]> Git Repo - qemu.git/blame - target/i386/kvm.c
Merge remote-tracking branch 'remotes/ehabkost/tags/machine-next-pull-request' into...
[qemu.git] / target / i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <[email protected]>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
da34e65c 16#include "qapi/error.h"
05330448 17#include <sys/ioctl.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
1814eab6 21#include "standard-headers/asm-x86/kvm_para.h"
05330448 22
33c11879 23#include "cpu.h"
9c17d615 24#include "sysemu/sysemu.h"
b3946626 25#include "sysemu/hw_accel.h"
6410848b 26#include "sysemu/kvm_int.h"
54d31236 27#include "sysemu/runstate.h"
1d31f66b 28#include "kvm_i386.h"
50efe82c 29#include "hyperv.h"
5e953812 30#include "hyperv-proto.h"
50efe82c 31
022c62cb 32#include "exec/gdbstub.h"
1de7afc9 33#include "qemu/host-utils.h"
db725815 34#include "qemu/main-loop.h"
1de7afc9 35#include "qemu/config-file.h"
1c4a55db 36#include "qemu/error-report.h"
89a289c7 37#include "hw/i386/x86.h"
0d09e41a 38#include "hw/i386/apic.h"
e0723c45
PB
39#include "hw/i386/apic_internal.h"
40#include "hw/i386/apic-msidef.h"
8b5ed7df 41#include "hw/i386/intel_iommu.h"
e1d4fb2d 42#include "hw/i386/x86-iommu.h"
d6d059ca 43#include "hw/i386/e820_memory_layout.h"
50efe82c 44
a2cb15b0 45#include "hw/pci/pci.h"
15eafc2e 46#include "hw/pci/msi.h"
fd563564 47#include "hw/pci/msix.h"
795c40b8 48#include "migration/blocker.h"
4c663752 49#include "exec/memattrs.h"
8b5ed7df 50#include "trace.h"
05330448
AL
51
52//#define DEBUG_KVM
53
54#ifdef DEBUG_KVM
8c0d577e 55#define DPRINTF(fmt, ...) \
05330448
AL
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57#else
8c0d577e 58#define DPRINTF(fmt, ...) \
05330448
AL
59 do { } while (0)
60#endif
61
73b994f6
LA
62/* From arch/x86/kvm/lapic.h */
63#define KVM_APIC_BUS_CYCLE_NS 1
64#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
65
1a03675d
GC
66#define MSR_KVM_WALL_CLOCK 0x11
67#define MSR_KVM_SYSTEM_TIME 0x12
68
d1138251
EH
69/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
70 * 255 kvm_msr_entry structs */
71#define MSR_BUF_SIZE 4096
d71b62a1 72
420ae1fc
PB
73static void kvm_init_msrs(X86CPU *cpu);
74
94a8d39a
JK
75const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
76 KVM_CAP_INFO(SET_TSS_ADDR),
77 KVM_CAP_INFO(EXT_CPUID),
78 KVM_CAP_INFO(MP_STATE),
79 KVM_CAP_LAST_INFO
80};
25d2e361 81
c3a3a7d3
JK
82static bool has_msr_star;
83static bool has_msr_hsave_pa;
c9b8f6b6 84static bool has_msr_tsc_aux;
f28558d3 85static bool has_msr_tsc_adjust;
aa82ba54 86static bool has_msr_tsc_deadline;
df67696e 87static bool has_msr_feature_control;
21e87c46 88static bool has_msr_misc_enable;
fc12d72e 89static bool has_msr_smbase;
79e9ebeb 90static bool has_msr_bndcfgs;
25d2e361 91static int lm_capable_kernel;
7bc3d711 92static bool has_msr_hv_hypercall;
f2a53c9e 93static bool has_msr_hv_crash;
744b8a94 94static bool has_msr_hv_reset;
8c145d7c 95static bool has_msr_hv_vpindex;
e9688fab 96static bool hv_vpindex_settable;
46eb8f98 97static bool has_msr_hv_runtime;
866eea9a 98static bool has_msr_hv_synic;
ff99aa64 99static bool has_msr_hv_stimer;
d72bc7f6 100static bool has_msr_hv_frequencies;
ba6a4fd9 101static bool has_msr_hv_reenlightenment;
18cd2c17 102static bool has_msr_xss;
65087997 103static bool has_msr_umwait;
a33a2cfe 104static bool has_msr_spec_ctrl;
2a9758c5 105static bool has_msr_tsx_ctrl;
cfeea0c0 106static bool has_msr_virt_ssbd;
e13713db 107static bool has_msr_smi_count;
aec5e9c3 108static bool has_msr_arch_capabs;
597360c0 109static bool has_msr_core_capabs;
20a78b02 110static bool has_msr_vmx_vmfunc;
67025148 111static bool has_msr_ucode_rev;
4a910e1f 112static bool has_msr_vmx_procbased_ctls2;
ea39f9b6 113static bool has_msr_perf_capabs;
b827df58 114
0b368a10
JD
115static uint32_t has_architectural_pmu_version;
116static uint32_t num_architectural_pmu_gp_counters;
117static uint32_t num_architectural_pmu_fixed_counters;
0d894367 118
28143b40
TH
119static int has_xsave;
120static int has_xcrs;
121static int has_pit_state2;
fd13f23b 122static int has_exception_payload;
28143b40 123
87f8b626
AR
124static bool has_msr_mcg_ext_ctl;
125
494e95e9 126static struct kvm_cpuid2 *cpuid_cache;
f57bceb6 127static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 128
28143b40
TH
129int kvm_has_pit_state2(void)
130{
131 return has_pit_state2;
132}
133
355023f2
PB
134bool kvm_has_smm(void)
135{
136 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
137}
138
6053a86f
MT
139bool kvm_has_adjust_clock_stable(void)
140{
141 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
142
143 return (ret == KVM_CLOCK_TSC_STABLE);
144}
145
79a197ab
LA
146bool kvm_has_exception_payload(void)
147{
148 return has_exception_payload;
149}
150
1d31f66b
PM
151bool kvm_allows_irq0_override(void)
152{
153 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
154}
155
fb506e70
RK
156static bool kvm_x2apic_api_set_flags(uint64_t flags)
157{
4f7f5893 158 KVMState *s = KVM_STATE(current_accel());
fb506e70
RK
159
160 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
161}
162
e391c009 163#define MEMORIZE(fn, _result) \
2a138ec3 164 ({ \
2a138ec3
RK
165 static bool _memorized; \
166 \
167 if (_memorized) { \
168 return _result; \
169 } \
170 _memorized = true; \
171 _result = fn; \
172 })
173
e391c009
IM
174static bool has_x2apic_api;
175
176bool kvm_has_x2apic_api(void)
177{
178 return has_x2apic_api;
179}
180
fb506e70
RK
181bool kvm_enable_x2apic(void)
182{
2a138ec3
RK
183 return MEMORIZE(
184 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
185 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
186 has_x2apic_api);
fb506e70
RK
187}
188
e9688fab
RK
189bool kvm_hv_vpindex_settable(void)
190{
191 return hv_vpindex_settable;
192}
193
0fd7e098
LL
194static int kvm_get_tsc(CPUState *cs)
195{
196 X86CPU *cpu = X86_CPU(cs);
197 CPUX86State *env = &cpu->env;
198 struct {
199 struct kvm_msrs info;
200 struct kvm_msr_entry entries[1];
a1834d97 201 } msr_data = {};
0fd7e098
LL
202 int ret;
203
204 if (env->tsc_valid) {
205 return 0;
206 }
207
1f670a95 208 memset(&msr_data, 0, sizeof(msr_data));
0fd7e098
LL
209 msr_data.info.nmsrs = 1;
210 msr_data.entries[0].index = MSR_IA32_TSC;
211 env->tsc_valid = !runstate_is_running();
212
213 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
214 if (ret < 0) {
215 return ret;
216 }
217
48e1a45c 218 assert(ret == 1);
0fd7e098
LL
219 env->tsc = msr_data.entries[0].data;
220 return 0;
221}
222
14e6fe12 223static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 224{
0fd7e098
LL
225 kvm_get_tsc(cpu);
226}
227
228void kvm_synchronize_all_tsc(void)
229{
230 CPUState *cpu;
231
232 if (kvm_enabled()) {
233 CPU_FOREACH(cpu) {
14e6fe12 234 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
235 }
236 }
237}
238
b827df58
AK
239static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
240{
241 struct kvm_cpuid2 *cpuid;
242 int r, size;
243
244 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 245 cpuid = g_malloc0(size);
b827df58
AK
246 cpuid->nent = max;
247 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
248 if (r == 0 && cpuid->nent >= max) {
249 r = -E2BIG;
250 }
b827df58
AK
251 if (r < 0) {
252 if (r == -E2BIG) {
7267c094 253 g_free(cpuid);
b827df58
AK
254 return NULL;
255 } else {
256 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
257 strerror(-r));
258 exit(1);
259 }
260 }
261 return cpuid;
262}
263
dd87f8a6
EH
264/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
265 * for all entries.
266 */
267static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
268{
269 struct kvm_cpuid2 *cpuid;
270 int max = 1;
494e95e9
CP
271
272 if (cpuid_cache != NULL) {
273 return cpuid_cache;
274 }
dd87f8a6
EH
275 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
276 max *= 2;
277 }
494e95e9 278 cpuid_cache = cpuid;
dd87f8a6
EH
279 return cpuid;
280}
281
a443bc34 282static const struct kvm_para_features {
0c31b744
GC
283 int cap;
284 int feature;
285} para_features[] = {
286 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
287 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
288 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 289 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
290};
291
ba9bc59e 292static int get_para_features(KVMState *s)
0c31b744
GC
293{
294 int i, features = 0;
295
8e03c100 296 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 297 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
298 features |= (1 << para_features[i].feature);
299 }
300 }
301
302 return features;
303}
0c31b744 304
40e80ee4
EH
305static bool host_tsx_blacklisted(void)
306{
307 int family, model, stepping;\
308 char vendor[CPUID_VENDOR_SZ + 1];
309
310 host_vendor_fms(vendor, &family, &model, &stepping);
311
312 /* Check if we are running on a Haswell host known to have broken TSX */
313 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
314 (family == 6) &&
315 ((model == 63 && stepping < 4) ||
316 model == 60 || model == 69 || model == 70);
317}
0c31b744 318
829ae2f9
EH
319/* Returns the value for a specific register on the cpuid entry
320 */
321static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
322{
323 uint32_t ret = 0;
324 switch (reg) {
325 case R_EAX:
326 ret = entry->eax;
327 break;
328 case R_EBX:
329 ret = entry->ebx;
330 break;
331 case R_ECX:
332 ret = entry->ecx;
333 break;
334 case R_EDX:
335 ret = entry->edx;
336 break;
337 }
338 return ret;
339}
340
4fb73f1d
EH
341/* Find matching entry for function/index on kvm_cpuid2 struct
342 */
343static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
344 uint32_t function,
345 uint32_t index)
346{
347 int i;
348 for (i = 0; i < cpuid->nent; ++i) {
349 if (cpuid->entries[i].function == function &&
350 cpuid->entries[i].index == index) {
351 return &cpuid->entries[i];
352 }
353 }
354 /* not found: */
355 return NULL;
356}
357
ba9bc59e 358uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 359 uint32_t index, int reg)
b827df58
AK
360{
361 struct kvm_cpuid2 *cpuid;
b827df58
AK
362 uint32_t ret = 0;
363 uint32_t cpuid_1_edx;
8c723b79 364 bool found = false;
b827df58 365
dd87f8a6 366 cpuid = get_supported_cpuid(s);
b827df58 367
4fb73f1d
EH
368 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
369 if (entry) {
370 found = true;
371 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
372 }
373
7b46e5ce
EH
374 /* Fixups for the data returned by KVM, below */
375
c2acb022
EH
376 if (function == 1 && reg == R_EDX) {
377 /* KVM before 2.6.30 misreports the following features */
378 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
379 } else if (function == 1 && reg == R_ECX) {
380 /* We can set the hypervisor flag, even if KVM does not return it on
381 * GET_SUPPORTED_CPUID
382 */
383 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
384 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
385 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
386 * and the irqchip is in the kernel.
387 */
388 if (kvm_irqchip_in_kernel() &&
389 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
390 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
391 }
41e5e76d
EH
392
393 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
394 * without the in-kernel irqchip
395 */
396 if (!kvm_irqchip_in_kernel()) {
397 ret &= ~CPUID_EXT_X2APIC;
b827df58 398 }
2266d443
MT
399
400 if (enable_cpu_pm) {
401 int disable_exits = kvm_check_extension(s,
402 KVM_CAP_X86_DISABLE_EXITS);
403
404 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
405 ret |= CPUID_EXT_MONITOR;
406 }
407 }
28b8e4d0
JK
408 } else if (function == 6 && reg == R_EAX) {
409 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4
EH
410 } else if (function == 7 && index == 0 && reg == R_EBX) {
411 if (host_tsx_blacklisted()) {
412 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
413 }
485b1d25
EH
414 } else if (function == 7 && index == 0 && reg == R_EDX) {
415 /*
416 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
417 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
418 * returned by KVM_GET_MSR_INDEX_LIST.
419 */
420 if (!has_msr_arch_capabs) {
421 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
422 }
f98bbd83
BM
423 } else if (function == 0x80000001 && reg == R_ECX) {
424 /*
425 * It's safe to enable TOPOEXT even if it's not returned by
426 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
427 * us to keep CPU models including TOPOEXT runnable on older kernels.
428 */
429 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
430 } else if (function == 0x80000001 && reg == R_EDX) {
431 /* On Intel, kvm returns cpuid according to the Intel spec,
432 * so add missing bits according to the AMD spec:
433 */
434 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
435 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
436 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
437 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
438 * be enabled without the in-kernel irqchip
439 */
440 if (!kvm_irqchip_in_kernel()) {
441 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
442 }
be777326 443 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 444 ret |= 1U << KVM_HINTS_REALTIME;
be777326 445 found = 1;
b827df58
AK
446 }
447
0c31b744 448 /* fallback for older kernels */
8c723b79 449 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 450 ret = get_para_features(s);
b9bec74b 451 }
0c31b744
GC
452
453 return ret;
bb0300dc 454}
bb0300dc 455
ede146c2 456uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
f57bceb6
RH
457{
458 struct {
459 struct kvm_msrs info;
460 struct kvm_msr_entry entries[1];
a1834d97 461 } msr_data = {};
20a78b02
PB
462 uint64_t value;
463 uint32_t ret, can_be_one, must_be_one;
f57bceb6
RH
464
465 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
466 return 0;
467 }
468
469 /* Check if requested MSR is supported feature MSR */
470 int i;
471 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
472 if (kvm_feature_msrs->indices[i] == index) {
473 break;
474 }
475 if (i == kvm_feature_msrs->nmsrs) {
476 return 0; /* if the feature MSR is not supported, simply return 0 */
477 }
478
479 msr_data.info.nmsrs = 1;
480 msr_data.entries[0].index = index;
481
482 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
483 if (ret != 1) {
484 error_report("KVM get MSR (index=0x%x) feature failed, %s",
485 index, strerror(-ret));
486 exit(1);
487 }
488
20a78b02
PB
489 value = msr_data.entries[0].data;
490 switch (index) {
491 case MSR_IA32_VMX_PROCBASED_CTLS2:
4a910e1f
VK
492 if (!has_msr_vmx_procbased_ctls2) {
493 /* KVM forgot to add these bits for some time, do this ourselves. */
494 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
495 CPUID_XSAVE_XSAVES) {
496 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
497 }
498 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
499 CPUID_EXT_RDRAND) {
500 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
501 }
502 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
503 CPUID_7_0_EBX_INVPCID) {
504 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
505 }
506 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
507 CPUID_7_0_EBX_RDSEED) {
508 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
509 }
510 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
511 CPUID_EXT2_RDTSCP) {
512 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
513 }
048c9516
PB
514 }
515 /* fall through */
20a78b02
PB
516 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
517 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
518 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
519 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
520 /*
521 * Return true for bits that can be one, but do not have to be one.
522 * The SDM tells us which bits could have a "must be one" setting,
523 * so we can do the opposite transformation in make_vmx_msr_value.
524 */
525 must_be_one = (uint32_t)value;
526 can_be_one = (uint32_t)(value >> 32);
527 return can_be_one & ~must_be_one;
528
529 default:
530 return value;
531 }
f57bceb6
RH
532}
533
e7701825
MT
534static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
535 int *max_banks)
536{
537 int r;
538
14a09518 539 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
540 if (r > 0) {
541 *max_banks = r;
542 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
543 }
544 return -ENOSYS;
545}
546
bee615d4 547static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 548{
87f8b626 549 CPUState *cs = CPU(cpu);
bee615d4 550 CPUX86State *env = &cpu->env;
c34d440a
JK
551 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
552 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
553 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 554 int flags = 0;
e7701825 555
c34d440a
JK
556 if (code == BUS_MCEERR_AR) {
557 status |= MCI_STATUS_AR | 0x134;
558 mcg_status |= MCG_STATUS_EIPV;
559 } else {
560 status |= 0xc0;
561 mcg_status |= MCG_STATUS_RIPV;
419fb20a 562 }
87f8b626
AR
563
564 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
565 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
566 * guest kernel back into env->mcg_ext_ctl.
567 */
568 cpu_synchronize_state(cs);
569 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
570 mcg_status |= MCG_STATUS_LMCE;
571 flags = 0;
572 }
573
8c5cf3b6 574 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 575 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 576}
419fb20a 577
73284563 578static void hardware_memory_error(void *host_addr)
419fb20a 579{
73284563 580 error_report("QEMU got Hardware memory error at addr %p", host_addr);
419fb20a
JK
581 exit(1);
582}
583
2ae41db2 584void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 585{
20d695a9
AF
586 X86CPU *cpu = X86_CPU(c);
587 CPUX86State *env = &cpu->env;
419fb20a 588 ram_addr_t ram_addr;
a8170e5e 589 hwaddr paddr;
419fb20a 590
4d39892c
PB
591 /* If we get an action required MCE, it has been injected by KVM
592 * while the VM was running. An action optional MCE instead should
593 * be coming from the main thread, which qemu_init_sigbus identifies
594 * as the "early kill" thread.
595 */
a16fc07e 596 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 597
20e0ff59 598 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 599 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
600 if (ram_addr != RAM_ADDR_INVALID &&
601 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
602 kvm_hwpoison_page_add(ram_addr);
603 kvm_mce_inject(cpu, paddr, code);
73284563
MS
604
605 /*
606 * Use different logging severity based on error type.
607 * If there is additional MCE reporting on the hypervisor, QEMU VA
608 * could be another source to identify the PA and MCE details.
609 */
610 if (code == BUS_MCEERR_AR) {
611 error_report("Guest MCE Memory Error at QEMU addr %p and "
612 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
613 addr, paddr, "BUS_MCEERR_AR");
614 } else {
615 warn_report("Guest MCE Memory Error at QEMU addr %p and "
616 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
617 addr, paddr, "BUS_MCEERR_AO");
618 }
619
2ae41db2 620 return;
419fb20a 621 }
20e0ff59 622
73284563
MS
623 if (code == BUS_MCEERR_AO) {
624 warn_report("Hardware memory error at addr %p of type %s "
625 "for memory used by QEMU itself instead of guest system!",
626 addr, "BUS_MCEERR_AO");
627 }
419fb20a 628 }
20e0ff59
PB
629
630 if (code == BUS_MCEERR_AR) {
73284563 631 hardware_memory_error(addr);
20e0ff59
PB
632 }
633
634 /* Hope we are lucky for AO MCE */
419fb20a
JK
635}
636
fd13f23b
LA
637static void kvm_reset_exception(CPUX86State *env)
638{
639 env->exception_nr = -1;
640 env->exception_pending = 0;
641 env->exception_injected = 0;
642 env->exception_has_payload = false;
643 env->exception_payload = 0;
644}
645
646static void kvm_queue_exception(CPUX86State *env,
647 int32_t exception_nr,
648 uint8_t exception_has_payload,
649 uint64_t exception_payload)
650{
651 assert(env->exception_nr == -1);
652 assert(!env->exception_pending);
653 assert(!env->exception_injected);
654 assert(!env->exception_has_payload);
655
656 env->exception_nr = exception_nr;
657
658 if (has_exception_payload) {
659 env->exception_pending = 1;
660
661 env->exception_has_payload = exception_has_payload;
662 env->exception_payload = exception_payload;
663 } else {
664 env->exception_injected = 1;
665
666 if (exception_nr == EXCP01_DB) {
667 assert(exception_has_payload);
668 env->dr[6] = exception_payload;
669 } else if (exception_nr == EXCP0E_PAGE) {
670 assert(exception_has_payload);
671 env->cr[2] = exception_payload;
672 } else {
673 assert(!exception_has_payload);
674 }
675 }
676}
677
1bc22652 678static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 679{
1bc22652
AF
680 CPUX86State *env = &cpu->env;
681
fd13f23b 682 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
683 unsigned int bank, bank_num = env->mcg_cap & 0xff;
684 struct kvm_x86_mce mce;
685
fd13f23b 686 kvm_reset_exception(env);
ab443475
JK
687
688 /*
689 * There must be at least one bank in use if an MCE is pending.
690 * Find it and use its values for the event injection.
691 */
692 for (bank = 0; bank < bank_num; bank++) {
693 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
694 break;
695 }
696 }
697 assert(bank < bank_num);
698
699 mce.bank = bank;
700 mce.status = env->mce_banks[bank * 4 + 1];
701 mce.mcg_status = env->mcg_status;
702 mce.addr = env->mce_banks[bank * 4 + 2];
703 mce.misc = env->mce_banks[bank * 4 + 3];
704
1bc22652 705 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 706 }
ab443475
JK
707 return 0;
708}
709
1dfb4dd9 710static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 711{
317ac620 712 CPUX86State *env = opaque;
b8cc45d6
GC
713
714 if (running) {
715 env->tsc_valid = false;
716 }
717}
718
83b17af5 719unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 720{
83b17af5 721 X86CPU *cpu = X86_CPU(cs);
7e72a45c 722 return cpu->apic_id;
b164e48e
EH
723}
724
92067bf4
IM
725#ifndef KVM_CPUID_SIGNATURE_NEXT
726#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
727#endif
728
92067bf4
IM
729static bool hyperv_enabled(X86CPU *cpu)
730{
7bc3d711
PB
731 CPUState *cs = CPU(cpu);
732 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
2d384d7c 733 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
e48ddcc6 734 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
735}
736
74aaddc6
MT
737/*
738 * Check whether target_freq is within conservative
739 * ntp correctable bounds (250ppm) of freq
740 */
741static inline bool freq_within_bounds(int freq, int target_freq)
742{
743 int max_freq = freq + (freq * 250 / 1000000);
744 int min_freq = freq - (freq * 250 / 1000000);
745
746 if (target_freq >= min_freq && target_freq <= max_freq) {
747 return true;
748 }
749
750 return false;
751}
752
5031283d
HZ
753static int kvm_arch_set_tsc_khz(CPUState *cs)
754{
755 X86CPU *cpu = X86_CPU(cs);
756 CPUX86State *env = &cpu->env;
74aaddc6
MT
757 int r, cur_freq;
758 bool set_ioctl = false;
5031283d
HZ
759
760 if (!env->tsc_khz) {
761 return 0;
762 }
763
74aaddc6
MT
764 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
765 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
766
767 /*
768 * If TSC scaling is supported, attempt to set TSC frequency.
769 */
770 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
771 set_ioctl = true;
772 }
773
774 /*
775 * If desired TSC frequency is within bounds of NTP correction,
776 * attempt to set TSC frequency.
777 */
778 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
779 set_ioctl = true;
780 }
781
782 r = set_ioctl ?
5031283d
HZ
783 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
784 -ENOTSUP;
74aaddc6 785
5031283d
HZ
786 if (r < 0) {
787 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
788 * TSC frequency doesn't match the one we want.
789 */
74aaddc6
MT
790 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
791 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
792 -ENOTSUP;
5031283d 793 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
794 warn_report("TSC frequency mismatch between "
795 "VM (%" PRId64 " kHz) and host (%d kHz), "
796 "and TSC scaling unavailable",
797 env->tsc_khz, cur_freq);
5031283d
HZ
798 return r;
799 }
800 }
801
802 return 0;
803}
804
4bb95b82
LP
805static bool tsc_is_stable_and_known(CPUX86State *env)
806{
807 if (!env->tsc_khz) {
808 return false;
809 }
810 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
811 || env->user_tsc_khz;
812}
813
6760bd20
VK
814static struct {
815 const char *desc;
816 struct {
817 uint32_t fw;
818 uint32_t bits;
819 } flags[2];
c6861930 820 uint64_t dependencies;
6760bd20
VK
821} kvm_hyperv_properties[] = {
822 [HYPERV_FEAT_RELAXED] = {
823 .desc = "relaxed timing (hv-relaxed)",
824 .flags = {
825 {.fw = FEAT_HYPERV_EAX,
826 .bits = HV_HYPERCALL_AVAILABLE},
827 {.fw = FEAT_HV_RECOMM_EAX,
828 .bits = HV_RELAXED_TIMING_RECOMMENDED}
829 }
830 },
831 [HYPERV_FEAT_VAPIC] = {
832 .desc = "virtual APIC (hv-vapic)",
833 .flags = {
834 {.fw = FEAT_HYPERV_EAX,
835 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
836 {.fw = FEAT_HV_RECOMM_EAX,
837 .bits = HV_APIC_ACCESS_RECOMMENDED}
838 }
839 },
840 [HYPERV_FEAT_TIME] = {
841 .desc = "clocksources (hv-time)",
842 .flags = {
843 {.fw = FEAT_HYPERV_EAX,
844 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
845 HV_REFERENCE_TSC_AVAILABLE}
846 }
847 },
848 [HYPERV_FEAT_CRASH] = {
849 .desc = "crash MSRs (hv-crash)",
850 .flags = {
851 {.fw = FEAT_HYPERV_EDX,
852 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
853 }
854 },
855 [HYPERV_FEAT_RESET] = {
856 .desc = "reset MSR (hv-reset)",
857 .flags = {
858 {.fw = FEAT_HYPERV_EAX,
859 .bits = HV_RESET_AVAILABLE}
860 }
861 },
862 [HYPERV_FEAT_VPINDEX] = {
863 .desc = "VP_INDEX MSR (hv-vpindex)",
864 .flags = {
865 {.fw = FEAT_HYPERV_EAX,
866 .bits = HV_VP_INDEX_AVAILABLE}
867 }
868 },
869 [HYPERV_FEAT_RUNTIME] = {
870 .desc = "VP_RUNTIME MSR (hv-runtime)",
871 .flags = {
872 {.fw = FEAT_HYPERV_EAX,
873 .bits = HV_VP_RUNTIME_AVAILABLE}
874 }
875 },
876 [HYPERV_FEAT_SYNIC] = {
877 .desc = "synthetic interrupt controller (hv-synic)",
878 .flags = {
879 {.fw = FEAT_HYPERV_EAX,
880 .bits = HV_SYNIC_AVAILABLE}
881 }
882 },
883 [HYPERV_FEAT_STIMER] = {
884 .desc = "synthetic timers (hv-stimer)",
885 .flags = {
886 {.fw = FEAT_HYPERV_EAX,
887 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
888 },
889 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
890 },
891 [HYPERV_FEAT_FREQUENCIES] = {
892 .desc = "frequency MSRs (hv-frequencies)",
893 .flags = {
894 {.fw = FEAT_HYPERV_EAX,
895 .bits = HV_ACCESS_FREQUENCY_MSRS},
896 {.fw = FEAT_HYPERV_EDX,
897 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
898 }
899 },
900 [HYPERV_FEAT_REENLIGHTENMENT] = {
901 .desc = "reenlightenment MSRs (hv-reenlightenment)",
902 .flags = {
903 {.fw = FEAT_HYPERV_EAX,
904 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
905 }
906 },
907 [HYPERV_FEAT_TLBFLUSH] = {
908 .desc = "paravirtualized TLB flush (hv-tlbflush)",
909 .flags = {
910 {.fw = FEAT_HV_RECOMM_EAX,
911 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
912 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
913 },
914 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
915 },
916 [HYPERV_FEAT_EVMCS] = {
917 .desc = "enlightened VMCS (hv-evmcs)",
918 .flags = {
919 {.fw = FEAT_HV_RECOMM_EAX,
920 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
921 },
922 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
923 },
924 [HYPERV_FEAT_IPI] = {
925 .desc = "paravirtualized IPI (hv-ipi)",
926 .flags = {
927 {.fw = FEAT_HV_RECOMM_EAX,
928 .bits = HV_CLUSTER_IPI_RECOMMENDED |
929 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
930 },
931 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 932 },
128531d9
VK
933 [HYPERV_FEAT_STIMER_DIRECT] = {
934 .desc = "direct mode synthetic timers (hv-stimer-direct)",
935 .flags = {
936 {.fw = FEAT_HYPERV_EDX,
937 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
938 },
939 .dependencies = BIT(HYPERV_FEAT_STIMER)
940 },
6760bd20
VK
941};
942
943static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
944{
945 struct kvm_cpuid2 *cpuid;
946 int r, size;
947
948 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
949 cpuid = g_malloc0(size);
950 cpuid->nent = max;
951
952 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
953 if (r == 0 && cpuid->nent >= max) {
954 r = -E2BIG;
955 }
956 if (r < 0) {
957 if (r == -E2BIG) {
958 g_free(cpuid);
959 return NULL;
960 } else {
961 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
962 strerror(-r));
963 exit(1);
964 }
965 }
966 return cpuid;
967}
968
969/*
970 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
971 * for all entries.
972 */
973static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
974{
975 struct kvm_cpuid2 *cpuid;
976 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
977
978 /*
979 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
980 * -E2BIG, however, it doesn't report back the right size. Keep increasing
981 * it and re-trying until we succeed.
982 */
983 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
984 max++;
985 }
986 return cpuid;
987}
988
989/*
990 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
991 * leaves from KVM_CAP_HYPERV* and present MSRs data.
992 */
993static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
994{
995 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
996 struct kvm_cpuid2 *cpuid;
997 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
998
999 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1000 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1001 cpuid->nent = 2;
1002
1003 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1004 entry_feat = &cpuid->entries[0];
1005 entry_feat->function = HV_CPUID_FEATURES;
1006
1007 entry_recomm = &cpuid->entries[1];
1008 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1009 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1010
1011 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1012 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1013 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1014 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1015 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1016 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1017 }
c35bd19a 1018
6760bd20
VK
1019 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1020 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1021 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 1022 }
6760bd20
VK
1023
1024 if (has_msr_hv_frequencies) {
1025 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1026 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 1027 }
6760bd20
VK
1028
1029 if (has_msr_hv_crash) {
1030 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 1031 }
6760bd20
VK
1032
1033 if (has_msr_hv_reenlightenment) {
1034 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 1035 }
6760bd20
VK
1036
1037 if (has_msr_hv_reset) {
1038 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 1039 }
6760bd20
VK
1040
1041 if (has_msr_hv_vpindex) {
1042 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 1043 }
6760bd20
VK
1044
1045 if (has_msr_hv_runtime) {
1046 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 1047 }
6760bd20
VK
1048
1049 if (has_msr_hv_synic) {
1050 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1051 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1052
1053 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1054 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 1055 }
c35bd19a 1056 }
6760bd20
VK
1057
1058 if (has_msr_hv_stimer) {
1059 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 1060 }
9b4cf107 1061
6760bd20
VK
1062 if (kvm_check_extension(cs->kvm_state,
1063 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1064 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1065 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1066 }
c35bd19a 1067
6760bd20
VK
1068 if (kvm_check_extension(cs->kvm_state,
1069 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1070 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 1071 }
6760bd20
VK
1072
1073 if (kvm_check_extension(cs->kvm_state,
1074 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1075 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1076 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 1077 }
6760bd20
VK
1078
1079 return cpuid;
1080}
1081
1082static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1083{
1084 struct kvm_cpuid_entry2 *entry;
1085 uint32_t func;
1086 int reg;
1087
1088 switch (fw) {
1089 case FEAT_HYPERV_EAX:
1090 reg = R_EAX;
1091 func = HV_CPUID_FEATURES;
1092 break;
1093 case FEAT_HYPERV_EDX:
1094 reg = R_EDX;
1095 func = HV_CPUID_FEATURES;
1096 break;
1097 case FEAT_HV_RECOMM_EAX:
1098 reg = R_EAX;
1099 func = HV_CPUID_ENLIGHTMENT_INFO;
1100 break;
1101 default:
1102 return -EINVAL;
a2b107db 1103 }
6760bd20
VK
1104
1105 entry = cpuid_find_entry(cpuid, func, 0);
1106 if (!entry) {
1107 return -ENOENT;
a2b107db 1108 }
6760bd20
VK
1109
1110 switch (reg) {
1111 case R_EAX:
1112 *r = entry->eax;
1113 break;
1114 case R_EDX:
1115 *r = entry->edx;
1116 break;
1117 default:
1118 return -EINVAL;
a2b107db 1119 }
6760bd20
VK
1120
1121 return 0;
1122}
1123
1124static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1125 int feature)
1126{
1127 X86CPU *cpu = X86_CPU(cs);
1128 CPUX86State *env = &cpu->env;
e48ddcc6 1129 uint32_t r, fw, bits;
c6861930 1130 uint64_t deps;
9dc83cd9 1131 int i, dep_feat;
6760bd20 1132
e48ddcc6 1133 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
6760bd20
VK
1134 return 0;
1135 }
1136
c6861930 1137 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1138 while (deps) {
1139 dep_feat = ctz64(deps);
c6861930
VK
1140 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1141 fprintf(stderr,
1142 "Hyper-V %s requires Hyper-V %s\n",
1143 kvm_hyperv_properties[feature].desc,
1144 kvm_hyperv_properties[dep_feat].desc);
1145 return 1;
1146 }
9dc83cd9 1147 deps &= ~(1ull << dep_feat);
c6861930
VK
1148 }
1149
6760bd20
VK
1150 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1151 fw = kvm_hyperv_properties[feature].flags[i].fw;
1152 bits = kvm_hyperv_properties[feature].flags[i].bits;
1153
1154 if (!fw) {
1155 continue;
a2b107db 1156 }
6760bd20
VK
1157
1158 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
e48ddcc6
VK
1159 if (hyperv_feat_enabled(cpu, feature)) {
1160 fprintf(stderr,
1161 "Hyper-V %s is not supported by kernel\n",
1162 kvm_hyperv_properties[feature].desc);
1163 return 1;
1164 } else {
1165 return 0;
1166 }
6760bd20
VK
1167 }
1168
1169 env->features[fw] |= bits;
a2b107db 1170 }
6760bd20 1171
e48ddcc6
VK
1172 if (cpu->hyperv_passthrough) {
1173 cpu->hyperv_features |= BIT(feature);
1174 }
1175
6760bd20
VK
1176 return 0;
1177}
1178
2344d22e
VK
1179/*
1180 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1181 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1182 * extentions are enabled.
1183 */
1184static int hyperv_handle_properties(CPUState *cs,
1185 struct kvm_cpuid_entry2 *cpuid_ent)
6760bd20
VK
1186{
1187 X86CPU *cpu = X86_CPU(cs);
1188 CPUX86State *env = &cpu->env;
1189 struct kvm_cpuid2 *cpuid;
2344d22e
VK
1190 struct kvm_cpuid_entry2 *c;
1191 uint32_t signature[3];
1192 uint32_t cpuid_i = 0;
e48ddcc6 1193 int r;
6760bd20 1194
2344d22e
VK
1195 if (!hyperv_enabled(cpu))
1196 return 0;
1197
e48ddcc6
VK
1198 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1199 cpu->hyperv_passthrough) {
a2b107db
VK
1200 uint16_t evmcs_version;
1201
e48ddcc6
VK
1202 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1203 (uintptr_t)&evmcs_version);
1204
1205 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
6760bd20
VK
1206 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1207 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
a2b107db
VK
1208 return -ENOSYS;
1209 }
e48ddcc6
VK
1210
1211 if (!r) {
1212 env->features[FEAT_HV_RECOMM_EAX] |=
1213 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1214 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1215 }
a2b107db
VK
1216 }
1217
6760bd20
VK
1218 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1219 cpuid = get_supported_hv_cpuid(cs);
1220 } else {
1221 cpuid = get_supported_hv_cpuid_legacy(cs);
1222 }
1223
e48ddcc6
VK
1224 if (cpu->hyperv_passthrough) {
1225 memcpy(cpuid_ent, &cpuid->entries[0],
1226 cpuid->nent * sizeof(cpuid->entries[0]));
1227
1228 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1229 if (c) {
1230 env->features[FEAT_HYPERV_EAX] = c->eax;
1231 env->features[FEAT_HYPERV_EBX] = c->ebx;
1232 env->features[FEAT_HYPERV_EDX] = c->eax;
1233 }
1234 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1235 if (c) {
1236 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1237
1238 /* hv-spinlocks may have been overriden */
1239 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1240 c->ebx = cpu->hyperv_spinlock_attempts;
1241 }
1242 }
1243 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1244 if (c) {
1245 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1246 }
1247 }
1248
30d6ff66
VK
1249 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1250 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1251 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1252 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1253 if (c) {
1254 env->features[FEAT_HV_RECOMM_EAX] |=
1255 c->eax & HV_NO_NONARCH_CORESHARING;
1256 }
1257 }
1258
6760bd20 1259 /* Features */
e48ddcc6 1260 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
6760bd20
VK
1261 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1262 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1263 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1264 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1265 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1266 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1267 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1268 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1269 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1270 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1271 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1272 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1273 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
128531d9 1274 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
6760bd20 1275
c6861930 1276 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1277 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1278 !cpu->hyperv_synic_kvm_only &&
1279 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
c6861930 1280 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
6760bd20
VK
1281 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1282 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1283 r |= 1;
1284 }
1285
1286 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1287 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1288
2344d22e
VK
1289 if (r) {
1290 r = -ENOSYS;
1291 goto free;
1292 }
1293
e48ddcc6
VK
1294 if (cpu->hyperv_passthrough) {
1295 /* We already copied all feature words from KVM as is */
1296 r = cpuid->nent;
1297 goto free;
1298 }
1299
2344d22e
VK
1300 c = &cpuid_ent[cpuid_i++];
1301 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1302 if (!cpu->hyperv_vendor_id) {
1303 memcpy(signature, "Microsoft Hv", 12);
1304 } else {
1305 size_t len = strlen(cpu->hyperv_vendor_id);
1306
1307 if (len > 12) {
1308 error_report("hv-vendor-id truncated to 12 characters");
1309 len = 12;
1310 }
1311 memset(signature, 0, 12);
1312 memcpy(signature, cpu->hyperv_vendor_id, len);
1313 }
1314 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1315 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1316 c->ebx = signature[0];
1317 c->ecx = signature[1];
1318 c->edx = signature[2];
1319
1320 c = &cpuid_ent[cpuid_i++];
1321 c->function = HV_CPUID_INTERFACE;
1322 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1323 c->eax = signature[0];
1324 c->ebx = 0;
1325 c->ecx = 0;
1326 c->edx = 0;
1327
1328 c = &cpuid_ent[cpuid_i++];
1329 c->function = HV_CPUID_VERSION;
1330 c->eax = 0x00001bbc;
1331 c->ebx = 0x00060001;
1332
1333 c = &cpuid_ent[cpuid_i++];
1334 c->function = HV_CPUID_FEATURES;
1335 c->eax = env->features[FEAT_HYPERV_EAX];
1336 c->ebx = env->features[FEAT_HYPERV_EBX];
1337 c->edx = env->features[FEAT_HYPERV_EDX];
1338
1339 c = &cpuid_ent[cpuid_i++];
1340 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1341 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1342 c->ebx = cpu->hyperv_spinlock_attempts;
1343
1344 c = &cpuid_ent[cpuid_i++];
1345 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1346 c->eax = cpu->hv_max_vps;
1347 c->ebx = 0x40;
1348
1349 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1350 __u32 function;
1351
1352 /* Create zeroed 0x40000006..0x40000009 leaves */
1353 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1354 function < HV_CPUID_NESTED_FEATURES; function++) {
1355 c = &cpuid_ent[cpuid_i++];
1356 c->function = function;
1357 }
1358
1359 c = &cpuid_ent[cpuid_i++];
1360 c->function = HV_CPUID_NESTED_FEATURES;
1361 c->eax = env->features[FEAT_HV_NESTED_EAX];
1362 }
1363 r = cpuid_i;
1364
1365free:
6760bd20
VK
1366 g_free(cpuid);
1367
2344d22e 1368 return r;
c35bd19a
EY
1369}
1370
e48ddcc6 1371static Error *hv_passthrough_mig_blocker;
30d6ff66 1372static Error *hv_no_nonarch_cs_mig_blocker;
e48ddcc6 1373
e9688fab
RK
1374static int hyperv_init_vcpu(X86CPU *cpu)
1375{
729ce7e1 1376 CPUState *cs = CPU(cpu);
e48ddcc6 1377 Error *local_err = NULL;
729ce7e1
RK
1378 int ret;
1379
e48ddcc6
VK
1380 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1381 error_setg(&hv_passthrough_mig_blocker,
1382 "'hv-passthrough' CPU flag prevents migration, use explicit"
1383 " set of hv-* flags instead");
1384 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1385 if (local_err) {
1386 error_report_err(local_err);
1387 error_free(hv_passthrough_mig_blocker);
1388 return ret;
1389 }
1390 }
1391
30d6ff66
VK
1392 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1393 hv_no_nonarch_cs_mig_blocker == NULL) {
1394 error_setg(&hv_no_nonarch_cs_mig_blocker,
1395 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1396 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1397 " make sure SMT is disabled and/or that vCPUs are properly"
1398 " pinned)");
1399 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1400 if (local_err) {
1401 error_report_err(local_err);
1402 error_free(hv_no_nonarch_cs_mig_blocker);
1403 return ret;
1404 }
1405 }
1406
2d384d7c 1407 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1408 /*
1409 * the kernel doesn't support setting vp_index; assert that its value
1410 * is in sync
1411 */
e9688fab
RK
1412 struct {
1413 struct kvm_msrs info;
1414 struct kvm_msr_entry entries[1];
1415 } msr_data = {
1416 .info.nmsrs = 1,
1417 .entries[0].index = HV_X64_MSR_VP_INDEX,
1418 };
1419
729ce7e1 1420 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1421 if (ret < 0) {
1422 return ret;
1423 }
1424 assert(ret == 1);
1425
701189e3 1426 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1427 error_report("kernel's vp_index != QEMU's vp_index");
1428 return -ENXIO;
1429 }
1430 }
1431
2d384d7c 1432 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1433 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1434 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1435 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1436 if (ret < 0) {
1437 error_report("failed to turn on HyperV SynIC in KVM: %s",
1438 strerror(-ret));
1439 return ret;
1440 }
606c34bf 1441
9b4cf107
RK
1442 if (!cpu->hyperv_synic_kvm_only) {
1443 ret = hyperv_x86_synic_add(cpu);
1444 if (ret < 0) {
1445 error_report("failed to create HyperV SynIC: %s",
1446 strerror(-ret));
1447 return ret;
1448 }
606c34bf 1449 }
729ce7e1
RK
1450 }
1451
e9688fab
RK
1452 return 0;
1453}
1454
68bfd0ad
MT
1455static Error *invtsc_mig_blocker;
1456
f8bb0565 1457#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1458
20d695a9 1459int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1460{
1461 struct {
486bd5a2 1462 struct kvm_cpuid2 cpuid;
f8bb0565 1463 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1464 } cpuid_data;
1465 /*
1466 * The kernel defines these structs with padding fields so there
1467 * should be no extra padding in our cpuid_data struct.
1468 */
1469 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1470 sizeof(struct kvm_cpuid2) +
1471 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1472
20d695a9
AF
1473 X86CPU *cpu = X86_CPU(cs);
1474 CPUX86State *env = &cpu->env;
486bd5a2 1475 uint32_t limit, i, j, cpuid_i;
a33609ca 1476 uint32_t unused;
bb0300dc 1477 struct kvm_cpuid_entry2 *c;
bb0300dc 1478 uint32_t signature[3];
234cc647 1479 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1480 int max_nested_state_len;
e7429073 1481 int r;
fe44dc91 1482 Error *local_err = NULL;
05330448 1483
ef4cbe14
SW
1484 memset(&cpuid_data, 0, sizeof(cpuid_data));
1485
05330448
AL
1486 cpuid_i = 0;
1487
ddb98b5a
LP
1488 r = kvm_arch_set_tsc_khz(cs);
1489 if (r < 0) {
6b2341ee 1490 return r;
ddb98b5a
LP
1491 }
1492
1493 /* vcpu's TSC frequency is either specified by user, or following
1494 * the value used by KVM if the former is not present. In the
1495 * latter case, we query it from KVM and record in env->tsc_khz,
1496 * so that vcpu's TSC frequency can be migrated later via this field.
1497 */
1498 if (!env->tsc_khz) {
1499 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1500 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1501 -ENOTSUP;
1502 if (r > 0) {
1503 env->tsc_khz = r;
1504 }
1505 }
1506
73b994f6
LA
1507 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1508
bb0300dc 1509 /* Paravirtualization CPUIDs */
2344d22e
VK
1510 r = hyperv_handle_properties(cs, cpuid_data.entries);
1511 if (r < 0) {
1512 return r;
1513 } else if (r > 0) {
1514 cpuid_i = r;
234cc647 1515 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1516 has_msr_hv_hypercall = true;
eab70139
VR
1517 }
1518
f522d2ac
AW
1519 if (cpu->expose_kvm) {
1520 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1521 c = &cpuid_data.entries[cpuid_i++];
1522 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1523 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1524 c->ebx = signature[0];
1525 c->ecx = signature[1];
1526 c->edx = signature[2];
234cc647 1527
f522d2ac
AW
1528 c = &cpuid_data.entries[cpuid_i++];
1529 c->function = KVM_CPUID_FEATURES | kvm_base;
1530 c->eax = env->features[FEAT_KVM];
be777326 1531 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1532 }
917367aa 1533
a33609ca 1534 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
1535
1536 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1537 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1538 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1539 abort();
1540 }
bb0300dc 1541 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1542
1543 switch (i) {
a36b1029
AL
1544 case 2: {
1545 /* Keep reading function 2 till all the input is received */
1546 int times;
1547
a36b1029 1548 c->function = i;
a33609ca
AL
1549 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1550 KVM_CPUID_FLAG_STATE_READ_NEXT;
1551 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1552 times = c->eax & 0xff;
a36b1029
AL
1553
1554 for (j = 1; j < times; ++j) {
f8bb0565
IM
1555 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1556 fprintf(stderr, "cpuid_data is full, no space for "
1557 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1558 abort();
1559 }
a33609ca 1560 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1561 c->function = i;
a33609ca
AL
1562 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1563 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1564 }
1565 break;
1566 }
a94e1428
LX
1567 case 0x1f:
1568 if (env->nr_dies < 2) {
1569 break;
1570 }
486bd5a2
AL
1571 case 4:
1572 case 0xb:
1573 case 0xd:
1574 for (j = 0; ; j++) {
31e8c696
AP
1575 if (i == 0xd && j == 64) {
1576 break;
1577 }
a94e1428
LX
1578
1579 if (i == 0x1f && j == 64) {
1580 break;
1581 }
1582
486bd5a2
AL
1583 c->function = i;
1584 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1585 c->index = j;
a33609ca 1586 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1587
b9bec74b 1588 if (i == 4 && c->eax == 0) {
486bd5a2 1589 break;
b9bec74b
JK
1590 }
1591 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1592 break;
b9bec74b 1593 }
a94e1428
LX
1594 if (i == 0x1f && !(c->ecx & 0xff00)) {
1595 break;
1596 }
b9bec74b 1597 if (i == 0xd && c->eax == 0) {
31e8c696 1598 continue;
b9bec74b 1599 }
f8bb0565
IM
1600 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1601 fprintf(stderr, "cpuid_data is full, no space for "
1602 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1603 abort();
1604 }
a33609ca 1605 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1606 }
1607 break;
80db491d 1608 case 0x7:
e37a5c7f
CP
1609 case 0x14: {
1610 uint32_t times;
1611
1612 c->function = i;
1613 c->index = 0;
1614 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1615 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1616 times = c->eax;
1617
1618 for (j = 1; j <= times; ++j) {
1619 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1620 fprintf(stderr, "cpuid_data is full, no space for "
80db491d 1621 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
e37a5c7f
CP
1622 abort();
1623 }
1624 c = &cpuid_data.entries[cpuid_i++];
1625 c->function = i;
1626 c->index = j;
1627 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1628 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1629 }
1630 break;
1631 }
486bd5a2 1632 default:
486bd5a2 1633 c->function = i;
a33609ca
AL
1634 c->flags = 0;
1635 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1636 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1637 /*
1638 * KVM already returns all zeroes if a CPUID entry is missing,
1639 * so we can omit it and avoid hitting KVM's 80-entry limit.
1640 */
1641 cpuid_i--;
1642 }
486bd5a2
AL
1643 break;
1644 }
05330448 1645 }
0d894367
PB
1646
1647 if (limit >= 0x0a) {
0b368a10 1648 uint32_t eax, edx;
0d894367 1649
0b368a10
JD
1650 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1651
1652 has_architectural_pmu_version = eax & 0xff;
1653 if (has_architectural_pmu_version > 0) {
1654 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1655
1656 /* Shouldn't be more than 32, since that's the number of bits
1657 * available in EBX to tell us _which_ counters are available.
1658 * Play it safe.
1659 */
0b368a10
JD
1660 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1661 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1662 }
1663
1664 if (has_architectural_pmu_version > 1) {
1665 num_architectural_pmu_fixed_counters = edx & 0x1f;
1666
1667 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1668 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1669 }
0d894367
PB
1670 }
1671 }
1672 }
1673
a33609ca 1674 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1675
1676 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1677 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1678 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1679 abort();
1680 }
bb0300dc 1681 c = &cpuid_data.entries[cpuid_i++];
05330448 1682
8f4202fb
BM
1683 switch (i) {
1684 case 0x8000001d:
1685 /* Query for all AMD cache information leaves */
1686 for (j = 0; ; j++) {
1687 c->function = i;
1688 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1689 c->index = j;
1690 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1691
1692 if (c->eax == 0) {
1693 break;
1694 }
1695 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1696 fprintf(stderr, "cpuid_data is full, no space for "
1697 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1698 abort();
1699 }
1700 c = &cpuid_data.entries[cpuid_i++];
1701 }
1702 break;
1703 default:
1704 c->function = i;
1705 c->flags = 0;
1706 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
af95cafb
EH
1707 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1708 /*
1709 * KVM already returns all zeroes if a CPUID entry is missing,
1710 * so we can omit it and avoid hitting KVM's 80-entry limit.
1711 */
1712 cpuid_i--;
1713 }
8f4202fb
BM
1714 break;
1715 }
05330448
AL
1716 }
1717
b3baa152
BW
1718 /* Call Centaur's CPUID instructions they are supported. */
1719 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1720 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1721
1722 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1723 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1724 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1725 abort();
1726 }
b3baa152
BW
1727 c = &cpuid_data.entries[cpuid_i++];
1728
1729 c->function = i;
1730 c->flags = 0;
1731 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1732 }
1733 }
1734
05330448
AL
1735 cpuid_data.cpuid.nent = cpuid_i;
1736
e7701825 1737 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1738 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1739 (CPUID_MCE | CPUID_MCA)
a60f24b5 1740 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1741 uint64_t mcg_cap, unsupported_caps;
e7701825 1742 int banks;
32a42024 1743 int ret;
e7701825 1744
a60f24b5 1745 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1746 if (ret < 0) {
1747 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1748 return ret;
e7701825 1749 }
75d49497 1750
2590f15b 1751 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1752 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1753 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1754 return -ENOTSUP;
75d49497 1755 }
49b69cbf 1756
5120901a
EH
1757 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1758 if (unsupported_caps) {
87f8b626
AR
1759 if (unsupported_caps & MCG_LMCE_P) {
1760 error_report("kvm: LMCE not supported");
1761 return -ENOTSUP;
1762 }
3dc6f869
AF
1763 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1764 unsupported_caps);
5120901a
EH
1765 }
1766
2590f15b
EH
1767 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1768 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1769 if (ret < 0) {
1770 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1771 return ret;
1772 }
e7701825 1773 }
e7701825 1774
2a693142 1775 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
b8cc45d6 1776
df67696e
LJ
1777 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1778 if (c) {
1779 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1780 !!(c->ecx & CPUID_EXT_SMX);
1781 }
1782
87f8b626
AR
1783 if (env->mcg_cap & MCG_LMCE_P) {
1784 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1785 }
1786
d99569d9
EH
1787 if (!env->user_tsc_khz) {
1788 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1789 invtsc_mig_blocker == NULL) {
d99569d9
EH
1790 error_setg(&invtsc_mig_blocker,
1791 "State blocked by non-migratable CPU device"
1792 " (invtsc flag)");
fe44dc91
AA
1793 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1794 if (local_err) {
1795 error_report_err(local_err);
1796 error_free(invtsc_mig_blocker);
79a197ab 1797 return r;
fe44dc91 1798 }
d99569d9 1799 }
68bfd0ad
MT
1800 }
1801
9954a158
PDJ
1802 if (cpu->vmware_cpuid_freq
1803 /* Guests depend on 0x40000000 to detect this feature, so only expose
1804 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1805 && cpu->expose_kvm
1806 && kvm_base == KVM_CPUID_SIGNATURE
1807 /* TSC clock must be stable and known for this feature. */
4bb95b82 1808 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1809
1810 c = &cpuid_data.entries[cpuid_i++];
1811 c->function = KVM_CPUID_SIGNATURE | 0x10;
1812 c->eax = env->tsc_khz;
73b994f6 1813 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
9954a158
PDJ
1814 c->ecx = c->edx = 0;
1815
1816 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1817 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1818 }
1819
1820 cpuid_data.cpuid.nent = cpuid_i;
1821
1822 cpuid_data.cpuid.padding = 0;
1823 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1824 if (r) {
1825 goto fail;
1826 }
1827
28143b40 1828 if (has_xsave) {
5b8063c4 1829 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1f670a95 1830 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
fabacc0f 1831 }
ebbfef2f
LA
1832
1833 max_nested_state_len = kvm_max_nested_state_length();
1834 if (max_nested_state_len > 0) {
1835 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
ebbfef2f 1836
b16c0e20 1837 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1e44f3ab 1838 struct kvm_vmx_nested_state_hdr *vmx_hdr;
ebbfef2f 1839
1e44f3ab
PB
1840 env->nested_state = g_malloc0(max_nested_state_len);
1841 env->nested_state->size = max_nested_state_len;
ebbfef2f 1842 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1e44f3ab 1843
b16c0e20
PB
1844 if (cpu_has_vmx(env)) {
1845 vmx_hdr = &env->nested_state->hdr.vmx;
1846 vmx_hdr->vmxon_pa = -1ull;
1847 vmx_hdr->vmcs12_pa = -1ull;
1848 }
ebbfef2f
LA
1849 }
1850 }
1851
d71b62a1 1852 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1853
273c515c
PB
1854 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1855 has_msr_tsc_aux = false;
1856 }
d1ae67f6 1857
420ae1fc
PB
1858 kvm_init_msrs(cpu);
1859
e9688fab
RK
1860 r = hyperv_init_vcpu(cpu);
1861 if (r) {
1862 goto fail;
1863 }
1864
e7429073 1865 return 0;
fe44dc91
AA
1866
1867 fail:
1868 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 1869
fe44dc91 1870 return r;
05330448
AL
1871}
1872
b1115c99
LA
1873int kvm_arch_destroy_vcpu(CPUState *cs)
1874{
1875 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 1876 CPUX86State *env = &cpu->env;
b1115c99
LA
1877
1878 if (cpu->kvm_msr_buf) {
1879 g_free(cpu->kvm_msr_buf);
1880 cpu->kvm_msr_buf = NULL;
1881 }
1882
ebbfef2f
LA
1883 if (env->nested_state) {
1884 g_free(env->nested_state);
1885 env->nested_state = NULL;
1886 }
1887
2a693142
PN
1888 qemu_del_vm_change_state_handler(cpu->vmsentry);
1889
b1115c99
LA
1890 return 0;
1891}
1892
50a2c6e5 1893void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 1894{
20d695a9 1895 CPUX86State *env = &cpu->env;
dd673288 1896
1a5e9d2f 1897 env->xcr0 = 1;
ddced198 1898 if (kvm_irqchip_in_kernel()) {
dd673288 1899 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
1900 KVM_MP_STATE_UNINITIALIZED;
1901 } else {
1902 env->mp_state = KVM_MP_STATE_RUNNABLE;
1903 }
689141dd 1904
2d384d7c 1905 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
1906 int i;
1907 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1908 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1909 }
606c34bf
RK
1910
1911 hyperv_x86_synic_reset(cpu);
689141dd 1912 }
d645e132
MT
1913 /* enabled by default */
1914 env->poll_control_msr = 1;
caa5af0f
JK
1915}
1916
e0723c45
PB
1917void kvm_arch_do_init_vcpu(X86CPU *cpu)
1918{
1919 CPUX86State *env = &cpu->env;
1920
1921 /* APs get directly into wait-for-SIPI state. */
1922 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1923 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1924 }
1925}
1926
f57bceb6
RH
1927static int kvm_get_supported_feature_msrs(KVMState *s)
1928{
1929 int ret = 0;
1930
1931 if (kvm_feature_msrs != NULL) {
1932 return 0;
1933 }
1934
1935 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1936 return 0;
1937 }
1938
1939 struct kvm_msr_list msr_list;
1940
1941 msr_list.nmsrs = 0;
1942 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1943 if (ret < 0 && ret != -E2BIG) {
1944 error_report("Fetch KVM feature MSR list failed: %s",
1945 strerror(-ret));
1946 return ret;
1947 }
1948
1949 assert(msr_list.nmsrs > 0);
1950 kvm_feature_msrs = (struct kvm_msr_list *) \
1951 g_malloc0(sizeof(msr_list) +
1952 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1953
1954 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1955 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1956
1957 if (ret < 0) {
1958 error_report("Fetch KVM feature MSR list failed: %s",
1959 strerror(-ret));
1960 g_free(kvm_feature_msrs);
1961 kvm_feature_msrs = NULL;
1962 return ret;
1963 }
1964
1965 return 0;
1966}
1967
c3a3a7d3 1968static int kvm_get_supported_msrs(KVMState *s)
05330448 1969{
c3a3a7d3 1970 int ret = 0;
de428cea 1971 struct kvm_msr_list msr_list, *kvm_msr_list;
05330448 1972
de428cea
LQ
1973 /*
1974 * Obtain MSR list from KVM. These are the MSRs that we must
1975 * save/restore.
1976 */
1977 msr_list.nmsrs = 0;
1978 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1979 if (ret < 0 && ret != -E2BIG) {
1980 return ret;
1981 }
1982 /*
1983 * Old kernel modules had a bug and could write beyond the provided
1984 * memory. Allocate at least a safe amount of 1K.
1985 */
1986 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1987 msr_list.nmsrs *
1988 sizeof(msr_list.indices[0])));
05330448 1989
de428cea
LQ
1990 kvm_msr_list->nmsrs = msr_list.nmsrs;
1991 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1992 if (ret >= 0) {
1993 int i;
05330448 1994
de428cea
LQ
1995 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1996 switch (kvm_msr_list->indices[i]) {
1997 case MSR_STAR:
1998 has_msr_star = true;
1999 break;
2000 case MSR_VM_HSAVE_PA:
2001 has_msr_hsave_pa = true;
2002 break;
2003 case MSR_TSC_AUX:
2004 has_msr_tsc_aux = true;
2005 break;
2006 case MSR_TSC_ADJUST:
2007 has_msr_tsc_adjust = true;
2008 break;
2009 case MSR_IA32_TSCDEADLINE:
2010 has_msr_tsc_deadline = true;
2011 break;
2012 case MSR_IA32_SMBASE:
2013 has_msr_smbase = true;
2014 break;
2015 case MSR_SMI_COUNT:
2016 has_msr_smi_count = true;
2017 break;
2018 case MSR_IA32_MISC_ENABLE:
2019 has_msr_misc_enable = true;
2020 break;
2021 case MSR_IA32_BNDCFGS:
2022 has_msr_bndcfgs = true;
2023 break;
2024 case MSR_IA32_XSS:
2025 has_msr_xss = true;
2026 break;
65087997
TX
2027 case MSR_IA32_UMWAIT_CONTROL:
2028 has_msr_umwait = true;
2029 break;
de428cea
LQ
2030 case HV_X64_MSR_CRASH_CTL:
2031 has_msr_hv_crash = true;
2032 break;
2033 case HV_X64_MSR_RESET:
2034 has_msr_hv_reset = true;
2035 break;
2036 case HV_X64_MSR_VP_INDEX:
2037 has_msr_hv_vpindex = true;
2038 break;
2039 case HV_X64_MSR_VP_RUNTIME:
2040 has_msr_hv_runtime = true;
2041 break;
2042 case HV_X64_MSR_SCONTROL:
2043 has_msr_hv_synic = true;
2044 break;
2045 case HV_X64_MSR_STIMER0_CONFIG:
2046 has_msr_hv_stimer = true;
2047 break;
2048 case HV_X64_MSR_TSC_FREQUENCY:
2049 has_msr_hv_frequencies = true;
2050 break;
2051 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2052 has_msr_hv_reenlightenment = true;
2053 break;
2054 case MSR_IA32_SPEC_CTRL:
2055 has_msr_spec_ctrl = true;
2056 break;
2a9758c5
PB
2057 case MSR_IA32_TSX_CTRL:
2058 has_msr_tsx_ctrl = true;
2059 break;
de428cea
LQ
2060 case MSR_VIRT_SSBD:
2061 has_msr_virt_ssbd = true;
2062 break;
2063 case MSR_IA32_ARCH_CAPABILITIES:
2064 has_msr_arch_capabs = true;
2065 break;
2066 case MSR_IA32_CORE_CAPABILITY:
2067 has_msr_core_capabs = true;
2068 break;
ea39f9b6
LX
2069 case MSR_IA32_PERF_CAPABILITIES:
2070 has_msr_perf_capabs = true;
2071 break;
20a78b02
PB
2072 case MSR_IA32_VMX_VMFUNC:
2073 has_msr_vmx_vmfunc = true;
2074 break;
67025148
PB
2075 case MSR_IA32_UCODE_REV:
2076 has_msr_ucode_rev = true;
2077 break;
4a910e1f
VK
2078 case MSR_IA32_VMX_PROCBASED_CTLS2:
2079 has_msr_vmx_procbased_ctls2 = true;
2080 break;
05330448
AL
2081 }
2082 }
05330448
AL
2083 }
2084
de428cea
LQ
2085 g_free(kvm_msr_list);
2086
c3a3a7d3 2087 return ret;
05330448
AL
2088}
2089
6410848b
PB
2090static Notifier smram_machine_done;
2091static KVMMemoryListener smram_listener;
2092static AddressSpace smram_address_space;
2093static MemoryRegion smram_as_root;
2094static MemoryRegion smram_as_mem;
2095
2096static void register_smram_listener(Notifier *n, void *unused)
2097{
2098 MemoryRegion *smram =
2099 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2100
2101 /* Outer container... */
2102 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2103 memory_region_set_enabled(&smram_as_root, true);
2104
2105 /* ... with two regions inside: normal system memory with low
2106 * priority, and...
2107 */
2108 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2109 get_system_memory(), 0, ~0ull);
2110 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2111 memory_region_set_enabled(&smram_as_mem, true);
2112
2113 if (smram) {
2114 /* ... SMRAM with higher priority */
2115 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2116 memory_region_set_enabled(smram, true);
2117 }
2118
2119 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2120 kvm_memory_listener_register(kvm_state, &smram_listener,
2121 &smram_address_space, 1);
2122}
2123
b16565b3 2124int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 2125{
11076198 2126 uint64_t identity_base = 0xfffbc000;
39d6960a 2127 uint64_t shadow_mem;
20420430 2128 int ret;
25d2e361 2129 struct utsname utsname;
20420430 2130
28143b40 2131 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2132 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2133 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 2134
e9688fab
RK
2135 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2136
fd13f23b
LA
2137 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2138 if (has_exception_payload) {
2139 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2140 if (ret < 0) {
2141 error_report("kvm: Failed to enable exception payload cap: %s",
2142 strerror(-ret));
2143 return ret;
2144 }
2145 }
2146
c3a3a7d3 2147 ret = kvm_get_supported_msrs(s);
20420430 2148 if (ret < 0) {
20420430
SY
2149 return ret;
2150 }
25d2e361 2151
f57bceb6
RH
2152 kvm_get_supported_feature_msrs(s);
2153
25d2e361
MT
2154 uname(&utsname);
2155 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2156
4c5b10b7 2157 /*
11076198
JK
2158 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2159 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2160 * Since these must be part of guest physical memory, we need to allocate
2161 * them, both by setting their start addresses in the kernel and by
2162 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2163 *
2164 * Older KVM versions may not support setting the identity map base. In
2165 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2166 * size.
4c5b10b7 2167 */
11076198
JK
2168 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2169 /* Allows up to 16M BIOSes. */
2170 identity_base = 0xfeffc000;
2171
2172 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2173 if (ret < 0) {
2174 return ret;
2175 }
4c5b10b7 2176 }
e56ff191 2177
11076198
JK
2178 /* Set TSS base one page after EPT identity map. */
2179 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2180 if (ret < 0) {
2181 return ret;
2182 }
2183
11076198
JK
2184 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2185 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2186 if (ret < 0) {
11076198 2187 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2188 return ret;
2189 }
2190
23b0898e 2191 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
36ad0e94
MA
2192 if (shadow_mem != -1) {
2193 shadow_mem /= 4096;
2194 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2195 if (ret < 0) {
2196 return ret;
39d6960a
JK
2197 }
2198 }
6410848b 2199
d870cfde 2200 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
8f54bbd0 2201 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
ed9e923c 2202 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
6410848b
PB
2203 smram_machine_done.notify = register_smram_listener;
2204 qemu_add_machine_init_done_notifier(&smram_machine_done);
2205 }
6f131f13
MT
2206
2207 if (enable_cpu_pm) {
2208 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2209 int ret;
2210
2211/* Work around for kernel header with a typo. TODO: fix header and drop. */
2212#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2213#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2214#endif
2215 if (disable_exits) {
2216 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2217 KVM_X86_DISABLE_EXITS_HLT |
d38d201f
WL
2218 KVM_X86_DISABLE_EXITS_PAUSE |
2219 KVM_X86_DISABLE_EXITS_CSTATE);
6f131f13
MT
2220 }
2221
2222 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2223 disable_exits);
2224 if (ret < 0) {
2225 error_report("kvm: guest stopping CPU not supported: %s",
2226 strerror(-ret));
2227 }
2228 }
2229
11076198 2230 return 0;
05330448 2231}
b9bec74b 2232
05330448
AL
2233static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2234{
2235 lhs->selector = rhs->selector;
2236 lhs->base = rhs->base;
2237 lhs->limit = rhs->limit;
2238 lhs->type = 3;
2239 lhs->present = 1;
2240 lhs->dpl = 3;
2241 lhs->db = 0;
2242 lhs->s = 1;
2243 lhs->l = 0;
2244 lhs->g = 0;
2245 lhs->avl = 0;
2246 lhs->unusable = 0;
2247}
2248
2249static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2250{
2251 unsigned flags = rhs->flags;
2252 lhs->selector = rhs->selector;
2253 lhs->base = rhs->base;
2254 lhs->limit = rhs->limit;
2255 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2256 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2257 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2258 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2259 lhs->s = (flags & DESC_S_MASK) != 0;
2260 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2261 lhs->g = (flags & DESC_G_MASK) != 0;
2262 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2263 lhs->unusable = !lhs->present;
7e680753 2264 lhs->padding = 0;
05330448
AL
2265}
2266
2267static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2268{
2269 lhs->selector = rhs->selector;
2270 lhs->base = rhs->base;
2271 lhs->limit = rhs->limit;
d45fc087
RP
2272 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2273 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2274 (rhs->dpl << DESC_DPL_SHIFT) |
2275 (rhs->db << DESC_B_SHIFT) |
2276 (rhs->s * DESC_S_MASK) |
2277 (rhs->l << DESC_L_SHIFT) |
2278 (rhs->g * DESC_G_MASK) |
2279 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2280}
2281
2282static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2283{
b9bec74b 2284 if (set) {
05330448 2285 *kvm_reg = *qemu_reg;
b9bec74b 2286 } else {
05330448 2287 *qemu_reg = *kvm_reg;
b9bec74b 2288 }
05330448
AL
2289}
2290
1bc22652 2291static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2292{
1bc22652 2293 CPUX86State *env = &cpu->env;
05330448
AL
2294 struct kvm_regs regs;
2295 int ret = 0;
2296
2297 if (!set) {
1bc22652 2298 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2299 if (ret < 0) {
05330448 2300 return ret;
b9bec74b 2301 }
05330448
AL
2302 }
2303
2304 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2305 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2306 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2307 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2308 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2309 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2310 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2311 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2312#ifdef TARGET_X86_64
2313 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2314 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2315 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2316 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2317 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2318 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2319 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2320 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2321#endif
2322
2323 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2324 kvm_getput_reg(&regs.rip, &env->eip, set);
2325
b9bec74b 2326 if (set) {
1bc22652 2327 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2328 }
05330448
AL
2329
2330 return ret;
2331}
2332
1bc22652 2333static int kvm_put_fpu(X86CPU *cpu)
05330448 2334{
1bc22652 2335 CPUX86State *env = &cpu->env;
05330448
AL
2336 struct kvm_fpu fpu;
2337 int i;
2338
2339 memset(&fpu, 0, sizeof fpu);
2340 fpu.fsw = env->fpus & ~(7 << 11);
2341 fpu.fsw |= (env->fpstt & 7) << 11;
2342 fpu.fcw = env->fpuc;
42cc8fa6
JK
2343 fpu.last_opcode = env->fpop;
2344 fpu.last_ip = env->fpip;
2345 fpu.last_dp = env->fpdp;
b9bec74b
JK
2346 for (i = 0; i < 8; ++i) {
2347 fpu.ftwx |= (!env->fptags[i]) << i;
2348 }
05330448 2349 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2350 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2351 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2352 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2353 }
05330448
AL
2354 fpu.mxcsr = env->mxcsr;
2355
1bc22652 2356 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2357}
2358
6b42494b
JK
2359#define XSAVE_FCW_FSW 0
2360#define XSAVE_FTW_FOP 1
f1665b21
SY
2361#define XSAVE_CWD_RIP 2
2362#define XSAVE_CWD_RDP 4
2363#define XSAVE_MXCSR 6
2364#define XSAVE_ST_SPACE 8
2365#define XSAVE_XMM_SPACE 40
2366#define XSAVE_XSTATE_BV 128
2367#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
2368#define XSAVE_BNDREGS 240
2369#define XSAVE_BNDCSR 256
9aecd6f8
CP
2370#define XSAVE_OPMASK 272
2371#define XSAVE_ZMM_Hi256 288
2372#define XSAVE_Hi16_ZMM 416
f74eefe0 2373#define XSAVE_PKRU 672
f1665b21 2374
b503717d 2375#define XSAVE_BYTE_OFFSET(word_offset) \
f18793b0 2376 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
b503717d
EH
2377
2378#define ASSERT_OFFSET(word_offset, field) \
2379 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2380 offsetof(X86XSaveArea, field))
2381
2382ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2383ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2384ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2385ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2386ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2387ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2388ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2389ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2390ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2391ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2392ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2393ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2394ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2395ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2396ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2397
1bc22652 2398static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2399{
1bc22652 2400 CPUX86State *env = &cpu->env;
5b8063c4 2401 X86XSaveArea *xsave = env->xsave_buf;
f1665b21 2402
28143b40 2403 if (!has_xsave) {
1bc22652 2404 return kvm_put_fpu(cpu);
b9bec74b 2405 }
86a57621 2406 x86_cpu_xsave_all_areas(cpu, xsave);
f1665b21 2407
9be38598 2408 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2409}
2410
1bc22652 2411static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2412{
1bc22652 2413 CPUX86State *env = &cpu->env;
bdfc8480 2414 struct kvm_xcrs xcrs = {};
f1665b21 2415
28143b40 2416 if (!has_xcrs) {
f1665b21 2417 return 0;
b9bec74b 2418 }
f1665b21
SY
2419
2420 xcrs.nr_xcrs = 1;
2421 xcrs.flags = 0;
2422 xcrs.xcrs[0].xcr = 0;
2423 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2424 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2425}
2426
1bc22652 2427static int kvm_put_sregs(X86CPU *cpu)
05330448 2428{
1bc22652 2429 CPUX86State *env = &cpu->env;
05330448
AL
2430 struct kvm_sregs sregs;
2431
0e607a80
JK
2432 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2433 if (env->interrupt_injected >= 0) {
2434 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2435 (uint64_t)1 << (env->interrupt_injected % 64);
2436 }
05330448
AL
2437
2438 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2439 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2440 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2441 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2442 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2443 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2444 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2445 } else {
b9bec74b
JK
2446 set_seg(&sregs.cs, &env->segs[R_CS]);
2447 set_seg(&sregs.ds, &env->segs[R_DS]);
2448 set_seg(&sregs.es, &env->segs[R_ES]);
2449 set_seg(&sregs.fs, &env->segs[R_FS]);
2450 set_seg(&sregs.gs, &env->segs[R_GS]);
2451 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2452 }
2453
2454 set_seg(&sregs.tr, &env->tr);
2455 set_seg(&sregs.ldt, &env->ldt);
2456
2457 sregs.idt.limit = env->idt.limit;
2458 sregs.idt.base = env->idt.base;
7e680753 2459 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2460 sregs.gdt.limit = env->gdt.limit;
2461 sregs.gdt.base = env->gdt.base;
7e680753 2462 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2463
2464 sregs.cr0 = env->cr[0];
2465 sregs.cr2 = env->cr[2];
2466 sregs.cr3 = env->cr[3];
2467 sregs.cr4 = env->cr[4];
2468
02e51483
CF
2469 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2470 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2471
2472 sregs.efer = env->efer;
2473
1bc22652 2474 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2475}
2476
d71b62a1
EH
2477static void kvm_msr_buf_reset(X86CPU *cpu)
2478{
2479 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2480}
2481
9c600a84
EH
2482static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2483{
2484 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2485 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2486 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2487
2488 assert((void *)(entry + 1) <= limit);
2489
1abc2cae
EH
2490 entry->index = index;
2491 entry->reserved = 0;
2492 entry->data = value;
9c600a84
EH
2493 msrs->nmsrs++;
2494}
2495
73e1b8f2
PB
2496static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2497{
2498 kvm_msr_buf_reset(cpu);
2499 kvm_msr_entry_add(cpu, index, value);
2500
2501 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2502}
2503
f8d9ccf8
DDAG
2504void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2505{
2506 int ret;
2507
2508 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2509 assert(ret == 1);
2510}
2511
7477cd38
MT
2512static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2513{
2514 CPUX86State *env = &cpu->env;
48e1a45c 2515 int ret;
7477cd38
MT
2516
2517 if (!has_msr_tsc_deadline) {
2518 return 0;
2519 }
2520
73e1b8f2 2521 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2522 if (ret < 0) {
2523 return ret;
2524 }
2525
2526 assert(ret == 1);
2527 return 0;
7477cd38
MT
2528}
2529
6bdf863d
JK
2530/*
2531 * Provide a separate write service for the feature control MSR in order to
2532 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2533 * before writing any other state because forcibly leaving nested mode
2534 * invalidates the VCPU state.
2535 */
2536static int kvm_put_msr_feature_control(X86CPU *cpu)
2537{
48e1a45c
PB
2538 int ret;
2539
2540 if (!has_msr_feature_control) {
2541 return 0;
2542 }
6bdf863d 2543
73e1b8f2
PB
2544 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2545 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2546 if (ret < 0) {
2547 return ret;
2548 }
2549
2550 assert(ret == 1);
2551 return 0;
6bdf863d
JK
2552}
2553
20a78b02
PB
2554static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2555{
2556 uint32_t default1, can_be_one, can_be_zero;
2557 uint32_t must_be_one;
2558
2559 switch (index) {
2560 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2561 default1 = 0x00000016;
2562 break;
2563 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2564 default1 = 0x0401e172;
2565 break;
2566 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2567 default1 = 0x000011ff;
2568 break;
2569 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2570 default1 = 0x00036dff;
2571 break;
2572 case MSR_IA32_VMX_PROCBASED_CTLS2:
2573 default1 = 0;
2574 break;
2575 default:
2576 abort();
2577 }
2578
2579 /* If a feature bit is set, the control can be either set or clear.
2580 * Otherwise the value is limited to either 0 or 1 by default1.
2581 */
2582 can_be_one = features | default1;
2583 can_be_zero = features | ~default1;
2584 must_be_one = ~can_be_zero;
2585
2586 /*
2587 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2588 * Bit 32:63 -> 1 if the control bit can be one.
2589 */
2590 return must_be_one | (((uint64_t)can_be_one) << 32);
2591}
2592
2593#define VMCS12_MAX_FIELD_INDEX (0x17)
2594
2595static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2596{
2597 uint64_t kvm_vmx_basic =
2598 kvm_arch_get_supported_msr_feature(kvm_state,
2599 MSR_IA32_VMX_BASIC);
26051882
YZ
2600
2601 if (!kvm_vmx_basic) {
2602 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2603 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2604 */
2605 return;
2606 }
2607
20a78b02
PB
2608 uint64_t kvm_vmx_misc =
2609 kvm_arch_get_supported_msr_feature(kvm_state,
2610 MSR_IA32_VMX_MISC);
2611 uint64_t kvm_vmx_ept_vpid =
2612 kvm_arch_get_supported_msr_feature(kvm_state,
2613 MSR_IA32_VMX_EPT_VPID_CAP);
2614
2615 /*
2616 * If the guest is 64-bit, a value of 1 is allowed for the host address
2617 * space size vmexit control.
2618 */
2619 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2620 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2621
2622 /*
2623 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2624 * not change them for backwards compatibility.
2625 */
2626 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2627 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2628 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2629 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2630
2631 /*
2632 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2633 * change in the future but are always zero for now, clear them to be
2634 * future proof. Bits 32-63 in theory could change, though KVM does
2635 * not support dual-monitor treatment and probably never will; mask
2636 * them out as well.
2637 */
2638 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2639 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2640 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2641
2642 /*
2643 * EPT memory types should not change either, so we do not bother
2644 * adding features for them.
2645 */
2646 uint64_t fixed_vmx_ept_mask =
2647 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2648 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2649 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2650
2651 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2652 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2653 f[FEAT_VMX_PROCBASED_CTLS]));
2654 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2655 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2656 f[FEAT_VMX_PINBASED_CTLS]));
2657 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2658 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2659 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2660 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2661 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2662 f[FEAT_VMX_ENTRY_CTLS]));
2663 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2664 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2665 f[FEAT_VMX_SECONDARY_CTLS]));
2666 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2667 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2668 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2669 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2670 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2671 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2672 if (has_msr_vmx_vmfunc) {
2673 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2674 }
2675
2676 /*
2677 * Just to be safe, write these with constant values. The CRn_FIXED1
2678 * MSRs are generated by KVM based on the vCPU's CPUID.
2679 */
2680 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2681 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2682 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2683 CR4_VMXE_MASK);
2684 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2685 VMCS12_MAX_FIELD_INDEX << 1);
2686}
2687
ea39f9b6
LX
2688static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2689{
2690 uint64_t kvm_perf_cap =
2691 kvm_arch_get_supported_msr_feature(kvm_state,
2692 MSR_IA32_PERF_CAPABILITIES);
2693
2694 if (kvm_perf_cap) {
2695 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2696 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2697 }
2698}
2699
420ae1fc
PB
2700static int kvm_buf_set_msrs(X86CPU *cpu)
2701{
2702 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2703 if (ret < 0) {
2704 return ret;
2705 }
2706
2707 if (ret < cpu->kvm_msr_buf->nmsrs) {
2708 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2709 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2710 (uint32_t)e->index, (uint64_t)e->data);
2711 }
2712
2713 assert(ret == cpu->kvm_msr_buf->nmsrs);
2714 return 0;
2715}
2716
2717static void kvm_init_msrs(X86CPU *cpu)
2718{
2719 CPUX86State *env = &cpu->env;
2720
2721 kvm_msr_buf_reset(cpu);
2722 if (has_msr_arch_capabs) {
2723 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2724 env->features[FEAT_ARCH_CAPABILITIES]);
2725 }
2726
2727 if (has_msr_core_capabs) {
2728 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2729 env->features[FEAT_CORE_CAPABILITY]);
2730 }
2731
ea39f9b6
LX
2732 if (has_msr_perf_capabs && cpu->enable_pmu) {
2733 kvm_msr_entry_add_perf(cpu, env->features);
2734 }
2735
67025148 2736 if (has_msr_ucode_rev) {
32c87d70
PB
2737 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2738 }
2739
420ae1fc
PB
2740 /*
2741 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2742 * all kernels with MSR features should have them.
2743 */
2744 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2745 kvm_msr_entry_add_vmx(cpu, env->features);
2746 }
2747
2748 assert(kvm_buf_set_msrs(cpu) == 0);
2749}
2750
1bc22652 2751static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 2752{
1bc22652 2753 CPUX86State *env = &cpu->env;
9c600a84 2754 int i;
05330448 2755
d71b62a1
EH
2756 kvm_msr_buf_reset(cpu);
2757
9c600a84
EH
2758 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2759 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2760 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2761 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 2762 if (has_msr_star) {
9c600a84 2763 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 2764 }
c3a3a7d3 2765 if (has_msr_hsave_pa) {
9c600a84 2766 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2767 }
c9b8f6b6 2768 if (has_msr_tsc_aux) {
9c600a84 2769 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2770 }
f28558d3 2771 if (has_msr_tsc_adjust) {
9c600a84 2772 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2773 }
21e87c46 2774 if (has_msr_misc_enable) {
9c600a84 2775 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2776 env->msr_ia32_misc_enable);
2777 }
fc12d72e 2778 if (has_msr_smbase) {
9c600a84 2779 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2780 }
e13713db
LA
2781 if (has_msr_smi_count) {
2782 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2783 }
439d19f2 2784 if (has_msr_bndcfgs) {
9c600a84 2785 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2786 }
18cd2c17 2787 if (has_msr_xss) {
9c600a84 2788 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2789 }
65087997
TX
2790 if (has_msr_umwait) {
2791 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2792 }
a33a2cfe
PB
2793 if (has_msr_spec_ctrl) {
2794 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2795 }
2a9758c5
PB
2796 if (has_msr_tsx_ctrl) {
2797 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2798 }
cfeea0c0
KRW
2799 if (has_msr_virt_ssbd) {
2800 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2801 }
2802
05330448 2803#ifdef TARGET_X86_64
25d2e361 2804 if (lm_capable_kernel) {
9c600a84
EH
2805 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2806 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2807 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2808 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2809 }
05330448 2810#endif
a33a2cfe 2811
ff5c186b 2812 /*
0d894367
PB
2813 * The following MSRs have side effects on the guest or are too heavy
2814 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
2815 */
2816 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
2817 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2818 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2819 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
55c911a5 2820 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2821 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 2822 }
55c911a5 2823 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2824 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 2825 }
55c911a5 2826 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2827 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 2828 }
d645e132
MT
2829
2830 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2831 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2832 }
2833
0b368a10
JD
2834 if (has_architectural_pmu_version > 0) {
2835 if (has_architectural_pmu_version > 1) {
2836 /* Stop the counter. */
2837 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2838 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2839 }
0d894367
PB
2840
2841 /* Set the counter values. */
0b368a10 2842 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2843 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
2844 env->msr_fixed_counters[i]);
2845 }
0b368a10 2846 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 2847 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 2848 env->msr_gp_counters[i]);
9c600a84 2849 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
2850 env->msr_gp_evtsel[i]);
2851 }
0b368a10
JD
2852 if (has_architectural_pmu_version > 1) {
2853 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2854 env->msr_global_status);
2855 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2856 env->msr_global_ovf_ctrl);
2857
2858 /* Now start the PMU. */
2859 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2860 env->msr_fixed_ctr_ctrl);
2861 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2862 env->msr_global_ctrl);
2863 }
0d894367 2864 }
da1cc323
EY
2865 /*
2866 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2867 * only sync them to KVM on the first cpu
2868 */
2869 if (current_cpu == first_cpu) {
2870 if (has_msr_hv_hypercall) {
2871 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2872 env->msr_hv_guest_os_id);
2873 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2874 env->msr_hv_hypercall);
2875 }
2d384d7c 2876 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
2877 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2878 env->msr_hv_tsc);
2879 }
2d384d7c 2880 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
2881 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2882 env->msr_hv_reenlightenment_control);
2883 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2884 env->msr_hv_tsc_emulation_control);
2885 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2886 env->msr_hv_tsc_emulation_status);
2887 }
eab70139 2888 }
2d384d7c 2889 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 2890 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 2891 env->msr_hv_vapic);
eab70139 2892 }
f2a53c9e
AS
2893 if (has_msr_hv_crash) {
2894 int j;
2895
5e953812 2896 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 2897 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
2898 env->msr_hv_crash_params[j]);
2899
5e953812 2900 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 2901 }
46eb8f98 2902 if (has_msr_hv_runtime) {
9c600a84 2903 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 2904 }
2d384d7c
VK
2905 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2906 && hv_vpindex_settable) {
701189e3
RK
2907 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2908 hyperv_vp_index(CPU(cpu)));
e9688fab 2909 }
2d384d7c 2910 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
2911 int j;
2912
09df29b6
RK
2913 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2914
9c600a84 2915 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 2916 env->msr_hv_synic_control);
9c600a84 2917 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 2918 env->msr_hv_synic_evt_page);
9c600a84 2919 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
2920 env->msr_hv_synic_msg_page);
2921
2922 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 2923 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
2924 env->msr_hv_synic_sint[j]);
2925 }
2926 }
ff99aa64
AS
2927 if (has_msr_hv_stimer) {
2928 int j;
2929
2930 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 2931 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
2932 env->msr_hv_stimer_config[j]);
2933 }
2934
2935 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 2936 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
2937 env->msr_hv_stimer_count[j]);
2938 }
2939 }
1eabfce6 2940 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
2941 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2942
9c600a84
EH
2943 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2944 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2945 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2946 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2947 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2948 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2949 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2950 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2951 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2952 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2953 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2954 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 2955 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
2956 /* The CPU GPs if we write to a bit above the physical limit of
2957 * the host CPU (and KVM emulates that)
2958 */
2959 uint64_t mask = env->mtrr_var[i].mask;
2960 mask &= phys_mask;
2961
9c600a84
EH
2962 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2963 env->mtrr_var[i].base);
112dad69 2964 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
2965 }
2966 }
b77146e9
CP
2967 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2968 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2969 0x14, 1, R_EAX) & 0x7;
2970
2971 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2972 env->msr_rtit_ctrl);
2973 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2974 env->msr_rtit_status);
2975 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2976 env->msr_rtit_output_base);
2977 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2978 env->msr_rtit_output_mask);
2979 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2980 env->msr_rtit_cr3_match);
2981 for (i = 0; i < addr_num; i++) {
2982 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2983 env->msr_rtit_addrs[i]);
2984 }
2985 }
6bdf863d
JK
2986
2987 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2988 * kvm_put_msr_feature_control. */
ea643051 2989 }
20a78b02 2990
57780495 2991 if (env->mcg_cap) {
d8da8574 2992 int i;
b9bec74b 2993
9c600a84
EH
2994 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2995 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
2996 if (has_msr_mcg_ext_ctl) {
2997 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2998 }
c34d440a 2999 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3000 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
3001 }
3002 }
1a03675d 3003
420ae1fc 3004 return kvm_buf_set_msrs(cpu);
05330448
AL
3005}
3006
3007
1bc22652 3008static int kvm_get_fpu(X86CPU *cpu)
05330448 3009{
1bc22652 3010 CPUX86State *env = &cpu->env;
05330448
AL
3011 struct kvm_fpu fpu;
3012 int i, ret;
3013
1bc22652 3014 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 3015 if (ret < 0) {
05330448 3016 return ret;
b9bec74b 3017 }
05330448
AL
3018
3019 env->fpstt = (fpu.fsw >> 11) & 7;
3020 env->fpus = fpu.fsw;
3021 env->fpuc = fpu.fcw;
42cc8fa6
JK
3022 env->fpop = fpu.last_opcode;
3023 env->fpip = fpu.last_ip;
3024 env->fpdp = fpu.last_dp;
b9bec74b
JK
3025 for (i = 0; i < 8; ++i) {
3026 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3027 }
05330448 3028 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 3029 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
3030 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3031 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 3032 }
05330448
AL
3033 env->mxcsr = fpu.mxcsr;
3034
3035 return 0;
3036}
3037
1bc22652 3038static int kvm_get_xsave(X86CPU *cpu)
f1665b21 3039{
1bc22652 3040 CPUX86State *env = &cpu->env;
5b8063c4 3041 X86XSaveArea *xsave = env->xsave_buf;
86a57621 3042 int ret;
f1665b21 3043
28143b40 3044 if (!has_xsave) {
1bc22652 3045 return kvm_get_fpu(cpu);
b9bec74b 3046 }
f1665b21 3047
1bc22652 3048 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 3049 if (ret < 0) {
f1665b21 3050 return ret;
0f53994f 3051 }
86a57621 3052 x86_cpu_xrstor_all_areas(cpu, xsave);
f1665b21 3053
f1665b21 3054 return 0;
f1665b21
SY
3055}
3056
1bc22652 3057static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 3058{
1bc22652 3059 CPUX86State *env = &cpu->env;
f1665b21
SY
3060 int i, ret;
3061 struct kvm_xcrs xcrs;
3062
28143b40 3063 if (!has_xcrs) {
f1665b21 3064 return 0;
b9bec74b 3065 }
f1665b21 3066
1bc22652 3067 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 3068 if (ret < 0) {
f1665b21 3069 return ret;
b9bec74b 3070 }
f1665b21 3071
b9bec74b 3072 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 3073 /* Only support xcr0 now */
0fd53fec
PB
3074 if (xcrs.xcrs[i].xcr == 0) {
3075 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
3076 break;
3077 }
b9bec74b 3078 }
f1665b21 3079 return 0;
f1665b21
SY
3080}
3081
1bc22652 3082static int kvm_get_sregs(X86CPU *cpu)
05330448 3083{
1bc22652 3084 CPUX86State *env = &cpu->env;
05330448 3085 struct kvm_sregs sregs;
0e607a80 3086 int bit, i, ret;
05330448 3087
1bc22652 3088 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 3089 if (ret < 0) {
05330448 3090 return ret;
b9bec74b 3091 }
05330448 3092
0e607a80
JK
3093 /* There can only be one pending IRQ set in the bitmap at a time, so try
3094 to find it and save its number instead (-1 for none). */
3095 env->interrupt_injected = -1;
3096 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3097 if (sregs.interrupt_bitmap[i]) {
3098 bit = ctz64(sregs.interrupt_bitmap[i]);
3099 env->interrupt_injected = i * 64 + bit;
3100 break;
3101 }
3102 }
05330448
AL
3103
3104 get_seg(&env->segs[R_CS], &sregs.cs);
3105 get_seg(&env->segs[R_DS], &sregs.ds);
3106 get_seg(&env->segs[R_ES], &sregs.es);
3107 get_seg(&env->segs[R_FS], &sregs.fs);
3108 get_seg(&env->segs[R_GS], &sregs.gs);
3109 get_seg(&env->segs[R_SS], &sregs.ss);
3110
3111 get_seg(&env->tr, &sregs.tr);
3112 get_seg(&env->ldt, &sregs.ldt);
3113
3114 env->idt.limit = sregs.idt.limit;
3115 env->idt.base = sregs.idt.base;
3116 env->gdt.limit = sregs.gdt.limit;
3117 env->gdt.base = sregs.gdt.base;
3118
3119 env->cr[0] = sregs.cr0;
3120 env->cr[2] = sregs.cr2;
3121 env->cr[3] = sregs.cr3;
3122 env->cr[4] = sregs.cr4;
3123
05330448 3124 env->efer = sregs.efer;
cce47516
JK
3125
3126 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 3127 x86_update_hflags(env);
05330448
AL
3128
3129 return 0;
3130}
3131
1bc22652 3132static int kvm_get_msrs(X86CPU *cpu)
05330448 3133{
1bc22652 3134 CPUX86State *env = &cpu->env;
d71b62a1 3135 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 3136 int ret, i;
fcc35e7c 3137 uint64_t mtrr_top_bits;
05330448 3138
d71b62a1
EH
3139 kvm_msr_buf_reset(cpu);
3140
9c600a84
EH
3141 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3142 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3143 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3144 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 3145 if (has_msr_star) {
9c600a84 3146 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 3147 }
c3a3a7d3 3148 if (has_msr_hsave_pa) {
9c600a84 3149 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 3150 }
c9b8f6b6 3151 if (has_msr_tsc_aux) {
9c600a84 3152 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 3153 }
f28558d3 3154 if (has_msr_tsc_adjust) {
9c600a84 3155 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 3156 }
aa82ba54 3157 if (has_msr_tsc_deadline) {
9c600a84 3158 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 3159 }
21e87c46 3160 if (has_msr_misc_enable) {
9c600a84 3161 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 3162 }
fc12d72e 3163 if (has_msr_smbase) {
9c600a84 3164 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 3165 }
e13713db
LA
3166 if (has_msr_smi_count) {
3167 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3168 }
df67696e 3169 if (has_msr_feature_control) {
9c600a84 3170 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 3171 }
79e9ebeb 3172 if (has_msr_bndcfgs) {
9c600a84 3173 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 3174 }
18cd2c17 3175 if (has_msr_xss) {
9c600a84 3176 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 3177 }
65087997
TX
3178 if (has_msr_umwait) {
3179 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3180 }
a33a2cfe
PB
3181 if (has_msr_spec_ctrl) {
3182 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3183 }
2a9758c5
PB
3184 if (has_msr_tsx_ctrl) {
3185 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3186 }
cfeea0c0
KRW
3187 if (has_msr_virt_ssbd) {
3188 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3189 }
b8cc45d6 3190 if (!env->tsc_valid) {
9c600a84 3191 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 3192 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
3193 }
3194
05330448 3195#ifdef TARGET_X86_64
25d2e361 3196 if (lm_capable_kernel) {
9c600a84
EH
3197 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3198 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3199 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3200 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 3201 }
05330448 3202#endif
9c600a84
EH
3203 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3204 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
55c911a5 3205 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 3206 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
c5999bfc 3207 }
55c911a5 3208 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 3209 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 3210 }
55c911a5 3211 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 3212 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 3213 }
d645e132
MT
3214 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3215 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3216 }
0b368a10
JD
3217 if (has_architectural_pmu_version > 0) {
3218 if (has_architectural_pmu_version > 1) {
3219 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3220 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3221 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3222 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3223 }
3224 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 3225 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 3226 }
0b368a10 3227 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
3228 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3229 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
3230 }
3231 }
1a03675d 3232
57780495 3233 if (env->mcg_cap) {
9c600a84
EH
3234 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3235 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
3236 if (has_msr_mcg_ext_ctl) {
3237 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3238 }
b9bec74b 3239 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 3240 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 3241 }
57780495 3242 }
57780495 3243
1c90ef26 3244 if (has_msr_hv_hypercall) {
9c600a84
EH
3245 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3246 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 3247 }
2d384d7c 3248 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 3249 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 3250 }
2d384d7c 3251 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 3252 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 3253 }
2d384d7c 3254 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
3255 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3256 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3257 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3258 }
f2a53c9e
AS
3259 if (has_msr_hv_crash) {
3260 int j;
3261
5e953812 3262 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 3263 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
3264 }
3265 }
46eb8f98 3266 if (has_msr_hv_runtime) {
9c600a84 3267 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 3268 }
2d384d7c 3269 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
3270 uint32_t msr;
3271
9c600a84 3272 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
3273 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3274 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 3275 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 3276 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
3277 }
3278 }
ff99aa64
AS
3279 if (has_msr_hv_stimer) {
3280 uint32_t msr;
3281
3282 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3283 msr++) {
9c600a84 3284 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
3285 }
3286 }
1eabfce6 3287 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
3288 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3289 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3290 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3291 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3292 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3293 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3294 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3295 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3296 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3297 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3298 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3299 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 3300 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
3301 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3302 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
3303 }
3304 }
5ef68987 3305
b77146e9
CP
3306 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3307 int addr_num =
3308 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3309
3310 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3311 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3312 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3313 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3314 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3315 for (i = 0; i < addr_num; i++) {
3316 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3317 }
3318 }
3319
d71b62a1 3320 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 3321 if (ret < 0) {
05330448 3322 return ret;
b9bec74b 3323 }
05330448 3324
c70b11d1
EH
3325 if (ret < cpu->kvm_msr_buf->nmsrs) {
3326 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3327 error_report("error: failed to get MSR 0x%" PRIx32,
3328 (uint32_t)e->index);
3329 }
3330
9c600a84 3331 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3332 /*
3333 * MTRR masks: Each mask consists of 5 parts
3334 * a 10..0: must be zero
3335 * b 11 : valid bit
3336 * c n-1.12: actual mask bits
3337 * d 51..n: reserved must be zero
3338 * e 63.52: reserved must be zero
3339 *
3340 * 'n' is the number of physical bits supported by the CPU and is
3341 * apparently always <= 52. We know our 'n' but don't know what
3342 * the destinations 'n' is; it might be smaller, in which case
3343 * it masks (c) on loading. It might be larger, in which case
3344 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3345 * we're migrating to.
3346 */
3347
3348 if (cpu->fill_mtrr_mask) {
3349 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3350 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3351 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3352 } else {
3353 mtrr_top_bits = 0;
3354 }
3355
05330448 3356 for (i = 0; i < ret; i++) {
0d894367
PB
3357 uint32_t index = msrs[i].index;
3358 switch (index) {
05330448
AL
3359 case MSR_IA32_SYSENTER_CS:
3360 env->sysenter_cs = msrs[i].data;
3361 break;
3362 case MSR_IA32_SYSENTER_ESP:
3363 env->sysenter_esp = msrs[i].data;
3364 break;
3365 case MSR_IA32_SYSENTER_EIP:
3366 env->sysenter_eip = msrs[i].data;
3367 break;
0c03266a
JK
3368 case MSR_PAT:
3369 env->pat = msrs[i].data;
3370 break;
05330448
AL
3371 case MSR_STAR:
3372 env->star = msrs[i].data;
3373 break;
3374#ifdef TARGET_X86_64
3375 case MSR_CSTAR:
3376 env->cstar = msrs[i].data;
3377 break;
3378 case MSR_KERNELGSBASE:
3379 env->kernelgsbase = msrs[i].data;
3380 break;
3381 case MSR_FMASK:
3382 env->fmask = msrs[i].data;
3383 break;
3384 case MSR_LSTAR:
3385 env->lstar = msrs[i].data;
3386 break;
3387#endif
3388 case MSR_IA32_TSC:
3389 env->tsc = msrs[i].data;
3390 break;
c9b8f6b6
AS
3391 case MSR_TSC_AUX:
3392 env->tsc_aux = msrs[i].data;
3393 break;
f28558d3
WA
3394 case MSR_TSC_ADJUST:
3395 env->tsc_adjust = msrs[i].data;
3396 break;
aa82ba54
LJ
3397 case MSR_IA32_TSCDEADLINE:
3398 env->tsc_deadline = msrs[i].data;
3399 break;
aa851e36
MT
3400 case MSR_VM_HSAVE_PA:
3401 env->vm_hsave = msrs[i].data;
3402 break;
1a03675d
GC
3403 case MSR_KVM_SYSTEM_TIME:
3404 env->system_time_msr = msrs[i].data;
3405 break;
3406 case MSR_KVM_WALL_CLOCK:
3407 env->wall_clock_msr = msrs[i].data;
3408 break;
57780495
MT
3409 case MSR_MCG_STATUS:
3410 env->mcg_status = msrs[i].data;
3411 break;
3412 case MSR_MCG_CTL:
3413 env->mcg_ctl = msrs[i].data;
3414 break;
87f8b626
AR
3415 case MSR_MCG_EXT_CTL:
3416 env->mcg_ext_ctl = msrs[i].data;
3417 break;
21e87c46
AK
3418 case MSR_IA32_MISC_ENABLE:
3419 env->msr_ia32_misc_enable = msrs[i].data;
3420 break;
fc12d72e
PB
3421 case MSR_IA32_SMBASE:
3422 env->smbase = msrs[i].data;
3423 break;
e13713db
LA
3424 case MSR_SMI_COUNT:
3425 env->msr_smi_count = msrs[i].data;
3426 break;
0779caeb
ACL
3427 case MSR_IA32_FEATURE_CONTROL:
3428 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3429 break;
79e9ebeb
LJ
3430 case MSR_IA32_BNDCFGS:
3431 env->msr_bndcfgs = msrs[i].data;
3432 break;
18cd2c17
WL
3433 case MSR_IA32_XSS:
3434 env->xss = msrs[i].data;
3435 break;
65087997
TX
3436 case MSR_IA32_UMWAIT_CONTROL:
3437 env->umwait = msrs[i].data;
3438 break;
57780495 3439 default:
57780495
MT
3440 if (msrs[i].index >= MSR_MC0_CTL &&
3441 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3442 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3443 }
d8da8574 3444 break;
f6584ee2
GN
3445 case MSR_KVM_ASYNC_PF_EN:
3446 env->async_pf_en_msr = msrs[i].data;
3447 break;
bc9a839d
MT
3448 case MSR_KVM_PV_EOI_EN:
3449 env->pv_eoi_en_msr = msrs[i].data;
3450 break;
917367aa
MT
3451 case MSR_KVM_STEAL_TIME:
3452 env->steal_time_msr = msrs[i].data;
3453 break;
d645e132
MT
3454 case MSR_KVM_POLL_CONTROL: {
3455 env->poll_control_msr = msrs[i].data;
3456 break;
3457 }
0d894367
PB
3458 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3459 env->msr_fixed_ctr_ctrl = msrs[i].data;
3460 break;
3461 case MSR_CORE_PERF_GLOBAL_CTRL:
3462 env->msr_global_ctrl = msrs[i].data;
3463 break;
3464 case MSR_CORE_PERF_GLOBAL_STATUS:
3465 env->msr_global_status = msrs[i].data;
3466 break;
3467 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3468 env->msr_global_ovf_ctrl = msrs[i].data;
3469 break;
3470 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3471 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3472 break;
3473 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3474 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3475 break;
3476 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3477 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3478 break;
1c90ef26
VR
3479 case HV_X64_MSR_HYPERCALL:
3480 env->msr_hv_hypercall = msrs[i].data;
3481 break;
3482 case HV_X64_MSR_GUEST_OS_ID:
3483 env->msr_hv_guest_os_id = msrs[i].data;
3484 break;
5ef68987
VR
3485 case HV_X64_MSR_APIC_ASSIST_PAGE:
3486 env->msr_hv_vapic = msrs[i].data;
3487 break;
48a5f3bc
VR
3488 case HV_X64_MSR_REFERENCE_TSC:
3489 env->msr_hv_tsc = msrs[i].data;
3490 break;
f2a53c9e
AS
3491 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3492 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3493 break;
46eb8f98
AS
3494 case HV_X64_MSR_VP_RUNTIME:
3495 env->msr_hv_runtime = msrs[i].data;
3496 break;
866eea9a
AS
3497 case HV_X64_MSR_SCONTROL:
3498 env->msr_hv_synic_control = msrs[i].data;
3499 break;
866eea9a
AS
3500 case HV_X64_MSR_SIEFP:
3501 env->msr_hv_synic_evt_page = msrs[i].data;
3502 break;
3503 case HV_X64_MSR_SIMP:
3504 env->msr_hv_synic_msg_page = msrs[i].data;
3505 break;
3506 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3507 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3508 break;
3509 case HV_X64_MSR_STIMER0_CONFIG:
3510 case HV_X64_MSR_STIMER1_CONFIG:
3511 case HV_X64_MSR_STIMER2_CONFIG:
3512 case HV_X64_MSR_STIMER3_CONFIG:
3513 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3514 msrs[i].data;
3515 break;
3516 case HV_X64_MSR_STIMER0_COUNT:
3517 case HV_X64_MSR_STIMER1_COUNT:
3518 case HV_X64_MSR_STIMER2_COUNT:
3519 case HV_X64_MSR_STIMER3_COUNT:
3520 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3521 msrs[i].data;
866eea9a 3522 break;
ba6a4fd9
VK
3523 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3524 env->msr_hv_reenlightenment_control = msrs[i].data;
3525 break;
3526 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3527 env->msr_hv_tsc_emulation_control = msrs[i].data;
3528 break;
3529 case HV_X64_MSR_TSC_EMULATION_STATUS:
3530 env->msr_hv_tsc_emulation_status = msrs[i].data;
3531 break;
d1ae67f6
AW
3532 case MSR_MTRRdefType:
3533 env->mtrr_deftype = msrs[i].data;
3534 break;
3535 case MSR_MTRRfix64K_00000:
3536 env->mtrr_fixed[0] = msrs[i].data;
3537 break;
3538 case MSR_MTRRfix16K_80000:
3539 env->mtrr_fixed[1] = msrs[i].data;
3540 break;
3541 case MSR_MTRRfix16K_A0000:
3542 env->mtrr_fixed[2] = msrs[i].data;
3543 break;
3544 case MSR_MTRRfix4K_C0000:
3545 env->mtrr_fixed[3] = msrs[i].data;
3546 break;
3547 case MSR_MTRRfix4K_C8000:
3548 env->mtrr_fixed[4] = msrs[i].data;
3549 break;
3550 case MSR_MTRRfix4K_D0000:
3551 env->mtrr_fixed[5] = msrs[i].data;
3552 break;
3553 case MSR_MTRRfix4K_D8000:
3554 env->mtrr_fixed[6] = msrs[i].data;
3555 break;
3556 case MSR_MTRRfix4K_E0000:
3557 env->mtrr_fixed[7] = msrs[i].data;
3558 break;
3559 case MSR_MTRRfix4K_E8000:
3560 env->mtrr_fixed[8] = msrs[i].data;
3561 break;
3562 case MSR_MTRRfix4K_F0000:
3563 env->mtrr_fixed[9] = msrs[i].data;
3564 break;
3565 case MSR_MTRRfix4K_F8000:
3566 env->mtrr_fixed[10] = msrs[i].data;
3567 break;
3568 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3569 if (index & 1) {
fcc35e7c
DDAG
3570 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3571 mtrr_top_bits;
d1ae67f6
AW
3572 } else {
3573 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3574 }
3575 break;
a33a2cfe
PB
3576 case MSR_IA32_SPEC_CTRL:
3577 env->spec_ctrl = msrs[i].data;
3578 break;
2a9758c5
PB
3579 case MSR_IA32_TSX_CTRL:
3580 env->tsx_ctrl = msrs[i].data;
3581 break;
cfeea0c0
KRW
3582 case MSR_VIRT_SSBD:
3583 env->virt_ssbd = msrs[i].data;
3584 break;
b77146e9
CP
3585 case MSR_IA32_RTIT_CTL:
3586 env->msr_rtit_ctrl = msrs[i].data;
3587 break;
3588 case MSR_IA32_RTIT_STATUS:
3589 env->msr_rtit_status = msrs[i].data;
3590 break;
3591 case MSR_IA32_RTIT_OUTPUT_BASE:
3592 env->msr_rtit_output_base = msrs[i].data;
3593 break;
3594 case MSR_IA32_RTIT_OUTPUT_MASK:
3595 env->msr_rtit_output_mask = msrs[i].data;
3596 break;
3597 case MSR_IA32_RTIT_CR3_MATCH:
3598 env->msr_rtit_cr3_match = msrs[i].data;
3599 break;
3600 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3601 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3602 break;
05330448
AL
3603 }
3604 }
3605
3606 return 0;
3607}
3608
1bc22652 3609static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3610{
1bc22652 3611 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3612
1bc22652 3613 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3614}
3615
23d02d9b 3616static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3617{
259186a7 3618 CPUState *cs = CPU(cpu);
23d02d9b 3619 CPUX86State *env = &cpu->env;
9bdbe550
HB
3620 struct kvm_mp_state mp_state;
3621 int ret;
3622
259186a7 3623 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3624 if (ret < 0) {
3625 return ret;
3626 }
3627 env->mp_state = mp_state.mp_state;
c14750e8 3628 if (kvm_irqchip_in_kernel()) {
259186a7 3629 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3630 }
9bdbe550
HB
3631 return 0;
3632}
3633
1bc22652 3634static int kvm_get_apic(X86CPU *cpu)
680c1c6f 3635{
02e51483 3636 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
3637 struct kvm_lapic_state kapic;
3638 int ret;
3639
3d4b2649 3640 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 3641 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
3642 if (ret < 0) {
3643 return ret;
3644 }
3645
3646 kvm_get_apic_state(apic, &kapic);
3647 }
3648 return 0;
3649}
3650
1bc22652 3651static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 3652{
fc12d72e 3653 CPUState *cs = CPU(cpu);
1bc22652 3654 CPUX86State *env = &cpu->env;
076796f8 3655 struct kvm_vcpu_events events = {};
a0fb002c
JK
3656
3657 if (!kvm_has_vcpu_events()) {
3658 return 0;
3659 }
3660
fd13f23b
LA
3661 events.flags = 0;
3662
3663 if (has_exception_payload) {
3664 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3665 events.exception.pending = env->exception_pending;
3666 events.exception_has_payload = env->exception_has_payload;
3667 events.exception_payload = env->exception_payload;
3668 }
3669 events.exception.nr = env->exception_nr;
3670 events.exception.injected = env->exception_injected;
a0fb002c
JK
3671 events.exception.has_error_code = env->has_error_code;
3672 events.exception.error_code = env->error_code;
3673
3674 events.interrupt.injected = (env->interrupt_injected >= 0);
3675 events.interrupt.nr = env->interrupt_injected;
3676 events.interrupt.soft = env->soft_interrupt;
3677
3678 events.nmi.injected = env->nmi_injected;
3679 events.nmi.pending = env->nmi_pending;
3680 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3681
3682 events.sipi_vector = env->sipi_vector;
3683
fc12d72e
PB
3684 if (has_msr_smbase) {
3685 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3686 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3687 if (kvm_irqchip_in_kernel()) {
3688 /* As soon as these are moved to the kernel, remove them
3689 * from cs->interrupt_request.
3690 */
3691 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3692 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3693 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3694 } else {
3695 /* Keep these in cs->interrupt_request. */
3696 events.smi.pending = 0;
3697 events.smi.latched_init = 0;
3698 }
fc3a1fd7
DDAG
3699 /* Stop SMI delivery on old machine types to avoid a reboot
3700 * on an inward migration of an old VM.
3701 */
3702 if (!cpu->kvm_no_smi_migration) {
3703 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3704 }
fc12d72e
PB
3705 }
3706
ea643051 3707 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
3708 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3709 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3710 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3711 }
ea643051 3712 }
aee028b9 3713
1bc22652 3714 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
3715}
3716
1bc22652 3717static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 3718{
1bc22652 3719 CPUX86State *env = &cpu->env;
a0fb002c
JK
3720 struct kvm_vcpu_events events;
3721 int ret;
3722
3723 if (!kvm_has_vcpu_events()) {
3724 return 0;
3725 }
3726
fc12d72e 3727 memset(&events, 0, sizeof(events));
1bc22652 3728 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
3729 if (ret < 0) {
3730 return ret;
3731 }
fd13f23b
LA
3732
3733 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3734 env->exception_pending = events.exception.pending;
3735 env->exception_has_payload = events.exception_has_payload;
3736 env->exception_payload = events.exception_payload;
3737 } else {
3738 env->exception_pending = 0;
3739 env->exception_has_payload = false;
3740 }
3741 env->exception_injected = events.exception.injected;
3742 env->exception_nr =
3743 (env->exception_pending || env->exception_injected) ?
3744 events.exception.nr : -1;
a0fb002c
JK
3745 env->has_error_code = events.exception.has_error_code;
3746 env->error_code = events.exception.error_code;
3747
3748 env->interrupt_injected =
3749 events.interrupt.injected ? events.interrupt.nr : -1;
3750 env->soft_interrupt = events.interrupt.soft;
3751
3752 env->nmi_injected = events.nmi.injected;
3753 env->nmi_pending = events.nmi.pending;
3754 if (events.nmi.masked) {
3755 env->hflags2 |= HF2_NMI_MASK;
3756 } else {
3757 env->hflags2 &= ~HF2_NMI_MASK;
3758 }
3759
fc12d72e
PB
3760 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3761 if (events.smi.smm) {
3762 env->hflags |= HF_SMM_MASK;
3763 } else {
3764 env->hflags &= ~HF_SMM_MASK;
3765 }
3766 if (events.smi.pending) {
3767 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3768 } else {
3769 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3770 }
3771 if (events.smi.smm_inside_nmi) {
3772 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3773 } else {
3774 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3775 }
3776 if (events.smi.latched_init) {
3777 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3778 } else {
3779 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3780 }
3781 }
3782
a0fb002c 3783 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
3784
3785 return 0;
3786}
3787
1bc22652 3788static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 3789{
ed2803da 3790 CPUState *cs = CPU(cpu);
1bc22652 3791 CPUX86State *env = &cpu->env;
b0b1d690 3792 int ret = 0;
b0b1d690
JK
3793 unsigned long reinject_trap = 0;
3794
3795 if (!kvm_has_vcpu_events()) {
fd13f23b 3796 if (env->exception_nr == EXCP01_DB) {
b0b1d690 3797 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 3798 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
3799 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3800 }
fd13f23b 3801 kvm_reset_exception(env);
b0b1d690
JK
3802 }
3803
3804 /*
3805 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3806 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3807 * by updating the debug state once again if single-stepping is on.
3808 * Another reason to call kvm_update_guest_debug here is a pending debug
3809 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3810 * reinject them via SET_GUEST_DEBUG.
3811 */
3812 if (reinject_trap ||
ed2803da 3813 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 3814 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 3815 }
b0b1d690
JK
3816 return ret;
3817}
3818
1bc22652 3819static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 3820{
1bc22652 3821 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3822 struct kvm_debugregs dbgregs;
3823 int i;
3824
3825 if (!kvm_has_debugregs()) {
3826 return 0;
3827 }
3828
1f670a95 3829 memset(&dbgregs, 0, sizeof(dbgregs));
ff44f1a3
JK
3830 for (i = 0; i < 4; i++) {
3831 dbgregs.db[i] = env->dr[i];
3832 }
3833 dbgregs.dr6 = env->dr[6];
3834 dbgregs.dr7 = env->dr[7];
3835 dbgregs.flags = 0;
3836
1bc22652 3837 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
3838}
3839
1bc22652 3840static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 3841{
1bc22652 3842 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3843 struct kvm_debugregs dbgregs;
3844 int i, ret;
3845
3846 if (!kvm_has_debugregs()) {
3847 return 0;
3848 }
3849
1bc22652 3850 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 3851 if (ret < 0) {
b9bec74b 3852 return ret;
ff44f1a3
JK
3853 }
3854 for (i = 0; i < 4; i++) {
3855 env->dr[i] = dbgregs.db[i];
3856 }
3857 env->dr[4] = env->dr[6] = dbgregs.dr6;
3858 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
3859
3860 return 0;
3861}
3862
ebbfef2f
LA
3863static int kvm_put_nested_state(X86CPU *cpu)
3864{
3865 CPUX86State *env = &cpu->env;
3866 int max_nested_state_len = kvm_max_nested_state_length();
3867
1e44f3ab 3868 if (!env->nested_state) {
ebbfef2f
LA
3869 return 0;
3870 }
3871
b16c0e20
PB
3872 /*
3873 * Copy flags that are affected by reset from env->hflags and env->hflags2.
3874 */
3875 if (env->hflags & HF_GUEST_MASK) {
3876 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
3877 } else {
3878 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
3879 }
0baa4b44
VK
3880
3881 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
3882 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
b16c0e20
PB
3883 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
3884 } else {
3885 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
3886 }
3887
ebbfef2f
LA
3888 assert(env->nested_state->size <= max_nested_state_len);
3889 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3890}
3891
3892static int kvm_get_nested_state(X86CPU *cpu)
3893{
3894 CPUX86State *env = &cpu->env;
3895 int max_nested_state_len = kvm_max_nested_state_length();
3896 int ret;
3897
1e44f3ab 3898 if (!env->nested_state) {
ebbfef2f
LA
3899 return 0;
3900 }
3901
3902 /*
3903 * It is possible that migration restored a smaller size into
3904 * nested_state->hdr.size than what our kernel support.
3905 * We preserve migration origin nested_state->hdr.size for
3906 * call to KVM_SET_NESTED_STATE but wish that our next call
3907 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3908 */
3909 env->nested_state->size = max_nested_state_len;
3910
3911 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3912 if (ret < 0) {
3913 return ret;
3914 }
3915
b16c0e20
PB
3916 /*
3917 * Copy flags that are affected by reset to env->hflags and env->hflags2.
3918 */
ebbfef2f
LA
3919 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3920 env->hflags |= HF_GUEST_MASK;
3921 } else {
3922 env->hflags &= ~HF_GUEST_MASK;
3923 }
0baa4b44
VK
3924
3925 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
3926 if (cpu_has_svm(env)) {
3927 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
3928 env->hflags2 |= HF2_GIF_MASK;
3929 } else {
3930 env->hflags2 &= ~HF2_GIF_MASK;
3931 }
b16c0e20 3932 }
ebbfef2f
LA
3933
3934 return ret;
3935}
3936
20d695a9 3937int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 3938{
20d695a9 3939 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
3940 int ret;
3941
2fa45344 3942 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 3943
b16c0e20
PB
3944 /* must be before kvm_put_nested_state so that EFER.SVME is set */
3945 ret = kvm_put_sregs(x86_cpu);
3946 if (ret < 0) {
3947 return ret;
3948 }
3949
48e1a45c 3950 if (level >= KVM_PUT_RESET_STATE) {
bec7156a
JK
3951 ret = kvm_put_nested_state(x86_cpu);
3952 if (ret < 0) {
3953 return ret;
3954 }
3955
6bdf863d
JK
3956 ret = kvm_put_msr_feature_control(x86_cpu);
3957 if (ret < 0) {
3958 return ret;
3959 }
3960 }
3961
36f96c4b
HZ
3962 if (level == KVM_PUT_FULL_STATE) {
3963 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3964 * because TSC frequency mismatch shouldn't abort migration,
3965 * unless the user explicitly asked for a more strict TSC
3966 * setting (e.g. using an explicit "tsc-freq" option).
3967 */
3968 kvm_arch_set_tsc_khz(cpu);
3969 }
3970
1bc22652 3971 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 3972 if (ret < 0) {
05330448 3973 return ret;
b9bec74b 3974 }
1bc22652 3975 ret = kvm_put_xsave(x86_cpu);
b9bec74b 3976 if (ret < 0) {
f1665b21 3977 return ret;
b9bec74b 3978 }
1bc22652 3979 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 3980 if (ret < 0) {
05330448 3981 return ret;
b9bec74b 3982 }
ab443475 3983 /* must be before kvm_put_msrs */
1bc22652 3984 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
3985 if (ret < 0) {
3986 return ret;
3987 }
1bc22652 3988 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 3989 if (ret < 0) {
05330448 3990 return ret;
b9bec74b 3991 }
4fadfa00
PH
3992 ret = kvm_put_vcpu_events(x86_cpu, level);
3993 if (ret < 0) {
3994 return ret;
3995 }
ea643051 3996 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 3997 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 3998 if (ret < 0) {
680c1c6f
JK
3999 return ret;
4000 }
ea643051 4001 }
7477cd38
MT
4002
4003 ret = kvm_put_tscdeadline_msr(x86_cpu);
4004 if (ret < 0) {
4005 return ret;
4006 }
1bc22652 4007 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 4008 if (ret < 0) {
b0b1d690 4009 return ret;
b9bec74b 4010 }
b0b1d690 4011 /* must be last */
1bc22652 4012 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 4013 if (ret < 0) {
ff44f1a3 4014 return ret;
b9bec74b 4015 }
05330448
AL
4016 return 0;
4017}
4018
20d695a9 4019int kvm_arch_get_registers(CPUState *cs)
05330448 4020{
20d695a9 4021 X86CPU *cpu = X86_CPU(cs);
05330448
AL
4022 int ret;
4023
20d695a9 4024 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 4025
4fadfa00 4026 ret = kvm_get_vcpu_events(cpu);
b9bec74b 4027 if (ret < 0) {
f4f1110e 4028 goto out;
b9bec74b 4029 }
4fadfa00
PH
4030 /*
4031 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4032 * KVM_GET_REGS and KVM_GET_SREGS.
4033 */
4034 ret = kvm_get_mp_state(cpu);
b9bec74b 4035 if (ret < 0) {
f4f1110e 4036 goto out;
b9bec74b 4037 }
4fadfa00 4038 ret = kvm_getput_regs(cpu, 0);
b9bec74b 4039 if (ret < 0) {
f4f1110e 4040 goto out;
b9bec74b 4041 }
4fadfa00 4042 ret = kvm_get_xsave(cpu);
b9bec74b 4043 if (ret < 0) {
f4f1110e 4044 goto out;
b9bec74b 4045 }
4fadfa00 4046 ret = kvm_get_xcrs(cpu);
b9bec74b 4047 if (ret < 0) {
f4f1110e 4048 goto out;
b9bec74b 4049 }
4fadfa00 4050 ret = kvm_get_sregs(cpu);
b9bec74b 4051 if (ret < 0) {
f4f1110e 4052 goto out;
b9bec74b 4053 }
4fadfa00 4054 ret = kvm_get_msrs(cpu);
680c1c6f 4055 if (ret < 0) {
f4f1110e 4056 goto out;
680c1c6f 4057 }
4fadfa00 4058 ret = kvm_get_apic(cpu);
b9bec74b 4059 if (ret < 0) {
f4f1110e 4060 goto out;
b9bec74b 4061 }
1bc22652 4062 ret = kvm_get_debugregs(cpu);
b9bec74b 4063 if (ret < 0) {
f4f1110e 4064 goto out;
b9bec74b 4065 }
ebbfef2f
LA
4066 ret = kvm_get_nested_state(cpu);
4067 if (ret < 0) {
4068 goto out;
4069 }
f4f1110e
RH
4070 ret = 0;
4071 out:
4072 cpu_sync_bndcs_hflags(&cpu->env);
4073 return ret;
05330448
AL
4074}
4075
20d695a9 4076void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 4077{
20d695a9
AF
4078 X86CPU *x86_cpu = X86_CPU(cpu);
4079 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
4080 int ret;
4081
276ce815 4082 /* Inject NMI */
fc12d72e
PB
4083 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4084 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4085 qemu_mutex_lock_iothread();
4086 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4087 qemu_mutex_unlock_iothread();
4088 DPRINTF("injected NMI\n");
4089 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4090 if (ret < 0) {
4091 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4092 strerror(-ret));
4093 }
4094 }
4095 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4096 qemu_mutex_lock_iothread();
4097 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4098 qemu_mutex_unlock_iothread();
4099 DPRINTF("injected SMI\n");
4100 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4101 if (ret < 0) {
4102 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4103 strerror(-ret));
4104 }
ce377af3 4105 }
276ce815
LJ
4106 }
4107
15eafc2e 4108 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
4109 qemu_mutex_lock_iothread();
4110 }
4111
e0723c45
PB
4112 /* Force the VCPU out of its inner loop to process any INIT requests
4113 * or (for userspace APIC, but it is cheap to combine the checks here)
4114 * pending TPR access reports.
4115 */
4116 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
4117 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4118 !(env->hflags & HF_SMM_MASK)) {
4119 cpu->exit_request = 1;
4120 }
4121 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4122 cpu->exit_request = 1;
4123 }
e0723c45 4124 }
05330448 4125
15eafc2e 4126 if (!kvm_pic_in_kernel()) {
db1669bc
JK
4127 /* Try to inject an interrupt if the guest can accept it */
4128 if (run->ready_for_interrupt_injection &&
259186a7 4129 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
4130 (env->eflags & IF_MASK)) {
4131 int irq;
4132
259186a7 4133 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
4134 irq = cpu_get_pic_interrupt(env);
4135 if (irq >= 0) {
4136 struct kvm_interrupt intr;
4137
4138 intr.irq = irq;
db1669bc 4139 DPRINTF("injected interrupt %d\n", irq);
1bc22652 4140 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
4141 if (ret < 0) {
4142 fprintf(stderr,
4143 "KVM: injection failed, interrupt lost (%s)\n",
4144 strerror(-ret));
4145 }
db1669bc
JK
4146 }
4147 }
05330448 4148
db1669bc
JK
4149 /* If we have an interrupt but the guest is not ready to receive an
4150 * interrupt, request an interrupt window exit. This will
4151 * cause a return to userspace as soon as the guest is ready to
4152 * receive interrupts. */
259186a7 4153 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
4154 run->request_interrupt_window = 1;
4155 } else {
4156 run->request_interrupt_window = 0;
4157 }
4158
4159 DPRINTF("setting tpr\n");
02e51483 4160 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
4161
4162 qemu_mutex_unlock_iothread();
db1669bc 4163 }
05330448
AL
4164}
4165
4c663752 4166MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 4167{
20d695a9
AF
4168 X86CPU *x86_cpu = X86_CPU(cpu);
4169 CPUX86State *env = &x86_cpu->env;
4170
fc12d72e
PB
4171 if (run->flags & KVM_RUN_X86_SMM) {
4172 env->hflags |= HF_SMM_MASK;
4173 } else {
f5c052b9 4174 env->hflags &= ~HF_SMM_MASK;
fc12d72e 4175 }
b9bec74b 4176 if (run->if_flag) {
05330448 4177 env->eflags |= IF_MASK;
b9bec74b 4178 } else {
05330448 4179 env->eflags &= ~IF_MASK;
b9bec74b 4180 }
4b8523ee
JK
4181
4182 /* We need to protect the apic state against concurrent accesses from
4183 * different threads in case the userspace irqchip is used. */
4184 if (!kvm_irqchip_in_kernel()) {
4185 qemu_mutex_lock_iothread();
4186 }
02e51483
CF
4187 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4188 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
4189 if (!kvm_irqchip_in_kernel()) {
4190 qemu_mutex_unlock_iothread();
4191 }
f794aa4a 4192 return cpu_get_mem_attrs(env);
05330448
AL
4193}
4194
20d695a9 4195int kvm_arch_process_async_events(CPUState *cs)
0af691d7 4196{
20d695a9
AF
4197 X86CPU *cpu = X86_CPU(cs);
4198 CPUX86State *env = &cpu->env;
232fc23b 4199
259186a7 4200 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
4201 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4202 assert(env->mcg_cap);
4203
259186a7 4204 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 4205
dd1750d7 4206 kvm_cpu_synchronize_state(cs);
ab443475 4207
fd13f23b 4208 if (env->exception_nr == EXCP08_DBLE) {
ab443475 4209 /* this means triple fault */
cf83f140 4210 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 4211 cs->exit_request = 1;
ab443475
JK
4212 return 0;
4213 }
fd13f23b 4214 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
4215 env->has_error_code = 0;
4216
259186a7 4217 cs->halted = 0;
ab443475
JK
4218 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4219 env->mp_state = KVM_MP_STATE_RUNNABLE;
4220 }
4221 }
4222
fc12d72e
PB
4223 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4224 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
4225 kvm_cpu_synchronize_state(cs);
4226 do_cpu_init(cpu);
4227 }
4228
db1669bc
JK
4229 if (kvm_irqchip_in_kernel()) {
4230 return 0;
4231 }
4232
259186a7
AF
4233 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4234 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 4235 apic_poll_irq(cpu->apic_state);
5d62c43a 4236 }
259186a7 4237 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 4238 (env->eflags & IF_MASK)) ||
259186a7
AF
4239 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4240 cs->halted = 0;
6792a57b 4241 }
259186a7 4242 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 4243 kvm_cpu_synchronize_state(cs);
232fc23b 4244 do_cpu_sipi(cpu);
0af691d7 4245 }
259186a7
AF
4246 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4247 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 4248 kvm_cpu_synchronize_state(cs);
02e51483 4249 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
4250 env->tpr_access_type);
4251 }
0af691d7 4252
259186a7 4253 return cs->halted;
0af691d7
MT
4254}
4255
839b5630 4256static int kvm_handle_halt(X86CPU *cpu)
05330448 4257{
259186a7 4258 CPUState *cs = CPU(cpu);
839b5630
AF
4259 CPUX86State *env = &cpu->env;
4260
259186a7 4261 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 4262 (env->eflags & IF_MASK)) &&
259186a7
AF
4263 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4264 cs->halted = 1;
bb4ea393 4265 return EXCP_HLT;
05330448
AL
4266 }
4267
bb4ea393 4268 return 0;
05330448
AL
4269}
4270
f7575c96 4271static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 4272{
f7575c96
AF
4273 CPUState *cs = CPU(cpu);
4274 struct kvm_run *run = cs->kvm_run;
d362e757 4275
02e51483 4276 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
4277 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4278 : TPR_ACCESS_READ);
4279 return 1;
4280}
4281
f17ec444 4282int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 4283{
38972938 4284 static const uint8_t int3 = 0xcc;
64bf3f4e 4285
f17ec444
AF
4286 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4287 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 4288 return -EINVAL;
b9bec74b 4289 }
e22a25c9
AL
4290 return 0;
4291}
4292
f17ec444 4293int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
4294{
4295 uint8_t int3;
4296
f17ec444
AF
4297 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4298 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 4299 return -EINVAL;
b9bec74b 4300 }
e22a25c9
AL
4301 return 0;
4302}
4303
4304static struct {
4305 target_ulong addr;
4306 int len;
4307 int type;
4308} hw_breakpoint[4];
4309
4310static int nb_hw_breakpoint;
4311
4312static int find_hw_breakpoint(target_ulong addr, int len, int type)
4313{
4314 int n;
4315
b9bec74b 4316 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 4317 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 4318 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 4319 return n;
b9bec74b
JK
4320 }
4321 }
e22a25c9
AL
4322 return -1;
4323}
4324
4325int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4326 target_ulong len, int type)
4327{
4328 switch (type) {
4329 case GDB_BREAKPOINT_HW:
4330 len = 1;
4331 break;
4332 case GDB_WATCHPOINT_WRITE:
4333 case GDB_WATCHPOINT_ACCESS:
4334 switch (len) {
4335 case 1:
4336 break;
4337 case 2:
4338 case 4:
4339 case 8:
b9bec74b 4340 if (addr & (len - 1)) {
e22a25c9 4341 return -EINVAL;
b9bec74b 4342 }
e22a25c9
AL
4343 break;
4344 default:
4345 return -EINVAL;
4346 }
4347 break;
4348 default:
4349 return -ENOSYS;
4350 }
4351
b9bec74b 4352 if (nb_hw_breakpoint == 4) {
e22a25c9 4353 return -ENOBUFS;
b9bec74b
JK
4354 }
4355 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 4356 return -EEXIST;
b9bec74b 4357 }
e22a25c9
AL
4358 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4359 hw_breakpoint[nb_hw_breakpoint].len = len;
4360 hw_breakpoint[nb_hw_breakpoint].type = type;
4361 nb_hw_breakpoint++;
4362
4363 return 0;
4364}
4365
4366int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4367 target_ulong len, int type)
4368{
4369 int n;
4370
4371 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4372 if (n < 0) {
e22a25c9 4373 return -ENOENT;
b9bec74b 4374 }
e22a25c9
AL
4375 nb_hw_breakpoint--;
4376 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4377
4378 return 0;
4379}
4380
4381void kvm_arch_remove_all_hw_breakpoints(void)
4382{
4383 nb_hw_breakpoint = 0;
4384}
4385
4386static CPUWatchpoint hw_watchpoint;
4387
a60f24b5 4388static int kvm_handle_debug(X86CPU *cpu,
48405526 4389 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4390{
ed2803da 4391 CPUState *cs = CPU(cpu);
a60f24b5 4392 CPUX86State *env = &cpu->env;
f2574737 4393 int ret = 0;
e22a25c9
AL
4394 int n;
4395
37936ac7
LA
4396 if (arch_info->exception == EXCP01_DB) {
4397 if (arch_info->dr6 & DR6_BS) {
ed2803da 4398 if (cs->singlestep_enabled) {
f2574737 4399 ret = EXCP_DEBUG;
b9bec74b 4400 }
e22a25c9 4401 } else {
b9bec74b
JK
4402 for (n = 0; n < 4; n++) {
4403 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4404 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4405 case 0x0:
f2574737 4406 ret = EXCP_DEBUG;
e22a25c9
AL
4407 break;
4408 case 0x1:
f2574737 4409 ret = EXCP_DEBUG;
ff4700b0 4410 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4411 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4412 hw_watchpoint.flags = BP_MEM_WRITE;
4413 break;
4414 case 0x3:
f2574737 4415 ret = EXCP_DEBUG;
ff4700b0 4416 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4417 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4418 hw_watchpoint.flags = BP_MEM_ACCESS;
4419 break;
4420 }
b9bec74b
JK
4421 }
4422 }
e22a25c9 4423 }
ff4700b0 4424 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4425 ret = EXCP_DEBUG;
b9bec74b 4426 }
f2574737 4427 if (ret == 0) {
ff4700b0 4428 cpu_synchronize_state(cs);
fd13f23b 4429 assert(env->exception_nr == -1);
b0b1d690 4430
f2574737 4431 /* pass to guest */
fd13f23b
LA
4432 kvm_queue_exception(env, arch_info->exception,
4433 arch_info->exception == EXCP01_DB,
4434 arch_info->dr6);
48405526 4435 env->has_error_code = 0;
b0b1d690 4436 }
e22a25c9 4437
f2574737 4438 return ret;
e22a25c9
AL
4439}
4440
20d695a9 4441void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4442{
4443 const uint8_t type_code[] = {
4444 [GDB_BREAKPOINT_HW] = 0x0,
4445 [GDB_WATCHPOINT_WRITE] = 0x1,
4446 [GDB_WATCHPOINT_ACCESS] = 0x3
4447 };
4448 const uint8_t len_code[] = {
4449 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4450 };
4451 int n;
4452
a60f24b5 4453 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4454 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4455 }
e22a25c9
AL
4456 if (nb_hw_breakpoint > 0) {
4457 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4458 dbg->arch.debugreg[7] = 0x0600;
4459 for (n = 0; n < nb_hw_breakpoint; n++) {
4460 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4461 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4462 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4463 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4464 }
4465 }
4466}
4513d923 4467
2a4dac83
JK
4468static bool host_supports_vmx(void)
4469{
4470 uint32_t ecx, unused;
4471
4472 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4473 return ecx & CPUID_EXT_VMX;
4474}
4475
4476#define VMX_INVALID_GUEST_STATE 0x80000021
4477
20d695a9 4478int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4479{
20d695a9 4480 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4481 uint64_t code;
4482 int ret;
4483
4484 switch (run->exit_reason) {
4485 case KVM_EXIT_HLT:
4486 DPRINTF("handle_hlt\n");
4b8523ee 4487 qemu_mutex_lock_iothread();
839b5630 4488 ret = kvm_handle_halt(cpu);
4b8523ee 4489 qemu_mutex_unlock_iothread();
2a4dac83
JK
4490 break;
4491 case KVM_EXIT_SET_TPR:
4492 ret = 0;
4493 break;
d362e757 4494 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4495 qemu_mutex_lock_iothread();
f7575c96 4496 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4497 qemu_mutex_unlock_iothread();
d362e757 4498 break;
2a4dac83
JK
4499 case KVM_EXIT_FAIL_ENTRY:
4500 code = run->fail_entry.hardware_entry_failure_reason;
4501 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4502 code);
4503 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4504 fprintf(stderr,
12619721 4505 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4506 "unrestricted mode\n"
4507 "support, the failure can be most likely due to the guest "
4508 "entering an invalid\n"
4509 "state for Intel VT. For example, the guest maybe running "
4510 "in big real mode\n"
4511 "which is not supported on less recent Intel processors."
4512 "\n\n");
4513 }
4514 ret = -1;
4515 break;
4516 case KVM_EXIT_EXCEPTION:
4517 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4518 run->ex.exception, run->ex.error_code);
4519 ret = -1;
4520 break;
f2574737
JK
4521 case KVM_EXIT_DEBUG:
4522 DPRINTF("kvm_exit_debug\n");
4b8523ee 4523 qemu_mutex_lock_iothread();
a60f24b5 4524 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4525 qemu_mutex_unlock_iothread();
f2574737 4526 break;
50efe82c
AS
4527 case KVM_EXIT_HYPERV:
4528 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4529 break;
15eafc2e
PB
4530 case KVM_EXIT_IOAPIC_EOI:
4531 ioapic_eoi_broadcast(run->eoi.vector);
4532 ret = 0;
4533 break;
2a4dac83
JK
4534 default:
4535 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4536 ret = -1;
4537 break;
4538 }
4539
4540 return ret;
4541}
4542
20d695a9 4543bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4544{
20d695a9
AF
4545 X86CPU *cpu = X86_CPU(cs);
4546 CPUX86State *env = &cpu->env;
4547
dd1750d7 4548 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4549 return !(env->cr[0] & CR0_PE_MASK) ||
4550 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4551}
84b058d7
JK
4552
4553void kvm_arch_init_irq_routing(KVMState *s)
4554{
4555 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4556 /* If kernel can't do irq routing, interrupt source
4557 * override 0->2 cannot be set up as required by HPET.
4558 * So we have to disable it.
4559 */
4560 no_hpet = 1;
4561 }
cc7e0ddf 4562 /* We know at this point that we're using the in-kernel
614e41bc 4563 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4564 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4565 */
614e41bc 4566 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4567 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4568
4569 if (kvm_irqchip_is_split()) {
4570 int i;
4571
4572 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4573 MSI routes for signaling interrupts to the local apics. */
4574 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 4575 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
4576 error_report("Could not enable split IRQ mode.");
4577 exit(1);
4578 }
4579 }
4580 }
4581}
4582
4376c40d 4583int kvm_arch_irqchip_create(KVMState *s)
15eafc2e
PB
4584{
4585 int ret;
4376c40d 4586 if (kvm_kernel_irqchip_split()) {
15eafc2e
PB
4587 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4588 if (ret) {
df3c286c 4589 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
4590 strerror(-ret));
4591 exit(1);
4592 } else {
4593 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4594 kvm_split_irqchip = true;
4595 return 1;
4596 }
4597 } else {
4598 return 0;
4599 }
84b058d7 4600}
b139bd30 4601
9e03a040 4602int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 4603 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 4604{
8b5ed7df
PX
4605 X86IOMMUState *iommu = x86_iommu_get_default();
4606
4607 if (iommu) {
4608 int ret;
4609 MSIMessage src, dst;
4610 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4611
0ea1472d
JK
4612 if (!class->int_remap) {
4613 return 0;
4614 }
4615
8b5ed7df
PX
4616 src.address = route->u.msi.address_hi;
4617 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4618 src.address |= route->u.msi.address_lo;
4619 src.data = route->u.msi.data;
4620
4621 ret = class->int_remap(iommu, &src, &dst, dev ? \
4622 pci_requester_id(dev) : \
4623 X86_IOMMU_SID_INVALID);
4624 if (ret) {
4625 trace_kvm_x86_fixup_msi_error(route->gsi);
4626 return 1;
4627 }
4628
4629 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4630 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4631 route->u.msi.data = dst.data;
4632 }
4633
9e03a040
FB
4634 return 0;
4635}
1850b6b7 4636
38d87493
PX
4637typedef struct MSIRouteEntry MSIRouteEntry;
4638
4639struct MSIRouteEntry {
4640 PCIDevice *dev; /* Device pointer */
4641 int vector; /* MSI/MSIX vector index */
4642 int virq; /* Virtual IRQ index */
4643 QLIST_ENTRY(MSIRouteEntry) list;
4644};
4645
4646/* List of used GSI routes */
4647static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4648 QLIST_HEAD_INITIALIZER(msi_route_list);
4649
e1d4fb2d
PX
4650static void kvm_update_msi_routes_all(void *private, bool global,
4651 uint32_t index, uint32_t mask)
4652{
a56de056 4653 int cnt = 0, vector;
e1d4fb2d
PX
4654 MSIRouteEntry *entry;
4655 MSIMessage msg;
fd563564
PX
4656 PCIDevice *dev;
4657
e1d4fb2d
PX
4658 /* TODO: explicit route update */
4659 QLIST_FOREACH(entry, &msi_route_list, list) {
4660 cnt++;
a56de056 4661 vector = entry->vector;
fd563564 4662 dev = entry->dev;
a56de056
PX
4663 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4664 msg = msix_get_message(dev, vector);
4665 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4666 msg = msi_get_message(dev, vector);
4667 } else {
4668 /*
4669 * Either MSI/MSIX is disabled for the device, or the
4670 * specific message was masked out. Skip this one.
4671 */
fd563564
PX
4672 continue;
4673 }
fd563564 4674 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 4675 }
3f1fea0f 4676 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
4677 trace_kvm_x86_update_msi_routes(cnt);
4678}
4679
38d87493
PX
4680int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4681 int vector, PCIDevice *dev)
4682{
e1d4fb2d 4683 static bool notify_list_inited = false;
38d87493
PX
4684 MSIRouteEntry *entry;
4685
4686 if (!dev) {
4687 /* These are (possibly) IOAPIC routes only used for split
4688 * kernel irqchip mode, while what we are housekeeping are
4689 * PCI devices only. */
4690 return 0;
4691 }
4692
4693 entry = g_new0(MSIRouteEntry, 1);
4694 entry->dev = dev;
4695 entry->vector = vector;
4696 entry->virq = route->gsi;
4697 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4698
4699 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
4700
4701 if (!notify_list_inited) {
4702 /* For the first time we do add route, add ourselves into
4703 * IOMMU's IEC notify list if needed. */
4704 X86IOMMUState *iommu = x86_iommu_get_default();
4705 if (iommu) {
4706 x86_iommu_iec_register_notifier(iommu,
4707 kvm_update_msi_routes_all,
4708 NULL);
4709 }
4710 notify_list_inited = true;
4711 }
38d87493
PX
4712 return 0;
4713}
4714
4715int kvm_arch_release_virq_post(int virq)
4716{
4717 MSIRouteEntry *entry, *next;
4718 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4719 if (entry->virq == virq) {
4720 trace_kvm_x86_remove_msi_route(virq);
4721 QLIST_REMOVE(entry, list);
01960e6d 4722 g_free(entry);
38d87493
PX
4723 break;
4724 }
4725 }
9e03a040
FB
4726 return 0;
4727}
1850b6b7
EA
4728
4729int kvm_arch_msi_data_to_gsi(uint32_t data)
4730{
4731 abort();
4732}
e1e43813
PB
4733
4734bool kvm_has_waitpkg(void)
4735{
4736 return has_msr_umwait;
4737}
This page took 1.804781 seconds and 4 git commands to generate.