]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
1de7afc9 PB |
24 | #include "qemu/atomic.h" |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
d33a1810 | 28 | #include "hw/hw.h" |
a2cb15b0 | 29 | #include "hw/pci/msi.h" |
d426d9fb | 30 | #include "hw/s390x/adapter.h" |
022c62cb | 31 | #include "exec/gdbstub.h" |
9c17d615 | 32 | #include "sysemu/kvm.h" |
1de7afc9 | 33 | #include "qemu/bswap.h" |
022c62cb | 34 | #include "exec/memory.h" |
747afd5b | 35 | #include "exec/ram_addr.h" |
022c62cb | 36 | #include "exec/address-spaces.h" |
1de7afc9 | 37 | #include "qemu/event_notifier.h" |
9c775729 | 38 | #include "trace.h" |
05330448 | 39 | |
135a129a AK |
40 | #include "hw/boards.h" |
41 | ||
d2f2b8a7 SH |
42 | /* This check must be after config-host.h is included */ |
43 | #ifdef CONFIG_EVENTFD | |
44 | #include <sys/eventfd.h> | |
45 | #endif | |
46 | ||
62fe8331 CB |
47 | #ifdef CONFIG_VALGRIND_H |
48 | #include <valgrind/memcheck.h> | |
49 | #endif | |
50 | ||
93148aa5 | 51 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
52 | #define PAGE_SIZE TARGET_PAGE_SIZE |
53 | ||
05330448 AL |
54 | //#define DEBUG_KVM |
55 | ||
56 | #ifdef DEBUG_KVM | |
8c0d577e | 57 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
58 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
59 | #else | |
8c0d577e | 60 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
61 | do { } while (0) |
62 | #endif | |
63 | ||
04fa27f5 JK |
64 | #define KVM_MSI_HASHTAB_SIZE 256 |
65 | ||
34fc643f AL |
66 | typedef struct KVMSlot |
67 | { | |
a8170e5e | 68 | hwaddr start_addr; |
c227f099 | 69 | ram_addr_t memory_size; |
9f213ed9 | 70 | void *ram; |
34fc643f AL |
71 | int slot; |
72 | int flags; | |
73 | } KVMSlot; | |
05330448 | 74 | |
5832d1f2 AL |
75 | typedef struct kvm_dirty_log KVMDirtyLog; |
76 | ||
05330448 AL |
77 | struct KVMState |
78 | { | |
fb541ca5 AW |
79 | KVMSlot *slots; |
80 | int nr_slots; | |
05330448 AL |
81 | int fd; |
82 | int vmfd; | |
f65ed4c1 | 83 | int coalesced_mmio; |
62a2744c | 84 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 85 | bool coalesced_flush_in_progress; |
e69917e2 | 86 | int broken_set_mem_region; |
4495d6a7 | 87 | int migration_log; |
a0fb002c | 88 | int vcpu_events; |
b0b1d690 | 89 | int robust_singlestep; |
ff44f1a3 | 90 | int debugregs; |
e22a25c9 AL |
91 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
92 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
93 | #endif | |
8a7c7393 | 94 | int pit_state2; |
f1665b21 | 95 | int xsave, xcrs; |
d2f2b8a7 | 96 | int many_ioeventfds; |
3ab73842 | 97 | int intx_set_mask; |
92e4b519 DG |
98 | /* The man page (and posix) say ioctl numbers are signed int, but |
99 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
100 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 101 | unsigned irq_set_ioctl; |
84b058d7 JK |
102 | #ifdef KVM_CAP_IRQ_ROUTING |
103 | struct kvm_irq_routing *irq_routes; | |
104 | int nr_allocated_irq_routes; | |
105 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 106 | unsigned int gsi_count; |
04fa27f5 | 107 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 108 | bool direct_msi; |
84b058d7 | 109 | #endif |
05330448 AL |
110 | }; |
111 | ||
6a7af8cb | 112 | KVMState *kvm_state; |
3d4b2649 | 113 | bool kvm_kernel_irqchip; |
7ae26bd4 | 114 | bool kvm_async_interrupts_allowed; |
215e79c0 | 115 | bool kvm_halt_in_kernel_allowed; |
cc7e0ddf | 116 | bool kvm_irqfds_allowed; |
614e41bc | 117 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 118 | bool kvm_gsi_routing_allowed; |
76fe21de | 119 | bool kvm_gsi_direct_mapping; |
13eed94e | 120 | bool kvm_allowed; |
df9c8b75 | 121 | bool kvm_readonly_mem_allowed; |
05330448 | 122 | |
94a8d39a JK |
123 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
124 | KVM_CAP_INFO(USER_MEMORY), | |
125 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
126 | KVM_CAP_LAST_INFO | |
127 | }; | |
128 | ||
05330448 AL |
129 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
130 | { | |
131 | int i; | |
132 | ||
fb541ca5 | 133 | for (i = 0; i < s->nr_slots; i++) { |
a426e122 | 134 | if (s->slots[i].memory_size == 0) { |
05330448 | 135 | return &s->slots[i]; |
a426e122 | 136 | } |
05330448 AL |
137 | } |
138 | ||
d3f8d37f AL |
139 | fprintf(stderr, "%s: no free slot available\n", __func__); |
140 | abort(); | |
141 | } | |
142 | ||
143 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
a8170e5e AK |
144 | hwaddr start_addr, |
145 | hwaddr end_addr) | |
d3f8d37f AL |
146 | { |
147 | int i; | |
148 | ||
fb541ca5 | 149 | for (i = 0; i < s->nr_slots; i++) { |
d3f8d37f AL |
150 | KVMSlot *mem = &s->slots[i]; |
151 | ||
152 | if (start_addr == mem->start_addr && | |
153 | end_addr == mem->start_addr + mem->memory_size) { | |
154 | return mem; | |
155 | } | |
156 | } | |
157 | ||
05330448 AL |
158 | return NULL; |
159 | } | |
160 | ||
6152e2ae AL |
161 | /* |
162 | * Find overlapping slot with lowest start address | |
163 | */ | |
164 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
a8170e5e AK |
165 | hwaddr start_addr, |
166 | hwaddr end_addr) | |
05330448 | 167 | { |
6152e2ae | 168 | KVMSlot *found = NULL; |
05330448 AL |
169 | int i; |
170 | ||
fb541ca5 | 171 | for (i = 0; i < s->nr_slots; i++) { |
05330448 AL |
172 | KVMSlot *mem = &s->slots[i]; |
173 | ||
6152e2ae AL |
174 | if (mem->memory_size == 0 || |
175 | (found && found->start_addr < mem->start_addr)) { | |
176 | continue; | |
177 | } | |
178 | ||
179 | if (end_addr > mem->start_addr && | |
180 | start_addr < mem->start_addr + mem->memory_size) { | |
181 | found = mem; | |
182 | } | |
05330448 AL |
183 | } |
184 | ||
6152e2ae | 185 | return found; |
05330448 AL |
186 | } |
187 | ||
9f213ed9 | 188 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 189 | hwaddr *phys_addr) |
983dfc3b HY |
190 | { |
191 | int i; | |
192 | ||
fb541ca5 | 193 | for (i = 0; i < s->nr_slots; i++) { |
983dfc3b HY |
194 | KVMSlot *mem = &s->slots[i]; |
195 | ||
9f213ed9 AK |
196 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
197 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
198 | return 1; |
199 | } | |
200 | } | |
201 | ||
202 | return 0; | |
203 | } | |
204 | ||
5832d1f2 AL |
205 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
206 | { | |
207 | struct kvm_userspace_memory_region mem; | |
208 | ||
209 | mem.slot = slot->slot; | |
210 | mem.guest_phys_addr = slot->start_addr; | |
9f213ed9 | 211 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 212 | mem.flags = slot->flags; |
4495d6a7 JK |
213 | if (s->migration_log) { |
214 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
215 | } | |
651eb0f4 XG |
216 | |
217 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
235e8982 JJ |
218 | /* Set the slot size to 0 before setting the slot to the desired |
219 | * value. This is needed based on KVM commit 75d61fbc. */ | |
220 | mem.memory_size = 0; | |
221 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
222 | } | |
223 | mem.memory_size = slot->memory_size; | |
5832d1f2 AL |
224 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
225 | } | |
226 | ||
504134d2 | 227 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
228 | { |
229 | KVMState *s = kvm_state; | |
230 | long mmap_size; | |
231 | int ret; | |
232 | ||
8c0d577e | 233 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 234 | |
b164e48e | 235 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); |
05330448 | 236 | if (ret < 0) { |
8c0d577e | 237 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
238 | goto err; |
239 | } | |
240 | ||
8737c51c | 241 | cpu->kvm_fd = ret; |
a60f24b5 | 242 | cpu->kvm_state = s; |
20d695a9 | 243 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
244 | |
245 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
246 | if (mmap_size < 0) { | |
748a680b | 247 | ret = mmap_size; |
8c0d577e | 248 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
249 | goto err; |
250 | } | |
251 | ||
f7575c96 | 252 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 253 | cpu->kvm_fd, 0); |
f7575c96 | 254 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 255 | ret = -errno; |
8c0d577e | 256 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
257 | goto err; |
258 | } | |
259 | ||
a426e122 JK |
260 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
261 | s->coalesced_mmio_ring = | |
f7575c96 | 262 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 263 | } |
62a2744c | 264 | |
20d695a9 | 265 | ret = kvm_arch_init_vcpu(cpu); |
05330448 AL |
266 | err: |
267 | return ret; | |
268 | } | |
269 | ||
5832d1f2 AL |
270 | /* |
271 | * dirty pages logging control | |
272 | */ | |
25254bbc | 273 | |
235e8982 | 274 | static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) |
25254bbc | 275 | { |
235e8982 JJ |
276 | int flags = 0; |
277 | flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
278 | if (readonly && kvm_readonly_mem_allowed) { | |
279 | flags |= KVM_MEM_READONLY; | |
280 | } | |
281 | return flags; | |
25254bbc MT |
282 | } |
283 | ||
284 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
285 | { |
286 | KVMState *s = kvm_state; | |
25254bbc | 287 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
288 | int old_flags; |
289 | ||
4495d6a7 | 290 | old_flags = mem->flags; |
5832d1f2 | 291 | |
235e8982 | 292 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); |
5832d1f2 AL |
293 | mem->flags = flags; |
294 | ||
4495d6a7 JK |
295 | /* If nothing changed effectively, no need to issue ioctl */ |
296 | if (s->migration_log) { | |
297 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
298 | } | |
25254bbc | 299 | |
4495d6a7 | 300 | if (flags == old_flags) { |
25254bbc | 301 | return 0; |
4495d6a7 JK |
302 | } |
303 | ||
5832d1f2 AL |
304 | return kvm_set_user_memory_region(s, mem); |
305 | } | |
306 | ||
a8170e5e | 307 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
25254bbc MT |
308 | ram_addr_t size, bool log_dirty) |
309 | { | |
310 | KVMState *s = kvm_state; | |
311 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
312 | ||
313 | if (mem == NULL) { | |
314 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
315 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
a8170e5e | 316 | (hwaddr)(phys_addr + size - 1)); |
25254bbc MT |
317 | return -EINVAL; |
318 | } | |
319 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
320 | } | |
321 | ||
a01672d3 AK |
322 | static void kvm_log_start(MemoryListener *listener, |
323 | MemoryRegionSection *section) | |
5832d1f2 | 324 | { |
a01672d3 AK |
325 | int r; |
326 | ||
327 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
052e87b0 | 328 | int128_get64(section->size), true); |
a01672d3 AK |
329 | if (r < 0) { |
330 | abort(); | |
331 | } | |
5832d1f2 AL |
332 | } |
333 | ||
a01672d3 AK |
334 | static void kvm_log_stop(MemoryListener *listener, |
335 | MemoryRegionSection *section) | |
5832d1f2 | 336 | { |
a01672d3 AK |
337 | int r; |
338 | ||
339 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
052e87b0 | 340 | int128_get64(section->size), false); |
a01672d3 AK |
341 | if (r < 0) { |
342 | abort(); | |
343 | } | |
5832d1f2 AL |
344 | } |
345 | ||
7b8f3b78 | 346 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
347 | { |
348 | KVMState *s = kvm_state; | |
349 | KVMSlot *mem; | |
350 | int i, err; | |
351 | ||
352 | s->migration_log = enable; | |
353 | ||
fb541ca5 | 354 | for (i = 0; i < s->nr_slots; i++) { |
4495d6a7 JK |
355 | mem = &s->slots[i]; |
356 | ||
70fedd76 AW |
357 | if (!mem->memory_size) { |
358 | continue; | |
359 | } | |
4495d6a7 JK |
360 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
361 | continue; | |
362 | } | |
363 | err = kvm_set_user_memory_region(s, mem); | |
364 | if (err) { | |
365 | return err; | |
366 | } | |
367 | } | |
368 | return 0; | |
369 | } | |
370 | ||
8369e01c | 371 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
372 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
373 | unsigned long *bitmap) | |
96c1606b | 374 | { |
c9dd46fc | 375 | ram_addr_t start = section->offset_within_region + section->mr->ram_addr; |
5ff7fb77 JQ |
376 | ram_addr_t pages = int128_get64(section->size) / getpagesize(); |
377 | ||
378 | cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); | |
8369e01c | 379 | return 0; |
96c1606b AG |
380 | } |
381 | ||
8369e01c MT |
382 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
383 | ||
5832d1f2 AL |
384 | /** |
385 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
386 | * This function updates qemu's dirty bitmap using |
387 | * memory_region_set_dirty(). This means all bits are set | |
388 | * to dirty. | |
5832d1f2 | 389 | * |
d3f8d37f | 390 | * @start_add: start of logged region. |
5832d1f2 AL |
391 | * @end_addr: end of logged region. |
392 | */ | |
ffcde12f | 393 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
394 | { |
395 | KVMState *s = kvm_state; | |
151f7749 | 396 | unsigned long size, allocated_size = 0; |
151f7749 JK |
397 | KVMDirtyLog d; |
398 | KVMSlot *mem; | |
399 | int ret = 0; | |
a8170e5e | 400 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 401 | hwaddr end_addr = start_addr + int128_get64(section->size); |
5832d1f2 | 402 | |
151f7749 JK |
403 | d.dirty_bitmap = NULL; |
404 | while (start_addr < end_addr) { | |
405 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
406 | if (mem == NULL) { | |
407 | break; | |
408 | } | |
5832d1f2 | 409 | |
51b0c606 MT |
410 | /* XXX bad kernel interface alert |
411 | * For dirty bitmap, kernel allocates array of size aligned to | |
412 | * bits-per-long. But for case when the kernel is 64bits and | |
413 | * the userspace is 32bits, userspace can't align to the same | |
414 | * bits-per-long, since sizeof(long) is different between kernel | |
415 | * and user space. This way, userspace will provide buffer which | |
416 | * may be 4 bytes less than the kernel will use, resulting in | |
417 | * userspace memory corruption (which is not detectable by valgrind | |
418 | * too, in most cases). | |
419 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
420 | * a hope that sizeof(long) wont become >8 any time soon. | |
421 | */ | |
422 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
423 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 424 | if (!d.dirty_bitmap) { |
7267c094 | 425 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 426 | } else if (size > allocated_size) { |
7267c094 | 427 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
428 | } |
429 | allocated_size = size; | |
430 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 431 | |
151f7749 | 432 | d.slot = mem->slot; |
5832d1f2 | 433 | |
50212d63 | 434 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 435 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
436 | ret = -1; |
437 | break; | |
438 | } | |
5832d1f2 | 439 | |
ffcde12f | 440 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 441 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 442 | } |
7267c094 | 443 | g_free(d.dirty_bitmap); |
151f7749 JK |
444 | |
445 | return ret; | |
5832d1f2 AL |
446 | } |
447 | ||
95d2994a AK |
448 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
449 | MemoryRegionSection *secion, | |
a8170e5e | 450 | hwaddr start, hwaddr size) |
f65ed4c1 | 451 | { |
f65ed4c1 AL |
452 | KVMState *s = kvm_state; |
453 | ||
454 | if (s->coalesced_mmio) { | |
455 | struct kvm_coalesced_mmio_zone zone; | |
456 | ||
457 | zone.addr = start; | |
458 | zone.size = size; | |
7e680753 | 459 | zone.pad = 0; |
f65ed4c1 | 460 | |
95d2994a | 461 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 462 | } |
f65ed4c1 AL |
463 | } |
464 | ||
95d2994a AK |
465 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
466 | MemoryRegionSection *secion, | |
a8170e5e | 467 | hwaddr start, hwaddr size) |
f65ed4c1 | 468 | { |
f65ed4c1 AL |
469 | KVMState *s = kvm_state; |
470 | ||
471 | if (s->coalesced_mmio) { | |
472 | struct kvm_coalesced_mmio_zone zone; | |
473 | ||
474 | zone.addr = start; | |
475 | zone.size = size; | |
7e680753 | 476 | zone.pad = 0; |
f65ed4c1 | 477 | |
95d2994a | 478 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 479 | } |
f65ed4c1 AL |
480 | } |
481 | ||
ad7b8b33 AL |
482 | int kvm_check_extension(KVMState *s, unsigned int extension) |
483 | { | |
484 | int ret; | |
485 | ||
486 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
487 | if (ret < 0) { | |
488 | ret = 0; | |
489 | } | |
490 | ||
491 | return ret; | |
492 | } | |
493 | ||
584f2be7 | 494 | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, |
41cb62c2 | 495 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
496 | { |
497 | int ret; | |
498 | struct kvm_ioeventfd iofd; | |
499 | ||
41cb62c2 | 500 | iofd.datamatch = datamatch ? val : 0; |
500ffd4a MT |
501 | iofd.addr = addr; |
502 | iofd.len = size; | |
41cb62c2 | 503 | iofd.flags = 0; |
500ffd4a MT |
504 | iofd.fd = fd; |
505 | ||
506 | if (!kvm_enabled()) { | |
507 | return -ENOSYS; | |
508 | } | |
509 | ||
41cb62c2 MT |
510 | if (datamatch) { |
511 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
512 | } | |
500ffd4a MT |
513 | if (!assign) { |
514 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
515 | } | |
516 | ||
517 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
518 | ||
519 | if (ret < 0) { | |
520 | return -errno; | |
521 | } | |
522 | ||
523 | return 0; | |
524 | } | |
525 | ||
44c3f8f7 | 526 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 527 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
528 | { |
529 | struct kvm_ioeventfd kick = { | |
41cb62c2 | 530 | .datamatch = datamatch ? val : 0, |
500ffd4a | 531 | .addr = addr, |
41cb62c2 | 532 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 533 | .len = size, |
500ffd4a MT |
534 | .fd = fd, |
535 | }; | |
536 | int r; | |
537 | if (!kvm_enabled()) { | |
538 | return -ENOSYS; | |
539 | } | |
41cb62c2 MT |
540 | if (datamatch) { |
541 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
542 | } | |
500ffd4a MT |
543 | if (!assign) { |
544 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
545 | } | |
546 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
547 | if (r < 0) { | |
548 | return r; | |
549 | } | |
550 | return 0; | |
551 | } | |
552 | ||
553 | ||
d2f2b8a7 SH |
554 | static int kvm_check_many_ioeventfds(void) |
555 | { | |
d0dcac83 SH |
556 | /* Userspace can use ioeventfd for io notification. This requires a host |
557 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
558 | * support SIGIO it cannot interrupt the vcpu. | |
559 | * | |
560 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
561 | * can avoid creating too many ioeventfds. |
562 | */ | |
12d4536f | 563 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
564 | int ioeventfds[7]; |
565 | int i, ret = 0; | |
566 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
567 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
568 | if (ioeventfds[i] < 0) { | |
569 | break; | |
570 | } | |
41cb62c2 | 571 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
572 | if (ret < 0) { |
573 | close(ioeventfds[i]); | |
574 | break; | |
575 | } | |
576 | } | |
577 | ||
578 | /* Decide whether many devices are supported or not */ | |
579 | ret = i == ARRAY_SIZE(ioeventfds); | |
580 | ||
581 | while (i-- > 0) { | |
41cb62c2 | 582 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
583 | close(ioeventfds[i]); |
584 | } | |
585 | return ret; | |
586 | #else | |
587 | return 0; | |
588 | #endif | |
589 | } | |
590 | ||
94a8d39a JK |
591 | static const KVMCapabilityInfo * |
592 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
593 | { | |
594 | while (list->name) { | |
595 | if (!kvm_check_extension(s, list->value)) { | |
596 | return list; | |
597 | } | |
598 | list++; | |
599 | } | |
600 | return NULL; | |
601 | } | |
602 | ||
a01672d3 | 603 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
604 | { |
605 | KVMState *s = kvm_state; | |
46dbef6a MT |
606 | KVMSlot *mem, old; |
607 | int err; | |
a01672d3 AK |
608 | MemoryRegion *mr = section->mr; |
609 | bool log_dirty = memory_region_is_logging(mr); | |
235e8982 JJ |
610 | bool writeable = !mr->readonly && !mr->rom_device; |
611 | bool readonly_flag = mr->readonly || memory_region_is_romd(mr); | |
a8170e5e | 612 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 613 | ram_addr_t size = int128_get64(section->size); |
9f213ed9 | 614 | void *ram = NULL; |
8f6f962b | 615 | unsigned delta; |
46dbef6a | 616 | |
14542fea GN |
617 | /* kvm works in page size chunks, but the function may be called |
618 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
619 | delta = TARGET_PAGE_ALIGN(size) - size; |
620 | if (delta > size) { | |
621 | return; | |
622 | } | |
623 | start_addr += delta; | |
624 | size -= delta; | |
625 | size &= TARGET_PAGE_MASK; | |
626 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
627 | return; | |
628 | } | |
46dbef6a | 629 | |
a01672d3 | 630 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
631 | if (writeable || !kvm_readonly_mem_allowed) { |
632 | return; | |
633 | } else if (!mr->romd_mode) { | |
634 | /* If the memory device is not in romd_mode, then we actually want | |
635 | * to remove the kvm memory slot so all accesses will trap. */ | |
636 | add = false; | |
637 | } | |
9f213ed9 AK |
638 | } |
639 | ||
8f6f962b | 640 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 641 | |
46dbef6a MT |
642 | while (1) { |
643 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
644 | if (!mem) { | |
645 | break; | |
646 | } | |
647 | ||
a01672d3 | 648 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 649 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 650 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 651 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
652 | * identical parameters - update flags and done. */ |
653 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
654 | return; |
655 | } | |
656 | ||
657 | old = *mem; | |
658 | ||
3fbffb62 AK |
659 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
660 | kvm_physical_sync_dirty_bitmap(section); | |
661 | } | |
662 | ||
46dbef6a MT |
663 | /* unregister the overlapping slot */ |
664 | mem->memory_size = 0; | |
665 | err = kvm_set_user_memory_region(s, mem); | |
666 | if (err) { | |
667 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
668 | __func__, strerror(-err)); | |
669 | abort(); | |
670 | } | |
671 | ||
672 | /* Workaround for older KVM versions: we can't join slots, even not by | |
673 | * unregistering the previous ones and then registering the larger | |
674 | * slot. We have to maintain the existing fragmentation. Sigh. | |
675 | * | |
676 | * This workaround assumes that the new slot starts at the same | |
677 | * address as the first existing one. If not or if some overlapping | |
678 | * slot comes around later, we will fail (not seen in practice so far) | |
679 | * - and actually require a recent KVM version. */ | |
680 | if (s->broken_set_mem_region && | |
a01672d3 | 681 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
682 | mem = kvm_alloc_slot(s); |
683 | mem->memory_size = old.memory_size; | |
684 | mem->start_addr = old.start_addr; | |
9f213ed9 | 685 | mem->ram = old.ram; |
235e8982 | 686 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
687 | |
688 | err = kvm_set_user_memory_region(s, mem); | |
689 | if (err) { | |
690 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
691 | strerror(-err)); | |
692 | abort(); | |
693 | } | |
694 | ||
695 | start_addr += old.memory_size; | |
9f213ed9 | 696 | ram += old.memory_size; |
46dbef6a MT |
697 | size -= old.memory_size; |
698 | continue; | |
699 | } | |
700 | ||
701 | /* register prefix slot */ | |
702 | if (old.start_addr < start_addr) { | |
703 | mem = kvm_alloc_slot(s); | |
704 | mem->memory_size = start_addr - old.start_addr; | |
705 | mem->start_addr = old.start_addr; | |
9f213ed9 | 706 | mem->ram = old.ram; |
235e8982 | 707 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
708 | |
709 | err = kvm_set_user_memory_region(s, mem); | |
710 | if (err) { | |
711 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
712 | __func__, strerror(-err)); | |
d4d6868f AG |
713 | #ifdef TARGET_PPC |
714 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
715 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
716 | "PAGE_SIZE!\n", __func__); | |
717 | #endif | |
46dbef6a MT |
718 | abort(); |
719 | } | |
720 | } | |
721 | ||
722 | /* register suffix slot */ | |
723 | if (old.start_addr + old.memory_size > start_addr + size) { | |
724 | ram_addr_t size_delta; | |
725 | ||
726 | mem = kvm_alloc_slot(s); | |
727 | mem->start_addr = start_addr + size; | |
728 | size_delta = mem->start_addr - old.start_addr; | |
729 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 730 | mem->ram = old.ram + size_delta; |
235e8982 | 731 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
732 | |
733 | err = kvm_set_user_memory_region(s, mem); | |
734 | if (err) { | |
735 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
736 | __func__, strerror(-err)); | |
737 | abort(); | |
738 | } | |
739 | } | |
740 | } | |
741 | ||
742 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 743 | if (!size) { |
46dbef6a | 744 | return; |
a426e122 | 745 | } |
a01672d3 | 746 | if (!add) { |
46dbef6a | 747 | return; |
a426e122 | 748 | } |
46dbef6a MT |
749 | mem = kvm_alloc_slot(s); |
750 | mem->memory_size = size; | |
751 | mem->start_addr = start_addr; | |
9f213ed9 | 752 | mem->ram = ram; |
235e8982 | 753 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
754 | |
755 | err = kvm_set_user_memory_region(s, mem); | |
756 | if (err) { | |
757 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
758 | strerror(-err)); | |
759 | abort(); | |
760 | } | |
761 | } | |
762 | ||
a01672d3 AK |
763 | static void kvm_region_add(MemoryListener *listener, |
764 | MemoryRegionSection *section) | |
765 | { | |
dfde4e6e | 766 | memory_region_ref(section->mr); |
a01672d3 AK |
767 | kvm_set_phys_mem(section, true); |
768 | } | |
769 | ||
770 | static void kvm_region_del(MemoryListener *listener, | |
771 | MemoryRegionSection *section) | |
772 | { | |
773 | kvm_set_phys_mem(section, false); | |
dfde4e6e | 774 | memory_region_unref(section->mr); |
a01672d3 AK |
775 | } |
776 | ||
777 | static void kvm_log_sync(MemoryListener *listener, | |
778 | MemoryRegionSection *section) | |
7b8f3b78 | 779 | { |
a01672d3 AK |
780 | int r; |
781 | ||
ffcde12f | 782 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
783 | if (r < 0) { |
784 | abort(); | |
785 | } | |
7b8f3b78 MT |
786 | } |
787 | ||
a01672d3 | 788 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 789 | { |
a01672d3 AK |
790 | int r; |
791 | ||
792 | r = kvm_set_migration_log(1); | |
793 | assert(r >= 0); | |
7b8f3b78 MT |
794 | } |
795 | ||
a01672d3 | 796 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 797 | { |
a01672d3 AK |
798 | int r; |
799 | ||
800 | r = kvm_set_migration_log(0); | |
801 | assert(r >= 0); | |
7b8f3b78 MT |
802 | } |
803 | ||
d22b096e AK |
804 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
805 | MemoryRegionSection *section, | |
806 | bool match_data, uint64_t data, | |
807 | EventNotifier *e) | |
808 | { | |
809 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
810 | int r; |
811 | ||
4b8f1c88 | 812 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
813 | data, true, int128_get64(section->size), |
814 | match_data); | |
80a1ea37 | 815 | if (r < 0) { |
fa4ba923 AK |
816 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
817 | __func__, strerror(-r)); | |
80a1ea37 AK |
818 | abort(); |
819 | } | |
820 | } | |
821 | ||
d22b096e AK |
822 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
823 | MemoryRegionSection *section, | |
824 | bool match_data, uint64_t data, | |
825 | EventNotifier *e) | |
80a1ea37 | 826 | { |
d22b096e | 827 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
828 | int r; |
829 | ||
4b8f1c88 | 830 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
831 | data, false, int128_get64(section->size), |
832 | match_data); | |
80a1ea37 AK |
833 | if (r < 0) { |
834 | abort(); | |
835 | } | |
836 | } | |
837 | ||
d22b096e AK |
838 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
839 | MemoryRegionSection *section, | |
840 | bool match_data, uint64_t data, | |
841 | EventNotifier *e) | |
80a1ea37 | 842 | { |
d22b096e | 843 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
844 | int r; |
845 | ||
44c3f8f7 | 846 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
847 | data, true, int128_get64(section->size), |
848 | match_data); | |
80a1ea37 | 849 | if (r < 0) { |
fa4ba923 AK |
850 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
851 | __func__, strerror(-r)); | |
80a1ea37 AK |
852 | abort(); |
853 | } | |
854 | } | |
855 | ||
d22b096e AK |
856 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
857 | MemoryRegionSection *section, | |
858 | bool match_data, uint64_t data, | |
859 | EventNotifier *e) | |
80a1ea37 AK |
860 | |
861 | { | |
d22b096e | 862 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
863 | int r; |
864 | ||
44c3f8f7 | 865 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
866 | data, false, int128_get64(section->size), |
867 | match_data); | |
80a1ea37 AK |
868 | if (r < 0) { |
869 | abort(); | |
870 | } | |
871 | } | |
872 | ||
a01672d3 AK |
873 | static MemoryListener kvm_memory_listener = { |
874 | .region_add = kvm_region_add, | |
875 | .region_del = kvm_region_del, | |
e5896b12 AP |
876 | .log_start = kvm_log_start, |
877 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
878 | .log_sync = kvm_log_sync, |
879 | .log_global_start = kvm_log_global_start, | |
880 | .log_global_stop = kvm_log_global_stop, | |
d22b096e AK |
881 | .eventfd_add = kvm_mem_ioeventfd_add, |
882 | .eventfd_del = kvm_mem_ioeventfd_del, | |
95d2994a AK |
883 | .coalesced_mmio_add = kvm_coalesce_mmio_region, |
884 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
d22b096e AK |
885 | .priority = 10, |
886 | }; | |
887 | ||
888 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
889 | .eventfd_add = kvm_io_ioeventfd_add, |
890 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 891 | .priority = 10, |
7b8f3b78 MT |
892 | }; |
893 | ||
c3affe56 | 894 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 895 | { |
259186a7 | 896 | cpu->interrupt_request |= mask; |
aa7f74d1 | 897 | |
60e82579 | 898 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 899 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
900 | } |
901 | } | |
902 | ||
3889c3fa | 903 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
904 | { |
905 | struct kvm_irq_level event; | |
906 | int ret; | |
907 | ||
7ae26bd4 | 908 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
909 | |
910 | event.level = level; | |
911 | event.irq = irq; | |
e333cd69 | 912 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 913 | if (ret < 0) { |
3889c3fa | 914 | perror("kvm_set_irq"); |
84b058d7 JK |
915 | abort(); |
916 | } | |
917 | ||
e333cd69 | 918 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
919 | } |
920 | ||
921 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
922 | typedef struct KVMMSIRoute { |
923 | struct kvm_irq_routing_entry kroute; | |
924 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
925 | } KVMMSIRoute; | |
926 | ||
84b058d7 JK |
927 | static void set_gsi(KVMState *s, unsigned int gsi) |
928 | { | |
84b058d7 JK |
929 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
930 | } | |
931 | ||
04fa27f5 JK |
932 | static void clear_gsi(KVMState *s, unsigned int gsi) |
933 | { | |
934 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
935 | } | |
936 | ||
7b774593 | 937 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 | 938 | { |
04fa27f5 | 939 | int gsi_count, i; |
84b058d7 JK |
940 | |
941 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
942 | if (gsi_count > 0) { | |
943 | unsigned int gsi_bits, i; | |
944 | ||
945 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 946 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 947 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 948 | s->gsi_count = gsi_count; |
84b058d7 JK |
949 | |
950 | /* Mark any over-allocated bits as already in use */ | |
951 | for (i = gsi_count; i < gsi_bits; i++) { | |
952 | set_gsi(s, i); | |
953 | } | |
954 | } | |
955 | ||
956 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
957 | s->nr_allocated_irq_routes = 0; | |
958 | ||
4a3adebb JK |
959 | if (!s->direct_msi) { |
960 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
961 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
962 | } | |
04fa27f5 JK |
963 | } |
964 | ||
84b058d7 JK |
965 | kvm_arch_init_irq_routing(s); |
966 | } | |
967 | ||
cb925cf9 | 968 | void kvm_irqchip_commit_routes(KVMState *s) |
e7b20308 JK |
969 | { |
970 | int ret; | |
971 | ||
972 | s->irq_routes->flags = 0; | |
973 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
974 | assert(ret == 0); | |
975 | } | |
976 | ||
84b058d7 JK |
977 | static void kvm_add_routing_entry(KVMState *s, |
978 | struct kvm_irq_routing_entry *entry) | |
979 | { | |
980 | struct kvm_irq_routing_entry *new; | |
981 | int n, size; | |
982 | ||
983 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
984 | n = s->nr_allocated_irq_routes * 2; | |
985 | if (n < 64) { | |
986 | n = 64; | |
987 | } | |
988 | size = sizeof(struct kvm_irq_routing); | |
989 | size += n * sizeof(*new); | |
990 | s->irq_routes = g_realloc(s->irq_routes, size); | |
991 | s->nr_allocated_irq_routes = n; | |
992 | } | |
993 | n = s->irq_routes->nr++; | |
994 | new = &s->irq_routes->entries[n]; | |
0fbc2074 MT |
995 | |
996 | *new = *entry; | |
84b058d7 JK |
997 | |
998 | set_gsi(s, entry->gsi); | |
999 | } | |
1000 | ||
cc57407e JK |
1001 | static int kvm_update_routing_entry(KVMState *s, |
1002 | struct kvm_irq_routing_entry *new_entry) | |
1003 | { | |
1004 | struct kvm_irq_routing_entry *entry; | |
1005 | int n; | |
1006 | ||
1007 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1008 | entry = &s->irq_routes->entries[n]; | |
1009 | if (entry->gsi != new_entry->gsi) { | |
1010 | continue; | |
1011 | } | |
1012 | ||
40509f7f MT |
1013 | if(!memcmp(entry, new_entry, sizeof *entry)) { |
1014 | return 0; | |
1015 | } | |
1016 | ||
0fbc2074 | 1017 | *entry = *new_entry; |
cc57407e JK |
1018 | |
1019 | kvm_irqchip_commit_routes(s); | |
1020 | ||
1021 | return 0; | |
1022 | } | |
1023 | ||
1024 | return -ESRCH; | |
1025 | } | |
1026 | ||
1df186df | 1027 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 | 1028 | { |
0fbc2074 | 1029 | struct kvm_irq_routing_entry e = {}; |
84b058d7 | 1030 | |
4e2e4e63 JK |
1031 | assert(pin < s->gsi_count); |
1032 | ||
84b058d7 JK |
1033 | e.gsi = irq; |
1034 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1035 | e.flags = 0; | |
1036 | e.u.irqchip.irqchip = irqchip; | |
1037 | e.u.irqchip.pin = pin; | |
1038 | kvm_add_routing_entry(s, &e); | |
1039 | } | |
1040 | ||
1e2aa8be | 1041 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1042 | { |
1043 | struct kvm_irq_routing_entry *e; | |
1044 | int i; | |
1045 | ||
76fe21de AK |
1046 | if (kvm_gsi_direct_mapping()) { |
1047 | return; | |
1048 | } | |
1049 | ||
04fa27f5 JK |
1050 | for (i = 0; i < s->irq_routes->nr; i++) { |
1051 | e = &s->irq_routes->entries[i]; | |
1052 | if (e->gsi == virq) { | |
1053 | s->irq_routes->nr--; | |
1054 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1055 | } | |
1056 | } | |
1057 | clear_gsi(s, virq); | |
1058 | } | |
1059 | ||
1060 | static unsigned int kvm_hash_msi(uint32_t data) | |
1061 | { | |
1062 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1063 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1064 | return data & 0xff; | |
1065 | } | |
1066 | ||
1067 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1068 | { | |
1069 | KVMMSIRoute *route, *next; | |
1070 | unsigned int hash; | |
1071 | ||
1072 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1073 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1074 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1075 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1076 | g_free(route); | |
1077 | } | |
1078 | } | |
1079 | } | |
1080 | ||
1081 | static int kvm_irqchip_get_virq(KVMState *s) | |
1082 | { | |
1083 | uint32_t *word = s->used_gsi_bitmap; | |
1084 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1085 | int i, bit; | |
1086 | bool retry = true; | |
1087 | ||
1088 | again: | |
1089 | /* Return the lowest unused GSI in the bitmap */ | |
1090 | for (i = 0; i < max_words; i++) { | |
1091 | bit = ffs(~word[i]); | |
1092 | if (!bit) { | |
1093 | continue; | |
1094 | } | |
1095 | ||
1096 | return bit - 1 + i * 32; | |
1097 | } | |
4a3adebb | 1098 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1099 | retry = false; |
1100 | kvm_flush_dynamic_msi_routes(s); | |
1101 | goto again; | |
1102 | } | |
1103 | return -ENOSPC; | |
1104 | ||
1105 | } | |
1106 | ||
1107 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1108 | { | |
1109 | unsigned int hash = kvm_hash_msi(msg.data); | |
1110 | KVMMSIRoute *route; | |
1111 | ||
1112 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1113 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1114 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
d07cc1f1 | 1115 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
04fa27f5 JK |
1116 | return route; |
1117 | } | |
1118 | } | |
1119 | return NULL; | |
1120 | } | |
1121 | ||
1122 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1123 | { | |
4a3adebb | 1124 | struct kvm_msi msi; |
04fa27f5 JK |
1125 | KVMMSIRoute *route; |
1126 | ||
4a3adebb JK |
1127 | if (s->direct_msi) { |
1128 | msi.address_lo = (uint32_t)msg.address; | |
1129 | msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1130 | msi.data = le32_to_cpu(msg.data); |
4a3adebb JK |
1131 | msi.flags = 0; |
1132 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1133 | ||
1134 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1135 | } | |
1136 | ||
04fa27f5 JK |
1137 | route = kvm_lookup_msi_route(s, msg); |
1138 | if (!route) { | |
e7b20308 | 1139 | int virq; |
04fa27f5 JK |
1140 | |
1141 | virq = kvm_irqchip_get_virq(s); | |
1142 | if (virq < 0) { | |
1143 | return virq; | |
1144 | } | |
1145 | ||
0fbc2074 | 1146 | route = g_malloc0(sizeof(KVMMSIRoute)); |
04fa27f5 JK |
1147 | route->kroute.gsi = virq; |
1148 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1149 | route->kroute.flags = 0; | |
1150 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1151 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1152 | route->kroute.u.msi.data = le32_to_cpu(msg.data); |
04fa27f5 JK |
1153 | |
1154 | kvm_add_routing_entry(s, &route->kroute); | |
cb925cf9 | 1155 | kvm_irqchip_commit_routes(s); |
04fa27f5 JK |
1156 | |
1157 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1158 | entry); | |
04fa27f5 JK |
1159 | } |
1160 | ||
1161 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1162 | ||
3889c3fa | 1163 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1164 | } |
1165 | ||
92b4e489 JK |
1166 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1167 | { | |
0fbc2074 | 1168 | struct kvm_irq_routing_entry kroute = {}; |
92b4e489 JK |
1169 | int virq; |
1170 | ||
76fe21de AK |
1171 | if (kvm_gsi_direct_mapping()) { |
1172 | return msg.data & 0xffff; | |
1173 | } | |
1174 | ||
f3e1bed8 | 1175 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1176 | return -ENOSYS; |
1177 | } | |
1178 | ||
1179 | virq = kvm_irqchip_get_virq(s); | |
1180 | if (virq < 0) { | |
1181 | return virq; | |
1182 | } | |
1183 | ||
1184 | kroute.gsi = virq; | |
1185 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1186 | kroute.flags = 0; | |
1187 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1188 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1189 | kroute.u.msi.data = le32_to_cpu(msg.data); |
92b4e489 JK |
1190 | |
1191 | kvm_add_routing_entry(s, &kroute); | |
cb925cf9 | 1192 | kvm_irqchip_commit_routes(s); |
92b4e489 JK |
1193 | |
1194 | return virq; | |
1195 | } | |
1196 | ||
cc57407e JK |
1197 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1198 | { | |
0fbc2074 | 1199 | struct kvm_irq_routing_entry kroute = {}; |
cc57407e | 1200 | |
76fe21de AK |
1201 | if (kvm_gsi_direct_mapping()) { |
1202 | return 0; | |
1203 | } | |
1204 | ||
cc57407e JK |
1205 | if (!kvm_irqchip_in_kernel()) { |
1206 | return -ENOSYS; | |
1207 | } | |
1208 | ||
1209 | kroute.gsi = virq; | |
1210 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1211 | kroute.flags = 0; | |
1212 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1213 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1214 | kroute.u.msi.data = le32_to_cpu(msg.data); |
cc57407e JK |
1215 | |
1216 | return kvm_update_routing_entry(s, &kroute); | |
1217 | } | |
1218 | ||
ca916d37 VM |
1219 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, |
1220 | bool assign) | |
39853bbc JK |
1221 | { |
1222 | struct kvm_irqfd irqfd = { | |
1223 | .fd = fd, | |
1224 | .gsi = virq, | |
1225 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1226 | }; | |
1227 | ||
ca916d37 VM |
1228 | if (rfd != -1) { |
1229 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1230 | irqfd.resamplefd = rfd; | |
1231 | } | |
1232 | ||
cc7e0ddf | 1233 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1234 | return -ENOSYS; |
1235 | } | |
1236 | ||
1237 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1238 | } | |
1239 | ||
d426d9fb CH |
1240 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1241 | { | |
1242 | struct kvm_irq_routing_entry kroute; | |
1243 | int virq; | |
1244 | ||
1245 | if (!kvm_gsi_routing_enabled()) { | |
1246 | return -ENOSYS; | |
1247 | } | |
1248 | ||
1249 | virq = kvm_irqchip_get_virq(s); | |
1250 | if (virq < 0) { | |
1251 | return virq; | |
1252 | } | |
1253 | ||
1254 | kroute.gsi = virq; | |
1255 | kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; | |
1256 | kroute.flags = 0; | |
1257 | kroute.u.adapter.summary_addr = adapter->summary_addr; | |
1258 | kroute.u.adapter.ind_addr = adapter->ind_addr; | |
1259 | kroute.u.adapter.summary_offset = adapter->summary_offset; | |
1260 | kroute.u.adapter.ind_offset = adapter->ind_offset; | |
1261 | kroute.u.adapter.adapter_id = adapter->adapter_id; | |
1262 | ||
1263 | kvm_add_routing_entry(s, &kroute); | |
1264 | kvm_irqchip_commit_routes(s); | |
1265 | ||
1266 | return virq; | |
1267 | } | |
1268 | ||
84b058d7 JK |
1269 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1270 | ||
7b774593 | 1271 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 JK |
1272 | { |
1273 | } | |
04fa27f5 | 1274 | |
d3d3bef0 JK |
1275 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1276 | { | |
1277 | } | |
1278 | ||
04fa27f5 JK |
1279 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1280 | { | |
1281 | abort(); | |
1282 | } | |
92b4e489 JK |
1283 | |
1284 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1285 | { | |
df410675 | 1286 | return -ENOSYS; |
92b4e489 | 1287 | } |
39853bbc | 1288 | |
d426d9fb CH |
1289 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1290 | { | |
1291 | return -ENOSYS; | |
1292 | } | |
1293 | ||
39853bbc JK |
1294 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1295 | { | |
1296 | abort(); | |
1297 | } | |
dabe3143 MT |
1298 | |
1299 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1300 | { | |
1301 | return -ENOSYS; | |
1302 | } | |
84b058d7 JK |
1303 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1304 | ||
ca916d37 VM |
1305 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
1306 | EventNotifier *rn, int virq) | |
39853bbc | 1307 | { |
ca916d37 VM |
1308 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), |
1309 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
39853bbc JK |
1310 | } |
1311 | ||
b131c74a | 1312 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1313 | { |
ca916d37 VM |
1314 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, |
1315 | false); | |
15b2bd18 PB |
1316 | } |
1317 | ||
84b058d7 JK |
1318 | static int kvm_irqchip_create(KVMState *s) |
1319 | { | |
84b058d7 JK |
1320 | int ret; |
1321 | ||
36ad0e94 | 1322 | if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) || |
d426d9fb CH |
1323 | (!kvm_check_extension(s, KVM_CAP_IRQCHIP) && |
1324 | (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) { | |
84b058d7 JK |
1325 | return 0; |
1326 | } | |
1327 | ||
d6032e06 CD |
1328 | /* First probe and see if there's a arch-specific hook to create the |
1329 | * in-kernel irqchip for us */ | |
1330 | ret = kvm_arch_irqchip_create(s); | |
84b058d7 | 1331 | if (ret < 0) { |
84b058d7 | 1332 | return ret; |
d6032e06 CD |
1333 | } else if (ret == 0) { |
1334 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1335 | if (ret < 0) { | |
1336 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1337 | return ret; | |
1338 | } | |
84b058d7 JK |
1339 | } |
1340 | ||
3d4b2649 | 1341 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1342 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1343 | * interrupt delivery (though the reverse is not necessarily true) | |
1344 | */ | |
1345 | kvm_async_interrupts_allowed = true; | |
215e79c0 | 1346 | kvm_halt_in_kernel_allowed = true; |
84b058d7 JK |
1347 | |
1348 | kvm_init_irq_routing(s); | |
1349 | ||
1350 | return 0; | |
1351 | } | |
1352 | ||
670436ce AJ |
1353 | /* Find number of supported CPUs using the recommended |
1354 | * procedure from the kernel API documentation to cope with | |
1355 | * older kernels that may be missing capabilities. | |
1356 | */ | |
1357 | static int kvm_recommended_vcpus(KVMState *s) | |
3ed444e9 | 1358 | { |
670436ce AJ |
1359 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); |
1360 | return (ret) ? ret : 4; | |
1361 | } | |
3ed444e9 | 1362 | |
670436ce AJ |
1363 | static int kvm_max_vcpus(KVMState *s) |
1364 | { | |
1365 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1366 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
3ed444e9 DH |
1367 | } |
1368 | ||
f1e29879 | 1369 | int kvm_init(MachineClass *mc) |
05330448 | 1370 | { |
168ccc11 JK |
1371 | static const char upgrade_note[] = |
1372 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1373 | "(see http://sourceforge.net/projects/kvm).\n"; | |
670436ce AJ |
1374 | struct { |
1375 | const char *name; | |
1376 | int num; | |
1377 | } num_cpus[] = { | |
1378 | { "SMP", smp_cpus }, | |
1379 | { "hotpluggable", max_cpus }, | |
1380 | { NULL, } | |
1381 | }, *nc = num_cpus; | |
1382 | int soft_vcpus_limit, hard_vcpus_limit; | |
05330448 | 1383 | KVMState *s; |
94a8d39a | 1384 | const KVMCapabilityInfo *missing_cap; |
05330448 | 1385 | int ret; |
135a129a AK |
1386 | int i, type = 0; |
1387 | const char *kvm_type; | |
05330448 | 1388 | |
7267c094 | 1389 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 1390 | |
3145fcb6 DG |
1391 | /* |
1392 | * On systems where the kernel can support different base page | |
1393 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1394 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1395 | * page size for the system though. | |
1396 | */ | |
1397 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
47c16ed5 | 1398 | page_size_init(); |
3145fcb6 | 1399 | |
e22a25c9 | 1400 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1401 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1402 | #endif |
05330448 | 1403 | s->vmfd = -1; |
40ff6d7e | 1404 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1405 | if (s->fd == -1) { |
1406 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1407 | ret = -errno; | |
1408 | goto err; | |
1409 | } | |
1410 | ||
1411 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1412 | if (ret < KVM_API_VERSION) { | |
0e1dac6c | 1413 | if (ret >= 0) { |
05330448 | 1414 | ret = -EINVAL; |
a426e122 | 1415 | } |
05330448 AL |
1416 | fprintf(stderr, "kvm version too old\n"); |
1417 | goto err; | |
1418 | } | |
1419 | ||
1420 | if (ret > KVM_API_VERSION) { | |
1421 | ret = -EINVAL; | |
1422 | fprintf(stderr, "kvm version not supported\n"); | |
1423 | goto err; | |
1424 | } | |
1425 | ||
fb541ca5 AW |
1426 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); |
1427 | ||
1428 | /* If unspecified, use the default value */ | |
1429 | if (!s->nr_slots) { | |
1430 | s->nr_slots = 32; | |
1431 | } | |
1432 | ||
1433 | s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); | |
1434 | ||
1435 | for (i = 0; i < s->nr_slots; i++) { | |
1436 | s->slots[i].slot = i; | |
1437 | } | |
1438 | ||
670436ce AJ |
1439 | /* check the vcpu limits */ |
1440 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1441 | hard_vcpus_limit = kvm_max_vcpus(s); | |
3ed444e9 | 1442 | |
670436ce AJ |
1443 | while (nc->name) { |
1444 | if (nc->num > soft_vcpus_limit) { | |
1445 | fprintf(stderr, | |
1446 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1447 | "the recommended cpus supported by KVM (%d)\n", | |
1448 | nc->name, nc->num, soft_vcpus_limit); | |
1449 | ||
1450 | if (nc->num > hard_vcpus_limit) { | |
670436ce AJ |
1451 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " |
1452 | "the maximum cpus supported by KVM (%d)\n", | |
1453 | nc->name, nc->num, hard_vcpus_limit); | |
9ba3cf54 | 1454 | exit(1); |
670436ce AJ |
1455 | } |
1456 | } | |
1457 | nc++; | |
7dc52526 MT |
1458 | } |
1459 | ||
135a129a | 1460 | kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); |
f1e29879 MA |
1461 | if (mc->kvm_type) { |
1462 | type = mc->kvm_type(kvm_type); | |
135a129a | 1463 | } else if (kvm_type) { |
0e1dac6c | 1464 | ret = -EINVAL; |
135a129a AK |
1465 | fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); |
1466 | goto err; | |
1467 | } | |
1468 | ||
94ccff13 | 1469 | do { |
135a129a | 1470 | ret = kvm_ioctl(s, KVM_CREATE_VM, type); |
94ccff13 TK |
1471 | } while (ret == -EINTR); |
1472 | ||
1473 | if (ret < 0) { | |
521f438e | 1474 | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, |
94ccff13 TK |
1475 | strerror(-ret)); |
1476 | ||
0104dcac AG |
1477 | #ifdef TARGET_S390X |
1478 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1479 | "your host kernel command line\n"); | |
1480 | #endif | |
05330448 | 1481 | goto err; |
0104dcac | 1482 | } |
05330448 | 1483 | |
94ccff13 | 1484 | s->vmfd = ret; |
94a8d39a JK |
1485 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1486 | if (!missing_cap) { | |
1487 | missing_cap = | |
1488 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1489 | } |
94a8d39a | 1490 | if (missing_cap) { |
ad7b8b33 | 1491 | ret = -EINVAL; |
94a8d39a JK |
1492 | fprintf(stderr, "kvm does not support %s\n%s", |
1493 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1494 | goto err; |
1495 | } | |
1496 | ||
ad7b8b33 | 1497 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1498 | |
e69917e2 | 1499 | s->broken_set_mem_region = 1; |
14a09518 | 1500 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1501 | if (ret > 0) { |
1502 | s->broken_set_mem_region = 0; | |
1503 | } | |
e69917e2 | 1504 | |
a0fb002c JK |
1505 | #ifdef KVM_CAP_VCPU_EVENTS |
1506 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1507 | #endif | |
1508 | ||
b0b1d690 JK |
1509 | s->robust_singlestep = |
1510 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1511 | |
ff44f1a3 JK |
1512 | #ifdef KVM_CAP_DEBUGREGS |
1513 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1514 | #endif | |
1515 | ||
f1665b21 SY |
1516 | #ifdef KVM_CAP_XSAVE |
1517 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1518 | #endif | |
1519 | ||
f1665b21 SY |
1520 | #ifdef KVM_CAP_XCRS |
1521 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1522 | #endif | |
1523 | ||
8a7c7393 JK |
1524 | #ifdef KVM_CAP_PIT_STATE2 |
1525 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1526 | #endif | |
1527 | ||
d3d3bef0 | 1528 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1529 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1530 | #endif |
4a3adebb | 1531 | |
3ab73842 JK |
1532 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1533 | ||
e333cd69 | 1534 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1535 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1536 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1537 | } |
1538 | ||
df9c8b75 JJ |
1539 | #ifdef KVM_CAP_READONLY_MEM |
1540 | kvm_readonly_mem_allowed = | |
1541 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1542 | #endif | |
1543 | ||
cad1e282 | 1544 | ret = kvm_arch_init(s); |
a426e122 | 1545 | if (ret < 0) { |
05330448 | 1546 | goto err; |
a426e122 | 1547 | } |
05330448 | 1548 | |
84b058d7 JK |
1549 | ret = kvm_irqchip_create(s); |
1550 | if (ret < 0) { | |
1551 | goto err; | |
1552 | } | |
1553 | ||
05330448 | 1554 | kvm_state = s; |
f6790af6 AK |
1555 | memory_listener_register(&kvm_memory_listener, &address_space_memory); |
1556 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
05330448 | 1557 | |
d2f2b8a7 SH |
1558 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1559 | ||
aa7f74d1 JK |
1560 | cpu_interrupt_handler = kvm_handle_interrupt; |
1561 | ||
05330448 AL |
1562 | return 0; |
1563 | ||
1564 | err: | |
0e1dac6c | 1565 | assert(ret < 0); |
6d1cc321 SW |
1566 | if (s->vmfd >= 0) { |
1567 | close(s->vmfd); | |
1568 | } | |
1569 | if (s->fd != -1) { | |
1570 | close(s->fd); | |
05330448 | 1571 | } |
fb541ca5 | 1572 | g_free(s->slots); |
7267c094 | 1573 | g_free(s); |
05330448 AL |
1574 | |
1575 | return ret; | |
1576 | } | |
1577 | ||
b30e93e9 JK |
1578 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1579 | uint32_t count) | |
05330448 AL |
1580 | { |
1581 | int i; | |
1582 | uint8_t *ptr = data; | |
1583 | ||
1584 | for (i = 0; i < count; i++) { | |
354678c5 JK |
1585 | address_space_rw(&address_space_io, port, ptr, size, |
1586 | direction == KVM_EXIT_IO_OUT); | |
05330448 AL |
1587 | ptr += size; |
1588 | } | |
05330448 AL |
1589 | } |
1590 | ||
5326ab55 | 1591 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
7c80eef8 | 1592 | { |
977c7b6d RK |
1593 | fprintf(stderr, "KVM internal error. Suberror: %d\n", |
1594 | run->internal.suberror); | |
1595 | ||
7c80eef8 MT |
1596 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1597 | int i; | |
1598 | ||
7c80eef8 MT |
1599 | for (i = 0; i < run->internal.ndata; ++i) { |
1600 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1601 | i, (uint64_t)run->internal.data[i]); | |
1602 | } | |
1603 | } | |
7c80eef8 MT |
1604 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1605 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1606 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
878096ee | 1607 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1608 | return EXCP_INTERRUPT; |
a426e122 | 1609 | } |
7c80eef8 MT |
1610 | } |
1611 | /* FIXME: Should trigger a qmp message to let management know | |
1612 | * something went wrong. | |
1613 | */ | |
73aaec4a | 1614 | return -1; |
7c80eef8 | 1615 | } |
7c80eef8 | 1616 | |
62a2744c | 1617 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1618 | { |
f65ed4c1 | 1619 | KVMState *s = kvm_state; |
1cae88b9 AK |
1620 | |
1621 | if (s->coalesced_flush_in_progress) { | |
1622 | return; | |
1623 | } | |
1624 | ||
1625 | s->coalesced_flush_in_progress = true; | |
1626 | ||
62a2744c SY |
1627 | if (s->coalesced_mmio_ring) { |
1628 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1629 | while (ring->first != ring->last) { |
1630 | struct kvm_coalesced_mmio *ent; | |
1631 | ||
1632 | ent = &ring->coalesced_mmio[ring->first]; | |
1633 | ||
1634 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1635 | smp_wmb(); |
f65ed4c1 AL |
1636 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1637 | } | |
1638 | } | |
1cae88b9 AK |
1639 | |
1640 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1641 | } |
1642 | ||
20d695a9 | 1643 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1644 | { |
20d695a9 | 1645 | CPUState *cpu = arg; |
2705d56a | 1646 | |
20d695a9 AF |
1647 | if (!cpu->kvm_vcpu_dirty) { |
1648 | kvm_arch_get_registers(cpu); | |
1649 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1650 | } |
1651 | } | |
1652 | ||
dd1750d7 | 1653 | void kvm_cpu_synchronize_state(CPUState *cpu) |
2705d56a | 1654 | { |
20d695a9 AF |
1655 | if (!cpu->kvm_vcpu_dirty) { |
1656 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1657 | } |
2705d56a JK |
1658 | } |
1659 | ||
3f24a58f | 1660 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
ea375f9a | 1661 | { |
20d695a9 AF |
1662 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1663 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1664 | } |
1665 | ||
3f24a58f | 1666 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
ea375f9a | 1667 | { |
20d695a9 AF |
1668 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1669 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1670 | } |
1671 | ||
1458c363 | 1672 | int kvm_cpu_exec(CPUState *cpu) |
05330448 | 1673 | { |
f7575c96 | 1674 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1675 | int ret, run_ret; |
05330448 | 1676 | |
8c0d577e | 1677 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1678 | |
20d695a9 | 1679 | if (kvm_arch_process_async_events(cpu)) { |
fcd7d003 | 1680 | cpu->exit_request = 0; |
6792a57b | 1681 | return EXCP_HLT; |
9ccfac9e | 1682 | } |
0af691d7 | 1683 | |
9ccfac9e | 1684 | do { |
20d695a9 AF |
1685 | if (cpu->kvm_vcpu_dirty) { |
1686 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1687 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1688 | } |
1689 | ||
20d695a9 | 1690 | kvm_arch_pre_run(cpu, run); |
fcd7d003 | 1691 | if (cpu->exit_request) { |
9ccfac9e JK |
1692 | DPRINTF("interrupt exit requested\n"); |
1693 | /* | |
1694 | * KVM requires us to reenter the kernel after IO exits to complete | |
1695 | * instruction emulation. This self-signal will ensure that we | |
1696 | * leave ASAP again. | |
1697 | */ | |
1698 | qemu_cpu_kick_self(); | |
1699 | } | |
d549db5a | 1700 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1701 | |
1bc22652 | 1702 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1703 | |
d549db5a | 1704 | qemu_mutex_lock_iothread(); |
20d695a9 | 1705 | kvm_arch_post_run(cpu, run); |
05330448 | 1706 | |
7cbb533f | 1707 | if (run_ret < 0) { |
dc77d341 JK |
1708 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1709 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1710 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1711 | break; |
1712 | } | |
7b011fbc ME |
1713 | fprintf(stderr, "error: kvm run failed %s\n", |
1714 | strerror(-run_ret)); | |
05330448 AL |
1715 | abort(); |
1716 | } | |
1717 | ||
b76ac80a | 1718 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
1719 | switch (run->exit_reason) { |
1720 | case KVM_EXIT_IO: | |
8c0d577e | 1721 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1722 | kvm_handle_io(run->io.port, |
1723 | (uint8_t *)run + run->io.data_offset, | |
1724 | run->io.direction, | |
1725 | run->io.size, | |
1726 | run->io.count); | |
d73cd8f4 | 1727 | ret = 0; |
05330448 AL |
1728 | break; |
1729 | case KVM_EXIT_MMIO: | |
8c0d577e | 1730 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1731 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1732 | run->mmio.data, | |
1733 | run->mmio.len, | |
1734 | run->mmio.is_write); | |
d73cd8f4 | 1735 | ret = 0; |
05330448 AL |
1736 | break; |
1737 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1738 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1739 | ret = EXCP_INTERRUPT; |
05330448 AL |
1740 | break; |
1741 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1742 | DPRINTF("shutdown\n"); |
05330448 | 1743 | qemu_system_reset_request(); |
d73cd8f4 | 1744 | ret = EXCP_INTERRUPT; |
05330448 AL |
1745 | break; |
1746 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1747 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1748 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1749 | ret = -1; |
05330448 | 1750 | break; |
7c80eef8 | 1751 | case KVM_EXIT_INTERNAL_ERROR: |
5326ab55 | 1752 | ret = kvm_handle_internal_error(cpu, run); |
7c80eef8 | 1753 | break; |
99040447 PS |
1754 | case KVM_EXIT_SYSTEM_EVENT: |
1755 | switch (run->system_event.type) { | |
1756 | case KVM_SYSTEM_EVENT_SHUTDOWN: | |
1757 | qemu_system_shutdown_request(); | |
1758 | ret = EXCP_INTERRUPT; | |
1759 | break; | |
1760 | case KVM_SYSTEM_EVENT_RESET: | |
1761 | qemu_system_reset_request(); | |
1762 | ret = EXCP_INTERRUPT; | |
1763 | break; | |
1764 | default: | |
1765 | DPRINTF("kvm_arch_handle_exit\n"); | |
1766 | ret = kvm_arch_handle_exit(cpu, run); | |
1767 | break; | |
1768 | } | |
1769 | break; | |
05330448 | 1770 | default: |
8c0d577e | 1771 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1772 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1773 | break; |
1774 | } | |
d73cd8f4 | 1775 | } while (ret == 0); |
05330448 | 1776 | |
73aaec4a | 1777 | if (ret < 0) { |
878096ee | 1778 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1779 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1780 | } |
1781 | ||
fcd7d003 | 1782 | cpu->exit_request = 0; |
05330448 AL |
1783 | return ret; |
1784 | } | |
1785 | ||
984b5181 | 1786 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1787 | { |
1788 | int ret; | |
984b5181 AL |
1789 | void *arg; |
1790 | va_list ap; | |
05330448 | 1791 | |
984b5181 AL |
1792 | va_start(ap, type); |
1793 | arg = va_arg(ap, void *); | |
1794 | va_end(ap); | |
1795 | ||
9c775729 | 1796 | trace_kvm_ioctl(type, arg); |
984b5181 | 1797 | ret = ioctl(s->fd, type, arg); |
a426e122 | 1798 | if (ret == -1) { |
05330448 | 1799 | ret = -errno; |
a426e122 | 1800 | } |
05330448 AL |
1801 | return ret; |
1802 | } | |
1803 | ||
984b5181 | 1804 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1805 | { |
1806 | int ret; | |
984b5181 AL |
1807 | void *arg; |
1808 | va_list ap; | |
1809 | ||
1810 | va_start(ap, type); | |
1811 | arg = va_arg(ap, void *); | |
1812 | va_end(ap); | |
05330448 | 1813 | |
9c775729 | 1814 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 1815 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1816 | if (ret == -1) { |
05330448 | 1817 | ret = -errno; |
a426e122 | 1818 | } |
05330448 AL |
1819 | return ret; |
1820 | } | |
1821 | ||
1bc22652 | 1822 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
1823 | { |
1824 | int ret; | |
984b5181 AL |
1825 | void *arg; |
1826 | va_list ap; | |
1827 | ||
1828 | va_start(ap, type); | |
1829 | arg = va_arg(ap, void *); | |
1830 | va_end(ap); | |
05330448 | 1831 | |
9c775729 | 1832 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 1833 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 1834 | if (ret == -1) { |
05330448 | 1835 | ret = -errno; |
a426e122 | 1836 | } |
05330448 AL |
1837 | return ret; |
1838 | } | |
bd322087 | 1839 | |
0a6a7cca CD |
1840 | int kvm_device_ioctl(int fd, int type, ...) |
1841 | { | |
1842 | int ret; | |
1843 | void *arg; | |
1844 | va_list ap; | |
1845 | ||
1846 | va_start(ap, type); | |
1847 | arg = va_arg(ap, void *); | |
1848 | va_end(ap); | |
1849 | ||
1850 | trace_kvm_device_ioctl(fd, type, arg); | |
1851 | ret = ioctl(fd, type, arg); | |
1852 | if (ret == -1) { | |
1853 | ret = -errno; | |
1854 | } | |
1855 | return ret; | |
1856 | } | |
1857 | ||
bd322087 AL |
1858 | int kvm_has_sync_mmu(void) |
1859 | { | |
94a8d39a | 1860 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1861 | } |
e22a25c9 | 1862 | |
a0fb002c JK |
1863 | int kvm_has_vcpu_events(void) |
1864 | { | |
1865 | return kvm_state->vcpu_events; | |
1866 | } | |
1867 | ||
b0b1d690 JK |
1868 | int kvm_has_robust_singlestep(void) |
1869 | { | |
1870 | return kvm_state->robust_singlestep; | |
1871 | } | |
1872 | ||
ff44f1a3 JK |
1873 | int kvm_has_debugregs(void) |
1874 | { | |
1875 | return kvm_state->debugregs; | |
1876 | } | |
1877 | ||
f1665b21 SY |
1878 | int kvm_has_xsave(void) |
1879 | { | |
1880 | return kvm_state->xsave; | |
1881 | } | |
1882 | ||
1883 | int kvm_has_xcrs(void) | |
1884 | { | |
1885 | return kvm_state->xcrs; | |
1886 | } | |
1887 | ||
8a7c7393 JK |
1888 | int kvm_has_pit_state2(void) |
1889 | { | |
1890 | return kvm_state->pit_state2; | |
1891 | } | |
1892 | ||
d2f2b8a7 SH |
1893 | int kvm_has_many_ioeventfds(void) |
1894 | { | |
1895 | if (!kvm_enabled()) { | |
1896 | return 0; | |
1897 | } | |
1898 | return kvm_state->many_ioeventfds; | |
1899 | } | |
1900 | ||
84b058d7 JK |
1901 | int kvm_has_gsi_routing(void) |
1902 | { | |
a9c5eb0d | 1903 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1904 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1905 | #else |
1906 | return false; | |
1907 | #endif | |
84b058d7 JK |
1908 | } |
1909 | ||
3ab73842 JK |
1910 | int kvm_has_intx_set_mask(void) |
1911 | { | |
1912 | return kvm_state->intx_set_mask; | |
1913 | } | |
1914 | ||
6f0437e8 JK |
1915 | void kvm_setup_guest_memory(void *start, size_t size) |
1916 | { | |
62fe8331 CB |
1917 | #ifdef CONFIG_VALGRIND_H |
1918 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1919 | #endif | |
6f0437e8 | 1920 | if (!kvm_has_sync_mmu()) { |
e78815a5 | 1921 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1922 | |
1923 | if (ret) { | |
e78815a5 AF |
1924 | perror("qemu_madvise"); |
1925 | fprintf(stderr, | |
1926 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1927 | exit(1); |
1928 | } | |
6f0437e8 JK |
1929 | } |
1930 | } | |
1931 | ||
e22a25c9 | 1932 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 1933 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
1934 | target_ulong pc) |
1935 | { | |
1936 | struct kvm_sw_breakpoint *bp; | |
1937 | ||
a60f24b5 | 1938 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1939 | if (bp->pc == pc) { |
e22a25c9 | 1940 | return bp; |
a426e122 | 1941 | } |
e22a25c9 AL |
1942 | } |
1943 | return NULL; | |
1944 | } | |
1945 | ||
a60f24b5 | 1946 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 1947 | { |
a60f24b5 | 1948 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1949 | } |
1950 | ||
452e4751 GC |
1951 | struct kvm_set_guest_debug_data { |
1952 | struct kvm_guest_debug dbg; | |
a60f24b5 | 1953 | CPUState *cpu; |
452e4751 GC |
1954 | int err; |
1955 | }; | |
1956 | ||
1957 | static void kvm_invoke_set_guest_debug(void *data) | |
1958 | { | |
1959 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 1960 | |
a60f24b5 AF |
1961 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
1962 | &dbg_data->dbg); | |
452e4751 GC |
1963 | } |
1964 | ||
38e478ec | 1965 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 | 1966 | { |
452e4751 | 1967 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1968 | |
b0b1d690 | 1969 | data.dbg.control = reinject_trap; |
e22a25c9 | 1970 | |
ed2803da | 1971 | if (cpu->singlestep_enabled) { |
b0b1d690 JK |
1972 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
1973 | } | |
20d695a9 | 1974 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 1975 | data.cpu = cpu; |
e22a25c9 | 1976 | |
f100f0b3 | 1977 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1978 | return data.err; |
e22a25c9 AL |
1979 | } |
1980 | ||
62278814 | 1981 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
1982 | target_ulong len, int type) |
1983 | { | |
1984 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
1985 | int err; |
1986 | ||
1987 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 1988 | bp = kvm_find_sw_breakpoint(cpu, addr); |
e22a25c9 AL |
1989 | if (bp) { |
1990 | bp->use_count++; | |
1991 | return 0; | |
1992 | } | |
1993 | ||
7267c094 | 1994 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1995 | if (!bp) { |
e22a25c9 | 1996 | return -ENOMEM; |
a426e122 | 1997 | } |
e22a25c9 AL |
1998 | |
1999 | bp->pc = addr; | |
2000 | bp->use_count = 1; | |
80b7cd73 | 2001 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
e22a25c9 | 2002 | if (err) { |
7267c094 | 2003 | g_free(bp); |
e22a25c9 AL |
2004 | return err; |
2005 | } | |
2006 | ||
80b7cd73 | 2007 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
2008 | } else { |
2009 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 2010 | if (err) { |
e22a25c9 | 2011 | return err; |
a426e122 | 2012 | } |
e22a25c9 AL |
2013 | } |
2014 | ||
bdc44640 | 2015 | CPU_FOREACH(cpu) { |
38e478ec | 2016 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2017 | if (err) { |
e22a25c9 | 2018 | return err; |
a426e122 | 2019 | } |
e22a25c9 AL |
2020 | } |
2021 | return 0; | |
2022 | } | |
2023 | ||
62278814 | 2024 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2025 | target_ulong len, int type) |
2026 | { | |
2027 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2028 | int err; |
2029 | ||
2030 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2031 | bp = kvm_find_sw_breakpoint(cpu, addr); |
a426e122 | 2032 | if (!bp) { |
e22a25c9 | 2033 | return -ENOENT; |
a426e122 | 2034 | } |
e22a25c9 AL |
2035 | |
2036 | if (bp->use_count > 1) { | |
2037 | bp->use_count--; | |
2038 | return 0; | |
2039 | } | |
2040 | ||
80b7cd73 | 2041 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
a426e122 | 2042 | if (err) { |
e22a25c9 | 2043 | return err; |
a426e122 | 2044 | } |
e22a25c9 | 2045 | |
80b7cd73 | 2046 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 2047 | g_free(bp); |
e22a25c9 AL |
2048 | } else { |
2049 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 2050 | if (err) { |
e22a25c9 | 2051 | return err; |
a426e122 | 2052 | } |
e22a25c9 AL |
2053 | } |
2054 | ||
bdc44640 | 2055 | CPU_FOREACH(cpu) { |
38e478ec | 2056 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2057 | if (err) { |
e22a25c9 | 2058 | return err; |
a426e122 | 2059 | } |
e22a25c9 AL |
2060 | } |
2061 | return 0; | |
2062 | } | |
2063 | ||
1d5791f4 | 2064 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2065 | { |
2066 | struct kvm_sw_breakpoint *bp, *next; | |
80b7cd73 | 2067 | KVMState *s = cpu->kvm_state; |
e22a25c9 | 2068 | |
72cf2d4f | 2069 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
80b7cd73 | 2070 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
e22a25c9 | 2071 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
bdc44640 | 2072 | CPU_FOREACH(cpu) { |
20d695a9 | 2073 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { |
e22a25c9 | 2074 | break; |
a426e122 | 2075 | } |
e22a25c9 AL |
2076 | } |
2077 | } | |
78021d6d JK |
2078 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2079 | g_free(bp); | |
e22a25c9 AL |
2080 | } |
2081 | kvm_arch_remove_all_hw_breakpoints(); | |
2082 | ||
bdc44640 | 2083 | CPU_FOREACH(cpu) { |
38e478ec | 2084 | kvm_update_guest_debug(cpu, 0); |
a426e122 | 2085 | } |
e22a25c9 AL |
2086 | } |
2087 | ||
2088 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2089 | ||
38e478ec | 2090 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 AL |
2091 | { |
2092 | return -EINVAL; | |
2093 | } | |
2094 | ||
62278814 | 2095 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2096 | target_ulong len, int type) |
2097 | { | |
2098 | return -EINVAL; | |
2099 | } | |
2100 | ||
62278814 | 2101 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2102 | target_ulong len, int type) |
2103 | { | |
2104 | return -EINVAL; | |
2105 | } | |
2106 | ||
1d5791f4 | 2107 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2108 | { |
2109 | } | |
2110 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2111 | |
491d6e80 | 2112 | int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
cc84de95 MT |
2113 | { |
2114 | struct kvm_signal_mask *sigmask; | |
2115 | int r; | |
2116 | ||
a426e122 | 2117 | if (!sigset) { |
1bc22652 | 2118 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 2119 | } |
cc84de95 | 2120 | |
7267c094 | 2121 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
2122 | |
2123 | sigmask->len = 8; | |
2124 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1bc22652 | 2125 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2126 | g_free(sigmask); |
cc84de95 MT |
2127 | |
2128 | return r; | |
2129 | } | |
290adf38 | 2130 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2131 | { |
20d695a9 | 2132 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
a1b87fe0 JK |
2133 | } |
2134 | ||
2135 | int kvm_on_sigbus(int code, void *addr) | |
2136 | { | |
2137 | return kvm_arch_on_sigbus(code, addr); | |
2138 | } | |
0a6a7cca CD |
2139 | |
2140 | int kvm_create_device(KVMState *s, uint64_t type, bool test) | |
2141 | { | |
2142 | int ret; | |
2143 | struct kvm_create_device create_dev; | |
2144 | ||
2145 | create_dev.type = type; | |
2146 | create_dev.fd = -1; | |
2147 | create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; | |
2148 | ||
2149 | if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { | |
2150 | return -ENOTSUP; | |
2151 | } | |
2152 | ||
2153 | ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); | |
2154 | if (ret) { | |
2155 | return ret; | |
2156 | } | |
2157 | ||
2158 | return test ? 0 : create_dev.fd; | |
2159 | } | |
ada4135f CH |
2160 | |
2161 | int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) | |
2162 | { | |
2163 | struct kvm_one_reg reg; | |
2164 | int r; | |
2165 | ||
2166 | reg.id = id; | |
2167 | reg.addr = (uintptr_t) source; | |
2168 | r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
2169 | if (r) { | |
2170 | trace_kvm_failed_reg_set(id, strerror(r)); | |
2171 | } | |
2172 | return r; | |
2173 | } | |
2174 | ||
2175 | int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) | |
2176 | { | |
2177 | struct kvm_one_reg reg; | |
2178 | int r; | |
2179 | ||
2180 | reg.id = id; | |
2181 | reg.addr = (uintptr_t) target; | |
2182 | r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
2183 | if (r) { | |
2184 | trace_kvm_failed_reg_get(id, strerror(r)); | |
2185 | } | |
2186 | return r; | |
2187 | } |