]>
Commit | Line | Data |
---|---|---|
74c21bd0 | 1 | #include "qemu/osdep.h" |
b5ff1b31 | 2 | #include "cpu.h" |
ccd38087 | 3 | #include "internals.h" |
022c62cb | 4 | #include "exec/gdbstub.h" |
2ef6175a | 5 | #include "exec/helper-proto.h" |
1de7afc9 | 6 | #include "qemu/host-utils.h" |
78027bb6 | 7 | #include "sysemu/arch_init.h" |
9c17d615 | 8 | #include "sysemu/sysemu.h" |
1de7afc9 | 9 | #include "qemu/bitops.h" |
eb0ecd5a | 10 | #include "qemu/crc32c.h" |
63c91552 | 11 | #include "exec/exec-all.h" |
f08b6170 | 12 | #include "exec/cpu_ldst.h" |
1d854765 | 13 | #include "arm_ldst.h" |
eb0ecd5a | 14 | #include <zlib.h> /* For crc32 */ |
cfe67cef | 15 | #include "exec/semihost.h" |
f3a9b694 | 16 | #include "sysemu/kvm.h" |
0b03bdfc | 17 | |
352c98e5 LV |
18 | #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
19 | ||
4a501606 | 20 | #ifndef CONFIG_USER_ONLY |
af51f566 EI |
21 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
22 | int access_type, ARMMMUIdx mmu_idx, | |
23 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
e14b5a23 EI |
24 | target_ulong *page_size, uint32_t *fsr, |
25 | ARMMMUFaultInfo *fi); | |
7c2cb42b | 26 | |
37785977 EI |
27 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
28 | int access_type, ARMMMUIdx mmu_idx, | |
29 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | |
30 | target_ulong *page_size_ptr, uint32_t *fsr, | |
31 | ARMMMUFaultInfo *fi); | |
32 | ||
7c2cb42b AF |
33 | /* Definitions for the PMCCNTR and PMCR registers */ |
34 | #define PMCRD 0x8 | |
35 | #define PMCRC 0x4 | |
36 | #define PMCRE 0x1 | |
4a501606 PM |
37 | #endif |
38 | ||
0ecb72a5 | 39 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
40 | { |
41 | int nregs; | |
42 | ||
43 | /* VFP data registers are always little-endian. */ | |
44 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
45 | if (reg < nregs) { | |
46 | stfq_le_p(buf, env->vfp.regs[reg]); | |
47 | return 8; | |
48 | } | |
49 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
50 | /* Aliases for Q regs. */ | |
51 | nregs += 16; | |
52 | if (reg < nregs) { | |
53 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
54 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
55 | return 16; | |
56 | } | |
57 | } | |
58 | switch (reg - nregs) { | |
59 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
60 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
61 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
62 | } | |
63 | return 0; | |
64 | } | |
65 | ||
0ecb72a5 | 66 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
67 | { |
68 | int nregs; | |
69 | ||
70 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
71 | if (reg < nregs) { | |
72 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
73 | return 8; | |
74 | } | |
75 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
76 | nregs += 16; | |
77 | if (reg < nregs) { | |
78 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
79 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
80 | return 16; | |
81 | } | |
82 | } | |
83 | switch (reg - nregs) { | |
84 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
85 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 86 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
87 | } |
88 | return 0; | |
89 | } | |
90 | ||
6a669427 PM |
91 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
92 | { | |
93 | switch (reg) { | |
94 | case 0 ... 31: | |
95 | /* 128 bit FP register */ | |
96 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
97 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
98 | return 16; | |
99 | case 32: | |
100 | /* FPSR */ | |
101 | stl_p(buf, vfp_get_fpsr(env)); | |
102 | return 4; | |
103 | case 33: | |
104 | /* FPCR */ | |
105 | stl_p(buf, vfp_get_fpcr(env)); | |
106 | return 4; | |
107 | default: | |
108 | return 0; | |
109 | } | |
110 | } | |
111 | ||
112 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
113 | { | |
114 | switch (reg) { | |
115 | case 0 ... 31: | |
116 | /* 128 bit FP register */ | |
117 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
118 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
119 | return 16; | |
120 | case 32: | |
121 | /* FPSR */ | |
122 | vfp_set_fpsr(env, ldl_p(buf)); | |
123 | return 4; | |
124 | case 33: | |
125 | /* FPCR */ | |
126 | vfp_set_fpcr(env, ldl_p(buf)); | |
127 | return 4; | |
128 | default: | |
129 | return 0; | |
130 | } | |
131 | } | |
132 | ||
c4241c7d | 133 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 134 | { |
375421cc | 135 | assert(ri->fieldoffset); |
67ed771d | 136 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 137 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 138 | } else { |
c4241c7d | 139 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 140 | } |
d4e6df63 PM |
141 | } |
142 | ||
c4241c7d PM |
143 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
144 | uint64_t value) | |
d4e6df63 | 145 | { |
375421cc | 146 | assert(ri->fieldoffset); |
67ed771d | 147 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
148 | CPREG_FIELD64(env, ri) = value; |
149 | } else { | |
150 | CPREG_FIELD32(env, ri) = value; | |
151 | } | |
d4e6df63 PM |
152 | } |
153 | ||
11f136ee FA |
154 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
155 | { | |
156 | return (char *)env + ri->fieldoffset; | |
157 | } | |
158 | ||
49a66191 | 159 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 160 | { |
59a1c327 | 161 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 162 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 163 | return ri->resetvalue; |
721fae12 | 164 | } else if (ri->raw_readfn) { |
59a1c327 | 165 | return ri->raw_readfn(env, ri); |
721fae12 | 166 | } else if (ri->readfn) { |
59a1c327 | 167 | return ri->readfn(env, ri); |
721fae12 | 168 | } else { |
59a1c327 | 169 | return raw_read(env, ri); |
721fae12 | 170 | } |
721fae12 PM |
171 | } |
172 | ||
59a1c327 | 173 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 174 | uint64_t v) |
721fae12 PM |
175 | { |
176 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
177 | * Note that constant registers are treated as write-ignored; the |
178 | * caller should check for success by whether a readback gives the | |
179 | * value written. | |
180 | */ | |
181 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 182 | return; |
721fae12 | 183 | } else if (ri->raw_writefn) { |
c4241c7d | 184 | ri->raw_writefn(env, ri, v); |
721fae12 | 185 | } else if (ri->writefn) { |
c4241c7d | 186 | ri->writefn(env, ri, v); |
721fae12 | 187 | } else { |
afb2530f | 188 | raw_write(env, ri, v); |
721fae12 | 189 | } |
721fae12 PM |
190 | } |
191 | ||
375421cc PM |
192 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
193 | { | |
194 | /* Return true if the regdef would cause an assertion if you called | |
195 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
196 | * program bug for it not to have the NO_RAW flag). | |
197 | * NB that returning false here doesn't necessarily mean that calling | |
198 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
199 | * read/write access functions which are safe for raw use" from "has | |
200 | * read/write access functions which have side effects but has forgotten | |
201 | * to provide raw access functions". | |
202 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
203 | * and assertions in raw_read()/raw_write(). | |
204 | */ | |
205 | if ((ri->type & ARM_CP_CONST) || | |
206 | ri->fieldoffset || | |
207 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
208 | return false; | |
209 | } | |
210 | return true; | |
211 | } | |
212 | ||
721fae12 PM |
213 | bool write_cpustate_to_list(ARMCPU *cpu) |
214 | { | |
215 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
216 | int i; | |
217 | bool ok = true; | |
218 | ||
219 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
220 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
221 | const ARMCPRegInfo *ri; | |
59a1c327 | 222 | |
60322b39 | 223 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
224 | if (!ri) { |
225 | ok = false; | |
226 | continue; | |
227 | } | |
7a0e58fa | 228 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
229 | continue; |
230 | } | |
59a1c327 | 231 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
232 | } |
233 | return ok; | |
234 | } | |
235 | ||
236 | bool write_list_to_cpustate(ARMCPU *cpu) | |
237 | { | |
238 | int i; | |
239 | bool ok = true; | |
240 | ||
241 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
242 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
243 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
244 | const ARMCPRegInfo *ri; |
245 | ||
60322b39 | 246 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
247 | if (!ri) { |
248 | ok = false; | |
249 | continue; | |
250 | } | |
7a0e58fa | 251 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
252 | continue; |
253 | } | |
254 | /* Write value and confirm it reads back as written | |
255 | * (to catch read-only registers and partially read-only | |
256 | * registers where the incoming migration value doesn't match) | |
257 | */ | |
59a1c327 PM |
258 | write_raw_cp_reg(&cpu->env, ri, v); |
259 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
260 | ok = false; |
261 | } | |
262 | } | |
263 | return ok; | |
264 | } | |
265 | ||
266 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
267 | { | |
268 | ARMCPU *cpu = opaque; | |
269 | uint64_t regidx; | |
270 | const ARMCPRegInfo *ri; | |
271 | ||
272 | regidx = *(uint32_t *)key; | |
60322b39 | 273 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 274 | |
7a0e58fa | 275 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
276 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
277 | /* The value array need not be initialized at this point */ | |
278 | cpu->cpreg_array_len++; | |
279 | } | |
280 | } | |
281 | ||
282 | static void count_cpreg(gpointer key, gpointer opaque) | |
283 | { | |
284 | ARMCPU *cpu = opaque; | |
285 | uint64_t regidx; | |
286 | const ARMCPRegInfo *ri; | |
287 | ||
288 | regidx = *(uint32_t *)key; | |
60322b39 | 289 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 290 | |
7a0e58fa | 291 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
292 | cpu->cpreg_array_len++; |
293 | } | |
294 | } | |
295 | ||
296 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
297 | { | |
cbf239b7 AR |
298 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
299 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 300 | |
cbf239b7 AR |
301 | if (aidx > bidx) { |
302 | return 1; | |
303 | } | |
304 | if (aidx < bidx) { | |
305 | return -1; | |
306 | } | |
307 | return 0; | |
721fae12 PM |
308 | } |
309 | ||
310 | void init_cpreg_list(ARMCPU *cpu) | |
311 | { | |
312 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
313 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
314 | */ | |
57b6d95e | 315 | GList *keys; |
721fae12 PM |
316 | int arraylen; |
317 | ||
57b6d95e | 318 | keys = g_hash_table_get_keys(cpu->cp_regs); |
721fae12 PM |
319 | keys = g_list_sort(keys, cpreg_key_compare); |
320 | ||
321 | cpu->cpreg_array_len = 0; | |
322 | ||
323 | g_list_foreach(keys, count_cpreg, cpu); | |
324 | ||
325 | arraylen = cpu->cpreg_array_len; | |
326 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
327 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
328 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
329 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
330 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
331 | cpu->cpreg_array_len = 0; | |
332 | ||
333 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
334 | ||
335 | assert(cpu->cpreg_array_len == arraylen); | |
336 | ||
337 | g_list_free(keys); | |
338 | } | |
339 | ||
68e9c2fe EI |
340 | /* |
341 | * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but | |
342 | * they are accessible when EL3 is using AArch64 regardless of EL3.NS. | |
343 | * | |
344 | * access_el3_aa32ns: Used to check AArch32 register views. | |
345 | * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. | |
346 | */ | |
347 | static CPAccessResult access_el3_aa32ns(CPUARMState *env, | |
3f208fd7 PM |
348 | const ARMCPRegInfo *ri, |
349 | bool isread) | |
68e9c2fe EI |
350 | { |
351 | bool secure = arm_is_secure_below_el3(env); | |
352 | ||
353 | assert(!arm_el_is_aa64(env, 3)); | |
354 | if (secure) { | |
355 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
356 | } | |
357 | return CP_ACCESS_OK; | |
358 | } | |
359 | ||
360 | static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, | |
3f208fd7 PM |
361 | const ARMCPRegInfo *ri, |
362 | bool isread) | |
68e9c2fe EI |
363 | { |
364 | if (!arm_el_is_aa64(env, 3)) { | |
3f208fd7 | 365 | return access_el3_aa32ns(env, ri, isread); |
68e9c2fe EI |
366 | } |
367 | return CP_ACCESS_OK; | |
368 | } | |
369 | ||
5513c3ab PM |
370 | /* Some secure-only AArch32 registers trap to EL3 if used from |
371 | * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). | |
372 | * Note that an access from Secure EL1 can only happen if EL3 is AArch64. | |
373 | * We assume that the .access field is set to PL1_RW. | |
374 | */ | |
375 | static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, | |
3f208fd7 PM |
376 | const ARMCPRegInfo *ri, |
377 | bool isread) | |
5513c3ab PM |
378 | { |
379 | if (arm_current_el(env) == 3) { | |
380 | return CP_ACCESS_OK; | |
381 | } | |
382 | if (arm_is_secure_below_el3(env)) { | |
383 | return CP_ACCESS_TRAP_EL3; | |
384 | } | |
385 | /* This will be EL1 NS and EL2 NS, which just UNDEF */ | |
386 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
387 | } | |
388 | ||
187f678d PM |
389 | /* Check for traps to "powerdown debug" registers, which are controlled |
390 | * by MDCR.TDOSA | |
391 | */ | |
392 | static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, | |
393 | bool isread) | |
394 | { | |
395 | int el = arm_current_el(env); | |
396 | ||
397 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) | |
398 | && !arm_is_secure_below_el3(env)) { | |
399 | return CP_ACCESS_TRAP_EL2; | |
400 | } | |
401 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { | |
402 | return CP_ACCESS_TRAP_EL3; | |
403 | } | |
404 | return CP_ACCESS_OK; | |
405 | } | |
406 | ||
91b0a238 PM |
407 | /* Check for traps to "debug ROM" registers, which are controlled |
408 | * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. | |
409 | */ | |
410 | static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, | |
411 | bool isread) | |
412 | { | |
413 | int el = arm_current_el(env); | |
414 | ||
415 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) | |
416 | && !arm_is_secure_below_el3(env)) { | |
417 | return CP_ACCESS_TRAP_EL2; | |
418 | } | |
419 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
420 | return CP_ACCESS_TRAP_EL3; | |
421 | } | |
422 | return CP_ACCESS_OK; | |
423 | } | |
424 | ||
d6c8cf81 PM |
425 | /* Check for traps to general debug registers, which are controlled |
426 | * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. | |
427 | */ | |
428 | static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, | |
429 | bool isread) | |
430 | { | |
431 | int el = arm_current_el(env); | |
432 | ||
433 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) | |
434 | && !arm_is_secure_below_el3(env)) { | |
435 | return CP_ACCESS_TRAP_EL2; | |
436 | } | |
437 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { | |
438 | return CP_ACCESS_TRAP_EL3; | |
439 | } | |
440 | return CP_ACCESS_OK; | |
441 | } | |
442 | ||
1fce1ba9 PM |
443 | /* Check for traps to performance monitor registers, which are controlled |
444 | * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. | |
445 | */ | |
446 | static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, | |
447 | bool isread) | |
448 | { | |
449 | int el = arm_current_el(env); | |
450 | ||
451 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) | |
452 | && !arm_is_secure_below_el3(env)) { | |
453 | return CP_ACCESS_TRAP_EL2; | |
454 | } | |
455 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
456 | return CP_ACCESS_TRAP_EL3; | |
457 | } | |
458 | return CP_ACCESS_OK; | |
459 | } | |
460 | ||
c4241c7d | 461 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 462 | { |
00c8cb0a AF |
463 | ARMCPU *cpu = arm_env_get_cpu(env); |
464 | ||
8d5c773e | 465 | raw_write(env, ri, value); |
00c8cb0a | 466 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
467 | } |
468 | ||
c4241c7d | 469 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 470 | { |
00c8cb0a AF |
471 | ARMCPU *cpu = arm_env_get_cpu(env); |
472 | ||
8d5c773e | 473 | if (raw_read(env, ri) != value) { |
08de207b PM |
474 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
475 | * not modified virtual addresses, so this causes a TLB flush. | |
476 | */ | |
00c8cb0a | 477 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 478 | raw_write(env, ri, value); |
08de207b | 479 | } |
08de207b | 480 | } |
c4241c7d PM |
481 | |
482 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
483 | uint64_t value) | |
08de207b | 484 | { |
00c8cb0a AF |
485 | ARMCPU *cpu = arm_env_get_cpu(env); |
486 | ||
8d5c773e | 487 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 488 | && !extended_addresses_enabled(env)) { |
08de207b PM |
489 | /* For VMSA (when not using the LPAE long descriptor page table |
490 | * format) this register includes the ASID, so do a TLB flush. | |
491 | * For PMSA it is purely a process ID and no action is needed. | |
492 | */ | |
00c8cb0a | 493 | tlb_flush(CPU(cpu), 1); |
08de207b | 494 | } |
8d5c773e | 495 | raw_write(env, ri, value); |
08de207b PM |
496 | } |
497 | ||
c4241c7d PM |
498 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
499 | uint64_t value) | |
d929823f PM |
500 | { |
501 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
502 | ARMCPU *cpu = arm_env_get_cpu(env); |
503 | ||
504 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
505 | } |
506 | ||
c4241c7d PM |
507 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
508 | uint64_t value) | |
d929823f PM |
509 | { |
510 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
511 | ARMCPU *cpu = arm_env_get_cpu(env); |
512 | ||
513 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
514 | } |
515 | ||
c4241c7d PM |
516 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
517 | uint64_t value) | |
d929823f PM |
518 | { |
519 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
520 | ARMCPU *cpu = arm_env_get_cpu(env); |
521 | ||
522 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
523 | } |
524 | ||
c4241c7d PM |
525 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
526 | uint64_t value) | |
d929823f PM |
527 | { |
528 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
529 | ARMCPU *cpu = arm_env_get_cpu(env); |
530 | ||
531 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
532 | } |
533 | ||
fa439fc5 PM |
534 | /* IS variants of TLB operations must affect all cores */ |
535 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
536 | uint64_t value) | |
537 | { | |
538 | CPUState *other_cs; | |
539 | ||
540 | CPU_FOREACH(other_cs) { | |
541 | tlb_flush(other_cs, 1); | |
542 | } | |
543 | } | |
544 | ||
545 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
546 | uint64_t value) | |
547 | { | |
548 | CPUState *other_cs; | |
549 | ||
550 | CPU_FOREACH(other_cs) { | |
551 | tlb_flush(other_cs, value == 0); | |
552 | } | |
553 | } | |
554 | ||
555 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
556 | uint64_t value) | |
557 | { | |
558 | CPUState *other_cs; | |
559 | ||
560 | CPU_FOREACH(other_cs) { | |
561 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
562 | } | |
563 | } | |
564 | ||
565 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
566 | uint64_t value) | |
567 | { | |
568 | CPUState *other_cs; | |
569 | ||
570 | CPU_FOREACH(other_cs) { | |
571 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
572 | } | |
573 | } | |
574 | ||
541ef8c2 SS |
575 | static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
576 | uint64_t value) | |
577 | { | |
578 | CPUState *cs = ENV_GET_CPU(env); | |
579 | ||
580 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | |
581 | ARMMMUIdx_S2NS, -1); | |
582 | } | |
583 | ||
584 | static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
585 | uint64_t value) | |
586 | { | |
587 | CPUState *other_cs; | |
588 | ||
589 | CPU_FOREACH(other_cs) { | |
590 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
591 | ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); | |
592 | } | |
593 | } | |
594 | ||
595 | static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
596 | uint64_t value) | |
597 | { | |
598 | /* Invalidate by IPA. This has to invalidate any structures that | |
599 | * contain only stage 2 translation information, but does not need | |
600 | * to apply to structures that contain combined stage 1 and stage 2 | |
601 | * translation information. | |
602 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
603 | */ | |
604 | CPUState *cs = ENV_GET_CPU(env); | |
605 | uint64_t pageaddr; | |
606 | ||
607 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
608 | return; | |
609 | } | |
610 | ||
611 | pageaddr = sextract64(value << 12, 0, 40); | |
612 | ||
613 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
614 | } | |
615 | ||
616 | static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
617 | uint64_t value) | |
618 | { | |
619 | CPUState *other_cs; | |
620 | uint64_t pageaddr; | |
621 | ||
622 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
623 | return; | |
624 | } | |
625 | ||
626 | pageaddr = sextract64(value << 12, 0, 40); | |
627 | ||
628 | CPU_FOREACH(other_cs) { | |
629 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
630 | } | |
631 | } | |
632 | ||
633 | static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
634 | uint64_t value) | |
635 | { | |
636 | CPUState *cs = ENV_GET_CPU(env); | |
637 | ||
638 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); | |
639 | } | |
640 | ||
641 | static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
642 | uint64_t value) | |
643 | { | |
644 | CPUState *other_cs; | |
645 | ||
646 | CPU_FOREACH(other_cs) { | |
647 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); | |
648 | } | |
649 | } | |
650 | ||
651 | static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
652 | uint64_t value) | |
653 | { | |
654 | CPUState *cs = ENV_GET_CPU(env); | |
655 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); | |
656 | ||
657 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); | |
658 | } | |
659 | ||
660 | static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
661 | uint64_t value) | |
662 | { | |
663 | CPUState *other_cs; | |
664 | uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); | |
665 | ||
666 | CPU_FOREACH(other_cs) { | |
667 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); | |
668 | } | |
669 | } | |
670 | ||
e9aa6c21 | 671 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
672 | /* Define the secure and non-secure FCSE identifier CP registers |
673 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
674 | * the secure register to be properly reset and migrated. There is also no | |
675 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
676 | */ | |
677 | { .name = "FCSEIDR(NS)", | |
678 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
679 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
680 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
681 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
682 | { .name = "FCSEIDR(S)", | |
683 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
684 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
685 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 686 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
687 | /* Define the secure and non-secure context identifier CP registers |
688 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
689 | * the secure register to be properly reset and migrated. In the | |
690 | * non-secure case, the 32-bit register will have reset and migration | |
691 | * disabled during registration as it is handled by the 64-bit instance. | |
692 | */ | |
693 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 694 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
695 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
696 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
697 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
698 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
699 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
700 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
701 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 702 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
703 | REGINFO_SENTINEL |
704 | }; | |
705 | ||
706 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
707 | /* NB: Some of these registers exist in v8 but with more precise | |
708 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
709 | */ | |
710 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
711 | { .name = "DACR", |
712 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
713 | .access = PL1_RW, .resetvalue = 0, | |
714 | .writefn = dacr_write, .raw_writefn = raw_write, | |
715 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
716 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a903c449 EI |
717 | /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
718 | * For v6 and v5, these mappings are overly broad. | |
4fdd17dd | 719 | */ |
a903c449 EI |
720 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
721 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
722 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, | |
723 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
724 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, | |
725 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
726 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, | |
4fdd17dd | 727 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
c4804214 PM |
728 | /* Cache maintenance ops; some of this space may be overridden later. */ |
729 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
730 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
731 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
732 | REGINFO_SENTINEL |
733 | }; | |
734 | ||
7d57f408 PM |
735 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
736 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
737 | * over-broad. | |
738 | */ | |
739 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
740 | .access = PL1_W, .type = ARM_CP_WFI }, | |
741 | REGINFO_SENTINEL | |
742 | }; | |
743 | ||
744 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
745 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
746 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
747 | */ | |
748 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
749 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
750 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
751 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
752 | * OMAPCP will override this space. | |
753 | */ | |
754 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
755 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
756 | .resetvalue = 0 }, | |
757 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
758 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
759 | .resetvalue = 0 }, | |
776d4e5c PM |
760 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
761 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 762 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 763 | .resetvalue = 0 }, |
50300698 PM |
764 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
765 | * implementing it as RAZ means the "debug architecture version" bits | |
766 | * will read as a reserved value, which should cause Linux to not try | |
767 | * to use the debug hardware. | |
768 | */ | |
769 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
770 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
771 | /* MMU TLB control. Note that the wildcarding means we cover not just |
772 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
773 | */ | |
774 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
775 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 776 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
777 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
778 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 779 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
780 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
781 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 782 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
783 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
784 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 785 | .type = ARM_CP_NO_RAW }, |
a903c449 EI |
786 | { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
787 | .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, | |
788 | { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, | |
789 | .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, | |
7d57f408 PM |
790 | REGINFO_SENTINEL |
791 | }; | |
792 | ||
c4241c7d PM |
793 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
794 | uint64_t value) | |
2771db27 | 795 | { |
f0aff255 FA |
796 | uint32_t mask = 0; |
797 | ||
798 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
799 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
800 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
801 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
802 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
803 | */ | |
804 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
805 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
806 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
807 | ||
808 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
809 | /* ASEDIS [31] bit is RAO/WI */ | |
810 | value |= (1 << 31); | |
811 | } | |
812 | ||
813 | /* VFPv3 and upwards with NEON implement 32 double precision | |
814 | * registers (D0-D31). | |
815 | */ | |
816 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
817 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
818 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
819 | value |= (1 << 30); | |
820 | } | |
821 | } | |
822 | value &= mask; | |
2771db27 | 823 | } |
7ebd5f2e | 824 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
825 | } |
826 | ||
3f208fd7 PM |
827 | static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
828 | bool isread) | |
c6f19164 GB |
829 | { |
830 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
831 | /* Check if CPACR accesses are to be trapped to EL2 */ | |
832 | if (arm_current_el(env) == 1 && | |
833 | (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { | |
834 | return CP_ACCESS_TRAP_EL2; | |
835 | /* Check if CPACR accesses are to be trapped to EL3 */ | |
836 | } else if (arm_current_el(env) < 3 && | |
837 | (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
838 | return CP_ACCESS_TRAP_EL3; | |
839 | } | |
840 | } | |
841 | ||
842 | return CP_ACCESS_OK; | |
843 | } | |
844 | ||
3f208fd7 PM |
845 | static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
846 | bool isread) | |
c6f19164 GB |
847 | { |
848 | /* Check if CPTR accesses are set to trap to EL3 */ | |
849 | if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { | |
850 | return CP_ACCESS_TRAP_EL3; | |
851 | } | |
852 | ||
853 | return CP_ACCESS_OK; | |
854 | } | |
855 | ||
7d57f408 PM |
856 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
857 | /* prefetch by MVA in v6, NOP in v7 */ | |
858 | { .name = "MVA_prefetch", | |
859 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
860 | .access = PL1_W, .type = ARM_CP_NOP }, | |
6df99dec SS |
861 | /* We need to break the TB after ISB to execute self-modifying code |
862 | * correctly and also to take any pending interrupts immediately. | |
863 | * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. | |
864 | */ | |
7d57f408 | 865 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
6df99dec | 866 | .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
091fd17c | 867 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 868 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 869 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 870 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 871 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 872 | .access = PL1_RW, |
b848ce2b FA |
873 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
874 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
875 | .resetvalue = 0, }, |
876 | /* Watchpoint Fault Address Register : should actually only be present | |
877 | * for 1136, 1176, 11MPCore. | |
878 | */ | |
879 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
880 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 | 881 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
c6f19164 | 882 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
7ebd5f2e | 883 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 884 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
885 | REGINFO_SENTINEL |
886 | }; | |
887 | ||
3f208fd7 PM |
888 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
889 | bool isread) | |
200ac0ef | 890 | { |
3b163b01 | 891 | /* Performance monitor registers user accessibility is controlled |
1fce1ba9 PM |
892 | * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
893 | * trapping to EL2 or EL3 for other accesses. | |
200ac0ef | 894 | */ |
1fce1ba9 PM |
895 | int el = arm_current_el(env); |
896 | ||
897 | if (el == 0 && !env->cp15.c9_pmuserenr) { | |
fcd25206 | 898 | return CP_ACCESS_TRAP; |
200ac0ef | 899 | } |
1fce1ba9 PM |
900 | if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
901 | && !arm_is_secure_below_el3(env)) { | |
902 | return CP_ACCESS_TRAP_EL2; | |
903 | } | |
904 | if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { | |
905 | return CP_ACCESS_TRAP_EL3; | |
906 | } | |
907 | ||
fcd25206 | 908 | return CP_ACCESS_OK; |
200ac0ef PM |
909 | } |
910 | ||
7c2cb42b | 911 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
912 | |
913 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
914 | { | |
915 | /* This does not support checking PMCCFILTR_EL0 register */ | |
916 | ||
917 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
918 | return false; | |
919 | } | |
920 | ||
921 | return true; | |
922 | } | |
923 | ||
ec7b4ce4 AF |
924 | void pmccntr_sync(CPUARMState *env) |
925 | { | |
926 | uint64_t temp_ticks; | |
927 | ||
352c98e5 LV |
928 | temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
929 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
ec7b4ce4 AF |
930 | |
931 | if (env->cp15.c9_pmcr & PMCRD) { | |
932 | /* Increment once every 64 processor clock cycles */ | |
933 | temp_ticks /= 64; | |
934 | } | |
935 | ||
936 | if (arm_ccnt_enabled(env)) { | |
937 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
938 | } | |
939 | } | |
940 | ||
c4241c7d PM |
941 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
942 | uint64_t value) | |
200ac0ef | 943 | { |
942a155b | 944 | pmccntr_sync(env); |
7c2cb42b AF |
945 | |
946 | if (value & PMCRC) { | |
947 | /* The counter has been reset */ | |
948 | env->cp15.c15_ccnt = 0; | |
949 | } | |
950 | ||
200ac0ef PM |
951 | /* only the DP, X, D and E bits are writable */ |
952 | env->cp15.c9_pmcr &= ~0x39; | |
953 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 954 | |
942a155b | 955 | pmccntr_sync(env); |
7c2cb42b AF |
956 | } |
957 | ||
958 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
959 | { | |
c92c0687 | 960 | uint64_t total_ticks; |
7c2cb42b | 961 | |
942a155b | 962 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
963 | /* Counter is disabled, do not change value */ |
964 | return env->cp15.c15_ccnt; | |
965 | } | |
966 | ||
352c98e5 LV |
967 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
968 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
969 | |
970 | if (env->cp15.c9_pmcr & PMCRD) { | |
971 | /* Increment once every 64 processor clock cycles */ | |
972 | total_ticks /= 64; | |
973 | } | |
974 | return total_ticks - env->cp15.c15_ccnt; | |
975 | } | |
976 | ||
977 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
978 | uint64_t value) | |
979 | { | |
c92c0687 | 980 | uint64_t total_ticks; |
7c2cb42b | 981 | |
942a155b | 982 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
983 | /* Counter is disabled, set the absolute value */ |
984 | env->cp15.c15_ccnt = value; | |
985 | return; | |
986 | } | |
987 | ||
352c98e5 LV |
988 | total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
989 | ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); | |
7c2cb42b AF |
990 | |
991 | if (env->cp15.c9_pmcr & PMCRD) { | |
992 | /* Increment once every 64 processor clock cycles */ | |
993 | total_ticks /= 64; | |
994 | } | |
995 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 996 | } |
421c7ebd PC |
997 | |
998 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
999 | uint64_t value) | |
1000 | { | |
1001 | uint64_t cur_val = pmccntr_read(env, NULL); | |
1002 | ||
1003 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
1004 | } | |
1005 | ||
ec7b4ce4 AF |
1006 | #else /* CONFIG_USER_ONLY */ |
1007 | ||
1008 | void pmccntr_sync(CPUARMState *env) | |
1009 | { | |
1010 | } | |
1011 | ||
7c2cb42b | 1012 | #endif |
200ac0ef | 1013 | |
0614601c AF |
1014 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1015 | uint64_t value) | |
1016 | { | |
1017 | pmccntr_sync(env); | |
1018 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
1019 | pmccntr_sync(env); | |
1020 | } | |
1021 | ||
c4241c7d | 1022 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1023 | uint64_t value) |
1024 | { | |
200ac0ef PM |
1025 | value &= (1 << 31); |
1026 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
1027 | } |
1028 | ||
c4241c7d PM |
1029 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1030 | uint64_t value) | |
200ac0ef | 1031 | { |
200ac0ef PM |
1032 | value &= (1 << 31); |
1033 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
1034 | } |
1035 | ||
c4241c7d PM |
1036 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1037 | uint64_t value) | |
200ac0ef | 1038 | { |
200ac0ef | 1039 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
1040 | } |
1041 | ||
c4241c7d PM |
1042 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1043 | uint64_t value) | |
200ac0ef | 1044 | { |
200ac0ef | 1045 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
1046 | } |
1047 | ||
c4241c7d | 1048 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
1049 | uint64_t value) |
1050 | { | |
1051 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
1052 | } |
1053 | ||
c4241c7d PM |
1054 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1055 | uint64_t value) | |
200ac0ef PM |
1056 | { |
1057 | /* We have no event counters so only the C bit can be changed */ | |
1058 | value &= (1 << 31); | |
1059 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
1060 | } |
1061 | ||
c4241c7d PM |
1062 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1063 | uint64_t value) | |
200ac0ef PM |
1064 | { |
1065 | value &= (1 << 31); | |
1066 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
1067 | } |
1068 | ||
c4241c7d PM |
1069 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1070 | uint64_t value) | |
8641136c | 1071 | { |
a505d7fe PM |
1072 | /* Note that even though the AArch64 view of this register has bits |
1073 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
1074 | * architectural requirements for bits which are RES0 only in some | |
1075 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
1076 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
1077 | */ | |
855ea66d | 1078 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
1079 | } |
1080 | ||
64e0e2de EI |
1081 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1082 | { | |
1083 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
1084 | * For bits that vary between AArch32/64, code needs to check the | |
1085 | * current execution mode before directly using the feature bit. | |
1086 | */ | |
1087 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
1088 | ||
1089 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
1090 | valid_mask &= ~SCR_HCE; | |
1091 | ||
1092 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
1093 | * supported if EL2 exists. The bit is UNK/SBZP when | |
1094 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
1095 | * when EL2 is unavailable. | |
4eb27640 | 1096 | * On ARMv8, this bit is always available. |
64e0e2de | 1097 | */ |
4eb27640 GB |
1098 | if (arm_feature(env, ARM_FEATURE_V7) && |
1099 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
1100 | valid_mask &= ~SCR_SMD; |
1101 | } | |
1102 | } | |
1103 | ||
1104 | /* Clear all-context RES0 bits. */ | |
1105 | value &= valid_mask; | |
1106 | raw_write(env, ri, value); | |
1107 | } | |
1108 | ||
c4241c7d | 1109 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
1110 | { |
1111 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
1112 | |
1113 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
1114 | * bank | |
1115 | */ | |
1116 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
1117 | ri->secure & ARM_CP_SECSTATE_S); | |
1118 | ||
1119 | return cpu->ccsidr[index]; | |
776d4e5c PM |
1120 | } |
1121 | ||
c4241c7d PM |
1122 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1123 | uint64_t value) | |
776d4e5c | 1124 | { |
8d5c773e | 1125 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
1126 | } |
1127 | ||
1090b9c6 PM |
1128 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1129 | { | |
1130 | CPUState *cs = ENV_GET_CPU(env); | |
1131 | uint64_t ret = 0; | |
1132 | ||
1133 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
1134 | ret |= CPSR_I; | |
1135 | } | |
1136 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
1137 | ret |= CPSR_F; | |
1138 | } | |
1139 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
1140 | return ret; | |
1141 | } | |
1142 | ||
e9aa6c21 | 1143 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
1144 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
1145 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
1146 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
1147 | /* Performance monitors are implementation defined in v7, |
1148 | * but with an ARM recommended set of registers, which we | |
1149 | * follow (although we don't actually implement any counters) | |
1150 | * | |
1151 | * Performance registers fall into three categories: | |
1152 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
1153 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
1154 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
1155 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
1156 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
1157 | */ | |
1158 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1159 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 1160 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
1161 | .writefn = pmcntenset_write, |
1162 | .accessfn = pmreg_access, | |
1163 | .raw_writefn = raw_write }, | |
8521466b AF |
1164 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
1165 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
1166 | .access = PL0_RW, .accessfn = pmreg_access, | |
1167 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
1168 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 1169 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
1170 | .access = PL0_RW, |
1171 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
1172 | .accessfn = pmreg_access, |
1173 | .writefn = pmcntenclr_write, | |
7a0e58fa | 1174 | .type = ARM_CP_ALIAS }, |
8521466b AF |
1175 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
1176 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
1177 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 1178 | .type = ARM_CP_ALIAS, |
8521466b AF |
1179 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
1180 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
1181 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
1182 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
1183 | .accessfn = pmreg_access, |
1184 | .writefn = pmovsr_write, | |
1185 | .raw_writefn = raw_write }, | |
978364f1 AF |
1186 | { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
1187 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, | |
1188 | .access = PL0_RW, .accessfn = pmreg_access, | |
1189 | .type = ARM_CP_ALIAS, | |
1190 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
1191 | .writefn = pmovsr_write, | |
1192 | .raw_writefn = raw_write }, | |
fcd25206 | 1193 | /* Unimplemented so WI. */ |
200ac0ef | 1194 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 1195 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 1196 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 1197 | * We choose to RAZ/WI. |
200ac0ef PM |
1198 | */ |
1199 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
1200 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
1201 | .accessfn = pmreg_access }, | |
7c2cb42b | 1202 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 1203 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 1204 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 1205 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 1206 | .accessfn = pmreg_access }, |
8521466b AF |
1207 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
1208 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
1209 | .access = PL0_RW, .accessfn = pmreg_access, | |
1210 | .type = ARM_CP_IO, | |
1211 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 1212 | #endif |
8521466b AF |
1213 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
1214 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 1215 | .writefn = pmccfiltr_write, |
8521466b AF |
1216 | .access = PL0_RW, .accessfn = pmreg_access, |
1217 | .type = ARM_CP_IO, | |
1218 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
1219 | .resetvalue = 0, }, | |
200ac0ef PM |
1220 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
1221 | .access = PL0_RW, | |
1222 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
1223 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
1224 | .raw_writefn = raw_write }, | |
1225 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 1226 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
1227 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
1228 | .accessfn = pmreg_access }, | |
200ac0ef | 1229 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
1fce1ba9 | 1230 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
200ac0ef PM |
1231 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1232 | .resetvalue = 0, | |
d4e6df63 | 1233 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
8a83ffc2 AF |
1234 | { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
1235 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, | |
1fce1ba9 | 1236 | .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
8a83ffc2 AF |
1237 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
1238 | .resetvalue = 0, | |
1239 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
200ac0ef | 1240 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
1fce1ba9 | 1241 | .access = PL1_RW, .accessfn = access_tpm, |
200ac0ef PM |
1242 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
1243 | .resetvalue = 0, | |
d4e6df63 | 1244 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 1245 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
1fce1ba9 | 1246 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
200ac0ef | 1247 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
b061a82b | 1248 | .writefn = pmintenclr_write, }, |
978364f1 AF |
1249 | { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
1250 | .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, | |
1fce1ba9 | 1251 | .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
978364f1 AF |
1252 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
1253 | .writefn = pmintenclr_write }, | |
a505d7fe PM |
1254 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
1255 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 1256 | .access = PL1_RW, .writefn = vbar_write, |
fb6c91ba GB |
1257 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
1258 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8641136c | 1259 | .resetvalue = 0 }, |
7da845b0 PM |
1260 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
1261 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 1262 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
1263 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
1264 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
1265 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
1266 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
1267 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
1268 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
1269 | * just RAZ for all cores: | |
1270 | */ | |
0ff644a7 PM |
1271 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
1272 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 1273 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
1274 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
1275 | * choose to RAZ/WI for all cores. | |
1276 | */ | |
1277 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1278 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
1279 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1280 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1281 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
1282 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
1283 | /* MAIR can just read-as-written because we don't implement caches |
1284 | * and so don't need to care about memory attributes. | |
1285 | */ | |
1286 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
1287 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 1288 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 | 1289 | .resetvalue = 0 }, |
4cfb8ad8 PM |
1290 | { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
1291 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, | |
1292 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), | |
1293 | .resetvalue = 0 }, | |
b0fe2427 PM |
1294 | /* For non-long-descriptor page tables these are PRRR and NMRR; |
1295 | * regardless they still act as reads-as-written for QEMU. | |
b0fe2427 | 1296 | */ |
1281f8e3 | 1297 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1298 | * allows them to assign the correct fieldoffset based on the endianness |
1299 | * handled in the field definitions. | |
1300 | */ | |
a903c449 | 1301 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1302 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
be693c87 GB |
1303 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1304 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 | 1305 | .resetfn = arm_cp_reset_ignore }, |
a903c449 | 1306 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
b0fe2427 | 1307 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
be693c87 GB |
1308 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1309 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1310 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1311 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1312 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1313 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1314 | /* 32 bit ITLB invalidates */ |
1315 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1316 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1317 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1318 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1319 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1320 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1321 | /* 32 bit DTLB invalidates */ |
1322 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1323 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1324 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1325 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1326 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1327 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1328 | /* 32 bit TLB invalidates */ |
1329 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1330 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1331 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1332 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1333 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1334 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1335 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1336 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1337 | REGINFO_SENTINEL |
1338 | }; | |
1339 | ||
1340 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1341 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1342 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1343 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1344 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1345 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1346 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1347 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1348 | .writefn = tlbiasid_is_write }, |
995939a6 | 1349 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1350 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1351 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1352 | REGINFO_SENTINEL |
1353 | }; | |
1354 | ||
c4241c7d PM |
1355 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1356 | uint64_t value) | |
c326b979 PM |
1357 | { |
1358 | value &= 1; | |
1359 | env->teecr = value; | |
c326b979 PM |
1360 | } |
1361 | ||
3f208fd7 PM |
1362 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1363 | bool isread) | |
c326b979 | 1364 | { |
dcbff19b | 1365 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1366 | return CP_ACCESS_TRAP; |
c326b979 | 1367 | } |
92611c00 | 1368 | return CP_ACCESS_OK; |
c326b979 PM |
1369 | } |
1370 | ||
1371 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1372 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1373 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1374 | .resetvalue = 0, | |
1375 | .writefn = teecr_write }, | |
1376 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1377 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1378 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1379 | REGINFO_SENTINEL |
1380 | }; | |
1381 | ||
4d31c596 | 1382 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1383 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1384 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1385 | .access = PL0_RW, | |
54bf36ed | 1386 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1387 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1388 | .access = PL0_RW, | |
54bf36ed FA |
1389 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1390 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1391 | .resetfn = arm_cp_reset_ignore }, |
1392 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1393 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1394 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1395 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1396 | .resetvalue = 0}, | |
4d31c596 PM |
1397 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1398 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1399 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1400 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1401 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1402 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1403 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1404 | .access = PL1_RW, |
54bf36ed FA |
1405 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1406 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1407 | .access = PL1_RW, | |
1408 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1409 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1410 | .resetvalue = 0 }, | |
4d31c596 PM |
1411 | REGINFO_SENTINEL |
1412 | }; | |
1413 | ||
55d284af PM |
1414 | #ifndef CONFIG_USER_ONLY |
1415 | ||
3f208fd7 PM |
1416 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1417 | bool isread) | |
00108f2d | 1418 | { |
75502672 PM |
1419 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
1420 | * Writable only at the highest implemented exception level. | |
1421 | */ | |
1422 | int el = arm_current_el(env); | |
1423 | ||
1424 | switch (el) { | |
1425 | case 0: | |
1426 | if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
1427 | return CP_ACCESS_TRAP; | |
1428 | } | |
1429 | break; | |
1430 | case 1: | |
1431 | if (!isread && ri->state == ARM_CP_STATE_AA32 && | |
1432 | arm_is_secure_below_el3(env)) { | |
1433 | /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ | |
1434 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1435 | } | |
1436 | break; | |
1437 | case 2: | |
1438 | case 3: | |
1439 | break; | |
00108f2d | 1440 | } |
75502672 PM |
1441 | |
1442 | if (!isread && el < arm_highest_el(env)) { | |
1443 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1444 | } | |
1445 | ||
00108f2d PM |
1446 | return CP_ACCESS_OK; |
1447 | } | |
1448 | ||
3f208fd7 PM |
1449 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
1450 | bool isread) | |
00108f2d | 1451 | { |
0b6440af EI |
1452 | unsigned int cur_el = arm_current_el(env); |
1453 | bool secure = arm_is_secure(env); | |
1454 | ||
00108f2d | 1455 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
0b6440af | 1456 | if (cur_el == 0 && |
00108f2d PM |
1457 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1458 | return CP_ACCESS_TRAP; | |
1459 | } | |
0b6440af EI |
1460 | |
1461 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1462 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1463 | !extract32(env->cp15.cnthctl_el2, 0, 1)) { | |
1464 | return CP_ACCESS_TRAP_EL2; | |
1465 | } | |
00108f2d PM |
1466 | return CP_ACCESS_OK; |
1467 | } | |
1468 | ||
3f208fd7 PM |
1469 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
1470 | bool isread) | |
00108f2d | 1471 | { |
0b6440af EI |
1472 | unsigned int cur_el = arm_current_el(env); |
1473 | bool secure = arm_is_secure(env); | |
1474 | ||
00108f2d PM |
1475 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
1476 | * EL0[PV]TEN is zero. | |
1477 | */ | |
0b6440af | 1478 | if (cur_el == 0 && |
00108f2d PM |
1479 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1480 | return CP_ACCESS_TRAP; | |
1481 | } | |
0b6440af EI |
1482 | |
1483 | if (arm_feature(env, ARM_FEATURE_EL2) && | |
1484 | timeridx == GTIMER_PHYS && !secure && cur_el < 2 && | |
1485 | !extract32(env->cp15.cnthctl_el2, 1, 1)) { | |
1486 | return CP_ACCESS_TRAP_EL2; | |
1487 | } | |
00108f2d PM |
1488 | return CP_ACCESS_OK; |
1489 | } | |
1490 | ||
1491 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
3f208fd7 PM |
1492 | const ARMCPRegInfo *ri, |
1493 | bool isread) | |
00108f2d | 1494 | { |
3f208fd7 | 1495 | return gt_counter_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1496 | } |
1497 | ||
1498 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
3f208fd7 PM |
1499 | const ARMCPRegInfo *ri, |
1500 | bool isread) | |
00108f2d | 1501 | { |
3f208fd7 | 1502 | return gt_counter_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1503 | } |
1504 | ||
3f208fd7 PM |
1505 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1506 | bool isread) | |
00108f2d | 1507 | { |
3f208fd7 | 1508 | return gt_timer_access(env, GTIMER_PHYS, isread); |
00108f2d PM |
1509 | } |
1510 | ||
3f208fd7 PM |
1511 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
1512 | bool isread) | |
00108f2d | 1513 | { |
3f208fd7 | 1514 | return gt_timer_access(env, GTIMER_VIRT, isread); |
00108f2d PM |
1515 | } |
1516 | ||
b4d3978c | 1517 | static CPAccessResult gt_stimer_access(CPUARMState *env, |
3f208fd7 PM |
1518 | const ARMCPRegInfo *ri, |
1519 | bool isread) | |
b4d3978c PM |
1520 | { |
1521 | /* The AArch64 register view of the secure physical timer is | |
1522 | * always accessible from EL3, and configurably accessible from | |
1523 | * Secure EL1. | |
1524 | */ | |
1525 | switch (arm_current_el(env)) { | |
1526 | case 1: | |
1527 | if (!arm_is_secure(env)) { | |
1528 | return CP_ACCESS_TRAP; | |
1529 | } | |
1530 | if (!(env->cp15.scr_el3 & SCR_ST)) { | |
1531 | return CP_ACCESS_TRAP_EL3; | |
1532 | } | |
1533 | return CP_ACCESS_OK; | |
1534 | case 0: | |
1535 | case 2: | |
1536 | return CP_ACCESS_TRAP; | |
1537 | case 3: | |
1538 | return CP_ACCESS_OK; | |
1539 | default: | |
1540 | g_assert_not_reached(); | |
1541 | } | |
1542 | } | |
1543 | ||
55d284af PM |
1544 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1545 | { | |
bc72ad67 | 1546 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1547 | } |
1548 | ||
1549 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1550 | { | |
1551 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1552 | ||
1553 | if (gt->ctl & 1) { | |
1554 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1555 | * reset timer to when ISTATUS next has to change | |
1556 | */ | |
edac4d8a EI |
1557 | uint64_t offset = timeridx == GTIMER_VIRT ? |
1558 | cpu->env.cp15.cntvoff_el2 : 0; | |
55d284af PM |
1559 | uint64_t count = gt_get_countervalue(&cpu->env); |
1560 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
edac4d8a | 1561 | int istatus = count - offset >= gt->cval; |
55d284af PM |
1562 | uint64_t nexttick; |
1563 | ||
1564 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1565 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1566 | (istatus && !(gt->ctl & 2))); | |
1567 | if (istatus) { | |
1568 | /* Next transition is when count rolls back over to zero */ | |
1569 | nexttick = UINT64_MAX; | |
1570 | } else { | |
1571 | /* Next transition is when we hit cval */ | |
edac4d8a | 1572 | nexttick = gt->cval + offset; |
55d284af PM |
1573 | } |
1574 | /* Note that the desired next expiry time might be beyond the | |
1575 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1576 | * set the timer for as far in the future as possible. When the | |
1577 | * timer expires we will reset the timer for any remaining period. | |
1578 | */ | |
1579 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1580 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1581 | } | |
bc72ad67 | 1582 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1583 | } else { |
1584 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1585 | gt->ctl &= ~4; | |
1586 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1587 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1588 | } |
1589 | } | |
1590 | ||
0e3eca4c EI |
1591 | static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
1592 | int timeridx) | |
55d284af PM |
1593 | { |
1594 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af | 1595 | |
bc72ad67 | 1596 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1597 | } |
1598 | ||
c4241c7d | 1599 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1600 | { |
c4241c7d | 1601 | return gt_get_countervalue(env); |
55d284af PM |
1602 | } |
1603 | ||
edac4d8a EI |
1604 | static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1605 | { | |
1606 | return gt_get_countervalue(env) - env->cp15.cntvoff_el2; | |
1607 | } | |
1608 | ||
c4241c7d | 1609 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1610 | int timeridx, |
c4241c7d | 1611 | uint64_t value) |
55d284af | 1612 | { |
55d284af PM |
1613 | env->cp15.c14_timer[timeridx].cval = value; |
1614 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1615 | } |
c4241c7d | 1616 | |
0e3eca4c EI |
1617 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1618 | int timeridx) | |
55d284af | 1619 | { |
edac4d8a | 1620 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1621 | |
c4241c7d | 1622 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
edac4d8a | 1623 | (gt_get_countervalue(env) - offset)); |
55d284af PM |
1624 | } |
1625 | ||
c4241c7d | 1626 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1627 | int timeridx, |
c4241c7d | 1628 | uint64_t value) |
55d284af | 1629 | { |
edac4d8a | 1630 | uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
55d284af | 1631 | |
edac4d8a | 1632 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
18084b2f | 1633 | sextract64(value, 0, 32); |
55d284af | 1634 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
55d284af PM |
1635 | } |
1636 | ||
c4241c7d | 1637 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
0e3eca4c | 1638 | int timeridx, |
c4241c7d | 1639 | uint64_t value) |
55d284af PM |
1640 | { |
1641 | ARMCPU *cpu = arm_env_get_cpu(env); | |
55d284af PM |
1642 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
1643 | ||
d3afacc7 | 1644 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1645 | if ((oldval ^ value) & 1) { |
1646 | /* Enable toggled */ | |
1647 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1648 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1649 | /* IMASK toggled: don't need to recalculate, |
1650 | * just set the interrupt line based on ISTATUS | |
1651 | */ | |
1652 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1653 | (oldval & 4) && !(value & 2)); |
55d284af | 1654 | } |
55d284af PM |
1655 | } |
1656 | ||
0e3eca4c EI |
1657 | static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1658 | { | |
1659 | gt_timer_reset(env, ri, GTIMER_PHYS); | |
1660 | } | |
1661 | ||
1662 | static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1663 | uint64_t value) | |
1664 | { | |
1665 | gt_cval_write(env, ri, GTIMER_PHYS, value); | |
1666 | } | |
1667 | ||
1668 | static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1669 | { | |
1670 | return gt_tval_read(env, ri, GTIMER_PHYS); | |
1671 | } | |
1672 | ||
1673 | static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1674 | uint64_t value) | |
1675 | { | |
1676 | gt_tval_write(env, ri, GTIMER_PHYS, value); | |
1677 | } | |
1678 | ||
1679 | static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1680 | uint64_t value) | |
1681 | { | |
1682 | gt_ctl_write(env, ri, GTIMER_PHYS, value); | |
1683 | } | |
1684 | ||
1685 | static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1686 | { | |
1687 | gt_timer_reset(env, ri, GTIMER_VIRT); | |
1688 | } | |
1689 | ||
1690 | static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1691 | uint64_t value) | |
1692 | { | |
1693 | gt_cval_write(env, ri, GTIMER_VIRT, value); | |
1694 | } | |
1695 | ||
1696 | static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1697 | { | |
1698 | return gt_tval_read(env, ri, GTIMER_VIRT); | |
1699 | } | |
1700 | ||
1701 | static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1702 | uint64_t value) | |
1703 | { | |
1704 | gt_tval_write(env, ri, GTIMER_VIRT, value); | |
1705 | } | |
1706 | ||
1707 | static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1708 | uint64_t value) | |
1709 | { | |
1710 | gt_ctl_write(env, ri, GTIMER_VIRT, value); | |
1711 | } | |
1712 | ||
edac4d8a EI |
1713 | static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1714 | uint64_t value) | |
1715 | { | |
1716 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1717 | ||
1718 | raw_write(env, ri, value); | |
1719 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1720 | } | |
1721 | ||
b0e66d95 EI |
1722 | static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1723 | { | |
1724 | gt_timer_reset(env, ri, GTIMER_HYP); | |
1725 | } | |
1726 | ||
1727 | static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1728 | uint64_t value) | |
1729 | { | |
1730 | gt_cval_write(env, ri, GTIMER_HYP, value); | |
1731 | } | |
1732 | ||
1733 | static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1734 | { | |
1735 | return gt_tval_read(env, ri, GTIMER_HYP); | |
1736 | } | |
1737 | ||
1738 | static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1739 | uint64_t value) | |
1740 | { | |
1741 | gt_tval_write(env, ri, GTIMER_HYP, value); | |
1742 | } | |
1743 | ||
1744 | static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1745 | uint64_t value) | |
1746 | { | |
1747 | gt_ctl_write(env, ri, GTIMER_HYP, value); | |
1748 | } | |
1749 | ||
b4d3978c PM |
1750 | static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1751 | { | |
1752 | gt_timer_reset(env, ri, GTIMER_SEC); | |
1753 | } | |
1754 | ||
1755 | static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1756 | uint64_t value) | |
1757 | { | |
1758 | gt_cval_write(env, ri, GTIMER_SEC, value); | |
1759 | } | |
1760 | ||
1761 | static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1762 | { | |
1763 | return gt_tval_read(env, ri, GTIMER_SEC); | |
1764 | } | |
1765 | ||
1766 | static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1767 | uint64_t value) | |
1768 | { | |
1769 | gt_tval_write(env, ri, GTIMER_SEC, value); | |
1770 | } | |
1771 | ||
1772 | static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1773 | uint64_t value) | |
1774 | { | |
1775 | gt_ctl_write(env, ri, GTIMER_SEC, value); | |
1776 | } | |
1777 | ||
55d284af PM |
1778 | void arm_gt_ptimer_cb(void *opaque) |
1779 | { | |
1780 | ARMCPU *cpu = opaque; | |
1781 | ||
1782 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1783 | } | |
1784 | ||
1785 | void arm_gt_vtimer_cb(void *opaque) | |
1786 | { | |
1787 | ARMCPU *cpu = opaque; | |
1788 | ||
1789 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1790 | } | |
1791 | ||
b0e66d95 EI |
1792 | void arm_gt_htimer_cb(void *opaque) |
1793 | { | |
1794 | ARMCPU *cpu = opaque; | |
1795 | ||
1796 | gt_recalc_timer(cpu, GTIMER_HYP); | |
1797 | } | |
1798 | ||
b4d3978c PM |
1799 | void arm_gt_stimer_cb(void *opaque) |
1800 | { | |
1801 | ARMCPU *cpu = opaque; | |
1802 | ||
1803 | gt_recalc_timer(cpu, GTIMER_SEC); | |
1804 | } | |
1805 | ||
55d284af PM |
1806 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
1807 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1808 | * of software; writing it doesn't actually change the timer frequency. | |
1809 | * Our reset value matches the fixed frequency we implement the timer at. | |
1810 | */ | |
1811 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1812 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1813 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1814 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
a7adc4b7 PM |
1815 | }, |
1816 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1817 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1818 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1819 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1820 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1821 | }, |
1822 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1823 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1824 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1825 | .access = PL1_RW, |
1826 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1827 | .resetvalue = 0, | |
1828 | }, | |
1829 | /* per-timer control */ | |
1830 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
9ff9dd3c | 1831 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1832 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1833 | .accessfn = gt_ptimer_access, |
1834 | .fieldoffset = offsetoflow32(CPUARMState, | |
1835 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
0e3eca4c | 1836 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 | 1837 | }, |
9ff9dd3c PM |
1838 | { .name = "CNTP_CTL(S)", |
1839 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1840 | .secure = ARM_CP_SECSTATE_S, | |
1841 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, | |
1842 | .accessfn = gt_ptimer_access, | |
1843 | .fieldoffset = offsetoflow32(CPUARMState, | |
1844 | cp15.c14_timer[GTIMER_SEC].ctl), | |
1845 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1846 | }, | |
a7adc4b7 PM |
1847 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
1848 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1849 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1850 | .accessfn = gt_ptimer_access, |
55d284af PM |
1851 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1852 | .resetvalue = 0, | |
0e3eca4c | 1853 | .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1854 | }, |
1855 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1856 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1857 | .accessfn = gt_vtimer_access, |
1858 | .fieldoffset = offsetoflow32(CPUARMState, | |
1859 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
0e3eca4c | 1860 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1861 | }, |
1862 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1863 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1864 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1865 | .accessfn = gt_vtimer_access, |
55d284af PM |
1866 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1867 | .resetvalue = 0, | |
0e3eca4c | 1868 | .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1869 | }, |
1870 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1871 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
9ff9dd3c | 1872 | .secure = ARM_CP_SECSTATE_NS, |
7a0e58fa | 1873 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1874 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1875 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
55d284af | 1876 | }, |
9ff9dd3c PM |
1877 | { .name = "CNTP_TVAL(S)", |
1878 | .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1879 | .secure = ARM_CP_SECSTATE_S, | |
1880 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1881 | .accessfn = gt_ptimer_access, | |
1882 | .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, | |
1883 | }, | |
a7adc4b7 PM |
1884 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1885 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 1886 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1887 | .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
1888 | .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, | |
a7adc4b7 | 1889 | }, |
55d284af | 1890 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 1891 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1892 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1893 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
55d284af | 1894 | }, |
a7adc4b7 PM |
1895 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1896 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1897 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
0e3eca4c EI |
1898 | .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
1899 | .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, | |
a7adc4b7 | 1900 | }, |
55d284af PM |
1901 | /* The counter itself */ |
1902 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 1903 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1904 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1905 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1906 | }, | |
1907 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1908 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 1909 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1910 | .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
55d284af PM |
1911 | }, |
1912 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 1913 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1914 | .accessfn = gt_vct_access, |
edac4d8a | 1915 | .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
a7adc4b7 PM |
1916 | }, |
1917 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1918 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 1919 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
d57b9ee8 | 1920 | .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
55d284af PM |
1921 | }, |
1922 | /* Comparison value, indicating when the timer goes off */ | |
1923 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
9ff9dd3c | 1924 | .secure = ARM_CP_SECSTATE_NS, |
55d284af | 1925 | .access = PL1_RW | PL0_R, |
7a0e58fa | 1926 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1927 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
b061a82b | 1928 | .accessfn = gt_ptimer_access, |
0e3eca4c | 1929 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
a7adc4b7 | 1930 | }, |
9ff9dd3c PM |
1931 | { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
1932 | .secure = ARM_CP_SECSTATE_S, | |
1933 | .access = PL1_RW | PL0_R, | |
1934 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, | |
1935 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1936 | .accessfn = gt_ptimer_access, | |
1937 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1938 | }, | |
a7adc4b7 PM |
1939 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
1940 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1941 | .access = PL1_RW | PL0_R, | |
1942 | .type = ARM_CP_IO, | |
1943 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
12cde08a | 1944 | .resetvalue = 0, .accessfn = gt_ptimer_access, |
0e3eca4c | 1945 | .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1946 | }, |
1947 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1948 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1949 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1950 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
b061a82b | 1951 | .accessfn = gt_vtimer_access, |
0e3eca4c | 1952 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
a7adc4b7 PM |
1953 | }, |
1954 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1955 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1956 | .access = PL1_RW | PL0_R, | |
1957 | .type = ARM_CP_IO, | |
1958 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1959 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
0e3eca4c | 1960 | .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
55d284af | 1961 | }, |
b4d3978c PM |
1962 | /* Secure timer -- this is actually restricted to only EL3 |
1963 | * and configurably Secure-EL1 via the accessfn. | |
1964 | */ | |
1965 | { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1966 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, | |
1967 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, | |
1968 | .accessfn = gt_stimer_access, | |
1969 | .readfn = gt_sec_tval_read, | |
1970 | .writefn = gt_sec_tval_write, | |
1971 | .resetfn = gt_sec_timer_reset, | |
1972 | }, | |
1973 | { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, | |
1974 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, | |
1975 | .type = ARM_CP_IO, .access = PL1_RW, | |
1976 | .accessfn = gt_stimer_access, | |
1977 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), | |
1978 | .resetvalue = 0, | |
1979 | .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, | |
1980 | }, | |
1981 | { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, | |
1982 | .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, | |
1983 | .type = ARM_CP_IO, .access = PL1_RW, | |
1984 | .accessfn = gt_stimer_access, | |
1985 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), | |
1986 | .writefn = gt_sec_cval_write, .raw_writefn = raw_write, | |
1987 | }, | |
55d284af PM |
1988 | REGINFO_SENTINEL |
1989 | }; | |
1990 | ||
1991 | #else | |
1992 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1993 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1994 | * so instead just don't register any of them. |
1995 | */ | |
6cc7a3ae | 1996 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1997 | REGINFO_SENTINEL |
1998 | }; | |
1999 | ||
55d284af PM |
2000 | #endif |
2001 | ||
c4241c7d | 2002 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 2003 | { |
891a2fe7 | 2004 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 2005 | raw_write(env, ri, value); |
891a2fe7 | 2006 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 2007 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 2008 | } else { |
8d5c773e | 2009 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 2010 | } |
4a501606 PM |
2011 | } |
2012 | ||
2013 | #ifndef CONFIG_USER_ONLY | |
2014 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 2015 | |
3f208fd7 PM |
2016 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2017 | bool isread) | |
92611c00 PM |
2018 | { |
2019 | if (ri->opc2 & 4) { | |
87562e4f PM |
2020 | /* The ATS12NSO* operations must trap to EL3 if executed in |
2021 | * Secure EL1 (which can only happen if EL3 is AArch64). | |
2022 | * They are simply UNDEF if executed from NS EL1. | |
2023 | * They function normally from EL2 or EL3. | |
92611c00 | 2024 | */ |
87562e4f PM |
2025 | if (arm_current_el(env) == 1) { |
2026 | if (arm_is_secure_below_el3(env)) { | |
2027 | return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; | |
2028 | } | |
2029 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2030 | } | |
92611c00 PM |
2031 | } |
2032 | return CP_ACCESS_OK; | |
2033 | } | |
2034 | ||
060e8a48 | 2035 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
d3649702 | 2036 | int access_type, ARMMMUIdx mmu_idx) |
4a501606 | 2037 | { |
a8170e5e | 2038 | hwaddr phys_addr; |
4a501606 PM |
2039 | target_ulong page_size; |
2040 | int prot; | |
b7cc4e82 PC |
2041 | uint32_t fsr; |
2042 | bool ret; | |
01c097f7 | 2043 | uint64_t par64; |
8bf5b6a9 | 2044 | MemTxAttrs attrs = {}; |
e14b5a23 | 2045 | ARMMMUFaultInfo fi = {}; |
4a501606 | 2046 | |
d3649702 | 2047 | ret = get_phys_addr(env, value, access_type, mmu_idx, |
e14b5a23 | 2048 | &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); |
702a9357 | 2049 | if (extended_addresses_enabled(env)) { |
b7cc4e82 | 2050 | /* fsr is a DFSR/IFSR value for the long descriptor |
702a9357 PM |
2051 | * translation table format, but with WnR always clear. |
2052 | * Convert it to a 64-bit PAR. | |
2053 | */ | |
01c097f7 | 2054 | par64 = (1 << 11); /* LPAE bit always set */ |
b7cc4e82 | 2055 | if (!ret) { |
702a9357 | 2056 | par64 |= phys_addr & ~0xfffULL; |
8bf5b6a9 PM |
2057 | if (!attrs.secure) { |
2058 | par64 |= (1 << 9); /* NS */ | |
2059 | } | |
702a9357 | 2060 | /* We don't set the ATTR or SH fields in the PAR. */ |
4a501606 | 2061 | } else { |
702a9357 | 2062 | par64 |= 1; /* F */ |
b7cc4e82 | 2063 | par64 |= (fsr & 0x3f) << 1; /* FS */ |
702a9357 PM |
2064 | /* Note that S2WLK and FSTAGE are always zero, because we don't |
2065 | * implement virtualization and therefore there can't be a stage 2 | |
2066 | * fault. | |
2067 | */ | |
4a501606 PM |
2068 | } |
2069 | } else { | |
b7cc4e82 | 2070 | /* fsr is a DFSR/IFSR value for the short descriptor |
702a9357 PM |
2071 | * translation table format (with WnR always clear). |
2072 | * Convert it to a 32-bit PAR. | |
2073 | */ | |
b7cc4e82 | 2074 | if (!ret) { |
702a9357 PM |
2075 | /* We do not set any attribute bits in the PAR */ |
2076 | if (page_size == (1 << 24) | |
2077 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 2078 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 2079 | } else { |
01c097f7 | 2080 | par64 = phys_addr & 0xfffff000; |
702a9357 | 2081 | } |
8bf5b6a9 PM |
2082 | if (!attrs.secure) { |
2083 | par64 |= (1 << 9); /* NS */ | |
2084 | } | |
702a9357 | 2085 | } else { |
b7cc4e82 PC |
2086 | par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
2087 | ((fsr & 0xf) << 1) | 1; | |
702a9357 | 2088 | } |
4a501606 | 2089 | } |
060e8a48 PM |
2090 | return par64; |
2091 | } | |
2092 | ||
2093 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
2094 | { | |
060e8a48 PM |
2095 | int access_type = ri->opc2 & 1; |
2096 | uint64_t par64; | |
d3649702 PM |
2097 | ARMMMUIdx mmu_idx; |
2098 | int el = arm_current_el(env); | |
2099 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 2100 | |
d3649702 PM |
2101 | switch (ri->opc2 & 6) { |
2102 | case 0: | |
2103 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
2104 | switch (el) { | |
2105 | case 3: | |
2106 | mmu_idx = ARMMMUIdx_S1E3; | |
2107 | break; | |
2108 | case 2: | |
2109 | mmu_idx = ARMMMUIdx_S1NSE1; | |
2110 | break; | |
2111 | case 1: | |
2112 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2113 | break; | |
2114 | default: | |
2115 | g_assert_not_reached(); | |
2116 | } | |
2117 | break; | |
2118 | case 2: | |
2119 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
2120 | switch (el) { | |
2121 | case 3: | |
2122 | mmu_idx = ARMMMUIdx_S1SE0; | |
2123 | break; | |
2124 | case 2: | |
2125 | mmu_idx = ARMMMUIdx_S1NSE0; | |
2126 | break; | |
2127 | case 1: | |
2128 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2129 | break; | |
2130 | default: | |
2131 | g_assert_not_reached(); | |
2132 | } | |
2133 | break; | |
2134 | case 4: | |
2135 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
2136 | mmu_idx = ARMMMUIdx_S12NSE1; | |
2137 | break; | |
2138 | case 6: | |
2139 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
2140 | mmu_idx = ARMMMUIdx_S12NSE0; | |
2141 | break; | |
2142 | default: | |
2143 | g_assert_not_reached(); | |
2144 | } | |
2145 | ||
2146 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
2147 | |
2148 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 2149 | } |
060e8a48 | 2150 | |
14db7fe0 PM |
2151 | static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2152 | uint64_t value) | |
2153 | { | |
2154 | int access_type = ri->opc2 & 1; | |
2155 | uint64_t par64; | |
2156 | ||
2157 | par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); | |
2158 | ||
2159 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
2160 | } | |
2161 | ||
3f208fd7 PM |
2162 | static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2163 | bool isread) | |
2a47df95 PM |
2164 | { |
2165 | if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { | |
2166 | return CP_ACCESS_TRAP; | |
2167 | } | |
2168 | return CP_ACCESS_OK; | |
2169 | } | |
2170 | ||
060e8a48 PM |
2171 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
2172 | uint64_t value) | |
2173 | { | |
060e8a48 | 2174 | int access_type = ri->opc2 & 1; |
d3649702 PM |
2175 | ARMMMUIdx mmu_idx; |
2176 | int secure = arm_is_secure_below_el3(env); | |
2177 | ||
2178 | switch (ri->opc2 & 6) { | |
2179 | case 0: | |
2180 | switch (ri->opc1) { | |
2181 | case 0: /* AT S1E1R, AT S1E1W */ | |
2182 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
2183 | break; | |
2184 | case 4: /* AT S1E2R, AT S1E2W */ | |
2185 | mmu_idx = ARMMMUIdx_S1E2; | |
2186 | break; | |
2187 | case 6: /* AT S1E3R, AT S1E3W */ | |
2188 | mmu_idx = ARMMMUIdx_S1E3; | |
2189 | break; | |
2190 | default: | |
2191 | g_assert_not_reached(); | |
2192 | } | |
2193 | break; | |
2194 | case 2: /* AT S1E0R, AT S1E0W */ | |
2195 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
2196 | break; | |
2197 | case 4: /* AT S12E1R, AT S12E1W */ | |
2a47df95 | 2198 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
d3649702 PM |
2199 | break; |
2200 | case 6: /* AT S12E0R, AT S12E0W */ | |
2a47df95 | 2201 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
d3649702 PM |
2202 | break; |
2203 | default: | |
2204 | g_assert_not_reached(); | |
2205 | } | |
060e8a48 | 2206 | |
d3649702 | 2207 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 2208 | } |
4a501606 PM |
2209 | #endif |
2210 | ||
2211 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
2212 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2213 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
2214 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
2215 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
2216 | .writefn = par_write }, |
2217 | #ifndef CONFIG_USER_ONLY | |
87562e4f | 2218 | /* This underdecoding is safe because the reginfo is NO_RAW. */ |
4a501606 | 2219 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
92611c00 | 2220 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 2221 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
2222 | #endif |
2223 | REGINFO_SENTINEL | |
2224 | }; | |
2225 | ||
18032bec PM |
2226 | /* Return basic MPU access permission bits. */ |
2227 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
2228 | { | |
2229 | uint32_t ret; | |
2230 | uint32_t mask; | |
2231 | int i; | |
2232 | ret = 0; | |
2233 | mask = 3; | |
2234 | for (i = 0; i < 16; i += 2) { | |
2235 | ret |= (val >> i) & mask; | |
2236 | mask <<= 2; | |
2237 | } | |
2238 | return ret; | |
2239 | } | |
2240 | ||
2241 | /* Pad basic MPU access permission bits to extended format. */ | |
2242 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
2243 | { | |
2244 | uint32_t ret; | |
2245 | uint32_t mask; | |
2246 | int i; | |
2247 | ret = 0; | |
2248 | mask = 3; | |
2249 | for (i = 0; i < 16; i += 2) { | |
2250 | ret |= (val & mask) << i; | |
2251 | mask <<= 2; | |
2252 | } | |
2253 | return ret; | |
2254 | } | |
2255 | ||
c4241c7d PM |
2256 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2257 | uint64_t value) | |
18032bec | 2258 | { |
7e09797c | 2259 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2260 | } |
2261 | ||
c4241c7d | 2262 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2263 | { |
7e09797c | 2264 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
2265 | } |
2266 | ||
c4241c7d PM |
2267 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2268 | uint64_t value) | |
18032bec | 2269 | { |
7e09797c | 2270 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
2271 | } |
2272 | ||
c4241c7d | 2273 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 2274 | { |
7e09797c | 2275 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
2276 | } |
2277 | ||
6cb0b013 PC |
2278 | static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2279 | { | |
2280 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2281 | ||
2282 | if (!u32p) { | |
2283 | return 0; | |
2284 | } | |
2285 | ||
2286 | u32p += env->cp15.c6_rgnr; | |
2287 | return *u32p; | |
2288 | } | |
2289 | ||
2290 | static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2291 | uint64_t value) | |
2292 | { | |
2293 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2294 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2295 | ||
2296 | if (!u32p) { | |
2297 | return; | |
2298 | } | |
2299 | ||
2300 | u32p += env->cp15.c6_rgnr; | |
2301 | tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ | |
2302 | *u32p = value; | |
2303 | } | |
2304 | ||
2305 | static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
2306 | { | |
2307 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2308 | uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); | |
2309 | ||
2310 | if (!u32p) { | |
2311 | return; | |
2312 | } | |
2313 | ||
2314 | memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); | |
2315 | } | |
2316 | ||
2317 | static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2318 | uint64_t value) | |
2319 | { | |
2320 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2321 | uint32_t nrgs = cpu->pmsav7_dregion; | |
2322 | ||
2323 | if (value >= nrgs) { | |
2324 | qemu_log_mask(LOG_GUEST_ERROR, | |
2325 | "PMSAv7 RGNR write >= # supported regions, %" PRIu32 | |
2326 | " > %" PRIu32 "\n", (uint32_t)value, nrgs); | |
2327 | return; | |
2328 | } | |
2329 | ||
2330 | raw_write(env, ri, value); | |
2331 | } | |
2332 | ||
2333 | static const ARMCPRegInfo pmsav7_cp_reginfo[] = { | |
2334 | { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, | |
2335 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2336 | .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), | |
2337 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2338 | { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, | |
2339 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2340 | .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), | |
2341 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2342 | { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, | |
2343 | .access = PL1_RW, .type = ARM_CP_NO_RAW, | |
2344 | .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), | |
2345 | .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, | |
2346 | { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, | |
2347 | .access = PL1_RW, | |
2348 | .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), | |
2349 | .writefn = pmsav7_rgnr_write }, | |
2350 | REGINFO_SENTINEL | |
2351 | }; | |
2352 | ||
18032bec PM |
2353 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
2354 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 2355 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2356 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
18032bec PM |
2357 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
2358 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 2359 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c | 2360 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
18032bec PM |
2361 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
2362 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2363 | .access = PL1_RW, | |
7e09797c PM |
2364 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
2365 | .resetvalue = 0, }, | |
18032bec PM |
2366 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
2367 | .access = PL1_RW, | |
7e09797c PM |
2368 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
2369 | .resetvalue = 0, }, | |
ecce5c3c PM |
2370 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2371 | .access = PL1_RW, | |
2372 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
2373 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2374 | .access = PL1_RW, | |
2375 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 2376 | /* Protection region base and size registers */ |
e508a92b PM |
2377 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
2378 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2379 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
2380 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
2381 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2382 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
2383 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
2384 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2385 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
2386 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
2387 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2388 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
2389 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
2390 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2391 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
2392 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
2393 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2394 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
2395 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
2396 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2397 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
2398 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
2399 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
2400 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
2401 | REGINFO_SENTINEL |
2402 | }; | |
2403 | ||
c4241c7d PM |
2404 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2405 | uint64_t value) | |
ecce5c3c | 2406 | { |
11f136ee | 2407 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
2408 | int maskshift = extract32(value, 0, 3); |
2409 | ||
e389be16 FA |
2410 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2411 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
2412 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
2413 | * using Long-desciptor translation table format */ | |
2414 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
2415 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2416 | /* In an implementation that includes the Security Extensions | |
2417 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
2418 | * Short-descriptor translation table format. | |
2419 | */ | |
2420 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
2421 | } else { | |
2422 | value &= TTBCR_N; | |
2423 | } | |
e42c4db3 | 2424 | } |
e389be16 | 2425 | |
b6af0975 | 2426 | /* Update the masks corresponding to the TCR bank being written |
11f136ee | 2427 | * Note that we always calculate mask and base_mask, but |
e42c4db3 | 2428 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
2429 | * for long-descriptor tables the TCR fields are used differently |
2430 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 2431 | */ |
11f136ee FA |
2432 | tcr->raw_tcr = value; |
2433 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
2434 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
2435 | } |
2436 | ||
c4241c7d PM |
2437 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2438 | uint64_t value) | |
d4e6df63 | 2439 | { |
00c8cb0a AF |
2440 | ARMCPU *cpu = arm_env_get_cpu(env); |
2441 | ||
d4e6df63 PM |
2442 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2443 | /* With LPAE the TTBCR could result in a change of ASID | |
2444 | * via the TTBCR.A1 bit, so do a TLB flush. | |
2445 | */ | |
00c8cb0a | 2446 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 2447 | } |
c4241c7d | 2448 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
2449 | } |
2450 | ||
ecce5c3c PM |
2451 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
2452 | { | |
11f136ee FA |
2453 | TCR *tcr = raw_ptr(env, ri); |
2454 | ||
2455 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
2456 | * the TCR being reset. | |
2457 | */ | |
2458 | tcr->raw_tcr = 0; | |
2459 | tcr->mask = 0; | |
2460 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
2461 | } |
2462 | ||
cb2e37df PM |
2463 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2464 | uint64_t value) | |
2465 | { | |
00c8cb0a | 2466 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 2467 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 2468 | |
cb2e37df | 2469 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 2470 | tlb_flush(CPU(cpu), 1); |
11f136ee | 2471 | tcr->raw_tcr = value; |
cb2e37df PM |
2472 | } |
2473 | ||
327ed10f PM |
2474 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2475 | uint64_t value) | |
2476 | { | |
2477 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
2478 | * must flush the TLB. | |
2479 | */ | |
2480 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
2481 | ARMCPU *cpu = arm_env_get_cpu(env); |
2482 | ||
2483 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
2484 | } |
2485 | raw_write(env, ri, value); | |
2486 | } | |
2487 | ||
b698e9cf EI |
2488 | static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2489 | uint64_t value) | |
2490 | { | |
2491 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2492 | CPUState *cs = CPU(cpu); | |
2493 | ||
2494 | /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ | |
2495 | if (raw_read(env, ri) != value) { | |
2496 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | |
2497 | ARMMMUIdx_S2NS, -1); | |
2498 | raw_write(env, ri, value); | |
2499 | } | |
2500 | } | |
2501 | ||
8e5d75c9 | 2502 | static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
18032bec | 2503 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 2504 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 | 2505 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
b061a82b | 2506 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
18032bec | 2507 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
2508 | .access = PL1_RW, .resetvalue = 0, |
2509 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
2510 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
8e5d75c9 PC |
2511 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
2512 | .access = PL1_RW, .resetvalue = 0, | |
2513 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
2514 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
2515 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, | |
2516 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2517 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), | |
2518 | .resetvalue = 0, }, | |
2519 | REGINFO_SENTINEL | |
2520 | }; | |
2521 | ||
2522 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
6cd8a264 RH |
2523 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
2524 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2525 | .access = PL1_RW, | |
d81c519c | 2526 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 2527 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2528 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
2529 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2530 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
2531 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 2532 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
2533 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
2534 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2535 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
2536 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
2537 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
2538 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2539 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
2540 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 2541 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 2542 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 2543 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
b061a82b | 2544 | .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
2545 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
2546 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
18032bec PM |
2547 | REGINFO_SENTINEL |
2548 | }; | |
2549 | ||
c4241c7d PM |
2550 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2551 | uint64_t value) | |
1047b9d7 PM |
2552 | { |
2553 | env->cp15.c15_ticonfig = value & 0xe7; | |
2554 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
2555 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
2556 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
2557 | } |
2558 | ||
c4241c7d PM |
2559 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2560 | uint64_t value) | |
1047b9d7 PM |
2561 | { |
2562 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
2563 | } |
2564 | ||
c4241c7d PM |
2565 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2566 | uint64_t value) | |
1047b9d7 PM |
2567 | { |
2568 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 2569 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
2570 | } |
2571 | ||
c4241c7d PM |
2572 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2573 | uint64_t value) | |
c4804214 PM |
2574 | { |
2575 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
2576 | * containing a dirty line; cache flush operations have to reset these. | |
2577 | */ | |
2578 | env->cp15.c15_i_max = 0x000; | |
2579 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
2580 | } |
2581 | ||
18032bec PM |
2582 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
2583 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
2584 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 2585 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 2586 | .resetvalue = 0, }, |
1047b9d7 PM |
2587 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
2588 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2589 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
2590 | .access = PL1_RW, | |
2591 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
2592 | .writefn = omap_ticonfig_write }, | |
2593 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
2594 | .access = PL1_RW, | |
2595 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
2596 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
2597 | .access = PL1_RW, .resetvalue = 0xff0, | |
2598 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
2599 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
2600 | .access = PL1_RW, | |
2601 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
2602 | .writefn = omap_threadid_write }, | |
2603 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
2604 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 2605 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
2606 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
2607 | /* TODO: Peripheral port remap register: | |
2608 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
2609 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
2610 | * when MMU is off. | |
2611 | */ | |
c4804214 | 2612 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 2613 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 2614 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 2615 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
2616 | { .name = "C9", .cp = 15, .crn = 9, |
2617 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
2618 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
2619 | REGINFO_SENTINEL |
2620 | }; | |
2621 | ||
c4241c7d PM |
2622 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2623 | uint64_t value) | |
1047b9d7 | 2624 | { |
c0f4af17 | 2625 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
2626 | } |
2627 | ||
2628 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
2629 | { .name = "XSCALE_CPAR", | |
2630 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
2631 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
2632 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
2633 | { .name = "XSCALE_AUXCR", |
2634 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
2635 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
2636 | .resetvalue = 0, }, | |
3b771579 PM |
2637 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
2638 | * and hope the guest does not really rely on cache behaviour. | |
2639 | */ | |
2640 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
2641 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
2642 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2643 | { .name = "XSCALE_UNLOCK_ICACHE", | |
2644 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
2645 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2646 | { .name = "XSCALE_DCACHE_LOCK", | |
2647 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
2648 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2649 | { .name = "XSCALE_UNLOCK_DCACHE", | |
2650 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
2651 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
2652 | REGINFO_SENTINEL |
2653 | }; | |
2654 | ||
2655 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
2656 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
2657 | * implementation of this implementation-defined space. | |
2658 | * Ideally this should eventually disappear in favour of actually | |
2659 | * implementing the correct behaviour for all cores. | |
2660 | */ | |
2661 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
2662 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 2663 | .access = PL1_RW, |
7a0e58fa | 2664 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 2665 | .resetvalue = 0 }, |
18032bec PM |
2666 | REGINFO_SENTINEL |
2667 | }; | |
2668 | ||
c4804214 PM |
2669 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
2670 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
2671 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 2672 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2673 | .resetvalue = 0 }, |
c4804214 PM |
2674 | REGINFO_SENTINEL |
2675 | }; | |
2676 | ||
2677 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
2678 | /* We never have a a block transfer operation in progress */ | |
2679 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 2680 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2681 | .resetvalue = 0 }, |
30b05bba PM |
2682 | /* The cache ops themselves: these all NOP for QEMU */ |
2683 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
2684 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2685 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2686 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2687 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2688 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2689 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2690 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2691 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2692 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2693 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2694 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2695 | REGINFO_SENTINEL |
2696 | }; | |
2697 | ||
2698 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2699 | /* The cache test-and-clean instructions always return (1 << 30) | |
2700 | * to indicate that there are no dirty cache lines. | |
2701 | */ | |
2702 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2703 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2704 | .resetvalue = (1 << 30) }, |
c4804214 | 2705 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2706 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2707 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2708 | REGINFO_SENTINEL |
2709 | }; | |
2710 | ||
34f90529 PM |
2711 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2712 | /* Ignore ReadBuffer accesses */ | |
2713 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2714 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2715 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2716 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2717 | REGINFO_SENTINEL |
2718 | }; | |
2719 | ||
731de9e6 EI |
2720 | static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2721 | { | |
2722 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2723 | unsigned int cur_el = arm_current_el(env); | |
2724 | bool secure = arm_is_secure(env); | |
2725 | ||
2726 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2727 | return env->cp15.vpidr_el2; | |
2728 | } | |
2729 | return raw_read(env, ri); | |
2730 | } | |
2731 | ||
06a7e647 | 2732 | static uint64_t mpidr_read_val(CPUARMState *env) |
81bdde9d | 2733 | { |
eb5e1d3c PF |
2734 | ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
2735 | uint64_t mpidr = cpu->mp_affinity; | |
2736 | ||
81bdde9d | 2737 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
78dbbbe4 | 2738 | mpidr |= (1U << 31); |
81bdde9d PM |
2739 | /* Cores which are uniprocessor (non-coherent) |
2740 | * but still implement the MP extensions set | |
a8e81b31 | 2741 | * bit 30. (For instance, Cortex-R5). |
81bdde9d | 2742 | */ |
a8e81b31 PC |
2743 | if (cpu->mp_is_up) { |
2744 | mpidr |= (1u << 30); | |
2745 | } | |
81bdde9d | 2746 | } |
c4241c7d | 2747 | return mpidr; |
81bdde9d PM |
2748 | } |
2749 | ||
06a7e647 EI |
2750 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2751 | { | |
f0d574d6 EI |
2752 | unsigned int cur_el = arm_current_el(env); |
2753 | bool secure = arm_is_secure(env); | |
2754 | ||
2755 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { | |
2756 | return env->cp15.vmpidr_el2; | |
2757 | } | |
06a7e647 EI |
2758 | return mpidr_read_val(env); |
2759 | } | |
2760 | ||
81bdde9d | 2761 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
4b7fff2f PM |
2762 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2763 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2764 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2765 | REGINFO_SENTINEL |
2766 | }; | |
2767 | ||
7ac681cf | 2768 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
a903c449 | 2769 | /* NOP AMAIR0/1 */ |
b0fe2427 PM |
2770 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2771 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
a903c449 | 2772 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2773 | .resetvalue = 0 }, |
b0fe2427 | 2774 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf | 2775 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
a903c449 | 2776 | .access = PL1_RW, .type = ARM_CP_CONST, |
7ac681cf | 2777 | .resetvalue = 0 }, |
891a2fe7 | 2778 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2779 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2780 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2781 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2782 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2783 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2784 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2785 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
b061a82b | 2786 | .writefn = vmsa_ttbr_write, }, |
891a2fe7 | 2787 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2788 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2789 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2790 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
b061a82b | 2791 | .writefn = vmsa_ttbr_write, }, |
7ac681cf PM |
2792 | REGINFO_SENTINEL |
2793 | }; | |
2794 | ||
c4241c7d | 2795 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2796 | { |
c4241c7d | 2797 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2798 | } |
2799 | ||
c4241c7d PM |
2800 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2801 | uint64_t value) | |
b0d2b7d0 PM |
2802 | { |
2803 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2804 | } |
2805 | ||
c4241c7d | 2806 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2807 | { |
c4241c7d | 2808 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2809 | } |
2810 | ||
c4241c7d PM |
2811 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2812 | uint64_t value) | |
b0d2b7d0 PM |
2813 | { |
2814 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2815 | } |
2816 | ||
3f208fd7 PM |
2817 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
2818 | bool isread) | |
c2b820fe | 2819 | { |
137feaa9 | 2820 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2821 | return CP_ACCESS_TRAP; |
2822 | } | |
2823 | return CP_ACCESS_OK; | |
2824 | } | |
2825 | ||
2826 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2827 | uint64_t value) | |
2828 | { | |
2829 | env->daif = value & PSTATE_DAIF; | |
2830 | } | |
2831 | ||
8af35c37 | 2832 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
3f208fd7 PM |
2833 | const ARMCPRegInfo *ri, |
2834 | bool isread) | |
8af35c37 PM |
2835 | { |
2836 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2837 | * SCTLR_EL1.UCI is set. | |
2838 | */ | |
137feaa9 | 2839 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2840 | return CP_ACCESS_TRAP; |
2841 | } | |
2842 | return CP_ACCESS_OK; | |
2843 | } | |
2844 | ||
dbb1fb27 AB |
2845 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2846 | * Page D4-1736 (DDI0487A.b) | |
2847 | */ | |
2848 | ||
fd3ed969 PM |
2849 | static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2850 | uint64_t value) | |
168aa23b | 2851 | { |
31b030d4 | 2852 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 | 2853 | CPUState *cs = CPU(cpu); |
dbb1fb27 | 2854 | |
fd3ed969 PM |
2855 | if (arm_is_secure_below_el3(env)) { |
2856 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2857 | } else { | |
2858 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | |
2859 | } | |
168aa23b PM |
2860 | } |
2861 | ||
fd3ed969 PM |
2862 | static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2863 | uint64_t value) | |
168aa23b | 2864 | { |
fd3ed969 PM |
2865 | bool sec = arm_is_secure_below_el3(env); |
2866 | CPUState *other_cs; | |
dbb1fb27 | 2867 | |
fd3ed969 PM |
2868 | CPU_FOREACH(other_cs) { |
2869 | if (sec) { | |
2870 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2871 | } else { | |
2872 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2873 | ARMMMUIdx_S12NSE0, -1); | |
2874 | } | |
2875 | } | |
168aa23b PM |
2876 | } |
2877 | ||
fd3ed969 PM |
2878 | static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2879 | uint64_t value) | |
168aa23b | 2880 | { |
fd3ed969 PM |
2881 | /* Note that the 'ALL' scope must invalidate both stage 1 and |
2882 | * stage 2 translations, whereas most other scopes only invalidate | |
2883 | * stage 1 translations. | |
2884 | */ | |
00c8cb0a | 2885 | ARMCPU *cpu = arm_env_get_cpu(env); |
fd3ed969 PM |
2886 | CPUState *cs = CPU(cpu); |
2887 | ||
2888 | if (arm_is_secure_below_el3(env)) { | |
2889 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2890 | } else { | |
2891 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
2892 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, | |
2893 | ARMMMUIdx_S2NS, -1); | |
2894 | } else { | |
2895 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); | |
2896 | } | |
2897 | } | |
168aa23b PM |
2898 | } |
2899 | ||
fd3ed969 | 2900 | static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
fa439fc5 PM |
2901 | uint64_t value) |
2902 | { | |
fd3ed969 PM |
2903 | ARMCPU *cpu = arm_env_get_cpu(env); |
2904 | CPUState *cs = CPU(cpu); | |
2905 | ||
2906 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); | |
2907 | } | |
2908 | ||
43efaa33 PM |
2909 | static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2910 | uint64_t value) | |
2911 | { | |
2912 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2913 | CPUState *cs = CPU(cpu); | |
2914 | ||
2915 | tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); | |
2916 | } | |
2917 | ||
fd3ed969 PM |
2918 | static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2919 | uint64_t value) | |
2920 | { | |
2921 | /* Note that the 'ALL' scope must invalidate both stage 1 and | |
2922 | * stage 2 translations, whereas most other scopes only invalidate | |
2923 | * stage 1 translations. | |
2924 | */ | |
2925 | bool sec = arm_is_secure_below_el3(env); | |
2926 | bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); | |
fa439fc5 | 2927 | CPUState *other_cs; |
fa439fc5 PM |
2928 | |
2929 | CPU_FOREACH(other_cs) { | |
fd3ed969 PM |
2930 | if (sec) { |
2931 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); | |
2932 | } else if (has_el2) { | |
2933 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2934 | ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); | |
2935 | } else { | |
2936 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, | |
2937 | ARMMMUIdx_S12NSE0, -1); | |
2938 | } | |
fa439fc5 PM |
2939 | } |
2940 | } | |
2941 | ||
2bfb9d75 PM |
2942 | static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2943 | uint64_t value) | |
2944 | { | |
2945 | CPUState *other_cs; | |
2946 | ||
2947 | CPU_FOREACH(other_cs) { | |
2948 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); | |
2949 | } | |
2950 | } | |
2951 | ||
43efaa33 PM |
2952 | static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2953 | uint64_t value) | |
2954 | { | |
2955 | CPUState *other_cs; | |
2956 | ||
2957 | CPU_FOREACH(other_cs) { | |
2958 | tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); | |
2959 | } | |
2960 | } | |
2961 | ||
fd3ed969 PM |
2962 | static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2963 | uint64_t value) | |
2964 | { | |
2965 | /* Invalidate by VA, EL1&0 (AArch64 version). | |
2966 | * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, | |
2967 | * since we don't support flush-for-specific-ASID-only or | |
2968 | * flush-last-level-only. | |
2969 | */ | |
2970 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2971 | CPUState *cs = CPU(cpu); | |
2972 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2973 | ||
2974 | if (arm_is_secure_below_el3(env)) { | |
2975 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, | |
2976 | ARMMMUIdx_S1SE0, -1); | |
2977 | } else { | |
2978 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, | |
2979 | ARMMMUIdx_S12NSE0, -1); | |
2980 | } | |
2981 | } | |
2982 | ||
2983 | static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2984 | uint64_t value) | |
fa439fc5 | 2985 | { |
fd3ed969 PM |
2986 | /* Invalidate by VA, EL2 |
2987 | * Currently handles both VAE2 and VALE2, since we don't support | |
2988 | * flush-last-level-only. | |
2989 | */ | |
2990 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2991 | CPUState *cs = CPU(cpu); | |
2992 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2993 | ||
2994 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); | |
2995 | } | |
2996 | ||
43efaa33 PM |
2997 | static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2998 | uint64_t value) | |
2999 | { | |
3000 | /* Invalidate by VA, EL3 | |
3001 | * Currently handles both VAE3 and VALE3, since we don't support | |
3002 | * flush-last-level-only. | |
3003 | */ | |
3004 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3005 | CPUState *cs = CPU(cpu); | |
3006 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3007 | ||
3008 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); | |
3009 | } | |
3010 | ||
fd3ed969 PM |
3011 | static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3012 | uint64_t value) | |
3013 | { | |
3014 | bool sec = arm_is_secure_below_el3(env); | |
fa439fc5 PM |
3015 | CPUState *other_cs; |
3016 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3017 | ||
3018 | CPU_FOREACH(other_cs) { | |
fd3ed969 PM |
3019 | if (sec) { |
3020 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, | |
3021 | ARMMMUIdx_S1SE0, -1); | |
3022 | } else { | |
3023 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, | |
3024 | ARMMMUIdx_S12NSE0, -1); | |
3025 | } | |
fa439fc5 PM |
3026 | } |
3027 | } | |
3028 | ||
fd3ed969 PM |
3029 | static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3030 | uint64_t value) | |
fa439fc5 PM |
3031 | { |
3032 | CPUState *other_cs; | |
fd3ed969 | 3033 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
fa439fc5 PM |
3034 | |
3035 | CPU_FOREACH(other_cs) { | |
fd3ed969 | 3036 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); |
fa439fc5 PM |
3037 | } |
3038 | } | |
3039 | ||
43efaa33 PM |
3040 | static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3041 | uint64_t value) | |
3042 | { | |
3043 | CPUState *other_cs; | |
3044 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
3045 | ||
3046 | CPU_FOREACH(other_cs) { | |
3047 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); | |
3048 | } | |
3049 | } | |
3050 | ||
cea66e91 PM |
3051 | static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3052 | uint64_t value) | |
3053 | { | |
3054 | /* Invalidate by IPA. This has to invalidate any structures that | |
3055 | * contain only stage 2 translation information, but does not need | |
3056 | * to apply to structures that contain combined stage 1 and stage 2 | |
3057 | * translation information. | |
3058 | * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. | |
3059 | */ | |
3060 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3061 | CPUState *cs = CPU(cpu); | |
3062 | uint64_t pageaddr; | |
3063 | ||
3064 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
3065 | return; | |
3066 | } | |
3067 | ||
3068 | pageaddr = sextract64(value << 12, 0, 48); | |
3069 | ||
3070 | tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
3071 | } | |
3072 | ||
3073 | static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
3074 | uint64_t value) | |
3075 | { | |
3076 | CPUState *other_cs; | |
3077 | uint64_t pageaddr; | |
3078 | ||
3079 | if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { | |
3080 | return; | |
3081 | } | |
3082 | ||
3083 | pageaddr = sextract64(value << 12, 0, 48); | |
3084 | ||
3085 | CPU_FOREACH(other_cs) { | |
3086 | tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); | |
3087 | } | |
3088 | } | |
3089 | ||
3f208fd7 PM |
3090 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3091 | bool isread) | |
aca3f40b PM |
3092 | { |
3093 | /* We don't implement EL2, so the only control on DC ZVA is the | |
3094 | * bit in the SCTLR which can prohibit access for EL0. | |
3095 | */ | |
137feaa9 | 3096 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
3097 | return CP_ACCESS_TRAP; |
3098 | } | |
3099 | return CP_ACCESS_OK; | |
3100 | } | |
3101 | ||
3102 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3103 | { | |
3104 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3105 | int dzp_bit = 1 << 4; | |
3106 | ||
3107 | /* DZP indicates whether DC ZVA access is allowed */ | |
3f208fd7 | 3108 | if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
aca3f40b PM |
3109 | dzp_bit = 0; |
3110 | } | |
3111 | return cpu->dcz_blocksize | dzp_bit; | |
3112 | } | |
3113 | ||
3f208fd7 PM |
3114 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3115 | bool isread) | |
f502cfc2 | 3116 | { |
cdcf1405 | 3117 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
3118 | /* Access to SP_EL0 is undefined if it's being used as |
3119 | * the stack pointer. | |
3120 | */ | |
3121 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3122 | } | |
3123 | return CP_ACCESS_OK; | |
3124 | } | |
3125 | ||
3126 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
3127 | { | |
3128 | return env->pstate & PSTATE_SP; | |
3129 | } | |
3130 | ||
3131 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
3132 | { | |
3133 | update_spsel(env, val); | |
3134 | } | |
3135 | ||
137feaa9 FA |
3136 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3137 | uint64_t value) | |
3138 | { | |
3139 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3140 | ||
3141 | if (raw_read(env, ri) == value) { | |
3142 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
3143 | * to do a lot of pointless SCTLR writes. | |
3144 | */ | |
3145 | return; | |
3146 | } | |
3147 | ||
3148 | raw_write(env, ri, value); | |
3149 | /* ??? Lots of these bits are not implemented. */ | |
3150 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
3151 | tlb_flush(CPU(cpu), 1); | |
3152 | } | |
3153 | ||
3f208fd7 PM |
3154 | static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3155 | bool isread) | |
03fbf20f PM |
3156 | { |
3157 | if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { | |
f2cae609 | 3158 | return CP_ACCESS_TRAP_FP_EL2; |
03fbf20f PM |
3159 | } |
3160 | if (env->cp15.cptr_el[3] & CPTR_TFP) { | |
f2cae609 | 3161 | return CP_ACCESS_TRAP_FP_EL3; |
03fbf20f PM |
3162 | } |
3163 | return CP_ACCESS_OK; | |
3164 | } | |
3165 | ||
a8d64e73 PM |
3166 | static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3167 | uint64_t value) | |
3168 | { | |
3169 | env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; | |
3170 | } | |
3171 | ||
b0d2b7d0 PM |
3172 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
3173 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
3174 | * significantly for system emulation of AArch64 CPUs. | |
3175 | */ | |
3176 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
3177 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
3178 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
3179 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
3180 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 3181 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
3182 | .access = PL0_RW, .accessfn = aa64_daif_access, |
3183 | .fieldoffset = offsetof(CPUARMState, daif), | |
3184 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
3185 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
3186 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
3187 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
3188 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
3189 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
3190 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
3191 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
3192 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 3193 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
3194 | .readfn = aa64_dczid_read }, |
3195 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
3196 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
3197 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
3198 | #ifndef CONFIG_USER_ONLY | |
3199 | /* Avoid overhead of an access check that always passes in user-mode */ | |
3200 | .accessfn = aa64_zva_access, | |
3201 | #endif | |
3202 | }, | |
0eef9d98 PM |
3203 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
3204 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
3205 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
3206 | /* Cache ops: all NOPs since we don't emulate caches */ |
3207 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
3208 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3209 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3210 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
3211 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3212 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3213 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
3214 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
3215 | .access = PL0_W, .type = ARM_CP_NOP, | |
3216 | .accessfn = aa64_cacheop_access }, | |
3217 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
3218 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3219 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3220 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
3221 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3222 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3223 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
3224 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
3225 | .access = PL0_W, .type = ARM_CP_NOP, | |
3226 | .accessfn = aa64_cacheop_access }, | |
3227 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
3228 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3229 | .access = PL1_W, .type = ARM_CP_NOP }, | |
3230 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
3231 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
3232 | .access = PL0_W, .type = ARM_CP_NOP, | |
3233 | .accessfn = aa64_cacheop_access }, | |
3234 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
3235 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
3236 | .access = PL0_W, .type = ARM_CP_NOP, | |
3237 | .accessfn = aa64_cacheop_access }, | |
3238 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
3239 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3240 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
3241 | /* TLBI operations */ |
3242 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 3243 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 3244 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3245 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3246 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3247 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 3248 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3249 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3250 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3251 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 3252 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3253 | .writefn = tlbi_aa64_vmalle1is_write }, |
168aa23b | 3254 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3255 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 3256 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3257 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3258 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3259 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3260 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3261 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3262 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3263 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3264 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3265 | .writefn = tlbi_aa64_vae1is_write }, |
168aa23b | 3266 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3267 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 3268 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3269 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3270 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3271 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 3272 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3273 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3274 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3275 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 3276 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3277 | .writefn = tlbi_aa64_vmalle1_write }, |
168aa23b | 3278 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3279 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 3280 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3281 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3282 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3283 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3284 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3285 | .writefn = tlbi_aa64_vae1_write }, |
168aa23b | 3286 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 3287 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3288 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fd3ed969 | 3289 | .writefn = tlbi_aa64_vae1_write }, |
cea66e91 PM |
3290 | { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
3291 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3292 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3293 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
3294 | { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, | |
3295 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3296 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3297 | .writefn = tlbi_aa64_ipas2e1is_write }, | |
83ddf975 PM |
3298 | { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
3299 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3300 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3301 | .writefn = tlbi_aa64_alle1is_write }, |
43efaa33 PM |
3302 | { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
3303 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, | |
3304 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3305 | .writefn = tlbi_aa64_alle1is_write }, | |
cea66e91 PM |
3306 | { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
3307 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3308 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3309 | .writefn = tlbi_aa64_ipas2e1_write }, | |
3310 | { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, | |
3311 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3312 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3313 | .writefn = tlbi_aa64_ipas2e1_write }, | |
83ddf975 PM |
3314 | { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
3315 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3316 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
fd3ed969 | 3317 | .writefn = tlbi_aa64_alle1_write }, |
43efaa33 PM |
3318 | { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
3319 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, | |
3320 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3321 | .writefn = tlbi_aa64_alle1is_write }, | |
19525524 PM |
3322 | #ifndef CONFIG_USER_ONLY |
3323 | /* 64 bit address translation operations */ | |
3324 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
3325 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 3326 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3327 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
3328 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 3329 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3330 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
3331 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 3332 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
3333 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
3334 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 3335 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
2a47df95 | 3336 | { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
7a379c7e | 3337 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
2a47df95 PM |
3338 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3339 | { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3340 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
2a47df95 PM |
3341 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3342 | { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3343 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
2a47df95 PM |
3344 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3345 | { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, | |
7a379c7e | 3346 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
2a47df95 PM |
3347 | .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
3348 | /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ | |
3349 | { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, | |
3350 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, | |
3351 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3352 | { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, | |
3353 | .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, | |
3354 | .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
c96fc9b5 EI |
3355 | { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
3356 | .type = ARM_CP_ALIAS, | |
3357 | .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, | |
3358 | .access = PL1_RW, .resetvalue = 0, | |
3359 | .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), | |
3360 | .writefn = par_write }, | |
19525524 | 3361 | #endif |
995939a6 | 3362 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 3363 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 3364 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 3365 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 3366 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 3367 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 3368 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 3369 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 3370 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 3371 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
541ef8c2 SS |
3372 | { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
3373 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3374 | .writefn = tlbimva_hyp_write }, | |
3375 | { .name = "TLBIMVALHIS", | |
3376 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3377 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3378 | .writefn = tlbimva_hyp_is_write }, | |
3379 | { .name = "TLBIIPAS2", | |
3380 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, | |
3381 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3382 | .writefn = tlbiipas2_write }, | |
3383 | { .name = "TLBIIPAS2IS", | |
3384 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, | |
3385 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3386 | .writefn = tlbiipas2_is_write }, | |
3387 | { .name = "TLBIIPAS2L", | |
3388 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, | |
3389 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3390 | .writefn = tlbiipas2_write }, | |
3391 | { .name = "TLBIIPAS2LIS", | |
3392 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, | |
3393 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3394 | .writefn = tlbiipas2_is_write }, | |
9449fdf6 PM |
3395 | /* 32 bit cache operations */ |
3396 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
3397 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3398 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
3399 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3400 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
3401 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3402 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
3403 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3404 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
3405 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3406 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
3407 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3408 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
3409 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3410 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
3411 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3412 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
3413 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3414 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
3415 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3416 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
3417 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3418 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
3419 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3420 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
3421 | .type = ARM_CP_NOP, .access = PL1_W }, | |
3422 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
3423 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
3424 | .access = PL1_RW, .resetvalue = 0, | |
3425 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3426 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
3427 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 3428 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3429 | .type = ARM_CP_ALIAS, |
a0618a19 | 3430 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
3431 | .access = PL1_RW, |
3432 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 3433 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3434 | .type = ARM_CP_ALIAS, |
a65f1de9 | 3435 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3436 | .access = PL1_RW, |
3437 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, | |
f502cfc2 PM |
3438 | /* We rely on the access checks not allowing the guest to write to the |
3439 | * state field when SPSel indicates that it's being used as the stack | |
3440 | * pointer. | |
3441 | */ | |
3442 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
3443 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
3444 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 3445 | .type = ARM_CP_ALIAS, |
f502cfc2 | 3446 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
3447 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
3448 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3449 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3450 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
3451 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
3452 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 3453 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 3454 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
03fbf20f PM |
3455 | { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
3456 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, | |
3457 | .type = ARM_CP_ALIAS, | |
3458 | .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), | |
3459 | .access = PL2_RW, .accessfn = fpexc32_access }, | |
6a43e0b6 PM |
3460 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
3461 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
3462 | .access = PL2_RW, .resetvalue = 0, | |
3463 | .writefn = dacr_write, .raw_writefn = raw_write, | |
3464 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3465 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, | |
3466 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
3467 | .access = PL2_RW, .resetvalue = 0, | |
3468 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
3469 | { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, | |
3470 | .type = ARM_CP_ALIAS, | |
3471 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, | |
3472 | .access = PL2_RW, | |
3473 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, | |
3474 | { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, | |
3475 | .type = ARM_CP_ALIAS, | |
3476 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, | |
3477 | .access = PL2_RW, | |
3478 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, | |
3479 | { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, | |
3480 | .type = ARM_CP_ALIAS, | |
3481 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, | |
3482 | .access = PL2_RW, | |
3483 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, | |
3484 | { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, | |
3485 | .type = ARM_CP_ALIAS, | |
3486 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, | |
3487 | .access = PL2_RW, | |
3488 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, | |
a8d64e73 PM |
3489 | { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
3490 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, | |
3491 | .resetvalue = 0, | |
3492 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, | |
3493 | { .name = "SDCR", .type = ARM_CP_ALIAS, | |
3494 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, | |
3495 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, | |
3496 | .writefn = sdcr_write, | |
3497 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, | |
b0d2b7d0 PM |
3498 | REGINFO_SENTINEL |
3499 | }; | |
3500 | ||
d42e3c26 | 3501 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
4771cd01 | 3502 | static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
d42e3c26 EI |
3503 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3504 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3505 | .access = PL2_RW, | |
3506 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 3507 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3508 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
3509 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
3510 | .access = PL2_RW, | |
3511 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
c6f19164 GB |
3512 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3513 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3514 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
95f949ac EI |
3515 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3516 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3517 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3518 | .resetvalue = 0 }, | |
3519 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3520 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3521 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2179ef95 PM |
3522 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3523 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3524 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3525 | .resetvalue = 0 }, | |
3526 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3527 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3528 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3529 | .resetvalue = 0 }, | |
37cd6c24 PM |
3530 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3531 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3532 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3533 | .resetvalue = 0 }, | |
3534 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3535 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3536 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3537 | .resetvalue = 0 }, | |
06ec4c8c EI |
3538 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3539 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
3540 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
68e9c2fe EI |
3541 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
3542 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
3543 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3544 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b698e9cf EI |
3545 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3546 | .cp = 15, .opc1 = 6, .crm = 2, | |
3547 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3548 | .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, | |
3549 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3550 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3551 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b9cb5323 EI |
3552 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3553 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3554 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
ff05f37b EI |
3555 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3556 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3557 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
a57633c0 EI |
3558 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3559 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3560 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3561 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3562 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3563 | .resetvalue = 0 }, | |
0b6440af EI |
3564 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3565 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3566 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
edac4d8a EI |
3567 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3568 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3569 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3570 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3571 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3572 | .resetvalue = 0 }, | |
b0e66d95 EI |
3573 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3574 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3575 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3576 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3577 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, | |
3578 | .resetvalue = 0 }, | |
3579 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3580 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
3581 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3582 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3583 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3584 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
14cc7b54 SF |
3585 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
3586 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
d6c8cf81 PM |
3587 | .access = PL2_RW, .accessfn = access_tda, |
3588 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
59e05530 EI |
3589 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
3590 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3591 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
3592 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2a5a9abd AF |
3593 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
3594 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
3595 | .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
d42e3c26 EI |
3596 | REGINFO_SENTINEL |
3597 | }; | |
3598 | ||
f149e3e8 EI |
3599 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
3600 | { | |
3601 | ARMCPU *cpu = arm_env_get_cpu(env); | |
3602 | uint64_t valid_mask = HCR_MASK; | |
3603 | ||
3604 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3605 | valid_mask &= ~HCR_HCD; | |
3606 | } else { | |
3607 | valid_mask &= ~HCR_TSC; | |
3608 | } | |
3609 | ||
3610 | /* Clear RES0 bits. */ | |
3611 | value &= valid_mask; | |
3612 | ||
3613 | /* These bits change the MMU setup: | |
3614 | * HCR_VM enables stage 2 translation | |
3615 | * HCR_PTW forbids certain page-table setups | |
3616 | * HCR_DC Disables stage1 and enables stage2 translation | |
3617 | */ | |
3618 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
3619 | tlb_flush(CPU(cpu), 1); | |
3620 | } | |
3621 | raw_write(env, ri, value); | |
3622 | } | |
3623 | ||
4771cd01 | 3624 | static const ARMCPRegInfo el2_cp_reginfo[] = { |
f149e3e8 EI |
3625 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
3626 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
3627 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
3628 | .writefn = hcr_write }, | |
3b685ba7 | 3629 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3630 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
3631 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
3632 | .access = PL2_RW, | |
3633 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 3634 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
3635 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
3636 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
63b60551 EI |
3637 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
3638 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
3639 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 3640 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3641 | .type = ARM_CP_ALIAS, |
3b685ba7 | 3642 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3643 | .access = PL2_RW, |
3644 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, | |
d42e3c26 EI |
3645 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
3646 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
3647 | .access = PL2_RW, .writefn = vbar_write, | |
3648 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
3649 | .resetvalue = 0 }, | |
884b4dee GB |
3650 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
3651 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 3652 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 3653 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
c6f19164 GB |
3654 | { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
3655 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, | |
3656 | .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3657 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, | |
95f949ac EI |
3658 | { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3659 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, | |
3660 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), | |
3661 | .resetvalue = 0 }, | |
3662 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3663 | .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, | |
3664 | .access = PL2_RW, .type = ARM_CP_ALIAS, | |
3665 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, | |
2179ef95 PM |
3666 | { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
3667 | .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, | |
3668 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3669 | .resetvalue = 0 }, | |
3670 | /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ | |
3671 | { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, | |
3672 | .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, | |
3673 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3674 | .resetvalue = 0 }, | |
37cd6c24 PM |
3675 | { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
3676 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, | |
3677 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3678 | .resetvalue = 0 }, | |
3679 | { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, | |
3680 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, | |
3681 | .access = PL2_RW, .type = ARM_CP_CONST, | |
3682 | .resetvalue = 0 }, | |
06ec4c8c EI |
3683 | { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
3684 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
3685 | .access = PL2_RW, |
3686 | /* no .writefn needed as this can't cause an ASID change; | |
3687 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
3688 | */ | |
06ec4c8c | 3689 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
68e9c2fe EI |
3690 | { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
3691 | .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 | 3692 | .type = ARM_CP_ALIAS, |
68e9c2fe EI |
3693 | .access = PL2_RW, .accessfn = access_el3_aa32ns, |
3694 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, | |
3695 | { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, | |
3696 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, | |
bf06c112 PM |
3697 | .access = PL2_RW, |
3698 | /* no .writefn needed as this can't cause an ASID change; | |
3699 | * no .raw_writefn or .resetfn needed as we never use mask/base_mask | |
3700 | */ | |
68e9c2fe | 3701 | .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
b698e9cf EI |
3702 | { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
3703 | .cp = 15, .opc1 = 6, .crm = 2, | |
3704 | .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
3705 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3706 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), | |
3707 | .writefn = vttbr_write }, | |
3708 | { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, | |
3709 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, | |
3710 | .access = PL2_RW, .writefn = vttbr_write, | |
3711 | .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, | |
b9cb5323 EI |
3712 | { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
3713 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, | |
3714 | .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
3715 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, | |
ff05f37b EI |
3716 | { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
3717 | .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, | |
3718 | .access = PL2_RW, .resetvalue = 0, | |
3719 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, | |
a57633c0 EI |
3720 | { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
3721 | .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, | |
3722 | .access = PL2_RW, .resetvalue = 0, | |
3723 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, | |
3724 | { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, | |
3725 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, | |
a57633c0 | 3726 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
541ef8c2 SS |
3727 | { .name = "TLBIALLNSNH", |
3728 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, | |
3729 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3730 | .writefn = tlbiall_nsnh_write }, | |
3731 | { .name = "TLBIALLNSNHIS", | |
3732 | .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, | |
3733 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3734 | .writefn = tlbiall_nsnh_is_write }, | |
3735 | { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3736 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3737 | .writefn = tlbiall_hyp_write }, | |
3738 | { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3739 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3740 | .writefn = tlbiall_hyp_is_write }, | |
3741 | { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3742 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3743 | .writefn = tlbimva_hyp_write }, | |
3744 | { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3745 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
3746 | .writefn = tlbimva_hyp_is_write }, | |
51da9014 EI |
3747 | { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
3748 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, | |
3749 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3750 | .writefn = tlbi_aa64_alle2_write }, |
8742d49d EI |
3751 | { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
3752 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, | |
3753 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3754 | .writefn = tlbi_aa64_vae2_write }, |
2bfb9d75 PM |
3755 | { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
3756 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, | |
3757 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3758 | .writefn = tlbi_aa64_vae2_write }, | |
3759 | { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, | |
3760 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, | |
3761 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3762 | .writefn = tlbi_aa64_alle2is_write }, | |
8742d49d EI |
3763 | { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
3764 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, | |
3765 | .type = ARM_CP_NO_RAW, .access = PL2_W, | |
fd3ed969 | 3766 | .writefn = tlbi_aa64_vae2is_write }, |
2bfb9d75 PM |
3767 | { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
3768 | .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, | |
3769 | .access = PL2_W, .type = ARM_CP_NO_RAW, | |
3770 | .writefn = tlbi_aa64_vae2is_write }, | |
edac4d8a | 3771 | #ifndef CONFIG_USER_ONLY |
2a47df95 PM |
3772 | /* Unlike the other EL2-related AT operations, these must |
3773 | * UNDEF from EL3 if EL2 is not implemented, which is why we | |
3774 | * define them here rather than with the rest of the AT ops. | |
3775 | */ | |
3776 | { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, | |
3777 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3778 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3779 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
3780 | { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, | |
3781 | .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3782 | .access = PL2_W, .accessfn = at_s1e2_access, | |
3783 | .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, | |
14db7fe0 PM |
3784 | /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
3785 | * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 | |
3786 | * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose | |
3787 | * to behave as if SCR.NS was 1. | |
3788 | */ | |
3789 | { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, | |
3790 | .access = PL2_W, | |
3791 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
3792 | { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, | |
3793 | .access = PL2_W, | |
3794 | .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, | |
0b6440af EI |
3795 | { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
3796 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, | |
3797 | /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the | |
3798 | * reset values as IMPDEF. We choose to reset to 3 to comply with | |
3799 | * both ARMv7 and ARMv8. | |
3800 | */ | |
3801 | .access = PL2_RW, .resetvalue = 3, | |
3802 | .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, | |
edac4d8a EI |
3803 | { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
3804 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, | |
3805 | .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, | |
3806 | .writefn = gt_cntvoff_write, | |
3807 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
3808 | { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, | |
3809 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, | |
3810 | .writefn = gt_cntvoff_write, | |
3811 | .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, | |
b0e66d95 EI |
3812 | { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
3813 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, | |
3814 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3815 | .type = ARM_CP_IO, .access = PL2_RW, | |
3816 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3817 | { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, | |
3818 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), | |
3819 | .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, | |
3820 | .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, | |
3821 | { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, | |
3822 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, | |
d44ec156 | 3823 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
b0e66d95 EI |
3824 | .resetfn = gt_hyp_timer_reset, |
3825 | .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, | |
3826 | { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, | |
3827 | .type = ARM_CP_IO, | |
3828 | .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, | |
3829 | .access = PL2_RW, | |
3830 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), | |
3831 | .resetvalue = 0, | |
3832 | .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, | |
edac4d8a | 3833 | #endif |
14cc7b54 SF |
3834 | /* The only field of MDCR_EL2 that has a defined architectural reset value |
3835 | * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we | |
3836 | * don't impelment any PMU event counters, so using zero as a reset | |
3837 | * value for MDCR_EL2 is okay | |
3838 | */ | |
3839 | { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, | |
3840 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, | |
3841 | .access = PL2_RW, .resetvalue = 0, | |
3842 | .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, | |
59e05530 EI |
3843 | { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
3844 | .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3845 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
3846 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
3847 | { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, | |
3848 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, | |
3849 | .access = PL2_RW, | |
3850 | .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, | |
2a5a9abd AF |
3851 | { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
3852 | .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, | |
3853 | .access = PL2_RW, | |
3854 | .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, | |
3b685ba7 EI |
3855 | REGINFO_SENTINEL |
3856 | }; | |
3857 | ||
2f027fc5 PM |
3858 | static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3859 | bool isread) | |
3860 | { | |
3861 | /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. | |
3862 | * At Secure EL1 it traps to EL3. | |
3863 | */ | |
3864 | if (arm_current_el(env) == 3) { | |
3865 | return CP_ACCESS_OK; | |
3866 | } | |
3867 | if (arm_is_secure_below_el3(env)) { | |
3868 | return CP_ACCESS_TRAP_EL3; | |
3869 | } | |
3870 | /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ | |
3871 | if (isread) { | |
3872 | return CP_ACCESS_OK; | |
3873 | } | |
3874 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
3875 | } | |
3876 | ||
60fb1a87 GB |
3877 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
3878 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
3879 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
3880 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
3881 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 3882 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 | 3883 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
efe4a274 PM |
3884 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
3885 | .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
b061a82b | 3886 | .writefn = scr_write }, |
60fb1a87 GB |
3887 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
3888 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
3889 | .access = PL3_RW, .resetvalue = 0, | |
3890 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
3891 | { .name = "SDER", | |
3892 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
3893 | .access = PL3_RW, .resetvalue = 0, | |
3894 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
60fb1a87 | 3895 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
efe4a274 PM |
3896 | .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
3897 | .writefn = vbar_write, .resetvalue = 0, | |
60fb1a87 | 3898 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
7dd8c9af FA |
3899 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
3900 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
3901 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
3902 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
3903 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
3904 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
6459b94c PM |
3905 | .access = PL3_RW, |
3906 | /* no .writefn needed as this can't cause an ASID change; | |
811595a2 PM |
3907 | * we must provide a .raw_writefn and .resetfn because we handle |
3908 | * reset and migration for the AArch32 TTBCR(S), which might be | |
3909 | * using mask and base_mask. | |
6459b94c | 3910 | */ |
811595a2 | 3911 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee | 3912 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
81547d66 | 3913 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3914 | .type = ARM_CP_ALIAS, |
81547d66 EI |
3915 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
3916 | .access = PL3_RW, | |
3917 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 3918 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
f2c30f42 EI |
3919 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
3920 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
3921 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
3922 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
3923 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 3924 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 3925 | .type = ARM_CP_ALIAS, |
81547d66 | 3926 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
99a99c1f SB |
3927 | .access = PL3_RW, |
3928 | .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, | |
a1ba125c EI |
3929 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
3930 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
3931 | .access = PL3_RW, .writefn = vbar_write, | |
3932 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
3933 | .resetvalue = 0 }, | |
c6f19164 GB |
3934 | { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
3935 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, | |
3936 | .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, | |
3937 | .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, | |
4cfb8ad8 PM |
3938 | { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
3939 | .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, | |
3940 | .access = PL3_RW, .resetvalue = 0, | |
3941 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, | |
2179ef95 PM |
3942 | { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
3943 | .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, | |
3944 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3945 | .resetvalue = 0 }, | |
37cd6c24 PM |
3946 | { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
3947 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, | |
3948 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3949 | .resetvalue = 0 }, | |
3950 | { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, | |
3951 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, | |
3952 | .access = PL3_RW, .type = ARM_CP_CONST, | |
3953 | .resetvalue = 0 }, | |
43efaa33 PM |
3954 | { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
3955 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, | |
3956 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3957 | .writefn = tlbi_aa64_alle3is_write }, | |
3958 | { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, | |
3959 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, | |
3960 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3961 | .writefn = tlbi_aa64_vae3is_write }, | |
3962 | { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, | |
3963 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, | |
3964 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3965 | .writefn = tlbi_aa64_vae3is_write }, | |
3966 | { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, | |
3967 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, | |
3968 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3969 | .writefn = tlbi_aa64_alle3_write }, | |
3970 | { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, | |
3971 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, | |
3972 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3973 | .writefn = tlbi_aa64_vae3_write }, | |
3974 | { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, | |
3975 | .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, | |
3976 | .access = PL3_W, .type = ARM_CP_NO_RAW, | |
3977 | .writefn = tlbi_aa64_vae3_write }, | |
0f1a3b24 FA |
3978 | REGINFO_SENTINEL |
3979 | }; | |
3980 | ||
3f208fd7 PM |
3981 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
3982 | bool isread) | |
7da845b0 PM |
3983 | { |
3984 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
3985 | * but the AArch32 CTR has its own reginfo struct) | |
3986 | */ | |
137feaa9 | 3987 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
3988 | return CP_ACCESS_TRAP; |
3989 | } | |
3990 | return CP_ACCESS_OK; | |
3991 | } | |
3992 | ||
1424ca8d DM |
3993 | static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
3994 | uint64_t value) | |
3995 | { | |
3996 | /* Writes to OSLAR_EL1 may update the OS lock status, which can be | |
3997 | * read via a bit in OSLSR_EL1. | |
3998 | */ | |
3999 | int oslock; | |
4000 | ||
4001 | if (ri->state == ARM_CP_STATE_AA32) { | |
4002 | oslock = (value == 0xC5ACCE55); | |
4003 | } else { | |
4004 | oslock = value & 1; | |
4005 | } | |
4006 | ||
4007 | env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); | |
4008 | } | |
4009 | ||
50300698 | 4010 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 4011 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
4012 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
4013 | * unlike DBGDRAR it is never accessible from EL0. | |
4014 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
4015 | * accessor. | |
50300698 PM |
4016 | */ |
4017 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
91b0a238 PM |
4018 | .access = PL0_R, .accessfn = access_tdra, |
4019 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
4020 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
4021 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
91b0a238 PM |
4022 | .access = PL1_R, .accessfn = access_tdra, |
4023 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 | 4024 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
91b0a238 PM |
4025 | .access = PL0_R, .accessfn = access_tdra, |
4026 | .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 4027 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
4028 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
4029 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
d6c8cf81 | 4030 | .access = PL1_RW, .accessfn = access_tda, |
0e5e8935 PM |
4031 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
4032 | .resetvalue = 0 }, | |
5e8b12ff PM |
4033 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
4034 | * We don't implement the configurable EL0 access. | |
4035 | */ | |
4036 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
4037 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 4038 | .type = ARM_CP_ALIAS, |
d6c8cf81 | 4039 | .access = PL1_R, .accessfn = access_tda, |
b061a82b | 4040 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
10aae104 PM |
4041 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
4042 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1424ca8d | 4043 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
187f678d | 4044 | .accessfn = access_tdosa, |
1424ca8d DM |
4045 | .writefn = oslar_write }, |
4046 | { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, | |
4047 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, | |
4048 | .access = PL1_R, .resetvalue = 10, | |
187f678d | 4049 | .accessfn = access_tdosa, |
1424ca8d | 4050 | .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
5e8b12ff PM |
4051 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
4052 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
4053 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
187f678d PM |
4054 | .access = PL1_RW, .accessfn = access_tdosa, |
4055 | .type = ARM_CP_NOP }, | |
5e8b12ff PM |
4056 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
4057 | * implement vector catch debug events yet. | |
4058 | */ | |
4059 | { .name = "DBGVCR", | |
4060 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
d6c8cf81 PM |
4061 | .access = PL1_RW, .accessfn = access_tda, |
4062 | .type = ARM_CP_NOP }, | |
50300698 PM |
4063 | REGINFO_SENTINEL |
4064 | }; | |
4065 | ||
4066 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
4067 | /* 64 bit access versions of the (dummy) debug registers */ | |
4068 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
4069 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
4070 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
4071 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
4072 | REGINFO_SENTINEL | |
4073 | }; | |
4074 | ||
9ee98ce8 PM |
4075 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
4076 | { | |
4077 | CPUARMState *env = &cpu->env; | |
4078 | vaddr len = 0; | |
4079 | vaddr wvr = env->cp15.dbgwvr[n]; | |
4080 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
4081 | int mask; | |
4082 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
4083 | ||
4084 | if (env->cpu_watchpoint[n]) { | |
4085 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
4086 | env->cpu_watchpoint[n] = NULL; | |
4087 | } | |
4088 | ||
4089 | if (!extract64(wcr, 0, 1)) { | |
4090 | /* E bit clear : watchpoint disabled */ | |
4091 | return; | |
4092 | } | |
4093 | ||
4094 | switch (extract64(wcr, 3, 2)) { | |
4095 | case 0: | |
4096 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
4097 | return; | |
4098 | case 1: | |
4099 | flags |= BP_MEM_READ; | |
4100 | break; | |
4101 | case 2: | |
4102 | flags |= BP_MEM_WRITE; | |
4103 | break; | |
4104 | case 3: | |
4105 | flags |= BP_MEM_ACCESS; | |
4106 | break; | |
4107 | } | |
4108 | ||
4109 | /* Attempts to use both MASK and BAS fields simultaneously are | |
4110 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
4111 | * thus generating a watchpoint for every byte in the masked region. | |
4112 | */ | |
4113 | mask = extract64(wcr, 24, 4); | |
4114 | if (mask == 1 || mask == 2) { | |
4115 | /* Reserved values of MASK; we must act as if the mask value was | |
4116 | * some non-reserved value, or as if the watchpoint were disabled. | |
4117 | * We choose the latter. | |
4118 | */ | |
4119 | return; | |
4120 | } else if (mask) { | |
4121 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
4122 | len = 1ULL << mask; | |
4123 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
4124 | * whether the watchpoint fires when the unmasked bits match; we opt | |
4125 | * to generate the exceptions. | |
4126 | */ | |
4127 | wvr &= ~(len - 1); | |
4128 | } else { | |
4129 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
4130 | int bas = extract64(wcr, 5, 8); | |
4131 | int basstart; | |
4132 | ||
4133 | if (bas == 0) { | |
4134 | /* This must act as if the watchpoint is disabled */ | |
4135 | return; | |
4136 | } | |
4137 | ||
4138 | if (extract64(wvr, 2, 1)) { | |
4139 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
4140 | * ignored, and BAS[3:0] define which bytes to watch. | |
4141 | */ | |
4142 | bas &= 0xf; | |
4143 | } | |
4144 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
4145 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
4146 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
4147 | * We choose to ignore any non-zero bits after the first range of 1s. | |
4148 | */ | |
4149 | basstart = ctz32(bas); | |
4150 | len = cto32(bas >> basstart); | |
4151 | wvr += basstart; | |
4152 | } | |
4153 | ||
4154 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
4155 | &env->cpu_watchpoint[n]); | |
4156 | } | |
4157 | ||
4158 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
4159 | { | |
4160 | int i; | |
4161 | CPUARMState *env = &cpu->env; | |
4162 | ||
4163 | /* Completely clear out existing QEMU watchpoints and our array, to | |
4164 | * avoid possible stale entries following migration load. | |
4165 | */ | |
4166 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
4167 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
4168 | ||
4169 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
4170 | hw_watchpoint_update(cpu, i); | |
4171 | } | |
4172 | } | |
4173 | ||
4174 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4175 | uint64_t value) | |
4176 | { | |
4177 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4178 | int i = ri->crm; | |
4179 | ||
4180 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
4181 | * register reads and behaves as if values written are sign extended. | |
4182 | * Bits [1:0] are RES0. | |
4183 | */ | |
4184 | value = sextract64(value, 0, 49) & ~3ULL; | |
4185 | ||
4186 | raw_write(env, ri, value); | |
4187 | hw_watchpoint_update(cpu, i); | |
4188 | } | |
4189 | ||
4190 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4191 | uint64_t value) | |
4192 | { | |
4193 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4194 | int i = ri->crm; | |
4195 | ||
4196 | raw_write(env, ri, value); | |
4197 | hw_watchpoint_update(cpu, i); | |
4198 | } | |
4199 | ||
46747d15 PM |
4200 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
4201 | { | |
4202 | CPUARMState *env = &cpu->env; | |
4203 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
4204 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
4205 | vaddr addr; | |
4206 | int bt; | |
4207 | int flags = BP_CPU; | |
4208 | ||
4209 | if (env->cpu_breakpoint[n]) { | |
4210 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
4211 | env->cpu_breakpoint[n] = NULL; | |
4212 | } | |
4213 | ||
4214 | if (!extract64(bcr, 0, 1)) { | |
4215 | /* E bit clear : watchpoint disabled */ | |
4216 | return; | |
4217 | } | |
4218 | ||
4219 | bt = extract64(bcr, 20, 4); | |
4220 | ||
4221 | switch (bt) { | |
4222 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
4223 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
4224 | qemu_log_mask(LOG_UNIMP, | |
4225 | "arm: address mismatch breakpoint types not implemented"); | |
4226 | return; | |
4227 | case 0: /* unlinked address match */ | |
4228 | case 1: /* linked address match */ | |
4229 | { | |
4230 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
4231 | * we behave as if the register was sign extended. Bits [1:0] are | |
4232 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
4233 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
4234 | * a bp will fire if the addresses covered by the bp and the addresses | |
4235 | * covered by the insn overlap but the insn doesn't start at the | |
4236 | * start of the bp address range. We choose to require the insn and | |
4237 | * the bp to have the same address. The constraints on writing to | |
4238 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
4239 | * 0b0000 => no breakpoint | |
4240 | * 0b0011 => breakpoint on addr | |
4241 | * 0b1100 => breakpoint on addr + 2 | |
4242 | * 0b1111 => breakpoint on addr | |
4243 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
4244 | */ | |
4245 | int bas = extract64(bcr, 5, 4); | |
4246 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
4247 | if (bas == 0) { | |
4248 | return; | |
4249 | } | |
4250 | if (bas == 0xc) { | |
4251 | addr += 2; | |
4252 | } | |
4253 | break; | |
4254 | } | |
4255 | case 2: /* unlinked context ID match */ | |
4256 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
4257 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
4258 | qemu_log_mask(LOG_UNIMP, | |
4259 | "arm: unlinked context breakpoint types not implemented"); | |
4260 | return; | |
4261 | case 9: /* linked VMID match (reserved if no EL2) */ | |
4262 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
4263 | case 3: /* linked context ID match */ | |
4264 | default: | |
4265 | /* We must generate no events for Linked context matches (unless | |
4266 | * they are linked to by some other bp/wp, which is handled in | |
4267 | * updates for the linking bp/wp). We choose to also generate no events | |
4268 | * for reserved values. | |
4269 | */ | |
4270 | return; | |
4271 | } | |
4272 | ||
4273 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
4274 | } | |
4275 | ||
4276 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
4277 | { | |
4278 | int i; | |
4279 | CPUARMState *env = &cpu->env; | |
4280 | ||
4281 | /* Completely clear out existing QEMU breakpoints and our array, to | |
4282 | * avoid possible stale entries following migration load. | |
4283 | */ | |
4284 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
4285 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
4286 | ||
4287 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
4288 | hw_breakpoint_update(cpu, i); | |
4289 | } | |
4290 | } | |
4291 | ||
4292 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4293 | uint64_t value) | |
4294 | { | |
4295 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4296 | int i = ri->crm; | |
4297 | ||
4298 | raw_write(env, ri, value); | |
4299 | hw_breakpoint_update(cpu, i); | |
4300 | } | |
4301 | ||
4302 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
4303 | uint64_t value) | |
4304 | { | |
4305 | ARMCPU *cpu = arm_env_get_cpu(env); | |
4306 | int i = ri->crm; | |
4307 | ||
4308 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
4309 | * copy of BAS[0]. | |
4310 | */ | |
4311 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
4312 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
4313 | ||
4314 | raw_write(env, ri, value); | |
4315 | hw_breakpoint_update(cpu, i); | |
4316 | } | |
4317 | ||
50300698 | 4318 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 4319 | { |
50300698 PM |
4320 | /* Define v7 and v8 architectural debug registers. |
4321 | * These are just dummy implementations for now. | |
0b45451e PM |
4322 | */ |
4323 | int i; | |
3ff6fc91 | 4324 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
4325 | ARMCPRegInfo dbgdidr = { |
4326 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d6c8cf81 PM |
4327 | .access = PL0_R, .accessfn = access_tda, |
4328 | .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
48eb3ae6 PM |
4329 | }; |
4330 | ||
3ff6fc91 | 4331 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
4332 | brps = extract32(cpu->dbgdidr, 24, 4); |
4333 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
4334 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
4335 | ||
4336 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
4337 | |
4338 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
4339 | * of the debug registers such as number of breakpoints; | |
4340 | * check that if they both exist then they agree. | |
4341 | */ | |
4342 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
4343 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
4344 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 4345 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 4346 | } |
0b45451e | 4347 | |
48eb3ae6 | 4348 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
4349 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
4350 | ||
4351 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
4352 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
4353 | } | |
4354 | ||
48eb3ae6 | 4355 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 4356 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
4357 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
4358 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
d6c8cf81 | 4359 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4360 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
4361 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
4362 | }, | |
10aae104 PM |
4363 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
4364 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
d6c8cf81 | 4365 | .access = PL1_RW, .accessfn = access_tda, |
46747d15 PM |
4366 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
4367 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
4368 | }, | |
48eb3ae6 PM |
4369 | REGINFO_SENTINEL |
4370 | }; | |
4371 | define_arm_cp_regs(cpu, dbgregs); | |
4372 | } | |
4373 | ||
4374 | for (i = 0; i < wrps + 1; i++) { | |
4375 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
4376 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
4377 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
d6c8cf81 | 4378 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4379 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
4380 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
4381 | }, | |
10aae104 PM |
4382 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
4383 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
d6c8cf81 | 4384 | .access = PL1_RW, .accessfn = access_tda, |
9ee98ce8 PM |
4385 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
4386 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
4387 | }, | |
4388 | REGINFO_SENTINEL | |
0b45451e PM |
4389 | }; |
4390 | define_arm_cp_regs(cpu, dbgregs); | |
4391 | } | |
4392 | } | |
4393 | ||
2ceb98c0 PM |
4394 | void register_cp_regs_for_features(ARMCPU *cpu) |
4395 | { | |
4396 | /* Register all the coprocessor registers based on feature bits */ | |
4397 | CPUARMState *env = &cpu->env; | |
4398 | if (arm_feature(env, ARM_FEATURE_M)) { | |
4399 | /* M profile has no coprocessor registers */ | |
4400 | return; | |
4401 | } | |
4402 | ||
e9aa6c21 | 4403 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
4404 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
4405 | /* Must go early as it is full of wildcards that may be | |
4406 | * overridden by later definitions. | |
4407 | */ | |
4408 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
4409 | } | |
4410 | ||
7d57f408 | 4411 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
4412 | /* The ID registers all have impdef reset values */ |
4413 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
4414 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
4415 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
4416 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4417 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
4418 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
4419 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
4420 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4421 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
4422 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
4423 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
4424 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4425 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
4426 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
4427 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
4428 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4429 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
4430 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
4431 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
4432 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4433 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
4434 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
4435 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
4436 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4437 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
4438 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
4439 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
4440 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4441 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
4442 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
4443 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
4444 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4445 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
4446 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
4447 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
4448 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4449 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
4450 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
4451 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
4452 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4453 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
4454 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
4455 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
4456 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4457 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
4458 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
4459 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
4460 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4461 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
4462 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
4463 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
4464 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4465 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
4466 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
4467 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
4468 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 4469 | .resetvalue = cpu->id_isar5 }, |
e20d84c1 PM |
4470 | { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
4471 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, | |
4472 | .access = PL1_R, .type = ARM_CP_CONST, | |
4473 | .resetvalue = cpu->id_mmfr4 }, | |
4474 | /* 7 is as yet unallocated and must RAZ */ | |
4475 | { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, | |
4476 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, | |
4477 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
4478 | .resetvalue = 0 }, |
4479 | REGINFO_SENTINEL | |
4480 | }; | |
4481 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
4482 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
4483 | } else { | |
4484 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
4485 | } | |
4d31c596 PM |
4486 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
4487 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
4488 | } | |
5e5cf9e3 PC |
4489 | if (arm_feature(env, ARM_FEATURE_V7MP) && |
4490 | !arm_feature(env, ARM_FEATURE_MPU)) { | |
995939a6 PM |
4491 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
4492 | } | |
e9aa6c21 | 4493 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 4494 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
4495 | * field as main ID register, and we implement only the cycle |
4496 | * count register. | |
200ac0ef | 4497 | */ |
7c2cb42b | 4498 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
4499 | ARMCPRegInfo pmcr = { |
4500 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 4501 | .access = PL0_RW, |
7a0e58fa | 4502 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 4503 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
4504 | .accessfn = pmreg_access, .writefn = pmcr_write, |
4505 | .raw_writefn = raw_write, | |
200ac0ef | 4506 | }; |
8521466b AF |
4507 | ARMCPRegInfo pmcr64 = { |
4508 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
4509 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
4510 | .access = PL0_RW, .accessfn = pmreg_access, | |
4511 | .type = ARM_CP_IO, | |
4512 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
4513 | .resetvalue = cpu->midr & 0xff000000, | |
4514 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
4515 | }; | |
7c2cb42b | 4516 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 4517 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 4518 | #endif |
776d4e5c | 4519 | ARMCPRegInfo clidr = { |
7da845b0 PM |
4520 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
4521 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
4522 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
4523 | }; | |
776d4e5c | 4524 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 4525 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 4526 | define_debug_regs(cpu); |
7d57f408 PM |
4527 | } else { |
4528 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 4529 | } |
b0d2b7d0 | 4530 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e20d84c1 PM |
4531 | /* AArch64 ID registers, which all have impdef reset values. |
4532 | * Note that within the ID register ranges the unused slots | |
4533 | * must all RAZ, not UNDEF; future architecture versions may | |
4534 | * define new registers here. | |
4535 | */ | |
e60cef86 PM |
4536 | ARMCPRegInfo v8_idregs[] = { |
4537 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
4538 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
4539 | .access = PL1_R, .type = ARM_CP_CONST, | |
4540 | .resetvalue = cpu->id_aa64pfr0 }, | |
4541 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4542 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
4543 | .access = PL1_R, .type = ARM_CP_CONST, | |
4544 | .resetvalue = cpu->id_aa64pfr1}, | |
e20d84c1 PM |
4545 | { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4546 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, | |
4547 | .access = PL1_R, .type = ARM_CP_CONST, | |
4548 | .resetvalue = 0 }, | |
4549 | { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4550 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, | |
4551 | .access = PL1_R, .type = ARM_CP_CONST, | |
4552 | .resetvalue = 0 }, | |
4553 | { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4554 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, | |
4555 | .access = PL1_R, .type = ARM_CP_CONST, | |
4556 | .resetvalue = 0 }, | |
4557 | { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4558 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, | |
4559 | .access = PL1_R, .type = ARM_CP_CONST, | |
4560 | .resetvalue = 0 }, | |
4561 | { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4562 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, | |
4563 | .access = PL1_R, .type = ARM_CP_CONST, | |
4564 | .resetvalue = 0 }, | |
4565 | { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4566 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, | |
4567 | .access = PL1_R, .type = ARM_CP_CONST, | |
4568 | .resetvalue = 0 }, | |
e60cef86 PM |
4569 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
4570 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
4571 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 4572 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
4573 | * implement the PMU. Not advertising it prevents the guest |
4574 | * from trying to use it and getting UNDEFs on registers we | |
4575 | * don't implement. | |
4576 | */ | |
4577 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
4578 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
4579 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
4580 | .access = PL1_R, .type = ARM_CP_CONST, | |
4581 | .resetvalue = cpu->id_aa64dfr1 }, | |
e20d84c1 PM |
4582 | { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4583 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, | |
4584 | .access = PL1_R, .type = ARM_CP_CONST, | |
4585 | .resetvalue = 0 }, | |
4586 | { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4587 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, | |
4588 | .access = PL1_R, .type = ARM_CP_CONST, | |
4589 | .resetvalue = 0 }, | |
e60cef86 PM |
4590 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
4591 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
4592 | .access = PL1_R, .type = ARM_CP_CONST, | |
4593 | .resetvalue = cpu->id_aa64afr0 }, | |
4594 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4595 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
4596 | .access = PL1_R, .type = ARM_CP_CONST, | |
4597 | .resetvalue = cpu->id_aa64afr1 }, | |
e20d84c1 PM |
4598 | { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4599 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, | |
4600 | .access = PL1_R, .type = ARM_CP_CONST, | |
4601 | .resetvalue = 0 }, | |
4602 | { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4603 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, | |
4604 | .access = PL1_R, .type = ARM_CP_CONST, | |
4605 | .resetvalue = 0 }, | |
e60cef86 PM |
4606 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
4607 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
4608 | .access = PL1_R, .type = ARM_CP_CONST, | |
4609 | .resetvalue = cpu->id_aa64isar0 }, | |
4610 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
4611 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
4612 | .access = PL1_R, .type = ARM_CP_CONST, | |
4613 | .resetvalue = cpu->id_aa64isar1 }, | |
e20d84c1 PM |
4614 | { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4615 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, | |
4616 | .access = PL1_R, .type = ARM_CP_CONST, | |
4617 | .resetvalue = 0 }, | |
4618 | { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4619 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, | |
4620 | .access = PL1_R, .type = ARM_CP_CONST, | |
4621 | .resetvalue = 0 }, | |
4622 | { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4623 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, | |
4624 | .access = PL1_R, .type = ARM_CP_CONST, | |
4625 | .resetvalue = 0 }, | |
4626 | { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4627 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, | |
4628 | .access = PL1_R, .type = ARM_CP_CONST, | |
4629 | .resetvalue = 0 }, | |
4630 | { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4631 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, | |
4632 | .access = PL1_R, .type = ARM_CP_CONST, | |
4633 | .resetvalue = 0 }, | |
4634 | { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4635 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, | |
4636 | .access = PL1_R, .type = ARM_CP_CONST, | |
4637 | .resetvalue = 0 }, | |
e60cef86 PM |
4638 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
4639 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
4640 | .access = PL1_R, .type = ARM_CP_CONST, | |
4641 | .resetvalue = cpu->id_aa64mmfr0 }, | |
4642 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4643 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
4644 | .access = PL1_R, .type = ARM_CP_CONST, | |
4645 | .resetvalue = cpu->id_aa64mmfr1 }, | |
e20d84c1 PM |
4646 | { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4647 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, | |
4648 | .access = PL1_R, .type = ARM_CP_CONST, | |
4649 | .resetvalue = 0 }, | |
4650 | { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4651 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, | |
4652 | .access = PL1_R, .type = ARM_CP_CONST, | |
4653 | .resetvalue = 0 }, | |
4654 | { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4655 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, | |
4656 | .access = PL1_R, .type = ARM_CP_CONST, | |
4657 | .resetvalue = 0 }, | |
4658 | { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4659 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, | |
4660 | .access = PL1_R, .type = ARM_CP_CONST, | |
4661 | .resetvalue = 0 }, | |
4662 | { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4663 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, | |
4664 | .access = PL1_R, .type = ARM_CP_CONST, | |
4665 | .resetvalue = 0 }, | |
4666 | { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4667 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, | |
4668 | .access = PL1_R, .type = ARM_CP_CONST, | |
4669 | .resetvalue = 0 }, | |
a50c0f51 PM |
4670 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
4671 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
4672 | .access = PL1_R, .type = ARM_CP_CONST, | |
4673 | .resetvalue = cpu->mvfr0 }, | |
4674 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
4675 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
4676 | .access = PL1_R, .type = ARM_CP_CONST, | |
4677 | .resetvalue = cpu->mvfr1 }, | |
4678 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
4679 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
4680 | .access = PL1_R, .type = ARM_CP_CONST, | |
4681 | .resetvalue = cpu->mvfr2 }, | |
e20d84c1 PM |
4682 | { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
4683 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, | |
4684 | .access = PL1_R, .type = ARM_CP_CONST, | |
4685 | .resetvalue = 0 }, | |
4686 | { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4687 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, | |
4688 | .access = PL1_R, .type = ARM_CP_CONST, | |
4689 | .resetvalue = 0 }, | |
4690 | { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4691 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, | |
4692 | .access = PL1_R, .type = ARM_CP_CONST, | |
4693 | .resetvalue = 0 }, | |
4694 | { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4695 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, | |
4696 | .access = PL1_R, .type = ARM_CP_CONST, | |
4697 | .resetvalue = 0 }, | |
4698 | { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, | |
4699 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, | |
4700 | .access = PL1_R, .type = ARM_CP_CONST, | |
4701 | .resetvalue = 0 }, | |
4054bfa9 AF |
4702 | { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
4703 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, | |
4704 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4705 | .resetvalue = cpu->pmceid0 }, | |
4706 | { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, | |
4707 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, | |
4708 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4709 | .resetvalue = cpu->pmceid0 }, | |
4710 | { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, | |
4711 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, | |
4712 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4713 | .resetvalue = cpu->pmceid1 }, | |
4714 | { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, | |
4715 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, | |
4716 | .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, | |
4717 | .resetvalue = cpu->pmceid1 }, | |
e60cef86 PM |
4718 | REGINFO_SENTINEL |
4719 | }; | |
be8e8128 GB |
4720 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
4721 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
4722 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
4723 | ARMCPRegInfo rvbar = { | |
4724 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
4725 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
4726 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
4727 | }; | |
4728 | define_one_arm_cp_reg(cpu, &rvbar); | |
4729 | } | |
e60cef86 | 4730 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
4731 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
4732 | } | |
3b685ba7 | 4733 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
f0d574d6 | 4734 | uint64_t vmpidr_def = mpidr_read_val(env); |
731de9e6 EI |
4735 | ARMCPRegInfo vpidr_regs[] = { |
4736 | { .name = "VPIDR", .state = ARM_CP_STATE_AA32, | |
4737 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4738 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4739 | .resetvalue = cpu->midr, | |
4740 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
4741 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4742 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4743 | .access = PL2_RW, .resetvalue = cpu->midr, | |
4744 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4745 | { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
4746 | .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4747 | .access = PL2_RW, .accessfn = access_el3_aa32ns, | |
4748 | .resetvalue = vmpidr_def, | |
4749 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
4750 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, | |
4751 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4752 | .access = PL2_RW, | |
4753 | .resetvalue = vmpidr_def, | |
4754 | .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, | |
731de9e6 EI |
4755 | REGINFO_SENTINEL |
4756 | }; | |
4757 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4758 | define_arm_cp_regs(cpu, el2_cp_reginfo); |
be8e8128 GB |
4759 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
4760 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
4761 | ARMCPRegInfo rvbar = { | |
4762 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
4763 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
4764 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
4765 | }; | |
4766 | define_one_arm_cp_reg(cpu, &rvbar); | |
4767 | } | |
d42e3c26 EI |
4768 | } else { |
4769 | /* If EL2 is missing but higher ELs are enabled, we need to | |
4770 | * register the no_el2 reginfos. | |
4771 | */ | |
4772 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
f0d574d6 EI |
4773 | /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
4774 | * of MIDR_EL1 and MPIDR_EL1. | |
731de9e6 EI |
4775 | */ |
4776 | ARMCPRegInfo vpidr_regs[] = { | |
4777 | { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, | |
4778 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, | |
4779 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4780 | .type = ARM_CP_CONST, .resetvalue = cpu->midr, | |
4781 | .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, | |
f0d574d6 EI |
4782 | { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
4783 | .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, | |
4784 | .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, | |
4785 | .type = ARM_CP_NO_RAW, | |
4786 | .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, | |
731de9e6 EI |
4787 | REGINFO_SENTINEL |
4788 | }; | |
4789 | define_arm_cp_regs(cpu, vpidr_regs); | |
4771cd01 | 4790 | define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
d42e3c26 | 4791 | } |
3b685ba7 | 4792 | } |
81547d66 | 4793 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 4794 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
e24fdd23 PM |
4795 | ARMCPRegInfo el3_regs[] = { |
4796 | { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
4797 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
4798 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, | |
4799 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, | |
4800 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
4801 | .access = PL3_RW, | |
4802 | .raw_writefn = raw_write, .writefn = sctlr_write, | |
4803 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), | |
4804 | .resetvalue = cpu->reset_sctlr }, | |
4805 | REGINFO_SENTINEL | |
be8e8128 | 4806 | }; |
e24fdd23 PM |
4807 | |
4808 | define_arm_cp_regs(cpu, el3_regs); | |
81547d66 | 4809 | } |
2f027fc5 PM |
4810 | /* The behaviour of NSACR is sufficiently various that we don't |
4811 | * try to describe it in a single reginfo: | |
4812 | * if EL3 is 64 bit, then trap to EL3 from S EL1, | |
4813 | * reads as constant 0xc00 from NS EL1 and NS EL2 | |
4814 | * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 | |
4815 | * if v7 without EL3, register doesn't exist | |
4816 | * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 | |
4817 | */ | |
4818 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
4819 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
4820 | ARMCPRegInfo nsacr = { | |
4821 | .name = "NSACR", .type = ARM_CP_CONST, | |
4822 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4823 | .access = PL1_RW, .accessfn = nsacr_access, | |
4824 | .resetvalue = 0xc00 | |
4825 | }; | |
4826 | define_one_arm_cp_reg(cpu, &nsacr); | |
4827 | } else { | |
4828 | ARMCPRegInfo nsacr = { | |
4829 | .name = "NSACR", | |
4830 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4831 | .access = PL3_RW | PL1_R, | |
4832 | .resetvalue = 0, | |
4833 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) | |
4834 | }; | |
4835 | define_one_arm_cp_reg(cpu, &nsacr); | |
4836 | } | |
4837 | } else { | |
4838 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
4839 | ARMCPRegInfo nsacr = { | |
4840 | .name = "NSACR", .type = ARM_CP_CONST, | |
4841 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
4842 | .access = PL1_R, | |
4843 | .resetvalue = 0xc00 | |
4844 | }; | |
4845 | define_one_arm_cp_reg(cpu, &nsacr); | |
4846 | } | |
4847 | } | |
4848 | ||
18032bec | 4849 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
6cb0b013 PC |
4850 | if (arm_feature(env, ARM_FEATURE_V6)) { |
4851 | /* PMSAv6 not implemented */ | |
4852 | assert(arm_feature(env, ARM_FEATURE_V7)); | |
4853 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); | |
4854 | define_arm_cp_regs(cpu, pmsav7_cp_reginfo); | |
4855 | } else { | |
4856 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
4857 | } | |
18032bec | 4858 | } else { |
8e5d75c9 | 4859 | define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
18032bec PM |
4860 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
4861 | } | |
c326b979 PM |
4862 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
4863 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
4864 | } | |
6cc7a3ae PM |
4865 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
4866 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
4867 | } | |
4a501606 PM |
4868 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
4869 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
4870 | } | |
c4804214 PM |
4871 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
4872 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
4873 | } | |
4874 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
4875 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
4876 | } | |
4877 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
4878 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
4879 | } | |
18032bec PM |
4880 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
4881 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
4882 | } | |
34f90529 PM |
4883 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
4884 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
4885 | } | |
1047b9d7 PM |
4886 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
4887 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
4888 | } | |
4889 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
4890 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
4891 | } | |
7ac681cf PM |
4892 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
4893 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
4894 | } | |
7884849c PM |
4895 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
4896 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
4897 | * be read-only (ie write causes UNDEF exception). | |
4898 | */ | |
4899 | { | |
00a29f3d PM |
4900 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
4901 | /* Pre-v8 MIDR space. | |
4902 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
4903 | * of the TI925 behaviour where writes to another register can |
4904 | * cause the MIDR value to change. | |
97ce8d61 PC |
4905 | * |
4906 | * Unimplemented registers in the c15 0 0 0 space default to | |
4907 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
4908 | * and friends override accordingly. | |
7884849c PM |
4909 | */ |
4910 | { .name = "MIDR", | |
97ce8d61 | 4911 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 4912 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 4913 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
731de9e6 | 4914 | .readfn = midr_read, |
97ce8d61 PC |
4915 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
4916 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
4917 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
4918 | { .name = "DUMMY", | |
4919 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
4920 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4921 | { .name = "DUMMY", | |
4922 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
4923 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4924 | { .name = "DUMMY", | |
4925 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
4926 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4927 | { .name = "DUMMY", | |
4928 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
4929 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4930 | { .name = "DUMMY", | |
4931 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
4932 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
4933 | REGINFO_SENTINEL | |
4934 | }; | |
00a29f3d | 4935 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
00a29f3d PM |
4936 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
4937 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
731de9e6 EI |
4938 | .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
4939 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
4940 | .readfn = midr_read }, | |
ac00c79f SF |
4941 | /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
4942 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
4943 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
4944 | .access = PL1_R, .resetvalue = cpu->midr }, | |
4945 | { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, | |
4946 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, | |
4947 | .access = PL1_R, .resetvalue = cpu->midr }, | |
00a29f3d PM |
4948 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
4949 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
13b72b2b | 4950 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
00a29f3d PM |
4951 | REGINFO_SENTINEL |
4952 | }; | |
4953 | ARMCPRegInfo id_cp_reginfo[] = { | |
4954 | /* These are common to v8 and pre-v8 */ | |
4955 | { .name = "CTR", | |
4956 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
4957 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
4958 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
4959 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
4960 | .access = PL0_R, .accessfn = ctr_el0_access, | |
4961 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
4962 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
4963 | { .name = "TCMTR", | |
4964 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
4965 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
00a29f3d PM |
4966 | REGINFO_SENTINEL |
4967 | }; | |
8085ce63 PC |
4968 | /* TLBTR is specific to VMSA */ |
4969 | ARMCPRegInfo id_tlbtr_reginfo = { | |
4970 | .name = "TLBTR", | |
4971 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
4972 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, | |
4973 | }; | |
3281af81 PC |
4974 | /* MPUIR is specific to PMSA V6+ */ |
4975 | ARMCPRegInfo id_mpuir_reginfo = { | |
4976 | .name = "MPUIR", | |
4977 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, | |
4978 | .access = PL1_R, .type = ARM_CP_CONST, | |
4979 | .resetvalue = cpu->pmsav7_dregion << 8 | |
4980 | }; | |
7884849c PM |
4981 | ARMCPRegInfo crn0_wi_reginfo = { |
4982 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
4983 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
4984 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
4985 | }; | |
4986 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
4987 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
4988 | ARMCPRegInfo *r; | |
4989 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
4990 | * whole space. Then update the specific ID registers to allow write |
4991 | * access, so that they ignore writes rather than causing them to | |
4992 | * UNDEF. | |
7884849c PM |
4993 | */ |
4994 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
4995 | for (r = id_pre_v8_midr_cp_reginfo; |
4996 | r->type != ARM_CP_SENTINEL; r++) { | |
4997 | r->access = PL1_RW; | |
4998 | } | |
7884849c PM |
4999 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
5000 | r->access = PL1_RW; | |
7884849c | 5001 | } |
8085ce63 | 5002 | id_tlbtr_reginfo.access = PL1_RW; |
3281af81 | 5003 | id_tlbtr_reginfo.access = PL1_RW; |
7884849c | 5004 | } |
00a29f3d PM |
5005 | if (arm_feature(env, ARM_FEATURE_V8)) { |
5006 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
5007 | } else { | |
5008 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
5009 | } | |
a703eda1 | 5010 | define_arm_cp_regs(cpu, id_cp_reginfo); |
8085ce63 PC |
5011 | if (!arm_feature(env, ARM_FEATURE_MPU)) { |
5012 | define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); | |
3281af81 PC |
5013 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
5014 | define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); | |
8085ce63 | 5015 | } |
7884849c PM |
5016 | } |
5017 | ||
97ce8d61 PC |
5018 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
5019 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
5020 | } | |
5021 | ||
2771db27 | 5022 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
834a6c69 PM |
5023 | ARMCPRegInfo auxcr_reginfo[] = { |
5024 | { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
5025 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
5026 | .access = PL1_RW, .type = ARM_CP_CONST, | |
5027 | .resetvalue = cpu->reset_auxcr }, | |
5028 | { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, | |
5029 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, | |
5030 | .access = PL2_RW, .type = ARM_CP_CONST, | |
5031 | .resetvalue = 0 }, | |
5032 | { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, | |
5033 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, | |
5034 | .access = PL3_RW, .type = ARM_CP_CONST, | |
5035 | .resetvalue = 0 }, | |
5036 | REGINFO_SENTINEL | |
2771db27 | 5037 | }; |
834a6c69 | 5038 | define_arm_cp_regs(cpu, auxcr_reginfo); |
2771db27 PM |
5039 | } |
5040 | ||
d8ba780b | 5041 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
5042 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
5043 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
5044 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
5045 | | extract64(cpu->reset_cbar, 32, 12); | |
5046 | ARMCPRegInfo cbar_reginfo[] = { | |
5047 | { .name = "CBAR", | |
5048 | .type = ARM_CP_CONST, | |
5049 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
5050 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
5051 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
5052 | .type = ARM_CP_CONST, | |
5053 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
5054 | .access = PL1_R, .resetvalue = cbar32 }, | |
5055 | REGINFO_SENTINEL | |
5056 | }; | |
5057 | /* We don't implement a r/w 64 bit CBAR currently */ | |
5058 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
5059 | define_arm_cp_regs(cpu, cbar_reginfo); | |
5060 | } else { | |
5061 | ARMCPRegInfo cbar = { | |
5062 | .name = "CBAR", | |
5063 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
5064 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
5065 | .fieldoffset = offsetof(CPUARMState, | |
5066 | cp15.c15_config_base_address) | |
5067 | }; | |
5068 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
5069 | cbar.access = PL1_R; | |
5070 | cbar.fieldoffset = 0; | |
5071 | cbar.type = ARM_CP_CONST; | |
5072 | } | |
5073 | define_one_arm_cp_reg(cpu, &cbar); | |
5074 | } | |
d8ba780b PC |
5075 | } |
5076 | ||
2771db27 PM |
5077 | /* Generic registers whose values depend on the implementation */ |
5078 | { | |
5079 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 5080 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
5081 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
5082 | .access = PL1_RW, | |
5083 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
5084 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
5085 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
5086 | .raw_writefn = raw_write, | |
2771db27 PM |
5087 | }; |
5088 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
5089 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
5090 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
5091 | * an MMU enable to execute from cache. Imitate this behaviour. | |
5092 | */ | |
5093 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
5094 | } | |
5095 | define_one_arm_cp_reg(cpu, &sctlr); | |
5096 | } | |
2ceb98c0 PM |
5097 | } |
5098 | ||
778c3a06 | 5099 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 5100 | { |
9262685b | 5101 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
5102 | } |
5103 | ||
5104 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
5105 | { | |
22169d41 | 5106 | CPUState *cs = CPU(cpu); |
14969266 AF |
5107 | CPUARMState *env = &cpu->env; |
5108 | ||
6a669427 PM |
5109 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
5110 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
5111 | aarch64_fpu_gdb_set_reg, | |
5112 | 34, "aarch64-fpu.xml", 0); | |
5113 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 5114 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5115 | 51, "arm-neon.xml", 0); |
5116 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 5117 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5118 | 35, "arm-vfp3.xml", 0); |
5119 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 5120 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
5121 | 19, "arm-vfp.xml", 0); |
5122 | } | |
40f137e1 PB |
5123 | } |
5124 | ||
777dc784 PM |
5125 | /* Sort alphabetically by type name, except for "any". */ |
5126 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 5127 | { |
777dc784 PM |
5128 | ObjectClass *class_a = (ObjectClass *)a; |
5129 | ObjectClass *class_b = (ObjectClass *)b; | |
5130 | const char *name_a, *name_b; | |
5adb4839 | 5131 | |
777dc784 PM |
5132 | name_a = object_class_get_name(class_a); |
5133 | name_b = object_class_get_name(class_b); | |
51492fd1 | 5134 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 5135 | return 1; |
51492fd1 | 5136 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
5137 | return -1; |
5138 | } else { | |
5139 | return strcmp(name_a, name_b); | |
5adb4839 PB |
5140 | } |
5141 | } | |
5142 | ||
777dc784 | 5143 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 5144 | { |
777dc784 | 5145 | ObjectClass *oc = data; |
92a31361 | 5146 | CPUListState *s = user_data; |
51492fd1 AF |
5147 | const char *typename; |
5148 | char *name; | |
3371d272 | 5149 | |
51492fd1 AF |
5150 | typename = object_class_get_name(oc); |
5151 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 5152 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
5153 | name); |
5154 | g_free(name); | |
777dc784 PM |
5155 | } |
5156 | ||
5157 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
5158 | { | |
92a31361 | 5159 | CPUListState s = { |
777dc784 PM |
5160 | .file = f, |
5161 | .cpu_fprintf = cpu_fprintf, | |
5162 | }; | |
5163 | GSList *list; | |
5164 | ||
5165 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5166 | list = g_slist_sort(list, arm_cpu_list_compare); | |
5167 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
5168 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
5169 | g_slist_free(list); | |
a96c0514 PM |
5170 | #ifdef CONFIG_KVM |
5171 | /* The 'host' CPU type is dynamically registered only if KVM is | |
5172 | * enabled, so we have to special-case it here: | |
5173 | */ | |
5174 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
5175 | #endif | |
40f137e1 PB |
5176 | } |
5177 | ||
78027bb6 CR |
5178 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
5179 | { | |
5180 | ObjectClass *oc = data; | |
5181 | CpuDefinitionInfoList **cpu_list = user_data; | |
5182 | CpuDefinitionInfoList *entry; | |
5183 | CpuDefinitionInfo *info; | |
5184 | const char *typename; | |
5185 | ||
5186 | typename = object_class_get_name(oc); | |
5187 | info = g_malloc0(sizeof(*info)); | |
5188 | info->name = g_strndup(typename, | |
5189 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
5190 | ||
5191 | entry = g_malloc0(sizeof(*entry)); | |
5192 | entry->value = info; | |
5193 | entry->next = *cpu_list; | |
5194 | *cpu_list = entry; | |
5195 | } | |
5196 | ||
5197 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
5198 | { | |
5199 | CpuDefinitionInfoList *cpu_list = NULL; | |
5200 | GSList *list; | |
5201 | ||
5202 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
5203 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
5204 | g_slist_free(list); | |
5205 | ||
5206 | return cpu_list; | |
5207 | } | |
5208 | ||
6e6efd61 | 5209 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 5210 | void *opaque, int state, int secstate, |
f5a0a5a5 | 5211 | int crm, int opc1, int opc2) |
6e6efd61 PM |
5212 | { |
5213 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
5214 | * add a single reginfo struct to the hash table. | |
5215 | */ | |
5216 | uint32_t *key = g_new(uint32_t, 1); | |
5217 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
5218 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
5219 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
5220 | ||
5221 | /* Reset the secure state to the specific incoming state. This is | |
5222 | * necessary as the register may have been defined with both states. | |
5223 | */ | |
5224 | r2->secure = secstate; | |
5225 | ||
5226 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5227 | /* Register is banked (using both entries in array). | |
5228 | * Overwriting fieldoffset as the array is only used to define | |
5229 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 5230 | */ |
3f3c82a5 FA |
5231 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
5232 | } | |
5233 | ||
5234 | if (state == ARM_CP_STATE_AA32) { | |
5235 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
5236 | /* If the register is banked then we don't need to migrate or | |
5237 | * reset the 32-bit instance in certain cases: | |
5238 | * | |
5239 | * 1) If the register has both 32-bit and 64-bit instances then we | |
5240 | * can count on the 64-bit instance taking care of the | |
5241 | * non-secure bank. | |
5242 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
5243 | * taking care of the secure bank. This requires that separate | |
5244 | * 32 and 64-bit definitions are provided. | |
5245 | */ | |
5246 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
5247 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 5248 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
5249 | } |
5250 | } else if ((secstate != r->secure) && !ns) { | |
5251 | /* The register is not banked so we only want to allow migration of | |
5252 | * the non-secure instance. | |
5253 | */ | |
7a0e58fa | 5254 | r2->type |= ARM_CP_ALIAS; |
58a1d8ce | 5255 | } |
3f3c82a5 FA |
5256 | |
5257 | if (r->state == ARM_CP_STATE_BOTH) { | |
5258 | /* We assume it is a cp15 register if the .cp field is left unset. | |
5259 | */ | |
5260 | if (r2->cp == 0) { | |
5261 | r2->cp = 15; | |
5262 | } | |
5263 | ||
f5a0a5a5 | 5264 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
5265 | if (r2->fieldoffset) { |
5266 | r2->fieldoffset += sizeof(uint32_t); | |
5267 | } | |
f5a0a5a5 | 5268 | #endif |
3f3c82a5 | 5269 | } |
f5a0a5a5 PM |
5270 | } |
5271 | if (state == ARM_CP_STATE_AA64) { | |
5272 | /* To allow abbreviation of ARMCPRegInfo | |
5273 | * definitions, we treat cp == 0 as equivalent to | |
5274 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
5275 | * STATE_BOTH definitions are also always "standard |
5276 | * sysreg" in their AArch64 view (the .cp value may | |
5277 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 5278 | */ |
58a1d8ce | 5279 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
5280 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
5281 | } | |
5282 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
5283 | r2->opc0, opc1, opc2); | |
5284 | } else { | |
51a79b03 | 5285 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 5286 | } |
6e6efd61 PM |
5287 | if (opaque) { |
5288 | r2->opaque = opaque; | |
5289 | } | |
67ed771d PM |
5290 | /* reginfo passed to helpers is correct for the actual access, |
5291 | * and is never ARM_CP_STATE_BOTH: | |
5292 | */ | |
5293 | r2->state = state; | |
6e6efd61 PM |
5294 | /* Make sure reginfo passed to helpers for wildcarded regs |
5295 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
5296 | */ | |
5297 | r2->crm = crm; | |
5298 | r2->opc1 = opc1; | |
5299 | r2->opc2 = opc2; | |
5300 | /* By convention, for wildcarded registers only the first | |
5301 | * entry is used for migration; the others are marked as | |
7a0e58fa | 5302 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 5303 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 5304 | * never migratable and not even raw-accessible. |
6e6efd61 | 5305 | */ |
7a0e58fa PM |
5306 | if ((r->type & ARM_CP_SPECIAL)) { |
5307 | r2->type |= ARM_CP_NO_RAW; | |
5308 | } | |
5309 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
5310 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
5311 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 5312 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
5313 | } |
5314 | ||
375421cc PM |
5315 | /* Check that raw accesses are either forbidden or handled. Note that |
5316 | * we can't assert this earlier because the setup of fieldoffset for | |
5317 | * banked registers has to be done first. | |
5318 | */ | |
5319 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
5320 | assert(!raw_accessors_invalid(r2)); | |
5321 | } | |
5322 | ||
6e6efd61 PM |
5323 | /* Overriding of an existing definition must be explicitly |
5324 | * requested. | |
5325 | */ | |
5326 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
5327 | ARMCPRegInfo *oldreg; | |
5328 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
5329 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
5330 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
5331 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
5332 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
5333 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
5334 | oldreg->name, r2->name); | |
5335 | g_assert_not_reached(); | |
5336 | } | |
5337 | } | |
5338 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
5339 | } | |
5340 | ||
5341 | ||
4b6a83fb PM |
5342 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
5343 | const ARMCPRegInfo *r, void *opaque) | |
5344 | { | |
5345 | /* Define implementations of coprocessor registers. | |
5346 | * We store these in a hashtable because typically | |
5347 | * there are less than 150 registers in a space which | |
5348 | * is 16*16*16*8*8 = 262144 in size. | |
5349 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
5350 | * If a register is defined twice then the second definition is | |
5351 | * used, so this can be used to define some generic registers and | |
5352 | * then override them with implementation specific variations. | |
5353 | * At least one of the original and the second definition should | |
5354 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
5355 | * against accidental use. | |
f5a0a5a5 PM |
5356 | * |
5357 | * The state field defines whether the register is to be | |
5358 | * visible in the AArch32 or AArch64 execution state. If the | |
5359 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
5360 | * reginfo structure for the AArch32 view, which sees the lower | |
5361 | * 32 bits of the 64 bit register. | |
5362 | * | |
5363 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
5364 | * be wildcarded. AArch64 registers are always considered to be 64 | |
5365 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
5366 | * the register, if any. | |
4b6a83fb | 5367 | */ |
f5a0a5a5 | 5368 | int crm, opc1, opc2, state; |
4b6a83fb PM |
5369 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
5370 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
5371 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
5372 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
5373 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
5374 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
5375 | /* 64 bit registers have only CRm and Opc1 fields */ | |
5376 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
5377 | /* op0 only exists in the AArch64 encodings */ |
5378 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
5379 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
5380 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
5381 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
5382 | * encodes a minimum access level for the register. We roll this | |
5383 | * runtime check into our general permission check code, so check | |
5384 | * here that the reginfo's specified permissions are strict enough | |
5385 | * to encompass the generic architectural permission check. | |
5386 | */ | |
5387 | if (r->state != ARM_CP_STATE_AA32) { | |
5388 | int mask = 0; | |
5389 | switch (r->opc1) { | |
5390 | case 0: case 1: case 2: | |
5391 | /* min_EL EL1 */ | |
5392 | mask = PL1_RW; | |
5393 | break; | |
5394 | case 3: | |
5395 | /* min_EL EL0 */ | |
5396 | mask = PL0_RW; | |
5397 | break; | |
5398 | case 4: | |
5399 | /* min_EL EL2 */ | |
5400 | mask = PL2_RW; | |
5401 | break; | |
5402 | case 5: | |
5403 | /* unallocated encoding, so not possible */ | |
5404 | assert(false); | |
5405 | break; | |
5406 | case 6: | |
5407 | /* min_EL EL3 */ | |
5408 | mask = PL3_RW; | |
5409 | break; | |
5410 | case 7: | |
5411 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
5412 | mask = PL1_RW; | |
5413 | break; | |
5414 | default: | |
5415 | /* broken reginfo with out-of-range opc1 */ | |
5416 | assert(false); | |
5417 | break; | |
5418 | } | |
5419 | /* assert our permissions are not too lax (stricter is fine) */ | |
5420 | assert((r->access & ~mask) == 0); | |
5421 | } | |
5422 | ||
4b6a83fb PM |
5423 | /* Check that the register definition has enough info to handle |
5424 | * reads and writes if they are permitted. | |
5425 | */ | |
5426 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
5427 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
5428 | assert((r->fieldoffset || |
5429 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5430 | r->readfn); | |
4b6a83fb PM |
5431 | } |
5432 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
5433 | assert((r->fieldoffset || |
5434 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
5435 | r->writefn); | |
4b6a83fb PM |
5436 | } |
5437 | } | |
5438 | /* Bad type field probably means missing sentinel at end of reg list */ | |
5439 | assert(cptype_valid(r->type)); | |
5440 | for (crm = crmmin; crm <= crmmax; crm++) { | |
5441 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
5442 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
5443 | for (state = ARM_CP_STATE_AA32; |
5444 | state <= ARM_CP_STATE_AA64; state++) { | |
5445 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
5446 | continue; | |
5447 | } | |
3f3c82a5 FA |
5448 | if (state == ARM_CP_STATE_AA32) { |
5449 | /* Under AArch32 CP registers can be common | |
5450 | * (same for secure and non-secure world) or banked. | |
5451 | */ | |
5452 | switch (r->secure) { | |
5453 | case ARM_CP_SECSTATE_S: | |
5454 | case ARM_CP_SECSTATE_NS: | |
5455 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5456 | r->secure, crm, opc1, opc2); | |
5457 | break; | |
5458 | default: | |
5459 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5460 | ARM_CP_SECSTATE_S, | |
5461 | crm, opc1, opc2); | |
5462 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5463 | ARM_CP_SECSTATE_NS, | |
5464 | crm, opc1, opc2); | |
5465 | break; | |
5466 | } | |
5467 | } else { | |
5468 | /* AArch64 registers get mapped to non-secure instance | |
5469 | * of AArch32 */ | |
5470 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
5471 | ARM_CP_SECSTATE_NS, | |
5472 | crm, opc1, opc2); | |
5473 | } | |
f5a0a5a5 | 5474 | } |
4b6a83fb PM |
5475 | } |
5476 | } | |
5477 | } | |
5478 | } | |
5479 | ||
5480 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
5481 | const ARMCPRegInfo *regs, void *opaque) | |
5482 | { | |
5483 | /* Define a whole list of registers */ | |
5484 | const ARMCPRegInfo *r; | |
5485 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
5486 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
5487 | } | |
5488 | } | |
5489 | ||
60322b39 | 5490 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 5491 | { |
60322b39 | 5492 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
5493 | } |
5494 | ||
c4241c7d PM |
5495 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
5496 | uint64_t value) | |
4b6a83fb PM |
5497 | { |
5498 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
5499 | } |
5500 | ||
c4241c7d | 5501 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
5502 | { |
5503 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
5504 | return 0; |
5505 | } | |
5506 | ||
f5a0a5a5 PM |
5507 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
5508 | { | |
5509 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
5510 | } | |
5511 | ||
af393ffc | 5512 | static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
37064a8b PM |
5513 | { |
5514 | /* Return true if it is not valid for us to switch to | |
5515 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
5516 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
5517 | */ | |
af393ffc PM |
5518 | |
5519 | /* Changes to or from Hyp via MSR and CPS are illegal. */ | |
5520 | if (write_type == CPSRWriteByInstr && | |
5521 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || | |
5522 | mode == ARM_CPU_MODE_HYP)) { | |
5523 | return 1; | |
5524 | } | |
5525 | ||
37064a8b PM |
5526 | switch (mode) { |
5527 | case ARM_CPU_MODE_USR: | |
10eacda7 | 5528 | return 0; |
37064a8b PM |
5529 | case ARM_CPU_MODE_SYS: |
5530 | case ARM_CPU_MODE_SVC: | |
5531 | case ARM_CPU_MODE_ABT: | |
5532 | case ARM_CPU_MODE_UND: | |
5533 | case ARM_CPU_MODE_IRQ: | |
5534 | case ARM_CPU_MODE_FIQ: | |
52ff951b PM |
5535 | /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
5536 | * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) | |
5537 | */ | |
10eacda7 PM |
5538 | /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
5539 | * and CPS are treated as illegal mode changes. | |
5540 | */ | |
5541 | if (write_type == CPSRWriteByInstr && | |
5542 | (env->cp15.hcr_el2 & HCR_TGE) && | |
5543 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && | |
5544 | !arm_is_secure_below_el3(env)) { | |
5545 | return 1; | |
5546 | } | |
37064a8b | 5547 | return 0; |
e6c8fc07 PM |
5548 | case ARM_CPU_MODE_HYP: |
5549 | return !arm_feature(env, ARM_FEATURE_EL2) | |
5550 | || arm_current_el(env) < 2 || arm_is_secure(env); | |
027fc527 | 5551 | case ARM_CPU_MODE_MON: |
58ae2d1f | 5552 | return arm_current_el(env) < 3; |
37064a8b PM |
5553 | default: |
5554 | return 1; | |
5555 | } | |
5556 | } | |
5557 | ||
2f4a40e5 AZ |
5558 | uint32_t cpsr_read(CPUARMState *env) |
5559 | { | |
5560 | int ZF; | |
6fbe23d5 PB |
5561 | ZF = (env->ZF == 0); |
5562 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
5563 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
5564 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
5565 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 5566 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
5567 | } |
5568 | ||
50866ba5 PM |
5569 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
5570 | CPSRWriteType write_type) | |
2f4a40e5 | 5571 | { |
6e8801f9 FA |
5572 | uint32_t changed_daif; |
5573 | ||
2f4a40e5 | 5574 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
5575 | env->ZF = (~val) & CPSR_Z; |
5576 | env->NF = val; | |
2f4a40e5 AZ |
5577 | env->CF = (val >> 29) & 1; |
5578 | env->VF = (val << 3) & 0x80000000; | |
5579 | } | |
5580 | if (mask & CPSR_Q) | |
5581 | env->QF = ((val & CPSR_Q) != 0); | |
5582 | if (mask & CPSR_T) | |
5583 | env->thumb = ((val & CPSR_T) != 0); | |
5584 | if (mask & CPSR_IT_0_1) { | |
5585 | env->condexec_bits &= ~3; | |
5586 | env->condexec_bits |= (val >> 25) & 3; | |
5587 | } | |
5588 | if (mask & CPSR_IT_2_7) { | |
5589 | env->condexec_bits &= 3; | |
5590 | env->condexec_bits |= (val >> 8) & 0xfc; | |
5591 | } | |
5592 | if (mask & CPSR_GE) { | |
5593 | env->GE = (val >> 16) & 0xf; | |
5594 | } | |
5595 | ||
6e8801f9 FA |
5596 | /* In a V7 implementation that includes the security extensions but does |
5597 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
5598 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
5599 | * bits respectively. | |
5600 | * | |
5601 | * In a V8 implementation, it is permitted for privileged software to | |
5602 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
5603 | */ | |
f8c88bbc | 5604 | if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
6e8801f9 FA |
5605 | arm_feature(env, ARM_FEATURE_EL3) && |
5606 | !arm_feature(env, ARM_FEATURE_EL2) && | |
5607 | !arm_is_secure(env)) { | |
5608 | ||
5609 | changed_daif = (env->daif ^ val) & mask; | |
5610 | ||
5611 | if (changed_daif & CPSR_A) { | |
5612 | /* Check to see if we are allowed to change the masking of async | |
5613 | * abort exceptions from a non-secure state. | |
5614 | */ | |
5615 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
5616 | qemu_log_mask(LOG_GUEST_ERROR, | |
5617 | "Ignoring attempt to switch CPSR_A flag from " | |
5618 | "non-secure world with SCR.AW bit clear\n"); | |
5619 | mask &= ~CPSR_A; | |
5620 | } | |
5621 | } | |
5622 | ||
5623 | if (changed_daif & CPSR_F) { | |
5624 | /* Check to see if we are allowed to change the masking of FIQ | |
5625 | * exceptions from a non-secure state. | |
5626 | */ | |
5627 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
5628 | qemu_log_mask(LOG_GUEST_ERROR, | |
5629 | "Ignoring attempt to switch CPSR_F flag from " | |
5630 | "non-secure world with SCR.FW bit clear\n"); | |
5631 | mask &= ~CPSR_F; | |
5632 | } | |
5633 | ||
5634 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
5635 | * If this bit is set software is not allowed to mask | |
5636 | * FIQs, but is allowed to set CPSR_F to 0. | |
5637 | */ | |
5638 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
5639 | (val & CPSR_F)) { | |
5640 | qemu_log_mask(LOG_GUEST_ERROR, | |
5641 | "Ignoring attempt to enable CPSR_F flag " | |
5642 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
5643 | mask &= ~CPSR_F; | |
5644 | } | |
5645 | } | |
5646 | } | |
5647 | ||
4cc35614 PM |
5648 | env->daif &= ~(CPSR_AIF & mask); |
5649 | env->daif |= val & CPSR_AIF & mask; | |
5650 | ||
f8c88bbc PM |
5651 | if (write_type != CPSRWriteRaw && |
5652 | ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { | |
8c4f0eb9 PM |
5653 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
5654 | /* Note that we can only get here in USR mode if this is a | |
5655 | * gdb stub write; for this case we follow the architectural | |
5656 | * behaviour for guest writes in USR mode of ignoring an attempt | |
5657 | * to switch mode. (Those are caught by translate.c for writes | |
5658 | * triggered by guest instructions.) | |
5659 | */ | |
5660 | mask &= ~CPSR_M; | |
5661 | } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { | |
81907a58 PM |
5662 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
5663 | * v7, and has defined behaviour in v8: | |
5664 | * + leave CPSR.M untouched | |
5665 | * + allow changes to the other CPSR fields | |
5666 | * + set PSTATE.IL | |
5667 | * For user changes via the GDB stub, we don't set PSTATE.IL, | |
5668 | * as this would be unnecessarily harsh for a user error. | |
37064a8b PM |
5669 | */ |
5670 | mask &= ~CPSR_M; | |
81907a58 PM |
5671 | if (write_type != CPSRWriteByGDBStub && |
5672 | arm_feature(env, ARM_FEATURE_V8)) { | |
5673 | mask |= CPSR_IL; | |
5674 | val |= CPSR_IL; | |
5675 | } | |
37064a8b PM |
5676 | } else { |
5677 | switch_mode(env, val & CPSR_M); | |
5678 | } | |
2f4a40e5 AZ |
5679 | } |
5680 | mask &= ~CACHED_CPSR_BITS; | |
5681 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
5682 | } | |
5683 | ||
b26eefb6 PB |
5684 | /* Sign/zero extend */ |
5685 | uint32_t HELPER(sxtb16)(uint32_t x) | |
5686 | { | |
5687 | uint32_t res; | |
5688 | res = (uint16_t)(int8_t)x; | |
5689 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
5690 | return res; | |
5691 | } | |
5692 | ||
5693 | uint32_t HELPER(uxtb16)(uint32_t x) | |
5694 | { | |
5695 | uint32_t res; | |
5696 | res = (uint16_t)(uint8_t)x; | |
5697 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
5698 | return res; | |
5699 | } | |
5700 | ||
f51bbbfe PB |
5701 | uint32_t HELPER(clz)(uint32_t x) |
5702 | { | |
7bbcb0af | 5703 | return clz32(x); |
f51bbbfe PB |
5704 | } |
5705 | ||
3670669c PB |
5706 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
5707 | { | |
5708 | if (den == 0) | |
5709 | return 0; | |
686eeb93 AJ |
5710 | if (num == INT_MIN && den == -1) |
5711 | return INT_MIN; | |
3670669c PB |
5712 | return num / den; |
5713 | } | |
5714 | ||
5715 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
5716 | { | |
5717 | if (den == 0) | |
5718 | return 0; | |
5719 | return num / den; | |
5720 | } | |
5721 | ||
5722 | uint32_t HELPER(rbit)(uint32_t x) | |
5723 | { | |
42fedbca | 5724 | return revbit32(x); |
3670669c PB |
5725 | } |
5726 | ||
5fafdf24 | 5727 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 5728 | |
9ee6e8bb | 5729 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 5730 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 5731 | { |
a47dddd7 AF |
5732 | ARMCPU *cpu = arm_env_get_cpu(env); |
5733 | ||
5734 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
5735 | } |
5736 | ||
0ecb72a5 | 5737 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 5738 | { |
a47dddd7 AF |
5739 | ARMCPU *cpu = arm_env_get_cpu(env); |
5740 | ||
5741 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
5742 | return 0; |
5743 | } | |
5744 | ||
0ecb72a5 | 5745 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 5746 | { |
a47dddd7 AF |
5747 | ARMCPU *cpu = arm_env_get_cpu(env); |
5748 | ||
5749 | if (mode != ARM_CPU_MODE_USR) { | |
5750 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
5751 | } | |
b5ff1b31 FB |
5752 | } |
5753 | ||
012a906b GB |
5754 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5755 | uint32_t cur_el, bool secure) | |
9e729b57 EI |
5756 | { |
5757 | return 1; | |
5758 | } | |
5759 | ||
ce02049d GB |
5760 | void aarch64_sync_64_to_32(CPUARMState *env) |
5761 | { | |
5762 | g_assert_not_reached(); | |
5763 | } | |
5764 | ||
b5ff1b31 FB |
5765 | #else |
5766 | ||
0ecb72a5 | 5767 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
5768 | { |
5769 | int old_mode; | |
5770 | int i; | |
5771 | ||
5772 | old_mode = env->uncached_cpsr & CPSR_M; | |
5773 | if (mode == old_mode) | |
5774 | return; | |
5775 | ||
5776 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
5777 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5778 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5779 | } else if (mode == ARM_CPU_MODE_FIQ) { |
5780 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 5781 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
5782 | } |
5783 | ||
f5206413 | 5784 | i = bank_number(old_mode); |
b5ff1b31 FB |
5785 | env->banked_r13[i] = env->regs[13]; |
5786 | env->banked_r14[i] = env->regs[14]; | |
5787 | env->banked_spsr[i] = env->spsr; | |
5788 | ||
f5206413 | 5789 | i = bank_number(mode); |
b5ff1b31 FB |
5790 | env->regs[13] = env->banked_r13[i]; |
5791 | env->regs[14] = env->banked_r14[i]; | |
5792 | env->spsr = env->banked_spsr[i]; | |
5793 | } | |
5794 | ||
0eeb17d6 GB |
5795 | /* Physical Interrupt Target EL Lookup Table |
5796 | * | |
5797 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
5798 | * | |
5799 | * The below multi-dimensional table is used for looking up the target | |
5800 | * exception level given numerous condition criteria. Specifically, the | |
5801 | * target EL is based on SCR and HCR routing controls as well as the | |
5802 | * currently executing EL and secure state. | |
5803 | * | |
5804 | * Dimensions: | |
5805 | * target_el_table[2][2][2][2][2][4] | |
5806 | * | | | | | +--- Current EL | |
5807 | * | | | | +------ Non-secure(0)/Secure(1) | |
5808 | * | | | +--------- HCR mask override | |
5809 | * | | +------------ SCR exec state control | |
5810 | * | +--------------- SCR mask override | |
5811 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
5812 | * | |
5813 | * The table values are as such: | |
5814 | * 0-3 = EL0-EL3 | |
5815 | * -1 = Cannot occur | |
5816 | * | |
5817 | * The ARM ARM target EL table includes entries indicating that an "exception | |
5818 | * is not taken". The two cases where this is applicable are: | |
5819 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
5820 | * routed to EL3. | |
5821 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
5822 | * routed to EL2. | |
5823 | * In these two cases, the below table contain a target of EL1. This value is | |
5824 | * returned as it is expected that the consumer of the table data will check | |
5825 | * for "target EL >= current EL" to ensure the exception is not taken. | |
5826 | * | |
5827 | * SCR HCR | |
5828 | * 64 EA AMO From | |
5829 | * BIT IRQ IMO Non-secure Secure | |
5830 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
5831 | */ | |
82c39f6a | 5832 | static const int8_t target_el_table[2][2][2][2][2][4] = { |
0eeb17d6 GB |
5833 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
5834 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
5835 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
5836 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
5837 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5838 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
5839 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
5840 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
5841 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
5842 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
5843 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
5844 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
5845 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
5846 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
5847 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
5848 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
5849 | }; | |
5850 | ||
5851 | /* | |
5852 | * Determine the target EL for physical exceptions | |
5853 | */ | |
012a906b GB |
5854 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
5855 | uint32_t cur_el, bool secure) | |
0eeb17d6 GB |
5856 | { |
5857 | CPUARMState *env = cs->env_ptr; | |
2cde031f | 5858 | int rw; |
0eeb17d6 GB |
5859 | int scr; |
5860 | int hcr; | |
5861 | int target_el; | |
2cde031f SS |
5862 | /* Is the highest EL AArch64? */ |
5863 | int is64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
5864 | ||
5865 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
5866 | rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
5867 | } else { | |
5868 | /* Either EL2 is the highest EL (and so the EL2 register width | |
5869 | * is given by is64); or there is no EL2 or EL3, in which case | |
5870 | * the value of 'rw' does not affect the table lookup anyway. | |
5871 | */ | |
5872 | rw = is64; | |
5873 | } | |
0eeb17d6 GB |
5874 | |
5875 | switch (excp_idx) { | |
5876 | case EXCP_IRQ: | |
5877 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
5878 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
5879 | break; | |
5880 | case EXCP_FIQ: | |
5881 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
5882 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
5883 | break; | |
5884 | default: | |
5885 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
5886 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
5887 | break; | |
5888 | }; | |
5889 | ||
5890 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
5891 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
5892 | ||
5893 | /* Perform a table-lookup for the target EL given the current state */ | |
5894 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
5895 | ||
5896 | assert(target_el > 0); | |
5897 | ||
5898 | return target_el; | |
5899 | } | |
5900 | ||
9ee6e8bb PB |
5901 | static void v7m_push(CPUARMState *env, uint32_t val) |
5902 | { | |
70d74660 AF |
5903 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
5904 | ||
9ee6e8bb | 5905 | env->regs[13] -= 4; |
ab1da857 | 5906 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
5907 | } |
5908 | ||
5909 | static uint32_t v7m_pop(CPUARMState *env) | |
5910 | { | |
70d74660 | 5911 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 5912 | uint32_t val; |
70d74660 | 5913 | |
fdfba1a2 | 5914 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
5915 | env->regs[13] += 4; |
5916 | return val; | |
5917 | } | |
5918 | ||
5919 | /* Switch to V7M main or process stack pointer. */ | |
5920 | static void switch_v7m_sp(CPUARMState *env, int process) | |
5921 | { | |
5922 | uint32_t tmp; | |
5923 | if (env->v7m.current_sp != process) { | |
5924 | tmp = env->v7m.other_sp; | |
5925 | env->v7m.other_sp = env->regs[13]; | |
5926 | env->regs[13] = tmp; | |
5927 | env->v7m.current_sp = process; | |
5928 | } | |
5929 | } | |
5930 | ||
5931 | static void do_v7m_exception_exit(CPUARMState *env) | |
5932 | { | |
5933 | uint32_t type; | |
5934 | uint32_t xpsr; | |
5935 | ||
5936 | type = env->regs[15]; | |
5937 | if (env->v7m.exception != 0) | |
983fe826 | 5938 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
5939 | |
5940 | /* Switch to the target stack. */ | |
5941 | switch_v7m_sp(env, (type & 4) != 0); | |
5942 | /* Pop registers. */ | |
5943 | env->regs[0] = v7m_pop(env); | |
5944 | env->regs[1] = v7m_pop(env); | |
5945 | env->regs[2] = v7m_pop(env); | |
5946 | env->regs[3] = v7m_pop(env); | |
5947 | env->regs[12] = v7m_pop(env); | |
5948 | env->regs[14] = v7m_pop(env); | |
5949 | env->regs[15] = v7m_pop(env); | |
fcf83ab1 PM |
5950 | if (env->regs[15] & 1) { |
5951 | qemu_log_mask(LOG_GUEST_ERROR, | |
5952 | "M profile return from interrupt with misaligned " | |
5953 | "PC is UNPREDICTABLE\n"); | |
5954 | /* Actual hardware seems to ignore the lsbit, and there are several | |
5955 | * RTOSes out there which incorrectly assume the r15 in the stack | |
5956 | * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. | |
5957 | */ | |
5958 | env->regs[15] &= ~1U; | |
5959 | } | |
9ee6e8bb PB |
5960 | xpsr = v7m_pop(env); |
5961 | xpsr_write(env, xpsr, 0xfffffdff); | |
5962 | /* Undo stack alignment. */ | |
5963 | if (xpsr & 0x200) | |
5964 | env->regs[13] |= 4; | |
5965 | /* ??? The exception return type specifies Thread/Handler mode. However | |
5966 | this is also implied by the xPSR value. Not sure what to do | |
5967 | if there is a mismatch. */ | |
5968 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
5969 | pointer. */ | |
5970 | } | |
5971 | ||
27a7ea8a PB |
5972 | static void arm_log_exception(int idx) |
5973 | { | |
5974 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
5975 | const char *exc = NULL; | |
5976 | ||
5977 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
5978 | exc = excnames[idx]; | |
5979 | } | |
5980 | if (!exc) { | |
5981 | exc = "unknown"; | |
5982 | } | |
5983 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
5984 | } | |
5985 | } | |
5986 | ||
e6f010cc | 5987 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 5988 | { |
e6f010cc AF |
5989 | ARMCPU *cpu = ARM_CPU(cs); |
5990 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
5991 | uint32_t xpsr = xpsr_read(env); |
5992 | uint32_t lr; | |
5993 | uint32_t addr; | |
5994 | ||
27103424 | 5995 | arm_log_exception(cs->exception_index); |
3f1beaca | 5996 | |
9ee6e8bb PB |
5997 | lr = 0xfffffff1; |
5998 | if (env->v7m.current_sp) | |
5999 | lr |= 4; | |
6000 | if (env->v7m.exception == 0) | |
6001 | lr |= 8; | |
6002 | ||
6003 | /* For exceptions we just mark as pending on the NVIC, and let that | |
6004 | handle it. */ | |
6005 | /* TODO: Need to escalate if the current priority is higher than the | |
6006 | one we're raising. */ | |
27103424 | 6007 | switch (cs->exception_index) { |
9ee6e8bb | 6008 | case EXCP_UDEF: |
983fe826 | 6009 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
6010 | return; |
6011 | case EXCP_SWI: | |
314e2296 | 6012 | /* The PC already points to the next instruction. */ |
983fe826 | 6013 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
6014 | return; |
6015 | case EXCP_PREFETCH_ABORT: | |
6016 | case EXCP_DATA_ABORT: | |
abf1172f PM |
6017 | /* TODO: if we implemented the MPU registers, this is where we |
6018 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
6019 | */ | |
983fe826 | 6020 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
6021 | return; |
6022 | case EXCP_BKPT: | |
cfe67cef | 6023 | if (semihosting_enabled()) { |
2ad207d4 | 6024 | int nr; |
f9fd40eb | 6025 | nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; |
2ad207d4 PB |
6026 | if (nr == 0xab) { |
6027 | env->regs[15] += 2; | |
205ace55 CC |
6028 | qemu_log_mask(CPU_LOG_INT, |
6029 | "...handling as semihosting call 0x%x\n", | |
6030 | env->regs[0]); | |
2ad207d4 PB |
6031 | env->regs[0] = do_arm_semihosting(env); |
6032 | return; | |
6033 | } | |
6034 | } | |
983fe826 | 6035 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
6036 | return; |
6037 | case EXCP_IRQ: | |
983fe826 | 6038 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
6039 | break; |
6040 | case EXCP_EXCEPTION_EXIT: | |
6041 | do_v7m_exception_exit(env); | |
6042 | return; | |
6043 | default: | |
a47dddd7 | 6044 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
6045 | return; /* Never happens. Keep compiler happy. */ |
6046 | } | |
6047 | ||
6048 | /* Align stack pointer. */ | |
6049 | /* ??? Should only do this if Configuration Control Register | |
6050 | STACKALIGN bit is set. */ | |
6051 | if (env->regs[13] & 4) { | |
ab19b0ec | 6052 | env->regs[13] -= 4; |
9ee6e8bb PB |
6053 | xpsr |= 0x200; |
6054 | } | |
6c95676b | 6055 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
6056 | v7m_push(env, xpsr); |
6057 | v7m_push(env, env->regs[15]); | |
6058 | v7m_push(env, env->regs[14]); | |
6059 | v7m_push(env, env->regs[12]); | |
6060 | v7m_push(env, env->regs[3]); | |
6061 | v7m_push(env, env->regs[2]); | |
6062 | v7m_push(env, env->regs[1]); | |
6063 | v7m_push(env, env->regs[0]); | |
6064 | switch_v7m_sp(env, 0); | |
c98d174c PM |
6065 | /* Clear IT bits */ |
6066 | env->condexec_bits = 0; | |
9ee6e8bb | 6067 | env->regs[14] = lr; |
fdfba1a2 | 6068 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
6069 | env->regs[15] = addr & 0xfffffffe; |
6070 | env->thumb = addr & 1; | |
6071 | } | |
6072 | ||
ce02049d GB |
6073 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
6074 | * register set. This is necessary when switching between AArch32 and AArch64 | |
6075 | * execution state. | |
6076 | */ | |
6077 | void aarch64_sync_32_to_64(CPUARMState *env) | |
6078 | { | |
6079 | int i; | |
6080 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
6081 | ||
6082 | /* We can blanket copy R[0:7] to X[0:7] */ | |
6083 | for (i = 0; i < 8; i++) { | |
6084 | env->xregs[i] = env->regs[i]; | |
6085 | } | |
6086 | ||
6087 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
6088 | * Otherwise, they come from the banked user regs. | |
6089 | */ | |
6090 | if (mode == ARM_CPU_MODE_FIQ) { | |
6091 | for (i = 8; i < 13; i++) { | |
6092 | env->xregs[i] = env->usr_regs[i - 8]; | |
6093 | } | |
6094 | } else { | |
6095 | for (i = 8; i < 13; i++) { | |
6096 | env->xregs[i] = env->regs[i]; | |
6097 | } | |
6098 | } | |
6099 | ||
6100 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
6101 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
6102 | * from the mode banked register. | |
6103 | */ | |
6104 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
6105 | env->xregs[13] = env->regs[13]; | |
6106 | env->xregs[14] = env->regs[14]; | |
6107 | } else { | |
6108 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
6109 | /* HYP is an exception in that it is copied from r14 */ | |
6110 | if (mode == ARM_CPU_MODE_HYP) { | |
6111 | env->xregs[14] = env->regs[14]; | |
6112 | } else { | |
6113 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
6114 | } | |
6115 | } | |
6116 | ||
6117 | if (mode == ARM_CPU_MODE_HYP) { | |
6118 | env->xregs[15] = env->regs[13]; | |
6119 | } else { | |
6120 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
6121 | } | |
6122 | ||
6123 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
6124 | env->xregs[16] = env->regs[14]; |
6125 | env->xregs[17] = env->regs[13]; | |
ce02049d | 6126 | } else { |
3a9148d0 SS |
6127 | env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; |
6128 | env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
ce02049d GB |
6129 | } |
6130 | ||
6131 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
6132 | env->xregs[18] = env->regs[14]; |
6133 | env->xregs[19] = env->regs[13]; | |
ce02049d | 6134 | } else { |
3a9148d0 SS |
6135 | env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; |
6136 | env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
ce02049d GB |
6137 | } |
6138 | ||
6139 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
6140 | env->xregs[20] = env->regs[14]; |
6141 | env->xregs[21] = env->regs[13]; | |
ce02049d | 6142 | } else { |
3a9148d0 SS |
6143 | env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; |
6144 | env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
ce02049d GB |
6145 | } |
6146 | ||
6147 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
6148 | env->xregs[22] = env->regs[14]; |
6149 | env->xregs[23] = env->regs[13]; | |
ce02049d | 6150 | } else { |
3a9148d0 SS |
6151 | env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; |
6152 | env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
ce02049d GB |
6153 | } |
6154 | ||
6155 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
6156 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
6157 | * FIQ bank for r8-r14. | |
6158 | */ | |
6159 | if (mode == ARM_CPU_MODE_FIQ) { | |
6160 | for (i = 24; i < 31; i++) { | |
6161 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
6162 | } | |
6163 | } else { | |
6164 | for (i = 24; i < 29; i++) { | |
6165 | env->xregs[i] = env->fiq_regs[i - 24]; | |
6166 | } | |
6167 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
6168 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
6169 | } | |
6170 | ||
6171 | env->pc = env->regs[15]; | |
6172 | } | |
6173 | ||
6174 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
6175 | * register set. This is necessary when switching between AArch32 and AArch64 | |
6176 | * execution state. | |
6177 | */ | |
6178 | void aarch64_sync_64_to_32(CPUARMState *env) | |
6179 | { | |
6180 | int i; | |
6181 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
6182 | ||
6183 | /* We can blanket copy X[0:7] to R[0:7] */ | |
6184 | for (i = 0; i < 8; i++) { | |
6185 | env->regs[i] = env->xregs[i]; | |
6186 | } | |
6187 | ||
6188 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
6189 | * Otherwise, we copy x8-x12 into the banked user regs. | |
6190 | */ | |
6191 | if (mode == ARM_CPU_MODE_FIQ) { | |
6192 | for (i = 8; i < 13; i++) { | |
6193 | env->usr_regs[i - 8] = env->xregs[i]; | |
6194 | } | |
6195 | } else { | |
6196 | for (i = 8; i < 13; i++) { | |
6197 | env->regs[i] = env->xregs[i]; | |
6198 | } | |
6199 | } | |
6200 | ||
6201 | /* Registers r13 & r14 depend on the current mode. | |
6202 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
6203 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
6204 | * for the mode. | |
6205 | */ | |
6206 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
6207 | env->regs[13] = env->xregs[13]; | |
6208 | env->regs[14] = env->xregs[14]; | |
6209 | } else { | |
6210 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
6211 | ||
6212 | /* HYP is an exception in that it does not have its own banked r14 but | |
6213 | * shares the USR r14 | |
6214 | */ | |
6215 | if (mode == ARM_CPU_MODE_HYP) { | |
6216 | env->regs[14] = env->xregs[14]; | |
6217 | } else { | |
6218 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
6219 | } | |
6220 | } | |
6221 | ||
6222 | if (mode == ARM_CPU_MODE_HYP) { | |
6223 | env->regs[13] = env->xregs[15]; | |
6224 | } else { | |
6225 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
6226 | } | |
6227 | ||
6228 | if (mode == ARM_CPU_MODE_IRQ) { | |
3a9148d0 SS |
6229 | env->regs[14] = env->xregs[16]; |
6230 | env->regs[13] = env->xregs[17]; | |
ce02049d | 6231 | } else { |
3a9148d0 SS |
6232 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
6233 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
ce02049d GB |
6234 | } |
6235 | ||
6236 | if (mode == ARM_CPU_MODE_SVC) { | |
3a9148d0 SS |
6237 | env->regs[14] = env->xregs[18]; |
6238 | env->regs[13] = env->xregs[19]; | |
ce02049d | 6239 | } else { |
3a9148d0 SS |
6240 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
6241 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
ce02049d GB |
6242 | } |
6243 | ||
6244 | if (mode == ARM_CPU_MODE_ABT) { | |
3a9148d0 SS |
6245 | env->regs[14] = env->xregs[20]; |
6246 | env->regs[13] = env->xregs[21]; | |
ce02049d | 6247 | } else { |
3a9148d0 SS |
6248 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
6249 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
ce02049d GB |
6250 | } |
6251 | ||
6252 | if (mode == ARM_CPU_MODE_UND) { | |
3a9148d0 SS |
6253 | env->regs[14] = env->xregs[22]; |
6254 | env->regs[13] = env->xregs[23]; | |
ce02049d | 6255 | } else { |
3a9148d0 SS |
6256 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
6257 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
ce02049d GB |
6258 | } |
6259 | ||
6260 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
6261 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
6262 | * FIQ bank for r8-r14. | |
6263 | */ | |
6264 | if (mode == ARM_CPU_MODE_FIQ) { | |
6265 | for (i = 24; i < 31; i++) { | |
6266 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
6267 | } | |
6268 | } else { | |
6269 | for (i = 24; i < 29; i++) { | |
6270 | env->fiq_regs[i - 24] = env->xregs[i]; | |
6271 | } | |
6272 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
6273 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
6274 | } | |
6275 | ||
6276 | env->regs[15] = env->pc; | |
6277 | } | |
6278 | ||
966f758c | 6279 | static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
b5ff1b31 | 6280 | { |
97a8ea5a AF |
6281 | ARMCPU *cpu = ARM_CPU(cs); |
6282 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
6283 | uint32_t addr; |
6284 | uint32_t mask; | |
6285 | int new_mode; | |
6286 | uint32_t offset; | |
16a906fd | 6287 | uint32_t moe; |
b5ff1b31 | 6288 | |
16a906fd PM |
6289 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
6290 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
6291 | case EC_BREAKPOINT: | |
6292 | case EC_BREAKPOINT_SAME_EL: | |
6293 | moe = 1; | |
6294 | break; | |
6295 | case EC_WATCHPOINT: | |
6296 | case EC_WATCHPOINT_SAME_EL: | |
6297 | moe = 10; | |
6298 | break; | |
6299 | case EC_AA32_BKPT: | |
6300 | moe = 3; | |
6301 | break; | |
6302 | case EC_VECTORCATCH: | |
6303 | moe = 5; | |
6304 | break; | |
6305 | default: | |
6306 | moe = 0; | |
6307 | break; | |
6308 | } | |
6309 | ||
6310 | if (moe) { | |
6311 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
6312 | } | |
6313 | ||
b5ff1b31 | 6314 | /* TODO: Vectored interrupt controller. */ |
27103424 | 6315 | switch (cs->exception_index) { |
b5ff1b31 FB |
6316 | case EXCP_UDEF: |
6317 | new_mode = ARM_CPU_MODE_UND; | |
6318 | addr = 0x04; | |
6319 | mask = CPSR_I; | |
6320 | if (env->thumb) | |
6321 | offset = 2; | |
6322 | else | |
6323 | offset = 4; | |
6324 | break; | |
6325 | case EXCP_SWI: | |
6326 | new_mode = ARM_CPU_MODE_SVC; | |
6327 | addr = 0x08; | |
6328 | mask = CPSR_I; | |
601d70b9 | 6329 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
6330 | offset = 0; |
6331 | break; | |
06c949e6 | 6332 | case EXCP_BKPT: |
abf1172f | 6333 | env->exception.fsr = 2; |
9ee6e8bb PB |
6334 | /* Fall through to prefetch abort. */ |
6335 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 6336 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 6337 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 6338 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 6339 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
6340 | new_mode = ARM_CPU_MODE_ABT; |
6341 | addr = 0x0c; | |
6342 | mask = CPSR_A | CPSR_I; | |
6343 | offset = 4; | |
6344 | break; | |
6345 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 6346 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 6347 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 6348 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 6349 | env->exception.fsr, |
6cd8a264 | 6350 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
6351 | new_mode = ARM_CPU_MODE_ABT; |
6352 | addr = 0x10; | |
6353 | mask = CPSR_A | CPSR_I; | |
6354 | offset = 8; | |
6355 | break; | |
6356 | case EXCP_IRQ: | |
6357 | new_mode = ARM_CPU_MODE_IRQ; | |
6358 | addr = 0x18; | |
6359 | /* Disable IRQ and imprecise data aborts. */ | |
6360 | mask = CPSR_A | CPSR_I; | |
6361 | offset = 4; | |
de38d23b FA |
6362 | if (env->cp15.scr_el3 & SCR_IRQ) { |
6363 | /* IRQ routed to monitor mode */ | |
6364 | new_mode = ARM_CPU_MODE_MON; | |
6365 | mask |= CPSR_F; | |
6366 | } | |
b5ff1b31 FB |
6367 | break; |
6368 | case EXCP_FIQ: | |
6369 | new_mode = ARM_CPU_MODE_FIQ; | |
6370 | addr = 0x1c; | |
6371 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
6372 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
6373 | if (env->cp15.scr_el3 & SCR_FIQ) { |
6374 | /* FIQ routed to monitor mode */ | |
6375 | new_mode = ARM_CPU_MODE_MON; | |
6376 | } | |
b5ff1b31 FB |
6377 | offset = 4; |
6378 | break; | |
dbe9d163 FA |
6379 | case EXCP_SMC: |
6380 | new_mode = ARM_CPU_MODE_MON; | |
6381 | addr = 0x08; | |
6382 | mask = CPSR_A | CPSR_I | CPSR_F; | |
6383 | offset = 0; | |
6384 | break; | |
b5ff1b31 | 6385 | default: |
a47dddd7 | 6386 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
6387 | return; /* Never happens. Keep compiler happy. */ |
6388 | } | |
e89e51a1 FA |
6389 | |
6390 | if (new_mode == ARM_CPU_MODE_MON) { | |
6391 | addr += env->cp15.mvbar; | |
137feaa9 | 6392 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 6393 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 6394 | addr += 0xffff0000; |
8641136c NR |
6395 | } else { |
6396 | /* ARM v7 architectures provide a vector base address register to remap | |
6397 | * the interrupt vector table. | |
e89e51a1 | 6398 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
6399 | * Note: only bits 31:5 are valid. |
6400 | */ | |
fb6c91ba | 6401 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 6402 | } |
dbe9d163 FA |
6403 | |
6404 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
6405 | env->cp15.scr_el3 &= ~SCR_NS; | |
6406 | } | |
6407 | ||
b5ff1b31 | 6408 | switch_mode (env, new_mode); |
662cefb7 PM |
6409 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
6410 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
6411 | */ | |
6412 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 6413 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
6414 | /* Clear IT bits. */ |
6415 | env->condexec_bits = 0; | |
30a8cac1 | 6416 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 6417 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
73462ddd PC |
6418 | /* Set new mode endianness */ |
6419 | env->uncached_cpsr &= ~CPSR_E; | |
6420 | if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { | |
6421 | env->uncached_cpsr |= ~CPSR_E; | |
6422 | } | |
4cc35614 | 6423 | env->daif |= mask; |
be5e7a76 DES |
6424 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
6425 | * and we should just guard the thumb mode on V4 */ | |
6426 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 6427 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 6428 | } |
b5ff1b31 FB |
6429 | env->regs[14] = env->regs[15] + offset; |
6430 | env->regs[15] = addr; | |
b5ff1b31 FB |
6431 | } |
6432 | ||
966f758c PM |
6433 | /* Handle exception entry to a target EL which is using AArch64 */ |
6434 | static void arm_cpu_do_interrupt_aarch64(CPUState *cs) | |
f3a9b694 PM |
6435 | { |
6436 | ARMCPU *cpu = ARM_CPU(cs); | |
6437 | CPUARMState *env = &cpu->env; | |
6438 | unsigned int new_el = env->exception.target_el; | |
6439 | target_ulong addr = env->cp15.vbar_el[new_el]; | |
6440 | unsigned int new_mode = aarch64_pstate_mode(new_el, true); | |
6441 | ||
6442 | if (arm_current_el(env) < new_el) { | |
3d6f7617 PM |
6443 | /* Entry vector offset depends on whether the implemented EL |
6444 | * immediately lower than the target level is using AArch32 or AArch64 | |
6445 | */ | |
6446 | bool is_aa64; | |
6447 | ||
6448 | switch (new_el) { | |
6449 | case 3: | |
6450 | is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; | |
6451 | break; | |
6452 | case 2: | |
6453 | is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; | |
6454 | break; | |
6455 | case 1: | |
6456 | is_aa64 = is_a64(env); | |
6457 | break; | |
6458 | default: | |
6459 | g_assert_not_reached(); | |
6460 | } | |
6461 | ||
6462 | if (is_aa64) { | |
f3a9b694 PM |
6463 | addr += 0x400; |
6464 | } else { | |
6465 | addr += 0x600; | |
6466 | } | |
6467 | } else if (pstate_read(env) & PSTATE_SP) { | |
6468 | addr += 0x200; | |
6469 | } | |
6470 | ||
f3a9b694 PM |
6471 | switch (cs->exception_index) { |
6472 | case EXCP_PREFETCH_ABORT: | |
6473 | case EXCP_DATA_ABORT: | |
6474 | env->cp15.far_el[new_el] = env->exception.vaddress; | |
6475 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
6476 | env->cp15.far_el[new_el]); | |
6477 | /* fall through */ | |
6478 | case EXCP_BKPT: | |
6479 | case EXCP_UDEF: | |
6480 | case EXCP_SWI: | |
6481 | case EXCP_HVC: | |
6482 | case EXCP_HYP_TRAP: | |
6483 | case EXCP_SMC: | |
6484 | env->cp15.esr_el[new_el] = env->exception.syndrome; | |
6485 | break; | |
6486 | case EXCP_IRQ: | |
6487 | case EXCP_VIRQ: | |
6488 | addr += 0x80; | |
6489 | break; | |
6490 | case EXCP_FIQ: | |
6491 | case EXCP_VFIQ: | |
6492 | addr += 0x100; | |
6493 | break; | |
6494 | case EXCP_SEMIHOST: | |
6495 | qemu_log_mask(CPU_LOG_INT, | |
6496 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
6497 | env->xregs[0]); | |
6498 | env->xregs[0] = do_arm_semihosting(env); | |
6499 | return; | |
6500 | default: | |
6501 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
6502 | } | |
6503 | ||
6504 | if (is_a64(env)) { | |
6505 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); | |
6506 | aarch64_save_sp(env, arm_current_el(env)); | |
6507 | env->elr_el[new_el] = env->pc; | |
6508 | } else { | |
6509 | env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); | |
f3a9b694 PM |
6510 | env->elr_el[new_el] = env->regs[15]; |
6511 | ||
6512 | aarch64_sync_32_to_64(env); | |
6513 | ||
6514 | env->condexec_bits = 0; | |
6515 | } | |
6516 | qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", | |
6517 | env->elr_el[new_el]); | |
6518 | ||
6519 | pstate_write(env, PSTATE_DAIF | new_mode); | |
6520 | env->aarch64 = 1; | |
6521 | aarch64_restore_sp(env, new_el); | |
6522 | ||
6523 | env->pc = addr; | |
6524 | ||
6525 | qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", | |
6526 | new_el, env->pc, pstate_read(env)); | |
966f758c PM |
6527 | } |
6528 | ||
904c04de PM |
6529 | static inline bool check_for_semihosting(CPUState *cs) |
6530 | { | |
6531 | /* Check whether this exception is a semihosting call; if so | |
6532 | * then handle it and return true; otherwise return false. | |
6533 | */ | |
6534 | ARMCPU *cpu = ARM_CPU(cs); | |
6535 | CPUARMState *env = &cpu->env; | |
6536 | ||
6537 | if (is_a64(env)) { | |
6538 | if (cs->exception_index == EXCP_SEMIHOST) { | |
6539 | /* This is always the 64-bit semihosting exception. | |
6540 | * The "is this usermode" and "is semihosting enabled" | |
6541 | * checks have been done at translate time. | |
6542 | */ | |
6543 | qemu_log_mask(CPU_LOG_INT, | |
6544 | "...handling as semihosting call 0x%" PRIx64 "\n", | |
6545 | env->xregs[0]); | |
6546 | env->xregs[0] = do_arm_semihosting(env); | |
6547 | return true; | |
6548 | } | |
6549 | return false; | |
6550 | } else { | |
6551 | uint32_t imm; | |
6552 | ||
6553 | /* Only intercept calls from privileged modes, to provide some | |
6554 | * semblance of security. | |
6555 | */ | |
6556 | if (!semihosting_enabled() || | |
6557 | ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) { | |
6558 | return false; | |
6559 | } | |
6560 | ||
6561 | switch (cs->exception_index) { | |
6562 | case EXCP_SWI: | |
6563 | /* Check for semihosting interrupt. */ | |
6564 | if (env->thumb) { | |
f9fd40eb | 6565 | imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) |
904c04de PM |
6566 | & 0xff; |
6567 | if (imm == 0xab) { | |
6568 | break; | |
6569 | } | |
6570 | } else { | |
f9fd40eb | 6571 | imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) |
904c04de PM |
6572 | & 0xffffff; |
6573 | if (imm == 0x123456) { | |
6574 | break; | |
6575 | } | |
6576 | } | |
6577 | return false; | |
6578 | case EXCP_BKPT: | |
6579 | /* See if this is a semihosting syscall. */ | |
6580 | if (env->thumb) { | |
f9fd40eb | 6581 | imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) |
904c04de PM |
6582 | & 0xff; |
6583 | if (imm == 0xab) { | |
6584 | env->regs[15] += 2; | |
6585 | break; | |
6586 | } | |
6587 | } | |
6588 | return false; | |
6589 | default: | |
6590 | return false; | |
6591 | } | |
6592 | ||
6593 | qemu_log_mask(CPU_LOG_INT, | |
6594 | "...handling as semihosting call 0x%x\n", | |
6595 | env->regs[0]); | |
6596 | env->regs[0] = do_arm_semihosting(env); | |
6597 | return true; | |
6598 | } | |
6599 | } | |
6600 | ||
966f758c PM |
6601 | /* Handle a CPU exception for A and R profile CPUs. |
6602 | * Do any appropriate logging, handle PSCI calls, and then hand off | |
6603 | * to the AArch64-entry or AArch32-entry function depending on the | |
6604 | * target exception level's register width. | |
6605 | */ | |
6606 | void arm_cpu_do_interrupt(CPUState *cs) | |
6607 | { | |
6608 | ARMCPU *cpu = ARM_CPU(cs); | |
6609 | CPUARMState *env = &cpu->env; | |
6610 | unsigned int new_el = env->exception.target_el; | |
6611 | ||
6612 | assert(!IS_M(env)); | |
6613 | ||
6614 | arm_log_exception(cs->exception_index); | |
6615 | qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), | |
6616 | new_el); | |
6617 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
6618 | && !excp_is_internal(cs->exception_index)) { | |
6619 | qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n", | |
6620 | env->exception.syndrome >> ARM_EL_EC_SHIFT, | |
6621 | env->exception.syndrome); | |
6622 | } | |
6623 | ||
6624 | if (arm_is_psci_call(cpu, cs->exception_index)) { | |
6625 | arm_handle_psci_call(cpu); | |
6626 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
6627 | return; | |
6628 | } | |
6629 | ||
904c04de PM |
6630 | /* Semihosting semantics depend on the register width of the |
6631 | * code that caused the exception, not the target exception level, | |
6632 | * so must be handled here. | |
966f758c | 6633 | */ |
904c04de PM |
6634 | if (check_for_semihosting(cs)) { |
6635 | return; | |
6636 | } | |
6637 | ||
6638 | assert(!excp_is_internal(cs->exception_index)); | |
6639 | if (arm_el_is_aa64(env, new_el)) { | |
966f758c PM |
6640 | arm_cpu_do_interrupt_aarch64(cs); |
6641 | } else { | |
6642 | arm_cpu_do_interrupt_aarch32(cs); | |
6643 | } | |
f3a9b694 | 6644 | |
bd7d00fc PM |
6645 | arm_call_el_change_hook(cpu); |
6646 | ||
f3a9b694 PM |
6647 | if (!kvm_enabled()) { |
6648 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
6649 | } | |
6650 | } | |
0480f69a PM |
6651 | |
6652 | /* Return the exception level which controls this address translation regime */ | |
6653 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
6654 | { | |
6655 | switch (mmu_idx) { | |
6656 | case ARMMMUIdx_S2NS: | |
6657 | case ARMMMUIdx_S1E2: | |
6658 | return 2; | |
6659 | case ARMMMUIdx_S1E3: | |
6660 | return 3; | |
6661 | case ARMMMUIdx_S1SE0: | |
6662 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
6663 | case ARMMMUIdx_S1SE1: | |
6664 | case ARMMMUIdx_S1NSE0: | |
6665 | case ARMMMUIdx_S1NSE1: | |
6666 | return 1; | |
6667 | default: | |
6668 | g_assert_not_reached(); | |
6669 | } | |
6670 | } | |
6671 | ||
8bf5b6a9 PM |
6672 | /* Return true if this address translation regime is secure */ |
6673 | static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) | |
6674 | { | |
6675 | switch (mmu_idx) { | |
6676 | case ARMMMUIdx_S12NSE0: | |
6677 | case ARMMMUIdx_S12NSE1: | |
6678 | case ARMMMUIdx_S1NSE0: | |
6679 | case ARMMMUIdx_S1NSE1: | |
6680 | case ARMMMUIdx_S1E2: | |
6681 | case ARMMMUIdx_S2NS: | |
6682 | return false; | |
6683 | case ARMMMUIdx_S1E3: | |
6684 | case ARMMMUIdx_S1SE0: | |
6685 | case ARMMMUIdx_S1SE1: | |
6686 | return true; | |
6687 | default: | |
6688 | g_assert_not_reached(); | |
6689 | } | |
6690 | } | |
6691 | ||
0480f69a PM |
6692 | /* Return the SCTLR value which controls this address translation regime */ |
6693 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
6694 | { | |
6695 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
6696 | } | |
6697 | ||
6698 | /* Return true if the specified stage of address translation is disabled */ | |
6699 | static inline bool regime_translation_disabled(CPUARMState *env, | |
6700 | ARMMMUIdx mmu_idx) | |
6701 | { | |
6702 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
6703 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
6704 | } | |
6705 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
6706 | } | |
6707 | ||
73462ddd PC |
6708 | static inline bool regime_translation_big_endian(CPUARMState *env, |
6709 | ARMMMUIdx mmu_idx) | |
6710 | { | |
6711 | return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; | |
6712 | } | |
6713 | ||
0480f69a PM |
6714 | /* Return the TCR controlling this translation regime */ |
6715 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
6716 | { | |
6717 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
68e9c2fe | 6718 | return &env->cp15.vtcr_el2; |
0480f69a PM |
6719 | } |
6720 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
6721 | } | |
6722 | ||
aef878be GB |
6723 | /* Return the TTBR associated with this translation regime */ |
6724 | static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, | |
6725 | int ttbrn) | |
6726 | { | |
6727 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
b698e9cf | 6728 | return env->cp15.vttbr_el2; |
aef878be GB |
6729 | } |
6730 | if (ttbrn == 0) { | |
6731 | return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; | |
6732 | } else { | |
6733 | return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; | |
6734 | } | |
6735 | } | |
6736 | ||
0480f69a PM |
6737 | /* Return true if the translation regime is using LPAE format page tables */ |
6738 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
6739 | ARMMMUIdx mmu_idx) | |
6740 | { | |
6741 | int el = regime_el(env, mmu_idx); | |
6742 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
6743 | return true; | |
6744 | } | |
6745 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
6746 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
6747 | return true; | |
6748 | } | |
6749 | return false; | |
6750 | } | |
6751 | ||
deb2db99 AR |
6752 | /* Returns true if the stage 1 translation regime is using LPAE format page |
6753 | * tables. Used when raising alignment exceptions, whose FSR changes depending | |
6754 | * on whether the long or short descriptor format is in use. */ | |
6755 | bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) | |
30901475 | 6756 | { |
deb2db99 AR |
6757 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
6758 | mmu_idx += ARMMMUIdx_S1NSE0; | |
6759 | } | |
6760 | ||
30901475 AB |
6761 | return regime_using_lpae_format(env, mmu_idx); |
6762 | } | |
6763 | ||
0480f69a PM |
6764 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
6765 | { | |
6766 | switch (mmu_idx) { | |
6767 | case ARMMMUIdx_S1SE0: | |
6768 | case ARMMMUIdx_S1NSE0: | |
6769 | return true; | |
6770 | default: | |
6771 | return false; | |
6772 | case ARMMMUIdx_S12NSE0: | |
6773 | case ARMMMUIdx_S12NSE1: | |
6774 | g_assert_not_reached(); | |
6775 | } | |
6776 | } | |
6777 | ||
0fbf5238 AJ |
6778 | /* Translate section/page access permissions to page |
6779 | * R/W protection flags | |
d76951b6 AJ |
6780 | * |
6781 | * @env: CPUARMState | |
6782 | * @mmu_idx: MMU index indicating required translation regime | |
6783 | * @ap: The 3-bit access permissions (AP[2:0]) | |
6784 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
6785 | */ |
6786 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
6787 | int ap, int domain_prot) | |
6788 | { | |
554b0b09 PM |
6789 | bool is_user = regime_is_user(env, mmu_idx); |
6790 | ||
6791 | if (domain_prot == 3) { | |
6792 | return PAGE_READ | PAGE_WRITE; | |
6793 | } | |
6794 | ||
554b0b09 PM |
6795 | switch (ap) { |
6796 | case 0: | |
6797 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
6798 | return 0; | |
6799 | } | |
554b0b09 PM |
6800 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
6801 | case SCTLR_S: | |
6802 | return is_user ? 0 : PAGE_READ; | |
6803 | case SCTLR_R: | |
6804 | return PAGE_READ; | |
6805 | default: | |
6806 | return 0; | |
6807 | } | |
6808 | case 1: | |
6809 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
6810 | case 2: | |
87c3d486 | 6811 | if (is_user) { |
0fbf5238 | 6812 | return PAGE_READ; |
87c3d486 | 6813 | } else { |
554b0b09 | 6814 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 6815 | } |
554b0b09 PM |
6816 | case 3: |
6817 | return PAGE_READ | PAGE_WRITE; | |
6818 | case 4: /* Reserved. */ | |
6819 | return 0; | |
6820 | case 5: | |
0fbf5238 | 6821 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 6822 | case 6: |
0fbf5238 | 6823 | return PAGE_READ; |
554b0b09 | 6824 | case 7: |
87c3d486 | 6825 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 6826 | return 0; |
87c3d486 | 6827 | } |
0fbf5238 | 6828 | return PAGE_READ; |
554b0b09 | 6829 | default: |
0fbf5238 | 6830 | g_assert_not_reached(); |
554b0b09 | 6831 | } |
b5ff1b31 FB |
6832 | } |
6833 | ||
d76951b6 AJ |
6834 | /* Translate section/page access permissions to page |
6835 | * R/W protection flags. | |
6836 | * | |
d76951b6 | 6837 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 6838 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 6839 | */ |
d8e052b3 | 6840 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 6841 | { |
d76951b6 AJ |
6842 | switch (ap) { |
6843 | case 0: | |
6844 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
6845 | case 1: | |
6846 | return PAGE_READ | PAGE_WRITE; | |
6847 | case 2: | |
6848 | return is_user ? 0 : PAGE_READ; | |
6849 | case 3: | |
6850 | return PAGE_READ; | |
6851 | default: | |
6852 | g_assert_not_reached(); | |
6853 | } | |
6854 | } | |
6855 | ||
d8e052b3 AJ |
6856 | static inline int |
6857 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
6858 | { | |
6859 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
6860 | } | |
6861 | ||
6ab1a5ee EI |
6862 | /* Translate S2 section/page access permissions to protection flags |
6863 | * | |
6864 | * @env: CPUARMState | |
6865 | * @s2ap: The 2-bit stage2 access permissions (S2AP) | |
6866 | * @xn: XN (execute-never) bit | |
6867 | */ | |
6868 | static int get_S2prot(CPUARMState *env, int s2ap, int xn) | |
6869 | { | |
6870 | int prot = 0; | |
6871 | ||
6872 | if (s2ap & 1) { | |
6873 | prot |= PAGE_READ; | |
6874 | } | |
6875 | if (s2ap & 2) { | |
6876 | prot |= PAGE_WRITE; | |
6877 | } | |
6878 | if (!xn) { | |
dfda6837 SS |
6879 | if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
6880 | prot |= PAGE_EXEC; | |
6881 | } | |
6ab1a5ee EI |
6882 | } |
6883 | return prot; | |
6884 | } | |
6885 | ||
d8e052b3 AJ |
6886 | /* Translate section/page access permissions to protection flags |
6887 | * | |
6888 | * @env: CPUARMState | |
6889 | * @mmu_idx: MMU index indicating required translation regime | |
6890 | * @is_aa64: TRUE if AArch64 | |
6891 | * @ap: The 2-bit simple AP (AP[2:1]) | |
6892 | * @ns: NS (non-secure) bit | |
6893 | * @xn: XN (execute-never) bit | |
6894 | * @pxn: PXN (privileged execute-never) bit | |
6895 | */ | |
6896 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
6897 | int ap, int ns, int xn, int pxn) | |
6898 | { | |
6899 | bool is_user = regime_is_user(env, mmu_idx); | |
6900 | int prot_rw, user_rw; | |
6901 | bool have_wxn; | |
6902 | int wxn = 0; | |
6903 | ||
6904 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
6905 | ||
6906 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
6907 | if (is_user) { | |
6908 | prot_rw = user_rw; | |
6909 | } else { | |
6910 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
6911 | } | |
6912 | ||
6913 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
6914 | return prot_rw; | |
6915 | } | |
6916 | ||
6917 | /* TODO have_wxn should be replaced with | |
6918 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
6919 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
6920 | * compatible processors have EL2, which is required for [U]WXN. | |
6921 | */ | |
6922 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
6923 | ||
6924 | if (have_wxn) { | |
6925 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
6926 | } | |
6927 | ||
6928 | if (is_aa64) { | |
6929 | switch (regime_el(env, mmu_idx)) { | |
6930 | case 1: | |
6931 | if (!is_user) { | |
6932 | xn = pxn || (user_rw & PAGE_WRITE); | |
6933 | } | |
6934 | break; | |
6935 | case 2: | |
6936 | case 3: | |
6937 | break; | |
6938 | } | |
6939 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
6940 | switch (regime_el(env, mmu_idx)) { | |
6941 | case 1: | |
6942 | case 3: | |
6943 | if (is_user) { | |
6944 | xn = xn || !(user_rw & PAGE_READ); | |
6945 | } else { | |
6946 | int uwxn = 0; | |
6947 | if (have_wxn) { | |
6948 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
6949 | } | |
6950 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
6951 | (uwxn && (user_rw & PAGE_WRITE)); | |
6952 | } | |
6953 | break; | |
6954 | case 2: | |
6955 | break; | |
6956 | } | |
6957 | } else { | |
6958 | xn = wxn = 0; | |
6959 | } | |
6960 | ||
6961 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
6962 | return prot_rw; | |
6963 | } | |
6964 | return prot_rw | PAGE_EXEC; | |
6965 | } | |
6966 | ||
0480f69a PM |
6967 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
6968 | uint32_t *table, uint32_t address) | |
b2fa1797 | 6969 | { |
0480f69a | 6970 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
0480f69a | 6971 | TCR *tcr = regime_tcr(env, mmu_idx); |
11f136ee | 6972 | |
11f136ee FA |
6973 | if (address & tcr->mask) { |
6974 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
6975 | /* Translation table walk disabled for TTBR1 */ |
6976 | return false; | |
6977 | } | |
aef878be | 6978 | *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
e389be16 | 6979 | } else { |
11f136ee | 6980 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
6981 | /* Translation table walk disabled for TTBR0 */ |
6982 | return false; | |
6983 | } | |
aef878be | 6984 | *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
e389be16 FA |
6985 | } |
6986 | *table |= (address >> 18) & 0x3ffc; | |
6987 | return true; | |
b2fa1797 PB |
6988 | } |
6989 | ||
37785977 EI |
6990 | /* Translate a S1 pagetable walk through S2 if needed. */ |
6991 | static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, | |
6992 | hwaddr addr, MemTxAttrs txattrs, | |
6993 | uint32_t *fsr, | |
6994 | ARMMMUFaultInfo *fi) | |
6995 | { | |
6996 | if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && | |
6997 | !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
6998 | target_ulong s2size; | |
6999 | hwaddr s2pa; | |
7000 | int s2prot; | |
7001 | int ret; | |
7002 | ||
7003 | ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, | |
7004 | &txattrs, &s2prot, &s2size, fsr, fi); | |
7005 | if (ret) { | |
7006 | fi->s2addr = addr; | |
7007 | fi->stage2 = true; | |
7008 | fi->s1ptw = true; | |
7009 | return ~0; | |
7010 | } | |
7011 | addr = s2pa; | |
7012 | } | |
7013 | return addr; | |
7014 | } | |
7015 | ||
ebca90e4 PM |
7016 | /* All loads done in the course of a page table walk go through here. |
7017 | * TODO: rather than ignoring errors from physical memory reads (which | |
7018 | * are external aborts in ARM terminology) we should propagate this | |
7019 | * error out so that we can turn it into a Data Abort if this walk | |
7020 | * was being done for a CPU load/store or an address translation instruction | |
7021 | * (but not if it was for a debug access). | |
7022 | */ | |
a614e698 EI |
7023 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
7024 | ARMMMUIdx mmu_idx, uint32_t *fsr, | |
7025 | ARMMMUFaultInfo *fi) | |
ebca90e4 | 7026 | { |
a614e698 EI |
7027 | ARMCPU *cpu = ARM_CPU(cs); |
7028 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 7029 | MemTxAttrs attrs = {}; |
5ce4ff65 | 7030 | AddressSpace *as; |
ebca90e4 PM |
7031 | |
7032 | attrs.secure = is_secure; | |
5ce4ff65 | 7033 | as = arm_addressspace(cs, attrs); |
a614e698 EI |
7034 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
7035 | if (fi->s1ptw) { | |
7036 | return 0; | |
7037 | } | |
73462ddd PC |
7038 | if (regime_translation_big_endian(env, mmu_idx)) { |
7039 | return address_space_ldl_be(as, addr, attrs, NULL); | |
7040 | } else { | |
7041 | return address_space_ldl_le(as, addr, attrs, NULL); | |
7042 | } | |
ebca90e4 PM |
7043 | } |
7044 | ||
37785977 EI |
7045 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
7046 | ARMMMUIdx mmu_idx, uint32_t *fsr, | |
7047 | ARMMMUFaultInfo *fi) | |
ebca90e4 | 7048 | { |
37785977 EI |
7049 | ARMCPU *cpu = ARM_CPU(cs); |
7050 | CPUARMState *env = &cpu->env; | |
ebca90e4 | 7051 | MemTxAttrs attrs = {}; |
5ce4ff65 | 7052 | AddressSpace *as; |
ebca90e4 PM |
7053 | |
7054 | attrs.secure = is_secure; | |
5ce4ff65 | 7055 | as = arm_addressspace(cs, attrs); |
37785977 EI |
7056 | addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
7057 | if (fi->s1ptw) { | |
7058 | return 0; | |
7059 | } | |
73462ddd PC |
7060 | if (regime_translation_big_endian(env, mmu_idx)) { |
7061 | return address_space_ldq_be(as, addr, attrs, NULL); | |
7062 | } else { | |
7063 | return address_space_ldq_le(as, addr, attrs, NULL); | |
7064 | } | |
ebca90e4 PM |
7065 | } |
7066 | ||
b7cc4e82 PC |
7067 | static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
7068 | int access_type, ARMMMUIdx mmu_idx, | |
7069 | hwaddr *phys_ptr, int *prot, | |
e14b5a23 EI |
7070 | target_ulong *page_size, uint32_t *fsr, |
7071 | ARMMMUFaultInfo *fi) | |
b5ff1b31 | 7072 | { |
70d74660 | 7073 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
7074 | int code; |
7075 | uint32_t table; | |
7076 | uint32_t desc; | |
7077 | int type; | |
7078 | int ap; | |
e389be16 | 7079 | int domain = 0; |
dd4ebc2e | 7080 | int domain_prot; |
a8170e5e | 7081 | hwaddr phys_addr; |
0480f69a | 7082 | uint32_t dacr; |
b5ff1b31 | 7083 | |
9ee6e8bb PB |
7084 | /* Pagetable walk. */ |
7085 | /* Lookup l1 descriptor. */ | |
0480f69a | 7086 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
7087 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
7088 | code = 5; | |
7089 | goto do_fault; | |
7090 | } | |
a614e698 EI |
7091 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
7092 | mmu_idx, fsr, fi); | |
9ee6e8bb | 7093 | type = (desc & 3); |
dd4ebc2e | 7094 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
7095 | if (regime_el(env, mmu_idx) == 1) { |
7096 | dacr = env->cp15.dacr_ns; | |
7097 | } else { | |
7098 | dacr = env->cp15.dacr_s; | |
7099 | } | |
7100 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 7101 | if (type == 0) { |
601d70b9 | 7102 | /* Section translation fault. */ |
9ee6e8bb PB |
7103 | code = 5; |
7104 | goto do_fault; | |
7105 | } | |
dd4ebc2e | 7106 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
7107 | if (type == 2) |
7108 | code = 9; /* Section domain fault. */ | |
7109 | else | |
7110 | code = 11; /* Page domain fault. */ | |
7111 | goto do_fault; | |
7112 | } | |
7113 | if (type == 2) { | |
7114 | /* 1Mb section. */ | |
7115 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
7116 | ap = (desc >> 10) & 3; | |
7117 | code = 13; | |
d4c430a8 | 7118 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
7119 | } else { |
7120 | /* Lookup l2 entry. */ | |
554b0b09 PM |
7121 | if (type == 1) { |
7122 | /* Coarse pagetable. */ | |
7123 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
7124 | } else { | |
7125 | /* Fine pagetable. */ | |
7126 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
7127 | } | |
a614e698 EI |
7128 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
7129 | mmu_idx, fsr, fi); | |
9ee6e8bb PB |
7130 | switch (desc & 3) { |
7131 | case 0: /* Page translation fault. */ | |
7132 | code = 7; | |
7133 | goto do_fault; | |
7134 | case 1: /* 64k page. */ | |
7135 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
7136 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 7137 | *page_size = 0x10000; |
ce819861 | 7138 | break; |
9ee6e8bb PB |
7139 | case 2: /* 4k page. */ |
7140 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 7141 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 7142 | *page_size = 0x1000; |
ce819861 | 7143 | break; |
fc1891c7 | 7144 | case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
554b0b09 | 7145 | if (type == 1) { |
fc1891c7 PM |
7146 | /* ARMv6/XScale extended small page format */ |
7147 | if (arm_feature(env, ARM_FEATURE_XSCALE) | |
7148 | || arm_feature(env, ARM_FEATURE_V6)) { | |
554b0b09 | 7149 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
fc1891c7 | 7150 | *page_size = 0x1000; |
554b0b09 | 7151 | } else { |
fc1891c7 PM |
7152 | /* UNPREDICTABLE in ARMv5; we choose to take a |
7153 | * page translation fault. | |
7154 | */ | |
554b0b09 PM |
7155 | code = 7; |
7156 | goto do_fault; | |
7157 | } | |
7158 | } else { | |
7159 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
fc1891c7 | 7160 | *page_size = 0x400; |
554b0b09 | 7161 | } |
9ee6e8bb | 7162 | ap = (desc >> 4) & 3; |
ce819861 PB |
7163 | break; |
7164 | default: | |
9ee6e8bb PB |
7165 | /* Never happens, but compiler isn't smart enough to tell. */ |
7166 | abort(); | |
ce819861 | 7167 | } |
9ee6e8bb PB |
7168 | code = 15; |
7169 | } | |
0fbf5238 AJ |
7170 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
7171 | *prot |= *prot ? PAGE_EXEC : 0; | |
7172 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
7173 | /* Access permission fault. */ |
7174 | goto do_fault; | |
7175 | } | |
7176 | *phys_ptr = phys_addr; | |
b7cc4e82 | 7177 | return false; |
9ee6e8bb | 7178 | do_fault: |
b7cc4e82 PC |
7179 | *fsr = code | (domain << 4); |
7180 | return true; | |
9ee6e8bb PB |
7181 | } |
7182 | ||
b7cc4e82 PC |
7183 | static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
7184 | int access_type, ARMMMUIdx mmu_idx, | |
7185 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
e14b5a23 EI |
7186 | target_ulong *page_size, uint32_t *fsr, |
7187 | ARMMMUFaultInfo *fi) | |
9ee6e8bb | 7188 | { |
70d74660 | 7189 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
7190 | int code; |
7191 | uint32_t table; | |
7192 | uint32_t desc; | |
7193 | uint32_t xn; | |
de9b05b8 | 7194 | uint32_t pxn = 0; |
9ee6e8bb PB |
7195 | int type; |
7196 | int ap; | |
de9b05b8 | 7197 | int domain = 0; |
dd4ebc2e | 7198 | int domain_prot; |
a8170e5e | 7199 | hwaddr phys_addr; |
0480f69a | 7200 | uint32_t dacr; |
8bf5b6a9 | 7201 | bool ns; |
9ee6e8bb PB |
7202 | |
7203 | /* Pagetable walk. */ | |
7204 | /* Lookup l1 descriptor. */ | |
0480f69a | 7205 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
7206 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
7207 | code = 5; | |
7208 | goto do_fault; | |
7209 | } | |
a614e698 EI |
7210 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
7211 | mmu_idx, fsr, fi); | |
9ee6e8bb | 7212 | type = (desc & 3); |
de9b05b8 PM |
7213 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
7214 | /* Section translation fault, or attempt to use the encoding | |
7215 | * which is Reserved on implementations without PXN. | |
7216 | */ | |
9ee6e8bb | 7217 | code = 5; |
9ee6e8bb | 7218 | goto do_fault; |
de9b05b8 PM |
7219 | } |
7220 | if ((type == 1) || !(desc & (1 << 18))) { | |
7221 | /* Page or Section. */ | |
dd4ebc2e | 7222 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 7223 | } |
0480f69a PM |
7224 | if (regime_el(env, mmu_idx) == 1) { |
7225 | dacr = env->cp15.dacr_ns; | |
7226 | } else { | |
7227 | dacr = env->cp15.dacr_s; | |
7228 | } | |
7229 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 7230 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 7231 | if (type != 1) { |
9ee6e8bb | 7232 | code = 9; /* Section domain fault. */ |
de9b05b8 | 7233 | } else { |
9ee6e8bb | 7234 | code = 11; /* Page domain fault. */ |
de9b05b8 | 7235 | } |
9ee6e8bb PB |
7236 | goto do_fault; |
7237 | } | |
de9b05b8 | 7238 | if (type != 1) { |
9ee6e8bb PB |
7239 | if (desc & (1 << 18)) { |
7240 | /* Supersection. */ | |
7241 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
4e42a6ca SF |
7242 | phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
7243 | phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; | |
d4c430a8 | 7244 | *page_size = 0x1000000; |
b5ff1b31 | 7245 | } else { |
9ee6e8bb PB |
7246 | /* Section. */ |
7247 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 7248 | *page_size = 0x100000; |
b5ff1b31 | 7249 | } |
9ee6e8bb PB |
7250 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
7251 | xn = desc & (1 << 4); | |
de9b05b8 | 7252 | pxn = desc & 1; |
9ee6e8bb | 7253 | code = 13; |
8bf5b6a9 | 7254 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 7255 | } else { |
de9b05b8 PM |
7256 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
7257 | pxn = (desc >> 2) & 1; | |
7258 | } | |
8bf5b6a9 | 7259 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
7260 | /* Lookup l2 entry. */ |
7261 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
a614e698 EI |
7262 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
7263 | mmu_idx, fsr, fi); | |
9ee6e8bb PB |
7264 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
7265 | switch (desc & 3) { | |
7266 | case 0: /* Page translation fault. */ | |
7267 | code = 7; | |
b5ff1b31 | 7268 | goto do_fault; |
9ee6e8bb PB |
7269 | case 1: /* 64k page. */ |
7270 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
7271 | xn = desc & (1 << 15); | |
d4c430a8 | 7272 | *page_size = 0x10000; |
9ee6e8bb PB |
7273 | break; |
7274 | case 2: case 3: /* 4k page. */ | |
7275 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
7276 | xn = desc & 1; | |
d4c430a8 | 7277 | *page_size = 0x1000; |
9ee6e8bb PB |
7278 | break; |
7279 | default: | |
7280 | /* Never happens, but compiler isn't smart enough to tell. */ | |
7281 | abort(); | |
b5ff1b31 | 7282 | } |
9ee6e8bb PB |
7283 | code = 15; |
7284 | } | |
dd4ebc2e | 7285 | if (domain_prot == 3) { |
c0034328 JR |
7286 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
7287 | } else { | |
0480f69a | 7288 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
7289 | xn = 1; |
7290 | } | |
c0034328 JR |
7291 | if (xn && access_type == 2) |
7292 | goto do_fault; | |
9ee6e8bb | 7293 | |
d76951b6 AJ |
7294 | if (arm_feature(env, ARM_FEATURE_V6K) && |
7295 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
7296 | /* The simplified model uses AP[0] as an access control bit. */ | |
7297 | if ((ap & 1) == 0) { | |
7298 | /* Access flag fault. */ | |
7299 | code = (code == 15) ? 6 : 3; | |
7300 | goto do_fault; | |
7301 | } | |
7302 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
7303 | } else { | |
7304 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 7305 | } |
0fbf5238 AJ |
7306 | if (*prot && !xn) { |
7307 | *prot |= PAGE_EXEC; | |
7308 | } | |
7309 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
7310 | /* Access permission fault. */ |
7311 | goto do_fault; | |
7312 | } | |
3ad493fc | 7313 | } |
8bf5b6a9 PM |
7314 | if (ns) { |
7315 | /* The NS bit will (as required by the architecture) have no effect if | |
7316 | * the CPU doesn't support TZ or this is a non-secure translation | |
7317 | * regime, because the attribute will already be non-secure. | |
7318 | */ | |
7319 | attrs->secure = false; | |
7320 | } | |
9ee6e8bb | 7321 | *phys_ptr = phys_addr; |
b7cc4e82 | 7322 | return false; |
b5ff1b31 | 7323 | do_fault: |
b7cc4e82 PC |
7324 | *fsr = code | (domain << 4); |
7325 | return true; | |
b5ff1b31 FB |
7326 | } |
7327 | ||
3dde962f PM |
7328 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
7329 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
7330 | */ | |
7331 | typedef enum { | |
7332 | translation_fault = 1, | |
7333 | access_fault = 2, | |
7334 | permission_fault = 3, | |
7335 | } MMUFaultType; | |
7336 | ||
1853d5a9 | 7337 | /* |
a0e966c9 | 7338 | * check_s2_mmu_setup |
1853d5a9 EI |
7339 | * @cpu: ARMCPU |
7340 | * @is_aa64: True if the translation regime is in AArch64 state | |
7341 | * @startlevel: Suggested starting level | |
7342 | * @inputsize: Bitsize of IPAs | |
7343 | * @stride: Page-table stride (See the ARM ARM) | |
7344 | * | |
a0e966c9 EI |
7345 | * Returns true if the suggested S2 translation parameters are OK and |
7346 | * false otherwise. | |
1853d5a9 | 7347 | */ |
a0e966c9 EI |
7348 | static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
7349 | int inputsize, int stride) | |
1853d5a9 | 7350 | { |
98d68ec2 EI |
7351 | const int grainsize = stride + 3; |
7352 | int startsizecheck; | |
7353 | ||
1853d5a9 EI |
7354 | /* Negative levels are never allowed. */ |
7355 | if (level < 0) { | |
7356 | return false; | |
7357 | } | |
7358 | ||
98d68ec2 EI |
7359 | startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
7360 | if (startsizecheck < 1 || startsizecheck > stride + 4) { | |
7361 | return false; | |
7362 | } | |
7363 | ||
1853d5a9 | 7364 | if (is_aa64) { |
3526423e | 7365 | CPUARMState *env = &cpu->env; |
1853d5a9 EI |
7366 | unsigned int pamax = arm_pamax(cpu); |
7367 | ||
7368 | switch (stride) { | |
7369 | case 13: /* 64KB Pages. */ | |
7370 | if (level == 0 || (level == 1 && pamax <= 42)) { | |
7371 | return false; | |
7372 | } | |
7373 | break; | |
7374 | case 11: /* 16KB Pages. */ | |
7375 | if (level == 0 || (level == 1 && pamax <= 40)) { | |
7376 | return false; | |
7377 | } | |
7378 | break; | |
7379 | case 9: /* 4KB Pages. */ | |
7380 | if (level == 0 && pamax <= 42) { | |
7381 | return false; | |
7382 | } | |
7383 | break; | |
7384 | default: | |
7385 | g_assert_not_reached(); | |
7386 | } | |
3526423e EI |
7387 | |
7388 | /* Inputsize checks. */ | |
7389 | if (inputsize > pamax && | |
7390 | (arm_el_is_aa64(env, 1) || inputsize > 40)) { | |
7391 | /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ | |
7392 | return false; | |
7393 | } | |
1853d5a9 | 7394 | } else { |
1853d5a9 EI |
7395 | /* AArch32 only supports 4KB pages. Assert on that. */ |
7396 | assert(stride == 9); | |
7397 | ||
7398 | if (level == 0) { | |
7399 | return false; | |
7400 | } | |
1853d5a9 EI |
7401 | } |
7402 | return true; | |
7403 | } | |
7404 | ||
b7cc4e82 PC |
7405 | static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
7406 | int access_type, ARMMMUIdx mmu_idx, | |
7407 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, | |
e14b5a23 EI |
7408 | target_ulong *page_size_ptr, uint32_t *fsr, |
7409 | ARMMMUFaultInfo *fi) | |
3dde962f | 7410 | { |
1853d5a9 EI |
7411 | ARMCPU *cpu = arm_env_get_cpu(env); |
7412 | CPUState *cs = CPU(cpu); | |
3dde962f PM |
7413 | /* Read an LPAE long-descriptor translation table. */ |
7414 | MMUFaultType fault_type = translation_fault; | |
1b4093ea | 7415 | uint32_t level; |
0c5fbf3b | 7416 | uint32_t epd = 0; |
1f4c8c18 | 7417 | int32_t t0sz, t1sz; |
2c8dd318 | 7418 | uint32_t tg; |
3dde962f PM |
7419 | uint64_t ttbr; |
7420 | int ttbr_select; | |
dddb5223 | 7421 | hwaddr descaddr, indexmask, indexmask_grainsize; |
3dde962f PM |
7422 | uint32_t tableattrs; |
7423 | target_ulong page_size; | |
7424 | uint32_t attrs; | |
973a5434 | 7425 | int32_t stride = 9; |
6e99f762 | 7426 | int32_t addrsize; |
4ca6a051 | 7427 | int inputsize; |
2c8dd318 | 7428 | int32_t tbi = 0; |
0480f69a | 7429 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 7430 | int ap, ns, xn, pxn; |
88e8add8 GB |
7431 | uint32_t el = regime_el(env, mmu_idx); |
7432 | bool ttbr1_valid = true; | |
6109769a | 7433 | uint64_t descaddrmask; |
6e99f762 | 7434 | bool aarch64 = arm_el_is_aa64(env, el); |
0480f69a PM |
7435 | |
7436 | /* TODO: | |
88e8add8 GB |
7437 | * This code does not handle the different format TCR for VTCR_EL2. |
7438 | * This code also does not support shareability levels. | |
7439 | * Attribute and permission bit handling should also be checked when adding | |
7440 | * support for those page table walks. | |
0480f69a | 7441 | */ |
6e99f762 | 7442 | if (aarch64) { |
1b4093ea | 7443 | level = 0; |
6e99f762 | 7444 | addrsize = 64; |
88e8add8 | 7445 | if (el > 1) { |
1edee470 EI |
7446 | if (mmu_idx != ARMMMUIdx_S2NS) { |
7447 | tbi = extract64(tcr->raw_tcr, 20, 1); | |
7448 | } | |
88e8add8 GB |
7449 | } else { |
7450 | if (extract64(address, 55, 1)) { | |
7451 | tbi = extract64(tcr->raw_tcr, 38, 1); | |
7452 | } else { | |
7453 | tbi = extract64(tcr->raw_tcr, 37, 1); | |
7454 | } | |
7455 | } | |
2c8dd318 | 7456 | tbi *= 8; |
88e8add8 GB |
7457 | |
7458 | /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it | |
7459 | * invalid. | |
7460 | */ | |
7461 | if (el > 1) { | |
7462 | ttbr1_valid = false; | |
7463 | } | |
d0a2cbce | 7464 | } else { |
1b4093ea | 7465 | level = 1; |
6e99f762 | 7466 | addrsize = 32; |
d0a2cbce PM |
7467 | /* There is no TTBR1 for EL2 */ |
7468 | if (el == 2) { | |
7469 | ttbr1_valid = false; | |
7470 | } | |
2c8dd318 | 7471 | } |
3dde962f PM |
7472 | |
7473 | /* Determine whether this address is in the region controlled by | |
7474 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
7475 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
7476 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
7477 | */ | |
6e99f762 | 7478 | if (aarch64) { |
4ee38098 EI |
7479 | /* AArch64 translation. */ |
7480 | t0sz = extract32(tcr->raw_tcr, 0, 6); | |
2c8dd318 RH |
7481 | t0sz = MIN(t0sz, 39); |
7482 | t0sz = MAX(t0sz, 16); | |
4ee38098 EI |
7483 | } else if (mmu_idx != ARMMMUIdx_S2NS) { |
7484 | /* AArch32 stage 1 translation. */ | |
7485 | t0sz = extract32(tcr->raw_tcr, 0, 3); | |
7486 | } else { | |
7487 | /* AArch32 stage 2 translation. */ | |
7488 | bool sext = extract32(tcr->raw_tcr, 4, 1); | |
7489 | bool sign = extract32(tcr->raw_tcr, 3, 1); | |
6e99f762 SS |
7490 | /* Address size is 40-bit for a stage 2 translation, |
7491 | * and t0sz can be negative (from -8 to 7), | |
7492 | * so we need to adjust it to use the TTBR selecting logic below. | |
7493 | */ | |
7494 | addrsize = 40; | |
7495 | t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; | |
4ee38098 EI |
7496 | |
7497 | /* If the sign-extend bit is not the same as t0sz[3], the result | |
7498 | * is unpredictable. Flag this as a guest error. */ | |
7499 | if (sign != sext) { | |
7500 | qemu_log_mask(LOG_GUEST_ERROR, | |
39cba610 | 7501 | "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); |
4ee38098 | 7502 | } |
2c8dd318 | 7503 | } |
1f4c8c18 | 7504 | t1sz = extract32(tcr->raw_tcr, 16, 6); |
6e99f762 | 7505 | if (aarch64) { |
2c8dd318 RH |
7506 | t1sz = MIN(t1sz, 39); |
7507 | t1sz = MAX(t1sz, 16); | |
7508 | } | |
6e99f762 | 7509 | if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { |
3dde962f PM |
7510 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
7511 | ttbr_select = 0; | |
88e8add8 | 7512 | } else if (ttbr1_valid && t1sz && |
6e99f762 | 7513 | !extract64(~address, addrsize - t1sz, t1sz - tbi)) { |
3dde962f PM |
7514 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
7515 | ttbr_select = 1; | |
7516 | } else if (!t0sz) { | |
7517 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
7518 | ttbr_select = 0; | |
88e8add8 | 7519 | } else if (!t1sz && ttbr1_valid) { |
3dde962f PM |
7520 | /* ttbr1 region is "everything not in the ttbr0 region" */ |
7521 | ttbr_select = 1; | |
7522 | } else { | |
7523 | /* in the gap between the two regions, this is a Translation fault */ | |
7524 | fault_type = translation_fault; | |
7525 | goto do_fault; | |
7526 | } | |
7527 | ||
7528 | /* Note that QEMU ignores shareability and cacheability attributes, | |
7529 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
7530 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
7531 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
7532 | * implement any ASID-like capability so we can ignore it (instead | |
7533 | * we will always flush the TLB any time the ASID is changed). | |
7534 | */ | |
7535 | if (ttbr_select == 0) { | |
aef878be | 7536 | ttbr = regime_ttbr(env, mmu_idx, 0); |
0c5fbf3b EI |
7537 | if (el < 2) { |
7538 | epd = extract32(tcr->raw_tcr, 7, 1); | |
7539 | } | |
6e99f762 | 7540 | inputsize = addrsize - t0sz; |
2c8dd318 | 7541 | |
11f136ee | 7542 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 | 7543 | if (tg == 1) { /* 64KB pages */ |
973a5434 | 7544 | stride = 13; |
2c8dd318 RH |
7545 | } |
7546 | if (tg == 2) { /* 16KB pages */ | |
973a5434 | 7547 | stride = 11; |
2c8dd318 | 7548 | } |
3dde962f | 7549 | } else { |
88e8add8 GB |
7550 | /* We should only be here if TTBR1 is valid */ |
7551 | assert(ttbr1_valid); | |
7552 | ||
aef878be | 7553 | ttbr = regime_ttbr(env, mmu_idx, 1); |
11f136ee | 7554 | epd = extract32(tcr->raw_tcr, 23, 1); |
6e99f762 | 7555 | inputsize = addrsize - t1sz; |
2c8dd318 | 7556 | |
11f136ee | 7557 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 | 7558 | if (tg == 3) { /* 64KB pages */ |
973a5434 | 7559 | stride = 13; |
2c8dd318 RH |
7560 | } |
7561 | if (tg == 1) { /* 16KB pages */ | |
973a5434 | 7562 | stride = 11; |
2c8dd318 | 7563 | } |
3dde962f PM |
7564 | } |
7565 | ||
0480f69a | 7566 | /* Here we should have set up all the parameters for the translation: |
6e99f762 | 7567 | * inputsize, ttbr, epd, stride, tbi |
0480f69a PM |
7568 | */ |
7569 | ||
3dde962f | 7570 | if (epd) { |
88e8add8 GB |
7571 | /* Translation table walk disabled => Translation fault on TLB miss |
7572 | * Note: This is always 0 on 64-bit EL2 and EL3. | |
7573 | */ | |
3dde962f PM |
7574 | goto do_fault; |
7575 | } | |
7576 | ||
1853d5a9 EI |
7577 | if (mmu_idx != ARMMMUIdx_S2NS) { |
7578 | /* The starting level depends on the virtual address size (which can | |
7579 | * be up to 48 bits) and the translation granule size. It indicates | |
7580 | * the number of strides (stride bits at a time) needed to | |
7581 | * consume the bits of the input address. In the pseudocode this is: | |
7582 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
7583 | * where their 'inputsize' is our 'inputsize', 'grainsize' is | |
7584 | * our 'stride + 3' and 'stride' is our 'stride'. | |
7585 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
7586 | * = 4 - (inputsize - stride - 3 + stride - 1) / stride | |
7587 | * = 4 - (inputsize - 4) / stride; | |
7588 | */ | |
7589 | level = 4 - (inputsize - 4) / stride; | |
7590 | } else { | |
7591 | /* For stage 2 translations the starting level is specified by the | |
7592 | * VTCR_EL2.SL0 field (whose interpretation depends on the page size) | |
7593 | */ | |
1b4093ea SS |
7594 | uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
7595 | uint32_t startlevel; | |
1853d5a9 EI |
7596 | bool ok; |
7597 | ||
6e99f762 | 7598 | if (!aarch64 || stride == 9) { |
1853d5a9 | 7599 | /* AArch32 or 4KB pages */ |
1b4093ea | 7600 | startlevel = 2 - sl0; |
1853d5a9 EI |
7601 | } else { |
7602 | /* 16KB or 64KB pages */ | |
1b4093ea | 7603 | startlevel = 3 - sl0; |
1853d5a9 EI |
7604 | } |
7605 | ||
7606 | /* Check that the starting level is valid. */ | |
6e99f762 | 7607 | ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
1b4093ea | 7608 | inputsize, stride); |
1853d5a9 | 7609 | if (!ok) { |
1853d5a9 EI |
7610 | fault_type = translation_fault; |
7611 | goto do_fault; | |
7612 | } | |
1b4093ea | 7613 | level = startlevel; |
1853d5a9 | 7614 | } |
3dde962f | 7615 | |
dddb5223 SS |
7616 | indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
7617 | indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; | |
3dde962f PM |
7618 | |
7619 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 | 7620 | descaddr = extract64(ttbr, 0, 48); |
dddb5223 | 7621 | descaddr &= ~indexmask; |
3dde962f | 7622 | |
6109769a | 7623 | /* The address field in the descriptor goes up to bit 39 for ARMv7 |
dddb5223 SS |
7624 | * but up to bit 47 for ARMv8, but we use the descaddrmask |
7625 | * up to bit 39 for AArch32, because we don't need other bits in that case | |
7626 | * to construct next descriptor address (anyway they should be all zeroes). | |
6109769a | 7627 | */ |
6e99f762 | 7628 | descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
dddb5223 | 7629 | ~indexmask_grainsize; |
6109769a | 7630 | |
ebca90e4 PM |
7631 | /* Secure accesses start with the page table in secure memory and |
7632 | * can be downgraded to non-secure at any step. Non-secure accesses | |
7633 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
7634 | * bits at each step. | |
7635 | */ | |
7636 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
7637 | for (;;) { |
7638 | uint64_t descriptor; | |
ebca90e4 | 7639 | bool nstable; |
3dde962f | 7640 | |
dddb5223 | 7641 | descaddr |= (address >> (stride * (4 - level))) & indexmask; |
2c8dd318 | 7642 | descaddr &= ~7ULL; |
ebca90e4 | 7643 | nstable = extract32(tableattrs, 4, 1); |
37785977 EI |
7644 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); |
7645 | if (fi->s1ptw) { | |
7646 | goto do_fault; | |
7647 | } | |
7648 | ||
3dde962f PM |
7649 | if (!(descriptor & 1) || |
7650 | (!(descriptor & 2) && (level == 3))) { | |
7651 | /* Invalid, or the Reserved level 3 encoding */ | |
7652 | goto do_fault; | |
7653 | } | |
6109769a | 7654 | descaddr = descriptor & descaddrmask; |
3dde962f PM |
7655 | |
7656 | if ((descriptor & 2) && (level < 3)) { | |
7657 | /* Table entry. The top five bits are attributes which may | |
7658 | * propagate down through lower levels of the table (and | |
7659 | * which are all arranged so that 0 means "no effect", so | |
7660 | * we can gather them up by ORing in the bits at each level). | |
7661 | */ | |
7662 | tableattrs |= extract64(descriptor, 59, 5); | |
7663 | level++; | |
dddb5223 | 7664 | indexmask = indexmask_grainsize; |
3dde962f PM |
7665 | continue; |
7666 | } | |
7667 | /* Block entry at level 1 or 2, or page entry at level 3. | |
7668 | * These are basically the same thing, although the number | |
7669 | * of bits we pull in from the vaddr varies. | |
7670 | */ | |
973a5434 | 7671 | page_size = (1ULL << ((stride * (4 - level)) + 3)); |
3dde962f | 7672 | descaddr |= (address & (page_size - 1)); |
6ab1a5ee | 7673 | /* Extract attributes from the descriptor */ |
d615efac IC |
7674 | attrs = extract64(descriptor, 2, 10) |
7675 | | (extract64(descriptor, 52, 12) << 10); | |
6ab1a5ee EI |
7676 | |
7677 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
7678 | /* Stage 2 table descriptors do not include any attribute fields */ | |
7679 | break; | |
7680 | } | |
7681 | /* Merge in attributes from table descriptors */ | |
3dde962f PM |
7682 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
7683 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
7684 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
7685 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
7686 | */ | |
7687 | if (extract32(tableattrs, 2, 1)) { | |
7688 | attrs &= ~(1 << 4); | |
7689 | } | |
ebca90e4 | 7690 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
7691 | break; |
7692 | } | |
7693 | /* Here descaddr is the final physical address, and attributes | |
7694 | * are all in attrs. | |
7695 | */ | |
7696 | fault_type = access_fault; | |
7697 | if ((attrs & (1 << 8)) == 0) { | |
7698 | /* Access flag */ | |
7699 | goto do_fault; | |
7700 | } | |
d8e052b3 AJ |
7701 | |
7702 | ap = extract32(attrs, 4, 2); | |
d8e052b3 | 7703 | xn = extract32(attrs, 12, 1); |
d8e052b3 | 7704 | |
6ab1a5ee EI |
7705 | if (mmu_idx == ARMMMUIdx_S2NS) { |
7706 | ns = true; | |
7707 | *prot = get_S2prot(env, ap, xn); | |
7708 | } else { | |
7709 | ns = extract32(attrs, 3, 1); | |
7710 | pxn = extract32(attrs, 11, 1); | |
6e99f762 | 7711 | *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
6ab1a5ee | 7712 | } |
d8e052b3 | 7713 | |
3dde962f | 7714 | fault_type = permission_fault; |
d8e052b3 | 7715 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
7716 | goto do_fault; |
7717 | } | |
3dde962f | 7718 | |
8bf5b6a9 PM |
7719 | if (ns) { |
7720 | /* The NS bit will (as required by the architecture) have no effect if | |
7721 | * the CPU doesn't support TZ or this is a non-secure translation | |
7722 | * regime, because the attribute will already be non-secure. | |
7723 | */ | |
7724 | txattrs->secure = false; | |
7725 | } | |
3dde962f PM |
7726 | *phys_ptr = descaddr; |
7727 | *page_size_ptr = page_size; | |
b7cc4e82 | 7728 | return false; |
3dde962f PM |
7729 | |
7730 | do_fault: | |
7731 | /* Long-descriptor format IFSR/DFSR value */ | |
b7cc4e82 | 7732 | *fsr = (1 << 9) | (fault_type << 2) | level; |
37785977 EI |
7733 | /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
7734 | fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); | |
b7cc4e82 | 7735 | return true; |
3dde962f PM |
7736 | } |
7737 | ||
f6bda88f PC |
7738 | static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
7739 | ARMMMUIdx mmu_idx, | |
7740 | int32_t address, int *prot) | |
7741 | { | |
7742 | *prot = PAGE_READ | PAGE_WRITE; | |
7743 | switch (address) { | |
7744 | case 0xF0000000 ... 0xFFFFFFFF: | |
7745 | if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ | |
7746 | *prot |= PAGE_EXEC; | |
7747 | } | |
7748 | break; | |
7749 | case 0x00000000 ... 0x7FFFFFFF: | |
7750 | *prot |= PAGE_EXEC; | |
7751 | break; | |
7752 | } | |
7753 | ||
7754 | } | |
7755 | ||
7756 | static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, | |
7757 | int access_type, ARMMMUIdx mmu_idx, | |
7758 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
7759 | { | |
7760 | ARMCPU *cpu = arm_env_get_cpu(env); | |
7761 | int n; | |
7762 | bool is_user = regime_is_user(env, mmu_idx); | |
7763 | ||
7764 | *phys_ptr = address; | |
7765 | *prot = 0; | |
7766 | ||
7767 | if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ | |
7768 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
7769 | } else { /* MPU enabled */ | |
7770 | for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { | |
7771 | /* region search */ | |
7772 | uint32_t base = env->pmsav7.drbar[n]; | |
7773 | uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); | |
7774 | uint32_t rmask; | |
7775 | bool srdis = false; | |
7776 | ||
7777 | if (!(env->pmsav7.drsr[n] & 0x1)) { | |
7778 | continue; | |
7779 | } | |
7780 | ||
7781 | if (!rsize) { | |
7782 | qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); | |
7783 | continue; | |
7784 | } | |
7785 | rsize++; | |
7786 | rmask = (1ull << rsize) - 1; | |
7787 | ||
7788 | if (base & rmask) { | |
7789 | qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " | |
7790 | "to DRSR region size, mask = %" PRIx32, | |
7791 | base, rmask); | |
7792 | continue; | |
7793 | } | |
7794 | ||
7795 | if (address < base || address > base + rmask) { | |
7796 | continue; | |
7797 | } | |
7798 | ||
7799 | /* Region matched */ | |
7800 | ||
7801 | if (rsize >= 8) { /* no subregions for regions < 256 bytes */ | |
7802 | int i, snd; | |
7803 | uint32_t srdis_mask; | |
7804 | ||
7805 | rsize -= 3; /* sub region size (power of 2) */ | |
7806 | snd = ((address - base) >> rsize) & 0x7; | |
7807 | srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); | |
7808 | ||
7809 | srdis_mask = srdis ? 0x3 : 0x0; | |
7810 | for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { | |
7811 | /* This will check in groups of 2, 4 and then 8, whether | |
7812 | * the subregion bits are consistent. rsize is incremented | |
7813 | * back up to give the region size, considering consistent | |
7814 | * adjacent subregions as one region. Stop testing if rsize | |
7815 | * is already big enough for an entire QEMU page. | |
7816 | */ | |
7817 | int snd_rounded = snd & ~(i - 1); | |
7818 | uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], | |
7819 | snd_rounded + 8, i); | |
7820 | if (srdis_mask ^ srdis_multi) { | |
7821 | break; | |
7822 | } | |
7823 | srdis_mask = (srdis_mask << i) | srdis_mask; | |
7824 | rsize++; | |
7825 | } | |
7826 | } | |
7827 | if (rsize < TARGET_PAGE_BITS) { | |
7828 | qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" | |
7829 | "alignment of %" PRIu32 " bits. Minimum is %d\n", | |
7830 | rsize, TARGET_PAGE_BITS); | |
7831 | continue; | |
7832 | } | |
7833 | if (srdis) { | |
7834 | continue; | |
7835 | } | |
7836 | break; | |
7837 | } | |
7838 | ||
7839 | if (n == -1) { /* no hits */ | |
7840 | if (cpu->pmsav7_dregion && | |
7841 | (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { | |
7842 | /* background fault */ | |
7843 | *fsr = 0; | |
7844 | return true; | |
7845 | } | |
7846 | get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); | |
7847 | } else { /* a MPU hit! */ | |
7848 | uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); | |
7849 | ||
7850 | if (is_user) { /* User mode AP bit decoding */ | |
7851 | switch (ap) { | |
7852 | case 0: | |
7853 | case 1: | |
7854 | case 5: | |
7855 | break; /* no access */ | |
7856 | case 3: | |
7857 | *prot |= PAGE_WRITE; | |
7858 | /* fall through */ | |
7859 | case 2: | |
7860 | case 6: | |
7861 | *prot |= PAGE_READ | PAGE_EXEC; | |
7862 | break; | |
7863 | default: | |
7864 | qemu_log_mask(LOG_GUEST_ERROR, | |
7865 | "Bad value for AP bits in DRACR %" | |
7866 | PRIx32 "\n", ap); | |
7867 | } | |
7868 | } else { /* Priv. mode AP bits decoding */ | |
7869 | switch (ap) { | |
7870 | case 0: | |
7871 | break; /* no access */ | |
7872 | case 1: | |
7873 | case 2: | |
7874 | case 3: | |
7875 | *prot |= PAGE_WRITE; | |
7876 | /* fall through */ | |
7877 | case 5: | |
7878 | case 6: | |
7879 | *prot |= PAGE_READ | PAGE_EXEC; | |
7880 | break; | |
7881 | default: | |
7882 | qemu_log_mask(LOG_GUEST_ERROR, | |
7883 | "Bad value for AP bits in DRACR %" | |
7884 | PRIx32 "\n", ap); | |
7885 | } | |
7886 | } | |
7887 | ||
7888 | /* execute never */ | |
7889 | if (env->pmsav7.dracr[n] & (1 << 12)) { | |
7890 | *prot &= ~PAGE_EXEC; | |
7891 | } | |
7892 | } | |
7893 | } | |
7894 | ||
7895 | *fsr = 0x00d; /* Permission fault */ | |
7896 | return !(*prot & (1 << access_type)); | |
7897 | } | |
7898 | ||
13689d43 PC |
7899 | static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
7900 | int access_type, ARMMMUIdx mmu_idx, | |
7901 | hwaddr *phys_ptr, int *prot, uint32_t *fsr) | |
9ee6e8bb PB |
7902 | { |
7903 | int n; | |
7904 | uint32_t mask; | |
7905 | uint32_t base; | |
0480f69a | 7906 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb PB |
7907 | |
7908 | *phys_ptr = address; | |
7909 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 7910 | base = env->cp15.c6_region[n]; |
87c3d486 | 7911 | if ((base & 1) == 0) { |
554b0b09 | 7912 | continue; |
87c3d486 | 7913 | } |
554b0b09 PM |
7914 | mask = 1 << ((base >> 1) & 0x1f); |
7915 | /* Keep this shift separate from the above to avoid an | |
7916 | (undefined) << 32. */ | |
7917 | mask = (mask << 1) - 1; | |
87c3d486 | 7918 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 7919 | break; |
87c3d486 | 7920 | } |
9ee6e8bb | 7921 | } |
87c3d486 | 7922 | if (n < 0) { |
b7cc4e82 PC |
7923 | *fsr = 2; |
7924 | return true; | |
87c3d486 | 7925 | } |
9ee6e8bb PB |
7926 | |
7927 | if (access_type == 2) { | |
7e09797c | 7928 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 7929 | } else { |
7e09797c | 7930 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
7931 | } |
7932 | mask = (mask >> (n * 4)) & 0xf; | |
7933 | switch (mask) { | |
7934 | case 0: | |
b7cc4e82 PC |
7935 | *fsr = 1; |
7936 | return true; | |
9ee6e8bb | 7937 | case 1: |
87c3d486 | 7938 | if (is_user) { |
b7cc4e82 PC |
7939 | *fsr = 1; |
7940 | return true; | |
87c3d486 | 7941 | } |
554b0b09 PM |
7942 | *prot = PAGE_READ | PAGE_WRITE; |
7943 | break; | |
9ee6e8bb | 7944 | case 2: |
554b0b09 | 7945 | *prot = PAGE_READ; |
87c3d486 | 7946 | if (!is_user) { |
554b0b09 | 7947 | *prot |= PAGE_WRITE; |
87c3d486 | 7948 | } |
554b0b09 | 7949 | break; |
9ee6e8bb | 7950 | case 3: |
554b0b09 PM |
7951 | *prot = PAGE_READ | PAGE_WRITE; |
7952 | break; | |
9ee6e8bb | 7953 | case 5: |
87c3d486 | 7954 | if (is_user) { |
b7cc4e82 PC |
7955 | *fsr = 1; |
7956 | return true; | |
87c3d486 | 7957 | } |
554b0b09 PM |
7958 | *prot = PAGE_READ; |
7959 | break; | |
9ee6e8bb | 7960 | case 6: |
554b0b09 PM |
7961 | *prot = PAGE_READ; |
7962 | break; | |
9ee6e8bb | 7963 | default: |
554b0b09 | 7964 | /* Bad permission. */ |
b7cc4e82 PC |
7965 | *fsr = 1; |
7966 | return true; | |
9ee6e8bb | 7967 | } |
3ad493fc | 7968 | *prot |= PAGE_EXEC; |
b7cc4e82 | 7969 | return false; |
9ee6e8bb PB |
7970 | } |
7971 | ||
702a9357 PM |
7972 | /* get_phys_addr - get the physical address for this virtual address |
7973 | * | |
7974 | * Find the physical address corresponding to the given virtual address, | |
7975 | * by doing a translation table walk on MMU based systems or using the | |
7976 | * MPU state on MPU based systems. | |
7977 | * | |
b7cc4e82 PC |
7978 | * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
7979 | * prot and page_size may not be filled in, and the populated fsr value provides | |
702a9357 PM |
7980 | * information on why the translation aborted, in the format of a |
7981 | * DFSR/IFSR fault register, with the following caveats: | |
7982 | * * we honour the short vs long DFSR format differences. | |
7983 | * * the WnR bit is never set (the caller must do this). | |
f6bda88f | 7984 | * * for PSMAv5 based systems we don't bother to return a full FSR format |
702a9357 PM |
7985 | * value. |
7986 | * | |
7987 | * @env: CPUARMState | |
7988 | * @address: virtual address to get physical address for | |
7989 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 7990 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 7991 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 7992 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
7993 | * @prot: set to the permissions for the page containing phys_ptr |
7994 | * @page_size: set to the size of the page containing phys_ptr | |
b7cc4e82 | 7995 | * @fsr: set to the DFSR/IFSR value on failure |
702a9357 | 7996 | */ |
af51f566 EI |
7997 | static bool get_phys_addr(CPUARMState *env, target_ulong address, |
7998 | int access_type, ARMMMUIdx mmu_idx, | |
7999 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, | |
e14b5a23 EI |
8000 | target_ulong *page_size, uint32_t *fsr, |
8001 | ARMMMUFaultInfo *fi) | |
9ee6e8bb | 8002 | { |
0480f69a | 8003 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
9b539263 EI |
8004 | /* Call ourselves recursively to do the stage 1 and then stage 2 |
8005 | * translations. | |
0480f69a | 8006 | */ |
9b539263 EI |
8007 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
8008 | hwaddr ipa; | |
8009 | int s2_prot; | |
8010 | int ret; | |
8011 | ||
8012 | ret = get_phys_addr(env, address, access_type, | |
8013 | mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs, | |
8014 | prot, page_size, fsr, fi); | |
8015 | ||
8016 | /* If S1 fails or S2 is disabled, return early. */ | |
8017 | if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { | |
8018 | *phys_ptr = ipa; | |
8019 | return ret; | |
8020 | } | |
8021 | ||
8022 | /* S1 is done. Now do S2 translation. */ | |
8023 | ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, | |
8024 | phys_ptr, attrs, &s2_prot, | |
8025 | page_size, fsr, fi); | |
8026 | fi->s2addr = ipa; | |
8027 | /* Combine the S1 and S2 perms. */ | |
8028 | *prot &= s2_prot; | |
8029 | return ret; | |
8030 | } else { | |
8031 | /* | |
8032 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. | |
8033 | */ | |
8034 | mmu_idx += ARMMMUIdx_S1NSE0; | |
8035 | } | |
0480f69a | 8036 | } |
d3649702 | 8037 | |
8bf5b6a9 PM |
8038 | /* The page table entries may downgrade secure to non-secure, but |
8039 | * cannot upgrade an non-secure translation regime's attributes | |
8040 | * to secure. | |
8041 | */ | |
8042 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 8043 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 8044 | |
0480f69a PM |
8045 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
8046 | * In v7 and earlier it affects all stage 1 translations. | |
8047 | */ | |
8048 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
8049 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
8050 | if (regime_el(env, mmu_idx) == 3) { | |
8051 | address += env->cp15.fcseidr_s; | |
8052 | } else { | |
8053 | address += env->cp15.fcseidr_ns; | |
8054 | } | |
54bf36ed | 8055 | } |
9ee6e8bb | 8056 | |
f6bda88f PC |
8057 | /* pmsav7 has special handling for when MPU is disabled so call it before |
8058 | * the common MMU/MPU disabled check below. | |
8059 | */ | |
8060 | if (arm_feature(env, ARM_FEATURE_MPU) && | |
8061 | arm_feature(env, ARM_FEATURE_V7)) { | |
8062 | *page_size = TARGET_PAGE_SIZE; | |
8063 | return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, | |
8064 | phys_ptr, prot, fsr); | |
8065 | } | |
8066 | ||
0480f69a | 8067 | if (regime_translation_disabled(env, mmu_idx)) { |
9ee6e8bb PB |
8068 | /* MMU/MPU disabled. */ |
8069 | *phys_ptr = address; | |
3ad493fc | 8070 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 8071 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 8072 | return 0; |
0480f69a PM |
8073 | } |
8074 | ||
8075 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |
f6bda88f | 8076 | /* Pre-v7 MPU */ |
d4c430a8 | 8077 | *page_size = TARGET_PAGE_SIZE; |
13689d43 PC |
8078 | return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
8079 | phys_ptr, prot, fsr); | |
0480f69a PM |
8080 | } |
8081 | ||
8082 | if (regime_using_lpae_format(env, mmu_idx)) { | |
8083 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
e14b5a23 | 8084 | attrs, prot, page_size, fsr, fi); |
0480f69a PM |
8085 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
8086 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
e14b5a23 | 8087 | attrs, prot, page_size, fsr, fi); |
9ee6e8bb | 8088 | } else { |
0480f69a | 8089 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
e14b5a23 | 8090 | prot, page_size, fsr, fi); |
9ee6e8bb PB |
8091 | } |
8092 | } | |
8093 | ||
8c6084bf | 8094 | /* Walk the page table and (if the mapping exists) add the page |
b7cc4e82 PC |
8095 | * to the TLB. Return false on success, or true on failure. Populate |
8096 | * fsr with ARM DFSR/IFSR fault register format value on failure. | |
8c6084bf | 8097 | */ |
b7cc4e82 | 8098 | bool arm_tlb_fill(CPUState *cs, vaddr address, |
e14b5a23 EI |
8099 | int access_type, int mmu_idx, uint32_t *fsr, |
8100 | ARMMMUFaultInfo *fi) | |
b5ff1b31 | 8101 | { |
7510454e AF |
8102 | ARMCPU *cpu = ARM_CPU(cs); |
8103 | CPUARMState *env = &cpu->env; | |
a8170e5e | 8104 | hwaddr phys_addr; |
d4c430a8 | 8105 | target_ulong page_size; |
b5ff1b31 | 8106 | int prot; |
d3649702 | 8107 | int ret; |
8bf5b6a9 | 8108 | MemTxAttrs attrs = {}; |
b5ff1b31 | 8109 | |
8bf5b6a9 | 8110 | ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, |
e14b5a23 | 8111 | &attrs, &prot, &page_size, fsr, fi); |
b7cc4e82 | 8112 | if (!ret) { |
b5ff1b31 | 8113 | /* Map a single [sub]page. */ |
dcd82c11 AB |
8114 | phys_addr &= TARGET_PAGE_MASK; |
8115 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
8116 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
8117 | prot, mmu_idx, page_size); | |
d4c430a8 | 8118 | return 0; |
b5ff1b31 FB |
8119 | } |
8120 | ||
8c6084bf | 8121 | return ret; |
b5ff1b31 FB |
8122 | } |
8123 | ||
0faea0c7 PM |
8124 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
8125 | MemTxAttrs *attrs) | |
b5ff1b31 | 8126 | { |
00b941e5 | 8127 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 8128 | CPUARMState *env = &cpu->env; |
a8170e5e | 8129 | hwaddr phys_addr; |
d4c430a8 | 8130 | target_ulong page_size; |
b5ff1b31 | 8131 | int prot; |
b7cc4e82 PC |
8132 | bool ret; |
8133 | uint32_t fsr; | |
e14b5a23 | 8134 | ARMMMUFaultInfo fi = {}; |
b5ff1b31 | 8135 | |
0faea0c7 PM |
8136 | *attrs = (MemTxAttrs) {}; |
8137 | ||
97ed5ccd | 8138 | ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, |
0faea0c7 | 8139 | attrs, &prot, &page_size, &fsr, &fi); |
b5ff1b31 | 8140 | |
b7cc4e82 | 8141 | if (ret) { |
b5ff1b31 | 8142 | return -1; |
00b941e5 | 8143 | } |
b5ff1b31 FB |
8144 | return phys_addr; |
8145 | } | |
8146 | ||
0ecb72a5 | 8147 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 8148 | { |
a47dddd7 AF |
8149 | ARMCPU *cpu = arm_env_get_cpu(env); |
8150 | ||
9ee6e8bb PB |
8151 | switch (reg) { |
8152 | case 0: /* APSR */ | |
8153 | return xpsr_read(env) & 0xf8000000; | |
8154 | case 1: /* IAPSR */ | |
8155 | return xpsr_read(env) & 0xf80001ff; | |
8156 | case 2: /* EAPSR */ | |
8157 | return xpsr_read(env) & 0xff00fc00; | |
8158 | case 3: /* xPSR */ | |
8159 | return xpsr_read(env) & 0xff00fdff; | |
8160 | case 5: /* IPSR */ | |
8161 | return xpsr_read(env) & 0x000001ff; | |
8162 | case 6: /* EPSR */ | |
8163 | return xpsr_read(env) & 0x0700fc00; | |
8164 | case 7: /* IEPSR */ | |
8165 | return xpsr_read(env) & 0x0700edff; | |
8166 | case 8: /* MSP */ | |
8167 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
8168 | case 9: /* PSP */ | |
8169 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
8170 | case 16: /* PRIMASK */ | |
4cc35614 | 8171 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
8172 | case 17: /* BASEPRI */ |
8173 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 8174 | return env->v7m.basepri; |
82845826 | 8175 | case 19: /* FAULTMASK */ |
4cc35614 | 8176 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
8177 | case 20: /* CONTROL */ |
8178 | return env->v7m.control; | |
8179 | default: | |
8180 | /* ??? For debugging only. */ | |
a47dddd7 | 8181 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
8182 | return 0; |
8183 | } | |
8184 | } | |
8185 | ||
0ecb72a5 | 8186 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 8187 | { |
a47dddd7 AF |
8188 | ARMCPU *cpu = arm_env_get_cpu(env); |
8189 | ||
9ee6e8bb PB |
8190 | switch (reg) { |
8191 | case 0: /* APSR */ | |
8192 | xpsr_write(env, val, 0xf8000000); | |
8193 | break; | |
8194 | case 1: /* IAPSR */ | |
8195 | xpsr_write(env, val, 0xf8000000); | |
8196 | break; | |
8197 | case 2: /* EAPSR */ | |
8198 | xpsr_write(env, val, 0xfe00fc00); | |
8199 | break; | |
8200 | case 3: /* xPSR */ | |
8201 | xpsr_write(env, val, 0xfe00fc00); | |
8202 | break; | |
8203 | case 5: /* IPSR */ | |
8204 | /* IPSR bits are readonly. */ | |
8205 | break; | |
8206 | case 6: /* EPSR */ | |
8207 | xpsr_write(env, val, 0x0600fc00); | |
8208 | break; | |
8209 | case 7: /* IEPSR */ | |
8210 | xpsr_write(env, val, 0x0600fc00); | |
8211 | break; | |
8212 | case 8: /* MSP */ | |
8213 | if (env->v7m.current_sp) | |
8214 | env->v7m.other_sp = val; | |
8215 | else | |
8216 | env->regs[13] = val; | |
8217 | break; | |
8218 | case 9: /* PSP */ | |
8219 | if (env->v7m.current_sp) | |
8220 | env->regs[13] = val; | |
8221 | else | |
8222 | env->v7m.other_sp = val; | |
8223 | break; | |
8224 | case 16: /* PRIMASK */ | |
4cc35614 PM |
8225 | if (val & 1) { |
8226 | env->daif |= PSTATE_I; | |
8227 | } else { | |
8228 | env->daif &= ~PSTATE_I; | |
8229 | } | |
9ee6e8bb | 8230 | break; |
82845826 | 8231 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
8232 | env->v7m.basepri = val & 0xff; |
8233 | break; | |
82845826 | 8234 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
8235 | val &= 0xff; |
8236 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
8237 | env->v7m.basepri = val; | |
8238 | break; | |
82845826 | 8239 | case 19: /* FAULTMASK */ |
4cc35614 PM |
8240 | if (val & 1) { |
8241 | env->daif |= PSTATE_F; | |
8242 | } else { | |
8243 | env->daif &= ~PSTATE_F; | |
8244 | } | |
82845826 | 8245 | break; |
9ee6e8bb PB |
8246 | case 20: /* CONTROL */ |
8247 | env->v7m.control = val & 3; | |
8248 | switch_v7m_sp(env, (val & 2) != 0); | |
8249 | break; | |
8250 | default: | |
8251 | /* ??? For debugging only. */ | |
a47dddd7 | 8252 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
8253 | return; |
8254 | } | |
8255 | } | |
8256 | ||
b5ff1b31 | 8257 | #endif |
6ddbc6e4 | 8258 | |
aca3f40b PM |
8259 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
8260 | { | |
8261 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
8262 | * Note that we do not implement the (architecturally mandated) | |
8263 | * alignment fault for attempts to use this on Device memory | |
8264 | * (which matches the usual QEMU behaviour of not implementing either | |
8265 | * alignment faults or any memory attribute handling). | |
8266 | */ | |
8267 | ||
8268 | ARMCPU *cpu = arm_env_get_cpu(env); | |
8269 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
8270 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
8271 | ||
8272 | #ifndef CONFIG_USER_ONLY | |
8273 | { | |
8274 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
8275 | * the block size so we might have to do more than one TLB lookup. | |
8276 | * We know that in fact for any v8 CPU the page size is at least 4K | |
8277 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
8278 | * 1K as an artefact of legacy v5 subpage support being present in the | |
8279 | * same QEMU executable. | |
8280 | */ | |
8281 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
8282 | void *hostaddr[maxidx]; | |
8283 | int try, i; | |
97ed5ccd | 8284 | unsigned mmu_idx = cpu_mmu_index(env, false); |
3972ef6f | 8285 | TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
aca3f40b PM |
8286 | |
8287 | for (try = 0; try < 2; try++) { | |
8288 | ||
8289 | for (i = 0; i < maxidx; i++) { | |
8290 | hostaddr[i] = tlb_vaddr_to_host(env, | |
8291 | vaddr + TARGET_PAGE_SIZE * i, | |
3972ef6f | 8292 | 1, mmu_idx); |
aca3f40b PM |
8293 | if (!hostaddr[i]) { |
8294 | break; | |
8295 | } | |
8296 | } | |
8297 | if (i == maxidx) { | |
8298 | /* If it's all in the TLB it's fair game for just writing to; | |
8299 | * we know we don't need to update dirty status, etc. | |
8300 | */ | |
8301 | for (i = 0; i < maxidx - 1; i++) { | |
8302 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
8303 | } | |
8304 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
8305 | return; | |
8306 | } | |
8307 | /* OK, try a store and see if we can populate the tlb. This | |
8308 | * might cause an exception if the memory isn't writable, | |
8309 | * in which case we will longjmp out of here. We must for | |
8310 | * this purpose use the actual register value passed to us | |
8311 | * so that we get the fault address right. | |
8312 | */ | |
01ecaf43 | 8313 | helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); |
aca3f40b PM |
8314 | /* Now we can populate the other TLB entries, if any */ |
8315 | for (i = 0; i < maxidx; i++) { | |
8316 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
8317 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
01ecaf43 | 8318 | helper_ret_stb_mmu(env, va, 0, oi, GETPC()); |
aca3f40b PM |
8319 | } |
8320 | } | |
8321 | } | |
8322 | ||
8323 | /* Slow path (probably attempt to do this to an I/O device or | |
8324 | * similar, or clearing of a block of code we have translations | |
8325 | * cached for). Just do a series of byte writes as the architecture | |
8326 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
8327 | * memset(), unmap() sequence here because: | |
8328 | * + we'd need to account for the blocksize being larger than a page | |
8329 | * + the direct-RAM access case is almost always going to be dealt | |
8330 | * with in the fastpath code above, so there's no speed benefit | |
8331 | * + we would have to deal with the map returning NULL because the | |
8332 | * bounce buffer was in use | |
8333 | */ | |
8334 | for (i = 0; i < blocklen; i++) { | |
01ecaf43 | 8335 | helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); |
aca3f40b PM |
8336 | } |
8337 | } | |
8338 | #else | |
8339 | memset(g2h(vaddr), 0, blocklen); | |
8340 | #endif | |
8341 | } | |
8342 | ||
6ddbc6e4 PB |
8343 | /* Note that signed overflow is undefined in C. The following routines are |
8344 | careful to use unsigned types where modulo arithmetic is required. | |
8345 | Failure to do so _will_ break on newer gcc. */ | |
8346 | ||
8347 | /* Signed saturating arithmetic. */ | |
8348 | ||
1654b2d6 | 8349 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
8350 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
8351 | { | |
8352 | uint16_t res; | |
8353 | ||
8354 | res = a + b; | |
8355 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
8356 | if (a & 0x8000) | |
8357 | res = 0x8000; | |
8358 | else | |
8359 | res = 0x7fff; | |
8360 | } | |
8361 | return res; | |
8362 | } | |
8363 | ||
1654b2d6 | 8364 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
8365 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
8366 | { | |
8367 | uint8_t res; | |
8368 | ||
8369 | res = a + b; | |
8370 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
8371 | if (a & 0x80) | |
8372 | res = 0x80; | |
8373 | else | |
8374 | res = 0x7f; | |
8375 | } | |
8376 | return res; | |
8377 | } | |
8378 | ||
1654b2d6 | 8379 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
8380 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
8381 | { | |
8382 | uint16_t res; | |
8383 | ||
8384 | res = a - b; | |
8385 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
8386 | if (a & 0x8000) | |
8387 | res = 0x8000; | |
8388 | else | |
8389 | res = 0x7fff; | |
8390 | } | |
8391 | return res; | |
8392 | } | |
8393 | ||
1654b2d6 | 8394 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
8395 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
8396 | { | |
8397 | uint8_t res; | |
8398 | ||
8399 | res = a - b; | |
8400 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
8401 | if (a & 0x80) | |
8402 | res = 0x80; | |
8403 | else | |
8404 | res = 0x7f; | |
8405 | } | |
8406 | return res; | |
8407 | } | |
8408 | ||
8409 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
8410 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
8411 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
8412 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
8413 | #define PFX q | |
8414 | ||
8415 | #include "op_addsub.h" | |
8416 | ||
8417 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 8418 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
8419 | { |
8420 | uint16_t res; | |
8421 | res = a + b; | |
8422 | if (res < a) | |
8423 | res = 0xffff; | |
8424 | return res; | |
8425 | } | |
8426 | ||
460a09c1 | 8427 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 8428 | { |
4c4fd3f8 | 8429 | if (a > b) |
6ddbc6e4 PB |
8430 | return a - b; |
8431 | else | |
8432 | return 0; | |
8433 | } | |
8434 | ||
8435 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
8436 | { | |
8437 | uint8_t res; | |
8438 | res = a + b; | |
8439 | if (res < a) | |
8440 | res = 0xff; | |
8441 | return res; | |
8442 | } | |
8443 | ||
8444 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
8445 | { | |
4c4fd3f8 | 8446 | if (a > b) |
6ddbc6e4 PB |
8447 | return a - b; |
8448 | else | |
8449 | return 0; | |
8450 | } | |
8451 | ||
8452 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
8453 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
8454 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
8455 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
8456 | #define PFX uq | |
8457 | ||
8458 | #include "op_addsub.h" | |
8459 | ||
8460 | /* Signed modulo arithmetic. */ | |
8461 | #define SARITH16(a, b, n, op) do { \ | |
8462 | int32_t sum; \ | |
db6e2e65 | 8463 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
8464 | RESULT(sum, n, 16); \ |
8465 | if (sum >= 0) \ | |
8466 | ge |= 3 << (n * 2); \ | |
8467 | } while(0) | |
8468 | ||
8469 | #define SARITH8(a, b, n, op) do { \ | |
8470 | int32_t sum; \ | |
db6e2e65 | 8471 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
8472 | RESULT(sum, n, 8); \ |
8473 | if (sum >= 0) \ | |
8474 | ge |= 1 << n; \ | |
8475 | } while(0) | |
8476 | ||
8477 | ||
8478 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
8479 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
8480 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
8481 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
8482 | #define PFX s | |
8483 | #define ARITH_GE | |
8484 | ||
8485 | #include "op_addsub.h" | |
8486 | ||
8487 | /* Unsigned modulo arithmetic. */ | |
8488 | #define ADD16(a, b, n) do { \ | |
8489 | uint32_t sum; \ | |
8490 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
8491 | RESULT(sum, n, 16); \ | |
a87aa10b | 8492 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
8493 | ge |= 3 << (n * 2); \ |
8494 | } while(0) | |
8495 | ||
8496 | #define ADD8(a, b, n) do { \ | |
8497 | uint32_t sum; \ | |
8498 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
8499 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
8500 | if ((sum >> 8) == 1) \ |
8501 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
8502 | } while(0) |
8503 | ||
8504 | #define SUB16(a, b, n) do { \ | |
8505 | uint32_t sum; \ | |
8506 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
8507 | RESULT(sum, n, 16); \ | |
8508 | if ((sum >> 16) == 0) \ | |
8509 | ge |= 3 << (n * 2); \ | |
8510 | } while(0) | |
8511 | ||
8512 | #define SUB8(a, b, n) do { \ | |
8513 | uint32_t sum; \ | |
8514 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
8515 | RESULT(sum, n, 8); \ | |
8516 | if ((sum >> 8) == 0) \ | |
a87aa10b | 8517 | ge |= 1 << n; \ |
6ddbc6e4 PB |
8518 | } while(0) |
8519 | ||
8520 | #define PFX u | |
8521 | #define ARITH_GE | |
8522 | ||
8523 | #include "op_addsub.h" | |
8524 | ||
8525 | /* Halved signed arithmetic. */ | |
8526 | #define ADD16(a, b, n) \ | |
8527 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
8528 | #define SUB16(a, b, n) \ | |
8529 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
8530 | #define ADD8(a, b, n) \ | |
8531 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
8532 | #define SUB8(a, b, n) \ | |
8533 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
8534 | #define PFX sh | |
8535 | ||
8536 | #include "op_addsub.h" | |
8537 | ||
8538 | /* Halved unsigned arithmetic. */ | |
8539 | #define ADD16(a, b, n) \ | |
8540 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
8541 | #define SUB16(a, b, n) \ | |
8542 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
8543 | #define ADD8(a, b, n) \ | |
8544 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
8545 | #define SUB8(a, b, n) \ | |
8546 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
8547 | #define PFX uh | |
8548 | ||
8549 | #include "op_addsub.h" | |
8550 | ||
8551 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
8552 | { | |
8553 | if (a > b) | |
8554 | return a - b; | |
8555 | else | |
8556 | return b - a; | |
8557 | } | |
8558 | ||
8559 | /* Unsigned sum of absolute byte differences. */ | |
8560 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
8561 | { | |
8562 | uint32_t sum; | |
8563 | sum = do_usad(a, b); | |
8564 | sum += do_usad(a >> 8, b >> 8); | |
8565 | sum += do_usad(a >> 16, b >>16); | |
8566 | sum += do_usad(a >> 24, b >> 24); | |
8567 | return sum; | |
8568 | } | |
8569 | ||
8570 | /* For ARMv6 SEL instruction. */ | |
8571 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
8572 | { | |
8573 | uint32_t mask; | |
8574 | ||
8575 | mask = 0; | |
8576 | if (flags & 1) | |
8577 | mask |= 0xff; | |
8578 | if (flags & 2) | |
8579 | mask |= 0xff00; | |
8580 | if (flags & 4) | |
8581 | mask |= 0xff0000; | |
8582 | if (flags & 8) | |
8583 | mask |= 0xff000000; | |
8584 | return (a & mask) | (b & ~mask); | |
8585 | } | |
8586 | ||
b90372ad PM |
8587 | /* VFP support. We follow the convention used for VFP instructions: |
8588 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
8589 | "d" suffix. */ |
8590 | ||
8591 | /* Convert host exception flags to vfp form. */ | |
8592 | static inline int vfp_exceptbits_from_host(int host_bits) | |
8593 | { | |
8594 | int target_bits = 0; | |
8595 | ||
8596 | if (host_bits & float_flag_invalid) | |
8597 | target_bits |= 1; | |
8598 | if (host_bits & float_flag_divbyzero) | |
8599 | target_bits |= 2; | |
8600 | if (host_bits & float_flag_overflow) | |
8601 | target_bits |= 4; | |
36802b6b | 8602 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
8603 | target_bits |= 8; |
8604 | if (host_bits & float_flag_inexact) | |
8605 | target_bits |= 0x10; | |
cecd8504 PM |
8606 | if (host_bits & float_flag_input_denormal) |
8607 | target_bits |= 0x80; | |
4373f3ce PB |
8608 | return target_bits; |
8609 | } | |
8610 | ||
0ecb72a5 | 8611 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
8612 | { |
8613 | int i; | |
8614 | uint32_t fpscr; | |
8615 | ||
8616 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
8617 | | (env->vfp.vec_len << 16) | |
8618 | | (env->vfp.vec_stride << 20); | |
8619 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 8620 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
8621 | fpscr |= vfp_exceptbits_from_host(i); |
8622 | return fpscr; | |
8623 | } | |
8624 | ||
0ecb72a5 | 8625 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
8626 | { |
8627 | return HELPER(vfp_get_fpscr)(env); | |
8628 | } | |
8629 | ||
4373f3ce PB |
8630 | /* Convert vfp exception flags to target form. */ |
8631 | static inline int vfp_exceptbits_to_host(int target_bits) | |
8632 | { | |
8633 | int host_bits = 0; | |
8634 | ||
8635 | if (target_bits & 1) | |
8636 | host_bits |= float_flag_invalid; | |
8637 | if (target_bits & 2) | |
8638 | host_bits |= float_flag_divbyzero; | |
8639 | if (target_bits & 4) | |
8640 | host_bits |= float_flag_overflow; | |
8641 | if (target_bits & 8) | |
8642 | host_bits |= float_flag_underflow; | |
8643 | if (target_bits & 0x10) | |
8644 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
8645 | if (target_bits & 0x80) |
8646 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
8647 | return host_bits; |
8648 | } | |
8649 | ||
0ecb72a5 | 8650 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
8651 | { |
8652 | int i; | |
8653 | uint32_t changed; | |
8654 | ||
8655 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
8656 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
8657 | env->vfp.vec_len = (val >> 16) & 7; | |
8658 | env->vfp.vec_stride = (val >> 20) & 3; | |
8659 | ||
8660 | changed ^= val; | |
8661 | if (changed & (3 << 22)) { | |
8662 | i = (val >> 22) & 3; | |
8663 | switch (i) { | |
4d3da0f3 | 8664 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
8665 | i = float_round_nearest_even; |
8666 | break; | |
4d3da0f3 | 8667 | case FPROUNDING_POSINF: |
4373f3ce PB |
8668 | i = float_round_up; |
8669 | break; | |
4d3da0f3 | 8670 | case FPROUNDING_NEGINF: |
4373f3ce PB |
8671 | i = float_round_down; |
8672 | break; | |
4d3da0f3 | 8673 | case FPROUNDING_ZERO: |
4373f3ce PB |
8674 | i = float_round_to_zero; |
8675 | break; | |
8676 | } | |
8677 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
8678 | } | |
cecd8504 | 8679 | if (changed & (1 << 24)) { |
fe76d976 | 8680 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
8681 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
8682 | } | |
5c7908ed PB |
8683 | if (changed & (1 << 25)) |
8684 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 8685 | |
b12c390b | 8686 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 8687 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 8688 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
8689 | } |
8690 | ||
0ecb72a5 | 8691 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
8692 | { |
8693 | HELPER(vfp_set_fpscr)(env, val); | |
8694 | } | |
8695 | ||
4373f3ce PB |
8696 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
8697 | ||
8698 | #define VFP_BINOP(name) \ | |
ae1857ec | 8699 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 8700 | { \ |
ae1857ec PM |
8701 | float_status *fpst = fpstp; \ |
8702 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 8703 | } \ |
ae1857ec | 8704 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 8705 | { \ |
ae1857ec PM |
8706 | float_status *fpst = fpstp; \ |
8707 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
8708 | } |
8709 | VFP_BINOP(add) | |
8710 | VFP_BINOP(sub) | |
8711 | VFP_BINOP(mul) | |
8712 | VFP_BINOP(div) | |
f71a2ae5 PM |
8713 | VFP_BINOP(min) |
8714 | VFP_BINOP(max) | |
8715 | VFP_BINOP(minnum) | |
8716 | VFP_BINOP(maxnum) | |
4373f3ce PB |
8717 | #undef VFP_BINOP |
8718 | ||
8719 | float32 VFP_HELPER(neg, s)(float32 a) | |
8720 | { | |
8721 | return float32_chs(a); | |
8722 | } | |
8723 | ||
8724 | float64 VFP_HELPER(neg, d)(float64 a) | |
8725 | { | |
66230e0d | 8726 | return float64_chs(a); |
4373f3ce PB |
8727 | } |
8728 | ||
8729 | float32 VFP_HELPER(abs, s)(float32 a) | |
8730 | { | |
8731 | return float32_abs(a); | |
8732 | } | |
8733 | ||
8734 | float64 VFP_HELPER(abs, d)(float64 a) | |
8735 | { | |
66230e0d | 8736 | return float64_abs(a); |
4373f3ce PB |
8737 | } |
8738 | ||
0ecb72a5 | 8739 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
8740 | { |
8741 | return float32_sqrt(a, &env->vfp.fp_status); | |
8742 | } | |
8743 | ||
0ecb72a5 | 8744 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
8745 | { |
8746 | return float64_sqrt(a, &env->vfp.fp_status); | |
8747 | } | |
8748 | ||
8749 | /* XXX: check quiet/signaling case */ | |
8750 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 8751 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
8752 | { \ |
8753 | uint32_t flags; \ | |
8754 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
8755 | case 0: flags = 0x6; break; \ | |
8756 | case -1: flags = 0x8; break; \ | |
8757 | case 1: flags = 0x2; break; \ | |
8758 | default: case 2: flags = 0x3; break; \ | |
8759 | } \ | |
8760 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
8761 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
8762 | } \ | |
0ecb72a5 | 8763 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
8764 | { \ |
8765 | uint32_t flags; \ | |
8766 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
8767 | case 0: flags = 0x6; break; \ | |
8768 | case -1: flags = 0x8; break; \ | |
8769 | case 1: flags = 0x2; break; \ | |
8770 | default: case 2: flags = 0x3; break; \ | |
8771 | } \ | |
8772 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
8773 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
8774 | } | |
8775 | DO_VFP_cmp(s, float32) | |
8776 | DO_VFP_cmp(d, float64) | |
8777 | #undef DO_VFP_cmp | |
8778 | ||
5500b06c | 8779 | /* Integer to float and float to integer conversions */ |
4373f3ce | 8780 | |
5500b06c PM |
8781 | #define CONV_ITOF(name, fsz, sign) \ |
8782 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
8783 | { \ | |
8784 | float_status *fpst = fpstp; \ | |
85836979 | 8785 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
8786 | } |
8787 | ||
5500b06c PM |
8788 | #define CONV_FTOI(name, fsz, sign, round) \ |
8789 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
8790 | { \ | |
8791 | float_status *fpst = fpstp; \ | |
8792 | if (float##fsz##_is_any_nan(x)) { \ | |
8793 | float_raise(float_flag_invalid, fpst); \ | |
8794 | return 0; \ | |
8795 | } \ | |
8796 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
8797 | } |
8798 | ||
5500b06c PM |
8799 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
8800 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
8801 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
8802 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 8803 | |
5500b06c PM |
8804 | FLOAT_CONVS(si, s, 32, ) |
8805 | FLOAT_CONVS(si, d, 64, ) | |
8806 | FLOAT_CONVS(ui, s, 32, u) | |
8807 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 8808 | |
5500b06c PM |
8809 | #undef CONV_ITOF |
8810 | #undef CONV_FTOI | |
8811 | #undef FLOAT_CONVS | |
4373f3ce PB |
8812 | |
8813 | /* floating point conversion */ | |
0ecb72a5 | 8814 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 8815 | { |
2d627737 PM |
8816 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
8817 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
8818 | * a quiet NaN by forcing the most significant frac bit to 1. | |
8819 | */ | |
af39bc8c | 8820 | return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
4373f3ce PB |
8821 | } |
8822 | ||
0ecb72a5 | 8823 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 8824 | { |
2d627737 PM |
8825 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
8826 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
8827 | * a quiet NaN by forcing the most significant frac bit to 1. | |
8828 | */ | |
af39bc8c | 8829 | return float32_maybe_silence_nan(r, &env->vfp.fp_status); |
4373f3ce PB |
8830 | } |
8831 | ||
8832 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 8833 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
8834 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
8835 | void *fpstp) \ | |
4373f3ce | 8836 | { \ |
5500b06c | 8837 | float_status *fpst = fpstp; \ |
622465e1 | 8838 | float##fsz tmp; \ |
8ed697e8 | 8839 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 8840 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
8841 | } |
8842 | ||
abe66f70 PM |
8843 | /* Notice that we want only input-denormal exception flags from the |
8844 | * scalbn operation: the other possible flags (overflow+inexact if | |
8845 | * we overflow to infinity, output-denormal) aren't correct for the | |
8846 | * complete scale-and-convert operation. | |
8847 | */ | |
16d5b3ca WN |
8848 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
8849 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
8850 | uint32_t shift, \ | |
8851 | void *fpstp) \ | |
4373f3ce | 8852 | { \ |
5500b06c | 8853 | float_status *fpst = fpstp; \ |
abe66f70 | 8854 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
8855 | float##fsz tmp; \ |
8856 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 8857 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 8858 | return 0; \ |
09d9487f | 8859 | } \ |
5500b06c | 8860 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
8861 | old_exc_flags |= get_float_exception_flags(fpst) \ |
8862 | & float_flag_input_denormal; \ | |
8863 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 8864 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
8865 | } |
8866 | ||
16d5b3ca WN |
8867 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
8868 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
8869 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
8870 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
8871 | ||
8872 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
8873 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
8874 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 8875 | |
8ed697e8 WN |
8876 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
8877 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 8878 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
8879 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
8880 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 8881 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
8882 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
8883 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 8884 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
8885 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
8886 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 8887 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 8888 | #undef VFP_CONV_FIX |
16d5b3ca WN |
8889 | #undef VFP_CONV_FIX_FLOAT |
8890 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 8891 | |
52a1f6a3 AG |
8892 | /* Set the current fp rounding mode and return the old one. |
8893 | * The argument is a softfloat float_round_ value. | |
8894 | */ | |
8895 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
8896 | { | |
8897 | float_status *fp_status = &env->vfp.fp_status; | |
8898 | ||
8899 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
8900 | set_float_rounding_mode(rmode, fp_status); | |
8901 | ||
8902 | return prev_rmode; | |
8903 | } | |
8904 | ||
43630e58 WN |
8905 | /* Set the current fp rounding mode in the standard fp status and return |
8906 | * the old one. This is for NEON instructions that need to change the | |
8907 | * rounding mode but wish to use the standard FPSCR values for everything | |
8908 | * else. Always set the rounding mode back to the correct value after | |
8909 | * modifying it. | |
8910 | * The argument is a softfloat float_round_ value. | |
8911 | */ | |
8912 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
8913 | { | |
8914 | float_status *fp_status = &env->vfp.standard_fp_status; | |
8915 | ||
8916 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
8917 | set_float_rounding_mode(rmode, fp_status); | |
8918 | ||
8919 | return prev_rmode; | |
8920 | } | |
8921 | ||
60011498 | 8922 | /* Half precision conversions. */ |
0ecb72a5 | 8923 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 8924 | { |
60011498 | 8925 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
8926 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
8927 | if (ieee) { | |
af39bc8c | 8928 | return float32_maybe_silence_nan(r, s); |
fb91678d PM |
8929 | } |
8930 | return r; | |
60011498 PB |
8931 | } |
8932 | ||
0ecb72a5 | 8933 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 8934 | { |
60011498 | 8935 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
8936 | float16 r = float32_to_float16(a, ieee, s); |
8937 | if (ieee) { | |
af39bc8c | 8938 | r = float16_maybe_silence_nan(r, s); |
fb91678d PM |
8939 | } |
8940 | return float16_val(r); | |
60011498 PB |
8941 | } |
8942 | ||
0ecb72a5 | 8943 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
8944 | { |
8945 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
8946 | } | |
8947 | ||
0ecb72a5 | 8948 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
8949 | { |
8950 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
8951 | } | |
8952 | ||
0ecb72a5 | 8953 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
8954 | { |
8955 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
8956 | } | |
8957 | ||
0ecb72a5 | 8958 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
8959 | { |
8960 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
8961 | } | |
8962 | ||
8900aad2 PM |
8963 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
8964 | { | |
8965 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
8966 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
8967 | if (ieee) { | |
af39bc8c | 8968 | return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
8900aad2 PM |
8969 | } |
8970 | return r; | |
8971 | } | |
8972 | ||
8973 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
8974 | { | |
8975 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
8976 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
8977 | if (ieee) { | |
af39bc8c | 8978 | r = float16_maybe_silence_nan(r, &env->vfp.fp_status); |
8900aad2 PM |
8979 | } |
8980 | return float16_val(r); | |
8981 | } | |
8982 | ||
dda3ec49 | 8983 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
8984 | #define float32_three make_float32(0x40400000) |
8985 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 8986 | |
0ecb72a5 | 8987 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 8988 | { |
dda3ec49 PM |
8989 | float_status *s = &env->vfp.standard_fp_status; |
8990 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
8991 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
8992 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
8993 | float_raise(float_flag_input_denormal, s); | |
8994 | } | |
dda3ec49 PM |
8995 | return float32_two; |
8996 | } | |
8997 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
8998 | } |
8999 | ||
0ecb72a5 | 9000 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 9001 | { |
71826966 | 9002 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
9003 | float32 product; |
9004 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
9005 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
9006 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
9007 | float_raise(float_flag_input_denormal, s); | |
9008 | } | |
6aae3df1 | 9009 | return float32_one_point_five; |
9ea62f57 | 9010 | } |
6aae3df1 PM |
9011 | product = float32_mul(a, b, s); |
9012 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
9013 | } |
9014 | ||
8f8e3aa4 PB |
9015 | /* NEON helpers. */ |
9016 | ||
56bf4fe2 CL |
9017 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
9018 | * int->float conversions at run-time. */ | |
9019 | #define float64_256 make_float64(0x4070000000000000LL) | |
9020 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
9021 | #define float32_maxnorm make_float32(0x7f7fffff) |
9022 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 9023 | |
b6d4443a AB |
9024 | /* Reciprocal functions |
9025 | * | |
9026 | * The algorithm that must be used to calculate the estimate | |
9027 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 9028 | */ |
b6d4443a AB |
9029 | |
9030 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 9031 | { |
1146a817 PM |
9032 | /* These calculations mustn't set any fp exception flags, |
9033 | * so we use a local copy of the fp_status. | |
9034 | */ | |
b6d4443a | 9035 | float_status dummy_status = *real_fp_status; |
1146a817 | 9036 | float_status *s = &dummy_status; |
fe0e4872 CL |
9037 | /* q = (int)(a * 512.0) */ |
9038 | float64 q = float64_mul(float64_512, a, s); | |
9039 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
9040 | ||
9041 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
9042 | q = int64_to_float64(q_int, s); | |
9043 | q = float64_add(q, float64_half, s); | |
9044 | q = float64_div(q, float64_512, s); | |
9045 | q = float64_div(float64_one, q, s); | |
9046 | ||
9047 | /* s = (int)(256.0 * r + 0.5) */ | |
9048 | q = float64_mul(q, float64_256, s); | |
9049 | q = float64_add(q, float64_half, s); | |
9050 | q_int = float64_to_int64_round_to_zero(q, s); | |
9051 | ||
9052 | /* return (double)s / 256.0 */ | |
9053 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
9054 | } | |
9055 | ||
b6d4443a AB |
9056 | /* Common wrapper to call recip_estimate */ |
9057 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 9058 | { |
b6d4443a AB |
9059 | uint64_t val64 = float64_val(num); |
9060 | uint64_t frac = extract64(val64, 0, 52); | |
9061 | int64_t exp = extract64(val64, 52, 11); | |
9062 | uint64_t sbit; | |
9063 | float64 scaled, estimate; | |
fe0e4872 | 9064 | |
b6d4443a AB |
9065 | /* Generate the scaled number for the estimate function */ |
9066 | if (exp == 0) { | |
9067 | if (extract64(frac, 51, 1) == 0) { | |
9068 | exp = -1; | |
9069 | frac = extract64(frac, 0, 50) << 2; | |
9070 | } else { | |
9071 | frac = extract64(frac, 0, 51) << 1; | |
9072 | } | |
9073 | } | |
fe0e4872 | 9074 | |
b6d4443a AB |
9075 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
9076 | scaled = make_float64((0x3feULL << 52) | |
9077 | | extract64(frac, 44, 8) << 44); | |
9078 | ||
9079 | estimate = recip_estimate(scaled, fpst); | |
9080 | ||
9081 | /* Build new result */ | |
9082 | val64 = float64_val(estimate); | |
9083 | sbit = 0x8000000000000000ULL & val64; | |
9084 | exp = off - exp; | |
9085 | frac = extract64(val64, 0, 52); | |
9086 | ||
9087 | if (exp == 0) { | |
9088 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
9089 | } else if (exp == -1) { | |
9090 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
9091 | exp = 0; | |
9092 | } | |
9093 | ||
9094 | return make_float64(sbit | (exp << 52) | frac); | |
9095 | } | |
9096 | ||
9097 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
9098 | { | |
9099 | switch (fpst->float_rounding_mode) { | |
9100 | case float_round_nearest_even: /* Round to Nearest */ | |
9101 | return true; | |
9102 | case float_round_up: /* Round to +Inf */ | |
9103 | return !sign_bit; | |
9104 | case float_round_down: /* Round to -Inf */ | |
9105 | return sign_bit; | |
9106 | case float_round_to_zero: /* Round to Zero */ | |
9107 | return false; | |
9108 | } | |
9109 | ||
9110 | g_assert_not_reached(); | |
9111 | } | |
9112 | ||
9113 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
9114 | { | |
9115 | float_status *fpst = fpstp; | |
9116 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
9117 | uint32_t f32_val = float32_val(f32); | |
9118 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
9119 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
9120 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
9121 | float64 f64, r64; | |
9122 | uint64_t r64_val; | |
9123 | int64_t r64_exp; | |
9124 | uint64_t r64_frac; | |
9125 | ||
9126 | if (float32_is_any_nan(f32)) { | |
9127 | float32 nan = f32; | |
af39bc8c | 9128 | if (float32_is_signaling_nan(f32, fpst)) { |
b6d4443a | 9129 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 9130 | nan = float32_maybe_silence_nan(f32, fpst); |
fe0e4872 | 9131 | } |
b6d4443a | 9132 | if (fpst->default_nan_mode) { |
af39bc8c | 9133 | nan = float32_default_nan(fpst); |
43fe9bdb | 9134 | } |
b6d4443a AB |
9135 | return nan; |
9136 | } else if (float32_is_infinity(f32)) { | |
9137 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
9138 | } else if (float32_is_zero(f32)) { | |
9139 | float_raise(float_flag_divbyzero, fpst); | |
9140 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
9141 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
9142 | /* Abs(value) < 2.0^-128 */ | |
9143 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
9144 | if (round_to_inf(fpst, f32_sbit)) { | |
9145 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
9146 | } else { | |
9147 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
9148 | } | |
9149 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
9150 | float_raise(float_flag_underflow, fpst); | |
9151 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
9152 | } |
9153 | ||
fe0e4872 | 9154 | |
b6d4443a AB |
9155 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
9156 | r64 = call_recip_estimate(f64, 253, fpst); | |
9157 | r64_val = float64_val(r64); | |
9158 | r64_exp = extract64(r64_val, 52, 11); | |
9159 | r64_frac = extract64(r64_val, 0, 52); | |
9160 | ||
9161 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
9162 | return make_float32(f32_sbit | | |
9163 | (r64_exp & 0xff) << 23 | | |
9164 | extract64(r64_frac, 29, 24)); | |
9165 | } | |
9166 | ||
9167 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
9168 | { | |
9169 | float_status *fpst = fpstp; | |
9170 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
9171 | uint64_t f64_val = float64_val(f64); | |
9172 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
9173 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
9174 | float64 r64; | |
9175 | uint64_t r64_val; | |
9176 | int64_t r64_exp; | |
9177 | uint64_t r64_frac; | |
9178 | ||
9179 | /* Deal with any special cases */ | |
9180 | if (float64_is_any_nan(f64)) { | |
9181 | float64 nan = f64; | |
af39bc8c | 9182 | if (float64_is_signaling_nan(f64, fpst)) { |
b6d4443a | 9183 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 9184 | nan = float64_maybe_silence_nan(f64, fpst); |
b6d4443a AB |
9185 | } |
9186 | if (fpst->default_nan_mode) { | |
af39bc8c | 9187 | nan = float64_default_nan(fpst); |
b6d4443a AB |
9188 | } |
9189 | return nan; | |
9190 | } else if (float64_is_infinity(f64)) { | |
9191 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
9192 | } else if (float64_is_zero(f64)) { | |
9193 | float_raise(float_flag_divbyzero, fpst); | |
9194 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
9195 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
9196 | /* Abs(value) < 2.0^-1024 */ | |
9197 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
9198 | if (round_to_inf(fpst, f64_sbit)) { | |
9199 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
9200 | } else { | |
9201 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
9202 | } | |
fc1792e9 | 9203 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
9204 | float_raise(float_flag_underflow, fpst); |
9205 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
9206 | } | |
fe0e4872 | 9207 | |
b6d4443a AB |
9208 | r64 = call_recip_estimate(f64, 2045, fpst); |
9209 | r64_val = float64_val(r64); | |
9210 | r64_exp = extract64(r64_val, 52, 11); | |
9211 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 9212 | |
b6d4443a AB |
9213 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
9214 | return make_float64(f64_sbit | | |
9215 | ((r64_exp & 0x7ff) << 52) | | |
9216 | r64_frac); | |
4373f3ce PB |
9217 | } |
9218 | ||
e07be5d2 CL |
9219 | /* The algorithm that must be used to calculate the estimate |
9220 | * is specified by the ARM ARM. | |
9221 | */ | |
c2fb418e | 9222 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 9223 | { |
1146a817 PM |
9224 | /* These calculations mustn't set any fp exception flags, |
9225 | * so we use a local copy of the fp_status. | |
9226 | */ | |
c2fb418e | 9227 | float_status dummy_status = *real_fp_status; |
1146a817 | 9228 | float_status *s = &dummy_status; |
e07be5d2 CL |
9229 | float64 q; |
9230 | int64_t q_int; | |
9231 | ||
9232 | if (float64_lt(a, float64_half, s)) { | |
9233 | /* range 0.25 <= a < 0.5 */ | |
9234 | ||
9235 | /* a in units of 1/512 rounded down */ | |
9236 | /* q0 = (int)(a * 512.0); */ | |
9237 | q = float64_mul(float64_512, a, s); | |
9238 | q_int = float64_to_int64_round_to_zero(q, s); | |
9239 | ||
9240 | /* reciprocal root r */ | |
9241 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
9242 | q = int64_to_float64(q_int, s); | |
9243 | q = float64_add(q, float64_half, s); | |
9244 | q = float64_div(q, float64_512, s); | |
9245 | q = float64_sqrt(q, s); | |
9246 | q = float64_div(float64_one, q, s); | |
9247 | } else { | |
9248 | /* range 0.5 <= a < 1.0 */ | |
9249 | ||
9250 | /* a in units of 1/256 rounded down */ | |
9251 | /* q1 = (int)(a * 256.0); */ | |
9252 | q = float64_mul(float64_256, a, s); | |
9253 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
9254 | ||
9255 | /* reciprocal root r */ | |
9256 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
9257 | q = int64_to_float64(q_int, s); | |
9258 | q = float64_add(q, float64_half, s); | |
9259 | q = float64_div(q, float64_256, s); | |
9260 | q = float64_sqrt(q, s); | |
9261 | q = float64_div(float64_one, q, s); | |
9262 | } | |
9263 | /* r in units of 1/256 rounded to nearest */ | |
9264 | /* s = (int)(256.0 * r + 0.5); */ | |
9265 | ||
9266 | q = float64_mul(q, float64_256,s ); | |
9267 | q = float64_add(q, float64_half, s); | |
9268 | q_int = float64_to_int64_round_to_zero(q, s); | |
9269 | ||
9270 | /* return (double)s / 256.0;*/ | |
9271 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
9272 | } | |
9273 | ||
c2fb418e | 9274 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 9275 | { |
c2fb418e AB |
9276 | float_status *s = fpstp; |
9277 | float32 f32 = float32_squash_input_denormal(input, s); | |
9278 | uint32_t val = float32_val(f32); | |
9279 | uint32_t f32_sbit = 0x80000000 & val; | |
9280 | int32_t f32_exp = extract32(val, 23, 8); | |
9281 | uint32_t f32_frac = extract32(val, 0, 23); | |
9282 | uint64_t f64_frac; | |
9283 | uint64_t val64; | |
e07be5d2 CL |
9284 | int result_exp; |
9285 | float64 f64; | |
e07be5d2 | 9286 | |
c2fb418e AB |
9287 | if (float32_is_any_nan(f32)) { |
9288 | float32 nan = f32; | |
af39bc8c | 9289 | if (float32_is_signaling_nan(f32, s)) { |
e07be5d2 | 9290 | float_raise(float_flag_invalid, s); |
af39bc8c | 9291 | nan = float32_maybe_silence_nan(f32, s); |
e07be5d2 | 9292 | } |
c2fb418e | 9293 | if (s->default_nan_mode) { |
af39bc8c | 9294 | nan = float32_default_nan(s); |
43fe9bdb | 9295 | } |
c2fb418e AB |
9296 | return nan; |
9297 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 9298 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
9299 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
9300 | } else if (float32_is_neg(f32)) { | |
e07be5d2 | 9301 | float_raise(float_flag_invalid, s); |
af39bc8c | 9302 | return float32_default_nan(s); |
c2fb418e | 9303 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
9304 | return float32_zero; |
9305 | } | |
9306 | ||
c2fb418e | 9307 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 9308 | * preserving the parity of the exponent. */ |
c2fb418e AB |
9309 | |
9310 | f64_frac = ((uint64_t) f32_frac) << 29; | |
9311 | if (f32_exp == 0) { | |
9312 | while (extract64(f64_frac, 51, 1) == 0) { | |
9313 | f64_frac = f64_frac << 1; | |
9314 | f32_exp = f32_exp-1; | |
9315 | } | |
9316 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
9317 | } | |
9318 | ||
9319 | if (extract64(f32_exp, 0, 1) == 0) { | |
9320 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 9321 | | (0x3feULL << 52) |
c2fb418e | 9322 | | f64_frac); |
e07be5d2 | 9323 | } else { |
c2fb418e | 9324 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 9325 | | (0x3fdULL << 52) |
c2fb418e | 9326 | | f64_frac); |
e07be5d2 CL |
9327 | } |
9328 | ||
c2fb418e | 9329 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 9330 | |
c2fb418e | 9331 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
9332 | |
9333 | val64 = float64_val(f64); | |
9334 | ||
26cc6abf | 9335 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
9336 | | ((val64 >> 29) & 0x7fffff); |
9337 | return make_float32(val); | |
4373f3ce PB |
9338 | } |
9339 | ||
c2fb418e AB |
9340 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
9341 | { | |
9342 | float_status *s = fpstp; | |
9343 | float64 f64 = float64_squash_input_denormal(input, s); | |
9344 | uint64_t val = float64_val(f64); | |
9345 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
9346 | int64_t f64_exp = extract64(val, 52, 11); | |
9347 | uint64_t f64_frac = extract64(val, 0, 52); | |
9348 | int64_t result_exp; | |
9349 | uint64_t result_frac; | |
9350 | ||
9351 | if (float64_is_any_nan(f64)) { | |
9352 | float64 nan = f64; | |
af39bc8c | 9353 | if (float64_is_signaling_nan(f64, s)) { |
c2fb418e | 9354 | float_raise(float_flag_invalid, s); |
af39bc8c | 9355 | nan = float64_maybe_silence_nan(f64, s); |
c2fb418e AB |
9356 | } |
9357 | if (s->default_nan_mode) { | |
af39bc8c | 9358 | nan = float64_default_nan(s); |
c2fb418e AB |
9359 | } |
9360 | return nan; | |
9361 | } else if (float64_is_zero(f64)) { | |
9362 | float_raise(float_flag_divbyzero, s); | |
9363 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
9364 | } else if (float64_is_neg(f64)) { | |
9365 | float_raise(float_flag_invalid, s); | |
af39bc8c | 9366 | return float64_default_nan(s); |
c2fb418e AB |
9367 | } else if (float64_is_infinity(f64)) { |
9368 | return float64_zero; | |
9369 | } | |
9370 | ||
9371 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
9372 | * preserving the parity of the exponent. */ | |
9373 | ||
9374 | if (f64_exp == 0) { | |
9375 | while (extract64(f64_frac, 51, 1) == 0) { | |
9376 | f64_frac = f64_frac << 1; | |
9377 | f64_exp = f64_exp - 1; | |
9378 | } | |
9379 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
9380 | } | |
9381 | ||
9382 | if (extract64(f64_exp, 0, 1) == 0) { | |
9383 | f64 = make_float64(f64_sbit | |
9384 | | (0x3feULL << 52) | |
9385 | | f64_frac); | |
9386 | } else { | |
9387 | f64 = make_float64(f64_sbit | |
9388 | | (0x3fdULL << 52) | |
9389 | | f64_frac); | |
9390 | } | |
9391 | ||
9392 | result_exp = (3068 - f64_exp) / 2; | |
9393 | ||
9394 | f64 = recip_sqrt_estimate(f64, s); | |
9395 | ||
9396 | result_frac = extract64(float64_val(f64), 0, 52); | |
9397 | ||
9398 | return make_float64(f64_sbit | | |
9399 | ((result_exp & 0x7ff) << 52) | | |
9400 | result_frac); | |
9401 | } | |
9402 | ||
b6d4443a | 9403 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 9404 | { |
b6d4443a | 9405 | float_status *s = fpstp; |
fe0e4872 CL |
9406 | float64 f64; |
9407 | ||
9408 | if ((a & 0x80000000) == 0) { | |
9409 | return 0xffffffff; | |
9410 | } | |
9411 | ||
9412 | f64 = make_float64((0x3feULL << 52) | |
9413 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
9414 | ||
b6d4443a | 9415 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
9416 | |
9417 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
9418 | } |
9419 | ||
c2fb418e | 9420 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 9421 | { |
c2fb418e | 9422 | float_status *fpst = fpstp; |
e07be5d2 CL |
9423 | float64 f64; |
9424 | ||
9425 | if ((a & 0xc0000000) == 0) { | |
9426 | return 0xffffffff; | |
9427 | } | |
9428 | ||
9429 | if (a & 0x80000000) { | |
9430 | f64 = make_float64((0x3feULL << 52) | |
9431 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
9432 | } else { /* bits 31-30 == '01' */ | |
9433 | f64 = make_float64((0x3fdULL << 52) | |
9434 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
9435 | } | |
9436 | ||
c2fb418e | 9437 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
9438 | |
9439 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 9440 | } |
fe1479c3 | 9441 | |
da97f52c PM |
9442 | /* VFPv4 fused multiply-accumulate */ |
9443 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
9444 | { | |
9445 | float_status *fpst = fpstp; | |
9446 | return float32_muladd(a, b, c, 0, fpst); | |
9447 | } | |
9448 | ||
9449 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
9450 | { | |
9451 | float_status *fpst = fpstp; | |
9452 | return float64_muladd(a, b, c, 0, fpst); | |
9453 | } | |
d9b0848d PM |
9454 | |
9455 | /* ARMv8 round to integral */ | |
9456 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
9457 | { | |
9458 | return float32_round_to_int(x, fp_status); | |
9459 | } | |
9460 | ||
9461 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
9462 | { | |
9463 | return float64_round_to_int(x, fp_status); | |
9464 | } | |
9465 | ||
9466 | float32 HELPER(rints)(float32 x, void *fp_status) | |
9467 | { | |
9468 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
9469 | float32 ret; | |
9470 | ||
9471 | ret = float32_round_to_int(x, fp_status); | |
9472 | ||
9473 | /* Suppress any inexact exceptions the conversion produced */ | |
9474 | if (!(old_flags & float_flag_inexact)) { | |
9475 | new_flags = get_float_exception_flags(fp_status); | |
9476 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
9477 | } | |
9478 | ||
9479 | return ret; | |
9480 | } | |
9481 | ||
9482 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
9483 | { | |
9484 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
9485 | float64 ret; | |
9486 | ||
9487 | ret = float64_round_to_int(x, fp_status); | |
9488 | ||
9489 | new_flags = get_float_exception_flags(fp_status); | |
9490 | ||
9491 | /* Suppress any inexact exceptions the conversion produced */ | |
9492 | if (!(old_flags & float_flag_inexact)) { | |
9493 | new_flags = get_float_exception_flags(fp_status); | |
9494 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
9495 | } | |
9496 | ||
9497 | return ret; | |
9498 | } | |
9972da66 WN |
9499 | |
9500 | /* Convert ARM rounding mode to softfloat */ | |
9501 | int arm_rmode_to_sf(int rmode) | |
9502 | { | |
9503 | switch (rmode) { | |
9504 | case FPROUNDING_TIEAWAY: | |
9505 | rmode = float_round_ties_away; | |
9506 | break; | |
9507 | case FPROUNDING_ODD: | |
9508 | /* FIXME: add support for TIEAWAY and ODD */ | |
9509 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
9510 | rmode); | |
9511 | case FPROUNDING_TIEEVEN: | |
9512 | default: | |
9513 | rmode = float_round_nearest_even; | |
9514 | break; | |
9515 | case FPROUNDING_POSINF: | |
9516 | rmode = float_round_up; | |
9517 | break; | |
9518 | case FPROUNDING_NEGINF: | |
9519 | rmode = float_round_down; | |
9520 | break; | |
9521 | case FPROUNDING_ZERO: | |
9522 | rmode = float_round_to_zero; | |
9523 | break; | |
9524 | } | |
9525 | return rmode; | |
9526 | } | |
eb0ecd5a | 9527 | |
aa633469 PM |
9528 | /* CRC helpers. |
9529 | * The upper bytes of val (above the number specified by 'bytes') must have | |
9530 | * been zeroed out by the caller. | |
9531 | */ | |
eb0ecd5a WN |
9532 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
9533 | { | |
9534 | uint8_t buf[4]; | |
9535 | ||
aa633469 | 9536 | stl_le_p(buf, val); |
eb0ecd5a WN |
9537 | |
9538 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
9539 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
9540 | } | |
9541 | ||
9542 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
9543 | { | |
9544 | uint8_t buf[4]; | |
9545 | ||
aa633469 | 9546 | stl_le_p(buf, val); |
eb0ecd5a WN |
9547 | |
9548 | /* Linux crc32c converts the output to one's complement. */ | |
9549 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
9550 | } |