]> Git Repo - qemu.git/blame - target/arm/helper.c
target/arm: Rename 'type' to 'excret' in do_v7m_exception_exit()
[qemu.git] / target / arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
194cbc49 2#include "trace.h"
b5ff1b31 3#include "cpu.h"
ccd38087 4#include "internals.h"
022c62cb 5#include "exec/gdbstub.h"
2ef6175a 6#include "exec/helper-proto.h"
1de7afc9 7#include "qemu/host-utils.h"
78027bb6 8#include "sysemu/arch_init.h"
9c17d615 9#include "sysemu/sysemu.h"
1de7afc9 10#include "qemu/bitops.h"
eb0ecd5a 11#include "qemu/crc32c.h"
63c91552 12#include "exec/exec-all.h"
f08b6170 13#include "exec/cpu_ldst.h"
1d854765 14#include "arm_ldst.h"
eb0ecd5a 15#include <zlib.h> /* For crc32 */
cfe67cef 16#include "exec/semihost.h"
f3a9b694 17#include "sysemu/kvm.h"
0b03bdfc 18
352c98e5
LV
19#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
4a501606 21#ifndef CONFIG_USER_ONLY
af51f566 22static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 23 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
7c2cb42b 27
37785977 28static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
37785977
EI
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
33
7c2cb42b
AF
34/* Definitions for the PMCCNTR and PMCR registers */
35#define PMCRD 0x8
36#define PMCRC 0x4
37#define PMCRE 0x1
4a501606
PM
38#endif
39
0ecb72a5 40static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
41{
42 int nregs;
43
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
49 }
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63 }
64 return 0;
65}
66
0ecb72a5 67static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
68{
69 int nregs;
70
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
75 }
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
82 }
83 }
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
88 }
89 return 0;
90}
91
6a669427
PM
92static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93{
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
110 }
111}
112
113static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114{
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
131 }
132}
133
c4241c7d 134static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 135{
375421cc 136 assert(ri->fieldoffset);
67ed771d 137 if (cpreg_field_is_64bit(ri)) {
c4241c7d 138 return CPREG_FIELD64(env, ri);
22d9e1a9 139 } else {
c4241c7d 140 return CPREG_FIELD32(env, ri);
22d9e1a9 141 }
d4e6df63
PM
142}
143
c4241c7d
PM
144static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
d4e6df63 146{
375421cc 147 assert(ri->fieldoffset);
67ed771d 148 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
152 }
d4e6df63
PM
153}
154
11f136ee
FA
155static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156{
157 return (char *)env + ri->fieldoffset;
158}
159
49a66191 160uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 161{
59a1c327 162 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 163 if (ri->type & ARM_CP_CONST) {
59a1c327 164 return ri->resetvalue;
721fae12 165 } else if (ri->raw_readfn) {
59a1c327 166 return ri->raw_readfn(env, ri);
721fae12 167 } else if (ri->readfn) {
59a1c327 168 return ri->readfn(env, ri);
721fae12 169 } else {
59a1c327 170 return raw_read(env, ri);
721fae12 171 }
721fae12
PM
172}
173
59a1c327 174static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 175 uint64_t v)
721fae12
PM
176{
177 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
181 */
182 if (ri->type & ARM_CP_CONST) {
59a1c327 183 return;
721fae12 184 } else if (ri->raw_writefn) {
c4241c7d 185 ri->raw_writefn(env, ri, v);
721fae12 186 } else if (ri->writefn) {
c4241c7d 187 ri->writefn(env, ri, v);
721fae12 188 } else {
afb2530f 189 raw_write(env, ri, v);
721fae12 190 }
721fae12
PM
191}
192
375421cc
PM
193static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194{
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
205 */
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
210 }
211 return true;
212}
213
721fae12
PM
214bool write_cpustate_to_list(ARMCPU *cpu)
215{
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
219
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
59a1c327 223
60322b39 224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
225 if (!ri) {
226 ok = false;
227 continue;
228 }
7a0e58fa 229 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
230 continue;
231 }
59a1c327 232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
233 }
234 return ok;
235}
236
237bool write_list_to_cpustate(ARMCPU *cpu)
238{
239 int i;
240 bool ok = true;
241
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
245 const ARMCPRegInfo *ri;
246
60322b39 247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
248 if (!ri) {
249 ok = false;
250 continue;
251 }
7a0e58fa 252 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
253 continue;
254 }
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
258 */
59a1c327
PM
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
261 ok = false;
262 }
263 }
264 return ok;
265}
266
267static void add_cpreg_to_list(gpointer key, gpointer opaque)
268{
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
272
273 regidx = *(uint32_t *)key;
60322b39 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 275
7a0e58fa 276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
280 }
281}
282
283static void count_cpreg(gpointer key, gpointer opaque)
284{
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
288
289 regidx = *(uint32_t *)key;
60322b39 290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 291
7a0e58fa 292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
293 cpu->cpreg_array_len++;
294 }
295}
296
297static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298{
cbf239b7
AR
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 301
cbf239b7
AR
302 if (aidx > bidx) {
303 return 1;
304 }
305 if (aidx < bidx) {
306 return -1;
307 }
308 return 0;
721fae12
PM
309}
310
311void init_cpreg_list(ARMCPU *cpu)
312{
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
315 */
57b6d95e 316 GList *keys;
721fae12
PM
317 int arraylen;
318
57b6d95e 319 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
320 keys = g_list_sort(keys, cpreg_key_compare);
321
322 cpu->cpreg_array_len = 0;
323
324 g_list_foreach(keys, count_cpreg, cpu);
325
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
333
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
335
336 assert(cpu->cpreg_array_len == arraylen);
337
338 g_list_free(keys);
339}
340
68e9c2fe
EI
341/*
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 *
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 */
348static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
349 const ARMCPRegInfo *ri,
350 bool isread)
68e9c2fe
EI
351{
352 bool secure = arm_is_secure_below_el3(env);
353
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
357 }
358 return CP_ACCESS_OK;
359}
360
361static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
362 const ARMCPRegInfo *ri,
363 bool isread)
68e9c2fe
EI
364{
365 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 366 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
367 }
368 return CP_ACCESS_OK;
369}
370
5513c3ab
PM
371/* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
375 */
376static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
377 const ARMCPRegInfo *ri,
378 bool isread)
5513c3ab
PM
379{
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
382 }
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
385 }
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
388}
389
187f678d
PM
390/* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
392 */
393static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
395{
396 int el = arm_current_el(env);
397
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
401 }
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
404 }
405 return CP_ACCESS_OK;
406}
407
91b0a238
PM
408/* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 */
411static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
413{
414 int el = arm_current_el(env);
415
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
419 }
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
422 }
423 return CP_ACCESS_OK;
424}
425
d6c8cf81
PM
426/* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 */
429static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
431{
432 int el = arm_current_el(env);
433
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
437 }
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
440 }
441 return CP_ACCESS_OK;
442}
443
1fce1ba9
PM
444/* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 */
447static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
449{
450 int el = arm_current_el(env);
451
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
455 }
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
458 }
459 return CP_ACCESS_OK;
460}
461
c4241c7d 462static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 463{
00c8cb0a
AF
464 ARMCPU *cpu = arm_env_get_cpu(env);
465
8d5c773e 466 raw_write(env, ri, value);
d10eb08f 467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
468}
469
c4241c7d 470static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 471{
00c8cb0a
AF
472 ARMCPU *cpu = arm_env_get_cpu(env);
473
8d5c773e 474 if (raw_read(env, ri) != value) {
08de207b
PM
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
477 */
d10eb08f 478 tlb_flush(CPU(cpu));
8d5c773e 479 raw_write(env, ri, value);
08de207b 480 }
08de207b 481}
c4241c7d
PM
482
483static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
08de207b 485{
00c8cb0a
AF
486 ARMCPU *cpu = arm_env_get_cpu(env);
487
452a0955 488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 489 && !extended_addresses_enabled(env)) {
08de207b
PM
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
493 */
d10eb08f 494 tlb_flush(CPU(cpu));
08de207b 495 }
8d5c773e 496 raw_write(env, ri, value);
08de207b
PM
497}
498
c4241c7d
PM
499static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
d929823f
PM
501{
502 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
503 ARMCPU *cpu = arm_env_get_cpu(env);
504
d10eb08f 505 tlb_flush(CPU(cpu));
d929823f
PM
506}
507
c4241c7d
PM
508static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
d929823f
PM
510{
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
512 ARMCPU *cpu = arm_env_get_cpu(env);
513
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
515}
516
c4241c7d
PM
517static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
d929823f
PM
519{
520 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
521 ARMCPU *cpu = arm_env_get_cpu(env);
522
d10eb08f 523 tlb_flush(CPU(cpu));
d929823f
PM
524}
525
c4241c7d
PM
526static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
d929823f
PM
528{
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
530 ARMCPU *cpu = arm_env_get_cpu(env);
531
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
533}
534
fa439fc5
PM
535/* IS variants of TLB operations must affect all cores */
536static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
538{
a67cf277 539 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 540
a67cf277 541 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
542}
543
544static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
546{
a67cf277 547 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 548
a67cf277 549 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
550}
551
552static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
554{
a67cf277 555 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 556
a67cf277 557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
558}
559
560static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
562{
a67cf277 563 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 564
a67cf277 565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
566}
567
541ef8c2
SS
568static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
570{
571 CPUState *cs = ENV_GET_CPU(env);
572
0336cbf8 573 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
574 ARMMMUIdxBit_S12NSE1 |
575 ARMMMUIdxBit_S12NSE0 |
576 ARMMMUIdxBit_S2NS);
541ef8c2
SS
577}
578
579static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
581{
a67cf277 582 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 583
a67cf277 584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
585 ARMMMUIdxBit_S12NSE1 |
586 ARMMMUIdxBit_S12NSE0 |
587 ARMMMUIdxBit_S2NS);
541ef8c2
SS
588}
589
590static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
592{
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
598 */
599 CPUState *cs = ENV_GET_CPU(env);
600 uint64_t pageaddr;
601
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603 return;
604 }
605
606 pageaddr = sextract64(value << 12, 0, 40);
607
8bd5c820 608 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
541ef8c2
SS
609}
610
611static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
613{
a67cf277 614 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
615 uint64_t pageaddr;
616
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618 return;
619 }
620
621 pageaddr = sextract64(value << 12, 0, 40);
622
a67cf277 623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 624 ARMMMUIdxBit_S2NS);
541ef8c2
SS
625}
626
627static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
629{
630 CPUState *cs = ENV_GET_CPU(env);
631
8bd5c820 632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
633}
634
635static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
637{
a67cf277 638 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 639
8bd5c820 640 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
641}
642
643static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
645{
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
648
8bd5c820 649 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
541ef8c2
SS
650}
651
652static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
654{
a67cf277 655 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657
a67cf277 658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 659 ARMMMUIdxBit_S1E2);
541ef8c2
SS
660}
661
e9aa6c21 662static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
667 */
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
683 */
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
694 REGINFO_SENTINEL
695};
696
697static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
700 */
701 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
702 { .name = "DACR",
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
4fdd17dd 710 */
a903c449
EI
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
723 REGINFO_SENTINEL
724};
725
7d57f408
PM
726static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
728 * over-broad.
729 */
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
732 REGINFO_SENTINEL
733};
734
735static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
738 */
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
744 */
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747 .resetvalue = 0 },
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750 .resetvalue = 0 },
776d4e5c
PM
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 754 .resetvalue = 0 },
50300698
PM
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
759 */
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
764 */
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 767 .type = ARM_CP_NO_RAW },
995939a6
PM
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 770 .type = ARM_CP_NO_RAW },
995939a6
PM
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 773 .type = ARM_CP_NO_RAW },
995939a6
PM
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 776 .type = ARM_CP_NO_RAW },
a903c449
EI
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
781 REGINFO_SENTINEL
782};
783
c4241c7d
PM
784static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
2771db27 786{
f0aff255
FA
787 uint32_t mask = 0;
788
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
794 */
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
798
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
801 value |= (1 << 31);
802 }
803
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
806 */
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810 value |= (1 << 30);
811 }
812 }
813 value &= mask;
2771db27 814 }
7ebd5f2e 815 env->cp15.cpacr_el1 = value;
2771db27
PM
816}
817
3f208fd7
PM
818static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819 bool isread)
c6f19164
GB
820{
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
830 }
831 }
832
833 return CP_ACCESS_OK;
834}
835
3f208fd7
PM
836static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837 bool isread)
c6f19164
GB
838{
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
842 }
843
844 return CP_ACCESS_OK;
845}
846
7d57f408
PM
847static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855 */
7d57f408 856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 859 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 861 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 863 .access = PL1_RW,
b848ce2b
FA
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
866 .resetvalue = 0, },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
869 */
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 875 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
876 REGINFO_SENTINEL
877};
878
3f208fd7
PM
879static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880 bool isread)
200ac0ef 881{
3b163b01 882 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
200ac0ef 885 */
1fce1ba9
PM
886 int el = arm_current_el(env);
887
6ecd0b6b 888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 889 return CP_ACCESS_TRAP;
200ac0ef 890 }
1fce1ba9
PM
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
894 }
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
897 }
898
fcd25206 899 return CP_ACCESS_OK;
200ac0ef
PM
900}
901
6ecd0b6b
AB
902static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
904 bool isread)
905{
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910 && isread) {
911 return CP_ACCESS_OK;
912 }
913
914 return pmreg_access(env, ri, isread);
915}
916
917static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
919 bool isread)
920{
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925 && !isread) {
926 return CP_ACCESS_OK;
927 }
928
929 return pmreg_access(env, ri, isread);
930}
931
7c2cb42b 932#ifndef CONFIG_USER_ONLY
87124fde 933
6ecd0b6b
AB
934static CPAccessResult pmreg_access_selr(CPUARMState *env,
935 const ARMCPRegInfo *ri,
936 bool isread)
937{
938 /* ER: event counter read trap control */
939 if (arm_feature(env, ARM_FEATURE_V8)
940 && arm_current_el(env) == 0
941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942 return CP_ACCESS_OK;
943 }
944
945 return pmreg_access(env, ri, isread);
946}
947
948static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949 const ARMCPRegInfo *ri,
950 bool isread)
951{
952 /* CR: cycle counter read trap control */
953 if (arm_feature(env, ARM_FEATURE_V8)
954 && arm_current_el(env) == 0
955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956 && isread) {
957 return CP_ACCESS_OK;
958 }
959
960 return pmreg_access(env, ri, isread);
961}
962
87124fde
AF
963static inline bool arm_ccnt_enabled(CPUARMState *env)
964{
965 /* This does not support checking PMCCFILTR_EL0 register */
966
967 if (!(env->cp15.c9_pmcr & PMCRE)) {
968 return false;
969 }
970
971 return true;
972}
973
ec7b4ce4
AF
974void pmccntr_sync(CPUARMState *env)
975{
976 uint64_t temp_ticks;
977
352c98e5
LV
978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
ec7b4ce4
AF
980
981 if (env->cp15.c9_pmcr & PMCRD) {
982 /* Increment once every 64 processor clock cycles */
983 temp_ticks /= 64;
984 }
985
986 if (arm_ccnt_enabled(env)) {
987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
988 }
989}
990
c4241c7d
PM
991static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992 uint64_t value)
200ac0ef 993{
942a155b 994 pmccntr_sync(env);
7c2cb42b
AF
995
996 if (value & PMCRC) {
997 /* The counter has been reset */
998 env->cp15.c15_ccnt = 0;
999 }
1000
200ac0ef
PM
1001 /* only the DP, X, D and E bits are writable */
1002 env->cp15.c9_pmcr &= ~0x39;
1003 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 1004
942a155b 1005 pmccntr_sync(env);
7c2cb42b
AF
1006}
1007
1008static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1009{
c92c0687 1010 uint64_t total_ticks;
7c2cb42b 1011
942a155b 1012 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1013 /* Counter is disabled, do not change value */
1014 return env->cp15.c15_ccnt;
1015 }
1016
352c98e5
LV
1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1019
1020 if (env->cp15.c9_pmcr & PMCRD) {
1021 /* Increment once every 64 processor clock cycles */
1022 total_ticks /= 64;
1023 }
1024 return total_ticks - env->cp15.c15_ccnt;
1025}
1026
6b040780
WH
1027static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028 uint64_t value)
1029{
1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033 * accessed.
1034 */
1035 env->cp15.c9_pmselr = value & 0x1f;
1036}
1037
7c2cb42b
AF
1038static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039 uint64_t value)
1040{
c92c0687 1041 uint64_t total_ticks;
7c2cb42b 1042
942a155b 1043 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1044 /* Counter is disabled, set the absolute value */
1045 env->cp15.c15_ccnt = value;
1046 return;
1047 }
1048
352c98e5
LV
1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1051
1052 if (env->cp15.c9_pmcr & PMCRD) {
1053 /* Increment once every 64 processor clock cycles */
1054 total_ticks /= 64;
1055 }
1056 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 1057}
421c7ebd
PC
1058
1059static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060 uint64_t value)
1061{
1062 uint64_t cur_val = pmccntr_read(env, NULL);
1063
1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1065}
1066
ec7b4ce4
AF
1067#else /* CONFIG_USER_ONLY */
1068
1069void pmccntr_sync(CPUARMState *env)
1070{
1071}
1072
7c2cb42b 1073#endif
200ac0ef 1074
0614601c
AF
1075static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076 uint64_t value)
1077{
1078 pmccntr_sync(env);
1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080 pmccntr_sync(env);
1081}
1082
c4241c7d 1083static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1084 uint64_t value)
1085{
200ac0ef
PM
1086 value &= (1 << 31);
1087 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
1088}
1089
c4241c7d
PM
1090static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
200ac0ef 1092{
200ac0ef
PM
1093 value &= (1 << 31);
1094 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
1095}
1096
c4241c7d
PM
1097static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098 uint64_t value)
200ac0ef 1099{
200ac0ef 1100 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
1101}
1102
c4241c7d
PM
1103static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
200ac0ef 1105{
fdb86656
WH
1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107 * PMSELR value is equal to or greater than the number of implemented
1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1109 */
1110 if (env->cp15.c9_pmselr == 0x1f) {
1111 pmccfiltr_write(env, ri, value);
1112 }
1113}
1114
1115static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1116{
1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1119 */
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 return env->cp15.pmccfiltr_el0;
1122 } else {
1123 return 0;
1124 }
200ac0ef
PM
1125}
1126
c4241c7d 1127static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1128 uint64_t value)
1129{
6ecd0b6b
AB
1130 if (arm_feature(env, ARM_FEATURE_V8)) {
1131 env->cp15.c9_pmuserenr = value & 0xf;
1132 } else {
1133 env->cp15.c9_pmuserenr = value & 1;
1134 }
200ac0ef
PM
1135}
1136
c4241c7d
PM
1137static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
200ac0ef
PM
1139{
1140 /* We have no event counters so only the C bit can be changed */
1141 value &= (1 << 31);
1142 env->cp15.c9_pminten |= value;
200ac0ef
PM
1143}
1144
c4241c7d
PM
1145static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146 uint64_t value)
200ac0ef
PM
1147{
1148 value &= (1 << 31);
1149 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
1150}
1151
c4241c7d
PM
1152static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153 uint64_t value)
8641136c 1154{
a505d7fe
PM
1155 /* Note that even though the AArch64 view of this register has bits
1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157 * architectural requirements for bits which are RES0 only in some
1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1160 */
855ea66d 1161 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1162}
1163
64e0e2de
EI
1164static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1165{
1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167 * For bits that vary between AArch32/64, code needs to check the
1168 * current execution mode before directly using the feature bit.
1169 */
1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1171
1172 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173 valid_mask &= ~SCR_HCE;
1174
1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176 * supported if EL2 exists. The bit is UNK/SBZP when
1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178 * when EL2 is unavailable.
4eb27640 1179 * On ARMv8, this bit is always available.
64e0e2de 1180 */
4eb27640
GB
1181 if (arm_feature(env, ARM_FEATURE_V7) &&
1182 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1183 valid_mask &= ~SCR_SMD;
1184 }
1185 }
1186
1187 /* Clear all-context RES0 bits. */
1188 value &= valid_mask;
1189 raw_write(env, ri, value);
1190}
1191
c4241c7d 1192static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1193{
1194 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1195
1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197 * bank
1198 */
1199 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200 ri->secure & ARM_CP_SECSTATE_S);
1201
1202 return cpu->ccsidr[index];
776d4e5c
PM
1203}
1204
c4241c7d
PM
1205static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
776d4e5c 1207{
8d5c773e 1208 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1209}
1210
1090b9c6
PM
1211static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1212{
1213 CPUState *cs = ENV_GET_CPU(env);
1214 uint64_t ret = 0;
1215
1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217 ret |= CPSR_I;
1218 }
1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220 ret |= CPSR_F;
1221 }
1222 /* External aborts are not possible in QEMU so A bit is always clear */
1223 return ret;
1224}
1225
e9aa6c21 1226static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1230 /* Performance monitors are implementation defined in v7,
1231 * but with an ARM recommended set of registers, which we
1232 * follow (although we don't actually implement any counters)
1233 *
1234 * Performance registers fall into three categories:
1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1240 */
1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1242 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1244 .writefn = pmcntenset_write,
1245 .accessfn = pmreg_access,
1246 .raw_writefn = raw_write },
8521466b
AF
1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249 .access = PL0_RW, .accessfn = pmreg_access,
1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1253 .access = PL0_RW,
1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1255 .accessfn = pmreg_access,
1256 .writefn = pmcntenclr_write,
7a0e58fa 1257 .type = ARM_CP_ALIAS },
8521466b
AF
1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1261 .type = ARM_CP_ALIAS,
8521466b
AF
1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263 .writefn = pmcntenclr_write },
200ac0ef
PM
1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1266 .accessfn = pmreg_access,
1267 .writefn = pmovsr_write,
1268 .raw_writefn = raw_write },
978364f1
AF
1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271 .access = PL0_RW, .accessfn = pmreg_access,
1272 .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274 .writefn = pmovsr_write,
1275 .raw_writefn = raw_write },
fcd25206 1276 /* Unimplemented so WI. */
200ac0ef 1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
6ecd0b6b 1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
7c2cb42b 1279#ifndef CONFIG_USER_ONLY
6b040780
WH
1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281 .access = PL0_RW, .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
1284 .raw_writefn = raw_write},
1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 1287 .access = PL0_RW, .accessfn = pmreg_access_selr,
6b040780
WH
1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 1292 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 1293 .accessfn = pmreg_access_ccntr },
8521466b
AF
1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
8521466b
AF
1297 .type = ARM_CP_IO,
1298 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 1299#endif
8521466b
AF
1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 1302 .writefn = pmccfiltr_write,
8521466b
AF
1303 .access = PL0_RW, .accessfn = pmreg_access,
1304 .type = ARM_CP_IO,
1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306 .resetvalue = 0, },
200ac0ef 1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
fdb86656
WH
1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
fcd25206 1314 /* Unimplemented, RAZ/WI. */
200ac0ef 1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206 1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
6ecd0b6b 1317 .accessfn = pmreg_access_xevcntr },
200ac0ef 1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321 .resetvalue = 0,
d4e6df63 1322 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327 .resetvalue = 0,
1328 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 1330 .access = PL1_RW, .accessfn = access_tpm,
e6ec5457
WH
1331 .type = ARM_CP_ALIAS,
1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 1333 .resetvalue = 0,
d4e6df63 1334 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337 .access = PL1_RW, .accessfn = access_tpm,
1338 .type = ARM_CP_IO,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340 .writefn = pmintenset_write, .raw_writefn = raw_write,
1341 .resetvalue = 0x0 },
200ac0ef 1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1fce1ba9 1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
200ac0ef 1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1345 .writefn = pmintenclr_write, },
978364f1
AF
1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1fce1ba9 1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
978364f1
AF
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenclr_write },
7da845b0
PM
1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360 * just RAZ for all cores:
1361 */
0ff644a7
PM
1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1365 /* Auxiliary fault status registers: these also are IMPDEF, and we
1366 * choose to RAZ/WI for all cores.
1367 */
1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1374 /* MAIR can just read-as-written because we don't implement caches
1375 * and so don't need to care about memory attributes.
1376 */
1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1380 .resetvalue = 0 },
4cfb8ad8
PM
1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384 .resetvalue = 0 },
b0fe2427
PM
1385 /* For non-long-descriptor page tables these are PRRR and NMRR;
1386 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1387 */
1281f8e3 1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1389 * allows them to assign the correct fieldoffset based on the endianness
1390 * handled in the field definitions.
1391 */
a903c449 1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1396 .resetfn = arm_cp_reset_ignore },
a903c449 1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1401 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1405 /* 32 bit ITLB invalidates */
1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1412 /* 32 bit DTLB invalidates */
1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1419 /* 32 bit TLB invalidates */
1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1428 REGINFO_SENTINEL
1429};
1430
1431static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432 /* 32 bit TLB invalidates, Inner Shareable */
1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1438 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1439 .writefn = tlbiasid_is_write },
995939a6 1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1441 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1442 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1443 REGINFO_SENTINEL
1444};
1445
c4241c7d
PM
1446static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
c326b979
PM
1448{
1449 value &= 1;
1450 env->teecr = value;
c326b979
PM
1451}
1452
3f208fd7
PM
1453static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454 bool isread)
c326b979 1455{
dcbff19b 1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1457 return CP_ACCESS_TRAP;
c326b979 1458 }
92611c00 1459 return CP_ACCESS_OK;
c326b979
PM
1460}
1461
1462static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465 .resetvalue = 0,
1466 .writefn = teecr_write },
1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1469 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1470 REGINFO_SENTINEL
1471};
1472
4d31c596 1473static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476 .access = PL0_RW,
54bf36ed 1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479 .access = PL0_RW,
54bf36ed
FA
1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1482 .resetfn = arm_cp_reset_ignore },
1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485 .access = PL0_R|PL1_W,
54bf36ed
FA
1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487 .resetvalue = 0},
4d31c596
PM
1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489 .access = PL0_R|PL1_W,
54bf36ed
FA
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1492 .resetfn = arm_cp_reset_ignore },
54bf36ed 1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1495 .access = PL1_RW,
54bf36ed
FA
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498 .access = PL1_RW,
1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501 .resetvalue = 0 },
4d31c596
PM
1502 REGINFO_SENTINEL
1503};
1504
55d284af
PM
1505#ifndef CONFIG_USER_ONLY
1506
3f208fd7
PM
1507static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508 bool isread)
00108f2d 1509{
75502672
PM
1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511 * Writable only at the highest implemented exception level.
1512 */
1513 int el = arm_current_el(env);
1514
1515 switch (el) {
1516 case 0:
1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518 return CP_ACCESS_TRAP;
1519 }
1520 break;
1521 case 1:
1522 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523 arm_is_secure_below_el3(env)) {
1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525 return CP_ACCESS_TRAP_UNCATEGORIZED;
1526 }
1527 break;
1528 case 2:
1529 case 3:
1530 break;
00108f2d 1531 }
75502672
PM
1532
1533 if (!isread && el < arm_highest_el(env)) {
1534 return CP_ACCESS_TRAP_UNCATEGORIZED;
1535 }
1536
00108f2d
PM
1537 return CP_ACCESS_OK;
1538}
1539
3f208fd7
PM
1540static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541 bool isread)
00108f2d 1542{
0b6440af
EI
1543 unsigned int cur_el = arm_current_el(env);
1544 bool secure = arm_is_secure(env);
1545
00108f2d 1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1547 if (cur_el == 0 &&
00108f2d
PM
1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549 return CP_ACCESS_TRAP;
1550 }
0b6440af
EI
1551
1552 if (arm_feature(env, ARM_FEATURE_EL2) &&
1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555 return CP_ACCESS_TRAP_EL2;
1556 }
00108f2d
PM
1557 return CP_ACCESS_OK;
1558}
1559
3f208fd7
PM
1560static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561 bool isread)
00108f2d 1562{
0b6440af
EI
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1565
00108f2d
PM
1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567 * EL0[PV]TEN is zero.
1568 */
0b6440af 1569 if (cur_el == 0 &&
00108f2d
PM
1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571 return CP_ACCESS_TRAP;
1572 }
0b6440af
EI
1573
1574 if (arm_feature(env, ARM_FEATURE_EL2) &&
1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577 return CP_ACCESS_TRAP_EL2;
1578 }
00108f2d
PM
1579 return CP_ACCESS_OK;
1580}
1581
1582static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
1583 const ARMCPRegInfo *ri,
1584 bool isread)
00108f2d 1585{
3f208fd7 1586 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1587}
1588
1589static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
1590 const ARMCPRegInfo *ri,
1591 bool isread)
00108f2d 1592{
3f208fd7 1593 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1594}
1595
3f208fd7
PM
1596static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597 bool isread)
00108f2d 1598{
3f208fd7 1599 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1600}
1601
3f208fd7
PM
1602static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603 bool isread)
00108f2d 1604{
3f208fd7 1605 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1606}
1607
b4d3978c 1608static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
1609 const ARMCPRegInfo *ri,
1610 bool isread)
b4d3978c
PM
1611{
1612 /* The AArch64 register view of the secure physical timer is
1613 * always accessible from EL3, and configurably accessible from
1614 * Secure EL1.
1615 */
1616 switch (arm_current_el(env)) {
1617 case 1:
1618 if (!arm_is_secure(env)) {
1619 return CP_ACCESS_TRAP;
1620 }
1621 if (!(env->cp15.scr_el3 & SCR_ST)) {
1622 return CP_ACCESS_TRAP_EL3;
1623 }
1624 return CP_ACCESS_OK;
1625 case 0:
1626 case 2:
1627 return CP_ACCESS_TRAP;
1628 case 3:
1629 return CP_ACCESS_OK;
1630 default:
1631 g_assert_not_reached();
1632 }
1633}
1634
55d284af
PM
1635static uint64_t gt_get_countervalue(CPUARMState *env)
1636{
bc72ad67 1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1638}
1639
1640static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1641{
1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1643
1644 if (gt->ctl & 1) {
1645 /* Timer enabled: calculate and set current ISTATUS, irq, and
1646 * reset timer to when ISTATUS next has to change
1647 */
edac4d8a
EI
1648 uint64_t offset = timeridx == GTIMER_VIRT ?
1649 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1650 uint64_t count = gt_get_countervalue(&cpu->env);
1651 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1652 int istatus = count - offset >= gt->cval;
55d284af 1653 uint64_t nexttick;
194cbc49 1654 int irqstate;
55d284af
PM
1655
1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
1657
1658 irqstate = (istatus && !(gt->ctl & 2));
1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1660
55d284af
PM
1661 if (istatus) {
1662 /* Next transition is when count rolls back over to zero */
1663 nexttick = UINT64_MAX;
1664 } else {
1665 /* Next transition is when we hit cval */
edac4d8a 1666 nexttick = gt->cval + offset;
55d284af
PM
1667 }
1668 /* Note that the desired next expiry time might be beyond the
1669 * signed-64-bit range of a QEMUTimer -- in this case we just
1670 * set the timer for as far in the future as possible. When the
1671 * timer expires we will reset the timer for any remaining period.
1672 */
1673 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674 nexttick = INT64_MAX / GTIMER_SCALE;
1675 }
bc72ad67 1676 timer_mod(cpu->gt_timer[timeridx], nexttick);
194cbc49 1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
1678 } else {
1679 /* Timer disabled: ISTATUS and timer output always clear */
1680 gt->ctl &= ~4;
1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1682 timer_del(cpu->gt_timer[timeridx]);
194cbc49 1683 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
1684 }
1685}
1686
0e3eca4c
EI
1687static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688 int timeridx)
55d284af
PM
1689{
1690 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1691
bc72ad67 1692 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1693}
1694
c4241c7d 1695static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1696{
c4241c7d 1697 return gt_get_countervalue(env);
55d284af
PM
1698}
1699
edac4d8a
EI
1700static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701{
1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1703}
1704
c4241c7d 1705static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1706 int timeridx,
c4241c7d 1707 uint64_t value)
55d284af 1708{
194cbc49 1709 trace_arm_gt_cval_write(timeridx, value);
55d284af
PM
1710 env->cp15.c14_timer[timeridx].cval = value;
1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1712}
c4241c7d 1713
0e3eca4c
EI
1714static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715 int timeridx)
55d284af 1716{
edac4d8a 1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1718
c4241c7d 1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1720 (gt_get_countervalue(env) - offset));
55d284af
PM
1721}
1722
c4241c7d 1723static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1724 int timeridx,
c4241c7d 1725 uint64_t value)
55d284af 1726{
edac4d8a 1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1728
194cbc49 1729 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1731 sextract64(value, 0, 32);
55d284af 1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1733}
1734
c4241c7d 1735static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1736 int timeridx,
c4241c7d 1737 uint64_t value)
55d284af
PM
1738{
1739 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1741
194cbc49 1742 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1744 if ((oldval ^ value) & 1) {
1745 /* Enable toggled */
1746 gt_recalc_timer(cpu, timeridx);
d3afacc7 1747 } else if ((oldval ^ value) & 2) {
55d284af
PM
1748 /* IMASK toggled: don't need to recalculate,
1749 * just set the interrupt line based on ISTATUS
1750 */
194cbc49
PM
1751 int irqstate = (oldval & 4) && !(value & 2);
1752
1753 trace_arm_gt_imask_toggle(timeridx, irqstate);
1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 1755 }
55d284af
PM
1756}
1757
0e3eca4c
EI
1758static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1759{
1760 gt_timer_reset(env, ri, GTIMER_PHYS);
1761}
1762
1763static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1765{
1766 gt_cval_write(env, ri, GTIMER_PHYS, value);
1767}
1768
1769static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1770{
1771 return gt_tval_read(env, ri, GTIMER_PHYS);
1772}
1773
1774static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775 uint64_t value)
1776{
1777 gt_tval_write(env, ri, GTIMER_PHYS, value);
1778}
1779
1780static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 uint64_t value)
1782{
1783 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1784}
1785
1786static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787{
1788 gt_timer_reset(env, ri, GTIMER_VIRT);
1789}
1790
1791static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1793{
1794 gt_cval_write(env, ri, GTIMER_VIRT, value);
1795}
1796
1797static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798{
1799 return gt_tval_read(env, ri, GTIMER_VIRT);
1800}
1801
1802static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1804{
1805 gt_tval_write(env, ri, GTIMER_VIRT, value);
1806}
1807
1808static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1810{
1811 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1812}
1813
edac4d8a
EI
1814static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816{
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1818
194cbc49 1819 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
1820 raw_write(env, ri, value);
1821 gt_recalc_timer(cpu, GTIMER_VIRT);
1822}
1823
b0e66d95
EI
1824static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825{
1826 gt_timer_reset(env, ri, GTIMER_HYP);
1827}
1828
1829static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
1831{
1832 gt_cval_write(env, ri, GTIMER_HYP, value);
1833}
1834
1835static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1836{
1837 return gt_tval_read(env, ri, GTIMER_HYP);
1838}
1839
1840static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1842{
1843 gt_tval_write(env, ri, GTIMER_HYP, value);
1844}
1845
1846static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1848{
1849 gt_ctl_write(env, ri, GTIMER_HYP, value);
1850}
1851
b4d3978c
PM
1852static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853{
1854 gt_timer_reset(env, ri, GTIMER_SEC);
1855}
1856
1857static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1859{
1860 gt_cval_write(env, ri, GTIMER_SEC, value);
1861}
1862
1863static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864{
1865 return gt_tval_read(env, ri, GTIMER_SEC);
1866}
1867
1868static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 uint64_t value)
1870{
1871 gt_tval_write(env, ri, GTIMER_SEC, value);
1872}
1873
1874static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1876{
1877 gt_ctl_write(env, ri, GTIMER_SEC, value);
1878}
1879
55d284af
PM
1880void arm_gt_ptimer_cb(void *opaque)
1881{
1882 ARMCPU *cpu = opaque;
1883
1884 gt_recalc_timer(cpu, GTIMER_PHYS);
1885}
1886
1887void arm_gt_vtimer_cb(void *opaque)
1888{
1889 ARMCPU *cpu = opaque;
1890
1891 gt_recalc_timer(cpu, GTIMER_VIRT);
1892}
1893
b0e66d95
EI
1894void arm_gt_htimer_cb(void *opaque)
1895{
1896 ARMCPU *cpu = opaque;
1897
1898 gt_recalc_timer(cpu, GTIMER_HYP);
1899}
1900
b4d3978c
PM
1901void arm_gt_stimer_cb(void *opaque)
1902{
1903 ARMCPU *cpu = opaque;
1904
1905 gt_recalc_timer(cpu, GTIMER_SEC);
1906}
1907
55d284af
PM
1908static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909 /* Note that CNTFRQ is purely reads-as-written for the benefit
1910 * of software; writing it doesn't actually change the timer frequency.
1911 * Our reset value matches the fixed frequency we implement the timer at.
1912 */
1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1914 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1917 },
1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1923 },
1924 /* overall control: mostly access permissions */
a7adc4b7
PM
1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1927 .access = PL1_RW,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929 .resetvalue = 0,
1930 },
1931 /* per-timer control */
1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1933 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1935 .accessfn = gt_ptimer_access,
1936 .fieldoffset = offsetoflow32(CPUARMState,
1937 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1939 },
9ff9dd3c
PM
1940 { .name = "CNTP_CTL(S)",
1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942 .secure = ARM_CP_SECSTATE_S,
1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944 .accessfn = gt_ptimer_access,
1945 .fieldoffset = offsetoflow32(CPUARMState,
1946 cp15.c14_timer[GTIMER_SEC].ctl),
1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1948 },
a7adc4b7
PM
1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1952 .accessfn = gt_ptimer_access,
55d284af
PM
1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954 .resetvalue = 0,
0e3eca4c 1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1956 },
1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1959 .accessfn = gt_vtimer_access,
1960 .fieldoffset = offsetoflow32(CPUARMState,
1961 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1963 },
1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1967 .accessfn = gt_vtimer_access,
55d284af
PM
1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969 .resetvalue = 0,
0e3eca4c 1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1971 },
1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1974 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1976 .accessfn = gt_ptimer_access,
0e3eca4c 1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1978 },
9ff9dd3c
PM
1979 { .name = "CNTP_TVAL(S)",
1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983 .accessfn = gt_ptimer_access,
1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1985 },
a7adc4b7
PM
1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1991 },
55d284af 1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1994 .accessfn = gt_vtimer_access,
0e3eca4c 1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1996 },
a7adc4b7
PM
1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 2002 },
55d284af
PM
2003 /* The counter itself */
2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2006 .accessfn = gt_pct_access,
a7adc4b7
PM
2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2008 },
2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
2013 },
2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2016 .accessfn = gt_vct_access,
edac4d8a 2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
2018 },
2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
2023 },
2024 /* Comparison value, indicating when the timer goes off */
2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2026 .secure = ARM_CP_SECSTATE_NS,
55d284af 2027 .access = PL1_RW | PL0_R,
7a0e58fa 2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 2030 .accessfn = gt_ptimer_access,
0e3eca4c 2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 2032 },
9ff9dd3c
PM
2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034 .secure = ARM_CP_SECSTATE_S,
2035 .access = PL1_RW | PL0_R,
2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038 .accessfn = gt_ptimer_access,
2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2040 },
a7adc4b7
PM
2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043 .access = PL1_RW | PL0_R,
2044 .type = ARM_CP_IO,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 2046 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
2048 },
2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050 .access = PL1_RW | PL0_R,
7a0e58fa 2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 2053 .accessfn = gt_vtimer_access,
0e3eca4c 2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
2055 },
2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058 .access = PL1_RW | PL0_R,
2059 .type = ARM_CP_IO,
2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 2063 },
b4d3978c
PM
2064 /* Secure timer -- this is actually restricted to only EL3
2065 * and configurably Secure-EL1 via the accessfn.
2066 */
2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070 .accessfn = gt_stimer_access,
2071 .readfn = gt_sec_tval_read,
2072 .writefn = gt_sec_tval_write,
2073 .resetfn = gt_sec_timer_reset,
2074 },
2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077 .type = ARM_CP_IO, .access = PL1_RW,
2078 .accessfn = gt_stimer_access,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080 .resetvalue = 0,
2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082 },
2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085 .type = ARM_CP_IO, .access = PL1_RW,
2086 .accessfn = gt_stimer_access,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2089 },
55d284af
PM
2090 REGINFO_SENTINEL
2091};
2092
2093#else
2094/* In user-mode none of the generic timer registers are accessible,
bc72ad67 2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
2096 * so instead just don't register any of them.
2097 */
6cc7a3ae 2098static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
2099 REGINFO_SENTINEL
2100};
2101
55d284af
PM
2102#endif
2103
c4241c7d 2104static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 2105{
891a2fe7 2106 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 2107 raw_write(env, ri, value);
891a2fe7 2108 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 2109 raw_write(env, ri, value & 0xfffff6ff);
4a501606 2110 } else {
8d5c773e 2111 raw_write(env, ri, value & 0xfffff1ff);
4a501606 2112 }
4a501606
PM
2113}
2114
2115#ifndef CONFIG_USER_ONLY
2116/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 2117
3f208fd7
PM
2118static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119 bool isread)
92611c00
PM
2120{
2121 if (ri->opc2 & 4) {
87562e4f
PM
2122 /* The ATS12NSO* operations must trap to EL3 if executed in
2123 * Secure EL1 (which can only happen if EL3 is AArch64).
2124 * They are simply UNDEF if executed from NS EL1.
2125 * They function normally from EL2 or EL3.
92611c00 2126 */
87562e4f
PM
2127 if (arm_current_el(env) == 1) {
2128 if (arm_is_secure_below_el3(env)) {
2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2130 }
2131 return CP_ACCESS_TRAP_UNCATEGORIZED;
2132 }
92611c00
PM
2133 }
2134 return CP_ACCESS_OK;
2135}
2136
060e8a48 2137static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
03ae85f8 2138 MMUAccessType access_type, ARMMMUIdx mmu_idx)
4a501606 2139{
a8170e5e 2140 hwaddr phys_addr;
4a501606
PM
2141 target_ulong page_size;
2142 int prot;
b7cc4e82
PC
2143 uint32_t fsr;
2144 bool ret;
01c097f7 2145 uint64_t par64;
8bf5b6a9 2146 MemTxAttrs attrs = {};
e14b5a23 2147 ARMMMUFaultInfo fi = {};
4a501606 2148
d3649702 2149 ret = get_phys_addr(env, value, access_type, mmu_idx,
e14b5a23 2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
702a9357 2151 if (extended_addresses_enabled(env)) {
b7cc4e82 2152 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
2153 * translation table format, but with WnR always clear.
2154 * Convert it to a 64-bit PAR.
2155 */
01c097f7 2156 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 2157 if (!ret) {
702a9357 2158 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
2159 if (!attrs.secure) {
2160 par64 |= (1 << 9); /* NS */
2161 }
702a9357 2162 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 2163 } else {
702a9357 2164 par64 |= 1; /* F */
b7cc4e82 2165 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
2166 /* Note that S2WLK and FSTAGE are always zero, because we don't
2167 * implement virtualization and therefore there can't be a stage 2
2168 * fault.
2169 */
4a501606
PM
2170 }
2171 } else {
b7cc4e82 2172 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
2173 * translation table format (with WnR always clear).
2174 * Convert it to a 32-bit PAR.
2175 */
b7cc4e82 2176 if (!ret) {
702a9357
PM
2177 /* We do not set any attribute bits in the PAR */
2178 if (page_size == (1 << 24)
2179 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 2180 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 2181 } else {
01c097f7 2182 par64 = phys_addr & 0xfffff000;
702a9357 2183 }
8bf5b6a9
PM
2184 if (!attrs.secure) {
2185 par64 |= (1 << 9); /* NS */
2186 }
702a9357 2187 } else {
b7cc4e82
PC
2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189 ((fsr & 0xf) << 1) | 1;
702a9357 2190 }
4a501606 2191 }
060e8a48
PM
2192 return par64;
2193}
2194
2195static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2196{
03ae85f8 2197 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 2198 uint64_t par64;
d3649702
PM
2199 ARMMMUIdx mmu_idx;
2200 int el = arm_current_el(env);
2201 bool secure = arm_is_secure_below_el3(env);
060e8a48 2202
d3649702
PM
2203 switch (ri->opc2 & 6) {
2204 case 0:
2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206 switch (el) {
2207 case 3:
2208 mmu_idx = ARMMMUIdx_S1E3;
2209 break;
2210 case 2:
2211 mmu_idx = ARMMMUIdx_S1NSE1;
2212 break;
2213 case 1:
2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215 break;
2216 default:
2217 g_assert_not_reached();
2218 }
2219 break;
2220 case 2:
2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222 switch (el) {
2223 case 3:
2224 mmu_idx = ARMMMUIdx_S1SE0;
2225 break;
2226 case 2:
2227 mmu_idx = ARMMMUIdx_S1NSE0;
2228 break;
2229 case 1:
2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231 break;
2232 default:
2233 g_assert_not_reached();
2234 }
2235 break;
2236 case 4:
2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238 mmu_idx = ARMMMUIdx_S12NSE1;
2239 break;
2240 case 6:
2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242 mmu_idx = ARMMMUIdx_S12NSE0;
2243 break;
2244 default:
2245 g_assert_not_reached();
2246 }
2247
2248 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2249
2250 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2251}
060e8a48 2252
14db7fe0
PM
2253static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 uint64_t value)
2255{
03ae85f8 2256 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
2257 uint64_t par64;
2258
2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2260
2261 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2262}
2263
3f208fd7
PM
2264static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265 bool isread)
2a47df95
PM
2266{
2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268 return CP_ACCESS_TRAP;
2269 }
2270 return CP_ACCESS_OK;
2271}
2272
060e8a48
PM
2273static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2275{
03ae85f8 2276 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702
PM
2277 ARMMMUIdx mmu_idx;
2278 int secure = arm_is_secure_below_el3(env);
2279
2280 switch (ri->opc2 & 6) {
2281 case 0:
2282 switch (ri->opc1) {
2283 case 0: /* AT S1E1R, AT S1E1W */
2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285 break;
2286 case 4: /* AT S1E2R, AT S1E2W */
2287 mmu_idx = ARMMMUIdx_S1E2;
2288 break;
2289 case 6: /* AT S1E3R, AT S1E3W */
2290 mmu_idx = ARMMMUIdx_S1E3;
2291 break;
2292 default:
2293 g_assert_not_reached();
2294 }
2295 break;
2296 case 2: /* AT S1E0R, AT S1E0W */
2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298 break;
2299 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2301 break;
2302 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2304 break;
2305 default:
2306 g_assert_not_reached();
2307 }
060e8a48 2308
d3649702 2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2310}
4a501606
PM
2311#endif
2312
2313static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2318 .writefn = par_write },
2319#ifndef CONFIG_USER_ONLY
87562e4f 2320 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2322 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2323 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2324#endif
2325 REGINFO_SENTINEL
2326};
2327
18032bec
PM
2328/* Return basic MPU access permission bits. */
2329static uint32_t simple_mpu_ap_bits(uint32_t val)
2330{
2331 uint32_t ret;
2332 uint32_t mask;
2333 int i;
2334 ret = 0;
2335 mask = 3;
2336 for (i = 0; i < 16; i += 2) {
2337 ret |= (val >> i) & mask;
2338 mask <<= 2;
2339 }
2340 return ret;
2341}
2342
2343/* Pad basic MPU access permission bits to extended format. */
2344static uint32_t extended_mpu_ap_bits(uint32_t val)
2345{
2346 uint32_t ret;
2347 uint32_t mask;
2348 int i;
2349 ret = 0;
2350 mask = 3;
2351 for (i = 0; i < 16; i += 2) {
2352 ret |= (val & mask) << i;
2353 mask <<= 2;
2354 }
2355 return ret;
2356}
2357
c4241c7d
PM
2358static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
18032bec 2360{
7e09797c 2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
2362}
2363
c4241c7d 2364static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2365{
7e09797c 2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
2367}
2368
c4241c7d
PM
2369static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370 uint64_t value)
18032bec 2371{
7e09797c 2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
2373}
2374
c4241c7d 2375static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2376{
7e09797c 2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
2378}
2379
6cb0b013
PC
2380static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381{
2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2383
2384 if (!u32p) {
2385 return 0;
2386 }
2387
1bc04a88 2388 u32p += env->pmsav7.rnr[M_REG_NS];
6cb0b013
PC
2389 return *u32p;
2390}
2391
2392static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393 uint64_t value)
2394{
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397
2398 if (!u32p) {
2399 return;
2400 }
2401
1bc04a88 2402 u32p += env->pmsav7.rnr[M_REG_NS];
d10eb08f 2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
2404 *u32p = value;
2405}
2406
6cb0b013
PC
2407static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408 uint64_t value)
2409{
2410 ARMCPU *cpu = arm_env_get_cpu(env);
2411 uint32_t nrgs = cpu->pmsav7_dregion;
2412
2413 if (value >= nrgs) {
2414 qemu_log_mask(LOG_GUEST_ERROR,
2415 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2416 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2417 return;
2418 }
2419
2420 raw_write(env, ri, value);
2421}
2422
2423static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
69ceea64
PM
2424 /* Reset for all these registers is handled in arm_cpu_reset(),
2425 * because the PMSAv7 is also used by M-profile CPUs, which do
2426 * not register cpregs but still need the state to be reset.
2427 */
6cb0b013
PC
2428 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2429 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2430 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
2431 .readfn = pmsav7_read, .writefn = pmsav7_write,
2432 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2433 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2434 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2435 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
2436 .readfn = pmsav7_read, .writefn = pmsav7_write,
2437 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2438 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2439 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2440 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
2441 .readfn = pmsav7_read, .writefn = pmsav7_write,
2442 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2443 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2444 .access = PL1_RW,
1bc04a88 2445 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
69ceea64
PM
2446 .writefn = pmsav7_rgnr_write,
2447 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2448 REGINFO_SENTINEL
2449};
2450
18032bec
PM
2451static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2452 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2453 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2454 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2455 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2456 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2457 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2459 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2460 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2461 .access = PL1_RW,
7e09797c
PM
2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2463 .resetvalue = 0, },
18032bec
PM
2464 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2465 .access = PL1_RW,
7e09797c
PM
2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2467 .resetvalue = 0, },
ecce5c3c
PM
2468 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2469 .access = PL1_RW,
2470 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2471 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2472 .access = PL1_RW,
2473 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2474 /* Protection region base and size registers */
e508a92b
PM
2475 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2476 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2477 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2478 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2479 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2480 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2481 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2482 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2483 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2484 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2485 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2486 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2487 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2488 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2489 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2490 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2491 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2492 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2493 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2494 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2495 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2496 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2497 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2498 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2499 REGINFO_SENTINEL
2500};
2501
c4241c7d
PM
2502static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503 uint64_t value)
ecce5c3c 2504{
11f136ee 2505 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2506 int maskshift = extract32(value, 0, 3);
2507
e389be16
FA
2508 if (!arm_feature(env, ARM_FEATURE_V8)) {
2509 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2510 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2511 * using Long-desciptor translation table format */
2512 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2513 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2514 /* In an implementation that includes the Security Extensions
2515 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2516 * Short-descriptor translation table format.
2517 */
2518 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2519 } else {
2520 value &= TTBCR_N;
2521 }
e42c4db3 2522 }
e389be16 2523
b6af0975 2524 /* Update the masks corresponding to the TCR bank being written
11f136ee 2525 * Note that we always calculate mask and base_mask, but
e42c4db3 2526 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2527 * for long-descriptor tables the TCR fields are used differently
2528 * and the mask and base_mask values are meaningless.
e42c4db3 2529 */
11f136ee
FA
2530 tcr->raw_tcr = value;
2531 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2532 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2533}
2534
c4241c7d
PM
2535static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536 uint64_t value)
d4e6df63 2537{
00c8cb0a
AF
2538 ARMCPU *cpu = arm_env_get_cpu(env);
2539
d4e6df63
PM
2540 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2541 /* With LPAE the TTBCR could result in a change of ASID
2542 * via the TTBCR.A1 bit, so do a TLB flush.
2543 */
d10eb08f 2544 tlb_flush(CPU(cpu));
d4e6df63 2545 }
c4241c7d 2546 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2547}
2548
ecce5c3c
PM
2549static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2550{
11f136ee
FA
2551 TCR *tcr = raw_ptr(env, ri);
2552
2553 /* Reset both the TCR as well as the masks corresponding to the bank of
2554 * the TCR being reset.
2555 */
2556 tcr->raw_tcr = 0;
2557 tcr->mask = 0;
2558 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2559}
2560
cb2e37df
PM
2561static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562 uint64_t value)
2563{
00c8cb0a 2564 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2565 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2566
cb2e37df 2567 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 2568 tlb_flush(CPU(cpu));
11f136ee 2569 tcr->raw_tcr = value;
cb2e37df
PM
2570}
2571
327ed10f
PM
2572static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573 uint64_t value)
2574{
2575 /* 64 bit accesses to the TTBRs can change the ASID and so we
2576 * must flush the TLB.
2577 */
2578 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2579 ARMCPU *cpu = arm_env_get_cpu(env);
2580
d10eb08f 2581 tlb_flush(CPU(cpu));
327ed10f
PM
2582 }
2583 raw_write(env, ri, value);
2584}
2585
b698e9cf
EI
2586static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587 uint64_t value)
2588{
2589 ARMCPU *cpu = arm_env_get_cpu(env);
2590 CPUState *cs = CPU(cpu);
2591
2592 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2593 if (raw_read(env, ri) != value) {
0336cbf8 2594 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2595 ARMMMUIdxBit_S12NSE1 |
2596 ARMMMUIdxBit_S12NSE0 |
2597 ARMMMUIdxBit_S2NS);
b698e9cf
EI
2598 raw_write(env, ri, value);
2599 }
2600}
2601
8e5d75c9 2602static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2603 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2604 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2605 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2606 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2607 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2608 .access = PL1_RW, .resetvalue = 0,
2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2610 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2611 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2612 .access = PL1_RW, .resetvalue = 0,
2613 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2614 offsetof(CPUARMState, cp15.dfar_ns) } },
2615 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2616 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2617 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2618 .resetvalue = 0, },
2619 REGINFO_SENTINEL
2620};
2621
2622static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2623 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2624 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2625 .access = PL1_RW,
d81c519c 2626 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2627 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2628 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2629 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2630 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2631 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2632 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2633 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2634 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2636 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2637 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2638 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2639 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2640 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2641 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2642 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2643 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2644 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2645 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2646 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2647 REGINFO_SENTINEL
2648};
2649
c4241c7d
PM
2650static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2651 uint64_t value)
1047b9d7
PM
2652{
2653 env->cp15.c15_ticonfig = value & 0xe7;
2654 /* The OS_TYPE bit in this register changes the reported CPUID! */
2655 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2656 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2657}
2658
c4241c7d
PM
2659static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2660 uint64_t value)
1047b9d7
PM
2661{
2662 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2663}
2664
c4241c7d
PM
2665static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2666 uint64_t value)
1047b9d7
PM
2667{
2668 /* Wait-for-interrupt (deprecated) */
c3affe56 2669 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2670}
2671
c4241c7d
PM
2672static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673 uint64_t value)
c4804214
PM
2674{
2675 /* On OMAP there are registers indicating the max/min index of dcache lines
2676 * containing a dirty line; cache flush operations have to reset these.
2677 */
2678 env->cp15.c15_i_max = 0x000;
2679 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2680}
2681
18032bec
PM
2682static const ARMCPRegInfo omap_cp_reginfo[] = {
2683 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2685 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2686 .resetvalue = 0, },
1047b9d7
PM
2687 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2688 .access = PL1_RW, .type = ARM_CP_NOP },
2689 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2690 .access = PL1_RW,
2691 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2692 .writefn = omap_ticonfig_write },
2693 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2694 .access = PL1_RW,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2696 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2697 .access = PL1_RW, .resetvalue = 0xff0,
2698 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2699 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2700 .access = PL1_RW,
2701 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2702 .writefn = omap_threadid_write },
2703 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2704 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2705 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2706 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2707 /* TODO: Peripheral port remap register:
2708 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2709 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2710 * when MMU is off.
2711 */
c4804214 2712 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2713 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2714 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2715 .writefn = omap_cachemaint_write },
34f90529
PM
2716 { .name = "C9", .cp = 15, .crn = 9,
2717 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2718 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2719 REGINFO_SENTINEL
2720};
2721
c4241c7d
PM
2722static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723 uint64_t value)
1047b9d7 2724{
c0f4af17 2725 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2726}
2727
2728static const ARMCPRegInfo xscale_cp_reginfo[] = {
2729 { .name = "XSCALE_CPAR",
2730 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2731 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2732 .writefn = xscale_cpar_write, },
2771db27
PM
2733 { .name = "XSCALE_AUXCR",
2734 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2735 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2736 .resetvalue = 0, },
3b771579
PM
2737 /* XScale specific cache-lockdown: since we have no cache we NOP these
2738 * and hope the guest does not really rely on cache behaviour.
2739 */
2740 { .name = "XSCALE_LOCK_ICACHE_LINE",
2741 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2742 .access = PL1_W, .type = ARM_CP_NOP },
2743 { .name = "XSCALE_UNLOCK_ICACHE",
2744 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2745 .access = PL1_W, .type = ARM_CP_NOP },
2746 { .name = "XSCALE_DCACHE_LOCK",
2747 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2748 .access = PL1_RW, .type = ARM_CP_NOP },
2749 { .name = "XSCALE_UNLOCK_DCACHE",
2750 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2751 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2752 REGINFO_SENTINEL
2753};
2754
2755static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2756 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2757 * implementation of this implementation-defined space.
2758 * Ideally this should eventually disappear in favour of actually
2759 * implementing the correct behaviour for all cores.
2760 */
2761 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2762 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2763 .access = PL1_RW,
7a0e58fa 2764 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2765 .resetvalue = 0 },
18032bec
PM
2766 REGINFO_SENTINEL
2767};
2768
c4804214
PM
2769static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2770 /* Cache status: RAZ because we have no cache so it's always clean */
2771 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2772 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2773 .resetvalue = 0 },
c4804214
PM
2774 REGINFO_SENTINEL
2775};
2776
2777static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2778 /* We never have a a block transfer operation in progress */
2779 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2780 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2781 .resetvalue = 0 },
30b05bba
PM
2782 /* The cache ops themselves: these all NOP for QEMU */
2783 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2784 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2785 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2786 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2787 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2788 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2790 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2794 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2795 REGINFO_SENTINEL
2796};
2797
2798static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2799 /* The cache test-and-clean instructions always return (1 << 30)
2800 * to indicate that there are no dirty cache lines.
2801 */
2802 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2803 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2804 .resetvalue = (1 << 30) },
c4804214 2805 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2806 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2807 .resetvalue = (1 << 30) },
c4804214
PM
2808 REGINFO_SENTINEL
2809};
2810
34f90529
PM
2811static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2812 /* Ignore ReadBuffer accesses */
2813 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2815 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2816 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2817 REGINFO_SENTINEL
2818};
2819
731de9e6
EI
2820static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2821{
2822 ARMCPU *cpu = arm_env_get_cpu(env);
2823 unsigned int cur_el = arm_current_el(env);
2824 bool secure = arm_is_secure(env);
2825
2826 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2827 return env->cp15.vpidr_el2;
2828 }
2829 return raw_read(env, ri);
2830}
2831
06a7e647 2832static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 2833{
eb5e1d3c
PF
2834 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2835 uint64_t mpidr = cpu->mp_affinity;
2836
81bdde9d 2837 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2838 mpidr |= (1U << 31);
81bdde9d
PM
2839 /* Cores which are uniprocessor (non-coherent)
2840 * but still implement the MP extensions set
a8e81b31 2841 * bit 30. (For instance, Cortex-R5).
81bdde9d 2842 */
a8e81b31
PC
2843 if (cpu->mp_is_up) {
2844 mpidr |= (1u << 30);
2845 }
81bdde9d 2846 }
c4241c7d 2847 return mpidr;
81bdde9d
PM
2848}
2849
06a7e647
EI
2850static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2851{
f0d574d6
EI
2852 unsigned int cur_el = arm_current_el(env);
2853 bool secure = arm_is_secure(env);
2854
2855 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2856 return env->cp15.vmpidr_el2;
2857 }
06a7e647
EI
2858 return mpidr_read_val(env);
2859}
2860
81bdde9d 2861static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2862 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2863 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2864 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2865 REGINFO_SENTINEL
2866};
2867
7ac681cf 2868static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2869 /* NOP AMAIR0/1 */
b0fe2427
PM
2870 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2871 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2872 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2873 .resetvalue = 0 },
b0fe2427 2874 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2875 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2876 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2877 .resetvalue = 0 },
891a2fe7 2878 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2879 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2881 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2882 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2883 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2885 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2886 .writefn = vmsa_ttbr_write, },
891a2fe7 2887 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2888 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2889 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2890 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2891 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2892 REGINFO_SENTINEL
2893};
2894
c4241c7d 2895static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2896{
c4241c7d 2897 return vfp_get_fpcr(env);
b0d2b7d0
PM
2898}
2899
c4241c7d
PM
2900static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
b0d2b7d0
PM
2902{
2903 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2904}
2905
c4241c7d 2906static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2907{
c4241c7d 2908 return vfp_get_fpsr(env);
b0d2b7d0
PM
2909}
2910
c4241c7d
PM
2911static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912 uint64_t value)
b0d2b7d0
PM
2913{
2914 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2915}
2916
3f208fd7
PM
2917static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2918 bool isread)
c2b820fe 2919{
137feaa9 2920 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2921 return CP_ACCESS_TRAP;
2922 }
2923 return CP_ACCESS_OK;
2924}
2925
2926static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927 uint64_t value)
2928{
2929 env->daif = value & PSTATE_DAIF;
2930}
2931
8af35c37 2932static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
2933 const ARMCPRegInfo *ri,
2934 bool isread)
8af35c37
PM
2935{
2936 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2937 * SCTLR_EL1.UCI is set.
2938 */
137feaa9 2939 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2940 return CP_ACCESS_TRAP;
2941 }
2942 return CP_ACCESS_OK;
2943}
2944
dbb1fb27
AB
2945/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2946 * Page D4-1736 (DDI0487A.b)
2947 */
2948
fd3ed969
PM
2949static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950 uint64_t value)
168aa23b 2951{
a67cf277 2952 CPUState *cs = ENV_GET_CPU(env);
dbb1fb27 2953
fd3ed969 2954 if (arm_is_secure_below_el3(env)) {
0336cbf8 2955 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2956 ARMMMUIdxBit_S1SE1 |
2957 ARMMMUIdxBit_S1SE0);
fd3ed969 2958 } else {
0336cbf8 2959 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2960 ARMMMUIdxBit_S12NSE1 |
2961 ARMMMUIdxBit_S12NSE0);
fd3ed969 2962 }
168aa23b
PM
2963}
2964
fd3ed969
PM
2965static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966 uint64_t value)
168aa23b 2967{
a67cf277 2968 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 2969 bool sec = arm_is_secure_below_el3(env);
dbb1fb27 2970
a67cf277
AB
2971 if (sec) {
2972 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2973 ARMMMUIdxBit_S1SE1 |
2974 ARMMMUIdxBit_S1SE0);
a67cf277
AB
2975 } else {
2976 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2977 ARMMMUIdxBit_S12NSE1 |
2978 ARMMMUIdxBit_S12NSE0);
fd3ed969 2979 }
168aa23b
PM
2980}
2981
fd3ed969
PM
2982static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983 uint64_t value)
168aa23b 2984{
fd3ed969
PM
2985 /* Note that the 'ALL' scope must invalidate both stage 1 and
2986 * stage 2 translations, whereas most other scopes only invalidate
2987 * stage 1 translations.
2988 */
00c8cb0a 2989 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
2990 CPUState *cs = CPU(cpu);
2991
2992 if (arm_is_secure_below_el3(env)) {
0336cbf8 2993 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2994 ARMMMUIdxBit_S1SE1 |
2995 ARMMMUIdxBit_S1SE0);
fd3ed969
PM
2996 } else {
2997 if (arm_feature(env, ARM_FEATURE_EL2)) {
0336cbf8 2998 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2999 ARMMMUIdxBit_S12NSE1 |
3000 ARMMMUIdxBit_S12NSE0 |
3001 ARMMMUIdxBit_S2NS);
fd3ed969 3002 } else {
0336cbf8 3003 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3004 ARMMMUIdxBit_S12NSE1 |
3005 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3006 }
3007 }
168aa23b
PM
3008}
3009
fd3ed969 3010static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
3011 uint64_t value)
3012{
fd3ed969
PM
3013 ARMCPU *cpu = arm_env_get_cpu(env);
3014 CPUState *cs = CPU(cpu);
3015
8bd5c820 3016 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3017}
3018
43efaa33
PM
3019static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020 uint64_t value)
3021{
3022 ARMCPU *cpu = arm_env_get_cpu(env);
3023 CPUState *cs = CPU(cpu);
3024
8bd5c820 3025 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3026}
3027
fd3ed969
PM
3028static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3029 uint64_t value)
3030{
3031 /* Note that the 'ALL' scope must invalidate both stage 1 and
3032 * stage 2 translations, whereas most other scopes only invalidate
3033 * stage 1 translations.
3034 */
a67cf277 3035 CPUState *cs = ENV_GET_CPU(env);
fd3ed969
PM
3036 bool sec = arm_is_secure_below_el3(env);
3037 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
a67cf277
AB
3038
3039 if (sec) {
3040 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3041 ARMMMUIdxBit_S1SE1 |
3042 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3043 } else if (has_el2) {
3044 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3045 ARMMMUIdxBit_S12NSE1 |
3046 ARMMMUIdxBit_S12NSE0 |
3047 ARMMMUIdxBit_S2NS);
a67cf277
AB
3048 } else {
3049 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3050 ARMMMUIdxBit_S12NSE1 |
3051 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3052 }
3053}
3054
2bfb9d75
PM
3055static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056 uint64_t value)
3057{
a67cf277 3058 CPUState *cs = ENV_GET_CPU(env);
2bfb9d75 3059
8bd5c820 3060 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
2bfb9d75
PM
3061}
3062
43efaa33
PM
3063static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3065{
a67cf277 3066 CPUState *cs = ENV_GET_CPU(env);
43efaa33 3067
8bd5c820 3068 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3069}
3070
fd3ed969
PM
3071static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072 uint64_t value)
3073{
3074 /* Invalidate by VA, EL1&0 (AArch64 version).
3075 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3076 * since we don't support flush-for-specific-ASID-only or
3077 * flush-last-level-only.
3078 */
3079 ARMCPU *cpu = arm_env_get_cpu(env);
3080 CPUState *cs = CPU(cpu);
3081 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3082
3083 if (arm_is_secure_below_el3(env)) {
0336cbf8 3084 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3085 ARMMMUIdxBit_S1SE1 |
3086 ARMMMUIdxBit_S1SE0);
fd3ed969 3087 } else {
0336cbf8 3088 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3089 ARMMMUIdxBit_S12NSE1 |
3090 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3091 }
3092}
3093
3094static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095 uint64_t value)
fa439fc5 3096{
fd3ed969
PM
3097 /* Invalidate by VA, EL2
3098 * Currently handles both VAE2 and VALE2, since we don't support
3099 * flush-last-level-only.
3100 */
3101 ARMCPU *cpu = arm_env_get_cpu(env);
3102 CPUState *cs = CPU(cpu);
3103 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104
8bd5c820 3105 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3106}
3107
43efaa33
PM
3108static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109 uint64_t value)
3110{
3111 /* Invalidate by VA, EL3
3112 * Currently handles both VAE3 and VALE3, since we don't support
3113 * flush-last-level-only.
3114 */
3115 ARMCPU *cpu = arm_env_get_cpu(env);
3116 CPUState *cs = CPU(cpu);
3117 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3118
8bd5c820 3119 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
43efaa33
PM
3120}
3121
fd3ed969
PM
3122static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123 uint64_t value)
3124{
a67cf277
AB
3125 ARMCPU *cpu = arm_env_get_cpu(env);
3126 CPUState *cs = CPU(cpu);
fd3ed969 3127 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
3128 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3129
a67cf277
AB
3130 if (sec) {
3131 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3132 ARMMMUIdxBit_S1SE1 |
3133 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3134 } else {
3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3136 ARMMMUIdxBit_S12NSE1 |
3137 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3138 }
3139}
3140
fd3ed969
PM
3141static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142 uint64_t value)
fa439fc5 3143{
a67cf277 3144 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 3145 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5 3146
a67cf277 3147 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3148 ARMMMUIdxBit_S1E2);
fa439fc5
PM
3149}
3150
43efaa33
PM
3151static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3152 uint64_t value)
3153{
a67cf277 3154 CPUState *cs = ENV_GET_CPU(env);
43efaa33
PM
3155 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3156
a67cf277 3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3158 ARMMMUIdxBit_S1E3);
43efaa33
PM
3159}
3160
cea66e91
PM
3161static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3162 uint64_t value)
3163{
3164 /* Invalidate by IPA. This has to invalidate any structures that
3165 * contain only stage 2 translation information, but does not need
3166 * to apply to structures that contain combined stage 1 and stage 2
3167 * translation information.
3168 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3169 */
3170 ARMCPU *cpu = arm_env_get_cpu(env);
3171 CPUState *cs = CPU(cpu);
3172 uint64_t pageaddr;
3173
3174 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3175 return;
3176 }
3177
3178 pageaddr = sextract64(value << 12, 0, 48);
3179
8bd5c820 3180 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
cea66e91
PM
3181}
3182
3183static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184 uint64_t value)
3185{
a67cf277 3186 CPUState *cs = ENV_GET_CPU(env);
cea66e91
PM
3187 uint64_t pageaddr;
3188
3189 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3190 return;
3191 }
3192
3193 pageaddr = sextract64(value << 12, 0, 48);
3194
a67cf277 3195 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3196 ARMMMUIdxBit_S2NS);
cea66e91
PM
3197}
3198
3f208fd7
PM
3199static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3200 bool isread)
aca3f40b
PM
3201{
3202 /* We don't implement EL2, so the only control on DC ZVA is the
3203 * bit in the SCTLR which can prohibit access for EL0.
3204 */
137feaa9 3205 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
3206 return CP_ACCESS_TRAP;
3207 }
3208 return CP_ACCESS_OK;
3209}
3210
3211static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3212{
3213 ARMCPU *cpu = arm_env_get_cpu(env);
3214 int dzp_bit = 1 << 4;
3215
3216 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 3217 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
3218 dzp_bit = 0;
3219 }
3220 return cpu->dcz_blocksize | dzp_bit;
3221}
3222
3f208fd7
PM
3223static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3224 bool isread)
f502cfc2 3225{
cdcf1405 3226 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
3227 /* Access to SP_EL0 is undefined if it's being used as
3228 * the stack pointer.
3229 */
3230 return CP_ACCESS_TRAP_UNCATEGORIZED;
3231 }
3232 return CP_ACCESS_OK;
3233}
3234
3235static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3236{
3237 return env->pstate & PSTATE_SP;
3238}
3239
3240static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3241{
3242 update_spsel(env, val);
3243}
3244
137feaa9
FA
3245static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3246 uint64_t value)
3247{
3248 ARMCPU *cpu = arm_env_get_cpu(env);
3249
3250 if (raw_read(env, ri) == value) {
3251 /* Skip the TLB flush if nothing actually changed; Linux likes
3252 * to do a lot of pointless SCTLR writes.
3253 */
3254 return;
3255 }
3256
06312feb
PM
3257 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3258 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3259 value &= ~SCTLR_M;
3260 }
3261
137feaa9
FA
3262 raw_write(env, ri, value);
3263 /* ??? Lots of these bits are not implemented. */
3264 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 3265 tlb_flush(CPU(cpu));
137feaa9
FA
3266}
3267
3f208fd7
PM
3268static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3269 bool isread)
03fbf20f
PM
3270{
3271 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3272 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3273 }
3274 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3275 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3276 }
3277 return CP_ACCESS_OK;
3278}
3279
a8d64e73
PM
3280static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3281 uint64_t value)
3282{
3283 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3284}
3285
b0d2b7d0
PM
3286static const ARMCPRegInfo v8_cp_reginfo[] = {
3287 /* Minimal set of EL0-visible registers. This will need to be expanded
3288 * significantly for system emulation of AArch64 CPUs.
3289 */
3290 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3292 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3293 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3294 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3295 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3296 .access = PL0_RW, .accessfn = aa64_daif_access,
3297 .fieldoffset = offsetof(CPUARMState, daif),
3298 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3299 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3301 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3302 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3304 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3305 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3306 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 3307 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
3308 .readfn = aa64_dczid_read },
3309 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3311 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3312#ifndef CONFIG_USER_ONLY
3313 /* Avoid overhead of an access check that always passes in user-mode */
3314 .accessfn = aa64_zva_access,
3315#endif
3316 },
0eef9d98
PM
3317 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3318 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3319 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
3320 /* Cache ops: all NOPs since we don't emulate caches */
3321 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3323 .access = PL1_W, .type = ARM_CP_NOP },
3324 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3326 .access = PL1_W, .type = ARM_CP_NOP },
3327 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3329 .access = PL0_W, .type = ARM_CP_NOP,
3330 .accessfn = aa64_cacheop_access },
3331 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3333 .access = PL1_W, .type = ARM_CP_NOP },
3334 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3335 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3336 .access = PL1_W, .type = ARM_CP_NOP },
3337 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3339 .access = PL0_W, .type = ARM_CP_NOP,
3340 .accessfn = aa64_cacheop_access },
3341 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3343 .access = PL1_W, .type = ARM_CP_NOP },
3344 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3345 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3346 .access = PL0_W, .type = ARM_CP_NOP,
3347 .accessfn = aa64_cacheop_access },
3348 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3350 .access = PL0_W, .type = ARM_CP_NOP,
3351 .accessfn = aa64_cacheop_access },
3352 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3354 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
3355 /* TLBI operations */
3356 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3357 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 3358 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3359 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3360 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 3362 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3363 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3364 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 3366 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3367 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3368 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3369 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 3370 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3371 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3372 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3373 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3374 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3375 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3376 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3377 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3378 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3379 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3380 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 3382 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3383 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3384 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3385 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 3386 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3387 .writefn = tlbi_aa64_vae1_write },
168aa23b 3388 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3389 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 3390 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3391 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3392 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3393 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 3394 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3395 .writefn = tlbi_aa64_vae1_write },
168aa23b 3396 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3397 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3398 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3399 .writefn = tlbi_aa64_vae1_write },
168aa23b 3400 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3402 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3403 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
3404 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3405 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3406 .access = PL2_W, .type = ARM_CP_NO_RAW,
3407 .writefn = tlbi_aa64_ipas2e1is_write },
3408 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3410 .access = PL2_W, .type = ARM_CP_NO_RAW,
3411 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
3412 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3414 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3415 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
3416 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3418 .access = PL2_W, .type = ARM_CP_NO_RAW,
3419 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
3420 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3421 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3422 .access = PL2_W, .type = ARM_CP_NO_RAW,
3423 .writefn = tlbi_aa64_ipas2e1_write },
3424 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3426 .access = PL2_W, .type = ARM_CP_NO_RAW,
3427 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
3428 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3430 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3431 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
3432 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3433 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3434 .access = PL2_W, .type = ARM_CP_NO_RAW,
3435 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
3436#ifndef CONFIG_USER_ONLY
3437 /* 64 bit address translation operations */
3438 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 3440 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3441 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3442 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 3443 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3444 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 3446 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3447 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 3449 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 3450 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 3451 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
3452 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3453 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 3454 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
3455 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3456 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 3457 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
3458 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3459 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 3460 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
3461 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3462 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3463 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3465 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3468 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
3469 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3470 .type = ARM_CP_ALIAS,
3471 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3472 .access = PL1_RW, .resetvalue = 0,
3473 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3474 .writefn = par_write },
19525524 3475#endif
995939a6 3476 /* TLB invalidate last level of translation table walk */
9449fdf6 3477 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3478 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3479 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3480 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3481 .writefn = tlbimvaa_is_write },
9449fdf6 3482 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3483 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3484 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3485 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
541ef8c2
SS
3486 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3487 .type = ARM_CP_NO_RAW, .access = PL2_W,
3488 .writefn = tlbimva_hyp_write },
3489 { .name = "TLBIMVALHIS",
3490 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3491 .type = ARM_CP_NO_RAW, .access = PL2_W,
3492 .writefn = tlbimva_hyp_is_write },
3493 { .name = "TLBIIPAS2",
3494 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3495 .type = ARM_CP_NO_RAW, .access = PL2_W,
3496 .writefn = tlbiipas2_write },
3497 { .name = "TLBIIPAS2IS",
3498 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3499 .type = ARM_CP_NO_RAW, .access = PL2_W,
3500 .writefn = tlbiipas2_is_write },
3501 { .name = "TLBIIPAS2L",
3502 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3503 .type = ARM_CP_NO_RAW, .access = PL2_W,
3504 .writefn = tlbiipas2_write },
3505 { .name = "TLBIIPAS2LIS",
3506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3507 .type = ARM_CP_NO_RAW, .access = PL2_W,
3508 .writefn = tlbiipas2_is_write },
9449fdf6
PM
3509 /* 32 bit cache operations */
3510 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3511 .type = ARM_CP_NOP, .access = PL1_W },
3512 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3513 .type = ARM_CP_NOP, .access = PL1_W },
3514 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3515 .type = ARM_CP_NOP, .access = PL1_W },
3516 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3517 .type = ARM_CP_NOP, .access = PL1_W },
3518 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3519 .type = ARM_CP_NOP, .access = PL1_W },
3520 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3521 .type = ARM_CP_NOP, .access = PL1_W },
3522 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3523 .type = ARM_CP_NOP, .access = PL1_W },
3524 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3525 .type = ARM_CP_NOP, .access = PL1_W },
3526 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3527 .type = ARM_CP_NOP, .access = PL1_W },
3528 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3529 .type = ARM_CP_NOP, .access = PL1_W },
3530 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3531 .type = ARM_CP_NOP, .access = PL1_W },
3532 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3537 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3538 .access = PL1_RW, .resetvalue = 0,
3539 .writefn = dacr_write, .raw_writefn = raw_write,
3540 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3541 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3542 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3543 .type = ARM_CP_ALIAS,
a0618a19 3544 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3545 .access = PL1_RW,
3546 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3547 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3548 .type = ARM_CP_ALIAS,
a65f1de9 3549 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3550 .access = PL1_RW,
3551 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
3552 /* We rely on the access checks not allowing the guest to write to the
3553 * state field when SPSel indicates that it's being used as the stack
3554 * pointer.
3555 */
3556 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3557 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3558 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3559 .type = ARM_CP_ALIAS,
f502cfc2 3560 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3561 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3562 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3563 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3564 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3565 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3567 .type = ARM_CP_NO_RAW,
f502cfc2 3568 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
3569 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3570 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3571 .type = ARM_CP_ALIAS,
3572 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3573 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
3574 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3575 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3576 .access = PL2_RW, .resetvalue = 0,
3577 .writefn = dacr_write, .raw_writefn = raw_write,
3578 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3579 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3581 .access = PL2_RW, .resetvalue = 0,
3582 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3583 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3584 .type = ARM_CP_ALIAS,
3585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3586 .access = PL2_RW,
3587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3588 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3589 .type = ARM_CP_ALIAS,
3590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3591 .access = PL2_RW,
3592 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3593 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3594 .type = ARM_CP_ALIAS,
3595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3596 .access = PL2_RW,
3597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3598 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3599 .type = ARM_CP_ALIAS,
3600 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3601 .access = PL2_RW,
3602 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
3603 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3604 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3605 .resetvalue = 0,
3606 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3607 { .name = "SDCR", .type = ARM_CP_ALIAS,
3608 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3609 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3610 .writefn = sdcr_write,
3611 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
3612 REGINFO_SENTINEL
3613};
3614
d42e3c26 3615/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3616static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3617 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3618 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3619 .access = PL2_RW,
3620 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3621 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3622 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3623 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3624 .access = PL2_RW,
3625 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3626 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3628 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3629 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3630 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3631 .access = PL2_RW, .type = ARM_CP_CONST,
3632 .resetvalue = 0 },
3633 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3634 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3635 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3636 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3637 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3638 .access = PL2_RW, .type = ARM_CP_CONST,
3639 .resetvalue = 0 },
3640 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3641 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3642 .access = PL2_RW, .type = ARM_CP_CONST,
3643 .resetvalue = 0 },
37cd6c24
PM
3644 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3645 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3646 .access = PL2_RW, .type = ARM_CP_CONST,
3647 .resetvalue = 0 },
3648 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3649 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3650 .access = PL2_RW, .type = ARM_CP_CONST,
3651 .resetvalue = 0 },
06ec4c8c
EI
3652 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3653 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3654 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
3655 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3656 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3657 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3658 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
3659 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3660 .cp = 15, .opc1 = 6, .crm = 2,
3661 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3662 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3663 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3664 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3665 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3666 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3668 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3669 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3670 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3671 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3672 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3673 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3674 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3675 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3676 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3677 .resetvalue = 0 },
0b6440af
EI
3678 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3679 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3680 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3681 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3682 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3683 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3684 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3685 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3686 .resetvalue = 0 },
b0e66d95
EI
3687 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3688 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3689 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3690 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3691 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3692 .resetvalue = 0 },
3693 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3694 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3695 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3696 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3697 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3698 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
3699 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
3701 .access = PL2_RW, .accessfn = access_tda,
3702 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
3703 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3704 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3705 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3706 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
3707 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3708 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3709 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3710 REGINFO_SENTINEL
3711};
3712
f149e3e8
EI
3713static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3714{
3715 ARMCPU *cpu = arm_env_get_cpu(env);
3716 uint64_t valid_mask = HCR_MASK;
3717
3718 if (arm_feature(env, ARM_FEATURE_EL3)) {
3719 valid_mask &= ~HCR_HCD;
3720 } else {
3721 valid_mask &= ~HCR_TSC;
3722 }
3723
3724 /* Clear RES0 bits. */
3725 value &= valid_mask;
3726
3727 /* These bits change the MMU setup:
3728 * HCR_VM enables stage 2 translation
3729 * HCR_PTW forbids certain page-table setups
3730 * HCR_DC Disables stage1 and enables stage2 translation
3731 */
3732 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
d10eb08f 3733 tlb_flush(CPU(cpu));
f149e3e8
EI
3734 }
3735 raw_write(env, ri, value);
3736}
3737
4771cd01 3738static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3739 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3740 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3741 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3742 .writefn = hcr_write },
3b685ba7 3743 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3744 .type = ARM_CP_ALIAS,
3b685ba7
EI
3745 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3746 .access = PL2_RW,
3747 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3748 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3749 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3750 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
3751 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3752 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3753 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3754 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3755 .type = ARM_CP_ALIAS,
3b685ba7 3756 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3757 .access = PL2_RW,
3758 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d42e3c26
EI
3759 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3760 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3761 .access = PL2_RW, .writefn = vbar_write,
3762 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3763 .resetvalue = 0 },
884b4dee
GB
3764 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3765 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3766 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3767 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3768 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3770 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3771 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3772 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3773 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3774 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3775 .resetvalue = 0 },
3776 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3777 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3778 .access = PL2_RW, .type = ARM_CP_ALIAS,
3779 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3780 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3781 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3782 .access = PL2_RW, .type = ARM_CP_CONST,
3783 .resetvalue = 0 },
3784 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3785 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3786 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3787 .access = PL2_RW, .type = ARM_CP_CONST,
3788 .resetvalue = 0 },
37cd6c24
PM
3789 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3790 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3791 .access = PL2_RW, .type = ARM_CP_CONST,
3792 .resetvalue = 0 },
3793 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3794 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3795 .access = PL2_RW, .type = ARM_CP_CONST,
3796 .resetvalue = 0 },
06ec4c8c
EI
3797 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3798 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
3799 .access = PL2_RW,
3800 /* no .writefn needed as this can't cause an ASID change;
3801 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3802 */
06ec4c8c 3803 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
3804 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3805 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 3806 .type = ARM_CP_ALIAS,
68e9c2fe
EI
3807 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3808 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3809 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3810 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
3811 .access = PL2_RW,
3812 /* no .writefn needed as this can't cause an ASID change;
3813 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3814 */
68e9c2fe 3815 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
3816 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3817 .cp = 15, .opc1 = 6, .crm = 2,
3818 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3819 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3820 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3821 .writefn = vttbr_write },
3822 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3823 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3824 .access = PL2_RW, .writefn = vttbr_write,
3825 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
3826 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3827 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3828 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3829 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3830 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3831 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3832 .access = PL2_RW, .resetvalue = 0,
3833 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3834 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3835 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3836 .access = PL2_RW, .resetvalue = 0,
3837 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3838 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3839 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3840 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
3841 { .name = "TLBIALLNSNH",
3842 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3843 .type = ARM_CP_NO_RAW, .access = PL2_W,
3844 .writefn = tlbiall_nsnh_write },
3845 { .name = "TLBIALLNSNHIS",
3846 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3847 .type = ARM_CP_NO_RAW, .access = PL2_W,
3848 .writefn = tlbiall_nsnh_is_write },
3849 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3850 .type = ARM_CP_NO_RAW, .access = PL2_W,
3851 .writefn = tlbiall_hyp_write },
3852 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3853 .type = ARM_CP_NO_RAW, .access = PL2_W,
3854 .writefn = tlbiall_hyp_is_write },
3855 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3856 .type = ARM_CP_NO_RAW, .access = PL2_W,
3857 .writefn = tlbimva_hyp_write },
3858 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3859 .type = ARM_CP_NO_RAW, .access = PL2_W,
3860 .writefn = tlbimva_hyp_is_write },
51da9014
EI
3861 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3862 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3863 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3864 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3865 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3866 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3867 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3868 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3869 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3871 .access = PL2_W, .type = ARM_CP_NO_RAW,
3872 .writefn = tlbi_aa64_vae2_write },
3873 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3874 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3875 .access = PL2_W, .type = ARM_CP_NO_RAW,
3876 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3877 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3878 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3879 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3880 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3881 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3882 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3883 .access = PL2_W, .type = ARM_CP_NO_RAW,
3884 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3885#ifndef CONFIG_USER_ONLY
2a47df95
PM
3886 /* Unlike the other EL2-related AT operations, these must
3887 * UNDEF from EL3 if EL2 is not implemented, which is why we
3888 * define them here rather than with the rest of the AT ops.
3889 */
3890 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3891 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3892 .access = PL2_W, .accessfn = at_s1e2_access,
3893 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3894 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3895 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3896 .access = PL2_W, .accessfn = at_s1e2_access,
3897 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3898 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3899 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3900 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3901 * to behave as if SCR.NS was 1.
3902 */
3903 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3904 .access = PL2_W,
3905 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3906 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3907 .access = PL2_W,
3908 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3909 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3910 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3911 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3912 * reset values as IMPDEF. We choose to reset to 3 to comply with
3913 * both ARMv7 and ARMv8.
3914 */
3915 .access = PL2_RW, .resetvalue = 3,
3916 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3917 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3918 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3919 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3920 .writefn = gt_cntvoff_write,
3921 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3922 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3923 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3924 .writefn = gt_cntvoff_write,
3925 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3926 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3927 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3928 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3929 .type = ARM_CP_IO, .access = PL2_RW,
3930 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3931 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3932 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3933 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3934 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3935 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3936 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 3937 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
3938 .resetfn = gt_hyp_timer_reset,
3939 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3940 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3941 .type = ARM_CP_IO,
3942 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3943 .access = PL2_RW,
3944 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3945 .resetvalue = 0,
3946 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3947#endif
14cc7b54
SF
3948 /* The only field of MDCR_EL2 that has a defined architectural reset value
3949 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3950 * don't impelment any PMU event counters, so using zero as a reset
3951 * value for MDCR_EL2 is okay
3952 */
3953 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3954 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3955 .access = PL2_RW, .resetvalue = 0,
3956 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
3957 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3958 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3959 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3960 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3961 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3962 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3963 .access = PL2_RW,
3964 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
3965 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3966 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3967 .access = PL2_RW,
3968 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
3969 REGINFO_SENTINEL
3970};
3971
2f027fc5
PM
3972static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3973 bool isread)
3974{
3975 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3976 * At Secure EL1 it traps to EL3.
3977 */
3978 if (arm_current_el(env) == 3) {
3979 return CP_ACCESS_OK;
3980 }
3981 if (arm_is_secure_below_el3(env)) {
3982 return CP_ACCESS_TRAP_EL3;
3983 }
3984 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3985 if (isread) {
3986 return CP_ACCESS_OK;
3987 }
3988 return CP_ACCESS_TRAP_UNCATEGORIZED;
3989}
3990
60fb1a87
GB
3991static const ARMCPRegInfo el3_cp_reginfo[] = {
3992 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3993 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3994 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3995 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 3996 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 3997 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
3998 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3999 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 4000 .writefn = scr_write },
60fb1a87
GB
4001 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4002 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4003 .access = PL3_RW, .resetvalue = 0,
4004 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4005 { .name = "SDER",
4006 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4007 .access = PL3_RW, .resetvalue = 0,
4008 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 4009 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
4010 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4011 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 4012 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
4013 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4014 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4015 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4016 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
4017 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4018 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4019 .access = PL3_RW,
4020 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
4021 * we must provide a .raw_writefn and .resetfn because we handle
4022 * reset and migration for the AArch32 TTBCR(S), which might be
4023 * using mask and base_mask.
6459b94c 4024 */
811595a2 4025 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 4026 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 4027 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4028 .type = ARM_CP_ALIAS,
81547d66
EI
4029 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4030 .access = PL3_RW,
4031 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 4032 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
4033 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4034 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
4035 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4036 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4037 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 4038 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4039 .type = ARM_CP_ALIAS,
81547d66 4040 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4041 .access = PL3_RW,
4042 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
4043 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4044 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4045 .access = PL3_RW, .writefn = vbar_write,
4046 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4047 .resetvalue = 0 },
c6f19164
GB
4048 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4049 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4050 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4051 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
4052 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4053 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4054 .access = PL3_RW, .resetvalue = 0,
4055 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
4056 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4057 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4058 .access = PL3_RW, .type = ARM_CP_CONST,
4059 .resetvalue = 0 },
37cd6c24
PM
4060 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4061 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4062 .access = PL3_RW, .type = ARM_CP_CONST,
4063 .resetvalue = 0 },
4064 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4065 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4066 .access = PL3_RW, .type = ARM_CP_CONST,
4067 .resetvalue = 0 },
43efaa33
PM
4068 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4069 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4070 .access = PL3_W, .type = ARM_CP_NO_RAW,
4071 .writefn = tlbi_aa64_alle3is_write },
4072 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4074 .access = PL3_W, .type = ARM_CP_NO_RAW,
4075 .writefn = tlbi_aa64_vae3is_write },
4076 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4077 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4078 .access = PL3_W, .type = ARM_CP_NO_RAW,
4079 .writefn = tlbi_aa64_vae3is_write },
4080 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4081 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4082 .access = PL3_W, .type = ARM_CP_NO_RAW,
4083 .writefn = tlbi_aa64_alle3_write },
4084 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4085 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4086 .access = PL3_W, .type = ARM_CP_NO_RAW,
4087 .writefn = tlbi_aa64_vae3_write },
4088 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4089 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4090 .access = PL3_W, .type = ARM_CP_NO_RAW,
4091 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
4092 REGINFO_SENTINEL
4093};
4094
3f208fd7
PM
4095static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4096 bool isread)
7da845b0
PM
4097{
4098 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4099 * but the AArch32 CTR has its own reginfo struct)
4100 */
137feaa9 4101 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
4102 return CP_ACCESS_TRAP;
4103 }
4104 return CP_ACCESS_OK;
4105}
4106
1424ca8d
DM
4107static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4108 uint64_t value)
4109{
4110 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4111 * read via a bit in OSLSR_EL1.
4112 */
4113 int oslock;
4114
4115 if (ri->state == ARM_CP_STATE_AA32) {
4116 oslock = (value == 0xC5ACCE55);
4117 } else {
4118 oslock = value & 1;
4119 }
4120
4121 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4122}
4123
50300698 4124static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 4125 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
4126 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4127 * unlike DBGDRAR it is never accessible from EL0.
4128 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4129 * accessor.
50300698
PM
4130 */
4131 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4132 .access = PL0_R, .accessfn = access_tdra,
4133 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
4134 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4135 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
4136 .access = PL1_R, .accessfn = access_tdra,
4137 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 4138 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4139 .access = PL0_R, .accessfn = access_tdra,
4140 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 4141 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
4142 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4143 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 4144 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
4145 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4146 .resetvalue = 0 },
5e8b12ff
PM
4147 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4148 * We don't implement the configurable EL0 access.
4149 */
4150 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4151 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 4152 .type = ARM_CP_ALIAS,
d6c8cf81 4153 .access = PL1_R, .accessfn = access_tda,
b061a82b 4154 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
4155 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4156 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 4157 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 4158 .accessfn = access_tdosa,
1424ca8d
DM
4159 .writefn = oslar_write },
4160 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4161 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4162 .access = PL1_R, .resetvalue = 10,
187f678d 4163 .accessfn = access_tdosa,
1424ca8d 4164 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
4165 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4166 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4167 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
4168 .access = PL1_RW, .accessfn = access_tdosa,
4169 .type = ARM_CP_NOP },
5e8b12ff
PM
4170 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4171 * implement vector catch debug events yet.
4172 */
4173 { .name = "DBGVCR",
4174 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
4175 .access = PL1_RW, .accessfn = access_tda,
4176 .type = ARM_CP_NOP },
4d2ec4da
PM
4177 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4178 * to save and restore a 32-bit guest's DBGVCR)
4179 */
4180 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4181 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4182 .access = PL2_RW, .accessfn = access_tda,
4183 .type = ARM_CP_NOP },
5dbdc434
PM
4184 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4185 * Channel but Linux may try to access this register. The 32-bit
4186 * alias is DBGDCCINT.
4187 */
4188 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4189 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4190 .access = PL1_RW, .accessfn = access_tda,
4191 .type = ARM_CP_NOP },
50300698
PM
4192 REGINFO_SENTINEL
4193};
4194
4195static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4196 /* 64 bit access versions of the (dummy) debug registers */
4197 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4198 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4199 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4200 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4201 REGINFO_SENTINEL
4202};
4203
9ee98ce8
PM
4204void hw_watchpoint_update(ARMCPU *cpu, int n)
4205{
4206 CPUARMState *env = &cpu->env;
4207 vaddr len = 0;
4208 vaddr wvr = env->cp15.dbgwvr[n];
4209 uint64_t wcr = env->cp15.dbgwcr[n];
4210 int mask;
4211 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4212
4213 if (env->cpu_watchpoint[n]) {
4214 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4215 env->cpu_watchpoint[n] = NULL;
4216 }
4217
4218 if (!extract64(wcr, 0, 1)) {
4219 /* E bit clear : watchpoint disabled */
4220 return;
4221 }
4222
4223 switch (extract64(wcr, 3, 2)) {
4224 case 0:
4225 /* LSC 00 is reserved and must behave as if the wp is disabled */
4226 return;
4227 case 1:
4228 flags |= BP_MEM_READ;
4229 break;
4230 case 2:
4231 flags |= BP_MEM_WRITE;
4232 break;
4233 case 3:
4234 flags |= BP_MEM_ACCESS;
4235 break;
4236 }
4237
4238 /* Attempts to use both MASK and BAS fields simultaneously are
4239 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4240 * thus generating a watchpoint for every byte in the masked region.
4241 */
4242 mask = extract64(wcr, 24, 4);
4243 if (mask == 1 || mask == 2) {
4244 /* Reserved values of MASK; we must act as if the mask value was
4245 * some non-reserved value, or as if the watchpoint were disabled.
4246 * We choose the latter.
4247 */
4248 return;
4249 } else if (mask) {
4250 /* Watchpoint covers an aligned area up to 2GB in size */
4251 len = 1ULL << mask;
4252 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4253 * whether the watchpoint fires when the unmasked bits match; we opt
4254 * to generate the exceptions.
4255 */
4256 wvr &= ~(len - 1);
4257 } else {
4258 /* Watchpoint covers bytes defined by the byte address select bits */
4259 int bas = extract64(wcr, 5, 8);
4260 int basstart;
4261
4262 if (bas == 0) {
4263 /* This must act as if the watchpoint is disabled */
4264 return;
4265 }
4266
4267 if (extract64(wvr, 2, 1)) {
4268 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4269 * ignored, and BAS[3:0] define which bytes to watch.
4270 */
4271 bas &= 0xf;
4272 }
4273 /* The BAS bits are supposed to be programmed to indicate a contiguous
4274 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4275 * we fire for each byte in the word/doubleword addressed by the WVR.
4276 * We choose to ignore any non-zero bits after the first range of 1s.
4277 */
4278 basstart = ctz32(bas);
4279 len = cto32(bas >> basstart);
4280 wvr += basstart;
4281 }
4282
4283 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4284 &env->cpu_watchpoint[n]);
4285}
4286
4287void hw_watchpoint_update_all(ARMCPU *cpu)
4288{
4289 int i;
4290 CPUARMState *env = &cpu->env;
4291
4292 /* Completely clear out existing QEMU watchpoints and our array, to
4293 * avoid possible stale entries following migration load.
4294 */
4295 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4296 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4297
4298 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4299 hw_watchpoint_update(cpu, i);
4300 }
4301}
4302
4303static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4304 uint64_t value)
4305{
4306 ARMCPU *cpu = arm_env_get_cpu(env);
4307 int i = ri->crm;
4308
4309 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4310 * register reads and behaves as if values written are sign extended.
4311 * Bits [1:0] are RES0.
4312 */
4313 value = sextract64(value, 0, 49) & ~3ULL;
4314
4315 raw_write(env, ri, value);
4316 hw_watchpoint_update(cpu, i);
4317}
4318
4319static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4320 uint64_t value)
4321{
4322 ARMCPU *cpu = arm_env_get_cpu(env);
4323 int i = ri->crm;
4324
4325 raw_write(env, ri, value);
4326 hw_watchpoint_update(cpu, i);
4327}
4328
46747d15
PM
4329void hw_breakpoint_update(ARMCPU *cpu, int n)
4330{
4331 CPUARMState *env = &cpu->env;
4332 uint64_t bvr = env->cp15.dbgbvr[n];
4333 uint64_t bcr = env->cp15.dbgbcr[n];
4334 vaddr addr;
4335 int bt;
4336 int flags = BP_CPU;
4337
4338 if (env->cpu_breakpoint[n]) {
4339 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4340 env->cpu_breakpoint[n] = NULL;
4341 }
4342
4343 if (!extract64(bcr, 0, 1)) {
4344 /* E bit clear : watchpoint disabled */
4345 return;
4346 }
4347
4348 bt = extract64(bcr, 20, 4);
4349
4350 switch (bt) {
4351 case 4: /* unlinked address mismatch (reserved if AArch64) */
4352 case 5: /* linked address mismatch (reserved if AArch64) */
4353 qemu_log_mask(LOG_UNIMP,
4354 "arm: address mismatch breakpoint types not implemented");
4355 return;
4356 case 0: /* unlinked address match */
4357 case 1: /* linked address match */
4358 {
4359 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4360 * we behave as if the register was sign extended. Bits [1:0] are
4361 * RES0. The BAS field is used to allow setting breakpoints on 16
4362 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4363 * a bp will fire if the addresses covered by the bp and the addresses
4364 * covered by the insn overlap but the insn doesn't start at the
4365 * start of the bp address range. We choose to require the insn and
4366 * the bp to have the same address. The constraints on writing to
4367 * BAS enforced in dbgbcr_write mean we have only four cases:
4368 * 0b0000 => no breakpoint
4369 * 0b0011 => breakpoint on addr
4370 * 0b1100 => breakpoint on addr + 2
4371 * 0b1111 => breakpoint on addr
4372 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4373 */
4374 int bas = extract64(bcr, 5, 4);
4375 addr = sextract64(bvr, 0, 49) & ~3ULL;
4376 if (bas == 0) {
4377 return;
4378 }
4379 if (bas == 0xc) {
4380 addr += 2;
4381 }
4382 break;
4383 }
4384 case 2: /* unlinked context ID match */
4385 case 8: /* unlinked VMID match (reserved if no EL2) */
4386 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4387 qemu_log_mask(LOG_UNIMP,
4388 "arm: unlinked context breakpoint types not implemented");
4389 return;
4390 case 9: /* linked VMID match (reserved if no EL2) */
4391 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4392 case 3: /* linked context ID match */
4393 default:
4394 /* We must generate no events for Linked context matches (unless
4395 * they are linked to by some other bp/wp, which is handled in
4396 * updates for the linking bp/wp). We choose to also generate no events
4397 * for reserved values.
4398 */
4399 return;
4400 }
4401
4402 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4403}
4404
4405void hw_breakpoint_update_all(ARMCPU *cpu)
4406{
4407 int i;
4408 CPUARMState *env = &cpu->env;
4409
4410 /* Completely clear out existing QEMU breakpoints and our array, to
4411 * avoid possible stale entries following migration load.
4412 */
4413 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4414 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4415
4416 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4417 hw_breakpoint_update(cpu, i);
4418 }
4419}
4420
4421static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4422 uint64_t value)
4423{
4424 ARMCPU *cpu = arm_env_get_cpu(env);
4425 int i = ri->crm;
4426
4427 raw_write(env, ri, value);
4428 hw_breakpoint_update(cpu, i);
4429}
4430
4431static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4432 uint64_t value)
4433{
4434 ARMCPU *cpu = arm_env_get_cpu(env);
4435 int i = ri->crm;
4436
4437 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4438 * copy of BAS[0].
4439 */
4440 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4441 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4442
4443 raw_write(env, ri, value);
4444 hw_breakpoint_update(cpu, i);
4445}
4446
50300698 4447static void define_debug_regs(ARMCPU *cpu)
0b45451e 4448{
50300698
PM
4449 /* Define v7 and v8 architectural debug registers.
4450 * These are just dummy implementations for now.
0b45451e
PM
4451 */
4452 int i;
3ff6fc91 4453 int wrps, brps, ctx_cmps;
48eb3ae6
PM
4454 ARMCPRegInfo dbgdidr = {
4455 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
4456 .access = PL0_R, .accessfn = access_tda,
4457 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
4458 };
4459
3ff6fc91 4460 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
4461 brps = extract32(cpu->dbgdidr, 24, 4);
4462 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
4463 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4464
4465 assert(ctx_cmps <= brps);
48eb3ae6
PM
4466
4467 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4468 * of the debug registers such as number of breakpoints;
4469 * check that if they both exist then they agree.
4470 */
4471 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4472 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4473 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 4474 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 4475 }
0b45451e 4476
48eb3ae6 4477 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
4478 define_arm_cp_regs(cpu, debug_cp_reginfo);
4479
4480 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4481 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4482 }
4483
48eb3ae6 4484 for (i = 0; i < brps + 1; i++) {
0b45451e 4485 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4486 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4487 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 4488 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4489 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4490 .writefn = dbgbvr_write, .raw_writefn = raw_write
4491 },
10aae104
PM
4492 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4493 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 4494 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4495 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4496 .writefn = dbgbcr_write, .raw_writefn = raw_write
4497 },
48eb3ae6
PM
4498 REGINFO_SENTINEL
4499 };
4500 define_arm_cp_regs(cpu, dbgregs);
4501 }
4502
4503 for (i = 0; i < wrps + 1; i++) {
4504 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4505 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4506 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 4507 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4508 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4509 .writefn = dbgwvr_write, .raw_writefn = raw_write
4510 },
10aae104
PM
4511 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4512 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 4513 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4514 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4515 .writefn = dbgwcr_write, .raw_writefn = raw_write
4516 },
4517 REGINFO_SENTINEL
0b45451e
PM
4518 };
4519 define_arm_cp_regs(cpu, dbgregs);
4520 }
4521}
4522
2ceb98c0
PM
4523void register_cp_regs_for_features(ARMCPU *cpu)
4524{
4525 /* Register all the coprocessor registers based on feature bits */
4526 CPUARMState *env = &cpu->env;
4527 if (arm_feature(env, ARM_FEATURE_M)) {
4528 /* M profile has no coprocessor registers */
4529 return;
4530 }
4531
e9aa6c21 4532 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
4533 if (!arm_feature(env, ARM_FEATURE_V8)) {
4534 /* Must go early as it is full of wildcards that may be
4535 * overridden by later definitions.
4536 */
4537 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4538 }
4539
7d57f408 4540 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
4541 /* The ID registers all have impdef reset values */
4542 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
4543 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4545 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4546 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
4547 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4549 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4550 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
4551 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4553 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4554 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
4555 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4557 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4558 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
4559 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4561 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4562 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
4563 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4565 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4566 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
4567 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4569 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4570 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
4571 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4573 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4574 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
4575 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4577 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4578 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
4579 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4581 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4582 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
4583 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4585 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4586 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
4587 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4589 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4590 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
4591 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4593 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4594 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
4595 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4597 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4598 .resetvalue = cpu->id_isar5 },
e20d84c1
PM
4599 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4601 .access = PL1_R, .type = ARM_CP_CONST,
4602 .resetvalue = cpu->id_mmfr4 },
4603 /* 7 is as yet unallocated and must RAZ */
4604 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4606 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
4607 .resetvalue = 0 },
4608 REGINFO_SENTINEL
4609 };
4610 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
4611 define_arm_cp_regs(cpu, v6_cp_reginfo);
4612 } else {
4613 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4614 }
4d31c596
PM
4615 if (arm_feature(env, ARM_FEATURE_V6K)) {
4616 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4617 }
5e5cf9e3 4618 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 4619 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
4620 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4621 }
e9aa6c21 4622 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 4623 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
4624 * field as main ID register, and we implement only the cycle
4625 * count register.
200ac0ef 4626 */
7c2cb42b 4627#ifndef CONFIG_USER_ONLY
200ac0ef
PM
4628 ARMCPRegInfo pmcr = {
4629 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 4630 .access = PL0_RW,
7a0e58fa 4631 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 4632 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
4633 .accessfn = pmreg_access, .writefn = pmcr_write,
4634 .raw_writefn = raw_write,
200ac0ef 4635 };
8521466b
AF
4636 ARMCPRegInfo pmcr64 = {
4637 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4638 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4639 .access = PL0_RW, .accessfn = pmreg_access,
4640 .type = ARM_CP_IO,
4641 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4642 .resetvalue = cpu->midr & 0xff000000,
4643 .writefn = pmcr_write, .raw_writefn = raw_write,
4644 };
7c2cb42b 4645 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 4646 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 4647#endif
776d4e5c 4648 ARMCPRegInfo clidr = {
7da845b0
PM
4649 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4650 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
4651 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4652 };
776d4e5c 4653 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 4654 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 4655 define_debug_regs(cpu);
7d57f408
PM
4656 } else {
4657 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 4658 }
b0d2b7d0 4659 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
4660 /* AArch64 ID registers, which all have impdef reset values.
4661 * Note that within the ID register ranges the unused slots
4662 * must all RAZ, not UNDEF; future architecture versions may
4663 * define new registers here.
4664 */
e60cef86
PM
4665 ARMCPRegInfo v8_idregs[] = {
4666 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4668 .access = PL1_R, .type = ARM_CP_CONST,
4669 .resetvalue = cpu->id_aa64pfr0 },
4670 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4672 .access = PL1_R, .type = ARM_CP_CONST,
4673 .resetvalue = cpu->id_aa64pfr1},
e20d84c1
PM
4674 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4676 .access = PL1_R, .type = ARM_CP_CONST,
4677 .resetvalue = 0 },
4678 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4680 .access = PL1_R, .type = ARM_CP_CONST,
4681 .resetvalue = 0 },
4682 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4684 .access = PL1_R, .type = ARM_CP_CONST,
4685 .resetvalue = 0 },
4686 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4688 .access = PL1_R, .type = ARM_CP_CONST,
4689 .resetvalue = 0 },
4690 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4692 .access = PL1_R, .type = ARM_CP_CONST,
4693 .resetvalue = 0 },
4694 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4696 .access = PL1_R, .type = ARM_CP_CONST,
4697 .resetvalue = 0 },
e60cef86
PM
4698 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4700 .access = PL1_R, .type = ARM_CP_CONST,
d6f02ce3 4701 .resetvalue = cpu->id_aa64dfr0 },
e60cef86
PM
4702 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4704 .access = PL1_R, .type = ARM_CP_CONST,
4705 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
4706 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4708 .access = PL1_R, .type = ARM_CP_CONST,
4709 .resetvalue = 0 },
4710 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4712 .access = PL1_R, .type = ARM_CP_CONST,
4713 .resetvalue = 0 },
e60cef86
PM
4714 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4716 .access = PL1_R, .type = ARM_CP_CONST,
4717 .resetvalue = cpu->id_aa64afr0 },
4718 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4720 .access = PL1_R, .type = ARM_CP_CONST,
4721 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
4722 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4724 .access = PL1_R, .type = ARM_CP_CONST,
4725 .resetvalue = 0 },
4726 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4728 .access = PL1_R, .type = ARM_CP_CONST,
4729 .resetvalue = 0 },
e60cef86
PM
4730 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4732 .access = PL1_R, .type = ARM_CP_CONST,
4733 .resetvalue = cpu->id_aa64isar0 },
4734 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4736 .access = PL1_R, .type = ARM_CP_CONST,
4737 .resetvalue = cpu->id_aa64isar1 },
e20d84c1
PM
4738 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4740 .access = PL1_R, .type = ARM_CP_CONST,
4741 .resetvalue = 0 },
4742 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4744 .access = PL1_R, .type = ARM_CP_CONST,
4745 .resetvalue = 0 },
4746 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4748 .access = PL1_R, .type = ARM_CP_CONST,
4749 .resetvalue = 0 },
4750 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4752 .access = PL1_R, .type = ARM_CP_CONST,
4753 .resetvalue = 0 },
4754 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4756 .access = PL1_R, .type = ARM_CP_CONST,
4757 .resetvalue = 0 },
4758 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4760 .access = PL1_R, .type = ARM_CP_CONST,
4761 .resetvalue = 0 },
e60cef86
PM
4762 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4764 .access = PL1_R, .type = ARM_CP_CONST,
4765 .resetvalue = cpu->id_aa64mmfr0 },
4766 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4768 .access = PL1_R, .type = ARM_CP_CONST,
4769 .resetvalue = cpu->id_aa64mmfr1 },
e20d84c1
PM
4770 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4772 .access = PL1_R, .type = ARM_CP_CONST,
4773 .resetvalue = 0 },
4774 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4776 .access = PL1_R, .type = ARM_CP_CONST,
4777 .resetvalue = 0 },
4778 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4780 .access = PL1_R, .type = ARM_CP_CONST,
4781 .resetvalue = 0 },
4782 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4784 .access = PL1_R, .type = ARM_CP_CONST,
4785 .resetvalue = 0 },
4786 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4788 .access = PL1_R, .type = ARM_CP_CONST,
4789 .resetvalue = 0 },
4790 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4792 .access = PL1_R, .type = ARM_CP_CONST,
4793 .resetvalue = 0 },
a50c0f51
PM
4794 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4796 .access = PL1_R, .type = ARM_CP_CONST,
4797 .resetvalue = cpu->mvfr0 },
4798 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4800 .access = PL1_R, .type = ARM_CP_CONST,
4801 .resetvalue = cpu->mvfr1 },
4802 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4804 .access = PL1_R, .type = ARM_CP_CONST,
4805 .resetvalue = cpu->mvfr2 },
e20d84c1
PM
4806 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4808 .access = PL1_R, .type = ARM_CP_CONST,
4809 .resetvalue = 0 },
4810 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4812 .access = PL1_R, .type = ARM_CP_CONST,
4813 .resetvalue = 0 },
4814 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4816 .access = PL1_R, .type = ARM_CP_CONST,
4817 .resetvalue = 0 },
4818 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4820 .access = PL1_R, .type = ARM_CP_CONST,
4821 .resetvalue = 0 },
4822 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4824 .access = PL1_R, .type = ARM_CP_CONST,
4825 .resetvalue = 0 },
4054bfa9
AF
4826 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4827 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4828 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4829 .resetvalue = cpu->pmceid0 },
4830 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4831 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4832 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4833 .resetvalue = cpu->pmceid0 },
4834 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4835 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4836 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4837 .resetvalue = cpu->pmceid1 },
4838 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4839 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4840 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4841 .resetvalue = cpu->pmceid1 },
e60cef86
PM
4842 REGINFO_SENTINEL
4843 };
be8e8128
GB
4844 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4845 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4846 !arm_feature(env, ARM_FEATURE_EL2)) {
4847 ARMCPRegInfo rvbar = {
4848 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4849 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4850 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4851 };
4852 define_one_arm_cp_reg(cpu, &rvbar);
4853 }
e60cef86 4854 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4855 define_arm_cp_regs(cpu, v8_cp_reginfo);
4856 }
3b685ba7 4857 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 4858 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
4859 ARMCPRegInfo vpidr_regs[] = {
4860 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4861 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4862 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4863 .resetvalue = cpu->midr,
4864 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4865 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4866 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4867 .access = PL2_RW, .resetvalue = cpu->midr,
4868 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4869 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4870 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4871 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4872 .resetvalue = vmpidr_def,
4873 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4874 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4876 .access = PL2_RW,
4877 .resetvalue = vmpidr_def,
4878 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
4879 REGINFO_SENTINEL
4880 };
4881 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4882 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4883 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4884 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4885 ARMCPRegInfo rvbar = {
4886 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4888 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4889 };
4890 define_one_arm_cp_reg(cpu, &rvbar);
4891 }
d42e3c26
EI
4892 } else {
4893 /* If EL2 is missing but higher ELs are enabled, we need to
4894 * register the no_el2 reginfos.
4895 */
4896 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
4897 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4898 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
4899 */
4900 ARMCPRegInfo vpidr_regs[] = {
4901 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4902 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4903 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4904 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4905 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4906 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4907 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4908 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4909 .type = ARM_CP_NO_RAW,
4910 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
4911 REGINFO_SENTINEL
4912 };
4913 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4914 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4915 }
3b685ba7 4916 }
81547d66 4917 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4918 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
4919 ARMCPRegInfo el3_regs[] = {
4920 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4921 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4922 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4923 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4925 .access = PL3_RW,
4926 .raw_writefn = raw_write, .writefn = sctlr_write,
4927 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4928 .resetvalue = cpu->reset_sctlr },
4929 REGINFO_SENTINEL
be8e8128 4930 };
e24fdd23
PM
4931
4932 define_arm_cp_regs(cpu, el3_regs);
81547d66 4933 }
2f027fc5
PM
4934 /* The behaviour of NSACR is sufficiently various that we don't
4935 * try to describe it in a single reginfo:
4936 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4937 * reads as constant 0xc00 from NS EL1 and NS EL2
4938 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4939 * if v7 without EL3, register doesn't exist
4940 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4941 */
4942 if (arm_feature(env, ARM_FEATURE_EL3)) {
4943 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4944 ARMCPRegInfo nsacr = {
4945 .name = "NSACR", .type = ARM_CP_CONST,
4946 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4947 .access = PL1_RW, .accessfn = nsacr_access,
4948 .resetvalue = 0xc00
4949 };
4950 define_one_arm_cp_reg(cpu, &nsacr);
4951 } else {
4952 ARMCPRegInfo nsacr = {
4953 .name = "NSACR",
4954 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4955 .access = PL3_RW | PL1_R,
4956 .resetvalue = 0,
4957 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4958 };
4959 define_one_arm_cp_reg(cpu, &nsacr);
4960 }
4961 } else {
4962 if (arm_feature(env, ARM_FEATURE_V8)) {
4963 ARMCPRegInfo nsacr = {
4964 .name = "NSACR", .type = ARM_CP_CONST,
4965 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4966 .access = PL1_R,
4967 .resetvalue = 0xc00
4968 };
4969 define_one_arm_cp_reg(cpu, &nsacr);
4970 }
4971 }
4972
452a0955 4973 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
4974 if (arm_feature(env, ARM_FEATURE_V6)) {
4975 /* PMSAv6 not implemented */
4976 assert(arm_feature(env, ARM_FEATURE_V7));
4977 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4978 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4979 } else {
4980 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4981 }
18032bec 4982 } else {
8e5d75c9 4983 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
4984 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4985 }
c326b979
PM
4986 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4987 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4988 }
6cc7a3ae
PM
4989 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4990 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4991 }
4a501606
PM
4992 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4993 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4994 }
c4804214
PM
4995 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4996 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4997 }
4998 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4999 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5000 }
5001 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5002 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5003 }
18032bec
PM
5004 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5005 define_arm_cp_regs(cpu, omap_cp_reginfo);
5006 }
34f90529
PM
5007 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5008 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5009 }
1047b9d7
PM
5010 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5011 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5012 }
5013 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5014 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5015 }
7ac681cf
PM
5016 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5017 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5018 }
7884849c
PM
5019 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5020 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5021 * be read-only (ie write causes UNDEF exception).
5022 */
5023 {
00a29f3d
PM
5024 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5025 /* Pre-v8 MIDR space.
5026 * Note that the MIDR isn't a simple constant register because
7884849c
PM
5027 * of the TI925 behaviour where writes to another register can
5028 * cause the MIDR value to change.
97ce8d61
PC
5029 *
5030 * Unimplemented registers in the c15 0 0 0 space default to
5031 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5032 * and friends override accordingly.
7884849c
PM
5033 */
5034 { .name = "MIDR",
97ce8d61 5035 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 5036 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 5037 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 5038 .readfn = midr_read,
97ce8d61
PC
5039 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5040 .type = ARM_CP_OVERRIDE },
7884849c
PM
5041 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5042 { .name = "DUMMY",
5043 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5044 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5045 { .name = "DUMMY",
5046 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5047 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5048 { .name = "DUMMY",
5049 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5050 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5051 { .name = "DUMMY",
5052 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5053 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5054 { .name = "DUMMY",
5055 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5056 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5057 REGINFO_SENTINEL
5058 };
00a29f3d 5059 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
5060 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
5062 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5063 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5064 .readfn = midr_read },
ac00c79f
SF
5065 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5066 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5067 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5068 .access = PL1_R, .resetvalue = cpu->midr },
5069 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5070 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5071 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
5072 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 5074 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
5075 REGINFO_SENTINEL
5076 };
5077 ARMCPRegInfo id_cp_reginfo[] = {
5078 /* These are common to v8 and pre-v8 */
5079 { .name = "CTR",
5080 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5081 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5082 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5083 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5084 .access = PL0_R, .accessfn = ctr_el0_access,
5085 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5086 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5087 { .name = "TCMTR",
5088 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5089 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
5090 REGINFO_SENTINEL
5091 };
8085ce63
PC
5092 /* TLBTR is specific to VMSA */
5093 ARMCPRegInfo id_tlbtr_reginfo = {
5094 .name = "TLBTR",
5095 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5096 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5097 };
3281af81
PC
5098 /* MPUIR is specific to PMSA V6+ */
5099 ARMCPRegInfo id_mpuir_reginfo = {
5100 .name = "MPUIR",
5101 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5102 .access = PL1_R, .type = ARM_CP_CONST,
5103 .resetvalue = cpu->pmsav7_dregion << 8
5104 };
7884849c
PM
5105 ARMCPRegInfo crn0_wi_reginfo = {
5106 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5107 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5108 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5109 };
5110 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5111 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5112 ARMCPRegInfo *r;
5113 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
5114 * whole space. Then update the specific ID registers to allow write
5115 * access, so that they ignore writes rather than causing them to
5116 * UNDEF.
7884849c
PM
5117 */
5118 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
5119 for (r = id_pre_v8_midr_cp_reginfo;
5120 r->type != ARM_CP_SENTINEL; r++) {
5121 r->access = PL1_RW;
5122 }
7884849c
PM
5123 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5124 r->access = PL1_RW;
7884849c 5125 }
8085ce63 5126 id_tlbtr_reginfo.access = PL1_RW;
3281af81 5127 id_tlbtr_reginfo.access = PL1_RW;
7884849c 5128 }
00a29f3d
PM
5129 if (arm_feature(env, ARM_FEATURE_V8)) {
5130 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5131 } else {
5132 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5133 }
a703eda1 5134 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 5135 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 5136 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
5137 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5138 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 5139 }
7884849c
PM
5140 }
5141
97ce8d61
PC
5142 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5143 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5144 }
5145
2771db27 5146 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
5147 ARMCPRegInfo auxcr_reginfo[] = {
5148 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5149 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5150 .access = PL1_RW, .type = ARM_CP_CONST,
5151 .resetvalue = cpu->reset_auxcr },
5152 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5153 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5154 .access = PL2_RW, .type = ARM_CP_CONST,
5155 .resetvalue = 0 },
5156 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5157 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5158 .access = PL3_RW, .type = ARM_CP_CONST,
5159 .resetvalue = 0 },
5160 REGINFO_SENTINEL
2771db27 5161 };
834a6c69 5162 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
5163 }
5164
d8ba780b 5165 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
5166 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5167 /* 32 bit view is [31:18] 0...0 [43:32]. */
5168 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5169 | extract64(cpu->reset_cbar, 32, 12);
5170 ARMCPRegInfo cbar_reginfo[] = {
5171 { .name = "CBAR",
5172 .type = ARM_CP_CONST,
5173 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5174 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5175 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5176 .type = ARM_CP_CONST,
5177 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5178 .access = PL1_R, .resetvalue = cbar32 },
5179 REGINFO_SENTINEL
5180 };
5181 /* We don't implement a r/w 64 bit CBAR currently */
5182 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5183 define_arm_cp_regs(cpu, cbar_reginfo);
5184 } else {
5185 ARMCPRegInfo cbar = {
5186 .name = "CBAR",
5187 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5188 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5189 .fieldoffset = offsetof(CPUARMState,
5190 cp15.c15_config_base_address)
5191 };
5192 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5193 cbar.access = PL1_R;
5194 cbar.fieldoffset = 0;
5195 cbar.type = ARM_CP_CONST;
5196 }
5197 define_one_arm_cp_reg(cpu, &cbar);
5198 }
d8ba780b
PC
5199 }
5200
91db4642
CLG
5201 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5202 ARMCPRegInfo vbar_cp_reginfo[] = {
5203 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5204 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5205 .access = PL1_RW, .writefn = vbar_write,
5206 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5207 offsetof(CPUARMState, cp15.vbar_ns) },
5208 .resetvalue = 0 },
5209 REGINFO_SENTINEL
5210 };
5211 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5212 }
5213
2771db27
PM
5214 /* Generic registers whose values depend on the implementation */
5215 {
5216 ARMCPRegInfo sctlr = {
5ebafdf3 5217 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
5218 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5219 .access = PL1_RW,
5220 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5221 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
5222 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5223 .raw_writefn = raw_write,
2771db27
PM
5224 };
5225 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5226 /* Normally we would always end the TB on an SCTLR write, but Linux
5227 * arch/arm/mach-pxa/sleep.S expects two instructions following
5228 * an MMU enable to execute from cache. Imitate this behaviour.
5229 */
5230 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5231 }
5232 define_one_arm_cp_reg(cpu, &sctlr);
5233 }
2ceb98c0
PM
5234}
5235
14969266
AF
5236void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5237{
22169d41 5238 CPUState *cs = CPU(cpu);
14969266
AF
5239 CPUARMState *env = &cpu->env;
5240
6a669427
PM
5241 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5242 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5243 aarch64_fpu_gdb_set_reg,
5244 34, "aarch64-fpu.xml", 0);
5245 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 5246 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5247 51, "arm-neon.xml", 0);
5248 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 5249 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5250 35, "arm-vfp3.xml", 0);
5251 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 5252 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5253 19, "arm-vfp.xml", 0);
5254 }
40f137e1
PB
5255}
5256
777dc784
PM
5257/* Sort alphabetically by type name, except for "any". */
5258static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 5259{
777dc784
PM
5260 ObjectClass *class_a = (ObjectClass *)a;
5261 ObjectClass *class_b = (ObjectClass *)b;
5262 const char *name_a, *name_b;
5adb4839 5263
777dc784
PM
5264 name_a = object_class_get_name(class_a);
5265 name_b = object_class_get_name(class_b);
51492fd1 5266 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 5267 return 1;
51492fd1 5268 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
5269 return -1;
5270 } else {
5271 return strcmp(name_a, name_b);
5adb4839
PB
5272 }
5273}
5274
777dc784 5275static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 5276{
777dc784 5277 ObjectClass *oc = data;
92a31361 5278 CPUListState *s = user_data;
51492fd1
AF
5279 const char *typename;
5280 char *name;
3371d272 5281
51492fd1
AF
5282 typename = object_class_get_name(oc);
5283 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 5284 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
5285 name);
5286 g_free(name);
777dc784
PM
5287}
5288
5289void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5290{
92a31361 5291 CPUListState s = {
777dc784
PM
5292 .file = f,
5293 .cpu_fprintf = cpu_fprintf,
5294 };
5295 GSList *list;
5296
5297 list = object_class_get_list(TYPE_ARM_CPU, false);
5298 list = g_slist_sort(list, arm_cpu_list_compare);
5299 (*cpu_fprintf)(f, "Available CPUs:\n");
5300 g_slist_foreach(list, arm_cpu_list_entry, &s);
5301 g_slist_free(list);
a96c0514
PM
5302#ifdef CONFIG_KVM
5303 /* The 'host' CPU type is dynamically registered only if KVM is
5304 * enabled, so we have to special-case it here:
5305 */
5306 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5307#endif
40f137e1
PB
5308}
5309
78027bb6
CR
5310static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5311{
5312 ObjectClass *oc = data;
5313 CpuDefinitionInfoList **cpu_list = user_data;
5314 CpuDefinitionInfoList *entry;
5315 CpuDefinitionInfo *info;
5316 const char *typename;
5317
5318 typename = object_class_get_name(oc);
5319 info = g_malloc0(sizeof(*info));
5320 info->name = g_strndup(typename,
5321 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 5322 info->q_typename = g_strdup(typename);
78027bb6
CR
5323
5324 entry = g_malloc0(sizeof(*entry));
5325 entry->value = info;
5326 entry->next = *cpu_list;
5327 *cpu_list = entry;
5328}
5329
5330CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5331{
5332 CpuDefinitionInfoList *cpu_list = NULL;
5333 GSList *list;
5334
5335 list = object_class_get_list(TYPE_ARM_CPU, false);
5336 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5337 g_slist_free(list);
5338
5339 return cpu_list;
5340}
5341
6e6efd61 5342static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 5343 void *opaque, int state, int secstate,
f5a0a5a5 5344 int crm, int opc1, int opc2)
6e6efd61
PM
5345{
5346 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5347 * add a single reginfo struct to the hash table.
5348 */
5349 uint32_t *key = g_new(uint32_t, 1);
5350 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5351 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
5352 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5353
5354 /* Reset the secure state to the specific incoming state. This is
5355 * necessary as the register may have been defined with both states.
5356 */
5357 r2->secure = secstate;
5358
5359 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5360 /* Register is banked (using both entries in array).
5361 * Overwriting fieldoffset as the array is only used to define
5362 * banked registers but later only fieldoffset is used.
f5a0a5a5 5363 */
3f3c82a5
FA
5364 r2->fieldoffset = r->bank_fieldoffsets[ns];
5365 }
5366
5367 if (state == ARM_CP_STATE_AA32) {
5368 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5369 /* If the register is banked then we don't need to migrate or
5370 * reset the 32-bit instance in certain cases:
5371 *
5372 * 1) If the register has both 32-bit and 64-bit instances then we
5373 * can count on the 64-bit instance taking care of the
5374 * non-secure bank.
5375 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5376 * taking care of the secure bank. This requires that separate
5377 * 32 and 64-bit definitions are provided.
5378 */
5379 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5380 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 5381 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
5382 }
5383 } else if ((secstate != r->secure) && !ns) {
5384 /* The register is not banked so we only want to allow migration of
5385 * the non-secure instance.
5386 */
7a0e58fa 5387 r2->type |= ARM_CP_ALIAS;
58a1d8ce 5388 }
3f3c82a5
FA
5389
5390 if (r->state == ARM_CP_STATE_BOTH) {
5391 /* We assume it is a cp15 register if the .cp field is left unset.
5392 */
5393 if (r2->cp == 0) {
5394 r2->cp = 15;
5395 }
5396
f5a0a5a5 5397#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
5398 if (r2->fieldoffset) {
5399 r2->fieldoffset += sizeof(uint32_t);
5400 }
f5a0a5a5 5401#endif
3f3c82a5 5402 }
f5a0a5a5
PM
5403 }
5404 if (state == ARM_CP_STATE_AA64) {
5405 /* To allow abbreviation of ARMCPRegInfo
5406 * definitions, we treat cp == 0 as equivalent to
5407 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
5408 * STATE_BOTH definitions are also always "standard
5409 * sysreg" in their AArch64 view (the .cp value may
5410 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 5411 */
58a1d8ce 5412 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
5413 r2->cp = CP_REG_ARM64_SYSREG_CP;
5414 }
5415 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5416 r2->opc0, opc1, opc2);
5417 } else {
51a79b03 5418 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 5419 }
6e6efd61
PM
5420 if (opaque) {
5421 r2->opaque = opaque;
5422 }
67ed771d
PM
5423 /* reginfo passed to helpers is correct for the actual access,
5424 * and is never ARM_CP_STATE_BOTH:
5425 */
5426 r2->state = state;
6e6efd61
PM
5427 /* Make sure reginfo passed to helpers for wildcarded regs
5428 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5429 */
5430 r2->crm = crm;
5431 r2->opc1 = opc1;
5432 r2->opc2 = opc2;
5433 /* By convention, for wildcarded registers only the first
5434 * entry is used for migration; the others are marked as
7a0e58fa 5435 * ALIAS so we don't try to transfer the register
6e6efd61 5436 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 5437 * never migratable and not even raw-accessible.
6e6efd61 5438 */
7a0e58fa
PM
5439 if ((r->type & ARM_CP_SPECIAL)) {
5440 r2->type |= ARM_CP_NO_RAW;
5441 }
5442 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
5443 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5444 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 5445 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
5446 }
5447
375421cc
PM
5448 /* Check that raw accesses are either forbidden or handled. Note that
5449 * we can't assert this earlier because the setup of fieldoffset for
5450 * banked registers has to be done first.
5451 */
5452 if (!(r2->type & ARM_CP_NO_RAW)) {
5453 assert(!raw_accessors_invalid(r2));
5454 }
5455
6e6efd61
PM
5456 /* Overriding of an existing definition must be explicitly
5457 * requested.
5458 */
5459 if (!(r->type & ARM_CP_OVERRIDE)) {
5460 ARMCPRegInfo *oldreg;
5461 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5462 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5463 fprintf(stderr, "Register redefined: cp=%d %d bit "
5464 "crn=%d crm=%d opc1=%d opc2=%d, "
5465 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5466 r2->crn, r2->crm, r2->opc1, r2->opc2,
5467 oldreg->name, r2->name);
5468 g_assert_not_reached();
5469 }
5470 }
5471 g_hash_table_insert(cpu->cp_regs, key, r2);
5472}
5473
5474
4b6a83fb
PM
5475void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5476 const ARMCPRegInfo *r, void *opaque)
5477{
5478 /* Define implementations of coprocessor registers.
5479 * We store these in a hashtable because typically
5480 * there are less than 150 registers in a space which
5481 * is 16*16*16*8*8 = 262144 in size.
5482 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5483 * If a register is defined twice then the second definition is
5484 * used, so this can be used to define some generic registers and
5485 * then override them with implementation specific variations.
5486 * At least one of the original and the second definition should
5487 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5488 * against accidental use.
f5a0a5a5
PM
5489 *
5490 * The state field defines whether the register is to be
5491 * visible in the AArch32 or AArch64 execution state. If the
5492 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5493 * reginfo structure for the AArch32 view, which sees the lower
5494 * 32 bits of the 64 bit register.
5495 *
5496 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5497 * be wildcarded. AArch64 registers are always considered to be 64
5498 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5499 * the register, if any.
4b6a83fb 5500 */
f5a0a5a5 5501 int crm, opc1, opc2, state;
4b6a83fb
PM
5502 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5503 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5504 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5505 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5506 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5507 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5508 /* 64 bit registers have only CRm and Opc1 fields */
5509 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
5510 /* op0 only exists in the AArch64 encodings */
5511 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5512 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5513 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5514 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5515 * encodes a minimum access level for the register. We roll this
5516 * runtime check into our general permission check code, so check
5517 * here that the reginfo's specified permissions are strict enough
5518 * to encompass the generic architectural permission check.
5519 */
5520 if (r->state != ARM_CP_STATE_AA32) {
5521 int mask = 0;
5522 switch (r->opc1) {
5523 case 0: case 1: case 2:
5524 /* min_EL EL1 */
5525 mask = PL1_RW;
5526 break;
5527 case 3:
5528 /* min_EL EL0 */
5529 mask = PL0_RW;
5530 break;
5531 case 4:
5532 /* min_EL EL2 */
5533 mask = PL2_RW;
5534 break;
5535 case 5:
5536 /* unallocated encoding, so not possible */
5537 assert(false);
5538 break;
5539 case 6:
5540 /* min_EL EL3 */
5541 mask = PL3_RW;
5542 break;
5543 case 7:
5544 /* min_EL EL1, secure mode only (we don't check the latter) */
5545 mask = PL1_RW;
5546 break;
5547 default:
5548 /* broken reginfo with out-of-range opc1 */
5549 assert(false);
5550 break;
5551 }
5552 /* assert our permissions are not too lax (stricter is fine) */
5553 assert((r->access & ~mask) == 0);
5554 }
5555
4b6a83fb
PM
5556 /* Check that the register definition has enough info to handle
5557 * reads and writes if they are permitted.
5558 */
5559 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5560 if (r->access & PL3_R) {
3f3c82a5
FA
5561 assert((r->fieldoffset ||
5562 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5563 r->readfn);
4b6a83fb
PM
5564 }
5565 if (r->access & PL3_W) {
3f3c82a5
FA
5566 assert((r->fieldoffset ||
5567 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5568 r->writefn);
4b6a83fb
PM
5569 }
5570 }
5571 /* Bad type field probably means missing sentinel at end of reg list */
5572 assert(cptype_valid(r->type));
5573 for (crm = crmmin; crm <= crmmax; crm++) {
5574 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5575 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
5576 for (state = ARM_CP_STATE_AA32;
5577 state <= ARM_CP_STATE_AA64; state++) {
5578 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5579 continue;
5580 }
3f3c82a5
FA
5581 if (state == ARM_CP_STATE_AA32) {
5582 /* Under AArch32 CP registers can be common
5583 * (same for secure and non-secure world) or banked.
5584 */
5585 switch (r->secure) {
5586 case ARM_CP_SECSTATE_S:
5587 case ARM_CP_SECSTATE_NS:
5588 add_cpreg_to_hashtable(cpu, r, opaque, state,
5589 r->secure, crm, opc1, opc2);
5590 break;
5591 default:
5592 add_cpreg_to_hashtable(cpu, r, opaque, state,
5593 ARM_CP_SECSTATE_S,
5594 crm, opc1, opc2);
5595 add_cpreg_to_hashtable(cpu, r, opaque, state,
5596 ARM_CP_SECSTATE_NS,
5597 crm, opc1, opc2);
5598 break;
5599 }
5600 } else {
5601 /* AArch64 registers get mapped to non-secure instance
5602 * of AArch32 */
5603 add_cpreg_to_hashtable(cpu, r, opaque, state,
5604 ARM_CP_SECSTATE_NS,
5605 crm, opc1, opc2);
5606 }
f5a0a5a5 5607 }
4b6a83fb
PM
5608 }
5609 }
5610 }
5611}
5612
5613void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5614 const ARMCPRegInfo *regs, void *opaque)
5615{
5616 /* Define a whole list of registers */
5617 const ARMCPRegInfo *r;
5618 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5619 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5620 }
5621}
5622
60322b39 5623const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 5624{
60322b39 5625 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
5626}
5627
c4241c7d
PM
5628void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5629 uint64_t value)
4b6a83fb
PM
5630{
5631 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
5632}
5633
c4241c7d 5634uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
5635{
5636 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
5637 return 0;
5638}
5639
f5a0a5a5
PM
5640void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5641{
5642 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5643}
5644
af393ffc 5645static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
5646{
5647 /* Return true if it is not valid for us to switch to
5648 * this CPU mode (ie all the UNPREDICTABLE cases in
5649 * the ARM ARM CPSRWriteByInstr pseudocode).
5650 */
af393ffc
PM
5651
5652 /* Changes to or from Hyp via MSR and CPS are illegal. */
5653 if (write_type == CPSRWriteByInstr &&
5654 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5655 mode == ARM_CPU_MODE_HYP)) {
5656 return 1;
5657 }
5658
37064a8b
PM
5659 switch (mode) {
5660 case ARM_CPU_MODE_USR:
10eacda7 5661 return 0;
37064a8b
PM
5662 case ARM_CPU_MODE_SYS:
5663 case ARM_CPU_MODE_SVC:
5664 case ARM_CPU_MODE_ABT:
5665 case ARM_CPU_MODE_UND:
5666 case ARM_CPU_MODE_IRQ:
5667 case ARM_CPU_MODE_FIQ:
52ff951b
PM
5668 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5669 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5670 */
10eacda7
PM
5671 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5672 * and CPS are treated as illegal mode changes.
5673 */
5674 if (write_type == CPSRWriteByInstr &&
5675 (env->cp15.hcr_el2 & HCR_TGE) &&
5676 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5677 !arm_is_secure_below_el3(env)) {
5678 return 1;
5679 }
37064a8b 5680 return 0;
e6c8fc07
PM
5681 case ARM_CPU_MODE_HYP:
5682 return !arm_feature(env, ARM_FEATURE_EL2)
5683 || arm_current_el(env) < 2 || arm_is_secure(env);
027fc527 5684 case ARM_CPU_MODE_MON:
58ae2d1f 5685 return arm_current_el(env) < 3;
37064a8b
PM
5686 default:
5687 return 1;
5688 }
5689}
5690
2f4a40e5
AZ
5691uint32_t cpsr_read(CPUARMState *env)
5692{
5693 int ZF;
6fbe23d5
PB
5694 ZF = (env->ZF == 0);
5695 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
5696 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5697 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5698 | ((env->condexec_bits & 0xfc) << 8)
af519934 5699 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
5700}
5701
50866ba5
PM
5702void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5703 CPSRWriteType write_type)
2f4a40e5 5704{
6e8801f9
FA
5705 uint32_t changed_daif;
5706
2f4a40e5 5707 if (mask & CPSR_NZCV) {
6fbe23d5
PB
5708 env->ZF = (~val) & CPSR_Z;
5709 env->NF = val;
2f4a40e5
AZ
5710 env->CF = (val >> 29) & 1;
5711 env->VF = (val << 3) & 0x80000000;
5712 }
5713 if (mask & CPSR_Q)
5714 env->QF = ((val & CPSR_Q) != 0);
5715 if (mask & CPSR_T)
5716 env->thumb = ((val & CPSR_T) != 0);
5717 if (mask & CPSR_IT_0_1) {
5718 env->condexec_bits &= ~3;
5719 env->condexec_bits |= (val >> 25) & 3;
5720 }
5721 if (mask & CPSR_IT_2_7) {
5722 env->condexec_bits &= 3;
5723 env->condexec_bits |= (val >> 8) & 0xfc;
5724 }
5725 if (mask & CPSR_GE) {
5726 env->GE = (val >> 16) & 0xf;
5727 }
5728
6e8801f9
FA
5729 /* In a V7 implementation that includes the security extensions but does
5730 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5731 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5732 * bits respectively.
5733 *
5734 * In a V8 implementation, it is permitted for privileged software to
5735 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5736 */
f8c88bbc 5737 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
5738 arm_feature(env, ARM_FEATURE_EL3) &&
5739 !arm_feature(env, ARM_FEATURE_EL2) &&
5740 !arm_is_secure(env)) {
5741
5742 changed_daif = (env->daif ^ val) & mask;
5743
5744 if (changed_daif & CPSR_A) {
5745 /* Check to see if we are allowed to change the masking of async
5746 * abort exceptions from a non-secure state.
5747 */
5748 if (!(env->cp15.scr_el3 & SCR_AW)) {
5749 qemu_log_mask(LOG_GUEST_ERROR,
5750 "Ignoring attempt to switch CPSR_A flag from "
5751 "non-secure world with SCR.AW bit clear\n");
5752 mask &= ~CPSR_A;
5753 }
5754 }
5755
5756 if (changed_daif & CPSR_F) {
5757 /* Check to see if we are allowed to change the masking of FIQ
5758 * exceptions from a non-secure state.
5759 */
5760 if (!(env->cp15.scr_el3 & SCR_FW)) {
5761 qemu_log_mask(LOG_GUEST_ERROR,
5762 "Ignoring attempt to switch CPSR_F flag from "
5763 "non-secure world with SCR.FW bit clear\n");
5764 mask &= ~CPSR_F;
5765 }
5766
5767 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5768 * If this bit is set software is not allowed to mask
5769 * FIQs, but is allowed to set CPSR_F to 0.
5770 */
5771 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5772 (val & CPSR_F)) {
5773 qemu_log_mask(LOG_GUEST_ERROR,
5774 "Ignoring attempt to enable CPSR_F flag "
5775 "(non-maskable FIQ [NMFI] support enabled)\n");
5776 mask &= ~CPSR_F;
5777 }
5778 }
5779 }
5780
4cc35614
PM
5781 env->daif &= ~(CPSR_AIF & mask);
5782 env->daif |= val & CPSR_AIF & mask;
5783
f8c88bbc
PM
5784 if (write_type != CPSRWriteRaw &&
5785 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
5786 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5787 /* Note that we can only get here in USR mode if this is a
5788 * gdb stub write; for this case we follow the architectural
5789 * behaviour for guest writes in USR mode of ignoring an attempt
5790 * to switch mode. (Those are caught by translate.c for writes
5791 * triggered by guest instructions.)
5792 */
5793 mask &= ~CPSR_M;
5794 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
5795 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5796 * v7, and has defined behaviour in v8:
5797 * + leave CPSR.M untouched
5798 * + allow changes to the other CPSR fields
5799 * + set PSTATE.IL
5800 * For user changes via the GDB stub, we don't set PSTATE.IL,
5801 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
5802 */
5803 mask &= ~CPSR_M;
81907a58
PM
5804 if (write_type != CPSRWriteByGDBStub &&
5805 arm_feature(env, ARM_FEATURE_V8)) {
5806 mask |= CPSR_IL;
5807 val |= CPSR_IL;
5808 }
37064a8b
PM
5809 } else {
5810 switch_mode(env, val & CPSR_M);
5811 }
2f4a40e5
AZ
5812 }
5813 mask &= ~CACHED_CPSR_BITS;
5814 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5815}
5816
b26eefb6
PB
5817/* Sign/zero extend */
5818uint32_t HELPER(sxtb16)(uint32_t x)
5819{
5820 uint32_t res;
5821 res = (uint16_t)(int8_t)x;
5822 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5823 return res;
5824}
5825
5826uint32_t HELPER(uxtb16)(uint32_t x)
5827{
5828 uint32_t res;
5829 res = (uint16_t)(uint8_t)x;
5830 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5831 return res;
5832}
5833
3670669c
PB
5834int32_t HELPER(sdiv)(int32_t num, int32_t den)
5835{
5836 if (den == 0)
5837 return 0;
686eeb93
AJ
5838 if (num == INT_MIN && den == -1)
5839 return INT_MIN;
3670669c
PB
5840 return num / den;
5841}
5842
5843uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5844{
5845 if (den == 0)
5846 return 0;
5847 return num / den;
5848}
5849
5850uint32_t HELPER(rbit)(uint32_t x)
5851{
42fedbca 5852 return revbit32(x);
3670669c
PB
5853}
5854
5fafdf24 5855#if defined(CONFIG_USER_ONLY)
b5ff1b31 5856
9ee6e8bb 5857/* These should probably raise undefined insn exceptions. */
0ecb72a5 5858void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 5859{
a47dddd7
AF
5860 ARMCPU *cpu = arm_env_get_cpu(env);
5861
5862 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
5863}
5864
0ecb72a5 5865uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 5866{
a47dddd7
AF
5867 ARMCPU *cpu = arm_env_get_cpu(env);
5868
5869 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
5870 return 0;
5871}
5872
fb602cb7
PM
5873void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5874{
5875 /* translate.c should never generate calls here in user-only mode */
5876 g_assert_not_reached();
5877}
5878
0ecb72a5 5879void switch_mode(CPUARMState *env, int mode)
b5ff1b31 5880{
a47dddd7
AF
5881 ARMCPU *cpu = arm_env_get_cpu(env);
5882
5883 if (mode != ARM_CPU_MODE_USR) {
5884 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5885 }
b5ff1b31
FB
5886}
5887
012a906b
GB
5888uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5889 uint32_t cur_el, bool secure)
9e729b57
EI
5890{
5891 return 1;
5892}
5893
ce02049d
GB
5894void aarch64_sync_64_to_32(CPUARMState *env)
5895{
5896 g_assert_not_reached();
5897}
5898
b5ff1b31
FB
5899#else
5900
0ecb72a5 5901void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
5902{
5903 int old_mode;
5904 int i;
5905
5906 old_mode = env->uncached_cpsr & CPSR_M;
5907 if (mode == old_mode)
5908 return;
5909
5910 if (old_mode == ARM_CPU_MODE_FIQ) {
5911 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5912 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5913 } else if (mode == ARM_CPU_MODE_FIQ) {
5914 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5915 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5916 }
5917
f5206413 5918 i = bank_number(old_mode);
b5ff1b31
FB
5919 env->banked_r13[i] = env->regs[13];
5920 env->banked_r14[i] = env->regs[14];
5921 env->banked_spsr[i] = env->spsr;
5922
f5206413 5923 i = bank_number(mode);
b5ff1b31
FB
5924 env->regs[13] = env->banked_r13[i];
5925 env->regs[14] = env->banked_r14[i];
5926 env->spsr = env->banked_spsr[i];
5927}
5928
0eeb17d6
GB
5929/* Physical Interrupt Target EL Lookup Table
5930 *
5931 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5932 *
5933 * The below multi-dimensional table is used for looking up the target
5934 * exception level given numerous condition criteria. Specifically, the
5935 * target EL is based on SCR and HCR routing controls as well as the
5936 * currently executing EL and secure state.
5937 *
5938 * Dimensions:
5939 * target_el_table[2][2][2][2][2][4]
5940 * | | | | | +--- Current EL
5941 * | | | | +------ Non-secure(0)/Secure(1)
5942 * | | | +--------- HCR mask override
5943 * | | +------------ SCR exec state control
5944 * | +--------------- SCR mask override
5945 * +------------------ 32-bit(0)/64-bit(1) EL3
5946 *
5947 * The table values are as such:
5948 * 0-3 = EL0-EL3
5949 * -1 = Cannot occur
5950 *
5951 * The ARM ARM target EL table includes entries indicating that an "exception
5952 * is not taken". The two cases where this is applicable are:
5953 * 1) An exception is taken from EL3 but the SCR does not have the exception
5954 * routed to EL3.
5955 * 2) An exception is taken from EL2 but the HCR does not have the exception
5956 * routed to EL2.
5957 * In these two cases, the below table contain a target of EL1. This value is
5958 * returned as it is expected that the consumer of the table data will check
5959 * for "target EL >= current EL" to ensure the exception is not taken.
5960 *
5961 * SCR HCR
5962 * 64 EA AMO From
5963 * BIT IRQ IMO Non-secure Secure
5964 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5965 */
82c39f6a 5966static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
5967 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5968 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5969 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5970 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5971 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5972 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5973 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5974 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5975 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5976 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5977 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5978 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5979 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5980 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5981 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5982 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5983};
5984
5985/*
5986 * Determine the target EL for physical exceptions
5987 */
012a906b
GB
5988uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5989 uint32_t cur_el, bool secure)
0eeb17d6
GB
5990{
5991 CPUARMState *env = cs->env_ptr;
2cde031f 5992 int rw;
0eeb17d6
GB
5993 int scr;
5994 int hcr;
5995 int target_el;
2cde031f
SS
5996 /* Is the highest EL AArch64? */
5997 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5998
5999 if (arm_feature(env, ARM_FEATURE_EL3)) {
6000 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6001 } else {
6002 /* Either EL2 is the highest EL (and so the EL2 register width
6003 * is given by is64); or there is no EL2 or EL3, in which case
6004 * the value of 'rw' does not affect the table lookup anyway.
6005 */
6006 rw = is64;
6007 }
0eeb17d6
GB
6008
6009 switch (excp_idx) {
6010 case EXCP_IRQ:
6011 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6012 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6013 break;
6014 case EXCP_FIQ:
6015 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6016 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6017 break;
6018 default:
6019 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6020 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6021 break;
6022 };
6023
6024 /* If HCR.TGE is set then HCR is treated as being 1 */
6025 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6026
6027 /* Perform a table-lookup for the target EL given the current state */
6028 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6029
6030 assert(target_el > 0);
6031
6032 return target_el;
6033}
6034
9ee6e8bb
PB
6035static void v7m_push(CPUARMState *env, uint32_t val)
6036{
70d74660
AF
6037 CPUState *cs = CPU(arm_env_get_cpu(env));
6038
9ee6e8bb 6039 env->regs[13] -= 4;
ab1da857 6040 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
6041}
6042
6043static uint32_t v7m_pop(CPUARMState *env)
6044{
70d74660 6045 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 6046 uint32_t val;
70d74660 6047
fdfba1a2 6048 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
6049 env->regs[13] += 4;
6050 return val;
6051}
6052
fb602cb7
PM
6053/* Return true if we're using the process stack pointer (not the MSP) */
6054static bool v7m_using_psp(CPUARMState *env)
6055{
6056 /* Handler mode always uses the main stack; for thread mode
6057 * the CONTROL.SPSEL bit determines the answer.
6058 * Note that in v7M it is not possible to be in Handler mode with
6059 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6060 */
6061 return !arm_v7m_is_handler_mode(env) &&
6062 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6063}
6064
9ee6e8bb 6065/* Switch to V7M main or process stack pointer. */
abc24d86 6066static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
9ee6e8bb
PB
6067{
6068 uint32_t tmp;
8bfc26ea
PM
6069 uint32_t old_control = env->v7m.control[env->v7m.secure];
6070 bool old_spsel = old_control & R_V7M_CONTROL_SPSEL_MASK;
abc24d86
MD
6071
6072 if (old_spsel != new_spsel) {
9ee6e8bb
PB
6073 tmp = env->v7m.other_sp;
6074 env->v7m.other_sp = env->regs[13];
6075 env->regs[13] = tmp;
abc24d86 6076
8bfc26ea 6077 env->v7m.control[env->v7m.secure] = deposit32(old_control,
abc24d86
MD
6078 R_V7M_CONTROL_SPSEL_SHIFT,
6079 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
9ee6e8bb
PB
6080 }
6081}
6082
fb602cb7
PM
6083/* Switch M profile security state between NS and S */
6084static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6085{
6086 uint32_t new_ss_msp, new_ss_psp;
6087
6088 if (env->v7m.secure == new_secstate) {
6089 return;
6090 }
6091
6092 /* All the banked state is accessed by looking at env->v7m.secure
6093 * except for the stack pointer; rearrange the SP appropriately.
6094 */
6095 new_ss_msp = env->v7m.other_ss_msp;
6096 new_ss_psp = env->v7m.other_ss_psp;
6097
6098 if (v7m_using_psp(env)) {
6099 env->v7m.other_ss_psp = env->regs[13];
6100 env->v7m.other_ss_msp = env->v7m.other_sp;
6101 } else {
6102 env->v7m.other_ss_msp = env->regs[13];
6103 env->v7m.other_ss_psp = env->v7m.other_sp;
6104 }
6105
6106 env->v7m.secure = new_secstate;
6107
6108 if (v7m_using_psp(env)) {
6109 env->regs[13] = new_ss_psp;
6110 env->v7m.other_sp = new_ss_msp;
6111 } else {
6112 env->regs[13] = new_ss_msp;
6113 env->v7m.other_sp = new_ss_psp;
6114 }
6115}
6116
6117void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6118{
6119 /* Handle v7M BXNS:
6120 * - if the return value is a magic value, do exception return (like BX)
6121 * - otherwise bit 0 of the return value is the target security state
6122 */
6123 if (dest >= 0xff000000) {
6124 /* This is an exception return magic value; put it where
6125 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6126 * Note that if we ever add gen_ss_advance() singlestep support to
6127 * M profile this should count as an "instruction execution complete"
6128 * event (compare gen_bx_excret_final_code()).
6129 */
6130 env->regs[15] = dest & ~1;
6131 env->thumb = dest & 1;
6132 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6133 /* notreached */
6134 }
6135
6136 /* translate.c should have made BXNS UNDEF unless we're secure */
6137 assert(env->v7m.secure);
6138
6139 switch_v7m_security_state(env, dest & 1);
6140 env->thumb = 1;
6141 env->regs[15] = dest & ~1;
6142}
6143
39ae2474
PM
6144static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6145{
6146 CPUState *cs = CPU(cpu);
6147 CPUARMState *env = &cpu->env;
6148 MemTxResult result;
45db7ba6 6149 hwaddr vec = env->v7m.vecbase[env->v7m.secure] + env->v7m.exception * 4;
39ae2474
PM
6150 uint32_t addr;
6151
6152 addr = address_space_ldl(cs->as, vec,
6153 MEMTXATTRS_UNSPECIFIED, &result);
6154 if (result != MEMTX_OK) {
6155 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6156 * which would then be immediately followed by our failing to load
6157 * the entry vector for that HardFault, which is a Lockup case.
6158 * Since we don't model Lockup, we just report this guest error
6159 * via cpu_abort().
6160 */
6161 cpu_abort(cs, "Failed to read from exception vector table "
6162 "entry %08x\n", (unsigned)vec);
6163 }
6164 return addr;
6165}
6166
6167static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6168{
6169 /* Do the "take the exception" parts of exception entry,
6170 * but not the pushing of state to the stack. This is
6171 * similar to the pseudocode ExceptionTaken() function.
6172 */
6173 CPUARMState *env = &cpu->env;
6174 uint32_t addr;
6175
6176 armv7m_nvic_acknowledge_irq(env->nvic);
6177 switch_v7m_sp(env, 0);
dc3c4c14 6178 arm_clear_exclusive(env);
39ae2474
PM
6179 /* Clear IT bits */
6180 env->condexec_bits = 0;
6181 env->regs[14] = lr;
6182 addr = arm_v7m_load_vector(cpu);
6183 env->regs[15] = addr & 0xfffffffe;
6184 env->thumb = addr & 1;
6185}
6186
6187static void v7m_push_stack(ARMCPU *cpu)
6188{
6189 /* Do the "set up stack frame" part of exception entry,
6190 * similar to pseudocode PushStack().
6191 */
6192 CPUARMState *env = &cpu->env;
6193 uint32_t xpsr = xpsr_read(env);
6194
6195 /* Align stack pointer if the guest wants that */
9d40cd8a
PM
6196 if ((env->regs[13] & 4) &&
6197 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
39ae2474 6198 env->regs[13] -= 4;
987ab45e 6199 xpsr |= XPSR_SPREALIGN;
39ae2474
PM
6200 }
6201 /* Switch to the handler mode. */
6202 v7m_push(env, xpsr);
6203 v7m_push(env, env->regs[15]);
6204 v7m_push(env, env->regs[14]);
6205 v7m_push(env, env->regs[12]);
6206 v7m_push(env, env->regs[3]);
6207 v7m_push(env, env->regs[2]);
6208 v7m_push(env, env->regs[1]);
6209 v7m_push(env, env->regs[0]);
6210}
6211
aa488fe3 6212static void do_v7m_exception_exit(ARMCPU *cpu)
9ee6e8bb 6213{
aa488fe3 6214 CPUARMState *env = &cpu->env;
351e527a 6215 uint32_t excret;
9ee6e8bb 6216 uint32_t xpsr;
aa488fe3
PM
6217 bool ufault = false;
6218 bool return_to_sp_process = false;
6219 bool return_to_handler = false;
6220 bool rettobase = false;
6221
6222 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
9d17da4b 6223 * gen_bx_excret() enforces the architectural rule
aa488fe3
PM
6224 * that jumps to magic addresses don't have magic behaviour unless
6225 * we're in Handler mode (compare pseudocode BXWritePC()).
6226 */
15b3f556 6227 assert(arm_v7m_is_handler_mode(env));
aa488fe3
PM
6228
6229 /* In the spec pseudocode ExceptionReturn() is called directly
6230 * from BXWritePC() and gets the full target PC value including
6231 * bit zero. In QEMU's implementation we treat it as a normal
6232 * jump-to-register (which is then caught later on), and so split
6233 * the target value up between env->regs[15] and env->thumb in
6234 * gen_bx(). Reconstitute it.
6235 */
351e527a 6236 excret = env->regs[15];
aa488fe3 6237 if (env->thumb) {
351e527a 6238 excret |= 1;
aa488fe3
PM
6239 }
6240
6241 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6242 " previous exception %d\n",
351e527a 6243 excret, env->v7m.exception);
aa488fe3 6244
351e527a 6245 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
aa488fe3 6246 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
351e527a
PM
6247 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6248 excret);
aa488fe3
PM
6249 }
6250
a20ee600 6251 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
42a6686b
PM
6252 /* Auto-clear FAULTMASK on return from other than NMI.
6253 * If the security extension is implemented then this only
6254 * happens if the raw execution priority is >= 0; the
6255 * value of the ES bit in the exception return value indicates
6256 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6257 */
6258 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
351e527a 6259 int es = excret & R_V7M_EXCRET_ES_MASK;
42a6686b
PM
6260 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6261 env->v7m.faultmask[es] = 0;
6262 }
6263 } else {
6264 env->v7m.faultmask[M_REG_NS] = 0;
6265 }
a20ee600 6266 }
aa488fe3
PM
6267
6268 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
6269 case -1:
6270 /* attempt to exit an exception that isn't active */
6271 ufault = true;
6272 break;
6273 case 0:
6274 /* still an irq active now */
6275 break;
6276 case 1:
6277 /* we returned to base exception level, no nesting.
6278 * (In the pseudocode this is written using "NestedActivation != 1"
6279 * where we have 'rettobase == false'.)
6280 */
6281 rettobase = true;
6282 break;
6283 default:
6284 g_assert_not_reached();
6285 }
6286
351e527a 6287 switch (excret & 0xf) {
aa488fe3
PM
6288 case 1: /* Return to Handler */
6289 return_to_handler = true;
6290 break;
6291 case 13: /* Return to Thread using Process stack */
6292 return_to_sp_process = true;
6293 /* fall through */
6294 case 9: /* Return to Thread using Main stack */
6295 if (!rettobase &&
9d40cd8a 6296 !(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_NONBASETHRDENA_MASK)) {
aa488fe3
PM
6297 ufault = true;
6298 }
6299 break;
6300 default:
6301 ufault = true;
6302 }
6303
6304 if (ufault) {
6305 /* Bad exception return: instead of popping the exception
6306 * stack, directly take a usage fault on the current stack.
6307 */
334e8dad 6308 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
aa488fe3 6309 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
351e527a 6310 v7m_exception_taken(cpu, excret);
aa488fe3
PM
6311 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6312 "stackframe: failed exception return integrity check\n");
6313 return;
a20ee600 6314 }
9ee6e8bb
PB
6315
6316 /* Switch to the target stack. */
aa488fe3 6317 switch_v7m_sp(env, return_to_sp_process);
9ee6e8bb
PB
6318 /* Pop registers. */
6319 env->regs[0] = v7m_pop(env);
6320 env->regs[1] = v7m_pop(env);
6321 env->regs[2] = v7m_pop(env);
6322 env->regs[3] = v7m_pop(env);
6323 env->regs[12] = v7m_pop(env);
6324 env->regs[14] = v7m_pop(env);
6325 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
6326 if (env->regs[15] & 1) {
6327 qemu_log_mask(LOG_GUEST_ERROR,
6328 "M profile return from interrupt with misaligned "
6329 "PC is UNPREDICTABLE\n");
6330 /* Actual hardware seems to ignore the lsbit, and there are several
6331 * RTOSes out there which incorrectly assume the r15 in the stack
6332 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6333 */
6334 env->regs[15] &= ~1U;
6335 }
9ee6e8bb 6336 xpsr = v7m_pop(env);
987ab45e 6337 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
9ee6e8bb 6338 /* Undo stack alignment. */
987ab45e 6339 if (xpsr & XPSR_SPREALIGN) {
9ee6e8bb 6340 env->regs[13] |= 4;
987ab45e 6341 }
aa488fe3
PM
6342
6343 /* The restored xPSR exception field will be zero if we're
6344 * resuming in Thread mode. If that doesn't match what the
351e527a 6345 * exception return excret specified then this is a UsageFault.
aa488fe3 6346 */
15b3f556 6347 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
aa488fe3
PM
6348 /* Take an INVPC UsageFault by pushing the stack again. */
6349 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
334e8dad 6350 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
aa488fe3 6351 v7m_push_stack(cpu);
351e527a 6352 v7m_exception_taken(cpu, excret);
aa488fe3
PM
6353 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6354 "failed exception return integrity check\n");
6355 return;
6356 }
6357
6358 /* Otherwise, we have a successful exception exit. */
dc3c4c14 6359 arm_clear_exclusive(env);
aa488fe3 6360 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9ee6e8bb
PB
6361}
6362
27a7ea8a
PB
6363static void arm_log_exception(int idx)
6364{
6365 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6366 const char *exc = NULL;
2c4a7cc5
PM
6367 static const char * const excnames[] = {
6368 [EXCP_UDEF] = "Undefined Instruction",
6369 [EXCP_SWI] = "SVC",
6370 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6371 [EXCP_DATA_ABORT] = "Data Abort",
6372 [EXCP_IRQ] = "IRQ",
6373 [EXCP_FIQ] = "FIQ",
6374 [EXCP_BKPT] = "Breakpoint",
6375 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6376 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6377 [EXCP_HVC] = "Hypervisor Call",
6378 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6379 [EXCP_SMC] = "Secure Monitor Call",
6380 [EXCP_VIRQ] = "Virtual IRQ",
6381 [EXCP_VFIQ] = "Virtual FIQ",
6382 [EXCP_SEMIHOST] = "Semihosting call",
6383 [EXCP_NOCP] = "v7M NOCP UsageFault",
6384 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6385 };
27a7ea8a
PB
6386
6387 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6388 exc = excnames[idx];
6389 }
6390 if (!exc) {
6391 exc = "unknown";
6392 }
6393 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6394 }
6395}
6396
e6f010cc 6397void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 6398{
e6f010cc
AF
6399 ARMCPU *cpu = ARM_CPU(cs);
6400 CPUARMState *env = &cpu->env;
9ee6e8bb 6401 uint32_t lr;
9ee6e8bb 6402
27103424 6403 arm_log_exception(cs->exception_index);
3f1beaca 6404
9ee6e8bb
PB
6405 /* For exceptions we just mark as pending on the NVIC, and let that
6406 handle it. */
27103424 6407 switch (cs->exception_index) {
9ee6e8bb 6408 case EXCP_UDEF:
983fe826 6409 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
334e8dad 6410 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
a25dc805 6411 break;
7517748e
PM
6412 case EXCP_NOCP:
6413 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
334e8dad 6414 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
a25dc805 6415 break;
e13886e3
PM
6416 case EXCP_INVSTATE:
6417 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
334e8dad 6418 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
e13886e3 6419 break;
9ee6e8bb 6420 case EXCP_SWI:
314e2296 6421 /* The PC already points to the next instruction. */
983fe826 6422 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
a25dc805 6423 break;
9ee6e8bb
PB
6424 case EXCP_PREFETCH_ABORT:
6425 case EXCP_DATA_ABORT:
5dd0641d
MD
6426 /* Note that for M profile we don't have a guest facing FSR, but
6427 * the env->exception.fsr will be populated by the code that
6428 * raises the fault, in the A profile short-descriptor format.
abf1172f 6429 */
5dd0641d
MD
6430 switch (env->exception.fsr & 0xf) {
6431 case 0x8: /* External Abort */
6432 switch (cs->exception_index) {
6433 case EXCP_PREFETCH_ABORT:
c6158878
PM
6434 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6435 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
5dd0641d
MD
6436 break;
6437 case EXCP_DATA_ABORT:
334e8dad 6438 env->v7m.cfsr[M_REG_NS] |=
c6158878 6439 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
5dd0641d
MD
6440 env->v7m.bfar = env->exception.vaddress;
6441 qemu_log_mask(CPU_LOG_INT,
c6158878 6442 "...with CFSR.PRECISERR and BFAR 0x%x\n",
5dd0641d
MD
6443 env->v7m.bfar);
6444 break;
6445 }
6446 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS);
6447 break;
6448 default:
6449 /* All other FSR values are either MPU faults or "can't happen
6450 * for M profile" cases.
6451 */
6452 switch (cs->exception_index) {
6453 case EXCP_PREFETCH_ABORT:
334e8dad 6454 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
5dd0641d
MD
6455 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6456 break;
6457 case EXCP_DATA_ABORT:
334e8dad 6458 env->v7m.cfsr[env->v7m.secure] |=
5dd0641d 6459 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
c51a5cfc 6460 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
5dd0641d
MD
6461 qemu_log_mask(CPU_LOG_INT,
6462 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
c51a5cfc 6463 env->v7m.mmfar[env->v7m.secure]);
5dd0641d
MD
6464 break;
6465 }
6466 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6467 break;
6468 }
a25dc805 6469 break;
9ee6e8bb 6470 case EXCP_BKPT:
cfe67cef 6471 if (semihosting_enabled()) {
2ad207d4 6472 int nr;
f9fd40eb 6473 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
6474 if (nr == 0xab) {
6475 env->regs[15] += 2;
205ace55
CC
6476 qemu_log_mask(CPU_LOG_INT,
6477 "...handling as semihosting call 0x%x\n",
6478 env->regs[0]);
2ad207d4
PB
6479 env->regs[0] = do_arm_semihosting(env);
6480 return;
6481 }
6482 }
983fe826 6483 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
a25dc805 6484 break;
9ee6e8bb 6485 case EXCP_IRQ:
9ee6e8bb
PB
6486 break;
6487 case EXCP_EXCEPTION_EXIT:
aa488fe3 6488 do_v7m_exception_exit(cpu);
9ee6e8bb
PB
6489 return;
6490 default:
a47dddd7 6491 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
6492 return; /* Never happens. Keep compiler happy. */
6493 }
6494
4d1e7a47
PM
6495 lr = R_V7M_EXCRET_RES1_MASK |
6496 R_V7M_EXCRET_S_MASK |
6497 R_V7M_EXCRET_DCRS_MASK |
6498 R_V7M_EXCRET_FTYPE_MASK |
6499 R_V7M_EXCRET_ES_MASK;
8bfc26ea 6500 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
4d1e7a47 6501 lr |= R_V7M_EXCRET_SPSEL_MASK;
bd70b29b 6502 }
15b3f556 6503 if (!arm_v7m_is_handler_mode(env)) {
4d1e7a47 6504 lr |= R_V7M_EXCRET_MODE_MASK;
bd70b29b
PM
6505 }
6506
39ae2474
PM
6507 v7m_push_stack(cpu);
6508 v7m_exception_taken(cpu, lr);
a25dc805 6509 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
9ee6e8bb
PB
6510}
6511
ce02049d
GB
6512/* Function used to synchronize QEMU's AArch64 register set with AArch32
6513 * register set. This is necessary when switching between AArch32 and AArch64
6514 * execution state.
6515 */
6516void aarch64_sync_32_to_64(CPUARMState *env)
6517{
6518 int i;
6519 uint32_t mode = env->uncached_cpsr & CPSR_M;
6520
6521 /* We can blanket copy R[0:7] to X[0:7] */
6522 for (i = 0; i < 8; i++) {
6523 env->xregs[i] = env->regs[i];
6524 }
6525
6526 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6527 * Otherwise, they come from the banked user regs.
6528 */
6529 if (mode == ARM_CPU_MODE_FIQ) {
6530 for (i = 8; i < 13; i++) {
6531 env->xregs[i] = env->usr_regs[i - 8];
6532 }
6533 } else {
6534 for (i = 8; i < 13; i++) {
6535 env->xregs[i] = env->regs[i];
6536 }
6537 }
6538
6539 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6540 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6541 * from the mode banked register.
6542 */
6543 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6544 env->xregs[13] = env->regs[13];
6545 env->xregs[14] = env->regs[14];
6546 } else {
6547 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6548 /* HYP is an exception in that it is copied from r14 */
6549 if (mode == ARM_CPU_MODE_HYP) {
6550 env->xregs[14] = env->regs[14];
6551 } else {
6552 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6553 }
6554 }
6555
6556 if (mode == ARM_CPU_MODE_HYP) {
6557 env->xregs[15] = env->regs[13];
6558 } else {
6559 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6560 }
6561
6562 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6563 env->xregs[16] = env->regs[14];
6564 env->xregs[17] = env->regs[13];
ce02049d 6565 } else {
3a9148d0
SS
6566 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6567 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
6568 }
6569
6570 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6571 env->xregs[18] = env->regs[14];
6572 env->xregs[19] = env->regs[13];
ce02049d 6573 } else {
3a9148d0
SS
6574 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6575 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
6576 }
6577
6578 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6579 env->xregs[20] = env->regs[14];
6580 env->xregs[21] = env->regs[13];
ce02049d 6581 } else {
3a9148d0
SS
6582 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6583 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
6584 }
6585
6586 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6587 env->xregs[22] = env->regs[14];
6588 env->xregs[23] = env->regs[13];
ce02049d 6589 } else {
3a9148d0
SS
6590 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6591 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
6592 }
6593
6594 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6595 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6596 * FIQ bank for r8-r14.
6597 */
6598 if (mode == ARM_CPU_MODE_FIQ) {
6599 for (i = 24; i < 31; i++) {
6600 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6601 }
6602 } else {
6603 for (i = 24; i < 29; i++) {
6604 env->xregs[i] = env->fiq_regs[i - 24];
6605 }
6606 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6607 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6608 }
6609
6610 env->pc = env->regs[15];
6611}
6612
6613/* Function used to synchronize QEMU's AArch32 register set with AArch64
6614 * register set. This is necessary when switching between AArch32 and AArch64
6615 * execution state.
6616 */
6617void aarch64_sync_64_to_32(CPUARMState *env)
6618{
6619 int i;
6620 uint32_t mode = env->uncached_cpsr & CPSR_M;
6621
6622 /* We can blanket copy X[0:7] to R[0:7] */
6623 for (i = 0; i < 8; i++) {
6624 env->regs[i] = env->xregs[i];
6625 }
6626
6627 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6628 * Otherwise, we copy x8-x12 into the banked user regs.
6629 */
6630 if (mode == ARM_CPU_MODE_FIQ) {
6631 for (i = 8; i < 13; i++) {
6632 env->usr_regs[i - 8] = env->xregs[i];
6633 }
6634 } else {
6635 for (i = 8; i < 13; i++) {
6636 env->regs[i] = env->xregs[i];
6637 }
6638 }
6639
6640 /* Registers r13 & r14 depend on the current mode.
6641 * If we are in a given mode, we copy the corresponding x registers to r13
6642 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6643 * for the mode.
6644 */
6645 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6646 env->regs[13] = env->xregs[13];
6647 env->regs[14] = env->xregs[14];
6648 } else {
6649 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6650
6651 /* HYP is an exception in that it does not have its own banked r14 but
6652 * shares the USR r14
6653 */
6654 if (mode == ARM_CPU_MODE_HYP) {
6655 env->regs[14] = env->xregs[14];
6656 } else {
6657 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6658 }
6659 }
6660
6661 if (mode == ARM_CPU_MODE_HYP) {
6662 env->regs[13] = env->xregs[15];
6663 } else {
6664 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6665 }
6666
6667 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6668 env->regs[14] = env->xregs[16];
6669 env->regs[13] = env->xregs[17];
ce02049d 6670 } else {
3a9148d0
SS
6671 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6672 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
6673 }
6674
6675 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6676 env->regs[14] = env->xregs[18];
6677 env->regs[13] = env->xregs[19];
ce02049d 6678 } else {
3a9148d0
SS
6679 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6680 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
6681 }
6682
6683 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6684 env->regs[14] = env->xregs[20];
6685 env->regs[13] = env->xregs[21];
ce02049d 6686 } else {
3a9148d0
SS
6687 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6688 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
6689 }
6690
6691 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6692 env->regs[14] = env->xregs[22];
6693 env->regs[13] = env->xregs[23];
ce02049d 6694 } else {
3a9148d0
SS
6695 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6696 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
6697 }
6698
6699 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6700 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6701 * FIQ bank for r8-r14.
6702 */
6703 if (mode == ARM_CPU_MODE_FIQ) {
6704 for (i = 24; i < 31; i++) {
6705 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6706 }
6707 } else {
6708 for (i = 24; i < 29; i++) {
6709 env->fiq_regs[i - 24] = env->xregs[i];
6710 }
6711 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6712 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6713 }
6714
6715 env->regs[15] = env->pc;
6716}
6717
966f758c 6718static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 6719{
97a8ea5a
AF
6720 ARMCPU *cpu = ARM_CPU(cs);
6721 CPUARMState *env = &cpu->env;
b5ff1b31
FB
6722 uint32_t addr;
6723 uint32_t mask;
6724 int new_mode;
6725 uint32_t offset;
16a906fd 6726 uint32_t moe;
b5ff1b31 6727
16a906fd
PM
6728 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6729 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6730 case EC_BREAKPOINT:
6731 case EC_BREAKPOINT_SAME_EL:
6732 moe = 1;
6733 break;
6734 case EC_WATCHPOINT:
6735 case EC_WATCHPOINT_SAME_EL:
6736 moe = 10;
6737 break;
6738 case EC_AA32_BKPT:
6739 moe = 3;
6740 break;
6741 case EC_VECTORCATCH:
6742 moe = 5;
6743 break;
6744 default:
6745 moe = 0;
6746 break;
6747 }
6748
6749 if (moe) {
6750 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6751 }
6752
b5ff1b31 6753 /* TODO: Vectored interrupt controller. */
27103424 6754 switch (cs->exception_index) {
b5ff1b31
FB
6755 case EXCP_UDEF:
6756 new_mode = ARM_CPU_MODE_UND;
6757 addr = 0x04;
6758 mask = CPSR_I;
6759 if (env->thumb)
6760 offset = 2;
6761 else
6762 offset = 4;
6763 break;
6764 case EXCP_SWI:
6765 new_mode = ARM_CPU_MODE_SVC;
6766 addr = 0x08;
6767 mask = CPSR_I;
601d70b9 6768 /* The PC already points to the next instruction. */
b5ff1b31
FB
6769 offset = 0;
6770 break;
06c949e6 6771 case EXCP_BKPT:
abf1172f 6772 env->exception.fsr = 2;
9ee6e8bb
PB
6773 /* Fall through to prefetch abort. */
6774 case EXCP_PREFETCH_ABORT:
88ca1c2d 6775 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 6776 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 6777 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 6778 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6779 new_mode = ARM_CPU_MODE_ABT;
6780 addr = 0x0c;
6781 mask = CPSR_A | CPSR_I;
6782 offset = 4;
6783 break;
6784 case EXCP_DATA_ABORT:
4a7e2d73 6785 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 6786 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 6787 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 6788 env->exception.fsr,
6cd8a264 6789 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6790 new_mode = ARM_CPU_MODE_ABT;
6791 addr = 0x10;
6792 mask = CPSR_A | CPSR_I;
6793 offset = 8;
6794 break;
6795 case EXCP_IRQ:
6796 new_mode = ARM_CPU_MODE_IRQ;
6797 addr = 0x18;
6798 /* Disable IRQ and imprecise data aborts. */
6799 mask = CPSR_A | CPSR_I;
6800 offset = 4;
de38d23b
FA
6801 if (env->cp15.scr_el3 & SCR_IRQ) {
6802 /* IRQ routed to monitor mode */
6803 new_mode = ARM_CPU_MODE_MON;
6804 mask |= CPSR_F;
6805 }
b5ff1b31
FB
6806 break;
6807 case EXCP_FIQ:
6808 new_mode = ARM_CPU_MODE_FIQ;
6809 addr = 0x1c;
6810 /* Disable FIQ, IRQ and imprecise data aborts. */
6811 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
6812 if (env->cp15.scr_el3 & SCR_FIQ) {
6813 /* FIQ routed to monitor mode */
6814 new_mode = ARM_CPU_MODE_MON;
6815 }
b5ff1b31
FB
6816 offset = 4;
6817 break;
87a4b270
PM
6818 case EXCP_VIRQ:
6819 new_mode = ARM_CPU_MODE_IRQ;
6820 addr = 0x18;
6821 /* Disable IRQ and imprecise data aborts. */
6822 mask = CPSR_A | CPSR_I;
6823 offset = 4;
6824 break;
6825 case EXCP_VFIQ:
6826 new_mode = ARM_CPU_MODE_FIQ;
6827 addr = 0x1c;
6828 /* Disable FIQ, IRQ and imprecise data aborts. */
6829 mask = CPSR_A | CPSR_I | CPSR_F;
6830 offset = 4;
6831 break;
dbe9d163
FA
6832 case EXCP_SMC:
6833 new_mode = ARM_CPU_MODE_MON;
6834 addr = 0x08;
6835 mask = CPSR_A | CPSR_I | CPSR_F;
6836 offset = 0;
6837 break;
b5ff1b31 6838 default:
a47dddd7 6839 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
6840 return; /* Never happens. Keep compiler happy. */
6841 }
e89e51a1
FA
6842
6843 if (new_mode == ARM_CPU_MODE_MON) {
6844 addr += env->cp15.mvbar;
137feaa9 6845 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 6846 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 6847 addr += 0xffff0000;
8641136c
NR
6848 } else {
6849 /* ARM v7 architectures provide a vector base address register to remap
6850 * the interrupt vector table.
e89e51a1 6851 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
6852 * Note: only bits 31:5 are valid.
6853 */
fb6c91ba 6854 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 6855 }
dbe9d163
FA
6856
6857 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6858 env->cp15.scr_el3 &= ~SCR_NS;
6859 }
6860
b5ff1b31 6861 switch_mode (env, new_mode);
662cefb7
PM
6862 /* For exceptions taken to AArch32 we must clear the SS bit in both
6863 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6864 */
6865 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 6866 env->spsr = cpsr_read(env);
9ee6e8bb
PB
6867 /* Clear IT bits. */
6868 env->condexec_bits = 0;
30a8cac1 6869 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 6870 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
73462ddd
PC
6871 /* Set new mode endianness */
6872 env->uncached_cpsr &= ~CPSR_E;
6873 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
3823b9db 6874 env->uncached_cpsr |= CPSR_E;
73462ddd 6875 }
4cc35614 6876 env->daif |= mask;
be5e7a76
DES
6877 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6878 * and we should just guard the thumb mode on V4 */
6879 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 6880 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 6881 }
b5ff1b31
FB
6882 env->regs[14] = env->regs[15] + offset;
6883 env->regs[15] = addr;
b5ff1b31
FB
6884}
6885
966f758c
PM
6886/* Handle exception entry to a target EL which is using AArch64 */
6887static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
6888{
6889 ARMCPU *cpu = ARM_CPU(cs);
6890 CPUARMState *env = &cpu->env;
6891 unsigned int new_el = env->exception.target_el;
6892 target_ulong addr = env->cp15.vbar_el[new_el];
6893 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6894
6895 if (arm_current_el(env) < new_el) {
3d6f7617
PM
6896 /* Entry vector offset depends on whether the implemented EL
6897 * immediately lower than the target level is using AArch32 or AArch64
6898 */
6899 bool is_aa64;
6900
6901 switch (new_el) {
6902 case 3:
6903 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6904 break;
6905 case 2:
6906 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6907 break;
6908 case 1:
6909 is_aa64 = is_a64(env);
6910 break;
6911 default:
6912 g_assert_not_reached();
6913 }
6914
6915 if (is_aa64) {
f3a9b694
PM
6916 addr += 0x400;
6917 } else {
6918 addr += 0x600;
6919 }
6920 } else if (pstate_read(env) & PSTATE_SP) {
6921 addr += 0x200;
6922 }
6923
f3a9b694
PM
6924 switch (cs->exception_index) {
6925 case EXCP_PREFETCH_ABORT:
6926 case EXCP_DATA_ABORT:
6927 env->cp15.far_el[new_el] = env->exception.vaddress;
6928 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6929 env->cp15.far_el[new_el]);
6930 /* fall through */
6931 case EXCP_BKPT:
6932 case EXCP_UDEF:
6933 case EXCP_SWI:
6934 case EXCP_HVC:
6935 case EXCP_HYP_TRAP:
6936 case EXCP_SMC:
6937 env->cp15.esr_el[new_el] = env->exception.syndrome;
6938 break;
6939 case EXCP_IRQ:
6940 case EXCP_VIRQ:
6941 addr += 0x80;
6942 break;
6943 case EXCP_FIQ:
6944 case EXCP_VFIQ:
6945 addr += 0x100;
6946 break;
6947 case EXCP_SEMIHOST:
6948 qemu_log_mask(CPU_LOG_INT,
6949 "...handling as semihosting call 0x%" PRIx64 "\n",
6950 env->xregs[0]);
6951 env->xregs[0] = do_arm_semihosting(env);
6952 return;
6953 default:
6954 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6955 }
6956
6957 if (is_a64(env)) {
6958 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6959 aarch64_save_sp(env, arm_current_el(env));
6960 env->elr_el[new_el] = env->pc;
6961 } else {
6962 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
6963 env->elr_el[new_el] = env->regs[15];
6964
6965 aarch64_sync_32_to_64(env);
6966
6967 env->condexec_bits = 0;
6968 }
6969 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6970 env->elr_el[new_el]);
6971
6972 pstate_write(env, PSTATE_DAIF | new_mode);
6973 env->aarch64 = 1;
6974 aarch64_restore_sp(env, new_el);
6975
6976 env->pc = addr;
6977
6978 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6979 new_el, env->pc, pstate_read(env));
966f758c
PM
6980}
6981
904c04de
PM
6982static inline bool check_for_semihosting(CPUState *cs)
6983{
6984 /* Check whether this exception is a semihosting call; if so
6985 * then handle it and return true; otherwise return false.
6986 */
6987 ARMCPU *cpu = ARM_CPU(cs);
6988 CPUARMState *env = &cpu->env;
6989
6990 if (is_a64(env)) {
6991 if (cs->exception_index == EXCP_SEMIHOST) {
6992 /* This is always the 64-bit semihosting exception.
6993 * The "is this usermode" and "is semihosting enabled"
6994 * checks have been done at translate time.
6995 */
6996 qemu_log_mask(CPU_LOG_INT,
6997 "...handling as semihosting call 0x%" PRIx64 "\n",
6998 env->xregs[0]);
6999 env->xregs[0] = do_arm_semihosting(env);
7000 return true;
7001 }
7002 return false;
7003 } else {
7004 uint32_t imm;
7005
7006 /* Only intercept calls from privileged modes, to provide some
7007 * semblance of security.
7008 */
19a6e31c
PM
7009 if (cs->exception_index != EXCP_SEMIHOST &&
7010 (!semihosting_enabled() ||
7011 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
904c04de
PM
7012 return false;
7013 }
7014
7015 switch (cs->exception_index) {
19a6e31c
PM
7016 case EXCP_SEMIHOST:
7017 /* This is always a semihosting call; the "is this usermode"
7018 * and "is semihosting enabled" checks have been done at
7019 * translate time.
7020 */
7021 break;
904c04de
PM
7022 case EXCP_SWI:
7023 /* Check for semihosting interrupt. */
7024 if (env->thumb) {
f9fd40eb 7025 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
7026 & 0xff;
7027 if (imm == 0xab) {
7028 break;
7029 }
7030 } else {
f9fd40eb 7031 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
7032 & 0xffffff;
7033 if (imm == 0x123456) {
7034 break;
7035 }
7036 }
7037 return false;
7038 case EXCP_BKPT:
7039 /* See if this is a semihosting syscall. */
7040 if (env->thumb) {
f9fd40eb 7041 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
7042 & 0xff;
7043 if (imm == 0xab) {
7044 env->regs[15] += 2;
7045 break;
7046 }
7047 }
7048 return false;
7049 default:
7050 return false;
7051 }
7052
7053 qemu_log_mask(CPU_LOG_INT,
7054 "...handling as semihosting call 0x%x\n",
7055 env->regs[0]);
7056 env->regs[0] = do_arm_semihosting(env);
7057 return true;
7058 }
7059}
7060
966f758c
PM
7061/* Handle a CPU exception for A and R profile CPUs.
7062 * Do any appropriate logging, handle PSCI calls, and then hand off
7063 * to the AArch64-entry or AArch32-entry function depending on the
7064 * target exception level's register width.
7065 */
7066void arm_cpu_do_interrupt(CPUState *cs)
7067{
7068 ARMCPU *cpu = ARM_CPU(cs);
7069 CPUARMState *env = &cpu->env;
7070 unsigned int new_el = env->exception.target_el;
7071
531c60a9 7072 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c
PM
7073
7074 arm_log_exception(cs->exception_index);
7075 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7076 new_el);
7077 if (qemu_loglevel_mask(CPU_LOG_INT)
7078 && !excp_is_internal(cs->exception_index)) {
6568da45 7079 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
966f758c
PM
7080 env->exception.syndrome >> ARM_EL_EC_SHIFT,
7081 env->exception.syndrome);
7082 }
7083
7084 if (arm_is_psci_call(cpu, cs->exception_index)) {
7085 arm_handle_psci_call(cpu);
7086 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7087 return;
7088 }
7089
904c04de
PM
7090 /* Semihosting semantics depend on the register width of the
7091 * code that caused the exception, not the target exception level,
7092 * so must be handled here.
966f758c 7093 */
904c04de
PM
7094 if (check_for_semihosting(cs)) {
7095 return;
7096 }
7097
7098 assert(!excp_is_internal(cs->exception_index));
7099 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
7100 arm_cpu_do_interrupt_aarch64(cs);
7101 } else {
7102 arm_cpu_do_interrupt_aarch32(cs);
7103 }
f3a9b694 7104
8d04fb55
JK
7105 /* Hooks may change global state so BQL should be held, also the
7106 * BQL needs to be held for any modification of
7107 * cs->interrupt_request.
7108 */
7109 g_assert(qemu_mutex_iothread_locked());
7110
bd7d00fc
PM
7111 arm_call_el_change_hook(cpu);
7112
f3a9b694
PM
7113 if (!kvm_enabled()) {
7114 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7115 }
7116}
0480f69a
PM
7117
7118/* Return the exception level which controls this address translation regime */
7119static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7120{
7121 switch (mmu_idx) {
7122 case ARMMMUIdx_S2NS:
7123 case ARMMMUIdx_S1E2:
7124 return 2;
7125 case ARMMMUIdx_S1E3:
7126 return 3;
7127 case ARMMMUIdx_S1SE0:
7128 return arm_el_is_aa64(env, 3) ? 1 : 3;
7129 case ARMMMUIdx_S1SE1:
7130 case ARMMMUIdx_S1NSE0:
7131 case ARMMMUIdx_S1NSE1:
e7b921c2 7132 case ARMMMUIdx_MPriv:
3bef7012 7133 case ARMMMUIdx_MNegPri:
e7b921c2 7134 case ARMMMUIdx_MUser:
66787c78
PM
7135 case ARMMMUIdx_MSPriv:
7136 case ARMMMUIdx_MSNegPri:
7137 case ARMMMUIdx_MSUser:
0480f69a
PM
7138 return 1;
7139 default:
7140 g_assert_not_reached();
7141 }
7142}
7143
7144/* Return the SCTLR value which controls this address translation regime */
7145static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7146{
7147 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7148}
7149
7150/* Return true if the specified stage of address translation is disabled */
7151static inline bool regime_translation_disabled(CPUARMState *env,
7152 ARMMMUIdx mmu_idx)
7153{
29c483a5 7154 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea 7155 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
3bef7012
PM
7156 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7157 case R_V7M_MPU_CTRL_ENABLE_MASK:
7158 /* Enabled, but not for HardFault and NMI */
66787c78
PM
7159 return mmu_idx == ARMMMUIdx_MNegPri ||
7160 mmu_idx == ARMMMUIdx_MSNegPri;
3bef7012
PM
7161 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7162 /* Enabled for all cases */
7163 return false;
7164 case 0:
7165 default:
7166 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7167 * we warned about that in armv7m_nvic.c when the guest set it.
7168 */
7169 return true;
7170 }
29c483a5
MD
7171 }
7172
0480f69a
PM
7173 if (mmu_idx == ARMMMUIdx_S2NS) {
7174 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7175 }
7176 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7177}
7178
73462ddd
PC
7179static inline bool regime_translation_big_endian(CPUARMState *env,
7180 ARMMMUIdx mmu_idx)
7181{
7182 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7183}
7184
0480f69a
PM
7185/* Return the TCR controlling this translation regime */
7186static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7187{
7188 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 7189 return &env->cp15.vtcr_el2;
0480f69a
PM
7190 }
7191 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7192}
7193
8bd5c820
PM
7194/* Convert a possible stage1+2 MMU index into the appropriate
7195 * stage 1 MMU index
7196 */
7197static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7198{
7199 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7200 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7201 }
7202 return mmu_idx;
7203}
7204
86fb3fa4
TH
7205/* Returns TBI0 value for current regime el */
7206uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7207{
7208 TCR *tcr;
7209 uint32_t el;
7210
7211 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7212 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7213 */
7214 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7215
7216 tcr = regime_tcr(env, mmu_idx);
7217 el = regime_el(env, mmu_idx);
7218
7219 if (el > 1) {
7220 return extract64(tcr->raw_tcr, 20, 1);
7221 } else {
7222 return extract64(tcr->raw_tcr, 37, 1);
7223 }
7224}
7225
7226/* Returns TBI1 value for current regime el */
7227uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7228{
7229 TCR *tcr;
7230 uint32_t el;
7231
7232 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7233 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7234 */
7235 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7236
7237 tcr = regime_tcr(env, mmu_idx);
7238 el = regime_el(env, mmu_idx);
7239
7240 if (el > 1) {
7241 return 0;
7242 } else {
7243 return extract64(tcr->raw_tcr, 38, 1);
7244 }
7245}
7246
aef878be
GB
7247/* Return the TTBR associated with this translation regime */
7248static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7249 int ttbrn)
7250{
7251 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 7252 return env->cp15.vttbr_el2;
aef878be
GB
7253 }
7254 if (ttbrn == 0) {
7255 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7256 } else {
7257 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7258 }
7259}
7260
0480f69a
PM
7261/* Return true if the translation regime is using LPAE format page tables */
7262static inline bool regime_using_lpae_format(CPUARMState *env,
7263 ARMMMUIdx mmu_idx)
7264{
7265 int el = regime_el(env, mmu_idx);
7266 if (el == 2 || arm_el_is_aa64(env, el)) {
7267 return true;
7268 }
7269 if (arm_feature(env, ARM_FEATURE_LPAE)
7270 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7271 return true;
7272 }
7273 return false;
7274}
7275
deb2db99
AR
7276/* Returns true if the stage 1 translation regime is using LPAE format page
7277 * tables. Used when raising alignment exceptions, whose FSR changes depending
7278 * on whether the long or short descriptor format is in use. */
7279bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 7280{
8bd5c820 7281 mmu_idx = stage_1_mmu_idx(mmu_idx);
deb2db99 7282
30901475
AB
7283 return regime_using_lpae_format(env, mmu_idx);
7284}
7285
0480f69a
PM
7286static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7287{
7288 switch (mmu_idx) {
7289 case ARMMMUIdx_S1SE0:
7290 case ARMMMUIdx_S1NSE0:
e7b921c2 7291 case ARMMMUIdx_MUser:
0480f69a
PM
7292 return true;
7293 default:
7294 return false;
7295 case ARMMMUIdx_S12NSE0:
7296 case ARMMMUIdx_S12NSE1:
7297 g_assert_not_reached();
7298 }
7299}
7300
0fbf5238
AJ
7301/* Translate section/page access permissions to page
7302 * R/W protection flags
d76951b6
AJ
7303 *
7304 * @env: CPUARMState
7305 * @mmu_idx: MMU index indicating required translation regime
7306 * @ap: The 3-bit access permissions (AP[2:0])
7307 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
7308 */
7309static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7310 int ap, int domain_prot)
7311{
554b0b09
PM
7312 bool is_user = regime_is_user(env, mmu_idx);
7313
7314 if (domain_prot == 3) {
7315 return PAGE_READ | PAGE_WRITE;
7316 }
7317
554b0b09
PM
7318 switch (ap) {
7319 case 0:
7320 if (arm_feature(env, ARM_FEATURE_V7)) {
7321 return 0;
7322 }
554b0b09
PM
7323 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7324 case SCTLR_S:
7325 return is_user ? 0 : PAGE_READ;
7326 case SCTLR_R:
7327 return PAGE_READ;
7328 default:
7329 return 0;
7330 }
7331 case 1:
7332 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7333 case 2:
87c3d486 7334 if (is_user) {
0fbf5238 7335 return PAGE_READ;
87c3d486 7336 } else {
554b0b09 7337 return PAGE_READ | PAGE_WRITE;
87c3d486 7338 }
554b0b09
PM
7339 case 3:
7340 return PAGE_READ | PAGE_WRITE;
7341 case 4: /* Reserved. */
7342 return 0;
7343 case 5:
0fbf5238 7344 return is_user ? 0 : PAGE_READ;
554b0b09 7345 case 6:
0fbf5238 7346 return PAGE_READ;
554b0b09 7347 case 7:
87c3d486 7348 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 7349 return 0;
87c3d486 7350 }
0fbf5238 7351 return PAGE_READ;
554b0b09 7352 default:
0fbf5238 7353 g_assert_not_reached();
554b0b09 7354 }
b5ff1b31
FB
7355}
7356
d76951b6
AJ
7357/* Translate section/page access permissions to page
7358 * R/W protection flags.
7359 *
d76951b6 7360 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 7361 * @is_user: TRUE if accessing from PL0
d76951b6 7362 */
d8e052b3 7363static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 7364{
d76951b6
AJ
7365 switch (ap) {
7366 case 0:
7367 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7368 case 1:
7369 return PAGE_READ | PAGE_WRITE;
7370 case 2:
7371 return is_user ? 0 : PAGE_READ;
7372 case 3:
7373 return PAGE_READ;
7374 default:
7375 g_assert_not_reached();
7376 }
7377}
7378
d8e052b3
AJ
7379static inline int
7380simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7381{
7382 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7383}
7384
6ab1a5ee
EI
7385/* Translate S2 section/page access permissions to protection flags
7386 *
7387 * @env: CPUARMState
7388 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7389 * @xn: XN (execute-never) bit
7390 */
7391static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7392{
7393 int prot = 0;
7394
7395 if (s2ap & 1) {
7396 prot |= PAGE_READ;
7397 }
7398 if (s2ap & 2) {
7399 prot |= PAGE_WRITE;
7400 }
7401 if (!xn) {
dfda6837
SS
7402 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7403 prot |= PAGE_EXEC;
7404 }
6ab1a5ee
EI
7405 }
7406 return prot;
7407}
7408
d8e052b3
AJ
7409/* Translate section/page access permissions to protection flags
7410 *
7411 * @env: CPUARMState
7412 * @mmu_idx: MMU index indicating required translation regime
7413 * @is_aa64: TRUE if AArch64
7414 * @ap: The 2-bit simple AP (AP[2:1])
7415 * @ns: NS (non-secure) bit
7416 * @xn: XN (execute-never) bit
7417 * @pxn: PXN (privileged execute-never) bit
7418 */
7419static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7420 int ap, int ns, int xn, int pxn)
7421{
7422 bool is_user = regime_is_user(env, mmu_idx);
7423 int prot_rw, user_rw;
7424 bool have_wxn;
7425 int wxn = 0;
7426
7427 assert(mmu_idx != ARMMMUIdx_S2NS);
7428
7429 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7430 if (is_user) {
7431 prot_rw = user_rw;
7432 } else {
7433 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7434 }
7435
7436 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7437 return prot_rw;
7438 }
7439
7440 /* TODO have_wxn should be replaced with
7441 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7442 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7443 * compatible processors have EL2, which is required for [U]WXN.
7444 */
7445 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7446
7447 if (have_wxn) {
7448 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7449 }
7450
7451 if (is_aa64) {
7452 switch (regime_el(env, mmu_idx)) {
7453 case 1:
7454 if (!is_user) {
7455 xn = pxn || (user_rw & PAGE_WRITE);
7456 }
7457 break;
7458 case 2:
7459 case 3:
7460 break;
7461 }
7462 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7463 switch (regime_el(env, mmu_idx)) {
7464 case 1:
7465 case 3:
7466 if (is_user) {
7467 xn = xn || !(user_rw & PAGE_READ);
7468 } else {
7469 int uwxn = 0;
7470 if (have_wxn) {
7471 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7472 }
7473 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7474 (uwxn && (user_rw & PAGE_WRITE));
7475 }
7476 break;
7477 case 2:
7478 break;
7479 }
7480 } else {
7481 xn = wxn = 0;
7482 }
7483
7484 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7485 return prot_rw;
7486 }
7487 return prot_rw | PAGE_EXEC;
7488}
7489
0480f69a
PM
7490static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7491 uint32_t *table, uint32_t address)
b2fa1797 7492{
0480f69a 7493 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 7494 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 7495
11f136ee
FA
7496 if (address & tcr->mask) {
7497 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
7498 /* Translation table walk disabled for TTBR1 */
7499 return false;
7500 }
aef878be 7501 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 7502 } else {
11f136ee 7503 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
7504 /* Translation table walk disabled for TTBR0 */
7505 return false;
7506 }
aef878be 7507 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
7508 }
7509 *table |= (address >> 18) & 0x3ffc;
7510 return true;
b2fa1797
PB
7511}
7512
37785977
EI
7513/* Translate a S1 pagetable walk through S2 if needed. */
7514static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7515 hwaddr addr, MemTxAttrs txattrs,
7516 uint32_t *fsr,
7517 ARMMMUFaultInfo *fi)
7518{
7519 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7520 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7521 target_ulong s2size;
7522 hwaddr s2pa;
7523 int s2prot;
7524 int ret;
7525
7526 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7527 &txattrs, &s2prot, &s2size, fsr, fi);
7528 if (ret) {
7529 fi->s2addr = addr;
7530 fi->stage2 = true;
7531 fi->s1ptw = true;
7532 return ~0;
7533 }
7534 addr = s2pa;
7535 }
7536 return addr;
7537}
7538
ebca90e4
PM
7539/* All loads done in the course of a page table walk go through here.
7540 * TODO: rather than ignoring errors from physical memory reads (which
7541 * are external aborts in ARM terminology) we should propagate this
7542 * error out so that we can turn it into a Data Abort if this walk
7543 * was being done for a CPU load/store or an address translation instruction
7544 * (but not if it was for a debug access).
7545 */
a614e698
EI
7546static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7547 ARMMMUIdx mmu_idx, uint32_t *fsr,
7548 ARMMMUFaultInfo *fi)
ebca90e4 7549{
a614e698
EI
7550 ARMCPU *cpu = ARM_CPU(cs);
7551 CPUARMState *env = &cpu->env;
ebca90e4 7552 MemTxAttrs attrs = {};
5ce4ff65 7553 AddressSpace *as;
ebca90e4
PM
7554
7555 attrs.secure = is_secure;
5ce4ff65 7556 as = arm_addressspace(cs, attrs);
a614e698
EI
7557 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7558 if (fi->s1ptw) {
7559 return 0;
7560 }
73462ddd
PC
7561 if (regime_translation_big_endian(env, mmu_idx)) {
7562 return address_space_ldl_be(as, addr, attrs, NULL);
7563 } else {
7564 return address_space_ldl_le(as, addr, attrs, NULL);
7565 }
ebca90e4
PM
7566}
7567
37785977
EI
7568static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7569 ARMMMUIdx mmu_idx, uint32_t *fsr,
7570 ARMMMUFaultInfo *fi)
ebca90e4 7571{
37785977
EI
7572 ARMCPU *cpu = ARM_CPU(cs);
7573 CPUARMState *env = &cpu->env;
ebca90e4 7574 MemTxAttrs attrs = {};
5ce4ff65 7575 AddressSpace *as;
ebca90e4
PM
7576
7577 attrs.secure = is_secure;
5ce4ff65 7578 as = arm_addressspace(cs, attrs);
37785977
EI
7579 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7580 if (fi->s1ptw) {
7581 return 0;
7582 }
73462ddd
PC
7583 if (regime_translation_big_endian(env, mmu_idx)) {
7584 return address_space_ldq_be(as, addr, attrs, NULL);
7585 } else {
7586 return address_space_ldq_le(as, addr, attrs, NULL);
7587 }
ebca90e4
PM
7588}
7589
b7cc4e82 7590static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
03ae85f8 7591 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7592 hwaddr *phys_ptr, int *prot,
e14b5a23
EI
7593 target_ulong *page_size, uint32_t *fsr,
7594 ARMMMUFaultInfo *fi)
b5ff1b31 7595{
70d74660 7596 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
7597 int code;
7598 uint32_t table;
7599 uint32_t desc;
7600 int type;
7601 int ap;
e389be16 7602 int domain = 0;
dd4ebc2e 7603 int domain_prot;
a8170e5e 7604 hwaddr phys_addr;
0480f69a 7605 uint32_t dacr;
b5ff1b31 7606
9ee6e8bb
PB
7607 /* Pagetable walk. */
7608 /* Lookup l1 descriptor. */
0480f69a 7609 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7610 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7611 code = 5;
7612 goto do_fault;
7613 }
a614e698
EI
7614 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7615 mmu_idx, fsr, fi);
9ee6e8bb 7616 type = (desc & 3);
dd4ebc2e 7617 domain = (desc >> 5) & 0x0f;
0480f69a
PM
7618 if (regime_el(env, mmu_idx) == 1) {
7619 dacr = env->cp15.dacr_ns;
7620 } else {
7621 dacr = env->cp15.dacr_s;
7622 }
7623 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 7624 if (type == 0) {
601d70b9 7625 /* Section translation fault. */
9ee6e8bb
PB
7626 code = 5;
7627 goto do_fault;
7628 }
dd4ebc2e 7629 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
7630 if (type == 2)
7631 code = 9; /* Section domain fault. */
7632 else
7633 code = 11; /* Page domain fault. */
7634 goto do_fault;
7635 }
7636 if (type == 2) {
7637 /* 1Mb section. */
7638 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7639 ap = (desc >> 10) & 3;
7640 code = 13;
d4c430a8 7641 *page_size = 1024 * 1024;
9ee6e8bb
PB
7642 } else {
7643 /* Lookup l2 entry. */
554b0b09
PM
7644 if (type == 1) {
7645 /* Coarse pagetable. */
7646 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7647 } else {
7648 /* Fine pagetable. */
7649 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7650 }
a614e698
EI
7651 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7652 mmu_idx, fsr, fi);
9ee6e8bb
PB
7653 switch (desc & 3) {
7654 case 0: /* Page translation fault. */
7655 code = 7;
7656 goto do_fault;
7657 case 1: /* 64k page. */
7658 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7659 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 7660 *page_size = 0x10000;
ce819861 7661 break;
9ee6e8bb
PB
7662 case 2: /* 4k page. */
7663 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 7664 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 7665 *page_size = 0x1000;
ce819861 7666 break;
fc1891c7 7667 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 7668 if (type == 1) {
fc1891c7
PM
7669 /* ARMv6/XScale extended small page format */
7670 if (arm_feature(env, ARM_FEATURE_XSCALE)
7671 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 7672 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 7673 *page_size = 0x1000;
554b0b09 7674 } else {
fc1891c7
PM
7675 /* UNPREDICTABLE in ARMv5; we choose to take a
7676 * page translation fault.
7677 */
554b0b09
PM
7678 code = 7;
7679 goto do_fault;
7680 }
7681 } else {
7682 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 7683 *page_size = 0x400;
554b0b09 7684 }
9ee6e8bb 7685 ap = (desc >> 4) & 3;
ce819861
PB
7686 break;
7687 default:
9ee6e8bb
PB
7688 /* Never happens, but compiler isn't smart enough to tell. */
7689 abort();
ce819861 7690 }
9ee6e8bb
PB
7691 code = 15;
7692 }
0fbf5238
AJ
7693 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7694 *prot |= *prot ? PAGE_EXEC : 0;
7695 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
7696 /* Access permission fault. */
7697 goto do_fault;
7698 }
7699 *phys_ptr = phys_addr;
b7cc4e82 7700 return false;
9ee6e8bb 7701do_fault:
b7cc4e82
PC
7702 *fsr = code | (domain << 4);
7703 return true;
9ee6e8bb
PB
7704}
7705
b7cc4e82 7706static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
03ae85f8 7707 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7708 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7709 target_ulong *page_size, uint32_t *fsr,
7710 ARMMMUFaultInfo *fi)
9ee6e8bb 7711{
70d74660 7712 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
7713 int code;
7714 uint32_t table;
7715 uint32_t desc;
7716 uint32_t xn;
de9b05b8 7717 uint32_t pxn = 0;
9ee6e8bb
PB
7718 int type;
7719 int ap;
de9b05b8 7720 int domain = 0;
dd4ebc2e 7721 int domain_prot;
a8170e5e 7722 hwaddr phys_addr;
0480f69a 7723 uint32_t dacr;
8bf5b6a9 7724 bool ns;
9ee6e8bb
PB
7725
7726 /* Pagetable walk. */
7727 /* Lookup l1 descriptor. */
0480f69a 7728 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7729 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7730 code = 5;
7731 goto do_fault;
7732 }
a614e698
EI
7733 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7734 mmu_idx, fsr, fi);
9ee6e8bb 7735 type = (desc & 3);
de9b05b8
PM
7736 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7737 /* Section translation fault, or attempt to use the encoding
7738 * which is Reserved on implementations without PXN.
7739 */
9ee6e8bb 7740 code = 5;
9ee6e8bb 7741 goto do_fault;
de9b05b8
PM
7742 }
7743 if ((type == 1) || !(desc & (1 << 18))) {
7744 /* Page or Section. */
dd4ebc2e 7745 domain = (desc >> 5) & 0x0f;
9ee6e8bb 7746 }
0480f69a
PM
7747 if (regime_el(env, mmu_idx) == 1) {
7748 dacr = env->cp15.dacr_ns;
7749 } else {
7750 dacr = env->cp15.dacr_s;
7751 }
7752 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 7753 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 7754 if (type != 1) {
9ee6e8bb 7755 code = 9; /* Section domain fault. */
de9b05b8 7756 } else {
9ee6e8bb 7757 code = 11; /* Page domain fault. */
de9b05b8 7758 }
9ee6e8bb
PB
7759 goto do_fault;
7760 }
de9b05b8 7761 if (type != 1) {
9ee6e8bb
PB
7762 if (desc & (1 << 18)) {
7763 /* Supersection. */
7764 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
7765 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7766 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 7767 *page_size = 0x1000000;
b5ff1b31 7768 } else {
9ee6e8bb
PB
7769 /* Section. */
7770 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 7771 *page_size = 0x100000;
b5ff1b31 7772 }
9ee6e8bb
PB
7773 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7774 xn = desc & (1 << 4);
de9b05b8 7775 pxn = desc & 1;
9ee6e8bb 7776 code = 13;
8bf5b6a9 7777 ns = extract32(desc, 19, 1);
9ee6e8bb 7778 } else {
de9b05b8
PM
7779 if (arm_feature(env, ARM_FEATURE_PXN)) {
7780 pxn = (desc >> 2) & 1;
7781 }
8bf5b6a9 7782 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
7783 /* Lookup l2 entry. */
7784 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698
EI
7785 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7786 mmu_idx, fsr, fi);
9ee6e8bb
PB
7787 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7788 switch (desc & 3) {
7789 case 0: /* Page translation fault. */
7790 code = 7;
b5ff1b31 7791 goto do_fault;
9ee6e8bb
PB
7792 case 1: /* 64k page. */
7793 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7794 xn = desc & (1 << 15);
d4c430a8 7795 *page_size = 0x10000;
9ee6e8bb
PB
7796 break;
7797 case 2: case 3: /* 4k page. */
7798 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7799 xn = desc & 1;
d4c430a8 7800 *page_size = 0x1000;
9ee6e8bb
PB
7801 break;
7802 default:
7803 /* Never happens, but compiler isn't smart enough to tell. */
7804 abort();
b5ff1b31 7805 }
9ee6e8bb
PB
7806 code = 15;
7807 }
dd4ebc2e 7808 if (domain_prot == 3) {
c0034328
JR
7809 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7810 } else {
0480f69a 7811 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
7812 xn = 1;
7813 }
03ae85f8 7814 if (xn && access_type == MMU_INST_FETCH)
c0034328 7815 goto do_fault;
9ee6e8bb 7816
d76951b6
AJ
7817 if (arm_feature(env, ARM_FEATURE_V6K) &&
7818 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7819 /* The simplified model uses AP[0] as an access control bit. */
7820 if ((ap & 1) == 0) {
7821 /* Access flag fault. */
7822 code = (code == 15) ? 6 : 3;
7823 goto do_fault;
7824 }
7825 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7826 } else {
7827 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 7828 }
0fbf5238
AJ
7829 if (*prot && !xn) {
7830 *prot |= PAGE_EXEC;
7831 }
7832 if (!(*prot & (1 << access_type))) {
c0034328
JR
7833 /* Access permission fault. */
7834 goto do_fault;
7835 }
3ad493fc 7836 }
8bf5b6a9
PM
7837 if (ns) {
7838 /* The NS bit will (as required by the architecture) have no effect if
7839 * the CPU doesn't support TZ or this is a non-secure translation
7840 * regime, because the attribute will already be non-secure.
7841 */
7842 attrs->secure = false;
7843 }
9ee6e8bb 7844 *phys_ptr = phys_addr;
b7cc4e82 7845 return false;
b5ff1b31 7846do_fault:
b7cc4e82
PC
7847 *fsr = code | (domain << 4);
7848 return true;
b5ff1b31
FB
7849}
7850
3dde962f
PM
7851/* Fault type for long-descriptor MMU fault reporting; this corresponds
7852 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7853 */
7854typedef enum {
7855 translation_fault = 1,
7856 access_fault = 2,
7857 permission_fault = 3,
7858} MMUFaultType;
7859
1853d5a9 7860/*
a0e966c9 7861 * check_s2_mmu_setup
1853d5a9
EI
7862 * @cpu: ARMCPU
7863 * @is_aa64: True if the translation regime is in AArch64 state
7864 * @startlevel: Suggested starting level
7865 * @inputsize: Bitsize of IPAs
7866 * @stride: Page-table stride (See the ARM ARM)
7867 *
a0e966c9
EI
7868 * Returns true if the suggested S2 translation parameters are OK and
7869 * false otherwise.
1853d5a9 7870 */
a0e966c9
EI
7871static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7872 int inputsize, int stride)
1853d5a9 7873{
98d68ec2
EI
7874 const int grainsize = stride + 3;
7875 int startsizecheck;
7876
1853d5a9
EI
7877 /* Negative levels are never allowed. */
7878 if (level < 0) {
7879 return false;
7880 }
7881
98d68ec2
EI
7882 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7883 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7884 return false;
7885 }
7886
1853d5a9 7887 if (is_aa64) {
3526423e 7888 CPUARMState *env = &cpu->env;
1853d5a9
EI
7889 unsigned int pamax = arm_pamax(cpu);
7890
7891 switch (stride) {
7892 case 13: /* 64KB Pages. */
7893 if (level == 0 || (level == 1 && pamax <= 42)) {
7894 return false;
7895 }
7896 break;
7897 case 11: /* 16KB Pages. */
7898 if (level == 0 || (level == 1 && pamax <= 40)) {
7899 return false;
7900 }
7901 break;
7902 case 9: /* 4KB Pages. */
7903 if (level == 0 && pamax <= 42) {
7904 return false;
7905 }
7906 break;
7907 default:
7908 g_assert_not_reached();
7909 }
3526423e
EI
7910
7911 /* Inputsize checks. */
7912 if (inputsize > pamax &&
7913 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7914 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7915 return false;
7916 }
1853d5a9 7917 } else {
1853d5a9
EI
7918 /* AArch32 only supports 4KB pages. Assert on that. */
7919 assert(stride == 9);
7920
7921 if (level == 0) {
7922 return false;
7923 }
1853d5a9
EI
7924 }
7925 return true;
7926}
7927
b7cc4e82 7928static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 7929 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7930 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
e14b5a23
EI
7931 target_ulong *page_size_ptr, uint32_t *fsr,
7932 ARMMMUFaultInfo *fi)
3dde962f 7933{
1853d5a9
EI
7934 ARMCPU *cpu = arm_env_get_cpu(env);
7935 CPUState *cs = CPU(cpu);
3dde962f
PM
7936 /* Read an LPAE long-descriptor translation table. */
7937 MMUFaultType fault_type = translation_fault;
1b4093ea 7938 uint32_t level;
0c5fbf3b 7939 uint32_t epd = 0;
1f4c8c18 7940 int32_t t0sz, t1sz;
2c8dd318 7941 uint32_t tg;
3dde962f
PM
7942 uint64_t ttbr;
7943 int ttbr_select;
dddb5223 7944 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f
PM
7945 uint32_t tableattrs;
7946 target_ulong page_size;
7947 uint32_t attrs;
973a5434 7948 int32_t stride = 9;
6e99f762 7949 int32_t addrsize;
4ca6a051 7950 int inputsize;
2c8dd318 7951 int32_t tbi = 0;
0480f69a 7952 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 7953 int ap, ns, xn, pxn;
88e8add8
GB
7954 uint32_t el = regime_el(env, mmu_idx);
7955 bool ttbr1_valid = true;
6109769a 7956 uint64_t descaddrmask;
6e99f762 7957 bool aarch64 = arm_el_is_aa64(env, el);
0480f69a
PM
7958
7959 /* TODO:
88e8add8
GB
7960 * This code does not handle the different format TCR for VTCR_EL2.
7961 * This code also does not support shareability levels.
7962 * Attribute and permission bit handling should also be checked when adding
7963 * support for those page table walks.
0480f69a 7964 */
6e99f762 7965 if (aarch64) {
1b4093ea 7966 level = 0;
6e99f762 7967 addrsize = 64;
88e8add8 7968 if (el > 1) {
1edee470
EI
7969 if (mmu_idx != ARMMMUIdx_S2NS) {
7970 tbi = extract64(tcr->raw_tcr, 20, 1);
7971 }
88e8add8
GB
7972 } else {
7973 if (extract64(address, 55, 1)) {
7974 tbi = extract64(tcr->raw_tcr, 38, 1);
7975 } else {
7976 tbi = extract64(tcr->raw_tcr, 37, 1);
7977 }
7978 }
2c8dd318 7979 tbi *= 8;
88e8add8
GB
7980
7981 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7982 * invalid.
7983 */
7984 if (el > 1) {
7985 ttbr1_valid = false;
7986 }
d0a2cbce 7987 } else {
1b4093ea 7988 level = 1;
6e99f762 7989 addrsize = 32;
d0a2cbce
PM
7990 /* There is no TTBR1 for EL2 */
7991 if (el == 2) {
7992 ttbr1_valid = false;
7993 }
2c8dd318 7994 }
3dde962f
PM
7995
7996 /* Determine whether this address is in the region controlled by
7997 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7998 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7999 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8000 */
6e99f762 8001 if (aarch64) {
4ee38098
EI
8002 /* AArch64 translation. */
8003 t0sz = extract32(tcr->raw_tcr, 0, 6);
2c8dd318
RH
8004 t0sz = MIN(t0sz, 39);
8005 t0sz = MAX(t0sz, 16);
4ee38098
EI
8006 } else if (mmu_idx != ARMMMUIdx_S2NS) {
8007 /* AArch32 stage 1 translation. */
8008 t0sz = extract32(tcr->raw_tcr, 0, 3);
8009 } else {
8010 /* AArch32 stage 2 translation. */
8011 bool sext = extract32(tcr->raw_tcr, 4, 1);
8012 bool sign = extract32(tcr->raw_tcr, 3, 1);
6e99f762
SS
8013 /* Address size is 40-bit for a stage 2 translation,
8014 * and t0sz can be negative (from -8 to 7),
8015 * so we need to adjust it to use the TTBR selecting logic below.
8016 */
8017 addrsize = 40;
8018 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
4ee38098
EI
8019
8020 /* If the sign-extend bit is not the same as t0sz[3], the result
8021 * is unpredictable. Flag this as a guest error. */
8022 if (sign != sext) {
8023 qemu_log_mask(LOG_GUEST_ERROR,
39cba610 8024 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
4ee38098 8025 }
2c8dd318 8026 }
1f4c8c18 8027 t1sz = extract32(tcr->raw_tcr, 16, 6);
6e99f762 8028 if (aarch64) {
2c8dd318
RH
8029 t1sz = MIN(t1sz, 39);
8030 t1sz = MAX(t1sz, 16);
8031 }
6e99f762 8032 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
3dde962f
PM
8033 /* there is a ttbr0 region and we are in it (high bits all zero) */
8034 ttbr_select = 0;
88e8add8 8035 } else if (ttbr1_valid && t1sz &&
6e99f762 8036 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
3dde962f
PM
8037 /* there is a ttbr1 region and we are in it (high bits all one) */
8038 ttbr_select = 1;
8039 } else if (!t0sz) {
8040 /* ttbr0 region is "everything not in the ttbr1 region" */
8041 ttbr_select = 0;
88e8add8 8042 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
8043 /* ttbr1 region is "everything not in the ttbr0 region" */
8044 ttbr_select = 1;
8045 } else {
8046 /* in the gap between the two regions, this is a Translation fault */
8047 fault_type = translation_fault;
8048 goto do_fault;
8049 }
8050
8051 /* Note that QEMU ignores shareability and cacheability attributes,
8052 * so we don't need to do anything with the SH, ORGN, IRGN fields
8053 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
8054 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8055 * implement any ASID-like capability so we can ignore it (instead
8056 * we will always flush the TLB any time the ASID is changed).
8057 */
8058 if (ttbr_select == 0) {
aef878be 8059 ttbr = regime_ttbr(env, mmu_idx, 0);
0c5fbf3b
EI
8060 if (el < 2) {
8061 epd = extract32(tcr->raw_tcr, 7, 1);
8062 }
6e99f762 8063 inputsize = addrsize - t0sz;
2c8dd318 8064
11f136ee 8065 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318 8066 if (tg == 1) { /* 64KB pages */
973a5434 8067 stride = 13;
2c8dd318
RH
8068 }
8069 if (tg == 2) { /* 16KB pages */
973a5434 8070 stride = 11;
2c8dd318 8071 }
3dde962f 8072 } else {
88e8add8
GB
8073 /* We should only be here if TTBR1 is valid */
8074 assert(ttbr1_valid);
8075
aef878be 8076 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 8077 epd = extract32(tcr->raw_tcr, 23, 1);
6e99f762 8078 inputsize = addrsize - t1sz;
2c8dd318 8079
11f136ee 8080 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318 8081 if (tg == 3) { /* 64KB pages */
973a5434 8082 stride = 13;
2c8dd318
RH
8083 }
8084 if (tg == 1) { /* 16KB pages */
973a5434 8085 stride = 11;
2c8dd318 8086 }
3dde962f
PM
8087 }
8088
0480f69a 8089 /* Here we should have set up all the parameters for the translation:
6e99f762 8090 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
8091 */
8092
3dde962f 8093 if (epd) {
88e8add8
GB
8094 /* Translation table walk disabled => Translation fault on TLB miss
8095 * Note: This is always 0 on 64-bit EL2 and EL3.
8096 */
3dde962f
PM
8097 goto do_fault;
8098 }
8099
1853d5a9
EI
8100 if (mmu_idx != ARMMMUIdx_S2NS) {
8101 /* The starting level depends on the virtual address size (which can
8102 * be up to 48 bits) and the translation granule size. It indicates
8103 * the number of strides (stride bits at a time) needed to
8104 * consume the bits of the input address. In the pseudocode this is:
8105 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8106 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8107 * our 'stride + 3' and 'stride' is our 'stride'.
8108 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8109 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8110 * = 4 - (inputsize - 4) / stride;
8111 */
8112 level = 4 - (inputsize - 4) / stride;
8113 } else {
8114 /* For stage 2 translations the starting level is specified by the
8115 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8116 */
1b4093ea
SS
8117 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8118 uint32_t startlevel;
1853d5a9
EI
8119 bool ok;
8120
6e99f762 8121 if (!aarch64 || stride == 9) {
1853d5a9 8122 /* AArch32 or 4KB pages */
1b4093ea 8123 startlevel = 2 - sl0;
1853d5a9
EI
8124 } else {
8125 /* 16KB or 64KB pages */
1b4093ea 8126 startlevel = 3 - sl0;
1853d5a9
EI
8127 }
8128
8129 /* Check that the starting level is valid. */
6e99f762 8130 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 8131 inputsize, stride);
1853d5a9 8132 if (!ok) {
1853d5a9
EI
8133 fault_type = translation_fault;
8134 goto do_fault;
8135 }
1b4093ea 8136 level = startlevel;
1853d5a9 8137 }
3dde962f 8138
dddb5223
SS
8139 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8140 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
8141
8142 /* Now we can extract the actual base address from the TTBR */
2c8dd318 8143 descaddr = extract64(ttbr, 0, 48);
dddb5223 8144 descaddr &= ~indexmask;
3dde962f 8145
6109769a 8146 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
8147 * but up to bit 47 for ARMv8, but we use the descaddrmask
8148 * up to bit 39 for AArch32, because we don't need other bits in that case
8149 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 8150 */
6e99f762 8151 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 8152 ~indexmask_grainsize;
6109769a 8153
ebca90e4
PM
8154 /* Secure accesses start with the page table in secure memory and
8155 * can be downgraded to non-secure at any step. Non-secure accesses
8156 * remain non-secure. We implement this by just ORing in the NSTable/NS
8157 * bits at each step.
8158 */
8159 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
8160 for (;;) {
8161 uint64_t descriptor;
ebca90e4 8162 bool nstable;
3dde962f 8163
dddb5223 8164 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 8165 descaddr &= ~7ULL;
ebca90e4 8166 nstable = extract32(tableattrs, 4, 1);
37785977
EI
8167 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8168 if (fi->s1ptw) {
8169 goto do_fault;
8170 }
8171
3dde962f
PM
8172 if (!(descriptor & 1) ||
8173 (!(descriptor & 2) && (level == 3))) {
8174 /* Invalid, or the Reserved level 3 encoding */
8175 goto do_fault;
8176 }
6109769a 8177 descaddr = descriptor & descaddrmask;
3dde962f
PM
8178
8179 if ((descriptor & 2) && (level < 3)) {
8180 /* Table entry. The top five bits are attributes which may
8181 * propagate down through lower levels of the table (and
8182 * which are all arranged so that 0 means "no effect", so
8183 * we can gather them up by ORing in the bits at each level).
8184 */
8185 tableattrs |= extract64(descriptor, 59, 5);
8186 level++;
dddb5223 8187 indexmask = indexmask_grainsize;
3dde962f
PM
8188 continue;
8189 }
8190 /* Block entry at level 1 or 2, or page entry at level 3.
8191 * These are basically the same thing, although the number
8192 * of bits we pull in from the vaddr varies.
8193 */
973a5434 8194 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 8195 descaddr |= (address & (page_size - 1));
6ab1a5ee 8196 /* Extract attributes from the descriptor */
d615efac
IC
8197 attrs = extract64(descriptor, 2, 10)
8198 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
8199
8200 if (mmu_idx == ARMMMUIdx_S2NS) {
8201 /* Stage 2 table descriptors do not include any attribute fields */
8202 break;
8203 }
8204 /* Merge in attributes from table descriptors */
3dde962f
PM
8205 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8206 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8207 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8208 * means "force PL1 access only", which means forcing AP[1] to 0.
8209 */
8210 if (extract32(tableattrs, 2, 1)) {
8211 attrs &= ~(1 << 4);
8212 }
ebca90e4 8213 attrs |= nstable << 3; /* NS */
3dde962f
PM
8214 break;
8215 }
8216 /* Here descaddr is the final physical address, and attributes
8217 * are all in attrs.
8218 */
8219 fault_type = access_fault;
8220 if ((attrs & (1 << 8)) == 0) {
8221 /* Access flag */
8222 goto do_fault;
8223 }
d8e052b3
AJ
8224
8225 ap = extract32(attrs, 4, 2);
d8e052b3 8226 xn = extract32(attrs, 12, 1);
d8e052b3 8227
6ab1a5ee
EI
8228 if (mmu_idx == ARMMMUIdx_S2NS) {
8229 ns = true;
8230 *prot = get_S2prot(env, ap, xn);
8231 } else {
8232 ns = extract32(attrs, 3, 1);
8233 pxn = extract32(attrs, 11, 1);
6e99f762 8234 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 8235 }
d8e052b3 8236
3dde962f 8237 fault_type = permission_fault;
d8e052b3 8238 if (!(*prot & (1 << access_type))) {
3dde962f
PM
8239 goto do_fault;
8240 }
3dde962f 8241
8bf5b6a9
PM
8242 if (ns) {
8243 /* The NS bit will (as required by the architecture) have no effect if
8244 * the CPU doesn't support TZ or this is a non-secure translation
8245 * regime, because the attribute will already be non-secure.
8246 */
8247 txattrs->secure = false;
8248 }
3dde962f
PM
8249 *phys_ptr = descaddr;
8250 *page_size_ptr = page_size;
b7cc4e82 8251 return false;
3dde962f
PM
8252
8253do_fault:
8254 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82 8255 *fsr = (1 << 9) | (fault_type << 2) | level;
37785977
EI
8256 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8257 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 8258 return true;
3dde962f
PM
8259}
8260
f6bda88f
PC
8261static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8262 ARMMMUIdx mmu_idx,
8263 int32_t address, int *prot)
8264{
3a00d560
MD
8265 if (!arm_feature(env, ARM_FEATURE_M)) {
8266 *prot = PAGE_READ | PAGE_WRITE;
8267 switch (address) {
8268 case 0xF0000000 ... 0xFFFFFFFF:
8269 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8270 /* hivecs execing is ok */
8271 *prot |= PAGE_EXEC;
8272 }
8273 break;
8274 case 0x00000000 ... 0x7FFFFFFF:
f6bda88f 8275 *prot |= PAGE_EXEC;
3a00d560
MD
8276 break;
8277 }
8278 } else {
8279 /* Default system address map for M profile cores.
8280 * The architecture specifies which regions are execute-never;
8281 * at the MPU level no other checks are defined.
8282 */
8283 switch (address) {
8284 case 0x00000000 ... 0x1fffffff: /* ROM */
8285 case 0x20000000 ... 0x3fffffff: /* SRAM */
8286 case 0x60000000 ... 0x7fffffff: /* RAM */
8287 case 0x80000000 ... 0x9fffffff: /* RAM */
8288 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8289 break;
8290 case 0x40000000 ... 0x5fffffff: /* Peripheral */
8291 case 0xa0000000 ... 0xbfffffff: /* Device */
8292 case 0xc0000000 ... 0xdfffffff: /* Device */
8293 case 0xe0000000 ... 0xffffffff: /* System */
8294 *prot = PAGE_READ | PAGE_WRITE;
8295 break;
8296 default:
8297 g_assert_not_reached();
f6bda88f 8298 }
f6bda88f 8299 }
f6bda88f
PC
8300}
8301
29c483a5
MD
8302static bool pmsav7_use_background_region(ARMCPU *cpu,
8303 ARMMMUIdx mmu_idx, bool is_user)
8304{
8305 /* Return true if we should use the default memory map as a
8306 * "background" region if there are no hits against any MPU regions.
8307 */
8308 CPUARMState *env = &cpu->env;
8309
8310 if (is_user) {
8311 return false;
8312 }
8313
8314 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea
PM
8315 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
8316 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
29c483a5
MD
8317 } else {
8318 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8319 }
8320}
8321
38aaa60c
PM
8322static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8323{
8324 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8325 return arm_feature(env, ARM_FEATURE_M) &&
8326 extract32(address, 20, 12) == 0xe00;
8327}
8328
bf446a11
PM
8329static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8330{
8331 /* True if address is in the M profile system region
8332 * 0xe0000000 - 0xffffffff
8333 */
8334 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8335}
8336
f6bda88f 8337static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
03ae85f8 8338 MMUAccessType access_type, ARMMMUIdx mmu_idx,
f6bda88f
PC
8339 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8340{
8341 ARMCPU *cpu = arm_env_get_cpu(env);
8342 int n;
8343 bool is_user = regime_is_user(env, mmu_idx);
8344
8345 *phys_ptr = address;
8346 *prot = 0;
8347
38aaa60c
PM
8348 if (regime_translation_disabled(env, mmu_idx) ||
8349 m_is_ppb_region(env, address)) {
8350 /* MPU disabled or M profile PPB access: use default memory map.
8351 * The other case which uses the default memory map in the
8352 * v7M ARM ARM pseudocode is exception vector reads from the vector
8353 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8354 * which always does a direct read using address_space_ldl(), rather
8355 * than going via this function, so we don't need to check that here.
8356 */
f6bda88f
PC
8357 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8358 } else { /* MPU enabled */
8359 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8360 /* region search */
8361 uint32_t base = env->pmsav7.drbar[n];
8362 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8363 uint32_t rmask;
8364 bool srdis = false;
8365
8366 if (!(env->pmsav7.drsr[n] & 0x1)) {
8367 continue;
8368 }
8369
8370 if (!rsize) {
c9f9f124
MD
8371 qemu_log_mask(LOG_GUEST_ERROR,
8372 "DRSR[%d]: Rsize field cannot be 0\n", n);
f6bda88f
PC
8373 continue;
8374 }
8375 rsize++;
8376 rmask = (1ull << rsize) - 1;
8377
8378 if (base & rmask) {
c9f9f124
MD
8379 qemu_log_mask(LOG_GUEST_ERROR,
8380 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8381 "to DRSR region size, mask = 0x%" PRIx32 "\n",
8382 n, base, rmask);
f6bda88f
PC
8383 continue;
8384 }
8385
8386 if (address < base || address > base + rmask) {
8387 continue;
8388 }
8389
8390 /* Region matched */
8391
8392 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8393 int i, snd;
8394 uint32_t srdis_mask;
8395
8396 rsize -= 3; /* sub region size (power of 2) */
8397 snd = ((address - base) >> rsize) & 0x7;
8398 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8399
8400 srdis_mask = srdis ? 0x3 : 0x0;
8401 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8402 /* This will check in groups of 2, 4 and then 8, whether
8403 * the subregion bits are consistent. rsize is incremented
8404 * back up to give the region size, considering consistent
8405 * adjacent subregions as one region. Stop testing if rsize
8406 * is already big enough for an entire QEMU page.
8407 */
8408 int snd_rounded = snd & ~(i - 1);
8409 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8410 snd_rounded + 8, i);
8411 if (srdis_mask ^ srdis_multi) {
8412 break;
8413 }
8414 srdis_mask = (srdis_mask << i) | srdis_mask;
8415 rsize++;
8416 }
8417 }
8418 if (rsize < TARGET_PAGE_BITS) {
c9f9f124
MD
8419 qemu_log_mask(LOG_UNIMP,
8420 "DRSR[%d]: No support for MPU (sub)region "
f6bda88f 8421 "alignment of %" PRIu32 " bits. Minimum is %d\n",
c9f9f124 8422 n, rsize, TARGET_PAGE_BITS);
f6bda88f
PC
8423 continue;
8424 }
8425 if (srdis) {
8426 continue;
8427 }
8428 break;
8429 }
8430
8431 if (n == -1) { /* no hits */
29c483a5 8432 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
f6bda88f
PC
8433 /* background fault */
8434 *fsr = 0;
8435 return true;
8436 }
8437 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8438 } else { /* a MPU hit! */
8439 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
bf446a11
PM
8440 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8441
8442 if (m_is_system_region(env, address)) {
8443 /* System space is always execute never */
8444 xn = 1;
8445 }
f6bda88f
PC
8446
8447 if (is_user) { /* User mode AP bit decoding */
8448 switch (ap) {
8449 case 0:
8450 case 1:
8451 case 5:
8452 break; /* no access */
8453 case 3:
8454 *prot |= PAGE_WRITE;
8455 /* fall through */
8456 case 2:
8457 case 6:
8458 *prot |= PAGE_READ | PAGE_EXEC;
8459 break;
8460 default:
8461 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
8462 "DRACR[%d]: Bad value for AP bits: 0x%"
8463 PRIx32 "\n", n, ap);
f6bda88f
PC
8464 }
8465 } else { /* Priv. mode AP bits decoding */
8466 switch (ap) {
8467 case 0:
8468 break; /* no access */
8469 case 1:
8470 case 2:
8471 case 3:
8472 *prot |= PAGE_WRITE;
8473 /* fall through */
8474 case 5:
8475 case 6:
8476 *prot |= PAGE_READ | PAGE_EXEC;
8477 break;
8478 default:
8479 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
8480 "DRACR[%d]: Bad value for AP bits: 0x%"
8481 PRIx32 "\n", n, ap);
f6bda88f
PC
8482 }
8483 }
8484
8485 /* execute never */
bf446a11 8486 if (xn) {
f6bda88f
PC
8487 *prot &= ~PAGE_EXEC;
8488 }
8489 }
8490 }
8491
8492 *fsr = 0x00d; /* Permission fault */
8493 return !(*prot & (1 << access_type));
8494}
8495
504e3cc3
PM
8496static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
8497 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8498 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8499{
8500 ARMCPU *cpu = arm_env_get_cpu(env);
8501 bool is_user = regime_is_user(env, mmu_idx);
62c58ee0 8502 uint32_t secure = regime_is_secure(env, mmu_idx);
504e3cc3
PM
8503 int n;
8504 int matchregion = -1;
8505 bool hit = false;
8506
8507 *phys_ptr = address;
8508 *prot = 0;
8509
8510 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
8511 * was an exception vector read from the vector table (which is always
8512 * done using the default system address map), because those accesses
8513 * are done in arm_v7m_load_vector(), which always does a direct
8514 * read using address_space_ldl(), rather than going via this function.
8515 */
8516 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8517 hit = true;
8518 } else if (m_is_ppb_region(env, address)) {
8519 hit = true;
8520 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8521 hit = true;
8522 } else {
8523 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8524 /* region search */
8525 /* Note that the base address is bits [31:5] from the register
8526 * with bits [4:0] all zeroes, but the limit address is bits
8527 * [31:5] from the register with bits [4:0] all ones.
8528 */
62c58ee0
PM
8529 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
8530 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
504e3cc3 8531
62c58ee0 8532 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
504e3cc3
PM
8533 /* Region disabled */
8534 continue;
8535 }
8536
8537 if (address < base || address > limit) {
8538 continue;
8539 }
8540
8541 if (hit) {
8542 /* Multiple regions match -- always a failure (unlike
8543 * PMSAv7 where highest-numbered-region wins)
8544 */
8545 *fsr = 0x00d; /* permission fault */
8546 return true;
8547 }
8548
8549 matchregion = n;
8550 hit = true;
8551
8552 if (base & ~TARGET_PAGE_MASK) {
8553 qemu_log_mask(LOG_UNIMP,
8554 "MPU_RBAR[%d]: No support for MPU region base"
8555 "address of 0x%" PRIx32 ". Minimum alignment is "
8556 "%d\n",
8557 n, base, TARGET_PAGE_BITS);
8558 continue;
8559 }
8560 if ((limit + 1) & ~TARGET_PAGE_MASK) {
8561 qemu_log_mask(LOG_UNIMP,
8562 "MPU_RBAR[%d]: No support for MPU region limit"
8563 "address of 0x%" PRIx32 ". Minimum alignment is "
8564 "%d\n",
8565 n, limit, TARGET_PAGE_BITS);
8566 continue;
8567 }
8568 }
8569 }
8570
8571 if (!hit) {
8572 /* background fault */
8573 *fsr = 0;
8574 return true;
8575 }
8576
8577 if (matchregion == -1) {
8578 /* hit using the background region */
8579 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8580 } else {
62c58ee0
PM
8581 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
8582 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
504e3cc3
PM
8583
8584 if (m_is_system_region(env, address)) {
8585 /* System space is always execute never */
8586 xn = 1;
8587 }
8588
8589 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
8590 if (*prot && !xn) {
8591 *prot |= PAGE_EXEC;
8592 }
8593 /* We don't need to look the attribute up in the MAIR0/MAIR1
8594 * registers because that only tells us about cacheability.
8595 */
8596 }
8597
8598 *fsr = 0x00d; /* Permission fault */
8599 return !(*prot & (1 << access_type));
8600}
8601
13689d43 8602static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
03ae85f8 8603 MMUAccessType access_type, ARMMMUIdx mmu_idx,
13689d43 8604 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
8605{
8606 int n;
8607 uint32_t mask;
8608 uint32_t base;
0480f69a 8609 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb 8610
3279adb9
PM
8611 if (regime_translation_disabled(env, mmu_idx)) {
8612 /* MPU disabled. */
8613 *phys_ptr = address;
8614 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8615 return false;
8616 }
8617
9ee6e8bb
PB
8618 *phys_ptr = address;
8619 for (n = 7; n >= 0; n--) {
554b0b09 8620 base = env->cp15.c6_region[n];
87c3d486 8621 if ((base & 1) == 0) {
554b0b09 8622 continue;
87c3d486 8623 }
554b0b09
PM
8624 mask = 1 << ((base >> 1) & 0x1f);
8625 /* Keep this shift separate from the above to avoid an
8626 (undefined) << 32. */
8627 mask = (mask << 1) - 1;
87c3d486 8628 if (((base ^ address) & ~mask) == 0) {
554b0b09 8629 break;
87c3d486 8630 }
9ee6e8bb 8631 }
87c3d486 8632 if (n < 0) {
b7cc4e82
PC
8633 *fsr = 2;
8634 return true;
87c3d486 8635 }
9ee6e8bb 8636
03ae85f8 8637 if (access_type == MMU_INST_FETCH) {
7e09797c 8638 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 8639 } else {
7e09797c 8640 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
8641 }
8642 mask = (mask >> (n * 4)) & 0xf;
8643 switch (mask) {
8644 case 0:
b7cc4e82
PC
8645 *fsr = 1;
8646 return true;
9ee6e8bb 8647 case 1:
87c3d486 8648 if (is_user) {
b7cc4e82
PC
8649 *fsr = 1;
8650 return true;
87c3d486 8651 }
554b0b09
PM
8652 *prot = PAGE_READ | PAGE_WRITE;
8653 break;
9ee6e8bb 8654 case 2:
554b0b09 8655 *prot = PAGE_READ;
87c3d486 8656 if (!is_user) {
554b0b09 8657 *prot |= PAGE_WRITE;
87c3d486 8658 }
554b0b09 8659 break;
9ee6e8bb 8660 case 3:
554b0b09
PM
8661 *prot = PAGE_READ | PAGE_WRITE;
8662 break;
9ee6e8bb 8663 case 5:
87c3d486 8664 if (is_user) {
b7cc4e82
PC
8665 *fsr = 1;
8666 return true;
87c3d486 8667 }
554b0b09
PM
8668 *prot = PAGE_READ;
8669 break;
9ee6e8bb 8670 case 6:
554b0b09
PM
8671 *prot = PAGE_READ;
8672 break;
9ee6e8bb 8673 default:
554b0b09 8674 /* Bad permission. */
b7cc4e82
PC
8675 *fsr = 1;
8676 return true;
9ee6e8bb 8677 }
3ad493fc 8678 *prot |= PAGE_EXEC;
b7cc4e82 8679 return false;
9ee6e8bb
PB
8680}
8681
702a9357
PM
8682/* get_phys_addr - get the physical address for this virtual address
8683 *
8684 * Find the physical address corresponding to the given virtual address,
8685 * by doing a translation table walk on MMU based systems or using the
8686 * MPU state on MPU based systems.
8687 *
b7cc4e82
PC
8688 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8689 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
8690 * information on why the translation aborted, in the format of a
8691 * DFSR/IFSR fault register, with the following caveats:
8692 * * we honour the short vs long DFSR format differences.
8693 * * the WnR bit is never set (the caller must do this).
f6bda88f 8694 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
8695 * value.
8696 *
8697 * @env: CPUARMState
8698 * @address: virtual address to get physical address for
8699 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 8700 * @mmu_idx: MMU index indicating required translation regime
702a9357 8701 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 8702 * @attrs: set to the memory transaction attributes to use
702a9357
PM
8703 * @prot: set to the permissions for the page containing phys_ptr
8704 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 8705 * @fsr: set to the DFSR/IFSR value on failure
702a9357 8706 */
af51f566 8707static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 8708 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 8709 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
8710 target_ulong *page_size, uint32_t *fsr,
8711 ARMMMUFaultInfo *fi)
9ee6e8bb 8712{
0480f69a 8713 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
8714 /* Call ourselves recursively to do the stage 1 and then stage 2
8715 * translations.
0480f69a 8716 */
9b539263
EI
8717 if (arm_feature(env, ARM_FEATURE_EL2)) {
8718 hwaddr ipa;
8719 int s2_prot;
8720 int ret;
8721
8722 ret = get_phys_addr(env, address, access_type,
8bd5c820 8723 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9b539263
EI
8724 prot, page_size, fsr, fi);
8725
8726 /* If S1 fails or S2 is disabled, return early. */
8727 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8728 *phys_ptr = ipa;
8729 return ret;
8730 }
8731
8732 /* S1 is done. Now do S2 translation. */
8733 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8734 phys_ptr, attrs, &s2_prot,
8735 page_size, fsr, fi);
8736 fi->s2addr = ipa;
8737 /* Combine the S1 and S2 perms. */
8738 *prot &= s2_prot;
8739 return ret;
8740 } else {
8741 /*
8742 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8743 */
8bd5c820 8744 mmu_idx = stage_1_mmu_idx(mmu_idx);
9b539263 8745 }
0480f69a 8746 }
d3649702 8747
8bf5b6a9
PM
8748 /* The page table entries may downgrade secure to non-secure, but
8749 * cannot upgrade an non-secure translation regime's attributes
8750 * to secure.
8751 */
8752 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 8753 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 8754
0480f69a
PM
8755 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8756 * In v7 and earlier it affects all stage 1 translations.
8757 */
8758 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8759 && !arm_feature(env, ARM_FEATURE_V8)) {
8760 if (regime_el(env, mmu_idx) == 3) {
8761 address += env->cp15.fcseidr_s;
8762 } else {
8763 address += env->cp15.fcseidr_ns;
8764 }
54bf36ed 8765 }
9ee6e8bb 8766
3279adb9 8767 if (arm_feature(env, ARM_FEATURE_PMSA)) {
c9f9f124 8768 bool ret;
f6bda88f 8769 *page_size = TARGET_PAGE_SIZE;
3279adb9 8770
504e3cc3
PM
8771 if (arm_feature(env, ARM_FEATURE_V8)) {
8772 /* PMSAv8 */
8773 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
8774 phys_ptr, prot, fsr);
8775 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3279adb9
PM
8776 /* PMSAv7 */
8777 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8778 phys_ptr, prot, fsr);
8779 } else {
8780 /* Pre-v7 MPU */
8781 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8782 phys_ptr, prot, fsr);
8783 }
8784 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
c9f9f124 8785 " mmu_idx %u -> %s (prot %c%c%c)\n",
709e4407
PM
8786 access_type == MMU_DATA_LOAD ? "reading" :
8787 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
c9f9f124
MD
8788 (uint32_t)address, mmu_idx,
8789 ret ? "Miss" : "Hit",
8790 *prot & PAGE_READ ? 'r' : '-',
8791 *prot & PAGE_WRITE ? 'w' : '-',
8792 *prot & PAGE_EXEC ? 'x' : '-');
8793
8794 return ret;
f6bda88f
PC
8795 }
8796
3279adb9
PM
8797 /* Definitely a real MMU, not an MPU */
8798
0480f69a 8799 if (regime_translation_disabled(env, mmu_idx)) {
3279adb9 8800 /* MMU disabled. */
9ee6e8bb 8801 *phys_ptr = address;
3ad493fc 8802 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 8803 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 8804 return 0;
0480f69a
PM
8805 }
8806
0480f69a
PM
8807 if (regime_using_lpae_format(env, mmu_idx)) {
8808 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8809 attrs, prot, page_size, fsr, fi);
0480f69a
PM
8810 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8811 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8812 attrs, prot, page_size, fsr, fi);
9ee6e8bb 8813 } else {
0480f69a 8814 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8815 prot, page_size, fsr, fi);
9ee6e8bb
PB
8816 }
8817}
8818
8c6084bf 8819/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
8820 * to the TLB. Return false on success, or true on failure. Populate
8821 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 8822 */
b7cc4e82 8823bool arm_tlb_fill(CPUState *cs, vaddr address,
03ae85f8 8824 MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
e14b5a23 8825 ARMMMUFaultInfo *fi)
b5ff1b31 8826{
7510454e
AF
8827 ARMCPU *cpu = ARM_CPU(cs);
8828 CPUARMState *env = &cpu->env;
a8170e5e 8829 hwaddr phys_addr;
d4c430a8 8830 target_ulong page_size;
b5ff1b31 8831 int prot;
d3649702 8832 int ret;
8bf5b6a9 8833 MemTxAttrs attrs = {};
b5ff1b31 8834
8bd5c820
PM
8835 ret = get_phys_addr(env, address, access_type,
8836 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
e14b5a23 8837 &attrs, &prot, &page_size, fsr, fi);
b7cc4e82 8838 if (!ret) {
b5ff1b31 8839 /* Map a single [sub]page. */
dcd82c11
AB
8840 phys_addr &= TARGET_PAGE_MASK;
8841 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
8842 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8843 prot, mmu_idx, page_size);
d4c430a8 8844 return 0;
b5ff1b31
FB
8845 }
8846
8c6084bf 8847 return ret;
b5ff1b31
FB
8848}
8849
0faea0c7
PM
8850hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8851 MemTxAttrs *attrs)
b5ff1b31 8852{
00b941e5 8853 ARMCPU *cpu = ARM_CPU(cs);
d3649702 8854 CPUARMState *env = &cpu->env;
a8170e5e 8855 hwaddr phys_addr;
d4c430a8 8856 target_ulong page_size;
b5ff1b31 8857 int prot;
b7cc4e82
PC
8858 bool ret;
8859 uint32_t fsr;
e14b5a23 8860 ARMMMUFaultInfo fi = {};
8bd5c820 8861 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
b5ff1b31 8862
0faea0c7
PM
8863 *attrs = (MemTxAttrs) {};
8864
8bd5c820 8865 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
0faea0c7 8866 attrs, &prot, &page_size, &fsr, &fi);
b5ff1b31 8867
b7cc4e82 8868 if (ret) {
b5ff1b31 8869 return -1;
00b941e5 8870 }
b5ff1b31
FB
8871 return phys_addr;
8872}
8873
0ecb72a5 8874uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 8875{
58117c9b
MD
8876 uint32_t mask;
8877 unsigned el = arm_current_el(env);
8878
8879 /* First handle registers which unprivileged can read */
8880
8881 switch (reg) {
8882 case 0 ... 7: /* xPSR sub-fields */
8883 mask = 0;
8884 if ((reg & 1) && el) {
987ab45e 8885 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
58117c9b
MD
8886 }
8887 if (!(reg & 4)) {
987ab45e 8888 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
58117c9b
MD
8889 }
8890 /* EPSR reads as zero */
8891 return xpsr_read(env) & mask;
8892 break;
8893 case 20: /* CONTROL */
8bfc26ea 8894 return env->v7m.control[env->v7m.secure];
58117c9b
MD
8895 }
8896
8897 if (el == 0) {
8898 return 0; /* unprivileged reads others as zero */
8899 }
a47dddd7 8900
9ee6e8bb 8901 switch (reg) {
9ee6e8bb 8902 case 8: /* MSP */
8bfc26ea 8903 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
abc24d86 8904 env->v7m.other_sp : env->regs[13];
9ee6e8bb 8905 case 9: /* PSP */
8bfc26ea 8906 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
abc24d86 8907 env->regs[13] : env->v7m.other_sp;
9ee6e8bb 8908 case 16: /* PRIMASK */
6d804834 8909 return env->v7m.primask[env->v7m.secure];
82845826
SH
8910 case 17: /* BASEPRI */
8911 case 18: /* BASEPRI_MAX */
acf94941 8912 return env->v7m.basepri[env->v7m.secure];
82845826 8913 case 19: /* FAULTMASK */
42a6686b 8914 return env->v7m.faultmask[env->v7m.secure];
9ee6e8bb 8915 default:
58117c9b
MD
8916 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8917 " register %d\n", reg);
9ee6e8bb
PB
8918 return 0;
8919 }
8920}
8921
b28b3377
PM
8922void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8923{
8924 /* We're passed bits [11..0] of the instruction; extract
8925 * SYSm and the mask bits.
8926 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8927 * we choose to treat them as if the mask bits were valid.
8928 * NB that the pseudocode 'mask' variable is bits [11..10],
8929 * whereas ours is [11..8].
8930 */
8931 uint32_t mask = extract32(maskreg, 8, 4);
8932 uint32_t reg = extract32(maskreg, 0, 8);
8933
58117c9b
MD
8934 if (arm_current_el(env) == 0 && reg > 7) {
8935 /* only xPSR sub-fields may be written by unprivileged */
8936 return;
8937 }
a47dddd7 8938
9ee6e8bb 8939 switch (reg) {
58117c9b
MD
8940 case 0 ... 7: /* xPSR sub-fields */
8941 /* only APSR is actually writable */
b28b3377
PM
8942 if (!(reg & 4)) {
8943 uint32_t apsrmask = 0;
8944
8945 if (mask & 8) {
987ab45e 8946 apsrmask |= XPSR_NZCV | XPSR_Q;
b28b3377
PM
8947 }
8948 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
987ab45e 8949 apsrmask |= XPSR_GE;
b28b3377
PM
8950 }
8951 xpsr_write(env, val, apsrmask);
58117c9b 8952 }
9ee6e8bb
PB
8953 break;
8954 case 8: /* MSP */
8bfc26ea 8955 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 8956 env->v7m.other_sp = val;
abc24d86 8957 } else {
9ee6e8bb 8958 env->regs[13] = val;
abc24d86 8959 }
9ee6e8bb
PB
8960 break;
8961 case 9: /* PSP */
8bfc26ea 8962 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 8963 env->regs[13] = val;
abc24d86 8964 } else {
9ee6e8bb 8965 env->v7m.other_sp = val;
abc24d86 8966 }
9ee6e8bb
PB
8967 break;
8968 case 16: /* PRIMASK */
6d804834 8969 env->v7m.primask[env->v7m.secure] = val & 1;
9ee6e8bb 8970 break;
82845826 8971 case 17: /* BASEPRI */
acf94941 8972 env->v7m.basepri[env->v7m.secure] = val & 0xff;
9ee6e8bb 8973 break;
82845826 8974 case 18: /* BASEPRI_MAX */
9ee6e8bb 8975 val &= 0xff;
acf94941
PM
8976 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
8977 || env->v7m.basepri[env->v7m.secure] == 0)) {
8978 env->v7m.basepri[env->v7m.secure] = val;
8979 }
9ee6e8bb 8980 break;
82845826 8981 case 19: /* FAULTMASK */
42a6686b 8982 env->v7m.faultmask[env->v7m.secure] = val & 1;
82845826 8983 break;
9ee6e8bb 8984 case 20: /* CONTROL */
792dac30
PM
8985 /* Writing to the SPSEL bit only has an effect if we are in
8986 * thread mode; other bits can be updated by any privileged code.
8987 * switch_v7m_sp() deals with updating the SPSEL bit in
8988 * env->v7m.control, so we only need update the others.
8989 */
15b3f556 8990 if (!arm_v7m_is_handler_mode(env)) {
792dac30
PM
8991 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8992 }
8bfc26ea
PM
8993 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
8994 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9ee6e8bb
PB
8995 break;
8996 default:
58117c9b
MD
8997 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8998 " register %d\n", reg);
9ee6e8bb
PB
8999 return;
9000 }
9001}
9002
b5ff1b31 9003#endif
6ddbc6e4 9004
aca3f40b
PM
9005void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
9006{
9007 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
9008 * Note that we do not implement the (architecturally mandated)
9009 * alignment fault for attempts to use this on Device memory
9010 * (which matches the usual QEMU behaviour of not implementing either
9011 * alignment faults or any memory attribute handling).
9012 */
9013
9014 ARMCPU *cpu = arm_env_get_cpu(env);
9015 uint64_t blocklen = 4 << cpu->dcz_blocksize;
9016 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
9017
9018#ifndef CONFIG_USER_ONLY
9019 {
9020 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
9021 * the block size so we might have to do more than one TLB lookup.
9022 * We know that in fact for any v8 CPU the page size is at least 4K
9023 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
9024 * 1K as an artefact of legacy v5 subpage support being present in the
9025 * same QEMU executable.
9026 */
9027 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
9028 void *hostaddr[maxidx];
9029 int try, i;
97ed5ccd 9030 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 9031 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
9032
9033 for (try = 0; try < 2; try++) {
9034
9035 for (i = 0; i < maxidx; i++) {
9036 hostaddr[i] = tlb_vaddr_to_host(env,
9037 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 9038 1, mmu_idx);
aca3f40b
PM
9039 if (!hostaddr[i]) {
9040 break;
9041 }
9042 }
9043 if (i == maxidx) {
9044 /* If it's all in the TLB it's fair game for just writing to;
9045 * we know we don't need to update dirty status, etc.
9046 */
9047 for (i = 0; i < maxidx - 1; i++) {
9048 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
9049 }
9050 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
9051 return;
9052 }
9053 /* OK, try a store and see if we can populate the tlb. This
9054 * might cause an exception if the memory isn't writable,
9055 * in which case we will longjmp out of here. We must for
9056 * this purpose use the actual register value passed to us
9057 * so that we get the fault address right.
9058 */
01ecaf43 9059 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
aca3f40b
PM
9060 /* Now we can populate the other TLB entries, if any */
9061 for (i = 0; i < maxidx; i++) {
9062 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
9063 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
01ecaf43 9064 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
aca3f40b
PM
9065 }
9066 }
9067 }
9068
9069 /* Slow path (probably attempt to do this to an I/O device or
9070 * similar, or clearing of a block of code we have translations
9071 * cached for). Just do a series of byte writes as the architecture
9072 * demands. It's not worth trying to use a cpu_physical_memory_map(),
9073 * memset(), unmap() sequence here because:
9074 * + we'd need to account for the blocksize being larger than a page
9075 * + the direct-RAM access case is almost always going to be dealt
9076 * with in the fastpath code above, so there's no speed benefit
9077 * + we would have to deal with the map returning NULL because the
9078 * bounce buffer was in use
9079 */
9080 for (i = 0; i < blocklen; i++) {
01ecaf43 9081 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
aca3f40b
PM
9082 }
9083 }
9084#else
9085 memset(g2h(vaddr), 0, blocklen);
9086#endif
9087}
9088
6ddbc6e4
PB
9089/* Note that signed overflow is undefined in C. The following routines are
9090 careful to use unsigned types where modulo arithmetic is required.
9091 Failure to do so _will_ break on newer gcc. */
9092
9093/* Signed saturating arithmetic. */
9094
1654b2d6 9095/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
9096static inline uint16_t add16_sat(uint16_t a, uint16_t b)
9097{
9098 uint16_t res;
9099
9100 res = a + b;
9101 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
9102 if (a & 0x8000)
9103 res = 0x8000;
9104 else
9105 res = 0x7fff;
9106 }
9107 return res;
9108}
9109
1654b2d6 9110/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
9111static inline uint8_t add8_sat(uint8_t a, uint8_t b)
9112{
9113 uint8_t res;
9114
9115 res = a + b;
9116 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
9117 if (a & 0x80)
9118 res = 0x80;
9119 else
9120 res = 0x7f;
9121 }
9122 return res;
9123}
9124
1654b2d6 9125/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
9126static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
9127{
9128 uint16_t res;
9129
9130 res = a - b;
9131 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
9132 if (a & 0x8000)
9133 res = 0x8000;
9134 else
9135 res = 0x7fff;
9136 }
9137 return res;
9138}
9139
1654b2d6 9140/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
9141static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
9142{
9143 uint8_t res;
9144
9145 res = a - b;
9146 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
9147 if (a & 0x80)
9148 res = 0x80;
9149 else
9150 res = 0x7f;
9151 }
9152 return res;
9153}
9154
9155#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
9156#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
9157#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
9158#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
9159#define PFX q
9160
9161#include "op_addsub.h"
9162
9163/* Unsigned saturating arithmetic. */
460a09c1 9164static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
9165{
9166 uint16_t res;
9167 res = a + b;
9168 if (res < a)
9169 res = 0xffff;
9170 return res;
9171}
9172
460a09c1 9173static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 9174{
4c4fd3f8 9175 if (a > b)
6ddbc6e4
PB
9176 return a - b;
9177 else
9178 return 0;
9179}
9180
9181static inline uint8_t add8_usat(uint8_t a, uint8_t b)
9182{
9183 uint8_t res;
9184 res = a + b;
9185 if (res < a)
9186 res = 0xff;
9187 return res;
9188}
9189
9190static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9191{
4c4fd3f8 9192 if (a > b)
6ddbc6e4
PB
9193 return a - b;
9194 else
9195 return 0;
9196}
9197
9198#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9199#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9200#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
9201#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
9202#define PFX uq
9203
9204#include "op_addsub.h"
9205
9206/* Signed modulo arithmetic. */
9207#define SARITH16(a, b, n, op) do { \
9208 int32_t sum; \
db6e2e65 9209 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
9210 RESULT(sum, n, 16); \
9211 if (sum >= 0) \
9212 ge |= 3 << (n * 2); \
9213 } while(0)
9214
9215#define SARITH8(a, b, n, op) do { \
9216 int32_t sum; \
db6e2e65 9217 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
9218 RESULT(sum, n, 8); \
9219 if (sum >= 0) \
9220 ge |= 1 << n; \
9221 } while(0)
9222
9223
9224#define ADD16(a, b, n) SARITH16(a, b, n, +)
9225#define SUB16(a, b, n) SARITH16(a, b, n, -)
9226#define ADD8(a, b, n) SARITH8(a, b, n, +)
9227#define SUB8(a, b, n) SARITH8(a, b, n, -)
9228#define PFX s
9229#define ARITH_GE
9230
9231#include "op_addsub.h"
9232
9233/* Unsigned modulo arithmetic. */
9234#define ADD16(a, b, n) do { \
9235 uint32_t sum; \
9236 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9237 RESULT(sum, n, 16); \
a87aa10b 9238 if ((sum >> 16) == 1) \
6ddbc6e4
PB
9239 ge |= 3 << (n * 2); \
9240 } while(0)
9241
9242#define ADD8(a, b, n) do { \
9243 uint32_t sum; \
9244 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9245 RESULT(sum, n, 8); \
a87aa10b
AZ
9246 if ((sum >> 8) == 1) \
9247 ge |= 1 << n; \
6ddbc6e4
PB
9248 } while(0)
9249
9250#define SUB16(a, b, n) do { \
9251 uint32_t sum; \
9252 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9253 RESULT(sum, n, 16); \
9254 if ((sum >> 16) == 0) \
9255 ge |= 3 << (n * 2); \
9256 } while(0)
9257
9258#define SUB8(a, b, n) do { \
9259 uint32_t sum; \
9260 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9261 RESULT(sum, n, 8); \
9262 if ((sum >> 8) == 0) \
a87aa10b 9263 ge |= 1 << n; \
6ddbc6e4
PB
9264 } while(0)
9265
9266#define PFX u
9267#define ARITH_GE
9268
9269#include "op_addsub.h"
9270
9271/* Halved signed arithmetic. */
9272#define ADD16(a, b, n) \
9273 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9274#define SUB16(a, b, n) \
9275 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9276#define ADD8(a, b, n) \
9277 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9278#define SUB8(a, b, n) \
9279 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9280#define PFX sh
9281
9282#include "op_addsub.h"
9283
9284/* Halved unsigned arithmetic. */
9285#define ADD16(a, b, n) \
9286 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9287#define SUB16(a, b, n) \
9288 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9289#define ADD8(a, b, n) \
9290 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9291#define SUB8(a, b, n) \
9292 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9293#define PFX uh
9294
9295#include "op_addsub.h"
9296
9297static inline uint8_t do_usad(uint8_t a, uint8_t b)
9298{
9299 if (a > b)
9300 return a - b;
9301 else
9302 return b - a;
9303}
9304
9305/* Unsigned sum of absolute byte differences. */
9306uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9307{
9308 uint32_t sum;
9309 sum = do_usad(a, b);
9310 sum += do_usad(a >> 8, b >> 8);
9311 sum += do_usad(a >> 16, b >>16);
9312 sum += do_usad(a >> 24, b >> 24);
9313 return sum;
9314}
9315
9316/* For ARMv6 SEL instruction. */
9317uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9318{
9319 uint32_t mask;
9320
9321 mask = 0;
9322 if (flags & 1)
9323 mask |= 0xff;
9324 if (flags & 2)
9325 mask |= 0xff00;
9326 if (flags & 4)
9327 mask |= 0xff0000;
9328 if (flags & 8)
9329 mask |= 0xff000000;
9330 return (a & mask) | (b & ~mask);
9331}
9332
b90372ad
PM
9333/* VFP support. We follow the convention used for VFP instructions:
9334 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
9335 "d" suffix. */
9336
9337/* Convert host exception flags to vfp form. */
9338static inline int vfp_exceptbits_from_host(int host_bits)
9339{
9340 int target_bits = 0;
9341
9342 if (host_bits & float_flag_invalid)
9343 target_bits |= 1;
9344 if (host_bits & float_flag_divbyzero)
9345 target_bits |= 2;
9346 if (host_bits & float_flag_overflow)
9347 target_bits |= 4;
36802b6b 9348 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
9349 target_bits |= 8;
9350 if (host_bits & float_flag_inexact)
9351 target_bits |= 0x10;
cecd8504
PM
9352 if (host_bits & float_flag_input_denormal)
9353 target_bits |= 0x80;
4373f3ce
PB
9354 return target_bits;
9355}
9356
0ecb72a5 9357uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
9358{
9359 int i;
9360 uint32_t fpscr;
9361
9362 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9363 | (env->vfp.vec_len << 16)
9364 | (env->vfp.vec_stride << 20);
9365 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 9366 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
9367 fpscr |= vfp_exceptbits_from_host(i);
9368 return fpscr;
9369}
9370
0ecb72a5 9371uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
9372{
9373 return HELPER(vfp_get_fpscr)(env);
9374}
9375
4373f3ce
PB
9376/* Convert vfp exception flags to target form. */
9377static inline int vfp_exceptbits_to_host(int target_bits)
9378{
9379 int host_bits = 0;
9380
9381 if (target_bits & 1)
9382 host_bits |= float_flag_invalid;
9383 if (target_bits & 2)
9384 host_bits |= float_flag_divbyzero;
9385 if (target_bits & 4)
9386 host_bits |= float_flag_overflow;
9387 if (target_bits & 8)
9388 host_bits |= float_flag_underflow;
9389 if (target_bits & 0x10)
9390 host_bits |= float_flag_inexact;
cecd8504
PM
9391 if (target_bits & 0x80)
9392 host_bits |= float_flag_input_denormal;
4373f3ce
PB
9393 return host_bits;
9394}
9395
0ecb72a5 9396void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
9397{
9398 int i;
9399 uint32_t changed;
9400
9401 changed = env->vfp.xregs[ARM_VFP_FPSCR];
9402 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9403 env->vfp.vec_len = (val >> 16) & 7;
9404 env->vfp.vec_stride = (val >> 20) & 3;
9405
9406 changed ^= val;
9407 if (changed & (3 << 22)) {
9408 i = (val >> 22) & 3;
9409 switch (i) {
4d3da0f3 9410 case FPROUNDING_TIEEVEN:
4373f3ce
PB
9411 i = float_round_nearest_even;
9412 break;
4d3da0f3 9413 case FPROUNDING_POSINF:
4373f3ce
PB
9414 i = float_round_up;
9415 break;
4d3da0f3 9416 case FPROUNDING_NEGINF:
4373f3ce
PB
9417 i = float_round_down;
9418 break;
4d3da0f3 9419 case FPROUNDING_ZERO:
4373f3ce
PB
9420 i = float_round_to_zero;
9421 break;
9422 }
9423 set_float_rounding_mode(i, &env->vfp.fp_status);
9424 }
cecd8504 9425 if (changed & (1 << 24)) {
fe76d976 9426 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
9427 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9428 }
5c7908ed
PB
9429 if (changed & (1 << 25))
9430 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 9431
b12c390b 9432 i = vfp_exceptbits_to_host(val);
4373f3ce 9433 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 9434 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
9435}
9436
0ecb72a5 9437void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
9438{
9439 HELPER(vfp_set_fpscr)(env, val);
9440}
9441
4373f3ce
PB
9442#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9443
9444#define VFP_BINOP(name) \
ae1857ec 9445float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 9446{ \
ae1857ec
PM
9447 float_status *fpst = fpstp; \
9448 return float32_ ## name(a, b, fpst); \
4373f3ce 9449} \
ae1857ec 9450float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 9451{ \
ae1857ec
PM
9452 float_status *fpst = fpstp; \
9453 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
9454}
9455VFP_BINOP(add)
9456VFP_BINOP(sub)
9457VFP_BINOP(mul)
9458VFP_BINOP(div)
f71a2ae5
PM
9459VFP_BINOP(min)
9460VFP_BINOP(max)
9461VFP_BINOP(minnum)
9462VFP_BINOP(maxnum)
4373f3ce
PB
9463#undef VFP_BINOP
9464
9465float32 VFP_HELPER(neg, s)(float32 a)
9466{
9467 return float32_chs(a);
9468}
9469
9470float64 VFP_HELPER(neg, d)(float64 a)
9471{
66230e0d 9472 return float64_chs(a);
4373f3ce
PB
9473}
9474
9475float32 VFP_HELPER(abs, s)(float32 a)
9476{
9477 return float32_abs(a);
9478}
9479
9480float64 VFP_HELPER(abs, d)(float64 a)
9481{
66230e0d 9482 return float64_abs(a);
4373f3ce
PB
9483}
9484
0ecb72a5 9485float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
9486{
9487 return float32_sqrt(a, &env->vfp.fp_status);
9488}
9489
0ecb72a5 9490float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
9491{
9492 return float64_sqrt(a, &env->vfp.fp_status);
9493}
9494
9495/* XXX: check quiet/signaling case */
9496#define DO_VFP_cmp(p, type) \
0ecb72a5 9497void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
9498{ \
9499 uint32_t flags; \
9500 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9501 case 0: flags = 0x6; break; \
9502 case -1: flags = 0x8; break; \
9503 case 1: flags = 0x2; break; \
9504 default: case 2: flags = 0x3; break; \
9505 } \
9506 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9507 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9508} \
0ecb72a5 9509void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
9510{ \
9511 uint32_t flags; \
9512 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9513 case 0: flags = 0x6; break; \
9514 case -1: flags = 0x8; break; \
9515 case 1: flags = 0x2; break; \
9516 default: case 2: flags = 0x3; break; \
9517 } \
9518 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9519 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9520}
9521DO_VFP_cmp(s, float32)
9522DO_VFP_cmp(d, float64)
9523#undef DO_VFP_cmp
9524
5500b06c 9525/* Integer to float and float to integer conversions */
4373f3ce 9526
5500b06c
PM
9527#define CONV_ITOF(name, fsz, sign) \
9528 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9529{ \
9530 float_status *fpst = fpstp; \
85836979 9531 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
9532}
9533
5500b06c
PM
9534#define CONV_FTOI(name, fsz, sign, round) \
9535uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9536{ \
9537 float_status *fpst = fpstp; \
9538 if (float##fsz##_is_any_nan(x)) { \
9539 float_raise(float_flag_invalid, fpst); \
9540 return 0; \
9541 } \
9542 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
9543}
9544
5500b06c
PM
9545#define FLOAT_CONVS(name, p, fsz, sign) \
9546CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9547CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9548CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 9549
5500b06c
PM
9550FLOAT_CONVS(si, s, 32, )
9551FLOAT_CONVS(si, d, 64, )
9552FLOAT_CONVS(ui, s, 32, u)
9553FLOAT_CONVS(ui, d, 64, u)
4373f3ce 9554
5500b06c
PM
9555#undef CONV_ITOF
9556#undef CONV_FTOI
9557#undef FLOAT_CONVS
4373f3ce
PB
9558
9559/* floating point conversion */
0ecb72a5 9560float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 9561{
2d627737
PM
9562 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9563 /* ARM requires that S<->D conversion of any kind of NaN generates
9564 * a quiet NaN by forcing the most significant frac bit to 1.
9565 */
af39bc8c 9566 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
9567}
9568
0ecb72a5 9569float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 9570{
2d627737
PM
9571 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9572 /* ARM requires that S<->D conversion of any kind of NaN generates
9573 * a quiet NaN by forcing the most significant frac bit to 1.
9574 */
af39bc8c 9575 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
9576}
9577
9578/* VFP3 fixed point conversion. */
16d5b3ca 9579#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
9580float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9581 void *fpstp) \
4373f3ce 9582{ \
5500b06c 9583 float_status *fpst = fpstp; \
622465e1 9584 float##fsz tmp; \
8ed697e8 9585 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 9586 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
9587}
9588
abe66f70
PM
9589/* Notice that we want only input-denormal exception flags from the
9590 * scalbn operation: the other possible flags (overflow+inexact if
9591 * we overflow to infinity, output-denormal) aren't correct for the
9592 * complete scale-and-convert operation.
9593 */
16d5b3ca
WN
9594#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9595uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9596 uint32_t shift, \
9597 void *fpstp) \
4373f3ce 9598{ \
5500b06c 9599 float_status *fpst = fpstp; \
abe66f70 9600 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
9601 float##fsz tmp; \
9602 if (float##fsz##_is_any_nan(x)) { \
5500b06c 9603 float_raise(float_flag_invalid, fpst); \
622465e1 9604 return 0; \
09d9487f 9605 } \
5500b06c 9606 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
9607 old_exc_flags |= get_float_exception_flags(fpst) \
9608 & float_flag_input_denormal; \
9609 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 9610 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
9611}
9612
16d5b3ca
WN
9613#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9614VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
9615VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9616VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9617
9618#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9619VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9620VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 9621
8ed697e8
WN
9622VFP_CONV_FIX(sh, d, 64, 64, int16)
9623VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 9624VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
9625VFP_CONV_FIX(uh, d, 64, 64, uint16)
9626VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 9627VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
9628VFP_CONV_FIX(sh, s, 32, 32, int16)
9629VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 9630VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
9631VFP_CONV_FIX(uh, s, 32, 32, uint16)
9632VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 9633VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 9634#undef VFP_CONV_FIX
16d5b3ca
WN
9635#undef VFP_CONV_FIX_FLOAT
9636#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 9637
52a1f6a3
AG
9638/* Set the current fp rounding mode and return the old one.
9639 * The argument is a softfloat float_round_ value.
9640 */
9641uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9642{
9643 float_status *fp_status = &env->vfp.fp_status;
9644
9645 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9646 set_float_rounding_mode(rmode, fp_status);
9647
9648 return prev_rmode;
9649}
9650
43630e58
WN
9651/* Set the current fp rounding mode in the standard fp status and return
9652 * the old one. This is for NEON instructions that need to change the
9653 * rounding mode but wish to use the standard FPSCR values for everything
9654 * else. Always set the rounding mode back to the correct value after
9655 * modifying it.
9656 * The argument is a softfloat float_round_ value.
9657 */
9658uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9659{
9660 float_status *fp_status = &env->vfp.standard_fp_status;
9661
9662 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9663 set_float_rounding_mode(rmode, fp_status);
9664
9665 return prev_rmode;
9666}
9667
60011498 9668/* Half precision conversions. */
0ecb72a5 9669static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 9670{
60011498 9671 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
9672 float32 r = float16_to_float32(make_float16(a), ieee, s);
9673 if (ieee) {
af39bc8c 9674 return float32_maybe_silence_nan(r, s);
fb91678d
PM
9675 }
9676 return r;
60011498
PB
9677}
9678
0ecb72a5 9679static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 9680{
60011498 9681 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
9682 float16 r = float32_to_float16(a, ieee, s);
9683 if (ieee) {
af39bc8c 9684 r = float16_maybe_silence_nan(r, s);
fb91678d
PM
9685 }
9686 return float16_val(r);
60011498
PB
9687}
9688
0ecb72a5 9689float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
9690{
9691 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9692}
9693
0ecb72a5 9694uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
9695{
9696 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9697}
9698
0ecb72a5 9699float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
9700{
9701 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9702}
9703
0ecb72a5 9704uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
9705{
9706 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9707}
9708
8900aad2
PM
9709float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9710{
9711 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9712 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9713 if (ieee) {
af39bc8c 9714 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
9715 }
9716 return r;
9717}
9718
9719uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9720{
9721 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9722 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9723 if (ieee) {
af39bc8c 9724 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
9725 }
9726 return float16_val(r);
9727}
9728
dda3ec49 9729#define float32_two make_float32(0x40000000)
6aae3df1
PM
9730#define float32_three make_float32(0x40400000)
9731#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 9732
0ecb72a5 9733float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 9734{
dda3ec49
PM
9735 float_status *s = &env->vfp.standard_fp_status;
9736 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9737 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
9738 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9739 float_raise(float_flag_input_denormal, s);
9740 }
dda3ec49
PM
9741 return float32_two;
9742 }
9743 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
9744}
9745
0ecb72a5 9746float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 9747{
71826966 9748 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
9749 float32 product;
9750 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9751 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
9752 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9753 float_raise(float_flag_input_denormal, s);
9754 }
6aae3df1 9755 return float32_one_point_five;
9ea62f57 9756 }
6aae3df1
PM
9757 product = float32_mul(a, b, s);
9758 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
9759}
9760
8f8e3aa4
PB
9761/* NEON helpers. */
9762
56bf4fe2
CL
9763/* Constants 256 and 512 are used in some helpers; we avoid relying on
9764 * int->float conversions at run-time. */
9765#define float64_256 make_float64(0x4070000000000000LL)
9766#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
9767#define float32_maxnorm make_float32(0x7f7fffff)
9768#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 9769
b6d4443a
AB
9770/* Reciprocal functions
9771 *
9772 * The algorithm that must be used to calculate the estimate
9773 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 9774 */
b6d4443a
AB
9775
9776static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 9777{
1146a817
PM
9778 /* These calculations mustn't set any fp exception flags,
9779 * so we use a local copy of the fp_status.
9780 */
b6d4443a 9781 float_status dummy_status = *real_fp_status;
1146a817 9782 float_status *s = &dummy_status;
fe0e4872
CL
9783 /* q = (int)(a * 512.0) */
9784 float64 q = float64_mul(float64_512, a, s);
9785 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9786
9787 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9788 q = int64_to_float64(q_int, s);
9789 q = float64_add(q, float64_half, s);
9790 q = float64_div(q, float64_512, s);
9791 q = float64_div(float64_one, q, s);
9792
9793 /* s = (int)(256.0 * r + 0.5) */
9794 q = float64_mul(q, float64_256, s);
9795 q = float64_add(q, float64_half, s);
9796 q_int = float64_to_int64_round_to_zero(q, s);
9797
9798 /* return (double)s / 256.0 */
9799 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9800}
9801
b6d4443a
AB
9802/* Common wrapper to call recip_estimate */
9803static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 9804{
b6d4443a
AB
9805 uint64_t val64 = float64_val(num);
9806 uint64_t frac = extract64(val64, 0, 52);
9807 int64_t exp = extract64(val64, 52, 11);
9808 uint64_t sbit;
9809 float64 scaled, estimate;
fe0e4872 9810
b6d4443a
AB
9811 /* Generate the scaled number for the estimate function */
9812 if (exp == 0) {
9813 if (extract64(frac, 51, 1) == 0) {
9814 exp = -1;
9815 frac = extract64(frac, 0, 50) << 2;
9816 } else {
9817 frac = extract64(frac, 0, 51) << 1;
9818 }
9819 }
fe0e4872 9820
b6d4443a
AB
9821 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9822 scaled = make_float64((0x3feULL << 52)
9823 | extract64(frac, 44, 8) << 44);
9824
9825 estimate = recip_estimate(scaled, fpst);
9826
9827 /* Build new result */
9828 val64 = float64_val(estimate);
9829 sbit = 0x8000000000000000ULL & val64;
9830 exp = off - exp;
9831 frac = extract64(val64, 0, 52);
9832
9833 if (exp == 0) {
9834 frac = 1ULL << 51 | extract64(frac, 1, 51);
9835 } else if (exp == -1) {
9836 frac = 1ULL << 50 | extract64(frac, 2, 50);
9837 exp = 0;
9838 }
9839
9840 return make_float64(sbit | (exp << 52) | frac);
9841}
9842
9843static bool round_to_inf(float_status *fpst, bool sign_bit)
9844{
9845 switch (fpst->float_rounding_mode) {
9846 case float_round_nearest_even: /* Round to Nearest */
9847 return true;
9848 case float_round_up: /* Round to +Inf */
9849 return !sign_bit;
9850 case float_round_down: /* Round to -Inf */
9851 return sign_bit;
9852 case float_round_to_zero: /* Round to Zero */
9853 return false;
9854 }
9855
9856 g_assert_not_reached();
9857}
9858
9859float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9860{
9861 float_status *fpst = fpstp;
9862 float32 f32 = float32_squash_input_denormal(input, fpst);
9863 uint32_t f32_val = float32_val(f32);
9864 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9865 int32_t f32_exp = extract32(f32_val, 23, 8);
9866 uint32_t f32_frac = extract32(f32_val, 0, 23);
9867 float64 f64, r64;
9868 uint64_t r64_val;
9869 int64_t r64_exp;
9870 uint64_t r64_frac;
9871
9872 if (float32_is_any_nan(f32)) {
9873 float32 nan = f32;
af39bc8c 9874 if (float32_is_signaling_nan(f32, fpst)) {
b6d4443a 9875 float_raise(float_flag_invalid, fpst);
af39bc8c 9876 nan = float32_maybe_silence_nan(f32, fpst);
fe0e4872 9877 }
b6d4443a 9878 if (fpst->default_nan_mode) {
af39bc8c 9879 nan = float32_default_nan(fpst);
43fe9bdb 9880 }
b6d4443a
AB
9881 return nan;
9882 } else if (float32_is_infinity(f32)) {
9883 return float32_set_sign(float32_zero, float32_is_neg(f32));
9884 } else if (float32_is_zero(f32)) {
9885 float_raise(float_flag_divbyzero, fpst);
9886 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9887 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9888 /* Abs(value) < 2.0^-128 */
9889 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9890 if (round_to_inf(fpst, f32_sbit)) {
9891 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9892 } else {
9893 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9894 }
9895 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9896 float_raise(float_flag_underflow, fpst);
9897 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
9898 }
9899
fe0e4872 9900
b6d4443a
AB
9901 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9902 r64 = call_recip_estimate(f64, 253, fpst);
9903 r64_val = float64_val(r64);
9904 r64_exp = extract64(r64_val, 52, 11);
9905 r64_frac = extract64(r64_val, 0, 52);
9906
9907 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9908 return make_float32(f32_sbit |
9909 (r64_exp & 0xff) << 23 |
9910 extract64(r64_frac, 29, 24));
9911}
9912
9913float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9914{
9915 float_status *fpst = fpstp;
9916 float64 f64 = float64_squash_input_denormal(input, fpst);
9917 uint64_t f64_val = float64_val(f64);
9918 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9919 int64_t f64_exp = extract64(f64_val, 52, 11);
9920 float64 r64;
9921 uint64_t r64_val;
9922 int64_t r64_exp;
9923 uint64_t r64_frac;
9924
9925 /* Deal with any special cases */
9926 if (float64_is_any_nan(f64)) {
9927 float64 nan = f64;
af39bc8c 9928 if (float64_is_signaling_nan(f64, fpst)) {
b6d4443a 9929 float_raise(float_flag_invalid, fpst);
af39bc8c 9930 nan = float64_maybe_silence_nan(f64, fpst);
b6d4443a
AB
9931 }
9932 if (fpst->default_nan_mode) {
af39bc8c 9933 nan = float64_default_nan(fpst);
b6d4443a
AB
9934 }
9935 return nan;
9936 } else if (float64_is_infinity(f64)) {
9937 return float64_set_sign(float64_zero, float64_is_neg(f64));
9938 } else if (float64_is_zero(f64)) {
9939 float_raise(float_flag_divbyzero, fpst);
9940 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9941 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9942 /* Abs(value) < 2.0^-1024 */
9943 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9944 if (round_to_inf(fpst, f64_sbit)) {
9945 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9946 } else {
9947 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9948 }
fc1792e9 9949 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
9950 float_raise(float_flag_underflow, fpst);
9951 return float64_set_sign(float64_zero, float64_is_neg(f64));
9952 }
fe0e4872 9953
b6d4443a
AB
9954 r64 = call_recip_estimate(f64, 2045, fpst);
9955 r64_val = float64_val(r64);
9956 r64_exp = extract64(r64_val, 52, 11);
9957 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 9958
b6d4443a
AB
9959 /* result = sign : result_exp<10:0> : fraction<51:0> */
9960 return make_float64(f64_sbit |
9961 ((r64_exp & 0x7ff) << 52) |
9962 r64_frac);
4373f3ce
PB
9963}
9964
e07be5d2
CL
9965/* The algorithm that must be used to calculate the estimate
9966 * is specified by the ARM ARM.
9967 */
c2fb418e 9968static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 9969{
1146a817
PM
9970 /* These calculations mustn't set any fp exception flags,
9971 * so we use a local copy of the fp_status.
9972 */
c2fb418e 9973 float_status dummy_status = *real_fp_status;
1146a817 9974 float_status *s = &dummy_status;
e07be5d2
CL
9975 float64 q;
9976 int64_t q_int;
9977
9978 if (float64_lt(a, float64_half, s)) {
9979 /* range 0.25 <= a < 0.5 */
9980
9981 /* a in units of 1/512 rounded down */
9982 /* q0 = (int)(a * 512.0); */
9983 q = float64_mul(float64_512, a, s);
9984 q_int = float64_to_int64_round_to_zero(q, s);
9985
9986 /* reciprocal root r */
9987 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9988 q = int64_to_float64(q_int, s);
9989 q = float64_add(q, float64_half, s);
9990 q = float64_div(q, float64_512, s);
9991 q = float64_sqrt(q, s);
9992 q = float64_div(float64_one, q, s);
9993 } else {
9994 /* range 0.5 <= a < 1.0 */
9995
9996 /* a in units of 1/256 rounded down */
9997 /* q1 = (int)(a * 256.0); */
9998 q = float64_mul(float64_256, a, s);
9999 int64_t q_int = float64_to_int64_round_to_zero(q, s);
10000
10001 /* reciprocal root r */
10002 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
10003 q = int64_to_float64(q_int, s);
10004 q = float64_add(q, float64_half, s);
10005 q = float64_div(q, float64_256, s);
10006 q = float64_sqrt(q, s);
10007 q = float64_div(float64_one, q, s);
10008 }
10009 /* r in units of 1/256 rounded to nearest */
10010 /* s = (int)(256.0 * r + 0.5); */
10011
10012 q = float64_mul(q, float64_256,s );
10013 q = float64_add(q, float64_half, s);
10014 q_int = float64_to_int64_round_to_zero(q, s);
10015
10016 /* return (double)s / 256.0;*/
10017 return float64_div(int64_to_float64(q_int, s), float64_256, s);
10018}
10019
c2fb418e 10020float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 10021{
c2fb418e
AB
10022 float_status *s = fpstp;
10023 float32 f32 = float32_squash_input_denormal(input, s);
10024 uint32_t val = float32_val(f32);
10025 uint32_t f32_sbit = 0x80000000 & val;
10026 int32_t f32_exp = extract32(val, 23, 8);
10027 uint32_t f32_frac = extract32(val, 0, 23);
10028 uint64_t f64_frac;
10029 uint64_t val64;
e07be5d2
CL
10030 int result_exp;
10031 float64 f64;
e07be5d2 10032
c2fb418e
AB
10033 if (float32_is_any_nan(f32)) {
10034 float32 nan = f32;
af39bc8c 10035 if (float32_is_signaling_nan(f32, s)) {
e07be5d2 10036 float_raise(float_flag_invalid, s);
af39bc8c 10037 nan = float32_maybe_silence_nan(f32, s);
e07be5d2 10038 }
c2fb418e 10039 if (s->default_nan_mode) {
af39bc8c 10040 nan = float32_default_nan(s);
43fe9bdb 10041 }
c2fb418e
AB
10042 return nan;
10043 } else if (float32_is_zero(f32)) {
e07be5d2 10044 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
10045 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10046 } else if (float32_is_neg(f32)) {
e07be5d2 10047 float_raise(float_flag_invalid, s);
af39bc8c 10048 return float32_default_nan(s);
c2fb418e 10049 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
10050 return float32_zero;
10051 }
10052
c2fb418e 10053 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 10054 * preserving the parity of the exponent. */
c2fb418e
AB
10055
10056 f64_frac = ((uint64_t) f32_frac) << 29;
10057 if (f32_exp == 0) {
10058 while (extract64(f64_frac, 51, 1) == 0) {
10059 f64_frac = f64_frac << 1;
10060 f32_exp = f32_exp-1;
10061 }
10062 f64_frac = extract64(f64_frac, 0, 51) << 1;
10063 }
10064
10065 if (extract64(f32_exp, 0, 1) == 0) {
10066 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 10067 | (0x3feULL << 52)
c2fb418e 10068 | f64_frac);
e07be5d2 10069 } else {
c2fb418e 10070 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 10071 | (0x3fdULL << 52)
c2fb418e 10072 | f64_frac);
e07be5d2
CL
10073 }
10074
c2fb418e 10075 result_exp = (380 - f32_exp) / 2;
e07be5d2 10076
c2fb418e 10077 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
10078
10079 val64 = float64_val(f64);
10080
26cc6abf 10081 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
10082 | ((val64 >> 29) & 0x7fffff);
10083 return make_float32(val);
4373f3ce
PB
10084}
10085
c2fb418e
AB
10086float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
10087{
10088 float_status *s = fpstp;
10089 float64 f64 = float64_squash_input_denormal(input, s);
10090 uint64_t val = float64_val(f64);
10091 uint64_t f64_sbit = 0x8000000000000000ULL & val;
10092 int64_t f64_exp = extract64(val, 52, 11);
10093 uint64_t f64_frac = extract64(val, 0, 52);
10094 int64_t result_exp;
10095 uint64_t result_frac;
10096
10097 if (float64_is_any_nan(f64)) {
10098 float64 nan = f64;
af39bc8c 10099 if (float64_is_signaling_nan(f64, s)) {
c2fb418e 10100 float_raise(float_flag_invalid, s);
af39bc8c 10101 nan = float64_maybe_silence_nan(f64, s);
c2fb418e
AB
10102 }
10103 if (s->default_nan_mode) {
af39bc8c 10104 nan = float64_default_nan(s);
c2fb418e
AB
10105 }
10106 return nan;
10107 } else if (float64_is_zero(f64)) {
10108 float_raise(float_flag_divbyzero, s);
10109 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10110 } else if (float64_is_neg(f64)) {
10111 float_raise(float_flag_invalid, s);
af39bc8c 10112 return float64_default_nan(s);
c2fb418e
AB
10113 } else if (float64_is_infinity(f64)) {
10114 return float64_zero;
10115 }
10116
10117 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10118 * preserving the parity of the exponent. */
10119
10120 if (f64_exp == 0) {
10121 while (extract64(f64_frac, 51, 1) == 0) {
10122 f64_frac = f64_frac << 1;
10123 f64_exp = f64_exp - 1;
10124 }
10125 f64_frac = extract64(f64_frac, 0, 51) << 1;
10126 }
10127
10128 if (extract64(f64_exp, 0, 1) == 0) {
10129 f64 = make_float64(f64_sbit
10130 | (0x3feULL << 52)
10131 | f64_frac);
10132 } else {
10133 f64 = make_float64(f64_sbit
10134 | (0x3fdULL << 52)
10135 | f64_frac);
10136 }
10137
10138 result_exp = (3068 - f64_exp) / 2;
10139
10140 f64 = recip_sqrt_estimate(f64, s);
10141
10142 result_frac = extract64(float64_val(f64), 0, 52);
10143
10144 return make_float64(f64_sbit |
10145 ((result_exp & 0x7ff) << 52) |
10146 result_frac);
10147}
10148
b6d4443a 10149uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 10150{
b6d4443a 10151 float_status *s = fpstp;
fe0e4872
CL
10152 float64 f64;
10153
10154 if ((a & 0x80000000) == 0) {
10155 return 0xffffffff;
10156 }
10157
10158 f64 = make_float64((0x3feULL << 52)
10159 | ((int64_t)(a & 0x7fffffff) << 21));
10160
b6d4443a 10161 f64 = recip_estimate(f64, s);
fe0e4872
CL
10162
10163 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
10164}
10165
c2fb418e 10166uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 10167{
c2fb418e 10168 float_status *fpst = fpstp;
e07be5d2
CL
10169 float64 f64;
10170
10171 if ((a & 0xc0000000) == 0) {
10172 return 0xffffffff;
10173 }
10174
10175 if (a & 0x80000000) {
10176 f64 = make_float64((0x3feULL << 52)
10177 | ((uint64_t)(a & 0x7fffffff) << 21));
10178 } else { /* bits 31-30 == '01' */
10179 f64 = make_float64((0x3fdULL << 52)
10180 | ((uint64_t)(a & 0x3fffffff) << 22));
10181 }
10182
c2fb418e 10183 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
10184
10185 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 10186}
fe1479c3 10187
da97f52c
PM
10188/* VFPv4 fused multiply-accumulate */
10189float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10190{
10191 float_status *fpst = fpstp;
10192 return float32_muladd(a, b, c, 0, fpst);
10193}
10194
10195float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10196{
10197 float_status *fpst = fpstp;
10198 return float64_muladd(a, b, c, 0, fpst);
10199}
d9b0848d
PM
10200
10201/* ARMv8 round to integral */
10202float32 HELPER(rints_exact)(float32 x, void *fp_status)
10203{
10204 return float32_round_to_int(x, fp_status);
10205}
10206
10207float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10208{
10209 return float64_round_to_int(x, fp_status);
10210}
10211
10212float32 HELPER(rints)(float32 x, void *fp_status)
10213{
10214 int old_flags = get_float_exception_flags(fp_status), new_flags;
10215 float32 ret;
10216
10217 ret = float32_round_to_int(x, fp_status);
10218
10219 /* Suppress any inexact exceptions the conversion produced */
10220 if (!(old_flags & float_flag_inexact)) {
10221 new_flags = get_float_exception_flags(fp_status);
10222 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10223 }
10224
10225 return ret;
10226}
10227
10228float64 HELPER(rintd)(float64 x, void *fp_status)
10229{
10230 int old_flags = get_float_exception_flags(fp_status), new_flags;
10231 float64 ret;
10232
10233 ret = float64_round_to_int(x, fp_status);
10234
10235 new_flags = get_float_exception_flags(fp_status);
10236
10237 /* Suppress any inexact exceptions the conversion produced */
10238 if (!(old_flags & float_flag_inexact)) {
10239 new_flags = get_float_exception_flags(fp_status);
10240 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10241 }
10242
10243 return ret;
10244}
9972da66
WN
10245
10246/* Convert ARM rounding mode to softfloat */
10247int arm_rmode_to_sf(int rmode)
10248{
10249 switch (rmode) {
10250 case FPROUNDING_TIEAWAY:
10251 rmode = float_round_ties_away;
10252 break;
10253 case FPROUNDING_ODD:
10254 /* FIXME: add support for TIEAWAY and ODD */
10255 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10256 rmode);
10257 case FPROUNDING_TIEEVEN:
10258 default:
10259 rmode = float_round_nearest_even;
10260 break;
10261 case FPROUNDING_POSINF:
10262 rmode = float_round_up;
10263 break;
10264 case FPROUNDING_NEGINF:
10265 rmode = float_round_down;
10266 break;
10267 case FPROUNDING_ZERO:
10268 rmode = float_round_to_zero;
10269 break;
10270 }
10271 return rmode;
10272}
eb0ecd5a 10273
aa633469
PM
10274/* CRC helpers.
10275 * The upper bytes of val (above the number specified by 'bytes') must have
10276 * been zeroed out by the caller.
10277 */
eb0ecd5a
WN
10278uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10279{
10280 uint8_t buf[4];
10281
aa633469 10282 stl_le_p(buf, val);
eb0ecd5a
WN
10283
10284 /* zlib crc32 converts the accumulator and output to one's complement. */
10285 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10286}
10287
10288uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10289{
10290 uint8_t buf[4];
10291
aa633469 10292 stl_le_p(buf, val);
eb0ecd5a
WN
10293
10294 /* Linux crc32c converts the output to one's complement. */
10295 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10296}
This page took 2.764075 seconds and 4 git commands to generate.