]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
9c17d615 | 24 | #include "sysemu/sysemu.h" |
6410848b | 25 | #include "sysemu/kvm_int.h" |
1d31f66b | 26 | #include "kvm_i386.h" |
05330448 | 27 | #include "cpu.h" |
022c62cb | 28 | #include "exec/gdbstub.h" |
1de7afc9 PB |
29 | #include "qemu/host-utils.h" |
30 | #include "qemu/config-file.h" | |
1c4a55db | 31 | #include "qemu/error-report.h" |
0d09e41a PB |
32 | #include "hw/i386/pc.h" |
33 | #include "hw/i386/apic.h" | |
e0723c45 PB |
34 | #include "hw/i386/apic_internal.h" |
35 | #include "hw/i386/apic-msidef.h" | |
022c62cb | 36 | #include "exec/ioport.h" |
73aa529a | 37 | #include "standard-headers/asm-x86/hyperv.h" |
a2cb15b0 | 38 | #include "hw/pci/pci.h" |
68bfd0ad | 39 | #include "migration/migration.h" |
4c663752 | 40 | #include "exec/memattrs.h" |
05330448 AL |
41 | |
42 | //#define DEBUG_KVM | |
43 | ||
44 | #ifdef DEBUG_KVM | |
8c0d577e | 45 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
46 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
47 | #else | |
8c0d577e | 48 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
49 | do { } while (0) |
50 | #endif | |
51 | ||
1a03675d GC |
52 | #define MSR_KVM_WALL_CLOCK 0x11 |
53 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
54 | ||
c0532a76 MT |
55 | #ifndef BUS_MCEERR_AR |
56 | #define BUS_MCEERR_AR 4 | |
57 | #endif | |
58 | #ifndef BUS_MCEERR_AO | |
59 | #define BUS_MCEERR_AO 5 | |
60 | #endif | |
61 | ||
94a8d39a JK |
62 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
63 | KVM_CAP_INFO(SET_TSS_ADDR), | |
64 | KVM_CAP_INFO(EXT_CPUID), | |
65 | KVM_CAP_INFO(MP_STATE), | |
66 | KVM_CAP_LAST_INFO | |
67 | }; | |
25d2e361 | 68 | |
c3a3a7d3 JK |
69 | static bool has_msr_star; |
70 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 71 | static bool has_msr_tsc_aux; |
f28558d3 | 72 | static bool has_msr_tsc_adjust; |
aa82ba54 | 73 | static bool has_msr_tsc_deadline; |
df67696e | 74 | static bool has_msr_feature_control; |
c5999bfc | 75 | static bool has_msr_async_pf_en; |
bc9a839d | 76 | static bool has_msr_pv_eoi_en; |
21e87c46 | 77 | static bool has_msr_misc_enable; |
fc12d72e | 78 | static bool has_msr_smbase; |
79e9ebeb | 79 | static bool has_msr_bndcfgs; |
917367aa | 80 | static bool has_msr_kvm_steal_time; |
25d2e361 | 81 | static int lm_capable_kernel; |
7bc3d711 PB |
82 | static bool has_msr_hv_hypercall; |
83 | static bool has_msr_hv_vapic; | |
48a5f3bc | 84 | static bool has_msr_hv_tsc; |
f2a53c9e | 85 | static bool has_msr_hv_crash; |
744b8a94 | 86 | static bool has_msr_hv_reset; |
8c145d7c | 87 | static bool has_msr_hv_vpindex; |
46eb8f98 | 88 | static bool has_msr_hv_runtime; |
d1ae67f6 | 89 | static bool has_msr_mtrr; |
18cd2c17 | 90 | static bool has_msr_xss; |
b827df58 | 91 | |
0d894367 PB |
92 | static bool has_msr_architectural_pmu; |
93 | static uint32_t num_architectural_pmu_counters; | |
94 | ||
28143b40 TH |
95 | static int has_xsave; |
96 | static int has_xcrs; | |
97 | static int has_pit_state2; | |
98 | ||
99 | int kvm_has_pit_state2(void) | |
100 | { | |
101 | return has_pit_state2; | |
102 | } | |
103 | ||
355023f2 PB |
104 | bool kvm_has_smm(void) |
105 | { | |
106 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
107 | } | |
108 | ||
1d31f66b PM |
109 | bool kvm_allows_irq0_override(void) |
110 | { | |
111 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
112 | } | |
113 | ||
0fd7e098 LL |
114 | static int kvm_get_tsc(CPUState *cs) |
115 | { | |
116 | X86CPU *cpu = X86_CPU(cs); | |
117 | CPUX86State *env = &cpu->env; | |
118 | struct { | |
119 | struct kvm_msrs info; | |
120 | struct kvm_msr_entry entries[1]; | |
121 | } msr_data; | |
122 | int ret; | |
123 | ||
124 | if (env->tsc_valid) { | |
125 | return 0; | |
126 | } | |
127 | ||
128 | msr_data.info.nmsrs = 1; | |
129 | msr_data.entries[0].index = MSR_IA32_TSC; | |
130 | env->tsc_valid = !runstate_is_running(); | |
131 | ||
132 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
133 | if (ret < 0) { | |
134 | return ret; | |
135 | } | |
136 | ||
137 | env->tsc = msr_data.entries[0].data; | |
138 | return 0; | |
139 | } | |
140 | ||
141 | static inline void do_kvm_synchronize_tsc(void *arg) | |
142 | { | |
143 | CPUState *cpu = arg; | |
144 | ||
145 | kvm_get_tsc(cpu); | |
146 | } | |
147 | ||
148 | void kvm_synchronize_all_tsc(void) | |
149 | { | |
150 | CPUState *cpu; | |
151 | ||
152 | if (kvm_enabled()) { | |
153 | CPU_FOREACH(cpu) { | |
154 | run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu); | |
155 | } | |
156 | } | |
157 | } | |
158 | ||
b827df58 AK |
159 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
160 | { | |
161 | struct kvm_cpuid2 *cpuid; | |
162 | int r, size; | |
163 | ||
164 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 165 | cpuid = g_malloc0(size); |
b827df58 AK |
166 | cpuid->nent = max; |
167 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
168 | if (r == 0 && cpuid->nent >= max) { |
169 | r = -E2BIG; | |
170 | } | |
b827df58 AK |
171 | if (r < 0) { |
172 | if (r == -E2BIG) { | |
7267c094 | 173 | g_free(cpuid); |
b827df58 AK |
174 | return NULL; |
175 | } else { | |
176 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
177 | strerror(-r)); | |
178 | exit(1); | |
179 | } | |
180 | } | |
181 | return cpuid; | |
182 | } | |
183 | ||
dd87f8a6 EH |
184 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
185 | * for all entries. | |
186 | */ | |
187 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
188 | { | |
189 | struct kvm_cpuid2 *cpuid; | |
190 | int max = 1; | |
191 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
192 | max *= 2; | |
193 | } | |
194 | return cpuid; | |
195 | } | |
196 | ||
a443bc34 | 197 | static const struct kvm_para_features { |
0c31b744 GC |
198 | int cap; |
199 | int feature; | |
200 | } para_features[] = { | |
201 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
202 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
203 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 204 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
205 | }; |
206 | ||
ba9bc59e | 207 | static int get_para_features(KVMState *s) |
0c31b744 GC |
208 | { |
209 | int i, features = 0; | |
210 | ||
8e03c100 | 211 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 212 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
213 | features |= (1 << para_features[i].feature); |
214 | } | |
215 | } | |
216 | ||
217 | return features; | |
218 | } | |
0c31b744 GC |
219 | |
220 | ||
829ae2f9 EH |
221 | /* Returns the value for a specific register on the cpuid entry |
222 | */ | |
223 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
224 | { | |
225 | uint32_t ret = 0; | |
226 | switch (reg) { | |
227 | case R_EAX: | |
228 | ret = entry->eax; | |
229 | break; | |
230 | case R_EBX: | |
231 | ret = entry->ebx; | |
232 | break; | |
233 | case R_ECX: | |
234 | ret = entry->ecx; | |
235 | break; | |
236 | case R_EDX: | |
237 | ret = entry->edx; | |
238 | break; | |
239 | } | |
240 | return ret; | |
241 | } | |
242 | ||
4fb73f1d EH |
243 | /* Find matching entry for function/index on kvm_cpuid2 struct |
244 | */ | |
245 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
246 | uint32_t function, | |
247 | uint32_t index) | |
248 | { | |
249 | int i; | |
250 | for (i = 0; i < cpuid->nent; ++i) { | |
251 | if (cpuid->entries[i].function == function && | |
252 | cpuid->entries[i].index == index) { | |
253 | return &cpuid->entries[i]; | |
254 | } | |
255 | } | |
256 | /* not found: */ | |
257 | return NULL; | |
258 | } | |
259 | ||
ba9bc59e | 260 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 261 | uint32_t index, int reg) |
b827df58 AK |
262 | { |
263 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
264 | uint32_t ret = 0; |
265 | uint32_t cpuid_1_edx; | |
8c723b79 | 266 | bool found = false; |
b827df58 | 267 | |
dd87f8a6 | 268 | cpuid = get_supported_cpuid(s); |
b827df58 | 269 | |
4fb73f1d EH |
270 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
271 | if (entry) { | |
272 | found = true; | |
273 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
274 | } |
275 | ||
7b46e5ce EH |
276 | /* Fixups for the data returned by KVM, below */ |
277 | ||
c2acb022 EH |
278 | if (function == 1 && reg == R_EDX) { |
279 | /* KVM before 2.6.30 misreports the following features */ | |
280 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
281 | } else if (function == 1 && reg == R_ECX) { |
282 | /* We can set the hypervisor flag, even if KVM does not return it on | |
283 | * GET_SUPPORTED_CPUID | |
284 | */ | |
285 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
286 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
287 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
288 | * and the irqchip is in the kernel. | |
289 | */ | |
290 | if (kvm_irqchip_in_kernel() && | |
291 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
292 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
293 | } | |
41e5e76d EH |
294 | |
295 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
296 | * without the in-kernel irqchip | |
297 | */ | |
298 | if (!kvm_irqchip_in_kernel()) { | |
299 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 300 | } |
28b8e4d0 JK |
301 | } else if (function == 6 && reg == R_EAX) { |
302 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
c2acb022 EH |
303 | } else if (function == 0x80000001 && reg == R_EDX) { |
304 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
305 | * so add missing bits according to the AMD spec: | |
306 | */ | |
307 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
308 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
309 | } |
310 | ||
7267c094 | 311 | g_free(cpuid); |
b827df58 | 312 | |
0c31b744 | 313 | /* fallback for older kernels */ |
8c723b79 | 314 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 315 | ret = get_para_features(s); |
b9bec74b | 316 | } |
0c31b744 GC |
317 | |
318 | return ret; | |
bb0300dc | 319 | } |
bb0300dc | 320 | |
3c85e74f HY |
321 | typedef struct HWPoisonPage { |
322 | ram_addr_t ram_addr; | |
323 | QLIST_ENTRY(HWPoisonPage) list; | |
324 | } HWPoisonPage; | |
325 | ||
326 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
327 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
328 | ||
329 | static void kvm_unpoison_all(void *param) | |
330 | { | |
331 | HWPoisonPage *page, *next_page; | |
332 | ||
333 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
334 | QLIST_REMOVE(page, list); | |
335 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 336 | g_free(page); |
3c85e74f HY |
337 | } |
338 | } | |
339 | ||
3c85e74f HY |
340 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
341 | { | |
342 | HWPoisonPage *page; | |
343 | ||
344 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
345 | if (page->ram_addr == ram_addr) { | |
346 | return; | |
347 | } | |
348 | } | |
ab3ad07f | 349 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
350 | page->ram_addr = ram_addr; |
351 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
352 | } | |
353 | ||
e7701825 MT |
354 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
355 | int *max_banks) | |
356 | { | |
357 | int r; | |
358 | ||
14a09518 | 359 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
360 | if (r > 0) { |
361 | *max_banks = r; | |
362 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
363 | } | |
364 | return -ENOSYS; | |
365 | } | |
366 | ||
bee615d4 | 367 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 368 | { |
bee615d4 | 369 | CPUX86State *env = &cpu->env; |
c34d440a JK |
370 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
371 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
372 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
e7701825 | 373 | |
c34d440a JK |
374 | if (code == BUS_MCEERR_AR) { |
375 | status |= MCI_STATUS_AR | 0x134; | |
376 | mcg_status |= MCG_STATUS_EIPV; | |
377 | } else { | |
378 | status |= 0xc0; | |
379 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 380 | } |
8c5cf3b6 | 381 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
c34d440a JK |
382 | (MCM_ADDR_PHYS << 6) | 0xc, |
383 | cpu_x86_support_mca_broadcast(env) ? | |
384 | MCE_INJECT_BROADCAST : 0); | |
419fb20a | 385 | } |
419fb20a JK |
386 | |
387 | static void hardware_memory_error(void) | |
388 | { | |
389 | fprintf(stderr, "Hardware memory error!\n"); | |
390 | exit(1); | |
391 | } | |
392 | ||
20d695a9 | 393 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 394 | { |
20d695a9 AF |
395 | X86CPU *cpu = X86_CPU(c); |
396 | CPUX86State *env = &cpu->env; | |
419fb20a | 397 | ram_addr_t ram_addr; |
a8170e5e | 398 | hwaddr paddr; |
419fb20a JK |
399 | |
400 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 401 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
1b5ec234 | 402 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
a60f24b5 | 403 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
404 | fprintf(stderr, "Hardware memory error for memory used by " |
405 | "QEMU itself instead of guest system!\n"); | |
406 | /* Hope we are lucky for AO MCE */ | |
407 | if (code == BUS_MCEERR_AO) { | |
408 | return 0; | |
409 | } else { | |
410 | hardware_memory_error(); | |
411 | } | |
412 | } | |
3c85e74f | 413 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 414 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 415 | } else { |
419fb20a JK |
416 | if (code == BUS_MCEERR_AO) { |
417 | return 0; | |
418 | } else if (code == BUS_MCEERR_AR) { | |
419 | hardware_memory_error(); | |
420 | } else { | |
421 | return 1; | |
422 | } | |
423 | } | |
424 | return 0; | |
425 | } | |
426 | ||
427 | int kvm_arch_on_sigbus(int code, void *addr) | |
428 | { | |
182735ef AF |
429 | X86CPU *cpu = X86_CPU(first_cpu); |
430 | ||
431 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 432 | ram_addr_t ram_addr; |
a8170e5e | 433 | hwaddr paddr; |
419fb20a JK |
434 | |
435 | /* Hope we are lucky for AO MCE */ | |
1b5ec234 | 436 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
182735ef | 437 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 438 | addr, &paddr)) { |
419fb20a JK |
439 | fprintf(stderr, "Hardware memory error for memory used by " |
440 | "QEMU itself instead of guest system!: %p\n", addr); | |
441 | return 0; | |
442 | } | |
3c85e74f | 443 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 444 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 445 | } else { |
419fb20a JK |
446 | if (code == BUS_MCEERR_AO) { |
447 | return 0; | |
448 | } else if (code == BUS_MCEERR_AR) { | |
449 | hardware_memory_error(); | |
450 | } else { | |
451 | return 1; | |
452 | } | |
453 | } | |
454 | return 0; | |
455 | } | |
e7701825 | 456 | |
1bc22652 | 457 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 458 | { |
1bc22652 AF |
459 | CPUX86State *env = &cpu->env; |
460 | ||
ab443475 JK |
461 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
462 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
463 | struct kvm_x86_mce mce; | |
464 | ||
465 | env->exception_injected = -1; | |
466 | ||
467 | /* | |
468 | * There must be at least one bank in use if an MCE is pending. | |
469 | * Find it and use its values for the event injection. | |
470 | */ | |
471 | for (bank = 0; bank < bank_num; bank++) { | |
472 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
473 | break; | |
474 | } | |
475 | } | |
476 | assert(bank < bank_num); | |
477 | ||
478 | mce.bank = bank; | |
479 | mce.status = env->mce_banks[bank * 4 + 1]; | |
480 | mce.mcg_status = env->mcg_status; | |
481 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
482 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
483 | ||
1bc22652 | 484 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 485 | } |
ab443475 JK |
486 | return 0; |
487 | } | |
488 | ||
1dfb4dd9 | 489 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 490 | { |
317ac620 | 491 | CPUX86State *env = opaque; |
b8cc45d6 GC |
492 | |
493 | if (running) { | |
494 | env->tsc_valid = false; | |
495 | } | |
496 | } | |
497 | ||
83b17af5 | 498 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 499 | { |
83b17af5 | 500 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 501 | return cpu->apic_id; |
b164e48e EH |
502 | } |
503 | ||
92067bf4 IM |
504 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
505 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
506 | #endif | |
507 | ||
508 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
509 | { | |
510 | return cpu->hyperv_vapic || | |
511 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
512 | } | |
513 | ||
514 | static bool hyperv_enabled(X86CPU *cpu) | |
515 | { | |
7bc3d711 PB |
516 | CPUState *cs = CPU(cpu); |
517 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
518 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 519 | cpu->hyperv_time || |
f2a53c9e | 520 | cpu->hyperv_relaxed_timing || |
744b8a94 | 521 | cpu->hyperv_crash || |
8c145d7c | 522 | cpu->hyperv_reset || |
46eb8f98 AS |
523 | cpu->hyperv_vpindex || |
524 | cpu->hyperv_runtime); | |
92067bf4 IM |
525 | } |
526 | ||
68bfd0ad MT |
527 | static Error *invtsc_mig_blocker; |
528 | ||
f8bb0565 | 529 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 530 | |
20d695a9 | 531 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
532 | { |
533 | struct { | |
486bd5a2 | 534 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 535 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 536 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
537 | X86CPU *cpu = X86_CPU(cs); |
538 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 539 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 540 | uint32_t unused; |
bb0300dc | 541 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 542 | uint32_t signature[3]; |
234cc647 | 543 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 544 | int r; |
05330448 | 545 | |
ef4cbe14 SW |
546 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
547 | ||
05330448 AL |
548 | cpuid_i = 0; |
549 | ||
bb0300dc | 550 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
551 | if (hyperv_enabled(cpu)) { |
552 | c = &cpuid_data.entries[cpuid_i++]; | |
553 | c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
1c4a55db AW |
554 | if (!cpu->hyperv_vendor_id) { |
555 | memcpy(signature, "Microsoft Hv", 12); | |
556 | } else { | |
557 | size_t len = strlen(cpu->hyperv_vendor_id); | |
558 | ||
559 | if (len > 12) { | |
560 | error_report("hv-vendor-id truncated to 12 characters"); | |
561 | len = 12; | |
562 | } | |
563 | memset(signature, 0, 12); | |
564 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
565 | } | |
eab70139 | 566 | c->eax = HYPERV_CPUID_MIN; |
234cc647 PB |
567 | c->ebx = signature[0]; |
568 | c->ecx = signature[1]; | |
569 | c->edx = signature[2]; | |
0c31b744 | 570 | |
234cc647 PB |
571 | c = &cpuid_data.entries[cpuid_i++]; |
572 | c->function = HYPERV_CPUID_INTERFACE; | |
eab70139 VR |
573 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
574 | c->eax = signature[0]; | |
234cc647 PB |
575 | c->ebx = 0; |
576 | c->ecx = 0; | |
577 | c->edx = 0; | |
eab70139 VR |
578 | |
579 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
580 | c->function = HYPERV_CPUID_VERSION; |
581 | c->eax = 0x00001bbc; | |
582 | c->ebx = 0x00060001; | |
583 | ||
584 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 585 | c->function = HYPERV_CPUID_FEATURES; |
92067bf4 | 586 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
587 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
588 | } | |
92067bf4 | 589 | if (cpu->hyperv_vapic) { |
eab70139 VR |
590 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
591 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
7bc3d711 | 592 | has_msr_hv_vapic = true; |
eab70139 | 593 | } |
48a5f3bc VR |
594 | if (cpu->hyperv_time && |
595 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { | |
596 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
597 | c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; | |
598 | c->eax |= 0x200; | |
599 | has_msr_hv_tsc = true; | |
600 | } | |
f2a53c9e AS |
601 | if (cpu->hyperv_crash && has_msr_hv_crash) { |
602 | c->edx |= HV_X64_GUEST_CRASH_MSR_AVAILABLE; | |
603 | } | |
744b8a94 AS |
604 | if (cpu->hyperv_reset && has_msr_hv_reset) { |
605 | c->eax |= HV_X64_MSR_RESET_AVAILABLE; | |
606 | } | |
8c145d7c AS |
607 | if (cpu->hyperv_vpindex && has_msr_hv_vpindex) { |
608 | c->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE; | |
609 | } | |
46eb8f98 AS |
610 | if (cpu->hyperv_runtime && has_msr_hv_runtime) { |
611 | c->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; | |
612 | } | |
eab70139 | 613 | c = &cpuid_data.entries[cpuid_i++]; |
eab70139 | 614 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 615 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
616 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
617 | } | |
7bc3d711 | 618 | if (has_msr_hv_vapic) { |
eab70139 VR |
619 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
620 | } | |
92067bf4 | 621 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
622 | |
623 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
624 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
625 | c->eax = 0x40; | |
626 | c->ebx = 0x40; | |
627 | ||
234cc647 | 628 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 629 | has_msr_hv_hypercall = true; |
eab70139 VR |
630 | } |
631 | ||
f522d2ac AW |
632 | if (cpu->expose_kvm) { |
633 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
634 | c = &cpuid_data.entries[cpuid_i++]; | |
635 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 636 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
637 | c->ebx = signature[0]; |
638 | c->ecx = signature[1]; | |
639 | c->edx = signature[2]; | |
234cc647 | 640 | |
f522d2ac AW |
641 | c = &cpuid_data.entries[cpuid_i++]; |
642 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
643 | c->eax = env->features[FEAT_KVM]; | |
234cc647 | 644 | |
f522d2ac | 645 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 646 | |
f522d2ac | 647 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
bc9a839d | 648 | |
f522d2ac AW |
649 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
650 | } | |
917367aa | 651 | |
a33609ca | 652 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
653 | |
654 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
655 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
656 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
657 | abort(); | |
658 | } | |
bb0300dc | 659 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
660 | |
661 | switch (i) { | |
a36b1029 AL |
662 | case 2: { |
663 | /* Keep reading function 2 till all the input is received */ | |
664 | int times; | |
665 | ||
a36b1029 | 666 | c->function = i; |
a33609ca AL |
667 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
668 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
669 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
670 | times = c->eax & 0xff; | |
a36b1029 AL |
671 | |
672 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
673 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
674 | fprintf(stderr, "cpuid_data is full, no space for " | |
675 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
676 | abort(); | |
677 | } | |
a33609ca | 678 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 679 | c->function = i; |
a33609ca AL |
680 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
681 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
682 | } |
683 | break; | |
684 | } | |
486bd5a2 AL |
685 | case 4: |
686 | case 0xb: | |
687 | case 0xd: | |
688 | for (j = 0; ; j++) { | |
31e8c696 AP |
689 | if (i == 0xd && j == 64) { |
690 | break; | |
691 | } | |
486bd5a2 AL |
692 | c->function = i; |
693 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
694 | c->index = j; | |
a33609ca | 695 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 696 | |
b9bec74b | 697 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 698 | break; |
b9bec74b JK |
699 | } |
700 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 701 | break; |
b9bec74b JK |
702 | } |
703 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 704 | continue; |
b9bec74b | 705 | } |
f8bb0565 IM |
706 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
707 | fprintf(stderr, "cpuid_data is full, no space for " | |
708 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
709 | abort(); | |
710 | } | |
a33609ca | 711 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
712 | } |
713 | break; | |
714 | default: | |
486bd5a2 | 715 | c->function = i; |
a33609ca AL |
716 | c->flags = 0; |
717 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
718 | break; |
719 | } | |
05330448 | 720 | } |
0d894367 PB |
721 | |
722 | if (limit >= 0x0a) { | |
723 | uint32_t ver; | |
724 | ||
725 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
726 | if ((ver & 0xff) > 0) { | |
727 | has_msr_architectural_pmu = true; | |
728 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
729 | ||
730 | /* Shouldn't be more than 32, since that's the number of bits | |
731 | * available in EBX to tell us _which_ counters are available. | |
732 | * Play it safe. | |
733 | */ | |
734 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
735 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
736 | } | |
737 | } | |
738 | } | |
739 | ||
a33609ca | 740 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
741 | |
742 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
743 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
744 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
745 | abort(); | |
746 | } | |
bb0300dc | 747 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 748 | |
05330448 | 749 | c->function = i; |
a33609ca AL |
750 | c->flags = 0; |
751 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
752 | } |
753 | ||
b3baa152 BW |
754 | /* Call Centaur's CPUID instructions they are supported. */ |
755 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
756 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
757 | ||
758 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
759 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
760 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
761 | abort(); | |
762 | } | |
b3baa152 BW |
763 | c = &cpuid_data.entries[cpuid_i++]; |
764 | ||
765 | c->function = i; | |
766 | c->flags = 0; | |
767 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
768 | } | |
769 | } | |
770 | ||
05330448 AL |
771 | cpuid_data.cpuid.nent = cpuid_i; |
772 | ||
e7701825 | 773 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 774 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 775 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 776 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
e7701825 MT |
777 | uint64_t mcg_cap; |
778 | int banks; | |
32a42024 | 779 | int ret; |
e7701825 | 780 | |
a60f24b5 | 781 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
782 | if (ret < 0) { |
783 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
784 | return ret; | |
e7701825 | 785 | } |
75d49497 | 786 | |
49b69cbf EH |
787 | if (banks < MCE_BANKS_DEF) { |
788 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", | |
789 | MCE_BANKS_DEF, banks); | |
790 | return -ENOTSUP; | |
75d49497 | 791 | } |
49b69cbf | 792 | |
75d49497 | 793 | mcg_cap &= MCE_CAP_DEF; |
49b69cbf | 794 | mcg_cap |= MCE_BANKS_DEF; |
1bc22652 | 795 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap); |
75d49497 JK |
796 | if (ret < 0) { |
797 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
798 | return ret; | |
799 | } | |
800 | ||
801 | env->mcg_cap = mcg_cap; | |
e7701825 | 802 | } |
e7701825 | 803 | |
b8cc45d6 GC |
804 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
805 | ||
df67696e LJ |
806 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
807 | if (c) { | |
808 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
809 | !!(c->ecx & CPUID_EXT_SMX); | |
810 | } | |
811 | ||
68bfd0ad MT |
812 | c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0); |
813 | if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) { | |
814 | /* for migration */ | |
815 | error_setg(&invtsc_mig_blocker, | |
816 | "State blocked by non-migratable CPU device" | |
817 | " (invtsc flag)"); | |
818 | migrate_add_blocker(invtsc_mig_blocker); | |
819 | /* for savevm */ | |
820 | vmstate_x86_cpu.unmigratable = 1; | |
821 | } | |
822 | ||
7e680753 | 823 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 824 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
825 | if (r) { |
826 | return r; | |
827 | } | |
e7429073 | 828 | |
a60f24b5 | 829 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL); |
e7429073 | 830 | if (r && env->tsc_khz) { |
1bc22652 | 831 | r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz); |
e7429073 JR |
832 | if (r < 0) { |
833 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
834 | return r; | |
835 | } | |
836 | } | |
e7429073 | 837 | |
28143b40 | 838 | if (has_xsave) { |
fabacc0f JK |
839 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
840 | } | |
841 | ||
d1ae67f6 AW |
842 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
843 | has_msr_mtrr = true; | |
844 | } | |
845 | ||
e7429073 | 846 | return 0; |
05330448 AL |
847 | } |
848 | ||
50a2c6e5 | 849 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 850 | { |
20d695a9 | 851 | CPUX86State *env = &cpu->env; |
dd673288 | 852 | |
e73223a5 | 853 | env->exception_injected = -1; |
0e607a80 | 854 | env->interrupt_injected = -1; |
1a5e9d2f | 855 | env->xcr0 = 1; |
ddced198 | 856 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 857 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
858 | KVM_MP_STATE_UNINITIALIZED; |
859 | } else { | |
860 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
861 | } | |
caa5af0f JK |
862 | } |
863 | ||
e0723c45 PB |
864 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
865 | { | |
866 | CPUX86State *env = &cpu->env; | |
867 | ||
868 | /* APs get directly into wait-for-SIPI state. */ | |
869 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
870 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
871 | } | |
872 | } | |
873 | ||
c3a3a7d3 | 874 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 875 | { |
75b10c43 | 876 | static int kvm_supported_msrs; |
c3a3a7d3 | 877 | int ret = 0; |
05330448 AL |
878 | |
879 | /* first time */ | |
75b10c43 | 880 | if (kvm_supported_msrs == 0) { |
05330448 AL |
881 | struct kvm_msr_list msr_list, *kvm_msr_list; |
882 | ||
75b10c43 | 883 | kvm_supported_msrs = -1; |
05330448 AL |
884 | |
885 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
886 | * save/restore */ | |
4c9f7372 | 887 | msr_list.nmsrs = 0; |
c3a3a7d3 | 888 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 889 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 890 | return ret; |
6fb6d245 | 891 | } |
d9db889f JK |
892 | /* Old kernel modules had a bug and could write beyond the provided |
893 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 894 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
895 | msr_list.nmsrs * |
896 | sizeof(msr_list.indices[0]))); | |
05330448 | 897 | |
55308450 | 898 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 899 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
900 | if (ret >= 0) { |
901 | int i; | |
902 | ||
903 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
904 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 905 | has_msr_star = true; |
75b10c43 MT |
906 | continue; |
907 | } | |
908 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 909 | has_msr_hsave_pa = true; |
75b10c43 | 910 | continue; |
05330448 | 911 | } |
c9b8f6b6 AS |
912 | if (kvm_msr_list->indices[i] == MSR_TSC_AUX) { |
913 | has_msr_tsc_aux = true; | |
914 | continue; | |
915 | } | |
f28558d3 WA |
916 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
917 | has_msr_tsc_adjust = true; | |
918 | continue; | |
919 | } | |
aa82ba54 LJ |
920 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
921 | has_msr_tsc_deadline = true; | |
922 | continue; | |
923 | } | |
fc12d72e PB |
924 | if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) { |
925 | has_msr_smbase = true; | |
926 | continue; | |
927 | } | |
21e87c46 AK |
928 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
929 | has_msr_misc_enable = true; | |
930 | continue; | |
931 | } | |
79e9ebeb LJ |
932 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
933 | has_msr_bndcfgs = true; | |
934 | continue; | |
935 | } | |
18cd2c17 WL |
936 | if (kvm_msr_list->indices[i] == MSR_IA32_XSS) { |
937 | has_msr_xss = true; | |
938 | continue; | |
939 | } | |
f2a53c9e AS |
940 | if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) { |
941 | has_msr_hv_crash = true; | |
942 | continue; | |
943 | } | |
744b8a94 AS |
944 | if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) { |
945 | has_msr_hv_reset = true; | |
946 | continue; | |
947 | } | |
8c145d7c AS |
948 | if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) { |
949 | has_msr_hv_vpindex = true; | |
950 | continue; | |
951 | } | |
46eb8f98 AS |
952 | if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) { |
953 | has_msr_hv_runtime = true; | |
954 | continue; | |
955 | } | |
05330448 AL |
956 | } |
957 | } | |
958 | ||
7267c094 | 959 | g_free(kvm_msr_list); |
05330448 AL |
960 | } |
961 | ||
c3a3a7d3 | 962 | return ret; |
05330448 AL |
963 | } |
964 | ||
6410848b PB |
965 | static Notifier smram_machine_done; |
966 | static KVMMemoryListener smram_listener; | |
967 | static AddressSpace smram_address_space; | |
968 | static MemoryRegion smram_as_root; | |
969 | static MemoryRegion smram_as_mem; | |
970 | ||
971 | static void register_smram_listener(Notifier *n, void *unused) | |
972 | { | |
973 | MemoryRegion *smram = | |
974 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
975 | ||
976 | /* Outer container... */ | |
977 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
978 | memory_region_set_enabled(&smram_as_root, true); | |
979 | ||
980 | /* ... with two regions inside: normal system memory with low | |
981 | * priority, and... | |
982 | */ | |
983 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
984 | get_system_memory(), 0, ~0ull); | |
985 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
986 | memory_region_set_enabled(&smram_as_mem, true); | |
987 | ||
988 | if (smram) { | |
989 | /* ... SMRAM with higher priority */ | |
990 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
991 | memory_region_set_enabled(smram, true); | |
992 | } | |
993 | ||
994 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
995 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
996 | &smram_address_space, 1); | |
997 | } | |
998 | ||
b16565b3 | 999 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 1000 | { |
11076198 | 1001 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 1002 | uint64_t shadow_mem; |
20420430 | 1003 | int ret; |
25d2e361 | 1004 | struct utsname utsname; |
20420430 | 1005 | |
28143b40 TH |
1006 | #ifdef KVM_CAP_XSAVE |
1007 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1008 | #endif | |
1009 | ||
1010 | #ifdef KVM_CAP_XCRS | |
1011 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1012 | #endif | |
1013 | ||
1014 | #ifdef KVM_CAP_PIT_STATE2 | |
1015 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1016 | #endif | |
1017 | ||
c3a3a7d3 | 1018 | ret = kvm_get_supported_msrs(s); |
20420430 | 1019 | if (ret < 0) { |
20420430 SY |
1020 | return ret; |
1021 | } | |
25d2e361 MT |
1022 | |
1023 | uname(&utsname); | |
1024 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
1025 | ||
4c5b10b7 | 1026 | /* |
11076198 JK |
1027 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
1028 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
1029 | * Since these must be part of guest physical memory, we need to allocate | |
1030 | * them, both by setting their start addresses in the kernel and by | |
1031 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
1032 | * | |
1033 | * Older KVM versions may not support setting the identity map base. In | |
1034 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
1035 | * size. | |
4c5b10b7 | 1036 | */ |
11076198 JK |
1037 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
1038 | /* Allows up to 16M BIOSes. */ | |
1039 | identity_base = 0xfeffc000; | |
1040 | ||
1041 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
1042 | if (ret < 0) { | |
1043 | return ret; | |
1044 | } | |
4c5b10b7 | 1045 | } |
e56ff191 | 1046 | |
11076198 JK |
1047 | /* Set TSS base one page after EPT identity map. */ |
1048 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
1049 | if (ret < 0) { |
1050 | return ret; | |
1051 | } | |
1052 | ||
11076198 JK |
1053 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
1054 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 1055 | if (ret < 0) { |
11076198 | 1056 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
1057 | return ret; |
1058 | } | |
3c85e74f | 1059 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 1060 | |
4689b77b | 1061 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
1062 | if (shadow_mem != -1) { |
1063 | shadow_mem /= 4096; | |
1064 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
1065 | if (ret < 0) { | |
1066 | return ret; | |
39d6960a JK |
1067 | } |
1068 | } | |
6410848b PB |
1069 | |
1070 | if (kvm_check_extension(s, KVM_CAP_X86_SMM)) { | |
1071 | smram_machine_done.notify = register_smram_listener; | |
1072 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
1073 | } | |
11076198 | 1074 | return 0; |
05330448 | 1075 | } |
b9bec74b | 1076 | |
05330448 AL |
1077 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
1078 | { | |
1079 | lhs->selector = rhs->selector; | |
1080 | lhs->base = rhs->base; | |
1081 | lhs->limit = rhs->limit; | |
1082 | lhs->type = 3; | |
1083 | lhs->present = 1; | |
1084 | lhs->dpl = 3; | |
1085 | lhs->db = 0; | |
1086 | lhs->s = 1; | |
1087 | lhs->l = 0; | |
1088 | lhs->g = 0; | |
1089 | lhs->avl = 0; | |
1090 | lhs->unusable = 0; | |
1091 | } | |
1092 | ||
1093 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
1094 | { | |
1095 | unsigned flags = rhs->flags; | |
1096 | lhs->selector = rhs->selector; | |
1097 | lhs->base = rhs->base; | |
1098 | lhs->limit = rhs->limit; | |
1099 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
1100 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 1101 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
1102 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
1103 | lhs->s = (flags & DESC_S_MASK) != 0; | |
1104 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
1105 | lhs->g = (flags & DESC_G_MASK) != 0; | |
1106 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
1107 | lhs->unusable = 0; | |
7e680753 | 1108 | lhs->padding = 0; |
05330448 AL |
1109 | } |
1110 | ||
1111 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
1112 | { | |
1113 | lhs->selector = rhs->selector; | |
1114 | lhs->base = rhs->base; | |
1115 | lhs->limit = rhs->limit; | |
b9bec74b JK |
1116 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
1117 | (rhs->present * DESC_P_MASK) | | |
1118 | (rhs->dpl << DESC_DPL_SHIFT) | | |
1119 | (rhs->db << DESC_B_SHIFT) | | |
1120 | (rhs->s * DESC_S_MASK) | | |
1121 | (rhs->l << DESC_L_SHIFT) | | |
1122 | (rhs->g * DESC_G_MASK) | | |
1123 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
1124 | } |
1125 | ||
1126 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
1127 | { | |
b9bec74b | 1128 | if (set) { |
05330448 | 1129 | *kvm_reg = *qemu_reg; |
b9bec74b | 1130 | } else { |
05330448 | 1131 | *qemu_reg = *kvm_reg; |
b9bec74b | 1132 | } |
05330448 AL |
1133 | } |
1134 | ||
1bc22652 | 1135 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 1136 | { |
1bc22652 | 1137 | CPUX86State *env = &cpu->env; |
05330448 AL |
1138 | struct kvm_regs regs; |
1139 | int ret = 0; | |
1140 | ||
1141 | if (!set) { | |
1bc22652 | 1142 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 1143 | if (ret < 0) { |
05330448 | 1144 | return ret; |
b9bec74b | 1145 | } |
05330448 AL |
1146 | } |
1147 | ||
1148 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
1149 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
1150 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
1151 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
1152 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
1153 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
1154 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
1155 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
1156 | #ifdef TARGET_X86_64 | |
1157 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
1158 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
1159 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
1160 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
1161 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
1162 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
1163 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
1164 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
1165 | #endif | |
1166 | ||
1167 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
1168 | kvm_getput_reg(®s.rip, &env->eip, set); | |
1169 | ||
b9bec74b | 1170 | if (set) { |
1bc22652 | 1171 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 1172 | } |
05330448 AL |
1173 | |
1174 | return ret; | |
1175 | } | |
1176 | ||
1bc22652 | 1177 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1178 | { |
1bc22652 | 1179 | CPUX86State *env = &cpu->env; |
05330448 AL |
1180 | struct kvm_fpu fpu; |
1181 | int i; | |
1182 | ||
1183 | memset(&fpu, 0, sizeof fpu); | |
1184 | fpu.fsw = env->fpus & ~(7 << 11); | |
1185 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1186 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1187 | fpu.last_opcode = env->fpop; |
1188 | fpu.last_ip = env->fpip; | |
1189 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1190 | for (i = 0; i < 8; ++i) { |
1191 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1192 | } | |
05330448 | 1193 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 PB |
1194 | for (i = 0; i < CPU_NB_REGS; i++) { |
1195 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].XMM_Q(0)); | |
1196 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].XMM_Q(1)); | |
1197 | } | |
05330448 AL |
1198 | fpu.mxcsr = env->mxcsr; |
1199 | ||
1bc22652 | 1200 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1201 | } |
1202 | ||
6b42494b JK |
1203 | #define XSAVE_FCW_FSW 0 |
1204 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1205 | #define XSAVE_CWD_RIP 2 |
1206 | #define XSAVE_CWD_RDP 4 | |
1207 | #define XSAVE_MXCSR 6 | |
1208 | #define XSAVE_ST_SPACE 8 | |
1209 | #define XSAVE_XMM_SPACE 40 | |
1210 | #define XSAVE_XSTATE_BV 128 | |
1211 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1212 | #define XSAVE_BNDREGS 240 |
1213 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1214 | #define XSAVE_OPMASK 272 |
1215 | #define XSAVE_ZMM_Hi256 288 | |
1216 | #define XSAVE_Hi16_ZMM 416 | |
f1665b21 | 1217 | |
1bc22652 | 1218 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1219 | { |
1bc22652 | 1220 | CPUX86State *env = &cpu->env; |
fabacc0f | 1221 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
42cc8fa6 | 1222 | uint16_t cwd, swd, twd; |
b7711471 | 1223 | uint8_t *xmm, *ymmh, *zmmh; |
fabacc0f | 1224 | int i, r; |
f1665b21 | 1225 | |
28143b40 | 1226 | if (!has_xsave) { |
1bc22652 | 1227 | return kvm_put_fpu(cpu); |
b9bec74b | 1228 | } |
f1665b21 | 1229 | |
f1665b21 | 1230 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 1231 | twd = 0; |
f1665b21 SY |
1232 | swd = env->fpus & ~(7 << 11); |
1233 | swd |= (env->fpstt & 7) << 11; | |
1234 | cwd = env->fpuc; | |
b9bec74b | 1235 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1236 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1237 | } |
6b42494b JK |
1238 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; |
1239 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
42cc8fa6 JK |
1240 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); |
1241 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
f1665b21 SY |
1242 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
1243 | sizeof env->fpregs); | |
f1665b21 SY |
1244 | xsave->region[XSAVE_MXCSR] = env->mxcsr; |
1245 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
79e9ebeb LJ |
1246 | memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs, |
1247 | sizeof env->bnd_regs); | |
1248 | memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs, | |
1249 | sizeof(env->bndcs_regs)); | |
9aecd6f8 CP |
1250 | memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs, |
1251 | sizeof env->opmask_regs); | |
bee81887 PB |
1252 | |
1253 | xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE]; | |
b7711471 PB |
1254 | ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE]; |
1255 | zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256]; | |
1256 | for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) { | |
bee81887 PB |
1257 | stq_p(xmm, env->xmm_regs[i].XMM_Q(0)); |
1258 | stq_p(xmm+8, env->xmm_regs[i].XMM_Q(1)); | |
b7711471 PB |
1259 | stq_p(ymmh, env->xmm_regs[i].XMM_Q(2)); |
1260 | stq_p(ymmh+8, env->xmm_regs[i].XMM_Q(3)); | |
1261 | stq_p(zmmh, env->xmm_regs[i].XMM_Q(4)); | |
1262 | stq_p(zmmh+8, env->xmm_regs[i].XMM_Q(5)); | |
1263 | stq_p(zmmh+16, env->xmm_regs[i].XMM_Q(6)); | |
1264 | stq_p(zmmh+24, env->xmm_regs[i].XMM_Q(7)); | |
bee81887 PB |
1265 | } |
1266 | ||
9aecd6f8 | 1267 | #ifdef TARGET_X86_64 |
b7711471 PB |
1268 | memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16], |
1269 | 16 * sizeof env->xmm_regs[16]); | |
9aecd6f8 | 1270 | #endif |
1bc22652 | 1271 | r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
0f53994f | 1272 | return r; |
f1665b21 SY |
1273 | } |
1274 | ||
1bc22652 | 1275 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1276 | { |
1bc22652 | 1277 | CPUX86State *env = &cpu->env; |
bdfc8480 | 1278 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 1279 | |
28143b40 | 1280 | if (!has_xcrs) { |
f1665b21 | 1281 | return 0; |
b9bec74b | 1282 | } |
f1665b21 SY |
1283 | |
1284 | xcrs.nr_xcrs = 1; | |
1285 | xcrs.flags = 0; | |
1286 | xcrs.xcrs[0].xcr = 0; | |
1287 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1288 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1289 | } |
1290 | ||
1bc22652 | 1291 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1292 | { |
1bc22652 | 1293 | CPUX86State *env = &cpu->env; |
05330448 AL |
1294 | struct kvm_sregs sregs; |
1295 | ||
0e607a80 JK |
1296 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1297 | if (env->interrupt_injected >= 0) { | |
1298 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1299 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1300 | } | |
05330448 AL |
1301 | |
1302 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1303 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1304 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1305 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1306 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1307 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1308 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1309 | } else { |
b9bec74b JK |
1310 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1311 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1312 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1313 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1314 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1315 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1316 | } |
1317 | ||
1318 | set_seg(&sregs.tr, &env->tr); | |
1319 | set_seg(&sregs.ldt, &env->ldt); | |
1320 | ||
1321 | sregs.idt.limit = env->idt.limit; | |
1322 | sregs.idt.base = env->idt.base; | |
7e680753 | 1323 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1324 | sregs.gdt.limit = env->gdt.limit; |
1325 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1326 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1327 | |
1328 | sregs.cr0 = env->cr[0]; | |
1329 | sregs.cr2 = env->cr[2]; | |
1330 | sregs.cr3 = env->cr[3]; | |
1331 | sregs.cr4 = env->cr[4]; | |
1332 | ||
02e51483 CF |
1333 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1334 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1335 | |
1336 | sregs.efer = env->efer; | |
1337 | ||
1bc22652 | 1338 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1339 | } |
1340 | ||
1341 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
1342 | uint32_t index, uint64_t value) | |
1343 | { | |
1344 | entry->index = index; | |
c7fe4b12 | 1345 | entry->reserved = 0; |
05330448 AL |
1346 | entry->data = value; |
1347 | } | |
1348 | ||
7477cd38 MT |
1349 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1350 | { | |
1351 | CPUX86State *env = &cpu->env; | |
1352 | struct { | |
1353 | struct kvm_msrs info; | |
1354 | struct kvm_msr_entry entries[1]; | |
1355 | } msr_data; | |
1356 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1357 | ||
1358 | if (!has_msr_tsc_deadline) { | |
1359 | return 0; | |
1360 | } | |
1361 | ||
1362 | kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1363 | ||
c7fe4b12 CB |
1364 | msr_data.info = (struct kvm_msrs) { |
1365 | .nmsrs = 1, | |
1366 | }; | |
7477cd38 MT |
1367 | |
1368 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1369 | } | |
1370 | ||
6bdf863d JK |
1371 | /* |
1372 | * Provide a separate write service for the feature control MSR in order to | |
1373 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1374 | * before writing any other state because forcibly leaving nested mode | |
1375 | * invalidates the VCPU state. | |
1376 | */ | |
1377 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1378 | { | |
1379 | struct { | |
1380 | struct kvm_msrs info; | |
1381 | struct kvm_msr_entry entry; | |
1382 | } msr_data; | |
1383 | ||
1384 | kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL, | |
1385 | cpu->env.msr_ia32_feature_control); | |
c7fe4b12 CB |
1386 | |
1387 | msr_data.info = (struct kvm_msrs) { | |
1388 | .nmsrs = 1, | |
1389 | }; | |
1390 | ||
6bdf863d JK |
1391 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
1392 | } | |
1393 | ||
1bc22652 | 1394 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1395 | { |
1bc22652 | 1396 | CPUX86State *env = &cpu->env; |
05330448 AL |
1397 | struct { |
1398 | struct kvm_msrs info; | |
d1ae67f6 | 1399 | struct kvm_msr_entry entries[150]; |
05330448 AL |
1400 | } msr_data; |
1401 | struct kvm_msr_entry *msrs = msr_data.entries; | |
0d894367 | 1402 | int n = 0, i; |
05330448 AL |
1403 | |
1404 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1405 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1406 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
0c03266a | 1407 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); |
c3a3a7d3 | 1408 | if (has_msr_star) { |
b9bec74b JK |
1409 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
1410 | } | |
c3a3a7d3 | 1411 | if (has_msr_hsave_pa) { |
75b10c43 | 1412 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1413 | } |
c9b8f6b6 AS |
1414 | if (has_msr_tsc_aux) { |
1415 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_AUX, env->tsc_aux); | |
1416 | } | |
f28558d3 WA |
1417 | if (has_msr_tsc_adjust) { |
1418 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust); | |
1419 | } | |
21e87c46 AK |
1420 | if (has_msr_misc_enable) { |
1421 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1422 | env->msr_ia32_misc_enable); | |
1423 | } | |
fc12d72e PB |
1424 | if (has_msr_smbase) { |
1425 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase); | |
1426 | } | |
439d19f2 PB |
1427 | if (has_msr_bndcfgs) { |
1428 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs); | |
1429 | } | |
18cd2c17 WL |
1430 | if (has_msr_xss) { |
1431 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss); | |
1432 | } | |
05330448 | 1433 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1434 | if (lm_capable_kernel) { |
1435 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1436 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1437 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1438 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1439 | } | |
05330448 | 1440 | #endif |
ff5c186b | 1441 | /* |
0d894367 PB |
1442 | * The following MSRs have side effects on the guest or are too heavy |
1443 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1444 | */ |
1445 | if (level >= KVM_PUT_RESET_STATE) { | |
0522604b | 1446 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
ea643051 JK |
1447 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
1448 | env->system_time_msr); | |
1449 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc JK |
1450 | if (has_msr_async_pf_en) { |
1451 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1452 | env->async_pf_en_msr); | |
1453 | } | |
bc9a839d MT |
1454 | if (has_msr_pv_eoi_en) { |
1455 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1456 | env->pv_eoi_en_msr); | |
1457 | } | |
917367aa MT |
1458 | if (has_msr_kvm_steal_time) { |
1459 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME, | |
1460 | env->steal_time_msr); | |
1461 | } | |
0d894367 PB |
1462 | if (has_msr_architectural_pmu) { |
1463 | /* Stop the counter. */ | |
1464 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1465 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1466 | ||
1467 | /* Set the counter values. */ | |
1468 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1469 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i, | |
1470 | env->msr_fixed_counters[i]); | |
1471 | } | |
1472 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1473 | kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i, | |
1474 | env->msr_gp_counters[i]); | |
1475 | kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i, | |
1476 | env->msr_gp_evtsel[i]); | |
1477 | } | |
1478 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS, | |
1479 | env->msr_global_status); | |
1480 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1481 | env->msr_global_ovf_ctrl); | |
1482 | ||
1483 | /* Now start the PMU. */ | |
1484 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1485 | env->msr_fixed_ctr_ctrl); | |
1486 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, | |
1487 | env->msr_global_ctrl); | |
1488 | } | |
7bc3d711 | 1489 | if (has_msr_hv_hypercall) { |
1c90ef26 VR |
1490 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, |
1491 | env->msr_hv_guest_os_id); | |
1492 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, | |
1493 | env->msr_hv_hypercall); | |
eab70139 | 1494 | } |
7bc3d711 | 1495 | if (has_msr_hv_vapic) { |
5ef68987 VR |
1496 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, |
1497 | env->msr_hv_vapic); | |
eab70139 | 1498 | } |
48a5f3bc VR |
1499 | if (has_msr_hv_tsc) { |
1500 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC, | |
1501 | env->msr_hv_tsc); | |
1502 | } | |
f2a53c9e AS |
1503 | if (has_msr_hv_crash) { |
1504 | int j; | |
1505 | ||
1506 | for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) | |
1507 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_P0 + j, | |
1508 | env->msr_hv_crash_params[j]); | |
1509 | ||
1510 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_CTL, | |
1511 | HV_X64_MSR_CRASH_CTL_NOTIFY); | |
1512 | } | |
46eb8f98 AS |
1513 | if (has_msr_hv_runtime) { |
1514 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_VP_RUNTIME, | |
1515 | env->msr_hv_runtime); | |
1516 | } | |
d1ae67f6 AW |
1517 | if (has_msr_mtrr) { |
1518 | kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype); | |
1519 | kvm_msr_entry_set(&msrs[n++], | |
1520 | MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
1521 | kvm_msr_entry_set(&msrs[n++], | |
1522 | MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
1523 | kvm_msr_entry_set(&msrs[n++], | |
1524 | MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
1525 | kvm_msr_entry_set(&msrs[n++], | |
1526 | MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
1527 | kvm_msr_entry_set(&msrs[n++], | |
1528 | MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
1529 | kvm_msr_entry_set(&msrs[n++], | |
1530 | MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
1531 | kvm_msr_entry_set(&msrs[n++], | |
1532 | MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
1533 | kvm_msr_entry_set(&msrs[n++], | |
1534 | MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
1535 | kvm_msr_entry_set(&msrs[n++], | |
1536 | MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
1537 | kvm_msr_entry_set(&msrs[n++], | |
1538 | MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
1539 | kvm_msr_entry_set(&msrs[n++], | |
1540 | MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
1541 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
1542 | kvm_msr_entry_set(&msrs[n++], | |
1543 | MSR_MTRRphysBase(i), env->mtrr_var[i].base); | |
1544 | kvm_msr_entry_set(&msrs[n++], | |
1545 | MSR_MTRRphysMask(i), env->mtrr_var[i].mask); | |
1546 | } | |
1547 | } | |
6bdf863d JK |
1548 | |
1549 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1550 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1551 | } |
57780495 | 1552 | if (env->mcg_cap) { |
d8da8574 | 1553 | int i; |
b9bec74b | 1554 | |
c34d440a JK |
1555 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
1556 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1557 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1558 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
57780495 MT |
1559 | } |
1560 | } | |
1a03675d | 1561 | |
c7fe4b12 CB |
1562 | msr_data.info = (struct kvm_msrs) { |
1563 | .nmsrs = n, | |
1564 | }; | |
05330448 | 1565 | |
1bc22652 | 1566 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
05330448 AL |
1567 | |
1568 | } | |
1569 | ||
1570 | ||
1bc22652 | 1571 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1572 | { |
1bc22652 | 1573 | CPUX86State *env = &cpu->env; |
05330448 AL |
1574 | struct kvm_fpu fpu; |
1575 | int i, ret; | |
1576 | ||
1bc22652 | 1577 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1578 | if (ret < 0) { |
05330448 | 1579 | return ret; |
b9bec74b | 1580 | } |
05330448 AL |
1581 | |
1582 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1583 | env->fpus = fpu.fsw; | |
1584 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1585 | env->fpop = fpu.last_opcode; |
1586 | env->fpip = fpu.last_ip; | |
1587 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1588 | for (i = 0; i < 8; ++i) { |
1589 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1590 | } | |
05330448 | 1591 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 PB |
1592 | for (i = 0; i < CPU_NB_REGS; i++) { |
1593 | env->xmm_regs[i].XMM_Q(0) = ldq_p(&fpu.xmm[i][0]); | |
1594 | env->xmm_regs[i].XMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
1595 | } | |
05330448 AL |
1596 | env->mxcsr = fpu.mxcsr; |
1597 | ||
1598 | return 0; | |
1599 | } | |
1600 | ||
1bc22652 | 1601 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1602 | { |
1bc22652 | 1603 | CPUX86State *env = &cpu->env; |
fabacc0f | 1604 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
f1665b21 | 1605 | int ret, i; |
b7711471 | 1606 | const uint8_t *xmm, *ymmh, *zmmh; |
42cc8fa6 | 1607 | uint16_t cwd, swd, twd; |
f1665b21 | 1608 | |
28143b40 | 1609 | if (!has_xsave) { |
1bc22652 | 1610 | return kvm_get_fpu(cpu); |
b9bec74b | 1611 | } |
f1665b21 | 1612 | |
1bc22652 | 1613 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1614 | if (ret < 0) { |
f1665b21 | 1615 | return ret; |
0f53994f | 1616 | } |
f1665b21 | 1617 | |
6b42494b JK |
1618 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; |
1619 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1620 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1621 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
f1665b21 SY |
1622 | env->fpstt = (swd >> 11) & 7; |
1623 | env->fpus = swd; | |
1624 | env->fpuc = cwd; | |
b9bec74b | 1625 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1626 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1627 | } |
42cc8fa6 JK |
1628 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); |
1629 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
f1665b21 SY |
1630 | env->mxcsr = xsave->region[XSAVE_MXCSR]; |
1631 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1632 | sizeof env->fpregs); | |
f1665b21 | 1633 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; |
79e9ebeb LJ |
1634 | memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS], |
1635 | sizeof env->bnd_regs); | |
1636 | memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR], | |
1637 | sizeof(env->bndcs_regs)); | |
9aecd6f8 CP |
1638 | memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK], |
1639 | sizeof env->opmask_regs); | |
bee81887 PB |
1640 | |
1641 | xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE]; | |
b7711471 PB |
1642 | ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE]; |
1643 | zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256]; | |
1644 | for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) { | |
bee81887 PB |
1645 | env->xmm_regs[i].XMM_Q(0) = ldq_p(xmm); |
1646 | env->xmm_regs[i].XMM_Q(1) = ldq_p(xmm+8); | |
b7711471 PB |
1647 | env->xmm_regs[i].XMM_Q(2) = ldq_p(ymmh); |
1648 | env->xmm_regs[i].XMM_Q(3) = ldq_p(ymmh+8); | |
1649 | env->xmm_regs[i].XMM_Q(4) = ldq_p(zmmh); | |
1650 | env->xmm_regs[i].XMM_Q(5) = ldq_p(zmmh+8); | |
1651 | env->xmm_regs[i].XMM_Q(6) = ldq_p(zmmh+16); | |
1652 | env->xmm_regs[i].XMM_Q(7) = ldq_p(zmmh+24); | |
bee81887 PB |
1653 | } |
1654 | ||
9aecd6f8 | 1655 | #ifdef TARGET_X86_64 |
b7711471 PB |
1656 | memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM], |
1657 | 16 * sizeof env->xmm_regs[16]); | |
9aecd6f8 | 1658 | #endif |
f1665b21 | 1659 | return 0; |
f1665b21 SY |
1660 | } |
1661 | ||
1bc22652 | 1662 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1663 | { |
1bc22652 | 1664 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1665 | int i, ret; |
1666 | struct kvm_xcrs xcrs; | |
1667 | ||
28143b40 | 1668 | if (!has_xcrs) { |
f1665b21 | 1669 | return 0; |
b9bec74b | 1670 | } |
f1665b21 | 1671 | |
1bc22652 | 1672 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1673 | if (ret < 0) { |
f1665b21 | 1674 | return ret; |
b9bec74b | 1675 | } |
f1665b21 | 1676 | |
b9bec74b | 1677 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1678 | /* Only support xcr0 now */ |
0fd53fec PB |
1679 | if (xcrs.xcrs[i].xcr == 0) { |
1680 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1681 | break; |
1682 | } | |
b9bec74b | 1683 | } |
f1665b21 | 1684 | return 0; |
f1665b21 SY |
1685 | } |
1686 | ||
1bc22652 | 1687 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1688 | { |
1bc22652 | 1689 | CPUX86State *env = &cpu->env; |
05330448 AL |
1690 | struct kvm_sregs sregs; |
1691 | uint32_t hflags; | |
0e607a80 | 1692 | int bit, i, ret; |
05330448 | 1693 | |
1bc22652 | 1694 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1695 | if (ret < 0) { |
05330448 | 1696 | return ret; |
b9bec74b | 1697 | } |
05330448 | 1698 | |
0e607a80 JK |
1699 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1700 | to find it and save its number instead (-1 for none). */ | |
1701 | env->interrupt_injected = -1; | |
1702 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1703 | if (sregs.interrupt_bitmap[i]) { | |
1704 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1705 | env->interrupt_injected = i * 64 + bit; | |
1706 | break; | |
1707 | } | |
1708 | } | |
05330448 AL |
1709 | |
1710 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1711 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1712 | get_seg(&env->segs[R_ES], &sregs.es); | |
1713 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1714 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1715 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1716 | ||
1717 | get_seg(&env->tr, &sregs.tr); | |
1718 | get_seg(&env->ldt, &sregs.ldt); | |
1719 | ||
1720 | env->idt.limit = sregs.idt.limit; | |
1721 | env->idt.base = sregs.idt.base; | |
1722 | env->gdt.limit = sregs.gdt.limit; | |
1723 | env->gdt.base = sregs.gdt.base; | |
1724 | ||
1725 | env->cr[0] = sregs.cr0; | |
1726 | env->cr[2] = sregs.cr2; | |
1727 | env->cr[3] = sregs.cr3; | |
1728 | env->cr[4] = sregs.cr4; | |
1729 | ||
05330448 | 1730 | env->efer = sregs.efer; |
cce47516 JK |
1731 | |
1732 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1733 | |
b9bec74b JK |
1734 | #define HFLAG_COPY_MASK \ |
1735 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1736 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1737 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1738 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 | 1739 | |
7125c937 | 1740 | hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
05330448 AL |
1741 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
1742 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1743 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 AL |
1744 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
1745 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
b9bec74b | 1746 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
05330448 AL |
1747 | |
1748 | if (env->efer & MSR_EFER_LMA) { | |
1749 | hflags |= HF_LMA_MASK; | |
1750 | } | |
1751 | ||
1752 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1753 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1754 | } else { | |
1755 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1756 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1757 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1758 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1759 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1760 | !(hflags & HF_CS32_MASK)) { | |
1761 | hflags |= HF_ADDSEG_MASK; | |
1762 | } else { | |
1763 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1764 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1765 | } | |
05330448 AL |
1766 | } |
1767 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1768 | |
1769 | return 0; | |
1770 | } | |
1771 | ||
1bc22652 | 1772 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1773 | { |
1bc22652 | 1774 | CPUX86State *env = &cpu->env; |
05330448 AL |
1775 | struct { |
1776 | struct kvm_msrs info; | |
d1ae67f6 | 1777 | struct kvm_msr_entry entries[150]; |
05330448 AL |
1778 | } msr_data; |
1779 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1780 | int ret, i, n; | |
1781 | ||
1782 | n = 0; | |
1783 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1784 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1785 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
0c03266a | 1786 | msrs[n++].index = MSR_PAT; |
c3a3a7d3 | 1787 | if (has_msr_star) { |
b9bec74b JK |
1788 | msrs[n++].index = MSR_STAR; |
1789 | } | |
c3a3a7d3 | 1790 | if (has_msr_hsave_pa) { |
75b10c43 | 1791 | msrs[n++].index = MSR_VM_HSAVE_PA; |
b9bec74b | 1792 | } |
c9b8f6b6 AS |
1793 | if (has_msr_tsc_aux) { |
1794 | msrs[n++].index = MSR_TSC_AUX; | |
1795 | } | |
f28558d3 WA |
1796 | if (has_msr_tsc_adjust) { |
1797 | msrs[n++].index = MSR_TSC_ADJUST; | |
1798 | } | |
aa82ba54 LJ |
1799 | if (has_msr_tsc_deadline) { |
1800 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1801 | } | |
21e87c46 AK |
1802 | if (has_msr_misc_enable) { |
1803 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1804 | } | |
fc12d72e PB |
1805 | if (has_msr_smbase) { |
1806 | msrs[n++].index = MSR_IA32_SMBASE; | |
1807 | } | |
df67696e LJ |
1808 | if (has_msr_feature_control) { |
1809 | msrs[n++].index = MSR_IA32_FEATURE_CONTROL; | |
1810 | } | |
79e9ebeb LJ |
1811 | if (has_msr_bndcfgs) { |
1812 | msrs[n++].index = MSR_IA32_BNDCFGS; | |
1813 | } | |
18cd2c17 WL |
1814 | if (has_msr_xss) { |
1815 | msrs[n++].index = MSR_IA32_XSS; | |
1816 | } | |
1817 | ||
b8cc45d6 GC |
1818 | |
1819 | if (!env->tsc_valid) { | |
1820 | msrs[n++].index = MSR_IA32_TSC; | |
1354869c | 1821 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
1822 | } |
1823 | ||
05330448 | 1824 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1825 | if (lm_capable_kernel) { |
1826 | msrs[n++].index = MSR_CSTAR; | |
1827 | msrs[n++].index = MSR_KERNELGSBASE; | |
1828 | msrs[n++].index = MSR_FMASK; | |
1829 | msrs[n++].index = MSR_LSTAR; | |
1830 | } | |
05330448 | 1831 | #endif |
1a03675d GC |
1832 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1833 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
c5999bfc JK |
1834 | if (has_msr_async_pf_en) { |
1835 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1836 | } | |
bc9a839d MT |
1837 | if (has_msr_pv_eoi_en) { |
1838 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1839 | } | |
917367aa MT |
1840 | if (has_msr_kvm_steal_time) { |
1841 | msrs[n++].index = MSR_KVM_STEAL_TIME; | |
1842 | } | |
0d894367 PB |
1843 | if (has_msr_architectural_pmu) { |
1844 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL; | |
1845 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL; | |
1846 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS; | |
1847 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL; | |
1848 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1849 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i; | |
1850 | } | |
1851 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1852 | msrs[n++].index = MSR_P6_PERFCTR0 + i; | |
1853 | msrs[n++].index = MSR_P6_EVNTSEL0 + i; | |
1854 | } | |
1855 | } | |
1a03675d | 1856 | |
57780495 MT |
1857 | if (env->mcg_cap) { |
1858 | msrs[n++].index = MSR_MCG_STATUS; | |
1859 | msrs[n++].index = MSR_MCG_CTL; | |
b9bec74b | 1860 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
57780495 | 1861 | msrs[n++].index = MSR_MC0_CTL + i; |
b9bec74b | 1862 | } |
57780495 | 1863 | } |
57780495 | 1864 | |
1c90ef26 VR |
1865 | if (has_msr_hv_hypercall) { |
1866 | msrs[n++].index = HV_X64_MSR_HYPERCALL; | |
1867 | msrs[n++].index = HV_X64_MSR_GUEST_OS_ID; | |
1868 | } | |
5ef68987 VR |
1869 | if (has_msr_hv_vapic) { |
1870 | msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE; | |
1871 | } | |
48a5f3bc VR |
1872 | if (has_msr_hv_tsc) { |
1873 | msrs[n++].index = HV_X64_MSR_REFERENCE_TSC; | |
1874 | } | |
f2a53c9e AS |
1875 | if (has_msr_hv_crash) { |
1876 | int j; | |
1877 | ||
1878 | for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) { | |
1879 | msrs[n++].index = HV_X64_MSR_CRASH_P0 + j; | |
1880 | } | |
1881 | } | |
46eb8f98 AS |
1882 | if (has_msr_hv_runtime) { |
1883 | msrs[n++].index = HV_X64_MSR_VP_RUNTIME; | |
1884 | } | |
d1ae67f6 AW |
1885 | if (has_msr_mtrr) { |
1886 | msrs[n++].index = MSR_MTRRdefType; | |
1887 | msrs[n++].index = MSR_MTRRfix64K_00000; | |
1888 | msrs[n++].index = MSR_MTRRfix16K_80000; | |
1889 | msrs[n++].index = MSR_MTRRfix16K_A0000; | |
1890 | msrs[n++].index = MSR_MTRRfix4K_C0000; | |
1891 | msrs[n++].index = MSR_MTRRfix4K_C8000; | |
1892 | msrs[n++].index = MSR_MTRRfix4K_D0000; | |
1893 | msrs[n++].index = MSR_MTRRfix4K_D8000; | |
1894 | msrs[n++].index = MSR_MTRRfix4K_E0000; | |
1895 | msrs[n++].index = MSR_MTRRfix4K_E8000; | |
1896 | msrs[n++].index = MSR_MTRRfix4K_F0000; | |
1897 | msrs[n++].index = MSR_MTRRfix4K_F8000; | |
1898 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
1899 | msrs[n++].index = MSR_MTRRphysBase(i); | |
1900 | msrs[n++].index = MSR_MTRRphysMask(i); | |
1901 | } | |
1902 | } | |
5ef68987 | 1903 | |
d19ae73e CB |
1904 | msr_data.info = (struct kvm_msrs) { |
1905 | .nmsrs = n, | |
1906 | }; | |
1907 | ||
1bc22652 | 1908 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
b9bec74b | 1909 | if (ret < 0) { |
05330448 | 1910 | return ret; |
b9bec74b | 1911 | } |
05330448 AL |
1912 | |
1913 | for (i = 0; i < ret; i++) { | |
0d894367 PB |
1914 | uint32_t index = msrs[i].index; |
1915 | switch (index) { | |
05330448 AL |
1916 | case MSR_IA32_SYSENTER_CS: |
1917 | env->sysenter_cs = msrs[i].data; | |
1918 | break; | |
1919 | case MSR_IA32_SYSENTER_ESP: | |
1920 | env->sysenter_esp = msrs[i].data; | |
1921 | break; | |
1922 | case MSR_IA32_SYSENTER_EIP: | |
1923 | env->sysenter_eip = msrs[i].data; | |
1924 | break; | |
0c03266a JK |
1925 | case MSR_PAT: |
1926 | env->pat = msrs[i].data; | |
1927 | break; | |
05330448 AL |
1928 | case MSR_STAR: |
1929 | env->star = msrs[i].data; | |
1930 | break; | |
1931 | #ifdef TARGET_X86_64 | |
1932 | case MSR_CSTAR: | |
1933 | env->cstar = msrs[i].data; | |
1934 | break; | |
1935 | case MSR_KERNELGSBASE: | |
1936 | env->kernelgsbase = msrs[i].data; | |
1937 | break; | |
1938 | case MSR_FMASK: | |
1939 | env->fmask = msrs[i].data; | |
1940 | break; | |
1941 | case MSR_LSTAR: | |
1942 | env->lstar = msrs[i].data; | |
1943 | break; | |
1944 | #endif | |
1945 | case MSR_IA32_TSC: | |
1946 | env->tsc = msrs[i].data; | |
1947 | break; | |
c9b8f6b6 AS |
1948 | case MSR_TSC_AUX: |
1949 | env->tsc_aux = msrs[i].data; | |
1950 | break; | |
f28558d3 WA |
1951 | case MSR_TSC_ADJUST: |
1952 | env->tsc_adjust = msrs[i].data; | |
1953 | break; | |
aa82ba54 LJ |
1954 | case MSR_IA32_TSCDEADLINE: |
1955 | env->tsc_deadline = msrs[i].data; | |
1956 | break; | |
aa851e36 MT |
1957 | case MSR_VM_HSAVE_PA: |
1958 | env->vm_hsave = msrs[i].data; | |
1959 | break; | |
1a03675d GC |
1960 | case MSR_KVM_SYSTEM_TIME: |
1961 | env->system_time_msr = msrs[i].data; | |
1962 | break; | |
1963 | case MSR_KVM_WALL_CLOCK: | |
1964 | env->wall_clock_msr = msrs[i].data; | |
1965 | break; | |
57780495 MT |
1966 | case MSR_MCG_STATUS: |
1967 | env->mcg_status = msrs[i].data; | |
1968 | break; | |
1969 | case MSR_MCG_CTL: | |
1970 | env->mcg_ctl = msrs[i].data; | |
1971 | break; | |
21e87c46 AK |
1972 | case MSR_IA32_MISC_ENABLE: |
1973 | env->msr_ia32_misc_enable = msrs[i].data; | |
1974 | break; | |
fc12d72e PB |
1975 | case MSR_IA32_SMBASE: |
1976 | env->smbase = msrs[i].data; | |
1977 | break; | |
0779caeb ACL |
1978 | case MSR_IA32_FEATURE_CONTROL: |
1979 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 1980 | break; |
79e9ebeb LJ |
1981 | case MSR_IA32_BNDCFGS: |
1982 | env->msr_bndcfgs = msrs[i].data; | |
1983 | break; | |
18cd2c17 WL |
1984 | case MSR_IA32_XSS: |
1985 | env->xss = msrs[i].data; | |
1986 | break; | |
57780495 | 1987 | default: |
57780495 MT |
1988 | if (msrs[i].index >= MSR_MC0_CTL && |
1989 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1990 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 1991 | } |
d8da8574 | 1992 | break; |
f6584ee2 GN |
1993 | case MSR_KVM_ASYNC_PF_EN: |
1994 | env->async_pf_en_msr = msrs[i].data; | |
1995 | break; | |
bc9a839d MT |
1996 | case MSR_KVM_PV_EOI_EN: |
1997 | env->pv_eoi_en_msr = msrs[i].data; | |
1998 | break; | |
917367aa MT |
1999 | case MSR_KVM_STEAL_TIME: |
2000 | env->steal_time_msr = msrs[i].data; | |
2001 | break; | |
0d894367 PB |
2002 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
2003 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
2004 | break; | |
2005 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
2006 | env->msr_global_ctrl = msrs[i].data; | |
2007 | break; | |
2008 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
2009 | env->msr_global_status = msrs[i].data; | |
2010 | break; | |
2011 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
2012 | env->msr_global_ovf_ctrl = msrs[i].data; | |
2013 | break; | |
2014 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
2015 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
2016 | break; | |
2017 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
2018 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
2019 | break; | |
2020 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
2021 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
2022 | break; | |
1c90ef26 VR |
2023 | case HV_X64_MSR_HYPERCALL: |
2024 | env->msr_hv_hypercall = msrs[i].data; | |
2025 | break; | |
2026 | case HV_X64_MSR_GUEST_OS_ID: | |
2027 | env->msr_hv_guest_os_id = msrs[i].data; | |
2028 | break; | |
5ef68987 VR |
2029 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
2030 | env->msr_hv_vapic = msrs[i].data; | |
2031 | break; | |
48a5f3bc VR |
2032 | case HV_X64_MSR_REFERENCE_TSC: |
2033 | env->msr_hv_tsc = msrs[i].data; | |
2034 | break; | |
f2a53c9e AS |
2035 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2036 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
2037 | break; | |
46eb8f98 AS |
2038 | case HV_X64_MSR_VP_RUNTIME: |
2039 | env->msr_hv_runtime = msrs[i].data; | |
2040 | break; | |
d1ae67f6 AW |
2041 | case MSR_MTRRdefType: |
2042 | env->mtrr_deftype = msrs[i].data; | |
2043 | break; | |
2044 | case MSR_MTRRfix64K_00000: | |
2045 | env->mtrr_fixed[0] = msrs[i].data; | |
2046 | break; | |
2047 | case MSR_MTRRfix16K_80000: | |
2048 | env->mtrr_fixed[1] = msrs[i].data; | |
2049 | break; | |
2050 | case MSR_MTRRfix16K_A0000: | |
2051 | env->mtrr_fixed[2] = msrs[i].data; | |
2052 | break; | |
2053 | case MSR_MTRRfix4K_C0000: | |
2054 | env->mtrr_fixed[3] = msrs[i].data; | |
2055 | break; | |
2056 | case MSR_MTRRfix4K_C8000: | |
2057 | env->mtrr_fixed[4] = msrs[i].data; | |
2058 | break; | |
2059 | case MSR_MTRRfix4K_D0000: | |
2060 | env->mtrr_fixed[5] = msrs[i].data; | |
2061 | break; | |
2062 | case MSR_MTRRfix4K_D8000: | |
2063 | env->mtrr_fixed[6] = msrs[i].data; | |
2064 | break; | |
2065 | case MSR_MTRRfix4K_E0000: | |
2066 | env->mtrr_fixed[7] = msrs[i].data; | |
2067 | break; | |
2068 | case MSR_MTRRfix4K_E8000: | |
2069 | env->mtrr_fixed[8] = msrs[i].data; | |
2070 | break; | |
2071 | case MSR_MTRRfix4K_F0000: | |
2072 | env->mtrr_fixed[9] = msrs[i].data; | |
2073 | break; | |
2074 | case MSR_MTRRfix4K_F8000: | |
2075 | env->mtrr_fixed[10] = msrs[i].data; | |
2076 | break; | |
2077 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
2078 | if (index & 1) { | |
2079 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data; | |
2080 | } else { | |
2081 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
2082 | } | |
2083 | break; | |
05330448 AL |
2084 | } |
2085 | } | |
2086 | ||
2087 | return 0; | |
2088 | } | |
2089 | ||
1bc22652 | 2090 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 2091 | { |
1bc22652 | 2092 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 2093 | |
1bc22652 | 2094 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
2095 | } |
2096 | ||
23d02d9b | 2097 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 2098 | { |
259186a7 | 2099 | CPUState *cs = CPU(cpu); |
23d02d9b | 2100 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
2101 | struct kvm_mp_state mp_state; |
2102 | int ret; | |
2103 | ||
259186a7 | 2104 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
2105 | if (ret < 0) { |
2106 | return ret; | |
2107 | } | |
2108 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 2109 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 2110 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 2111 | } |
9bdbe550 HB |
2112 | return 0; |
2113 | } | |
2114 | ||
1bc22652 | 2115 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 2116 | { |
02e51483 | 2117 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
2118 | struct kvm_lapic_state kapic; |
2119 | int ret; | |
2120 | ||
3d4b2649 | 2121 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 2122 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
2123 | if (ret < 0) { |
2124 | return ret; | |
2125 | } | |
2126 | ||
2127 | kvm_get_apic_state(apic, &kapic); | |
2128 | } | |
2129 | return 0; | |
2130 | } | |
2131 | ||
1bc22652 | 2132 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 2133 | { |
02e51483 | 2134 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
2135 | struct kvm_lapic_state kapic; |
2136 | ||
3d4b2649 | 2137 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
2138 | kvm_put_apic_state(apic, &kapic); |
2139 | ||
1bc22652 | 2140 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
2141 | } |
2142 | return 0; | |
2143 | } | |
2144 | ||
1bc22652 | 2145 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 2146 | { |
fc12d72e | 2147 | CPUState *cs = CPU(cpu); |
1bc22652 | 2148 | CPUX86State *env = &cpu->env; |
076796f8 | 2149 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
2150 | |
2151 | if (!kvm_has_vcpu_events()) { | |
2152 | return 0; | |
2153 | } | |
2154 | ||
31827373 JK |
2155 | events.exception.injected = (env->exception_injected >= 0); |
2156 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
2157 | events.exception.has_error_code = env->has_error_code; |
2158 | events.exception.error_code = env->error_code; | |
7e680753 | 2159 | events.exception.pad = 0; |
a0fb002c JK |
2160 | |
2161 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
2162 | events.interrupt.nr = env->interrupt_injected; | |
2163 | events.interrupt.soft = env->soft_interrupt; | |
2164 | ||
2165 | events.nmi.injected = env->nmi_injected; | |
2166 | events.nmi.pending = env->nmi_pending; | |
2167 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 2168 | events.nmi.pad = 0; |
a0fb002c JK |
2169 | |
2170 | events.sipi_vector = env->sipi_vector; | |
2171 | ||
fc12d72e PB |
2172 | if (has_msr_smbase) { |
2173 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
2174 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
2175 | if (kvm_irqchip_in_kernel()) { | |
2176 | /* As soon as these are moved to the kernel, remove them | |
2177 | * from cs->interrupt_request. | |
2178 | */ | |
2179 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
2180 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
2181 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
2182 | } else { | |
2183 | /* Keep these in cs->interrupt_request. */ | |
2184 | events.smi.pending = 0; | |
2185 | events.smi.latched_init = 0; | |
2186 | } | |
2187 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
2188 | } | |
2189 | ||
ea643051 JK |
2190 | events.flags = 0; |
2191 | if (level >= KVM_PUT_RESET_STATE) { | |
2192 | events.flags |= | |
2193 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
2194 | } | |
aee028b9 | 2195 | |
1bc22652 | 2196 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
2197 | } |
2198 | ||
1bc22652 | 2199 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 2200 | { |
1bc22652 | 2201 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
2202 | struct kvm_vcpu_events events; |
2203 | int ret; | |
2204 | ||
2205 | if (!kvm_has_vcpu_events()) { | |
2206 | return 0; | |
2207 | } | |
2208 | ||
fc12d72e | 2209 | memset(&events, 0, sizeof(events)); |
1bc22652 | 2210 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
2211 | if (ret < 0) { |
2212 | return ret; | |
2213 | } | |
31827373 | 2214 | env->exception_injected = |
a0fb002c JK |
2215 | events.exception.injected ? events.exception.nr : -1; |
2216 | env->has_error_code = events.exception.has_error_code; | |
2217 | env->error_code = events.exception.error_code; | |
2218 | ||
2219 | env->interrupt_injected = | |
2220 | events.interrupt.injected ? events.interrupt.nr : -1; | |
2221 | env->soft_interrupt = events.interrupt.soft; | |
2222 | ||
2223 | env->nmi_injected = events.nmi.injected; | |
2224 | env->nmi_pending = events.nmi.pending; | |
2225 | if (events.nmi.masked) { | |
2226 | env->hflags2 |= HF2_NMI_MASK; | |
2227 | } else { | |
2228 | env->hflags2 &= ~HF2_NMI_MASK; | |
2229 | } | |
2230 | ||
fc12d72e PB |
2231 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
2232 | if (events.smi.smm) { | |
2233 | env->hflags |= HF_SMM_MASK; | |
2234 | } else { | |
2235 | env->hflags &= ~HF_SMM_MASK; | |
2236 | } | |
2237 | if (events.smi.pending) { | |
2238 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2239 | } else { | |
2240 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2241 | } | |
2242 | if (events.smi.smm_inside_nmi) { | |
2243 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
2244 | } else { | |
2245 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
2246 | } | |
2247 | if (events.smi.latched_init) { | |
2248 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2249 | } else { | |
2250 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2251 | } | |
2252 | } | |
2253 | ||
a0fb002c | 2254 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
2255 | |
2256 | return 0; | |
2257 | } | |
2258 | ||
1bc22652 | 2259 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 2260 | { |
ed2803da | 2261 | CPUState *cs = CPU(cpu); |
1bc22652 | 2262 | CPUX86State *env = &cpu->env; |
b0b1d690 | 2263 | int ret = 0; |
b0b1d690 JK |
2264 | unsigned long reinject_trap = 0; |
2265 | ||
2266 | if (!kvm_has_vcpu_events()) { | |
2267 | if (env->exception_injected == 1) { | |
2268 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
2269 | } else if (env->exception_injected == 3) { | |
2270 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
2271 | } | |
2272 | env->exception_injected = -1; | |
2273 | } | |
2274 | ||
2275 | /* | |
2276 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
2277 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
2278 | * by updating the debug state once again if single-stepping is on. | |
2279 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
2280 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
2281 | * reinject them via SET_GUEST_DEBUG. | |
2282 | */ | |
2283 | if (reinject_trap || | |
ed2803da | 2284 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 2285 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 2286 | } |
b0b1d690 JK |
2287 | return ret; |
2288 | } | |
2289 | ||
1bc22652 | 2290 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 2291 | { |
1bc22652 | 2292 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2293 | struct kvm_debugregs dbgregs; |
2294 | int i; | |
2295 | ||
2296 | if (!kvm_has_debugregs()) { | |
2297 | return 0; | |
2298 | } | |
2299 | ||
2300 | for (i = 0; i < 4; i++) { | |
2301 | dbgregs.db[i] = env->dr[i]; | |
2302 | } | |
2303 | dbgregs.dr6 = env->dr[6]; | |
2304 | dbgregs.dr7 = env->dr[7]; | |
2305 | dbgregs.flags = 0; | |
2306 | ||
1bc22652 | 2307 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
2308 | } |
2309 | ||
1bc22652 | 2310 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 2311 | { |
1bc22652 | 2312 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2313 | struct kvm_debugregs dbgregs; |
2314 | int i, ret; | |
2315 | ||
2316 | if (!kvm_has_debugregs()) { | |
2317 | return 0; | |
2318 | } | |
2319 | ||
1bc22652 | 2320 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2321 | if (ret < 0) { |
b9bec74b | 2322 | return ret; |
ff44f1a3 JK |
2323 | } |
2324 | for (i = 0; i < 4; i++) { | |
2325 | env->dr[i] = dbgregs.db[i]; | |
2326 | } | |
2327 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
2328 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
2329 | |
2330 | return 0; | |
2331 | } | |
2332 | ||
20d695a9 | 2333 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 2334 | { |
20d695a9 | 2335 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
2336 | int ret; |
2337 | ||
2fa45344 | 2338 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 2339 | |
6bdf863d JK |
2340 | if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) { |
2341 | ret = kvm_put_msr_feature_control(x86_cpu); | |
2342 | if (ret < 0) { | |
2343 | return ret; | |
2344 | } | |
2345 | } | |
2346 | ||
1bc22652 | 2347 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 2348 | if (ret < 0) { |
05330448 | 2349 | return ret; |
b9bec74b | 2350 | } |
1bc22652 | 2351 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 2352 | if (ret < 0) { |
f1665b21 | 2353 | return ret; |
b9bec74b | 2354 | } |
1bc22652 | 2355 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 2356 | if (ret < 0) { |
05330448 | 2357 | return ret; |
b9bec74b | 2358 | } |
1bc22652 | 2359 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 2360 | if (ret < 0) { |
05330448 | 2361 | return ret; |
b9bec74b | 2362 | } |
ab443475 | 2363 | /* must be before kvm_put_msrs */ |
1bc22652 | 2364 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
2365 | if (ret < 0) { |
2366 | return ret; | |
2367 | } | |
1bc22652 | 2368 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 2369 | if (ret < 0) { |
05330448 | 2370 | return ret; |
b9bec74b | 2371 | } |
ea643051 | 2372 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 2373 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 2374 | if (ret < 0) { |
ea643051 | 2375 | return ret; |
b9bec74b | 2376 | } |
1bc22652 | 2377 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
2378 | if (ret < 0) { |
2379 | return ret; | |
2380 | } | |
ea643051 | 2381 | } |
7477cd38 MT |
2382 | |
2383 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
2384 | if (ret < 0) { | |
2385 | return ret; | |
2386 | } | |
2387 | ||
1bc22652 | 2388 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 2389 | if (ret < 0) { |
a0fb002c | 2390 | return ret; |
b9bec74b | 2391 | } |
1bc22652 | 2392 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 2393 | if (ret < 0) { |
b0b1d690 | 2394 | return ret; |
b9bec74b | 2395 | } |
b0b1d690 | 2396 | /* must be last */ |
1bc22652 | 2397 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 2398 | if (ret < 0) { |
ff44f1a3 | 2399 | return ret; |
b9bec74b | 2400 | } |
05330448 AL |
2401 | return 0; |
2402 | } | |
2403 | ||
20d695a9 | 2404 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 2405 | { |
20d695a9 | 2406 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
2407 | int ret; |
2408 | ||
20d695a9 | 2409 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 2410 | |
1bc22652 | 2411 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 2412 | if (ret < 0) { |
05330448 | 2413 | return ret; |
b9bec74b | 2414 | } |
1bc22652 | 2415 | ret = kvm_get_xsave(cpu); |
b9bec74b | 2416 | if (ret < 0) { |
f1665b21 | 2417 | return ret; |
b9bec74b | 2418 | } |
1bc22652 | 2419 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 2420 | if (ret < 0) { |
05330448 | 2421 | return ret; |
b9bec74b | 2422 | } |
1bc22652 | 2423 | ret = kvm_get_sregs(cpu); |
b9bec74b | 2424 | if (ret < 0) { |
05330448 | 2425 | return ret; |
b9bec74b | 2426 | } |
1bc22652 | 2427 | ret = kvm_get_msrs(cpu); |
b9bec74b | 2428 | if (ret < 0) { |
05330448 | 2429 | return ret; |
b9bec74b | 2430 | } |
23d02d9b | 2431 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 2432 | if (ret < 0) { |
5a2e3c2e | 2433 | return ret; |
b9bec74b | 2434 | } |
1bc22652 | 2435 | ret = kvm_get_apic(cpu); |
680c1c6f JK |
2436 | if (ret < 0) { |
2437 | return ret; | |
2438 | } | |
1bc22652 | 2439 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 2440 | if (ret < 0) { |
a0fb002c | 2441 | return ret; |
b9bec74b | 2442 | } |
1bc22652 | 2443 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 2444 | if (ret < 0) { |
ff44f1a3 | 2445 | return ret; |
b9bec74b | 2446 | } |
05330448 AL |
2447 | return 0; |
2448 | } | |
2449 | ||
20d695a9 | 2450 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2451 | { |
20d695a9 AF |
2452 | X86CPU *x86_cpu = X86_CPU(cpu); |
2453 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2454 | int ret; |
2455 | ||
276ce815 | 2456 | /* Inject NMI */ |
fc12d72e PB |
2457 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
2458 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
2459 | qemu_mutex_lock_iothread(); | |
2460 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
2461 | qemu_mutex_unlock_iothread(); | |
2462 | DPRINTF("injected NMI\n"); | |
2463 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
2464 | if (ret < 0) { | |
2465 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2466 | strerror(-ret)); | |
2467 | } | |
2468 | } | |
2469 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
2470 | qemu_mutex_lock_iothread(); | |
2471 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
2472 | qemu_mutex_unlock_iothread(); | |
2473 | DPRINTF("injected SMI\n"); | |
2474 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
2475 | if (ret < 0) { | |
2476 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
2477 | strerror(-ret)); | |
2478 | } | |
ce377af3 | 2479 | } |
276ce815 LJ |
2480 | } |
2481 | ||
4b8523ee JK |
2482 | if (!kvm_irqchip_in_kernel()) { |
2483 | qemu_mutex_lock_iothread(); | |
2484 | } | |
2485 | ||
e0723c45 PB |
2486 | /* Force the VCPU out of its inner loop to process any INIT requests |
2487 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2488 | * pending TPR access reports. | |
2489 | */ | |
2490 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
2491 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
2492 | !(env->hflags & HF_SMM_MASK)) { | |
2493 | cpu->exit_request = 1; | |
2494 | } | |
2495 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
2496 | cpu->exit_request = 1; | |
2497 | } | |
e0723c45 | 2498 | } |
05330448 | 2499 | |
e0723c45 | 2500 | if (!kvm_irqchip_in_kernel()) { |
db1669bc JK |
2501 | /* Try to inject an interrupt if the guest can accept it */ |
2502 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2503 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2504 | (env->eflags & IF_MASK)) { |
2505 | int irq; | |
2506 | ||
259186a7 | 2507 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2508 | irq = cpu_get_pic_interrupt(env); |
2509 | if (irq >= 0) { | |
2510 | struct kvm_interrupt intr; | |
2511 | ||
2512 | intr.irq = irq; | |
db1669bc | 2513 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2514 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2515 | if (ret < 0) { |
2516 | fprintf(stderr, | |
2517 | "KVM: injection failed, interrupt lost (%s)\n", | |
2518 | strerror(-ret)); | |
2519 | } | |
db1669bc JK |
2520 | } |
2521 | } | |
05330448 | 2522 | |
db1669bc JK |
2523 | /* If we have an interrupt but the guest is not ready to receive an |
2524 | * interrupt, request an interrupt window exit. This will | |
2525 | * cause a return to userspace as soon as the guest is ready to | |
2526 | * receive interrupts. */ | |
259186a7 | 2527 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2528 | run->request_interrupt_window = 1; |
2529 | } else { | |
2530 | run->request_interrupt_window = 0; | |
2531 | } | |
2532 | ||
2533 | DPRINTF("setting tpr\n"); | |
02e51483 | 2534 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
2535 | |
2536 | qemu_mutex_unlock_iothread(); | |
db1669bc | 2537 | } |
05330448 AL |
2538 | } |
2539 | ||
4c663752 | 2540 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2541 | { |
20d695a9 AF |
2542 | X86CPU *x86_cpu = X86_CPU(cpu); |
2543 | CPUX86State *env = &x86_cpu->env; | |
2544 | ||
fc12d72e PB |
2545 | if (run->flags & KVM_RUN_X86_SMM) { |
2546 | env->hflags |= HF_SMM_MASK; | |
2547 | } else { | |
2548 | env->hflags &= HF_SMM_MASK; | |
2549 | } | |
b9bec74b | 2550 | if (run->if_flag) { |
05330448 | 2551 | env->eflags |= IF_MASK; |
b9bec74b | 2552 | } else { |
05330448 | 2553 | env->eflags &= ~IF_MASK; |
b9bec74b | 2554 | } |
4b8523ee JK |
2555 | |
2556 | /* We need to protect the apic state against concurrent accesses from | |
2557 | * different threads in case the userspace irqchip is used. */ | |
2558 | if (!kvm_irqchip_in_kernel()) { | |
2559 | qemu_mutex_lock_iothread(); | |
2560 | } | |
02e51483 CF |
2561 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2562 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
2563 | if (!kvm_irqchip_in_kernel()) { |
2564 | qemu_mutex_unlock_iothread(); | |
2565 | } | |
f794aa4a | 2566 | return cpu_get_mem_attrs(env); |
05330448 AL |
2567 | } |
2568 | ||
20d695a9 | 2569 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2570 | { |
20d695a9 AF |
2571 | X86CPU *cpu = X86_CPU(cs); |
2572 | CPUX86State *env = &cpu->env; | |
232fc23b | 2573 | |
259186a7 | 2574 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2575 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2576 | assert(env->mcg_cap); | |
2577 | ||
259186a7 | 2578 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2579 | |
dd1750d7 | 2580 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2581 | |
2582 | if (env->exception_injected == EXCP08_DBLE) { | |
2583 | /* this means triple fault */ | |
2584 | qemu_system_reset_request(); | |
fcd7d003 | 2585 | cs->exit_request = 1; |
ab443475 JK |
2586 | return 0; |
2587 | } | |
2588 | env->exception_injected = EXCP12_MCHK; | |
2589 | env->has_error_code = 0; | |
2590 | ||
259186a7 | 2591 | cs->halted = 0; |
ab443475 JK |
2592 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2593 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2594 | } | |
2595 | } | |
2596 | ||
fc12d72e PB |
2597 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
2598 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
2599 | kvm_cpu_synchronize_state(cs); |
2600 | do_cpu_init(cpu); | |
2601 | } | |
2602 | ||
db1669bc JK |
2603 | if (kvm_irqchip_in_kernel()) { |
2604 | return 0; | |
2605 | } | |
2606 | ||
259186a7 AF |
2607 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2608 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2609 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2610 | } |
259186a7 | 2611 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2612 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2613 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2614 | cs->halted = 0; | |
6792a57b | 2615 | } |
259186a7 | 2616 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2617 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2618 | do_cpu_sipi(cpu); |
0af691d7 | 2619 | } |
259186a7 AF |
2620 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2621 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2622 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2623 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2624 | env->tpr_access_type); |
2625 | } | |
0af691d7 | 2626 | |
259186a7 | 2627 | return cs->halted; |
0af691d7 MT |
2628 | } |
2629 | ||
839b5630 | 2630 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2631 | { |
259186a7 | 2632 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2633 | CPUX86State *env = &cpu->env; |
2634 | ||
259186a7 | 2635 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2636 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2637 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2638 | cs->halted = 1; | |
bb4ea393 | 2639 | return EXCP_HLT; |
05330448 AL |
2640 | } |
2641 | ||
bb4ea393 | 2642 | return 0; |
05330448 AL |
2643 | } |
2644 | ||
f7575c96 | 2645 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2646 | { |
f7575c96 AF |
2647 | CPUState *cs = CPU(cpu); |
2648 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2649 | |
02e51483 | 2650 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2651 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2652 | : TPR_ACCESS_READ); | |
2653 | return 1; | |
2654 | } | |
2655 | ||
f17ec444 | 2656 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2657 | { |
38972938 | 2658 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2659 | |
f17ec444 AF |
2660 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2661 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2662 | return -EINVAL; |
b9bec74b | 2663 | } |
e22a25c9 AL |
2664 | return 0; |
2665 | } | |
2666 | ||
f17ec444 | 2667 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2668 | { |
2669 | uint8_t int3; | |
2670 | ||
f17ec444 AF |
2671 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2672 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2673 | return -EINVAL; |
b9bec74b | 2674 | } |
e22a25c9 AL |
2675 | return 0; |
2676 | } | |
2677 | ||
2678 | static struct { | |
2679 | target_ulong addr; | |
2680 | int len; | |
2681 | int type; | |
2682 | } hw_breakpoint[4]; | |
2683 | ||
2684 | static int nb_hw_breakpoint; | |
2685 | ||
2686 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2687 | { | |
2688 | int n; | |
2689 | ||
b9bec74b | 2690 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2691 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2692 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2693 | return n; |
b9bec74b JK |
2694 | } |
2695 | } | |
e22a25c9 AL |
2696 | return -1; |
2697 | } | |
2698 | ||
2699 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2700 | target_ulong len, int type) | |
2701 | { | |
2702 | switch (type) { | |
2703 | case GDB_BREAKPOINT_HW: | |
2704 | len = 1; | |
2705 | break; | |
2706 | case GDB_WATCHPOINT_WRITE: | |
2707 | case GDB_WATCHPOINT_ACCESS: | |
2708 | switch (len) { | |
2709 | case 1: | |
2710 | break; | |
2711 | case 2: | |
2712 | case 4: | |
2713 | case 8: | |
b9bec74b | 2714 | if (addr & (len - 1)) { |
e22a25c9 | 2715 | return -EINVAL; |
b9bec74b | 2716 | } |
e22a25c9 AL |
2717 | break; |
2718 | default: | |
2719 | return -EINVAL; | |
2720 | } | |
2721 | break; | |
2722 | default: | |
2723 | return -ENOSYS; | |
2724 | } | |
2725 | ||
b9bec74b | 2726 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2727 | return -ENOBUFS; |
b9bec74b JK |
2728 | } |
2729 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2730 | return -EEXIST; |
b9bec74b | 2731 | } |
e22a25c9 AL |
2732 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2733 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2734 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2735 | nb_hw_breakpoint++; | |
2736 | ||
2737 | return 0; | |
2738 | } | |
2739 | ||
2740 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2741 | target_ulong len, int type) | |
2742 | { | |
2743 | int n; | |
2744 | ||
2745 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 2746 | if (n < 0) { |
e22a25c9 | 2747 | return -ENOENT; |
b9bec74b | 2748 | } |
e22a25c9 AL |
2749 | nb_hw_breakpoint--; |
2750 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
2751 | ||
2752 | return 0; | |
2753 | } | |
2754 | ||
2755 | void kvm_arch_remove_all_hw_breakpoints(void) | |
2756 | { | |
2757 | nb_hw_breakpoint = 0; | |
2758 | } | |
2759 | ||
2760 | static CPUWatchpoint hw_watchpoint; | |
2761 | ||
a60f24b5 | 2762 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 2763 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 2764 | { |
ed2803da | 2765 | CPUState *cs = CPU(cpu); |
a60f24b5 | 2766 | CPUX86State *env = &cpu->env; |
f2574737 | 2767 | int ret = 0; |
e22a25c9 AL |
2768 | int n; |
2769 | ||
2770 | if (arch_info->exception == 1) { | |
2771 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 2772 | if (cs->singlestep_enabled) { |
f2574737 | 2773 | ret = EXCP_DEBUG; |
b9bec74b | 2774 | } |
e22a25c9 | 2775 | } else { |
b9bec74b JK |
2776 | for (n = 0; n < 4; n++) { |
2777 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
2778 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
2779 | case 0x0: | |
f2574737 | 2780 | ret = EXCP_DEBUG; |
e22a25c9 AL |
2781 | break; |
2782 | case 0x1: | |
f2574737 | 2783 | ret = EXCP_DEBUG; |
ff4700b0 | 2784 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2785 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2786 | hw_watchpoint.flags = BP_MEM_WRITE; | |
2787 | break; | |
2788 | case 0x3: | |
f2574737 | 2789 | ret = EXCP_DEBUG; |
ff4700b0 | 2790 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2791 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2792 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
2793 | break; | |
2794 | } | |
b9bec74b JK |
2795 | } |
2796 | } | |
e22a25c9 | 2797 | } |
ff4700b0 | 2798 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 2799 | ret = EXCP_DEBUG; |
b9bec74b | 2800 | } |
f2574737 | 2801 | if (ret == 0) { |
ff4700b0 | 2802 | cpu_synchronize_state(cs); |
48405526 | 2803 | assert(env->exception_injected == -1); |
b0b1d690 | 2804 | |
f2574737 | 2805 | /* pass to guest */ |
48405526 BS |
2806 | env->exception_injected = arch_info->exception; |
2807 | env->has_error_code = 0; | |
b0b1d690 | 2808 | } |
e22a25c9 | 2809 | |
f2574737 | 2810 | return ret; |
e22a25c9 AL |
2811 | } |
2812 | ||
20d695a9 | 2813 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
2814 | { |
2815 | const uint8_t type_code[] = { | |
2816 | [GDB_BREAKPOINT_HW] = 0x0, | |
2817 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2818 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2819 | }; | |
2820 | const uint8_t len_code[] = { | |
2821 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2822 | }; | |
2823 | int n; | |
2824 | ||
a60f24b5 | 2825 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 2826 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 2827 | } |
e22a25c9 AL |
2828 | if (nb_hw_breakpoint > 0) { |
2829 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2830 | dbg->arch.debugreg[7] = 0x0600; | |
2831 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2832 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2833 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2834 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 2835 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
2836 | } |
2837 | } | |
2838 | } | |
4513d923 | 2839 | |
2a4dac83 JK |
2840 | static bool host_supports_vmx(void) |
2841 | { | |
2842 | uint32_t ecx, unused; | |
2843 | ||
2844 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2845 | return ecx & CPUID_EXT_VMX; | |
2846 | } | |
2847 | ||
2848 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2849 | ||
20d695a9 | 2850 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 2851 | { |
20d695a9 | 2852 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
2853 | uint64_t code; |
2854 | int ret; | |
2855 | ||
2856 | switch (run->exit_reason) { | |
2857 | case KVM_EXIT_HLT: | |
2858 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 2859 | qemu_mutex_lock_iothread(); |
839b5630 | 2860 | ret = kvm_handle_halt(cpu); |
4b8523ee | 2861 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
2862 | break; |
2863 | case KVM_EXIT_SET_TPR: | |
2864 | ret = 0; | |
2865 | break; | |
d362e757 | 2866 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 2867 | qemu_mutex_lock_iothread(); |
f7575c96 | 2868 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 2869 | qemu_mutex_unlock_iothread(); |
d362e757 | 2870 | break; |
2a4dac83 JK |
2871 | case KVM_EXIT_FAIL_ENTRY: |
2872 | code = run->fail_entry.hardware_entry_failure_reason; | |
2873 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2874 | code); | |
2875 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2876 | fprintf(stderr, | |
12619721 | 2877 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
2878 | "unrestricted mode\n" |
2879 | "support, the failure can be most likely due to the guest " | |
2880 | "entering an invalid\n" | |
2881 | "state for Intel VT. For example, the guest maybe running " | |
2882 | "in big real mode\n" | |
2883 | "which is not supported on less recent Intel processors." | |
2884 | "\n\n"); | |
2885 | } | |
2886 | ret = -1; | |
2887 | break; | |
2888 | case KVM_EXIT_EXCEPTION: | |
2889 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2890 | run->ex.exception, run->ex.error_code); | |
2891 | ret = -1; | |
2892 | break; | |
f2574737 JK |
2893 | case KVM_EXIT_DEBUG: |
2894 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 2895 | qemu_mutex_lock_iothread(); |
a60f24b5 | 2896 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 2897 | qemu_mutex_unlock_iothread(); |
f2574737 | 2898 | break; |
2a4dac83 JK |
2899 | default: |
2900 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2901 | ret = -1; | |
2902 | break; | |
2903 | } | |
2904 | ||
2905 | return ret; | |
2906 | } | |
2907 | ||
20d695a9 | 2908 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 2909 | { |
20d695a9 AF |
2910 | X86CPU *cpu = X86_CPU(cs); |
2911 | CPUX86State *env = &cpu->env; | |
2912 | ||
dd1750d7 | 2913 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
2914 | return !(env->cr[0] & CR0_PE_MASK) || |
2915 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 2916 | } |
84b058d7 JK |
2917 | |
2918 | void kvm_arch_init_irq_routing(KVMState *s) | |
2919 | { | |
2920 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2921 | /* If kernel can't do irq routing, interrupt source | |
2922 | * override 0->2 cannot be set up as required by HPET. | |
2923 | * So we have to disable it. | |
2924 | */ | |
2925 | no_hpet = 1; | |
2926 | } | |
cc7e0ddf | 2927 | /* We know at this point that we're using the in-kernel |
614e41bc | 2928 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 2929 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 2930 | */ |
614e41bc | 2931 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 2932 | kvm_gsi_routing_allowed = true; |
84b058d7 | 2933 | } |
b139bd30 JK |
2934 | |
2935 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2936 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2937 | uint32_t flags, uint32_t *dev_id) | |
2938 | { | |
2939 | struct kvm_assigned_pci_dev dev_data = { | |
2940 | .segnr = dev_addr->domain, | |
2941 | .busnr = dev_addr->bus, | |
2942 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2943 | .flags = flags, | |
2944 | }; | |
2945 | int ret; | |
2946 | ||
2947 | dev_data.assigned_dev_id = | |
2948 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2949 | ||
2950 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2951 | if (ret < 0) { | |
2952 | return ret; | |
2953 | } | |
2954 | ||
2955 | *dev_id = dev_data.assigned_dev_id; | |
2956 | ||
2957 | return 0; | |
2958 | } | |
2959 | ||
2960 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2961 | { | |
2962 | struct kvm_assigned_pci_dev dev_data = { | |
2963 | .assigned_dev_id = dev_id, | |
2964 | }; | |
2965 | ||
2966 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2967 | } | |
2968 | ||
2969 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2970 | uint32_t irq_type, uint32_t guest_irq) | |
2971 | { | |
2972 | struct kvm_assigned_irq assigned_irq = { | |
2973 | .assigned_dev_id = dev_id, | |
2974 | .guest_irq = guest_irq, | |
2975 | .flags = irq_type, | |
2976 | }; | |
2977 | ||
2978 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2979 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2980 | } else { | |
2981 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2982 | } | |
2983 | } | |
2984 | ||
2985 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2986 | uint32_t guest_irq) | |
2987 | { | |
2988 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2989 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2990 | ||
2991 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2992 | } | |
2993 | ||
2994 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2995 | { | |
2996 | struct kvm_assigned_pci_dev dev_data = { | |
2997 | .assigned_dev_id = dev_id, | |
2998 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2999 | }; | |
3000 | ||
3001 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
3002 | } | |
3003 | ||
3004 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
3005 | uint32_t type) | |
3006 | { | |
3007 | struct kvm_assigned_irq assigned_irq = { | |
3008 | .assigned_dev_id = dev_id, | |
3009 | .flags = type, | |
3010 | }; | |
3011 | ||
3012 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
3013 | } | |
3014 | ||
3015 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
3016 | { | |
3017 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
3018 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
3019 | } | |
3020 | ||
3021 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
3022 | { | |
3023 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
3024 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
3025 | } | |
3026 | ||
3027 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
3028 | { | |
3029 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
3030 | KVM_DEV_IRQ_HOST_MSI); | |
3031 | } | |
3032 | ||
3033 | bool kvm_device_msix_supported(KVMState *s) | |
3034 | { | |
3035 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
3036 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
3037 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
3038 | } | |
3039 | ||
3040 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
3041 | uint32_t nr_vectors) | |
3042 | { | |
3043 | struct kvm_assigned_msix_nr msix_nr = { | |
3044 | .assigned_dev_id = dev_id, | |
3045 | .entry_nr = nr_vectors, | |
3046 | }; | |
3047 | ||
3048 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
3049 | } | |
3050 | ||
3051 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
3052 | int virq) | |
3053 | { | |
3054 | struct kvm_assigned_msix_entry msix_entry = { | |
3055 | .assigned_dev_id = dev_id, | |
3056 | .gsi = virq, | |
3057 | .entry = vector, | |
3058 | }; | |
3059 | ||
3060 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
3061 | } | |
3062 | ||
3063 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
3064 | { | |
3065 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
3066 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
3067 | } | |
3068 | ||
3069 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
3070 | { | |
3071 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
3072 | KVM_DEV_IRQ_HOST_MSIX); | |
3073 | } | |
9e03a040 FB |
3074 | |
3075 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 3076 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 FB |
3077 | { |
3078 | return 0; | |
3079 | } | |
1850b6b7 EA |
3080 | |
3081 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
3082 | { | |
3083 | abort(); | |
3084 | } |