3d5f MZ |
7007 | static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, |
7008 | bool isread) | |
7009 | { | |
7010 | if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { | |
7011 | return CP_ACCESS_TRAP_EL2; | |
7012 | } | |
7013 | ||
7014 | return CP_ACCESS_OK; | |
7015 | } | |
7016 | ||
7017 | static const ARMCPRegInfo jazelle_regs[] = { | |
7018 | { .name = "JIDR", | |
7019 | .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, | |
7020 | .access = PL1_R, .accessfn = access_jazelle, | |
7021 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7022 | { .name = "JOSCR", | |
7023 | .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, | |
7024 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7025 | { .name = "JMCR", | |
7026 | .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, | |
7027 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7028 | REGINFO_SENTINEL | |
7029 | }; | |
7030 | ||
e2a1a461 RH |
7031 | static const ARMCPRegInfo vhe_reginfo[] = { |
7032 | { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, | |
7033 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, | |
7034 | .access = PL2_RW, | |
7035 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, | |
ed30da8e RH |
7036 | { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, |
7037 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, | |
7038 | .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, | |
7039 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, | |
8c94b071 RH |
7040 | #ifndef CONFIG_USER_ONLY |
7041 | { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, | |
7042 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, | |
7043 | .fieldoffset = | |
7044 | offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), | |
7045 | .type = ARM_CP_IO, .access = PL2_RW, | |
7046 | .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, | |
7047 | { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
7048 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, | |
7049 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, | |
7050 | .resetfn = gt_hv_timer_reset, | |
7051 | .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, | |
7052 | { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
7053 | .type = ARM_CP_IO, | |
7054 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, | |
7055 | .access = PL2_RW, | |
7056 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), | |
7057 | .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, | |
bb5972e4 RH |
7058 | { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, |
7059 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, | |
7060 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7061 | .access = PL2_RW, .accessfn = e2h_access, | |
7062 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), | |
7063 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, | |
7064 | { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, | |
7065 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, | |
7066 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7067 | .access = PL2_RW, .accessfn = e2h_access, | |
7068 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), | |
7069 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, | |
7070 | { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7071 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, | |
7072 | .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, | |
7073 | .access = PL2_RW, .accessfn = e2h_access, | |
7074 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, | |
7075 | { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7076 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, | |
7077 | .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, | |
7078 | .access = PL2_RW, .accessfn = e2h_access, | |
7079 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, | |
7080 | { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7081 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, | |
7082 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7083 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
7084 | .access = PL2_RW, .accessfn = e2h_access, | |
7085 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, | |
7086 | { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, | |
7087 | .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, | |
7088 | .type = ARM_CP_IO | ARM_CP_ALIAS, | |
7089 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
7090 | .access = PL2_RW, .accessfn = e2h_access, | |
7091 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, | |
8c94b071 | 7092 | #endif |
e2a1a461 RH |
7093 | REGINFO_SENTINEL |
7094 | }; | |
7095 | ||
04b07d29 RH |
7096 | #ifndef CONFIG_USER_ONLY |
7097 | static const ARMCPRegInfo ats1e1_reginfo[] = { | |
7098 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
7099 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, | |
7100 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7101 | .writefn = ats_write64 }, | |
7102 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, | |
7103 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, | |
7104 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7105 | .writefn = ats_write64 }, | |
7106 | REGINFO_SENTINEL | |
7107 | }; | |
7108 | ||
7109 | static const ARMCPRegInfo ats1cp_reginfo[] = { | |
7110 | { .name = "ATS1CPRP", | |
7111 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, | |
7112 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7113 | .writefn = ats_write }, | |
7114 | { .name = "ATS1CPWP", | |
7115 | .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, | |
7116 | .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, | |
7117 | .writefn = ats_write }, | |
7118 | REGINFO_SENTINEL | |
7119 | }; | |
7120 | #endif | |
7121 | ||
f6287c24 PM |
7122 | /* |
7123 | * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and | |
7124 | * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field | |
7125 | * is non-zero, which is never for ARMv7, optionally in ARMv8 | |
7126 | * and mandatorily for ARMv8.2 and up. | |
7127 | * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's | |
7128 | * implementation is RAZ/WI we can ignore this detail, as we | |
7129 | * do for ACTLR. | |
7130 | */ | |
7131 | static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { | |
7132 | { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, | |
7133 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, | |
99602377 RH |
7134 | .access = PL1_RW, .accessfn = access_tacr, |
7135 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
f6287c24 PM |
7136 | { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, |
7137 | .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, | |
7138 | .access = PL2_RW, .type = ARM_CP_CONST, | |
7139 | .resetvalue = 0 }, | |
7140 | REGINFO_SENTINEL | |
7141 | }; | |
7142 | ||
2ceb98c0 PM |
7143 | void register_cp_regs_for_features(ARMCPU *cpu) |
7144 | { | |
7145 | /* Register all the coprocessor registers based on feature bits */ | |
7146 | CPUARMState *env = &cpu->env; | |
7147 | if (arm_feature(env, ARM_FEATURE_M)) { | |
7148 | /* M profile has no coprocessor registers */ | |
7149 | return; | |
7150 | } | |
7151 | ||
e9aa6c21 | 7152 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
7153 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
7154 | /* Must go early as it is full of wildcards that may be | |
7155 | * overridden by later definitions. | |
7156 | */ | |
7157 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
7158 | } | |
7159 | ||
7d57f408 | 7160 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
7161 | /* The ID registers all have impdef reset values */ |
7162 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
7163 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
7164 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7165 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7166 | .accessfn = access_aa32_tid3, |
8515a092 | 7167 | .resetvalue = cpu->id_pfr0 }, |
96a8b92e PM |
7168 | /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know |
7169 | * the value of the GIC field until after we define these regs. | |
7170 | */ | |
0ff644a7 PM |
7171 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
7172 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
96a8b92e | 7173 | .access = PL1_R, .type = ARM_CP_NO_RAW, |
6a4ef4e5 | 7174 | .accessfn = access_aa32_tid3, |
96a8b92e PM |
7175 | .readfn = id_pfr1_read, |
7176 | .writefn = arm_cp_write_ignore }, | |
0ff644a7 PM |
7177 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
7178 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
7179 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7180 | .accessfn = access_aa32_tid3, |
a6179538 | 7181 | .resetvalue = cpu->isar.id_dfr0 }, |
0ff644a7 PM |
7182 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
7183 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
7184 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7185 | .accessfn = access_aa32_tid3, |
8515a092 | 7186 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
7187 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
7188 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
7189 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7190 | .accessfn = access_aa32_tid3, |
10054016 | 7191 | .resetvalue = cpu->isar.id_mmfr0 }, |
0ff644a7 PM |
7192 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
7193 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
7194 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7195 | .accessfn = access_aa32_tid3, |
10054016 | 7196 | .resetvalue = cpu->isar.id_mmfr1 }, |
0ff644a7 PM |
7197 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
7198 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
7199 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7200 | .accessfn = access_aa32_tid3, |
10054016 | 7201 | .resetvalue = cpu->isar.id_mmfr2 }, |
0ff644a7 PM |
7202 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
7203 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
7204 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7205 | .accessfn = access_aa32_tid3, |
10054016 | 7206 | .resetvalue = cpu->isar.id_mmfr3 }, |
0ff644a7 PM |
7207 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
7208 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
7209 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7210 | .accessfn = access_aa32_tid3, |
47576b94 | 7211 | .resetvalue = cpu->isar.id_isar0 }, |
0ff644a7 PM |
7212 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
7213 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
7214 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7215 | .accessfn = access_aa32_tid3, |
47576b94 | 7216 | .resetvalue = cpu->isar.id_isar1 }, |
0ff644a7 PM |
7217 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
7218 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
7219 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7220 | .accessfn = access_aa32_tid3, |
47576b94 | 7221 | .resetvalue = cpu->isar.id_isar2 }, |
0ff644a7 PM |
7222 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
7223 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
7224 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7225 | .accessfn = access_aa32_tid3, |
47576b94 | 7226 | .resetvalue = cpu->isar.id_isar3 }, |
0ff644a7 PM |
7227 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
7228 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
7229 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7230 | .accessfn = access_aa32_tid3, |
47576b94 | 7231 | .resetvalue = cpu->isar.id_isar4 }, |
0ff644a7 PM |
7232 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
7233 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
7234 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7235 | .accessfn = access_aa32_tid3, |
47576b94 | 7236 | .resetvalue = cpu->isar.id_isar5 }, |
e20d84c1 PM |
7237 | { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
7238 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, | |
7239 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7240 | .accessfn = access_aa32_tid3, |
10054016 | 7241 | .resetvalue = cpu->isar.id_mmfr4 }, |
802abf40 | 7242 | { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, |
e20d84c1 PM |
7243 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, |
7244 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7245 | .accessfn = access_aa32_tid3, |
47576b94 | 7246 | .resetvalue = cpu->isar.id_isar6 }, |
8515a092 PM |
7247 | REGINFO_SENTINEL |
7248 | }; | |
7249 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
7250 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
7251 | } else { | |
7252 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
7253 | } | |
4d31c596 PM |
7254 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
7255 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
7256 | } | |
5e5cf9e3 | 7257 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
452a0955 | 7258 | !arm_feature(env, ARM_FEATURE_PMSA)) { |
995939a6 PM |
7259 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
7260 | } | |
327dd510 AL |
7261 | if (arm_feature(env, ARM_FEATURE_V7VE)) { |
7262 | define_arm_cp_regs(cpu, pmovsset_cp_reginfo); | |
7263 | } | |
e9aa6c21 | 7264 | if (arm_feature(env, ARM_FEATURE_V7)) { |
776d4e5c | 7265 | ARMCPRegInfo clidr = { |
7da845b0 PM |
7266 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
7267 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
630fcd4d MZ |
7268 | .access = PL1_R, .type = ARM_CP_CONST, |
7269 | .accessfn = access_aa64_tid2, | |
7270 | .resetvalue = cpu->clidr | |
776d4e5c | 7271 | }; |
776d4e5c | 7272 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 7273 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 7274 | define_debug_regs(cpu); |
24183fb6 | 7275 | define_pmu_regs(cpu); |
7d57f408 PM |
7276 | } else { |
7277 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 7278 | } |
b0d2b7d0 | 7279 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e20d84c1 PM |
7280 | /* AArch64 ID registers, which all have impdef reset values. |
7281 | * Note that within the ID register ranges the unused slots | |
7282 | * must all RAZ, not UNDEF; future architecture versions may | |
7283 | * define new registers here. | |
7284 | */ | |
e60cef86 | 7285 | ARMCPRegInfo v8_idregs[] = { |
976b99b6 AB |
7286 | /* |
7287 | * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system | |
7288 | * emulation because we don't know the right value for the | |
7289 | * GIC field until after we define these regs. | |
96a8b92e | 7290 | */ |
e60cef86 PM |
7291 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, |
7292 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
976b99b6 AB |
7293 | .access = PL1_R, |
7294 | #ifdef CONFIG_USER_ONLY | |
7295 | .type = ARM_CP_CONST, | |
7296 | .resetvalue = cpu->isar.id_aa64pfr0 | |
7297 | #else | |
7298 | .type = ARM_CP_NO_RAW, | |
6a4ef4e5 | 7299 | .accessfn = access_aa64_tid3, |
96a8b92e | 7300 | .readfn = id_aa64pfr0_read, |
976b99b6 AB |
7301 | .writefn = arm_cp_write_ignore |
7302 | #endif | |
7303 | }, | |
e60cef86 PM |
7304 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, |
7305 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
7306 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7307 | .accessfn = access_aa64_tid3, |
47576b94 | 7308 | .resetvalue = cpu->isar.id_aa64pfr1}, |
e20d84c1 PM |
7309 | { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7310 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, | |
7311 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7312 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7313 | .resetvalue = 0 }, |
7314 | { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7315 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, | |
7316 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7317 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7318 | .resetvalue = 0 }, |
9516d772 | 7319 | { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, |
e20d84c1 PM |
7320 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, |
7321 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7322 | .accessfn = access_aa64_tid3, |
9516d772 | 7323 | /* At present, only SVEver == 0 is defined anyway. */ |
e20d84c1 PM |
7324 | .resetvalue = 0 }, |
7325 | { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7326 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, | |
7327 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7328 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7329 | .resetvalue = 0 }, |
7330 | { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7331 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, | |
7332 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7333 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7334 | .resetvalue = 0 }, |
7335 | { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7336 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, | |
7337 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7338 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7339 | .resetvalue = 0 }, |
e60cef86 PM |
7340 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
7341 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
7342 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7343 | .accessfn = access_aa64_tid3, |
2a609df8 | 7344 | .resetvalue = cpu->isar.id_aa64dfr0 }, |
e60cef86 PM |
7345 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
7346 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
7347 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7348 | .accessfn = access_aa64_tid3, |
2a609df8 | 7349 | .resetvalue = cpu->isar.id_aa64dfr1 }, |
e20d84c1 PM |
7350 | { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7351 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, | |
7352 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7353 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7354 | .resetvalue = 0 }, |
7355 | { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7356 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, | |
7357 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7358 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7359 | .resetvalue = 0 }, |
e60cef86 PM |
7360 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
7361 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
7362 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7363 | .accessfn = access_aa64_tid3, |
e60cef86 PM |
7364 | .resetvalue = cpu->id_aa64afr0 }, |
7365 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
7366 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
7367 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7368 | .accessfn = access_aa64_tid3, |
e60cef86 | 7369 | .resetvalue = cpu->id_aa64afr1 }, |
e20d84c1 PM |
7370 | { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7371 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, | |
7372 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7373 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7374 | .resetvalue = 0 }, |
7375 | { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7376 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, | |
7377 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7378 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7379 | .resetvalue = 0 }, |
e60cef86 PM |
7380 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
7381 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
7382 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7383 | .accessfn = access_aa64_tid3, |
47576b94 | 7384 | .resetvalue = cpu->isar.id_aa64isar0 }, |
e60cef86 PM |
7385 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, |
7386 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
7387 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7388 | .accessfn = access_aa64_tid3, |
47576b94 | 7389 | .resetvalue = cpu->isar.id_aa64isar1 }, |
e20d84c1 PM |
7390 | { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7391 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, | |
7392 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7393 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7394 | .resetvalue = 0 }, |
7395 | { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7396 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, | |
7397 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7398 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7399 | .resetvalue = 0 }, |
7400 | { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7401 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, | |
7402 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7403 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7404 | .resetvalue = 0 }, |
7405 | { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7406 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, | |
7407 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7408 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7409 | .resetvalue = 0 }, |
7410 | { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7411 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, | |
7412 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7413 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7414 | .resetvalue = 0 }, |
7415 | { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7416 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, | |
7417 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7418 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7419 | .resetvalue = 0 }, |
e60cef86 PM |
7420 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
7421 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
7422 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7423 | .accessfn = access_aa64_tid3, |
3dc91ddb | 7424 | .resetvalue = cpu->isar.id_aa64mmfr0 }, |
e60cef86 PM |
7425 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, |
7426 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
7427 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7428 | .accessfn = access_aa64_tid3, |
3dc91ddb | 7429 | .resetvalue = cpu->isar.id_aa64mmfr1 }, |
64761e10 | 7430 | { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, |
e20d84c1 PM |
7431 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, |
7432 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7433 | .accessfn = access_aa64_tid3, |
64761e10 | 7434 | .resetvalue = cpu->isar.id_aa64mmfr2 }, |
e20d84c1 PM |
7435 | { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7436 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, | |
7437 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7438 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7439 | .resetvalue = 0 }, |
7440 | { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7441 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, | |
7442 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7443 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7444 | .resetvalue = 0 }, |
7445 | { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7446 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, | |
7447 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7448 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7449 | .resetvalue = 0 }, |
7450 | { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7451 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, | |
7452 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7453 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7454 | .resetvalue = 0 }, |
7455 | { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7456 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, | |
7457 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7458 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7459 | .resetvalue = 0 }, |
a50c0f51 PM |
7460 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
7461 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
7462 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7463 | .accessfn = access_aa64_tid3, |
47576b94 | 7464 | .resetvalue = cpu->isar.mvfr0 }, |
a50c0f51 PM |
7465 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, |
7466 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
7467 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7468 | .accessfn = access_aa64_tid3, |
47576b94 | 7469 | .resetvalue = cpu->isar.mvfr1 }, |
a50c0f51 PM |
7470 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, |
7471 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
7472 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7473 | .accessfn = access_aa64_tid3, |
47576b94 | 7474 | .resetvalue = cpu->isar.mvfr2 }, |
e20d84c1 PM |
7475 | { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
7476 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, | |
7477 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7478 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7479 | .resetvalue = 0 }, |
7480 | { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7481 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, | |
7482 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7483 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7484 | .resetvalue = 0 }, |
7485 | { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7486 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, | |
7487 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7488 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7489 | .resetvalue = 0 }, |
7490 | { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7491 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, | |
7492 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7493 | .accessfn = access_aa64_tid3, |
e20d84c1 PM |
7494 | .resetvalue = 0 }, |
7495 | { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
7496 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, | |
7497 | .access = PL1_R, .type = ARM_CP_CONST, | |
6a4ef4e5 | 7498 | .accessfn = access_aa64_tid3, |
e20d84c1 | 7499 | .resetvalue = 0 }, |
4054bfa9 AF |
7500 | { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
7501 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, | |
7502 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
cad86737 | 7503 | .resetvalue = extract64(cpu->pmceid0, 0, 32) }, |
4054bfa9 AF |
7504 | { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, |
7505 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, | |
7506 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
7507 | .resetvalue = cpu->pmceid0 }, | |
7508 | { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, | |
7509 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, | |
7510 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
cad86737 | 7511 | .resetvalue = extract64(cpu->pmceid1, 0, 32) }, |
4054bfa9 AF |
7512 | { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, |
7513 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, | |
7514 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
7515 | .resetvalue = cpu->pmceid1 }, | |
e60cef86 PM |
7516 | REGINFO_SENTINEL |
7517 | }; | |
6c5c0fec AB |
7518 | #ifdef CONFIG_USER_ONLY |
7519 | ARMCPRegUserSpaceInfo v8_user_idregs[] = { | |
7520 | { .name = "ID_AA64PFR0_EL1", | |
7521 | .exported_bits = 0x000f000f00ff0000, | |
7522 | .fixed_bits = 0x0000000000000011 }, | |
7523 | { .name = "ID_AA64PFR1_EL1", | |
7524 | .exported_bits = 0x00000000000000f0 }, | |
d040242e AB |
7525 | { .name = "ID_AA64PFR*_EL1_RESERVED", |
7526 | .is_glob = true }, | |
6c5c0fec AB |
7527 | { .name = "ID_AA64ZFR0_EL1" }, |
7528 | { .name = "ID_AA64MMFR0_EL1", | |
7529 | .fixed_bits = 0x00000000ff000000 }, | |
7530 | { .name = "ID_AA64MMFR1_EL1" }, | |
d040242e AB |
7531 | { .name = "ID_AA64MMFR*_EL1_RESERVED", |
7532 | .is_glob = true }, | |
6c5c0fec AB |
7533 | { .name = "ID_AA64DFR0_EL1", |
7534 | .fixed_bits = 0x0000000000000006 }, | |
7535 | { .name = "ID_AA64DFR1_EL1" }, | |
d040242e AB |
7536 | { .name = "ID_AA64DFR*_EL1_RESERVED", |
7537 | .is_glob = true }, | |
7538 | { .name = "ID_AA64AFR*", | |
7539 | .is_glob = true }, | |
6c5c0fec AB |
7540 | { .name = "ID_AA64ISAR0_EL1", |
7541 | .exported_bits = 0x00fffffff0fffff0 }, | |
7542 | { .name = "ID_AA64ISAR1_EL1", | |
7543 | .exported_bits = 0x000000f0ffffffff }, | |
d040242e AB |
7544 | { .name = "ID_AA64ISAR*_EL1_RESERVED", |
7545 | .is_glob = true }, | |
6c5c0fec AB |
7546 | REGUSERINFO_SENTINEL |
7547 | }; | |
7548 | modify_arm_cp_regs(v8_idregs, v8_user_idregs); | |
7549 | #endif | |
be8e8128 GB |
7550 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
7551 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
7552 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
7553 | ARMCPRegInfo rvbar = { | |
7554 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
7555 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
7556 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
7557 | }; | |
7558 | define_one_arm_cp_reg(cpu, &rvbar); | |
7559 | } | |
e60cef86 | 7560 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
7561 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
7562 | } | |
3b685ba7 | 7563 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
f0d574d6 | 7564 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
7565 | ARMCPRegInfo vpidr_regs[] = { |
7566 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
7567 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
7568 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
36476562 PM |
7569 | .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, |
7570 | .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, | |
731de9e6 EI |
7571 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, |
7572 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
7573 | .access = PL2_RW, .resetvalue = cpu->midr, | |
7574 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
7575 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
7576 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
7577 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
36476562 PM |
7578 | .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, |
7579 | .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, | |
f0d574d6 EI |
7580 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, |
7581 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
7582 | .access = PL2_RW, | |
7583 | .resetvalue = vmpidr_def, | |
7584 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
731de9e6 EI |
7585 | REGINFO_SENTINEL |
7586 | }; | |
7587 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 7588 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
ce4afed8 PM |
7589 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7590 | define_arm_cp_regs(cpu, el2_v8_cp_reginfo); | |
7591 | } | |
be8e8128 GB |
7592 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
7593 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
7594 | ARMCPRegInfo rvbar = { | |
7595 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
7596 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
7597 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
7598 | }; | |
7599 | define_one_arm_cp_reg(cpu, &rvbar); | |
7600 | } | |
d42e3c26 EI |
7601 | } else { |
7602 | /* If EL2 is missing but higher ELs are enabled, we need to | |
7603 | * register the no_el2 reginfos. | |
7604 | */ | |
7605 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
f0d574d6 EI |
7606 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
7607 | * of MIDR_EL1 and MPIDR_EL1. | |
731de9e6 EI |
7608 | */ |
7609 | ARMCPRegInfo vpidr_regs[] = { | |
7610 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | |
7611 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
7612 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
7613 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, | |
7614 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
7615 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
7616 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
7617 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
7618 | .type = ARM_CP_NO_RAW, | |
7619 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | |
731de9e6 EI |
7620 | REGINFO_SENTINEL |
7621 | }; | |
7622 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 7623 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
ce4afed8 PM |
7624 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7625 | define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); | |
7626 | } | |
d42e3c26 | 7627 | } |
3b685ba7 | 7628 | } |
81547d66 | 7629 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 7630 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
e24fdd23 PM |
7631 | ARMCPRegInfo el3_regs[] = { |
7632 | { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
7633 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
7634 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, | |
7635 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, | |
7636 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
7637 | .access = PL3_RW, | |
7638 | .raw_writefn = raw_write, .writefn = sctlr_write, | |
7639 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), | |
7640 | .resetvalue = cpu->reset_sctlr }, | |
7641 | REGINFO_SENTINEL | |
be8e8128 | 7642 | }; |
e24fdd23 PM |
7643 | |
7644 | define_arm_cp_regs(cpu, el3_regs); | |
81547d66 | 7645 | } |
2f027fc5 PM |
7646 | /* The behaviour of NSACR is sufficiently various that we don't |
7647 | * try to describe it in a single reginfo: | |
7648 | * if EL3 is 64 bit, then trap to EL3 from S EL1, | |
7649 | * reads as constant 0xc00 from NS EL1 and NS EL2 | |
7650 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 | |
7651 | * if v7 without EL3, register doesn't exist | |
7652 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 | |
7653 | */ | |
7654 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
7655 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
7656 | ARMCPRegInfo nsacr = { | |
7657 | .name = "NSACR", .type = ARM_CP_CONST, | |
7658 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
7659 | .access = PL1_RW, .accessfn = nsacr_access, | |
7660 | .resetvalue = 0xc00 | |
7661 | }; | |
7662 | define_one_arm_cp_reg(cpu, &nsacr); | |
7663 | } else { | |
7664 | ARMCPRegInfo nsacr = { | |
7665 | .name = "NSACR", | |
7666 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
7667 | .access = PL3_RW | PL1_R, | |
7668 | .resetvalue = 0, | |
7669 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) | |
7670 | }; | |
7671 | define_one_arm_cp_reg(cpu, &nsacr); | |
7672 | } | |
7673 | } else { | |
7674 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
7675 | ARMCPRegInfo nsacr = { | |
7676 | .name = "NSACR", .type = ARM_CP_CONST, | |
7677 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
7678 | .access = PL1_R, | |
7679 | .resetvalue = 0xc00 | |
7680 | }; | |
7681 | define_one_arm_cp_reg(cpu, &nsacr); | |
7682 | } | |
7683 | } | |
7684 | ||
452a0955 | 7685 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
6cb0b013 PC |
7686 | if (arm_feature(env, ARM_FEATURE_V6)) { |
7687 | /* PMSAv6 not implemented */ | |
7688 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
7689 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
7690 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
7691 | } else { | |
7692 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
7693 | } | |
18032bec | 7694 | } else { |
8e5d75c9 | 7695 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec | 7696 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
4036b7d1 PM |
7697 | /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ |
7698 | if (cpu_isar_feature(aa32_hpd, cpu)) { | |
ab638a32 RH |
7699 | define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); |
7700 | } | |
18032bec | 7701 | } |
c326b979 PM |
7702 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
7703 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
7704 | } | |
6cc7a3ae PM |
7705 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
7706 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
7707 | } | |
4a501606 PM |
7708 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
7709 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
7710 | } | |
c4804214 PM |
7711 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
7712 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
7713 | } | |
7714 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
7715 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
7716 | } | |
7717 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
7718 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
7719 | } | |
18032bec PM |
7720 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
7721 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
7722 | } | |
34f90529 PM |
7723 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
7724 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
7725 | } | |
1047b9d7 PM |
7726 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
7727 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
7728 | } | |
7729 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
7730 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
7731 | } | |
7ac681cf PM |
7732 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
7733 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
7734 | } | |
873b73c0 | 7735 | if (cpu_isar_feature(aa32_jazelle, cpu)) { |
f96f3d5f MZ |
7736 | define_arm_cp_regs(cpu, jazelle_regs); |
7737 | } | |
7884849c PM |
7738 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
7739 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
7740 | * be read-only (ie write causes UNDEF exception). | |
7741 | */ | |
7742 | { | |
00a29f3d PM |
7743 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
7744 | /* Pre-v8 MIDR space. | |
7745 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
7746 | * of the TI925 behaviour where writes to another register can |
7747 | * cause the MIDR value to change. | |
97ce8d61 PC |
7748 | * |
7749 | * Unimplemented registers in the c15 0 0 0 space default to | |
7750 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
7751 | * and friends override accordingly. | |
7884849c PM |
7752 | */ |
7753 | { .name = "MIDR", | |
97ce8d61 | 7754 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 7755 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 7756 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 7757 | .readfn = midr_read, |
97ce8d61 PC |
7758 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
7759 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
7760 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
7761 | { .name = "DUMMY", | |
7762 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
7763 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7764 | { .name = "DUMMY", | |
7765 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
7766 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7767 | { .name = "DUMMY", | |
7768 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
7769 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7770 | { .name = "DUMMY", | |
7771 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
7772 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7773 | { .name = "DUMMY", | |
7774 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
7775 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
7776 | REGINFO_SENTINEL | |
7777 | }; | |
00a29f3d | 7778 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
7779 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
7780 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
7781 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
7782 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
7783 | .readfn = midr_read }, | |
ac00c79f SF |
7784 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
7785 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
7786 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
7787 | .access = PL1_R, .resetvalue = cpu->midr }, | |
7788 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
7789 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
7790 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
7791 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
7792 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
93fbc983 MZ |
7793 | .access = PL1_R, |
7794 | .accessfn = access_aa64_tid1, | |
7795 | .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, | |
00a29f3d PM |
7796 | REGINFO_SENTINEL |
7797 | }; | |
7798 | ARMCPRegInfo id_cp_reginfo[] = { | |
7799 | /* These are common to v8 and pre-v8 */ | |
7800 | { .name = "CTR", | |
7801 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
630fcd4d MZ |
7802 | .access = PL1_R, .accessfn = ctr_el0_access, |
7803 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
00a29f3d PM |
7804 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
7805 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
7806 | .access = PL0_R, .accessfn = ctr_el0_access, | |
7807 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
7808 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
7809 | { .name = "TCMTR", | |
7810 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
93fbc983 MZ |
7811 | .access = PL1_R, |
7812 | .accessfn = access_aa32_tid1, | |
7813 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
7814 | REGINFO_SENTINEL |
7815 | }; | |
8085ce63 PC |
7816 | /* TLBTR is specific to VMSA */ |
7817 | ARMCPRegInfo id_tlbtr_reginfo = { | |
7818 | .name = "TLBTR", | |
7819 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
93fbc983 MZ |
7820 | .access = PL1_R, |
7821 | .accessfn = access_aa32_tid1, | |
7822 | .type = ARM_CP_CONST, .resetvalue = 0, | |
8085ce63 | 7823 | }; |
3281af81 PC |
7824 | /* MPUIR is specific to PMSA V6+ */ |
7825 | ARMCPRegInfo id_mpuir_reginfo = { | |
7826 | .name = "MPUIR", | |
7827 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
7828 | .access = PL1_R, .type = ARM_CP_CONST, | |
7829 | .resetvalue = cpu->pmsav7_dregion << 8 | |
7830 | }; | |
7884849c PM |
7831 | ARMCPRegInfo crn0_wi_reginfo = { |
7832 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
7833 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
7834 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
7835 | }; | |
6c5c0fec AB |
7836 | #ifdef CONFIG_USER_ONLY |
7837 | ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { | |
7838 | { .name = "MIDR_EL1", | |
7839 | .exported_bits = 0x00000000ffffffff }, | |
7840 | { .name = "REVIDR_EL1" }, | |
7841 | REGUSERINFO_SENTINEL | |
7842 | }; | |
7843 | modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); | |
7844 | #endif | |
7884849c PM |
7845 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
7846 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
7847 | ARMCPRegInfo *r; | |
7848 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
7849 | * whole space. Then update the specific ID registers to allow write |
7850 | * access, so that they ignore writes rather than causing them to | |
7851 | * UNDEF. | |
7884849c PM |
7852 | */ |
7853 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
7854 | for (r = id_pre_v8_midr_cp_reginfo; |
7855 | r->type != ARM_CP_SENTINEL; r++) { | |
7856 | r->access = PL1_RW; | |
7857 | } | |
7884849c PM |
7858 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
7859 | r->access = PL1_RW; | |
7884849c | 7860 | } |
10006112 | 7861 | id_mpuir_reginfo.access = PL1_RW; |
3281af81 | 7862 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 7863 | } |
00a29f3d PM |
7864 | if (arm_feature(env, ARM_FEATURE_V8)) { |
7865 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
7866 | } else { | |
7867 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
7868 | } | |
a703eda1 | 7869 | define_arm_cp_regs(cpu, id_cp_reginfo); |
452a0955 | 7870 | if (!arm_feature(env, ARM_FEATURE_PMSA)) { |
8085ce63 | 7871 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
3281af81 PC |
7872 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
7873 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 7874 | } |
7884849c PM |
7875 | } |
7876 | ||
97ce8d61 | 7877 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
52264166 AB |
7878 | ARMCPRegInfo mpidr_cp_reginfo[] = { |
7879 | { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
7880 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7881 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, | |
7882 | REGINFO_SENTINEL | |
7883 | }; | |
7884 | #ifdef CONFIG_USER_ONLY | |
7885 | ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { | |
7886 | { .name = "MPIDR_EL1", | |
7887 | .fixed_bits = 0x0000000080000000 }, | |
7888 | REGUSERINFO_SENTINEL | |
7889 | }; | |
7890 | modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); | |
7891 | #endif | |
97ce8d61 PC |
7892 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
7893 | } | |
7894 | ||
2771db27 | 7895 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
7896 | ARMCPRegInfo auxcr_reginfo[] = { |
7897 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
7898 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
99602377 RH |
7899 | .access = PL1_RW, .accessfn = access_tacr, |
7900 | .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, | |
834a6c69 PM |
7901 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, |
7902 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
7903 | .access = PL2_RW, .type = ARM_CP_CONST, | |
7904 | .resetvalue = 0 }, | |
7905 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
7906 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
7907 | .access = PL3_RW, .type = ARM_CP_CONST, | |
7908 | .resetvalue = 0 }, | |
7909 | REGINFO_SENTINEL | |
2771db27 | 7910 | }; |
834a6c69 | 7911 | define_arm_cp_regs(cpu, auxcr_reginfo); |
f6287c24 PM |
7912 | if (cpu_isar_feature(aa32_ac2, cpu)) { |
7913 | define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); | |
0e0456ab | 7914 | } |
2771db27 PM |
7915 | } |
7916 | ||
d8ba780b | 7917 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
d56974af LM |
7918 | /* |
7919 | * CBAR is IMPDEF, but common on Arm Cortex-A implementations. | |
7920 | * There are two flavours: | |
7921 | * (1) older 32-bit only cores have a simple 32-bit CBAR | |
7922 | * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a | |
7923 | * 32-bit register visible to AArch32 at a different encoding | |
7924 | * to the "flavour 1" register and with the bits rearranged to | |
7925 | * be able to squash a 64-bit address into the 32-bit view. | |
7926 | * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but | |
7927 | * in future if we support AArch32-only configs of some of the | |
7928 | * AArch64 cores we might need to add a specific feature flag | |
7929 | * to indicate cores with "flavour 2" CBAR. | |
7930 | */ | |
f318cec6 PM |
7931 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
7932 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
7933 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
7934 | | extract64(cpu->reset_cbar, 32, 12); | |
7935 | ARMCPRegInfo cbar_reginfo[] = { | |
7936 | { .name = "CBAR", | |
7937 | .type = ARM_CP_CONST, | |
d56974af LM |
7938 | .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, |
7939 | .access = PL1_R, .resetvalue = cbar32 }, | |
f318cec6 PM |
7940 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, |
7941 | .type = ARM_CP_CONST, | |
7942 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
d56974af | 7943 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, |
f318cec6 PM |
7944 | REGINFO_SENTINEL |
7945 | }; | |
7946 | /* We don't implement a r/w 64 bit CBAR currently */ | |
7947 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
7948 | define_arm_cp_regs(cpu, cbar_reginfo); | |
7949 | } else { | |
7950 | ARMCPRegInfo cbar = { | |
7951 | .name = "CBAR", | |
7952 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
7953 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
7954 | .fieldoffset = offsetof(CPUARMState, | |
7955 | cp15.c15_config_base_address) | |
7956 | }; | |
7957 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
7958 | cbar.access = PL1_R; | |
7959 | cbar.fieldoffset = 0; | |
7960 | cbar.type = ARM_CP_CONST; | |
7961 | } | |
7962 | define_one_arm_cp_reg(cpu, &cbar); | |
7963 | } | |
d8ba780b PC |
7964 | } |
7965 | ||
91db4642 CLG |
7966 | if (arm_feature(env, ARM_FEATURE_VBAR)) { |
7967 | ARMCPRegInfo vbar_cp_reginfo[] = { | |
7968 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, | |
7969 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7970 | .access = PL1_RW, .writefn = vbar_write, | |
7971 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), | |
7972 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
7973 | .resetvalue = 0 }, | |
7974 | REGINFO_SENTINEL | |
7975 | }; | |
7976 | define_arm_cp_regs(cpu, vbar_cp_reginfo); | |
7977 | } | |
7978 | ||
2771db27 PM |
7979 | /* Generic registers whose values depend on the implementation */ |
7980 | { | |
7981 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 7982 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 | 7983 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
84929218 | 7984 | .access = PL1_RW, .accessfn = access_tvm_trvm, |
137feaa9 FA |
7985 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), |
7986 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
7987 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
7988 | .raw_writefn = raw_write, | |
2771db27 PM |
7989 | }; |
7990 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
7991 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
7992 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
7993 | * an MMU enable to execute from cache. Imitate this behaviour. | |
7994 | */ | |
7995 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
7996 | } | |
7997 | define_one_arm_cp_reg(cpu, &sctlr); | |
7998 | } | |
5be5e8ed | 7999 | |
2d7137c1 | 8000 | if (cpu_isar_feature(aa64_lor, cpu)) { |
2d7137c1 RH |
8001 | define_arm_cp_regs(cpu, lor_reginfo); |
8002 | } | |
220f508f RH |
8003 | if (cpu_isar_feature(aa64_pan, cpu)) { |
8004 | define_one_arm_cp_reg(cpu, &pan_reginfo); | |
8005 | } | |
04b07d29 RH |
8006 | #ifndef CONFIG_USER_ONLY |
8007 | if (cpu_isar_feature(aa64_ats1e1, cpu)) { | |
8008 | define_arm_cp_regs(cpu, ats1e1_reginfo); | |
8009 | } | |
8010 | if (cpu_isar_feature(aa32_ats1e1, cpu)) { | |
8011 | define_arm_cp_regs(cpu, ats1cp_reginfo); | |
8012 | } | |
8013 | #endif | |
9eeb7a1c RH |
8014 | if (cpu_isar_feature(aa64_uao, cpu)) { |
8015 | define_one_arm_cp_reg(cpu, &uao_reginfo); | |
8016 | } | |
2d7137c1 | 8017 | |
e2a1a461 RH |
8018 | if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { |
8019 | define_arm_cp_regs(cpu, vhe_reginfo); | |
8020 | } | |
8021 | ||
cd208a1c | 8022 | if (cpu_isar_feature(aa64_sve, cpu)) { |
5be5e8ed RH |
8023 | define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); |
8024 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
8025 | define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); | |
8026 | } else { | |
8027 | define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); | |
8028 | } | |
8029 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
8030 | define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); | |
8031 | } | |
8032 | } | |
967aa94f RH |
8033 | |
8034 | #ifdef TARGET_AARCH64 | |
8035 | if (cpu_isar_feature(aa64_pauth, cpu)) { | |
8036 | define_arm_cp_regs(cpu, pauth_reginfo); | |
8037 | } | |
de390645 RH |
8038 | if (cpu_isar_feature(aa64_rndr, cpu)) { |
8039 | define_arm_cp_regs(cpu, rndr_reginfo); | |
8040 | } | |
0d57b499 BM |
8041 | #ifndef CONFIG_USER_ONLY |
8042 | /* Data Cache clean instructions up to PoP */ | |
8043 | if (cpu_isar_feature(aa64_dcpop, cpu)) { | |
8044 | define_one_arm_cp_reg(cpu, dcpop_reg); | |
8045 | ||
8046 | if (cpu_isar_feature(aa64_dcpodp, cpu)) { | |
8047 | define_one_arm_cp_reg(cpu, dcpodp_reg); | |
8048 | } | |
8049 | } | |
8050 | #endif /*CONFIG_USER_ONLY*/ | |
967aa94f | 8051 | #endif |
cb570bd3 | 8052 | |
22e57073 | 8053 | if (cpu_isar_feature(any_predinv, cpu)) { |
cb570bd3 RH |
8054 | define_arm_cp_regs(cpu, predinv_reginfo); |
8055 | } | |
e2cce18f | 8056 | |
957e6155 PM |
8057 | if (cpu_isar_feature(any_ccidx, cpu)) { |
8058 | define_arm_cp_regs(cpu, ccsidr2_reginfo); | |
8059 | } | |
8060 | ||
e2cce18f RH |
8061 | #ifndef CONFIG_USER_ONLY |
8062 | /* | |
8063 | * Register redirections and aliases must be done last, | |
8064 | * after the registers from the other extensions have been defined. | |
8065 | */ | |
8066 | if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { | |
8067 | define_arm_vh_e2h_redirects_aliases(cpu); | |
8068 | } | |
8069 | #endif | |
2ceb98c0 PM |
8070 | } |
8071 | ||
14969266 AF |
8072 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
8073 | { | |
22169d41 | 8074 | CPUState *cs = CPU(cpu); |
14969266 AF |
8075 | CPUARMState *env = &cpu->env; |
8076 | ||
6a669427 | 8077 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
d12379c5 AB |
8078 | /* |
8079 | * The lower part of each SVE register aliases to the FPU | |
8080 | * registers so we don't need to include both. | |
8081 | */ | |
8082 | #ifdef TARGET_AARCH64 | |
8083 | if (isar_feature_aa64_sve(&cpu->isar)) { | |
8084 | gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, | |
8085 | arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), | |
8086 | "sve-registers.xml", 0); | |
8087 | } else | |
8088 | #endif | |
8089 | { | |
8090 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
8091 | aarch64_fpu_gdb_set_reg, | |
8092 | 34, "aarch64-fpu.xml", 0); | |
8093 | } | |
6a669427 | 8094 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { |
22169d41 | 8095 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 | 8096 | 51, "arm-neon.xml", 0); |
a6627f5f | 8097 | } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { |
22169d41 | 8098 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 | 8099 | 35, "arm-vfp3.xml", 0); |
7fbc6a40 | 8100 | } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { |
22169d41 | 8101 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
8102 | 19, "arm-vfp.xml", 0); |
8103 | } | |
200bf5b7 | 8104 | gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, |
32d6e32a | 8105 | arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), |
200bf5b7 | 8106 | "system-registers.xml", 0); |
d12379c5 | 8107 | |
40f137e1 PB |
8108 | } |
8109 | ||
777dc784 PM |
8110 | /* Sort alphabetically by type name, except for "any". */ |
8111 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 8112 | { |
777dc784 PM |
8113 | ObjectClass *class_a = (ObjectClass *)a; |
8114 | ObjectClass *class_b = (ObjectClass *)b; | |
8115 | const char *name_a, *name_b; | |
5adb4839 | 8116 | |
777dc784 PM |
8117 | name_a = object_class_get_name(class_a); |
8118 | name_b = object_class_get_name(class_b); | |
51492fd1 | 8119 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 8120 | return 1; |
51492fd1 | 8121 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
8122 | return -1; |
8123 | } else { | |
8124 | return strcmp(name_a, name_b); | |
5adb4839 PB |
8125 | } |
8126 | } | |
8127 | ||
777dc784 | 8128 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 8129 | { |
777dc784 | 8130 | ObjectClass *oc = data; |
51492fd1 AF |
8131 | const char *typename; |
8132 | char *name; | |
3371d272 | 8133 | |
51492fd1 AF |
8134 | typename = object_class_get_name(oc); |
8135 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
0442428a | 8136 | qemu_printf(" %s\n", name); |
51492fd1 | 8137 | g_free(name); |
777dc784 PM |
8138 | } |
8139 | ||
0442428a | 8140 | void arm_cpu_list(void) |
777dc784 | 8141 | { |
777dc784 PM |
8142 | GSList *list; |
8143 | ||
8144 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
8145 | list = g_slist_sort(list, arm_cpu_list_compare); | |
0442428a MA |
8146 | qemu_printf("Available CPUs:\n"); |
8147 | g_slist_foreach(list, arm_cpu_list_entry, NULL); | |
777dc784 | 8148 | g_slist_free(list); |
40f137e1 PB |
8149 | } |
8150 | ||
78027bb6 CR |
8151 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
8152 | { | |
8153 | ObjectClass *oc = data; | |
8154 | CpuDefinitionInfoList **cpu_list = user_data; | |
8155 | CpuDefinitionInfoList *entry; | |
8156 | CpuDefinitionInfo *info; | |
8157 | const char *typename; | |
8158 | ||
8159 | typename = object_class_get_name(oc); | |
8160 | info = g_malloc0(sizeof(*info)); | |
8161 | info->name = g_strndup(typename, | |
8162 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
8ed877b7 | 8163 | info->q_typename = g_strdup(typename); |
78027bb6 CR |
8164 | |
8165 | entry = g_malloc0(sizeof(*entry)); | |
8166 | entry->value = info; | |
8167 | entry->next = *cpu_list; | |
8168 | *cpu_list = entry; | |
8169 | } | |
8170 | ||
25a9d6ca | 8171 | CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) |
78027bb6 CR |
8172 | { |
8173 | CpuDefinitionInfoList *cpu_list = NULL; | |
8174 | GSList *list; | |
8175 | ||
8176 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
8177 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
8178 | g_slist_free(list); | |
8179 | ||
8180 | return cpu_list; | |
8181 | } | |
8182 | ||
6e6efd61 | 8183 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 8184 | void *opaque, int state, int secstate, |
9c513e78 AB |
8185 | int crm, int opc1, int opc2, |
8186 | const char *name) | |
6e6efd61 PM |
8187 | { |
8188 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
8189 | * add a single reginfo struct to the hash table. | |
8190 | */ | |
8191 | uint32_t *key = g_new(uint32_t, 1); | |
8192 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
8193 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
8194 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
8195 | ||
9c513e78 | 8196 | r2->name = g_strdup(name); |
3f3c82a5 FA |
8197 | /* Reset the secure state to the specific incoming state. This is |
8198 | * necessary as the register may have been defined with both states. | |
8199 | */ | |
8200 | r2->secure = secstate; | |
8201 | ||
8202 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
8203 | /* Register is banked (using both entries in array). | |
8204 | * Overwriting fieldoffset as the array is only used to define | |
8205 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 8206 | */ |
3f3c82a5 FA |
8207 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
8208 | } | |
8209 | ||
8210 | if (state == ARM_CP_STATE_AA32) { | |
8211 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
8212 | /* If the register is banked then we don't need to migrate or | |
8213 | * reset the 32-bit instance in certain cases: | |
8214 | * | |
8215 | * 1) If the register has both 32-bit and 64-bit instances then we | |
8216 | * can count on the 64-bit instance taking care of the | |
8217 | * non-secure bank. | |
8218 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
8219 | * taking care of the secure bank. This requires that separate | |
8220 | * 32 and 64-bit definitions are provided. | |
8221 | */ | |
8222 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
8223 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 8224 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
8225 | } |
8226 | } else if ((secstate != r->secure) && !ns) { | |
8227 | /* The register is not banked so we only want to allow migration of | |
8228 | * the non-secure instance. | |
8229 | */ | |
7a0e58fa | 8230 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 8231 | } |
3f3c82a5 FA |
8232 | |
8233 | if (r->state == ARM_CP_STATE_BOTH) { | |
8234 | /* We assume it is a cp15 register if the .cp field is left unset. | |
8235 | */ | |
8236 | if (r2->cp == 0) { | |
8237 | r2->cp = 15; | |
8238 | } | |
8239 | ||
f5a0a5a5 | 8240 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
8241 | if (r2->fieldoffset) { |
8242 | r2->fieldoffset += sizeof(uint32_t); | |
8243 | } | |
f5a0a5a5 | 8244 | #endif |
3f3c82a5 | 8245 | } |
f5a0a5a5 PM |
8246 | } |
8247 | if (state == ARM_CP_STATE_AA64) { | |
8248 | /* To allow abbreviation of ARMCPRegInfo | |
8249 | * definitions, we treat cp == 0 as equivalent to | |
8250 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
8251 | * STATE_BOTH definitions are also always "standard |
8252 | * sysreg" in their AArch64 view (the .cp value may | |
8253 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 8254 | */ |
58a1d8ce | 8255 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
8256 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
8257 | } | |
8258 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
8259 | r2->opc0, opc1, opc2); | |
8260 | } else { | |
51a79b03 | 8261 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 8262 | } |
6e6efd61 PM |
8263 | if (opaque) { |
8264 | r2->opaque = opaque; | |
8265 | } | |
67ed771d PM |
8266 | /* reginfo passed to helpers is correct for the actual access, |
8267 | * and is never ARM_CP_STATE_BOTH: | |
8268 | */ | |
8269 | r2->state = state; | |
6e6efd61 PM |
8270 | /* Make sure reginfo passed to helpers for wildcarded regs |
8271 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
8272 | */ | |
8273 | r2->crm = crm; | |
8274 | r2->opc1 = opc1; | |
8275 | r2->opc2 = opc2; | |
8276 | /* By convention, for wildcarded registers only the first | |
8277 | * entry is used for migration; the others are marked as | |
7a0e58fa | 8278 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 8279 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 8280 | * never migratable and not even raw-accessible. |
6e6efd61 | 8281 | */ |
7a0e58fa PM |
8282 | if ((r->type & ARM_CP_SPECIAL)) { |
8283 | r2->type |= ARM_CP_NO_RAW; | |
8284 | } | |
8285 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
8286 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
8287 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
1f163787 | 8288 | r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; |
6e6efd61 PM |
8289 | } |
8290 | ||
375421cc PM |
8291 | /* Check that raw accesses are either forbidden or handled. Note that |
8292 | * we can't assert this earlier because the setup of fieldoffset for | |
8293 | * banked registers has to be done first. | |
8294 | */ | |
8295 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
8296 | assert(!raw_accessors_invalid(r2)); | |
8297 | } | |
8298 | ||
6e6efd61 PM |
8299 | /* Overriding of an existing definition must be explicitly |
8300 | * requested. | |
8301 | */ | |
8302 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
8303 | ARMCPRegInfo *oldreg; | |
8304 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
8305 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
8306 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
8307 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
8308 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
8309 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
8310 | oldreg->name, r2->name); | |
8311 | g_assert_not_reached(); | |
8312 | } | |
8313 | } | |
8314 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
8315 | } | |
8316 | ||
8317 | ||
4b6a83fb PM |
8318 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
8319 | const ARMCPRegInfo *r, void *opaque) | |
8320 | { | |
8321 | /* Define implementations of coprocessor registers. | |
8322 | * We store these in a hashtable because typically | |
8323 | * there are less than 150 registers in a space which | |
8324 | * is 16*16*16*8*8 = 262144 in size. | |
8325 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
8326 | * If a register is defined twice then the second definition is | |
8327 | * used, so this can be used to define some generic registers and | |
8328 | * then override them with implementation specific variations. | |
8329 | * At least one of the original and the second definition should | |
8330 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
8331 | * against accidental use. | |
f5a0a5a5 PM |
8332 | * |
8333 | * The state field defines whether the register is to be | |
8334 | * visible in the AArch32 or AArch64 execution state. If the | |
8335 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
8336 | * reginfo structure for the AArch32 view, which sees the lower | |
8337 | * 32 bits of the 64 bit register. | |
8338 | * | |
8339 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
8340 | * be wildcarded. AArch64 registers are always considered to be 64 | |
8341 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
8342 | * the register, if any. | |
4b6a83fb | 8343 | */ |
f5a0a5a5 | 8344 | int crm, opc1, opc2, state; |
4b6a83fb PM |
8345 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
8346 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
8347 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
8348 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
8349 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
8350 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
8351 | /* 64 bit registers have only CRm and Opc1 fields */ | |
8352 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
8353 | /* op0 only exists in the AArch64 encodings */ |
8354 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
8355 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
8356 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
8357 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
8358 | * encodes a minimum access level for the register. We roll this | |
8359 | * runtime check into our general permission check code, so check | |
8360 | * here that the reginfo's specified permissions are strict enough | |
8361 | * to encompass the generic architectural permission check. | |
8362 | */ | |
8363 | if (r->state != ARM_CP_STATE_AA32) { | |
8364 | int mask = 0; | |
8365 | switch (r->opc1) { | |
b5bd7440 AB |
8366 | case 0: |
8367 | /* min_EL EL1, but some accessible to EL0 via kernel ABI */ | |
8368 | mask = PL0U_R | PL1_RW; | |
8369 | break; | |
8370 | case 1: case 2: | |
f5a0a5a5 PM |
8371 | /* min_EL EL1 */ |
8372 | mask = PL1_RW; | |
8373 | break; | |
8374 | case 3: | |
8375 | /* min_EL EL0 */ | |
8376 | mask = PL0_RW; | |
8377 | break; | |
8378 | case 4: | |
b4ecf60f | 8379 | case 5: |
f5a0a5a5 PM |
8380 | /* min_EL EL2 */ |
8381 | mask = PL2_RW; | |
8382 | break; | |
f5a0a5a5 PM |
8383 | case 6: |
8384 | /* min_EL EL3 */ | |
8385 | mask = PL3_RW; | |
8386 | break; | |
8387 | case 7: | |
8388 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
8389 | mask = PL1_RW; | |
8390 | break; | |
8391 | default: | |
8392 | /* broken reginfo with out-of-range opc1 */ | |
8393 | assert(false); | |
8394 | break; | |
8395 | } | |
8396 | /* assert our permissions are not too lax (stricter is fine) */ | |
8397 | assert((r->access & ~mask) == 0); | |
8398 | } | |
8399 | ||
4b6a83fb PM |
8400 | /* Check that the register definition has enough info to handle |
8401 | * reads and writes if they are permitted. | |
8402 | */ | |
8403 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
8404 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
8405 | assert((r->fieldoffset || |
8406 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
8407 | r->readfn); | |
4b6a83fb PM |
8408 | } |
8409 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
8410 | assert((r->fieldoffset || |
8411 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
8412 | r->writefn); | |
4b6a83fb PM |
8413 | } |
8414 | } | |
8415 | /* Bad type field probably means missing sentinel at end of reg list */ | |
8416 | assert(cptype_valid(r->type)); | |
8417 | for (crm = crmmin; crm <= crmmax; crm++) { | |
8418 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
8419 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
8420 | for (state = ARM_CP_STATE_AA32; |
8421 | state <= ARM_CP_STATE_AA64; state++) { | |
8422 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
8423 | continue; | |
8424 | } | |
3f3c82a5 FA |
8425 | if (state == ARM_CP_STATE_AA32) { |
8426 | /* Under AArch32 CP registers can be common | |
8427 | * (same for secure and non-secure world) or banked. | |
8428 | */ | |
9c513e78 AB |
8429 | char *name; |
8430 | ||
3f3c82a5 FA |
8431 | switch (r->secure) { |
8432 | case ARM_CP_SECSTATE_S: | |
8433 | case ARM_CP_SECSTATE_NS: | |
8434 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
9c513e78 AB |
8435 | r->secure, crm, opc1, opc2, |
8436 | r->name); | |
3f3c82a5 FA |
8437 | break; |
8438 | default: | |
9c513e78 | 8439 | name = g_strdup_printf("%s_S", r->name); |
3f3c82a5 FA |
8440 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
8441 | ARM_CP_SECSTATE_S, | |
9c513e78 AB |
8442 | crm, opc1, opc2, name); |
8443 | g_free(name); | |
3f3c82a5 FA |
8444 | add_cpreg_to_hashtable(cpu, r, opaque, state, |
8445 | ARM_CP_SECSTATE_NS, | |
9c513e78 | 8446 | crm, opc1, opc2, r->name); |
3f3c82a5 FA |
8447 | break; |
8448 | } | |
8449 | } else { | |
8450 | /* AArch64 registers get mapped to non-secure instance | |
8451 | * of AArch32 */ | |
8452 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
8453 | ARM_CP_SECSTATE_NS, | |
9c513e78 | 8454 | crm, opc1, opc2, r->name); |
3f3c82a5 | 8455 | } |
f5a0a5a5 | 8456 | } |
4b6a83fb PM |
8457 | } |
8458 | } | |
8459 | } | |
8460 | } | |
8461 | ||
8462 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
8463 | const ARMCPRegInfo *regs, void *opaque) | |
8464 | { | |
8465 | /* Define a whole list of registers */ | |
8466 | const ARMCPRegInfo *r; | |
8467 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
8468 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
8469 | } | |
8470 | } | |
8471 | ||
6c5c0fec AB |
8472 | /* |
8473 | * Modify ARMCPRegInfo for access from userspace. | |
8474 | * | |
8475 | * This is a data driven modification directed by | |
8476 | * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as | |
8477 | * user-space cannot alter any values and dynamic values pertaining to | |
8478 | * execution state are hidden from user space view anyway. | |
8479 | */ | |
8480 | void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) | |
8481 | { | |
8482 | const ARMCPRegUserSpaceInfo *m; | |
8483 | ARMCPRegInfo *r; | |
8484 | ||
8485 | for (m = mods; m->name; m++) { | |
d040242e AB |
8486 | GPatternSpec *pat = NULL; |
8487 | if (m->is_glob) { | |
8488 | pat = g_pattern_spec_new(m->name); | |
8489 | } | |
6c5c0fec | 8490 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
d040242e AB |
8491 | if (pat && g_pattern_match_string(pat, r->name)) { |
8492 | r->type = ARM_CP_CONST; | |
8493 | r->access = PL0U_R; | |
8494 | r->resetvalue = 0; | |
8495 | /* continue */ | |
8496 | } else if (strcmp(r->name, m->name) == 0) { | |
6c5c0fec AB |
8497 | r->type = ARM_CP_CONST; |
8498 | r->access = PL0U_R; | |
8499 | r->resetvalue &= m->exported_bits; | |
8500 | r->resetvalue |= m->fixed_bits; | |
8501 | break; | |
8502 | } | |
8503 | } | |
d040242e AB |
8504 | if (pat) { |
8505 | g_pattern_spec_free(pat); | |
8506 | } | |
6c5c0fec AB |
8507 | } |
8508 | } | |
8509 | ||
60322b39 | 8510 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 8511 | { |
60322b39 | 8512 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
8513 | } |
8514 | ||
c4241c7d PM |
8515 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
8516 | uint64_t value) | |
4b6a83fb PM |
8517 | { |
8518 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
8519 | } |
8520 | ||
c4241c7d | 8521 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
8522 | { |
8523 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
8524 | return 0; |
8525 | } | |
8526 | ||
f5a0a5a5 PM |
8527 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
8528 | { | |
8529 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
8530 | } | |
8531 | ||
af393ffc | 8532 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
37064a8b PM |
8533 | { |
8534 | /* Return true if it is not valid for us to switch to | |
8535 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
8536 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
8537 | */ | |
af393ffc PM |
8538 | |
8539 | /* Changes to or from Hyp via MSR and CPS are illegal. */ | |
8540 | if (write_type == CPSRWriteByInstr && | |
8541 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || | |
8542 | mode == ARM_CPU_MODE_HYP)) { | |
8543 | return 1; | |
8544 | } | |
8545 | ||
37064a8b PM |
8546 | switch (mode) { |
8547 | case ARM_CPU_MODE_USR: | |
10eacda7 | 8548 | return 0; |
37064a8b PM |
8549 | case ARM_CPU_MODE_SYS: |
8550 | case ARM_CPU_MODE_SVC: | |
8551 | case ARM_CPU_MODE_ABT: | |
8552 | case ARM_CPU_MODE_UND: | |
8553 | case ARM_CPU_MODE_IRQ: | |
8554 | case ARM_CPU_MODE_FIQ: | |
52ff951b PM |
8555 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
8556 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) | |
8557 | */ | |
10eacda7 PM |
8558 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
8559 | * and CPS are treated as illegal mode changes. | |
8560 | */ | |
8561 | if (write_type == CPSRWriteByInstr && | |
10eacda7 | 8562 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && |
7c208e0f | 8563 | (arm_hcr_el2_eff(env) & HCR_TGE)) { |
10eacda7 PM |
8564 | return 1; |
8565 | } | |
37064a8b | 8566 | return 0; |
e6c8fc07 PM |
8567 | case ARM_CPU_MODE_HYP: |
8568 | return !arm_feature(env, ARM_FEATURE_EL2) | |
2d2a4549 | 8569 | || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); |
027fc527 | 8570 | case ARM_CPU_MODE_MON: |
58ae2d1f | 8571 | return arm_current_el(env) < 3; |
37064a8b PM |
8572 | default: |
8573 | return 1; | |
8574 | } | |
8575 | } | |
8576 | ||
2f4a40e5 AZ |
8577 | uint32_t cpsr_read(CPUARMState *env) |
8578 | { | |
8579 | int ZF; | |
6fbe23d5 PB |
8580 | ZF = (env->ZF == 0); |
8581 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
8582 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
8583 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
8584 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 8585 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
8586 | } |
8587 | ||
50866ba5 PM |
8588 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
8589 | CPSRWriteType write_type) | |
2f4a40e5 | 8590 | { |
6e8801f9 FA |
8591 | uint32_t changed_daif; |
8592 | ||
2f4a40e5 | 8593 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
8594 | env->ZF = (~val) & CPSR_Z; |
8595 | env->NF = val; | |
2f4a40e5 AZ |
8596 | env->CF = (val >> 29) & 1; |
8597 | env->VF = (val << 3) & 0x80000000; | |
8598 | } | |
8599 | if (mask & CPSR_Q) | |
8600 | env->QF = ((val & CPSR_Q) != 0); | |
8601 | if (mask & CPSR_T) | |
8602 | env->thumb = ((val & CPSR_T) != 0); | |
8603 | if (mask & CPSR_IT_0_1) { | |
8604 | env->condexec_bits &= ~3; | |
8605 | env->condexec_bits |= (val >> 25) & 3; | |
8606 | } | |
8607 | if (mask & CPSR_IT_2_7) { | |
8608 | env->condexec_bits &= 3; | |
8609 | env->condexec_bits |= (val >> 8) & 0xfc; | |
8610 | } | |
8611 | if (mask & CPSR_GE) { | |
8612 | env->GE = (val >> 16) & 0xf; | |
8613 | } | |
8614 | ||
6e8801f9 FA |
8615 | /* In a V7 implementation that includes the security extensions but does |
8616 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
8617 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
8618 | * bits respectively. | |
8619 | * | |
8620 | * In a V8 implementation, it is permitted for privileged software to | |
8621 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
8622 | */ | |
f8c88bbc | 8623 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
6e8801f9 FA |
8624 | arm_feature(env, ARM_FEATURE_EL3) && |
8625 | !arm_feature(env, ARM_FEATURE_EL2) && | |
8626 | !arm_is_secure(env)) { | |
8627 | ||
8628 | changed_daif = (env->daif ^ val) & mask; | |
8629 | ||
8630 | if (changed_daif & CPSR_A) { | |
8631 | /* Check to see if we are allowed to change the masking of async | |
8632 | * abort exceptions from a non-secure state. | |
8633 | */ | |
8634 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
8635 | qemu_log_mask(LOG_GUEST_ERROR, | |
8636 | "Ignoring attempt to switch CPSR_A flag from " | |
8637 | "non-secure world with SCR.AW bit clear\n"); | |
8638 | mask &= ~CPSR_A; | |
8639 | } | |
8640 | } | |
8641 | ||
8642 | if (changed_daif & CPSR_F) { | |
8643 | /* Check to see if we are allowed to change the masking of FIQ | |
8644 | * exceptions from a non-secure state. | |
8645 | */ | |
8646 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
8647 | qemu_log_mask(LOG_GUEST_ERROR, | |
8648 | "Ignoring attempt to switch CPSR_F flag from " | |
8649 | "non-secure world with SCR.FW bit clear\n"); | |
8650 | mask &= ~CPSR_F; | |
8651 | } | |
8652 | ||
8653 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
8654 | * If this bit is set software is not allowed to mask | |
8655 | * FIQs, but is allowed to set CPSR_F to 0. | |
8656 | */ | |
8657 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
8658 | (val & CPSR_F)) { | |
8659 | qemu_log_mask(LOG_GUEST_ERROR, | |
8660 | "Ignoring attempt to enable CPSR_F flag " | |
8661 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
8662 | mask &= ~CPSR_F; | |
8663 | } | |
8664 | } | |
8665 | } | |
8666 | ||
4cc35614 PM |
8667 | env->daif &= ~(CPSR_AIF & mask); |
8668 | env->daif |= val & CPSR_AIF & mask; | |
8669 | ||
f8c88bbc PM |
8670 | if (write_type != CPSRWriteRaw && |
8671 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { | |
8c4f0eb9 PM |
8672 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
8673 | /* Note that we can only get here in USR mode if this is a | |
8674 | * gdb stub write; for this case we follow the architectural | |
8675 | * behaviour for guest writes in USR mode of ignoring an attempt | |
8676 | * to switch mode. (Those are caught by translate.c for writes | |
8677 | * triggered by guest instructions.) | |
8678 | */ | |
8679 | mask &= ~CPSR_M; | |
8680 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { | |
81907a58 PM |
8681 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
8682 | * v7, and has defined behaviour in v8: | |
8683 | * + leave CPSR.M untouched | |
8684 | * + allow changes to the other CPSR fields | |
8685 | * + set PSTATE.IL | |
8686 | * For user changes via the GDB stub, we don't set PSTATE.IL, | |
8687 | * as this would be unnecessarily harsh for a user error. | |
37064a8b PM |
8688 | */ |
8689 | mask &= ~CPSR_M; | |
81907a58 PM |
8690 | if (write_type != CPSRWriteByGDBStub && |
8691 | arm_feature(env, ARM_FEATURE_V8)) { | |
8692 | mask |= CPSR_IL; | |
8693 | val |= CPSR_IL; | |
8694 | } | |
81e37284 PM |
8695 | qemu_log_mask(LOG_GUEST_ERROR, |
8696 | "Illegal AArch32 mode switch attempt from %s to %s\n", | |
8697 | aarch32_mode_name(env->uncached_cpsr), | |
8698 | aarch32_mode_name(val)); | |
37064a8b | 8699 | } else { |
81e37284 PM |
8700 | qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", |
8701 | write_type == CPSRWriteExceptionReturn ? | |
8702 | "Exception return from AArch32" : | |
8703 | "AArch32 mode switch from", | |
8704 | aarch32_mode_name(env->uncached_cpsr), | |
8705 | aarch32_mode_name(val), env->regs[15]); | |
37064a8b PM |
8706 | switch_mode(env, val & CPSR_M); |
8707 | } | |
2f4a40e5 AZ |
8708 | } |
8709 | mask &= ~CACHED_CPSR_BITS; | |
8710 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
8711 | } | |
8712 | ||
b26eefb6 PB |
8713 | /* Sign/zero extend */ |
8714 | uint32_t HELPER(sxtb16)(uint32_t x) | |
8715 | { | |
8716 | uint32_t res; | |
8717 | res = (uint16_t)(int8_t)x; | |
8718 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
8719 | return res; | |
8720 | } | |
8721 | ||
8722 | uint32_t HELPER(uxtb16)(uint32_t x) | |
8723 | { | |
8724 | uint32_t res; | |
8725 | res = (uint16_t)(uint8_t)x; | |
8726 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
8727 | return res; | |
8728 | } | |
8729 | ||
3670669c PB |
8730 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
8731 | { | |
8732 | if (den == 0) | |
8733 | return 0; | |
686eeb93 AJ |
8734 | if (num == INT_MIN && den == -1) |
8735 | return INT_MIN; | |
3670669c PB |
8736 | return num / den; |
8737 | } | |
8738 | ||
8739 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
8740 | { | |
8741 | if (den == 0) | |
8742 | return 0; | |
8743 | return num / den; | |
8744 | } | |
8745 | ||
8746 | uint32_t HELPER(rbit)(uint32_t x) | |
8747 | { | |
42fedbca | 8748 | return revbit32(x); |
3670669c PB |
8749 | } |
8750 | ||
c47eaf9f | 8751 | #ifdef CONFIG_USER_ONLY |
b5ff1b31 | 8752 | |
affdb64d | 8753 | static void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 8754 | { |
2fc0cc0e | 8755 | ARMCPU *cpu = env_archcpu(env); |
a47dddd7 AF |
8756 | |
8757 | if (mode != ARM_CPU_MODE_USR) { | |
8758 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
8759 | } | |
b5ff1b31 FB |
8760 | } |
8761 | ||
012a906b GB |
8762 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
8763 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
8764 | { |
8765 | return 1; | |
8766 | } | |
8767 | ||
ce02049d GB |
8768 | void aarch64_sync_64_to_32(CPUARMState *env) |
8769 | { | |
8770 | g_assert_not_reached(); | |
8771 | } | |
8772 | ||
b5ff1b31 FB |
8773 | #else |
8774 | ||
affdb64d | 8775 | static void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
8776 | { |
8777 | int old_mode; | |
8778 | int i; | |
8779 | ||
8780 | old_mode = env->uncached_cpsr & CPSR_M; | |
8781 | if (mode == old_mode) | |
8782 | return; | |
8783 | ||
8784 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
8785 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 8786 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
8787 | } else if (mode == ARM_CPU_MODE_FIQ) { |
8788 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 8789 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
8790 | } |
8791 | ||
f5206413 | 8792 | i = bank_number(old_mode); |
b5ff1b31 | 8793 | env->banked_r13[i] = env->regs[13]; |
b5ff1b31 FB |
8794 | env->banked_spsr[i] = env->spsr; |
8795 | ||
f5206413 | 8796 | i = bank_number(mode); |
b5ff1b31 | 8797 | env->regs[13] = env->banked_r13[i]; |
b5ff1b31 | 8798 | env->spsr = env->banked_spsr[i]; |
593cfa2b PM |
8799 | |
8800 | env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; | |
8801 | env->regs[14] = env->banked_r14[r14_bank_number(mode)]; | |
b5ff1b31 FB |
8802 | } |
8803 | ||
0eeb17d6 GB |
8804 | /* Physical Interrupt Target EL Lookup Table |
8805 | * | |
8806 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
8807 | * | |
8808 | * The below multi-dimensional table is used for looking up the target | |
8809 | * exception level given numerous condition criteria. Specifically, the | |
8810 | * target EL is based on SCR and HCR routing controls as well as the | |
8811 | * currently executing EL and secure state. | |
8812 | * | |
8813 | * Dimensions: | |
8814 | * target_el_table[2][2][2][2][2][4] | |
8815 | * | | | | | +--- Current EL | |
8816 | * | | | | +------ Non-secure(0)/Secure(1) | |
8817 | * | | | +--------- HCR mask override | |
8818 | * | | +------------ SCR exec state control | |
8819 | * | +--------------- SCR mask override | |
8820 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
8821 | * | |
8822 | * The table values are as such: | |
8823 | * 0-3 = EL0-EL3 | |
8824 | * -1 = Cannot occur | |
8825 | * | |
8826 | * The ARM ARM target EL table includes entries indicating that an "exception | |
8827 | * is not taken". The two cases where this is applicable are: | |
8828 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
8829 | * routed to EL3. | |
8830 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
8831 | * routed to EL2. | |
8832 | * In these two cases, the below table contain a target of EL1. This value is | |
8833 | * returned as it is expected that the consumer of the table data will check | |
8834 | * for "target EL >= current EL" to ensure the exception is not taken. | |
8835 | * | |
8836 | * SCR HCR | |
8837 | * 64 EA AMO From | |
8838 | * BIT IRQ IMO Non-secure Secure | |
8839 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
8840 | */ | |
82c39f6a | 8841 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
8842 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
8843 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
8844 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
8845 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
8846 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
8847 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
8848 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
8849 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
8850 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
8851 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
8852 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
8853 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
8854 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
8855 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
8856 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
8857 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
8858 | }; | |
8859 | ||
8860 | /* | |
8861 | * Determine the target EL for physical exceptions | |
8862 | */ | |
012a906b GB |
8863 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
8864 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
8865 | { |
8866 | CPUARMState *env = cs->env_ptr; | |
f7778444 RH |
8867 | bool rw; |
8868 | bool scr; | |
8869 | bool hcr; | |
0eeb17d6 | 8870 | int target_el; |
2cde031f | 8871 | /* Is the highest EL AArch64? */ |
f7778444 RH |
8872 | bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); |
8873 | uint64_t hcr_el2; | |
2cde031f SS |
8874 | |
8875 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
8876 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
8877 | } else { | |
8878 | /* Either EL2 is the highest EL (and so the EL2 register width | |
8879 | * is given by is64); or there is no EL2 or EL3, in which case | |
8880 | * the value of 'rw' does not affect the table lookup anyway. | |
8881 | */ | |
8882 | rw = is64; | |
8883 | } | |
0eeb17d6 | 8884 | |
f7778444 | 8885 | hcr_el2 = arm_hcr_el2_eff(env); |
0eeb17d6 GB |
8886 | switch (excp_idx) { |
8887 | case EXCP_IRQ: | |
8888 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
f7778444 | 8889 | hcr = hcr_el2 & HCR_IMO; |
0eeb17d6 GB |
8890 | break; |
8891 | case EXCP_FIQ: | |
8892 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
f7778444 | 8893 | hcr = hcr_el2 & HCR_FMO; |
0eeb17d6 GB |
8894 | break; |
8895 | default: | |
8896 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
f7778444 | 8897 | hcr = hcr_el2 & HCR_AMO; |
0eeb17d6 GB |
8898 | break; |
8899 | }; | |
8900 | ||
d1b31428 RH |
8901 | /* |
8902 | * For these purposes, TGE and AMO/IMO/FMO both force the | |
8903 | * interrupt to EL2. Fold TGE into the bit extracted above. | |
8904 | */ | |
8905 | hcr |= (hcr_el2 & HCR_TGE) != 0; | |
8906 | ||
0eeb17d6 GB |
8907 | /* Perform a table-lookup for the target EL given the current state */ |
8908 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
8909 | ||
8910 | assert(target_el > 0); | |
8911 | ||
8912 | return target_el; | |
8913 | } | |
8914 | ||
b59f479b PMD |
8915 | void arm_log_exception(int idx) |
8916 | { | |
8917 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
8918 | const char *exc = NULL; | |
8919 | static const char * const excnames[] = { | |
8920 | [EXCP_UDEF] = "Undefined Instruction", | |
8921 | [EXCP_SWI] = "SVC", | |
8922 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
8923 | [EXCP_DATA_ABORT] = "Data Abort", | |
8924 | [EXCP_IRQ] = "IRQ", | |
8925 | [EXCP_FIQ] = "FIQ", | |
8926 | [EXCP_BKPT] = "Breakpoint", | |
8927 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
8928 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
8929 | [EXCP_HVC] = "Hypervisor Call", | |
8930 | [EXCP_HYP_TRAP] = "Hypervisor Trap", | |
8931 | [EXCP_SMC] = "Secure Monitor Call", | |
8932 | [EXCP_VIRQ] = "Virtual IRQ", | |
8933 | [EXCP_VFIQ] = "Virtual FIQ", | |
8934 | [EXCP_SEMIHOST] = "Semihosting call", | |
8935 | [EXCP_NOCP] = "v7M NOCP UsageFault", | |
8936 | [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", | |
8937 | [EXCP_STKOF] = "v8M STKOF UsageFault", | |
8938 | [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", | |
8939 | [EXCP_LSERR] = "v8M LSERR UsageFault", | |
8940 | [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", | |
8941 | }; | |
8942 | ||
8943 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
8944 | exc = excnames[idx]; | |
8945 | } | |
8946 | if (!exc) { | |
8947 | exc = "unknown"; | |
8948 | } | |
8949 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
8950 | } | |
8951 | } | |
8952 | ||
a356dacf | 8953 | /* |
7aab5a8c PMD |
8954 | * Function used to synchronize QEMU's AArch64 register set with AArch32 |
8955 | * register set. This is necessary when switching between AArch32 and AArch64 | |
8956 | * execution state. | |
a356dacf | 8957 | */ |
7aab5a8c | 8958 | void aarch64_sync_32_to_64(CPUARMState *env) |
9ee6e8bb | 8959 | { |
7aab5a8c PMD |
8960 | int i; |
8961 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
8962 | ||
8963 | /* We can blanket copy R[0:7] to X[0:7] */ | |
8964 | for (i = 0; i < 8; i++) { | |
8965 | env->xregs[i] = env->regs[i]; | |
fd592d89 | 8966 | } |
70d74660 | 8967 | |
9a223097 | 8968 | /* |
7aab5a8c PMD |
8969 | * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. |
8970 | * Otherwise, they come from the banked user regs. | |
fd592d89 | 8971 | */ |
7aab5a8c PMD |
8972 | if (mode == ARM_CPU_MODE_FIQ) { |
8973 | for (i = 8; i < 13; i++) { | |
8974 | env->xregs[i] = env->usr_regs[i - 8]; | |
8975 | } | |
8976 | } else { | |
8977 | for (i = 8; i < 13; i++) { | |
8978 | env->xregs[i] = env->regs[i]; | |
8979 | } | |
fd592d89 | 8980 | } |
9ee6e8bb | 8981 | |
7aab5a8c PMD |
8982 | /* |
8983 | * Registers x13-x23 are the various mode SP and FP registers. Registers | |
8984 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
8985 | * from the mode banked register. | |
8986 | */ | |
8987 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
8988 | env->xregs[13] = env->regs[13]; | |
8989 | env->xregs[14] = env->regs[14]; | |
8990 | } else { | |
8991 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
8992 | /* HYP is an exception in that it is copied from r14 */ | |
8993 | if (mode == ARM_CPU_MODE_HYP) { | |
8994 | env->xregs[14] = env->regs[14]; | |
95695eff | 8995 | } else { |
7aab5a8c | 8996 | env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; |
95695eff | 8997 | } |
95695eff PM |
8998 | } |
8999 | ||
7aab5a8c PMD |
9000 | if (mode == ARM_CPU_MODE_HYP) { |
9001 | env->xregs[15] = env->regs[13]; | |
9002 | } else { | |
9003 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
95695eff PM |
9004 | } |
9005 | ||
7aab5a8c PMD |
9006 | if (mode == ARM_CPU_MODE_IRQ) { |
9007 | env->xregs[16] = env->regs[14]; | |
9008 | env->xregs[17] = env->regs[13]; | |
9009 | } else { | |
9010 | env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; | |
9011 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
9012 | } | |
95695eff | 9013 | |
7aab5a8c PMD |
9014 | if (mode == ARM_CPU_MODE_SVC) { |
9015 | env->xregs[18] = env->regs[14]; | |
9016 | env->xregs[19] = env->regs[13]; | |
9017 | } else { | |
9018 | env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; | |
9019 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
9020 | } | |
95695eff | 9021 | |
7aab5a8c PMD |
9022 | if (mode == ARM_CPU_MODE_ABT) { |
9023 | env->xregs[20] = env->regs[14]; | |
9024 | env->xregs[21] = env->regs[13]; | |
9025 | } else { | |
9026 | env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; | |
9027 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
9028 | } | |
e33cf0f8 | 9029 | |
7aab5a8c PMD |
9030 | if (mode == ARM_CPU_MODE_UND) { |
9031 | env->xregs[22] = env->regs[14]; | |
9032 | env->xregs[23] = env->regs[13]; | |
9033 | } else { | |
9034 | env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; | |
9035 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
e33cf0f8 PM |
9036 | } |
9037 | ||
9038 | /* | |
7aab5a8c PMD |
9039 | * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
9040 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
9041 | * FIQ bank for r8-r14. | |
e33cf0f8 | 9042 | */ |
7aab5a8c PMD |
9043 | if (mode == ARM_CPU_MODE_FIQ) { |
9044 | for (i = 24; i < 31; i++) { | |
9045 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
9046 | } | |
9047 | } else { | |
9048 | for (i = 24; i < 29; i++) { | |
9049 | env->xregs[i] = env->fiq_regs[i - 24]; | |
e33cf0f8 | 9050 | } |
7aab5a8c PMD |
9051 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; |
9052 | env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; | |
e33cf0f8 | 9053 | } |
7aab5a8c PMD |
9054 | |
9055 | env->pc = env->regs[15]; | |
e33cf0f8 PM |
9056 | } |
9057 | ||
9a223097 | 9058 | /* |
7aab5a8c PMD |
9059 | * Function used to synchronize QEMU's AArch32 register set with AArch64 |
9060 | * register set. This is necessary when switching between AArch32 and AArch64 | |
9061 | * execution state. | |
de2db7ec | 9062 | */ |
7aab5a8c | 9063 | void aarch64_sync_64_to_32(CPUARMState *env) |
9ee6e8bb | 9064 | { |
7aab5a8c PMD |
9065 | int i; |
9066 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
abc24d86 | 9067 | |
7aab5a8c PMD |
9068 | /* We can blanket copy X[0:7] to R[0:7] */ |
9069 | for (i = 0; i < 8; i++) { | |
9070 | env->regs[i] = env->xregs[i]; | |
de2db7ec | 9071 | } |
3f0cddee | 9072 | |
9a223097 | 9073 | /* |
7aab5a8c PMD |
9074 | * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. |
9075 | * Otherwise, we copy x8-x12 into the banked user regs. | |
de2db7ec | 9076 | */ |
7aab5a8c PMD |
9077 | if (mode == ARM_CPU_MODE_FIQ) { |
9078 | for (i = 8; i < 13; i++) { | |
9079 | env->usr_regs[i - 8] = env->xregs[i]; | |
9080 | } | |
9081 | } else { | |
9082 | for (i = 8; i < 13; i++) { | |
9083 | env->regs[i] = env->xregs[i]; | |
9084 | } | |
fb602cb7 PM |
9085 | } |
9086 | ||
9a223097 | 9087 | /* |
7aab5a8c PMD |
9088 | * Registers r13 & r14 depend on the current mode. |
9089 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
9090 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
9091 | * for the mode. | |
fb602cb7 | 9092 | */ |
7aab5a8c PMD |
9093 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
9094 | env->regs[13] = env->xregs[13]; | |
9095 | env->regs[14] = env->xregs[14]; | |
fb602cb7 | 9096 | } else { |
7aab5a8c | 9097 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; |
fb602cb7 | 9098 | |
7aab5a8c PMD |
9099 | /* |
9100 | * HYP is an exception in that it does not have its own banked r14 but | |
9101 | * shares the USR r14 | |
9102 | */ | |
9103 | if (mode == ARM_CPU_MODE_HYP) { | |
9104 | env->regs[14] = env->xregs[14]; | |
9105 | } else { | |
9106 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
9107 | } | |
9108 | } | |
fb602cb7 | 9109 | |
7aab5a8c PMD |
9110 | if (mode == ARM_CPU_MODE_HYP) { |
9111 | env->regs[13] = env->xregs[15]; | |
fb602cb7 | 9112 | } else { |
7aab5a8c | 9113 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; |
fb602cb7 | 9114 | } |
d02a8698 | 9115 | |
7aab5a8c PMD |
9116 | if (mode == ARM_CPU_MODE_IRQ) { |
9117 | env->regs[14] = env->xregs[16]; | |
9118 | env->regs[13] = env->xregs[17]; | |
d02a8698 | 9119 | } else { |
7aab5a8c PMD |
9120 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
9121 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
d02a8698 PM |
9122 | } |
9123 | ||
7aab5a8c PMD |
9124 | if (mode == ARM_CPU_MODE_SVC) { |
9125 | env->regs[14] = env->xregs[18]; | |
9126 | env->regs[13] = env->xregs[19]; | |
9127 | } else { | |
9128 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; | |
9129 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
fb602cb7 PM |
9130 | } |
9131 | ||
7aab5a8c PMD |
9132 | if (mode == ARM_CPU_MODE_ABT) { |
9133 | env->regs[14] = env->xregs[20]; | |
9134 | env->regs[13] = env->xregs[21]; | |
9135 | } else { | |
9136 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; | |
9137 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
9138 | } |
9139 | ||
9140 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
9141 | env->regs[14] = env->xregs[22]; |
9142 | env->regs[13] = env->xregs[23]; | |
ce02049d | 9143 | } else { |
593cfa2b | 9144 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
3a9148d0 | 9145 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; |
ce02049d GB |
9146 | } |
9147 | ||
9148 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
9149 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
9150 | * FIQ bank for r8-r14. | |
9151 | */ | |
9152 | if (mode == ARM_CPU_MODE_FIQ) { | |
9153 | for (i = 24; i < 31; i++) { | |
9154 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
9155 | } | |
9156 | } else { | |
9157 | for (i = 24; i < 29; i++) { | |
9158 | env->fiq_regs[i - 24] = env->xregs[i]; | |
9159 | } | |
9160 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
593cfa2b | 9161 | env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; |
ce02049d GB |
9162 | } |
9163 | ||
9164 | env->regs[15] = env->pc; | |
9165 | } | |
9166 | ||
dea8378b PM |
9167 | static void take_aarch32_exception(CPUARMState *env, int new_mode, |
9168 | uint32_t mask, uint32_t offset, | |
9169 | uint32_t newpc) | |
9170 | { | |
4a2696c0 RH |
9171 | int new_el; |
9172 | ||
dea8378b PM |
9173 | /* Change the CPU state so as to actually take the exception. */ |
9174 | switch_mode(env, new_mode); | |
4a2696c0 | 9175 | |
dea8378b PM |
9176 | /* |
9177 | * For exceptions taken to AArch32 we must clear the SS bit in both | |
9178 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
9179 | */ | |
9180 | env->uncached_cpsr &= ~PSTATE_SS; | |
9181 | env->spsr = cpsr_read(env); | |
9182 | /* Clear IT bits. */ | |
9183 | env->condexec_bits = 0; | |
9184 | /* Switch to the new mode, and to the correct instruction set. */ | |
9185 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; | |
88828bf1 CD |
9186 | |
9187 | /* This must be after mode switching. */ | |
9188 | new_el = arm_current_el(env); | |
9189 | ||
dea8378b PM |
9190 | /* Set new mode endianness */ |
9191 | env->uncached_cpsr &= ~CPSR_E; | |
4a2696c0 | 9192 | if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { |
dea8378b PM |
9193 | env->uncached_cpsr |= CPSR_E; |
9194 | } | |
829f9fd3 PM |
9195 | /* J and IL must always be cleared for exception entry */ |
9196 | env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); | |
dea8378b PM |
9197 | env->daif |= mask; |
9198 | ||
9199 | if (new_mode == ARM_CPU_MODE_HYP) { | |
9200 | env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; | |
9201 | env->elr_el[2] = env->regs[15]; | |
9202 | } else { | |
4a2696c0 | 9203 | /* CPSR.PAN is normally preserved preserved unless... */ |
f8af1143 | 9204 | if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { |
4a2696c0 RH |
9205 | switch (new_el) { |
9206 | case 3: | |
9207 | if (!arm_is_secure_below_el3(env)) { | |
9208 | /* ... the target is EL3, from non-secure state. */ | |
9209 | env->uncached_cpsr &= ~CPSR_PAN; | |
9210 | break; | |
9211 | } | |
9212 | /* ... the target is EL3, from secure state ... */ | |
9213 | /* fall through */ | |
9214 | case 1: | |
9215 | /* ... the target is EL1 and SCTLR.SPAN is 0. */ | |
9216 | if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { | |
9217 | env->uncached_cpsr |= CPSR_PAN; | |
9218 | } | |
9219 | break; | |
9220 | } | |
9221 | } | |
dea8378b PM |
9222 | /* |
9223 | * this is a lie, as there was no c1_sys on V4T/V5, but who cares | |
9224 | * and we should just guard the thumb mode on V4 | |
9225 | */ | |
9226 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
9227 | env->thumb = | |
9228 | (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; | |
9229 | } | |
9230 | env->regs[14] = env->regs[15] + offset; | |
9231 | } | |
9232 | env->regs[15] = newpc; | |
a8a79c7a | 9233 | arm_rebuild_hflags(env); |
dea8378b PM |
9234 | } |
9235 | ||
b9bc21ff PM |
9236 | static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) |
9237 | { | |
9238 | /* | |
9239 | * Handle exception entry to Hyp mode; this is sufficiently | |
9240 | * different to entry to other AArch32 modes that we handle it | |
9241 | * separately here. | |
9242 | * | |
9243 | * The vector table entry used is always the 0x14 Hyp mode entry point, | |
9244 | * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. | |
9245 | * The offset applied to the preferred return address is always zero | |
9246 | * (see DDI0487C.a section G1.12.3). | |
9247 | * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. | |
9248 | */ | |
9249 | uint32_t addr, mask; | |
9250 | ARMCPU *cpu = ARM_CPU(cs); | |
9251 | CPUARMState *env = &cpu->env; | |
9252 | ||
9253 | switch (cs->exception_index) { | |
9254 | case EXCP_UDEF: | |
9255 | addr = 0x04; | |
9256 | break; | |
9257 | case EXCP_SWI: | |
9258 | addr = 0x14; | |
9259 | break; | |
9260 | case EXCP_BKPT: | |
9261 | /* Fall through to prefetch abort. */ | |
9262 | case EXCP_PREFETCH_ABORT: | |
9263 | env->cp15.ifar_s = env->exception.vaddress; | |
9264 | qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", | |
9265 | (uint32_t)env->exception.vaddress); | |
9266 | addr = 0x0c; | |
9267 | break; | |
9268 | case EXCP_DATA_ABORT: | |
9269 | env->cp15.dfar_s = env->exception.vaddress; | |
9270 | qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", | |
9271 | (uint32_t)env->exception.vaddress); | |
9272 | addr = 0x10; | |
9273 | break; | |
9274 | case EXCP_IRQ: | |
9275 | addr = 0x18; | |
9276 | break; | |
9277 | case EXCP_FIQ: | |
9278 | addr = 0x1c; | |
9279 | break; | |
9280 | case EXCP_HVC: | |
9281 | addr = 0x08; | |
9282 | break; | |
9283 | case EXCP_HYP_TRAP: | |
9284 | addr = 0x14; | |
9bbb4ef9 | 9285 | break; |
b9bc21ff PM |
9286 | default: |
9287 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
9288 | } | |
9289 | ||
9290 | if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { | |
2ed08180 PM |
9291 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
9292 | /* | |
9293 | * QEMU syndrome values are v8-style. v7 has the IL bit | |
9294 | * UNK/SBZP for "field not valid" cases, where v8 uses RES1. | |
9295 | * If this is a v7 CPU, squash the IL bit in those cases. | |
9296 | */ | |
9297 | if (cs->exception_index == EXCP_PREFETCH_ABORT || | |
9298 | (cs->exception_index == EXCP_DATA_ABORT && | |
9299 | !(env->exception.syndrome & ARM_EL_ISV)) || | |
9300 | syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { | |
9301 | env->exception.syndrome &= ~ARM_EL_IL; | |
9302 | } | |
9303 | } | |
b9bc21ff PM |
9304 | env->cp15.esr_el[2] = env->exception.syndrome; |
9305 | } | |
9306 | ||
9307 | if (arm_current_el(env) != 2 && addr < 0x14) { | |
9308 | addr = 0x14; | |
9309 | } | |
9310 | ||
9311 | mask = 0; | |
9312 | if (!(env->cp15.scr_el3 & SCR_EA)) { | |
9313 | mask |= CPSR_A; | |
9314 | } | |
9315 | if (!(env->cp15.scr_el3 & SCR_IRQ)) { | |
9316 | mask |= CPSR_I; | |
9317 | } | |
9318 | if (!(env->cp15.scr_el3 & SCR_FIQ)) { | |
9319 | mask |= CPSR_F; | |
9320 | } | |
9321 | ||
9322 | addr += env->cp15.hvbar; | |
9323 | ||
9324 | take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); | |
9325 | } | |
9326 | ||
966f758c | 9327 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
b5ff1b31 | 9328 | { |
97a8ea5a AF |
9329 | ARMCPU *cpu = ARM_CPU(cs); |
9330 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
9331 | uint32_t addr; |
9332 | uint32_t mask; | |
9333 | int new_mode; | |
9334 | uint32_t offset; | |
16a906fd | 9335 | uint32_t moe; |
b5ff1b31 | 9336 | |
16a906fd | 9337 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
64b91e3f | 9338 | switch (syn_get_ec(env->exception.syndrome)) { |
16a906fd PM |
9339 | case EC_BREAKPOINT: |
9340 | case EC_BREAKPOINT_SAME_EL: | |
9341 | moe = 1; | |
9342 | break; | |
9343 | case EC_WATCHPOINT: | |
9344 | case EC_WATCHPOINT_SAME_EL: | |
9345 | moe = 10; | |
9346 | break; | |
9347 | case EC_AA32_BKPT: | |
9348 | moe = 3; | |
9349 | break; | |
9350 | case EC_VECTORCATCH: | |
9351 | moe = 5; | |
9352 | break; | |
9353 | default: | |
9354 | moe = 0; | |
9355 | break; | |
9356 | } | |
9357 | ||
9358 | if (moe) { | |
9359 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
9360 | } | |
9361 | ||
b9bc21ff PM |
9362 | if (env->exception.target_el == 2) { |
9363 | arm_cpu_do_interrupt_aarch32_hyp(cs); | |
9364 | return; | |
9365 | } | |
9366 | ||
27103424 | 9367 | switch (cs->exception_index) { |
b5ff1b31 FB |
9368 | case EXCP_UDEF: |
9369 | new_mode = ARM_CPU_MODE_UND; | |
9370 | addr = 0x04; | |
9371 | mask = CPSR_I; | |
9372 | if (env->thumb) | |
9373 | offset = 2; | |
9374 | else | |
9375 | offset = 4; | |
9376 | break; | |
9377 | case EXCP_SWI: | |
9378 | new_mode = ARM_CPU_MODE_SVC; | |
9379 | addr = 0x08; | |
9380 | mask = CPSR_I; | |
601d70b9 | 9381 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
9382 | offset = 0; |
9383 | break; | |
06c949e6 | 9384 | case EXCP_BKPT: |
9ee6e8bb PB |
9385 | /* Fall through to prefetch abort. */ |
9386 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 9387 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 9388 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 9389 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 9390 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
9391 | new_mode = ARM_CPU_MODE_ABT; |
9392 | addr = 0x0c; | |
9393 | mask = CPSR_A | CPSR_I; | |
9394 | offset = 4; | |
9395 | break; | |
9396 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 9397 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 9398 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 9399 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 9400 | env->exception.fsr, |
6cd8a264 | 9401 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
9402 | new_mode = ARM_CPU_MODE_ABT; |
9403 | addr = 0x10; | |
9404 | mask = CPSR_A | CPSR_I; | |
9405 | offset = 8; | |
9406 | break; | |
9407 | case EXCP_IRQ: | |
9408 | new_mode = ARM_CPU_MODE_IRQ; | |
9409 | addr = 0x18; | |
9410 | /* Disable IRQ and imprecise data aborts. */ | |
9411 | mask = CPSR_A | CPSR_I; | |
9412 | offset = 4; | |
de38d23b FA |
9413 | if (env->cp15.scr_el3 & SCR_IRQ) { |
9414 | /* IRQ routed to monitor mode */ | |
9415 | new_mode = ARM_CPU_MODE_MON; | |
9416 | mask |= CPSR_F; | |
9417 | } | |
b5ff1b31 FB |
9418 | break; |
9419 | case EXCP_FIQ: | |
9420 | new_mode = ARM_CPU_MODE_FIQ; | |
9421 | addr = 0x1c; | |
9422 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
9423 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
9424 | if (env->cp15.scr_el3 & SCR_FIQ) { |
9425 | /* FIQ routed to monitor mode */ | |
9426 | new_mode = ARM_CPU_MODE_MON; | |
9427 | } | |
b5ff1b31 FB |
9428 | offset = 4; |
9429 | break; | |
87a4b270 PM |
9430 | case EXCP_VIRQ: |
9431 | new_mode = ARM_CPU_MODE_IRQ; | |
9432 | addr = 0x18; | |
9433 | /* Disable IRQ and imprecise data aborts. */ | |
9434 | mask = CPSR_A | CPSR_I; | |
9435 | offset = 4; | |
9436 | break; | |
9437 | case EXCP_VFIQ: | |
9438 | new_mode = ARM_CPU_MODE_FIQ; | |
9439 | addr = 0x1c; | |
9440 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
9441 | mask = CPSR_A | CPSR_I | CPSR_F; | |
9442 | offset = 4; | |
9443 | break; | |
dbe9d163 FA |
9444 | case EXCP_SMC: |
9445 | new_mode = ARM_CPU_MODE_MON; | |
9446 | addr = 0x08; | |
9447 | mask = CPSR_A | CPSR_I | CPSR_F; | |
9448 | offset = 0; | |
9449 | break; | |
b5ff1b31 | 9450 | default: |
a47dddd7 | 9451 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
9452 | return; /* Never happens. Keep compiler happy. */ |
9453 | } | |
e89e51a1 FA |
9454 | |
9455 | if (new_mode == ARM_CPU_MODE_MON) { | |
9456 | addr += env->cp15.mvbar; | |
137feaa9 | 9457 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 9458 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 9459 | addr += 0xffff0000; |
8641136c NR |
9460 | } else { |
9461 | /* ARM v7 architectures provide a vector base address register to remap | |
9462 | * the interrupt vector table. | |
e89e51a1 | 9463 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
9464 | * Note: only bits 31:5 are valid. |
9465 | */ | |
fb6c91ba | 9466 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 9467 | } |
dbe9d163 FA |
9468 | |
9469 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
9470 | env->cp15.scr_el3 &= ~SCR_NS; | |
9471 | } | |
9472 | ||
dea8378b | 9473 | take_aarch32_exception(env, new_mode, mask, offset, addr); |
b5ff1b31 FB |
9474 | } |
9475 | ||
966f758c PM |
9476 | /* Handle exception entry to a target EL which is using AArch64 */ |
9477 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) | |
f3a9b694 PM |
9478 | { |
9479 | ARMCPU *cpu = ARM_CPU(cs); | |
9480 | CPUARMState *env = &cpu->env; | |
9481 | unsigned int new_el = env->exception.target_el; | |
9482 | target_ulong addr = env->cp15.vbar_el[new_el]; | |
9483 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | |
4a2696c0 | 9484 | unsigned int old_mode; |
0ab5953b RH |
9485 | unsigned int cur_el = arm_current_el(env); |
9486 | ||
9a05f7b6 RH |
9487 | /* |
9488 | * Note that new_el can never be 0. If cur_el is 0, then | |
9489 | * el0_a64 is is_a64(), else el0_a64 is ignored. | |
9490 | */ | |
9491 | aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); | |
f3a9b694 | 9492 | |
0ab5953b | 9493 | if (cur_el < new_el) { |
3d6f7617 PM |
9494 | /* Entry vector offset depends on whether the implemented EL |
9495 | * immediately lower than the target level is using AArch32 or AArch64 | |
9496 | */ | |
9497 | bool is_aa64; | |
cb092fbb | 9498 | uint64_t hcr; |
3d6f7617 PM |
9499 | |
9500 | switch (new_el) { | |
9501 | case 3: | |
9502 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; | |
9503 | break; | |
9504 | case 2: | |
cb092fbb RH |
9505 | hcr = arm_hcr_el2_eff(env); |
9506 | if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
9507 | is_aa64 = (hcr & HCR_RW) != 0; | |
9508 | break; | |
9509 | } | |
9510 | /* fall through */ | |
3d6f7617 PM |
9511 | case 1: |
9512 | is_aa64 = is_a64(env); | |
9513 | break; | |
9514 | default: | |
9515 | g_assert_not_reached(); | |
9516 | } | |
9517 | ||
9518 | if (is_aa64) { | |
f3a9b694 PM |
9519 | addr += 0x400; |
9520 | } else { | |
9521 | addr += 0x600; | |
9522 | } | |
9523 | } else if (pstate_read(env) & PSTATE_SP) { | |
9524 | addr += 0x200; | |
9525 | } | |
9526 | ||
f3a9b694 PM |
9527 | switch (cs->exception_index) { |
9528 | case EXCP_PREFETCH_ABORT: | |
9529 | case EXCP_DATA_ABORT: | |
9530 | env->cp15.far_el[new_el] = env->exception.vaddress; | |
9531 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
9532 | env->cp15.far_el[new_el]); | |
9533 | /* fall through */ | |
9534 | case EXCP_BKPT: | |
9535 | case EXCP_UDEF: | |
9536 | case EXCP_SWI: | |
9537 | case EXCP_HVC: | |
9538 | case EXCP_HYP_TRAP: | |
9539 | case EXCP_SMC: | |
4be42f40 PM |
9540 | if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { |
9541 | /* | |
9542 | * QEMU internal FP/SIMD syndromes from AArch32 include the | |
9543 | * TA and coproc fields which are only exposed if the exception | |
9544 | * is taken to AArch32 Hyp mode. Mask them out to get a valid | |
9545 | * AArch64 format syndrome. | |
9546 | */ | |
9547 | env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); | |
9548 | } | |
f3a9b694 PM |
9549 | env->cp15.esr_el[new_el] = env->exception.syndrome; |
9550 | break; | |
9551 | case EXCP_IRQ: | |
9552 | case EXCP_VIRQ: | |
9553 | addr += 0x80; | |
9554 | break; | |
9555 | case EXCP_FIQ: | |
9556 | case EXCP_VFIQ: | |
9557 | addr += 0x100; | |
9558 | break; | |
f3a9b694 PM |
9559 | default: |
9560 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
9561 | } | |
9562 | ||
9563 | if (is_a64(env)) { | |
4a2696c0 | 9564 | old_mode = pstate_read(env); |
f3a9b694 PM |
9565 | aarch64_save_sp(env, arm_current_el(env)); |
9566 | env->elr_el[new_el] = env->pc; | |
9567 | } else { | |
4a2696c0 | 9568 | old_mode = cpsr_read(env); |
f3a9b694 PM |
9569 | env->elr_el[new_el] = env->regs[15]; |
9570 | ||
9571 | aarch64_sync_32_to_64(env); | |
9572 | ||
9573 | env->condexec_bits = 0; | |
9574 | } | |
4a2696c0 RH |
9575 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; |
9576 | ||
f3a9b694 PM |
9577 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", |
9578 | env->elr_el[new_el]); | |
9579 | ||
4a2696c0 RH |
9580 | if (cpu_isar_feature(aa64_pan, cpu)) { |
9581 | /* The value of PSTATE.PAN is normally preserved, except when ... */ | |
9582 | new_mode |= old_mode & PSTATE_PAN; | |
9583 | switch (new_el) { | |
9584 | case 2: | |
9585 | /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ | |
9586 | if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) | |
9587 | != (HCR_E2H | HCR_TGE)) { | |
9588 | break; | |
9589 | } | |
9590 | /* fall through */ | |
9591 | case 1: | |
9592 | /* ... the target is EL1 ... */ | |
9593 | /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ | |
9594 | if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { | |
9595 | new_mode |= PSTATE_PAN; | |
9596 | } | |
9597 | break; | |
9598 | } | |
9599 | } | |
9600 | ||
f3a9b694 PM |
9601 | pstate_write(env, PSTATE_DAIF | new_mode); |
9602 | env->aarch64 = 1; | |
9603 | aarch64_restore_sp(env, new_el); | |
a8a79c7a | 9604 | helper_rebuild_hflags_a64(env, new_el); |
f3a9b694 PM |
9605 | |
9606 | env->pc = addr; | |
9607 | ||
9608 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", | |
9609 | new_el, env->pc, pstate_read(env)); | |
966f758c PM |
9610 | } |
9611 | ||
ed6e6ba9 AB |
9612 | /* |
9613 | * Do semihosting call and set the appropriate return value. All the | |
9614 | * permission and validity checks have been done at translate time. | |
9615 | * | |
9616 | * We only see semihosting exceptions in TCG only as they are not | |
9617 | * trapped to the hypervisor in KVM. | |
9618 | */ | |
91f78c58 | 9619 | #ifdef CONFIG_TCG |
ed6e6ba9 AB |
9620 | static void handle_semihosting(CPUState *cs) |
9621 | { | |
904c04de PM |
9622 | ARMCPU *cpu = ARM_CPU(cs); |
9623 | CPUARMState *env = &cpu->env; | |
9624 | ||
9625 | if (is_a64(env)) { | |
ed6e6ba9 AB |
9626 | qemu_log_mask(CPU_LOG_INT, |
9627 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
9628 | env->xregs[0]); | |
9629 | env->xregs[0] = do_arm_semihosting(env); | |
4ff5ef9e | 9630 | env->pc += 4; |
904c04de | 9631 | } else { |
904c04de PM |
9632 | qemu_log_mask(CPU_LOG_INT, |
9633 | "...handling as semihosting call 0x%x\n", | |
9634 | env->regs[0]); | |
9635 | env->regs[0] = do_arm_semihosting(env); | |
4ff5ef9e | 9636 | env->regs[15] += env->thumb ? 2 : 4; |
904c04de PM |
9637 | } |
9638 | } | |
ed6e6ba9 | 9639 | #endif |
904c04de | 9640 | |
966f758c PM |
9641 | /* Handle a CPU exception for A and R profile CPUs. |
9642 | * Do any appropriate logging, handle PSCI calls, and then hand off | |
9643 | * to the AArch64-entry or AArch32-entry function depending on the | |
9644 | * target exception level's register width. | |
9645 | */ | |
9646 | void arm_cpu_do_interrupt(CPUState *cs) | |
9647 | { | |
9648 | ARMCPU *cpu = ARM_CPU(cs); | |
9649 | CPUARMState *env = &cpu->env; | |
9650 | unsigned int new_el = env->exception.target_el; | |
9651 | ||
531c60a9 | 9652 | assert(!arm_feature(env, ARM_FEATURE_M)); |
966f758c PM |
9653 | |
9654 | arm_log_exception(cs->exception_index); | |
9655 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), | |
9656 | new_el); | |
9657 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
9658 | && !excp_is_internal(cs->exception_index)) { | |
6568da45 | 9659 | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", |
64b91e3f | 9660 | syn_get_ec(env->exception.syndrome), |
966f758c PM |
9661 | env->exception.syndrome); |
9662 | } | |
9663 | ||
9664 | if (arm_is_psci_call(cpu, cs->exception_index)) { | |
9665 | arm_handle_psci_call(cpu); | |
9666 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
9667 | return; | |
9668 | } | |
9669 | ||
ed6e6ba9 AB |
9670 | /* |
9671 | * Semihosting semantics depend on the register width of the code | |
9672 | * that caused the exception, not the target exception level, so | |
9673 | * must be handled here. | |
966f758c | 9674 | */ |
ed6e6ba9 AB |
9675 | #ifdef CONFIG_TCG |
9676 | if (cs->exception_index == EXCP_SEMIHOST) { | |
9677 | handle_semihosting(cs); | |
904c04de PM |
9678 | return; |
9679 | } | |
ed6e6ba9 | 9680 | #endif |
904c04de | 9681 | |
b5c53d1b AL |
9682 | /* Hooks may change global state so BQL should be held, also the |
9683 | * BQL needs to be held for any modification of | |
9684 | * cs->interrupt_request. | |
9685 | */ | |
9686 | g_assert(qemu_mutex_iothread_locked()); | |
9687 | ||
9688 | arm_call_pre_el_change_hook(cpu); | |
9689 | ||
904c04de PM |
9690 | assert(!excp_is_internal(cs->exception_index)); |
9691 | if (arm_el_is_aa64(env, new_el)) { | |
966f758c PM |
9692 | arm_cpu_do_interrupt_aarch64(cs); |
9693 | } else { | |
9694 | arm_cpu_do_interrupt_aarch32(cs); | |
9695 | } | |
f3a9b694 | 9696 | |
bd7d00fc PM |
9697 | arm_call_el_change_hook(cpu); |
9698 | ||
f3a9b694 PM |
9699 | if (!kvm_enabled()) { |
9700 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
9701 | } | |
9702 | } | |
c47eaf9f | 9703 | #endif /* !CONFIG_USER_ONLY */ |
0480f69a PM |
9704 | |
9705 | /* Return the exception level which controls this address translation regime */ | |
b9f6033c | 9706 | static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) |
0480f69a PM |
9707 | { |
9708 | switch (mmu_idx) { | |
b9f6033c RH |
9709 | case ARMMMUIdx_E20_0: |
9710 | case ARMMMUIdx_E20_2: | |
452ef8cb | 9711 | case ARMMMUIdx_E20_2_PAN: |
97fa9350 | 9712 | case ARMMMUIdx_Stage2: |
e013b741 | 9713 | case ARMMMUIdx_E2: |
0480f69a | 9714 | return 2; |
127b2b08 | 9715 | case ARMMMUIdx_SE3: |
0480f69a | 9716 | return 3; |
fba37aed | 9717 | case ARMMMUIdx_SE10_0: |
0480f69a | 9718 | return arm_el_is_aa64(env, 3) ? 1 : 3; |
fba37aed | 9719 | case ARMMMUIdx_SE10_1: |
452ef8cb | 9720 | case ARMMMUIdx_SE10_1_PAN: |
2859d7b5 RH |
9721 | case ARMMMUIdx_Stage1_E0: |
9722 | case ARMMMUIdx_Stage1_E1: | |
452ef8cb | 9723 | case ARMMMUIdx_Stage1_E1_PAN: |
b9f6033c RH |
9724 | case ARMMMUIdx_E10_0: |
9725 | case ARMMMUIdx_E10_1: | |
452ef8cb | 9726 | case ARMMMUIdx_E10_1_PAN: |
62593718 PM |
9727 | case ARMMMUIdx_MPrivNegPri: |
9728 | case ARMMMUIdx_MUserNegPri: | |
e7b921c2 PM |
9729 | case ARMMMUIdx_MPriv: |
9730 | case ARMMMUIdx_MUser: | |
62593718 PM |
9731 | case ARMMMUIdx_MSPrivNegPri: |
9732 | case ARMMMUIdx_MSUserNegPri: | |
66787c78 | 9733 | case ARMMMUIdx_MSPriv: |
66787c78 | 9734 | case ARMMMUIdx_MSUser: |
0480f69a PM |
9735 | return 1; |
9736 | default: | |
9737 | g_assert_not_reached(); | |
9738 | } | |
9739 | } | |
9740 | ||
aaec1432 RH |
9741 | uint64_t arm_sctlr(CPUARMState *env, int el) |
9742 | { | |
9743 | /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ | |
9744 | if (el == 0) { | |
9745 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); | |
9746 | el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); | |
9747 | } | |
9748 | return env->cp15.sctlr_el[el]; | |
9749 | } | |
c47eaf9f | 9750 | |
0480f69a | 9751 | /* Return the SCTLR value which controls this address translation regime */ |
aaec1432 | 9752 | static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) |
0480f69a PM |
9753 | { |
9754 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
9755 | } | |
9756 | ||
aaec1432 RH |
9757 | #ifndef CONFIG_USER_ONLY |
9758 | ||
0480f69a PM |
9759 | /* Return true if the specified stage of address translation is disabled */ |
9760 | static inline bool regime_translation_disabled(CPUARMState *env, | |
9761 | ARMMMUIdx mmu_idx) | |
9762 | { | |
29c483a5 | 9763 | if (arm_feature(env, ARM_FEATURE_M)) { |
ecf5e8ea | 9764 | switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & |
3bef7012 PM |
9765 | (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
9766 | case R_V7M_MPU_CTRL_ENABLE_MASK: | |
9767 | /* Enabled, but not for HardFault and NMI */ | |
62593718 | 9768 | return mmu_idx & ARM_MMU_IDX_M_NEGPRI; |
3bef7012 PM |
9769 | case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
9770 | /* Enabled for all cases */ | |
9771 | return false; | |
9772 | case 0: | |
9773 | default: | |
9774 | /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but | |
9775 | * we warned about that in armv7m_nvic.c when the guest set it. | |
9776 | */ | |
9777 | return true; | |
9778 | } | |
29c483a5 MD |
9779 | } |
9780 | ||
97fa9350 | 9781 | if (mmu_idx == ARMMMUIdx_Stage2) { |
9d1bab33 PM |
9782 | /* HCR.DC means HCR.VM behaves as 1 */ |
9783 | return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; | |
0480f69a | 9784 | } |
3d0e3080 PM |
9785 | |
9786 | if (env->cp15.hcr_el2 & HCR_TGE) { | |
9787 | /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ | |
9788 | if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { | |
9789 | return true; | |
9790 | } | |
9791 | } | |
9792 | ||
fee7aa46 | 9793 | if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { |
9d1bab33 PM |
9794 | /* HCR.DC means SCTLR_EL1.M behaves as 0 */ |
9795 | return true; | |
9796 | } | |
9797 | ||
0480f69a PM |
9798 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; |
9799 | } | |
9800 | ||
73462ddd PC |
9801 | static inline bool regime_translation_big_endian(CPUARMState *env, |
9802 | ARMMMUIdx mmu_idx) | |
9803 | { | |
9804 | return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; | |
9805 | } | |
9806 | ||
c47eaf9f PM |
9807 | /* Return the TTBR associated with this translation regime */ |
9808 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
9809 | int ttbrn) | |
9810 | { | |
97fa9350 | 9811 | if (mmu_idx == ARMMMUIdx_Stage2) { |
c47eaf9f PM |
9812 | return env->cp15.vttbr_el2; |
9813 | } | |
9814 | if (ttbrn == 0) { | |
9815 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
9816 | } else { | |
9817 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
9818 | } | |
9819 | } | |
9820 | ||
9821 | #endif /* !CONFIG_USER_ONLY */ | |
9822 | ||
0480f69a PM |
9823 | /* Return the TCR controlling this translation regime */ |
9824 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
9825 | { | |
97fa9350 | 9826 | if (mmu_idx == ARMMMUIdx_Stage2) { |
68e9c2fe | 9827 | return &env->cp15.vtcr_el2; |
0480f69a PM |
9828 | } |
9829 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
9830 | } | |
9831 | ||
8bd5c820 PM |
9832 | /* Convert a possible stage1+2 MMU index into the appropriate |
9833 | * stage 1 MMU index | |
9834 | */ | |
9835 | static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) | |
9836 | { | |
b9f6033c RH |
9837 | switch (mmu_idx) { |
9838 | case ARMMMUIdx_E10_0: | |
9839 | return ARMMMUIdx_Stage1_E0; | |
9840 | case ARMMMUIdx_E10_1: | |
9841 | return ARMMMUIdx_Stage1_E1; | |
452ef8cb RH |
9842 | case ARMMMUIdx_E10_1_PAN: |
9843 | return ARMMMUIdx_Stage1_E1_PAN; | |
b9f6033c RH |
9844 | default: |
9845 | return mmu_idx; | |
8bd5c820 | 9846 | } |
8bd5c820 PM |
9847 | } |
9848 | ||
0480f69a PM |
9849 | /* Return true if the translation regime is using LPAE format page tables */ |
9850 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
9851 | ARMMMUIdx mmu_idx) | |
9852 | { | |
9853 | int el = regime_el(env, mmu_idx); | |
9854 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
9855 | return true; | |
9856 | } | |
9857 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
9858 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
9859 | return true; | |
9860 | } | |
9861 | return false; | |
9862 | } | |
9863 | ||
deb2db99 AR |
9864 | /* Returns true if the stage 1 translation regime is using LPAE format page |
9865 | * tables. Used when raising alignment exceptions, whose FSR changes depending | |
9866 | * on whether the long or short descriptor format is in use. */ | |
9867 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) | |
30901475 | 9868 | { |
8bd5c820 | 9869 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
deb2db99 | 9870 | |
30901475 AB |
9871 | return regime_using_lpae_format(env, mmu_idx); |
9872 | } | |
9873 | ||
c47eaf9f | 9874 | #ifndef CONFIG_USER_ONLY |
0480f69a PM |
9875 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
9876 | { | |
9877 | switch (mmu_idx) { | |
fba37aed | 9878 | case ARMMMUIdx_SE10_0: |
b9f6033c | 9879 | case ARMMMUIdx_E20_0: |
2859d7b5 | 9880 | case ARMMMUIdx_Stage1_E0: |
e7b921c2 | 9881 | case ARMMMUIdx_MUser: |
871bec7c | 9882 | case ARMMMUIdx_MSUser: |
62593718 PM |
9883 | case ARMMMUIdx_MUserNegPri: |
9884 | case ARMMMUIdx_MSUserNegPri: | |
0480f69a PM |
9885 | return true; |
9886 | default: | |
9887 | return false; | |
01b98b68 RH |
9888 | case ARMMMUIdx_E10_0: |
9889 | case ARMMMUIdx_E10_1: | |
452ef8cb | 9890 | case ARMMMUIdx_E10_1_PAN: |
0480f69a PM |
9891 | g_assert_not_reached(); |
9892 | } | |
9893 | } | |
9894 | ||
0fbf5238 AJ |
9895 | /* Translate section/page access permissions to page |
9896 | * R/W protection flags | |
d76951b6 AJ |
9897 | * |
9898 | * @env: CPUARMState | |
9899 | * @mmu_idx: MMU index indicating required translation regime | |
9900 | * @ap: The 3-bit access permissions (AP[2:0]) | |
9901 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
9902 | */ |
9903 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
9904 | int ap, int domain_prot) | |
9905 | { | |
554b0b09 PM |
9906 | bool is_user = regime_is_user(env, mmu_idx); |
9907 | ||
9908 | if (domain_prot == 3) { | |
9909 | return PAGE_READ | PAGE_WRITE; | |
9910 | } | |
9911 | ||
554b0b09 PM |
9912 | switch (ap) { |
9913 | case 0: | |
9914 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
9915 | return 0; | |
9916 | } | |
554b0b09 PM |
9917 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
9918 | case SCTLR_S: | |
9919 | return is_user ? 0 : PAGE_READ; | |
9920 | case SCTLR_R: | |
9921 | return PAGE_READ; | |
9922 | default: | |
9923 | return 0; | |
9924 | } | |
9925 | case 1: | |
9926 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
9927 | case 2: | |
87c3d486 | 9928 | if (is_user) { |
0fbf5238 | 9929 | return PAGE_READ; |
87c3d486 | 9930 | } else { |
554b0b09 | 9931 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 9932 | } |
554b0b09 PM |
9933 | case 3: |
9934 | return PAGE_READ | PAGE_WRITE; | |
9935 | case 4: /* Reserved. */ | |
9936 | return 0; | |
9937 | case 5: | |
0fbf5238 | 9938 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 9939 | case 6: |
0fbf5238 | 9940 | return PAGE_READ; |
554b0b09 | 9941 | case 7: |
87c3d486 | 9942 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 9943 | return 0; |
87c3d486 | 9944 | } |
0fbf5238 | 9945 | return PAGE_READ; |
554b0b09 | 9946 | default: |
0fbf5238 | 9947 | g_assert_not_reached(); |
554b0b09 | 9948 | } |
b5ff1b31 FB |
9949 | } |
9950 | ||
d76951b6 AJ |
9951 | /* Translate section/page access permissions to page |
9952 | * R/W protection flags. | |
9953 | * | |
d76951b6 | 9954 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 9955 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 9956 | */ |
d8e052b3 | 9957 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 9958 | { |
d76951b6 AJ |
9959 | switch (ap) { |
9960 | case 0: | |
9961 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
9962 | case 1: | |
9963 | return PAGE_READ | PAGE_WRITE; | |
9964 | case 2: | |
9965 | return is_user ? 0 : PAGE_READ; | |
9966 | case 3: | |
9967 | return PAGE_READ; | |
9968 | default: | |
9969 | g_assert_not_reached(); | |
9970 | } | |
9971 | } | |
9972 | ||
d8e052b3 AJ |
9973 | static inline int |
9974 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
9975 | { | |
9976 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
9977 | } | |
9978 | ||
6ab1a5ee EI |
9979 | /* Translate S2 section/page access permissions to protection flags |
9980 | * | |
9981 | * @env: CPUARMState | |
9982 | * @s2ap: The 2-bit stage2 access permissions (S2AP) | |
9983 | * @xn: XN (execute-never) bit | |
9984 | */ | |
9985 | static int get_S2prot(CPUARMState *env, int s2ap, int xn) | |
9986 | { | |
9987 | int prot = 0; | |
9988 | ||
9989 | if (s2ap & 1) { | |
9990 | prot |= PAGE_READ; | |
9991 | } | |
9992 | if (s2ap & 2) { | |
9993 | prot |= PAGE_WRITE; | |
9994 | } | |
9995 | if (!xn) { | |
dfda6837 SS |
9996 | if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
9997 | prot |= PAGE_EXEC; | |
9998 | } | |
6ab1a5ee EI |
9999 | } |
10000 | return prot; | |
10001 | } | |
10002 | ||
d8e052b3 AJ |
10003 | /* Translate section/page access permissions to protection flags |
10004 | * | |
10005 | * @env: CPUARMState | |
10006 | * @mmu_idx: MMU index indicating required translation regime | |
10007 | * @is_aa64: TRUE if AArch64 | |
10008 | * @ap: The 2-bit simple AP (AP[2:1]) | |
10009 | * @ns: NS (non-secure) bit | |
10010 | * @xn: XN (execute-never) bit | |
10011 | * @pxn: PXN (privileged execute-never) bit | |
10012 | */ | |
10013 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
10014 | int ap, int ns, int xn, int pxn) | |
10015 | { | |
10016 | bool is_user = regime_is_user(env, mmu_idx); | |
10017 | int prot_rw, user_rw; | |
10018 | bool have_wxn; | |
10019 | int wxn = 0; | |
10020 | ||
97fa9350 | 10021 | assert(mmu_idx != ARMMMUIdx_Stage2); |
d8e052b3 AJ |
10022 | |
10023 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
10024 | if (is_user) { | |
10025 | prot_rw = user_rw; | |
10026 | } else { | |
81636b70 RH |
10027 | if (user_rw && regime_is_pan(env, mmu_idx)) { |
10028 | return 0; | |
10029 | } | |
d8e052b3 AJ |
10030 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); |
10031 | } | |
10032 | ||
10033 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
10034 | return prot_rw; | |
10035 | } | |
10036 | ||
10037 | /* TODO have_wxn should be replaced with | |
10038 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
10039 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
10040 | * compatible processors have EL2, which is required for [U]WXN. | |
10041 | */ | |
10042 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
10043 | ||
10044 | if (have_wxn) { | |
10045 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
10046 | } | |
10047 | ||
10048 | if (is_aa64) { | |
339370b9 RH |
10049 | if (regime_has_2_ranges(mmu_idx) && !is_user) { |
10050 | xn = pxn || (user_rw & PAGE_WRITE); | |
d8e052b3 AJ |
10051 | } |
10052 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
10053 | switch (regime_el(env, mmu_idx)) { | |
10054 | case 1: | |
10055 | case 3: | |
10056 | if (is_user) { | |
10057 | xn = xn || !(user_rw & PAGE_READ); | |
10058 | } else { | |
10059 | int uwxn = 0; | |
10060 | if (have_wxn) { | |
10061 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
10062 | } | |
10063 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
10064 | (uwxn && (user_rw & PAGE_WRITE)); | |
10065 | } | |
10066 | break; | |
10067 | case 2: | |
10068 | break; | |
10069 | } | |
10070 | } else { | |
10071 | xn = wxn = 0; | |
10072 | } | |
10073 | ||
10074 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
10075 | return prot_rw; | |
10076 | } | |
10077 | return prot_rw | PAGE_EXEC; | |
10078 | } | |
10079 | ||
0480f69a PM |
10080 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
10081 | uint32_t *table, uint32_t address) | |
b2fa1797 | 10082 | { |
0480f69a | 10083 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 10084 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 10085 | |
11f136ee FA |
10086 | if (address & tcr->mask) { |
10087 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
10088 | /* Translation table walk disabled for TTBR1 */ |
10089 | return false; | |
10090 | } | |
aef878be | 10091 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 10092 | } else { |
11f136ee | 10093 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
10094 | /* Translation table walk disabled for TTBR0 */ |
10095 | return false; | |
10096 | } | |
aef878be | 10097 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
10098 | } |
10099 | *table |= (address >> 18) & 0x3ffc; | |
10100 | return true; | |
b2fa1797 PB |
10101 | } |
10102 | ||
37785977 EI |
10103 | /* Translate a S1 pagetable walk through S2 if needed. */ |
10104 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, | |
10105 | hwaddr addr, MemTxAttrs txattrs, | |
37785977 EI |
10106 | ARMMMUFaultInfo *fi) |
10107 | { | |
fee7aa46 | 10108 | if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && |
97fa9350 | 10109 | !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { |
37785977 EI |
10110 | target_ulong s2size; |
10111 | hwaddr s2pa; | |
10112 | int s2prot; | |
10113 | int ret; | |
eadb2feb PM |
10114 | ARMCacheAttrs cacheattrs = {}; |
10115 | ARMCacheAttrs *pcacheattrs = NULL; | |
10116 | ||
10117 | if (env->cp15.hcr_el2 & HCR_PTW) { | |
10118 | /* | |
10119 | * PTW means we must fault if this S1 walk touches S2 Device | |
10120 | * memory; otherwise we don't care about the attributes and can | |
10121 | * save the S2 translation the effort of computing them. | |
10122 | */ | |
10123 | pcacheattrs = &cacheattrs; | |
10124 | } | |
37785977 | 10125 | |
97fa9350 | 10126 | ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa, |
eadb2feb | 10127 | &txattrs, &s2prot, &s2size, fi, pcacheattrs); |
37785977 | 10128 | if (ret) { |
3b39d734 | 10129 | assert(fi->type != ARMFault_None); |
37785977 EI |
10130 | fi->s2addr = addr; |
10131 | fi->stage2 = true; | |
10132 | fi->s1ptw = true; | |
10133 | return ~0; | |
10134 | } | |
eadb2feb PM |
10135 | if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { |
10136 | /* Access was to Device memory: generate Permission fault */ | |
10137 | fi->type = ARMFault_Permission; | |
10138 | fi->s2addr = addr; | |
10139 | fi->stage2 = true; | |
10140 | fi->s1ptw = true; | |
10141 | return ~0; | |
10142 | } | |
37785977 EI |
10143 | addr = s2pa; |
10144 | } | |
10145 | return addr; | |
10146 | } | |
10147 | ||
14577270 | 10148 | /* All loads done in the course of a page table walk go through here. */ |
a614e698 | 10149 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
3795a6de | 10150 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
ebca90e4 | 10151 | { |
a614e698 EI |
10152 | ARMCPU *cpu = ARM_CPU(cs); |
10153 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 10154 | MemTxAttrs attrs = {}; |
3b39d734 | 10155 | MemTxResult result = MEMTX_OK; |
5ce4ff65 | 10156 | AddressSpace *as; |
3b39d734 | 10157 | uint32_t data; |
ebca90e4 PM |
10158 | |
10159 | attrs.secure = is_secure; | |
5ce4ff65 | 10160 | as = arm_addressspace(cs, attrs); |
3795a6de | 10161 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); |
a614e698 EI |
10162 | if (fi->s1ptw) { |
10163 | return 0; | |
10164 | } | |
73462ddd | 10165 | if (regime_translation_big_endian(env, mmu_idx)) { |
3b39d734 | 10166 | data = address_space_ldl_be(as, addr, attrs, &result); |
73462ddd | 10167 | } else { |
3b39d734 | 10168 | data = address_space_ldl_le(as, addr, attrs, &result); |
73462ddd | 10169 | } |
3b39d734 PM |
10170 | if (result == MEMTX_OK) { |
10171 | return data; | |
10172 | } | |
10173 | fi->type = ARMFault_SyncExternalOnWalk; | |
10174 | fi->ea = arm_extabort_type(result); | |
10175 | return 0; | |
ebca90e4 PM |
10176 | } |
10177 | ||
37785977 | 10178 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
3795a6de | 10179 | ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
ebca90e4 | 10180 | { |
37785977 EI |
10181 | ARMCPU *cpu = ARM_CPU(cs); |
10182 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 10183 | MemTxAttrs attrs = {}; |
3b39d734 | 10184 | MemTxResult result = MEMTX_OK; |
5ce4ff65 | 10185 | AddressSpace *as; |
9aea1ea3 | 10186 | uint64_t data; |
ebca90e4 PM |
10187 | |
10188 | attrs.secure = is_secure; | |
5ce4ff65 | 10189 | as = arm_addressspace(cs, attrs); |
3795a6de | 10190 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); |
37785977 EI |
10191 | if (fi->s1ptw) { |
10192 | return 0; | |
10193 | } | |
73462ddd | 10194 | if (regime_translation_big_endian(env, mmu_idx)) { |
3b39d734 | 10195 | data = address_space_ldq_be(as, addr, attrs, &result); |
73462ddd | 10196 | } else { |
3b39d734 PM |
10197 | data = address_space_ldq_le(as, addr, attrs, &result); |
10198 | } | |
10199 | if (result == MEMTX_OK) { | |
10200 | return data; | |
73462ddd | 10201 | } |
3b39d734 PM |
10202 | fi->type = ARMFault_SyncExternalOnWalk; |
10203 | fi->ea = arm_extabort_type(result); | |
10204 | return 0; | |
ebca90e4 PM |
10205 | } |
10206 | ||
b7cc4e82 | 10207 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
03ae85f8 | 10208 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 10209 | hwaddr *phys_ptr, int *prot, |
f989983e | 10210 | target_ulong *page_size, |
e14b5a23 | 10211 | ARMMMUFaultInfo *fi) |
b5ff1b31 | 10212 | { |
2fc0cc0e | 10213 | CPUState *cs = env_cpu(env); |
f989983e | 10214 | int level = 1; |
b5ff1b31 FB |
10215 | uint32_t table; |
10216 | uint32_t desc; | |
10217 | int type; | |
10218 | int ap; | |
e389be16 | 10219 | int domain = 0; |
dd4ebc2e | 10220 | int domain_prot; |
a8170e5e | 10221 | hwaddr phys_addr; |
0480f69a | 10222 | uint32_t dacr; |
b5ff1b31 | 10223 | |
9ee6e8bb PB |
10224 | /* Pagetable walk. */ |
10225 | /* Lookup l1 descriptor. */ | |
0480f69a | 10226 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 | 10227 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
f989983e | 10228 | fi->type = ARMFault_Translation; |
e389be16 FA |
10229 | goto do_fault; |
10230 | } | |
a614e698 | 10231 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10232 | mmu_idx, fi); |
3b39d734 PM |
10233 | if (fi->type != ARMFault_None) { |
10234 | goto do_fault; | |
10235 | } | |
9ee6e8bb | 10236 | type = (desc & 3); |
dd4ebc2e | 10237 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
10238 | if (regime_el(env, mmu_idx) == 1) { |
10239 | dacr = env->cp15.dacr_ns; | |
10240 | } else { | |
10241 | dacr = env->cp15.dacr_s; | |
10242 | } | |
10243 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 10244 | if (type == 0) { |
601d70b9 | 10245 | /* Section translation fault. */ |
f989983e | 10246 | fi->type = ARMFault_Translation; |
9ee6e8bb PB |
10247 | goto do_fault; |
10248 | } | |
f989983e PM |
10249 | if (type != 2) { |
10250 | level = 2; | |
10251 | } | |
dd4ebc2e | 10252 | if (domain_prot == 0 || domain_prot == 2) { |
f989983e | 10253 | fi->type = ARMFault_Domain; |
9ee6e8bb PB |
10254 | goto do_fault; |
10255 | } | |
10256 | if (type == 2) { | |
10257 | /* 1Mb section. */ | |
10258 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
10259 | ap = (desc >> 10) & 3; | |
d4c430a8 | 10260 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
10261 | } else { |
10262 | /* Lookup l2 entry. */ | |
554b0b09 PM |
10263 | if (type == 1) { |
10264 | /* Coarse pagetable. */ | |
10265 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
10266 | } else { | |
10267 | /* Fine pagetable. */ | |
10268 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
10269 | } | |
a614e698 | 10270 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10271 | mmu_idx, fi); |
3b39d734 PM |
10272 | if (fi->type != ARMFault_None) { |
10273 | goto do_fault; | |
10274 | } | |
9ee6e8bb PB |
10275 | switch (desc & 3) { |
10276 | case 0: /* Page translation fault. */ | |
f989983e | 10277 | fi->type = ARMFault_Translation; |
9ee6e8bb PB |
10278 | goto do_fault; |
10279 | case 1: /* 64k page. */ | |
10280 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
10281 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 10282 | *page_size = 0x10000; |
ce819861 | 10283 | break; |
9ee6e8bb PB |
10284 | case 2: /* 4k page. */ |
10285 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 10286 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 10287 | *page_size = 0x1000; |
ce819861 | 10288 | break; |
fc1891c7 | 10289 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 10290 | if (type == 1) { |
fc1891c7 PM |
10291 | /* ARMv6/XScale extended small page format */ |
10292 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
10293 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 10294 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 10295 | *page_size = 0x1000; |
554b0b09 | 10296 | } else { |
fc1891c7 PM |
10297 | /* UNPREDICTABLE in ARMv5; we choose to take a |
10298 | * page translation fault. | |
10299 | */ | |
f989983e | 10300 | fi->type = ARMFault_Translation; |
554b0b09 PM |
10301 | goto do_fault; |
10302 | } | |
10303 | } else { | |
10304 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 10305 | *page_size = 0x400; |
554b0b09 | 10306 | } |
9ee6e8bb | 10307 | ap = (desc >> 4) & 3; |
ce819861 PB |
10308 | break; |
10309 | default: | |
9ee6e8bb PB |
10310 | /* Never happens, but compiler isn't smart enough to tell. */ |
10311 | abort(); | |
ce819861 | 10312 | } |
9ee6e8bb | 10313 | } |
0fbf5238 AJ |
10314 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
10315 | *prot |= *prot ? PAGE_EXEC : 0; | |
10316 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb | 10317 | /* Access permission fault. */ |
f989983e | 10318 | fi->type = ARMFault_Permission; |
9ee6e8bb PB |
10319 | goto do_fault; |
10320 | } | |
10321 | *phys_ptr = phys_addr; | |
b7cc4e82 | 10322 | return false; |
9ee6e8bb | 10323 | do_fault: |
f989983e PM |
10324 | fi->domain = domain; |
10325 | fi->level = level; | |
b7cc4e82 | 10326 | return true; |
9ee6e8bb PB |
10327 | } |
10328 | ||
b7cc4e82 | 10329 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
03ae85f8 | 10330 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 10331 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
f06cf243 | 10332 | target_ulong *page_size, ARMMMUFaultInfo *fi) |
9ee6e8bb | 10333 | { |
2fc0cc0e | 10334 | CPUState *cs = env_cpu(env); |
f06cf243 | 10335 | int level = 1; |
9ee6e8bb PB |
10336 | uint32_t table; |
10337 | uint32_t desc; | |
10338 | uint32_t xn; | |
de9b05b8 | 10339 | uint32_t pxn = 0; |
9ee6e8bb PB |
10340 | int type; |
10341 | int ap; | |
de9b05b8 | 10342 | int domain = 0; |
dd4ebc2e | 10343 | int domain_prot; |
a8170e5e | 10344 | hwaddr phys_addr; |
0480f69a | 10345 | uint32_t dacr; |
8bf5b6a9 | 10346 | bool ns; |
9ee6e8bb PB |
10347 | |
10348 | /* Pagetable walk. */ | |
10349 | /* Lookup l1 descriptor. */ | |
0480f69a | 10350 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 | 10351 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
f06cf243 | 10352 | fi->type = ARMFault_Translation; |
e389be16 FA |
10353 | goto do_fault; |
10354 | } | |
a614e698 | 10355 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10356 | mmu_idx, fi); |
3b39d734 PM |
10357 | if (fi->type != ARMFault_None) { |
10358 | goto do_fault; | |
10359 | } | |
9ee6e8bb | 10360 | type = (desc & 3); |
de9b05b8 PM |
10361 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
10362 | /* Section translation fault, or attempt to use the encoding | |
10363 | * which is Reserved on implementations without PXN. | |
10364 | */ | |
f06cf243 | 10365 | fi->type = ARMFault_Translation; |
9ee6e8bb | 10366 | goto do_fault; |
de9b05b8 PM |
10367 | } |
10368 | if ((type == 1) || !(desc & (1 << 18))) { | |
10369 | /* Page or Section. */ | |
dd4ebc2e | 10370 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 10371 | } |
0480f69a PM |
10372 | if (regime_el(env, mmu_idx) == 1) { |
10373 | dacr = env->cp15.dacr_ns; | |
10374 | } else { | |
10375 | dacr = env->cp15.dacr_s; | |
10376 | } | |
f06cf243 PM |
10377 | if (type == 1) { |
10378 | level = 2; | |
10379 | } | |
0480f69a | 10380 | domain_prot = (dacr >> (domain * 2)) & 3; |
dd4ebc2e | 10381 | if (domain_prot == 0 || domain_prot == 2) { |
f06cf243 PM |
10382 | /* Section or Page domain fault */ |
10383 | fi->type = ARMFault_Domain; | |
9ee6e8bb PB |
10384 | goto do_fault; |
10385 | } | |
de9b05b8 | 10386 | if (type != 1) { |
9ee6e8bb PB |
10387 | if (desc & (1 << 18)) { |
10388 | /* Supersection. */ | |
10389 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
10390 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
10391 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 10392 | *page_size = 0x1000000; |
b5ff1b31 | 10393 | } else { |
9ee6e8bb PB |
10394 | /* Section. */ |
10395 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 10396 | *page_size = 0x100000; |
b5ff1b31 | 10397 | } |
9ee6e8bb PB |
10398 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
10399 | xn = desc & (1 << 4); | |
de9b05b8 | 10400 | pxn = desc & 1; |
8bf5b6a9 | 10401 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 10402 | } else { |
de9b05b8 PM |
10403 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
10404 | pxn = (desc >> 2) & 1; | |
10405 | } | |
8bf5b6a9 | 10406 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
10407 | /* Lookup l2 entry. */ |
10408 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
a614e698 | 10409 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
3795a6de | 10410 | mmu_idx, fi); |
3b39d734 PM |
10411 | if (fi->type != ARMFault_None) { |
10412 | goto do_fault; | |
10413 | } | |
9ee6e8bb PB |
10414 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
10415 | switch (desc & 3) { | |
10416 | case 0: /* Page translation fault. */ | |
f06cf243 | 10417 | fi->type = ARMFault_Translation; |
b5ff1b31 | 10418 | goto do_fault; |
9ee6e8bb PB |
10419 | case 1: /* 64k page. */ |
10420 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
10421 | xn = desc & (1 << 15); | |
d4c430a8 | 10422 | *page_size = 0x10000; |
9ee6e8bb PB |
10423 | break; |
10424 | case 2: case 3: /* 4k page. */ | |
10425 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
10426 | xn = desc & 1; | |
d4c430a8 | 10427 | *page_size = 0x1000; |
9ee6e8bb PB |
10428 | break; |
10429 | default: | |
10430 | /* Never happens, but compiler isn't smart enough to tell. */ | |
10431 | abort(); | |
b5ff1b31 | 10432 | } |
9ee6e8bb | 10433 | } |
dd4ebc2e | 10434 | if (domain_prot == 3) { |
c0034328 JR |
10435 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
10436 | } else { | |
0480f69a | 10437 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
10438 | xn = 1; |
10439 | } | |
f06cf243 PM |
10440 | if (xn && access_type == MMU_INST_FETCH) { |
10441 | fi->type = ARMFault_Permission; | |
c0034328 | 10442 | goto do_fault; |
f06cf243 | 10443 | } |
9ee6e8bb | 10444 | |
d76951b6 AJ |
10445 | if (arm_feature(env, ARM_FEATURE_V6K) && |
10446 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
10447 | /* The simplified model uses AP[0] as an access control bit. */ | |
10448 | if ((ap & 1) == 0) { | |
10449 | /* Access flag fault. */ | |
f06cf243 | 10450 | fi->type = ARMFault_AccessFlag; |
d76951b6 AJ |
10451 | goto do_fault; |
10452 | } | |
10453 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
10454 | } else { | |
10455 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 10456 | } |
0fbf5238 AJ |
10457 | if (*prot && !xn) { |
10458 | *prot |= PAGE_EXEC; | |
10459 | } | |
10460 | if (!(*prot & (1 << access_type))) { | |
c0034328 | 10461 | /* Access permission fault. */ |
f06cf243 | 10462 | fi->type = ARMFault_Permission; |
c0034328 JR |
10463 | goto do_fault; |
10464 | } | |
3ad493fc | 10465 | } |
8bf5b6a9 PM |
10466 | if (ns) { |
10467 | /* The NS bit will (as required by the architecture) have no effect if | |
10468 | * the CPU doesn't support TZ or this is a non-secure translation | |
10469 | * regime, because the attribute will already be non-secure. | |
10470 | */ | |
10471 | attrs->secure = false; | |
10472 | } | |
9ee6e8bb | 10473 | *phys_ptr = phys_addr; |
b7cc4e82 | 10474 | return false; |
b5ff1b31 | 10475 | do_fault: |
f06cf243 PM |
10476 | fi->domain = domain; |
10477 | fi->level = level; | |
b7cc4e82 | 10478 | return true; |
b5ff1b31 FB |
10479 | } |
10480 | ||
1853d5a9 | 10481 | /* |
a0e966c9 | 10482 | * check_s2_mmu_setup |
1853d5a9 EI |
10483 | * @cpu: ARMCPU |
10484 | * @is_aa64: True if the translation regime is in AArch64 state | |
10485 | * @startlevel: Suggested starting level | |
10486 | * @inputsize: Bitsize of IPAs | |
10487 | * @stride: Page-table stride (See the ARM ARM) | |
10488 | * | |
a0e966c9 EI |
10489 | * Returns true if the suggested S2 translation parameters are OK and |
10490 | * false otherwise. | |
1853d5a9 | 10491 | */ |
a0e966c9 EI |
10492 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
10493 | int inputsize, int stride) | |
1853d5a9 | 10494 | { |
98d68ec2 EI |
10495 | const int grainsize = stride + 3; |
10496 | int startsizecheck; | |
10497 | ||
1853d5a9 EI |
10498 | /* Negative levels are never allowed. */ |
10499 | if (level < 0) { | |
10500 | return false; | |
10501 | } | |
10502 | ||
98d68ec2 EI |
10503 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
10504 | if (startsizecheck < 1 || startsizecheck > stride + 4) { | |
10505 | return false; | |
10506 | } | |
10507 | ||
1853d5a9 | 10508 | if (is_aa64) { |
3526423e | 10509 | CPUARMState *env = &cpu->env; |
1853d5a9 EI |
10510 | unsigned int pamax = arm_pamax(cpu); |
10511 | ||
10512 | switch (stride) { | |
10513 | case 13: /* 64KB Pages. */ | |
10514 | if (level == 0 || (level == 1 && pamax <= 42)) { | |
10515 | return false; | |
10516 | } | |
10517 | break; | |
10518 | case 11: /* 16KB Pages. */ | |
10519 | if (level == 0 || (level == 1 && pamax <= 40)) { | |
10520 | return false; | |
10521 | } | |
10522 | break; | |
10523 | case 9: /* 4KB Pages. */ | |
10524 | if (level == 0 && pamax <= 42) { | |
10525 | return false; | |
10526 | } | |
10527 | break; | |
10528 | default: | |
10529 | g_assert_not_reached(); | |
10530 | } | |
3526423e EI |
10531 | |
10532 | /* Inputsize checks. */ | |
10533 | if (inputsize > pamax && | |
10534 | (arm_el_is_aa64(env, 1) || inputsize > 40)) { | |
10535 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ | |
10536 | return false; | |
10537 | } | |
1853d5a9 | 10538 | } else { |
1853d5a9 EI |
10539 | /* AArch32 only supports 4KB pages. Assert on that. */ |
10540 | assert(stride == 9); | |
10541 | ||
10542 | if (level == 0) { | |
10543 | return false; | |
10544 | } | |
1853d5a9 EI |
10545 | } |
10546 | return true; | |
10547 | } | |
10548 | ||
5b2d261d AB |
10549 | /* Translate from the 4-bit stage 2 representation of |
10550 | * memory attributes (without cache-allocation hints) to | |
10551 | * the 8-bit representation of the stage 1 MAIR registers | |
10552 | * (which includes allocation hints). | |
10553 | * | |
10554 | * ref: shared/translation/attrs/S2AttrDecode() | |
10555 | * .../S2ConvertAttrsHints() | |
10556 | */ | |
10557 | static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) | |
10558 | { | |
10559 | uint8_t hiattr = extract32(s2attrs, 2, 2); | |
10560 | uint8_t loattr = extract32(s2attrs, 0, 2); | |
10561 | uint8_t hihint = 0, lohint = 0; | |
10562 | ||
10563 | if (hiattr != 0) { /* normal memory */ | |
10564 | if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ | |
10565 | hiattr = loattr = 1; /* non-cacheable */ | |
10566 | } else { | |
10567 | if (hiattr != 1) { /* Write-through or write-back */ | |
10568 | hihint = 3; /* RW allocate */ | |
10569 | } | |
10570 | if (loattr != 1) { /* Write-through or write-back */ | |
10571 | lohint = 3; /* RW allocate */ | |
10572 | } | |
10573 | } | |
10574 | } | |
10575 | ||
10576 | return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; | |
10577 | } | |
c47eaf9f | 10578 | #endif /* !CONFIG_USER_ONLY */ |
5b2d261d | 10579 | |
b830a5ee RH |
10580 | static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) |
10581 | { | |
10582 | if (regime_has_2_ranges(mmu_idx)) { | |
10583 | return extract64(tcr, 37, 2); | |
10584 | } else if (mmu_idx == ARMMMUIdx_Stage2) { | |
10585 | return 0; /* VTCR_EL2 */ | |
10586 | } else { | |
3e270f67 RH |
10587 | /* Replicate the single TBI bit so we always have 2 bits. */ |
10588 | return extract32(tcr, 20, 1) * 3; | |
b830a5ee RH |
10589 | } |
10590 | } | |
10591 | ||
10592 | static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) | |
10593 | { | |
10594 | if (regime_has_2_ranges(mmu_idx)) { | |
10595 | return extract64(tcr, 51, 2); | |
10596 | } else if (mmu_idx == ARMMMUIdx_Stage2) { | |
10597 | return 0; /* VTCR_EL2 */ | |
10598 | } else { | |
3e270f67 RH |
10599 | /* Replicate the single TBID bit so we always have 2 bits. */ |
10600 | return extract32(tcr, 29, 1) * 3; | |
b830a5ee RH |
10601 | } |
10602 | } | |
10603 | ||
10604 | ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, | |
10605 | ARMMMUIdx mmu_idx, bool data) | |
ba97be9f RH |
10606 | { |
10607 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; | |
b830a5ee RH |
10608 | bool epd, hpd, using16k, using64k; |
10609 | int select, tsz, tbi; | |
ba97be9f | 10610 | |
339370b9 | 10611 | if (!regime_has_2_ranges(mmu_idx)) { |
71d18164 | 10612 | select = 0; |
ba97be9f RH |
10613 | tsz = extract32(tcr, 0, 6); |
10614 | using64k = extract32(tcr, 14, 1); | |
10615 | using16k = extract32(tcr, 15, 1); | |
97fa9350 | 10616 | if (mmu_idx == ARMMMUIdx_Stage2) { |
ba97be9f | 10617 | /* VTCR_EL2 */ |
b830a5ee | 10618 | hpd = false; |
ba97be9f | 10619 | } else { |
ba97be9f RH |
10620 | hpd = extract32(tcr, 24, 1); |
10621 | } | |
10622 | epd = false; | |
ba97be9f | 10623 | } else { |
71d18164 RH |
10624 | /* |
10625 | * Bit 55 is always between the two regions, and is canonical for | |
10626 | * determining if address tagging is enabled. | |
10627 | */ | |
10628 | select = extract64(va, 55, 1); | |
10629 | if (!select) { | |
10630 | tsz = extract32(tcr, 0, 6); | |
10631 | epd = extract32(tcr, 7, 1); | |
10632 | using64k = extract32(tcr, 14, 1); | |
10633 | using16k = extract32(tcr, 15, 1); | |
71d18164 | 10634 | hpd = extract64(tcr, 41, 1); |
71d18164 RH |
10635 | } else { |
10636 | int tg = extract32(tcr, 30, 2); | |
10637 | using16k = tg == 1; | |
10638 | using64k = tg == 3; | |
10639 | tsz = extract32(tcr, 16, 6); | |
10640 | epd = extract32(tcr, 23, 1); | |
71d18164 | 10641 | hpd = extract64(tcr, 42, 1); |
71d18164 | 10642 | } |
ba97be9f RH |
10643 | } |
10644 | tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ | |
10645 | tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ | |
10646 | ||
b830a5ee RH |
10647 | /* Present TBI as a composite with TBID. */ |
10648 | tbi = aa64_va_parameter_tbi(tcr, mmu_idx); | |
10649 | if (!data) { | |
10650 | tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
10651 | } | |
10652 | tbi = (tbi >> select) & 1; | |
10653 | ||
ba97be9f RH |
10654 | return (ARMVAParameters) { |
10655 | .tsz = tsz, | |
10656 | .select = select, | |
10657 | .tbi = tbi, | |
10658 | .epd = epd, | |
10659 | .hpd = hpd, | |
10660 | .using16k = using16k, | |
10661 | .using64k = using64k, | |
10662 | }; | |
10663 | } | |
10664 | ||
c47eaf9f | 10665 | #ifndef CONFIG_USER_ONLY |
ba97be9f RH |
10666 | static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, |
10667 | ARMMMUIdx mmu_idx) | |
10668 | { | |
10669 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; | |
10670 | uint32_t el = regime_el(env, mmu_idx); | |
10671 | int select, tsz; | |
10672 | bool epd, hpd; | |
10673 | ||
97fa9350 | 10674 | if (mmu_idx == ARMMMUIdx_Stage2) { |
ba97be9f RH |
10675 | /* VTCR */ |
10676 | bool sext = extract32(tcr, 4, 1); | |
10677 | bool sign = extract32(tcr, 3, 1); | |
10678 | ||
10679 | /* | |
10680 | * If the sign-extend bit is not the same as t0sz[3], the result | |
10681 | * is unpredictable. Flag this as a guest error. | |
10682 | */ | |
10683 | if (sign != sext) { | |
10684 | qemu_log_mask(LOG_GUEST_ERROR, | |
10685 | "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); | |
10686 | } | |
10687 | tsz = sextract32(tcr, 0, 4) + 8; | |
10688 | select = 0; | |
10689 | hpd = false; | |
10690 | epd = false; | |
10691 | } else if (el == 2) { | |
10692 | /* HTCR */ | |
10693 | tsz = extract32(tcr, 0, 3); | |
10694 | select = 0; | |
10695 | hpd = extract64(tcr, 24, 1); | |
10696 | epd = false; | |
10697 | } else { | |
10698 | int t0sz = extract32(tcr, 0, 3); | |
10699 | int t1sz = extract32(tcr, 16, 3); | |
10700 | ||
10701 | if (t1sz == 0) { | |
10702 | select = va > (0xffffffffu >> t0sz); | |
10703 | } else { | |
10704 | /* Note that we will detect errors later. */ | |
10705 | select = va >= ~(0xffffffffu >> t1sz); | |
10706 | } | |
10707 | if (!select) { | |
10708 | tsz = t0sz; | |
10709 | epd = extract32(tcr, 7, 1); | |
10710 | hpd = extract64(tcr, 41, 1); | |
10711 | } else { | |
10712 | tsz = t1sz; | |
10713 | epd = extract32(tcr, 23, 1); | |
10714 | hpd = extract64(tcr, 42, 1); | |
10715 | } | |
10716 | /* For aarch32, hpd0 is not enabled without t2e as well. */ | |
10717 | hpd &= extract32(tcr, 6, 1); | |
10718 | } | |
10719 | ||
10720 | return (ARMVAParameters) { | |
10721 | .tsz = tsz, | |
10722 | .select = select, | |
10723 | .epd = epd, | |
10724 | .hpd = hpd, | |
10725 | }; | |
10726 | } | |
10727 | ||
b7cc4e82 | 10728 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
03ae85f8 | 10729 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
b7cc4e82 | 10730 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
da909b2c | 10731 | target_ulong *page_size_ptr, |
5b2d261d | 10732 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
3dde962f | 10733 | { |
2fc0cc0e | 10734 | ARMCPU *cpu = env_archcpu(env); |
1853d5a9 | 10735 | CPUState *cs = CPU(cpu); |
3dde962f | 10736 | /* Read an LPAE long-descriptor translation table. */ |
da909b2c | 10737 | ARMFaultType fault_type = ARMFault_Translation; |
1b4093ea | 10738 | uint32_t level; |
ba97be9f | 10739 | ARMVAParameters param; |
3dde962f | 10740 | uint64_t ttbr; |
dddb5223 | 10741 | hwaddr descaddr, indexmask, indexmask_grainsize; |
3dde962f | 10742 | uint32_t tableattrs; |
36d820af | 10743 | target_ulong page_size; |
3dde962f | 10744 | uint32_t attrs; |
ba97be9f RH |
10745 | int32_t stride; |
10746 | int addrsize, inputsize; | |
0480f69a | 10747 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 10748 | int ap, ns, xn, pxn; |
88e8add8 | 10749 | uint32_t el = regime_el(env, mmu_idx); |
6109769a | 10750 | uint64_t descaddrmask; |
6e99f762 | 10751 | bool aarch64 = arm_el_is_aa64(env, el); |
1bafc2ba | 10752 | bool guarded = false; |
0480f69a PM |
10753 | |
10754 | /* TODO: | |
88e8add8 GB |
10755 | * This code does not handle the different format TCR for VTCR_EL2. |
10756 | * This code also does not support shareability levels. | |
10757 | * Attribute and permission bit handling should also be checked when adding | |
10758 | * support for those page table walks. | |
0480f69a | 10759 | */ |
6e99f762 | 10760 | if (aarch64) { |
ba97be9f RH |
10761 | param = aa64_va_parameters(env, address, mmu_idx, |
10762 | access_type != MMU_INST_FETCH); | |
1b4093ea | 10763 | level = 0; |
ba97be9f RH |
10764 | addrsize = 64 - 8 * param.tbi; |
10765 | inputsize = 64 - param.tsz; | |
d0a2cbce | 10766 | } else { |
ba97be9f | 10767 | param = aa32_va_parameters(env, address, mmu_idx); |
1b4093ea | 10768 | level = 1; |
97fa9350 | 10769 | addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); |
ba97be9f | 10770 | inputsize = addrsize - param.tsz; |
2c8dd318 | 10771 | } |
3dde962f | 10772 | |
ba97be9f RH |
10773 | /* |
10774 | * We determined the region when collecting the parameters, but we | |
10775 | * have not yet validated that the address is valid for the region. | |
10776 | * Extract the top bits and verify that they all match select. | |
36d820af RH |
10777 | * |
10778 | * For aa32, if inputsize == addrsize, then we have selected the | |
10779 | * region by exclusion in aa32_va_parameters and there is no more | |
10780 | * validation to do here. | |
10781 | */ | |
10782 | if (inputsize < addrsize) { | |
10783 | target_ulong top_bits = sextract64(address, inputsize, | |
10784 | addrsize - inputsize); | |
03f27724 | 10785 | if (-top_bits != param.select) { |
36d820af RH |
10786 | /* The gap between the two regions is a Translation fault */ |
10787 | fault_type = ARMFault_Translation; | |
10788 | goto do_fault; | |
10789 | } | |
3dde962f PM |
10790 | } |
10791 | ||
ba97be9f RH |
10792 | if (param.using64k) { |
10793 | stride = 13; | |
10794 | } else if (param.using16k) { | |
10795 | stride = 11; | |
10796 | } else { | |
10797 | stride = 9; | |
10798 | } | |
10799 | ||
3dde962f PM |
10800 | /* Note that QEMU ignores shareability and cacheability attributes, |
10801 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
10802 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
10803 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
10804 | * implement any ASID-like capability so we can ignore it (instead | |
10805 | * we will always flush the TLB any time the ASID is changed). | |
10806 | */ | |
ba97be9f | 10807 | ttbr = regime_ttbr(env, mmu_idx, param.select); |
3dde962f | 10808 | |
0480f69a | 10809 | /* Here we should have set up all the parameters for the translation: |
6e99f762 | 10810 | * inputsize, ttbr, epd, stride, tbi |
0480f69a PM |
10811 | */ |
10812 | ||
ba97be9f | 10813 | if (param.epd) { |
88e8add8 GB |
10814 | /* Translation table walk disabled => Translation fault on TLB miss |
10815 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
10816 | */ | |
3dde962f PM |
10817 | goto do_fault; |
10818 | } | |
10819 | ||
97fa9350 | 10820 | if (mmu_idx != ARMMMUIdx_Stage2) { |
1853d5a9 EI |
10821 | /* The starting level depends on the virtual address size (which can |
10822 | * be up to 48 bits) and the translation granule size. It indicates | |
10823 | * the number of strides (stride bits at a time) needed to | |
10824 | * consume the bits of the input address. In the pseudocode this is: | |
10825 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
10826 | * where their 'inputsize' is our 'inputsize', 'grainsize' is | |
10827 | * our 'stride + 3' and 'stride' is our 'stride'. | |
10828 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
10829 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride | |
10830 | * = 4 - (inputsize - 4) / stride; | |
10831 | */ | |
10832 | level = 4 - (inputsize - 4) / stride; | |
10833 | } else { | |
10834 | /* For stage 2 translations the starting level is specified by the | |
10835 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) | |
10836 | */ | |
1b4093ea SS |
10837 | uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
10838 | uint32_t startlevel; | |
1853d5a9 EI |
10839 | bool ok; |
10840 | ||
6e99f762 | 10841 | if (!aarch64 || stride == 9) { |
1853d5a9 | 10842 | /* AArch32 or 4KB pages */ |
1b4093ea | 10843 | startlevel = 2 - sl0; |
1853d5a9 EI |
10844 | } else { |
10845 | /* 16KB or 64KB pages */ | |
1b4093ea | 10846 | startlevel = 3 - sl0; |
1853d5a9 EI |
10847 | } |
10848 | ||
10849 | /* Check that the starting level is valid. */ | |
6e99f762 | 10850 | ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
1b4093ea | 10851 | inputsize, stride); |
1853d5a9 | 10852 | if (!ok) { |
da909b2c | 10853 | fault_type = ARMFault_Translation; |
1853d5a9 EI |
10854 | goto do_fault; |
10855 | } | |
1b4093ea | 10856 | level = startlevel; |
1853d5a9 | 10857 | } |
3dde962f | 10858 | |
dddb5223 SS |
10859 | indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
10860 | indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; | |
3dde962f PM |
10861 | |
10862 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 | 10863 | descaddr = extract64(ttbr, 0, 48); |
41a4bf1f PM |
10864 | /* |
10865 | * We rely on this masking to clear the RES0 bits at the bottom of the TTBR | |
10866 | * and also to mask out CnP (bit 0) which could validly be non-zero. | |
10867 | */ | |
dddb5223 | 10868 | descaddr &= ~indexmask; |
3dde962f | 10869 | |
6109769a | 10870 | /* The address field in the descriptor goes up to bit 39 for ARMv7 |
dddb5223 SS |
10871 | * but up to bit 47 for ARMv8, but we use the descaddrmask |
10872 | * up to bit 39 for AArch32, because we don't need other bits in that case | |
10873 | * to construct next descriptor address (anyway they should be all zeroes). | |
6109769a | 10874 | */ |
6e99f762 | 10875 | descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
dddb5223 | 10876 | ~indexmask_grainsize; |
6109769a | 10877 | |
ebca90e4 PM |
10878 | /* Secure accesses start with the page table in secure memory and |
10879 | * can be downgraded to non-secure at any step. Non-secure accesses | |
10880 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
10881 | * bits at each step. | |
10882 | */ | |
10883 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
10884 | for (;;) { |
10885 | uint64_t descriptor; | |
ebca90e4 | 10886 | bool nstable; |
3dde962f | 10887 | |
dddb5223 | 10888 | descaddr |= (address >> (stride * (4 - level))) & indexmask; |
2c8dd318 | 10889 | descaddr &= ~7ULL; |
ebca90e4 | 10890 | nstable = extract32(tableattrs, 4, 1); |
3795a6de | 10891 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); |
3b39d734 | 10892 | if (fi->type != ARMFault_None) { |
37785977 EI |
10893 | goto do_fault; |
10894 | } | |
10895 | ||
3dde962f PM |
10896 | if (!(descriptor & 1) || |
10897 | (!(descriptor & 2) && (level == 3))) { | |
10898 | /* Invalid, or the Reserved level 3 encoding */ | |
10899 | goto do_fault; | |
10900 | } | |
6109769a | 10901 | descaddr = descriptor & descaddrmask; |
3dde962f PM |
10902 | |
10903 | if ((descriptor & 2) && (level < 3)) { | |
037c13c5 | 10904 | /* Table entry. The top five bits are attributes which may |
3dde962f PM |
10905 | * propagate down through lower levels of the table (and |
10906 | * which are all arranged so that 0 means "no effect", so | |
10907 | * we can gather them up by ORing in the bits at each level). | |
10908 | */ | |
10909 | tableattrs |= extract64(descriptor, 59, 5); | |
10910 | level++; | |
dddb5223 | 10911 | indexmask = indexmask_grainsize; |
3dde962f PM |
10912 | continue; |
10913 | } | |
10914 | /* Block entry at level 1 or 2, or page entry at level 3. | |
10915 | * These are basically the same thing, although the number | |
10916 | * of bits we pull in from the vaddr varies. | |
10917 | */ | |
973a5434 | 10918 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
3dde962f | 10919 | descaddr |= (address & (page_size - 1)); |
6ab1a5ee | 10920 | /* Extract attributes from the descriptor */ |
d615efac IC |
10921 | attrs = extract64(descriptor, 2, 10) |
10922 | | (extract64(descriptor, 52, 12) << 10); | |
6ab1a5ee | 10923 | |
97fa9350 | 10924 | if (mmu_idx == ARMMMUIdx_Stage2) { |
6ab1a5ee EI |
10925 | /* Stage 2 table descriptors do not include any attribute fields */ |
10926 | break; | |
10927 | } | |
10928 | /* Merge in attributes from table descriptors */ | |
037c13c5 | 10929 | attrs |= nstable << 3; /* NS */ |
1bafc2ba | 10930 | guarded = extract64(descriptor, 50, 1); /* GP */ |
ba97be9f | 10931 | if (param.hpd) { |
037c13c5 RH |
10932 | /* HPD disables all the table attributes except NSTable. */ |
10933 | break; | |
10934 | } | |
10935 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
3dde962f PM |
10936 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
10937 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
10938 | */ | |
037c13c5 RH |
10939 | attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ |
10940 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ | |
3dde962f PM |
10941 | break; |
10942 | } | |
10943 | /* Here descaddr is the final physical address, and attributes | |
10944 | * are all in attrs. | |
10945 | */ | |
da909b2c | 10946 | fault_type = ARMFault_AccessFlag; |
3dde962f PM |
10947 | if ((attrs & (1 << 8)) == 0) { |
10948 | /* Access flag */ | |
10949 | goto do_fault; | |
10950 | } | |
d8e052b3 AJ |
10951 | |
10952 | ap = extract32(attrs, 4, 2); | |
d8e052b3 | 10953 | xn = extract32(attrs, 12, 1); |
d8e052b3 | 10954 | |
97fa9350 | 10955 | if (mmu_idx == ARMMMUIdx_Stage2) { |
6ab1a5ee EI |
10956 | ns = true; |
10957 | *prot = get_S2prot(env, ap, xn); | |
10958 | } else { | |
10959 | ns = extract32(attrs, 3, 1); | |
10960 | pxn = extract32(attrs, 11, 1); | |
6e99f762 | 10961 | *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
6ab1a5ee | 10962 | } |
d8e052b3 | 10963 | |
da909b2c | 10964 | fault_type = ARMFault_Permission; |
d8e052b3 | 10965 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
10966 | goto do_fault; |
10967 | } | |
3dde962f | 10968 | |
8bf5b6a9 PM |
10969 | if (ns) { |
10970 | /* The NS bit will (as required by the architecture) have no effect if | |
10971 | * the CPU doesn't support TZ or this is a non-secure translation | |
10972 | * regime, because the attribute will already be non-secure. | |
10973 | */ | |
10974 | txattrs->secure = false; | |
10975 | } | |
1bafc2ba RH |
10976 | /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ |
10977 | if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { | |
10978 | txattrs->target_tlb_bit0 = true; | |
10979 | } | |
5b2d261d AB |
10980 | |
10981 | if (cacheattrs != NULL) { | |
97fa9350 | 10982 | if (mmu_idx == ARMMMUIdx_Stage2) { |
5b2d261d AB |
10983 | cacheattrs->attrs = convert_stage2_attrs(env, |
10984 | extract32(attrs, 0, 4)); | |
10985 | } else { | |
10986 | /* Index into MAIR registers for cache attributes */ | |
10987 | uint8_t attrindx = extract32(attrs, 0, 3); | |
10988 | uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; | |
10989 | assert(attrindx <= 7); | |
10990 | cacheattrs->attrs = extract64(mair, attrindx * 8, 8); | |
10991 | } | |
10992 | cacheattrs->shareability = extract32(attrs, 6, 2); | |
10993 | } | |
10994 | ||
3dde962f PM |
10995 | *phys_ptr = descaddr; |
10996 | *page_size_ptr = page_size; | |
b7cc4e82 | 10997 | return false; |
3dde962f PM |
10998 | |
10999 | do_fault: | |
da909b2c PM |
11000 | fi->type = fault_type; |
11001 | fi->level = level; | |
37785977 | 11002 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
97fa9350 | 11003 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); |
b7cc4e82 | 11004 | return true; |
3dde962f PM |
11005 | } |
11006 | ||
f6bda88f PC |
11007 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
11008 | ARMMMUIdx mmu_idx, | |
11009 | int32_t address, int *prot) | |
11010 | { | |
3a00d560 MD |
11011 | if (!arm_feature(env, ARM_FEATURE_M)) { |
11012 | *prot = PAGE_READ | PAGE_WRITE; | |
11013 | switch (address) { | |
11014 | case 0xF0000000 ... 0xFFFFFFFF: | |
11015 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { | |
11016 | /* hivecs execing is ok */ | |
11017 | *prot |= PAGE_EXEC; | |
11018 | } | |
11019 | break; | |
11020 | case 0x00000000 ... 0x7FFFFFFF: | |
f6bda88f | 11021 | *prot |= PAGE_EXEC; |
3a00d560 MD |
11022 | break; |
11023 | } | |
11024 | } else { | |
11025 | /* Default system address map for M profile cores. | |
11026 | * The architecture specifies which regions are execute-never; | |
11027 | * at the MPU level no other checks are defined. | |
11028 | */ | |
11029 | switch (address) { | |
11030 | case 0x00000000 ... 0x1fffffff: /* ROM */ | |
11031 | case 0x20000000 ... 0x3fffffff: /* SRAM */ | |
11032 | case 0x60000000 ... 0x7fffffff: /* RAM */ | |
11033 | case 0x80000000 ... 0x9fffffff: /* RAM */ | |
11034 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
11035 | break; | |
11036 | case 0x40000000 ... 0x5fffffff: /* Peripheral */ | |
11037 | case 0xa0000000 ... 0xbfffffff: /* Device */ | |
11038 | case 0xc0000000 ... 0xdfffffff: /* Device */ | |
11039 | case 0xe0000000 ... 0xffffffff: /* System */ | |
11040 | *prot = PAGE_READ | PAGE_WRITE; | |
11041 | break; | |
11042 | default: | |
11043 | g_assert_not_reached(); | |
f6bda88f | 11044 | } |
f6bda88f | 11045 | } |
f6bda88f PC |
11046 | } |
11047 | ||
29c483a5 MD |
11048 | static bool pmsav7_use_background_region(ARMCPU *cpu, |
11049 | ARMMMUIdx mmu_idx, bool is_user) | |
11050 | { | |
11051 | /* Return true if we should use the default memory map as a | |
11052 | * "background" region if there are no hits against any MPU regions. | |
11053 | */ | |
11054 | CPUARMState *env = &cpu->env; | |
11055 | ||
11056 | if (is_user) { | |
11057 | return false; | |
11058 | } | |
11059 | ||
11060 | if (arm_feature(env, ARM_FEATURE_M)) { | |
ecf5e8ea PM |
11061 | return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] |
11062 | & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; | |
29c483a5 MD |
11063 | } else { |
11064 | return regime_sctlr(env, mmu_idx) & SCTLR_BR; | |
11065 | } | |
11066 | } | |
11067 | ||
38aaa60c PM |
11068 | static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
11069 | { | |
11070 | /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ | |
11071 | return arm_feature(env, ARM_FEATURE_M) && | |
11072 | extract32(address, 20, 12) == 0xe00; | |
11073 | } | |
11074 | ||
bf446a11 PM |
11075 | static inline bool m_is_system_region(CPUARMState *env, uint32_t address) |
11076 | { | |
11077 | /* True if address is in the M profile system region | |
11078 | * 0xe0000000 - 0xffffffff | |
11079 | */ | |
11080 | return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; | |
11081 | } | |
11082 | ||
f6bda88f | 11083 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
03ae85f8 | 11084 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
9375ad15 | 11085 | hwaddr *phys_ptr, int *prot, |
e5e40999 | 11086 | target_ulong *page_size, |
9375ad15 | 11087 | ARMMMUFaultInfo *fi) |
f6bda88f | 11088 | { |
2fc0cc0e | 11089 | ARMCPU *cpu = env_archcpu(env); |
f6bda88f PC |
11090 | int n; |
11091 | bool is_user = regime_is_user(env, mmu_idx); | |
11092 | ||
11093 | *phys_ptr = address; | |
e5e40999 | 11094 | *page_size = TARGET_PAGE_SIZE; |
f6bda88f PC |
11095 | *prot = 0; |
11096 | ||
38aaa60c PM |
11097 | if (regime_translation_disabled(env, mmu_idx) || |
11098 | m_is_ppb_region(env, address)) { | |
11099 | /* MPU disabled or M profile PPB access: use default memory map. | |
11100 | * The other case which uses the default memory map in the | |
11101 | * v7M ARM ARM pseudocode is exception vector reads from the vector | |
11102 | * table. In QEMU those accesses are done in arm_v7m_load_vector(), | |
11103 | * which always does a direct read using address_space_ldl(), rather | |
11104 | * than going via this function, so we don't need to check that here. | |
11105 | */ | |
f6bda88f PC |
11106 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
11107 | } else { /* MPU enabled */ | |
11108 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
11109 | /* region search */ | |
11110 | uint32_t base = env->pmsav7.drbar[n]; | |
11111 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
11112 | uint32_t rmask; | |
11113 | bool srdis = false; | |
11114 | ||
11115 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
11116 | continue; | |
11117 | } | |
11118 | ||
11119 | if (!rsize) { | |
c9f9f124 MD |
11120 | qemu_log_mask(LOG_GUEST_ERROR, |
11121 | "DRSR[%d]: Rsize field cannot be 0\n", n); | |
f6bda88f PC |
11122 | continue; |
11123 | } | |
11124 | rsize++; | |
11125 | rmask = (1ull << rsize) - 1; | |
11126 | ||
11127 | if (base & rmask) { | |
c9f9f124 MD |
11128 | qemu_log_mask(LOG_GUEST_ERROR, |
11129 | "DRBAR[%d]: 0x%" PRIx32 " misaligned " | |
11130 | "to DRSR region size, mask = 0x%" PRIx32 "\n", | |
11131 | n, base, rmask); | |
f6bda88f PC |
11132 | continue; |
11133 | } | |
11134 | ||
11135 | if (address < base || address > base + rmask) { | |
9d2b5a58 PM |
11136 | /* |
11137 | * Address not in this region. We must check whether the | |
11138 | * region covers addresses in the same page as our address. | |
11139 | * In that case we must not report a size that covers the | |
11140 | * whole page for a subsequent hit against a different MPU | |
11141 | * region or the background region, because it would result in | |
11142 | * incorrect TLB hits for subsequent accesses to addresses that | |
11143 | * are in this MPU region. | |
11144 | */ | |
11145 | if (ranges_overlap(base, rmask, | |
11146 | address & TARGET_PAGE_MASK, | |
11147 | TARGET_PAGE_SIZE)) { | |
11148 | *page_size = 1; | |
11149 | } | |
f6bda88f PC |
11150 | continue; |
11151 | } | |
11152 | ||
11153 | /* Region matched */ | |
11154 | ||
11155 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
11156 | int i, snd; | |
11157 | uint32_t srdis_mask; | |
11158 | ||
11159 | rsize -= 3; /* sub region size (power of 2) */ | |
11160 | snd = ((address - base) >> rsize) & 0x7; | |
11161 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
11162 | ||
11163 | srdis_mask = srdis ? 0x3 : 0x0; | |
11164 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
11165 | /* This will check in groups of 2, 4 and then 8, whether | |
11166 | * the subregion bits are consistent. rsize is incremented | |
11167 | * back up to give the region size, considering consistent | |
11168 | * adjacent subregions as one region. Stop testing if rsize | |
11169 | * is already big enough for an entire QEMU page. | |
11170 | */ | |
11171 | int snd_rounded = snd & ~(i - 1); | |
11172 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
11173 | snd_rounded + 8, i); | |
11174 | if (srdis_mask ^ srdis_multi) { | |
11175 | break; | |
11176 | } | |
11177 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
11178 | rsize++; | |
11179 | } | |
11180 | } | |
f6bda88f PC |
11181 | if (srdis) { |
11182 | continue; | |
11183 | } | |
e5e40999 PM |
11184 | if (rsize < TARGET_PAGE_BITS) { |
11185 | *page_size = 1 << rsize; | |
11186 | } | |
f6bda88f PC |
11187 | break; |
11188 | } | |
11189 | ||
11190 | if (n == -1) { /* no hits */ | |
29c483a5 | 11191 | if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
f6bda88f | 11192 | /* background fault */ |
9375ad15 | 11193 | fi->type = ARMFault_Background; |
f6bda88f PC |
11194 | return true; |
11195 | } | |
11196 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
11197 | } else { /* a MPU hit! */ | |
11198 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
bf446a11 PM |
11199 | uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
11200 | ||
11201 | if (m_is_system_region(env, address)) { | |
11202 | /* System space is always execute never */ | |
11203 | xn = 1; | |
11204 | } | |
f6bda88f PC |
11205 | |
11206 | if (is_user) { /* User mode AP bit decoding */ | |
11207 | switch (ap) { | |
11208 | case 0: | |
11209 | case 1: | |
11210 | case 5: | |
11211 | break; /* no access */ | |
11212 | case 3: | |
11213 | *prot |= PAGE_WRITE; | |
11214 | /* fall through */ | |
11215 | case 2: | |
11216 | case 6: | |
11217 | *prot |= PAGE_READ | PAGE_EXEC; | |
11218 | break; | |
8638f1ad PM |
11219 | case 7: |
11220 | /* for v7M, same as 6; for R profile a reserved value */ | |
11221 | if (arm_feature(env, ARM_FEATURE_M)) { | |
11222 | *prot |= PAGE_READ | PAGE_EXEC; | |
11223 | break; | |
11224 | } | |
11225 | /* fall through */ | |
f6bda88f PC |
11226 | default: |
11227 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
11228 | "DRACR[%d]: Bad value for AP bits: 0x%" |
11229 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
11230 | } |
11231 | } else { /* Priv. mode AP bits decoding */ | |
11232 | switch (ap) { | |
11233 | case 0: | |
11234 | break; /* no access */ | |
11235 | case 1: | |
11236 | case 2: | |
11237 | case 3: | |
11238 | *prot |= PAGE_WRITE; | |
11239 | /* fall through */ | |
11240 | case 5: | |
11241 | case 6: | |
11242 | *prot |= PAGE_READ | PAGE_EXEC; | |
11243 | break; | |
8638f1ad PM |
11244 | case 7: |
11245 | /* for v7M, same as 6; for R profile a reserved value */ | |
11246 | if (arm_feature(env, ARM_FEATURE_M)) { | |
11247 | *prot |= PAGE_READ | PAGE_EXEC; | |
11248 | break; | |
11249 | } | |
11250 | /* fall through */ | |
f6bda88f PC |
11251 | default: |
11252 | qemu_log_mask(LOG_GUEST_ERROR, | |
c9f9f124 MD |
11253 | "DRACR[%d]: Bad value for AP bits: 0x%" |
11254 | PRIx32 "\n", n, ap); | |
f6bda88f PC |
11255 | } |
11256 | } | |
11257 | ||
11258 | /* execute never */ | |
bf446a11 | 11259 | if (xn) { |
f6bda88f PC |
11260 | *prot &= ~PAGE_EXEC; |
11261 | } | |
11262 | } | |
11263 | } | |
11264 | ||
9375ad15 PM |
11265 | fi->type = ARMFault_Permission; |
11266 | fi->level = 1; | |
f6bda88f PC |
11267 | return !(*prot & (1 << access_type)); |
11268 | } | |
11269 | ||
35337cc3 PM |
11270 | static bool v8m_is_sau_exempt(CPUARMState *env, |
11271 | uint32_t address, MMUAccessType access_type) | |
11272 | { | |
11273 | /* The architecture specifies that certain address ranges are | |
11274 | * exempt from v8M SAU/IDAU checks. | |
11275 | */ | |
11276 | return | |
11277 | (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || | |
11278 | (address >= 0xe0000000 && address <= 0xe0002fff) || | |
11279 | (address >= 0xe000e000 && address <= 0xe000efff) || | |
11280 | (address >= 0xe002e000 && address <= 0xe002efff) || | |
11281 | (address >= 0xe0040000 && address <= 0xe0041fff) || | |
11282 | (address >= 0xe00ff000 && address <= 0xe00fffff); | |
11283 | } | |
11284 | ||
787a7e76 | 11285 | void v8m_security_lookup(CPUARMState *env, uint32_t address, |
35337cc3 PM |
11286 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
11287 | V8M_SAttributes *sattrs) | |
11288 | { | |
11289 | /* Look up the security attributes for this address. Compare the | |
11290 | * pseudocode SecurityCheck() function. | |
11291 | * We assume the caller has zero-initialized *sattrs. | |
11292 | */ | |
2fc0cc0e | 11293 | ARMCPU *cpu = env_archcpu(env); |
35337cc3 | 11294 | int r; |
181962fd PM |
11295 | bool idau_exempt = false, idau_ns = true, idau_nsc = true; |
11296 | int idau_region = IREGION_NOTVALID; | |
72042435 PM |
11297 | uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
11298 | uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); | |
35337cc3 | 11299 | |
181962fd PM |
11300 | if (cpu->idau) { |
11301 | IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); | |
11302 | IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); | |
11303 | ||
11304 | iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, | |
11305 | &idau_nsc); | |
11306 | } | |
35337cc3 PM |
11307 | |
11308 | if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { | |
11309 | /* 0xf0000000..0xffffffff is always S for insn fetches */ | |
11310 | return; | |
11311 | } | |
11312 | ||
181962fd | 11313 | if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { |
35337cc3 PM |
11314 | sattrs->ns = !regime_is_secure(env, mmu_idx); |
11315 | return; | |
11316 | } | |
11317 | ||
181962fd PM |
11318 | if (idau_region != IREGION_NOTVALID) { |
11319 | sattrs->irvalid = true; | |
11320 | sattrs->iregion = idau_region; | |
11321 | } | |
11322 | ||
35337cc3 PM |
11323 | switch (env->sau.ctrl & 3) { |
11324 | case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ | |
11325 | break; | |
11326 | case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ | |
11327 | sattrs->ns = true; | |
11328 | break; | |
11329 | default: /* SAU.ENABLE == 1 */ | |
11330 | for (r = 0; r < cpu->sau_sregion; r++) { | |
11331 | if (env->sau.rlar[r] & 1) { | |
11332 | uint32_t base = env->sau.rbar[r] & ~0x1f; | |
11333 | uint32_t limit = env->sau.rlar[r] | 0x1f; | |
11334 | ||
11335 | if (base <= address && limit >= address) { | |
72042435 PM |
11336 | if (base > addr_page_base || limit < addr_page_limit) { |
11337 | sattrs->subpage = true; | |
11338 | } | |
35337cc3 PM |
11339 | if (sattrs->srvalid) { |
11340 | /* If we hit in more than one region then we must report | |
11341 | * as Secure, not NS-Callable, with no valid region | |
11342 | * number info. | |
11343 | */ | |
11344 | sattrs->ns = false; | |
11345 | sattrs->nsc = false; | |
11346 | sattrs->sregion = 0; | |
11347 | sattrs->srvalid = false; | |
11348 | break; | |
11349 | } else { | |
11350 | if (env->sau.rlar[r] & 2) { | |
11351 | sattrs->nsc = true; | |
11352 | } else { | |
11353 | sattrs->ns = true; | |
11354 | } | |
11355 | sattrs->srvalid = true; | |
11356 | sattrs->sregion = r; | |
11357 | } | |
9d2b5a58 PM |
11358 | } else { |
11359 | /* | |
11360 | * Address not in this region. We must check whether the | |
11361 | * region covers addresses in the same page as our address. | |
11362 | * In that case we must not report a size that covers the | |
11363 | * whole page for a subsequent hit against a different MPU | |
11364 | * region or the background region, because it would result | |
11365 | * in incorrect TLB hits for subsequent accesses to | |
11366 | * addresses that are in this MPU region. | |
11367 | */ | |
11368 | if (limit >= base && | |
11369 | ranges_overlap(base, limit - base + 1, | |
11370 | addr_page_base, | |
11371 | TARGET_PAGE_SIZE)) { | |
11372 | sattrs->subpage = true; | |
11373 | } | |
35337cc3 PM |
11374 | } |
11375 | } | |
11376 | } | |
7e3f1223 TR |
11377 | break; |
11378 | } | |
35337cc3 | 11379 | |
7e3f1223 TR |
11380 | /* |
11381 | * The IDAU will override the SAU lookup results if it specifies | |
11382 | * higher security than the SAU does. | |
11383 | */ | |
11384 | if (!idau_ns) { | |
11385 | if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { | |
11386 | sattrs->ns = false; | |
11387 | sattrs->nsc = idau_nsc; | |
181962fd | 11388 | } |
35337cc3 PM |
11389 | } |
11390 | } | |
11391 | ||
787a7e76 | 11392 | bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, |
54317c0f PM |
11393 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
11394 | hwaddr *phys_ptr, MemTxAttrs *txattrs, | |
72042435 PM |
11395 | int *prot, bool *is_subpage, |
11396 | ARMMMUFaultInfo *fi, uint32_t *mregion) | |
54317c0f PM |
11397 | { |
11398 | /* Perform a PMSAv8 MPU lookup (without also doing the SAU check | |
11399 | * that a full phys-to-virt translation does). | |
11400 | * mregion is (if not NULL) set to the region number which matched, | |
11401 | * or -1 if no region number is returned (MPU off, address did not | |
11402 | * hit a region, address hit in multiple regions). | |
72042435 PM |
11403 | * We set is_subpage to true if the region hit doesn't cover the |
11404 | * entire TARGET_PAGE the address is within. | |
54317c0f | 11405 | */ |
2fc0cc0e | 11406 | ARMCPU *cpu = env_archcpu(env); |
504e3cc3 | 11407 | bool is_user = regime_is_user(env, mmu_idx); |
62c58ee0 | 11408 | uint32_t secure = regime_is_secure(env, mmu_idx); |
504e3cc3 PM |
11409 | int n; |
11410 | int matchregion = -1; | |
11411 | bool hit = false; | |
72042435 PM |
11412 | uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
11413 | uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); | |
504e3cc3 | 11414 | |
72042435 | 11415 | *is_subpage = false; |
504e3cc3 PM |
11416 | *phys_ptr = address; |
11417 | *prot = 0; | |
54317c0f PM |
11418 | if (mregion) { |
11419 | *mregion = -1; | |
35337cc3 PM |
11420 | } |
11421 | ||
504e3cc3 PM |
11422 | /* Unlike the ARM ARM pseudocode, we don't need to check whether this |
11423 | * was an exception vector read from the vector table (which is always | |
11424 | * done using the default system address map), because those accesses | |
11425 | * are done in arm_v7m_load_vector(), which always does a direct | |
11426 | * read using address_space_ldl(), rather than going via this function. | |
11427 | */ | |
11428 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
11429 | hit = true; | |
11430 | } else if (m_is_ppb_region(env, address)) { | |
11431 | hit = true; | |
504e3cc3 | 11432 | } else { |
cff21316 PM |
11433 | if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
11434 | hit = true; | |
11435 | } | |
11436 | ||
504e3cc3 PM |
11437 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
11438 | /* region search */ | |
11439 | /* Note that the base address is bits [31:5] from the register | |
11440 | * with bits [4:0] all zeroes, but the limit address is bits | |
11441 | * [31:5] from the register with bits [4:0] all ones. | |
11442 | */ | |
62c58ee0 PM |
11443 | uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; |
11444 | uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; | |
504e3cc3 | 11445 | |
62c58ee0 | 11446 | if (!(env->pmsav8.rlar[secure][n] & 0x1)) { |
504e3cc3 PM |
11447 | /* Region disabled */ |
11448 | continue; | |
11449 | } | |
11450 | ||
11451 | if (address < base || address > limit) { | |
9d2b5a58 PM |
11452 | /* |
11453 | * Address not in this region. We must check whether the | |
11454 | * region covers addresses in the same page as our address. | |
11455 | * In that case we must not report a size that covers the | |
11456 | * whole page for a subsequent hit against a different MPU | |
11457 | * region or the background region, because it would result in | |
11458 | * incorrect TLB hits for subsequent accesses to addresses that | |
11459 | * are in this MPU region. | |
11460 | */ | |
11461 | if (limit >= base && | |
11462 | ranges_overlap(base, limit - base + 1, | |
11463 | addr_page_base, | |
11464 | TARGET_PAGE_SIZE)) { | |
11465 | *is_subpage = true; | |
11466 | } | |
504e3cc3 PM |
11467 | continue; |
11468 | } | |
11469 | ||
72042435 PM |
11470 | if (base > addr_page_base || limit < addr_page_limit) { |
11471 | *is_subpage = true; | |
11472 | } | |
11473 | ||
cff21316 | 11474 | if (matchregion != -1) { |
504e3cc3 PM |
11475 | /* Multiple regions match -- always a failure (unlike |
11476 | * PMSAv7 where highest-numbered-region wins) | |
11477 | */ | |
3f551b5b PM |
11478 | fi->type = ARMFault_Permission; |
11479 | fi->level = 1; | |
504e3cc3 PM |
11480 | return true; |
11481 | } | |
11482 | ||
11483 | matchregion = n; | |
11484 | hit = true; | |
504e3cc3 PM |
11485 | } |
11486 | } | |
11487 | ||
11488 | if (!hit) { | |
11489 | /* background fault */ | |
3f551b5b | 11490 | fi->type = ARMFault_Background; |
504e3cc3 PM |
11491 | return true; |
11492 | } | |
11493 | ||
11494 | if (matchregion == -1) { | |
11495 | /* hit using the background region */ | |
11496 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
11497 | } else { | |
62c58ee0 PM |
11498 | uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); |
11499 | uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); | |
504e3cc3 PM |
11500 | |
11501 | if (m_is_system_region(env, address)) { | |
11502 | /* System space is always execute never */ | |
11503 | xn = 1; | |
11504 | } | |
11505 | ||
11506 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); | |
11507 | if (*prot && !xn) { | |
11508 | *prot |= PAGE_EXEC; | |
11509 | } | |
11510 | /* We don't need to look the attribute up in the MAIR0/MAIR1 | |
11511 | * registers because that only tells us about cacheability. | |
11512 | */ | |
54317c0f PM |
11513 | if (mregion) { |
11514 | *mregion = matchregion; | |
11515 | } | |
504e3cc3 PM |
11516 | } |
11517 | ||
3f551b5b PM |
11518 | fi->type = ARMFault_Permission; |
11519 | fi->level = 1; | |
504e3cc3 PM |
11520 | return !(*prot & (1 << access_type)); |
11521 | } | |
11522 | ||
54317c0f PM |
11523 | |
11524 | static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, | |
11525 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
11526 | hwaddr *phys_ptr, MemTxAttrs *txattrs, | |
72042435 PM |
11527 | int *prot, target_ulong *page_size, |
11528 | ARMMMUFaultInfo *fi) | |
54317c0f PM |
11529 | { |
11530 | uint32_t secure = regime_is_secure(env, mmu_idx); | |
11531 | V8M_SAttributes sattrs = {}; | |
72042435 PM |
11532 | bool ret; |
11533 | bool mpu_is_subpage; | |
54317c0f PM |
11534 | |
11535 | if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { | |
11536 | v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); | |
11537 | if (access_type == MMU_INST_FETCH) { | |
11538 | /* Instruction fetches always use the MMU bank and the | |
11539 | * transaction attribute determined by the fetch address, | |
11540 | * regardless of CPU state. This is painful for QEMU | |
11541 | * to handle, because it would mean we need to encode | |
11542 | * into the mmu_idx not just the (user, negpri) information | |
11543 | * for the current security state but also that for the | |
11544 | * other security state, which would balloon the number | |
11545 | * of mmu_idx values needed alarmingly. | |
11546 | * Fortunately we can avoid this because it's not actually | |
11547 | * possible to arbitrarily execute code from memory with | |
11548 | * the wrong security attribute: it will always generate | |
11549 | * an exception of some kind or another, apart from the | |
11550 | * special case of an NS CPU executing an SG instruction | |
11551 | * in S&NSC memory. So we always just fail the translation | |
11552 | * here and sort things out in the exception handler | |
11553 | * (including possibly emulating an SG instruction). | |
11554 | */ | |
11555 | if (sattrs.ns != !secure) { | |
3f551b5b PM |
11556 | if (sattrs.nsc) { |
11557 | fi->type = ARMFault_QEMU_NSCExec; | |
11558 | } else { | |
11559 | fi->type = ARMFault_QEMU_SFault; | |
11560 | } | |
72042435 | 11561 | *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
54317c0f PM |
11562 | *phys_ptr = address; |
11563 | *prot = 0; | |
11564 | return true; | |
11565 | } | |
11566 | } else { | |
11567 | /* For data accesses we always use the MMU bank indicated | |
11568 | * by the current CPU state, but the security attributes | |
11569 | * might downgrade a secure access to nonsecure. | |
11570 | */ | |
11571 | if (sattrs.ns) { | |
11572 | txattrs->secure = false; | |
11573 | } else if (!secure) { | |
11574 | /* NS access to S memory must fault. | |
11575 | * Architecturally we should first check whether the | |
11576 | * MPU information for this address indicates that we | |
11577 | * are doing an unaligned access to Device memory, which | |
11578 | * should generate a UsageFault instead. QEMU does not | |
11579 | * currently check for that kind of unaligned access though. | |
11580 | * If we added it we would need to do so as a special case | |
11581 | * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). | |
11582 | */ | |
3f551b5b | 11583 | fi->type = ARMFault_QEMU_SFault; |
72042435 | 11584 | *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
54317c0f PM |
11585 | *phys_ptr = address; |
11586 | *prot = 0; | |
11587 | return true; | |
11588 | } | |
11589 | } | |
11590 | } | |
11591 | ||
72042435 PM |
11592 | ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, |
11593 | txattrs, prot, &mpu_is_subpage, fi, NULL); | |
72042435 PM |
11594 | *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; |
11595 | return ret; | |
54317c0f PM |
11596 | } |
11597 | ||
13689d43 | 11598 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
03ae85f8 | 11599 | MMUAccessType access_type, ARMMMUIdx mmu_idx, |
53a4e5c5 PM |
11600 | hwaddr *phys_ptr, int *prot, |
11601 | ARMMMUFaultInfo *fi) | |
9ee6e8bb PB |
11602 | { |
11603 | int n; | |
11604 | uint32_t mask; | |
11605 | uint32_t base; | |
0480f69a | 11606 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb | 11607 | |
3279adb9 PM |
11608 | if (regime_translation_disabled(env, mmu_idx)) { |
11609 | /* MPU disabled. */ | |
11610 | *phys_ptr = address; | |
11611 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
11612 | return false; | |
11613 | } | |
11614 | ||
9ee6e8bb PB |
11615 | *phys_ptr = address; |
11616 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 11617 | base = env->cp15.c6_region[n]; |
87c3d486 | 11618 | if ((base & 1) == 0) { |
554b0b09 | 11619 | continue; |
87c3d486 | 11620 | } |
554b0b09 PM |
11621 | mask = 1 << ((base >> 1) & 0x1f); |
11622 | /* Keep this shift separate from the above to avoid an | |
11623 | (undefined) << 32. */ | |
11624 | mask = (mask << 1) - 1; | |
87c3d486 | 11625 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 11626 | break; |
87c3d486 | 11627 | } |
9ee6e8bb | 11628 | } |
87c3d486 | 11629 | if (n < 0) { |
53a4e5c5 | 11630 | fi->type = ARMFault_Background; |
b7cc4e82 | 11631 | return true; |
87c3d486 | 11632 | } |
9ee6e8bb | 11633 | |
03ae85f8 | 11634 | if (access_type == MMU_INST_FETCH) { |
7e09797c | 11635 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 11636 | } else { |
7e09797c | 11637 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
11638 | } |
11639 | mask = (mask >> (n * 4)) & 0xf; | |
11640 | switch (mask) { | |
11641 | case 0: | |
53a4e5c5 PM |
11642 | fi->type = ARMFault_Permission; |
11643 | fi->level = 1; | |
b7cc4e82 | 11644 | return true; |
9ee6e8bb | 11645 | case 1: |
87c3d486 | 11646 | if (is_user) { |
53a4e5c5 PM |
11647 | fi->type = ARMFault_Permission; |
11648 | fi->level = 1; | |
b7cc4e82 | 11649 | return true; |
87c3d486 | 11650 | } |
554b0b09 PM |
11651 | *prot = PAGE_READ | PAGE_WRITE; |
11652 | break; | |
9ee6e8bb | 11653 | case 2: |
554b0b09 | 11654 | *prot = PAGE_READ; |
87c3d486 | 11655 | if (!is_user) { |
554b0b09 | 11656 | *prot |= PAGE_WRITE; |
87c3d486 | 11657 | } |
554b0b09 | 11658 | break; |
9ee6e8bb | 11659 | case 3: |
554b0b09 PM |
11660 | *prot = PAGE_READ | PAGE_WRITE; |
11661 | break; | |
9ee6e8bb | 11662 | case 5: |
87c3d486 | 11663 | if (is_user) { |
53a4e5c5 PM |
11664 | fi->type = ARMFault_Permission; |
11665 | fi->level = 1; | |
b7cc4e82 | 11666 | return true; |
87c3d486 | 11667 | } |
554b0b09 PM |
11668 | *prot = PAGE_READ; |
11669 | break; | |
9ee6e8bb | 11670 | case 6: |
554b0b09 PM |
11671 | *prot = PAGE_READ; |
11672 | break; | |
9ee6e8bb | 11673 | default: |
554b0b09 | 11674 | /* Bad permission. */ |
53a4e5c5 PM |
11675 | fi->type = ARMFault_Permission; |
11676 | fi->level = 1; | |
b7cc4e82 | 11677 | return true; |
9ee6e8bb | 11678 | } |
3ad493fc | 11679 | *prot |= PAGE_EXEC; |
b7cc4e82 | 11680 | return false; |
9ee6e8bb PB |
11681 | } |
11682 | ||
5b2d261d AB |
11683 | /* Combine either inner or outer cacheability attributes for normal |
11684 | * memory, according to table D4-42 and pseudocode procedure | |
11685 | * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). | |
11686 | * | |
11687 | * NB: only stage 1 includes allocation hints (RW bits), leading to | |
11688 | * some asymmetry. | |
11689 | */ | |
11690 | static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) | |
11691 | { | |
11692 | if (s1 == 4 || s2 == 4) { | |
11693 | /* non-cacheable has precedence */ | |
11694 | return 4; | |
11695 | } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { | |
11696 | /* stage 1 write-through takes precedence */ | |
11697 | return s1; | |
11698 | } else if (extract32(s2, 2, 2) == 2) { | |
11699 | /* stage 2 write-through takes precedence, but the allocation hint | |
11700 | * is still taken from stage 1 | |
11701 | */ | |
11702 | return (2 << 2) | extract32(s1, 0, 2); | |
11703 | } else { /* write-back */ | |
11704 | return s1; | |
11705 | } | |
11706 | } | |
11707 | ||
11708 | /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 | |
11709 | * and CombineS1S2Desc() | |
11710 | * | |
11711 | * @s1: Attributes from stage 1 walk | |
11712 | * @s2: Attributes from stage 2 walk | |
11713 | */ | |
11714 | static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) | |
11715 | { | |
11716 | uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); | |
11717 | uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); | |
11718 | ARMCacheAttrs ret; | |
11719 | ||
11720 | /* Combine shareability attributes (table D4-43) */ | |
11721 | if (s1.shareability == 2 || s2.shareability == 2) { | |
11722 | /* if either are outer-shareable, the result is outer-shareable */ | |
11723 | ret.shareability = 2; | |
11724 | } else if (s1.shareability == 3 || s2.shareability == 3) { | |
11725 | /* if either are inner-shareable, the result is inner-shareable */ | |
11726 | ret.shareability = 3; | |
11727 | } else { | |
11728 | /* both non-shareable */ | |
11729 | ret.shareability = 0; | |
11730 | } | |
11731 | ||
11732 | /* Combine memory type and cacheability attributes */ | |
11733 | if (s1hi == 0 || s2hi == 0) { | |
11734 | /* Device has precedence over normal */ | |
11735 | if (s1lo == 0 || s2lo == 0) { | |
11736 | /* nGnRnE has precedence over anything */ | |
11737 | ret.attrs = 0; | |
11738 | } else if (s1lo == 4 || s2lo == 4) { | |
11739 | /* non-Reordering has precedence over Reordering */ | |
11740 | ret.attrs = 4; /* nGnRE */ | |
11741 | } else if (s1lo == 8 || s2lo == 8) { | |
11742 | /* non-Gathering has precedence over Gathering */ | |
11743 | ret.attrs = 8; /* nGRE */ | |
11744 | } else { | |
11745 | ret.attrs = 0xc; /* GRE */ | |
11746 | } | |
11747 | ||
11748 | /* Any location for which the resultant memory type is any | |
11749 | * type of Device memory is always treated as Outer Shareable. | |
11750 | */ | |
11751 | ret.shareability = 2; | |
11752 | } else { /* Normal memory */ | |
11753 | /* Outer/inner cacheability combine independently */ | |
11754 | ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 | |
11755 | | combine_cacheattr_nibble(s1lo, s2lo); | |
11756 | ||
11757 | if (ret.attrs == 0x44) { | |
11758 | /* Any location for which the resultant memory type is Normal | |
11759 | * Inner Non-cacheable, Outer Non-cacheable is always treated | |
11760 | * as Outer Shareable. | |
11761 | */ | |
11762 | ret.shareability = 2; | |
11763 | } | |
11764 | } | |
11765 | ||
11766 | return ret; | |
11767 | } | |
11768 | ||
11769 | ||
702a9357 PM |
11770 | /* get_phys_addr - get the physical address for this virtual address |
11771 | * | |
11772 | * Find the physical address corresponding to the given virtual address, | |
11773 | * by doing a translation table walk on MMU based systems or using the | |
11774 | * MPU state on MPU based systems. | |
11775 | * | |
b7cc4e82 PC |
11776 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
11777 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
11778 | * information on why the translation aborted, in the format of a |
11779 | * DFSR/IFSR fault register, with the following caveats: | |
11780 | * * we honour the short vs long DFSR format differences. | |
11781 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 11782 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
11783 | * value. |
11784 | * | |
11785 | * @env: CPUARMState | |
11786 | * @address: virtual address to get physical address for | |
11787 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 11788 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 11789 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 11790 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
11791 | * @prot: set to the permissions for the page containing phys_ptr |
11792 | * @page_size: set to the size of the page containing phys_ptr | |
5b2d261d AB |
11793 | * @fi: set to fault info if the translation fails |
11794 | * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes | |
702a9357 | 11795 | */ |
ebae861f PMD |
11796 | bool get_phys_addr(CPUARMState *env, target_ulong address, |
11797 | MMUAccessType access_type, ARMMMUIdx mmu_idx, | |
11798 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
11799 | target_ulong *page_size, | |
11800 | ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) | |
9ee6e8bb | 11801 | { |
452ef8cb RH |
11802 | if (mmu_idx == ARMMMUIdx_E10_0 || |
11803 | mmu_idx == ARMMMUIdx_E10_1 || | |
11804 | mmu_idx == ARMMMUIdx_E10_1_PAN) { | |
9b539263 EI |
11805 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
11806 | * translations. | |
0480f69a | 11807 | */ |
9b539263 EI |
11808 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
11809 | hwaddr ipa; | |
11810 | int s2_prot; | |
11811 | int ret; | |
5b2d261d | 11812 | ARMCacheAttrs cacheattrs2 = {}; |
9b539263 EI |
11813 | |
11814 | ret = get_phys_addr(env, address, access_type, | |
8bd5c820 | 11815 | stage_1_mmu_idx(mmu_idx), &ipa, attrs, |
bc52bfeb | 11816 | prot, page_size, fi, cacheattrs); |
9b539263 EI |
11817 | |
11818 | /* If S1 fails or S2 is disabled, return early. */ | |
97fa9350 | 11819 | if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { |
9b539263 EI |
11820 | *phys_ptr = ipa; |
11821 | return ret; | |
11822 | } | |
11823 | ||
11824 | /* S1 is done. Now do S2 translation. */ | |
97fa9350 | 11825 | ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, |
9b539263 | 11826 | phys_ptr, attrs, &s2_prot, |
da909b2c | 11827 | page_size, fi, |
5b2d261d | 11828 | cacheattrs != NULL ? &cacheattrs2 : NULL); |
9b539263 EI |
11829 | fi->s2addr = ipa; |
11830 | /* Combine the S1 and S2 perms. */ | |
11831 | *prot &= s2_prot; | |
5b2d261d AB |
11832 | |
11833 | /* Combine the S1 and S2 cache attributes, if needed */ | |
11834 | if (!ret && cacheattrs != NULL) { | |
9d1bab33 PM |
11835 | if (env->cp15.hcr_el2 & HCR_DC) { |
11836 | /* | |
11837 | * HCR.DC forces the first stage attributes to | |
11838 | * Normal Non-Shareable, | |
11839 | * Inner Write-Back Read-Allocate Write-Allocate, | |
11840 | * Outer Write-Back Read-Allocate Write-Allocate. | |
11841 | */ | |
11842 | cacheattrs->attrs = 0xff; | |
11843 | cacheattrs->shareability = 0; | |
11844 | } | |
5b2d261d AB |
11845 | *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); |
11846 | } | |
11847 | ||
9b539263 EI |
11848 | return ret; |
11849 | } else { | |
11850 | /* | |
11851 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | |
11852 | */ | |
8bd5c820 | 11853 | mmu_idx = stage_1_mmu_idx(mmu_idx); |
9b539263 | 11854 | } |
0480f69a | 11855 | } |
d3649702 | 11856 | |
8bf5b6a9 PM |
11857 | /* The page table entries may downgrade secure to non-secure, but |
11858 | * cannot upgrade an non-secure translation regime's attributes | |
11859 | * to secure. | |
11860 | */ | |
11861 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 11862 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 11863 | |
0480f69a PM |
11864 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
11865 | * In v7 and earlier it affects all stage 1 translations. | |
11866 | */ | |
97fa9350 | 11867 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 |
0480f69a PM |
11868 | && !arm_feature(env, ARM_FEATURE_V8)) { |
11869 | if (regime_el(env, mmu_idx) == 3) { | |
11870 | address += env->cp15.fcseidr_s; | |
11871 | } else { | |
11872 | address += env->cp15.fcseidr_ns; | |
11873 | } | |
54bf36ed | 11874 | } |
9ee6e8bb | 11875 | |
3279adb9 | 11876 | if (arm_feature(env, ARM_FEATURE_PMSA)) { |
c9f9f124 | 11877 | bool ret; |
f6bda88f | 11878 | *page_size = TARGET_PAGE_SIZE; |
3279adb9 | 11879 | |
504e3cc3 PM |
11880 | if (arm_feature(env, ARM_FEATURE_V8)) { |
11881 | /* PMSAv8 */ | |
11882 | ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, | |
72042435 | 11883 | phys_ptr, attrs, prot, page_size, fi); |
504e3cc3 | 11884 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
3279adb9 PM |
11885 | /* PMSAv7 */ |
11886 | ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
e5e40999 | 11887 | phys_ptr, prot, page_size, fi); |
3279adb9 PM |
11888 | } else { |
11889 | /* Pre-v7 MPU */ | |
11890 | ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, | |
53a4e5c5 | 11891 | phys_ptr, prot, fi); |
3279adb9 PM |
11892 | } |
11893 | qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 | |
c9f9f124 | 11894 | " mmu_idx %u -> %s (prot %c%c%c)\n", |
709e4407 PM |
11895 | access_type == MMU_DATA_LOAD ? "reading" : |
11896 | (access_type == MMU_DATA_STORE ? "writing" : "execute"), | |
c9f9f124 MD |
11897 | (uint32_t)address, mmu_idx, |
11898 | ret ? "Miss" : "Hit", | |
11899 | *prot & PAGE_READ ? 'r' : '-', | |
11900 | *prot & PAGE_WRITE ? 'w' : '-', | |
11901 | *prot & PAGE_EXEC ? 'x' : '-'); | |
11902 | ||
11903 | return ret; | |
f6bda88f PC |
11904 | } |
11905 | ||
3279adb9 PM |
11906 | /* Definitely a real MMU, not an MPU */ |
11907 | ||
0480f69a | 11908 | if (regime_translation_disabled(env, mmu_idx)) { |
cebfb648 RH |
11909 | /* |
11910 | * MMU disabled. S1 addresses within aa64 translation regimes are | |
11911 | * still checked for bounds -- see AArch64.TranslateAddressS1Off. | |
11912 | */ | |
11913 | if (mmu_idx != ARMMMUIdx_Stage2) { | |
11914 | int r_el = regime_el(env, mmu_idx); | |
11915 | if (arm_el_is_aa64(env, r_el)) { | |
11916 | int pamax = arm_pamax(env_archcpu(env)); | |
11917 | uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; | |
11918 | int addrtop, tbi; | |
11919 | ||
11920 | tbi = aa64_va_parameter_tbi(tcr, mmu_idx); | |
11921 | if (access_type == MMU_INST_FETCH) { | |
11922 | tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
11923 | } | |
11924 | tbi = (tbi >> extract64(address, 55, 1)) & 1; | |
11925 | addrtop = (tbi ? 55 : 63); | |
11926 | ||
11927 | if (extract64(address, pamax, addrtop - pamax + 1) != 0) { | |
11928 | fi->type = ARMFault_AddressSize; | |
11929 | fi->level = 0; | |
11930 | fi->stage2 = false; | |
11931 | return 1; | |
11932 | } | |
11933 | ||
11934 | /* | |
11935 | * When TBI is disabled, we've just validated that all of the | |
11936 | * bits above PAMax are zero, so logically we only need to | |
11937 | * clear the top byte for TBI. But it's clearer to follow | |
11938 | * the pseudocode set of addrdesc.paddress. | |
11939 | */ | |
11940 | address = extract64(address, 0, 52); | |
11941 | } | |
11942 | } | |
9ee6e8bb | 11943 | *phys_ptr = address; |
3ad493fc | 11944 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 11945 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 11946 | return 0; |
0480f69a PM |
11947 | } |
11948 | ||
0480f69a | 11949 | if (regime_using_lpae_format(env, mmu_idx)) { |
bc52bfeb PM |
11950 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, |
11951 | phys_ptr, attrs, prot, page_size, | |
11952 | fi, cacheattrs); | |
0480f69a | 11953 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
bc52bfeb PM |
11954 | return get_phys_addr_v6(env, address, access_type, mmu_idx, |
11955 | phys_ptr, attrs, prot, page_size, fi); | |
9ee6e8bb | 11956 | } else { |
bc52bfeb | 11957 | return get_phys_addr_v5(env, address, access_type, mmu_idx, |
f989983e | 11958 | phys_ptr, prot, page_size, fi); |
9ee6e8bb PB |
11959 | } |
11960 | } | |
11961 | ||
0faea0c7 PM |
11962 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
11963 | MemTxAttrs *attrs) | |
b5ff1b31 | 11964 | { |
00b941e5 | 11965 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 11966 | CPUARMState *env = &cpu->env; |
a8170e5e | 11967 | hwaddr phys_addr; |
d4c430a8 | 11968 | target_ulong page_size; |
b5ff1b31 | 11969 | int prot; |
b7cc4e82 | 11970 | bool ret; |
e14b5a23 | 11971 | ARMMMUFaultInfo fi = {}; |
50494a27 | 11972 | ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
b5ff1b31 | 11973 | |
0faea0c7 PM |
11974 | *attrs = (MemTxAttrs) {}; |
11975 | ||
8bd5c820 | 11976 | ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, |
bc52bfeb | 11977 | attrs, &prot, &page_size, &fi, NULL); |
b5ff1b31 | 11978 | |
b7cc4e82 | 11979 | if (ret) { |
b5ff1b31 | 11980 | return -1; |
00b941e5 | 11981 | } |
b5ff1b31 FB |
11982 | return phys_addr; |
11983 | } | |
11984 | ||
b5ff1b31 | 11985 | #endif |
6ddbc6e4 PB |
11986 | |
11987 | /* Note that signed overflow is undefined in C. The following routines are | |
11988 | careful to use unsigned types where modulo arithmetic is required. | |
11989 | Failure to do so _will_ break on newer gcc. */ | |
11990 | ||
11991 | /* Signed saturating arithmetic. */ | |
11992 | ||
1654b2d6 | 11993 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
11994 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
11995 | { | |
11996 | uint16_t res; | |
11997 | ||
11998 | res = a + b; | |
11999 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
12000 | if (a & 0x8000) | |
12001 | res = 0x8000; | |
12002 | else | |
12003 | res = 0x7fff; | |
12004 | } | |
12005 | return res; | |
12006 | } | |
12007 | ||
1654b2d6 | 12008 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
12009 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
12010 | { | |
12011 | uint8_t res; | |
12012 | ||
12013 | res = a + b; | |
12014 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
12015 | if (a & 0x80) | |
12016 | res = 0x80; | |
12017 | else | |
12018 | res = 0x7f; | |
12019 | } | |
12020 | return res; | |
12021 | } | |
12022 | ||
1654b2d6 | 12023 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
12024 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
12025 | { | |
12026 | uint16_t res; | |
12027 | ||
12028 | res = a - b; | |
12029 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
12030 | if (a & 0x8000) | |
12031 | res = 0x8000; | |
12032 | else | |
12033 | res = 0x7fff; | |
12034 | } | |
12035 | return res; | |
12036 | } | |
12037 | ||
1654b2d6 | 12038 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
12039 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
12040 | { | |
12041 | uint8_t res; | |
12042 | ||
12043 | res = a - b; | |
12044 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
12045 | if (a & 0x80) | |
12046 | res = 0x80; | |
12047 | else | |
12048 | res = 0x7f; | |
12049 | } | |
12050 | return res; | |
12051 | } | |
12052 | ||
12053 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
12054 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
12055 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
12056 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
12057 | #define PFX q | |
12058 | ||
12059 | #include "op_addsub.h" | |
12060 | ||
12061 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 12062 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
12063 | { |
12064 | uint16_t res; | |
12065 | res = a + b; | |
12066 | if (res < a) | |
12067 | res = 0xffff; | |
12068 | return res; | |
12069 | } | |
12070 | ||
460a09c1 | 12071 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 12072 | { |
4c4fd3f8 | 12073 | if (a > b) |
6ddbc6e4 PB |
12074 | return a - b; |
12075 | else | |
12076 | return 0; | |
12077 | } | |
12078 | ||
12079 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
12080 | { | |
12081 | uint8_t res; | |
12082 | res = a + b; | |
12083 | if (res < a) | |
12084 | res = 0xff; | |
12085 | return res; | |
12086 | } | |
12087 | ||
12088 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
12089 | { | |
4c4fd3f8 | 12090 | if (a > b) |
6ddbc6e4 PB |
12091 | return a - b; |
12092 | else | |
12093 | return 0; | |
12094 | } | |
12095 | ||
12096 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
12097 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
12098 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
12099 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
12100 | #define PFX uq | |
12101 | ||
12102 | #include "op_addsub.h" | |
12103 | ||
12104 | /* Signed modulo arithmetic. */ | |
12105 | #define SARITH16(a, b, n, op) do { \ | |
12106 | int32_t sum; \ | |
db6e2e65 | 12107 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
12108 | RESULT(sum, n, 16); \ |
12109 | if (sum >= 0) \ | |
12110 | ge |= 3 << (n * 2); \ | |
12111 | } while(0) | |
12112 | ||
12113 | #define SARITH8(a, b, n, op) do { \ | |
12114 | int32_t sum; \ | |
db6e2e65 | 12115 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
12116 | RESULT(sum, n, 8); \ |
12117 | if (sum >= 0) \ | |
12118 | ge |= 1 << n; \ | |
12119 | } while(0) | |
12120 | ||
12121 | ||
12122 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
12123 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
12124 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
12125 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
12126 | #define PFX s | |
12127 | #define ARITH_GE | |
12128 | ||
12129 | #include "op_addsub.h" | |
12130 | ||
12131 | /* Unsigned modulo arithmetic. */ | |
12132 | #define ADD16(a, b, n) do { \ | |
12133 | uint32_t sum; \ | |
12134 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
12135 | RESULT(sum, n, 16); \ | |
a87aa10b | 12136 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
12137 | ge |= 3 << (n * 2); \ |
12138 | } while(0) | |
12139 | ||
12140 | #define ADD8(a, b, n) do { \ | |
12141 | uint32_t sum; \ | |
12142 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
12143 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
12144 | if ((sum >> 8) == 1) \ |
12145 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
12146 | } while(0) |
12147 | ||
12148 | #define SUB16(a, b, n) do { \ | |
12149 | uint32_t sum; \ | |
12150 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
12151 | RESULT(sum, n, 16); \ | |
12152 | if ((sum >> 16) == 0) \ | |
12153 | ge |= 3 << (n * 2); \ | |
12154 | } while(0) | |
12155 | ||
12156 | #define SUB8(a, b, n) do { \ | |
12157 | uint32_t sum; \ | |
12158 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
12159 | RESULT(sum, n, 8); \ | |
12160 | if ((sum >> 8) == 0) \ | |
a87aa10b | 12161 | ge |= 1 << n; \ |
6ddbc6e4 PB |
12162 | } while(0) |
12163 | ||
12164 | #define PFX u | |
12165 | #define ARITH_GE | |
12166 | ||
12167 | #include "op_addsub.h" | |
12168 | ||
12169 | /* Halved signed arithmetic. */ | |
12170 | #define ADD16(a, b, n) \ | |
12171 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
12172 | #define SUB16(a, b, n) \ | |
12173 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
12174 | #define ADD8(a, b, n) \ | |
12175 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
12176 | #define SUB8(a, b, n) \ | |
12177 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
12178 | #define PFX sh | |
12179 | ||
12180 | #include "op_addsub.h" | |
12181 | ||
12182 | /* Halved unsigned arithmetic. */ | |
12183 | #define ADD16(a, b, n) \ | |
12184 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
12185 | #define SUB16(a, b, n) \ | |
12186 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
12187 | #define ADD8(a, b, n) \ | |
12188 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
12189 | #define SUB8(a, b, n) \ | |
12190 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
12191 | #define PFX uh | |
12192 | ||
12193 | #include "op_addsub.h" | |
12194 | ||
12195 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
12196 | { | |
12197 | if (a > b) | |
12198 | return a - b; | |
12199 | else | |
12200 | return b - a; | |
12201 | } | |
12202 | ||
12203 | /* Unsigned sum of absolute byte differences. */ | |
12204 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
12205 | { | |
12206 | uint32_t sum; | |
12207 | sum = do_usad(a, b); | |
12208 | sum += do_usad(a >> 8, b >> 8); | |
12209 | sum += do_usad(a >> 16, b >>16); | |
12210 | sum += do_usad(a >> 24, b >> 24); | |
12211 | return sum; | |
12212 | } | |
12213 | ||
12214 | /* For ARMv6 SEL instruction. */ | |
12215 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
12216 | { | |
12217 | uint32_t mask; | |
12218 | ||
12219 | mask = 0; | |
12220 | if (flags & 1) | |
12221 | mask |= 0xff; | |
12222 | if (flags & 2) | |
12223 | mask |= 0xff00; | |
12224 | if (flags & 4) | |
12225 | mask |= 0xff0000; | |
12226 | if (flags & 8) | |
12227 | mask |= 0xff000000; | |
12228 | return (a & mask) | (b & ~mask); | |
12229 | } | |
12230 | ||
aa633469 PM |
12231 | /* CRC helpers. |
12232 | * The upper bytes of val (above the number specified by 'bytes') must have | |
12233 | * been zeroed out by the caller. | |
12234 | */ | |
eb0ecd5a WN |
12235 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
12236 | { | |
12237 | uint8_t buf[4]; | |
12238 | ||
aa633469 | 12239 | stl_le_p(buf, val); |
eb0ecd5a WN |
12240 | |
12241 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
12242 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
12243 | } | |
12244 | ||
12245 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
12246 | { | |
12247 | uint8_t buf[4]; | |
12248 | ||
aa633469 | 12249 | stl_le_p(buf, val); |
eb0ecd5a WN |
12250 | |
12251 | /* Linux crc32c converts the output to one's complement. */ | |
12252 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
12253 | } | |
a9e01311 RH |
12254 | |
12255 | /* Return the exception level to which FP-disabled exceptions should | |
12256 | * be taken, or 0 if FP is enabled. | |
12257 | */ | |
ced31551 | 12258 | int fp_exception_el(CPUARMState *env, int cur_el) |
a9e01311 | 12259 | { |
55faa212 | 12260 | #ifndef CONFIG_USER_ONLY |
a9e01311 RH |
12261 | /* CPACR and the CPTR registers don't exist before v6, so FP is |
12262 | * always accessible | |
12263 | */ | |
12264 | if (!arm_feature(env, ARM_FEATURE_V6)) { | |
12265 | return 0; | |
12266 | } | |
12267 | ||
d87513c0 PM |
12268 | if (arm_feature(env, ARM_FEATURE_M)) { |
12269 | /* CPACR can cause a NOCP UsageFault taken to current security state */ | |
12270 | if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { | |
12271 | return 1; | |
12272 | } | |
12273 | ||
12274 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { | |
12275 | if (!extract32(env->v7m.nsacr, 10, 1)) { | |
12276 | /* FP insns cause a NOCP UsageFault taken to Secure */ | |
12277 | return 3; | |
12278 | } | |
12279 | } | |
12280 | ||
12281 | return 0; | |
12282 | } | |
12283 | ||
a9e01311 RH |
12284 | /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: |
12285 | * 0, 2 : trap EL0 and EL1/PL1 accesses | |
12286 | * 1 : trap only EL0 accesses | |
12287 | * 3 : trap no accesses | |
c2ddb7cf | 12288 | * This register is ignored if E2H+TGE are both set. |
a9e01311 | 12289 | */ |
c2ddb7cf RH |
12290 | if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { |
12291 | int fpen = extract32(env->cp15.cpacr_el1, 20, 2); | |
12292 | ||
12293 | switch (fpen) { | |
12294 | case 0: | |
12295 | case 2: | |
12296 | if (cur_el == 0 || cur_el == 1) { | |
12297 | /* Trap to PL1, which might be EL1 or EL3 */ | |
12298 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
12299 | return 3; | |
12300 | } | |
12301 | return 1; | |
12302 | } | |
12303 | if (cur_el == 3 && !is_a64(env)) { | |
12304 | /* Secure PL1 running at EL3 */ | |
a9e01311 RH |
12305 | return 3; |
12306 | } | |
c2ddb7cf RH |
12307 | break; |
12308 | case 1: | |
12309 | if (cur_el == 0) { | |
12310 | return 1; | |
12311 | } | |
12312 | break; | |
12313 | case 3: | |
12314 | break; | |
a9e01311 | 12315 | } |
a9e01311 RH |
12316 | } |
12317 | ||
fc1120a7 PM |
12318 | /* |
12319 | * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode | |
12320 | * to control non-secure access to the FPU. It doesn't have any | |
12321 | * effect if EL3 is AArch64 or if EL3 doesn't exist at all. | |
12322 | */ | |
12323 | if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && | |
12324 | cur_el <= 2 && !arm_is_secure_below_el3(env))) { | |
12325 | if (!extract32(env->cp15.nsacr, 10, 1)) { | |
12326 | /* FP insns act as UNDEF */ | |
12327 | return cur_el == 2 ? 2 : 1; | |
12328 | } | |
12329 | } | |
12330 | ||
a9e01311 RH |
12331 | /* For the CPTR registers we don't need to guard with an ARM_FEATURE |
12332 | * check because zero bits in the registers mean "don't trap". | |
12333 | */ | |
12334 | ||
12335 | /* CPTR_EL2 : present in v7VE or v8 */ | |
12336 | if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) | |
12337 | && !arm_is_secure_below_el3(env)) { | |
12338 | /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ | |
12339 | return 2; | |
12340 | } | |
12341 | ||
12342 | /* CPTR_EL3 : present in v8 */ | |
12343 | if (extract32(env->cp15.cptr_el[3], 10, 1)) { | |
12344 | /* Trap all FP ops to EL3 */ | |
12345 | return 3; | |
12346 | } | |
55faa212 | 12347 | #endif |
a9e01311 RH |
12348 | return 0; |
12349 | } | |
12350 | ||
b9f6033c RH |
12351 | /* Return the exception level we're running at if this is our mmu_idx */ |
12352 | int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) | |
12353 | { | |
12354 | if (mmu_idx & ARM_MMU_IDX_M) { | |
12355 | return mmu_idx & ARM_MMU_IDX_M_PRIV; | |
12356 | } | |
12357 | ||
12358 | switch (mmu_idx) { | |
12359 | case ARMMMUIdx_E10_0: | |
12360 | case ARMMMUIdx_E20_0: | |
12361 | case ARMMMUIdx_SE10_0: | |
12362 | return 0; | |
12363 | case ARMMMUIdx_E10_1: | |
452ef8cb | 12364 | case ARMMMUIdx_E10_1_PAN: |
b9f6033c | 12365 | case ARMMMUIdx_SE10_1: |
452ef8cb | 12366 | case ARMMMUIdx_SE10_1_PAN: |
b9f6033c RH |
12367 | return 1; |
12368 | case ARMMMUIdx_E2: | |
12369 | case ARMMMUIdx_E20_2: | |
452ef8cb | 12370 | case ARMMMUIdx_E20_2_PAN: |
b9f6033c RH |
12371 | return 2; |
12372 | case ARMMMUIdx_SE3: | |
12373 | return 3; | |
12374 | default: | |
12375 | g_assert_not_reached(); | |
12376 | } | |
12377 | } | |
12378 | ||
7aab5a8c | 12379 | #ifndef CONFIG_TCG |
65e4655c RH |
12380 | ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) |
12381 | { | |
7aab5a8c | 12382 | g_assert_not_reached(); |
65e4655c | 12383 | } |
7aab5a8c | 12384 | #endif |
65e4655c | 12385 | |
164690b2 | 12386 | ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) |
65e4655c | 12387 | { |
65e4655c | 12388 | if (arm_feature(env, ARM_FEATURE_M)) { |
50494a27 | 12389 | return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); |
65e4655c RH |
12390 | } |
12391 | ||
6003d980 | 12392 | /* See ARM pseudo-function ELIsInHost. */ |
b9f6033c RH |
12393 | switch (el) { |
12394 | case 0: | |
b9f6033c RH |
12395 | if (arm_is_secure_below_el3(env)) { |
12396 | return ARMMMUIdx_SE10_0; | |
12397 | } | |
6003d980 RH |
12398 | if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) |
12399 | && arm_el_is_aa64(env, 2)) { | |
12400 | return ARMMMUIdx_E20_0; | |
12401 | } | |
b9f6033c RH |
12402 | return ARMMMUIdx_E10_0; |
12403 | case 1: | |
12404 | if (arm_is_secure_below_el3(env)) { | |
66412260 RH |
12405 | if (env->pstate & PSTATE_PAN) { |
12406 | return ARMMMUIdx_SE10_1_PAN; | |
12407 | } | |
b9f6033c RH |
12408 | return ARMMMUIdx_SE10_1; |
12409 | } | |
66412260 RH |
12410 | if (env->pstate & PSTATE_PAN) { |
12411 | return ARMMMUIdx_E10_1_PAN; | |
12412 | } | |
b9f6033c RH |
12413 | return ARMMMUIdx_E10_1; |
12414 | case 2: | |
b9f6033c | 12415 | /* TODO: ARMv8.4-SecEL2 */ |
6003d980 RH |
12416 | /* Note that TGE does not apply at EL2. */ |
12417 | if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { | |
66412260 RH |
12418 | if (env->pstate & PSTATE_PAN) { |
12419 | return ARMMMUIdx_E20_2_PAN; | |
12420 | } | |
6003d980 RH |
12421 | return ARMMMUIdx_E20_2; |
12422 | } | |
b9f6033c RH |
12423 | return ARMMMUIdx_E2; |
12424 | case 3: | |
12425 | return ARMMMUIdx_SE3; | |
12426 | default: | |
12427 | g_assert_not_reached(); | |
65e4655c | 12428 | } |
50494a27 RH |
12429 | } |
12430 | ||
164690b2 RH |
12431 | ARMMMUIdx arm_mmu_idx(CPUARMState *env) |
12432 | { | |
12433 | return arm_mmu_idx_el(env, arm_current_el(env)); | |
12434 | } | |
12435 | ||
64be86ab RH |
12436 | #ifndef CONFIG_USER_ONLY |
12437 | ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) | |
12438 | { | |
12439 | return stage_1_mmu_idx(arm_mmu_idx(env)); | |
12440 | } | |
12441 | #endif | |
12442 | ||
fdd1b228 RH |
12443 | static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, |
12444 | ARMMMUIdx mmu_idx, uint32_t flags) | |
12445 | { | |
12446 | flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); | |
12447 | flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, | |
12448 | arm_to_core_mmu_idx(mmu_idx)); | |
12449 | ||
fdd1b228 RH |
12450 | if (arm_singlestep_active(env)) { |
12451 | flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); | |
12452 | } | |
12453 | return flags; | |
12454 | } | |
12455 | ||
43eccfb6 RH |
12456 | static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, |
12457 | ARMMMUIdx mmu_idx, uint32_t flags) | |
12458 | { | |
8061a649 RH |
12459 | bool sctlr_b = arm_sctlr_b(env); |
12460 | ||
12461 | if (sctlr_b) { | |
12462 | flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); | |
12463 | } | |
12464 | if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { | |
12465 | flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); | |
12466 | } | |
43eccfb6 RH |
12467 | flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); |
12468 | ||
12469 | return rebuild_hflags_common(env, fp_el, mmu_idx, flags); | |
12470 | } | |
12471 | ||
6e33ced5 RH |
12472 | static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, |
12473 | ARMMMUIdx mmu_idx) | |
12474 | { | |
12475 | uint32_t flags = 0; | |
12476 | ||
12477 | if (arm_v7m_is_handler_mode(env)) { | |
79cabf1f | 12478 | flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); |
6e33ced5 RH |
12479 | } |
12480 | ||
12481 | /* | |
12482 | * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN | |
12483 | * is suppressing them because the requested execution priority | |
12484 | * is less than 0. | |
12485 | */ | |
12486 | if (arm_feature(env, ARM_FEATURE_V8) && | |
12487 | !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && | |
12488 | (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { | |
79cabf1f | 12489 | flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); |
6e33ced5 RH |
12490 | } |
12491 | ||
12492 | return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); | |
12493 | } | |
12494 | ||
83f4baef RH |
12495 | static uint32_t rebuild_hflags_aprofile(CPUARMState *env) |
12496 | { | |
12497 | int flags = 0; | |
12498 | ||
12499 | flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, | |
12500 | arm_debug_target_el(env)); | |
12501 | return flags; | |
12502 | } | |
12503 | ||
c747224c RH |
12504 | static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, |
12505 | ARMMMUIdx mmu_idx) | |
12506 | { | |
83f4baef | 12507 | uint32_t flags = rebuild_hflags_aprofile(env); |
0a54d68e RH |
12508 | |
12509 | if (arm_el_is_aa64(env, 1)) { | |
12510 | flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); | |
12511 | } | |
5bb0a20b MZ |
12512 | |
12513 | if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && | |
12514 | (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { | |
12515 | flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); | |
12516 | } | |
12517 | ||
83f4baef | 12518 | return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); |
c747224c RH |
12519 | } |
12520 | ||
d4d7503a RH |
12521 | static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, |
12522 | ARMMMUIdx mmu_idx) | |
a9e01311 | 12523 | { |
83f4baef | 12524 | uint32_t flags = rebuild_hflags_aprofile(env); |
d4d7503a | 12525 | ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); |
b830a5ee | 12526 | uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; |
d4d7503a RH |
12527 | uint64_t sctlr; |
12528 | int tbii, tbid; | |
b9adaa70 | 12529 | |
d4d7503a | 12530 | flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); |
cd208a1c | 12531 | |
339370b9 | 12532 | /* Get control bits for tagged addresses. */ |
b830a5ee RH |
12533 | tbid = aa64_va_parameter_tbi(tcr, mmu_idx); |
12534 | tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); | |
5d8634f5 | 12535 | |
d4d7503a RH |
12536 | flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); |
12537 | flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); | |
12538 | ||
12539 | if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { | |
12540 | int sve_el = sve_exception_el(env, el); | |
12541 | uint32_t zcr_len; | |
5d8634f5 | 12542 | |
d4d7503a RH |
12543 | /* |
12544 | * If SVE is disabled, but FP is enabled, | |
12545 | * then the effective len is 0. | |
12546 | */ | |
12547 | if (sve_el != 0 && fp_el == 0) { | |
12548 | zcr_len = 0; | |
12549 | } else { | |
12550 | zcr_len = sve_zcr_len_for_el(env, el); | |
5d8634f5 | 12551 | } |
d4d7503a RH |
12552 | flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); |
12553 | flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); | |
12554 | } | |
1db5e96c | 12555 | |
aaec1432 | 12556 | sctlr = regime_sctlr(env, stage1); |
1db5e96c | 12557 | |
8061a649 RH |
12558 | if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { |
12559 | flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); | |
12560 | } | |
12561 | ||
d4d7503a RH |
12562 | if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { |
12563 | /* | |
12564 | * In order to save space in flags, we record only whether | |
12565 | * pauth is "inactive", meaning all insns are implemented as | |
12566 | * a nop, or "active" when some action must be performed. | |
12567 | * The decision of which action to take is left to a helper. | |
12568 | */ | |
12569 | if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { | |
12570 | flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); | |
1db5e96c | 12571 | } |
d4d7503a | 12572 | } |
0816ef1b | 12573 | |
d4d7503a RH |
12574 | if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { |
12575 | /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ | |
12576 | if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { | |
12577 | flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); | |
0816ef1b | 12578 | } |
d4d7503a | 12579 | } |
08f1434a | 12580 | |
cc28fc30 | 12581 | /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ |
7a8014ab RH |
12582 | if (!(env->pstate & PSTATE_UAO)) { |
12583 | switch (mmu_idx) { | |
12584 | case ARMMMUIdx_E10_1: | |
12585 | case ARMMMUIdx_E10_1_PAN: | |
12586 | case ARMMMUIdx_SE10_1: | |
12587 | case ARMMMUIdx_SE10_1_PAN: | |
12588 | /* TODO: ARMv8.3-NV */ | |
cc28fc30 | 12589 | flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); |
7a8014ab RH |
12590 | break; |
12591 | case ARMMMUIdx_E20_2: | |
12592 | case ARMMMUIdx_E20_2_PAN: | |
12593 | /* TODO: ARMv8.4-SecEL2 */ | |
12594 | /* | |
12595 | * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is | |
12596 | * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. | |
12597 | */ | |
12598 | if (env->cp15.hcr_el2 & HCR_TGE) { | |
12599 | flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); | |
12600 | } | |
12601 | break; | |
12602 | default: | |
12603 | break; | |
cc28fc30 | 12604 | } |
cc28fc30 RH |
12605 | } |
12606 | ||
d4d7503a RH |
12607 | return rebuild_hflags_common(env, fp_el, mmu_idx, flags); |
12608 | } | |
12609 | ||
3d74e2e9 RH |
12610 | static uint32_t rebuild_hflags_internal(CPUARMState *env) |
12611 | { | |
12612 | int el = arm_current_el(env); | |
12613 | int fp_el = fp_exception_el(env, el); | |
164690b2 | 12614 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
3d74e2e9 RH |
12615 | |
12616 | if (is_a64(env)) { | |
12617 | return rebuild_hflags_a64(env, el, fp_el, mmu_idx); | |
12618 | } else if (arm_feature(env, ARM_FEATURE_M)) { | |
12619 | return rebuild_hflags_m32(env, fp_el, mmu_idx); | |
12620 | } else { | |
12621 | return rebuild_hflags_a32(env, fp_el, mmu_idx); | |
12622 | } | |
12623 | } | |
12624 | ||
12625 | void arm_rebuild_hflags(CPUARMState *env) | |
12626 | { | |
12627 | env->hflags = rebuild_hflags_internal(env); | |
12628 | } | |
12629 | ||
19717e9b PM |
12630 | /* |
12631 | * If we have triggered a EL state change we can't rely on the | |
12632 | * translator having passed it to us, we need to recompute. | |
12633 | */ | |
12634 | void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) | |
12635 | { | |
12636 | int el = arm_current_el(env); | |
12637 | int fp_el = fp_exception_el(env, el); | |
12638 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
12639 | env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); | |
12640 | } | |
12641 | ||
14f3c588 RH |
12642 | void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) |
12643 | { | |
12644 | int fp_el = fp_exception_el(env, el); | |
12645 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
12646 | ||
12647 | env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); | |
12648 | } | |
12649 | ||
f80741d1 AB |
12650 | /* |
12651 | * If we have triggered a EL state change we can't rely on the | |
563152e0 | 12652 | * translator having passed it to us, we need to recompute. |
f80741d1 AB |
12653 | */ |
12654 | void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) | |
12655 | { | |
12656 | int el = arm_current_el(env); | |
12657 | int fp_el = fp_exception_el(env, el); | |
12658 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
12659 | env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); | |
12660 | } | |
12661 | ||
14f3c588 RH |
12662 | void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) |
12663 | { | |
12664 | int fp_el = fp_exception_el(env, el); | |
12665 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
12666 | ||
12667 | env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); | |
12668 | } | |
12669 | ||
12670 | void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) | |
12671 | { | |
12672 | int fp_el = fp_exception_el(env, el); | |
12673 | ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); | |
12674 | ||
12675 | env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); | |
12676 | } | |
12677 | ||
0ee8b24a PMD |
12678 | static inline void assert_hflags_rebuild_correctly(CPUARMState *env) |
12679 | { | |
12680 | #ifdef CONFIG_DEBUG_TCG | |
12681 | uint32_t env_flags_current = env->hflags; | |
12682 | uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); | |
12683 | ||
12684 | if (unlikely(env_flags_current != env_flags_rebuilt)) { | |
12685 | fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", | |
12686 | env_flags_current, env_flags_rebuilt); | |
12687 | abort(); | |
12688 | } | |
12689 | #endif | |
12690 | } | |
12691 | ||
d4d7503a RH |
12692 | void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
12693 | target_ulong *cs_base, uint32_t *pflags) | |
12694 | { | |
e979972a RH |
12695 | uint32_t flags = env->hflags; |
12696 | uint32_t pstate_for_ss; | |
d4d7503a | 12697 | |
9b253fe5 | 12698 | *cs_base = 0; |
0ee8b24a | 12699 | assert_hflags_rebuild_correctly(env); |
3d74e2e9 | 12700 | |
e979972a | 12701 | if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { |
d4d7503a | 12702 | *pc = env->pc; |
d4d7503a | 12703 | if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { |
08f1434a RH |
12704 | flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); |
12705 | } | |
60e12c37 | 12706 | pstate_for_ss = env->pstate; |
a9e01311 RH |
12707 | } else { |
12708 | *pc = env->regs[15]; | |
6e33ced5 RH |
12709 | |
12710 | if (arm_feature(env, ARM_FEATURE_M)) { | |
9550d1bd RH |
12711 | if (arm_feature(env, ARM_FEATURE_M_SECURITY) && |
12712 | FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) | |
12713 | != env->v7m.secure) { | |
79cabf1f | 12714 | flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); |
9550d1bd RH |
12715 | } |
12716 | ||
12717 | if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && | |
12718 | (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || | |
12719 | (env->v7m.secure && | |
12720 | !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { | |
12721 | /* | |
12722 | * ASPEN is set, but FPCA/SFPA indicate that there is no | |
12723 | * active FP context; we must create a new FP context before | |
12724 | * executing any FP insn. | |
12725 | */ | |
79cabf1f | 12726 | flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); |
9550d1bd RH |
12727 | } |
12728 | ||
12729 | bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; | |
12730 | if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { | |
79cabf1f | 12731 | flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); |
9550d1bd | 12732 | } |
6e33ced5 | 12733 | } else { |
bbad7c62 RH |
12734 | /* |
12735 | * Note that XSCALE_CPAR shares bits with VECSTRIDE. | |
12736 | * Note that VECLEN+VECSTRIDE are RES0 for M-profile. | |
12737 | */ | |
12738 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
12739 | flags = FIELD_DP32(flags, TBFLAG_A32, | |
12740 | XSCALE_CPAR, env->cp15.c15_cpar); | |
12741 | } else { | |
12742 | flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, | |
12743 | env->vfp.vec_len); | |
12744 | flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, | |
12745 | env->vfp.vec_stride); | |
12746 | } | |
0a54d68e RH |
12747 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { |
12748 | flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); | |
12749 | } | |
6e33ced5 RH |
12750 | } |
12751 | ||
79cabf1f RH |
12752 | flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); |
12753 | flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); | |
60e12c37 | 12754 | pstate_for_ss = env->uncached_cpsr; |
d4d7503a | 12755 | } |
a9e01311 | 12756 | |
60e12c37 RH |
12757 | /* |
12758 | * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine | |
a9e01311 RH |
12759 | * states defined in the ARM ARM for software singlestep: |
12760 | * SS_ACTIVE PSTATE.SS State | |
12761 | * 0 x Inactive (the TB flag for SS is always 0) | |
12762 | * 1 0 Active-pending | |
12763 | * 1 1 Active-not-pending | |
fdd1b228 | 12764 | * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. |
a9e01311 | 12765 | */ |
60e12c37 RH |
12766 | if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && |
12767 | (pstate_for_ss & PSTATE_SS)) { | |
12768 | flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); | |
a9e01311 | 12769 | } |
a9e01311 | 12770 | |
b9adaa70 | 12771 | *pflags = flags; |
a9e01311 | 12772 | } |
0ab5953b RH |
12773 | |
12774 | #ifdef TARGET_AARCH64 | |
12775 | /* | |
12776 | * The manual says that when SVE is enabled and VQ is widened the | |
12777 | * implementation is allowed to zero the previously inaccessible | |
12778 | * portion of the registers. The corollary to that is that when | |
12779 | * SVE is enabled and VQ is narrowed we are also allowed to zero | |
12780 | * the now inaccessible portion of the registers. | |
12781 | * | |
12782 | * The intent of this is that no predicate bit beyond VQ is ever set. | |
12783 | * Which means that some operations on predicate registers themselves | |
12784 | * may operate on full uint64_t or even unrolled across the maximum | |
12785 | * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally | |
12786 | * may well be cheaper than conditionals to restrict the operation | |
12787 | * to the relevant portion of a uint16_t[16]. | |
12788 | */ | |
12789 | void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) | |
12790 | { | |
12791 | int i, j; | |
12792 | uint64_t pmask; | |
12793 | ||
12794 | assert(vq >= 1 && vq <= ARM_MAX_VQ); | |
2fc0cc0e | 12795 | assert(vq <= env_archcpu(env)->sve_max_vq); |
0ab5953b RH |
12796 | |
12797 | /* Zap the high bits of the zregs. */ | |
12798 | for (i = 0; i < 32; i++) { | |
12799 | memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); | |
12800 | } | |
12801 | ||
12802 | /* Zap the high bits of the pregs and ffr. */ | |
12803 | pmask = 0; | |
12804 | if (vq & 3) { | |
12805 | pmask = ~(-1ULL << (16 * (vq & 3))); | |
12806 | } | |
12807 | for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { | |
12808 | for (i = 0; i < 17; ++i) { | |
12809 | env->vfp.pregs[i].p[j] &= pmask; | |
12810 | } | |
12811 | pmask = 0; | |
12812 | } | |
12813 | } | |
12814 | ||
12815 | /* | |
12816 | * Notice a change in SVE vector size when changing EL. | |
12817 | */ | |
9a05f7b6 RH |
12818 | void aarch64_sve_change_el(CPUARMState *env, int old_el, |
12819 | int new_el, bool el0_a64) | |
0ab5953b | 12820 | { |
2fc0cc0e | 12821 | ARMCPU *cpu = env_archcpu(env); |
0ab5953b | 12822 | int old_len, new_len; |
9a05f7b6 | 12823 | bool old_a64, new_a64; |
0ab5953b RH |
12824 | |
12825 | /* Nothing to do if no SVE. */ | |
cd208a1c | 12826 | if (!cpu_isar_feature(aa64_sve, cpu)) { |
0ab5953b RH |
12827 | return; |
12828 | } | |
12829 | ||
12830 | /* Nothing to do if FP is disabled in either EL. */ | |
12831 | if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { | |
12832 | return; | |
12833 | } | |
12834 | ||
12835 | /* | |
12836 | * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped | |
12837 | * at ELx, or not available because the EL is in AArch32 state, then | |
12838 | * for all purposes other than a direct read, the ZCR_ELx.LEN field | |
12839 | * has an effective value of 0". | |
12840 | * | |
12841 | * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). | |
12842 | * If we ignore aa32 state, we would fail to see the vq4->vq0 transition | |
12843 | * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that | |
12844 | * we already have the correct register contents when encountering the | |
12845 | * vq0->vq0 transition between EL0->EL1. | |
12846 | */ | |
9a05f7b6 RH |
12847 | old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; |
12848 | old_len = (old_a64 && !sve_exception_el(env, old_el) | |
0ab5953b | 12849 | ? sve_zcr_len_for_el(env, old_el) : 0); |
9a05f7b6 RH |
12850 | new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; |
12851 | new_len = (new_a64 && !sve_exception_el(env, new_el) | |
0ab5953b RH |
12852 | ? sve_zcr_len_for_el(env, new_el) : 0); |
12853 | ||
12854 | /* When changing vector length, clear inaccessible state. */ | |
12855 | if (new_len < old_len) { | |
12856 | aarch64_sve_narrow_vq(env, new_len + 1); | |
12857 | } | |
12858 | } | |
12859 | #endif |