]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
9c17d615 PB |
24 | #include "sysemu/sysemu.h" |
25 | #include "sysemu/kvm.h" | |
1d31f66b | 26 | #include "kvm_i386.h" |
05330448 | 27 | #include "cpu.h" |
022c62cb | 28 | #include "exec/gdbstub.h" |
1de7afc9 PB |
29 | #include "qemu/host-utils.h" |
30 | #include "qemu/config-file.h" | |
0d09e41a PB |
31 | #include "hw/i386/pc.h" |
32 | #include "hw/i386/apic.h" | |
022c62cb | 33 | #include "exec/ioport.h" |
92067bf4 | 34 | #include <asm/hyperv.h> |
a2cb15b0 | 35 | #include "hw/pci/pci.h" |
05330448 AL |
36 | |
37 | //#define DEBUG_KVM | |
38 | ||
39 | #ifdef DEBUG_KVM | |
8c0d577e | 40 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
41 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
42 | #else | |
8c0d577e | 43 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
44 | do { } while (0) |
45 | #endif | |
46 | ||
1a03675d GC |
47 | #define MSR_KVM_WALL_CLOCK 0x11 |
48 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
49 | ||
c0532a76 MT |
50 | #ifndef BUS_MCEERR_AR |
51 | #define BUS_MCEERR_AR 4 | |
52 | #endif | |
53 | #ifndef BUS_MCEERR_AO | |
54 | #define BUS_MCEERR_AO 5 | |
55 | #endif | |
56 | ||
94a8d39a JK |
57 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
58 | KVM_CAP_INFO(SET_TSS_ADDR), | |
59 | KVM_CAP_INFO(EXT_CPUID), | |
60 | KVM_CAP_INFO(MP_STATE), | |
61 | KVM_CAP_LAST_INFO | |
62 | }; | |
25d2e361 | 63 | |
c3a3a7d3 JK |
64 | static bool has_msr_star; |
65 | static bool has_msr_hsave_pa; | |
f28558d3 | 66 | static bool has_msr_tsc_adjust; |
aa82ba54 | 67 | static bool has_msr_tsc_deadline; |
df67696e | 68 | static bool has_msr_feature_control; |
c5999bfc | 69 | static bool has_msr_async_pf_en; |
bc9a839d | 70 | static bool has_msr_pv_eoi_en; |
21e87c46 | 71 | static bool has_msr_misc_enable; |
917367aa | 72 | static bool has_msr_kvm_steal_time; |
25d2e361 | 73 | static int lm_capable_kernel; |
b827df58 | 74 | |
0d894367 PB |
75 | static bool has_msr_architectural_pmu; |
76 | static uint32_t num_architectural_pmu_counters; | |
77 | ||
1d31f66b PM |
78 | bool kvm_allows_irq0_override(void) |
79 | { | |
80 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
81 | } | |
82 | ||
b827df58 AK |
83 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
84 | { | |
85 | struct kvm_cpuid2 *cpuid; | |
86 | int r, size; | |
87 | ||
88 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
7267c094 | 89 | cpuid = (struct kvm_cpuid2 *)g_malloc0(size); |
b827df58 AK |
90 | cpuid->nent = max; |
91 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
92 | if (r == 0 && cpuid->nent >= max) { |
93 | r = -E2BIG; | |
94 | } | |
b827df58 AK |
95 | if (r < 0) { |
96 | if (r == -E2BIG) { | |
7267c094 | 97 | g_free(cpuid); |
b827df58 AK |
98 | return NULL; |
99 | } else { | |
100 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
101 | strerror(-r)); | |
102 | exit(1); | |
103 | } | |
104 | } | |
105 | return cpuid; | |
106 | } | |
107 | ||
dd87f8a6 EH |
108 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
109 | * for all entries. | |
110 | */ | |
111 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
112 | { | |
113 | struct kvm_cpuid2 *cpuid; | |
114 | int max = 1; | |
115 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
116 | max *= 2; | |
117 | } | |
118 | return cpuid; | |
119 | } | |
120 | ||
0c31b744 GC |
121 | struct kvm_para_features { |
122 | int cap; | |
123 | int feature; | |
124 | } para_features[] = { | |
125 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
126 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
127 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 128 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
129 | { -1, -1 } |
130 | }; | |
131 | ||
ba9bc59e | 132 | static int get_para_features(KVMState *s) |
0c31b744 GC |
133 | { |
134 | int i, features = 0; | |
135 | ||
136 | for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | |
ba9bc59e | 137 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
138 | features |= (1 << para_features[i].feature); |
139 | } | |
140 | } | |
141 | ||
142 | return features; | |
143 | } | |
0c31b744 GC |
144 | |
145 | ||
829ae2f9 EH |
146 | /* Returns the value for a specific register on the cpuid entry |
147 | */ | |
148 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
149 | { | |
150 | uint32_t ret = 0; | |
151 | switch (reg) { | |
152 | case R_EAX: | |
153 | ret = entry->eax; | |
154 | break; | |
155 | case R_EBX: | |
156 | ret = entry->ebx; | |
157 | break; | |
158 | case R_ECX: | |
159 | ret = entry->ecx; | |
160 | break; | |
161 | case R_EDX: | |
162 | ret = entry->edx; | |
163 | break; | |
164 | } | |
165 | return ret; | |
166 | } | |
167 | ||
4fb73f1d EH |
168 | /* Find matching entry for function/index on kvm_cpuid2 struct |
169 | */ | |
170 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
171 | uint32_t function, | |
172 | uint32_t index) | |
173 | { | |
174 | int i; | |
175 | for (i = 0; i < cpuid->nent; ++i) { | |
176 | if (cpuid->entries[i].function == function && | |
177 | cpuid->entries[i].index == index) { | |
178 | return &cpuid->entries[i]; | |
179 | } | |
180 | } | |
181 | /* not found: */ | |
182 | return NULL; | |
183 | } | |
184 | ||
ba9bc59e | 185 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 186 | uint32_t index, int reg) |
b827df58 AK |
187 | { |
188 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
189 | uint32_t ret = 0; |
190 | uint32_t cpuid_1_edx; | |
8c723b79 | 191 | bool found = false; |
b827df58 | 192 | |
dd87f8a6 | 193 | cpuid = get_supported_cpuid(s); |
b827df58 | 194 | |
4fb73f1d EH |
195 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
196 | if (entry) { | |
197 | found = true; | |
198 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
199 | } |
200 | ||
7b46e5ce EH |
201 | /* Fixups for the data returned by KVM, below */ |
202 | ||
c2acb022 EH |
203 | if (function == 1 && reg == R_EDX) { |
204 | /* KVM before 2.6.30 misreports the following features */ | |
205 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
206 | } else if (function == 1 && reg == R_ECX) { |
207 | /* We can set the hypervisor flag, even if KVM does not return it on | |
208 | * GET_SUPPORTED_CPUID | |
209 | */ | |
210 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
211 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
212 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
213 | * and the irqchip is in the kernel. | |
214 | */ | |
215 | if (kvm_irqchip_in_kernel() && | |
216 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
217 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
218 | } | |
41e5e76d EH |
219 | |
220 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
221 | * without the in-kernel irqchip | |
222 | */ | |
223 | if (!kvm_irqchip_in_kernel()) { | |
224 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 225 | } |
c2acb022 EH |
226 | } else if (function == 0x80000001 && reg == R_EDX) { |
227 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
228 | * so add missing bits according to the AMD spec: | |
229 | */ | |
230 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
231 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
232 | } |
233 | ||
7267c094 | 234 | g_free(cpuid); |
b827df58 | 235 | |
0c31b744 | 236 | /* fallback for older kernels */ |
8c723b79 | 237 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 238 | ret = get_para_features(s); |
b9bec74b | 239 | } |
0c31b744 GC |
240 | |
241 | return ret; | |
bb0300dc | 242 | } |
bb0300dc | 243 | |
3c85e74f HY |
244 | typedef struct HWPoisonPage { |
245 | ram_addr_t ram_addr; | |
246 | QLIST_ENTRY(HWPoisonPage) list; | |
247 | } HWPoisonPage; | |
248 | ||
249 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
250 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
251 | ||
252 | static void kvm_unpoison_all(void *param) | |
253 | { | |
254 | HWPoisonPage *page, *next_page; | |
255 | ||
256 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
257 | QLIST_REMOVE(page, list); | |
258 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 259 | g_free(page); |
3c85e74f HY |
260 | } |
261 | } | |
262 | ||
3c85e74f HY |
263 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
264 | { | |
265 | HWPoisonPage *page; | |
266 | ||
267 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
268 | if (page->ram_addr == ram_addr) { | |
269 | return; | |
270 | } | |
271 | } | |
7267c094 | 272 | page = g_malloc(sizeof(HWPoisonPage)); |
3c85e74f HY |
273 | page->ram_addr = ram_addr; |
274 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
275 | } | |
276 | ||
e7701825 MT |
277 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
278 | int *max_banks) | |
279 | { | |
280 | int r; | |
281 | ||
14a09518 | 282 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
283 | if (r > 0) { |
284 | *max_banks = r; | |
285 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
286 | } | |
287 | return -ENOSYS; | |
288 | } | |
289 | ||
bee615d4 | 290 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 291 | { |
bee615d4 | 292 | CPUX86State *env = &cpu->env; |
c34d440a JK |
293 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
294 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
295 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
e7701825 | 296 | |
c34d440a JK |
297 | if (code == BUS_MCEERR_AR) { |
298 | status |= MCI_STATUS_AR | 0x134; | |
299 | mcg_status |= MCG_STATUS_EIPV; | |
300 | } else { | |
301 | status |= 0xc0; | |
302 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 303 | } |
8c5cf3b6 | 304 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
c34d440a JK |
305 | (MCM_ADDR_PHYS << 6) | 0xc, |
306 | cpu_x86_support_mca_broadcast(env) ? | |
307 | MCE_INJECT_BROADCAST : 0); | |
419fb20a | 308 | } |
419fb20a JK |
309 | |
310 | static void hardware_memory_error(void) | |
311 | { | |
312 | fprintf(stderr, "Hardware memory error!\n"); | |
313 | exit(1); | |
314 | } | |
315 | ||
20d695a9 | 316 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 317 | { |
20d695a9 AF |
318 | X86CPU *cpu = X86_CPU(c); |
319 | CPUX86State *env = &cpu->env; | |
419fb20a | 320 | ram_addr_t ram_addr; |
a8170e5e | 321 | hwaddr paddr; |
419fb20a JK |
322 | |
323 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 324 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
1b5ec234 | 325 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
a60f24b5 | 326 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
327 | fprintf(stderr, "Hardware memory error for memory used by " |
328 | "QEMU itself instead of guest system!\n"); | |
329 | /* Hope we are lucky for AO MCE */ | |
330 | if (code == BUS_MCEERR_AO) { | |
331 | return 0; | |
332 | } else { | |
333 | hardware_memory_error(); | |
334 | } | |
335 | } | |
3c85e74f | 336 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 337 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 338 | } else { |
419fb20a JK |
339 | if (code == BUS_MCEERR_AO) { |
340 | return 0; | |
341 | } else if (code == BUS_MCEERR_AR) { | |
342 | hardware_memory_error(); | |
343 | } else { | |
344 | return 1; | |
345 | } | |
346 | } | |
347 | return 0; | |
348 | } | |
349 | ||
350 | int kvm_arch_on_sigbus(int code, void *addr) | |
351 | { | |
182735ef AF |
352 | X86CPU *cpu = X86_CPU(first_cpu); |
353 | ||
354 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 355 | ram_addr_t ram_addr; |
a8170e5e | 356 | hwaddr paddr; |
419fb20a JK |
357 | |
358 | /* Hope we are lucky for AO MCE */ | |
1b5ec234 | 359 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
182735ef | 360 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 361 | addr, &paddr)) { |
419fb20a JK |
362 | fprintf(stderr, "Hardware memory error for memory used by " |
363 | "QEMU itself instead of guest system!: %p\n", addr); | |
364 | return 0; | |
365 | } | |
3c85e74f | 366 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 367 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 368 | } else { |
419fb20a JK |
369 | if (code == BUS_MCEERR_AO) { |
370 | return 0; | |
371 | } else if (code == BUS_MCEERR_AR) { | |
372 | hardware_memory_error(); | |
373 | } else { | |
374 | return 1; | |
375 | } | |
376 | } | |
377 | return 0; | |
378 | } | |
e7701825 | 379 | |
1bc22652 | 380 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 381 | { |
1bc22652 AF |
382 | CPUX86State *env = &cpu->env; |
383 | ||
ab443475 JK |
384 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
385 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
386 | struct kvm_x86_mce mce; | |
387 | ||
388 | env->exception_injected = -1; | |
389 | ||
390 | /* | |
391 | * There must be at least one bank in use if an MCE is pending. | |
392 | * Find it and use its values for the event injection. | |
393 | */ | |
394 | for (bank = 0; bank < bank_num; bank++) { | |
395 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
396 | break; | |
397 | } | |
398 | } | |
399 | assert(bank < bank_num); | |
400 | ||
401 | mce.bank = bank; | |
402 | mce.status = env->mce_banks[bank * 4 + 1]; | |
403 | mce.mcg_status = env->mcg_status; | |
404 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
405 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
406 | ||
1bc22652 | 407 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 408 | } |
ab443475 JK |
409 | return 0; |
410 | } | |
411 | ||
1dfb4dd9 | 412 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 413 | { |
317ac620 | 414 | CPUX86State *env = opaque; |
b8cc45d6 GC |
415 | |
416 | if (running) { | |
417 | env->tsc_valid = false; | |
418 | } | |
419 | } | |
420 | ||
83b17af5 | 421 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 422 | { |
83b17af5 EH |
423 | X86CPU *cpu = X86_CPU(cs); |
424 | return cpu->env.cpuid_apic_id; | |
b164e48e EH |
425 | } |
426 | ||
92067bf4 IM |
427 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
428 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
429 | #endif | |
430 | ||
431 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
432 | { | |
433 | return cpu->hyperv_vapic || | |
434 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
435 | } | |
436 | ||
437 | static bool hyperv_enabled(X86CPU *cpu) | |
438 | { | |
439 | return hyperv_hypercall_available(cpu) || | |
440 | cpu->hyperv_relaxed_timing; | |
441 | } | |
442 | ||
f8bb0565 | 443 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 444 | |
20d695a9 | 445 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
446 | { |
447 | struct { | |
486bd5a2 | 448 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 449 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 450 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
451 | X86CPU *cpu = X86_CPU(cs); |
452 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 453 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 454 | uint32_t unused; |
bb0300dc | 455 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 456 | uint32_t signature[3]; |
e7429073 | 457 | int r; |
05330448 | 458 | |
ef4cbe14 SW |
459 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
460 | ||
05330448 AL |
461 | cpuid_i = 0; |
462 | ||
bb0300dc | 463 | /* Paravirtualization CPUIDs */ |
bb0300dc | 464 | c = &cpuid_data.entries[cpuid_i++]; |
bb0300dc | 465 | c->function = KVM_CPUID_SIGNATURE; |
92067bf4 | 466 | if (!hyperv_enabled(cpu)) { |
eab70139 VR |
467 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); |
468 | c->eax = 0; | |
469 | } else { | |
470 | memcpy(signature, "Microsoft Hv", 12); | |
471 | c->eax = HYPERV_CPUID_MIN; | |
472 | } | |
bb0300dc GN |
473 | c->ebx = signature[0]; |
474 | c->ecx = signature[1]; | |
475 | c->edx = signature[2]; | |
476 | ||
477 | c = &cpuid_data.entries[cpuid_i++]; | |
bb0300dc | 478 | c->function = KVM_CPUID_FEATURES; |
0514ef2f | 479 | c->eax = env->features[FEAT_KVM]; |
0c31b744 | 480 | |
92067bf4 | 481 | if (hyperv_enabled(cpu)) { |
eab70139 VR |
482 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
483 | c->eax = signature[0]; | |
484 | ||
485 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
486 | c->function = HYPERV_CPUID_VERSION; |
487 | c->eax = 0x00001bbc; | |
488 | c->ebx = 0x00060001; | |
489 | ||
490 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 491 | c->function = HYPERV_CPUID_FEATURES; |
92067bf4 | 492 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
493 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
494 | } | |
92067bf4 | 495 | if (cpu->hyperv_vapic) { |
eab70139 VR |
496 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
497 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
498 | } | |
499 | ||
500 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 501 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 502 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
503 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
504 | } | |
92067bf4 | 505 | if (cpu->hyperv_vapic) { |
eab70139 VR |
506 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
507 | } | |
92067bf4 | 508 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
509 | |
510 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
511 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
512 | c->eax = 0x40; | |
513 | c->ebx = 0x40; | |
514 | ||
515 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
516 | c->function = KVM_CPUID_SIGNATURE_NEXT; |
517 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
518 | c->eax = 0; | |
519 | c->ebx = signature[0]; | |
520 | c->ecx = signature[1]; | |
521 | c->edx = signature[2]; | |
522 | } | |
523 | ||
0c31b744 | 524 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 525 | |
bc9a839d MT |
526 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
527 | ||
917367aa MT |
528 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
529 | ||
a33609ca | 530 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
531 | |
532 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
533 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
534 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
535 | abort(); | |
536 | } | |
bb0300dc | 537 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
538 | |
539 | switch (i) { | |
a36b1029 AL |
540 | case 2: { |
541 | /* Keep reading function 2 till all the input is received */ | |
542 | int times; | |
543 | ||
a36b1029 | 544 | c->function = i; |
a33609ca AL |
545 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
546 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
547 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
548 | times = c->eax & 0xff; | |
a36b1029 AL |
549 | |
550 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
551 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
552 | fprintf(stderr, "cpuid_data is full, no space for " | |
553 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
554 | abort(); | |
555 | } | |
a33609ca | 556 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 557 | c->function = i; |
a33609ca AL |
558 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
559 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
560 | } |
561 | break; | |
562 | } | |
486bd5a2 AL |
563 | case 4: |
564 | case 0xb: | |
565 | case 0xd: | |
566 | for (j = 0; ; j++) { | |
31e8c696 AP |
567 | if (i == 0xd && j == 64) { |
568 | break; | |
569 | } | |
486bd5a2 AL |
570 | c->function = i; |
571 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
572 | c->index = j; | |
a33609ca | 573 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 574 | |
b9bec74b | 575 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 576 | break; |
b9bec74b JK |
577 | } |
578 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 579 | break; |
b9bec74b JK |
580 | } |
581 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 582 | continue; |
b9bec74b | 583 | } |
f8bb0565 IM |
584 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
585 | fprintf(stderr, "cpuid_data is full, no space for " | |
586 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
587 | abort(); | |
588 | } | |
a33609ca | 589 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
590 | } |
591 | break; | |
592 | default: | |
486bd5a2 | 593 | c->function = i; |
a33609ca AL |
594 | c->flags = 0; |
595 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
596 | break; |
597 | } | |
05330448 | 598 | } |
0d894367 PB |
599 | |
600 | if (limit >= 0x0a) { | |
601 | uint32_t ver; | |
602 | ||
603 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
604 | if ((ver & 0xff) > 0) { | |
605 | has_msr_architectural_pmu = true; | |
606 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
607 | ||
608 | /* Shouldn't be more than 32, since that's the number of bits | |
609 | * available in EBX to tell us _which_ counters are available. | |
610 | * Play it safe. | |
611 | */ | |
612 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
613 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
614 | } | |
615 | } | |
616 | } | |
617 | ||
a33609ca | 618 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
619 | |
620 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
621 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
622 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
623 | abort(); | |
624 | } | |
bb0300dc | 625 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 626 | |
05330448 | 627 | c->function = i; |
a33609ca AL |
628 | c->flags = 0; |
629 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
630 | } |
631 | ||
b3baa152 BW |
632 | /* Call Centaur's CPUID instructions they are supported. */ |
633 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
634 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
635 | ||
636 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
637 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
638 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
639 | abort(); | |
640 | } | |
b3baa152 BW |
641 | c = &cpuid_data.entries[cpuid_i++]; |
642 | ||
643 | c->function = i; | |
644 | c->flags = 0; | |
645 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
646 | } | |
647 | } | |
648 | ||
05330448 AL |
649 | cpuid_data.cpuid.nent = cpuid_i; |
650 | ||
e7701825 | 651 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 652 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 653 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 654 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
e7701825 MT |
655 | uint64_t mcg_cap; |
656 | int banks; | |
32a42024 | 657 | int ret; |
e7701825 | 658 | |
a60f24b5 | 659 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
660 | if (ret < 0) { |
661 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
662 | return ret; | |
e7701825 | 663 | } |
75d49497 JK |
664 | |
665 | if (banks > MCE_BANKS_DEF) { | |
666 | banks = MCE_BANKS_DEF; | |
667 | } | |
668 | mcg_cap &= MCE_CAP_DEF; | |
669 | mcg_cap |= banks; | |
1bc22652 | 670 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap); |
75d49497 JK |
671 | if (ret < 0) { |
672 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
673 | return ret; | |
674 | } | |
675 | ||
676 | env->mcg_cap = mcg_cap; | |
e7701825 | 677 | } |
e7701825 | 678 | |
b8cc45d6 GC |
679 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
680 | ||
df67696e LJ |
681 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
682 | if (c) { | |
683 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
684 | !!(c->ecx & CPUID_EXT_SMX); | |
685 | } | |
686 | ||
7e680753 | 687 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 688 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
689 | if (r) { |
690 | return r; | |
691 | } | |
e7429073 | 692 | |
a60f24b5 | 693 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL); |
e7429073 | 694 | if (r && env->tsc_khz) { |
1bc22652 | 695 | r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz); |
e7429073 JR |
696 | if (r < 0) { |
697 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
698 | return r; | |
699 | } | |
700 | } | |
e7429073 | 701 | |
fabacc0f JK |
702 | if (kvm_has_xsave()) { |
703 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
704 | } | |
705 | ||
e7429073 | 706 | return 0; |
05330448 AL |
707 | } |
708 | ||
20d695a9 | 709 | void kvm_arch_reset_vcpu(CPUState *cs) |
caa5af0f | 710 | { |
20d695a9 AF |
711 | X86CPU *cpu = X86_CPU(cs); |
712 | CPUX86State *env = &cpu->env; | |
dd673288 | 713 | |
e73223a5 | 714 | env->exception_injected = -1; |
0e607a80 | 715 | env->interrupt_injected = -1; |
1a5e9d2f | 716 | env->xcr0 = 1; |
ddced198 | 717 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 718 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
719 | KVM_MP_STATE_UNINITIALIZED; |
720 | } else { | |
721 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
722 | } | |
caa5af0f JK |
723 | } |
724 | ||
c3a3a7d3 | 725 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 726 | { |
75b10c43 | 727 | static int kvm_supported_msrs; |
c3a3a7d3 | 728 | int ret = 0; |
05330448 AL |
729 | |
730 | /* first time */ | |
75b10c43 | 731 | if (kvm_supported_msrs == 0) { |
05330448 AL |
732 | struct kvm_msr_list msr_list, *kvm_msr_list; |
733 | ||
75b10c43 | 734 | kvm_supported_msrs = -1; |
05330448 AL |
735 | |
736 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
737 | * save/restore */ | |
4c9f7372 | 738 | msr_list.nmsrs = 0; |
c3a3a7d3 | 739 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 740 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 741 | return ret; |
6fb6d245 | 742 | } |
d9db889f JK |
743 | /* Old kernel modules had a bug and could write beyond the provided |
744 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 745 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
746 | msr_list.nmsrs * |
747 | sizeof(msr_list.indices[0]))); | |
05330448 | 748 | |
55308450 | 749 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 750 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
751 | if (ret >= 0) { |
752 | int i; | |
753 | ||
754 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
755 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 756 | has_msr_star = true; |
75b10c43 MT |
757 | continue; |
758 | } | |
759 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 760 | has_msr_hsave_pa = true; |
75b10c43 | 761 | continue; |
05330448 | 762 | } |
f28558d3 WA |
763 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
764 | has_msr_tsc_adjust = true; | |
765 | continue; | |
766 | } | |
aa82ba54 LJ |
767 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
768 | has_msr_tsc_deadline = true; | |
769 | continue; | |
770 | } | |
21e87c46 AK |
771 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
772 | has_msr_misc_enable = true; | |
773 | continue; | |
774 | } | |
05330448 AL |
775 | } |
776 | } | |
777 | ||
7267c094 | 778 | g_free(kvm_msr_list); |
05330448 AL |
779 | } |
780 | ||
c3a3a7d3 | 781 | return ret; |
05330448 AL |
782 | } |
783 | ||
cad1e282 | 784 | int kvm_arch_init(KVMState *s) |
20420430 | 785 | { |
11076198 | 786 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 787 | uint64_t shadow_mem; |
20420430 | 788 | int ret; |
25d2e361 | 789 | struct utsname utsname; |
20420430 | 790 | |
c3a3a7d3 | 791 | ret = kvm_get_supported_msrs(s); |
20420430 | 792 | if (ret < 0) { |
20420430 SY |
793 | return ret; |
794 | } | |
25d2e361 MT |
795 | |
796 | uname(&utsname); | |
797 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
798 | ||
4c5b10b7 | 799 | /* |
11076198 JK |
800 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
801 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
802 | * Since these must be part of guest physical memory, we need to allocate | |
803 | * them, both by setting their start addresses in the kernel and by | |
804 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
805 | * | |
806 | * Older KVM versions may not support setting the identity map base. In | |
807 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
808 | * size. | |
4c5b10b7 | 809 | */ |
11076198 JK |
810 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
811 | /* Allows up to 16M BIOSes. */ | |
812 | identity_base = 0xfeffc000; | |
813 | ||
814 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
815 | if (ret < 0) { | |
816 | return ret; | |
817 | } | |
4c5b10b7 | 818 | } |
e56ff191 | 819 | |
11076198 JK |
820 | /* Set TSS base one page after EPT identity map. */ |
821 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
822 | if (ret < 0) { |
823 | return ret; | |
824 | } | |
825 | ||
11076198 JK |
826 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
827 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 828 | if (ret < 0) { |
11076198 | 829 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
830 | return ret; |
831 | } | |
3c85e74f | 832 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 833 | |
36ad0e94 MA |
834 | shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(), |
835 | "kvm_shadow_mem", -1); | |
836 | if (shadow_mem != -1) { | |
837 | shadow_mem /= 4096; | |
838 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
839 | if (ret < 0) { | |
840 | return ret; | |
39d6960a JK |
841 | } |
842 | } | |
11076198 | 843 | return 0; |
05330448 | 844 | } |
b9bec74b | 845 | |
05330448 AL |
846 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
847 | { | |
848 | lhs->selector = rhs->selector; | |
849 | lhs->base = rhs->base; | |
850 | lhs->limit = rhs->limit; | |
851 | lhs->type = 3; | |
852 | lhs->present = 1; | |
853 | lhs->dpl = 3; | |
854 | lhs->db = 0; | |
855 | lhs->s = 1; | |
856 | lhs->l = 0; | |
857 | lhs->g = 0; | |
858 | lhs->avl = 0; | |
859 | lhs->unusable = 0; | |
860 | } | |
861 | ||
862 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
863 | { | |
864 | unsigned flags = rhs->flags; | |
865 | lhs->selector = rhs->selector; | |
866 | lhs->base = rhs->base; | |
867 | lhs->limit = rhs->limit; | |
868 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
869 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 870 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
871 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
872 | lhs->s = (flags & DESC_S_MASK) != 0; | |
873 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
874 | lhs->g = (flags & DESC_G_MASK) != 0; | |
875 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
876 | lhs->unusable = 0; | |
7e680753 | 877 | lhs->padding = 0; |
05330448 AL |
878 | } |
879 | ||
880 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
881 | { | |
882 | lhs->selector = rhs->selector; | |
883 | lhs->base = rhs->base; | |
884 | lhs->limit = rhs->limit; | |
b9bec74b JK |
885 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
886 | (rhs->present * DESC_P_MASK) | | |
887 | (rhs->dpl << DESC_DPL_SHIFT) | | |
888 | (rhs->db << DESC_B_SHIFT) | | |
889 | (rhs->s * DESC_S_MASK) | | |
890 | (rhs->l << DESC_L_SHIFT) | | |
891 | (rhs->g * DESC_G_MASK) | | |
892 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
893 | } |
894 | ||
895 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
896 | { | |
b9bec74b | 897 | if (set) { |
05330448 | 898 | *kvm_reg = *qemu_reg; |
b9bec74b | 899 | } else { |
05330448 | 900 | *qemu_reg = *kvm_reg; |
b9bec74b | 901 | } |
05330448 AL |
902 | } |
903 | ||
1bc22652 | 904 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 905 | { |
1bc22652 | 906 | CPUX86State *env = &cpu->env; |
05330448 AL |
907 | struct kvm_regs regs; |
908 | int ret = 0; | |
909 | ||
910 | if (!set) { | |
1bc22652 | 911 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 912 | if (ret < 0) { |
05330448 | 913 | return ret; |
b9bec74b | 914 | } |
05330448 AL |
915 | } |
916 | ||
917 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
918 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
919 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
920 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
921 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
922 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
923 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
924 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
925 | #ifdef TARGET_X86_64 | |
926 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
927 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
928 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
929 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
930 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
931 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
932 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
933 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
934 | #endif | |
935 | ||
936 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
937 | kvm_getput_reg(®s.rip, &env->eip, set); | |
938 | ||
b9bec74b | 939 | if (set) { |
1bc22652 | 940 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 941 | } |
05330448 AL |
942 | |
943 | return ret; | |
944 | } | |
945 | ||
1bc22652 | 946 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 947 | { |
1bc22652 | 948 | CPUX86State *env = &cpu->env; |
05330448 AL |
949 | struct kvm_fpu fpu; |
950 | int i; | |
951 | ||
952 | memset(&fpu, 0, sizeof fpu); | |
953 | fpu.fsw = env->fpus & ~(7 << 11); | |
954 | fpu.fsw |= (env->fpstt & 7) << 11; | |
955 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
956 | fpu.last_opcode = env->fpop; |
957 | fpu.last_ip = env->fpip; | |
958 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
959 | for (i = 0; i < 8; ++i) { |
960 | fpu.ftwx |= (!env->fptags[i]) << i; | |
961 | } | |
05330448 AL |
962 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
963 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
964 | fpu.mxcsr = env->mxcsr; | |
965 | ||
1bc22652 | 966 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
967 | } |
968 | ||
6b42494b JK |
969 | #define XSAVE_FCW_FSW 0 |
970 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
971 | #define XSAVE_CWD_RIP 2 |
972 | #define XSAVE_CWD_RDP 4 | |
973 | #define XSAVE_MXCSR 6 | |
974 | #define XSAVE_ST_SPACE 8 | |
975 | #define XSAVE_XMM_SPACE 40 | |
976 | #define XSAVE_XSTATE_BV 128 | |
977 | #define XSAVE_YMMH_SPACE 144 | |
f1665b21 | 978 | |
1bc22652 | 979 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 980 | { |
1bc22652 | 981 | CPUX86State *env = &cpu->env; |
fabacc0f | 982 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
42cc8fa6 | 983 | uint16_t cwd, swd, twd; |
fabacc0f | 984 | int i, r; |
f1665b21 | 985 | |
b9bec74b | 986 | if (!kvm_has_xsave()) { |
1bc22652 | 987 | return kvm_put_fpu(cpu); |
b9bec74b | 988 | } |
f1665b21 | 989 | |
f1665b21 | 990 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 991 | twd = 0; |
f1665b21 SY |
992 | swd = env->fpus & ~(7 << 11); |
993 | swd |= (env->fpstt & 7) << 11; | |
994 | cwd = env->fpuc; | |
b9bec74b | 995 | for (i = 0; i < 8; ++i) { |
f1665b21 | 996 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 997 | } |
6b42494b JK |
998 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; |
999 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
42cc8fa6 JK |
1000 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); |
1001 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
f1665b21 SY |
1002 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
1003 | sizeof env->fpregs); | |
1004 | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | |
1005 | sizeof env->xmm_regs); | |
1006 | xsave->region[XSAVE_MXCSR] = env->mxcsr; | |
1007 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
1008 | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | |
1009 | sizeof env->ymmh_regs); | |
1bc22652 | 1010 | r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
0f53994f | 1011 | return r; |
f1665b21 SY |
1012 | } |
1013 | ||
1bc22652 | 1014 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1015 | { |
1bc22652 | 1016 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1017 | struct kvm_xcrs xcrs; |
1018 | ||
b9bec74b | 1019 | if (!kvm_has_xcrs()) { |
f1665b21 | 1020 | return 0; |
b9bec74b | 1021 | } |
f1665b21 SY |
1022 | |
1023 | xcrs.nr_xcrs = 1; | |
1024 | xcrs.flags = 0; | |
1025 | xcrs.xcrs[0].xcr = 0; | |
1026 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1027 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1028 | } |
1029 | ||
1bc22652 | 1030 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1031 | { |
1bc22652 | 1032 | CPUX86State *env = &cpu->env; |
05330448 AL |
1033 | struct kvm_sregs sregs; |
1034 | ||
0e607a80 JK |
1035 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1036 | if (env->interrupt_injected >= 0) { | |
1037 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1038 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1039 | } | |
05330448 AL |
1040 | |
1041 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1042 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1043 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1044 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1045 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1046 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1047 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1048 | } else { |
b9bec74b JK |
1049 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1050 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1051 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1052 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1053 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1054 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1055 | } |
1056 | ||
1057 | set_seg(&sregs.tr, &env->tr); | |
1058 | set_seg(&sregs.ldt, &env->ldt); | |
1059 | ||
1060 | sregs.idt.limit = env->idt.limit; | |
1061 | sregs.idt.base = env->idt.base; | |
7e680753 | 1062 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1063 | sregs.gdt.limit = env->gdt.limit; |
1064 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1065 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1066 | |
1067 | sregs.cr0 = env->cr[0]; | |
1068 | sregs.cr2 = env->cr[2]; | |
1069 | sregs.cr3 = env->cr[3]; | |
1070 | sregs.cr4 = env->cr[4]; | |
1071 | ||
4a942cea BS |
1072 | sregs.cr8 = cpu_get_apic_tpr(env->apic_state); |
1073 | sregs.apic_base = cpu_get_apic_base(env->apic_state); | |
05330448 AL |
1074 | |
1075 | sregs.efer = env->efer; | |
1076 | ||
1bc22652 | 1077 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1078 | } |
1079 | ||
1080 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
1081 | uint32_t index, uint64_t value) | |
1082 | { | |
1083 | entry->index = index; | |
1084 | entry->data = value; | |
1085 | } | |
1086 | ||
7477cd38 MT |
1087 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1088 | { | |
1089 | CPUX86State *env = &cpu->env; | |
1090 | struct { | |
1091 | struct kvm_msrs info; | |
1092 | struct kvm_msr_entry entries[1]; | |
1093 | } msr_data; | |
1094 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1095 | ||
1096 | if (!has_msr_tsc_deadline) { | |
1097 | return 0; | |
1098 | } | |
1099 | ||
1100 | kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1101 | ||
1102 | msr_data.info.nmsrs = 1; | |
1103 | ||
1104 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1105 | } | |
1106 | ||
1bc22652 | 1107 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1108 | { |
1bc22652 | 1109 | CPUX86State *env = &cpu->env; |
05330448 AL |
1110 | struct { |
1111 | struct kvm_msrs info; | |
1112 | struct kvm_msr_entry entries[100]; | |
1113 | } msr_data; | |
1114 | struct kvm_msr_entry *msrs = msr_data.entries; | |
0d894367 | 1115 | int n = 0, i; |
05330448 AL |
1116 | |
1117 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1118 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1119 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
0c03266a | 1120 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); |
c3a3a7d3 | 1121 | if (has_msr_star) { |
b9bec74b JK |
1122 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
1123 | } | |
c3a3a7d3 | 1124 | if (has_msr_hsave_pa) { |
75b10c43 | 1125 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1126 | } |
f28558d3 WA |
1127 | if (has_msr_tsc_adjust) { |
1128 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust); | |
1129 | } | |
21e87c46 AK |
1130 | if (has_msr_misc_enable) { |
1131 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1132 | env->msr_ia32_misc_enable); | |
1133 | } | |
05330448 | 1134 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1135 | if (lm_capable_kernel) { |
1136 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1137 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1138 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1139 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1140 | } | |
05330448 | 1141 | #endif |
ea643051 | 1142 | if (level == KVM_PUT_FULL_STATE) { |
384331a6 MT |
1143 | /* |
1144 | * KVM is yet unable to synchronize TSC values of multiple VCPUs on | |
1145 | * writeback. Until this is fixed, we only write the offset to SMP | |
1146 | * guests after migration, desynchronizing the VCPUs, but avoiding | |
1147 | * huge jump-backs that would occur without any writeback at all. | |
1148 | */ | |
1149 | if (smp_cpus == 1 || env->tsc != 0) { | |
1150 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | |
1151 | } | |
ff5c186b JK |
1152 | } |
1153 | /* | |
0d894367 PB |
1154 | * The following MSRs have side effects on the guest or are too heavy |
1155 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1156 | */ |
1157 | if (level >= KVM_PUT_RESET_STATE) { | |
ea643051 JK |
1158 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
1159 | env->system_time_msr); | |
1160 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc JK |
1161 | if (has_msr_async_pf_en) { |
1162 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1163 | env->async_pf_en_msr); | |
1164 | } | |
bc9a839d MT |
1165 | if (has_msr_pv_eoi_en) { |
1166 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1167 | env->pv_eoi_en_msr); | |
1168 | } | |
917367aa MT |
1169 | if (has_msr_kvm_steal_time) { |
1170 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME, | |
1171 | env->steal_time_msr); | |
1172 | } | |
0d894367 PB |
1173 | if (has_msr_architectural_pmu) { |
1174 | /* Stop the counter. */ | |
1175 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1176 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1177 | ||
1178 | /* Set the counter values. */ | |
1179 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1180 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i, | |
1181 | env->msr_fixed_counters[i]); | |
1182 | } | |
1183 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1184 | kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i, | |
1185 | env->msr_gp_counters[i]); | |
1186 | kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i, | |
1187 | env->msr_gp_evtsel[i]); | |
1188 | } | |
1189 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS, | |
1190 | env->msr_global_status); | |
1191 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1192 | env->msr_global_ovf_ctrl); | |
1193 | ||
1194 | /* Now start the PMU. */ | |
1195 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1196 | env->msr_fixed_ctr_ctrl); | |
1197 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, | |
1198 | env->msr_global_ctrl); | |
1199 | } | |
92067bf4 | 1200 | if (hyperv_hypercall_available(cpu)) { |
eab70139 VR |
1201 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0); |
1202 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0); | |
1203 | } | |
92067bf4 | 1204 | if (cpu->hyperv_vapic) { |
eab70139 VR |
1205 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
1206 | } | |
df67696e LJ |
1207 | if (has_msr_feature_control) { |
1208 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_FEATURE_CONTROL, | |
1209 | env->msr_ia32_feature_control); | |
1210 | } | |
ea643051 | 1211 | } |
57780495 | 1212 | if (env->mcg_cap) { |
d8da8574 | 1213 | int i; |
b9bec74b | 1214 | |
c34d440a JK |
1215 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
1216 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1217 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1218 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
57780495 MT |
1219 | } |
1220 | } | |
1a03675d | 1221 | |
05330448 AL |
1222 | msr_data.info.nmsrs = n; |
1223 | ||
1bc22652 | 1224 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
05330448 AL |
1225 | |
1226 | } | |
1227 | ||
1228 | ||
1bc22652 | 1229 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1230 | { |
1bc22652 | 1231 | CPUX86State *env = &cpu->env; |
05330448 AL |
1232 | struct kvm_fpu fpu; |
1233 | int i, ret; | |
1234 | ||
1bc22652 | 1235 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1236 | if (ret < 0) { |
05330448 | 1237 | return ret; |
b9bec74b | 1238 | } |
05330448 AL |
1239 | |
1240 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1241 | env->fpus = fpu.fsw; | |
1242 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1243 | env->fpop = fpu.last_opcode; |
1244 | env->fpip = fpu.last_ip; | |
1245 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1246 | for (i = 0; i < 8; ++i) { |
1247 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1248 | } | |
05330448 AL |
1249 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
1250 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
1251 | env->mxcsr = fpu.mxcsr; | |
1252 | ||
1253 | return 0; | |
1254 | } | |
1255 | ||
1bc22652 | 1256 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1257 | { |
1bc22652 | 1258 | CPUX86State *env = &cpu->env; |
fabacc0f | 1259 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
f1665b21 | 1260 | int ret, i; |
42cc8fa6 | 1261 | uint16_t cwd, swd, twd; |
f1665b21 | 1262 | |
b9bec74b | 1263 | if (!kvm_has_xsave()) { |
1bc22652 | 1264 | return kvm_get_fpu(cpu); |
b9bec74b | 1265 | } |
f1665b21 | 1266 | |
1bc22652 | 1267 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1268 | if (ret < 0) { |
f1665b21 | 1269 | return ret; |
0f53994f | 1270 | } |
f1665b21 | 1271 | |
6b42494b JK |
1272 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; |
1273 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1274 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1275 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
f1665b21 SY |
1276 | env->fpstt = (swd >> 11) & 7; |
1277 | env->fpus = swd; | |
1278 | env->fpuc = cwd; | |
b9bec74b | 1279 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1280 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1281 | } |
42cc8fa6 JK |
1282 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); |
1283 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
f1665b21 SY |
1284 | env->mxcsr = xsave->region[XSAVE_MXCSR]; |
1285 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1286 | sizeof env->fpregs); | |
1287 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | |
1288 | sizeof env->xmm_regs); | |
1289 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | |
1290 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | |
1291 | sizeof env->ymmh_regs); | |
1292 | return 0; | |
f1665b21 SY |
1293 | } |
1294 | ||
1bc22652 | 1295 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1296 | { |
1bc22652 | 1297 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1298 | int i, ret; |
1299 | struct kvm_xcrs xcrs; | |
1300 | ||
b9bec74b | 1301 | if (!kvm_has_xcrs()) { |
f1665b21 | 1302 | return 0; |
b9bec74b | 1303 | } |
f1665b21 | 1304 | |
1bc22652 | 1305 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1306 | if (ret < 0) { |
f1665b21 | 1307 | return ret; |
b9bec74b | 1308 | } |
f1665b21 | 1309 | |
b9bec74b | 1310 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1311 | /* Only support xcr0 now */ |
0fd53fec PB |
1312 | if (xcrs.xcrs[i].xcr == 0) { |
1313 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1314 | break; |
1315 | } | |
b9bec74b | 1316 | } |
f1665b21 | 1317 | return 0; |
f1665b21 SY |
1318 | } |
1319 | ||
1bc22652 | 1320 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1321 | { |
1bc22652 | 1322 | CPUX86State *env = &cpu->env; |
05330448 AL |
1323 | struct kvm_sregs sregs; |
1324 | uint32_t hflags; | |
0e607a80 | 1325 | int bit, i, ret; |
05330448 | 1326 | |
1bc22652 | 1327 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1328 | if (ret < 0) { |
05330448 | 1329 | return ret; |
b9bec74b | 1330 | } |
05330448 | 1331 | |
0e607a80 JK |
1332 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1333 | to find it and save its number instead (-1 for none). */ | |
1334 | env->interrupt_injected = -1; | |
1335 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1336 | if (sregs.interrupt_bitmap[i]) { | |
1337 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1338 | env->interrupt_injected = i * 64 + bit; | |
1339 | break; | |
1340 | } | |
1341 | } | |
05330448 AL |
1342 | |
1343 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1344 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1345 | get_seg(&env->segs[R_ES], &sregs.es); | |
1346 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1347 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1348 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1349 | ||
1350 | get_seg(&env->tr, &sregs.tr); | |
1351 | get_seg(&env->ldt, &sregs.ldt); | |
1352 | ||
1353 | env->idt.limit = sregs.idt.limit; | |
1354 | env->idt.base = sregs.idt.base; | |
1355 | env->gdt.limit = sregs.gdt.limit; | |
1356 | env->gdt.base = sregs.gdt.base; | |
1357 | ||
1358 | env->cr[0] = sregs.cr0; | |
1359 | env->cr[2] = sregs.cr2; | |
1360 | env->cr[3] = sregs.cr3; | |
1361 | env->cr[4] = sregs.cr4; | |
1362 | ||
05330448 | 1363 | env->efer = sregs.efer; |
cce47516 JK |
1364 | |
1365 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1366 | |
b9bec74b JK |
1367 | #define HFLAG_COPY_MASK \ |
1368 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1369 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1370 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1371 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 AL |
1372 | |
1373 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
1374 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
1375 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1376 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 AL |
1377 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
1378 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
b9bec74b | 1379 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
05330448 AL |
1380 | |
1381 | if (env->efer & MSR_EFER_LMA) { | |
1382 | hflags |= HF_LMA_MASK; | |
1383 | } | |
1384 | ||
1385 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1386 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1387 | } else { | |
1388 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1389 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1390 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1391 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1392 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1393 | !(hflags & HF_CS32_MASK)) { | |
1394 | hflags |= HF_ADDSEG_MASK; | |
1395 | } else { | |
1396 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1397 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1398 | } | |
05330448 AL |
1399 | } |
1400 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1401 | |
1402 | return 0; | |
1403 | } | |
1404 | ||
1bc22652 | 1405 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1406 | { |
1bc22652 | 1407 | CPUX86State *env = &cpu->env; |
05330448 AL |
1408 | struct { |
1409 | struct kvm_msrs info; | |
1410 | struct kvm_msr_entry entries[100]; | |
1411 | } msr_data; | |
1412 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1413 | int ret, i, n; | |
1414 | ||
1415 | n = 0; | |
1416 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1417 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1418 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
0c03266a | 1419 | msrs[n++].index = MSR_PAT; |
c3a3a7d3 | 1420 | if (has_msr_star) { |
b9bec74b JK |
1421 | msrs[n++].index = MSR_STAR; |
1422 | } | |
c3a3a7d3 | 1423 | if (has_msr_hsave_pa) { |
75b10c43 | 1424 | msrs[n++].index = MSR_VM_HSAVE_PA; |
b9bec74b | 1425 | } |
f28558d3 WA |
1426 | if (has_msr_tsc_adjust) { |
1427 | msrs[n++].index = MSR_TSC_ADJUST; | |
1428 | } | |
aa82ba54 LJ |
1429 | if (has_msr_tsc_deadline) { |
1430 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1431 | } | |
21e87c46 AK |
1432 | if (has_msr_misc_enable) { |
1433 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1434 | } | |
df67696e LJ |
1435 | if (has_msr_feature_control) { |
1436 | msrs[n++].index = MSR_IA32_FEATURE_CONTROL; | |
1437 | } | |
b8cc45d6 GC |
1438 | |
1439 | if (!env->tsc_valid) { | |
1440 | msrs[n++].index = MSR_IA32_TSC; | |
1354869c | 1441 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
1442 | } |
1443 | ||
05330448 | 1444 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1445 | if (lm_capable_kernel) { |
1446 | msrs[n++].index = MSR_CSTAR; | |
1447 | msrs[n++].index = MSR_KERNELGSBASE; | |
1448 | msrs[n++].index = MSR_FMASK; | |
1449 | msrs[n++].index = MSR_LSTAR; | |
1450 | } | |
05330448 | 1451 | #endif |
1a03675d GC |
1452 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1453 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
c5999bfc JK |
1454 | if (has_msr_async_pf_en) { |
1455 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1456 | } | |
bc9a839d MT |
1457 | if (has_msr_pv_eoi_en) { |
1458 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1459 | } | |
917367aa MT |
1460 | if (has_msr_kvm_steal_time) { |
1461 | msrs[n++].index = MSR_KVM_STEAL_TIME; | |
1462 | } | |
0d894367 PB |
1463 | if (has_msr_architectural_pmu) { |
1464 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL; | |
1465 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL; | |
1466 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS; | |
1467 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL; | |
1468 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1469 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i; | |
1470 | } | |
1471 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1472 | msrs[n++].index = MSR_P6_PERFCTR0 + i; | |
1473 | msrs[n++].index = MSR_P6_EVNTSEL0 + i; | |
1474 | } | |
1475 | } | |
1a03675d | 1476 | |
57780495 MT |
1477 | if (env->mcg_cap) { |
1478 | msrs[n++].index = MSR_MCG_STATUS; | |
1479 | msrs[n++].index = MSR_MCG_CTL; | |
b9bec74b | 1480 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
57780495 | 1481 | msrs[n++].index = MSR_MC0_CTL + i; |
b9bec74b | 1482 | } |
57780495 | 1483 | } |
57780495 | 1484 | |
05330448 | 1485 | msr_data.info.nmsrs = n; |
1bc22652 | 1486 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
b9bec74b | 1487 | if (ret < 0) { |
05330448 | 1488 | return ret; |
b9bec74b | 1489 | } |
05330448 AL |
1490 | |
1491 | for (i = 0; i < ret; i++) { | |
0d894367 PB |
1492 | uint32_t index = msrs[i].index; |
1493 | switch (index) { | |
05330448 AL |
1494 | case MSR_IA32_SYSENTER_CS: |
1495 | env->sysenter_cs = msrs[i].data; | |
1496 | break; | |
1497 | case MSR_IA32_SYSENTER_ESP: | |
1498 | env->sysenter_esp = msrs[i].data; | |
1499 | break; | |
1500 | case MSR_IA32_SYSENTER_EIP: | |
1501 | env->sysenter_eip = msrs[i].data; | |
1502 | break; | |
0c03266a JK |
1503 | case MSR_PAT: |
1504 | env->pat = msrs[i].data; | |
1505 | break; | |
05330448 AL |
1506 | case MSR_STAR: |
1507 | env->star = msrs[i].data; | |
1508 | break; | |
1509 | #ifdef TARGET_X86_64 | |
1510 | case MSR_CSTAR: | |
1511 | env->cstar = msrs[i].data; | |
1512 | break; | |
1513 | case MSR_KERNELGSBASE: | |
1514 | env->kernelgsbase = msrs[i].data; | |
1515 | break; | |
1516 | case MSR_FMASK: | |
1517 | env->fmask = msrs[i].data; | |
1518 | break; | |
1519 | case MSR_LSTAR: | |
1520 | env->lstar = msrs[i].data; | |
1521 | break; | |
1522 | #endif | |
1523 | case MSR_IA32_TSC: | |
1524 | env->tsc = msrs[i].data; | |
1525 | break; | |
f28558d3 WA |
1526 | case MSR_TSC_ADJUST: |
1527 | env->tsc_adjust = msrs[i].data; | |
1528 | break; | |
aa82ba54 LJ |
1529 | case MSR_IA32_TSCDEADLINE: |
1530 | env->tsc_deadline = msrs[i].data; | |
1531 | break; | |
aa851e36 MT |
1532 | case MSR_VM_HSAVE_PA: |
1533 | env->vm_hsave = msrs[i].data; | |
1534 | break; | |
1a03675d GC |
1535 | case MSR_KVM_SYSTEM_TIME: |
1536 | env->system_time_msr = msrs[i].data; | |
1537 | break; | |
1538 | case MSR_KVM_WALL_CLOCK: | |
1539 | env->wall_clock_msr = msrs[i].data; | |
1540 | break; | |
57780495 MT |
1541 | case MSR_MCG_STATUS: |
1542 | env->mcg_status = msrs[i].data; | |
1543 | break; | |
1544 | case MSR_MCG_CTL: | |
1545 | env->mcg_ctl = msrs[i].data; | |
1546 | break; | |
21e87c46 AK |
1547 | case MSR_IA32_MISC_ENABLE: |
1548 | env->msr_ia32_misc_enable = msrs[i].data; | |
1549 | break; | |
0779caeb ACL |
1550 | case MSR_IA32_FEATURE_CONTROL: |
1551 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 1552 | break; |
57780495 | 1553 | default: |
57780495 MT |
1554 | if (msrs[i].index >= MSR_MC0_CTL && |
1555 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1556 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 1557 | } |
d8da8574 | 1558 | break; |
f6584ee2 GN |
1559 | case MSR_KVM_ASYNC_PF_EN: |
1560 | env->async_pf_en_msr = msrs[i].data; | |
1561 | break; | |
bc9a839d MT |
1562 | case MSR_KVM_PV_EOI_EN: |
1563 | env->pv_eoi_en_msr = msrs[i].data; | |
1564 | break; | |
917367aa MT |
1565 | case MSR_KVM_STEAL_TIME: |
1566 | env->steal_time_msr = msrs[i].data; | |
1567 | break; | |
0d894367 PB |
1568 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
1569 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
1570 | break; | |
1571 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
1572 | env->msr_global_ctrl = msrs[i].data; | |
1573 | break; | |
1574 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
1575 | env->msr_global_status = msrs[i].data; | |
1576 | break; | |
1577 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
1578 | env->msr_global_ovf_ctrl = msrs[i].data; | |
1579 | break; | |
1580 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
1581 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
1582 | break; | |
1583 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
1584 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
1585 | break; | |
1586 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
1587 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
1588 | break; | |
05330448 AL |
1589 | } |
1590 | } | |
1591 | ||
1592 | return 0; | |
1593 | } | |
1594 | ||
1bc22652 | 1595 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 1596 | { |
1bc22652 | 1597 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 1598 | |
1bc22652 | 1599 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
1600 | } |
1601 | ||
23d02d9b | 1602 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 1603 | { |
259186a7 | 1604 | CPUState *cs = CPU(cpu); |
23d02d9b | 1605 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
1606 | struct kvm_mp_state mp_state; |
1607 | int ret; | |
1608 | ||
259186a7 | 1609 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
1610 | if (ret < 0) { |
1611 | return ret; | |
1612 | } | |
1613 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 1614 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 1615 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 1616 | } |
9bdbe550 HB |
1617 | return 0; |
1618 | } | |
1619 | ||
1bc22652 | 1620 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 1621 | { |
1bc22652 | 1622 | CPUX86State *env = &cpu->env; |
680c1c6f JK |
1623 | DeviceState *apic = env->apic_state; |
1624 | struct kvm_lapic_state kapic; | |
1625 | int ret; | |
1626 | ||
3d4b2649 | 1627 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 1628 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
1629 | if (ret < 0) { |
1630 | return ret; | |
1631 | } | |
1632 | ||
1633 | kvm_get_apic_state(apic, &kapic); | |
1634 | } | |
1635 | return 0; | |
1636 | } | |
1637 | ||
1bc22652 | 1638 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 1639 | { |
1bc22652 | 1640 | CPUX86State *env = &cpu->env; |
680c1c6f JK |
1641 | DeviceState *apic = env->apic_state; |
1642 | struct kvm_lapic_state kapic; | |
1643 | ||
3d4b2649 | 1644 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
1645 | kvm_put_apic_state(apic, &kapic); |
1646 | ||
1bc22652 | 1647 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
1648 | } |
1649 | return 0; | |
1650 | } | |
1651 | ||
1bc22652 | 1652 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 1653 | { |
1bc22652 | 1654 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1655 | struct kvm_vcpu_events events; |
1656 | ||
1657 | if (!kvm_has_vcpu_events()) { | |
1658 | return 0; | |
1659 | } | |
1660 | ||
31827373 JK |
1661 | events.exception.injected = (env->exception_injected >= 0); |
1662 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
1663 | events.exception.has_error_code = env->has_error_code; |
1664 | events.exception.error_code = env->error_code; | |
7e680753 | 1665 | events.exception.pad = 0; |
a0fb002c JK |
1666 | |
1667 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1668 | events.interrupt.nr = env->interrupt_injected; | |
1669 | events.interrupt.soft = env->soft_interrupt; | |
1670 | ||
1671 | events.nmi.injected = env->nmi_injected; | |
1672 | events.nmi.pending = env->nmi_pending; | |
1673 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 1674 | events.nmi.pad = 0; |
a0fb002c JK |
1675 | |
1676 | events.sipi_vector = env->sipi_vector; | |
1677 | ||
ea643051 JK |
1678 | events.flags = 0; |
1679 | if (level >= KVM_PUT_RESET_STATE) { | |
1680 | events.flags |= | |
1681 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1682 | } | |
aee028b9 | 1683 | |
1bc22652 | 1684 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
1685 | } |
1686 | ||
1bc22652 | 1687 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 1688 | { |
1bc22652 | 1689 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1690 | struct kvm_vcpu_events events; |
1691 | int ret; | |
1692 | ||
1693 | if (!kvm_has_vcpu_events()) { | |
1694 | return 0; | |
1695 | } | |
1696 | ||
1bc22652 | 1697 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
1698 | if (ret < 0) { |
1699 | return ret; | |
1700 | } | |
31827373 | 1701 | env->exception_injected = |
a0fb002c JK |
1702 | events.exception.injected ? events.exception.nr : -1; |
1703 | env->has_error_code = events.exception.has_error_code; | |
1704 | env->error_code = events.exception.error_code; | |
1705 | ||
1706 | env->interrupt_injected = | |
1707 | events.interrupt.injected ? events.interrupt.nr : -1; | |
1708 | env->soft_interrupt = events.interrupt.soft; | |
1709 | ||
1710 | env->nmi_injected = events.nmi.injected; | |
1711 | env->nmi_pending = events.nmi.pending; | |
1712 | if (events.nmi.masked) { | |
1713 | env->hflags2 |= HF2_NMI_MASK; | |
1714 | } else { | |
1715 | env->hflags2 &= ~HF2_NMI_MASK; | |
1716 | } | |
1717 | ||
1718 | env->sipi_vector = events.sipi_vector; | |
a0fb002c JK |
1719 | |
1720 | return 0; | |
1721 | } | |
1722 | ||
1bc22652 | 1723 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 1724 | { |
ed2803da | 1725 | CPUState *cs = CPU(cpu); |
1bc22652 | 1726 | CPUX86State *env = &cpu->env; |
b0b1d690 | 1727 | int ret = 0; |
b0b1d690 JK |
1728 | unsigned long reinject_trap = 0; |
1729 | ||
1730 | if (!kvm_has_vcpu_events()) { | |
1731 | if (env->exception_injected == 1) { | |
1732 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
1733 | } else if (env->exception_injected == 3) { | |
1734 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
1735 | } | |
1736 | env->exception_injected = -1; | |
1737 | } | |
1738 | ||
1739 | /* | |
1740 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
1741 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
1742 | * by updating the debug state once again if single-stepping is on. | |
1743 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
1744 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
1745 | * reinject them via SET_GUEST_DEBUG. | |
1746 | */ | |
1747 | if (reinject_trap || | |
ed2803da | 1748 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 1749 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 1750 | } |
b0b1d690 JK |
1751 | return ret; |
1752 | } | |
1753 | ||
1bc22652 | 1754 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 1755 | { |
1bc22652 | 1756 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1757 | struct kvm_debugregs dbgregs; |
1758 | int i; | |
1759 | ||
1760 | if (!kvm_has_debugregs()) { | |
1761 | return 0; | |
1762 | } | |
1763 | ||
1764 | for (i = 0; i < 4; i++) { | |
1765 | dbgregs.db[i] = env->dr[i]; | |
1766 | } | |
1767 | dbgregs.dr6 = env->dr[6]; | |
1768 | dbgregs.dr7 = env->dr[7]; | |
1769 | dbgregs.flags = 0; | |
1770 | ||
1bc22652 | 1771 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
1772 | } |
1773 | ||
1bc22652 | 1774 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 1775 | { |
1bc22652 | 1776 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1777 | struct kvm_debugregs dbgregs; |
1778 | int i, ret; | |
1779 | ||
1780 | if (!kvm_has_debugregs()) { | |
1781 | return 0; | |
1782 | } | |
1783 | ||
1bc22652 | 1784 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 1785 | if (ret < 0) { |
b9bec74b | 1786 | return ret; |
ff44f1a3 JK |
1787 | } |
1788 | for (i = 0; i < 4; i++) { | |
1789 | env->dr[i] = dbgregs.db[i]; | |
1790 | } | |
1791 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
1792 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
1793 | |
1794 | return 0; | |
1795 | } | |
1796 | ||
20d695a9 | 1797 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 1798 | { |
20d695a9 | 1799 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
1800 | int ret; |
1801 | ||
2fa45344 | 1802 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 1803 | |
1bc22652 | 1804 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 1805 | if (ret < 0) { |
05330448 | 1806 | return ret; |
b9bec74b | 1807 | } |
1bc22652 | 1808 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 1809 | if (ret < 0) { |
f1665b21 | 1810 | return ret; |
b9bec74b | 1811 | } |
1bc22652 | 1812 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 1813 | if (ret < 0) { |
05330448 | 1814 | return ret; |
b9bec74b | 1815 | } |
1bc22652 | 1816 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 1817 | if (ret < 0) { |
05330448 | 1818 | return ret; |
b9bec74b | 1819 | } |
ab443475 | 1820 | /* must be before kvm_put_msrs */ |
1bc22652 | 1821 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
1822 | if (ret < 0) { |
1823 | return ret; | |
1824 | } | |
1bc22652 | 1825 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 1826 | if (ret < 0) { |
05330448 | 1827 | return ret; |
b9bec74b | 1828 | } |
ea643051 | 1829 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 1830 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 1831 | if (ret < 0) { |
ea643051 | 1832 | return ret; |
b9bec74b | 1833 | } |
1bc22652 | 1834 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
1835 | if (ret < 0) { |
1836 | return ret; | |
1837 | } | |
ea643051 | 1838 | } |
7477cd38 MT |
1839 | |
1840 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
1841 | if (ret < 0) { | |
1842 | return ret; | |
1843 | } | |
1844 | ||
1bc22652 | 1845 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 1846 | if (ret < 0) { |
a0fb002c | 1847 | return ret; |
b9bec74b | 1848 | } |
1bc22652 | 1849 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 1850 | if (ret < 0) { |
b0b1d690 | 1851 | return ret; |
b9bec74b | 1852 | } |
b0b1d690 | 1853 | /* must be last */ |
1bc22652 | 1854 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 1855 | if (ret < 0) { |
ff44f1a3 | 1856 | return ret; |
b9bec74b | 1857 | } |
05330448 AL |
1858 | return 0; |
1859 | } | |
1860 | ||
20d695a9 | 1861 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 1862 | { |
20d695a9 | 1863 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
1864 | int ret; |
1865 | ||
20d695a9 | 1866 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 1867 | |
1bc22652 | 1868 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 1869 | if (ret < 0) { |
05330448 | 1870 | return ret; |
b9bec74b | 1871 | } |
1bc22652 | 1872 | ret = kvm_get_xsave(cpu); |
b9bec74b | 1873 | if (ret < 0) { |
f1665b21 | 1874 | return ret; |
b9bec74b | 1875 | } |
1bc22652 | 1876 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 1877 | if (ret < 0) { |
05330448 | 1878 | return ret; |
b9bec74b | 1879 | } |
1bc22652 | 1880 | ret = kvm_get_sregs(cpu); |
b9bec74b | 1881 | if (ret < 0) { |
05330448 | 1882 | return ret; |
b9bec74b | 1883 | } |
1bc22652 | 1884 | ret = kvm_get_msrs(cpu); |
b9bec74b | 1885 | if (ret < 0) { |
05330448 | 1886 | return ret; |
b9bec74b | 1887 | } |
23d02d9b | 1888 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 1889 | if (ret < 0) { |
5a2e3c2e | 1890 | return ret; |
b9bec74b | 1891 | } |
1bc22652 | 1892 | ret = kvm_get_apic(cpu); |
680c1c6f JK |
1893 | if (ret < 0) { |
1894 | return ret; | |
1895 | } | |
1bc22652 | 1896 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 1897 | if (ret < 0) { |
a0fb002c | 1898 | return ret; |
b9bec74b | 1899 | } |
1bc22652 | 1900 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 1901 | if (ret < 0) { |
ff44f1a3 | 1902 | return ret; |
b9bec74b | 1903 | } |
05330448 AL |
1904 | return 0; |
1905 | } | |
1906 | ||
20d695a9 | 1907 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 1908 | { |
20d695a9 AF |
1909 | X86CPU *x86_cpu = X86_CPU(cpu); |
1910 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
1911 | int ret; |
1912 | ||
276ce815 | 1913 | /* Inject NMI */ |
259186a7 AF |
1914 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { |
1915 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
276ce815 | 1916 | DPRINTF("injected NMI\n"); |
1bc22652 | 1917 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); |
ce377af3 JK |
1918 | if (ret < 0) { |
1919 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
1920 | strerror(-ret)); | |
1921 | } | |
276ce815 LJ |
1922 | } |
1923 | ||
db1669bc | 1924 | if (!kvm_irqchip_in_kernel()) { |
d362e757 JK |
1925 | /* Force the VCPU out of its inner loop to process any INIT requests |
1926 | * or pending TPR access reports. */ | |
259186a7 | 1927 | if (cpu->interrupt_request & |
d362e757 | 1928 | (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { |
fcd7d003 | 1929 | cpu->exit_request = 1; |
05330448 | 1930 | } |
05330448 | 1931 | |
db1669bc JK |
1932 | /* Try to inject an interrupt if the guest can accept it */ |
1933 | if (run->ready_for_interrupt_injection && | |
259186a7 | 1934 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
1935 | (env->eflags & IF_MASK)) { |
1936 | int irq; | |
1937 | ||
259186a7 | 1938 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
1939 | irq = cpu_get_pic_interrupt(env); |
1940 | if (irq >= 0) { | |
1941 | struct kvm_interrupt intr; | |
1942 | ||
1943 | intr.irq = irq; | |
db1669bc | 1944 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 1945 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
1946 | if (ret < 0) { |
1947 | fprintf(stderr, | |
1948 | "KVM: injection failed, interrupt lost (%s)\n", | |
1949 | strerror(-ret)); | |
1950 | } | |
db1669bc JK |
1951 | } |
1952 | } | |
05330448 | 1953 | |
db1669bc JK |
1954 | /* If we have an interrupt but the guest is not ready to receive an |
1955 | * interrupt, request an interrupt window exit. This will | |
1956 | * cause a return to userspace as soon as the guest is ready to | |
1957 | * receive interrupts. */ | |
259186a7 | 1958 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
1959 | run->request_interrupt_window = 1; |
1960 | } else { | |
1961 | run->request_interrupt_window = 0; | |
1962 | } | |
1963 | ||
1964 | DPRINTF("setting tpr\n"); | |
1965 | run->cr8 = cpu_get_apic_tpr(env->apic_state); | |
1966 | } | |
05330448 AL |
1967 | } |
1968 | ||
20d695a9 | 1969 | void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 1970 | { |
20d695a9 AF |
1971 | X86CPU *x86_cpu = X86_CPU(cpu); |
1972 | CPUX86State *env = &x86_cpu->env; | |
1973 | ||
b9bec74b | 1974 | if (run->if_flag) { |
05330448 | 1975 | env->eflags |= IF_MASK; |
b9bec74b | 1976 | } else { |
05330448 | 1977 | env->eflags &= ~IF_MASK; |
b9bec74b | 1978 | } |
4a942cea BS |
1979 | cpu_set_apic_tpr(env->apic_state, run->cr8); |
1980 | cpu_set_apic_base(env->apic_state, run->apic_base); | |
05330448 AL |
1981 | } |
1982 | ||
20d695a9 | 1983 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 1984 | { |
20d695a9 AF |
1985 | X86CPU *cpu = X86_CPU(cs); |
1986 | CPUX86State *env = &cpu->env; | |
232fc23b | 1987 | |
259186a7 | 1988 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
1989 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
1990 | assert(env->mcg_cap); | |
1991 | ||
259186a7 | 1992 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 1993 | |
dd1750d7 | 1994 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
1995 | |
1996 | if (env->exception_injected == EXCP08_DBLE) { | |
1997 | /* this means triple fault */ | |
1998 | qemu_system_reset_request(); | |
fcd7d003 | 1999 | cs->exit_request = 1; |
ab443475 JK |
2000 | return 0; |
2001 | } | |
2002 | env->exception_injected = EXCP12_MCHK; | |
2003 | env->has_error_code = 0; | |
2004 | ||
259186a7 | 2005 | cs->halted = 0; |
ab443475 JK |
2006 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2007 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2008 | } | |
2009 | } | |
2010 | ||
db1669bc JK |
2011 | if (kvm_irqchip_in_kernel()) { |
2012 | return 0; | |
2013 | } | |
2014 | ||
259186a7 AF |
2015 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2016 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
5d62c43a JK |
2017 | apic_poll_irq(env->apic_state); |
2018 | } | |
259186a7 | 2019 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2020 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2021 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2022 | cs->halted = 0; | |
6792a57b | 2023 | } |
259186a7 | 2024 | if (cs->interrupt_request & CPU_INTERRUPT_INIT) { |
dd1750d7 | 2025 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2026 | do_cpu_init(cpu); |
0af691d7 | 2027 | } |
259186a7 | 2028 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2029 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2030 | do_cpu_sipi(cpu); |
0af691d7 | 2031 | } |
259186a7 AF |
2032 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2033 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2034 | kvm_cpu_synchronize_state(cs); |
d362e757 JK |
2035 | apic_handle_tpr_access_report(env->apic_state, env->eip, |
2036 | env->tpr_access_type); | |
2037 | } | |
0af691d7 | 2038 | |
259186a7 | 2039 | return cs->halted; |
0af691d7 MT |
2040 | } |
2041 | ||
839b5630 | 2042 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2043 | { |
259186a7 | 2044 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2045 | CPUX86State *env = &cpu->env; |
2046 | ||
259186a7 | 2047 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2048 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2049 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2050 | cs->halted = 1; | |
bb4ea393 | 2051 | return EXCP_HLT; |
05330448 AL |
2052 | } |
2053 | ||
bb4ea393 | 2054 | return 0; |
05330448 AL |
2055 | } |
2056 | ||
f7575c96 | 2057 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2058 | { |
f7575c96 AF |
2059 | CPUX86State *env = &cpu->env; |
2060 | CPUState *cs = CPU(cpu); | |
2061 | struct kvm_run *run = cs->kvm_run; | |
d362e757 JK |
2062 | |
2063 | apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip, | |
2064 | run->tpr_access.is_write ? TPR_ACCESS_WRITE | |
2065 | : TPR_ACCESS_READ); | |
2066 | return 1; | |
2067 | } | |
2068 | ||
f17ec444 | 2069 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2070 | { |
38972938 | 2071 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2072 | |
f17ec444 AF |
2073 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2074 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2075 | return -EINVAL; |
b9bec74b | 2076 | } |
e22a25c9 AL |
2077 | return 0; |
2078 | } | |
2079 | ||
f17ec444 | 2080 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2081 | { |
2082 | uint8_t int3; | |
2083 | ||
f17ec444 AF |
2084 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2085 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2086 | return -EINVAL; |
b9bec74b | 2087 | } |
e22a25c9 AL |
2088 | return 0; |
2089 | } | |
2090 | ||
2091 | static struct { | |
2092 | target_ulong addr; | |
2093 | int len; | |
2094 | int type; | |
2095 | } hw_breakpoint[4]; | |
2096 | ||
2097 | static int nb_hw_breakpoint; | |
2098 | ||
2099 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2100 | { | |
2101 | int n; | |
2102 | ||
b9bec74b | 2103 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2104 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2105 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2106 | return n; |
b9bec74b JK |
2107 | } |
2108 | } | |
e22a25c9 AL |
2109 | return -1; |
2110 | } | |
2111 | ||
2112 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2113 | target_ulong len, int type) | |
2114 | { | |
2115 | switch (type) { | |
2116 | case GDB_BREAKPOINT_HW: | |
2117 | len = 1; | |
2118 | break; | |
2119 | case GDB_WATCHPOINT_WRITE: | |
2120 | case GDB_WATCHPOINT_ACCESS: | |
2121 | switch (len) { | |
2122 | case 1: | |
2123 | break; | |
2124 | case 2: | |
2125 | case 4: | |
2126 | case 8: | |
b9bec74b | 2127 | if (addr & (len - 1)) { |
e22a25c9 | 2128 | return -EINVAL; |
b9bec74b | 2129 | } |
e22a25c9 AL |
2130 | break; |
2131 | default: | |
2132 | return -EINVAL; | |
2133 | } | |
2134 | break; | |
2135 | default: | |
2136 | return -ENOSYS; | |
2137 | } | |
2138 | ||
b9bec74b | 2139 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2140 | return -ENOBUFS; |
b9bec74b JK |
2141 | } |
2142 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2143 | return -EEXIST; |
b9bec74b | 2144 | } |
e22a25c9 AL |
2145 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2146 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2147 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2148 | nb_hw_breakpoint++; | |
2149 | ||
2150 | return 0; | |
2151 | } | |
2152 | ||
2153 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2154 | target_ulong len, int type) | |
2155 | { | |
2156 | int n; | |
2157 | ||
2158 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 2159 | if (n < 0) { |
e22a25c9 | 2160 | return -ENOENT; |
b9bec74b | 2161 | } |
e22a25c9 AL |
2162 | nb_hw_breakpoint--; |
2163 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
2164 | ||
2165 | return 0; | |
2166 | } | |
2167 | ||
2168 | void kvm_arch_remove_all_hw_breakpoints(void) | |
2169 | { | |
2170 | nb_hw_breakpoint = 0; | |
2171 | } | |
2172 | ||
2173 | static CPUWatchpoint hw_watchpoint; | |
2174 | ||
a60f24b5 | 2175 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 2176 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 2177 | { |
ed2803da | 2178 | CPUState *cs = CPU(cpu); |
a60f24b5 | 2179 | CPUX86State *env = &cpu->env; |
f2574737 | 2180 | int ret = 0; |
e22a25c9 AL |
2181 | int n; |
2182 | ||
2183 | if (arch_info->exception == 1) { | |
2184 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 2185 | if (cs->singlestep_enabled) { |
f2574737 | 2186 | ret = EXCP_DEBUG; |
b9bec74b | 2187 | } |
e22a25c9 | 2188 | } else { |
b9bec74b JK |
2189 | for (n = 0; n < 4; n++) { |
2190 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
2191 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
2192 | case 0x0: | |
f2574737 | 2193 | ret = EXCP_DEBUG; |
e22a25c9 AL |
2194 | break; |
2195 | case 0x1: | |
f2574737 | 2196 | ret = EXCP_DEBUG; |
48405526 | 2197 | env->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2198 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2199 | hw_watchpoint.flags = BP_MEM_WRITE; | |
2200 | break; | |
2201 | case 0x3: | |
f2574737 | 2202 | ret = EXCP_DEBUG; |
48405526 | 2203 | env->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2204 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2205 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
2206 | break; | |
2207 | } | |
b9bec74b JK |
2208 | } |
2209 | } | |
e22a25c9 | 2210 | } |
a60f24b5 | 2211 | } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) { |
f2574737 | 2212 | ret = EXCP_DEBUG; |
b9bec74b | 2213 | } |
f2574737 | 2214 | if (ret == 0) { |
cb446eca | 2215 | cpu_synchronize_state(CPU(cpu)); |
48405526 | 2216 | assert(env->exception_injected == -1); |
b0b1d690 | 2217 | |
f2574737 | 2218 | /* pass to guest */ |
48405526 BS |
2219 | env->exception_injected = arch_info->exception; |
2220 | env->has_error_code = 0; | |
b0b1d690 | 2221 | } |
e22a25c9 | 2222 | |
f2574737 | 2223 | return ret; |
e22a25c9 AL |
2224 | } |
2225 | ||
20d695a9 | 2226 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
2227 | { |
2228 | const uint8_t type_code[] = { | |
2229 | [GDB_BREAKPOINT_HW] = 0x0, | |
2230 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2231 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2232 | }; | |
2233 | const uint8_t len_code[] = { | |
2234 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2235 | }; | |
2236 | int n; | |
2237 | ||
a60f24b5 | 2238 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 2239 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 2240 | } |
e22a25c9 AL |
2241 | if (nb_hw_breakpoint > 0) { |
2242 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2243 | dbg->arch.debugreg[7] = 0x0600; | |
2244 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2245 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2246 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2247 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 2248 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
2249 | } |
2250 | } | |
2251 | } | |
4513d923 | 2252 | |
2a4dac83 JK |
2253 | static bool host_supports_vmx(void) |
2254 | { | |
2255 | uint32_t ecx, unused; | |
2256 | ||
2257 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2258 | return ecx & CPUID_EXT_VMX; | |
2259 | } | |
2260 | ||
2261 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2262 | ||
20d695a9 | 2263 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 2264 | { |
20d695a9 | 2265 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
2266 | uint64_t code; |
2267 | int ret; | |
2268 | ||
2269 | switch (run->exit_reason) { | |
2270 | case KVM_EXIT_HLT: | |
2271 | DPRINTF("handle_hlt\n"); | |
839b5630 | 2272 | ret = kvm_handle_halt(cpu); |
2a4dac83 JK |
2273 | break; |
2274 | case KVM_EXIT_SET_TPR: | |
2275 | ret = 0; | |
2276 | break; | |
d362e757 | 2277 | case KVM_EXIT_TPR_ACCESS: |
f7575c96 | 2278 | ret = kvm_handle_tpr_access(cpu); |
d362e757 | 2279 | break; |
2a4dac83 JK |
2280 | case KVM_EXIT_FAIL_ENTRY: |
2281 | code = run->fail_entry.hardware_entry_failure_reason; | |
2282 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2283 | code); | |
2284 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2285 | fprintf(stderr, | |
12619721 | 2286 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
2287 | "unrestricted mode\n" |
2288 | "support, the failure can be most likely due to the guest " | |
2289 | "entering an invalid\n" | |
2290 | "state for Intel VT. For example, the guest maybe running " | |
2291 | "in big real mode\n" | |
2292 | "which is not supported on less recent Intel processors." | |
2293 | "\n\n"); | |
2294 | } | |
2295 | ret = -1; | |
2296 | break; | |
2297 | case KVM_EXIT_EXCEPTION: | |
2298 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2299 | run->ex.exception, run->ex.error_code); | |
2300 | ret = -1; | |
2301 | break; | |
f2574737 JK |
2302 | case KVM_EXIT_DEBUG: |
2303 | DPRINTF("kvm_exit_debug\n"); | |
a60f24b5 | 2304 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
f2574737 | 2305 | break; |
2a4dac83 JK |
2306 | default: |
2307 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2308 | ret = -1; | |
2309 | break; | |
2310 | } | |
2311 | ||
2312 | return ret; | |
2313 | } | |
2314 | ||
20d695a9 | 2315 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 2316 | { |
20d695a9 AF |
2317 | X86CPU *cpu = X86_CPU(cs); |
2318 | CPUX86State *env = &cpu->env; | |
2319 | ||
dd1750d7 | 2320 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
2321 | return !(env->cr[0] & CR0_PE_MASK) || |
2322 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 2323 | } |
84b058d7 JK |
2324 | |
2325 | void kvm_arch_init_irq_routing(KVMState *s) | |
2326 | { | |
2327 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2328 | /* If kernel can't do irq routing, interrupt source | |
2329 | * override 0->2 cannot be set up as required by HPET. | |
2330 | * So we have to disable it. | |
2331 | */ | |
2332 | no_hpet = 1; | |
2333 | } | |
cc7e0ddf | 2334 | /* We know at this point that we're using the in-kernel |
614e41bc | 2335 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 2336 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf PM |
2337 | */ |
2338 | kvm_irqfds_allowed = true; | |
614e41bc | 2339 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 2340 | kvm_gsi_routing_allowed = true; |
84b058d7 | 2341 | } |
b139bd30 JK |
2342 | |
2343 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2344 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2345 | uint32_t flags, uint32_t *dev_id) | |
2346 | { | |
2347 | struct kvm_assigned_pci_dev dev_data = { | |
2348 | .segnr = dev_addr->domain, | |
2349 | .busnr = dev_addr->bus, | |
2350 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2351 | .flags = flags, | |
2352 | }; | |
2353 | int ret; | |
2354 | ||
2355 | dev_data.assigned_dev_id = | |
2356 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2357 | ||
2358 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2359 | if (ret < 0) { | |
2360 | return ret; | |
2361 | } | |
2362 | ||
2363 | *dev_id = dev_data.assigned_dev_id; | |
2364 | ||
2365 | return 0; | |
2366 | } | |
2367 | ||
2368 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2369 | { | |
2370 | struct kvm_assigned_pci_dev dev_data = { | |
2371 | .assigned_dev_id = dev_id, | |
2372 | }; | |
2373 | ||
2374 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2375 | } | |
2376 | ||
2377 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2378 | uint32_t irq_type, uint32_t guest_irq) | |
2379 | { | |
2380 | struct kvm_assigned_irq assigned_irq = { | |
2381 | .assigned_dev_id = dev_id, | |
2382 | .guest_irq = guest_irq, | |
2383 | .flags = irq_type, | |
2384 | }; | |
2385 | ||
2386 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2387 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2388 | } else { | |
2389 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2390 | } | |
2391 | } | |
2392 | ||
2393 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2394 | uint32_t guest_irq) | |
2395 | { | |
2396 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2397 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2398 | ||
2399 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2400 | } | |
2401 | ||
2402 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2403 | { | |
2404 | struct kvm_assigned_pci_dev dev_data = { | |
2405 | .assigned_dev_id = dev_id, | |
2406 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2407 | }; | |
2408 | ||
2409 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
2410 | } | |
2411 | ||
2412 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
2413 | uint32_t type) | |
2414 | { | |
2415 | struct kvm_assigned_irq assigned_irq = { | |
2416 | .assigned_dev_id = dev_id, | |
2417 | .flags = type, | |
2418 | }; | |
2419 | ||
2420 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
2421 | } | |
2422 | ||
2423 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
2424 | { | |
2425 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
2426 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
2427 | } | |
2428 | ||
2429 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
2430 | { | |
2431 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
2432 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
2433 | } | |
2434 | ||
2435 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
2436 | { | |
2437 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
2438 | KVM_DEV_IRQ_HOST_MSI); | |
2439 | } | |
2440 | ||
2441 | bool kvm_device_msix_supported(KVMState *s) | |
2442 | { | |
2443 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
2444 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
2445 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
2446 | } | |
2447 | ||
2448 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
2449 | uint32_t nr_vectors) | |
2450 | { | |
2451 | struct kvm_assigned_msix_nr msix_nr = { | |
2452 | .assigned_dev_id = dev_id, | |
2453 | .entry_nr = nr_vectors, | |
2454 | }; | |
2455 | ||
2456 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
2457 | } | |
2458 | ||
2459 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
2460 | int virq) | |
2461 | { | |
2462 | struct kvm_assigned_msix_entry msix_entry = { | |
2463 | .assigned_dev_id = dev_id, | |
2464 | .gsi = virq, | |
2465 | .entry = vector, | |
2466 | }; | |
2467 | ||
2468 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
2469 | } | |
2470 | ||
2471 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
2472 | { | |
2473 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
2474 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
2475 | } | |
2476 | ||
2477 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
2478 | { | |
2479 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
2480 | KVM_DEV_IRQ_HOST_MSIX); | |
2481 | } |