]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
1814eab6 | 21 | #include "standard-headers/asm-x86/kvm_para.h" |
05330448 | 22 | |
33c11879 | 23 | #include "cpu.h" |
9c17d615 | 24 | #include "sysemu/sysemu.h" |
b3946626 | 25 | #include "sysemu/hw_accel.h" |
6410848b | 26 | #include "sysemu/kvm_int.h" |
54d31236 | 27 | #include "sysemu/runstate.h" |
1d31f66b | 28 | #include "kvm_i386.h" |
50efe82c | 29 | #include "hyperv.h" |
5e953812 | 30 | #include "hyperv-proto.h" |
50efe82c | 31 | |
022c62cb | 32 | #include "exec/gdbstub.h" |
1de7afc9 | 33 | #include "qemu/host-utils.h" |
db725815 | 34 | #include "qemu/main-loop.h" |
1de7afc9 | 35 | #include "qemu/config-file.h" |
1c4a55db | 36 | #include "qemu/error-report.h" |
89a289c7 | 37 | #include "hw/i386/x86.h" |
0d09e41a | 38 | #include "hw/i386/apic.h" |
e0723c45 PB |
39 | #include "hw/i386/apic_internal.h" |
40 | #include "hw/i386/apic-msidef.h" | |
8b5ed7df | 41 | #include "hw/i386/intel_iommu.h" |
e1d4fb2d | 42 | #include "hw/i386/x86-iommu.h" |
d6d059ca | 43 | #include "hw/i386/e820_memory_layout.h" |
50efe82c | 44 | |
a2cb15b0 | 45 | #include "hw/pci/pci.h" |
15eafc2e | 46 | #include "hw/pci/msi.h" |
fd563564 | 47 | #include "hw/pci/msix.h" |
795c40b8 | 48 | #include "migration/blocker.h" |
4c663752 | 49 | #include "exec/memattrs.h" |
8b5ed7df | 50 | #include "trace.h" |
05330448 AL |
51 | |
52 | //#define DEBUG_KVM | |
53 | ||
54 | #ifdef DEBUG_KVM | |
8c0d577e | 55 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
56 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
57 | #else | |
8c0d577e | 58 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
59 | do { } while (0) |
60 | #endif | |
61 | ||
73b994f6 LA |
62 | /* From arch/x86/kvm/lapic.h */ |
63 | #define KVM_APIC_BUS_CYCLE_NS 1 | |
64 | #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) | |
65 | ||
1a03675d GC |
66 | #define MSR_KVM_WALL_CLOCK 0x11 |
67 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
68 | ||
d1138251 EH |
69 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
70 | * 255 kvm_msr_entry structs */ | |
71 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 72 | |
420ae1fc PB |
73 | static void kvm_init_msrs(X86CPU *cpu); |
74 | ||
94a8d39a JK |
75 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
76 | KVM_CAP_INFO(SET_TSS_ADDR), | |
77 | KVM_CAP_INFO(EXT_CPUID), | |
78 | KVM_CAP_INFO(MP_STATE), | |
79 | KVM_CAP_LAST_INFO | |
80 | }; | |
25d2e361 | 81 | |
c3a3a7d3 JK |
82 | static bool has_msr_star; |
83 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 84 | static bool has_msr_tsc_aux; |
f28558d3 | 85 | static bool has_msr_tsc_adjust; |
aa82ba54 | 86 | static bool has_msr_tsc_deadline; |
df67696e | 87 | static bool has_msr_feature_control; |
21e87c46 | 88 | static bool has_msr_misc_enable; |
fc12d72e | 89 | static bool has_msr_smbase; |
79e9ebeb | 90 | static bool has_msr_bndcfgs; |
25d2e361 | 91 | static int lm_capable_kernel; |
7bc3d711 | 92 | static bool has_msr_hv_hypercall; |
f2a53c9e | 93 | static bool has_msr_hv_crash; |
744b8a94 | 94 | static bool has_msr_hv_reset; |
8c145d7c | 95 | static bool has_msr_hv_vpindex; |
e9688fab | 96 | static bool hv_vpindex_settable; |
46eb8f98 | 97 | static bool has_msr_hv_runtime; |
866eea9a | 98 | static bool has_msr_hv_synic; |
ff99aa64 | 99 | static bool has_msr_hv_stimer; |
d72bc7f6 | 100 | static bool has_msr_hv_frequencies; |
ba6a4fd9 | 101 | static bool has_msr_hv_reenlightenment; |
18cd2c17 | 102 | static bool has_msr_xss; |
65087997 | 103 | static bool has_msr_umwait; |
a33a2cfe | 104 | static bool has_msr_spec_ctrl; |
2a9758c5 | 105 | static bool has_msr_tsx_ctrl; |
cfeea0c0 | 106 | static bool has_msr_virt_ssbd; |
e13713db | 107 | static bool has_msr_smi_count; |
aec5e9c3 | 108 | static bool has_msr_arch_capabs; |
597360c0 | 109 | static bool has_msr_core_capabs; |
20a78b02 | 110 | static bool has_msr_vmx_vmfunc; |
67025148 | 111 | static bool has_msr_ucode_rev; |
4a910e1f | 112 | static bool has_msr_vmx_procbased_ctls2; |
ea39f9b6 | 113 | static bool has_msr_perf_capabs; |
b827df58 | 114 | |
0b368a10 JD |
115 | static uint32_t has_architectural_pmu_version; |
116 | static uint32_t num_architectural_pmu_gp_counters; | |
117 | static uint32_t num_architectural_pmu_fixed_counters; | |
0d894367 | 118 | |
28143b40 TH |
119 | static int has_xsave; |
120 | static int has_xcrs; | |
121 | static int has_pit_state2; | |
fd13f23b | 122 | static int has_exception_payload; |
28143b40 | 123 | |
87f8b626 AR |
124 | static bool has_msr_mcg_ext_ctl; |
125 | ||
494e95e9 | 126 | static struct kvm_cpuid2 *cpuid_cache; |
f57bceb6 | 127 | static struct kvm_msr_list *kvm_feature_msrs; |
494e95e9 | 128 | |
28143b40 TH |
129 | int kvm_has_pit_state2(void) |
130 | { | |
131 | return has_pit_state2; | |
132 | } | |
133 | ||
355023f2 PB |
134 | bool kvm_has_smm(void) |
135 | { | |
136 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
137 | } | |
138 | ||
6053a86f MT |
139 | bool kvm_has_adjust_clock_stable(void) |
140 | { | |
141 | int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); | |
142 | ||
143 | return (ret == KVM_CLOCK_TSC_STABLE); | |
144 | } | |
145 | ||
79a197ab LA |
146 | bool kvm_has_exception_payload(void) |
147 | { | |
148 | return has_exception_payload; | |
149 | } | |
150 | ||
1d31f66b PM |
151 | bool kvm_allows_irq0_override(void) |
152 | { | |
153 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
154 | } | |
155 | ||
fb506e70 RK |
156 | static bool kvm_x2apic_api_set_flags(uint64_t flags) |
157 | { | |
4f7f5893 | 158 | KVMState *s = KVM_STATE(current_accel()); |
fb506e70 RK |
159 | |
160 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
161 | } | |
162 | ||
e391c009 | 163 | #define MEMORIZE(fn, _result) \ |
2a138ec3 | 164 | ({ \ |
2a138ec3 RK |
165 | static bool _memorized; \ |
166 | \ | |
167 | if (_memorized) { \ | |
168 | return _result; \ | |
169 | } \ | |
170 | _memorized = true; \ | |
171 | _result = fn; \ | |
172 | }) | |
173 | ||
e391c009 IM |
174 | static bool has_x2apic_api; |
175 | ||
176 | bool kvm_has_x2apic_api(void) | |
177 | { | |
178 | return has_x2apic_api; | |
179 | } | |
180 | ||
fb506e70 RK |
181 | bool kvm_enable_x2apic(void) |
182 | { | |
2a138ec3 RK |
183 | return MEMORIZE( |
184 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
e391c009 IM |
185 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
186 | has_x2apic_api); | |
fb506e70 RK |
187 | } |
188 | ||
e9688fab RK |
189 | bool kvm_hv_vpindex_settable(void) |
190 | { | |
191 | return hv_vpindex_settable; | |
192 | } | |
193 | ||
0fd7e098 LL |
194 | static int kvm_get_tsc(CPUState *cs) |
195 | { | |
196 | X86CPU *cpu = X86_CPU(cs); | |
197 | CPUX86State *env = &cpu->env; | |
198 | struct { | |
199 | struct kvm_msrs info; | |
200 | struct kvm_msr_entry entries[1]; | |
a1834d97 | 201 | } msr_data = {}; |
0fd7e098 LL |
202 | int ret; |
203 | ||
204 | if (env->tsc_valid) { | |
205 | return 0; | |
206 | } | |
207 | ||
1f670a95 | 208 | memset(&msr_data, 0, sizeof(msr_data)); |
0fd7e098 LL |
209 | msr_data.info.nmsrs = 1; |
210 | msr_data.entries[0].index = MSR_IA32_TSC; | |
211 | env->tsc_valid = !runstate_is_running(); | |
212 | ||
213 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
214 | if (ret < 0) { | |
215 | return ret; | |
216 | } | |
217 | ||
48e1a45c | 218 | assert(ret == 1); |
0fd7e098 LL |
219 | env->tsc = msr_data.entries[0].data; |
220 | return 0; | |
221 | } | |
222 | ||
14e6fe12 | 223 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
0fd7e098 | 224 | { |
0fd7e098 LL |
225 | kvm_get_tsc(cpu); |
226 | } | |
227 | ||
228 | void kvm_synchronize_all_tsc(void) | |
229 | { | |
230 | CPUState *cpu; | |
231 | ||
232 | if (kvm_enabled()) { | |
233 | CPU_FOREACH(cpu) { | |
14e6fe12 | 234 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
0fd7e098 LL |
235 | } |
236 | } | |
237 | } | |
238 | ||
b827df58 AK |
239 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
240 | { | |
241 | struct kvm_cpuid2 *cpuid; | |
242 | int r, size; | |
243 | ||
244 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 245 | cpuid = g_malloc0(size); |
b827df58 AK |
246 | cpuid->nent = max; |
247 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
248 | if (r == 0 && cpuid->nent >= max) { |
249 | r = -E2BIG; | |
250 | } | |
b827df58 AK |
251 | if (r < 0) { |
252 | if (r == -E2BIG) { | |
7267c094 | 253 | g_free(cpuid); |
b827df58 AK |
254 | return NULL; |
255 | } else { | |
256 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
257 | strerror(-r)); | |
258 | exit(1); | |
259 | } | |
260 | } | |
261 | return cpuid; | |
262 | } | |
263 | ||
dd87f8a6 EH |
264 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
265 | * for all entries. | |
266 | */ | |
267 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
268 | { | |
269 | struct kvm_cpuid2 *cpuid; | |
270 | int max = 1; | |
494e95e9 CP |
271 | |
272 | if (cpuid_cache != NULL) { | |
273 | return cpuid_cache; | |
274 | } | |
dd87f8a6 EH |
275 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
276 | max *= 2; | |
277 | } | |
494e95e9 | 278 | cpuid_cache = cpuid; |
dd87f8a6 EH |
279 | return cpuid; |
280 | } | |
281 | ||
a443bc34 | 282 | static const struct kvm_para_features { |
0c31b744 GC |
283 | int cap; |
284 | int feature; | |
285 | } para_features[] = { | |
286 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
287 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
288 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 289 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
290 | }; |
291 | ||
ba9bc59e | 292 | static int get_para_features(KVMState *s) |
0c31b744 GC |
293 | { |
294 | int i, features = 0; | |
295 | ||
8e03c100 | 296 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 297 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
298 | features |= (1 << para_features[i].feature); |
299 | } | |
300 | } | |
301 | ||
302 | return features; | |
303 | } | |
0c31b744 | 304 | |
40e80ee4 EH |
305 | static bool host_tsx_blacklisted(void) |
306 | { | |
307 | int family, model, stepping;\ | |
308 | char vendor[CPUID_VENDOR_SZ + 1]; | |
309 | ||
310 | host_vendor_fms(vendor, &family, &model, &stepping); | |
311 | ||
312 | /* Check if we are running on a Haswell host known to have broken TSX */ | |
313 | return !strcmp(vendor, CPUID_VENDOR_INTEL) && | |
314 | (family == 6) && | |
315 | ((model == 63 && stepping < 4) || | |
316 | model == 60 || model == 69 || model == 70); | |
317 | } | |
0c31b744 | 318 | |
829ae2f9 EH |
319 | /* Returns the value for a specific register on the cpuid entry |
320 | */ | |
321 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
322 | { | |
323 | uint32_t ret = 0; | |
324 | switch (reg) { | |
325 | case R_EAX: | |
326 | ret = entry->eax; | |
327 | break; | |
328 | case R_EBX: | |
329 | ret = entry->ebx; | |
330 | break; | |
331 | case R_ECX: | |
332 | ret = entry->ecx; | |
333 | break; | |
334 | case R_EDX: | |
335 | ret = entry->edx; | |
336 | break; | |
337 | } | |
338 | return ret; | |
339 | } | |
340 | ||
4fb73f1d EH |
341 | /* Find matching entry for function/index on kvm_cpuid2 struct |
342 | */ | |
343 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
344 | uint32_t function, | |
345 | uint32_t index) | |
346 | { | |
347 | int i; | |
348 | for (i = 0; i < cpuid->nent; ++i) { | |
349 | if (cpuid->entries[i].function == function && | |
350 | cpuid->entries[i].index == index) { | |
351 | return &cpuid->entries[i]; | |
352 | } | |
353 | } | |
354 | /* not found: */ | |
355 | return NULL; | |
356 | } | |
357 | ||
ba9bc59e | 358 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 359 | uint32_t index, int reg) |
b827df58 AK |
360 | { |
361 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
362 | uint32_t ret = 0; |
363 | uint32_t cpuid_1_edx; | |
8c723b79 | 364 | bool found = false; |
b827df58 | 365 | |
dd87f8a6 | 366 | cpuid = get_supported_cpuid(s); |
b827df58 | 367 | |
4fb73f1d EH |
368 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
369 | if (entry) { | |
370 | found = true; | |
371 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
372 | } |
373 | ||
7b46e5ce EH |
374 | /* Fixups for the data returned by KVM, below */ |
375 | ||
c2acb022 EH |
376 | if (function == 1 && reg == R_EDX) { |
377 | /* KVM before 2.6.30 misreports the following features */ | |
378 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
379 | } else if (function == 1 && reg == R_ECX) { |
380 | /* We can set the hypervisor flag, even if KVM does not return it on | |
381 | * GET_SUPPORTED_CPUID | |
382 | */ | |
383 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
384 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
385 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
386 | * and the irqchip is in the kernel. | |
387 | */ | |
388 | if (kvm_irqchip_in_kernel() && | |
389 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
390 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
391 | } | |
41e5e76d EH |
392 | |
393 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
394 | * without the in-kernel irqchip | |
395 | */ | |
396 | if (!kvm_irqchip_in_kernel()) { | |
397 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 398 | } |
2266d443 MT |
399 | |
400 | if (enable_cpu_pm) { | |
401 | int disable_exits = kvm_check_extension(s, | |
402 | KVM_CAP_X86_DISABLE_EXITS); | |
403 | ||
404 | if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { | |
405 | ret |= CPUID_EXT_MONITOR; | |
406 | } | |
407 | } | |
28b8e4d0 JK |
408 | } else if (function == 6 && reg == R_EAX) { |
409 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
40e80ee4 EH |
410 | } else if (function == 7 && index == 0 && reg == R_EBX) { |
411 | if (host_tsx_blacklisted()) { | |
412 | ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); | |
413 | } | |
485b1d25 EH |
414 | } else if (function == 7 && index == 0 && reg == R_EDX) { |
415 | /* | |
416 | * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. | |
417 | * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is | |
418 | * returned by KVM_GET_MSR_INDEX_LIST. | |
419 | */ | |
420 | if (!has_msr_arch_capabs) { | |
421 | ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; | |
422 | } | |
f98bbd83 BM |
423 | } else if (function == 0x80000001 && reg == R_ECX) { |
424 | /* | |
425 | * It's safe to enable TOPOEXT even if it's not returned by | |
426 | * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows | |
427 | * us to keep CPU models including TOPOEXT runnable on older kernels. | |
428 | */ | |
429 | ret |= CPUID_EXT3_TOPOEXT; | |
c2acb022 EH |
430 | } else if (function == 0x80000001 && reg == R_EDX) { |
431 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
432 | * so add missing bits according to the AMD spec: | |
433 | */ | |
434 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
435 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
64877477 EH |
436 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
437 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
438 | * be enabled without the in-kernel irqchip | |
439 | */ | |
440 | if (!kvm_irqchip_in_kernel()) { | |
441 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
442 | } | |
be777326 | 443 | } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { |
2af1acad | 444 | ret |= 1U << KVM_HINTS_REALTIME; |
be777326 | 445 | found = 1; |
b827df58 AK |
446 | } |
447 | ||
0c31b744 | 448 | /* fallback for older kernels */ |
8c723b79 | 449 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 450 | ret = get_para_features(s); |
b9bec74b | 451 | } |
0c31b744 GC |
452 | |
453 | return ret; | |
bb0300dc | 454 | } |
bb0300dc | 455 | |
ede146c2 | 456 | uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) |
f57bceb6 RH |
457 | { |
458 | struct { | |
459 | struct kvm_msrs info; | |
460 | struct kvm_msr_entry entries[1]; | |
a1834d97 | 461 | } msr_data = {}; |
20a78b02 PB |
462 | uint64_t value; |
463 | uint32_t ret, can_be_one, must_be_one; | |
f57bceb6 RH |
464 | |
465 | if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ | |
466 | return 0; | |
467 | } | |
468 | ||
469 | /* Check if requested MSR is supported feature MSR */ | |
470 | int i; | |
471 | for (i = 0; i < kvm_feature_msrs->nmsrs; i++) | |
472 | if (kvm_feature_msrs->indices[i] == index) { | |
473 | break; | |
474 | } | |
475 | if (i == kvm_feature_msrs->nmsrs) { | |
476 | return 0; /* if the feature MSR is not supported, simply return 0 */ | |
477 | } | |
478 | ||
479 | msr_data.info.nmsrs = 1; | |
480 | msr_data.entries[0].index = index; | |
481 | ||
482 | ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); | |
483 | if (ret != 1) { | |
484 | error_report("KVM get MSR (index=0x%x) feature failed, %s", | |
485 | index, strerror(-ret)); | |
486 | exit(1); | |
487 | } | |
488 | ||
20a78b02 PB |
489 | value = msr_data.entries[0].data; |
490 | switch (index) { | |
491 | case MSR_IA32_VMX_PROCBASED_CTLS2: | |
4a910e1f VK |
492 | if (!has_msr_vmx_procbased_ctls2) { |
493 | /* KVM forgot to add these bits for some time, do this ourselves. */ | |
494 | if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & | |
495 | CPUID_XSAVE_XSAVES) { | |
496 | value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; | |
497 | } | |
498 | if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & | |
499 | CPUID_EXT_RDRAND) { | |
500 | value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; | |
501 | } | |
502 | if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & | |
503 | CPUID_7_0_EBX_INVPCID) { | |
504 | value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; | |
505 | } | |
506 | if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & | |
507 | CPUID_7_0_EBX_RDSEED) { | |
508 | value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; | |
509 | } | |
510 | if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & | |
511 | CPUID_EXT2_RDTSCP) { | |
512 | value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; | |
513 | } | |
048c9516 PB |
514 | } |
515 | /* fall through */ | |
20a78b02 PB |
516 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
517 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: | |
518 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: | |
519 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: | |
520 | /* | |
521 | * Return true for bits that can be one, but do not have to be one. | |
522 | * The SDM tells us which bits could have a "must be one" setting, | |
523 | * so we can do the opposite transformation in make_vmx_msr_value. | |
524 | */ | |
525 | must_be_one = (uint32_t)value; | |
526 | can_be_one = (uint32_t)(value >> 32); | |
527 | return can_be_one & ~must_be_one; | |
528 | ||
529 | default: | |
530 | return value; | |
531 | } | |
f57bceb6 RH |
532 | } |
533 | ||
e7701825 MT |
534 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
535 | int *max_banks) | |
536 | { | |
537 | int r; | |
538 | ||
14a09518 | 539 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
540 | if (r > 0) { |
541 | *max_banks = r; | |
542 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
543 | } | |
544 | return -ENOSYS; | |
545 | } | |
546 | ||
bee615d4 | 547 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 548 | { |
87f8b626 | 549 | CPUState *cs = CPU(cpu); |
bee615d4 | 550 | CPUX86State *env = &cpu->env; |
c34d440a JK |
551 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
552 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
553 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 554 | int flags = 0; |
e7701825 | 555 | |
c34d440a JK |
556 | if (code == BUS_MCEERR_AR) { |
557 | status |= MCI_STATUS_AR | 0x134; | |
558 | mcg_status |= MCG_STATUS_EIPV; | |
559 | } else { | |
560 | status |= 0xc0; | |
561 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 562 | } |
87f8b626 AR |
563 | |
564 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
565 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
566 | * guest kernel back into env->mcg_ext_ctl. | |
567 | */ | |
568 | cpu_synchronize_state(cs); | |
569 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
570 | mcg_status |= MCG_STATUS_LMCE; | |
571 | flags = 0; | |
572 | } | |
573 | ||
8c5cf3b6 | 574 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 575 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 576 | } |
419fb20a | 577 | |
73284563 | 578 | static void hardware_memory_error(void *host_addr) |
419fb20a | 579 | { |
73284563 | 580 | error_report("QEMU got Hardware memory error at addr %p", host_addr); |
419fb20a JK |
581 | exit(1); |
582 | } | |
583 | ||
2ae41db2 | 584 | void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 585 | { |
20d695a9 AF |
586 | X86CPU *cpu = X86_CPU(c); |
587 | CPUX86State *env = &cpu->env; | |
419fb20a | 588 | ram_addr_t ram_addr; |
a8170e5e | 589 | hwaddr paddr; |
419fb20a | 590 | |
4d39892c PB |
591 | /* If we get an action required MCE, it has been injected by KVM |
592 | * while the VM was running. An action optional MCE instead should | |
593 | * be coming from the main thread, which qemu_init_sigbus identifies | |
594 | * as the "early kill" thread. | |
595 | */ | |
a16fc07e | 596 | assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
20e0ff59 | 597 | |
20e0ff59 | 598 | if ((env->mcg_cap & MCG_SER_P) && addr) { |
07bdaa41 | 599 | ram_addr = qemu_ram_addr_from_host(addr); |
20e0ff59 PB |
600 | if (ram_addr != RAM_ADDR_INVALID && |
601 | kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { | |
602 | kvm_hwpoison_page_add(ram_addr); | |
603 | kvm_mce_inject(cpu, paddr, code); | |
73284563 MS |
604 | |
605 | /* | |
606 | * Use different logging severity based on error type. | |
607 | * If there is additional MCE reporting on the hypervisor, QEMU VA | |
608 | * could be another source to identify the PA and MCE details. | |
609 | */ | |
610 | if (code == BUS_MCEERR_AR) { | |
611 | error_report("Guest MCE Memory Error at QEMU addr %p and " | |
612 | "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", | |
613 | addr, paddr, "BUS_MCEERR_AR"); | |
614 | } else { | |
615 | warn_report("Guest MCE Memory Error at QEMU addr %p and " | |
616 | "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", | |
617 | addr, paddr, "BUS_MCEERR_AO"); | |
618 | } | |
619 | ||
2ae41db2 | 620 | return; |
419fb20a | 621 | } |
20e0ff59 | 622 | |
73284563 MS |
623 | if (code == BUS_MCEERR_AO) { |
624 | warn_report("Hardware memory error at addr %p of type %s " | |
625 | "for memory used by QEMU itself instead of guest system!", | |
626 | addr, "BUS_MCEERR_AO"); | |
627 | } | |
419fb20a | 628 | } |
20e0ff59 PB |
629 | |
630 | if (code == BUS_MCEERR_AR) { | |
73284563 | 631 | hardware_memory_error(addr); |
20e0ff59 PB |
632 | } |
633 | ||
634 | /* Hope we are lucky for AO MCE */ | |
419fb20a JK |
635 | } |
636 | ||
fd13f23b LA |
637 | static void kvm_reset_exception(CPUX86State *env) |
638 | { | |
639 | env->exception_nr = -1; | |
640 | env->exception_pending = 0; | |
641 | env->exception_injected = 0; | |
642 | env->exception_has_payload = false; | |
643 | env->exception_payload = 0; | |
644 | } | |
645 | ||
646 | static void kvm_queue_exception(CPUX86State *env, | |
647 | int32_t exception_nr, | |
648 | uint8_t exception_has_payload, | |
649 | uint64_t exception_payload) | |
650 | { | |
651 | assert(env->exception_nr == -1); | |
652 | assert(!env->exception_pending); | |
653 | assert(!env->exception_injected); | |
654 | assert(!env->exception_has_payload); | |
655 | ||
656 | env->exception_nr = exception_nr; | |
657 | ||
658 | if (has_exception_payload) { | |
659 | env->exception_pending = 1; | |
660 | ||
661 | env->exception_has_payload = exception_has_payload; | |
662 | env->exception_payload = exception_payload; | |
663 | } else { | |
664 | env->exception_injected = 1; | |
665 | ||
666 | if (exception_nr == EXCP01_DB) { | |
667 | assert(exception_has_payload); | |
668 | env->dr[6] = exception_payload; | |
669 | } else if (exception_nr == EXCP0E_PAGE) { | |
670 | assert(exception_has_payload); | |
671 | env->cr[2] = exception_payload; | |
672 | } else { | |
673 | assert(!exception_has_payload); | |
674 | } | |
675 | } | |
676 | } | |
677 | ||
1bc22652 | 678 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 679 | { |
1bc22652 AF |
680 | CPUX86State *env = &cpu->env; |
681 | ||
fd13f23b | 682 | if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { |
ab443475 JK |
683 | unsigned int bank, bank_num = env->mcg_cap & 0xff; |
684 | struct kvm_x86_mce mce; | |
685 | ||
fd13f23b | 686 | kvm_reset_exception(env); |
ab443475 JK |
687 | |
688 | /* | |
689 | * There must be at least one bank in use if an MCE is pending. | |
690 | * Find it and use its values for the event injection. | |
691 | */ | |
692 | for (bank = 0; bank < bank_num; bank++) { | |
693 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
694 | break; | |
695 | } | |
696 | } | |
697 | assert(bank < bank_num); | |
698 | ||
699 | mce.bank = bank; | |
700 | mce.status = env->mce_banks[bank * 4 + 1]; | |
701 | mce.mcg_status = env->mcg_status; | |
702 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
703 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
704 | ||
1bc22652 | 705 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 706 | } |
ab443475 JK |
707 | return 0; |
708 | } | |
709 | ||
1dfb4dd9 | 710 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 711 | { |
317ac620 | 712 | CPUX86State *env = opaque; |
b8cc45d6 GC |
713 | |
714 | if (running) { | |
715 | env->tsc_valid = false; | |
716 | } | |
717 | } | |
718 | ||
83b17af5 | 719 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 720 | { |
83b17af5 | 721 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 722 | return cpu->apic_id; |
b164e48e EH |
723 | } |
724 | ||
92067bf4 IM |
725 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
726 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
727 | #endif | |
728 | ||
92067bf4 IM |
729 | static bool hyperv_enabled(X86CPU *cpu) |
730 | { | |
7bc3d711 PB |
731 | CPUState *cs = CPU(cpu); |
732 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
2d384d7c | 733 | ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) || |
e48ddcc6 | 734 | cpu->hyperv_features || cpu->hyperv_passthrough); |
92067bf4 IM |
735 | } |
736 | ||
74aaddc6 MT |
737 | /* |
738 | * Check whether target_freq is within conservative | |
739 | * ntp correctable bounds (250ppm) of freq | |
740 | */ | |
741 | static inline bool freq_within_bounds(int freq, int target_freq) | |
742 | { | |
743 | int max_freq = freq + (freq * 250 / 1000000); | |
744 | int min_freq = freq - (freq * 250 / 1000000); | |
745 | ||
746 | if (target_freq >= min_freq && target_freq <= max_freq) { | |
747 | return true; | |
748 | } | |
749 | ||
750 | return false; | |
751 | } | |
752 | ||
5031283d HZ |
753 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
754 | { | |
755 | X86CPU *cpu = X86_CPU(cs); | |
756 | CPUX86State *env = &cpu->env; | |
74aaddc6 MT |
757 | int r, cur_freq; |
758 | bool set_ioctl = false; | |
5031283d HZ |
759 | |
760 | if (!env->tsc_khz) { | |
761 | return 0; | |
762 | } | |
763 | ||
74aaddc6 MT |
764 | cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? |
765 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; | |
766 | ||
767 | /* | |
768 | * If TSC scaling is supported, attempt to set TSC frequency. | |
769 | */ | |
770 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { | |
771 | set_ioctl = true; | |
772 | } | |
773 | ||
774 | /* | |
775 | * If desired TSC frequency is within bounds of NTP correction, | |
776 | * attempt to set TSC frequency. | |
777 | */ | |
778 | if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { | |
779 | set_ioctl = true; | |
780 | } | |
781 | ||
782 | r = set_ioctl ? | |
5031283d HZ |
783 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : |
784 | -ENOTSUP; | |
74aaddc6 | 785 | |
5031283d HZ |
786 | if (r < 0) { |
787 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
788 | * TSC frequency doesn't match the one we want. | |
789 | */ | |
74aaddc6 MT |
790 | cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? |
791 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
792 | -ENOTSUP; | |
5031283d | 793 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { |
3dc6f869 AF |
794 | warn_report("TSC frequency mismatch between " |
795 | "VM (%" PRId64 " kHz) and host (%d kHz), " | |
796 | "and TSC scaling unavailable", | |
797 | env->tsc_khz, cur_freq); | |
5031283d HZ |
798 | return r; |
799 | } | |
800 | } | |
801 | ||
802 | return 0; | |
803 | } | |
804 | ||
4bb95b82 LP |
805 | static bool tsc_is_stable_and_known(CPUX86State *env) |
806 | { | |
807 | if (!env->tsc_khz) { | |
808 | return false; | |
809 | } | |
810 | return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) | |
811 | || env->user_tsc_khz; | |
812 | } | |
813 | ||
6760bd20 VK |
814 | static struct { |
815 | const char *desc; | |
816 | struct { | |
817 | uint32_t fw; | |
818 | uint32_t bits; | |
819 | } flags[2]; | |
c6861930 | 820 | uint64_t dependencies; |
6760bd20 VK |
821 | } kvm_hyperv_properties[] = { |
822 | [HYPERV_FEAT_RELAXED] = { | |
823 | .desc = "relaxed timing (hv-relaxed)", | |
824 | .flags = { | |
825 | {.fw = FEAT_HYPERV_EAX, | |
826 | .bits = HV_HYPERCALL_AVAILABLE}, | |
827 | {.fw = FEAT_HV_RECOMM_EAX, | |
828 | .bits = HV_RELAXED_TIMING_RECOMMENDED} | |
829 | } | |
830 | }, | |
831 | [HYPERV_FEAT_VAPIC] = { | |
832 | .desc = "virtual APIC (hv-vapic)", | |
833 | .flags = { | |
834 | {.fw = FEAT_HYPERV_EAX, | |
835 | .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, | |
836 | {.fw = FEAT_HV_RECOMM_EAX, | |
837 | .bits = HV_APIC_ACCESS_RECOMMENDED} | |
838 | } | |
839 | }, | |
840 | [HYPERV_FEAT_TIME] = { | |
841 | .desc = "clocksources (hv-time)", | |
842 | .flags = { | |
843 | {.fw = FEAT_HYPERV_EAX, | |
844 | .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | | |
845 | HV_REFERENCE_TSC_AVAILABLE} | |
846 | } | |
847 | }, | |
848 | [HYPERV_FEAT_CRASH] = { | |
849 | .desc = "crash MSRs (hv-crash)", | |
850 | .flags = { | |
851 | {.fw = FEAT_HYPERV_EDX, | |
852 | .bits = HV_GUEST_CRASH_MSR_AVAILABLE} | |
853 | } | |
854 | }, | |
855 | [HYPERV_FEAT_RESET] = { | |
856 | .desc = "reset MSR (hv-reset)", | |
857 | .flags = { | |
858 | {.fw = FEAT_HYPERV_EAX, | |
859 | .bits = HV_RESET_AVAILABLE} | |
860 | } | |
861 | }, | |
862 | [HYPERV_FEAT_VPINDEX] = { | |
863 | .desc = "VP_INDEX MSR (hv-vpindex)", | |
864 | .flags = { | |
865 | {.fw = FEAT_HYPERV_EAX, | |
866 | .bits = HV_VP_INDEX_AVAILABLE} | |
867 | } | |
868 | }, | |
869 | [HYPERV_FEAT_RUNTIME] = { | |
870 | .desc = "VP_RUNTIME MSR (hv-runtime)", | |
871 | .flags = { | |
872 | {.fw = FEAT_HYPERV_EAX, | |
873 | .bits = HV_VP_RUNTIME_AVAILABLE} | |
874 | } | |
875 | }, | |
876 | [HYPERV_FEAT_SYNIC] = { | |
877 | .desc = "synthetic interrupt controller (hv-synic)", | |
878 | .flags = { | |
879 | {.fw = FEAT_HYPERV_EAX, | |
880 | .bits = HV_SYNIC_AVAILABLE} | |
881 | } | |
882 | }, | |
883 | [HYPERV_FEAT_STIMER] = { | |
884 | .desc = "synthetic timers (hv-stimer)", | |
885 | .flags = { | |
886 | {.fw = FEAT_HYPERV_EAX, | |
887 | .bits = HV_SYNTIMERS_AVAILABLE} | |
c6861930 VK |
888 | }, |
889 | .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) | |
6760bd20 VK |
890 | }, |
891 | [HYPERV_FEAT_FREQUENCIES] = { | |
892 | .desc = "frequency MSRs (hv-frequencies)", | |
893 | .flags = { | |
894 | {.fw = FEAT_HYPERV_EAX, | |
895 | .bits = HV_ACCESS_FREQUENCY_MSRS}, | |
896 | {.fw = FEAT_HYPERV_EDX, | |
897 | .bits = HV_FREQUENCY_MSRS_AVAILABLE} | |
898 | } | |
899 | }, | |
900 | [HYPERV_FEAT_REENLIGHTENMENT] = { | |
901 | .desc = "reenlightenment MSRs (hv-reenlightenment)", | |
902 | .flags = { | |
903 | {.fw = FEAT_HYPERV_EAX, | |
904 | .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} | |
905 | } | |
906 | }, | |
907 | [HYPERV_FEAT_TLBFLUSH] = { | |
908 | .desc = "paravirtualized TLB flush (hv-tlbflush)", | |
909 | .flags = { | |
910 | {.fw = FEAT_HV_RECOMM_EAX, | |
911 | .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | | |
912 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
bd59fbdf VK |
913 | }, |
914 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
6760bd20 VK |
915 | }, |
916 | [HYPERV_FEAT_EVMCS] = { | |
917 | .desc = "enlightened VMCS (hv-evmcs)", | |
918 | .flags = { | |
919 | {.fw = FEAT_HV_RECOMM_EAX, | |
920 | .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} | |
8caba36d VK |
921 | }, |
922 | .dependencies = BIT(HYPERV_FEAT_VAPIC) | |
6760bd20 VK |
923 | }, |
924 | [HYPERV_FEAT_IPI] = { | |
925 | .desc = "paravirtualized IPI (hv-ipi)", | |
926 | .flags = { | |
927 | {.fw = FEAT_HV_RECOMM_EAX, | |
928 | .bits = HV_CLUSTER_IPI_RECOMMENDED | | |
929 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
bd59fbdf VK |
930 | }, |
931 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
6760bd20 | 932 | }, |
128531d9 VK |
933 | [HYPERV_FEAT_STIMER_DIRECT] = { |
934 | .desc = "direct mode synthetic timers (hv-stimer-direct)", | |
935 | .flags = { | |
936 | {.fw = FEAT_HYPERV_EDX, | |
937 | .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} | |
938 | }, | |
939 | .dependencies = BIT(HYPERV_FEAT_STIMER) | |
940 | }, | |
6760bd20 VK |
941 | }; |
942 | ||
943 | static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) | |
944 | { | |
945 | struct kvm_cpuid2 *cpuid; | |
946 | int r, size; | |
947 | ||
948 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
949 | cpuid = g_malloc0(size); | |
950 | cpuid->nent = max; | |
951 | ||
952 | r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); | |
953 | if (r == 0 && cpuid->nent >= max) { | |
954 | r = -E2BIG; | |
955 | } | |
956 | if (r < 0) { | |
957 | if (r == -E2BIG) { | |
958 | g_free(cpuid); | |
959 | return NULL; | |
960 | } else { | |
961 | fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", | |
962 | strerror(-r)); | |
963 | exit(1); | |
964 | } | |
965 | } | |
966 | return cpuid; | |
967 | } | |
968 | ||
969 | /* | |
970 | * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough | |
971 | * for all entries. | |
972 | */ | |
973 | static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) | |
974 | { | |
975 | struct kvm_cpuid2 *cpuid; | |
976 | int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ | |
977 | ||
978 | /* | |
979 | * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with | |
980 | * -E2BIG, however, it doesn't report back the right size. Keep increasing | |
981 | * it and re-trying until we succeed. | |
982 | */ | |
983 | while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { | |
984 | max++; | |
985 | } | |
986 | return cpuid; | |
987 | } | |
988 | ||
989 | /* | |
990 | * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature | |
991 | * leaves from KVM_CAP_HYPERV* and present MSRs data. | |
992 | */ | |
993 | static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) | |
c35bd19a EY |
994 | { |
995 | X86CPU *cpu = X86_CPU(cs); | |
6760bd20 VK |
996 | struct kvm_cpuid2 *cpuid; |
997 | struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; | |
998 | ||
999 | /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ | |
1000 | cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); | |
1001 | cpuid->nent = 2; | |
1002 | ||
1003 | /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ | |
1004 | entry_feat = &cpuid->entries[0]; | |
1005 | entry_feat->function = HV_CPUID_FEATURES; | |
1006 | ||
1007 | entry_recomm = &cpuid->entries[1]; | |
1008 | entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; | |
1009 | entry_recomm->ebx = cpu->hyperv_spinlock_attempts; | |
1010 | ||
1011 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { | |
1012 | entry_feat->eax |= HV_HYPERCALL_AVAILABLE; | |
1013 | entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; | |
1014 | entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
1015 | entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; | |
1016 | entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; | |
1017 | } | |
c35bd19a | 1018 | |
6760bd20 VK |
1019 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { |
1020 | entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; | |
1021 | entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; | |
c35bd19a | 1022 | } |
6760bd20 VK |
1023 | |
1024 | if (has_msr_hv_frequencies) { | |
1025 | entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; | |
1026 | entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; | |
c35bd19a | 1027 | } |
6760bd20 VK |
1028 | |
1029 | if (has_msr_hv_crash) { | |
1030 | entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; | |
9445597b | 1031 | } |
6760bd20 VK |
1032 | |
1033 | if (has_msr_hv_reenlightenment) { | |
1034 | entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; | |
c35bd19a | 1035 | } |
6760bd20 VK |
1036 | |
1037 | if (has_msr_hv_reset) { | |
1038 | entry_feat->eax |= HV_RESET_AVAILABLE; | |
c35bd19a | 1039 | } |
6760bd20 VK |
1040 | |
1041 | if (has_msr_hv_vpindex) { | |
1042 | entry_feat->eax |= HV_VP_INDEX_AVAILABLE; | |
ba6a4fd9 | 1043 | } |
6760bd20 VK |
1044 | |
1045 | if (has_msr_hv_runtime) { | |
1046 | entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; | |
c35bd19a | 1047 | } |
6760bd20 VK |
1048 | |
1049 | if (has_msr_hv_synic) { | |
1050 | unsigned int cap = cpu->hyperv_synic_kvm_only ? | |
1051 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
1052 | ||
1053 | if (kvm_check_extension(cs->kvm_state, cap) > 0) { | |
1054 | entry_feat->eax |= HV_SYNIC_AVAILABLE; | |
1221f150 | 1055 | } |
c35bd19a | 1056 | } |
6760bd20 VK |
1057 | |
1058 | if (has_msr_hv_stimer) { | |
1059 | entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; | |
c35bd19a | 1060 | } |
9b4cf107 | 1061 | |
6760bd20 VK |
1062 | if (kvm_check_extension(cs->kvm_state, |
1063 | KVM_CAP_HYPERV_TLBFLUSH) > 0) { | |
1064 | entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; | |
1065 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
1066 | } | |
c35bd19a | 1067 | |
6760bd20 VK |
1068 | if (kvm_check_extension(cs->kvm_state, |
1069 | KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { | |
1070 | entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
c35bd19a | 1071 | } |
6760bd20 VK |
1072 | |
1073 | if (kvm_check_extension(cs->kvm_state, | |
1074 | KVM_CAP_HYPERV_SEND_IPI) > 0) { | |
1075 | entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; | |
1076 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
c35bd19a | 1077 | } |
6760bd20 VK |
1078 | |
1079 | return cpuid; | |
1080 | } | |
1081 | ||
1082 | static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) | |
1083 | { | |
1084 | struct kvm_cpuid_entry2 *entry; | |
1085 | uint32_t func; | |
1086 | int reg; | |
1087 | ||
1088 | switch (fw) { | |
1089 | case FEAT_HYPERV_EAX: | |
1090 | reg = R_EAX; | |
1091 | func = HV_CPUID_FEATURES; | |
1092 | break; | |
1093 | case FEAT_HYPERV_EDX: | |
1094 | reg = R_EDX; | |
1095 | func = HV_CPUID_FEATURES; | |
1096 | break; | |
1097 | case FEAT_HV_RECOMM_EAX: | |
1098 | reg = R_EAX; | |
1099 | func = HV_CPUID_ENLIGHTMENT_INFO; | |
1100 | break; | |
1101 | default: | |
1102 | return -EINVAL; | |
a2b107db | 1103 | } |
6760bd20 VK |
1104 | |
1105 | entry = cpuid_find_entry(cpuid, func, 0); | |
1106 | if (!entry) { | |
1107 | return -ENOENT; | |
a2b107db | 1108 | } |
6760bd20 VK |
1109 | |
1110 | switch (reg) { | |
1111 | case R_EAX: | |
1112 | *r = entry->eax; | |
1113 | break; | |
1114 | case R_EDX: | |
1115 | *r = entry->edx; | |
1116 | break; | |
1117 | default: | |
1118 | return -EINVAL; | |
a2b107db | 1119 | } |
6760bd20 VK |
1120 | |
1121 | return 0; | |
1122 | } | |
1123 | ||
1124 | static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, | |
1125 | int feature) | |
1126 | { | |
1127 | X86CPU *cpu = X86_CPU(cs); | |
1128 | CPUX86State *env = &cpu->env; | |
e48ddcc6 | 1129 | uint32_t r, fw, bits; |
c6861930 | 1130 | uint64_t deps; |
9dc83cd9 | 1131 | int i, dep_feat; |
6760bd20 | 1132 | |
e48ddcc6 | 1133 | if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { |
6760bd20 VK |
1134 | return 0; |
1135 | } | |
1136 | ||
c6861930 | 1137 | deps = kvm_hyperv_properties[feature].dependencies; |
9dc83cd9 HR |
1138 | while (deps) { |
1139 | dep_feat = ctz64(deps); | |
c6861930 VK |
1140 | if (!(hyperv_feat_enabled(cpu, dep_feat))) { |
1141 | fprintf(stderr, | |
1142 | "Hyper-V %s requires Hyper-V %s\n", | |
1143 | kvm_hyperv_properties[feature].desc, | |
1144 | kvm_hyperv_properties[dep_feat].desc); | |
1145 | return 1; | |
1146 | } | |
9dc83cd9 | 1147 | deps &= ~(1ull << dep_feat); |
c6861930 VK |
1148 | } |
1149 | ||
6760bd20 VK |
1150 | for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { |
1151 | fw = kvm_hyperv_properties[feature].flags[i].fw; | |
1152 | bits = kvm_hyperv_properties[feature].flags[i].bits; | |
1153 | ||
1154 | if (!fw) { | |
1155 | continue; | |
a2b107db | 1156 | } |
6760bd20 VK |
1157 | |
1158 | if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { | |
e48ddcc6 VK |
1159 | if (hyperv_feat_enabled(cpu, feature)) { |
1160 | fprintf(stderr, | |
1161 | "Hyper-V %s is not supported by kernel\n", | |
1162 | kvm_hyperv_properties[feature].desc); | |
1163 | return 1; | |
1164 | } else { | |
1165 | return 0; | |
1166 | } | |
6760bd20 VK |
1167 | } |
1168 | ||
1169 | env->features[fw] |= bits; | |
a2b107db | 1170 | } |
6760bd20 | 1171 | |
e48ddcc6 VK |
1172 | if (cpu->hyperv_passthrough) { |
1173 | cpu->hyperv_features |= BIT(feature); | |
1174 | } | |
1175 | ||
6760bd20 VK |
1176 | return 0; |
1177 | } | |
1178 | ||
2344d22e VK |
1179 | /* |
1180 | * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in | |
1181 | * case of success, errno < 0 in case of failure and 0 when no Hyper-V | |
1182 | * extentions are enabled. | |
1183 | */ | |
1184 | static int hyperv_handle_properties(CPUState *cs, | |
1185 | struct kvm_cpuid_entry2 *cpuid_ent) | |
6760bd20 VK |
1186 | { |
1187 | X86CPU *cpu = X86_CPU(cs); | |
1188 | CPUX86State *env = &cpu->env; | |
1189 | struct kvm_cpuid2 *cpuid; | |
2344d22e VK |
1190 | struct kvm_cpuid_entry2 *c; |
1191 | uint32_t signature[3]; | |
1192 | uint32_t cpuid_i = 0; | |
e48ddcc6 | 1193 | int r; |
6760bd20 | 1194 | |
2344d22e VK |
1195 | if (!hyperv_enabled(cpu)) |
1196 | return 0; | |
1197 | ||
e48ddcc6 VK |
1198 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || |
1199 | cpu->hyperv_passthrough) { | |
a2b107db VK |
1200 | uint16_t evmcs_version; |
1201 | ||
e48ddcc6 VK |
1202 | r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, |
1203 | (uintptr_t)&evmcs_version); | |
1204 | ||
1205 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { | |
6760bd20 VK |
1206 | fprintf(stderr, "Hyper-V %s is not supported by kernel\n", |
1207 | kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); | |
a2b107db VK |
1208 | return -ENOSYS; |
1209 | } | |
e48ddcc6 VK |
1210 | |
1211 | if (!r) { | |
1212 | env->features[FEAT_HV_RECOMM_EAX] |= | |
1213 | HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
1214 | env->features[FEAT_HV_NESTED_EAX] = evmcs_version; | |
1215 | } | |
a2b107db VK |
1216 | } |
1217 | ||
6760bd20 VK |
1218 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { |
1219 | cpuid = get_supported_hv_cpuid(cs); | |
1220 | } else { | |
1221 | cpuid = get_supported_hv_cpuid_legacy(cs); | |
1222 | } | |
1223 | ||
e48ddcc6 VK |
1224 | if (cpu->hyperv_passthrough) { |
1225 | memcpy(cpuid_ent, &cpuid->entries[0], | |
1226 | cpuid->nent * sizeof(cpuid->entries[0])); | |
1227 | ||
1228 | c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); | |
1229 | if (c) { | |
1230 | env->features[FEAT_HYPERV_EAX] = c->eax; | |
1231 | env->features[FEAT_HYPERV_EBX] = c->ebx; | |
1232 | env->features[FEAT_HYPERV_EDX] = c->eax; | |
1233 | } | |
1234 | c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); | |
1235 | if (c) { | |
1236 | env->features[FEAT_HV_RECOMM_EAX] = c->eax; | |
1237 | ||
1238 | /* hv-spinlocks may have been overriden */ | |
1239 | if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) { | |
1240 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1241 | } | |
1242 | } | |
1243 | c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); | |
1244 | if (c) { | |
1245 | env->features[FEAT_HV_NESTED_EAX] = c->eax; | |
1246 | } | |
1247 | } | |
1248 | ||
30d6ff66 VK |
1249 | if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { |
1250 | env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING; | |
1251 | } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { | |
1252 | c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); | |
1253 | if (c) { | |
1254 | env->features[FEAT_HV_RECOMM_EAX] |= | |
1255 | c->eax & HV_NO_NONARCH_CORESHARING; | |
1256 | } | |
1257 | } | |
1258 | ||
6760bd20 | 1259 | /* Features */ |
e48ddcc6 | 1260 | r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); |
6760bd20 VK |
1261 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); |
1262 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); | |
1263 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); | |
1264 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); | |
1265 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); | |
1266 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); | |
1267 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); | |
1268 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); | |
1269 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); | |
1270 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); | |
1271 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); | |
1272 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); | |
1273 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); | |
128531d9 | 1274 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); |
6760bd20 | 1275 | |
c6861930 | 1276 | /* Additional dependencies not covered by kvm_hyperv_properties[] */ |
6760bd20 VK |
1277 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && |
1278 | !cpu->hyperv_synic_kvm_only && | |
1279 | !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { | |
c6861930 | 1280 | fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", |
6760bd20 VK |
1281 | kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, |
1282 | kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); | |
1283 | r |= 1; | |
1284 | } | |
1285 | ||
1286 | /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ | |
1287 | env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
1288 | ||
2344d22e VK |
1289 | if (r) { |
1290 | r = -ENOSYS; | |
1291 | goto free; | |
1292 | } | |
1293 | ||
e48ddcc6 VK |
1294 | if (cpu->hyperv_passthrough) { |
1295 | /* We already copied all feature words from KVM as is */ | |
1296 | r = cpuid->nent; | |
1297 | goto free; | |
1298 | } | |
1299 | ||
2344d22e VK |
1300 | c = &cpuid_ent[cpuid_i++]; |
1301 | c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
1302 | if (!cpu->hyperv_vendor_id) { | |
1303 | memcpy(signature, "Microsoft Hv", 12); | |
1304 | } else { | |
1305 | size_t len = strlen(cpu->hyperv_vendor_id); | |
1306 | ||
1307 | if (len > 12) { | |
1308 | error_report("hv-vendor-id truncated to 12 characters"); | |
1309 | len = 12; | |
1310 | } | |
1311 | memset(signature, 0, 12); | |
1312 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
1313 | } | |
1314 | c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? | |
1315 | HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; | |
1316 | c->ebx = signature[0]; | |
1317 | c->ecx = signature[1]; | |
1318 | c->edx = signature[2]; | |
1319 | ||
1320 | c = &cpuid_ent[cpuid_i++]; | |
1321 | c->function = HV_CPUID_INTERFACE; | |
1322 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | |
1323 | c->eax = signature[0]; | |
1324 | c->ebx = 0; | |
1325 | c->ecx = 0; | |
1326 | c->edx = 0; | |
1327 | ||
1328 | c = &cpuid_ent[cpuid_i++]; | |
1329 | c->function = HV_CPUID_VERSION; | |
1330 | c->eax = 0x00001bbc; | |
1331 | c->ebx = 0x00060001; | |
1332 | ||
1333 | c = &cpuid_ent[cpuid_i++]; | |
1334 | c->function = HV_CPUID_FEATURES; | |
1335 | c->eax = env->features[FEAT_HYPERV_EAX]; | |
1336 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
1337 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
1338 | ||
1339 | c = &cpuid_ent[cpuid_i++]; | |
1340 | c->function = HV_CPUID_ENLIGHTMENT_INFO; | |
1341 | c->eax = env->features[FEAT_HV_RECOMM_EAX]; | |
1342 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1343 | ||
1344 | c = &cpuid_ent[cpuid_i++]; | |
1345 | c->function = HV_CPUID_IMPLEMENT_LIMITS; | |
1346 | c->eax = cpu->hv_max_vps; | |
1347 | c->ebx = 0x40; | |
1348 | ||
1349 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { | |
1350 | __u32 function; | |
1351 | ||
1352 | /* Create zeroed 0x40000006..0x40000009 leaves */ | |
1353 | for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; | |
1354 | function < HV_CPUID_NESTED_FEATURES; function++) { | |
1355 | c = &cpuid_ent[cpuid_i++]; | |
1356 | c->function = function; | |
1357 | } | |
1358 | ||
1359 | c = &cpuid_ent[cpuid_i++]; | |
1360 | c->function = HV_CPUID_NESTED_FEATURES; | |
1361 | c->eax = env->features[FEAT_HV_NESTED_EAX]; | |
1362 | } | |
1363 | r = cpuid_i; | |
1364 | ||
1365 | free: | |
6760bd20 VK |
1366 | g_free(cpuid); |
1367 | ||
2344d22e | 1368 | return r; |
c35bd19a EY |
1369 | } |
1370 | ||
e48ddcc6 | 1371 | static Error *hv_passthrough_mig_blocker; |
30d6ff66 | 1372 | static Error *hv_no_nonarch_cs_mig_blocker; |
e48ddcc6 | 1373 | |
e9688fab RK |
1374 | static int hyperv_init_vcpu(X86CPU *cpu) |
1375 | { | |
729ce7e1 | 1376 | CPUState *cs = CPU(cpu); |
e48ddcc6 | 1377 | Error *local_err = NULL; |
729ce7e1 RK |
1378 | int ret; |
1379 | ||
e48ddcc6 VK |
1380 | if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { |
1381 | error_setg(&hv_passthrough_mig_blocker, | |
1382 | "'hv-passthrough' CPU flag prevents migration, use explicit" | |
1383 | " set of hv-* flags instead"); | |
1384 | ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); | |
1385 | if (local_err) { | |
1386 | error_report_err(local_err); | |
1387 | error_free(hv_passthrough_mig_blocker); | |
1388 | return ret; | |
1389 | } | |
1390 | } | |
1391 | ||
30d6ff66 VK |
1392 | if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && |
1393 | hv_no_nonarch_cs_mig_blocker == NULL) { | |
1394 | error_setg(&hv_no_nonarch_cs_mig_blocker, | |
1395 | "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" | |
1396 | " use explicit 'hv-no-nonarch-coresharing=on' instead (but" | |
1397 | " make sure SMT is disabled and/or that vCPUs are properly" | |
1398 | " pinned)"); | |
1399 | ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); | |
1400 | if (local_err) { | |
1401 | error_report_err(local_err); | |
1402 | error_free(hv_no_nonarch_cs_mig_blocker); | |
1403 | return ret; | |
1404 | } | |
1405 | } | |
1406 | ||
2d384d7c | 1407 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { |
e9688fab RK |
1408 | /* |
1409 | * the kernel doesn't support setting vp_index; assert that its value | |
1410 | * is in sync | |
1411 | */ | |
e9688fab RK |
1412 | struct { |
1413 | struct kvm_msrs info; | |
1414 | struct kvm_msr_entry entries[1]; | |
1415 | } msr_data = { | |
1416 | .info.nmsrs = 1, | |
1417 | .entries[0].index = HV_X64_MSR_VP_INDEX, | |
1418 | }; | |
1419 | ||
729ce7e1 | 1420 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); |
e9688fab RK |
1421 | if (ret < 0) { |
1422 | return ret; | |
1423 | } | |
1424 | assert(ret == 1); | |
1425 | ||
701189e3 | 1426 | if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { |
e9688fab RK |
1427 | error_report("kernel's vp_index != QEMU's vp_index"); |
1428 | return -ENXIO; | |
1429 | } | |
1430 | } | |
1431 | ||
2d384d7c | 1432 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
9b4cf107 RK |
1433 | uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? |
1434 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
1435 | ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); | |
729ce7e1 RK |
1436 | if (ret < 0) { |
1437 | error_report("failed to turn on HyperV SynIC in KVM: %s", | |
1438 | strerror(-ret)); | |
1439 | return ret; | |
1440 | } | |
606c34bf | 1441 | |
9b4cf107 RK |
1442 | if (!cpu->hyperv_synic_kvm_only) { |
1443 | ret = hyperv_x86_synic_add(cpu); | |
1444 | if (ret < 0) { | |
1445 | error_report("failed to create HyperV SynIC: %s", | |
1446 | strerror(-ret)); | |
1447 | return ret; | |
1448 | } | |
606c34bf | 1449 | } |
729ce7e1 RK |
1450 | } |
1451 | ||
e9688fab RK |
1452 | return 0; |
1453 | } | |
1454 | ||
68bfd0ad MT |
1455 | static Error *invtsc_mig_blocker; |
1456 | ||
f8bb0565 | 1457 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 1458 | |
20d695a9 | 1459 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
1460 | { |
1461 | struct { | |
486bd5a2 | 1462 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 1463 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
9115bb12 PM |
1464 | } cpuid_data; |
1465 | /* | |
1466 | * The kernel defines these structs with padding fields so there | |
1467 | * should be no extra padding in our cpuid_data struct. | |
1468 | */ | |
1469 | QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != | |
1470 | sizeof(struct kvm_cpuid2) + | |
1471 | sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); | |
1472 | ||
20d695a9 AF |
1473 | X86CPU *cpu = X86_CPU(cs); |
1474 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 1475 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 1476 | uint32_t unused; |
bb0300dc | 1477 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 1478 | uint32_t signature[3]; |
234cc647 | 1479 | int kvm_base = KVM_CPUID_SIGNATURE; |
ebbfef2f | 1480 | int max_nested_state_len; |
e7429073 | 1481 | int r; |
fe44dc91 | 1482 | Error *local_err = NULL; |
05330448 | 1483 | |
ef4cbe14 SW |
1484 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
1485 | ||
05330448 AL |
1486 | cpuid_i = 0; |
1487 | ||
ddb98b5a LP |
1488 | r = kvm_arch_set_tsc_khz(cs); |
1489 | if (r < 0) { | |
6b2341ee | 1490 | return r; |
ddb98b5a LP |
1491 | } |
1492 | ||
1493 | /* vcpu's TSC frequency is either specified by user, or following | |
1494 | * the value used by KVM if the former is not present. In the | |
1495 | * latter case, we query it from KVM and record in env->tsc_khz, | |
1496 | * so that vcpu's TSC frequency can be migrated later via this field. | |
1497 | */ | |
1498 | if (!env->tsc_khz) { | |
1499 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
1500 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
1501 | -ENOTSUP; | |
1502 | if (r > 0) { | |
1503 | env->tsc_khz = r; | |
1504 | } | |
1505 | } | |
1506 | ||
73b994f6 LA |
1507 | env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; |
1508 | ||
bb0300dc | 1509 | /* Paravirtualization CPUIDs */ |
2344d22e VK |
1510 | r = hyperv_handle_properties(cs, cpuid_data.entries); |
1511 | if (r < 0) { | |
1512 | return r; | |
1513 | } else if (r > 0) { | |
1514 | cpuid_i = r; | |
234cc647 | 1515 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 1516 | has_msr_hv_hypercall = true; |
eab70139 VR |
1517 | } |
1518 | ||
f522d2ac AW |
1519 | if (cpu->expose_kvm) { |
1520 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
1521 | c = &cpuid_data.entries[cpuid_i++]; | |
1522 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 1523 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
1524 | c->ebx = signature[0]; |
1525 | c->ecx = signature[1]; | |
1526 | c->edx = signature[2]; | |
234cc647 | 1527 | |
f522d2ac AW |
1528 | c = &cpuid_data.entries[cpuid_i++]; |
1529 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
1530 | c->eax = env->features[FEAT_KVM]; | |
be777326 | 1531 | c->edx = env->features[FEAT_KVM_HINTS]; |
f522d2ac | 1532 | } |
917367aa | 1533 | |
a33609ca | 1534 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1535 | |
1536 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
1537 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1538 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
1539 | abort(); | |
1540 | } | |
bb0300dc | 1541 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1542 | |
1543 | switch (i) { | |
a36b1029 AL |
1544 | case 2: { |
1545 | /* Keep reading function 2 till all the input is received */ | |
1546 | int times; | |
1547 | ||
a36b1029 | 1548 | c->function = i; |
a33609ca AL |
1549 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
1550 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
1551 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1552 | times = c->eax & 0xff; | |
a36b1029 AL |
1553 | |
1554 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
1555 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1556 | fprintf(stderr, "cpuid_data is full, no space for " | |
1557 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
1558 | abort(); | |
1559 | } | |
a33609ca | 1560 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 1561 | c->function = i; |
a33609ca AL |
1562 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
1563 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
1564 | } |
1565 | break; | |
1566 | } | |
a94e1428 LX |
1567 | case 0x1f: |
1568 | if (env->nr_dies < 2) { | |
1569 | break; | |
1570 | } | |
486bd5a2 AL |
1571 | case 4: |
1572 | case 0xb: | |
1573 | case 0xd: | |
1574 | for (j = 0; ; j++) { | |
31e8c696 AP |
1575 | if (i == 0xd && j == 64) { |
1576 | break; | |
1577 | } | |
a94e1428 LX |
1578 | |
1579 | if (i == 0x1f && j == 64) { | |
1580 | break; | |
1581 | } | |
1582 | ||
486bd5a2 AL |
1583 | c->function = i; |
1584 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1585 | c->index = j; | |
a33609ca | 1586 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 1587 | |
b9bec74b | 1588 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 1589 | break; |
b9bec74b JK |
1590 | } |
1591 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 1592 | break; |
b9bec74b | 1593 | } |
a94e1428 LX |
1594 | if (i == 0x1f && !(c->ecx & 0xff00)) { |
1595 | break; | |
1596 | } | |
b9bec74b | 1597 | if (i == 0xd && c->eax == 0) { |
31e8c696 | 1598 | continue; |
b9bec74b | 1599 | } |
f8bb0565 IM |
1600 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1601 | fprintf(stderr, "cpuid_data is full, no space for " | |
1602 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1603 | abort(); | |
1604 | } | |
a33609ca | 1605 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1606 | } |
1607 | break; | |
80db491d | 1608 | case 0x7: |
e37a5c7f CP |
1609 | case 0x14: { |
1610 | uint32_t times; | |
1611 | ||
1612 | c->function = i; | |
1613 | c->index = 0; | |
1614 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1615 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1616 | times = c->eax; | |
1617 | ||
1618 | for (j = 1; j <= times; ++j) { | |
1619 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1620 | fprintf(stderr, "cpuid_data is full, no space for " | |
80db491d | 1621 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); |
e37a5c7f CP |
1622 | abort(); |
1623 | } | |
1624 | c = &cpuid_data.entries[cpuid_i++]; | |
1625 | c->function = i; | |
1626 | c->index = j; | |
1627 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1628 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1629 | } | |
1630 | break; | |
1631 | } | |
486bd5a2 | 1632 | default: |
486bd5a2 | 1633 | c->function = i; |
a33609ca AL |
1634 | c->flags = 0; |
1635 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
af95cafb EH |
1636 | if (!c->eax && !c->ebx && !c->ecx && !c->edx) { |
1637 | /* | |
1638 | * KVM already returns all zeroes if a CPUID entry is missing, | |
1639 | * so we can omit it and avoid hitting KVM's 80-entry limit. | |
1640 | */ | |
1641 | cpuid_i--; | |
1642 | } | |
486bd5a2 AL |
1643 | break; |
1644 | } | |
05330448 | 1645 | } |
0d894367 PB |
1646 | |
1647 | if (limit >= 0x0a) { | |
0b368a10 | 1648 | uint32_t eax, edx; |
0d894367 | 1649 | |
0b368a10 JD |
1650 | cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); |
1651 | ||
1652 | has_architectural_pmu_version = eax & 0xff; | |
1653 | if (has_architectural_pmu_version > 0) { | |
1654 | num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; | |
0d894367 PB |
1655 | |
1656 | /* Shouldn't be more than 32, since that's the number of bits | |
1657 | * available in EBX to tell us _which_ counters are available. | |
1658 | * Play it safe. | |
1659 | */ | |
0b368a10 JD |
1660 | if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { |
1661 | num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; | |
1662 | } | |
1663 | ||
1664 | if (has_architectural_pmu_version > 1) { | |
1665 | num_architectural_pmu_fixed_counters = edx & 0x1f; | |
1666 | ||
1667 | if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { | |
1668 | num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; | |
1669 | } | |
0d894367 PB |
1670 | } |
1671 | } | |
1672 | } | |
1673 | ||
a33609ca | 1674 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1675 | |
1676 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
1677 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1678 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
1679 | abort(); | |
1680 | } | |
bb0300dc | 1681 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 1682 | |
8f4202fb BM |
1683 | switch (i) { |
1684 | case 0x8000001d: | |
1685 | /* Query for all AMD cache information leaves */ | |
1686 | for (j = 0; ; j++) { | |
1687 | c->function = i; | |
1688 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1689 | c->index = j; | |
1690 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1691 | ||
1692 | if (c->eax == 0) { | |
1693 | break; | |
1694 | } | |
1695 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1696 | fprintf(stderr, "cpuid_data is full, no space for " | |
1697 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1698 | abort(); | |
1699 | } | |
1700 | c = &cpuid_data.entries[cpuid_i++]; | |
1701 | } | |
1702 | break; | |
1703 | default: | |
1704 | c->function = i; | |
1705 | c->flags = 0; | |
1706 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
af95cafb EH |
1707 | if (!c->eax && !c->ebx && !c->ecx && !c->edx) { |
1708 | /* | |
1709 | * KVM already returns all zeroes if a CPUID entry is missing, | |
1710 | * so we can omit it and avoid hitting KVM's 80-entry limit. | |
1711 | */ | |
1712 | cpuid_i--; | |
1713 | } | |
8f4202fb BM |
1714 | break; |
1715 | } | |
05330448 AL |
1716 | } |
1717 | ||
b3baa152 BW |
1718 | /* Call Centaur's CPUID instructions they are supported. */ |
1719 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
1720 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
1721 | ||
1722 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
1723 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1724 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
1725 | abort(); | |
1726 | } | |
b3baa152 BW |
1727 | c = &cpuid_data.entries[cpuid_i++]; |
1728 | ||
1729 | c->function = i; | |
1730 | c->flags = 0; | |
1731 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1732 | } | |
1733 | } | |
1734 | ||
05330448 AL |
1735 | cpuid_data.cpuid.nent = cpuid_i; |
1736 | ||
e7701825 | 1737 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 1738 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 1739 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 1740 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 1741 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 1742 | int banks; |
32a42024 | 1743 | int ret; |
e7701825 | 1744 | |
a60f24b5 | 1745 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
1746 | if (ret < 0) { |
1747 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
1748 | return ret; | |
e7701825 | 1749 | } |
75d49497 | 1750 | |
2590f15b | 1751 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 1752 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 1753 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 1754 | return -ENOTSUP; |
75d49497 | 1755 | } |
49b69cbf | 1756 | |
5120901a EH |
1757 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
1758 | if (unsupported_caps) { | |
87f8b626 AR |
1759 | if (unsupported_caps & MCG_LMCE_P) { |
1760 | error_report("kvm: LMCE not supported"); | |
1761 | return -ENOTSUP; | |
1762 | } | |
3dc6f869 AF |
1763 | warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, |
1764 | unsupported_caps); | |
5120901a EH |
1765 | } |
1766 | ||
2590f15b EH |
1767 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
1768 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
1769 | if (ret < 0) { |
1770 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
1771 | return ret; | |
1772 | } | |
e7701825 | 1773 | } |
e7701825 | 1774 | |
2a693142 | 1775 | cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); |
b8cc45d6 | 1776 | |
df67696e LJ |
1777 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
1778 | if (c) { | |
1779 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
1780 | !!(c->ecx & CPUID_EXT_SMX); | |
1781 | } | |
1782 | ||
87f8b626 AR |
1783 | if (env->mcg_cap & MCG_LMCE_P) { |
1784 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
1785 | } | |
1786 | ||
d99569d9 EH |
1787 | if (!env->user_tsc_khz) { |
1788 | if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && | |
1789 | invtsc_mig_blocker == NULL) { | |
d99569d9 EH |
1790 | error_setg(&invtsc_mig_blocker, |
1791 | "State blocked by non-migratable CPU device" | |
1792 | " (invtsc flag)"); | |
fe44dc91 AA |
1793 | r = migrate_add_blocker(invtsc_mig_blocker, &local_err); |
1794 | if (local_err) { | |
1795 | error_report_err(local_err); | |
1796 | error_free(invtsc_mig_blocker); | |
79a197ab | 1797 | return r; |
fe44dc91 | 1798 | } |
d99569d9 | 1799 | } |
68bfd0ad MT |
1800 | } |
1801 | ||
9954a158 PDJ |
1802 | if (cpu->vmware_cpuid_freq |
1803 | /* Guests depend on 0x40000000 to detect this feature, so only expose | |
1804 | * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ | |
1805 | && cpu->expose_kvm | |
1806 | && kvm_base == KVM_CPUID_SIGNATURE | |
1807 | /* TSC clock must be stable and known for this feature. */ | |
4bb95b82 | 1808 | && tsc_is_stable_and_known(env)) { |
9954a158 PDJ |
1809 | |
1810 | c = &cpuid_data.entries[cpuid_i++]; | |
1811 | c->function = KVM_CPUID_SIGNATURE | 0x10; | |
1812 | c->eax = env->tsc_khz; | |
73b994f6 | 1813 | c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ |
9954a158 PDJ |
1814 | c->ecx = c->edx = 0; |
1815 | ||
1816 | c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); | |
1817 | c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); | |
1818 | } | |
1819 | ||
1820 | cpuid_data.cpuid.nent = cpuid_i; | |
1821 | ||
1822 | cpuid_data.cpuid.padding = 0; | |
1823 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); | |
1824 | if (r) { | |
1825 | goto fail; | |
1826 | } | |
1827 | ||
28143b40 | 1828 | if (has_xsave) { |
5b8063c4 | 1829 | env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
1f670a95 | 1830 | memset(env->xsave_buf, 0, sizeof(struct kvm_xsave)); |
fabacc0f | 1831 | } |
ebbfef2f LA |
1832 | |
1833 | max_nested_state_len = kvm_max_nested_state_length(); | |
1834 | if (max_nested_state_len > 0) { | |
1835 | assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); | |
ebbfef2f | 1836 | |
b16c0e20 | 1837 | if (cpu_has_vmx(env) || cpu_has_svm(env)) { |
1e44f3ab | 1838 | struct kvm_vmx_nested_state_hdr *vmx_hdr; |
ebbfef2f | 1839 | |
1e44f3ab PB |
1840 | env->nested_state = g_malloc0(max_nested_state_len); |
1841 | env->nested_state->size = max_nested_state_len; | |
ebbfef2f | 1842 | env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; |
1e44f3ab | 1843 | |
b16c0e20 PB |
1844 | if (cpu_has_vmx(env)) { |
1845 | vmx_hdr = &env->nested_state->hdr.vmx; | |
1846 | vmx_hdr->vmxon_pa = -1ull; | |
1847 | vmx_hdr->vmcs12_pa = -1ull; | |
1848 | } | |
ebbfef2f LA |
1849 | } |
1850 | } | |
1851 | ||
d71b62a1 | 1852 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 1853 | |
273c515c PB |
1854 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
1855 | has_msr_tsc_aux = false; | |
1856 | } | |
d1ae67f6 | 1857 | |
420ae1fc PB |
1858 | kvm_init_msrs(cpu); |
1859 | ||
e9688fab RK |
1860 | r = hyperv_init_vcpu(cpu); |
1861 | if (r) { | |
1862 | goto fail; | |
1863 | } | |
1864 | ||
e7429073 | 1865 | return 0; |
fe44dc91 AA |
1866 | |
1867 | fail: | |
1868 | migrate_del_blocker(invtsc_mig_blocker); | |
6b2341ee | 1869 | |
fe44dc91 | 1870 | return r; |
05330448 AL |
1871 | } |
1872 | ||
b1115c99 LA |
1873 | int kvm_arch_destroy_vcpu(CPUState *cs) |
1874 | { | |
1875 | X86CPU *cpu = X86_CPU(cs); | |
ebbfef2f | 1876 | CPUX86State *env = &cpu->env; |
b1115c99 LA |
1877 | |
1878 | if (cpu->kvm_msr_buf) { | |
1879 | g_free(cpu->kvm_msr_buf); | |
1880 | cpu->kvm_msr_buf = NULL; | |
1881 | } | |
1882 | ||
ebbfef2f LA |
1883 | if (env->nested_state) { |
1884 | g_free(env->nested_state); | |
1885 | env->nested_state = NULL; | |
1886 | } | |
1887 | ||
2a693142 PN |
1888 | qemu_del_vm_change_state_handler(cpu->vmsentry); |
1889 | ||
b1115c99 LA |
1890 | return 0; |
1891 | } | |
1892 | ||
50a2c6e5 | 1893 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 1894 | { |
20d695a9 | 1895 | CPUX86State *env = &cpu->env; |
dd673288 | 1896 | |
1a5e9d2f | 1897 | env->xcr0 = 1; |
ddced198 | 1898 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 1899 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
1900 | KVM_MP_STATE_UNINITIALIZED; |
1901 | } else { | |
1902 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1903 | } | |
689141dd | 1904 | |
2d384d7c | 1905 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
689141dd RK |
1906 | int i; |
1907 | for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { | |
1908 | env->msr_hv_synic_sint[i] = HV_SINT_MASKED; | |
1909 | } | |
606c34bf RK |
1910 | |
1911 | hyperv_x86_synic_reset(cpu); | |
689141dd | 1912 | } |
d645e132 MT |
1913 | /* enabled by default */ |
1914 | env->poll_control_msr = 1; | |
caa5af0f JK |
1915 | } |
1916 | ||
e0723c45 PB |
1917 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
1918 | { | |
1919 | CPUX86State *env = &cpu->env; | |
1920 | ||
1921 | /* APs get directly into wait-for-SIPI state. */ | |
1922 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1923 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1924 | } | |
1925 | } | |
1926 | ||
f57bceb6 RH |
1927 | static int kvm_get_supported_feature_msrs(KVMState *s) |
1928 | { | |
1929 | int ret = 0; | |
1930 | ||
1931 | if (kvm_feature_msrs != NULL) { | |
1932 | return 0; | |
1933 | } | |
1934 | ||
1935 | if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { | |
1936 | return 0; | |
1937 | } | |
1938 | ||
1939 | struct kvm_msr_list msr_list; | |
1940 | ||
1941 | msr_list.nmsrs = 0; | |
1942 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); | |
1943 | if (ret < 0 && ret != -E2BIG) { | |
1944 | error_report("Fetch KVM feature MSR list failed: %s", | |
1945 | strerror(-ret)); | |
1946 | return ret; | |
1947 | } | |
1948 | ||
1949 | assert(msr_list.nmsrs > 0); | |
1950 | kvm_feature_msrs = (struct kvm_msr_list *) \ | |
1951 | g_malloc0(sizeof(msr_list) + | |
1952 | msr_list.nmsrs * sizeof(msr_list.indices[0])); | |
1953 | ||
1954 | kvm_feature_msrs->nmsrs = msr_list.nmsrs; | |
1955 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); | |
1956 | ||
1957 | if (ret < 0) { | |
1958 | error_report("Fetch KVM feature MSR list failed: %s", | |
1959 | strerror(-ret)); | |
1960 | g_free(kvm_feature_msrs); | |
1961 | kvm_feature_msrs = NULL; | |
1962 | return ret; | |
1963 | } | |
1964 | ||
1965 | return 0; | |
1966 | } | |
1967 | ||
c3a3a7d3 | 1968 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1969 | { |
c3a3a7d3 | 1970 | int ret = 0; |
de428cea | 1971 | struct kvm_msr_list msr_list, *kvm_msr_list; |
05330448 | 1972 | |
de428cea LQ |
1973 | /* |
1974 | * Obtain MSR list from KVM. These are the MSRs that we must | |
1975 | * save/restore. | |
1976 | */ | |
1977 | msr_list.nmsrs = 0; | |
1978 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); | |
1979 | if (ret < 0 && ret != -E2BIG) { | |
1980 | return ret; | |
1981 | } | |
1982 | /* | |
1983 | * Old kernel modules had a bug and could write beyond the provided | |
1984 | * memory. Allocate at least a safe amount of 1K. | |
1985 | */ | |
1986 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + | |
1987 | msr_list.nmsrs * | |
1988 | sizeof(msr_list.indices[0]))); | |
05330448 | 1989 | |
de428cea LQ |
1990 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
1991 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); | |
1992 | if (ret >= 0) { | |
1993 | int i; | |
05330448 | 1994 | |
de428cea LQ |
1995 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { |
1996 | switch (kvm_msr_list->indices[i]) { | |
1997 | case MSR_STAR: | |
1998 | has_msr_star = true; | |
1999 | break; | |
2000 | case MSR_VM_HSAVE_PA: | |
2001 | has_msr_hsave_pa = true; | |
2002 | break; | |
2003 | case MSR_TSC_AUX: | |
2004 | has_msr_tsc_aux = true; | |
2005 | break; | |
2006 | case MSR_TSC_ADJUST: | |
2007 | has_msr_tsc_adjust = true; | |
2008 | break; | |
2009 | case MSR_IA32_TSCDEADLINE: | |
2010 | has_msr_tsc_deadline = true; | |
2011 | break; | |
2012 | case MSR_IA32_SMBASE: | |
2013 | has_msr_smbase = true; | |
2014 | break; | |
2015 | case MSR_SMI_COUNT: | |
2016 | has_msr_smi_count = true; | |
2017 | break; | |
2018 | case MSR_IA32_MISC_ENABLE: | |
2019 | has_msr_misc_enable = true; | |
2020 | break; | |
2021 | case MSR_IA32_BNDCFGS: | |
2022 | has_msr_bndcfgs = true; | |
2023 | break; | |
2024 | case MSR_IA32_XSS: | |
2025 | has_msr_xss = true; | |
2026 | break; | |
65087997 TX |
2027 | case MSR_IA32_UMWAIT_CONTROL: |
2028 | has_msr_umwait = true; | |
2029 | break; | |
de428cea LQ |
2030 | case HV_X64_MSR_CRASH_CTL: |
2031 | has_msr_hv_crash = true; | |
2032 | break; | |
2033 | case HV_X64_MSR_RESET: | |
2034 | has_msr_hv_reset = true; | |
2035 | break; | |
2036 | case HV_X64_MSR_VP_INDEX: | |
2037 | has_msr_hv_vpindex = true; | |
2038 | break; | |
2039 | case HV_X64_MSR_VP_RUNTIME: | |
2040 | has_msr_hv_runtime = true; | |
2041 | break; | |
2042 | case HV_X64_MSR_SCONTROL: | |
2043 | has_msr_hv_synic = true; | |
2044 | break; | |
2045 | case HV_X64_MSR_STIMER0_CONFIG: | |
2046 | has_msr_hv_stimer = true; | |
2047 | break; | |
2048 | case HV_X64_MSR_TSC_FREQUENCY: | |
2049 | has_msr_hv_frequencies = true; | |
2050 | break; | |
2051 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: | |
2052 | has_msr_hv_reenlightenment = true; | |
2053 | break; | |
2054 | case MSR_IA32_SPEC_CTRL: | |
2055 | has_msr_spec_ctrl = true; | |
2056 | break; | |
2a9758c5 PB |
2057 | case MSR_IA32_TSX_CTRL: |
2058 | has_msr_tsx_ctrl = true; | |
2059 | break; | |
de428cea LQ |
2060 | case MSR_VIRT_SSBD: |
2061 | has_msr_virt_ssbd = true; | |
2062 | break; | |
2063 | case MSR_IA32_ARCH_CAPABILITIES: | |
2064 | has_msr_arch_capabs = true; | |
2065 | break; | |
2066 | case MSR_IA32_CORE_CAPABILITY: | |
2067 | has_msr_core_capabs = true; | |
2068 | break; | |
ea39f9b6 LX |
2069 | case MSR_IA32_PERF_CAPABILITIES: |
2070 | has_msr_perf_capabs = true; | |
2071 | break; | |
20a78b02 PB |
2072 | case MSR_IA32_VMX_VMFUNC: |
2073 | has_msr_vmx_vmfunc = true; | |
2074 | break; | |
67025148 PB |
2075 | case MSR_IA32_UCODE_REV: |
2076 | has_msr_ucode_rev = true; | |
2077 | break; | |
4a910e1f VK |
2078 | case MSR_IA32_VMX_PROCBASED_CTLS2: |
2079 | has_msr_vmx_procbased_ctls2 = true; | |
2080 | break; | |
05330448 AL |
2081 | } |
2082 | } | |
05330448 AL |
2083 | } |
2084 | ||
de428cea LQ |
2085 | g_free(kvm_msr_list); |
2086 | ||
c3a3a7d3 | 2087 | return ret; |
05330448 AL |
2088 | } |
2089 | ||
6410848b PB |
2090 | static Notifier smram_machine_done; |
2091 | static KVMMemoryListener smram_listener; | |
2092 | static AddressSpace smram_address_space; | |
2093 | static MemoryRegion smram_as_root; | |
2094 | static MemoryRegion smram_as_mem; | |
2095 | ||
2096 | static void register_smram_listener(Notifier *n, void *unused) | |
2097 | { | |
2098 | MemoryRegion *smram = | |
2099 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
2100 | ||
2101 | /* Outer container... */ | |
2102 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
2103 | memory_region_set_enabled(&smram_as_root, true); | |
2104 | ||
2105 | /* ... with two regions inside: normal system memory with low | |
2106 | * priority, and... | |
2107 | */ | |
2108 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
2109 | get_system_memory(), 0, ~0ull); | |
2110 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
2111 | memory_region_set_enabled(&smram_as_mem, true); | |
2112 | ||
2113 | if (smram) { | |
2114 | /* ... SMRAM with higher priority */ | |
2115 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
2116 | memory_region_set_enabled(smram, true); | |
2117 | } | |
2118 | ||
2119 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
2120 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
2121 | &smram_address_space, 1); | |
2122 | } | |
2123 | ||
b16565b3 | 2124 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 2125 | { |
11076198 | 2126 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 2127 | uint64_t shadow_mem; |
20420430 | 2128 | int ret; |
25d2e361 | 2129 | struct utsname utsname; |
20420430 | 2130 | |
28143b40 | 2131 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
28143b40 | 2132 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
28143b40 | 2133 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); |
28143b40 | 2134 | |
e9688fab RK |
2135 | hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); |
2136 | ||
fd13f23b LA |
2137 | has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); |
2138 | if (has_exception_payload) { | |
2139 | ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); | |
2140 | if (ret < 0) { | |
2141 | error_report("kvm: Failed to enable exception payload cap: %s", | |
2142 | strerror(-ret)); | |
2143 | return ret; | |
2144 | } | |
2145 | } | |
2146 | ||
c3a3a7d3 | 2147 | ret = kvm_get_supported_msrs(s); |
20420430 | 2148 | if (ret < 0) { |
20420430 SY |
2149 | return ret; |
2150 | } | |
25d2e361 | 2151 | |
f57bceb6 RH |
2152 | kvm_get_supported_feature_msrs(s); |
2153 | ||
25d2e361 MT |
2154 | uname(&utsname); |
2155 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
2156 | ||
4c5b10b7 | 2157 | /* |
11076198 JK |
2158 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
2159 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
2160 | * Since these must be part of guest physical memory, we need to allocate | |
2161 | * them, both by setting their start addresses in the kernel and by | |
2162 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
2163 | * | |
2164 | * Older KVM versions may not support setting the identity map base. In | |
2165 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
2166 | * size. | |
4c5b10b7 | 2167 | */ |
11076198 JK |
2168 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
2169 | /* Allows up to 16M BIOSes. */ | |
2170 | identity_base = 0xfeffc000; | |
2171 | ||
2172 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
2173 | if (ret < 0) { | |
2174 | return ret; | |
2175 | } | |
4c5b10b7 | 2176 | } |
e56ff191 | 2177 | |
11076198 JK |
2178 | /* Set TSS base one page after EPT identity map. */ |
2179 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
2180 | if (ret < 0) { |
2181 | return ret; | |
2182 | } | |
2183 | ||
11076198 JK |
2184 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
2185 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 2186 | if (ret < 0) { |
11076198 | 2187 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
2188 | return ret; |
2189 | } | |
2190 | ||
23b0898e | 2191 | shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); |
36ad0e94 MA |
2192 | if (shadow_mem != -1) { |
2193 | shadow_mem /= 4096; | |
2194 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
2195 | if (ret < 0) { | |
2196 | return ret; | |
39d6960a JK |
2197 | } |
2198 | } | |
6410848b | 2199 | |
d870cfde | 2200 | if (kvm_check_extension(s, KVM_CAP_X86_SMM) && |
8f54bbd0 | 2201 | object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && |
ed9e923c | 2202 | x86_machine_is_smm_enabled(X86_MACHINE(ms))) { |
6410848b PB |
2203 | smram_machine_done.notify = register_smram_listener; |
2204 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
2205 | } | |
6f131f13 MT |
2206 | |
2207 | if (enable_cpu_pm) { | |
2208 | int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); | |
2209 | int ret; | |
2210 | ||
2211 | /* Work around for kernel header with a typo. TODO: fix header and drop. */ | |
2212 | #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) | |
2213 | #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL | |
2214 | #endif | |
2215 | if (disable_exits) { | |
2216 | disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | | |
2217 | KVM_X86_DISABLE_EXITS_HLT | | |
d38d201f WL |
2218 | KVM_X86_DISABLE_EXITS_PAUSE | |
2219 | KVM_X86_DISABLE_EXITS_CSTATE); | |
6f131f13 MT |
2220 | } |
2221 | ||
2222 | ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, | |
2223 | disable_exits); | |
2224 | if (ret < 0) { | |
2225 | error_report("kvm: guest stopping CPU not supported: %s", | |
2226 | strerror(-ret)); | |
2227 | } | |
2228 | } | |
2229 | ||
11076198 | 2230 | return 0; |
05330448 | 2231 | } |
b9bec74b | 2232 | |
05330448 AL |
2233 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
2234 | { | |
2235 | lhs->selector = rhs->selector; | |
2236 | lhs->base = rhs->base; | |
2237 | lhs->limit = rhs->limit; | |
2238 | lhs->type = 3; | |
2239 | lhs->present = 1; | |
2240 | lhs->dpl = 3; | |
2241 | lhs->db = 0; | |
2242 | lhs->s = 1; | |
2243 | lhs->l = 0; | |
2244 | lhs->g = 0; | |
2245 | lhs->avl = 0; | |
2246 | lhs->unusable = 0; | |
2247 | } | |
2248 | ||
2249 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
2250 | { | |
2251 | unsigned flags = rhs->flags; | |
2252 | lhs->selector = rhs->selector; | |
2253 | lhs->base = rhs->base; | |
2254 | lhs->limit = rhs->limit; | |
2255 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
2256 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 2257 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
2258 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
2259 | lhs->s = (flags & DESC_S_MASK) != 0; | |
2260 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
2261 | lhs->g = (flags & DESC_G_MASK) != 0; | |
2262 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 2263 | lhs->unusable = !lhs->present; |
7e680753 | 2264 | lhs->padding = 0; |
05330448 AL |
2265 | } |
2266 | ||
2267 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
2268 | { | |
2269 | lhs->selector = rhs->selector; | |
2270 | lhs->base = rhs->base; | |
2271 | lhs->limit = rhs->limit; | |
d45fc087 RP |
2272 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
2273 | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | | |
2274 | (rhs->dpl << DESC_DPL_SHIFT) | | |
2275 | (rhs->db << DESC_B_SHIFT) | | |
2276 | (rhs->s * DESC_S_MASK) | | |
2277 | (rhs->l << DESC_L_SHIFT) | | |
2278 | (rhs->g * DESC_G_MASK) | | |
2279 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
2280 | } |
2281 | ||
2282 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
2283 | { | |
b9bec74b | 2284 | if (set) { |
05330448 | 2285 | *kvm_reg = *qemu_reg; |
b9bec74b | 2286 | } else { |
05330448 | 2287 | *qemu_reg = *kvm_reg; |
b9bec74b | 2288 | } |
05330448 AL |
2289 | } |
2290 | ||
1bc22652 | 2291 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 2292 | { |
1bc22652 | 2293 | CPUX86State *env = &cpu->env; |
05330448 AL |
2294 | struct kvm_regs regs; |
2295 | int ret = 0; | |
2296 | ||
2297 | if (!set) { | |
1bc22652 | 2298 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 2299 | if (ret < 0) { |
05330448 | 2300 | return ret; |
b9bec74b | 2301 | } |
05330448 AL |
2302 | } |
2303 | ||
2304 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
2305 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
2306 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
2307 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
2308 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
2309 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
2310 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
2311 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
2312 | #ifdef TARGET_X86_64 | |
2313 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
2314 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
2315 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
2316 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
2317 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
2318 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
2319 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
2320 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
2321 | #endif | |
2322 | ||
2323 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
2324 | kvm_getput_reg(®s.rip, &env->eip, set); | |
2325 | ||
b9bec74b | 2326 | if (set) { |
1bc22652 | 2327 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 2328 | } |
05330448 AL |
2329 | |
2330 | return ret; | |
2331 | } | |
2332 | ||
1bc22652 | 2333 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 2334 | { |
1bc22652 | 2335 | CPUX86State *env = &cpu->env; |
05330448 AL |
2336 | struct kvm_fpu fpu; |
2337 | int i; | |
2338 | ||
2339 | memset(&fpu, 0, sizeof fpu); | |
2340 | fpu.fsw = env->fpus & ~(7 << 11); | |
2341 | fpu.fsw |= (env->fpstt & 7) << 11; | |
2342 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
2343 | fpu.last_opcode = env->fpop; |
2344 | fpu.last_ip = env->fpip; | |
2345 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
2346 | for (i = 0; i < 8; ++i) { |
2347 | fpu.ftwx |= (!env->fptags[i]) << i; | |
2348 | } | |
05330448 | 2349 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 2350 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
2351 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
2352 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 2353 | } |
05330448 AL |
2354 | fpu.mxcsr = env->mxcsr; |
2355 | ||
1bc22652 | 2356 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
2357 | } |
2358 | ||
6b42494b JK |
2359 | #define XSAVE_FCW_FSW 0 |
2360 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
2361 | #define XSAVE_CWD_RIP 2 |
2362 | #define XSAVE_CWD_RDP 4 | |
2363 | #define XSAVE_MXCSR 6 | |
2364 | #define XSAVE_ST_SPACE 8 | |
2365 | #define XSAVE_XMM_SPACE 40 | |
2366 | #define XSAVE_XSTATE_BV 128 | |
2367 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
2368 | #define XSAVE_BNDREGS 240 |
2369 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
2370 | #define XSAVE_OPMASK 272 |
2371 | #define XSAVE_ZMM_Hi256 288 | |
2372 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 2373 | #define XSAVE_PKRU 672 |
f1665b21 | 2374 | |
b503717d | 2375 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
f18793b0 | 2376 | ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) |
b503717d EH |
2377 | |
2378 | #define ASSERT_OFFSET(word_offset, field) \ | |
2379 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
2380 | offsetof(X86XSaveArea, field)) | |
2381 | ||
2382 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
2383 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
2384 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
2385 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
2386 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
2387 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
2388 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
2389 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
2390 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
2391 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
2392 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
2393 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
2394 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
2395 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
2396 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
2397 | ||
1bc22652 | 2398 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 2399 | { |
1bc22652 | 2400 | CPUX86State *env = &cpu->env; |
5b8063c4 | 2401 | X86XSaveArea *xsave = env->xsave_buf; |
f1665b21 | 2402 | |
28143b40 | 2403 | if (!has_xsave) { |
1bc22652 | 2404 | return kvm_put_fpu(cpu); |
b9bec74b | 2405 | } |
86a57621 | 2406 | x86_cpu_xsave_all_areas(cpu, xsave); |
f1665b21 | 2407 | |
9be38598 | 2408 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
2409 | } |
2410 | ||
1bc22652 | 2411 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 2412 | { |
1bc22652 | 2413 | CPUX86State *env = &cpu->env; |
bdfc8480 | 2414 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 2415 | |
28143b40 | 2416 | if (!has_xcrs) { |
f1665b21 | 2417 | return 0; |
b9bec74b | 2418 | } |
f1665b21 SY |
2419 | |
2420 | xcrs.nr_xcrs = 1; | |
2421 | xcrs.flags = 0; | |
2422 | xcrs.xcrs[0].xcr = 0; | |
2423 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 2424 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
2425 | } |
2426 | ||
1bc22652 | 2427 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 2428 | { |
1bc22652 | 2429 | CPUX86State *env = &cpu->env; |
05330448 AL |
2430 | struct kvm_sregs sregs; |
2431 | ||
0e607a80 JK |
2432 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
2433 | if (env->interrupt_injected >= 0) { | |
2434 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
2435 | (uint64_t)1 << (env->interrupt_injected % 64); | |
2436 | } | |
05330448 AL |
2437 | |
2438 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
2439 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
2440 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
2441 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
2442 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
2443 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
2444 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 2445 | } else { |
b9bec74b JK |
2446 | set_seg(&sregs.cs, &env->segs[R_CS]); |
2447 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
2448 | set_seg(&sregs.es, &env->segs[R_ES]); | |
2449 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
2450 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
2451 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
2452 | } |
2453 | ||
2454 | set_seg(&sregs.tr, &env->tr); | |
2455 | set_seg(&sregs.ldt, &env->ldt); | |
2456 | ||
2457 | sregs.idt.limit = env->idt.limit; | |
2458 | sregs.idt.base = env->idt.base; | |
7e680753 | 2459 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
2460 | sregs.gdt.limit = env->gdt.limit; |
2461 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 2462 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
2463 | |
2464 | sregs.cr0 = env->cr[0]; | |
2465 | sregs.cr2 = env->cr[2]; | |
2466 | sregs.cr3 = env->cr[3]; | |
2467 | sregs.cr4 = env->cr[4]; | |
2468 | ||
02e51483 CF |
2469 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
2470 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
2471 | |
2472 | sregs.efer = env->efer; | |
2473 | ||
1bc22652 | 2474 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
2475 | } |
2476 | ||
d71b62a1 EH |
2477 | static void kvm_msr_buf_reset(X86CPU *cpu) |
2478 | { | |
2479 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
2480 | } | |
2481 | ||
9c600a84 EH |
2482 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
2483 | { | |
2484 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
2485 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
2486 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
2487 | ||
2488 | assert((void *)(entry + 1) <= limit); | |
2489 | ||
1abc2cae EH |
2490 | entry->index = index; |
2491 | entry->reserved = 0; | |
2492 | entry->data = value; | |
9c600a84 EH |
2493 | msrs->nmsrs++; |
2494 | } | |
2495 | ||
73e1b8f2 PB |
2496 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
2497 | { | |
2498 | kvm_msr_buf_reset(cpu); | |
2499 | kvm_msr_entry_add(cpu, index, value); | |
2500 | ||
2501 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
2502 | } | |
2503 | ||
f8d9ccf8 DDAG |
2504 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
2505 | { | |
2506 | int ret; | |
2507 | ||
2508 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
2509 | assert(ret == 1); | |
2510 | } | |
2511 | ||
7477cd38 MT |
2512 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
2513 | { | |
2514 | CPUX86State *env = &cpu->env; | |
48e1a45c | 2515 | int ret; |
7477cd38 MT |
2516 | |
2517 | if (!has_msr_tsc_deadline) { | |
2518 | return 0; | |
2519 | } | |
2520 | ||
73e1b8f2 | 2521 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
48e1a45c PB |
2522 | if (ret < 0) { |
2523 | return ret; | |
2524 | } | |
2525 | ||
2526 | assert(ret == 1); | |
2527 | return 0; | |
7477cd38 MT |
2528 | } |
2529 | ||
6bdf863d JK |
2530 | /* |
2531 | * Provide a separate write service for the feature control MSR in order to | |
2532 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
2533 | * before writing any other state because forcibly leaving nested mode | |
2534 | * invalidates the VCPU state. | |
2535 | */ | |
2536 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
2537 | { | |
48e1a45c PB |
2538 | int ret; |
2539 | ||
2540 | if (!has_msr_feature_control) { | |
2541 | return 0; | |
2542 | } | |
6bdf863d | 2543 | |
73e1b8f2 PB |
2544 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
2545 | cpu->env.msr_ia32_feature_control); | |
48e1a45c PB |
2546 | if (ret < 0) { |
2547 | return ret; | |
2548 | } | |
2549 | ||
2550 | assert(ret == 1); | |
2551 | return 0; | |
6bdf863d JK |
2552 | } |
2553 | ||
20a78b02 PB |
2554 | static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) |
2555 | { | |
2556 | uint32_t default1, can_be_one, can_be_zero; | |
2557 | uint32_t must_be_one; | |
2558 | ||
2559 | switch (index) { | |
2560 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: | |
2561 | default1 = 0x00000016; | |
2562 | break; | |
2563 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: | |
2564 | default1 = 0x0401e172; | |
2565 | break; | |
2566 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: | |
2567 | default1 = 0x000011ff; | |
2568 | break; | |
2569 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: | |
2570 | default1 = 0x00036dff; | |
2571 | break; | |
2572 | case MSR_IA32_VMX_PROCBASED_CTLS2: | |
2573 | default1 = 0; | |
2574 | break; | |
2575 | default: | |
2576 | abort(); | |
2577 | } | |
2578 | ||
2579 | /* If a feature bit is set, the control can be either set or clear. | |
2580 | * Otherwise the value is limited to either 0 or 1 by default1. | |
2581 | */ | |
2582 | can_be_one = features | default1; | |
2583 | can_be_zero = features | ~default1; | |
2584 | must_be_one = ~can_be_zero; | |
2585 | ||
2586 | /* | |
2587 | * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). | |
2588 | * Bit 32:63 -> 1 if the control bit can be one. | |
2589 | */ | |
2590 | return must_be_one | (((uint64_t)can_be_one) << 32); | |
2591 | } | |
2592 | ||
2593 | #define VMCS12_MAX_FIELD_INDEX (0x17) | |
2594 | ||
2595 | static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) | |
2596 | { | |
2597 | uint64_t kvm_vmx_basic = | |
2598 | kvm_arch_get_supported_msr_feature(kvm_state, | |
2599 | MSR_IA32_VMX_BASIC); | |
26051882 YZ |
2600 | |
2601 | if (!kvm_vmx_basic) { | |
2602 | /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), | |
2603 | * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. | |
2604 | */ | |
2605 | return; | |
2606 | } | |
2607 | ||
20a78b02 PB |
2608 | uint64_t kvm_vmx_misc = |
2609 | kvm_arch_get_supported_msr_feature(kvm_state, | |
2610 | MSR_IA32_VMX_MISC); | |
2611 | uint64_t kvm_vmx_ept_vpid = | |
2612 | kvm_arch_get_supported_msr_feature(kvm_state, | |
2613 | MSR_IA32_VMX_EPT_VPID_CAP); | |
2614 | ||
2615 | /* | |
2616 | * If the guest is 64-bit, a value of 1 is allowed for the host address | |
2617 | * space size vmexit control. | |
2618 | */ | |
2619 | uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM | |
2620 | ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; | |
2621 | ||
2622 | /* | |
2623 | * Bits 0-30, 32-44 and 50-53 come from the host. KVM should | |
2624 | * not change them for backwards compatibility. | |
2625 | */ | |
2626 | uint64_t fixed_vmx_basic = kvm_vmx_basic & | |
2627 | (MSR_VMX_BASIC_VMCS_REVISION_MASK | | |
2628 | MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | | |
2629 | MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); | |
2630 | ||
2631 | /* | |
2632 | * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can | |
2633 | * change in the future but are always zero for now, clear them to be | |
2634 | * future proof. Bits 32-63 in theory could change, though KVM does | |
2635 | * not support dual-monitor treatment and probably never will; mask | |
2636 | * them out as well. | |
2637 | */ | |
2638 | uint64_t fixed_vmx_misc = kvm_vmx_misc & | |
2639 | (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | | |
2640 | MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); | |
2641 | ||
2642 | /* | |
2643 | * EPT memory types should not change either, so we do not bother | |
2644 | * adding features for them. | |
2645 | */ | |
2646 | uint64_t fixed_vmx_ept_mask = | |
2647 | (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? | |
2648 | MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); | |
2649 | uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; | |
2650 | ||
2651 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, | |
2652 | make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, | |
2653 | f[FEAT_VMX_PROCBASED_CTLS])); | |
2654 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, | |
2655 | make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, | |
2656 | f[FEAT_VMX_PINBASED_CTLS])); | |
2657 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, | |
2658 | make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, | |
2659 | f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); | |
2660 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, | |
2661 | make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, | |
2662 | f[FEAT_VMX_ENTRY_CTLS])); | |
2663 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, | |
2664 | make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, | |
2665 | f[FEAT_VMX_SECONDARY_CTLS])); | |
2666 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, | |
2667 | f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); | |
2668 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, | |
2669 | f[FEAT_VMX_BASIC] | fixed_vmx_basic); | |
2670 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, | |
2671 | f[FEAT_VMX_MISC] | fixed_vmx_misc); | |
2672 | if (has_msr_vmx_vmfunc) { | |
2673 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); | |
2674 | } | |
2675 | ||
2676 | /* | |
2677 | * Just to be safe, write these with constant values. The CRn_FIXED1 | |
2678 | * MSRs are generated by KVM based on the vCPU's CPUID. | |
2679 | */ | |
2680 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, | |
2681 | CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); | |
2682 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, | |
2683 | CR4_VMXE_MASK); | |
2684 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, | |
2685 | VMCS12_MAX_FIELD_INDEX << 1); | |
2686 | } | |
2687 | ||
ea39f9b6 LX |
2688 | static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) |
2689 | { | |
2690 | uint64_t kvm_perf_cap = | |
2691 | kvm_arch_get_supported_msr_feature(kvm_state, | |
2692 | MSR_IA32_PERF_CAPABILITIES); | |
2693 | ||
2694 | if (kvm_perf_cap) { | |
2695 | kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, | |
2696 | kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); | |
2697 | } | |
2698 | } | |
2699 | ||
420ae1fc PB |
2700 | static int kvm_buf_set_msrs(X86CPU *cpu) |
2701 | { | |
2702 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
2703 | if (ret < 0) { | |
2704 | return ret; | |
2705 | } | |
2706 | ||
2707 | if (ret < cpu->kvm_msr_buf->nmsrs) { | |
2708 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2709 | error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, | |
2710 | (uint32_t)e->index, (uint64_t)e->data); | |
2711 | } | |
2712 | ||
2713 | assert(ret == cpu->kvm_msr_buf->nmsrs); | |
2714 | return 0; | |
2715 | } | |
2716 | ||
2717 | static void kvm_init_msrs(X86CPU *cpu) | |
2718 | { | |
2719 | CPUX86State *env = &cpu->env; | |
2720 | ||
2721 | kvm_msr_buf_reset(cpu); | |
2722 | if (has_msr_arch_capabs) { | |
2723 | kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, | |
2724 | env->features[FEAT_ARCH_CAPABILITIES]); | |
2725 | } | |
2726 | ||
2727 | if (has_msr_core_capabs) { | |
2728 | kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, | |
2729 | env->features[FEAT_CORE_CAPABILITY]); | |
2730 | } | |
2731 | ||
ea39f9b6 LX |
2732 | if (has_msr_perf_capabs && cpu->enable_pmu) { |
2733 | kvm_msr_entry_add_perf(cpu, env->features); | |
2734 | } | |
2735 | ||
67025148 | 2736 | if (has_msr_ucode_rev) { |
32c87d70 PB |
2737 | kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); |
2738 | } | |
2739 | ||
420ae1fc PB |
2740 | /* |
2741 | * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but | |
2742 | * all kernels with MSR features should have them. | |
2743 | */ | |
2744 | if (kvm_feature_msrs && cpu_has_vmx(env)) { | |
2745 | kvm_msr_entry_add_vmx(cpu, env->features); | |
2746 | } | |
2747 | ||
2748 | assert(kvm_buf_set_msrs(cpu) == 0); | |
2749 | } | |
2750 | ||
1bc22652 | 2751 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 2752 | { |
1bc22652 | 2753 | CPUX86State *env = &cpu->env; |
9c600a84 | 2754 | int i; |
05330448 | 2755 | |
d71b62a1 EH |
2756 | kvm_msr_buf_reset(cpu); |
2757 | ||
9c600a84 EH |
2758 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
2759 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
2760 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
2761 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 2762 | if (has_msr_star) { |
9c600a84 | 2763 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 2764 | } |
c3a3a7d3 | 2765 | if (has_msr_hsave_pa) { |
9c600a84 | 2766 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 2767 | } |
c9b8f6b6 | 2768 | if (has_msr_tsc_aux) { |
9c600a84 | 2769 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 2770 | } |
f28558d3 | 2771 | if (has_msr_tsc_adjust) { |
9c600a84 | 2772 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 2773 | } |
21e87c46 | 2774 | if (has_msr_misc_enable) { |
9c600a84 | 2775 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
2776 | env->msr_ia32_misc_enable); |
2777 | } | |
fc12d72e | 2778 | if (has_msr_smbase) { |
9c600a84 | 2779 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 2780 | } |
e13713db LA |
2781 | if (has_msr_smi_count) { |
2782 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); | |
2783 | } | |
439d19f2 | 2784 | if (has_msr_bndcfgs) { |
9c600a84 | 2785 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 2786 | } |
18cd2c17 | 2787 | if (has_msr_xss) { |
9c600a84 | 2788 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 2789 | } |
65087997 TX |
2790 | if (has_msr_umwait) { |
2791 | kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); | |
2792 | } | |
a33a2cfe PB |
2793 | if (has_msr_spec_ctrl) { |
2794 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); | |
2795 | } | |
2a9758c5 PB |
2796 | if (has_msr_tsx_ctrl) { |
2797 | kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); | |
2798 | } | |
cfeea0c0 KRW |
2799 | if (has_msr_virt_ssbd) { |
2800 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); | |
2801 | } | |
2802 | ||
05330448 | 2803 | #ifdef TARGET_X86_64 |
25d2e361 | 2804 | if (lm_capable_kernel) { |
9c600a84 EH |
2805 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
2806 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
2807 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
2808 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 2809 | } |
05330448 | 2810 | #endif |
a33a2cfe | 2811 | |
ff5c186b | 2812 | /* |
0d894367 PB |
2813 | * The following MSRs have side effects on the guest or are too heavy |
2814 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
2815 | */ |
2816 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
2817 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
2818 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
2819 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
55c911a5 | 2820 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2821 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 2822 | } |
55c911a5 | 2823 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2824 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 2825 | } |
55c911a5 | 2826 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2827 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 2828 | } |
d645e132 MT |
2829 | |
2830 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { | |
2831 | kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); | |
2832 | } | |
2833 | ||
0b368a10 JD |
2834 | if (has_architectural_pmu_version > 0) { |
2835 | if (has_architectural_pmu_version > 1) { | |
2836 | /* Stop the counter. */ | |
2837 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2838 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2839 | } | |
0d894367 PB |
2840 | |
2841 | /* Set the counter values. */ | |
0b368a10 | 2842 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { |
9c600a84 | 2843 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
2844 | env->msr_fixed_counters[i]); |
2845 | } | |
0b368a10 | 2846 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 | 2847 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 2848 | env->msr_gp_counters[i]); |
9c600a84 | 2849 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
2850 | env->msr_gp_evtsel[i]); |
2851 | } | |
0b368a10 JD |
2852 | if (has_architectural_pmu_version > 1) { |
2853 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, | |
2854 | env->msr_global_status); | |
2855 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
2856 | env->msr_global_ovf_ctrl); | |
2857 | ||
2858 | /* Now start the PMU. */ | |
2859 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, | |
2860 | env->msr_fixed_ctr_ctrl); | |
2861 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, | |
2862 | env->msr_global_ctrl); | |
2863 | } | |
0d894367 | 2864 | } |
da1cc323 EY |
2865 | /* |
2866 | * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, | |
2867 | * only sync them to KVM on the first cpu | |
2868 | */ | |
2869 | if (current_cpu == first_cpu) { | |
2870 | if (has_msr_hv_hypercall) { | |
2871 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, | |
2872 | env->msr_hv_guest_os_id); | |
2873 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, | |
2874 | env->msr_hv_hypercall); | |
2875 | } | |
2d384d7c | 2876 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { |
da1cc323 EY |
2877 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, |
2878 | env->msr_hv_tsc); | |
2879 | } | |
2d384d7c | 2880 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { |
ba6a4fd9 VK |
2881 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, |
2882 | env->msr_hv_reenlightenment_control); | |
2883 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, | |
2884 | env->msr_hv_tsc_emulation_control); | |
2885 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, | |
2886 | env->msr_hv_tsc_emulation_status); | |
2887 | } | |
eab70139 | 2888 | } |
2d384d7c | 2889 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { |
9c600a84 | 2890 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 2891 | env->msr_hv_vapic); |
eab70139 | 2892 | } |
f2a53c9e AS |
2893 | if (has_msr_hv_crash) { |
2894 | int j; | |
2895 | ||
5e953812 | 2896 | for (j = 0; j < HV_CRASH_PARAMS; j++) |
9c600a84 | 2897 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
2898 | env->msr_hv_crash_params[j]); |
2899 | ||
5e953812 | 2900 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); |
f2a53c9e | 2901 | } |
46eb8f98 | 2902 | if (has_msr_hv_runtime) { |
9c600a84 | 2903 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 2904 | } |
2d384d7c VK |
2905 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) |
2906 | && hv_vpindex_settable) { | |
701189e3 RK |
2907 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, |
2908 | hyperv_vp_index(CPU(cpu))); | |
e9688fab | 2909 | } |
2d384d7c | 2910 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
866eea9a AS |
2911 | int j; |
2912 | ||
09df29b6 RK |
2913 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); |
2914 | ||
9c600a84 | 2915 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 2916 | env->msr_hv_synic_control); |
9c600a84 | 2917 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 2918 | env->msr_hv_synic_evt_page); |
9c600a84 | 2919 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
2920 | env->msr_hv_synic_msg_page); |
2921 | ||
2922 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 2923 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
2924 | env->msr_hv_synic_sint[j]); |
2925 | } | |
2926 | } | |
ff99aa64 AS |
2927 | if (has_msr_hv_stimer) { |
2928 | int j; | |
2929 | ||
2930 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 2931 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
2932 | env->msr_hv_stimer_config[j]); |
2933 | } | |
2934 | ||
2935 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 2936 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
2937 | env->msr_hv_stimer_count[j]); |
2938 | } | |
2939 | } | |
1eabfce6 | 2940 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
112dad69 DDAG |
2941 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
2942 | ||
9c600a84 EH |
2943 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
2944 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
2945 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
2946 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
2947 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
2948 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
2949 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
2950 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
2951 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
2952 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
2953 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
2954 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 2955 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
112dad69 DDAG |
2956 | /* The CPU GPs if we write to a bit above the physical limit of |
2957 | * the host CPU (and KVM emulates that) | |
2958 | */ | |
2959 | uint64_t mask = env->mtrr_var[i].mask; | |
2960 | mask &= phys_mask; | |
2961 | ||
9c600a84 EH |
2962 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
2963 | env->mtrr_var[i].base); | |
112dad69 | 2964 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
d1ae67f6 AW |
2965 | } |
2966 | } | |
b77146e9 CP |
2967 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2968 | int addr_num = kvm_arch_get_supported_cpuid(kvm_state, | |
2969 | 0x14, 1, R_EAX) & 0x7; | |
2970 | ||
2971 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, | |
2972 | env->msr_rtit_ctrl); | |
2973 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, | |
2974 | env->msr_rtit_status); | |
2975 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, | |
2976 | env->msr_rtit_output_base); | |
2977 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, | |
2978 | env->msr_rtit_output_mask); | |
2979 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, | |
2980 | env->msr_rtit_cr3_match); | |
2981 | for (i = 0; i < addr_num; i++) { | |
2982 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, | |
2983 | env->msr_rtit_addrs[i]); | |
2984 | } | |
2985 | } | |
6bdf863d JK |
2986 | |
2987 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
2988 | * kvm_put_msr_feature_control. */ | |
ea643051 | 2989 | } |
20a78b02 | 2990 | |
57780495 | 2991 | if (env->mcg_cap) { |
d8da8574 | 2992 | int i; |
b9bec74b | 2993 | |
9c600a84 EH |
2994 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
2995 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
2996 | if (has_msr_mcg_ext_ctl) { |
2997 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
2998 | } | |
c34d440a | 2999 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 3000 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
3001 | } |
3002 | } | |
1a03675d | 3003 | |
420ae1fc | 3004 | return kvm_buf_set_msrs(cpu); |
05330448 AL |
3005 | } |
3006 | ||
3007 | ||
1bc22652 | 3008 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 3009 | { |
1bc22652 | 3010 | CPUX86State *env = &cpu->env; |
05330448 AL |
3011 | struct kvm_fpu fpu; |
3012 | int i, ret; | |
3013 | ||
1bc22652 | 3014 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 3015 | if (ret < 0) { |
05330448 | 3016 | return ret; |
b9bec74b | 3017 | } |
05330448 AL |
3018 | |
3019 | env->fpstt = (fpu.fsw >> 11) & 7; | |
3020 | env->fpus = fpu.fsw; | |
3021 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
3022 | env->fpop = fpu.last_opcode; |
3023 | env->fpip = fpu.last_ip; | |
3024 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
3025 | for (i = 0; i < 8; ++i) { |
3026 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
3027 | } | |
05330448 | 3028 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 3029 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
3030 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
3031 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 3032 | } |
05330448 AL |
3033 | env->mxcsr = fpu.mxcsr; |
3034 | ||
3035 | return 0; | |
3036 | } | |
3037 | ||
1bc22652 | 3038 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 3039 | { |
1bc22652 | 3040 | CPUX86State *env = &cpu->env; |
5b8063c4 | 3041 | X86XSaveArea *xsave = env->xsave_buf; |
86a57621 | 3042 | int ret; |
f1665b21 | 3043 | |
28143b40 | 3044 | if (!has_xsave) { |
1bc22652 | 3045 | return kvm_get_fpu(cpu); |
b9bec74b | 3046 | } |
f1665b21 | 3047 | |
1bc22652 | 3048 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 3049 | if (ret < 0) { |
f1665b21 | 3050 | return ret; |
0f53994f | 3051 | } |
86a57621 | 3052 | x86_cpu_xrstor_all_areas(cpu, xsave); |
f1665b21 | 3053 | |
f1665b21 | 3054 | return 0; |
f1665b21 SY |
3055 | } |
3056 | ||
1bc22652 | 3057 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 3058 | { |
1bc22652 | 3059 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
3060 | int i, ret; |
3061 | struct kvm_xcrs xcrs; | |
3062 | ||
28143b40 | 3063 | if (!has_xcrs) { |
f1665b21 | 3064 | return 0; |
b9bec74b | 3065 | } |
f1665b21 | 3066 | |
1bc22652 | 3067 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 3068 | if (ret < 0) { |
f1665b21 | 3069 | return ret; |
b9bec74b | 3070 | } |
f1665b21 | 3071 | |
b9bec74b | 3072 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 3073 | /* Only support xcr0 now */ |
0fd53fec PB |
3074 | if (xcrs.xcrs[i].xcr == 0) { |
3075 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
3076 | break; |
3077 | } | |
b9bec74b | 3078 | } |
f1665b21 | 3079 | return 0; |
f1665b21 SY |
3080 | } |
3081 | ||
1bc22652 | 3082 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 3083 | { |
1bc22652 | 3084 | CPUX86State *env = &cpu->env; |
05330448 | 3085 | struct kvm_sregs sregs; |
0e607a80 | 3086 | int bit, i, ret; |
05330448 | 3087 | |
1bc22652 | 3088 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 3089 | if (ret < 0) { |
05330448 | 3090 | return ret; |
b9bec74b | 3091 | } |
05330448 | 3092 | |
0e607a80 JK |
3093 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
3094 | to find it and save its number instead (-1 for none). */ | |
3095 | env->interrupt_injected = -1; | |
3096 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
3097 | if (sregs.interrupt_bitmap[i]) { | |
3098 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
3099 | env->interrupt_injected = i * 64 + bit; | |
3100 | break; | |
3101 | } | |
3102 | } | |
05330448 AL |
3103 | |
3104 | get_seg(&env->segs[R_CS], &sregs.cs); | |
3105 | get_seg(&env->segs[R_DS], &sregs.ds); | |
3106 | get_seg(&env->segs[R_ES], &sregs.es); | |
3107 | get_seg(&env->segs[R_FS], &sregs.fs); | |
3108 | get_seg(&env->segs[R_GS], &sregs.gs); | |
3109 | get_seg(&env->segs[R_SS], &sregs.ss); | |
3110 | ||
3111 | get_seg(&env->tr, &sregs.tr); | |
3112 | get_seg(&env->ldt, &sregs.ldt); | |
3113 | ||
3114 | env->idt.limit = sregs.idt.limit; | |
3115 | env->idt.base = sregs.idt.base; | |
3116 | env->gdt.limit = sregs.gdt.limit; | |
3117 | env->gdt.base = sregs.gdt.base; | |
3118 | ||
3119 | env->cr[0] = sregs.cr0; | |
3120 | env->cr[2] = sregs.cr2; | |
3121 | env->cr[3] = sregs.cr3; | |
3122 | env->cr[4] = sregs.cr4; | |
3123 | ||
05330448 | 3124 | env->efer = sregs.efer; |
cce47516 JK |
3125 | |
3126 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
35b1b927 | 3127 | x86_update_hflags(env); |
05330448 AL |
3128 | |
3129 | return 0; | |
3130 | } | |
3131 | ||
1bc22652 | 3132 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 3133 | { |
1bc22652 | 3134 | CPUX86State *env = &cpu->env; |
d71b62a1 | 3135 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 3136 | int ret, i; |
fcc35e7c | 3137 | uint64_t mtrr_top_bits; |
05330448 | 3138 | |
d71b62a1 EH |
3139 | kvm_msr_buf_reset(cpu); |
3140 | ||
9c600a84 EH |
3141 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
3142 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
3143 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
3144 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 3145 | if (has_msr_star) { |
9c600a84 | 3146 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 3147 | } |
c3a3a7d3 | 3148 | if (has_msr_hsave_pa) { |
9c600a84 | 3149 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 3150 | } |
c9b8f6b6 | 3151 | if (has_msr_tsc_aux) { |
9c600a84 | 3152 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 3153 | } |
f28558d3 | 3154 | if (has_msr_tsc_adjust) { |
9c600a84 | 3155 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 3156 | } |
aa82ba54 | 3157 | if (has_msr_tsc_deadline) { |
9c600a84 | 3158 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 3159 | } |
21e87c46 | 3160 | if (has_msr_misc_enable) { |
9c600a84 | 3161 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 3162 | } |
fc12d72e | 3163 | if (has_msr_smbase) { |
9c600a84 | 3164 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 3165 | } |
e13713db LA |
3166 | if (has_msr_smi_count) { |
3167 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); | |
3168 | } | |
df67696e | 3169 | if (has_msr_feature_control) { |
9c600a84 | 3170 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 3171 | } |
79e9ebeb | 3172 | if (has_msr_bndcfgs) { |
9c600a84 | 3173 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 3174 | } |
18cd2c17 | 3175 | if (has_msr_xss) { |
9c600a84 | 3176 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 | 3177 | } |
65087997 TX |
3178 | if (has_msr_umwait) { |
3179 | kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); | |
3180 | } | |
a33a2cfe PB |
3181 | if (has_msr_spec_ctrl) { |
3182 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); | |
3183 | } | |
2a9758c5 PB |
3184 | if (has_msr_tsx_ctrl) { |
3185 | kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); | |
3186 | } | |
cfeea0c0 KRW |
3187 | if (has_msr_virt_ssbd) { |
3188 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); | |
3189 | } | |
b8cc45d6 | 3190 | if (!env->tsc_valid) { |
9c600a84 | 3191 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 3192 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
3193 | } |
3194 | ||
05330448 | 3195 | #ifdef TARGET_X86_64 |
25d2e361 | 3196 | if (lm_capable_kernel) { |
9c600a84 EH |
3197 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
3198 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
3199 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
3200 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 3201 | } |
05330448 | 3202 | #endif |
9c600a84 EH |
3203 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
3204 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
55c911a5 | 3205 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 3206 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 3207 | } |
55c911a5 | 3208 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 3209 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 3210 | } |
55c911a5 | 3211 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 3212 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 3213 | } |
d645e132 MT |
3214 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { |
3215 | kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); | |
3216 | } | |
0b368a10 JD |
3217 | if (has_architectural_pmu_version > 0) { |
3218 | if (has_architectural_pmu_version > 1) { | |
3219 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
3220 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
3221 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
3222 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
3223 | } | |
3224 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { | |
9c600a84 | 3225 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 | 3226 | } |
0b368a10 | 3227 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 EH |
3228 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
3229 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
3230 | } |
3231 | } | |
1a03675d | 3232 | |
57780495 | 3233 | if (env->mcg_cap) { |
9c600a84 EH |
3234 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
3235 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
3236 | if (has_msr_mcg_ext_ctl) { |
3237 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
3238 | } | |
b9bec74b | 3239 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 3240 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 3241 | } |
57780495 | 3242 | } |
57780495 | 3243 | |
1c90ef26 | 3244 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
3245 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
3246 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 3247 | } |
2d384d7c | 3248 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { |
9c600a84 | 3249 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 3250 | } |
2d384d7c | 3251 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { |
9c600a84 | 3252 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 3253 | } |
2d384d7c | 3254 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { |
ba6a4fd9 VK |
3255 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); |
3256 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); | |
3257 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); | |
3258 | } | |
f2a53c9e AS |
3259 | if (has_msr_hv_crash) { |
3260 | int j; | |
3261 | ||
5e953812 | 3262 | for (j = 0; j < HV_CRASH_PARAMS; j++) { |
9c600a84 | 3263 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
3264 | } |
3265 | } | |
46eb8f98 | 3266 | if (has_msr_hv_runtime) { |
9c600a84 | 3267 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 3268 | } |
2d384d7c | 3269 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
866eea9a AS |
3270 | uint32_t msr; |
3271 | ||
9c600a84 | 3272 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
9c600a84 EH |
3273 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); |
3274 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 3275 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 3276 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
3277 | } |
3278 | } | |
ff99aa64 AS |
3279 | if (has_msr_hv_stimer) { |
3280 | uint32_t msr; | |
3281 | ||
3282 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
3283 | msr++) { | |
9c600a84 | 3284 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
3285 | } |
3286 | } | |
1eabfce6 | 3287 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
9c600a84 EH |
3288 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
3289 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
3290 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
3291 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
3292 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
3293 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
3294 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
3295 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
3296 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
3297 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
3298 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
3299 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 3300 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
3301 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
3302 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
3303 | } |
3304 | } | |
5ef68987 | 3305 | |
b77146e9 CP |
3306 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
3307 | int addr_num = | |
3308 | kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; | |
3309 | ||
3310 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); | |
3311 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); | |
3312 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); | |
3313 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); | |
3314 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); | |
3315 | for (i = 0; i < addr_num; i++) { | |
3316 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); | |
3317 | } | |
3318 | } | |
3319 | ||
d71b62a1 | 3320 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 3321 | if (ret < 0) { |
05330448 | 3322 | return ret; |
b9bec74b | 3323 | } |
05330448 | 3324 | |
c70b11d1 EH |
3325 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
3326 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
3327 | error_report("error: failed to get MSR 0x%" PRIx32, | |
3328 | (uint32_t)e->index); | |
3329 | } | |
3330 | ||
9c600a84 | 3331 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
fcc35e7c DDAG |
3332 | /* |
3333 | * MTRR masks: Each mask consists of 5 parts | |
3334 | * a 10..0: must be zero | |
3335 | * b 11 : valid bit | |
3336 | * c n-1.12: actual mask bits | |
3337 | * d 51..n: reserved must be zero | |
3338 | * e 63.52: reserved must be zero | |
3339 | * | |
3340 | * 'n' is the number of physical bits supported by the CPU and is | |
3341 | * apparently always <= 52. We know our 'n' but don't know what | |
3342 | * the destinations 'n' is; it might be smaller, in which case | |
3343 | * it masks (c) on loading. It might be larger, in which case | |
3344 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
3345 | * we're migrating to. | |
3346 | */ | |
3347 | ||
3348 | if (cpu->fill_mtrr_mask) { | |
3349 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
3350 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
3351 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
3352 | } else { | |
3353 | mtrr_top_bits = 0; | |
3354 | } | |
3355 | ||
05330448 | 3356 | for (i = 0; i < ret; i++) { |
0d894367 PB |
3357 | uint32_t index = msrs[i].index; |
3358 | switch (index) { | |
05330448 AL |
3359 | case MSR_IA32_SYSENTER_CS: |
3360 | env->sysenter_cs = msrs[i].data; | |
3361 | break; | |
3362 | case MSR_IA32_SYSENTER_ESP: | |
3363 | env->sysenter_esp = msrs[i].data; | |
3364 | break; | |
3365 | case MSR_IA32_SYSENTER_EIP: | |
3366 | env->sysenter_eip = msrs[i].data; | |
3367 | break; | |
0c03266a JK |
3368 | case MSR_PAT: |
3369 | env->pat = msrs[i].data; | |
3370 | break; | |
05330448 AL |
3371 | case MSR_STAR: |
3372 | env->star = msrs[i].data; | |
3373 | break; | |
3374 | #ifdef TARGET_X86_64 | |
3375 | case MSR_CSTAR: | |
3376 | env->cstar = msrs[i].data; | |
3377 | break; | |
3378 | case MSR_KERNELGSBASE: | |
3379 | env->kernelgsbase = msrs[i].data; | |
3380 | break; | |
3381 | case MSR_FMASK: | |
3382 | env->fmask = msrs[i].data; | |
3383 | break; | |
3384 | case MSR_LSTAR: | |
3385 | env->lstar = msrs[i].data; | |
3386 | break; | |
3387 | #endif | |
3388 | case MSR_IA32_TSC: | |
3389 | env->tsc = msrs[i].data; | |
3390 | break; | |
c9b8f6b6 AS |
3391 | case MSR_TSC_AUX: |
3392 | env->tsc_aux = msrs[i].data; | |
3393 | break; | |
f28558d3 WA |
3394 | case MSR_TSC_ADJUST: |
3395 | env->tsc_adjust = msrs[i].data; | |
3396 | break; | |
aa82ba54 LJ |
3397 | case MSR_IA32_TSCDEADLINE: |
3398 | env->tsc_deadline = msrs[i].data; | |
3399 | break; | |
aa851e36 MT |
3400 | case MSR_VM_HSAVE_PA: |
3401 | env->vm_hsave = msrs[i].data; | |
3402 | break; | |
1a03675d GC |
3403 | case MSR_KVM_SYSTEM_TIME: |
3404 | env->system_time_msr = msrs[i].data; | |
3405 | break; | |
3406 | case MSR_KVM_WALL_CLOCK: | |
3407 | env->wall_clock_msr = msrs[i].data; | |
3408 | break; | |
57780495 MT |
3409 | case MSR_MCG_STATUS: |
3410 | env->mcg_status = msrs[i].data; | |
3411 | break; | |
3412 | case MSR_MCG_CTL: | |
3413 | env->mcg_ctl = msrs[i].data; | |
3414 | break; | |
87f8b626 AR |
3415 | case MSR_MCG_EXT_CTL: |
3416 | env->mcg_ext_ctl = msrs[i].data; | |
3417 | break; | |
21e87c46 AK |
3418 | case MSR_IA32_MISC_ENABLE: |
3419 | env->msr_ia32_misc_enable = msrs[i].data; | |
3420 | break; | |
fc12d72e PB |
3421 | case MSR_IA32_SMBASE: |
3422 | env->smbase = msrs[i].data; | |
3423 | break; | |
e13713db LA |
3424 | case MSR_SMI_COUNT: |
3425 | env->msr_smi_count = msrs[i].data; | |
3426 | break; | |
0779caeb ACL |
3427 | case MSR_IA32_FEATURE_CONTROL: |
3428 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 3429 | break; |
79e9ebeb LJ |
3430 | case MSR_IA32_BNDCFGS: |
3431 | env->msr_bndcfgs = msrs[i].data; | |
3432 | break; | |
18cd2c17 WL |
3433 | case MSR_IA32_XSS: |
3434 | env->xss = msrs[i].data; | |
3435 | break; | |
65087997 TX |
3436 | case MSR_IA32_UMWAIT_CONTROL: |
3437 | env->umwait = msrs[i].data; | |
3438 | break; | |
57780495 | 3439 | default: |
57780495 MT |
3440 | if (msrs[i].index >= MSR_MC0_CTL && |
3441 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
3442 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 3443 | } |
d8da8574 | 3444 | break; |
f6584ee2 GN |
3445 | case MSR_KVM_ASYNC_PF_EN: |
3446 | env->async_pf_en_msr = msrs[i].data; | |
3447 | break; | |
bc9a839d MT |
3448 | case MSR_KVM_PV_EOI_EN: |
3449 | env->pv_eoi_en_msr = msrs[i].data; | |
3450 | break; | |
917367aa MT |
3451 | case MSR_KVM_STEAL_TIME: |
3452 | env->steal_time_msr = msrs[i].data; | |
3453 | break; | |
d645e132 MT |
3454 | case MSR_KVM_POLL_CONTROL: { |
3455 | env->poll_control_msr = msrs[i].data; | |
3456 | break; | |
3457 | } | |
0d894367 PB |
3458 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
3459 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
3460 | break; | |
3461 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
3462 | env->msr_global_ctrl = msrs[i].data; | |
3463 | break; | |
3464 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
3465 | env->msr_global_status = msrs[i].data; | |
3466 | break; | |
3467 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
3468 | env->msr_global_ovf_ctrl = msrs[i].data; | |
3469 | break; | |
3470 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
3471 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
3472 | break; | |
3473 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
3474 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
3475 | break; | |
3476 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
3477 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
3478 | break; | |
1c90ef26 VR |
3479 | case HV_X64_MSR_HYPERCALL: |
3480 | env->msr_hv_hypercall = msrs[i].data; | |
3481 | break; | |
3482 | case HV_X64_MSR_GUEST_OS_ID: | |
3483 | env->msr_hv_guest_os_id = msrs[i].data; | |
3484 | break; | |
5ef68987 VR |
3485 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
3486 | env->msr_hv_vapic = msrs[i].data; | |
3487 | break; | |
48a5f3bc VR |
3488 | case HV_X64_MSR_REFERENCE_TSC: |
3489 | env->msr_hv_tsc = msrs[i].data; | |
3490 | break; | |
f2a53c9e AS |
3491 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
3492 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
3493 | break; | |
46eb8f98 AS |
3494 | case HV_X64_MSR_VP_RUNTIME: |
3495 | env->msr_hv_runtime = msrs[i].data; | |
3496 | break; | |
866eea9a AS |
3497 | case HV_X64_MSR_SCONTROL: |
3498 | env->msr_hv_synic_control = msrs[i].data; | |
3499 | break; | |
866eea9a AS |
3500 | case HV_X64_MSR_SIEFP: |
3501 | env->msr_hv_synic_evt_page = msrs[i].data; | |
3502 | break; | |
3503 | case HV_X64_MSR_SIMP: | |
3504 | env->msr_hv_synic_msg_page = msrs[i].data; | |
3505 | break; | |
3506 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
3507 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
3508 | break; |
3509 | case HV_X64_MSR_STIMER0_CONFIG: | |
3510 | case HV_X64_MSR_STIMER1_CONFIG: | |
3511 | case HV_X64_MSR_STIMER2_CONFIG: | |
3512 | case HV_X64_MSR_STIMER3_CONFIG: | |
3513 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
3514 | msrs[i].data; | |
3515 | break; | |
3516 | case HV_X64_MSR_STIMER0_COUNT: | |
3517 | case HV_X64_MSR_STIMER1_COUNT: | |
3518 | case HV_X64_MSR_STIMER2_COUNT: | |
3519 | case HV_X64_MSR_STIMER3_COUNT: | |
3520 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
3521 | msrs[i].data; | |
866eea9a | 3522 | break; |
ba6a4fd9 VK |
3523 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
3524 | env->msr_hv_reenlightenment_control = msrs[i].data; | |
3525 | break; | |
3526 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
3527 | env->msr_hv_tsc_emulation_control = msrs[i].data; | |
3528 | break; | |
3529 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
3530 | env->msr_hv_tsc_emulation_status = msrs[i].data; | |
3531 | break; | |
d1ae67f6 AW |
3532 | case MSR_MTRRdefType: |
3533 | env->mtrr_deftype = msrs[i].data; | |
3534 | break; | |
3535 | case MSR_MTRRfix64K_00000: | |
3536 | env->mtrr_fixed[0] = msrs[i].data; | |
3537 | break; | |
3538 | case MSR_MTRRfix16K_80000: | |
3539 | env->mtrr_fixed[1] = msrs[i].data; | |
3540 | break; | |
3541 | case MSR_MTRRfix16K_A0000: | |
3542 | env->mtrr_fixed[2] = msrs[i].data; | |
3543 | break; | |
3544 | case MSR_MTRRfix4K_C0000: | |
3545 | env->mtrr_fixed[3] = msrs[i].data; | |
3546 | break; | |
3547 | case MSR_MTRRfix4K_C8000: | |
3548 | env->mtrr_fixed[4] = msrs[i].data; | |
3549 | break; | |
3550 | case MSR_MTRRfix4K_D0000: | |
3551 | env->mtrr_fixed[5] = msrs[i].data; | |
3552 | break; | |
3553 | case MSR_MTRRfix4K_D8000: | |
3554 | env->mtrr_fixed[6] = msrs[i].data; | |
3555 | break; | |
3556 | case MSR_MTRRfix4K_E0000: | |
3557 | env->mtrr_fixed[7] = msrs[i].data; | |
3558 | break; | |
3559 | case MSR_MTRRfix4K_E8000: | |
3560 | env->mtrr_fixed[8] = msrs[i].data; | |
3561 | break; | |
3562 | case MSR_MTRRfix4K_F0000: | |
3563 | env->mtrr_fixed[9] = msrs[i].data; | |
3564 | break; | |
3565 | case MSR_MTRRfix4K_F8000: | |
3566 | env->mtrr_fixed[10] = msrs[i].data; | |
3567 | break; | |
3568 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
3569 | if (index & 1) { | |
fcc35e7c DDAG |
3570 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
3571 | mtrr_top_bits; | |
d1ae67f6 AW |
3572 | } else { |
3573 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
3574 | } | |
3575 | break; | |
a33a2cfe PB |
3576 | case MSR_IA32_SPEC_CTRL: |
3577 | env->spec_ctrl = msrs[i].data; | |
3578 | break; | |
2a9758c5 PB |
3579 | case MSR_IA32_TSX_CTRL: |
3580 | env->tsx_ctrl = msrs[i].data; | |
3581 | break; | |
cfeea0c0 KRW |
3582 | case MSR_VIRT_SSBD: |
3583 | env->virt_ssbd = msrs[i].data; | |
3584 | break; | |
b77146e9 CP |
3585 | case MSR_IA32_RTIT_CTL: |
3586 | env->msr_rtit_ctrl = msrs[i].data; | |
3587 | break; | |
3588 | case MSR_IA32_RTIT_STATUS: | |
3589 | env->msr_rtit_status = msrs[i].data; | |
3590 | break; | |
3591 | case MSR_IA32_RTIT_OUTPUT_BASE: | |
3592 | env->msr_rtit_output_base = msrs[i].data; | |
3593 | break; | |
3594 | case MSR_IA32_RTIT_OUTPUT_MASK: | |
3595 | env->msr_rtit_output_mask = msrs[i].data; | |
3596 | break; | |
3597 | case MSR_IA32_RTIT_CR3_MATCH: | |
3598 | env->msr_rtit_cr3_match = msrs[i].data; | |
3599 | break; | |
3600 | case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | |
3601 | env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; | |
3602 | break; | |
05330448 AL |
3603 | } |
3604 | } | |
3605 | ||
3606 | return 0; | |
3607 | } | |
3608 | ||
1bc22652 | 3609 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 3610 | { |
1bc22652 | 3611 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 3612 | |
1bc22652 | 3613 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
3614 | } |
3615 | ||
23d02d9b | 3616 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 3617 | { |
259186a7 | 3618 | CPUState *cs = CPU(cpu); |
23d02d9b | 3619 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
3620 | struct kvm_mp_state mp_state; |
3621 | int ret; | |
3622 | ||
259186a7 | 3623 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
3624 | if (ret < 0) { |
3625 | return ret; | |
3626 | } | |
3627 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 3628 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 3629 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 3630 | } |
9bdbe550 HB |
3631 | return 0; |
3632 | } | |
3633 | ||
1bc22652 | 3634 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 3635 | { |
02e51483 | 3636 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
3637 | struct kvm_lapic_state kapic; |
3638 | int ret; | |
3639 | ||
3d4b2649 | 3640 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 3641 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
3642 | if (ret < 0) { |
3643 | return ret; | |
3644 | } | |
3645 | ||
3646 | kvm_get_apic_state(apic, &kapic); | |
3647 | } | |
3648 | return 0; | |
3649 | } | |
3650 | ||
1bc22652 | 3651 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 3652 | { |
fc12d72e | 3653 | CPUState *cs = CPU(cpu); |
1bc22652 | 3654 | CPUX86State *env = &cpu->env; |
076796f8 | 3655 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
3656 | |
3657 | if (!kvm_has_vcpu_events()) { | |
3658 | return 0; | |
3659 | } | |
3660 | ||
fd13f23b LA |
3661 | events.flags = 0; |
3662 | ||
3663 | if (has_exception_payload) { | |
3664 | events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; | |
3665 | events.exception.pending = env->exception_pending; | |
3666 | events.exception_has_payload = env->exception_has_payload; | |
3667 | events.exception_payload = env->exception_payload; | |
3668 | } | |
3669 | events.exception.nr = env->exception_nr; | |
3670 | events.exception.injected = env->exception_injected; | |
a0fb002c JK |
3671 | events.exception.has_error_code = env->has_error_code; |
3672 | events.exception.error_code = env->error_code; | |
3673 | ||
3674 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
3675 | events.interrupt.nr = env->interrupt_injected; | |
3676 | events.interrupt.soft = env->soft_interrupt; | |
3677 | ||
3678 | events.nmi.injected = env->nmi_injected; | |
3679 | events.nmi.pending = env->nmi_pending; | |
3680 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
3681 | ||
3682 | events.sipi_vector = env->sipi_vector; | |
3683 | ||
fc12d72e PB |
3684 | if (has_msr_smbase) { |
3685 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
3686 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
3687 | if (kvm_irqchip_in_kernel()) { | |
3688 | /* As soon as these are moved to the kernel, remove them | |
3689 | * from cs->interrupt_request. | |
3690 | */ | |
3691 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
3692 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
3693 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
3694 | } else { | |
3695 | /* Keep these in cs->interrupt_request. */ | |
3696 | events.smi.pending = 0; | |
3697 | events.smi.latched_init = 0; | |
3698 | } | |
fc3a1fd7 DDAG |
3699 | /* Stop SMI delivery on old machine types to avoid a reboot |
3700 | * on an inward migration of an old VM. | |
3701 | */ | |
3702 | if (!cpu->kvm_no_smi_migration) { | |
3703 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
3704 | } | |
fc12d72e PB |
3705 | } |
3706 | ||
ea643051 | 3707 | if (level >= KVM_PUT_RESET_STATE) { |
4fadfa00 PH |
3708 | events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; |
3709 | if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
3710 | events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
3711 | } | |
ea643051 | 3712 | } |
aee028b9 | 3713 | |
1bc22652 | 3714 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
3715 | } |
3716 | ||
1bc22652 | 3717 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 3718 | { |
1bc22652 | 3719 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
3720 | struct kvm_vcpu_events events; |
3721 | int ret; | |
3722 | ||
3723 | if (!kvm_has_vcpu_events()) { | |
3724 | return 0; | |
3725 | } | |
3726 | ||
fc12d72e | 3727 | memset(&events, 0, sizeof(events)); |
1bc22652 | 3728 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
3729 | if (ret < 0) { |
3730 | return ret; | |
3731 | } | |
fd13f23b LA |
3732 | |
3733 | if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { | |
3734 | env->exception_pending = events.exception.pending; | |
3735 | env->exception_has_payload = events.exception_has_payload; | |
3736 | env->exception_payload = events.exception_payload; | |
3737 | } else { | |
3738 | env->exception_pending = 0; | |
3739 | env->exception_has_payload = false; | |
3740 | } | |
3741 | env->exception_injected = events.exception.injected; | |
3742 | env->exception_nr = | |
3743 | (env->exception_pending || env->exception_injected) ? | |
3744 | events.exception.nr : -1; | |
a0fb002c JK |
3745 | env->has_error_code = events.exception.has_error_code; |
3746 | env->error_code = events.exception.error_code; | |
3747 | ||
3748 | env->interrupt_injected = | |
3749 | events.interrupt.injected ? events.interrupt.nr : -1; | |
3750 | env->soft_interrupt = events.interrupt.soft; | |
3751 | ||
3752 | env->nmi_injected = events.nmi.injected; | |
3753 | env->nmi_pending = events.nmi.pending; | |
3754 | if (events.nmi.masked) { | |
3755 | env->hflags2 |= HF2_NMI_MASK; | |
3756 | } else { | |
3757 | env->hflags2 &= ~HF2_NMI_MASK; | |
3758 | } | |
3759 | ||
fc12d72e PB |
3760 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
3761 | if (events.smi.smm) { | |
3762 | env->hflags |= HF_SMM_MASK; | |
3763 | } else { | |
3764 | env->hflags &= ~HF_SMM_MASK; | |
3765 | } | |
3766 | if (events.smi.pending) { | |
3767 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3768 | } else { | |
3769 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3770 | } | |
3771 | if (events.smi.smm_inside_nmi) { | |
3772 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
3773 | } else { | |
3774 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
3775 | } | |
3776 | if (events.smi.latched_init) { | |
3777 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3778 | } else { | |
3779 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3780 | } | |
3781 | } | |
3782 | ||
a0fb002c | 3783 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
3784 | |
3785 | return 0; | |
3786 | } | |
3787 | ||
1bc22652 | 3788 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 3789 | { |
ed2803da | 3790 | CPUState *cs = CPU(cpu); |
1bc22652 | 3791 | CPUX86State *env = &cpu->env; |
b0b1d690 | 3792 | int ret = 0; |
b0b1d690 JK |
3793 | unsigned long reinject_trap = 0; |
3794 | ||
3795 | if (!kvm_has_vcpu_events()) { | |
fd13f23b | 3796 | if (env->exception_nr == EXCP01_DB) { |
b0b1d690 | 3797 | reinject_trap = KVM_GUESTDBG_INJECT_DB; |
37936ac7 | 3798 | } else if (env->exception_injected == EXCP03_INT3) { |
b0b1d690 JK |
3799 | reinject_trap = KVM_GUESTDBG_INJECT_BP; |
3800 | } | |
fd13f23b | 3801 | kvm_reset_exception(env); |
b0b1d690 JK |
3802 | } |
3803 | ||
3804 | /* | |
3805 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
3806 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
3807 | * by updating the debug state once again if single-stepping is on. | |
3808 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
3809 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
3810 | * reinject them via SET_GUEST_DEBUG. | |
3811 | */ | |
3812 | if (reinject_trap || | |
ed2803da | 3813 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 3814 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 3815 | } |
b0b1d690 JK |
3816 | return ret; |
3817 | } | |
3818 | ||
1bc22652 | 3819 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 3820 | { |
1bc22652 | 3821 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
3822 | struct kvm_debugregs dbgregs; |
3823 | int i; | |
3824 | ||
3825 | if (!kvm_has_debugregs()) { | |
3826 | return 0; | |
3827 | } | |
3828 | ||
1f670a95 | 3829 | memset(&dbgregs, 0, sizeof(dbgregs)); |
ff44f1a3 JK |
3830 | for (i = 0; i < 4; i++) { |
3831 | dbgregs.db[i] = env->dr[i]; | |
3832 | } | |
3833 | dbgregs.dr6 = env->dr[6]; | |
3834 | dbgregs.dr7 = env->dr[7]; | |
3835 | dbgregs.flags = 0; | |
3836 | ||
1bc22652 | 3837 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
3838 | } |
3839 | ||
1bc22652 | 3840 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 3841 | { |
1bc22652 | 3842 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
3843 | struct kvm_debugregs dbgregs; |
3844 | int i, ret; | |
3845 | ||
3846 | if (!kvm_has_debugregs()) { | |
3847 | return 0; | |
3848 | } | |
3849 | ||
1bc22652 | 3850 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 3851 | if (ret < 0) { |
b9bec74b | 3852 | return ret; |
ff44f1a3 JK |
3853 | } |
3854 | for (i = 0; i < 4; i++) { | |
3855 | env->dr[i] = dbgregs.db[i]; | |
3856 | } | |
3857 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
3858 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
3859 | |
3860 | return 0; | |
3861 | } | |
3862 | ||
ebbfef2f LA |
3863 | static int kvm_put_nested_state(X86CPU *cpu) |
3864 | { | |
3865 | CPUX86State *env = &cpu->env; | |
3866 | int max_nested_state_len = kvm_max_nested_state_length(); | |
3867 | ||
1e44f3ab | 3868 | if (!env->nested_state) { |
ebbfef2f LA |
3869 | return 0; |
3870 | } | |
3871 | ||
b16c0e20 PB |
3872 | /* |
3873 | * Copy flags that are affected by reset from env->hflags and env->hflags2. | |
3874 | */ | |
3875 | if (env->hflags & HF_GUEST_MASK) { | |
3876 | env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; | |
3877 | } else { | |
3878 | env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; | |
3879 | } | |
0baa4b44 VK |
3880 | |
3881 | /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ | |
3882 | if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { | |
b16c0e20 PB |
3883 | env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; |
3884 | } else { | |
3885 | env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; | |
3886 | } | |
3887 | ||
ebbfef2f LA |
3888 | assert(env->nested_state->size <= max_nested_state_len); |
3889 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); | |
3890 | } | |
3891 | ||
3892 | static int kvm_get_nested_state(X86CPU *cpu) | |
3893 | { | |
3894 | CPUX86State *env = &cpu->env; | |
3895 | int max_nested_state_len = kvm_max_nested_state_length(); | |
3896 | int ret; | |
3897 | ||
1e44f3ab | 3898 | if (!env->nested_state) { |
ebbfef2f LA |
3899 | return 0; |
3900 | } | |
3901 | ||
3902 | /* | |
3903 | * It is possible that migration restored a smaller size into | |
3904 | * nested_state->hdr.size than what our kernel support. | |
3905 | * We preserve migration origin nested_state->hdr.size for | |
3906 | * call to KVM_SET_NESTED_STATE but wish that our next call | |
3907 | * to KVM_GET_NESTED_STATE will use max size our kernel support. | |
3908 | */ | |
3909 | env->nested_state->size = max_nested_state_len; | |
3910 | ||
3911 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); | |
3912 | if (ret < 0) { | |
3913 | return ret; | |
3914 | } | |
3915 | ||
b16c0e20 PB |
3916 | /* |
3917 | * Copy flags that are affected by reset to env->hflags and env->hflags2. | |
3918 | */ | |
ebbfef2f LA |
3919 | if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { |
3920 | env->hflags |= HF_GUEST_MASK; | |
3921 | } else { | |
3922 | env->hflags &= ~HF_GUEST_MASK; | |
3923 | } | |
0baa4b44 VK |
3924 | |
3925 | /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ | |
3926 | if (cpu_has_svm(env)) { | |
3927 | if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { | |
3928 | env->hflags2 |= HF2_GIF_MASK; | |
3929 | } else { | |
3930 | env->hflags2 &= ~HF2_GIF_MASK; | |
3931 | } | |
b16c0e20 | 3932 | } |
ebbfef2f LA |
3933 | |
3934 | return ret; | |
3935 | } | |
3936 | ||
20d695a9 | 3937 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 3938 | { |
20d695a9 | 3939 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
3940 | int ret; |
3941 | ||
2fa45344 | 3942 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 3943 | |
b16c0e20 PB |
3944 | /* must be before kvm_put_nested_state so that EFER.SVME is set */ |
3945 | ret = kvm_put_sregs(x86_cpu); | |
3946 | if (ret < 0) { | |
3947 | return ret; | |
3948 | } | |
3949 | ||
48e1a45c | 3950 | if (level >= KVM_PUT_RESET_STATE) { |
bec7156a JK |
3951 | ret = kvm_put_nested_state(x86_cpu); |
3952 | if (ret < 0) { | |
3953 | return ret; | |
3954 | } | |
3955 | ||
6bdf863d JK |
3956 | ret = kvm_put_msr_feature_control(x86_cpu); |
3957 | if (ret < 0) { | |
3958 | return ret; | |
3959 | } | |
3960 | } | |
3961 | ||
36f96c4b HZ |
3962 | if (level == KVM_PUT_FULL_STATE) { |
3963 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
3964 | * because TSC frequency mismatch shouldn't abort migration, | |
3965 | * unless the user explicitly asked for a more strict TSC | |
3966 | * setting (e.g. using an explicit "tsc-freq" option). | |
3967 | */ | |
3968 | kvm_arch_set_tsc_khz(cpu); | |
3969 | } | |
3970 | ||
1bc22652 | 3971 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 3972 | if (ret < 0) { |
05330448 | 3973 | return ret; |
b9bec74b | 3974 | } |
1bc22652 | 3975 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 3976 | if (ret < 0) { |
f1665b21 | 3977 | return ret; |
b9bec74b | 3978 | } |
1bc22652 | 3979 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 3980 | if (ret < 0) { |
05330448 | 3981 | return ret; |
b9bec74b | 3982 | } |
ab443475 | 3983 | /* must be before kvm_put_msrs */ |
1bc22652 | 3984 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
3985 | if (ret < 0) { |
3986 | return ret; | |
3987 | } | |
1bc22652 | 3988 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 3989 | if (ret < 0) { |
05330448 | 3990 | return ret; |
b9bec74b | 3991 | } |
4fadfa00 PH |
3992 | ret = kvm_put_vcpu_events(x86_cpu, level); |
3993 | if (ret < 0) { | |
3994 | return ret; | |
3995 | } | |
ea643051 | 3996 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 3997 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 3998 | if (ret < 0) { |
680c1c6f JK |
3999 | return ret; |
4000 | } | |
ea643051 | 4001 | } |
7477cd38 MT |
4002 | |
4003 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
4004 | if (ret < 0) { | |
4005 | return ret; | |
4006 | } | |
1bc22652 | 4007 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 4008 | if (ret < 0) { |
b0b1d690 | 4009 | return ret; |
b9bec74b | 4010 | } |
b0b1d690 | 4011 | /* must be last */ |
1bc22652 | 4012 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 4013 | if (ret < 0) { |
ff44f1a3 | 4014 | return ret; |
b9bec74b | 4015 | } |
05330448 AL |
4016 | return 0; |
4017 | } | |
4018 | ||
20d695a9 | 4019 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 4020 | { |
20d695a9 | 4021 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
4022 | int ret; |
4023 | ||
20d695a9 | 4024 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 4025 | |
4fadfa00 | 4026 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 4027 | if (ret < 0) { |
f4f1110e | 4028 | goto out; |
b9bec74b | 4029 | } |
4fadfa00 PH |
4030 | /* |
4031 | * KVM_GET_MPSTATE can modify CS and RIP, call it before | |
4032 | * KVM_GET_REGS and KVM_GET_SREGS. | |
4033 | */ | |
4034 | ret = kvm_get_mp_state(cpu); | |
b9bec74b | 4035 | if (ret < 0) { |
f4f1110e | 4036 | goto out; |
b9bec74b | 4037 | } |
4fadfa00 | 4038 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 4039 | if (ret < 0) { |
f4f1110e | 4040 | goto out; |
b9bec74b | 4041 | } |
4fadfa00 | 4042 | ret = kvm_get_xsave(cpu); |
b9bec74b | 4043 | if (ret < 0) { |
f4f1110e | 4044 | goto out; |
b9bec74b | 4045 | } |
4fadfa00 | 4046 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 4047 | if (ret < 0) { |
f4f1110e | 4048 | goto out; |
b9bec74b | 4049 | } |
4fadfa00 | 4050 | ret = kvm_get_sregs(cpu); |
b9bec74b | 4051 | if (ret < 0) { |
f4f1110e | 4052 | goto out; |
b9bec74b | 4053 | } |
4fadfa00 | 4054 | ret = kvm_get_msrs(cpu); |
680c1c6f | 4055 | if (ret < 0) { |
f4f1110e | 4056 | goto out; |
680c1c6f | 4057 | } |
4fadfa00 | 4058 | ret = kvm_get_apic(cpu); |
b9bec74b | 4059 | if (ret < 0) { |
f4f1110e | 4060 | goto out; |
b9bec74b | 4061 | } |
1bc22652 | 4062 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 4063 | if (ret < 0) { |
f4f1110e | 4064 | goto out; |
b9bec74b | 4065 | } |
ebbfef2f LA |
4066 | ret = kvm_get_nested_state(cpu); |
4067 | if (ret < 0) { | |
4068 | goto out; | |
4069 | } | |
f4f1110e RH |
4070 | ret = 0; |
4071 | out: | |
4072 | cpu_sync_bndcs_hflags(&cpu->env); | |
4073 | return ret; | |
05330448 AL |
4074 | } |
4075 | ||
20d695a9 | 4076 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 4077 | { |
20d695a9 AF |
4078 | X86CPU *x86_cpu = X86_CPU(cpu); |
4079 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
4080 | int ret; |
4081 | ||
276ce815 | 4082 | /* Inject NMI */ |
fc12d72e PB |
4083 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
4084 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
4085 | qemu_mutex_lock_iothread(); | |
4086 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
4087 | qemu_mutex_unlock_iothread(); | |
4088 | DPRINTF("injected NMI\n"); | |
4089 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
4090 | if (ret < 0) { | |
4091 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
4092 | strerror(-ret)); | |
4093 | } | |
4094 | } | |
4095 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
4096 | qemu_mutex_lock_iothread(); | |
4097 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
4098 | qemu_mutex_unlock_iothread(); | |
4099 | DPRINTF("injected SMI\n"); | |
4100 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
4101 | if (ret < 0) { | |
4102 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
4103 | strerror(-ret)); | |
4104 | } | |
ce377af3 | 4105 | } |
276ce815 LJ |
4106 | } |
4107 | ||
15eafc2e | 4108 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
4109 | qemu_mutex_lock_iothread(); |
4110 | } | |
4111 | ||
e0723c45 PB |
4112 | /* Force the VCPU out of its inner loop to process any INIT requests |
4113 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
4114 | * pending TPR access reports. | |
4115 | */ | |
4116 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
4117 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
4118 | !(env->hflags & HF_SMM_MASK)) { | |
4119 | cpu->exit_request = 1; | |
4120 | } | |
4121 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
4122 | cpu->exit_request = 1; | |
4123 | } | |
e0723c45 | 4124 | } |
05330448 | 4125 | |
15eafc2e | 4126 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
4127 | /* Try to inject an interrupt if the guest can accept it */ |
4128 | if (run->ready_for_interrupt_injection && | |
259186a7 | 4129 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
4130 | (env->eflags & IF_MASK)) { |
4131 | int irq; | |
4132 | ||
259186a7 | 4133 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
4134 | irq = cpu_get_pic_interrupt(env); |
4135 | if (irq >= 0) { | |
4136 | struct kvm_interrupt intr; | |
4137 | ||
4138 | intr.irq = irq; | |
db1669bc | 4139 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 4140 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
4141 | if (ret < 0) { |
4142 | fprintf(stderr, | |
4143 | "KVM: injection failed, interrupt lost (%s)\n", | |
4144 | strerror(-ret)); | |
4145 | } | |
db1669bc JK |
4146 | } |
4147 | } | |
05330448 | 4148 | |
db1669bc JK |
4149 | /* If we have an interrupt but the guest is not ready to receive an |
4150 | * interrupt, request an interrupt window exit. This will | |
4151 | * cause a return to userspace as soon as the guest is ready to | |
4152 | * receive interrupts. */ | |
259186a7 | 4153 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
4154 | run->request_interrupt_window = 1; |
4155 | } else { | |
4156 | run->request_interrupt_window = 0; | |
4157 | } | |
4158 | ||
4159 | DPRINTF("setting tpr\n"); | |
02e51483 | 4160 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
4161 | |
4162 | qemu_mutex_unlock_iothread(); | |
db1669bc | 4163 | } |
05330448 AL |
4164 | } |
4165 | ||
4c663752 | 4166 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 4167 | { |
20d695a9 AF |
4168 | X86CPU *x86_cpu = X86_CPU(cpu); |
4169 | CPUX86State *env = &x86_cpu->env; | |
4170 | ||
fc12d72e PB |
4171 | if (run->flags & KVM_RUN_X86_SMM) { |
4172 | env->hflags |= HF_SMM_MASK; | |
4173 | } else { | |
f5c052b9 | 4174 | env->hflags &= ~HF_SMM_MASK; |
fc12d72e | 4175 | } |
b9bec74b | 4176 | if (run->if_flag) { |
05330448 | 4177 | env->eflags |= IF_MASK; |
b9bec74b | 4178 | } else { |
05330448 | 4179 | env->eflags &= ~IF_MASK; |
b9bec74b | 4180 | } |
4b8523ee JK |
4181 | |
4182 | /* We need to protect the apic state against concurrent accesses from | |
4183 | * different threads in case the userspace irqchip is used. */ | |
4184 | if (!kvm_irqchip_in_kernel()) { | |
4185 | qemu_mutex_lock_iothread(); | |
4186 | } | |
02e51483 CF |
4187 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
4188 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
4189 | if (!kvm_irqchip_in_kernel()) { |
4190 | qemu_mutex_unlock_iothread(); | |
4191 | } | |
f794aa4a | 4192 | return cpu_get_mem_attrs(env); |
05330448 AL |
4193 | } |
4194 | ||
20d695a9 | 4195 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 4196 | { |
20d695a9 AF |
4197 | X86CPU *cpu = X86_CPU(cs); |
4198 | CPUX86State *env = &cpu->env; | |
232fc23b | 4199 | |
259186a7 | 4200 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
4201 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
4202 | assert(env->mcg_cap); | |
4203 | ||
259186a7 | 4204 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 4205 | |
dd1750d7 | 4206 | kvm_cpu_synchronize_state(cs); |
ab443475 | 4207 | |
fd13f23b | 4208 | if (env->exception_nr == EXCP08_DBLE) { |
ab443475 | 4209 | /* this means triple fault */ |
cf83f140 | 4210 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
fcd7d003 | 4211 | cs->exit_request = 1; |
ab443475 JK |
4212 | return 0; |
4213 | } | |
fd13f23b | 4214 | kvm_queue_exception(env, EXCP12_MCHK, 0, 0); |
ab443475 JK |
4215 | env->has_error_code = 0; |
4216 | ||
259186a7 | 4217 | cs->halted = 0; |
ab443475 JK |
4218 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
4219 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
4220 | } | |
4221 | } | |
4222 | ||
fc12d72e PB |
4223 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
4224 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
4225 | kvm_cpu_synchronize_state(cs); |
4226 | do_cpu_init(cpu); | |
4227 | } | |
4228 | ||
db1669bc JK |
4229 | if (kvm_irqchip_in_kernel()) { |
4230 | return 0; | |
4231 | } | |
4232 | ||
259186a7 AF |
4233 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
4234 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 4235 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 4236 | } |
259186a7 | 4237 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 4238 | (env->eflags & IF_MASK)) || |
259186a7 AF |
4239 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
4240 | cs->halted = 0; | |
6792a57b | 4241 | } |
259186a7 | 4242 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 4243 | kvm_cpu_synchronize_state(cs); |
232fc23b | 4244 | do_cpu_sipi(cpu); |
0af691d7 | 4245 | } |
259186a7 AF |
4246 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
4247 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 4248 | kvm_cpu_synchronize_state(cs); |
02e51483 | 4249 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
4250 | env->tpr_access_type); |
4251 | } | |
0af691d7 | 4252 | |
259186a7 | 4253 | return cs->halted; |
0af691d7 MT |
4254 | } |
4255 | ||
839b5630 | 4256 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 4257 | { |
259186a7 | 4258 | CPUState *cs = CPU(cpu); |
839b5630 AF |
4259 | CPUX86State *env = &cpu->env; |
4260 | ||
259186a7 | 4261 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 4262 | (env->eflags & IF_MASK)) && |
259186a7 AF |
4263 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
4264 | cs->halted = 1; | |
bb4ea393 | 4265 | return EXCP_HLT; |
05330448 AL |
4266 | } |
4267 | ||
bb4ea393 | 4268 | return 0; |
05330448 AL |
4269 | } |
4270 | ||
f7575c96 | 4271 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 4272 | { |
f7575c96 AF |
4273 | CPUState *cs = CPU(cpu); |
4274 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 4275 | |
02e51483 | 4276 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
4277 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
4278 | : TPR_ACCESS_READ); | |
4279 | return 1; | |
4280 | } | |
4281 | ||
f17ec444 | 4282 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 4283 | { |
38972938 | 4284 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 4285 | |
f17ec444 AF |
4286 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
4287 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 4288 | return -EINVAL; |
b9bec74b | 4289 | } |
e22a25c9 AL |
4290 | return 0; |
4291 | } | |
4292 | ||
f17ec444 | 4293 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
4294 | { |
4295 | uint8_t int3; | |
4296 | ||
f17ec444 AF |
4297 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
4298 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 4299 | return -EINVAL; |
b9bec74b | 4300 | } |
e22a25c9 AL |
4301 | return 0; |
4302 | } | |
4303 | ||
4304 | static struct { | |
4305 | target_ulong addr; | |
4306 | int len; | |
4307 | int type; | |
4308 | } hw_breakpoint[4]; | |
4309 | ||
4310 | static int nb_hw_breakpoint; | |
4311 | ||
4312 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
4313 | { | |
4314 | int n; | |
4315 | ||
b9bec74b | 4316 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 4317 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 4318 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 4319 | return n; |
b9bec74b JK |
4320 | } |
4321 | } | |
e22a25c9 AL |
4322 | return -1; |
4323 | } | |
4324 | ||
4325 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
4326 | target_ulong len, int type) | |
4327 | { | |
4328 | switch (type) { | |
4329 | case GDB_BREAKPOINT_HW: | |
4330 | len = 1; | |
4331 | break; | |
4332 | case GDB_WATCHPOINT_WRITE: | |
4333 | case GDB_WATCHPOINT_ACCESS: | |
4334 | switch (len) { | |
4335 | case 1: | |
4336 | break; | |
4337 | case 2: | |
4338 | case 4: | |
4339 | case 8: | |
b9bec74b | 4340 | if (addr & (len - 1)) { |
e22a25c9 | 4341 | return -EINVAL; |
b9bec74b | 4342 | } |
e22a25c9 AL |
4343 | break; |
4344 | default: | |
4345 | return -EINVAL; | |
4346 | } | |
4347 | break; | |
4348 | default: | |
4349 | return -ENOSYS; | |
4350 | } | |
4351 | ||
b9bec74b | 4352 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 4353 | return -ENOBUFS; |
b9bec74b JK |
4354 | } |
4355 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 4356 | return -EEXIST; |
b9bec74b | 4357 | } |
e22a25c9 AL |
4358 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
4359 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
4360 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
4361 | nb_hw_breakpoint++; | |
4362 | ||
4363 | return 0; | |
4364 | } | |
4365 | ||
4366 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
4367 | target_ulong len, int type) | |
4368 | { | |
4369 | int n; | |
4370 | ||
4371 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 4372 | if (n < 0) { |
e22a25c9 | 4373 | return -ENOENT; |
b9bec74b | 4374 | } |
e22a25c9 AL |
4375 | nb_hw_breakpoint--; |
4376 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
4377 | ||
4378 | return 0; | |
4379 | } | |
4380 | ||
4381 | void kvm_arch_remove_all_hw_breakpoints(void) | |
4382 | { | |
4383 | nb_hw_breakpoint = 0; | |
4384 | } | |
4385 | ||
4386 | static CPUWatchpoint hw_watchpoint; | |
4387 | ||
a60f24b5 | 4388 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 4389 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 4390 | { |
ed2803da | 4391 | CPUState *cs = CPU(cpu); |
a60f24b5 | 4392 | CPUX86State *env = &cpu->env; |
f2574737 | 4393 | int ret = 0; |
e22a25c9 AL |
4394 | int n; |
4395 | ||
37936ac7 LA |
4396 | if (arch_info->exception == EXCP01_DB) { |
4397 | if (arch_info->dr6 & DR6_BS) { | |
ed2803da | 4398 | if (cs->singlestep_enabled) { |
f2574737 | 4399 | ret = EXCP_DEBUG; |
b9bec74b | 4400 | } |
e22a25c9 | 4401 | } else { |
b9bec74b JK |
4402 | for (n = 0; n < 4; n++) { |
4403 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
4404 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
4405 | case 0x0: | |
f2574737 | 4406 | ret = EXCP_DEBUG; |
e22a25c9 AL |
4407 | break; |
4408 | case 0x1: | |
f2574737 | 4409 | ret = EXCP_DEBUG; |
ff4700b0 | 4410 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
4411 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
4412 | hw_watchpoint.flags = BP_MEM_WRITE; | |
4413 | break; | |
4414 | case 0x3: | |
f2574737 | 4415 | ret = EXCP_DEBUG; |
ff4700b0 | 4416 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
4417 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
4418 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
4419 | break; | |
4420 | } | |
b9bec74b JK |
4421 | } |
4422 | } | |
e22a25c9 | 4423 | } |
ff4700b0 | 4424 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 4425 | ret = EXCP_DEBUG; |
b9bec74b | 4426 | } |
f2574737 | 4427 | if (ret == 0) { |
ff4700b0 | 4428 | cpu_synchronize_state(cs); |
fd13f23b | 4429 | assert(env->exception_nr == -1); |
b0b1d690 | 4430 | |
f2574737 | 4431 | /* pass to guest */ |
fd13f23b LA |
4432 | kvm_queue_exception(env, arch_info->exception, |
4433 | arch_info->exception == EXCP01_DB, | |
4434 | arch_info->dr6); | |
48405526 | 4435 | env->has_error_code = 0; |
b0b1d690 | 4436 | } |
e22a25c9 | 4437 | |
f2574737 | 4438 | return ret; |
e22a25c9 AL |
4439 | } |
4440 | ||
20d695a9 | 4441 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
4442 | { |
4443 | const uint8_t type_code[] = { | |
4444 | [GDB_BREAKPOINT_HW] = 0x0, | |
4445 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
4446 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
4447 | }; | |
4448 | const uint8_t len_code[] = { | |
4449 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
4450 | }; | |
4451 | int n; | |
4452 | ||
a60f24b5 | 4453 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 4454 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 4455 | } |
e22a25c9 AL |
4456 | if (nb_hw_breakpoint > 0) { |
4457 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
4458 | dbg->arch.debugreg[7] = 0x0600; | |
4459 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
4460 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
4461 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
4462 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 4463 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
4464 | } |
4465 | } | |
4466 | } | |
4513d923 | 4467 | |
2a4dac83 JK |
4468 | static bool host_supports_vmx(void) |
4469 | { | |
4470 | uint32_t ecx, unused; | |
4471 | ||
4472 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
4473 | return ecx & CPUID_EXT_VMX; | |
4474 | } | |
4475 | ||
4476 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
4477 | ||
20d695a9 | 4478 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 4479 | { |
20d695a9 | 4480 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
4481 | uint64_t code; |
4482 | int ret; | |
4483 | ||
4484 | switch (run->exit_reason) { | |
4485 | case KVM_EXIT_HLT: | |
4486 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 4487 | qemu_mutex_lock_iothread(); |
839b5630 | 4488 | ret = kvm_handle_halt(cpu); |
4b8523ee | 4489 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
4490 | break; |
4491 | case KVM_EXIT_SET_TPR: | |
4492 | ret = 0; | |
4493 | break; | |
d362e757 | 4494 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 4495 | qemu_mutex_lock_iothread(); |
f7575c96 | 4496 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 4497 | qemu_mutex_unlock_iothread(); |
d362e757 | 4498 | break; |
2a4dac83 JK |
4499 | case KVM_EXIT_FAIL_ENTRY: |
4500 | code = run->fail_entry.hardware_entry_failure_reason; | |
4501 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
4502 | code); | |
4503 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
4504 | fprintf(stderr, | |
12619721 | 4505 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
4506 | "unrestricted mode\n" |
4507 | "support, the failure can be most likely due to the guest " | |
4508 | "entering an invalid\n" | |
4509 | "state for Intel VT. For example, the guest maybe running " | |
4510 | "in big real mode\n" | |
4511 | "which is not supported on less recent Intel processors." | |
4512 | "\n\n"); | |
4513 | } | |
4514 | ret = -1; | |
4515 | break; | |
4516 | case KVM_EXIT_EXCEPTION: | |
4517 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
4518 | run->ex.exception, run->ex.error_code); | |
4519 | ret = -1; | |
4520 | break; | |
f2574737 JK |
4521 | case KVM_EXIT_DEBUG: |
4522 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 4523 | qemu_mutex_lock_iothread(); |
a60f24b5 | 4524 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 4525 | qemu_mutex_unlock_iothread(); |
f2574737 | 4526 | break; |
50efe82c AS |
4527 | case KVM_EXIT_HYPERV: |
4528 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
4529 | break; | |
15eafc2e PB |
4530 | case KVM_EXIT_IOAPIC_EOI: |
4531 | ioapic_eoi_broadcast(run->eoi.vector); | |
4532 | ret = 0; | |
4533 | break; | |
2a4dac83 JK |
4534 | default: |
4535 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
4536 | ret = -1; | |
4537 | break; | |
4538 | } | |
4539 | ||
4540 | return ret; | |
4541 | } | |
4542 | ||
20d695a9 | 4543 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 4544 | { |
20d695a9 AF |
4545 | X86CPU *cpu = X86_CPU(cs); |
4546 | CPUX86State *env = &cpu->env; | |
4547 | ||
dd1750d7 | 4548 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
4549 | return !(env->cr[0] & CR0_PE_MASK) || |
4550 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 4551 | } |
84b058d7 JK |
4552 | |
4553 | void kvm_arch_init_irq_routing(KVMState *s) | |
4554 | { | |
4555 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
4556 | /* If kernel can't do irq routing, interrupt source | |
4557 | * override 0->2 cannot be set up as required by HPET. | |
4558 | * So we have to disable it. | |
4559 | */ | |
4560 | no_hpet = 1; | |
4561 | } | |
cc7e0ddf | 4562 | /* We know at this point that we're using the in-kernel |
614e41bc | 4563 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 4564 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 4565 | */ |
614e41bc | 4566 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 4567 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
4568 | |
4569 | if (kvm_irqchip_is_split()) { | |
4570 | int i; | |
4571 | ||
4572 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
4573 | MSI routes for signaling interrupts to the local apics. */ | |
4574 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
d1f6af6a | 4575 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
15eafc2e PB |
4576 | error_report("Could not enable split IRQ mode."); |
4577 | exit(1); | |
4578 | } | |
4579 | } | |
4580 | } | |
4581 | } | |
4582 | ||
4376c40d | 4583 | int kvm_arch_irqchip_create(KVMState *s) |
15eafc2e PB |
4584 | { |
4585 | int ret; | |
4376c40d | 4586 | if (kvm_kernel_irqchip_split()) { |
15eafc2e PB |
4587 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); |
4588 | if (ret) { | |
df3c286c | 4589 | error_report("Could not enable split irqchip mode: %s", |
15eafc2e PB |
4590 | strerror(-ret)); |
4591 | exit(1); | |
4592 | } else { | |
4593 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
4594 | kvm_split_irqchip = true; | |
4595 | return 1; | |
4596 | } | |
4597 | } else { | |
4598 | return 0; | |
4599 | } | |
84b058d7 | 4600 | } |
b139bd30 | 4601 | |
9e03a040 | 4602 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, |
dc9f06ca | 4603 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 4604 | { |
8b5ed7df PX |
4605 | X86IOMMUState *iommu = x86_iommu_get_default(); |
4606 | ||
4607 | if (iommu) { | |
4608 | int ret; | |
4609 | MSIMessage src, dst; | |
4610 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
4611 | ||
0ea1472d JK |
4612 | if (!class->int_remap) { |
4613 | return 0; | |
4614 | } | |
4615 | ||
8b5ed7df PX |
4616 | src.address = route->u.msi.address_hi; |
4617 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
4618 | src.address |= route->u.msi.address_lo; | |
4619 | src.data = route->u.msi.data; | |
4620 | ||
4621 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
4622 | pci_requester_id(dev) : \ | |
4623 | X86_IOMMU_SID_INVALID); | |
4624 | if (ret) { | |
4625 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
4626 | return 1; | |
4627 | } | |
4628 | ||
4629 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
4630 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
4631 | route->u.msi.data = dst.data; | |
4632 | } | |
4633 | ||
9e03a040 FB |
4634 | return 0; |
4635 | } | |
1850b6b7 | 4636 | |
38d87493 PX |
4637 | typedef struct MSIRouteEntry MSIRouteEntry; |
4638 | ||
4639 | struct MSIRouteEntry { | |
4640 | PCIDevice *dev; /* Device pointer */ | |
4641 | int vector; /* MSI/MSIX vector index */ | |
4642 | int virq; /* Virtual IRQ index */ | |
4643 | QLIST_ENTRY(MSIRouteEntry) list; | |
4644 | }; | |
4645 | ||
4646 | /* List of used GSI routes */ | |
4647 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
4648 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
4649 | ||
e1d4fb2d PX |
4650 | static void kvm_update_msi_routes_all(void *private, bool global, |
4651 | uint32_t index, uint32_t mask) | |
4652 | { | |
a56de056 | 4653 | int cnt = 0, vector; |
e1d4fb2d PX |
4654 | MSIRouteEntry *entry; |
4655 | MSIMessage msg; | |
fd563564 PX |
4656 | PCIDevice *dev; |
4657 | ||
e1d4fb2d PX |
4658 | /* TODO: explicit route update */ |
4659 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
4660 | cnt++; | |
a56de056 | 4661 | vector = entry->vector; |
fd563564 | 4662 | dev = entry->dev; |
a56de056 PX |
4663 | if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { |
4664 | msg = msix_get_message(dev, vector); | |
4665 | } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { | |
4666 | msg = msi_get_message(dev, vector); | |
4667 | } else { | |
4668 | /* | |
4669 | * Either MSI/MSIX is disabled for the device, or the | |
4670 | * specific message was masked out. Skip this one. | |
4671 | */ | |
fd563564 PX |
4672 | continue; |
4673 | } | |
fd563564 | 4674 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); |
e1d4fb2d | 4675 | } |
3f1fea0f | 4676 | kvm_irqchip_commit_routes(kvm_state); |
e1d4fb2d PX |
4677 | trace_kvm_x86_update_msi_routes(cnt); |
4678 | } | |
4679 | ||
38d87493 PX |
4680 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
4681 | int vector, PCIDevice *dev) | |
4682 | { | |
e1d4fb2d | 4683 | static bool notify_list_inited = false; |
38d87493 PX |
4684 | MSIRouteEntry *entry; |
4685 | ||
4686 | if (!dev) { | |
4687 | /* These are (possibly) IOAPIC routes only used for split | |
4688 | * kernel irqchip mode, while what we are housekeeping are | |
4689 | * PCI devices only. */ | |
4690 | return 0; | |
4691 | } | |
4692 | ||
4693 | entry = g_new0(MSIRouteEntry, 1); | |
4694 | entry->dev = dev; | |
4695 | entry->vector = vector; | |
4696 | entry->virq = route->gsi; | |
4697 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
4698 | ||
4699 | trace_kvm_x86_add_msi_route(route->gsi); | |
e1d4fb2d PX |
4700 | |
4701 | if (!notify_list_inited) { | |
4702 | /* For the first time we do add route, add ourselves into | |
4703 | * IOMMU's IEC notify list if needed. */ | |
4704 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
4705 | if (iommu) { | |
4706 | x86_iommu_iec_register_notifier(iommu, | |
4707 | kvm_update_msi_routes_all, | |
4708 | NULL); | |
4709 | } | |
4710 | notify_list_inited = true; | |
4711 | } | |
38d87493 PX |
4712 | return 0; |
4713 | } | |
4714 | ||
4715 | int kvm_arch_release_virq_post(int virq) | |
4716 | { | |
4717 | MSIRouteEntry *entry, *next; | |
4718 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
4719 | if (entry->virq == virq) { | |
4720 | trace_kvm_x86_remove_msi_route(virq); | |
4721 | QLIST_REMOVE(entry, list); | |
01960e6d | 4722 | g_free(entry); |
38d87493 PX |
4723 | break; |
4724 | } | |
4725 | } | |
9e03a040 FB |
4726 | return 0; |
4727 | } | |
1850b6b7 EA |
4728 | |
4729 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
4730 | { | |
4731 | abort(); | |
4732 | } | |
e1e43813 PB |
4733 | |
4734 | bool kvm_has_waitpkg(void) | |
4735 | { | |
4736 | return has_msr_umwait; | |
4737 | } |