]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
1814eab6 | 21 | #include "standard-headers/asm-x86/kvm_para.h" |
05330448 | 22 | |
33c11879 | 23 | #include "cpu.h" |
9c17d615 | 24 | #include "sysemu/sysemu.h" |
b3946626 | 25 | #include "sysemu/hw_accel.h" |
6410848b | 26 | #include "sysemu/kvm_int.h" |
71e8a915 | 27 | #include "sysemu/reset.h" |
54d31236 | 28 | #include "sysemu/runstate.h" |
1d31f66b | 29 | #include "kvm_i386.h" |
50efe82c | 30 | #include "hyperv.h" |
5e953812 | 31 | #include "hyperv-proto.h" |
50efe82c | 32 | |
022c62cb | 33 | #include "exec/gdbstub.h" |
1de7afc9 | 34 | #include "qemu/host-utils.h" |
db725815 | 35 | #include "qemu/main-loop.h" |
1de7afc9 | 36 | #include "qemu/config-file.h" |
1c4a55db | 37 | #include "qemu/error-report.h" |
0d09e41a PB |
38 | #include "hw/i386/pc.h" |
39 | #include "hw/i386/apic.h" | |
e0723c45 PB |
40 | #include "hw/i386/apic_internal.h" |
41 | #include "hw/i386/apic-msidef.h" | |
8b5ed7df | 42 | #include "hw/i386/intel_iommu.h" |
e1d4fb2d | 43 | #include "hw/i386/x86-iommu.h" |
d6d059ca | 44 | #include "hw/i386/e820_memory_layout.h" |
50efe82c | 45 | |
a2cb15b0 | 46 | #include "hw/pci/pci.h" |
15eafc2e | 47 | #include "hw/pci/msi.h" |
fd563564 | 48 | #include "hw/pci/msix.h" |
795c40b8 | 49 | #include "migration/blocker.h" |
4c663752 | 50 | #include "exec/memattrs.h" |
8b5ed7df | 51 | #include "trace.h" |
05330448 AL |
52 | |
53 | //#define DEBUG_KVM | |
54 | ||
55 | #ifdef DEBUG_KVM | |
8c0d577e | 56 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
57 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
58 | #else | |
8c0d577e | 59 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
60 | do { } while (0) |
61 | #endif | |
62 | ||
1a03675d GC |
63 | #define MSR_KVM_WALL_CLOCK 0x11 |
64 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
65 | ||
d1138251 EH |
66 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
67 | * 255 kvm_msr_entry structs */ | |
68 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 69 | |
94a8d39a JK |
70 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
71 | KVM_CAP_INFO(SET_TSS_ADDR), | |
72 | KVM_CAP_INFO(EXT_CPUID), | |
73 | KVM_CAP_INFO(MP_STATE), | |
74 | KVM_CAP_LAST_INFO | |
75 | }; | |
25d2e361 | 76 | |
c3a3a7d3 JK |
77 | static bool has_msr_star; |
78 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 79 | static bool has_msr_tsc_aux; |
f28558d3 | 80 | static bool has_msr_tsc_adjust; |
aa82ba54 | 81 | static bool has_msr_tsc_deadline; |
df67696e | 82 | static bool has_msr_feature_control; |
21e87c46 | 83 | static bool has_msr_misc_enable; |
fc12d72e | 84 | static bool has_msr_smbase; |
79e9ebeb | 85 | static bool has_msr_bndcfgs; |
25d2e361 | 86 | static int lm_capable_kernel; |
7bc3d711 | 87 | static bool has_msr_hv_hypercall; |
f2a53c9e | 88 | static bool has_msr_hv_crash; |
744b8a94 | 89 | static bool has_msr_hv_reset; |
8c145d7c | 90 | static bool has_msr_hv_vpindex; |
e9688fab | 91 | static bool hv_vpindex_settable; |
46eb8f98 | 92 | static bool has_msr_hv_runtime; |
866eea9a | 93 | static bool has_msr_hv_synic; |
ff99aa64 | 94 | static bool has_msr_hv_stimer; |
d72bc7f6 | 95 | static bool has_msr_hv_frequencies; |
ba6a4fd9 | 96 | static bool has_msr_hv_reenlightenment; |
18cd2c17 | 97 | static bool has_msr_xss; |
a33a2cfe | 98 | static bool has_msr_spec_ctrl; |
cfeea0c0 | 99 | static bool has_msr_virt_ssbd; |
e13713db | 100 | static bool has_msr_smi_count; |
aec5e9c3 | 101 | static bool has_msr_arch_capabs; |
597360c0 | 102 | static bool has_msr_core_capabs; |
20a78b02 | 103 | static bool has_msr_vmx_vmfunc; |
b827df58 | 104 | |
0b368a10 JD |
105 | static uint32_t has_architectural_pmu_version; |
106 | static uint32_t num_architectural_pmu_gp_counters; | |
107 | static uint32_t num_architectural_pmu_fixed_counters; | |
0d894367 | 108 | |
28143b40 TH |
109 | static int has_xsave; |
110 | static int has_xcrs; | |
111 | static int has_pit_state2; | |
fd13f23b | 112 | static int has_exception_payload; |
28143b40 | 113 | |
87f8b626 AR |
114 | static bool has_msr_mcg_ext_ctl; |
115 | ||
494e95e9 | 116 | static struct kvm_cpuid2 *cpuid_cache; |
f57bceb6 | 117 | static struct kvm_msr_list *kvm_feature_msrs; |
494e95e9 | 118 | |
28143b40 TH |
119 | int kvm_has_pit_state2(void) |
120 | { | |
121 | return has_pit_state2; | |
122 | } | |
123 | ||
355023f2 PB |
124 | bool kvm_has_smm(void) |
125 | { | |
126 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
127 | } | |
128 | ||
6053a86f MT |
129 | bool kvm_has_adjust_clock_stable(void) |
130 | { | |
131 | int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); | |
132 | ||
133 | return (ret == KVM_CLOCK_TSC_STABLE); | |
134 | } | |
135 | ||
79a197ab LA |
136 | bool kvm_has_exception_payload(void) |
137 | { | |
138 | return has_exception_payload; | |
139 | } | |
140 | ||
1d31f66b PM |
141 | bool kvm_allows_irq0_override(void) |
142 | { | |
143 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
144 | } | |
145 | ||
fb506e70 RK |
146 | static bool kvm_x2apic_api_set_flags(uint64_t flags) |
147 | { | |
148 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
149 | ||
150 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
151 | } | |
152 | ||
e391c009 | 153 | #define MEMORIZE(fn, _result) \ |
2a138ec3 | 154 | ({ \ |
2a138ec3 RK |
155 | static bool _memorized; \ |
156 | \ | |
157 | if (_memorized) { \ | |
158 | return _result; \ | |
159 | } \ | |
160 | _memorized = true; \ | |
161 | _result = fn; \ | |
162 | }) | |
163 | ||
e391c009 IM |
164 | static bool has_x2apic_api; |
165 | ||
166 | bool kvm_has_x2apic_api(void) | |
167 | { | |
168 | return has_x2apic_api; | |
169 | } | |
170 | ||
fb506e70 RK |
171 | bool kvm_enable_x2apic(void) |
172 | { | |
2a138ec3 RK |
173 | return MEMORIZE( |
174 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
e391c009 IM |
175 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
176 | has_x2apic_api); | |
fb506e70 RK |
177 | } |
178 | ||
e9688fab RK |
179 | bool kvm_hv_vpindex_settable(void) |
180 | { | |
181 | return hv_vpindex_settable; | |
182 | } | |
183 | ||
0fd7e098 LL |
184 | static int kvm_get_tsc(CPUState *cs) |
185 | { | |
186 | X86CPU *cpu = X86_CPU(cs); | |
187 | CPUX86State *env = &cpu->env; | |
188 | struct { | |
189 | struct kvm_msrs info; | |
190 | struct kvm_msr_entry entries[1]; | |
a1834d97 | 191 | } msr_data = {}; |
0fd7e098 LL |
192 | int ret; |
193 | ||
194 | if (env->tsc_valid) { | |
195 | return 0; | |
196 | } | |
197 | ||
1f670a95 | 198 | memset(&msr_data, 0, sizeof(msr_data)); |
0fd7e098 LL |
199 | msr_data.info.nmsrs = 1; |
200 | msr_data.entries[0].index = MSR_IA32_TSC; | |
201 | env->tsc_valid = !runstate_is_running(); | |
202 | ||
203 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
204 | if (ret < 0) { | |
205 | return ret; | |
206 | } | |
207 | ||
48e1a45c | 208 | assert(ret == 1); |
0fd7e098 LL |
209 | env->tsc = msr_data.entries[0].data; |
210 | return 0; | |
211 | } | |
212 | ||
14e6fe12 | 213 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
0fd7e098 | 214 | { |
0fd7e098 LL |
215 | kvm_get_tsc(cpu); |
216 | } | |
217 | ||
218 | void kvm_synchronize_all_tsc(void) | |
219 | { | |
220 | CPUState *cpu; | |
221 | ||
222 | if (kvm_enabled()) { | |
223 | CPU_FOREACH(cpu) { | |
14e6fe12 | 224 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
0fd7e098 LL |
225 | } |
226 | } | |
227 | } | |
228 | ||
b827df58 AK |
229 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
230 | { | |
231 | struct kvm_cpuid2 *cpuid; | |
232 | int r, size; | |
233 | ||
234 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 235 | cpuid = g_malloc0(size); |
b827df58 AK |
236 | cpuid->nent = max; |
237 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
238 | if (r == 0 && cpuid->nent >= max) { |
239 | r = -E2BIG; | |
240 | } | |
b827df58 AK |
241 | if (r < 0) { |
242 | if (r == -E2BIG) { | |
7267c094 | 243 | g_free(cpuid); |
b827df58 AK |
244 | return NULL; |
245 | } else { | |
246 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
247 | strerror(-r)); | |
248 | exit(1); | |
249 | } | |
250 | } | |
251 | return cpuid; | |
252 | } | |
253 | ||
dd87f8a6 EH |
254 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
255 | * for all entries. | |
256 | */ | |
257 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
258 | { | |
259 | struct kvm_cpuid2 *cpuid; | |
260 | int max = 1; | |
494e95e9 CP |
261 | |
262 | if (cpuid_cache != NULL) { | |
263 | return cpuid_cache; | |
264 | } | |
dd87f8a6 EH |
265 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
266 | max *= 2; | |
267 | } | |
494e95e9 | 268 | cpuid_cache = cpuid; |
dd87f8a6 EH |
269 | return cpuid; |
270 | } | |
271 | ||
a443bc34 | 272 | static const struct kvm_para_features { |
0c31b744 GC |
273 | int cap; |
274 | int feature; | |
275 | } para_features[] = { | |
276 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
277 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
278 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 279 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
280 | }; |
281 | ||
ba9bc59e | 282 | static int get_para_features(KVMState *s) |
0c31b744 GC |
283 | { |
284 | int i, features = 0; | |
285 | ||
8e03c100 | 286 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 287 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
288 | features |= (1 << para_features[i].feature); |
289 | } | |
290 | } | |
291 | ||
292 | return features; | |
293 | } | |
0c31b744 | 294 | |
40e80ee4 EH |
295 | static bool host_tsx_blacklisted(void) |
296 | { | |
297 | int family, model, stepping;\ | |
298 | char vendor[CPUID_VENDOR_SZ + 1]; | |
299 | ||
300 | host_vendor_fms(vendor, &family, &model, &stepping); | |
301 | ||
302 | /* Check if we are running on a Haswell host known to have broken TSX */ | |
303 | return !strcmp(vendor, CPUID_VENDOR_INTEL) && | |
304 | (family == 6) && | |
305 | ((model == 63 && stepping < 4) || | |
306 | model == 60 || model == 69 || model == 70); | |
307 | } | |
0c31b744 | 308 | |
829ae2f9 EH |
309 | /* Returns the value for a specific register on the cpuid entry |
310 | */ | |
311 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
312 | { | |
313 | uint32_t ret = 0; | |
314 | switch (reg) { | |
315 | case R_EAX: | |
316 | ret = entry->eax; | |
317 | break; | |
318 | case R_EBX: | |
319 | ret = entry->ebx; | |
320 | break; | |
321 | case R_ECX: | |
322 | ret = entry->ecx; | |
323 | break; | |
324 | case R_EDX: | |
325 | ret = entry->edx; | |
326 | break; | |
327 | } | |
328 | return ret; | |
329 | } | |
330 | ||
4fb73f1d EH |
331 | /* Find matching entry for function/index on kvm_cpuid2 struct |
332 | */ | |
333 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
334 | uint32_t function, | |
335 | uint32_t index) | |
336 | { | |
337 | int i; | |
338 | for (i = 0; i < cpuid->nent; ++i) { | |
339 | if (cpuid->entries[i].function == function && | |
340 | cpuid->entries[i].index == index) { | |
341 | return &cpuid->entries[i]; | |
342 | } | |
343 | } | |
344 | /* not found: */ | |
345 | return NULL; | |
346 | } | |
347 | ||
ba9bc59e | 348 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 349 | uint32_t index, int reg) |
b827df58 AK |
350 | { |
351 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
352 | uint32_t ret = 0; |
353 | uint32_t cpuid_1_edx; | |
8c723b79 | 354 | bool found = false; |
b827df58 | 355 | |
dd87f8a6 | 356 | cpuid = get_supported_cpuid(s); |
b827df58 | 357 | |
4fb73f1d EH |
358 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
359 | if (entry) { | |
360 | found = true; | |
361 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
362 | } |
363 | ||
7b46e5ce EH |
364 | /* Fixups for the data returned by KVM, below */ |
365 | ||
c2acb022 EH |
366 | if (function == 1 && reg == R_EDX) { |
367 | /* KVM before 2.6.30 misreports the following features */ | |
368 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
369 | } else if (function == 1 && reg == R_ECX) { |
370 | /* We can set the hypervisor flag, even if KVM does not return it on | |
371 | * GET_SUPPORTED_CPUID | |
372 | */ | |
373 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
374 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
375 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
376 | * and the irqchip is in the kernel. | |
377 | */ | |
378 | if (kvm_irqchip_in_kernel() && | |
379 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
380 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
381 | } | |
41e5e76d EH |
382 | |
383 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
384 | * without the in-kernel irqchip | |
385 | */ | |
386 | if (!kvm_irqchip_in_kernel()) { | |
387 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 388 | } |
2266d443 MT |
389 | |
390 | if (enable_cpu_pm) { | |
391 | int disable_exits = kvm_check_extension(s, | |
392 | KVM_CAP_X86_DISABLE_EXITS); | |
393 | ||
394 | if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { | |
395 | ret |= CPUID_EXT_MONITOR; | |
396 | } | |
397 | } | |
28b8e4d0 JK |
398 | } else if (function == 6 && reg == R_EAX) { |
399 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
40e80ee4 EH |
400 | } else if (function == 7 && index == 0 && reg == R_EBX) { |
401 | if (host_tsx_blacklisted()) { | |
402 | ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); | |
403 | } | |
67192a29 TX |
404 | } else if (function == 7 && index == 0 && reg == R_ECX) { |
405 | if (enable_cpu_pm) { | |
406 | ret |= CPUID_7_0_ECX_WAITPKG; | |
407 | } else { | |
408 | ret &= ~CPUID_7_0_ECX_WAITPKG; | |
409 | } | |
485b1d25 EH |
410 | } else if (function == 7 && index == 0 && reg == R_EDX) { |
411 | /* | |
412 | * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. | |
413 | * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is | |
414 | * returned by KVM_GET_MSR_INDEX_LIST. | |
415 | */ | |
416 | if (!has_msr_arch_capabs) { | |
417 | ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; | |
418 | } | |
f98bbd83 BM |
419 | } else if (function == 0x80000001 && reg == R_ECX) { |
420 | /* | |
421 | * It's safe to enable TOPOEXT even if it's not returned by | |
422 | * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows | |
423 | * us to keep CPU models including TOPOEXT runnable on older kernels. | |
424 | */ | |
425 | ret |= CPUID_EXT3_TOPOEXT; | |
c2acb022 EH |
426 | } else if (function == 0x80000001 && reg == R_EDX) { |
427 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
428 | * so add missing bits according to the AMD spec: | |
429 | */ | |
430 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
431 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
64877477 EH |
432 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
433 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
434 | * be enabled without the in-kernel irqchip | |
435 | */ | |
436 | if (!kvm_irqchip_in_kernel()) { | |
437 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
438 | } | |
be777326 | 439 | } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { |
2af1acad | 440 | ret |= 1U << KVM_HINTS_REALTIME; |
be777326 | 441 | found = 1; |
b827df58 AK |
442 | } |
443 | ||
0c31b744 | 444 | /* fallback for older kernels */ |
8c723b79 | 445 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 446 | ret = get_para_features(s); |
b9bec74b | 447 | } |
0c31b744 GC |
448 | |
449 | return ret; | |
bb0300dc | 450 | } |
bb0300dc | 451 | |
ede146c2 | 452 | uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) |
f57bceb6 RH |
453 | { |
454 | struct { | |
455 | struct kvm_msrs info; | |
456 | struct kvm_msr_entry entries[1]; | |
a1834d97 | 457 | } msr_data = {}; |
20a78b02 PB |
458 | uint64_t value; |
459 | uint32_t ret, can_be_one, must_be_one; | |
f57bceb6 RH |
460 | |
461 | if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ | |
462 | return 0; | |
463 | } | |
464 | ||
465 | /* Check if requested MSR is supported feature MSR */ | |
466 | int i; | |
467 | for (i = 0; i < kvm_feature_msrs->nmsrs; i++) | |
468 | if (kvm_feature_msrs->indices[i] == index) { | |
469 | break; | |
470 | } | |
471 | if (i == kvm_feature_msrs->nmsrs) { | |
472 | return 0; /* if the feature MSR is not supported, simply return 0 */ | |
473 | } | |
474 | ||
475 | msr_data.info.nmsrs = 1; | |
476 | msr_data.entries[0].index = index; | |
477 | ||
478 | ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); | |
479 | if (ret != 1) { | |
480 | error_report("KVM get MSR (index=0x%x) feature failed, %s", | |
481 | index, strerror(-ret)); | |
482 | exit(1); | |
483 | } | |
484 | ||
20a78b02 PB |
485 | value = msr_data.entries[0].data; |
486 | switch (index) { | |
487 | case MSR_IA32_VMX_PROCBASED_CTLS2: | |
048c9516 PB |
488 | /* KVM forgot to add these bits for some time, do this ourselves. */ |
489 | if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & CPUID_XSAVE_XSAVES) { | |
490 | value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; | |
491 | } | |
492 | if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & CPUID_EXT_RDRAND) { | |
493 | value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; | |
494 | } | |
495 | if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_INVPCID) { | |
496 | value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; | |
497 | } | |
498 | if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_RDSEED) { | |
499 | value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; | |
500 | } | |
501 | if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) { | |
502 | value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; | |
503 | } | |
504 | /* fall through */ | |
20a78b02 PB |
505 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
506 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: | |
507 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: | |
508 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: | |
509 | /* | |
510 | * Return true for bits that can be one, but do not have to be one. | |
511 | * The SDM tells us which bits could have a "must be one" setting, | |
512 | * so we can do the opposite transformation in make_vmx_msr_value. | |
513 | */ | |
514 | must_be_one = (uint32_t)value; | |
515 | can_be_one = (uint32_t)(value >> 32); | |
516 | return can_be_one & ~must_be_one; | |
517 | ||
518 | default: | |
519 | return value; | |
520 | } | |
f57bceb6 RH |
521 | } |
522 | ||
523 | ||
3c85e74f HY |
524 | typedef struct HWPoisonPage { |
525 | ram_addr_t ram_addr; | |
526 | QLIST_ENTRY(HWPoisonPage) list; | |
527 | } HWPoisonPage; | |
528 | ||
529 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
530 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
531 | ||
532 | static void kvm_unpoison_all(void *param) | |
533 | { | |
534 | HWPoisonPage *page, *next_page; | |
535 | ||
536 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
537 | QLIST_REMOVE(page, list); | |
538 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 539 | g_free(page); |
3c85e74f HY |
540 | } |
541 | } | |
542 | ||
3c85e74f HY |
543 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
544 | { | |
545 | HWPoisonPage *page; | |
546 | ||
547 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
548 | if (page->ram_addr == ram_addr) { | |
549 | return; | |
550 | } | |
551 | } | |
ab3ad07f | 552 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
553 | page->ram_addr = ram_addr; |
554 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
555 | } | |
556 | ||
e7701825 MT |
557 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
558 | int *max_banks) | |
559 | { | |
560 | int r; | |
561 | ||
14a09518 | 562 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
563 | if (r > 0) { |
564 | *max_banks = r; | |
565 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
566 | } | |
567 | return -ENOSYS; | |
568 | } | |
569 | ||
bee615d4 | 570 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 571 | { |
87f8b626 | 572 | CPUState *cs = CPU(cpu); |
bee615d4 | 573 | CPUX86State *env = &cpu->env; |
c34d440a JK |
574 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
575 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
576 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 577 | int flags = 0; |
e7701825 | 578 | |
c34d440a JK |
579 | if (code == BUS_MCEERR_AR) { |
580 | status |= MCI_STATUS_AR | 0x134; | |
581 | mcg_status |= MCG_STATUS_EIPV; | |
582 | } else { | |
583 | status |= 0xc0; | |
584 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 585 | } |
87f8b626 AR |
586 | |
587 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
588 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
589 | * guest kernel back into env->mcg_ext_ctl. | |
590 | */ | |
591 | cpu_synchronize_state(cs); | |
592 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
593 | mcg_status |= MCG_STATUS_LMCE; | |
594 | flags = 0; | |
595 | } | |
596 | ||
8c5cf3b6 | 597 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 598 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 599 | } |
419fb20a | 600 | |
73284563 | 601 | static void hardware_memory_error(void *host_addr) |
419fb20a | 602 | { |
73284563 | 603 | error_report("QEMU got Hardware memory error at addr %p", host_addr); |
419fb20a JK |
604 | exit(1); |
605 | } | |
606 | ||
2ae41db2 | 607 | void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 608 | { |
20d695a9 AF |
609 | X86CPU *cpu = X86_CPU(c); |
610 | CPUX86State *env = &cpu->env; | |
419fb20a | 611 | ram_addr_t ram_addr; |
a8170e5e | 612 | hwaddr paddr; |
419fb20a | 613 | |
4d39892c PB |
614 | /* If we get an action required MCE, it has been injected by KVM |
615 | * while the VM was running. An action optional MCE instead should | |
616 | * be coming from the main thread, which qemu_init_sigbus identifies | |
617 | * as the "early kill" thread. | |
618 | */ | |
a16fc07e | 619 | assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
20e0ff59 | 620 | |
20e0ff59 | 621 | if ((env->mcg_cap & MCG_SER_P) && addr) { |
07bdaa41 | 622 | ram_addr = qemu_ram_addr_from_host(addr); |
20e0ff59 PB |
623 | if (ram_addr != RAM_ADDR_INVALID && |
624 | kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { | |
625 | kvm_hwpoison_page_add(ram_addr); | |
626 | kvm_mce_inject(cpu, paddr, code); | |
73284563 MS |
627 | |
628 | /* | |
629 | * Use different logging severity based on error type. | |
630 | * If there is additional MCE reporting on the hypervisor, QEMU VA | |
631 | * could be another source to identify the PA and MCE details. | |
632 | */ | |
633 | if (code == BUS_MCEERR_AR) { | |
634 | error_report("Guest MCE Memory Error at QEMU addr %p and " | |
635 | "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", | |
636 | addr, paddr, "BUS_MCEERR_AR"); | |
637 | } else { | |
638 | warn_report("Guest MCE Memory Error at QEMU addr %p and " | |
639 | "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", | |
640 | addr, paddr, "BUS_MCEERR_AO"); | |
641 | } | |
642 | ||
2ae41db2 | 643 | return; |
419fb20a | 644 | } |
20e0ff59 | 645 | |
73284563 MS |
646 | if (code == BUS_MCEERR_AO) { |
647 | warn_report("Hardware memory error at addr %p of type %s " | |
648 | "for memory used by QEMU itself instead of guest system!", | |
649 | addr, "BUS_MCEERR_AO"); | |
650 | } | |
419fb20a | 651 | } |
20e0ff59 PB |
652 | |
653 | if (code == BUS_MCEERR_AR) { | |
73284563 | 654 | hardware_memory_error(addr); |
20e0ff59 PB |
655 | } |
656 | ||
657 | /* Hope we are lucky for AO MCE */ | |
419fb20a JK |
658 | } |
659 | ||
fd13f23b LA |
660 | static void kvm_reset_exception(CPUX86State *env) |
661 | { | |
662 | env->exception_nr = -1; | |
663 | env->exception_pending = 0; | |
664 | env->exception_injected = 0; | |
665 | env->exception_has_payload = false; | |
666 | env->exception_payload = 0; | |
667 | } | |
668 | ||
669 | static void kvm_queue_exception(CPUX86State *env, | |
670 | int32_t exception_nr, | |
671 | uint8_t exception_has_payload, | |
672 | uint64_t exception_payload) | |
673 | { | |
674 | assert(env->exception_nr == -1); | |
675 | assert(!env->exception_pending); | |
676 | assert(!env->exception_injected); | |
677 | assert(!env->exception_has_payload); | |
678 | ||
679 | env->exception_nr = exception_nr; | |
680 | ||
681 | if (has_exception_payload) { | |
682 | env->exception_pending = 1; | |
683 | ||
684 | env->exception_has_payload = exception_has_payload; | |
685 | env->exception_payload = exception_payload; | |
686 | } else { | |
687 | env->exception_injected = 1; | |
688 | ||
689 | if (exception_nr == EXCP01_DB) { | |
690 | assert(exception_has_payload); | |
691 | env->dr[6] = exception_payload; | |
692 | } else if (exception_nr == EXCP0E_PAGE) { | |
693 | assert(exception_has_payload); | |
694 | env->cr[2] = exception_payload; | |
695 | } else { | |
696 | assert(!exception_has_payload); | |
697 | } | |
698 | } | |
699 | } | |
700 | ||
1bc22652 | 701 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 702 | { |
1bc22652 AF |
703 | CPUX86State *env = &cpu->env; |
704 | ||
fd13f23b | 705 | if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { |
ab443475 JK |
706 | unsigned int bank, bank_num = env->mcg_cap & 0xff; |
707 | struct kvm_x86_mce mce; | |
708 | ||
fd13f23b | 709 | kvm_reset_exception(env); |
ab443475 JK |
710 | |
711 | /* | |
712 | * There must be at least one bank in use if an MCE is pending. | |
713 | * Find it and use its values for the event injection. | |
714 | */ | |
715 | for (bank = 0; bank < bank_num; bank++) { | |
716 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
717 | break; | |
718 | } | |
719 | } | |
720 | assert(bank < bank_num); | |
721 | ||
722 | mce.bank = bank; | |
723 | mce.status = env->mce_banks[bank * 4 + 1]; | |
724 | mce.mcg_status = env->mcg_status; | |
725 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
726 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
727 | ||
1bc22652 | 728 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 729 | } |
ab443475 JK |
730 | return 0; |
731 | } | |
732 | ||
1dfb4dd9 | 733 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 734 | { |
317ac620 | 735 | CPUX86State *env = opaque; |
b8cc45d6 GC |
736 | |
737 | if (running) { | |
738 | env->tsc_valid = false; | |
739 | } | |
740 | } | |
741 | ||
83b17af5 | 742 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 743 | { |
83b17af5 | 744 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 745 | return cpu->apic_id; |
b164e48e EH |
746 | } |
747 | ||
92067bf4 IM |
748 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
749 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
750 | #endif | |
751 | ||
92067bf4 IM |
752 | static bool hyperv_enabled(X86CPU *cpu) |
753 | { | |
7bc3d711 PB |
754 | CPUState *cs = CPU(cpu); |
755 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
2d384d7c | 756 | ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) || |
e48ddcc6 | 757 | cpu->hyperv_features || cpu->hyperv_passthrough); |
92067bf4 IM |
758 | } |
759 | ||
5031283d HZ |
760 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
761 | { | |
762 | X86CPU *cpu = X86_CPU(cs); | |
763 | CPUX86State *env = &cpu->env; | |
764 | int r; | |
765 | ||
766 | if (!env->tsc_khz) { | |
767 | return 0; | |
768 | } | |
769 | ||
770 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
771 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
772 | -ENOTSUP; | |
773 | if (r < 0) { | |
774 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
775 | * TSC frequency doesn't match the one we want. | |
776 | */ | |
777 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
778 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
779 | -ENOTSUP; | |
780 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
3dc6f869 AF |
781 | warn_report("TSC frequency mismatch between " |
782 | "VM (%" PRId64 " kHz) and host (%d kHz), " | |
783 | "and TSC scaling unavailable", | |
784 | env->tsc_khz, cur_freq); | |
5031283d HZ |
785 | return r; |
786 | } | |
787 | } | |
788 | ||
789 | return 0; | |
790 | } | |
791 | ||
4bb95b82 LP |
792 | static bool tsc_is_stable_and_known(CPUX86State *env) |
793 | { | |
794 | if (!env->tsc_khz) { | |
795 | return false; | |
796 | } | |
797 | return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) | |
798 | || env->user_tsc_khz; | |
799 | } | |
800 | ||
6760bd20 VK |
801 | static struct { |
802 | const char *desc; | |
803 | struct { | |
804 | uint32_t fw; | |
805 | uint32_t bits; | |
806 | } flags[2]; | |
c6861930 | 807 | uint64_t dependencies; |
6760bd20 VK |
808 | } kvm_hyperv_properties[] = { |
809 | [HYPERV_FEAT_RELAXED] = { | |
810 | .desc = "relaxed timing (hv-relaxed)", | |
811 | .flags = { | |
812 | {.fw = FEAT_HYPERV_EAX, | |
813 | .bits = HV_HYPERCALL_AVAILABLE}, | |
814 | {.fw = FEAT_HV_RECOMM_EAX, | |
815 | .bits = HV_RELAXED_TIMING_RECOMMENDED} | |
816 | } | |
817 | }, | |
818 | [HYPERV_FEAT_VAPIC] = { | |
819 | .desc = "virtual APIC (hv-vapic)", | |
820 | .flags = { | |
821 | {.fw = FEAT_HYPERV_EAX, | |
822 | .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, | |
823 | {.fw = FEAT_HV_RECOMM_EAX, | |
824 | .bits = HV_APIC_ACCESS_RECOMMENDED} | |
825 | } | |
826 | }, | |
827 | [HYPERV_FEAT_TIME] = { | |
828 | .desc = "clocksources (hv-time)", | |
829 | .flags = { | |
830 | {.fw = FEAT_HYPERV_EAX, | |
831 | .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | | |
832 | HV_REFERENCE_TSC_AVAILABLE} | |
833 | } | |
834 | }, | |
835 | [HYPERV_FEAT_CRASH] = { | |
836 | .desc = "crash MSRs (hv-crash)", | |
837 | .flags = { | |
838 | {.fw = FEAT_HYPERV_EDX, | |
839 | .bits = HV_GUEST_CRASH_MSR_AVAILABLE} | |
840 | } | |
841 | }, | |
842 | [HYPERV_FEAT_RESET] = { | |
843 | .desc = "reset MSR (hv-reset)", | |
844 | .flags = { | |
845 | {.fw = FEAT_HYPERV_EAX, | |
846 | .bits = HV_RESET_AVAILABLE} | |
847 | } | |
848 | }, | |
849 | [HYPERV_FEAT_VPINDEX] = { | |
850 | .desc = "VP_INDEX MSR (hv-vpindex)", | |
851 | .flags = { | |
852 | {.fw = FEAT_HYPERV_EAX, | |
853 | .bits = HV_VP_INDEX_AVAILABLE} | |
854 | } | |
855 | }, | |
856 | [HYPERV_FEAT_RUNTIME] = { | |
857 | .desc = "VP_RUNTIME MSR (hv-runtime)", | |
858 | .flags = { | |
859 | {.fw = FEAT_HYPERV_EAX, | |
860 | .bits = HV_VP_RUNTIME_AVAILABLE} | |
861 | } | |
862 | }, | |
863 | [HYPERV_FEAT_SYNIC] = { | |
864 | .desc = "synthetic interrupt controller (hv-synic)", | |
865 | .flags = { | |
866 | {.fw = FEAT_HYPERV_EAX, | |
867 | .bits = HV_SYNIC_AVAILABLE} | |
868 | } | |
869 | }, | |
870 | [HYPERV_FEAT_STIMER] = { | |
871 | .desc = "synthetic timers (hv-stimer)", | |
872 | .flags = { | |
873 | {.fw = FEAT_HYPERV_EAX, | |
874 | .bits = HV_SYNTIMERS_AVAILABLE} | |
c6861930 VK |
875 | }, |
876 | .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) | |
6760bd20 VK |
877 | }, |
878 | [HYPERV_FEAT_FREQUENCIES] = { | |
879 | .desc = "frequency MSRs (hv-frequencies)", | |
880 | .flags = { | |
881 | {.fw = FEAT_HYPERV_EAX, | |
882 | .bits = HV_ACCESS_FREQUENCY_MSRS}, | |
883 | {.fw = FEAT_HYPERV_EDX, | |
884 | .bits = HV_FREQUENCY_MSRS_AVAILABLE} | |
885 | } | |
886 | }, | |
887 | [HYPERV_FEAT_REENLIGHTENMENT] = { | |
888 | .desc = "reenlightenment MSRs (hv-reenlightenment)", | |
889 | .flags = { | |
890 | {.fw = FEAT_HYPERV_EAX, | |
891 | .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} | |
892 | } | |
893 | }, | |
894 | [HYPERV_FEAT_TLBFLUSH] = { | |
895 | .desc = "paravirtualized TLB flush (hv-tlbflush)", | |
896 | .flags = { | |
897 | {.fw = FEAT_HV_RECOMM_EAX, | |
898 | .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | | |
899 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
bd59fbdf VK |
900 | }, |
901 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
6760bd20 VK |
902 | }, |
903 | [HYPERV_FEAT_EVMCS] = { | |
904 | .desc = "enlightened VMCS (hv-evmcs)", | |
905 | .flags = { | |
906 | {.fw = FEAT_HV_RECOMM_EAX, | |
907 | .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} | |
8caba36d VK |
908 | }, |
909 | .dependencies = BIT(HYPERV_FEAT_VAPIC) | |
6760bd20 VK |
910 | }, |
911 | [HYPERV_FEAT_IPI] = { | |
912 | .desc = "paravirtualized IPI (hv-ipi)", | |
913 | .flags = { | |
914 | {.fw = FEAT_HV_RECOMM_EAX, | |
915 | .bits = HV_CLUSTER_IPI_RECOMMENDED | | |
916 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
bd59fbdf VK |
917 | }, |
918 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
6760bd20 | 919 | }, |
128531d9 VK |
920 | [HYPERV_FEAT_STIMER_DIRECT] = { |
921 | .desc = "direct mode synthetic timers (hv-stimer-direct)", | |
922 | .flags = { | |
923 | {.fw = FEAT_HYPERV_EDX, | |
924 | .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} | |
925 | }, | |
926 | .dependencies = BIT(HYPERV_FEAT_STIMER) | |
927 | }, | |
6760bd20 VK |
928 | }; |
929 | ||
930 | static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) | |
931 | { | |
932 | struct kvm_cpuid2 *cpuid; | |
933 | int r, size; | |
934 | ||
935 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
936 | cpuid = g_malloc0(size); | |
937 | cpuid->nent = max; | |
938 | ||
939 | r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); | |
940 | if (r == 0 && cpuid->nent >= max) { | |
941 | r = -E2BIG; | |
942 | } | |
943 | if (r < 0) { | |
944 | if (r == -E2BIG) { | |
945 | g_free(cpuid); | |
946 | return NULL; | |
947 | } else { | |
948 | fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", | |
949 | strerror(-r)); | |
950 | exit(1); | |
951 | } | |
952 | } | |
953 | return cpuid; | |
954 | } | |
955 | ||
956 | /* | |
957 | * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough | |
958 | * for all entries. | |
959 | */ | |
960 | static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) | |
961 | { | |
962 | struct kvm_cpuid2 *cpuid; | |
963 | int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ | |
964 | ||
965 | /* | |
966 | * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with | |
967 | * -E2BIG, however, it doesn't report back the right size. Keep increasing | |
968 | * it and re-trying until we succeed. | |
969 | */ | |
970 | while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { | |
971 | max++; | |
972 | } | |
973 | return cpuid; | |
974 | } | |
975 | ||
976 | /* | |
977 | * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature | |
978 | * leaves from KVM_CAP_HYPERV* and present MSRs data. | |
979 | */ | |
980 | static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) | |
c35bd19a EY |
981 | { |
982 | X86CPU *cpu = X86_CPU(cs); | |
6760bd20 VK |
983 | struct kvm_cpuid2 *cpuid; |
984 | struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; | |
985 | ||
986 | /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ | |
987 | cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); | |
988 | cpuid->nent = 2; | |
989 | ||
990 | /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ | |
991 | entry_feat = &cpuid->entries[0]; | |
992 | entry_feat->function = HV_CPUID_FEATURES; | |
993 | ||
994 | entry_recomm = &cpuid->entries[1]; | |
995 | entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; | |
996 | entry_recomm->ebx = cpu->hyperv_spinlock_attempts; | |
997 | ||
998 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { | |
999 | entry_feat->eax |= HV_HYPERCALL_AVAILABLE; | |
1000 | entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; | |
1001 | entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
1002 | entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; | |
1003 | entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; | |
1004 | } | |
c35bd19a | 1005 | |
6760bd20 VK |
1006 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { |
1007 | entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; | |
1008 | entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; | |
c35bd19a | 1009 | } |
6760bd20 VK |
1010 | |
1011 | if (has_msr_hv_frequencies) { | |
1012 | entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; | |
1013 | entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; | |
c35bd19a | 1014 | } |
6760bd20 VK |
1015 | |
1016 | if (has_msr_hv_crash) { | |
1017 | entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; | |
9445597b | 1018 | } |
6760bd20 VK |
1019 | |
1020 | if (has_msr_hv_reenlightenment) { | |
1021 | entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; | |
c35bd19a | 1022 | } |
6760bd20 VK |
1023 | |
1024 | if (has_msr_hv_reset) { | |
1025 | entry_feat->eax |= HV_RESET_AVAILABLE; | |
c35bd19a | 1026 | } |
6760bd20 VK |
1027 | |
1028 | if (has_msr_hv_vpindex) { | |
1029 | entry_feat->eax |= HV_VP_INDEX_AVAILABLE; | |
ba6a4fd9 | 1030 | } |
6760bd20 VK |
1031 | |
1032 | if (has_msr_hv_runtime) { | |
1033 | entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; | |
c35bd19a | 1034 | } |
6760bd20 VK |
1035 | |
1036 | if (has_msr_hv_synic) { | |
1037 | unsigned int cap = cpu->hyperv_synic_kvm_only ? | |
1038 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
1039 | ||
1040 | if (kvm_check_extension(cs->kvm_state, cap) > 0) { | |
1041 | entry_feat->eax |= HV_SYNIC_AVAILABLE; | |
1221f150 | 1042 | } |
c35bd19a | 1043 | } |
6760bd20 VK |
1044 | |
1045 | if (has_msr_hv_stimer) { | |
1046 | entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; | |
c35bd19a | 1047 | } |
9b4cf107 | 1048 | |
6760bd20 VK |
1049 | if (kvm_check_extension(cs->kvm_state, |
1050 | KVM_CAP_HYPERV_TLBFLUSH) > 0) { | |
1051 | entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; | |
1052 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
1053 | } | |
c35bd19a | 1054 | |
6760bd20 VK |
1055 | if (kvm_check_extension(cs->kvm_state, |
1056 | KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { | |
1057 | entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
c35bd19a | 1058 | } |
6760bd20 VK |
1059 | |
1060 | if (kvm_check_extension(cs->kvm_state, | |
1061 | KVM_CAP_HYPERV_SEND_IPI) > 0) { | |
1062 | entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; | |
1063 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
c35bd19a | 1064 | } |
6760bd20 VK |
1065 | |
1066 | return cpuid; | |
1067 | } | |
1068 | ||
1069 | static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) | |
1070 | { | |
1071 | struct kvm_cpuid_entry2 *entry; | |
1072 | uint32_t func; | |
1073 | int reg; | |
1074 | ||
1075 | switch (fw) { | |
1076 | case FEAT_HYPERV_EAX: | |
1077 | reg = R_EAX; | |
1078 | func = HV_CPUID_FEATURES; | |
1079 | break; | |
1080 | case FEAT_HYPERV_EDX: | |
1081 | reg = R_EDX; | |
1082 | func = HV_CPUID_FEATURES; | |
1083 | break; | |
1084 | case FEAT_HV_RECOMM_EAX: | |
1085 | reg = R_EAX; | |
1086 | func = HV_CPUID_ENLIGHTMENT_INFO; | |
1087 | break; | |
1088 | default: | |
1089 | return -EINVAL; | |
a2b107db | 1090 | } |
6760bd20 VK |
1091 | |
1092 | entry = cpuid_find_entry(cpuid, func, 0); | |
1093 | if (!entry) { | |
1094 | return -ENOENT; | |
a2b107db | 1095 | } |
6760bd20 VK |
1096 | |
1097 | switch (reg) { | |
1098 | case R_EAX: | |
1099 | *r = entry->eax; | |
1100 | break; | |
1101 | case R_EDX: | |
1102 | *r = entry->edx; | |
1103 | break; | |
1104 | default: | |
1105 | return -EINVAL; | |
a2b107db | 1106 | } |
6760bd20 VK |
1107 | |
1108 | return 0; | |
1109 | } | |
1110 | ||
1111 | static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, | |
1112 | int feature) | |
1113 | { | |
1114 | X86CPU *cpu = X86_CPU(cs); | |
1115 | CPUX86State *env = &cpu->env; | |
e48ddcc6 | 1116 | uint32_t r, fw, bits; |
c6861930 | 1117 | uint64_t deps; |
9dc83cd9 | 1118 | int i, dep_feat; |
6760bd20 | 1119 | |
e48ddcc6 | 1120 | if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { |
6760bd20 VK |
1121 | return 0; |
1122 | } | |
1123 | ||
c6861930 | 1124 | deps = kvm_hyperv_properties[feature].dependencies; |
9dc83cd9 HR |
1125 | while (deps) { |
1126 | dep_feat = ctz64(deps); | |
c6861930 VK |
1127 | if (!(hyperv_feat_enabled(cpu, dep_feat))) { |
1128 | fprintf(stderr, | |
1129 | "Hyper-V %s requires Hyper-V %s\n", | |
1130 | kvm_hyperv_properties[feature].desc, | |
1131 | kvm_hyperv_properties[dep_feat].desc); | |
1132 | return 1; | |
1133 | } | |
9dc83cd9 | 1134 | deps &= ~(1ull << dep_feat); |
c6861930 VK |
1135 | } |
1136 | ||
6760bd20 VK |
1137 | for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { |
1138 | fw = kvm_hyperv_properties[feature].flags[i].fw; | |
1139 | bits = kvm_hyperv_properties[feature].flags[i].bits; | |
1140 | ||
1141 | if (!fw) { | |
1142 | continue; | |
a2b107db | 1143 | } |
6760bd20 VK |
1144 | |
1145 | if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { | |
e48ddcc6 VK |
1146 | if (hyperv_feat_enabled(cpu, feature)) { |
1147 | fprintf(stderr, | |
1148 | "Hyper-V %s is not supported by kernel\n", | |
1149 | kvm_hyperv_properties[feature].desc); | |
1150 | return 1; | |
1151 | } else { | |
1152 | return 0; | |
1153 | } | |
6760bd20 VK |
1154 | } |
1155 | ||
1156 | env->features[fw] |= bits; | |
a2b107db | 1157 | } |
6760bd20 | 1158 | |
e48ddcc6 VK |
1159 | if (cpu->hyperv_passthrough) { |
1160 | cpu->hyperv_features |= BIT(feature); | |
1161 | } | |
1162 | ||
6760bd20 VK |
1163 | return 0; |
1164 | } | |
1165 | ||
2344d22e VK |
1166 | /* |
1167 | * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in | |
1168 | * case of success, errno < 0 in case of failure and 0 when no Hyper-V | |
1169 | * extentions are enabled. | |
1170 | */ | |
1171 | static int hyperv_handle_properties(CPUState *cs, | |
1172 | struct kvm_cpuid_entry2 *cpuid_ent) | |
6760bd20 VK |
1173 | { |
1174 | X86CPU *cpu = X86_CPU(cs); | |
1175 | CPUX86State *env = &cpu->env; | |
1176 | struct kvm_cpuid2 *cpuid; | |
2344d22e VK |
1177 | struct kvm_cpuid_entry2 *c; |
1178 | uint32_t signature[3]; | |
1179 | uint32_t cpuid_i = 0; | |
e48ddcc6 | 1180 | int r; |
6760bd20 | 1181 | |
2344d22e VK |
1182 | if (!hyperv_enabled(cpu)) |
1183 | return 0; | |
1184 | ||
e48ddcc6 VK |
1185 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || |
1186 | cpu->hyperv_passthrough) { | |
a2b107db VK |
1187 | uint16_t evmcs_version; |
1188 | ||
e48ddcc6 VK |
1189 | r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, |
1190 | (uintptr_t)&evmcs_version); | |
1191 | ||
1192 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { | |
6760bd20 VK |
1193 | fprintf(stderr, "Hyper-V %s is not supported by kernel\n", |
1194 | kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); | |
a2b107db VK |
1195 | return -ENOSYS; |
1196 | } | |
e48ddcc6 VK |
1197 | |
1198 | if (!r) { | |
1199 | env->features[FEAT_HV_RECOMM_EAX] |= | |
1200 | HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
1201 | env->features[FEAT_HV_NESTED_EAX] = evmcs_version; | |
1202 | } | |
a2b107db VK |
1203 | } |
1204 | ||
6760bd20 VK |
1205 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { |
1206 | cpuid = get_supported_hv_cpuid(cs); | |
1207 | } else { | |
1208 | cpuid = get_supported_hv_cpuid_legacy(cs); | |
1209 | } | |
1210 | ||
e48ddcc6 VK |
1211 | if (cpu->hyperv_passthrough) { |
1212 | memcpy(cpuid_ent, &cpuid->entries[0], | |
1213 | cpuid->nent * sizeof(cpuid->entries[0])); | |
1214 | ||
1215 | c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); | |
1216 | if (c) { | |
1217 | env->features[FEAT_HYPERV_EAX] = c->eax; | |
1218 | env->features[FEAT_HYPERV_EBX] = c->ebx; | |
1219 | env->features[FEAT_HYPERV_EDX] = c->eax; | |
1220 | } | |
1221 | c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); | |
1222 | if (c) { | |
1223 | env->features[FEAT_HV_RECOMM_EAX] = c->eax; | |
1224 | ||
1225 | /* hv-spinlocks may have been overriden */ | |
1226 | if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) { | |
1227 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1228 | } | |
1229 | } | |
1230 | c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); | |
1231 | if (c) { | |
1232 | env->features[FEAT_HV_NESTED_EAX] = c->eax; | |
1233 | } | |
1234 | } | |
1235 | ||
30d6ff66 VK |
1236 | if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { |
1237 | env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING; | |
1238 | } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { | |
1239 | c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); | |
1240 | if (c) { | |
1241 | env->features[FEAT_HV_RECOMM_EAX] |= | |
1242 | c->eax & HV_NO_NONARCH_CORESHARING; | |
1243 | } | |
1244 | } | |
1245 | ||
6760bd20 | 1246 | /* Features */ |
e48ddcc6 | 1247 | r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); |
6760bd20 VK |
1248 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); |
1249 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); | |
1250 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); | |
1251 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); | |
1252 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); | |
1253 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); | |
1254 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); | |
1255 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); | |
1256 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); | |
1257 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); | |
1258 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); | |
1259 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); | |
1260 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); | |
128531d9 | 1261 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); |
6760bd20 | 1262 | |
c6861930 | 1263 | /* Additional dependencies not covered by kvm_hyperv_properties[] */ |
6760bd20 VK |
1264 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && |
1265 | !cpu->hyperv_synic_kvm_only && | |
1266 | !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { | |
c6861930 | 1267 | fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", |
6760bd20 VK |
1268 | kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, |
1269 | kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); | |
1270 | r |= 1; | |
1271 | } | |
1272 | ||
1273 | /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ | |
1274 | env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
1275 | ||
2344d22e VK |
1276 | if (r) { |
1277 | r = -ENOSYS; | |
1278 | goto free; | |
1279 | } | |
1280 | ||
e48ddcc6 VK |
1281 | if (cpu->hyperv_passthrough) { |
1282 | /* We already copied all feature words from KVM as is */ | |
1283 | r = cpuid->nent; | |
1284 | goto free; | |
1285 | } | |
1286 | ||
2344d22e VK |
1287 | c = &cpuid_ent[cpuid_i++]; |
1288 | c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
1289 | if (!cpu->hyperv_vendor_id) { | |
1290 | memcpy(signature, "Microsoft Hv", 12); | |
1291 | } else { | |
1292 | size_t len = strlen(cpu->hyperv_vendor_id); | |
1293 | ||
1294 | if (len > 12) { | |
1295 | error_report("hv-vendor-id truncated to 12 characters"); | |
1296 | len = 12; | |
1297 | } | |
1298 | memset(signature, 0, 12); | |
1299 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
1300 | } | |
1301 | c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? | |
1302 | HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; | |
1303 | c->ebx = signature[0]; | |
1304 | c->ecx = signature[1]; | |
1305 | c->edx = signature[2]; | |
1306 | ||
1307 | c = &cpuid_ent[cpuid_i++]; | |
1308 | c->function = HV_CPUID_INTERFACE; | |
1309 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | |
1310 | c->eax = signature[0]; | |
1311 | c->ebx = 0; | |
1312 | c->ecx = 0; | |
1313 | c->edx = 0; | |
1314 | ||
1315 | c = &cpuid_ent[cpuid_i++]; | |
1316 | c->function = HV_CPUID_VERSION; | |
1317 | c->eax = 0x00001bbc; | |
1318 | c->ebx = 0x00060001; | |
1319 | ||
1320 | c = &cpuid_ent[cpuid_i++]; | |
1321 | c->function = HV_CPUID_FEATURES; | |
1322 | c->eax = env->features[FEAT_HYPERV_EAX]; | |
1323 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
1324 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
1325 | ||
1326 | c = &cpuid_ent[cpuid_i++]; | |
1327 | c->function = HV_CPUID_ENLIGHTMENT_INFO; | |
1328 | c->eax = env->features[FEAT_HV_RECOMM_EAX]; | |
1329 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1330 | ||
1331 | c = &cpuid_ent[cpuid_i++]; | |
1332 | c->function = HV_CPUID_IMPLEMENT_LIMITS; | |
1333 | c->eax = cpu->hv_max_vps; | |
1334 | c->ebx = 0x40; | |
1335 | ||
1336 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { | |
1337 | __u32 function; | |
1338 | ||
1339 | /* Create zeroed 0x40000006..0x40000009 leaves */ | |
1340 | for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; | |
1341 | function < HV_CPUID_NESTED_FEATURES; function++) { | |
1342 | c = &cpuid_ent[cpuid_i++]; | |
1343 | c->function = function; | |
1344 | } | |
1345 | ||
1346 | c = &cpuid_ent[cpuid_i++]; | |
1347 | c->function = HV_CPUID_NESTED_FEATURES; | |
1348 | c->eax = env->features[FEAT_HV_NESTED_EAX]; | |
1349 | } | |
1350 | r = cpuid_i; | |
1351 | ||
1352 | free: | |
6760bd20 VK |
1353 | g_free(cpuid); |
1354 | ||
2344d22e | 1355 | return r; |
c35bd19a EY |
1356 | } |
1357 | ||
e48ddcc6 | 1358 | static Error *hv_passthrough_mig_blocker; |
30d6ff66 | 1359 | static Error *hv_no_nonarch_cs_mig_blocker; |
e48ddcc6 | 1360 | |
e9688fab RK |
1361 | static int hyperv_init_vcpu(X86CPU *cpu) |
1362 | { | |
729ce7e1 | 1363 | CPUState *cs = CPU(cpu); |
e48ddcc6 | 1364 | Error *local_err = NULL; |
729ce7e1 RK |
1365 | int ret; |
1366 | ||
e48ddcc6 VK |
1367 | if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { |
1368 | error_setg(&hv_passthrough_mig_blocker, | |
1369 | "'hv-passthrough' CPU flag prevents migration, use explicit" | |
1370 | " set of hv-* flags instead"); | |
1371 | ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); | |
1372 | if (local_err) { | |
1373 | error_report_err(local_err); | |
1374 | error_free(hv_passthrough_mig_blocker); | |
1375 | return ret; | |
1376 | } | |
1377 | } | |
1378 | ||
30d6ff66 VK |
1379 | if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && |
1380 | hv_no_nonarch_cs_mig_blocker == NULL) { | |
1381 | error_setg(&hv_no_nonarch_cs_mig_blocker, | |
1382 | "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" | |
1383 | " use explicit 'hv-no-nonarch-coresharing=on' instead (but" | |
1384 | " make sure SMT is disabled and/or that vCPUs are properly" | |
1385 | " pinned)"); | |
1386 | ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); | |
1387 | if (local_err) { | |
1388 | error_report_err(local_err); | |
1389 | error_free(hv_no_nonarch_cs_mig_blocker); | |
1390 | return ret; | |
1391 | } | |
1392 | } | |
1393 | ||
2d384d7c | 1394 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { |
e9688fab RK |
1395 | /* |
1396 | * the kernel doesn't support setting vp_index; assert that its value | |
1397 | * is in sync | |
1398 | */ | |
e9688fab RK |
1399 | struct { |
1400 | struct kvm_msrs info; | |
1401 | struct kvm_msr_entry entries[1]; | |
1402 | } msr_data = { | |
1403 | .info.nmsrs = 1, | |
1404 | .entries[0].index = HV_X64_MSR_VP_INDEX, | |
1405 | }; | |
1406 | ||
729ce7e1 | 1407 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); |
e9688fab RK |
1408 | if (ret < 0) { |
1409 | return ret; | |
1410 | } | |
1411 | assert(ret == 1); | |
1412 | ||
701189e3 | 1413 | if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { |
e9688fab RK |
1414 | error_report("kernel's vp_index != QEMU's vp_index"); |
1415 | return -ENXIO; | |
1416 | } | |
1417 | } | |
1418 | ||
2d384d7c | 1419 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
9b4cf107 RK |
1420 | uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? |
1421 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
1422 | ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); | |
729ce7e1 RK |
1423 | if (ret < 0) { |
1424 | error_report("failed to turn on HyperV SynIC in KVM: %s", | |
1425 | strerror(-ret)); | |
1426 | return ret; | |
1427 | } | |
606c34bf | 1428 | |
9b4cf107 RK |
1429 | if (!cpu->hyperv_synic_kvm_only) { |
1430 | ret = hyperv_x86_synic_add(cpu); | |
1431 | if (ret < 0) { | |
1432 | error_report("failed to create HyperV SynIC: %s", | |
1433 | strerror(-ret)); | |
1434 | return ret; | |
1435 | } | |
606c34bf | 1436 | } |
729ce7e1 RK |
1437 | } |
1438 | ||
e9688fab RK |
1439 | return 0; |
1440 | } | |
1441 | ||
68bfd0ad MT |
1442 | static Error *invtsc_mig_blocker; |
1443 | ||
f8bb0565 | 1444 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 1445 | |
20d695a9 | 1446 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
1447 | { |
1448 | struct { | |
486bd5a2 | 1449 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 1450 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
9115bb12 PM |
1451 | } cpuid_data; |
1452 | /* | |
1453 | * The kernel defines these structs with padding fields so there | |
1454 | * should be no extra padding in our cpuid_data struct. | |
1455 | */ | |
1456 | QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != | |
1457 | sizeof(struct kvm_cpuid2) + | |
1458 | sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); | |
1459 | ||
20d695a9 AF |
1460 | X86CPU *cpu = X86_CPU(cs); |
1461 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 1462 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 1463 | uint32_t unused; |
bb0300dc | 1464 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 1465 | uint32_t signature[3]; |
234cc647 | 1466 | int kvm_base = KVM_CPUID_SIGNATURE; |
ebbfef2f | 1467 | int max_nested_state_len; |
e7429073 | 1468 | int r; |
fe44dc91 | 1469 | Error *local_err = NULL; |
05330448 | 1470 | |
ef4cbe14 SW |
1471 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
1472 | ||
05330448 AL |
1473 | cpuid_i = 0; |
1474 | ||
ddb98b5a LP |
1475 | r = kvm_arch_set_tsc_khz(cs); |
1476 | if (r < 0) { | |
6b2341ee | 1477 | return r; |
ddb98b5a LP |
1478 | } |
1479 | ||
1480 | /* vcpu's TSC frequency is either specified by user, or following | |
1481 | * the value used by KVM if the former is not present. In the | |
1482 | * latter case, we query it from KVM and record in env->tsc_khz, | |
1483 | * so that vcpu's TSC frequency can be migrated later via this field. | |
1484 | */ | |
1485 | if (!env->tsc_khz) { | |
1486 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
1487 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
1488 | -ENOTSUP; | |
1489 | if (r > 0) { | |
1490 | env->tsc_khz = r; | |
1491 | } | |
1492 | } | |
1493 | ||
bb0300dc | 1494 | /* Paravirtualization CPUIDs */ |
2344d22e VK |
1495 | r = hyperv_handle_properties(cs, cpuid_data.entries); |
1496 | if (r < 0) { | |
1497 | return r; | |
1498 | } else if (r > 0) { | |
1499 | cpuid_i = r; | |
234cc647 | 1500 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 1501 | has_msr_hv_hypercall = true; |
eab70139 VR |
1502 | } |
1503 | ||
f522d2ac AW |
1504 | if (cpu->expose_kvm) { |
1505 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
1506 | c = &cpuid_data.entries[cpuid_i++]; | |
1507 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 1508 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
1509 | c->ebx = signature[0]; |
1510 | c->ecx = signature[1]; | |
1511 | c->edx = signature[2]; | |
234cc647 | 1512 | |
f522d2ac AW |
1513 | c = &cpuid_data.entries[cpuid_i++]; |
1514 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
1515 | c->eax = env->features[FEAT_KVM]; | |
be777326 | 1516 | c->edx = env->features[FEAT_KVM_HINTS]; |
f522d2ac | 1517 | } |
917367aa | 1518 | |
a33609ca | 1519 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1520 | |
1521 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
1522 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1523 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
1524 | abort(); | |
1525 | } | |
bb0300dc | 1526 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1527 | |
1528 | switch (i) { | |
a36b1029 AL |
1529 | case 2: { |
1530 | /* Keep reading function 2 till all the input is received */ | |
1531 | int times; | |
1532 | ||
a36b1029 | 1533 | c->function = i; |
a33609ca AL |
1534 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
1535 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
1536 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1537 | times = c->eax & 0xff; | |
a36b1029 AL |
1538 | |
1539 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
1540 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1541 | fprintf(stderr, "cpuid_data is full, no space for " | |
1542 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
1543 | abort(); | |
1544 | } | |
a33609ca | 1545 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 1546 | c->function = i; |
a33609ca AL |
1547 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
1548 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
1549 | } |
1550 | break; | |
1551 | } | |
a94e1428 LX |
1552 | case 0x1f: |
1553 | if (env->nr_dies < 2) { | |
1554 | break; | |
1555 | } | |
486bd5a2 AL |
1556 | case 4: |
1557 | case 0xb: | |
1558 | case 0xd: | |
1559 | for (j = 0; ; j++) { | |
31e8c696 AP |
1560 | if (i == 0xd && j == 64) { |
1561 | break; | |
1562 | } | |
a94e1428 LX |
1563 | |
1564 | if (i == 0x1f && j == 64) { | |
1565 | break; | |
1566 | } | |
1567 | ||
486bd5a2 AL |
1568 | c->function = i; |
1569 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1570 | c->index = j; | |
a33609ca | 1571 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 1572 | |
b9bec74b | 1573 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 1574 | break; |
b9bec74b JK |
1575 | } |
1576 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 1577 | break; |
b9bec74b | 1578 | } |
a94e1428 LX |
1579 | if (i == 0x1f && !(c->ecx & 0xff00)) { |
1580 | break; | |
1581 | } | |
b9bec74b | 1582 | if (i == 0xd && c->eax == 0) { |
31e8c696 | 1583 | continue; |
b9bec74b | 1584 | } |
f8bb0565 IM |
1585 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1586 | fprintf(stderr, "cpuid_data is full, no space for " | |
1587 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1588 | abort(); | |
1589 | } | |
a33609ca | 1590 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1591 | } |
1592 | break; | |
80db491d | 1593 | case 0x7: |
e37a5c7f CP |
1594 | case 0x14: { |
1595 | uint32_t times; | |
1596 | ||
1597 | c->function = i; | |
1598 | c->index = 0; | |
1599 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1600 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1601 | times = c->eax; | |
1602 | ||
1603 | for (j = 1; j <= times; ++j) { | |
1604 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1605 | fprintf(stderr, "cpuid_data is full, no space for " | |
80db491d | 1606 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); |
e37a5c7f CP |
1607 | abort(); |
1608 | } | |
1609 | c = &cpuid_data.entries[cpuid_i++]; | |
1610 | c->function = i; | |
1611 | c->index = j; | |
1612 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1613 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1614 | } | |
1615 | break; | |
1616 | } | |
486bd5a2 | 1617 | default: |
486bd5a2 | 1618 | c->function = i; |
a33609ca AL |
1619 | c->flags = 0; |
1620 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
af95cafb EH |
1621 | if (!c->eax && !c->ebx && !c->ecx && !c->edx) { |
1622 | /* | |
1623 | * KVM already returns all zeroes if a CPUID entry is missing, | |
1624 | * so we can omit it and avoid hitting KVM's 80-entry limit. | |
1625 | */ | |
1626 | cpuid_i--; | |
1627 | } | |
486bd5a2 AL |
1628 | break; |
1629 | } | |
05330448 | 1630 | } |
0d894367 PB |
1631 | |
1632 | if (limit >= 0x0a) { | |
0b368a10 | 1633 | uint32_t eax, edx; |
0d894367 | 1634 | |
0b368a10 JD |
1635 | cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); |
1636 | ||
1637 | has_architectural_pmu_version = eax & 0xff; | |
1638 | if (has_architectural_pmu_version > 0) { | |
1639 | num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; | |
0d894367 PB |
1640 | |
1641 | /* Shouldn't be more than 32, since that's the number of bits | |
1642 | * available in EBX to tell us _which_ counters are available. | |
1643 | * Play it safe. | |
1644 | */ | |
0b368a10 JD |
1645 | if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { |
1646 | num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; | |
1647 | } | |
1648 | ||
1649 | if (has_architectural_pmu_version > 1) { | |
1650 | num_architectural_pmu_fixed_counters = edx & 0x1f; | |
1651 | ||
1652 | if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { | |
1653 | num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; | |
1654 | } | |
0d894367 PB |
1655 | } |
1656 | } | |
1657 | } | |
1658 | ||
a33609ca | 1659 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1660 | |
1661 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
1662 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1663 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
1664 | abort(); | |
1665 | } | |
bb0300dc | 1666 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 1667 | |
8f4202fb BM |
1668 | switch (i) { |
1669 | case 0x8000001d: | |
1670 | /* Query for all AMD cache information leaves */ | |
1671 | for (j = 0; ; j++) { | |
1672 | c->function = i; | |
1673 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1674 | c->index = j; | |
1675 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1676 | ||
1677 | if (c->eax == 0) { | |
1678 | break; | |
1679 | } | |
1680 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1681 | fprintf(stderr, "cpuid_data is full, no space for " | |
1682 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1683 | abort(); | |
1684 | } | |
1685 | c = &cpuid_data.entries[cpuid_i++]; | |
1686 | } | |
1687 | break; | |
1688 | default: | |
1689 | c->function = i; | |
1690 | c->flags = 0; | |
1691 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
af95cafb EH |
1692 | if (!c->eax && !c->ebx && !c->ecx && !c->edx) { |
1693 | /* | |
1694 | * KVM already returns all zeroes if a CPUID entry is missing, | |
1695 | * so we can omit it and avoid hitting KVM's 80-entry limit. | |
1696 | */ | |
1697 | cpuid_i--; | |
1698 | } | |
8f4202fb BM |
1699 | break; |
1700 | } | |
05330448 AL |
1701 | } |
1702 | ||
b3baa152 BW |
1703 | /* Call Centaur's CPUID instructions they are supported. */ |
1704 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
1705 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
1706 | ||
1707 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
1708 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1709 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
1710 | abort(); | |
1711 | } | |
b3baa152 BW |
1712 | c = &cpuid_data.entries[cpuid_i++]; |
1713 | ||
1714 | c->function = i; | |
1715 | c->flags = 0; | |
1716 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1717 | } | |
1718 | } | |
1719 | ||
05330448 AL |
1720 | cpuid_data.cpuid.nent = cpuid_i; |
1721 | ||
e7701825 | 1722 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 1723 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 1724 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 1725 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 1726 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 1727 | int banks; |
32a42024 | 1728 | int ret; |
e7701825 | 1729 | |
a60f24b5 | 1730 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
1731 | if (ret < 0) { |
1732 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
1733 | return ret; | |
e7701825 | 1734 | } |
75d49497 | 1735 | |
2590f15b | 1736 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 1737 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 1738 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 1739 | return -ENOTSUP; |
75d49497 | 1740 | } |
49b69cbf | 1741 | |
5120901a EH |
1742 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
1743 | if (unsupported_caps) { | |
87f8b626 AR |
1744 | if (unsupported_caps & MCG_LMCE_P) { |
1745 | error_report("kvm: LMCE not supported"); | |
1746 | return -ENOTSUP; | |
1747 | } | |
3dc6f869 AF |
1748 | warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, |
1749 | unsupported_caps); | |
5120901a EH |
1750 | } |
1751 | ||
2590f15b EH |
1752 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
1753 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
1754 | if (ret < 0) { |
1755 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
1756 | return ret; | |
1757 | } | |
e7701825 | 1758 | } |
e7701825 | 1759 | |
b8cc45d6 GC |
1760 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
1761 | ||
df67696e LJ |
1762 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
1763 | if (c) { | |
1764 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
1765 | !!(c->ecx & CPUID_EXT_SMX); | |
1766 | } | |
1767 | ||
87f8b626 AR |
1768 | if (env->mcg_cap & MCG_LMCE_P) { |
1769 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
1770 | } | |
1771 | ||
d99569d9 EH |
1772 | if (!env->user_tsc_khz) { |
1773 | if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && | |
1774 | invtsc_mig_blocker == NULL) { | |
d99569d9 EH |
1775 | error_setg(&invtsc_mig_blocker, |
1776 | "State blocked by non-migratable CPU device" | |
1777 | " (invtsc flag)"); | |
fe44dc91 AA |
1778 | r = migrate_add_blocker(invtsc_mig_blocker, &local_err); |
1779 | if (local_err) { | |
1780 | error_report_err(local_err); | |
1781 | error_free(invtsc_mig_blocker); | |
79a197ab | 1782 | return r; |
fe44dc91 | 1783 | } |
d99569d9 | 1784 | } |
68bfd0ad MT |
1785 | } |
1786 | ||
9954a158 PDJ |
1787 | if (cpu->vmware_cpuid_freq |
1788 | /* Guests depend on 0x40000000 to detect this feature, so only expose | |
1789 | * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ | |
1790 | && cpu->expose_kvm | |
1791 | && kvm_base == KVM_CPUID_SIGNATURE | |
1792 | /* TSC clock must be stable and known for this feature. */ | |
4bb95b82 | 1793 | && tsc_is_stable_and_known(env)) { |
9954a158 PDJ |
1794 | |
1795 | c = &cpuid_data.entries[cpuid_i++]; | |
1796 | c->function = KVM_CPUID_SIGNATURE | 0x10; | |
1797 | c->eax = env->tsc_khz; | |
1798 | /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's | |
1799 | * APIC_BUS_CYCLE_NS */ | |
1800 | c->ebx = 1000000; | |
1801 | c->ecx = c->edx = 0; | |
1802 | ||
1803 | c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); | |
1804 | c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); | |
1805 | } | |
1806 | ||
1807 | cpuid_data.cpuid.nent = cpuid_i; | |
1808 | ||
1809 | cpuid_data.cpuid.padding = 0; | |
1810 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); | |
1811 | if (r) { | |
1812 | goto fail; | |
1813 | } | |
1814 | ||
28143b40 | 1815 | if (has_xsave) { |
5b8063c4 | 1816 | env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
1f670a95 | 1817 | memset(env->xsave_buf, 0, sizeof(struct kvm_xsave)); |
fabacc0f | 1818 | } |
ebbfef2f LA |
1819 | |
1820 | max_nested_state_len = kvm_max_nested_state_length(); | |
1821 | if (max_nested_state_len > 0) { | |
1822 | assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); | |
ebbfef2f | 1823 | |
1e44f3ab PB |
1824 | if (cpu_has_vmx(env)) { |
1825 | struct kvm_vmx_nested_state_hdr *vmx_hdr; | |
ebbfef2f | 1826 | |
1e44f3ab PB |
1827 | env->nested_state = g_malloc0(max_nested_state_len); |
1828 | env->nested_state->size = max_nested_state_len; | |
ebbfef2f | 1829 | env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; |
1e44f3ab PB |
1830 | |
1831 | vmx_hdr = &env->nested_state->hdr.vmx; | |
ebbfef2f LA |
1832 | vmx_hdr->vmxon_pa = -1ull; |
1833 | vmx_hdr->vmcs12_pa = -1ull; | |
1834 | } | |
1835 | } | |
1836 | ||
d71b62a1 | 1837 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 1838 | |
273c515c PB |
1839 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
1840 | has_msr_tsc_aux = false; | |
1841 | } | |
d1ae67f6 | 1842 | |
e9688fab RK |
1843 | r = hyperv_init_vcpu(cpu); |
1844 | if (r) { | |
1845 | goto fail; | |
1846 | } | |
1847 | ||
e7429073 | 1848 | return 0; |
fe44dc91 AA |
1849 | |
1850 | fail: | |
1851 | migrate_del_blocker(invtsc_mig_blocker); | |
6b2341ee | 1852 | |
fe44dc91 | 1853 | return r; |
05330448 AL |
1854 | } |
1855 | ||
b1115c99 LA |
1856 | int kvm_arch_destroy_vcpu(CPUState *cs) |
1857 | { | |
1858 | X86CPU *cpu = X86_CPU(cs); | |
ebbfef2f | 1859 | CPUX86State *env = &cpu->env; |
b1115c99 LA |
1860 | |
1861 | if (cpu->kvm_msr_buf) { | |
1862 | g_free(cpu->kvm_msr_buf); | |
1863 | cpu->kvm_msr_buf = NULL; | |
1864 | } | |
1865 | ||
ebbfef2f LA |
1866 | if (env->nested_state) { |
1867 | g_free(env->nested_state); | |
1868 | env->nested_state = NULL; | |
1869 | } | |
1870 | ||
b1115c99 LA |
1871 | return 0; |
1872 | } | |
1873 | ||
50a2c6e5 | 1874 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 1875 | { |
20d695a9 | 1876 | CPUX86State *env = &cpu->env; |
dd673288 | 1877 | |
1a5e9d2f | 1878 | env->xcr0 = 1; |
ddced198 | 1879 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 1880 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
1881 | KVM_MP_STATE_UNINITIALIZED; |
1882 | } else { | |
1883 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1884 | } | |
689141dd | 1885 | |
2d384d7c | 1886 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
689141dd RK |
1887 | int i; |
1888 | for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { | |
1889 | env->msr_hv_synic_sint[i] = HV_SINT_MASKED; | |
1890 | } | |
606c34bf RK |
1891 | |
1892 | hyperv_x86_synic_reset(cpu); | |
689141dd | 1893 | } |
d645e132 MT |
1894 | /* enabled by default */ |
1895 | env->poll_control_msr = 1; | |
caa5af0f JK |
1896 | } |
1897 | ||
e0723c45 PB |
1898 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
1899 | { | |
1900 | CPUX86State *env = &cpu->env; | |
1901 | ||
1902 | /* APs get directly into wait-for-SIPI state. */ | |
1903 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1904 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1905 | } | |
1906 | } | |
1907 | ||
f57bceb6 RH |
1908 | static int kvm_get_supported_feature_msrs(KVMState *s) |
1909 | { | |
1910 | int ret = 0; | |
1911 | ||
1912 | if (kvm_feature_msrs != NULL) { | |
1913 | return 0; | |
1914 | } | |
1915 | ||
1916 | if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { | |
1917 | return 0; | |
1918 | } | |
1919 | ||
1920 | struct kvm_msr_list msr_list; | |
1921 | ||
1922 | msr_list.nmsrs = 0; | |
1923 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); | |
1924 | if (ret < 0 && ret != -E2BIG) { | |
1925 | error_report("Fetch KVM feature MSR list failed: %s", | |
1926 | strerror(-ret)); | |
1927 | return ret; | |
1928 | } | |
1929 | ||
1930 | assert(msr_list.nmsrs > 0); | |
1931 | kvm_feature_msrs = (struct kvm_msr_list *) \ | |
1932 | g_malloc0(sizeof(msr_list) + | |
1933 | msr_list.nmsrs * sizeof(msr_list.indices[0])); | |
1934 | ||
1935 | kvm_feature_msrs->nmsrs = msr_list.nmsrs; | |
1936 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); | |
1937 | ||
1938 | if (ret < 0) { | |
1939 | error_report("Fetch KVM feature MSR list failed: %s", | |
1940 | strerror(-ret)); | |
1941 | g_free(kvm_feature_msrs); | |
1942 | kvm_feature_msrs = NULL; | |
1943 | return ret; | |
1944 | } | |
1945 | ||
1946 | return 0; | |
1947 | } | |
1948 | ||
c3a3a7d3 | 1949 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1950 | { |
c3a3a7d3 | 1951 | int ret = 0; |
de428cea | 1952 | struct kvm_msr_list msr_list, *kvm_msr_list; |
05330448 | 1953 | |
de428cea LQ |
1954 | /* |
1955 | * Obtain MSR list from KVM. These are the MSRs that we must | |
1956 | * save/restore. | |
1957 | */ | |
1958 | msr_list.nmsrs = 0; | |
1959 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); | |
1960 | if (ret < 0 && ret != -E2BIG) { | |
1961 | return ret; | |
1962 | } | |
1963 | /* | |
1964 | * Old kernel modules had a bug and could write beyond the provided | |
1965 | * memory. Allocate at least a safe amount of 1K. | |
1966 | */ | |
1967 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + | |
1968 | msr_list.nmsrs * | |
1969 | sizeof(msr_list.indices[0]))); | |
05330448 | 1970 | |
de428cea LQ |
1971 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
1972 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); | |
1973 | if (ret >= 0) { | |
1974 | int i; | |
05330448 | 1975 | |
de428cea LQ |
1976 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { |
1977 | switch (kvm_msr_list->indices[i]) { | |
1978 | case MSR_STAR: | |
1979 | has_msr_star = true; | |
1980 | break; | |
1981 | case MSR_VM_HSAVE_PA: | |
1982 | has_msr_hsave_pa = true; | |
1983 | break; | |
1984 | case MSR_TSC_AUX: | |
1985 | has_msr_tsc_aux = true; | |
1986 | break; | |
1987 | case MSR_TSC_ADJUST: | |
1988 | has_msr_tsc_adjust = true; | |
1989 | break; | |
1990 | case MSR_IA32_TSCDEADLINE: | |
1991 | has_msr_tsc_deadline = true; | |
1992 | break; | |
1993 | case MSR_IA32_SMBASE: | |
1994 | has_msr_smbase = true; | |
1995 | break; | |
1996 | case MSR_SMI_COUNT: | |
1997 | has_msr_smi_count = true; | |
1998 | break; | |
1999 | case MSR_IA32_MISC_ENABLE: | |
2000 | has_msr_misc_enable = true; | |
2001 | break; | |
2002 | case MSR_IA32_BNDCFGS: | |
2003 | has_msr_bndcfgs = true; | |
2004 | break; | |
2005 | case MSR_IA32_XSS: | |
2006 | has_msr_xss = true; | |
2007 | break; | |
2008 | case HV_X64_MSR_CRASH_CTL: | |
2009 | has_msr_hv_crash = true; | |
2010 | break; | |
2011 | case HV_X64_MSR_RESET: | |
2012 | has_msr_hv_reset = true; | |
2013 | break; | |
2014 | case HV_X64_MSR_VP_INDEX: | |
2015 | has_msr_hv_vpindex = true; | |
2016 | break; | |
2017 | case HV_X64_MSR_VP_RUNTIME: | |
2018 | has_msr_hv_runtime = true; | |
2019 | break; | |
2020 | case HV_X64_MSR_SCONTROL: | |
2021 | has_msr_hv_synic = true; | |
2022 | break; | |
2023 | case HV_X64_MSR_STIMER0_CONFIG: | |
2024 | has_msr_hv_stimer = true; | |
2025 | break; | |
2026 | case HV_X64_MSR_TSC_FREQUENCY: | |
2027 | has_msr_hv_frequencies = true; | |
2028 | break; | |
2029 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: | |
2030 | has_msr_hv_reenlightenment = true; | |
2031 | break; | |
2032 | case MSR_IA32_SPEC_CTRL: | |
2033 | has_msr_spec_ctrl = true; | |
2034 | break; | |
2035 | case MSR_VIRT_SSBD: | |
2036 | has_msr_virt_ssbd = true; | |
2037 | break; | |
2038 | case MSR_IA32_ARCH_CAPABILITIES: | |
2039 | has_msr_arch_capabs = true; | |
2040 | break; | |
2041 | case MSR_IA32_CORE_CAPABILITY: | |
2042 | has_msr_core_capabs = true; | |
2043 | break; | |
20a78b02 PB |
2044 | case MSR_IA32_VMX_VMFUNC: |
2045 | has_msr_vmx_vmfunc = true; | |
2046 | break; | |
05330448 AL |
2047 | } |
2048 | } | |
05330448 AL |
2049 | } |
2050 | ||
de428cea LQ |
2051 | g_free(kvm_msr_list); |
2052 | ||
c3a3a7d3 | 2053 | return ret; |
05330448 AL |
2054 | } |
2055 | ||
6410848b PB |
2056 | static Notifier smram_machine_done; |
2057 | static KVMMemoryListener smram_listener; | |
2058 | static AddressSpace smram_address_space; | |
2059 | static MemoryRegion smram_as_root; | |
2060 | static MemoryRegion smram_as_mem; | |
2061 | ||
2062 | static void register_smram_listener(Notifier *n, void *unused) | |
2063 | { | |
2064 | MemoryRegion *smram = | |
2065 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
2066 | ||
2067 | /* Outer container... */ | |
2068 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
2069 | memory_region_set_enabled(&smram_as_root, true); | |
2070 | ||
2071 | /* ... with two regions inside: normal system memory with low | |
2072 | * priority, and... | |
2073 | */ | |
2074 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
2075 | get_system_memory(), 0, ~0ull); | |
2076 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
2077 | memory_region_set_enabled(&smram_as_mem, true); | |
2078 | ||
2079 | if (smram) { | |
2080 | /* ... SMRAM with higher priority */ | |
2081 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
2082 | memory_region_set_enabled(smram, true); | |
2083 | } | |
2084 | ||
2085 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
2086 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
2087 | &smram_address_space, 1); | |
2088 | } | |
2089 | ||
b16565b3 | 2090 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 2091 | { |
11076198 | 2092 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 2093 | uint64_t shadow_mem; |
20420430 | 2094 | int ret; |
25d2e361 | 2095 | struct utsname utsname; |
20420430 | 2096 | |
28143b40 | 2097 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
28143b40 | 2098 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
28143b40 | 2099 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); |
28143b40 | 2100 | |
e9688fab RK |
2101 | hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); |
2102 | ||
fd13f23b LA |
2103 | has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); |
2104 | if (has_exception_payload) { | |
2105 | ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); | |
2106 | if (ret < 0) { | |
2107 | error_report("kvm: Failed to enable exception payload cap: %s", | |
2108 | strerror(-ret)); | |
2109 | return ret; | |
2110 | } | |
2111 | } | |
2112 | ||
c3a3a7d3 | 2113 | ret = kvm_get_supported_msrs(s); |
20420430 | 2114 | if (ret < 0) { |
20420430 SY |
2115 | return ret; |
2116 | } | |
25d2e361 | 2117 | |
f57bceb6 RH |
2118 | kvm_get_supported_feature_msrs(s); |
2119 | ||
25d2e361 MT |
2120 | uname(&utsname); |
2121 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
2122 | ||
4c5b10b7 | 2123 | /* |
11076198 JK |
2124 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
2125 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
2126 | * Since these must be part of guest physical memory, we need to allocate | |
2127 | * them, both by setting their start addresses in the kernel and by | |
2128 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
2129 | * | |
2130 | * Older KVM versions may not support setting the identity map base. In | |
2131 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
2132 | * size. | |
4c5b10b7 | 2133 | */ |
11076198 JK |
2134 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
2135 | /* Allows up to 16M BIOSes. */ | |
2136 | identity_base = 0xfeffc000; | |
2137 | ||
2138 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
2139 | if (ret < 0) { | |
2140 | return ret; | |
2141 | } | |
4c5b10b7 | 2142 | } |
e56ff191 | 2143 | |
11076198 JK |
2144 | /* Set TSS base one page after EPT identity map. */ |
2145 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
2146 | if (ret < 0) { |
2147 | return ret; | |
2148 | } | |
2149 | ||
11076198 JK |
2150 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
2151 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 2152 | if (ret < 0) { |
11076198 | 2153 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
2154 | return ret; |
2155 | } | |
3c85e74f | 2156 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 2157 | |
4689b77b | 2158 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
2159 | if (shadow_mem != -1) { |
2160 | shadow_mem /= 4096; | |
2161 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
2162 | if (ret < 0) { | |
2163 | return ret; | |
39d6960a JK |
2164 | } |
2165 | } | |
6410848b | 2166 | |
d870cfde GA |
2167 | if (kvm_check_extension(s, KVM_CAP_X86_SMM) && |
2168 | object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) && | |
2169 | pc_machine_is_smm_enabled(PC_MACHINE(ms))) { | |
6410848b PB |
2170 | smram_machine_done.notify = register_smram_listener; |
2171 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
2172 | } | |
6f131f13 MT |
2173 | |
2174 | if (enable_cpu_pm) { | |
2175 | int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); | |
2176 | int ret; | |
2177 | ||
2178 | /* Work around for kernel header with a typo. TODO: fix header and drop. */ | |
2179 | #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) | |
2180 | #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL | |
2181 | #endif | |
2182 | if (disable_exits) { | |
2183 | disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | | |
2184 | KVM_X86_DISABLE_EXITS_HLT | | |
d38d201f WL |
2185 | KVM_X86_DISABLE_EXITS_PAUSE | |
2186 | KVM_X86_DISABLE_EXITS_CSTATE); | |
6f131f13 MT |
2187 | } |
2188 | ||
2189 | ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, | |
2190 | disable_exits); | |
2191 | if (ret < 0) { | |
2192 | error_report("kvm: guest stopping CPU not supported: %s", | |
2193 | strerror(-ret)); | |
2194 | } | |
2195 | } | |
2196 | ||
11076198 | 2197 | return 0; |
05330448 | 2198 | } |
b9bec74b | 2199 | |
05330448 AL |
2200 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
2201 | { | |
2202 | lhs->selector = rhs->selector; | |
2203 | lhs->base = rhs->base; | |
2204 | lhs->limit = rhs->limit; | |
2205 | lhs->type = 3; | |
2206 | lhs->present = 1; | |
2207 | lhs->dpl = 3; | |
2208 | lhs->db = 0; | |
2209 | lhs->s = 1; | |
2210 | lhs->l = 0; | |
2211 | lhs->g = 0; | |
2212 | lhs->avl = 0; | |
2213 | lhs->unusable = 0; | |
2214 | } | |
2215 | ||
2216 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
2217 | { | |
2218 | unsigned flags = rhs->flags; | |
2219 | lhs->selector = rhs->selector; | |
2220 | lhs->base = rhs->base; | |
2221 | lhs->limit = rhs->limit; | |
2222 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
2223 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 2224 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
2225 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
2226 | lhs->s = (flags & DESC_S_MASK) != 0; | |
2227 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
2228 | lhs->g = (flags & DESC_G_MASK) != 0; | |
2229 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 2230 | lhs->unusable = !lhs->present; |
7e680753 | 2231 | lhs->padding = 0; |
05330448 AL |
2232 | } |
2233 | ||
2234 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
2235 | { | |
2236 | lhs->selector = rhs->selector; | |
2237 | lhs->base = rhs->base; | |
2238 | lhs->limit = rhs->limit; | |
d45fc087 RP |
2239 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
2240 | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | | |
2241 | (rhs->dpl << DESC_DPL_SHIFT) | | |
2242 | (rhs->db << DESC_B_SHIFT) | | |
2243 | (rhs->s * DESC_S_MASK) | | |
2244 | (rhs->l << DESC_L_SHIFT) | | |
2245 | (rhs->g * DESC_G_MASK) | | |
2246 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
2247 | } |
2248 | ||
2249 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
2250 | { | |
b9bec74b | 2251 | if (set) { |
05330448 | 2252 | *kvm_reg = *qemu_reg; |
b9bec74b | 2253 | } else { |
05330448 | 2254 | *qemu_reg = *kvm_reg; |
b9bec74b | 2255 | } |
05330448 AL |
2256 | } |
2257 | ||
1bc22652 | 2258 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 2259 | { |
1bc22652 | 2260 | CPUX86State *env = &cpu->env; |
05330448 AL |
2261 | struct kvm_regs regs; |
2262 | int ret = 0; | |
2263 | ||
2264 | if (!set) { | |
1bc22652 | 2265 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 2266 | if (ret < 0) { |
05330448 | 2267 | return ret; |
b9bec74b | 2268 | } |
05330448 AL |
2269 | } |
2270 | ||
2271 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
2272 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
2273 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
2274 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
2275 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
2276 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
2277 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
2278 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
2279 | #ifdef TARGET_X86_64 | |
2280 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
2281 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
2282 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
2283 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
2284 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
2285 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
2286 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
2287 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
2288 | #endif | |
2289 | ||
2290 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
2291 | kvm_getput_reg(®s.rip, &env->eip, set); | |
2292 | ||
b9bec74b | 2293 | if (set) { |
1bc22652 | 2294 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 2295 | } |
05330448 AL |
2296 | |
2297 | return ret; | |
2298 | } | |
2299 | ||
1bc22652 | 2300 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 2301 | { |
1bc22652 | 2302 | CPUX86State *env = &cpu->env; |
05330448 AL |
2303 | struct kvm_fpu fpu; |
2304 | int i; | |
2305 | ||
2306 | memset(&fpu, 0, sizeof fpu); | |
2307 | fpu.fsw = env->fpus & ~(7 << 11); | |
2308 | fpu.fsw |= (env->fpstt & 7) << 11; | |
2309 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
2310 | fpu.last_opcode = env->fpop; |
2311 | fpu.last_ip = env->fpip; | |
2312 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
2313 | for (i = 0; i < 8; ++i) { |
2314 | fpu.ftwx |= (!env->fptags[i]) << i; | |
2315 | } | |
05330448 | 2316 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 2317 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
2318 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
2319 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 2320 | } |
05330448 AL |
2321 | fpu.mxcsr = env->mxcsr; |
2322 | ||
1bc22652 | 2323 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
2324 | } |
2325 | ||
6b42494b JK |
2326 | #define XSAVE_FCW_FSW 0 |
2327 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
2328 | #define XSAVE_CWD_RIP 2 |
2329 | #define XSAVE_CWD_RDP 4 | |
2330 | #define XSAVE_MXCSR 6 | |
2331 | #define XSAVE_ST_SPACE 8 | |
2332 | #define XSAVE_XMM_SPACE 40 | |
2333 | #define XSAVE_XSTATE_BV 128 | |
2334 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
2335 | #define XSAVE_BNDREGS 240 |
2336 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
2337 | #define XSAVE_OPMASK 272 |
2338 | #define XSAVE_ZMM_Hi256 288 | |
2339 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 2340 | #define XSAVE_PKRU 672 |
f1665b21 | 2341 | |
b503717d | 2342 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
f18793b0 | 2343 | ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) |
b503717d EH |
2344 | |
2345 | #define ASSERT_OFFSET(word_offset, field) \ | |
2346 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
2347 | offsetof(X86XSaveArea, field)) | |
2348 | ||
2349 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
2350 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
2351 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
2352 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
2353 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
2354 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
2355 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
2356 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
2357 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
2358 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
2359 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
2360 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
2361 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
2362 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
2363 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
2364 | ||
1bc22652 | 2365 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 2366 | { |
1bc22652 | 2367 | CPUX86State *env = &cpu->env; |
5b8063c4 | 2368 | X86XSaveArea *xsave = env->xsave_buf; |
f1665b21 | 2369 | |
28143b40 | 2370 | if (!has_xsave) { |
1bc22652 | 2371 | return kvm_put_fpu(cpu); |
b9bec74b | 2372 | } |
86a57621 | 2373 | x86_cpu_xsave_all_areas(cpu, xsave); |
f1665b21 | 2374 | |
9be38598 | 2375 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
2376 | } |
2377 | ||
1bc22652 | 2378 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 2379 | { |
1bc22652 | 2380 | CPUX86State *env = &cpu->env; |
bdfc8480 | 2381 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 2382 | |
28143b40 | 2383 | if (!has_xcrs) { |
f1665b21 | 2384 | return 0; |
b9bec74b | 2385 | } |
f1665b21 SY |
2386 | |
2387 | xcrs.nr_xcrs = 1; | |
2388 | xcrs.flags = 0; | |
2389 | xcrs.xcrs[0].xcr = 0; | |
2390 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 2391 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
2392 | } |
2393 | ||
1bc22652 | 2394 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 2395 | { |
1bc22652 | 2396 | CPUX86State *env = &cpu->env; |
05330448 AL |
2397 | struct kvm_sregs sregs; |
2398 | ||
0e607a80 JK |
2399 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
2400 | if (env->interrupt_injected >= 0) { | |
2401 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
2402 | (uint64_t)1 << (env->interrupt_injected % 64); | |
2403 | } | |
05330448 AL |
2404 | |
2405 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
2406 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
2407 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
2408 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
2409 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
2410 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
2411 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 2412 | } else { |
b9bec74b JK |
2413 | set_seg(&sregs.cs, &env->segs[R_CS]); |
2414 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
2415 | set_seg(&sregs.es, &env->segs[R_ES]); | |
2416 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
2417 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
2418 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
2419 | } |
2420 | ||
2421 | set_seg(&sregs.tr, &env->tr); | |
2422 | set_seg(&sregs.ldt, &env->ldt); | |
2423 | ||
2424 | sregs.idt.limit = env->idt.limit; | |
2425 | sregs.idt.base = env->idt.base; | |
7e680753 | 2426 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
2427 | sregs.gdt.limit = env->gdt.limit; |
2428 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 2429 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
2430 | |
2431 | sregs.cr0 = env->cr[0]; | |
2432 | sregs.cr2 = env->cr[2]; | |
2433 | sregs.cr3 = env->cr[3]; | |
2434 | sregs.cr4 = env->cr[4]; | |
2435 | ||
02e51483 CF |
2436 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
2437 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
2438 | |
2439 | sregs.efer = env->efer; | |
2440 | ||
1bc22652 | 2441 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
2442 | } |
2443 | ||
d71b62a1 EH |
2444 | static void kvm_msr_buf_reset(X86CPU *cpu) |
2445 | { | |
2446 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
2447 | } | |
2448 | ||
9c600a84 EH |
2449 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
2450 | { | |
2451 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
2452 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
2453 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
2454 | ||
2455 | assert((void *)(entry + 1) <= limit); | |
2456 | ||
1abc2cae EH |
2457 | entry->index = index; |
2458 | entry->reserved = 0; | |
2459 | entry->data = value; | |
9c600a84 EH |
2460 | msrs->nmsrs++; |
2461 | } | |
2462 | ||
73e1b8f2 PB |
2463 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
2464 | { | |
2465 | kvm_msr_buf_reset(cpu); | |
2466 | kvm_msr_entry_add(cpu, index, value); | |
2467 | ||
2468 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
2469 | } | |
2470 | ||
f8d9ccf8 DDAG |
2471 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
2472 | { | |
2473 | int ret; | |
2474 | ||
2475 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
2476 | assert(ret == 1); | |
2477 | } | |
2478 | ||
7477cd38 MT |
2479 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
2480 | { | |
2481 | CPUX86State *env = &cpu->env; | |
48e1a45c | 2482 | int ret; |
7477cd38 MT |
2483 | |
2484 | if (!has_msr_tsc_deadline) { | |
2485 | return 0; | |
2486 | } | |
2487 | ||
73e1b8f2 | 2488 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
48e1a45c PB |
2489 | if (ret < 0) { |
2490 | return ret; | |
2491 | } | |
2492 | ||
2493 | assert(ret == 1); | |
2494 | return 0; | |
7477cd38 MT |
2495 | } |
2496 | ||
6bdf863d JK |
2497 | /* |
2498 | * Provide a separate write service for the feature control MSR in order to | |
2499 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
2500 | * before writing any other state because forcibly leaving nested mode | |
2501 | * invalidates the VCPU state. | |
2502 | */ | |
2503 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
2504 | { | |
48e1a45c PB |
2505 | int ret; |
2506 | ||
2507 | if (!has_msr_feature_control) { | |
2508 | return 0; | |
2509 | } | |
6bdf863d | 2510 | |
73e1b8f2 PB |
2511 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
2512 | cpu->env.msr_ia32_feature_control); | |
48e1a45c PB |
2513 | if (ret < 0) { |
2514 | return ret; | |
2515 | } | |
2516 | ||
2517 | assert(ret == 1); | |
2518 | return 0; | |
6bdf863d JK |
2519 | } |
2520 | ||
20a78b02 PB |
2521 | static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) |
2522 | { | |
2523 | uint32_t default1, can_be_one, can_be_zero; | |
2524 | uint32_t must_be_one; | |
2525 | ||
2526 | switch (index) { | |
2527 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: | |
2528 | default1 = 0x00000016; | |
2529 | break; | |
2530 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: | |
2531 | default1 = 0x0401e172; | |
2532 | break; | |
2533 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: | |
2534 | default1 = 0x000011ff; | |
2535 | break; | |
2536 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: | |
2537 | default1 = 0x00036dff; | |
2538 | break; | |
2539 | case MSR_IA32_VMX_PROCBASED_CTLS2: | |
2540 | default1 = 0; | |
2541 | break; | |
2542 | default: | |
2543 | abort(); | |
2544 | } | |
2545 | ||
2546 | /* If a feature bit is set, the control can be either set or clear. | |
2547 | * Otherwise the value is limited to either 0 or 1 by default1. | |
2548 | */ | |
2549 | can_be_one = features | default1; | |
2550 | can_be_zero = features | ~default1; | |
2551 | must_be_one = ~can_be_zero; | |
2552 | ||
2553 | /* | |
2554 | * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). | |
2555 | * Bit 32:63 -> 1 if the control bit can be one. | |
2556 | */ | |
2557 | return must_be_one | (((uint64_t)can_be_one) << 32); | |
2558 | } | |
2559 | ||
2560 | #define VMCS12_MAX_FIELD_INDEX (0x17) | |
2561 | ||
2562 | static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) | |
2563 | { | |
2564 | uint64_t kvm_vmx_basic = | |
2565 | kvm_arch_get_supported_msr_feature(kvm_state, | |
2566 | MSR_IA32_VMX_BASIC); | |
2567 | uint64_t kvm_vmx_misc = | |
2568 | kvm_arch_get_supported_msr_feature(kvm_state, | |
2569 | MSR_IA32_VMX_MISC); | |
2570 | uint64_t kvm_vmx_ept_vpid = | |
2571 | kvm_arch_get_supported_msr_feature(kvm_state, | |
2572 | MSR_IA32_VMX_EPT_VPID_CAP); | |
2573 | ||
2574 | /* | |
2575 | * If the guest is 64-bit, a value of 1 is allowed for the host address | |
2576 | * space size vmexit control. | |
2577 | */ | |
2578 | uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM | |
2579 | ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; | |
2580 | ||
2581 | /* | |
2582 | * Bits 0-30, 32-44 and 50-53 come from the host. KVM should | |
2583 | * not change them for backwards compatibility. | |
2584 | */ | |
2585 | uint64_t fixed_vmx_basic = kvm_vmx_basic & | |
2586 | (MSR_VMX_BASIC_VMCS_REVISION_MASK | | |
2587 | MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | | |
2588 | MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); | |
2589 | ||
2590 | /* | |
2591 | * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can | |
2592 | * change in the future but are always zero for now, clear them to be | |
2593 | * future proof. Bits 32-63 in theory could change, though KVM does | |
2594 | * not support dual-monitor treatment and probably never will; mask | |
2595 | * them out as well. | |
2596 | */ | |
2597 | uint64_t fixed_vmx_misc = kvm_vmx_misc & | |
2598 | (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | | |
2599 | MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); | |
2600 | ||
2601 | /* | |
2602 | * EPT memory types should not change either, so we do not bother | |
2603 | * adding features for them. | |
2604 | */ | |
2605 | uint64_t fixed_vmx_ept_mask = | |
2606 | (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? | |
2607 | MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); | |
2608 | uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; | |
2609 | ||
2610 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, | |
2611 | make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, | |
2612 | f[FEAT_VMX_PROCBASED_CTLS])); | |
2613 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, | |
2614 | make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, | |
2615 | f[FEAT_VMX_PINBASED_CTLS])); | |
2616 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, | |
2617 | make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, | |
2618 | f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); | |
2619 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, | |
2620 | make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, | |
2621 | f[FEAT_VMX_ENTRY_CTLS])); | |
2622 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, | |
2623 | make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, | |
2624 | f[FEAT_VMX_SECONDARY_CTLS])); | |
2625 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, | |
2626 | f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); | |
2627 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, | |
2628 | f[FEAT_VMX_BASIC] | fixed_vmx_basic); | |
2629 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, | |
2630 | f[FEAT_VMX_MISC] | fixed_vmx_misc); | |
2631 | if (has_msr_vmx_vmfunc) { | |
2632 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); | |
2633 | } | |
2634 | ||
2635 | /* | |
2636 | * Just to be safe, write these with constant values. The CRn_FIXED1 | |
2637 | * MSRs are generated by KVM based on the vCPU's CPUID. | |
2638 | */ | |
2639 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, | |
2640 | CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); | |
2641 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, | |
2642 | CR4_VMXE_MASK); | |
2643 | kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, | |
2644 | VMCS12_MAX_FIELD_INDEX << 1); | |
2645 | } | |
2646 | ||
1bc22652 | 2647 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 2648 | { |
1bc22652 | 2649 | CPUX86State *env = &cpu->env; |
9c600a84 | 2650 | int i; |
48e1a45c | 2651 | int ret; |
05330448 | 2652 | |
d71b62a1 EH |
2653 | kvm_msr_buf_reset(cpu); |
2654 | ||
9c600a84 EH |
2655 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
2656 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
2657 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
2658 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 2659 | if (has_msr_star) { |
9c600a84 | 2660 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 2661 | } |
c3a3a7d3 | 2662 | if (has_msr_hsave_pa) { |
9c600a84 | 2663 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 2664 | } |
c9b8f6b6 | 2665 | if (has_msr_tsc_aux) { |
9c600a84 | 2666 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 2667 | } |
f28558d3 | 2668 | if (has_msr_tsc_adjust) { |
9c600a84 | 2669 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 2670 | } |
21e87c46 | 2671 | if (has_msr_misc_enable) { |
9c600a84 | 2672 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
2673 | env->msr_ia32_misc_enable); |
2674 | } | |
fc12d72e | 2675 | if (has_msr_smbase) { |
9c600a84 | 2676 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 2677 | } |
e13713db LA |
2678 | if (has_msr_smi_count) { |
2679 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); | |
2680 | } | |
439d19f2 | 2681 | if (has_msr_bndcfgs) { |
9c600a84 | 2682 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 2683 | } |
18cd2c17 | 2684 | if (has_msr_xss) { |
9c600a84 | 2685 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 2686 | } |
a33a2cfe PB |
2687 | if (has_msr_spec_ctrl) { |
2688 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); | |
2689 | } | |
cfeea0c0 KRW |
2690 | if (has_msr_virt_ssbd) { |
2691 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); | |
2692 | } | |
2693 | ||
05330448 | 2694 | #ifdef TARGET_X86_64 |
25d2e361 | 2695 | if (lm_capable_kernel) { |
9c600a84 EH |
2696 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
2697 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
2698 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
2699 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 2700 | } |
05330448 | 2701 | #endif |
a33a2cfe | 2702 | |
d86f9636 | 2703 | /* If host supports feature MSR, write down. */ |
aec5e9c3 BD |
2704 | if (has_msr_arch_capabs) { |
2705 | kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, | |
2706 | env->features[FEAT_ARCH_CAPABILITIES]); | |
d86f9636 RH |
2707 | } |
2708 | ||
597360c0 XL |
2709 | if (has_msr_core_capabs) { |
2710 | kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, | |
2711 | env->features[FEAT_CORE_CAPABILITY]); | |
2712 | } | |
2713 | ||
ff5c186b | 2714 | /* |
0d894367 PB |
2715 | * The following MSRs have side effects on the guest or are too heavy |
2716 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
2717 | */ |
2718 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
2719 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
2720 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
2721 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
55c911a5 | 2722 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2723 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 2724 | } |
55c911a5 | 2725 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2726 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 2727 | } |
55c911a5 | 2728 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2729 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 2730 | } |
d645e132 MT |
2731 | |
2732 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { | |
2733 | kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); | |
2734 | } | |
2735 | ||
0b368a10 JD |
2736 | if (has_architectural_pmu_version > 0) { |
2737 | if (has_architectural_pmu_version > 1) { | |
2738 | /* Stop the counter. */ | |
2739 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2740 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2741 | } | |
0d894367 PB |
2742 | |
2743 | /* Set the counter values. */ | |
0b368a10 | 2744 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { |
9c600a84 | 2745 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
2746 | env->msr_fixed_counters[i]); |
2747 | } | |
0b368a10 | 2748 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 | 2749 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 2750 | env->msr_gp_counters[i]); |
9c600a84 | 2751 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
2752 | env->msr_gp_evtsel[i]); |
2753 | } | |
0b368a10 JD |
2754 | if (has_architectural_pmu_version > 1) { |
2755 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, | |
2756 | env->msr_global_status); | |
2757 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
2758 | env->msr_global_ovf_ctrl); | |
2759 | ||
2760 | /* Now start the PMU. */ | |
2761 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, | |
2762 | env->msr_fixed_ctr_ctrl); | |
2763 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, | |
2764 | env->msr_global_ctrl); | |
2765 | } | |
0d894367 | 2766 | } |
da1cc323 EY |
2767 | /* |
2768 | * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, | |
2769 | * only sync them to KVM on the first cpu | |
2770 | */ | |
2771 | if (current_cpu == first_cpu) { | |
2772 | if (has_msr_hv_hypercall) { | |
2773 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, | |
2774 | env->msr_hv_guest_os_id); | |
2775 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, | |
2776 | env->msr_hv_hypercall); | |
2777 | } | |
2d384d7c | 2778 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { |
da1cc323 EY |
2779 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, |
2780 | env->msr_hv_tsc); | |
2781 | } | |
2d384d7c | 2782 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { |
ba6a4fd9 VK |
2783 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, |
2784 | env->msr_hv_reenlightenment_control); | |
2785 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, | |
2786 | env->msr_hv_tsc_emulation_control); | |
2787 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, | |
2788 | env->msr_hv_tsc_emulation_status); | |
2789 | } | |
eab70139 | 2790 | } |
2d384d7c | 2791 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { |
9c600a84 | 2792 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 2793 | env->msr_hv_vapic); |
eab70139 | 2794 | } |
f2a53c9e AS |
2795 | if (has_msr_hv_crash) { |
2796 | int j; | |
2797 | ||
5e953812 | 2798 | for (j = 0; j < HV_CRASH_PARAMS; j++) |
9c600a84 | 2799 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
2800 | env->msr_hv_crash_params[j]); |
2801 | ||
5e953812 | 2802 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); |
f2a53c9e | 2803 | } |
46eb8f98 | 2804 | if (has_msr_hv_runtime) { |
9c600a84 | 2805 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 2806 | } |
2d384d7c VK |
2807 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) |
2808 | && hv_vpindex_settable) { | |
701189e3 RK |
2809 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, |
2810 | hyperv_vp_index(CPU(cpu))); | |
e9688fab | 2811 | } |
2d384d7c | 2812 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
866eea9a AS |
2813 | int j; |
2814 | ||
09df29b6 RK |
2815 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); |
2816 | ||
9c600a84 | 2817 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 2818 | env->msr_hv_synic_control); |
9c600a84 | 2819 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 2820 | env->msr_hv_synic_evt_page); |
9c600a84 | 2821 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
2822 | env->msr_hv_synic_msg_page); |
2823 | ||
2824 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 2825 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
2826 | env->msr_hv_synic_sint[j]); |
2827 | } | |
2828 | } | |
ff99aa64 AS |
2829 | if (has_msr_hv_stimer) { |
2830 | int j; | |
2831 | ||
2832 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 2833 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
2834 | env->msr_hv_stimer_config[j]); |
2835 | } | |
2836 | ||
2837 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 2838 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
2839 | env->msr_hv_stimer_count[j]); |
2840 | } | |
2841 | } | |
1eabfce6 | 2842 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
112dad69 DDAG |
2843 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
2844 | ||
9c600a84 EH |
2845 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
2846 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
2847 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
2848 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
2849 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
2850 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
2851 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
2852 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
2853 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
2854 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
2855 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
2856 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 2857 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
112dad69 DDAG |
2858 | /* The CPU GPs if we write to a bit above the physical limit of |
2859 | * the host CPU (and KVM emulates that) | |
2860 | */ | |
2861 | uint64_t mask = env->mtrr_var[i].mask; | |
2862 | mask &= phys_mask; | |
2863 | ||
9c600a84 EH |
2864 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
2865 | env->mtrr_var[i].base); | |
112dad69 | 2866 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
d1ae67f6 AW |
2867 | } |
2868 | } | |
b77146e9 CP |
2869 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2870 | int addr_num = kvm_arch_get_supported_cpuid(kvm_state, | |
2871 | 0x14, 1, R_EAX) & 0x7; | |
2872 | ||
2873 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, | |
2874 | env->msr_rtit_ctrl); | |
2875 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, | |
2876 | env->msr_rtit_status); | |
2877 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, | |
2878 | env->msr_rtit_output_base); | |
2879 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, | |
2880 | env->msr_rtit_output_mask); | |
2881 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, | |
2882 | env->msr_rtit_cr3_match); | |
2883 | for (i = 0; i < addr_num; i++) { | |
2884 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, | |
2885 | env->msr_rtit_addrs[i]); | |
2886 | } | |
2887 | } | |
6bdf863d JK |
2888 | |
2889 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
2890 | * kvm_put_msr_feature_control. */ | |
20a78b02 PB |
2891 | |
2892 | /* | |
2893 | * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but | |
2894 | * all kernels with MSR features should have them. | |
2895 | */ | |
2896 | if (kvm_feature_msrs && cpu_has_vmx(env)) { | |
2897 | kvm_msr_entry_add_vmx(cpu, env->features); | |
2898 | } | |
ea643051 | 2899 | } |
20a78b02 | 2900 | |
57780495 | 2901 | if (env->mcg_cap) { |
d8da8574 | 2902 | int i; |
b9bec74b | 2903 | |
9c600a84 EH |
2904 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
2905 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
2906 | if (has_msr_mcg_ext_ctl) { |
2907 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
2908 | } | |
c34d440a | 2909 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2910 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
2911 | } |
2912 | } | |
1a03675d | 2913 | |
d71b62a1 | 2914 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
2915 | if (ret < 0) { |
2916 | return ret; | |
2917 | } | |
05330448 | 2918 | |
c70b11d1 EH |
2919 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
2920 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2921 | error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, | |
2922 | (uint32_t)e->index, (uint64_t)e->data); | |
2923 | } | |
2924 | ||
9c600a84 | 2925 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
48e1a45c | 2926 | return 0; |
05330448 AL |
2927 | } |
2928 | ||
2929 | ||
1bc22652 | 2930 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 2931 | { |
1bc22652 | 2932 | CPUX86State *env = &cpu->env; |
05330448 AL |
2933 | struct kvm_fpu fpu; |
2934 | int i, ret; | |
2935 | ||
1bc22652 | 2936 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 2937 | if (ret < 0) { |
05330448 | 2938 | return ret; |
b9bec74b | 2939 | } |
05330448 AL |
2940 | |
2941 | env->fpstt = (fpu.fsw >> 11) & 7; | |
2942 | env->fpus = fpu.fsw; | |
2943 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
2944 | env->fpop = fpu.last_opcode; |
2945 | env->fpip = fpu.last_ip; | |
2946 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
2947 | for (i = 0; i < 8; ++i) { |
2948 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
2949 | } | |
05330448 | 2950 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 2951 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
2952 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
2953 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 2954 | } |
05330448 AL |
2955 | env->mxcsr = fpu.mxcsr; |
2956 | ||
2957 | return 0; | |
2958 | } | |
2959 | ||
1bc22652 | 2960 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 2961 | { |
1bc22652 | 2962 | CPUX86State *env = &cpu->env; |
5b8063c4 | 2963 | X86XSaveArea *xsave = env->xsave_buf; |
86a57621 | 2964 | int ret; |
f1665b21 | 2965 | |
28143b40 | 2966 | if (!has_xsave) { |
1bc22652 | 2967 | return kvm_get_fpu(cpu); |
b9bec74b | 2968 | } |
f1665b21 | 2969 | |
1bc22652 | 2970 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 2971 | if (ret < 0) { |
f1665b21 | 2972 | return ret; |
0f53994f | 2973 | } |
86a57621 | 2974 | x86_cpu_xrstor_all_areas(cpu, xsave); |
f1665b21 | 2975 | |
f1665b21 | 2976 | return 0; |
f1665b21 SY |
2977 | } |
2978 | ||
1bc22652 | 2979 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 2980 | { |
1bc22652 | 2981 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
2982 | int i, ret; |
2983 | struct kvm_xcrs xcrs; | |
2984 | ||
28143b40 | 2985 | if (!has_xcrs) { |
f1665b21 | 2986 | return 0; |
b9bec74b | 2987 | } |
f1665b21 | 2988 | |
1bc22652 | 2989 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 2990 | if (ret < 0) { |
f1665b21 | 2991 | return ret; |
b9bec74b | 2992 | } |
f1665b21 | 2993 | |
b9bec74b | 2994 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 2995 | /* Only support xcr0 now */ |
0fd53fec PB |
2996 | if (xcrs.xcrs[i].xcr == 0) { |
2997 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
2998 | break; |
2999 | } | |
b9bec74b | 3000 | } |
f1665b21 | 3001 | return 0; |
f1665b21 SY |
3002 | } |
3003 | ||
1bc22652 | 3004 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 3005 | { |
1bc22652 | 3006 | CPUX86State *env = &cpu->env; |
05330448 | 3007 | struct kvm_sregs sregs; |
0e607a80 | 3008 | int bit, i, ret; |
05330448 | 3009 | |
1bc22652 | 3010 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 3011 | if (ret < 0) { |
05330448 | 3012 | return ret; |
b9bec74b | 3013 | } |
05330448 | 3014 | |
0e607a80 JK |
3015 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
3016 | to find it and save its number instead (-1 for none). */ | |
3017 | env->interrupt_injected = -1; | |
3018 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
3019 | if (sregs.interrupt_bitmap[i]) { | |
3020 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
3021 | env->interrupt_injected = i * 64 + bit; | |
3022 | break; | |
3023 | } | |
3024 | } | |
05330448 AL |
3025 | |
3026 | get_seg(&env->segs[R_CS], &sregs.cs); | |
3027 | get_seg(&env->segs[R_DS], &sregs.ds); | |
3028 | get_seg(&env->segs[R_ES], &sregs.es); | |
3029 | get_seg(&env->segs[R_FS], &sregs.fs); | |
3030 | get_seg(&env->segs[R_GS], &sregs.gs); | |
3031 | get_seg(&env->segs[R_SS], &sregs.ss); | |
3032 | ||
3033 | get_seg(&env->tr, &sregs.tr); | |
3034 | get_seg(&env->ldt, &sregs.ldt); | |
3035 | ||
3036 | env->idt.limit = sregs.idt.limit; | |
3037 | env->idt.base = sregs.idt.base; | |
3038 | env->gdt.limit = sregs.gdt.limit; | |
3039 | env->gdt.base = sregs.gdt.base; | |
3040 | ||
3041 | env->cr[0] = sregs.cr0; | |
3042 | env->cr[2] = sregs.cr2; | |
3043 | env->cr[3] = sregs.cr3; | |
3044 | env->cr[4] = sregs.cr4; | |
3045 | ||
05330448 | 3046 | env->efer = sregs.efer; |
cce47516 JK |
3047 | |
3048 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
35b1b927 | 3049 | x86_update_hflags(env); |
05330448 AL |
3050 | |
3051 | return 0; | |
3052 | } | |
3053 | ||
1bc22652 | 3054 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 3055 | { |
1bc22652 | 3056 | CPUX86State *env = &cpu->env; |
d71b62a1 | 3057 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 3058 | int ret, i; |
fcc35e7c | 3059 | uint64_t mtrr_top_bits; |
05330448 | 3060 | |
d71b62a1 EH |
3061 | kvm_msr_buf_reset(cpu); |
3062 | ||
9c600a84 EH |
3063 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
3064 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
3065 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
3066 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 3067 | if (has_msr_star) { |
9c600a84 | 3068 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 3069 | } |
c3a3a7d3 | 3070 | if (has_msr_hsave_pa) { |
9c600a84 | 3071 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 3072 | } |
c9b8f6b6 | 3073 | if (has_msr_tsc_aux) { |
9c600a84 | 3074 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 3075 | } |
f28558d3 | 3076 | if (has_msr_tsc_adjust) { |
9c600a84 | 3077 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 3078 | } |
aa82ba54 | 3079 | if (has_msr_tsc_deadline) { |
9c600a84 | 3080 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 3081 | } |
21e87c46 | 3082 | if (has_msr_misc_enable) { |
9c600a84 | 3083 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 3084 | } |
fc12d72e | 3085 | if (has_msr_smbase) { |
9c600a84 | 3086 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 3087 | } |
e13713db LA |
3088 | if (has_msr_smi_count) { |
3089 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); | |
3090 | } | |
df67696e | 3091 | if (has_msr_feature_control) { |
9c600a84 | 3092 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 3093 | } |
79e9ebeb | 3094 | if (has_msr_bndcfgs) { |
9c600a84 | 3095 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 3096 | } |
18cd2c17 | 3097 | if (has_msr_xss) { |
9c600a84 | 3098 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 | 3099 | } |
a33a2cfe PB |
3100 | if (has_msr_spec_ctrl) { |
3101 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); | |
3102 | } | |
cfeea0c0 KRW |
3103 | if (has_msr_virt_ssbd) { |
3104 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); | |
3105 | } | |
b8cc45d6 | 3106 | if (!env->tsc_valid) { |
9c600a84 | 3107 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 3108 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
3109 | } |
3110 | ||
05330448 | 3111 | #ifdef TARGET_X86_64 |
25d2e361 | 3112 | if (lm_capable_kernel) { |
9c600a84 EH |
3113 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
3114 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
3115 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
3116 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 3117 | } |
05330448 | 3118 | #endif |
9c600a84 EH |
3119 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
3120 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
55c911a5 | 3121 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 3122 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 3123 | } |
55c911a5 | 3124 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 3125 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 3126 | } |
55c911a5 | 3127 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 3128 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 3129 | } |
d645e132 MT |
3130 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { |
3131 | kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); | |
3132 | } | |
0b368a10 JD |
3133 | if (has_architectural_pmu_version > 0) { |
3134 | if (has_architectural_pmu_version > 1) { | |
3135 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
3136 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
3137 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
3138 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
3139 | } | |
3140 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { | |
9c600a84 | 3141 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 | 3142 | } |
0b368a10 | 3143 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 EH |
3144 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
3145 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
3146 | } |
3147 | } | |
1a03675d | 3148 | |
57780495 | 3149 | if (env->mcg_cap) { |
9c600a84 EH |
3150 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
3151 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
3152 | if (has_msr_mcg_ext_ctl) { |
3153 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
3154 | } | |
b9bec74b | 3155 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 3156 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 3157 | } |
57780495 | 3158 | } |
57780495 | 3159 | |
1c90ef26 | 3160 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
3161 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
3162 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 3163 | } |
2d384d7c | 3164 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { |
9c600a84 | 3165 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 3166 | } |
2d384d7c | 3167 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { |
9c600a84 | 3168 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 3169 | } |
2d384d7c | 3170 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { |
ba6a4fd9 VK |
3171 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); |
3172 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); | |
3173 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); | |
3174 | } | |
f2a53c9e AS |
3175 | if (has_msr_hv_crash) { |
3176 | int j; | |
3177 | ||
5e953812 | 3178 | for (j = 0; j < HV_CRASH_PARAMS; j++) { |
9c600a84 | 3179 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
3180 | } |
3181 | } | |
46eb8f98 | 3182 | if (has_msr_hv_runtime) { |
9c600a84 | 3183 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 3184 | } |
2d384d7c | 3185 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
866eea9a AS |
3186 | uint32_t msr; |
3187 | ||
9c600a84 | 3188 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
9c600a84 EH |
3189 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); |
3190 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 3191 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 3192 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
3193 | } |
3194 | } | |
ff99aa64 AS |
3195 | if (has_msr_hv_stimer) { |
3196 | uint32_t msr; | |
3197 | ||
3198 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
3199 | msr++) { | |
9c600a84 | 3200 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
3201 | } |
3202 | } | |
1eabfce6 | 3203 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
9c600a84 EH |
3204 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
3205 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
3206 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
3207 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
3208 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
3209 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
3210 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
3211 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
3212 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
3213 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
3214 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
3215 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 3216 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
3217 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
3218 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
3219 | } |
3220 | } | |
5ef68987 | 3221 | |
b77146e9 CP |
3222 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
3223 | int addr_num = | |
3224 | kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; | |
3225 | ||
3226 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); | |
3227 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); | |
3228 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); | |
3229 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); | |
3230 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); | |
3231 | for (i = 0; i < addr_num; i++) { | |
3232 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); | |
3233 | } | |
3234 | } | |
3235 | ||
d71b62a1 | 3236 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 3237 | if (ret < 0) { |
05330448 | 3238 | return ret; |
b9bec74b | 3239 | } |
05330448 | 3240 | |
c70b11d1 EH |
3241 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
3242 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
3243 | error_report("error: failed to get MSR 0x%" PRIx32, | |
3244 | (uint32_t)e->index); | |
3245 | } | |
3246 | ||
9c600a84 | 3247 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
fcc35e7c DDAG |
3248 | /* |
3249 | * MTRR masks: Each mask consists of 5 parts | |
3250 | * a 10..0: must be zero | |
3251 | * b 11 : valid bit | |
3252 | * c n-1.12: actual mask bits | |
3253 | * d 51..n: reserved must be zero | |
3254 | * e 63.52: reserved must be zero | |
3255 | * | |
3256 | * 'n' is the number of physical bits supported by the CPU and is | |
3257 | * apparently always <= 52. We know our 'n' but don't know what | |
3258 | * the destinations 'n' is; it might be smaller, in which case | |
3259 | * it masks (c) on loading. It might be larger, in which case | |
3260 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
3261 | * we're migrating to. | |
3262 | */ | |
3263 | ||
3264 | if (cpu->fill_mtrr_mask) { | |
3265 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
3266 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
3267 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
3268 | } else { | |
3269 | mtrr_top_bits = 0; | |
3270 | } | |
3271 | ||
05330448 | 3272 | for (i = 0; i < ret; i++) { |
0d894367 PB |
3273 | uint32_t index = msrs[i].index; |
3274 | switch (index) { | |
05330448 AL |
3275 | case MSR_IA32_SYSENTER_CS: |
3276 | env->sysenter_cs = msrs[i].data; | |
3277 | break; | |
3278 | case MSR_IA32_SYSENTER_ESP: | |
3279 | env->sysenter_esp = msrs[i].data; | |
3280 | break; | |
3281 | case MSR_IA32_SYSENTER_EIP: | |
3282 | env->sysenter_eip = msrs[i].data; | |
3283 | break; | |
0c03266a JK |
3284 | case MSR_PAT: |
3285 | env->pat = msrs[i].data; | |
3286 | break; | |
05330448 AL |
3287 | case MSR_STAR: |
3288 | env->star = msrs[i].data; | |
3289 | break; | |
3290 | #ifdef TARGET_X86_64 | |
3291 | case MSR_CSTAR: | |
3292 | env->cstar = msrs[i].data; | |
3293 | break; | |
3294 | case MSR_KERNELGSBASE: | |
3295 | env->kernelgsbase = msrs[i].data; | |
3296 | break; | |
3297 | case MSR_FMASK: | |
3298 | env->fmask = msrs[i].data; | |
3299 | break; | |
3300 | case MSR_LSTAR: | |
3301 | env->lstar = msrs[i].data; | |
3302 | break; | |
3303 | #endif | |
3304 | case MSR_IA32_TSC: | |
3305 | env->tsc = msrs[i].data; | |
3306 | break; | |
c9b8f6b6 AS |
3307 | case MSR_TSC_AUX: |
3308 | env->tsc_aux = msrs[i].data; | |
3309 | break; | |
f28558d3 WA |
3310 | case MSR_TSC_ADJUST: |
3311 | env->tsc_adjust = msrs[i].data; | |
3312 | break; | |
aa82ba54 LJ |
3313 | case MSR_IA32_TSCDEADLINE: |
3314 | env->tsc_deadline = msrs[i].data; | |
3315 | break; | |
aa851e36 MT |
3316 | case MSR_VM_HSAVE_PA: |
3317 | env->vm_hsave = msrs[i].data; | |
3318 | break; | |
1a03675d GC |
3319 | case MSR_KVM_SYSTEM_TIME: |
3320 | env->system_time_msr = msrs[i].data; | |
3321 | break; | |
3322 | case MSR_KVM_WALL_CLOCK: | |
3323 | env->wall_clock_msr = msrs[i].data; | |
3324 | break; | |
57780495 MT |
3325 | case MSR_MCG_STATUS: |
3326 | env->mcg_status = msrs[i].data; | |
3327 | break; | |
3328 | case MSR_MCG_CTL: | |
3329 | env->mcg_ctl = msrs[i].data; | |
3330 | break; | |
87f8b626 AR |
3331 | case MSR_MCG_EXT_CTL: |
3332 | env->mcg_ext_ctl = msrs[i].data; | |
3333 | break; | |
21e87c46 AK |
3334 | case MSR_IA32_MISC_ENABLE: |
3335 | env->msr_ia32_misc_enable = msrs[i].data; | |
3336 | break; | |
fc12d72e PB |
3337 | case MSR_IA32_SMBASE: |
3338 | env->smbase = msrs[i].data; | |
3339 | break; | |
e13713db LA |
3340 | case MSR_SMI_COUNT: |
3341 | env->msr_smi_count = msrs[i].data; | |
3342 | break; | |
0779caeb ACL |
3343 | case MSR_IA32_FEATURE_CONTROL: |
3344 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 3345 | break; |
79e9ebeb LJ |
3346 | case MSR_IA32_BNDCFGS: |
3347 | env->msr_bndcfgs = msrs[i].data; | |
3348 | break; | |
18cd2c17 WL |
3349 | case MSR_IA32_XSS: |
3350 | env->xss = msrs[i].data; | |
3351 | break; | |
57780495 | 3352 | default: |
57780495 MT |
3353 | if (msrs[i].index >= MSR_MC0_CTL && |
3354 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
3355 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 3356 | } |
d8da8574 | 3357 | break; |
f6584ee2 GN |
3358 | case MSR_KVM_ASYNC_PF_EN: |
3359 | env->async_pf_en_msr = msrs[i].data; | |
3360 | break; | |
bc9a839d MT |
3361 | case MSR_KVM_PV_EOI_EN: |
3362 | env->pv_eoi_en_msr = msrs[i].data; | |
3363 | break; | |
917367aa MT |
3364 | case MSR_KVM_STEAL_TIME: |
3365 | env->steal_time_msr = msrs[i].data; | |
3366 | break; | |
d645e132 MT |
3367 | case MSR_KVM_POLL_CONTROL: { |
3368 | env->poll_control_msr = msrs[i].data; | |
3369 | break; | |
3370 | } | |
0d894367 PB |
3371 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
3372 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
3373 | break; | |
3374 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
3375 | env->msr_global_ctrl = msrs[i].data; | |
3376 | break; | |
3377 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
3378 | env->msr_global_status = msrs[i].data; | |
3379 | break; | |
3380 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
3381 | env->msr_global_ovf_ctrl = msrs[i].data; | |
3382 | break; | |
3383 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
3384 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
3385 | break; | |
3386 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
3387 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
3388 | break; | |
3389 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
3390 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
3391 | break; | |
1c90ef26 VR |
3392 | case HV_X64_MSR_HYPERCALL: |
3393 | env->msr_hv_hypercall = msrs[i].data; | |
3394 | break; | |
3395 | case HV_X64_MSR_GUEST_OS_ID: | |
3396 | env->msr_hv_guest_os_id = msrs[i].data; | |
3397 | break; | |
5ef68987 VR |
3398 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
3399 | env->msr_hv_vapic = msrs[i].data; | |
3400 | break; | |
48a5f3bc VR |
3401 | case HV_X64_MSR_REFERENCE_TSC: |
3402 | env->msr_hv_tsc = msrs[i].data; | |
3403 | break; | |
f2a53c9e AS |
3404 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
3405 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
3406 | break; | |
46eb8f98 AS |
3407 | case HV_X64_MSR_VP_RUNTIME: |
3408 | env->msr_hv_runtime = msrs[i].data; | |
3409 | break; | |
866eea9a AS |
3410 | case HV_X64_MSR_SCONTROL: |
3411 | env->msr_hv_synic_control = msrs[i].data; | |
3412 | break; | |
866eea9a AS |
3413 | case HV_X64_MSR_SIEFP: |
3414 | env->msr_hv_synic_evt_page = msrs[i].data; | |
3415 | break; | |
3416 | case HV_X64_MSR_SIMP: | |
3417 | env->msr_hv_synic_msg_page = msrs[i].data; | |
3418 | break; | |
3419 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
3420 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
3421 | break; |
3422 | case HV_X64_MSR_STIMER0_CONFIG: | |
3423 | case HV_X64_MSR_STIMER1_CONFIG: | |
3424 | case HV_X64_MSR_STIMER2_CONFIG: | |
3425 | case HV_X64_MSR_STIMER3_CONFIG: | |
3426 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
3427 | msrs[i].data; | |
3428 | break; | |
3429 | case HV_X64_MSR_STIMER0_COUNT: | |
3430 | case HV_X64_MSR_STIMER1_COUNT: | |
3431 | case HV_X64_MSR_STIMER2_COUNT: | |
3432 | case HV_X64_MSR_STIMER3_COUNT: | |
3433 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
3434 | msrs[i].data; | |
866eea9a | 3435 | break; |
ba6a4fd9 VK |
3436 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
3437 | env->msr_hv_reenlightenment_control = msrs[i].data; | |
3438 | break; | |
3439 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
3440 | env->msr_hv_tsc_emulation_control = msrs[i].data; | |
3441 | break; | |
3442 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
3443 | env->msr_hv_tsc_emulation_status = msrs[i].data; | |
3444 | break; | |
d1ae67f6 AW |
3445 | case MSR_MTRRdefType: |
3446 | env->mtrr_deftype = msrs[i].data; | |
3447 | break; | |
3448 | case MSR_MTRRfix64K_00000: | |
3449 | env->mtrr_fixed[0] = msrs[i].data; | |
3450 | break; | |
3451 | case MSR_MTRRfix16K_80000: | |
3452 | env->mtrr_fixed[1] = msrs[i].data; | |
3453 | break; | |
3454 | case MSR_MTRRfix16K_A0000: | |
3455 | env->mtrr_fixed[2] = msrs[i].data; | |
3456 | break; | |
3457 | case MSR_MTRRfix4K_C0000: | |
3458 | env->mtrr_fixed[3] = msrs[i].data; | |
3459 | break; | |
3460 | case MSR_MTRRfix4K_C8000: | |
3461 | env->mtrr_fixed[4] = msrs[i].data; | |
3462 | break; | |
3463 | case MSR_MTRRfix4K_D0000: | |
3464 | env->mtrr_fixed[5] = msrs[i].data; | |
3465 | break; | |
3466 | case MSR_MTRRfix4K_D8000: | |
3467 | env->mtrr_fixed[6] = msrs[i].data; | |
3468 | break; | |
3469 | case MSR_MTRRfix4K_E0000: | |
3470 | env->mtrr_fixed[7] = msrs[i].data; | |
3471 | break; | |
3472 | case MSR_MTRRfix4K_E8000: | |
3473 | env->mtrr_fixed[8] = msrs[i].data; | |
3474 | break; | |
3475 | case MSR_MTRRfix4K_F0000: | |
3476 | env->mtrr_fixed[9] = msrs[i].data; | |
3477 | break; | |
3478 | case MSR_MTRRfix4K_F8000: | |
3479 | env->mtrr_fixed[10] = msrs[i].data; | |
3480 | break; | |
3481 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
3482 | if (index & 1) { | |
fcc35e7c DDAG |
3483 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
3484 | mtrr_top_bits; | |
d1ae67f6 AW |
3485 | } else { |
3486 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
3487 | } | |
3488 | break; | |
a33a2cfe PB |
3489 | case MSR_IA32_SPEC_CTRL: |
3490 | env->spec_ctrl = msrs[i].data; | |
3491 | break; | |
cfeea0c0 KRW |
3492 | case MSR_VIRT_SSBD: |
3493 | env->virt_ssbd = msrs[i].data; | |
3494 | break; | |
b77146e9 CP |
3495 | case MSR_IA32_RTIT_CTL: |
3496 | env->msr_rtit_ctrl = msrs[i].data; | |
3497 | break; | |
3498 | case MSR_IA32_RTIT_STATUS: | |
3499 | env->msr_rtit_status = msrs[i].data; | |
3500 | break; | |
3501 | case MSR_IA32_RTIT_OUTPUT_BASE: | |
3502 | env->msr_rtit_output_base = msrs[i].data; | |
3503 | break; | |
3504 | case MSR_IA32_RTIT_OUTPUT_MASK: | |
3505 | env->msr_rtit_output_mask = msrs[i].data; | |
3506 | break; | |
3507 | case MSR_IA32_RTIT_CR3_MATCH: | |
3508 | env->msr_rtit_cr3_match = msrs[i].data; | |
3509 | break; | |
3510 | case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | |
3511 | env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; | |
3512 | break; | |
05330448 AL |
3513 | } |
3514 | } | |
3515 | ||
3516 | return 0; | |
3517 | } | |
3518 | ||
1bc22652 | 3519 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 3520 | { |
1bc22652 | 3521 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 3522 | |
1bc22652 | 3523 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
3524 | } |
3525 | ||
23d02d9b | 3526 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 3527 | { |
259186a7 | 3528 | CPUState *cs = CPU(cpu); |
23d02d9b | 3529 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
3530 | struct kvm_mp_state mp_state; |
3531 | int ret; | |
3532 | ||
259186a7 | 3533 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
3534 | if (ret < 0) { |
3535 | return ret; | |
3536 | } | |
3537 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 3538 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 3539 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 3540 | } |
9bdbe550 HB |
3541 | return 0; |
3542 | } | |
3543 | ||
1bc22652 | 3544 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 3545 | { |
02e51483 | 3546 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
3547 | struct kvm_lapic_state kapic; |
3548 | int ret; | |
3549 | ||
3d4b2649 | 3550 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 3551 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
3552 | if (ret < 0) { |
3553 | return ret; | |
3554 | } | |
3555 | ||
3556 | kvm_get_apic_state(apic, &kapic); | |
3557 | } | |
3558 | return 0; | |
3559 | } | |
3560 | ||
1bc22652 | 3561 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 3562 | { |
fc12d72e | 3563 | CPUState *cs = CPU(cpu); |
1bc22652 | 3564 | CPUX86State *env = &cpu->env; |
076796f8 | 3565 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
3566 | |
3567 | if (!kvm_has_vcpu_events()) { | |
3568 | return 0; | |
3569 | } | |
3570 | ||
fd13f23b LA |
3571 | events.flags = 0; |
3572 | ||
3573 | if (has_exception_payload) { | |
3574 | events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; | |
3575 | events.exception.pending = env->exception_pending; | |
3576 | events.exception_has_payload = env->exception_has_payload; | |
3577 | events.exception_payload = env->exception_payload; | |
3578 | } | |
3579 | events.exception.nr = env->exception_nr; | |
3580 | events.exception.injected = env->exception_injected; | |
a0fb002c JK |
3581 | events.exception.has_error_code = env->has_error_code; |
3582 | events.exception.error_code = env->error_code; | |
3583 | ||
3584 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
3585 | events.interrupt.nr = env->interrupt_injected; | |
3586 | events.interrupt.soft = env->soft_interrupt; | |
3587 | ||
3588 | events.nmi.injected = env->nmi_injected; | |
3589 | events.nmi.pending = env->nmi_pending; | |
3590 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
3591 | ||
3592 | events.sipi_vector = env->sipi_vector; | |
3593 | ||
fc12d72e PB |
3594 | if (has_msr_smbase) { |
3595 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
3596 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
3597 | if (kvm_irqchip_in_kernel()) { | |
3598 | /* As soon as these are moved to the kernel, remove them | |
3599 | * from cs->interrupt_request. | |
3600 | */ | |
3601 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
3602 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
3603 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
3604 | } else { | |
3605 | /* Keep these in cs->interrupt_request. */ | |
3606 | events.smi.pending = 0; | |
3607 | events.smi.latched_init = 0; | |
3608 | } | |
fc3a1fd7 DDAG |
3609 | /* Stop SMI delivery on old machine types to avoid a reboot |
3610 | * on an inward migration of an old VM. | |
3611 | */ | |
3612 | if (!cpu->kvm_no_smi_migration) { | |
3613 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
3614 | } | |
fc12d72e PB |
3615 | } |
3616 | ||
ea643051 | 3617 | if (level >= KVM_PUT_RESET_STATE) { |
4fadfa00 PH |
3618 | events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; |
3619 | if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
3620 | events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
3621 | } | |
ea643051 | 3622 | } |
aee028b9 | 3623 | |
1bc22652 | 3624 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
3625 | } |
3626 | ||
1bc22652 | 3627 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 3628 | { |
1bc22652 | 3629 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
3630 | struct kvm_vcpu_events events; |
3631 | int ret; | |
3632 | ||
3633 | if (!kvm_has_vcpu_events()) { | |
3634 | return 0; | |
3635 | } | |
3636 | ||
fc12d72e | 3637 | memset(&events, 0, sizeof(events)); |
1bc22652 | 3638 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
3639 | if (ret < 0) { |
3640 | return ret; | |
3641 | } | |
fd13f23b LA |
3642 | |
3643 | if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { | |
3644 | env->exception_pending = events.exception.pending; | |
3645 | env->exception_has_payload = events.exception_has_payload; | |
3646 | env->exception_payload = events.exception_payload; | |
3647 | } else { | |
3648 | env->exception_pending = 0; | |
3649 | env->exception_has_payload = false; | |
3650 | } | |
3651 | env->exception_injected = events.exception.injected; | |
3652 | env->exception_nr = | |
3653 | (env->exception_pending || env->exception_injected) ? | |
3654 | events.exception.nr : -1; | |
a0fb002c JK |
3655 | env->has_error_code = events.exception.has_error_code; |
3656 | env->error_code = events.exception.error_code; | |
3657 | ||
3658 | env->interrupt_injected = | |
3659 | events.interrupt.injected ? events.interrupt.nr : -1; | |
3660 | env->soft_interrupt = events.interrupt.soft; | |
3661 | ||
3662 | env->nmi_injected = events.nmi.injected; | |
3663 | env->nmi_pending = events.nmi.pending; | |
3664 | if (events.nmi.masked) { | |
3665 | env->hflags2 |= HF2_NMI_MASK; | |
3666 | } else { | |
3667 | env->hflags2 &= ~HF2_NMI_MASK; | |
3668 | } | |
3669 | ||
fc12d72e PB |
3670 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
3671 | if (events.smi.smm) { | |
3672 | env->hflags |= HF_SMM_MASK; | |
3673 | } else { | |
3674 | env->hflags &= ~HF_SMM_MASK; | |
3675 | } | |
3676 | if (events.smi.pending) { | |
3677 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3678 | } else { | |
3679 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3680 | } | |
3681 | if (events.smi.smm_inside_nmi) { | |
3682 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
3683 | } else { | |
3684 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
3685 | } | |
3686 | if (events.smi.latched_init) { | |
3687 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3688 | } else { | |
3689 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3690 | } | |
3691 | } | |
3692 | ||
a0fb002c | 3693 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
3694 | |
3695 | return 0; | |
3696 | } | |
3697 | ||
1bc22652 | 3698 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 3699 | { |
ed2803da | 3700 | CPUState *cs = CPU(cpu); |
1bc22652 | 3701 | CPUX86State *env = &cpu->env; |
b0b1d690 | 3702 | int ret = 0; |
b0b1d690 JK |
3703 | unsigned long reinject_trap = 0; |
3704 | ||
3705 | if (!kvm_has_vcpu_events()) { | |
fd13f23b | 3706 | if (env->exception_nr == EXCP01_DB) { |
b0b1d690 | 3707 | reinject_trap = KVM_GUESTDBG_INJECT_DB; |
37936ac7 | 3708 | } else if (env->exception_injected == EXCP03_INT3) { |
b0b1d690 JK |
3709 | reinject_trap = KVM_GUESTDBG_INJECT_BP; |
3710 | } | |
fd13f23b | 3711 | kvm_reset_exception(env); |
b0b1d690 JK |
3712 | } |
3713 | ||
3714 | /* | |
3715 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
3716 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
3717 | * by updating the debug state once again if single-stepping is on. | |
3718 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
3719 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
3720 | * reinject them via SET_GUEST_DEBUG. | |
3721 | */ | |
3722 | if (reinject_trap || | |
ed2803da | 3723 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 3724 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 3725 | } |
b0b1d690 JK |
3726 | return ret; |
3727 | } | |
3728 | ||
1bc22652 | 3729 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 3730 | { |
1bc22652 | 3731 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
3732 | struct kvm_debugregs dbgregs; |
3733 | int i; | |
3734 | ||
3735 | if (!kvm_has_debugregs()) { | |
3736 | return 0; | |
3737 | } | |
3738 | ||
1f670a95 | 3739 | memset(&dbgregs, 0, sizeof(dbgregs)); |
ff44f1a3 JK |
3740 | for (i = 0; i < 4; i++) { |
3741 | dbgregs.db[i] = env->dr[i]; | |
3742 | } | |
3743 | dbgregs.dr6 = env->dr[6]; | |
3744 | dbgregs.dr7 = env->dr[7]; | |
3745 | dbgregs.flags = 0; | |
3746 | ||
1bc22652 | 3747 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
3748 | } |
3749 | ||
1bc22652 | 3750 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 3751 | { |
1bc22652 | 3752 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
3753 | struct kvm_debugregs dbgregs; |
3754 | int i, ret; | |
3755 | ||
3756 | if (!kvm_has_debugregs()) { | |
3757 | return 0; | |
3758 | } | |
3759 | ||
1bc22652 | 3760 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 3761 | if (ret < 0) { |
b9bec74b | 3762 | return ret; |
ff44f1a3 JK |
3763 | } |
3764 | for (i = 0; i < 4; i++) { | |
3765 | env->dr[i] = dbgregs.db[i]; | |
3766 | } | |
3767 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
3768 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
3769 | |
3770 | return 0; | |
3771 | } | |
3772 | ||
ebbfef2f LA |
3773 | static int kvm_put_nested_state(X86CPU *cpu) |
3774 | { | |
3775 | CPUX86State *env = &cpu->env; | |
3776 | int max_nested_state_len = kvm_max_nested_state_length(); | |
3777 | ||
1e44f3ab | 3778 | if (!env->nested_state) { |
ebbfef2f LA |
3779 | return 0; |
3780 | } | |
3781 | ||
3782 | assert(env->nested_state->size <= max_nested_state_len); | |
3783 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); | |
3784 | } | |
3785 | ||
3786 | static int kvm_get_nested_state(X86CPU *cpu) | |
3787 | { | |
3788 | CPUX86State *env = &cpu->env; | |
3789 | int max_nested_state_len = kvm_max_nested_state_length(); | |
3790 | int ret; | |
3791 | ||
1e44f3ab | 3792 | if (!env->nested_state) { |
ebbfef2f LA |
3793 | return 0; |
3794 | } | |
3795 | ||
3796 | /* | |
3797 | * It is possible that migration restored a smaller size into | |
3798 | * nested_state->hdr.size than what our kernel support. | |
3799 | * We preserve migration origin nested_state->hdr.size for | |
3800 | * call to KVM_SET_NESTED_STATE but wish that our next call | |
3801 | * to KVM_GET_NESTED_STATE will use max size our kernel support. | |
3802 | */ | |
3803 | env->nested_state->size = max_nested_state_len; | |
3804 | ||
3805 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); | |
3806 | if (ret < 0) { | |
3807 | return ret; | |
3808 | } | |
3809 | ||
3810 | if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { | |
3811 | env->hflags |= HF_GUEST_MASK; | |
3812 | } else { | |
3813 | env->hflags &= ~HF_GUEST_MASK; | |
3814 | } | |
3815 | ||
3816 | return ret; | |
3817 | } | |
3818 | ||
20d695a9 | 3819 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 3820 | { |
20d695a9 | 3821 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
3822 | int ret; |
3823 | ||
2fa45344 | 3824 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 3825 | |
48e1a45c | 3826 | if (level >= KVM_PUT_RESET_STATE) { |
bec7156a JK |
3827 | ret = kvm_put_nested_state(x86_cpu); |
3828 | if (ret < 0) { | |
3829 | return ret; | |
3830 | } | |
3831 | ||
6bdf863d JK |
3832 | ret = kvm_put_msr_feature_control(x86_cpu); |
3833 | if (ret < 0) { | |
3834 | return ret; | |
3835 | } | |
3836 | } | |
3837 | ||
36f96c4b HZ |
3838 | if (level == KVM_PUT_FULL_STATE) { |
3839 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
3840 | * because TSC frequency mismatch shouldn't abort migration, | |
3841 | * unless the user explicitly asked for a more strict TSC | |
3842 | * setting (e.g. using an explicit "tsc-freq" option). | |
3843 | */ | |
3844 | kvm_arch_set_tsc_khz(cpu); | |
3845 | } | |
3846 | ||
1bc22652 | 3847 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 3848 | if (ret < 0) { |
05330448 | 3849 | return ret; |
b9bec74b | 3850 | } |
1bc22652 | 3851 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 3852 | if (ret < 0) { |
f1665b21 | 3853 | return ret; |
b9bec74b | 3854 | } |
1bc22652 | 3855 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 3856 | if (ret < 0) { |
05330448 | 3857 | return ret; |
b9bec74b | 3858 | } |
1bc22652 | 3859 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 3860 | if (ret < 0) { |
05330448 | 3861 | return ret; |
b9bec74b | 3862 | } |
ab443475 | 3863 | /* must be before kvm_put_msrs */ |
1bc22652 | 3864 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
3865 | if (ret < 0) { |
3866 | return ret; | |
3867 | } | |
1bc22652 | 3868 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 3869 | if (ret < 0) { |
05330448 | 3870 | return ret; |
b9bec74b | 3871 | } |
4fadfa00 PH |
3872 | ret = kvm_put_vcpu_events(x86_cpu, level); |
3873 | if (ret < 0) { | |
3874 | return ret; | |
3875 | } | |
ea643051 | 3876 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 3877 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 3878 | if (ret < 0) { |
680c1c6f JK |
3879 | return ret; |
3880 | } | |
ea643051 | 3881 | } |
7477cd38 MT |
3882 | |
3883 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
3884 | if (ret < 0) { | |
3885 | return ret; | |
3886 | } | |
1bc22652 | 3887 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 3888 | if (ret < 0) { |
b0b1d690 | 3889 | return ret; |
b9bec74b | 3890 | } |
b0b1d690 | 3891 | /* must be last */ |
1bc22652 | 3892 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 3893 | if (ret < 0) { |
ff44f1a3 | 3894 | return ret; |
b9bec74b | 3895 | } |
05330448 AL |
3896 | return 0; |
3897 | } | |
3898 | ||
20d695a9 | 3899 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 3900 | { |
20d695a9 | 3901 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
3902 | int ret; |
3903 | ||
20d695a9 | 3904 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 3905 | |
4fadfa00 | 3906 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 3907 | if (ret < 0) { |
f4f1110e | 3908 | goto out; |
b9bec74b | 3909 | } |
4fadfa00 PH |
3910 | /* |
3911 | * KVM_GET_MPSTATE can modify CS and RIP, call it before | |
3912 | * KVM_GET_REGS and KVM_GET_SREGS. | |
3913 | */ | |
3914 | ret = kvm_get_mp_state(cpu); | |
b9bec74b | 3915 | if (ret < 0) { |
f4f1110e | 3916 | goto out; |
b9bec74b | 3917 | } |
4fadfa00 | 3918 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 3919 | if (ret < 0) { |
f4f1110e | 3920 | goto out; |
b9bec74b | 3921 | } |
4fadfa00 | 3922 | ret = kvm_get_xsave(cpu); |
b9bec74b | 3923 | if (ret < 0) { |
f4f1110e | 3924 | goto out; |
b9bec74b | 3925 | } |
4fadfa00 | 3926 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 3927 | if (ret < 0) { |
f4f1110e | 3928 | goto out; |
b9bec74b | 3929 | } |
4fadfa00 | 3930 | ret = kvm_get_sregs(cpu); |
b9bec74b | 3931 | if (ret < 0) { |
f4f1110e | 3932 | goto out; |
b9bec74b | 3933 | } |
4fadfa00 | 3934 | ret = kvm_get_msrs(cpu); |
680c1c6f | 3935 | if (ret < 0) { |
f4f1110e | 3936 | goto out; |
680c1c6f | 3937 | } |
4fadfa00 | 3938 | ret = kvm_get_apic(cpu); |
b9bec74b | 3939 | if (ret < 0) { |
f4f1110e | 3940 | goto out; |
b9bec74b | 3941 | } |
1bc22652 | 3942 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 3943 | if (ret < 0) { |
f4f1110e | 3944 | goto out; |
b9bec74b | 3945 | } |
ebbfef2f LA |
3946 | ret = kvm_get_nested_state(cpu); |
3947 | if (ret < 0) { | |
3948 | goto out; | |
3949 | } | |
f4f1110e RH |
3950 | ret = 0; |
3951 | out: | |
3952 | cpu_sync_bndcs_hflags(&cpu->env); | |
3953 | return ret; | |
05330448 AL |
3954 | } |
3955 | ||
20d695a9 | 3956 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 3957 | { |
20d695a9 AF |
3958 | X86CPU *x86_cpu = X86_CPU(cpu); |
3959 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
3960 | int ret; |
3961 | ||
276ce815 | 3962 | /* Inject NMI */ |
fc12d72e PB |
3963 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
3964 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
3965 | qemu_mutex_lock_iothread(); | |
3966 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
3967 | qemu_mutex_unlock_iothread(); | |
3968 | DPRINTF("injected NMI\n"); | |
3969 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
3970 | if (ret < 0) { | |
3971 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
3972 | strerror(-ret)); | |
3973 | } | |
3974 | } | |
3975 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
3976 | qemu_mutex_lock_iothread(); | |
3977 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
3978 | qemu_mutex_unlock_iothread(); | |
3979 | DPRINTF("injected SMI\n"); | |
3980 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
3981 | if (ret < 0) { | |
3982 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
3983 | strerror(-ret)); | |
3984 | } | |
ce377af3 | 3985 | } |
276ce815 LJ |
3986 | } |
3987 | ||
15eafc2e | 3988 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
3989 | qemu_mutex_lock_iothread(); |
3990 | } | |
3991 | ||
e0723c45 PB |
3992 | /* Force the VCPU out of its inner loop to process any INIT requests |
3993 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
3994 | * pending TPR access reports. | |
3995 | */ | |
3996 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
3997 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
3998 | !(env->hflags & HF_SMM_MASK)) { | |
3999 | cpu->exit_request = 1; | |
4000 | } | |
4001 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
4002 | cpu->exit_request = 1; | |
4003 | } | |
e0723c45 | 4004 | } |
05330448 | 4005 | |
15eafc2e | 4006 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
4007 | /* Try to inject an interrupt if the guest can accept it */ |
4008 | if (run->ready_for_interrupt_injection && | |
259186a7 | 4009 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
4010 | (env->eflags & IF_MASK)) { |
4011 | int irq; | |
4012 | ||
259186a7 | 4013 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
4014 | irq = cpu_get_pic_interrupt(env); |
4015 | if (irq >= 0) { | |
4016 | struct kvm_interrupt intr; | |
4017 | ||
4018 | intr.irq = irq; | |
db1669bc | 4019 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 4020 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
4021 | if (ret < 0) { |
4022 | fprintf(stderr, | |
4023 | "KVM: injection failed, interrupt lost (%s)\n", | |
4024 | strerror(-ret)); | |
4025 | } | |
db1669bc JK |
4026 | } |
4027 | } | |
05330448 | 4028 | |
db1669bc JK |
4029 | /* If we have an interrupt but the guest is not ready to receive an |
4030 | * interrupt, request an interrupt window exit. This will | |
4031 | * cause a return to userspace as soon as the guest is ready to | |
4032 | * receive interrupts. */ | |
259186a7 | 4033 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
4034 | run->request_interrupt_window = 1; |
4035 | } else { | |
4036 | run->request_interrupt_window = 0; | |
4037 | } | |
4038 | ||
4039 | DPRINTF("setting tpr\n"); | |
02e51483 | 4040 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
4041 | |
4042 | qemu_mutex_unlock_iothread(); | |
db1669bc | 4043 | } |
05330448 AL |
4044 | } |
4045 | ||
4c663752 | 4046 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 4047 | { |
20d695a9 AF |
4048 | X86CPU *x86_cpu = X86_CPU(cpu); |
4049 | CPUX86State *env = &x86_cpu->env; | |
4050 | ||
fc12d72e PB |
4051 | if (run->flags & KVM_RUN_X86_SMM) { |
4052 | env->hflags |= HF_SMM_MASK; | |
4053 | } else { | |
f5c052b9 | 4054 | env->hflags &= ~HF_SMM_MASK; |
fc12d72e | 4055 | } |
b9bec74b | 4056 | if (run->if_flag) { |
05330448 | 4057 | env->eflags |= IF_MASK; |
b9bec74b | 4058 | } else { |
05330448 | 4059 | env->eflags &= ~IF_MASK; |
b9bec74b | 4060 | } |
4b8523ee JK |
4061 | |
4062 | /* We need to protect the apic state against concurrent accesses from | |
4063 | * different threads in case the userspace irqchip is used. */ | |
4064 | if (!kvm_irqchip_in_kernel()) { | |
4065 | qemu_mutex_lock_iothread(); | |
4066 | } | |
02e51483 CF |
4067 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
4068 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
4069 | if (!kvm_irqchip_in_kernel()) { |
4070 | qemu_mutex_unlock_iothread(); | |
4071 | } | |
f794aa4a | 4072 | return cpu_get_mem_attrs(env); |
05330448 AL |
4073 | } |
4074 | ||
20d695a9 | 4075 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 4076 | { |
20d695a9 AF |
4077 | X86CPU *cpu = X86_CPU(cs); |
4078 | CPUX86State *env = &cpu->env; | |
232fc23b | 4079 | |
259186a7 | 4080 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
4081 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
4082 | assert(env->mcg_cap); | |
4083 | ||
259186a7 | 4084 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 4085 | |
dd1750d7 | 4086 | kvm_cpu_synchronize_state(cs); |
ab443475 | 4087 | |
fd13f23b | 4088 | if (env->exception_nr == EXCP08_DBLE) { |
ab443475 | 4089 | /* this means triple fault */ |
cf83f140 | 4090 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
fcd7d003 | 4091 | cs->exit_request = 1; |
ab443475 JK |
4092 | return 0; |
4093 | } | |
fd13f23b | 4094 | kvm_queue_exception(env, EXCP12_MCHK, 0, 0); |
ab443475 JK |
4095 | env->has_error_code = 0; |
4096 | ||
259186a7 | 4097 | cs->halted = 0; |
ab443475 JK |
4098 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
4099 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
4100 | } | |
4101 | } | |
4102 | ||
fc12d72e PB |
4103 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
4104 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
4105 | kvm_cpu_synchronize_state(cs); |
4106 | do_cpu_init(cpu); | |
4107 | } | |
4108 | ||
db1669bc JK |
4109 | if (kvm_irqchip_in_kernel()) { |
4110 | return 0; | |
4111 | } | |
4112 | ||
259186a7 AF |
4113 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
4114 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 4115 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 4116 | } |
259186a7 | 4117 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 4118 | (env->eflags & IF_MASK)) || |
259186a7 AF |
4119 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
4120 | cs->halted = 0; | |
6792a57b | 4121 | } |
259186a7 | 4122 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 4123 | kvm_cpu_synchronize_state(cs); |
232fc23b | 4124 | do_cpu_sipi(cpu); |
0af691d7 | 4125 | } |
259186a7 AF |
4126 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
4127 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 4128 | kvm_cpu_synchronize_state(cs); |
02e51483 | 4129 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
4130 | env->tpr_access_type); |
4131 | } | |
0af691d7 | 4132 | |
259186a7 | 4133 | return cs->halted; |
0af691d7 MT |
4134 | } |
4135 | ||
839b5630 | 4136 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 4137 | { |
259186a7 | 4138 | CPUState *cs = CPU(cpu); |
839b5630 AF |
4139 | CPUX86State *env = &cpu->env; |
4140 | ||
259186a7 | 4141 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 4142 | (env->eflags & IF_MASK)) && |
259186a7 AF |
4143 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
4144 | cs->halted = 1; | |
bb4ea393 | 4145 | return EXCP_HLT; |
05330448 AL |
4146 | } |
4147 | ||
bb4ea393 | 4148 | return 0; |
05330448 AL |
4149 | } |
4150 | ||
f7575c96 | 4151 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 4152 | { |
f7575c96 AF |
4153 | CPUState *cs = CPU(cpu); |
4154 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 4155 | |
02e51483 | 4156 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
4157 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
4158 | : TPR_ACCESS_READ); | |
4159 | return 1; | |
4160 | } | |
4161 | ||
f17ec444 | 4162 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 4163 | { |
38972938 | 4164 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 4165 | |
f17ec444 AF |
4166 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
4167 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 4168 | return -EINVAL; |
b9bec74b | 4169 | } |
e22a25c9 AL |
4170 | return 0; |
4171 | } | |
4172 | ||
f17ec444 | 4173 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
4174 | { |
4175 | uint8_t int3; | |
4176 | ||
f17ec444 AF |
4177 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
4178 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 4179 | return -EINVAL; |
b9bec74b | 4180 | } |
e22a25c9 AL |
4181 | return 0; |
4182 | } | |
4183 | ||
4184 | static struct { | |
4185 | target_ulong addr; | |
4186 | int len; | |
4187 | int type; | |
4188 | } hw_breakpoint[4]; | |
4189 | ||
4190 | static int nb_hw_breakpoint; | |
4191 | ||
4192 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
4193 | { | |
4194 | int n; | |
4195 | ||
b9bec74b | 4196 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 4197 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 4198 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 4199 | return n; |
b9bec74b JK |
4200 | } |
4201 | } | |
e22a25c9 AL |
4202 | return -1; |
4203 | } | |
4204 | ||
4205 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
4206 | target_ulong len, int type) | |
4207 | { | |
4208 | switch (type) { | |
4209 | case GDB_BREAKPOINT_HW: | |
4210 | len = 1; | |
4211 | break; | |
4212 | case GDB_WATCHPOINT_WRITE: | |
4213 | case GDB_WATCHPOINT_ACCESS: | |
4214 | switch (len) { | |
4215 | case 1: | |
4216 | break; | |
4217 | case 2: | |
4218 | case 4: | |
4219 | case 8: | |
b9bec74b | 4220 | if (addr & (len - 1)) { |
e22a25c9 | 4221 | return -EINVAL; |
b9bec74b | 4222 | } |
e22a25c9 AL |
4223 | break; |
4224 | default: | |
4225 | return -EINVAL; | |
4226 | } | |
4227 | break; | |
4228 | default: | |
4229 | return -ENOSYS; | |
4230 | } | |
4231 | ||
b9bec74b | 4232 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 4233 | return -ENOBUFS; |
b9bec74b JK |
4234 | } |
4235 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 4236 | return -EEXIST; |
b9bec74b | 4237 | } |
e22a25c9 AL |
4238 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
4239 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
4240 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
4241 | nb_hw_breakpoint++; | |
4242 | ||
4243 | return 0; | |
4244 | } | |
4245 | ||
4246 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
4247 | target_ulong len, int type) | |
4248 | { | |
4249 | int n; | |
4250 | ||
4251 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 4252 | if (n < 0) { |
e22a25c9 | 4253 | return -ENOENT; |
b9bec74b | 4254 | } |
e22a25c9 AL |
4255 | nb_hw_breakpoint--; |
4256 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
4257 | ||
4258 | return 0; | |
4259 | } | |
4260 | ||
4261 | void kvm_arch_remove_all_hw_breakpoints(void) | |
4262 | { | |
4263 | nb_hw_breakpoint = 0; | |
4264 | } | |
4265 | ||
4266 | static CPUWatchpoint hw_watchpoint; | |
4267 | ||
a60f24b5 | 4268 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 4269 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 4270 | { |
ed2803da | 4271 | CPUState *cs = CPU(cpu); |
a60f24b5 | 4272 | CPUX86State *env = &cpu->env; |
f2574737 | 4273 | int ret = 0; |
e22a25c9 AL |
4274 | int n; |
4275 | ||
37936ac7 LA |
4276 | if (arch_info->exception == EXCP01_DB) { |
4277 | if (arch_info->dr6 & DR6_BS) { | |
ed2803da | 4278 | if (cs->singlestep_enabled) { |
f2574737 | 4279 | ret = EXCP_DEBUG; |
b9bec74b | 4280 | } |
e22a25c9 | 4281 | } else { |
b9bec74b JK |
4282 | for (n = 0; n < 4; n++) { |
4283 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
4284 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
4285 | case 0x0: | |
f2574737 | 4286 | ret = EXCP_DEBUG; |
e22a25c9 AL |
4287 | break; |
4288 | case 0x1: | |
f2574737 | 4289 | ret = EXCP_DEBUG; |
ff4700b0 | 4290 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
4291 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
4292 | hw_watchpoint.flags = BP_MEM_WRITE; | |
4293 | break; | |
4294 | case 0x3: | |
f2574737 | 4295 | ret = EXCP_DEBUG; |
ff4700b0 | 4296 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
4297 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
4298 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
4299 | break; | |
4300 | } | |
b9bec74b JK |
4301 | } |
4302 | } | |
e22a25c9 | 4303 | } |
ff4700b0 | 4304 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 4305 | ret = EXCP_DEBUG; |
b9bec74b | 4306 | } |
f2574737 | 4307 | if (ret == 0) { |
ff4700b0 | 4308 | cpu_synchronize_state(cs); |
fd13f23b | 4309 | assert(env->exception_nr == -1); |
b0b1d690 | 4310 | |
f2574737 | 4311 | /* pass to guest */ |
fd13f23b LA |
4312 | kvm_queue_exception(env, arch_info->exception, |
4313 | arch_info->exception == EXCP01_DB, | |
4314 | arch_info->dr6); | |
48405526 | 4315 | env->has_error_code = 0; |
b0b1d690 | 4316 | } |
e22a25c9 | 4317 | |
f2574737 | 4318 | return ret; |
e22a25c9 AL |
4319 | } |
4320 | ||
20d695a9 | 4321 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
4322 | { |
4323 | const uint8_t type_code[] = { | |
4324 | [GDB_BREAKPOINT_HW] = 0x0, | |
4325 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
4326 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
4327 | }; | |
4328 | const uint8_t len_code[] = { | |
4329 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
4330 | }; | |
4331 | int n; | |
4332 | ||
a60f24b5 | 4333 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 4334 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 4335 | } |
e22a25c9 AL |
4336 | if (nb_hw_breakpoint > 0) { |
4337 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
4338 | dbg->arch.debugreg[7] = 0x0600; | |
4339 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
4340 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
4341 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
4342 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 4343 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
4344 | } |
4345 | } | |
4346 | } | |
4513d923 | 4347 | |
2a4dac83 JK |
4348 | static bool host_supports_vmx(void) |
4349 | { | |
4350 | uint32_t ecx, unused; | |
4351 | ||
4352 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
4353 | return ecx & CPUID_EXT_VMX; | |
4354 | } | |
4355 | ||
4356 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
4357 | ||
20d695a9 | 4358 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 4359 | { |
20d695a9 | 4360 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
4361 | uint64_t code; |
4362 | int ret; | |
4363 | ||
4364 | switch (run->exit_reason) { | |
4365 | case KVM_EXIT_HLT: | |
4366 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 4367 | qemu_mutex_lock_iothread(); |
839b5630 | 4368 | ret = kvm_handle_halt(cpu); |
4b8523ee | 4369 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
4370 | break; |
4371 | case KVM_EXIT_SET_TPR: | |
4372 | ret = 0; | |
4373 | break; | |
d362e757 | 4374 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 4375 | qemu_mutex_lock_iothread(); |
f7575c96 | 4376 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 4377 | qemu_mutex_unlock_iothread(); |
d362e757 | 4378 | break; |
2a4dac83 JK |
4379 | case KVM_EXIT_FAIL_ENTRY: |
4380 | code = run->fail_entry.hardware_entry_failure_reason; | |
4381 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
4382 | code); | |
4383 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
4384 | fprintf(stderr, | |
12619721 | 4385 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
4386 | "unrestricted mode\n" |
4387 | "support, the failure can be most likely due to the guest " | |
4388 | "entering an invalid\n" | |
4389 | "state for Intel VT. For example, the guest maybe running " | |
4390 | "in big real mode\n" | |
4391 | "which is not supported on less recent Intel processors." | |
4392 | "\n\n"); | |
4393 | } | |
4394 | ret = -1; | |
4395 | break; | |
4396 | case KVM_EXIT_EXCEPTION: | |
4397 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
4398 | run->ex.exception, run->ex.error_code); | |
4399 | ret = -1; | |
4400 | break; | |
f2574737 JK |
4401 | case KVM_EXIT_DEBUG: |
4402 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 4403 | qemu_mutex_lock_iothread(); |
a60f24b5 | 4404 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 4405 | qemu_mutex_unlock_iothread(); |
f2574737 | 4406 | break; |
50efe82c AS |
4407 | case KVM_EXIT_HYPERV: |
4408 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
4409 | break; | |
15eafc2e PB |
4410 | case KVM_EXIT_IOAPIC_EOI: |
4411 | ioapic_eoi_broadcast(run->eoi.vector); | |
4412 | ret = 0; | |
4413 | break; | |
2a4dac83 JK |
4414 | default: |
4415 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
4416 | ret = -1; | |
4417 | break; | |
4418 | } | |
4419 | ||
4420 | return ret; | |
4421 | } | |
4422 | ||
20d695a9 | 4423 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 4424 | { |
20d695a9 AF |
4425 | X86CPU *cpu = X86_CPU(cs); |
4426 | CPUX86State *env = &cpu->env; | |
4427 | ||
dd1750d7 | 4428 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
4429 | return !(env->cr[0] & CR0_PE_MASK) || |
4430 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 4431 | } |
84b058d7 JK |
4432 | |
4433 | void kvm_arch_init_irq_routing(KVMState *s) | |
4434 | { | |
4435 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
4436 | /* If kernel can't do irq routing, interrupt source | |
4437 | * override 0->2 cannot be set up as required by HPET. | |
4438 | * So we have to disable it. | |
4439 | */ | |
4440 | no_hpet = 1; | |
4441 | } | |
cc7e0ddf | 4442 | /* We know at this point that we're using the in-kernel |
614e41bc | 4443 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 4444 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 4445 | */ |
614e41bc | 4446 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 4447 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
4448 | |
4449 | if (kvm_irqchip_is_split()) { | |
4450 | int i; | |
4451 | ||
4452 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
4453 | MSI routes for signaling interrupts to the local apics. */ | |
4454 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
d1f6af6a | 4455 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
15eafc2e PB |
4456 | error_report("Could not enable split IRQ mode."); |
4457 | exit(1); | |
4458 | } | |
4459 | } | |
4460 | } | |
4461 | } | |
4462 | ||
4463 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
4464 | { | |
4465 | int ret; | |
4466 | if (machine_kernel_irqchip_split(ms)) { | |
4467 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
4468 | if (ret) { | |
df3c286c | 4469 | error_report("Could not enable split irqchip mode: %s", |
15eafc2e PB |
4470 | strerror(-ret)); |
4471 | exit(1); | |
4472 | } else { | |
4473 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
4474 | kvm_split_irqchip = true; | |
4475 | return 1; | |
4476 | } | |
4477 | } else { | |
4478 | return 0; | |
4479 | } | |
84b058d7 | 4480 | } |
b139bd30 JK |
4481 | |
4482 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
4483 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
4484 | uint32_t flags, uint32_t *dev_id) | |
4485 | { | |
4486 | struct kvm_assigned_pci_dev dev_data = { | |
4487 | .segnr = dev_addr->domain, | |
4488 | .busnr = dev_addr->bus, | |
4489 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
4490 | .flags = flags, | |
4491 | }; | |
4492 | int ret; | |
4493 | ||
4494 | dev_data.assigned_dev_id = | |
4495 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
4496 | ||
4497 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
4498 | if (ret < 0) { | |
4499 | return ret; | |
4500 | } | |
4501 | ||
4502 | *dev_id = dev_data.assigned_dev_id; | |
4503 | ||
4504 | return 0; | |
4505 | } | |
4506 | ||
4507 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
4508 | { | |
4509 | struct kvm_assigned_pci_dev dev_data = { | |
4510 | .assigned_dev_id = dev_id, | |
4511 | }; | |
4512 | ||
4513 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
4514 | } | |
4515 | ||
4516 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
4517 | uint32_t irq_type, uint32_t guest_irq) | |
4518 | { | |
4519 | struct kvm_assigned_irq assigned_irq = { | |
4520 | .assigned_dev_id = dev_id, | |
4521 | .guest_irq = guest_irq, | |
4522 | .flags = irq_type, | |
4523 | }; | |
4524 | ||
4525 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
4526 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
4527 | } else { | |
4528 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
4529 | } | |
4530 | } | |
4531 | ||
4532 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
4533 | uint32_t guest_irq) | |
4534 | { | |
4535 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
4536 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
4537 | ||
4538 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
4539 | } | |
4540 | ||
4541 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
4542 | { | |
4543 | struct kvm_assigned_pci_dev dev_data = { | |
4544 | .assigned_dev_id = dev_id, | |
4545 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
4546 | }; | |
4547 | ||
4548 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
4549 | } | |
4550 | ||
4551 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
4552 | uint32_t type) | |
4553 | { | |
4554 | struct kvm_assigned_irq assigned_irq = { | |
4555 | .assigned_dev_id = dev_id, | |
4556 | .flags = type, | |
4557 | }; | |
4558 | ||
4559 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
4560 | } | |
4561 | ||
4562 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
4563 | { | |
4564 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
4565 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
4566 | } | |
4567 | ||
4568 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
4569 | { | |
4570 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
4571 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
4572 | } | |
4573 | ||
4574 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
4575 | { | |
4576 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
4577 | KVM_DEV_IRQ_HOST_MSI); | |
4578 | } | |
4579 | ||
4580 | bool kvm_device_msix_supported(KVMState *s) | |
4581 | { | |
4582 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
4583 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
4584 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
4585 | } | |
4586 | ||
4587 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
4588 | uint32_t nr_vectors) | |
4589 | { | |
4590 | struct kvm_assigned_msix_nr msix_nr = { | |
4591 | .assigned_dev_id = dev_id, | |
4592 | .entry_nr = nr_vectors, | |
4593 | }; | |
4594 | ||
4595 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
4596 | } | |
4597 | ||
4598 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
4599 | int virq) | |
4600 | { | |
4601 | struct kvm_assigned_msix_entry msix_entry = { | |
4602 | .assigned_dev_id = dev_id, | |
4603 | .gsi = virq, | |
4604 | .entry = vector, | |
4605 | }; | |
4606 | ||
4607 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
4608 | } | |
4609 | ||
4610 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
4611 | { | |
4612 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
4613 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
4614 | } | |
4615 | ||
4616 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
4617 | { | |
4618 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
4619 | KVM_DEV_IRQ_HOST_MSIX); | |
4620 | } | |
9e03a040 FB |
4621 | |
4622 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 4623 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 4624 | { |
8b5ed7df PX |
4625 | X86IOMMUState *iommu = x86_iommu_get_default(); |
4626 | ||
4627 | if (iommu) { | |
4628 | int ret; | |
4629 | MSIMessage src, dst; | |
4630 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
4631 | ||
0ea1472d JK |
4632 | if (!class->int_remap) { |
4633 | return 0; | |
4634 | } | |
4635 | ||
8b5ed7df PX |
4636 | src.address = route->u.msi.address_hi; |
4637 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
4638 | src.address |= route->u.msi.address_lo; | |
4639 | src.data = route->u.msi.data; | |
4640 | ||
4641 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
4642 | pci_requester_id(dev) : \ | |
4643 | X86_IOMMU_SID_INVALID); | |
4644 | if (ret) { | |
4645 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
4646 | return 1; | |
4647 | } | |
4648 | ||
4649 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
4650 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
4651 | route->u.msi.data = dst.data; | |
4652 | } | |
4653 | ||
9e03a040 FB |
4654 | return 0; |
4655 | } | |
1850b6b7 | 4656 | |
38d87493 PX |
4657 | typedef struct MSIRouteEntry MSIRouteEntry; |
4658 | ||
4659 | struct MSIRouteEntry { | |
4660 | PCIDevice *dev; /* Device pointer */ | |
4661 | int vector; /* MSI/MSIX vector index */ | |
4662 | int virq; /* Virtual IRQ index */ | |
4663 | QLIST_ENTRY(MSIRouteEntry) list; | |
4664 | }; | |
4665 | ||
4666 | /* List of used GSI routes */ | |
4667 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
4668 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
4669 | ||
e1d4fb2d PX |
4670 | static void kvm_update_msi_routes_all(void *private, bool global, |
4671 | uint32_t index, uint32_t mask) | |
4672 | { | |
a56de056 | 4673 | int cnt = 0, vector; |
e1d4fb2d PX |
4674 | MSIRouteEntry *entry; |
4675 | MSIMessage msg; | |
fd563564 PX |
4676 | PCIDevice *dev; |
4677 | ||
e1d4fb2d PX |
4678 | /* TODO: explicit route update */ |
4679 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
4680 | cnt++; | |
a56de056 | 4681 | vector = entry->vector; |
fd563564 | 4682 | dev = entry->dev; |
a56de056 PX |
4683 | if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { |
4684 | msg = msix_get_message(dev, vector); | |
4685 | } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { | |
4686 | msg = msi_get_message(dev, vector); | |
4687 | } else { | |
4688 | /* | |
4689 | * Either MSI/MSIX is disabled for the device, or the | |
4690 | * specific message was masked out. Skip this one. | |
4691 | */ | |
fd563564 PX |
4692 | continue; |
4693 | } | |
fd563564 | 4694 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); |
e1d4fb2d | 4695 | } |
3f1fea0f | 4696 | kvm_irqchip_commit_routes(kvm_state); |
e1d4fb2d PX |
4697 | trace_kvm_x86_update_msi_routes(cnt); |
4698 | } | |
4699 | ||
38d87493 PX |
4700 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
4701 | int vector, PCIDevice *dev) | |
4702 | { | |
e1d4fb2d | 4703 | static bool notify_list_inited = false; |
38d87493 PX |
4704 | MSIRouteEntry *entry; |
4705 | ||
4706 | if (!dev) { | |
4707 | /* These are (possibly) IOAPIC routes only used for split | |
4708 | * kernel irqchip mode, while what we are housekeeping are | |
4709 | * PCI devices only. */ | |
4710 | return 0; | |
4711 | } | |
4712 | ||
4713 | entry = g_new0(MSIRouteEntry, 1); | |
4714 | entry->dev = dev; | |
4715 | entry->vector = vector; | |
4716 | entry->virq = route->gsi; | |
4717 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
4718 | ||
4719 | trace_kvm_x86_add_msi_route(route->gsi); | |
e1d4fb2d PX |
4720 | |
4721 | if (!notify_list_inited) { | |
4722 | /* For the first time we do add route, add ourselves into | |
4723 | * IOMMU's IEC notify list if needed. */ | |
4724 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
4725 | if (iommu) { | |
4726 | x86_iommu_iec_register_notifier(iommu, | |
4727 | kvm_update_msi_routes_all, | |
4728 | NULL); | |
4729 | } | |
4730 | notify_list_inited = true; | |
4731 | } | |
38d87493 PX |
4732 | return 0; |
4733 | } | |
4734 | ||
4735 | int kvm_arch_release_virq_post(int virq) | |
4736 | { | |
4737 | MSIRouteEntry *entry, *next; | |
4738 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
4739 | if (entry->virq == virq) { | |
4740 | trace_kvm_x86_remove_msi_route(virq); | |
4741 | QLIST_REMOVE(entry, list); | |
01960e6d | 4742 | g_free(entry); |
38d87493 PX |
4743 | break; |
4744 | } | |
4745 | } | |
9e03a040 FB |
4746 | return 0; |
4747 | } | |
1850b6b7 EA |
4748 | |
4749 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
4750 | { | |
4751 | abort(); | |
4752 | } |