]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
d38ea87a | 16 | #include "qemu/osdep.h" |
05330448 | 17 | #include <sys/ioctl.h> |
05330448 AL |
18 | |
19 | #include <linux/kvm.h> | |
20 | ||
21 | #include "qemu-common.h" | |
1de7afc9 PB |
22 | #include "qemu/atomic.h" |
23 | #include "qemu/option.h" | |
24 | #include "qemu/config-file.h" | |
4b3cfe72 | 25 | #include "qemu/error-report.h" |
d33a1810 | 26 | #include "hw/hw.h" |
a2cb15b0 | 27 | #include "hw/pci/msi.h" |
d426d9fb | 28 | #include "hw/s390x/adapter.h" |
022c62cb | 29 | #include "exec/gdbstub.h" |
8571ed35 | 30 | #include "sysemu/kvm_int.h" |
1de7afc9 | 31 | #include "qemu/bswap.h" |
022c62cb | 32 | #include "exec/memory.h" |
747afd5b | 33 | #include "exec/ram_addr.h" |
022c62cb | 34 | #include "exec/address-spaces.h" |
1de7afc9 | 35 | #include "qemu/event_notifier.h" |
9c775729 | 36 | #include "trace.h" |
197e3524 | 37 | #include "hw/irq.h" |
05330448 | 38 | |
135a129a AK |
39 | #include "hw/boards.h" |
40 | ||
d2f2b8a7 SH |
41 | /* This check must be after config-host.h is included */ |
42 | #ifdef CONFIG_EVENTFD | |
43 | #include <sys/eventfd.h> | |
44 | #endif | |
45 | ||
bc92e4e9 AJ |
46 | /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We |
47 | * need to use the real host PAGE_SIZE, as that's what KVM will use. | |
48 | */ | |
49 | #define PAGE_SIZE getpagesize() | |
f65ed4c1 | 50 | |
05330448 AL |
51 | //#define DEBUG_KVM |
52 | ||
53 | #ifdef DEBUG_KVM | |
8c0d577e | 54 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
55 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
56 | #else | |
8c0d577e | 57 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
58 | do { } while (0) |
59 | #endif | |
60 | ||
04fa27f5 JK |
61 | #define KVM_MSI_HASHTAB_SIZE 256 |
62 | ||
4c055ab5 GZ |
63 | struct KVMParkedVcpu { |
64 | unsigned long vcpu_id; | |
65 | int kvm_fd; | |
66 | QLIST_ENTRY(KVMParkedVcpu) node; | |
67 | }; | |
68 | ||
9d1c35df | 69 | struct KVMState |
05330448 | 70 | { |
fc02086b EH |
71 | AccelState parent_obj; |
72 | ||
fb541ca5 | 73 | int nr_slots; |
05330448 AL |
74 | int fd; |
75 | int vmfd; | |
f65ed4c1 | 76 | int coalesced_mmio; |
62a2744c | 77 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 78 | bool coalesced_flush_in_progress; |
e69917e2 | 79 | int broken_set_mem_region; |
a0fb002c | 80 | int vcpu_events; |
b0b1d690 | 81 | int robust_singlestep; |
ff44f1a3 | 82 | int debugregs; |
e22a25c9 AL |
83 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
84 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
85 | #endif | |
d2f2b8a7 | 86 | int many_ioeventfds; |
3ab73842 | 87 | int intx_set_mask; |
92e4b519 DG |
88 | /* The man page (and posix) say ioctl numbers are signed int, but |
89 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
90 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 91 | unsigned irq_set_ioctl; |
aed6efb9 | 92 | unsigned int sigmask_len; |
197e3524 | 93 | GHashTable *gsimap; |
84b058d7 JK |
94 | #ifdef KVM_CAP_IRQ_ROUTING |
95 | struct kvm_irq_routing *irq_routes; | |
96 | int nr_allocated_irq_routes; | |
8269fb70 | 97 | unsigned long *used_gsi_bitmap; |
4e2e4e63 | 98 | unsigned int gsi_count; |
04fa27f5 | 99 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
84b058d7 | 100 | #endif |
7bbda04c | 101 | KVMMemoryListener memory_listener; |
4c055ab5 | 102 | QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; |
9d1c35df | 103 | }; |
05330448 | 104 | |
6a7af8cb | 105 | KVMState *kvm_state; |
3d4b2649 | 106 | bool kvm_kernel_irqchip; |
15eafc2e | 107 | bool kvm_split_irqchip; |
7ae26bd4 | 108 | bool kvm_async_interrupts_allowed; |
215e79c0 | 109 | bool kvm_halt_in_kernel_allowed; |
69e03ae6 | 110 | bool kvm_eventfds_allowed; |
cc7e0ddf | 111 | bool kvm_irqfds_allowed; |
f41389ae | 112 | bool kvm_resamplefds_allowed; |
614e41bc | 113 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 114 | bool kvm_gsi_routing_allowed; |
76fe21de | 115 | bool kvm_gsi_direct_mapping; |
13eed94e | 116 | bool kvm_allowed; |
df9c8b75 | 117 | bool kvm_readonly_mem_allowed; |
d0a073a1 | 118 | bool kvm_vm_attributes_allowed; |
50bf31b9 | 119 | bool kvm_direct_msi_allowed; |
35108223 | 120 | bool kvm_ioeventfd_any_length_allowed; |
05330448 | 121 | |
94a8d39a JK |
122 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
123 | KVM_CAP_INFO(USER_MEMORY), | |
124 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
125 | KVM_CAP_LAST_INFO | |
126 | }; | |
127 | ||
44f2e6c1 BR |
128 | int kvm_get_max_memslots(void) |
129 | { | |
130 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
131 | ||
132 | return s->nr_slots; | |
133 | } | |
134 | ||
7bbda04c | 135 | static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) |
05330448 | 136 | { |
7bbda04c | 137 | KVMState *s = kvm_state; |
05330448 AL |
138 | int i; |
139 | ||
fb541ca5 | 140 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c PB |
141 | if (kml->slots[i].memory_size == 0) { |
142 | return &kml->slots[i]; | |
a426e122 | 143 | } |
05330448 AL |
144 | } |
145 | ||
b8865591 IM |
146 | return NULL; |
147 | } | |
148 | ||
149 | bool kvm_has_free_slot(MachineState *ms) | |
150 | { | |
7bbda04c PB |
151 | KVMState *s = KVM_STATE(ms->accelerator); |
152 | ||
153 | return kvm_get_free_slot(&s->memory_listener); | |
b8865591 IM |
154 | } |
155 | ||
7bbda04c | 156 | static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) |
b8865591 | 157 | { |
7bbda04c | 158 | KVMSlot *slot = kvm_get_free_slot(kml); |
b8865591 IM |
159 | |
160 | if (slot) { | |
161 | return slot; | |
162 | } | |
163 | ||
d3f8d37f AL |
164 | fprintf(stderr, "%s: no free slot available\n", __func__); |
165 | abort(); | |
166 | } | |
167 | ||
7bbda04c | 168 | static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, |
a8170e5e AK |
169 | hwaddr start_addr, |
170 | hwaddr end_addr) | |
d3f8d37f | 171 | { |
7bbda04c | 172 | KVMState *s = kvm_state; |
d3f8d37f AL |
173 | int i; |
174 | ||
fb541ca5 | 175 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c | 176 | KVMSlot *mem = &kml->slots[i]; |
d3f8d37f AL |
177 | |
178 | if (start_addr == mem->start_addr && | |
179 | end_addr == mem->start_addr + mem->memory_size) { | |
180 | return mem; | |
181 | } | |
182 | } | |
183 | ||
05330448 AL |
184 | return NULL; |
185 | } | |
186 | ||
6152e2ae AL |
187 | /* |
188 | * Find overlapping slot with lowest start address | |
189 | */ | |
7bbda04c | 190 | static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, |
a8170e5e AK |
191 | hwaddr start_addr, |
192 | hwaddr end_addr) | |
05330448 | 193 | { |
7bbda04c | 194 | KVMState *s = kvm_state; |
6152e2ae | 195 | KVMSlot *found = NULL; |
05330448 AL |
196 | int i; |
197 | ||
fb541ca5 | 198 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c | 199 | KVMSlot *mem = &kml->slots[i]; |
05330448 | 200 | |
6152e2ae AL |
201 | if (mem->memory_size == 0 || |
202 | (found && found->start_addr < mem->start_addr)) { | |
203 | continue; | |
204 | } | |
205 | ||
206 | if (end_addr > mem->start_addr && | |
207 | start_addr < mem->start_addr + mem->memory_size) { | |
208 | found = mem; | |
209 | } | |
05330448 AL |
210 | } |
211 | ||
6152e2ae | 212 | return found; |
05330448 AL |
213 | } |
214 | ||
9f213ed9 | 215 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 216 | hwaddr *phys_addr) |
983dfc3b | 217 | { |
7bbda04c | 218 | KVMMemoryListener *kml = &s->memory_listener; |
983dfc3b HY |
219 | int i; |
220 | ||
fb541ca5 | 221 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c | 222 | KVMSlot *mem = &kml->slots[i]; |
983dfc3b | 223 | |
9f213ed9 AK |
224 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
225 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
226 | return 1; |
227 | } | |
228 | } | |
229 | ||
230 | return 0; | |
231 | } | |
232 | ||
7bbda04c | 233 | static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) |
5832d1f2 | 234 | { |
7bbda04c | 235 | KVMState *s = kvm_state; |
5832d1f2 AL |
236 | struct kvm_userspace_memory_region mem; |
237 | ||
38bfe691 | 238 | mem.slot = slot->slot | (kml->as_id << 16); |
5832d1f2 | 239 | mem.guest_phys_addr = slot->start_addr; |
9f213ed9 | 240 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 241 | mem.flags = slot->flags; |
651eb0f4 XG |
242 | |
243 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
235e8982 JJ |
244 | /* Set the slot size to 0 before setting the slot to the desired |
245 | * value. This is needed based on KVM commit 75d61fbc. */ | |
246 | mem.memory_size = 0; | |
247 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
248 | } | |
249 | mem.memory_size = slot->memory_size; | |
5832d1f2 AL |
250 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
251 | } | |
252 | ||
4c055ab5 GZ |
253 | int kvm_destroy_vcpu(CPUState *cpu) |
254 | { | |
255 | KVMState *s = kvm_state; | |
256 | long mmap_size; | |
257 | struct KVMParkedVcpu *vcpu = NULL; | |
258 | int ret = 0; | |
259 | ||
260 | DPRINTF("kvm_destroy_vcpu\n"); | |
261 | ||
262 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
263 | if (mmap_size < 0) { | |
264 | ret = mmap_size; | |
265 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
266 | goto err; | |
267 | } | |
268 | ||
269 | ret = munmap(cpu->kvm_run, mmap_size); | |
270 | if (ret < 0) { | |
271 | goto err; | |
272 | } | |
273 | ||
274 | vcpu = g_malloc0(sizeof(*vcpu)); | |
275 | vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); | |
276 | vcpu->kvm_fd = cpu->kvm_fd; | |
277 | QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); | |
278 | err: | |
279 | return ret; | |
280 | } | |
281 | ||
282 | static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) | |
283 | { | |
284 | struct KVMParkedVcpu *cpu; | |
285 | ||
286 | QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { | |
287 | if (cpu->vcpu_id == vcpu_id) { | |
288 | int kvm_fd; | |
289 | ||
290 | QLIST_REMOVE(cpu, node); | |
291 | kvm_fd = cpu->kvm_fd; | |
292 | g_free(cpu); | |
293 | return kvm_fd; | |
294 | } | |
295 | } | |
296 | ||
297 | return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); | |
298 | } | |
299 | ||
504134d2 | 300 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
301 | { |
302 | KVMState *s = kvm_state; | |
303 | long mmap_size; | |
304 | int ret; | |
305 | ||
8c0d577e | 306 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 307 | |
4c055ab5 | 308 | ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); |
05330448 | 309 | if (ret < 0) { |
8c0d577e | 310 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
311 | goto err; |
312 | } | |
313 | ||
8737c51c | 314 | cpu->kvm_fd = ret; |
a60f24b5 | 315 | cpu->kvm_state = s; |
20d695a9 | 316 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
317 | |
318 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
319 | if (mmap_size < 0) { | |
748a680b | 320 | ret = mmap_size; |
8c0d577e | 321 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
322 | goto err; |
323 | } | |
324 | ||
f7575c96 | 325 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 326 | cpu->kvm_fd, 0); |
f7575c96 | 327 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 328 | ret = -errno; |
8c0d577e | 329 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
330 | goto err; |
331 | } | |
332 | ||
a426e122 JK |
333 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
334 | s->coalesced_mmio_ring = | |
f7575c96 | 335 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 336 | } |
62a2744c | 337 | |
20d695a9 | 338 | ret = kvm_arch_init_vcpu(cpu); |
05330448 AL |
339 | err: |
340 | return ret; | |
341 | } | |
342 | ||
5832d1f2 AL |
343 | /* |
344 | * dirty pages logging control | |
345 | */ | |
25254bbc | 346 | |
d6ff5cbc | 347 | static int kvm_mem_flags(MemoryRegion *mr) |
25254bbc | 348 | { |
d6ff5cbc | 349 | bool readonly = mr->readonly || memory_region_is_romd(mr); |
235e8982 | 350 | int flags = 0; |
d6ff5cbc AJ |
351 | |
352 | if (memory_region_get_dirty_log_mask(mr) != 0) { | |
353 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
354 | } | |
235e8982 JJ |
355 | if (readonly && kvm_readonly_mem_allowed) { |
356 | flags |= KVM_MEM_READONLY; | |
357 | } | |
358 | return flags; | |
25254bbc MT |
359 | } |
360 | ||
7bbda04c PB |
361 | static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, |
362 | MemoryRegion *mr) | |
5832d1f2 | 363 | { |
4495d6a7 JK |
364 | int old_flags; |
365 | ||
4495d6a7 | 366 | old_flags = mem->flags; |
d6ff5cbc | 367 | mem->flags = kvm_mem_flags(mr); |
5832d1f2 | 368 | |
4495d6a7 | 369 | /* If nothing changed effectively, no need to issue ioctl */ |
d6ff5cbc | 370 | if (mem->flags == old_flags) { |
25254bbc | 371 | return 0; |
4495d6a7 JK |
372 | } |
373 | ||
7bbda04c | 374 | return kvm_set_user_memory_region(kml, mem); |
5832d1f2 AL |
375 | } |
376 | ||
7bbda04c PB |
377 | static int kvm_section_update_flags(KVMMemoryListener *kml, |
378 | MemoryRegionSection *section) | |
25254bbc | 379 | { |
d6ff5cbc AJ |
380 | hwaddr phys_addr = section->offset_within_address_space; |
381 | ram_addr_t size = int128_get64(section->size); | |
7bbda04c | 382 | KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size); |
25254bbc MT |
383 | |
384 | if (mem == NULL) { | |
ea8cb1a8 PB |
385 | return 0; |
386 | } else { | |
7bbda04c | 387 | return kvm_slot_update_flags(kml, mem, section->mr); |
25254bbc | 388 | } |
25254bbc MT |
389 | } |
390 | ||
a01672d3 | 391 | static void kvm_log_start(MemoryListener *listener, |
b2dfd71c PB |
392 | MemoryRegionSection *section, |
393 | int old, int new) | |
5832d1f2 | 394 | { |
7bbda04c | 395 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
396 | int r; |
397 | ||
b2dfd71c PB |
398 | if (old != 0) { |
399 | return; | |
400 | } | |
401 | ||
7bbda04c | 402 | r = kvm_section_update_flags(kml, section); |
a01672d3 AK |
403 | if (r < 0) { |
404 | abort(); | |
405 | } | |
5832d1f2 AL |
406 | } |
407 | ||
a01672d3 | 408 | static void kvm_log_stop(MemoryListener *listener, |
b2dfd71c PB |
409 | MemoryRegionSection *section, |
410 | int old, int new) | |
5832d1f2 | 411 | { |
7bbda04c | 412 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
413 | int r; |
414 | ||
b2dfd71c PB |
415 | if (new != 0) { |
416 | return; | |
417 | } | |
418 | ||
7bbda04c | 419 | r = kvm_section_update_flags(kml, section); |
a01672d3 AK |
420 | if (r < 0) { |
421 | abort(); | |
422 | } | |
5832d1f2 AL |
423 | } |
424 | ||
8369e01c | 425 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
426 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
427 | unsigned long *bitmap) | |
96c1606b | 428 | { |
8e41fb63 FZ |
429 | ram_addr_t start = section->offset_within_region + |
430 | memory_region_get_ram_addr(section->mr); | |
5ff7fb77 JQ |
431 | ram_addr_t pages = int128_get64(section->size) / getpagesize(); |
432 | ||
433 | cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); | |
8369e01c | 434 | return 0; |
96c1606b AG |
435 | } |
436 | ||
8369e01c MT |
437 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
438 | ||
5832d1f2 AL |
439 | /** |
440 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
441 | * This function updates qemu's dirty bitmap using |
442 | * memory_region_set_dirty(). This means all bits are set | |
443 | * to dirty. | |
5832d1f2 | 444 | * |
d3f8d37f | 445 | * @start_add: start of logged region. |
5832d1f2 AL |
446 | * @end_addr: end of logged region. |
447 | */ | |
7bbda04c PB |
448 | static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, |
449 | MemoryRegionSection *section) | |
5832d1f2 AL |
450 | { |
451 | KVMState *s = kvm_state; | |
151f7749 | 452 | unsigned long size, allocated_size = 0; |
714f78c5 | 453 | struct kvm_dirty_log d = {}; |
151f7749 JK |
454 | KVMSlot *mem; |
455 | int ret = 0; | |
a8170e5e | 456 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 457 | hwaddr end_addr = start_addr + int128_get64(section->size); |
5832d1f2 | 458 | |
151f7749 JK |
459 | d.dirty_bitmap = NULL; |
460 | while (start_addr < end_addr) { | |
7bbda04c | 461 | mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); |
151f7749 JK |
462 | if (mem == NULL) { |
463 | break; | |
464 | } | |
5832d1f2 | 465 | |
51b0c606 MT |
466 | /* XXX bad kernel interface alert |
467 | * For dirty bitmap, kernel allocates array of size aligned to | |
468 | * bits-per-long. But for case when the kernel is 64bits and | |
469 | * the userspace is 32bits, userspace can't align to the same | |
470 | * bits-per-long, since sizeof(long) is different between kernel | |
471 | * and user space. This way, userspace will provide buffer which | |
472 | * may be 4 bytes less than the kernel will use, resulting in | |
473 | * userspace memory corruption (which is not detectable by valgrind | |
474 | * too, in most cases). | |
475 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
cb8d4c8f | 476 | * a hope that sizeof(long) won't become >8 any time soon. |
51b0c606 MT |
477 | */ |
478 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
479 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 480 | if (!d.dirty_bitmap) { |
7267c094 | 481 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 482 | } else if (size > allocated_size) { |
7267c094 | 483 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
484 | } |
485 | allocated_size = size; | |
486 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 487 | |
38bfe691 | 488 | d.slot = mem->slot | (kml->as_id << 16); |
50212d63 | 489 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 490 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
491 | ret = -1; |
492 | break; | |
493 | } | |
5832d1f2 | 494 | |
ffcde12f | 495 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 496 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 497 | } |
7267c094 | 498 | g_free(d.dirty_bitmap); |
151f7749 JK |
499 | |
500 | return ret; | |
5832d1f2 AL |
501 | } |
502 | ||
95d2994a AK |
503 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
504 | MemoryRegionSection *secion, | |
a8170e5e | 505 | hwaddr start, hwaddr size) |
f65ed4c1 | 506 | { |
f65ed4c1 AL |
507 | KVMState *s = kvm_state; |
508 | ||
509 | if (s->coalesced_mmio) { | |
510 | struct kvm_coalesced_mmio_zone zone; | |
511 | ||
512 | zone.addr = start; | |
513 | zone.size = size; | |
7e680753 | 514 | zone.pad = 0; |
f65ed4c1 | 515 | |
95d2994a | 516 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 517 | } |
f65ed4c1 AL |
518 | } |
519 | ||
95d2994a AK |
520 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
521 | MemoryRegionSection *secion, | |
a8170e5e | 522 | hwaddr start, hwaddr size) |
f65ed4c1 | 523 | { |
f65ed4c1 AL |
524 | KVMState *s = kvm_state; |
525 | ||
526 | if (s->coalesced_mmio) { | |
527 | struct kvm_coalesced_mmio_zone zone; | |
528 | ||
529 | zone.addr = start; | |
530 | zone.size = size; | |
7e680753 | 531 | zone.pad = 0; |
f65ed4c1 | 532 | |
95d2994a | 533 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 534 | } |
f65ed4c1 AL |
535 | } |
536 | ||
ad7b8b33 AL |
537 | int kvm_check_extension(KVMState *s, unsigned int extension) |
538 | { | |
539 | int ret; | |
540 | ||
541 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
542 | if (ret < 0) { | |
543 | ret = 0; | |
544 | } | |
545 | ||
546 | return ret; | |
547 | } | |
548 | ||
7d0a07fa AG |
549 | int kvm_vm_check_extension(KVMState *s, unsigned int extension) |
550 | { | |
551 | int ret; | |
552 | ||
553 | ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
554 | if (ret < 0) { | |
555 | /* VM wide version not implemented, use global one instead */ | |
556 | ret = kvm_check_extension(s, extension); | |
557 | } | |
558 | ||
559 | return ret; | |
560 | } | |
561 | ||
b680c5ba GK |
562 | static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) |
563 | { | |
564 | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | |
565 | /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN | |
566 | * endianness, but the memory core hands them in target endianness. | |
567 | * For example, PPC is always treated as big-endian even if running | |
568 | * on KVM and on PPC64LE. Correct here. | |
569 | */ | |
570 | switch (size) { | |
571 | case 2: | |
572 | val = bswap16(val); | |
573 | break; | |
574 | case 4: | |
575 | val = bswap32(val); | |
576 | break; | |
577 | } | |
578 | #endif | |
579 | return val; | |
580 | } | |
581 | ||
584f2be7 | 582 | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, |
41cb62c2 | 583 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
584 | { |
585 | int ret; | |
03a96b83 TH |
586 | struct kvm_ioeventfd iofd = { |
587 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | |
588 | .addr = addr, | |
589 | .len = size, | |
590 | .flags = 0, | |
591 | .fd = fd, | |
592 | }; | |
500ffd4a MT |
593 | |
594 | if (!kvm_enabled()) { | |
595 | return -ENOSYS; | |
596 | } | |
597 | ||
41cb62c2 MT |
598 | if (datamatch) { |
599 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
600 | } | |
500ffd4a MT |
601 | if (!assign) { |
602 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
603 | } | |
604 | ||
605 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
606 | ||
607 | if (ret < 0) { | |
608 | return -errno; | |
609 | } | |
610 | ||
611 | return 0; | |
612 | } | |
613 | ||
44c3f8f7 | 614 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 615 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
616 | { |
617 | struct kvm_ioeventfd kick = { | |
b680c5ba | 618 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, |
500ffd4a | 619 | .addr = addr, |
41cb62c2 | 620 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 621 | .len = size, |
500ffd4a MT |
622 | .fd = fd, |
623 | }; | |
624 | int r; | |
625 | if (!kvm_enabled()) { | |
626 | return -ENOSYS; | |
627 | } | |
41cb62c2 MT |
628 | if (datamatch) { |
629 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
630 | } | |
500ffd4a MT |
631 | if (!assign) { |
632 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
633 | } | |
634 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
635 | if (r < 0) { | |
636 | return r; | |
637 | } | |
638 | return 0; | |
639 | } | |
640 | ||
641 | ||
d2f2b8a7 SH |
642 | static int kvm_check_many_ioeventfds(void) |
643 | { | |
d0dcac83 SH |
644 | /* Userspace can use ioeventfd for io notification. This requires a host |
645 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
646 | * support SIGIO it cannot interrupt the vcpu. | |
647 | * | |
648 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
649 | * can avoid creating too many ioeventfds. |
650 | */ | |
12d4536f | 651 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
652 | int ioeventfds[7]; |
653 | int i, ret = 0; | |
654 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
655 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
656 | if (ioeventfds[i] < 0) { | |
657 | break; | |
658 | } | |
41cb62c2 | 659 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
660 | if (ret < 0) { |
661 | close(ioeventfds[i]); | |
662 | break; | |
663 | } | |
664 | } | |
665 | ||
666 | /* Decide whether many devices are supported or not */ | |
667 | ret = i == ARRAY_SIZE(ioeventfds); | |
668 | ||
669 | while (i-- > 0) { | |
41cb62c2 | 670 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
671 | close(ioeventfds[i]); |
672 | } | |
673 | return ret; | |
674 | #else | |
675 | return 0; | |
676 | #endif | |
677 | } | |
678 | ||
94a8d39a JK |
679 | static const KVMCapabilityInfo * |
680 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
681 | { | |
682 | while (list->name) { | |
683 | if (!kvm_check_extension(s, list->value)) { | |
684 | return list; | |
685 | } | |
686 | list++; | |
687 | } | |
688 | return NULL; | |
689 | } | |
690 | ||
7bbda04c PB |
691 | static void kvm_set_phys_mem(KVMMemoryListener *kml, |
692 | MemoryRegionSection *section, bool add) | |
46dbef6a MT |
693 | { |
694 | KVMState *s = kvm_state; | |
46dbef6a MT |
695 | KVMSlot *mem, old; |
696 | int err; | |
a01672d3 | 697 | MemoryRegion *mr = section->mr; |
235e8982 | 698 | bool writeable = !mr->readonly && !mr->rom_device; |
a8170e5e | 699 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 700 | ram_addr_t size = int128_get64(section->size); |
9f213ed9 | 701 | void *ram = NULL; |
8f6f962b | 702 | unsigned delta; |
46dbef6a | 703 | |
14542fea | 704 | /* kvm works in page size chunks, but the function may be called |
f2a64032 AG |
705 | with sub-page size and unaligned start address. Pad the start |
706 | address to next and truncate size to previous page boundary. */ | |
b232c785 AK |
707 | delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask); |
708 | delta &= ~qemu_real_host_page_mask; | |
8f6f962b AK |
709 | if (delta > size) { |
710 | return; | |
711 | } | |
712 | start_addr += delta; | |
713 | size -= delta; | |
b232c785 AK |
714 | size &= qemu_real_host_page_mask; |
715 | if (!size || (start_addr & ~qemu_real_host_page_mask)) { | |
8f6f962b AK |
716 | return; |
717 | } | |
46dbef6a | 718 | |
a01672d3 | 719 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
720 | if (writeable || !kvm_readonly_mem_allowed) { |
721 | return; | |
722 | } else if (!mr->romd_mode) { | |
723 | /* If the memory device is not in romd_mode, then we actually want | |
724 | * to remove the kvm memory slot so all accesses will trap. */ | |
725 | add = false; | |
726 | } | |
9f213ed9 AK |
727 | } |
728 | ||
8f6f962b | 729 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 730 | |
46dbef6a | 731 | while (1) { |
7bbda04c | 732 | mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size); |
46dbef6a MT |
733 | if (!mem) { |
734 | break; | |
735 | } | |
736 | ||
a01672d3 | 737 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 738 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 739 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 740 | /* The new slot fits into the existing one and comes with |
25254bbc | 741 | * identical parameters - update flags and done. */ |
7bbda04c | 742 | kvm_slot_update_flags(kml, mem, mr); |
46dbef6a MT |
743 | return; |
744 | } | |
745 | ||
746 | old = *mem; | |
747 | ||
1bfbac4e | 748 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
7bbda04c | 749 | kvm_physical_sync_dirty_bitmap(kml, section); |
3fbffb62 AK |
750 | } |
751 | ||
46dbef6a MT |
752 | /* unregister the overlapping slot */ |
753 | mem->memory_size = 0; | |
7bbda04c | 754 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
755 | if (err) { |
756 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
757 | __func__, strerror(-err)); | |
758 | abort(); | |
759 | } | |
760 | ||
761 | /* Workaround for older KVM versions: we can't join slots, even not by | |
762 | * unregistering the previous ones and then registering the larger | |
763 | * slot. We have to maintain the existing fragmentation. Sigh. | |
764 | * | |
765 | * This workaround assumes that the new slot starts at the same | |
766 | * address as the first existing one. If not or if some overlapping | |
767 | * slot comes around later, we will fail (not seen in practice so far) | |
768 | * - and actually require a recent KVM version. */ | |
769 | if (s->broken_set_mem_region && | |
a01672d3 | 770 | old.start_addr == start_addr && old.memory_size < size && add) { |
7bbda04c | 771 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
772 | mem->memory_size = old.memory_size; |
773 | mem->start_addr = old.start_addr; | |
9f213ed9 | 774 | mem->ram = old.ram; |
d6ff5cbc | 775 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 776 | |
7bbda04c | 777 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
778 | if (err) { |
779 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
780 | strerror(-err)); | |
781 | abort(); | |
782 | } | |
783 | ||
784 | start_addr += old.memory_size; | |
9f213ed9 | 785 | ram += old.memory_size; |
46dbef6a MT |
786 | size -= old.memory_size; |
787 | continue; | |
788 | } | |
789 | ||
790 | /* register prefix slot */ | |
791 | if (old.start_addr < start_addr) { | |
7bbda04c | 792 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
793 | mem->memory_size = start_addr - old.start_addr; |
794 | mem->start_addr = old.start_addr; | |
9f213ed9 | 795 | mem->ram = old.ram; |
d6ff5cbc | 796 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 797 | |
7bbda04c | 798 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
799 | if (err) { |
800 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
801 | __func__, strerror(-err)); | |
d4d6868f AG |
802 | #ifdef TARGET_PPC |
803 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
804 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
805 | "PAGE_SIZE!\n", __func__); | |
806 | #endif | |
46dbef6a MT |
807 | abort(); |
808 | } | |
809 | } | |
810 | ||
811 | /* register suffix slot */ | |
812 | if (old.start_addr + old.memory_size > start_addr + size) { | |
813 | ram_addr_t size_delta; | |
814 | ||
7bbda04c | 815 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
816 | mem->start_addr = start_addr + size; |
817 | size_delta = mem->start_addr - old.start_addr; | |
818 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 819 | mem->ram = old.ram + size_delta; |
d6ff5cbc | 820 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 821 | |
7bbda04c | 822 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
823 | if (err) { |
824 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
825 | __func__, strerror(-err)); | |
826 | abort(); | |
827 | } | |
828 | } | |
829 | } | |
830 | ||
831 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 832 | if (!size) { |
46dbef6a | 833 | return; |
a426e122 | 834 | } |
a01672d3 | 835 | if (!add) { |
46dbef6a | 836 | return; |
a426e122 | 837 | } |
7bbda04c | 838 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
839 | mem->memory_size = size; |
840 | mem->start_addr = start_addr; | |
9f213ed9 | 841 | mem->ram = ram; |
d6ff5cbc | 842 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 843 | |
7bbda04c | 844 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
845 | if (err) { |
846 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
847 | strerror(-err)); | |
848 | abort(); | |
849 | } | |
850 | } | |
851 | ||
a01672d3 AK |
852 | static void kvm_region_add(MemoryListener *listener, |
853 | MemoryRegionSection *section) | |
854 | { | |
7bbda04c PB |
855 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
856 | ||
dfde4e6e | 857 | memory_region_ref(section->mr); |
7bbda04c | 858 | kvm_set_phys_mem(kml, section, true); |
a01672d3 AK |
859 | } |
860 | ||
861 | static void kvm_region_del(MemoryListener *listener, | |
862 | MemoryRegionSection *section) | |
863 | { | |
7bbda04c PB |
864 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
865 | ||
866 | kvm_set_phys_mem(kml, section, false); | |
dfde4e6e | 867 | memory_region_unref(section->mr); |
a01672d3 AK |
868 | } |
869 | ||
870 | static void kvm_log_sync(MemoryListener *listener, | |
871 | MemoryRegionSection *section) | |
7b8f3b78 | 872 | { |
7bbda04c | 873 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
874 | int r; |
875 | ||
7bbda04c | 876 | r = kvm_physical_sync_dirty_bitmap(kml, section); |
a01672d3 AK |
877 | if (r < 0) { |
878 | abort(); | |
879 | } | |
7b8f3b78 MT |
880 | } |
881 | ||
d22b096e AK |
882 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
883 | MemoryRegionSection *section, | |
884 | bool match_data, uint64_t data, | |
885 | EventNotifier *e) | |
886 | { | |
887 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
888 | int r; |
889 | ||
4b8f1c88 | 890 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
891 | data, true, int128_get64(section->size), |
892 | match_data); | |
80a1ea37 | 893 | if (r < 0) { |
fa4ba923 AK |
894 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
895 | __func__, strerror(-r)); | |
80a1ea37 AK |
896 | abort(); |
897 | } | |
898 | } | |
899 | ||
d22b096e AK |
900 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
901 | MemoryRegionSection *section, | |
902 | bool match_data, uint64_t data, | |
903 | EventNotifier *e) | |
80a1ea37 | 904 | { |
d22b096e | 905 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
906 | int r; |
907 | ||
4b8f1c88 | 908 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
909 | data, false, int128_get64(section->size), |
910 | match_data); | |
80a1ea37 AK |
911 | if (r < 0) { |
912 | abort(); | |
913 | } | |
914 | } | |
915 | ||
d22b096e AK |
916 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
917 | MemoryRegionSection *section, | |
918 | bool match_data, uint64_t data, | |
919 | EventNotifier *e) | |
80a1ea37 | 920 | { |
d22b096e | 921 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
922 | int r; |
923 | ||
44c3f8f7 | 924 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
925 | data, true, int128_get64(section->size), |
926 | match_data); | |
80a1ea37 | 927 | if (r < 0) { |
fa4ba923 AK |
928 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
929 | __func__, strerror(-r)); | |
80a1ea37 AK |
930 | abort(); |
931 | } | |
932 | } | |
933 | ||
d22b096e AK |
934 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
935 | MemoryRegionSection *section, | |
936 | bool match_data, uint64_t data, | |
937 | EventNotifier *e) | |
80a1ea37 AK |
938 | |
939 | { | |
d22b096e | 940 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
941 | int r; |
942 | ||
44c3f8f7 | 943 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
944 | data, false, int128_get64(section->size), |
945 | match_data); | |
80a1ea37 AK |
946 | if (r < 0) { |
947 | abort(); | |
948 | } | |
949 | } | |
950 | ||
38bfe691 PB |
951 | void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, |
952 | AddressSpace *as, int as_id) | |
7bbda04c PB |
953 | { |
954 | int i; | |
955 | ||
956 | kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); | |
38bfe691 | 957 | kml->as_id = as_id; |
7bbda04c PB |
958 | |
959 | for (i = 0; i < s->nr_slots; i++) { | |
960 | kml->slots[i].slot = i; | |
961 | } | |
962 | ||
963 | kml->listener.region_add = kvm_region_add; | |
964 | kml->listener.region_del = kvm_region_del; | |
965 | kml->listener.log_start = kvm_log_start; | |
966 | kml->listener.log_stop = kvm_log_stop; | |
967 | kml->listener.log_sync = kvm_log_sync; | |
968 | kml->listener.priority = 10; | |
969 | ||
970 | memory_listener_register(&kml->listener, as); | |
971 | } | |
d22b096e AK |
972 | |
973 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
974 | .eventfd_add = kvm_io_ioeventfd_add, |
975 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 976 | .priority = 10, |
7b8f3b78 MT |
977 | }; |
978 | ||
c3affe56 | 979 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 980 | { |
259186a7 | 981 | cpu->interrupt_request |= mask; |
aa7f74d1 | 982 | |
60e82579 | 983 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 984 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
985 | } |
986 | } | |
987 | ||
3889c3fa | 988 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
989 | { |
990 | struct kvm_irq_level event; | |
991 | int ret; | |
992 | ||
7ae26bd4 | 993 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
994 | |
995 | event.level = level; | |
996 | event.irq = irq; | |
e333cd69 | 997 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 998 | if (ret < 0) { |
3889c3fa | 999 | perror("kvm_set_irq"); |
84b058d7 JK |
1000 | abort(); |
1001 | } | |
1002 | ||
e333cd69 | 1003 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
1004 | } |
1005 | ||
1006 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
1007 | typedef struct KVMMSIRoute { |
1008 | struct kvm_irq_routing_entry kroute; | |
1009 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
1010 | } KVMMSIRoute; | |
1011 | ||
84b058d7 JK |
1012 | static void set_gsi(KVMState *s, unsigned int gsi) |
1013 | { | |
8269fb70 | 1014 | set_bit(gsi, s->used_gsi_bitmap); |
84b058d7 JK |
1015 | } |
1016 | ||
04fa27f5 JK |
1017 | static void clear_gsi(KVMState *s, unsigned int gsi) |
1018 | { | |
8269fb70 | 1019 | clear_bit(gsi, s->used_gsi_bitmap); |
04fa27f5 JK |
1020 | } |
1021 | ||
7b774593 | 1022 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 | 1023 | { |
04fa27f5 | 1024 | int gsi_count, i; |
84b058d7 | 1025 | |
00008418 | 1026 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; |
84b058d7 | 1027 | if (gsi_count > 0) { |
84b058d7 | 1028 | /* Round up so we can search ints using ffs */ |
8269fb70 | 1029 | s->used_gsi_bitmap = bitmap_new(gsi_count); |
4e2e4e63 | 1030 | s->gsi_count = gsi_count; |
84b058d7 JK |
1031 | } |
1032 | ||
1033 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
1034 | s->nr_allocated_irq_routes = 0; | |
1035 | ||
50bf31b9 | 1036 | if (!kvm_direct_msi_allowed) { |
4a3adebb JK |
1037 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { |
1038 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
1039 | } | |
04fa27f5 JK |
1040 | } |
1041 | ||
84b058d7 JK |
1042 | kvm_arch_init_irq_routing(s); |
1043 | } | |
1044 | ||
cb925cf9 | 1045 | void kvm_irqchip_commit_routes(KVMState *s) |
e7b20308 JK |
1046 | { |
1047 | int ret; | |
1048 | ||
1049 | s->irq_routes->flags = 0; | |
1050 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
1051 | assert(ret == 0); | |
1052 | } | |
1053 | ||
84b058d7 JK |
1054 | static void kvm_add_routing_entry(KVMState *s, |
1055 | struct kvm_irq_routing_entry *entry) | |
1056 | { | |
1057 | struct kvm_irq_routing_entry *new; | |
1058 | int n, size; | |
1059 | ||
1060 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1061 | n = s->nr_allocated_irq_routes * 2; | |
1062 | if (n < 64) { | |
1063 | n = 64; | |
1064 | } | |
1065 | size = sizeof(struct kvm_irq_routing); | |
1066 | size += n * sizeof(*new); | |
1067 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1068 | s->nr_allocated_irq_routes = n; | |
1069 | } | |
1070 | n = s->irq_routes->nr++; | |
1071 | new = &s->irq_routes->entries[n]; | |
0fbc2074 MT |
1072 | |
1073 | *new = *entry; | |
84b058d7 JK |
1074 | |
1075 | set_gsi(s, entry->gsi); | |
1076 | } | |
1077 | ||
cc57407e JK |
1078 | static int kvm_update_routing_entry(KVMState *s, |
1079 | struct kvm_irq_routing_entry *new_entry) | |
1080 | { | |
1081 | struct kvm_irq_routing_entry *entry; | |
1082 | int n; | |
1083 | ||
1084 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1085 | entry = &s->irq_routes->entries[n]; | |
1086 | if (entry->gsi != new_entry->gsi) { | |
1087 | continue; | |
1088 | } | |
1089 | ||
40509f7f MT |
1090 | if(!memcmp(entry, new_entry, sizeof *entry)) { |
1091 | return 0; | |
1092 | } | |
1093 | ||
0fbc2074 | 1094 | *entry = *new_entry; |
cc57407e JK |
1095 | |
1096 | kvm_irqchip_commit_routes(s); | |
1097 | ||
1098 | return 0; | |
1099 | } | |
1100 | ||
1101 | return -ESRCH; | |
1102 | } | |
1103 | ||
1df186df | 1104 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 | 1105 | { |
0fbc2074 | 1106 | struct kvm_irq_routing_entry e = {}; |
84b058d7 | 1107 | |
4e2e4e63 JK |
1108 | assert(pin < s->gsi_count); |
1109 | ||
84b058d7 JK |
1110 | e.gsi = irq; |
1111 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1112 | e.flags = 0; | |
1113 | e.u.irqchip.irqchip = irqchip; | |
1114 | e.u.irqchip.pin = pin; | |
1115 | kvm_add_routing_entry(s, &e); | |
1116 | } | |
1117 | ||
1e2aa8be | 1118 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1119 | { |
1120 | struct kvm_irq_routing_entry *e; | |
1121 | int i; | |
1122 | ||
76fe21de AK |
1123 | if (kvm_gsi_direct_mapping()) { |
1124 | return; | |
1125 | } | |
1126 | ||
04fa27f5 JK |
1127 | for (i = 0; i < s->irq_routes->nr; i++) { |
1128 | e = &s->irq_routes->entries[i]; | |
1129 | if (e->gsi == virq) { | |
1130 | s->irq_routes->nr--; | |
1131 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1132 | } | |
1133 | } | |
1134 | clear_gsi(s, virq); | |
1135 | } | |
1136 | ||
1137 | static unsigned int kvm_hash_msi(uint32_t data) | |
1138 | { | |
1139 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1140 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1141 | return data & 0xff; | |
1142 | } | |
1143 | ||
1144 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1145 | { | |
1146 | KVMMSIRoute *route, *next; | |
1147 | unsigned int hash; | |
1148 | ||
1149 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1150 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1151 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1152 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1153 | g_free(route); | |
1154 | } | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | static int kvm_irqchip_get_virq(KVMState *s) | |
1159 | { | |
8269fb70 | 1160 | int next_virq; |
04fa27f5 | 1161 | |
bdf02631 WM |
1162 | /* |
1163 | * PIC and IOAPIC share the first 16 GSI numbers, thus the available | |
1164 | * GSI numbers are more than the number of IRQ route. Allocating a GSI | |
1165 | * number can succeed even though a new route entry cannot be added. | |
1166 | * When this happens, flush dynamic MSI entries to free IRQ route entries. | |
1167 | */ | |
50bf31b9 | 1168 | if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { |
bdf02631 WM |
1169 | kvm_flush_dynamic_msi_routes(s); |
1170 | } | |
1171 | ||
04fa27f5 | 1172 | /* Return the lowest unused GSI in the bitmap */ |
8269fb70 WY |
1173 | next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); |
1174 | if (next_virq >= s->gsi_count) { | |
1175 | return -ENOSPC; | |
1176 | } else { | |
1177 | return next_virq; | |
04fa27f5 | 1178 | } |
04fa27f5 JK |
1179 | } |
1180 | ||
1181 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1182 | { | |
1183 | unsigned int hash = kvm_hash_msi(msg.data); | |
1184 | KVMMSIRoute *route; | |
1185 | ||
1186 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1187 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1188 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
d07cc1f1 | 1189 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
04fa27f5 JK |
1190 | return route; |
1191 | } | |
1192 | } | |
1193 | return NULL; | |
1194 | } | |
1195 | ||
1196 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1197 | { | |
4a3adebb | 1198 | struct kvm_msi msi; |
04fa27f5 JK |
1199 | KVMMSIRoute *route; |
1200 | ||
50bf31b9 | 1201 | if (kvm_direct_msi_allowed) { |
4a3adebb JK |
1202 | msi.address_lo = (uint32_t)msg.address; |
1203 | msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1204 | msi.data = le32_to_cpu(msg.data); |
4a3adebb JK |
1205 | msi.flags = 0; |
1206 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1207 | ||
1208 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1209 | } | |
1210 | ||
04fa27f5 JK |
1211 | route = kvm_lookup_msi_route(s, msg); |
1212 | if (!route) { | |
e7b20308 | 1213 | int virq; |
04fa27f5 JK |
1214 | |
1215 | virq = kvm_irqchip_get_virq(s); | |
1216 | if (virq < 0) { | |
1217 | return virq; | |
1218 | } | |
1219 | ||
0fbc2074 | 1220 | route = g_malloc0(sizeof(KVMMSIRoute)); |
04fa27f5 JK |
1221 | route->kroute.gsi = virq; |
1222 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1223 | route->kroute.flags = 0; | |
1224 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1225 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1226 | route->kroute.u.msi.data = le32_to_cpu(msg.data); |
04fa27f5 JK |
1227 | |
1228 | kvm_add_routing_entry(s, &route->kroute); | |
cb925cf9 | 1229 | kvm_irqchip_commit_routes(s); |
04fa27f5 JK |
1230 | |
1231 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1232 | entry); | |
04fa27f5 JK |
1233 | } |
1234 | ||
1235 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1236 | ||
3889c3fa | 1237 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1238 | } |
1239 | ||
dc9f06ca | 1240 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg, PCIDevice *dev) |
92b4e489 | 1241 | { |
0fbc2074 | 1242 | struct kvm_irq_routing_entry kroute = {}; |
92b4e489 JK |
1243 | int virq; |
1244 | ||
76fe21de | 1245 | if (kvm_gsi_direct_mapping()) { |
1850b6b7 | 1246 | return kvm_arch_msi_data_to_gsi(msg.data); |
76fe21de AK |
1247 | } |
1248 | ||
f3e1bed8 | 1249 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1250 | return -ENOSYS; |
1251 | } | |
1252 | ||
1253 | virq = kvm_irqchip_get_virq(s); | |
1254 | if (virq < 0) { | |
1255 | return virq; | |
1256 | } | |
1257 | ||
1258 | kroute.gsi = virq; | |
1259 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1260 | kroute.flags = 0; | |
1261 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1262 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1263 | kroute.u.msi.data = le32_to_cpu(msg.data); |
dc9f06ca | 1264 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { |
9e03a040 FB |
1265 | kvm_irqchip_release_virq(s, virq); |
1266 | return -EINVAL; | |
1267 | } | |
92b4e489 JK |
1268 | |
1269 | kvm_add_routing_entry(s, &kroute); | |
cb925cf9 | 1270 | kvm_irqchip_commit_routes(s); |
92b4e489 JK |
1271 | |
1272 | return virq; | |
1273 | } | |
1274 | ||
dc9f06ca PF |
1275 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, |
1276 | PCIDevice *dev) | |
cc57407e | 1277 | { |
0fbc2074 | 1278 | struct kvm_irq_routing_entry kroute = {}; |
cc57407e | 1279 | |
76fe21de AK |
1280 | if (kvm_gsi_direct_mapping()) { |
1281 | return 0; | |
1282 | } | |
1283 | ||
cc57407e JK |
1284 | if (!kvm_irqchip_in_kernel()) { |
1285 | return -ENOSYS; | |
1286 | } | |
1287 | ||
1288 | kroute.gsi = virq; | |
1289 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1290 | kroute.flags = 0; | |
1291 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1292 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1293 | kroute.u.msi.data = le32_to_cpu(msg.data); |
dc9f06ca | 1294 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { |
9e03a040 FB |
1295 | return -EINVAL; |
1296 | } | |
cc57407e JK |
1297 | |
1298 | return kvm_update_routing_entry(s, &kroute); | |
1299 | } | |
1300 | ||
ca916d37 VM |
1301 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, |
1302 | bool assign) | |
39853bbc JK |
1303 | { |
1304 | struct kvm_irqfd irqfd = { | |
1305 | .fd = fd, | |
1306 | .gsi = virq, | |
1307 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1308 | }; | |
1309 | ||
ca916d37 VM |
1310 | if (rfd != -1) { |
1311 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1312 | irqfd.resamplefd = rfd; | |
1313 | } | |
1314 | ||
cc7e0ddf | 1315 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1316 | return -ENOSYS; |
1317 | } | |
1318 | ||
1319 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1320 | } | |
1321 | ||
d426d9fb CH |
1322 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1323 | { | |
e9af2fef | 1324 | struct kvm_irq_routing_entry kroute = {}; |
d426d9fb CH |
1325 | int virq; |
1326 | ||
1327 | if (!kvm_gsi_routing_enabled()) { | |
1328 | return -ENOSYS; | |
1329 | } | |
1330 | ||
1331 | virq = kvm_irqchip_get_virq(s); | |
1332 | if (virq < 0) { | |
1333 | return virq; | |
1334 | } | |
1335 | ||
1336 | kroute.gsi = virq; | |
1337 | kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; | |
1338 | kroute.flags = 0; | |
1339 | kroute.u.adapter.summary_addr = adapter->summary_addr; | |
1340 | kroute.u.adapter.ind_addr = adapter->ind_addr; | |
1341 | kroute.u.adapter.summary_offset = adapter->summary_offset; | |
1342 | kroute.u.adapter.ind_offset = adapter->ind_offset; | |
1343 | kroute.u.adapter.adapter_id = adapter->adapter_id; | |
1344 | ||
1345 | kvm_add_routing_entry(s, &kroute); | |
d426d9fb CH |
1346 | |
1347 | return virq; | |
1348 | } | |
1349 | ||
977a8d9c AS |
1350 | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) |
1351 | { | |
1352 | struct kvm_irq_routing_entry kroute = {}; | |
1353 | int virq; | |
1354 | ||
1355 | if (!kvm_gsi_routing_enabled()) { | |
1356 | return -ENOSYS; | |
1357 | } | |
1358 | if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { | |
1359 | return -ENOSYS; | |
1360 | } | |
1361 | virq = kvm_irqchip_get_virq(s); | |
1362 | if (virq < 0) { | |
1363 | return virq; | |
1364 | } | |
1365 | ||
1366 | kroute.gsi = virq; | |
1367 | kroute.type = KVM_IRQ_ROUTING_HV_SINT; | |
1368 | kroute.flags = 0; | |
1369 | kroute.u.hv_sint.vcpu = vcpu; | |
1370 | kroute.u.hv_sint.sint = sint; | |
1371 | ||
1372 | kvm_add_routing_entry(s, &kroute); | |
1373 | kvm_irqchip_commit_routes(s); | |
1374 | ||
1375 | return virq; | |
1376 | } | |
1377 | ||
84b058d7 JK |
1378 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1379 | ||
7b774593 | 1380 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 JK |
1381 | { |
1382 | } | |
04fa27f5 | 1383 | |
d3d3bef0 JK |
1384 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1385 | { | |
1386 | } | |
1387 | ||
04fa27f5 JK |
1388 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1389 | { | |
1390 | abort(); | |
1391 | } | |
92b4e489 JK |
1392 | |
1393 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1394 | { | |
df410675 | 1395 | return -ENOSYS; |
92b4e489 | 1396 | } |
39853bbc | 1397 | |
d426d9fb CH |
1398 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1399 | { | |
1400 | return -ENOSYS; | |
1401 | } | |
1402 | ||
977a8d9c AS |
1403 | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) |
1404 | { | |
1405 | return -ENOSYS; | |
1406 | } | |
1407 | ||
39853bbc JK |
1408 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1409 | { | |
1410 | abort(); | |
1411 | } | |
dabe3143 MT |
1412 | |
1413 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1414 | { | |
1415 | return -ENOSYS; | |
1416 | } | |
84b058d7 JK |
1417 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1418 | ||
1c9b71a7 EA |
1419 | int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, |
1420 | EventNotifier *rn, int virq) | |
39853bbc | 1421 | { |
ca916d37 VM |
1422 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), |
1423 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
39853bbc JK |
1424 | } |
1425 | ||
1c9b71a7 EA |
1426 | int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, |
1427 | int virq) | |
15b2bd18 | 1428 | { |
ca916d37 VM |
1429 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, |
1430 | false); | |
15b2bd18 PB |
1431 | } |
1432 | ||
197e3524 EA |
1433 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
1434 | EventNotifier *rn, qemu_irq irq) | |
1435 | { | |
1436 | gpointer key, gsi; | |
1437 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1438 | ||
1439 | if (!found) { | |
1440 | return -ENXIO; | |
1441 | } | |
1442 | return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); | |
1443 | } | |
1444 | ||
1445 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, | |
1446 | qemu_irq irq) | |
1447 | { | |
1448 | gpointer key, gsi; | |
1449 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1450 | ||
1451 | if (!found) { | |
1452 | return -ENXIO; | |
1453 | } | |
1454 | return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); | |
1455 | } | |
1456 | ||
1457 | void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) | |
1458 | { | |
1459 | g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); | |
1460 | } | |
1461 | ||
8db4936b | 1462 | static void kvm_irqchip_create(MachineState *machine, KVMState *s) |
84b058d7 | 1463 | { |
84b058d7 JK |
1464 | int ret; |
1465 | ||
8db4936b PB |
1466 | if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1467 | ; | |
1468 | } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { | |
1469 | ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); | |
1470 | if (ret < 0) { | |
1471 | fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); | |
1472 | exit(1); | |
1473 | } | |
1474 | } else { | |
1475 | return; | |
84b058d7 JK |
1476 | } |
1477 | ||
d6032e06 CD |
1478 | /* First probe and see if there's a arch-specific hook to create the |
1479 | * in-kernel irqchip for us */ | |
15eafc2e | 1480 | ret = kvm_arch_irqchip_create(machine, s); |
8db4936b | 1481 | if (ret == 0) { |
15eafc2e PB |
1482 | if (machine_kernel_irqchip_split(machine)) { |
1483 | perror("Split IRQ chip mode not supported."); | |
1484 | exit(1); | |
1485 | } else { | |
1486 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1487 | } | |
8db4936b PB |
1488 | } |
1489 | if (ret < 0) { | |
1490 | fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); | |
1491 | exit(1); | |
84b058d7 JK |
1492 | } |
1493 | ||
3d4b2649 | 1494 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1495 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1496 | * interrupt delivery (though the reverse is not necessarily true) | |
1497 | */ | |
1498 | kvm_async_interrupts_allowed = true; | |
215e79c0 | 1499 | kvm_halt_in_kernel_allowed = true; |
84b058d7 JK |
1500 | |
1501 | kvm_init_irq_routing(s); | |
1502 | ||
197e3524 | 1503 | s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); |
84b058d7 JK |
1504 | } |
1505 | ||
670436ce AJ |
1506 | /* Find number of supported CPUs using the recommended |
1507 | * procedure from the kernel API documentation to cope with | |
1508 | * older kernels that may be missing capabilities. | |
1509 | */ | |
1510 | static int kvm_recommended_vcpus(KVMState *s) | |
3ed444e9 | 1511 | { |
670436ce AJ |
1512 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); |
1513 | return (ret) ? ret : 4; | |
1514 | } | |
3ed444e9 | 1515 | |
670436ce AJ |
1516 | static int kvm_max_vcpus(KVMState *s) |
1517 | { | |
1518 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1519 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
3ed444e9 DH |
1520 | } |
1521 | ||
f31e3266 GK |
1522 | static int kvm_max_vcpu_id(KVMState *s) |
1523 | { | |
1524 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); | |
1525 | return (ret) ? ret : kvm_max_vcpus(s); | |
1526 | } | |
1527 | ||
41264b38 GK |
1528 | bool kvm_vcpu_id_is_valid(int vcpu_id) |
1529 | { | |
1530 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
f31e3266 | 1531 | return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); |
41264b38 GK |
1532 | } |
1533 | ||
f6a1ef64 | 1534 | static int kvm_init(MachineState *ms) |
05330448 | 1535 | { |
f6a1ef64 | 1536 | MachineClass *mc = MACHINE_GET_CLASS(ms); |
168ccc11 JK |
1537 | static const char upgrade_note[] = |
1538 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1539 | "(see http://sourceforge.net/projects/kvm).\n"; | |
670436ce AJ |
1540 | struct { |
1541 | const char *name; | |
1542 | int num; | |
1543 | } num_cpus[] = { | |
1544 | { "SMP", smp_cpus }, | |
1545 | { "hotpluggable", max_cpus }, | |
1546 | { NULL, } | |
1547 | }, *nc = num_cpus; | |
1548 | int soft_vcpus_limit, hard_vcpus_limit; | |
05330448 | 1549 | KVMState *s; |
94a8d39a | 1550 | const KVMCapabilityInfo *missing_cap; |
05330448 | 1551 | int ret; |
7bbda04c | 1552 | int type = 0; |
135a129a | 1553 | const char *kvm_type; |
05330448 | 1554 | |
fc02086b | 1555 | s = KVM_STATE(ms->accelerator); |
05330448 | 1556 | |
3145fcb6 DG |
1557 | /* |
1558 | * On systems where the kernel can support different base page | |
1559 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1560 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1561 | * page size for the system though. | |
1562 | */ | |
1563 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1564 | ||
aed6efb9 JH |
1565 | s->sigmask_len = 8; |
1566 | ||
e22a25c9 | 1567 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1568 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1569 | #endif |
4c055ab5 | 1570 | QLIST_INIT(&s->kvm_parked_vcpus); |
05330448 | 1571 | s->vmfd = -1; |
40ff6d7e | 1572 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1573 | if (s->fd == -1) { |
1574 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1575 | ret = -errno; | |
1576 | goto err; | |
1577 | } | |
1578 | ||
1579 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1580 | if (ret < KVM_API_VERSION) { | |
0e1dac6c | 1581 | if (ret >= 0) { |
05330448 | 1582 | ret = -EINVAL; |
a426e122 | 1583 | } |
05330448 AL |
1584 | fprintf(stderr, "kvm version too old\n"); |
1585 | goto err; | |
1586 | } | |
1587 | ||
1588 | if (ret > KVM_API_VERSION) { | |
1589 | ret = -EINVAL; | |
1590 | fprintf(stderr, "kvm version not supported\n"); | |
1591 | goto err; | |
1592 | } | |
1593 | ||
fb541ca5 AW |
1594 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); |
1595 | ||
1596 | /* If unspecified, use the default value */ | |
1597 | if (!s->nr_slots) { | |
1598 | s->nr_slots = 32; | |
1599 | } | |
1600 | ||
670436ce AJ |
1601 | /* check the vcpu limits */ |
1602 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1603 | hard_vcpus_limit = kvm_max_vcpus(s); | |
3ed444e9 | 1604 | |
670436ce AJ |
1605 | while (nc->name) { |
1606 | if (nc->num > soft_vcpus_limit) { | |
1607 | fprintf(stderr, | |
1608 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1609 | "the recommended cpus supported by KVM (%d)\n", | |
1610 | nc->name, nc->num, soft_vcpus_limit); | |
1611 | ||
1612 | if (nc->num > hard_vcpus_limit) { | |
670436ce AJ |
1613 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " |
1614 | "the maximum cpus supported by KVM (%d)\n", | |
1615 | nc->name, nc->num, hard_vcpus_limit); | |
9ba3cf54 | 1616 | exit(1); |
670436ce AJ |
1617 | } |
1618 | } | |
1619 | nc++; | |
7dc52526 MT |
1620 | } |
1621 | ||
135a129a | 1622 | kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); |
f1e29879 MA |
1623 | if (mc->kvm_type) { |
1624 | type = mc->kvm_type(kvm_type); | |
135a129a | 1625 | } else if (kvm_type) { |
0e1dac6c | 1626 | ret = -EINVAL; |
135a129a AK |
1627 | fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); |
1628 | goto err; | |
1629 | } | |
1630 | ||
94ccff13 | 1631 | do { |
135a129a | 1632 | ret = kvm_ioctl(s, KVM_CREATE_VM, type); |
94ccff13 TK |
1633 | } while (ret == -EINTR); |
1634 | ||
1635 | if (ret < 0) { | |
521f438e | 1636 | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, |
94ccff13 TK |
1637 | strerror(-ret)); |
1638 | ||
0104dcac | 1639 | #ifdef TARGET_S390X |
2c80e996 CH |
1640 | if (ret == -EINVAL) { |
1641 | fprintf(stderr, | |
1642 | "Host kernel setup problem detected. Please verify:\n"); | |
1643 | fprintf(stderr, "- for kernels supporting the switch_amode or" | |
1644 | " user_mode parameters, whether\n"); | |
1645 | fprintf(stderr, | |
1646 | " user space is running in primary address space\n"); | |
1647 | fprintf(stderr, | |
1648 | "- for kernels supporting the vm.allocate_pgste sysctl, " | |
1649 | "whether it is enabled\n"); | |
1650 | } | |
0104dcac | 1651 | #endif |
05330448 | 1652 | goto err; |
0104dcac | 1653 | } |
05330448 | 1654 | |
94ccff13 | 1655 | s->vmfd = ret; |
94a8d39a JK |
1656 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1657 | if (!missing_cap) { | |
1658 | missing_cap = | |
1659 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1660 | } |
94a8d39a | 1661 | if (missing_cap) { |
ad7b8b33 | 1662 | ret = -EINVAL; |
94a8d39a JK |
1663 | fprintf(stderr, "kvm does not support %s\n%s", |
1664 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1665 | goto err; |
1666 | } | |
1667 | ||
ad7b8b33 | 1668 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1669 | |
e69917e2 | 1670 | s->broken_set_mem_region = 1; |
14a09518 | 1671 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1672 | if (ret > 0) { |
1673 | s->broken_set_mem_region = 0; | |
1674 | } | |
e69917e2 | 1675 | |
a0fb002c JK |
1676 | #ifdef KVM_CAP_VCPU_EVENTS |
1677 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1678 | #endif | |
1679 | ||
b0b1d690 JK |
1680 | s->robust_singlestep = |
1681 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1682 | |
ff44f1a3 JK |
1683 | #ifdef KVM_CAP_DEBUGREGS |
1684 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1685 | #endif | |
1686 | ||
d3d3bef0 | 1687 | #ifdef KVM_CAP_IRQ_ROUTING |
50bf31b9 | 1688 | kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1689 | #endif |
4a3adebb | 1690 | |
3ab73842 JK |
1691 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1692 | ||
e333cd69 | 1693 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1694 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1695 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1696 | } |
1697 | ||
df9c8b75 JJ |
1698 | #ifdef KVM_CAP_READONLY_MEM |
1699 | kvm_readonly_mem_allowed = | |
1700 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1701 | #endif | |
1702 | ||
69e03ae6 NN |
1703 | kvm_eventfds_allowed = |
1704 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); | |
1705 | ||
f41389ae EA |
1706 | kvm_irqfds_allowed = |
1707 | (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); | |
1708 | ||
1709 | kvm_resamplefds_allowed = | |
1710 | (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); | |
1711 | ||
d0a073a1 DD |
1712 | kvm_vm_attributes_allowed = |
1713 | (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); | |
1714 | ||
35108223 JW |
1715 | kvm_ioeventfd_any_length_allowed = |
1716 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); | |
1717 | ||
b16565b3 | 1718 | ret = kvm_arch_init(ms, s); |
a426e122 | 1719 | if (ret < 0) { |
05330448 | 1720 | goto err; |
a426e122 | 1721 | } |
05330448 | 1722 | |
8db4936b PB |
1723 | if (machine_kernel_irqchip_allowed(ms)) { |
1724 | kvm_irqchip_create(ms, s); | |
84b058d7 JK |
1725 | } |
1726 | ||
05330448 | 1727 | kvm_state = s; |
7bbda04c | 1728 | |
8c56c1a5 PF |
1729 | if (kvm_eventfds_allowed) { |
1730 | s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; | |
1731 | s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; | |
1732 | } | |
7bbda04c PB |
1733 | s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; |
1734 | s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; | |
1735 | ||
1736 | kvm_memory_listener_register(s, &s->memory_listener, | |
38bfe691 | 1737 | &address_space_memory, 0); |
7bbda04c PB |
1738 | memory_listener_register(&kvm_io_listener, |
1739 | &address_space_io); | |
05330448 | 1740 | |
d2f2b8a7 SH |
1741 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1742 | ||
aa7f74d1 JK |
1743 | cpu_interrupt_handler = kvm_handle_interrupt; |
1744 | ||
05330448 AL |
1745 | return 0; |
1746 | ||
1747 | err: | |
0e1dac6c | 1748 | assert(ret < 0); |
6d1cc321 SW |
1749 | if (s->vmfd >= 0) { |
1750 | close(s->vmfd); | |
1751 | } | |
1752 | if (s->fd != -1) { | |
1753 | close(s->fd); | |
05330448 | 1754 | } |
7bbda04c | 1755 | g_free(s->memory_listener.slots); |
05330448 AL |
1756 | |
1757 | return ret; | |
1758 | } | |
1759 | ||
aed6efb9 JH |
1760 | void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) |
1761 | { | |
1762 | s->sigmask_len = sigmask_len; | |
1763 | } | |
1764 | ||
4c663752 PB |
1765 | static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, |
1766 | int size, uint32_t count) | |
05330448 AL |
1767 | { |
1768 | int i; | |
1769 | uint8_t *ptr = data; | |
1770 | ||
1771 | for (i = 0; i < count; i++) { | |
4c663752 | 1772 | address_space_rw(&address_space_io, port, attrs, |
5c9eb028 | 1773 | ptr, size, |
354678c5 | 1774 | direction == KVM_EXIT_IO_OUT); |
05330448 AL |
1775 | ptr += size; |
1776 | } | |
05330448 AL |
1777 | } |
1778 | ||
5326ab55 | 1779 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
7c80eef8 | 1780 | { |
977c7b6d RK |
1781 | fprintf(stderr, "KVM internal error. Suberror: %d\n", |
1782 | run->internal.suberror); | |
1783 | ||
7c80eef8 MT |
1784 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1785 | int i; | |
1786 | ||
7c80eef8 MT |
1787 | for (i = 0; i < run->internal.ndata; ++i) { |
1788 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1789 | i, (uint64_t)run->internal.data[i]); | |
1790 | } | |
1791 | } | |
7c80eef8 MT |
1792 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1793 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1794 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
878096ee | 1795 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1796 | return EXCP_INTERRUPT; |
a426e122 | 1797 | } |
7c80eef8 MT |
1798 | } |
1799 | /* FIXME: Should trigger a qmp message to let management know | |
1800 | * something went wrong. | |
1801 | */ | |
73aaec4a | 1802 | return -1; |
7c80eef8 | 1803 | } |
7c80eef8 | 1804 | |
62a2744c | 1805 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1806 | { |
f65ed4c1 | 1807 | KVMState *s = kvm_state; |
1cae88b9 AK |
1808 | |
1809 | if (s->coalesced_flush_in_progress) { | |
1810 | return; | |
1811 | } | |
1812 | ||
1813 | s->coalesced_flush_in_progress = true; | |
1814 | ||
62a2744c SY |
1815 | if (s->coalesced_mmio_ring) { |
1816 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1817 | while (ring->first != ring->last) { |
1818 | struct kvm_coalesced_mmio *ent; | |
1819 | ||
1820 | ent = &ring->coalesced_mmio[ring->first]; | |
1821 | ||
1822 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1823 | smp_wmb(); |
f65ed4c1 AL |
1824 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1825 | } | |
1826 | } | |
1cae88b9 AK |
1827 | |
1828 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1829 | } |
1830 | ||
20d695a9 | 1831 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1832 | { |
20d695a9 | 1833 | CPUState *cpu = arg; |
2705d56a | 1834 | |
20d695a9 AF |
1835 | if (!cpu->kvm_vcpu_dirty) { |
1836 | kvm_arch_get_registers(cpu); | |
1837 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1838 | } |
1839 | } | |
1840 | ||
dd1750d7 | 1841 | void kvm_cpu_synchronize_state(CPUState *cpu) |
2705d56a | 1842 | { |
20d695a9 AF |
1843 | if (!cpu->kvm_vcpu_dirty) { |
1844 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1845 | } |
2705d56a JK |
1846 | } |
1847 | ||
c8e2085d | 1848 | static void do_kvm_cpu_synchronize_post_reset(void *arg) |
ea375f9a | 1849 | { |
c8e2085d DH |
1850 | CPUState *cpu = arg; |
1851 | ||
20d695a9 AF |
1852 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1853 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1854 | } |
1855 | ||
c8e2085d DH |
1856 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
1857 | { | |
1858 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu); | |
1859 | } | |
1860 | ||
1861 | static void do_kvm_cpu_synchronize_post_init(void *arg) | |
ea375f9a | 1862 | { |
c8e2085d DH |
1863 | CPUState *cpu = arg; |
1864 | ||
20d695a9 AF |
1865 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1866 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1867 | } |
1868 | ||
c8e2085d DH |
1869 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
1870 | { | |
1871 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu); | |
1872 | } | |
1873 | ||
1458c363 | 1874 | int kvm_cpu_exec(CPUState *cpu) |
05330448 | 1875 | { |
f7575c96 | 1876 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1877 | int ret, run_ret; |
05330448 | 1878 | |
8c0d577e | 1879 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1880 | |
20d695a9 | 1881 | if (kvm_arch_process_async_events(cpu)) { |
fcd7d003 | 1882 | cpu->exit_request = 0; |
6792a57b | 1883 | return EXCP_HLT; |
9ccfac9e | 1884 | } |
0af691d7 | 1885 | |
4b8523ee JK |
1886 | qemu_mutex_unlock_iothread(); |
1887 | ||
9ccfac9e | 1888 | do { |
4c663752 PB |
1889 | MemTxAttrs attrs; |
1890 | ||
20d695a9 AF |
1891 | if (cpu->kvm_vcpu_dirty) { |
1892 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1893 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1894 | } |
1895 | ||
20d695a9 | 1896 | kvm_arch_pre_run(cpu, run); |
fcd7d003 | 1897 | if (cpu->exit_request) { |
9ccfac9e JK |
1898 | DPRINTF("interrupt exit requested\n"); |
1899 | /* | |
1900 | * KVM requires us to reenter the kernel after IO exits to complete | |
1901 | * instruction emulation. This self-signal will ensure that we | |
1902 | * leave ASAP again. | |
1903 | */ | |
1904 | qemu_cpu_kick_self(); | |
1905 | } | |
9ccfac9e | 1906 | |
1bc22652 | 1907 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1908 | |
4c663752 | 1909 | attrs = kvm_arch_post_run(cpu, run); |
05330448 | 1910 | |
7cbb533f | 1911 | if (run_ret < 0) { |
dc77d341 JK |
1912 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1913 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1914 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1915 | break; |
1916 | } | |
7b011fbc ME |
1917 | fprintf(stderr, "error: kvm run failed %s\n", |
1918 | strerror(-run_ret)); | |
dae02ba5 LV |
1919 | #ifdef TARGET_PPC |
1920 | if (run_ret == -EBUSY) { | |
1921 | fprintf(stderr, | |
1922 | "This is probably because your SMT is enabled.\n" | |
1923 | "VCPU can only run on primary threads with all " | |
1924 | "secondary threads offline.\n"); | |
1925 | } | |
1926 | #endif | |
a85e130e PB |
1927 | ret = -1; |
1928 | break; | |
05330448 AL |
1929 | } |
1930 | ||
b76ac80a | 1931 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
1932 | switch (run->exit_reason) { |
1933 | case KVM_EXIT_IO: | |
8c0d577e | 1934 | DPRINTF("handle_io\n"); |
80b7d2ef | 1935 | /* Called outside BQL */ |
4c663752 | 1936 | kvm_handle_io(run->io.port, attrs, |
b30e93e9 JK |
1937 | (uint8_t *)run + run->io.data_offset, |
1938 | run->io.direction, | |
1939 | run->io.size, | |
1940 | run->io.count); | |
d73cd8f4 | 1941 | ret = 0; |
05330448 AL |
1942 | break; |
1943 | case KVM_EXIT_MMIO: | |
8c0d577e | 1944 | DPRINTF("handle_mmio\n"); |
de7ea885 | 1945 | /* Called outside BQL */ |
4c663752 PB |
1946 | address_space_rw(&address_space_memory, |
1947 | run->mmio.phys_addr, attrs, | |
1948 | run->mmio.data, | |
1949 | run->mmio.len, | |
1950 | run->mmio.is_write); | |
d73cd8f4 | 1951 | ret = 0; |
05330448 AL |
1952 | break; |
1953 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1954 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1955 | ret = EXCP_INTERRUPT; |
05330448 AL |
1956 | break; |
1957 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1958 | DPRINTF("shutdown\n"); |
05330448 | 1959 | qemu_system_reset_request(); |
d73cd8f4 | 1960 | ret = EXCP_INTERRUPT; |
05330448 AL |
1961 | break; |
1962 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1963 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1964 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1965 | ret = -1; |
05330448 | 1966 | break; |
7c80eef8 | 1967 | case KVM_EXIT_INTERNAL_ERROR: |
5326ab55 | 1968 | ret = kvm_handle_internal_error(cpu, run); |
7c80eef8 | 1969 | break; |
99040447 PS |
1970 | case KVM_EXIT_SYSTEM_EVENT: |
1971 | switch (run->system_event.type) { | |
1972 | case KVM_SYSTEM_EVENT_SHUTDOWN: | |
1973 | qemu_system_shutdown_request(); | |
1974 | ret = EXCP_INTERRUPT; | |
1975 | break; | |
1976 | case KVM_SYSTEM_EVENT_RESET: | |
1977 | qemu_system_reset_request(); | |
1978 | ret = EXCP_INTERRUPT; | |
1979 | break; | |
7c207b90 AS |
1980 | case KVM_SYSTEM_EVENT_CRASH: |
1981 | qemu_mutex_lock_iothread(); | |
1982 | qemu_system_guest_panicked(); | |
1983 | qemu_mutex_unlock_iothread(); | |
1984 | ret = 0; | |
1985 | break; | |
99040447 PS |
1986 | default: |
1987 | DPRINTF("kvm_arch_handle_exit\n"); | |
1988 | ret = kvm_arch_handle_exit(cpu, run); | |
1989 | break; | |
1990 | } | |
1991 | break; | |
05330448 | 1992 | default: |
8c0d577e | 1993 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1994 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1995 | break; |
1996 | } | |
d73cd8f4 | 1997 | } while (ret == 0); |
05330448 | 1998 | |
4b8523ee JK |
1999 | qemu_mutex_lock_iothread(); |
2000 | ||
73aaec4a | 2001 | if (ret < 0) { |
878096ee | 2002 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 2003 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
2004 | } |
2005 | ||
fcd7d003 | 2006 | cpu->exit_request = 0; |
05330448 AL |
2007 | return ret; |
2008 | } | |
2009 | ||
984b5181 | 2010 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
2011 | { |
2012 | int ret; | |
984b5181 AL |
2013 | void *arg; |
2014 | va_list ap; | |
05330448 | 2015 | |
984b5181 AL |
2016 | va_start(ap, type); |
2017 | arg = va_arg(ap, void *); | |
2018 | va_end(ap); | |
2019 | ||
9c775729 | 2020 | trace_kvm_ioctl(type, arg); |
984b5181 | 2021 | ret = ioctl(s->fd, type, arg); |
a426e122 | 2022 | if (ret == -1) { |
05330448 | 2023 | ret = -errno; |
a426e122 | 2024 | } |
05330448 AL |
2025 | return ret; |
2026 | } | |
2027 | ||
984b5181 | 2028 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
2029 | { |
2030 | int ret; | |
984b5181 AL |
2031 | void *arg; |
2032 | va_list ap; | |
2033 | ||
2034 | va_start(ap, type); | |
2035 | arg = va_arg(ap, void *); | |
2036 | va_end(ap); | |
05330448 | 2037 | |
9c775729 | 2038 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 2039 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 2040 | if (ret == -1) { |
05330448 | 2041 | ret = -errno; |
a426e122 | 2042 | } |
05330448 AL |
2043 | return ret; |
2044 | } | |
2045 | ||
1bc22652 | 2046 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
2047 | { |
2048 | int ret; | |
984b5181 AL |
2049 | void *arg; |
2050 | va_list ap; | |
2051 | ||
2052 | va_start(ap, type); | |
2053 | arg = va_arg(ap, void *); | |
2054 | va_end(ap); | |
05330448 | 2055 | |
9c775729 | 2056 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 2057 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 2058 | if (ret == -1) { |
05330448 | 2059 | ret = -errno; |
a426e122 | 2060 | } |
05330448 AL |
2061 | return ret; |
2062 | } | |
bd322087 | 2063 | |
0a6a7cca CD |
2064 | int kvm_device_ioctl(int fd, int type, ...) |
2065 | { | |
2066 | int ret; | |
2067 | void *arg; | |
2068 | va_list ap; | |
2069 | ||
2070 | va_start(ap, type); | |
2071 | arg = va_arg(ap, void *); | |
2072 | va_end(ap); | |
2073 | ||
2074 | trace_kvm_device_ioctl(fd, type, arg); | |
2075 | ret = ioctl(fd, type, arg); | |
2076 | if (ret == -1) { | |
2077 | ret = -errno; | |
2078 | } | |
2079 | return ret; | |
2080 | } | |
2081 | ||
d0a073a1 DD |
2082 | int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) |
2083 | { | |
2084 | int ret; | |
2085 | struct kvm_device_attr attribute = { | |
2086 | .group = group, | |
2087 | .attr = attr, | |
2088 | }; | |
2089 | ||
2090 | if (!kvm_vm_attributes_allowed) { | |
2091 | return 0; | |
2092 | } | |
2093 | ||
2094 | ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); | |
2095 | /* kvm returns 0 on success for HAS_DEVICE_ATTR */ | |
2096 | return ret ? 0 : 1; | |
2097 | } | |
2098 | ||
4b3cfe72 PF |
2099 | int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) |
2100 | { | |
2101 | struct kvm_device_attr attribute = { | |
2102 | .group = group, | |
2103 | .attr = attr, | |
2104 | .flags = 0, | |
2105 | }; | |
2106 | ||
2107 | return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; | |
2108 | } | |
2109 | ||
2110 | void kvm_device_access(int fd, int group, uint64_t attr, | |
2111 | void *val, bool write) | |
2112 | { | |
2113 | struct kvm_device_attr kvmattr; | |
2114 | int err; | |
2115 | ||
2116 | kvmattr.flags = 0; | |
2117 | kvmattr.group = group; | |
2118 | kvmattr.attr = attr; | |
2119 | kvmattr.addr = (uintptr_t)val; | |
2120 | ||
2121 | err = kvm_device_ioctl(fd, | |
2122 | write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, | |
2123 | &kvmattr); | |
2124 | if (err < 0) { | |
433672b0 MA |
2125 | error_report("KVM_%s_DEVICE_ATTR failed: %s", |
2126 | write ? "SET" : "GET", strerror(-err)); | |
2127 | error_printf("Group %d attr 0x%016" PRIx64, group, attr); | |
4b3cfe72 PF |
2128 | abort(); |
2129 | } | |
2130 | } | |
2131 | ||
bd322087 AL |
2132 | int kvm_has_sync_mmu(void) |
2133 | { | |
94a8d39a | 2134 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 2135 | } |
e22a25c9 | 2136 | |
a0fb002c JK |
2137 | int kvm_has_vcpu_events(void) |
2138 | { | |
2139 | return kvm_state->vcpu_events; | |
2140 | } | |
2141 | ||
b0b1d690 JK |
2142 | int kvm_has_robust_singlestep(void) |
2143 | { | |
2144 | return kvm_state->robust_singlestep; | |
2145 | } | |
2146 | ||
ff44f1a3 JK |
2147 | int kvm_has_debugregs(void) |
2148 | { | |
2149 | return kvm_state->debugregs; | |
2150 | } | |
2151 | ||
d2f2b8a7 SH |
2152 | int kvm_has_many_ioeventfds(void) |
2153 | { | |
2154 | if (!kvm_enabled()) { | |
2155 | return 0; | |
2156 | } | |
2157 | return kvm_state->many_ioeventfds; | |
2158 | } | |
2159 | ||
84b058d7 JK |
2160 | int kvm_has_gsi_routing(void) |
2161 | { | |
a9c5eb0d | 2162 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 2163 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
2164 | #else |
2165 | return false; | |
2166 | #endif | |
84b058d7 JK |
2167 | } |
2168 | ||
3ab73842 JK |
2169 | int kvm_has_intx_set_mask(void) |
2170 | { | |
2171 | return kvm_state->intx_set_mask; | |
2172 | } | |
2173 | ||
6f0437e8 JK |
2174 | void kvm_setup_guest_memory(void *start, size_t size) |
2175 | { | |
2176 | if (!kvm_has_sync_mmu()) { | |
e78815a5 | 2177 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
2178 | |
2179 | if (ret) { | |
e78815a5 AF |
2180 | perror("qemu_madvise"); |
2181 | fprintf(stderr, | |
2182 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
2183 | exit(1); |
2184 | } | |
6f0437e8 JK |
2185 | } |
2186 | } | |
2187 | ||
e22a25c9 | 2188 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 2189 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
2190 | target_ulong pc) |
2191 | { | |
2192 | struct kvm_sw_breakpoint *bp; | |
2193 | ||
a60f24b5 | 2194 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 2195 | if (bp->pc == pc) { |
e22a25c9 | 2196 | return bp; |
a426e122 | 2197 | } |
e22a25c9 AL |
2198 | } |
2199 | return NULL; | |
2200 | } | |
2201 | ||
a60f24b5 | 2202 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 2203 | { |
a60f24b5 | 2204 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
2205 | } |
2206 | ||
452e4751 GC |
2207 | struct kvm_set_guest_debug_data { |
2208 | struct kvm_guest_debug dbg; | |
a60f24b5 | 2209 | CPUState *cpu; |
452e4751 GC |
2210 | int err; |
2211 | }; | |
2212 | ||
2213 | static void kvm_invoke_set_guest_debug(void *data) | |
2214 | { | |
2215 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 2216 | |
a60f24b5 AF |
2217 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
2218 | &dbg_data->dbg); | |
452e4751 GC |
2219 | } |
2220 | ||
38e478ec | 2221 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 | 2222 | { |
452e4751 | 2223 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 2224 | |
b0b1d690 | 2225 | data.dbg.control = reinject_trap; |
e22a25c9 | 2226 | |
ed2803da | 2227 | if (cpu->singlestep_enabled) { |
b0b1d690 JK |
2228 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
2229 | } | |
20d695a9 | 2230 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 2231 | data.cpu = cpu; |
e22a25c9 | 2232 | |
f100f0b3 | 2233 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 2234 | return data.err; |
e22a25c9 AL |
2235 | } |
2236 | ||
62278814 | 2237 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2238 | target_ulong len, int type) |
2239 | { | |
2240 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2241 | int err; |
2242 | ||
2243 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2244 | bp = kvm_find_sw_breakpoint(cpu, addr); |
e22a25c9 AL |
2245 | if (bp) { |
2246 | bp->use_count++; | |
2247 | return 0; | |
2248 | } | |
2249 | ||
7267c094 | 2250 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
e22a25c9 AL |
2251 | bp->pc = addr; |
2252 | bp->use_count = 1; | |
80b7cd73 | 2253 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
e22a25c9 | 2254 | if (err) { |
7267c094 | 2255 | g_free(bp); |
e22a25c9 AL |
2256 | return err; |
2257 | } | |
2258 | ||
80b7cd73 | 2259 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
2260 | } else { |
2261 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 2262 | if (err) { |
e22a25c9 | 2263 | return err; |
a426e122 | 2264 | } |
e22a25c9 AL |
2265 | } |
2266 | ||
bdc44640 | 2267 | CPU_FOREACH(cpu) { |
38e478ec | 2268 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2269 | if (err) { |
e22a25c9 | 2270 | return err; |
a426e122 | 2271 | } |
e22a25c9 AL |
2272 | } |
2273 | return 0; | |
2274 | } | |
2275 | ||
62278814 | 2276 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2277 | target_ulong len, int type) |
2278 | { | |
2279 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2280 | int err; |
2281 | ||
2282 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2283 | bp = kvm_find_sw_breakpoint(cpu, addr); |
a426e122 | 2284 | if (!bp) { |
e22a25c9 | 2285 | return -ENOENT; |
a426e122 | 2286 | } |
e22a25c9 AL |
2287 | |
2288 | if (bp->use_count > 1) { | |
2289 | bp->use_count--; | |
2290 | return 0; | |
2291 | } | |
2292 | ||
80b7cd73 | 2293 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
a426e122 | 2294 | if (err) { |
e22a25c9 | 2295 | return err; |
a426e122 | 2296 | } |
e22a25c9 | 2297 | |
80b7cd73 | 2298 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 2299 | g_free(bp); |
e22a25c9 AL |
2300 | } else { |
2301 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 2302 | if (err) { |
e22a25c9 | 2303 | return err; |
a426e122 | 2304 | } |
e22a25c9 AL |
2305 | } |
2306 | ||
bdc44640 | 2307 | CPU_FOREACH(cpu) { |
38e478ec | 2308 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2309 | if (err) { |
e22a25c9 | 2310 | return err; |
a426e122 | 2311 | } |
e22a25c9 AL |
2312 | } |
2313 | return 0; | |
2314 | } | |
2315 | ||
1d5791f4 | 2316 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2317 | { |
2318 | struct kvm_sw_breakpoint *bp, *next; | |
80b7cd73 | 2319 | KVMState *s = cpu->kvm_state; |
dc54e252 | 2320 | CPUState *tmpcpu; |
e22a25c9 | 2321 | |
72cf2d4f | 2322 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
80b7cd73 | 2323 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
e22a25c9 | 2324 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
dc54e252 CG |
2325 | CPU_FOREACH(tmpcpu) { |
2326 | if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { | |
e22a25c9 | 2327 | break; |
a426e122 | 2328 | } |
e22a25c9 AL |
2329 | } |
2330 | } | |
78021d6d JK |
2331 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2332 | g_free(bp); | |
e22a25c9 AL |
2333 | } |
2334 | kvm_arch_remove_all_hw_breakpoints(); | |
2335 | ||
bdc44640 | 2336 | CPU_FOREACH(cpu) { |
38e478ec | 2337 | kvm_update_guest_debug(cpu, 0); |
a426e122 | 2338 | } |
e22a25c9 AL |
2339 | } |
2340 | ||
2341 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2342 | ||
38e478ec | 2343 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 AL |
2344 | { |
2345 | return -EINVAL; | |
2346 | } | |
2347 | ||
62278814 | 2348 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2349 | target_ulong len, int type) |
2350 | { | |
2351 | return -EINVAL; | |
2352 | } | |
2353 | ||
62278814 | 2354 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2355 | target_ulong len, int type) |
2356 | { | |
2357 | return -EINVAL; | |
2358 | } | |
2359 | ||
1d5791f4 | 2360 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2361 | { |
2362 | } | |
2363 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2364 | |
491d6e80 | 2365 | int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
cc84de95 | 2366 | { |
aed6efb9 | 2367 | KVMState *s = kvm_state; |
cc84de95 MT |
2368 | struct kvm_signal_mask *sigmask; |
2369 | int r; | |
2370 | ||
a426e122 | 2371 | if (!sigset) { |
1bc22652 | 2372 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 2373 | } |
cc84de95 | 2374 | |
7267c094 | 2375 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 | 2376 | |
aed6efb9 | 2377 | sigmask->len = s->sigmask_len; |
cc84de95 | 2378 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); |
1bc22652 | 2379 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2380 | g_free(sigmask); |
cc84de95 MT |
2381 | |
2382 | return r; | |
2383 | } | |
290adf38 | 2384 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2385 | { |
20d695a9 | 2386 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
a1b87fe0 JK |
2387 | } |
2388 | ||
2389 | int kvm_on_sigbus(int code, void *addr) | |
2390 | { | |
2391 | return kvm_arch_on_sigbus(code, addr); | |
2392 | } | |
0a6a7cca CD |
2393 | |
2394 | int kvm_create_device(KVMState *s, uint64_t type, bool test) | |
2395 | { | |
2396 | int ret; | |
2397 | struct kvm_create_device create_dev; | |
2398 | ||
2399 | create_dev.type = type; | |
2400 | create_dev.fd = -1; | |
2401 | create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; | |
2402 | ||
2403 | if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { | |
2404 | return -ENOTSUP; | |
2405 | } | |
2406 | ||
2407 | ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); | |
2408 | if (ret) { | |
2409 | return ret; | |
2410 | } | |
2411 | ||
2412 | return test ? 0 : create_dev.fd; | |
2413 | } | |
ada4135f | 2414 | |
29039acf PX |
2415 | bool kvm_device_supported(int vmfd, uint64_t type) |
2416 | { | |
2417 | struct kvm_create_device create_dev = { | |
2418 | .type = type, | |
2419 | .fd = -1, | |
2420 | .flags = KVM_CREATE_DEVICE_TEST, | |
2421 | }; | |
2422 | ||
2423 | if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { | |
2424 | return false; | |
2425 | } | |
2426 | ||
2427 | return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); | |
2428 | } | |
2429 | ||
ada4135f CH |
2430 | int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) |
2431 | { | |
2432 | struct kvm_one_reg reg; | |
2433 | int r; | |
2434 | ||
2435 | reg.id = id; | |
2436 | reg.addr = (uintptr_t) source; | |
2437 | r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
2438 | if (r) { | |
844a3d34 | 2439 | trace_kvm_failed_reg_set(id, strerror(-r)); |
ada4135f CH |
2440 | } |
2441 | return r; | |
2442 | } | |
2443 | ||
2444 | int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) | |
2445 | { | |
2446 | struct kvm_one_reg reg; | |
2447 | int r; | |
2448 | ||
2449 | reg.id = id; | |
2450 | reg.addr = (uintptr_t) target; | |
2451 | r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
2452 | if (r) { | |
844a3d34 | 2453 | trace_kvm_failed_reg_get(id, strerror(-r)); |
ada4135f CH |
2454 | } |
2455 | return r; | |
2456 | } | |
782c3f29 EH |
2457 | |
2458 | static void kvm_accel_class_init(ObjectClass *oc, void *data) | |
2459 | { | |
2460 | AccelClass *ac = ACCEL_CLASS(oc); | |
2461 | ac->name = "KVM"; | |
0d15da8e | 2462 | ac->init_machine = kvm_init; |
782c3f29 EH |
2463 | ac->allowed = &kvm_allowed; |
2464 | } | |
2465 | ||
2466 | static const TypeInfo kvm_accel_type = { | |
2467 | .name = TYPE_KVM_ACCEL, | |
2468 | .parent = TYPE_ACCEL, | |
2469 | .class_init = kvm_accel_class_init, | |
fc02086b | 2470 | .instance_size = sizeof(KVMState), |
782c3f29 EH |
2471 | }; |
2472 | ||
2473 | static void kvm_type_init(void) | |
2474 | { | |
2475 | type_register_static(&kvm_accel_type); | |
2476 | } | |
2477 | ||
2478 | type_init(kvm_type_init); |