]> Git Repo - qemu.git/blame - target-i386/kvm.c
i386: kvm: extract register switch to cpuid_entry_get_reg() function
[qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <[email protected]>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
e22a25c9 28#include "gdbstub.h"
0e607a80 29#include "host-utils.h"
4c5b10b7 30#include "hw/pc.h"
408392b3 31#include "hw/apic.h"
35bed8ee 32#include "ioport.h"
eab70139 33#include "hyperv.h"
b139bd30 34#include "hw/pci.h"
05330448
AL
35
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
aa82ba54 65static bool has_msr_tsc_deadline;
c5999bfc 66static bool has_msr_async_pf_en;
bc9a839d 67static bool has_msr_pv_eoi_en;
21e87c46 68static bool has_msr_misc_enable;
25d2e361 69static int lm_capable_kernel;
b827df58 70
1d31f66b
PM
71bool kvm_allows_irq0_override(void)
72{
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74}
75
b827df58
AK
76static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77{
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
b827df58
AK
88 if (r < 0) {
89 if (r == -E2BIG) {
7267c094 90 g_free(cpuid);
b827df58
AK
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99}
100
0c31b744
GC
101struct kvm_para_features {
102 int cap;
103 int feature;
104} para_features[] = {
105 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
106 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
107 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 108 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
109 { -1, -1 }
110};
111
ba9bc59e 112static int get_para_features(KVMState *s)
0c31b744
GC
113{
114 int i, features = 0;
115
116 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 117 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
118 features |= (1 << para_features[i].feature);
119 }
120 }
121
122 return features;
123}
0c31b744
GC
124
125
829ae2f9
EH
126/* Returns the value for a specific register on the cpuid entry
127 */
128static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
129{
130 uint32_t ret = 0;
131 switch (reg) {
132 case R_EAX:
133 ret = entry->eax;
134 break;
135 case R_EBX:
136 ret = entry->ebx;
137 break;
138 case R_ECX:
139 ret = entry->ecx;
140 break;
141 case R_EDX:
142 ret = entry->edx;
143 break;
144 }
145 return ret;
146}
147
ba9bc59e 148uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 149 uint32_t index, int reg)
b827df58
AK
150{
151 struct kvm_cpuid2 *cpuid;
152 int i, max;
153 uint32_t ret = 0;
154 uint32_t cpuid_1_edx;
8c723b79 155 bool found = false;
b827df58 156
b827df58 157 max = 1;
ba9bc59e 158 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
b827df58
AK
159 max *= 2;
160 }
161
162 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
163 if (cpuid->entries[i].function == function &&
164 cpuid->entries[i].index == index) {
47111e2c 165 struct kvm_cpuid_entry2 *entry = &cpuid->entries[i];
8c723b79 166 found = true;
829ae2f9 167 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
168 }
169 }
170
7b46e5ce
EH
171 /* Fixups for the data returned by KVM, below */
172
173 if (reg == R_EDX) {
174 switch (function) {
175 case 1:
176 /* KVM before 2.6.30 misreports the following features */
177 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
178 break;
179 case 0x80000001:
180 /* On Intel, kvm returns cpuid according to the Intel spec,
181 * so add missing bits according to the AMD spec:
182 */
183 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
184 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
185 break;
186 }
187 }
188
7267c094 189 g_free(cpuid);
b827df58 190
0c31b744 191 /* fallback for older kernels */
8c723b79 192 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 193 ret = get_para_features(s);
b9bec74b 194 }
0c31b744
GC
195
196 return ret;
bb0300dc 197}
bb0300dc 198
3c85e74f
HY
199typedef struct HWPoisonPage {
200 ram_addr_t ram_addr;
201 QLIST_ENTRY(HWPoisonPage) list;
202} HWPoisonPage;
203
204static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
205 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
206
207static void kvm_unpoison_all(void *param)
208{
209 HWPoisonPage *page, *next_page;
210
211 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
212 QLIST_REMOVE(page, list);
213 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 214 g_free(page);
3c85e74f
HY
215 }
216}
217
3c85e74f
HY
218static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
219{
220 HWPoisonPage *page;
221
222 QLIST_FOREACH(page, &hwpoison_page_list, list) {
223 if (page->ram_addr == ram_addr) {
224 return;
225 }
226 }
7267c094 227 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
228 page->ram_addr = ram_addr;
229 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
230}
231
e7701825
MT
232static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
233 int *max_banks)
234{
235 int r;
236
14a09518 237 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
238 if (r > 0) {
239 *max_banks = r;
240 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
241 }
242 return -ENOSYS;
243}
244
a8170e5e 245static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
e7701825 246{
c34d440a
JK
247 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
248 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
249 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 250
c34d440a
JK
251 if (code == BUS_MCEERR_AR) {
252 status |= MCI_STATUS_AR | 0x134;
253 mcg_status |= MCG_STATUS_EIPV;
254 } else {
255 status |= 0xc0;
256 mcg_status |= MCG_STATUS_RIPV;
419fb20a 257 }
c34d440a
JK
258 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
259 (MCM_ADDR_PHYS << 6) | 0xc,
260 cpu_x86_support_mca_broadcast(env) ?
261 MCE_INJECT_BROADCAST : 0);
419fb20a 262}
419fb20a
JK
263
264static void hardware_memory_error(void)
265{
266 fprintf(stderr, "Hardware memory error!\n");
267 exit(1);
268}
269
317ac620 270int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
419fb20a 271{
419fb20a 272 ram_addr_t ram_addr;
a8170e5e 273 hwaddr paddr;
419fb20a
JK
274
275 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
276 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
277 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9 278 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
419fb20a
JK
279 fprintf(stderr, "Hardware memory error for memory used by "
280 "QEMU itself instead of guest system!\n");
281 /* Hope we are lucky for AO MCE */
282 if (code == BUS_MCEERR_AO) {
283 return 0;
284 } else {
285 hardware_memory_error();
286 }
287 }
3c85e74f 288 kvm_hwpoison_page_add(ram_addr);
c34d440a 289 kvm_mce_inject(env, paddr, code);
e56ff191 290 } else {
419fb20a
JK
291 if (code == BUS_MCEERR_AO) {
292 return 0;
293 } else if (code == BUS_MCEERR_AR) {
294 hardware_memory_error();
295 } else {
296 return 1;
297 }
298 }
299 return 0;
300}
301
302int kvm_arch_on_sigbus(int code, void *addr)
303{
419fb20a 304 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 305 ram_addr_t ram_addr;
a8170e5e 306 hwaddr paddr;
419fb20a
JK
307
308 /* Hope we are lucky for AO MCE */
c34d440a 309 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9
AK
310 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
311 &paddr)) {
419fb20a
JK
312 fprintf(stderr, "Hardware memory error for memory used by "
313 "QEMU itself instead of guest system!: %p\n", addr);
314 return 0;
315 }
3c85e74f 316 kvm_hwpoison_page_add(ram_addr);
c34d440a 317 kvm_mce_inject(first_cpu, paddr, code);
e56ff191 318 } else {
419fb20a
JK
319 if (code == BUS_MCEERR_AO) {
320 return 0;
321 } else if (code == BUS_MCEERR_AR) {
322 hardware_memory_error();
323 } else {
324 return 1;
325 }
326 }
327 return 0;
328}
e7701825 329
317ac620 330static int kvm_inject_mce_oldstyle(CPUX86State *env)
ab443475 331{
ab443475
JK
332 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
333 unsigned int bank, bank_num = env->mcg_cap & 0xff;
334 struct kvm_x86_mce mce;
335
336 env->exception_injected = -1;
337
338 /*
339 * There must be at least one bank in use if an MCE is pending.
340 * Find it and use its values for the event injection.
341 */
342 for (bank = 0; bank < bank_num; bank++) {
343 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
344 break;
345 }
346 }
347 assert(bank < bank_num);
348
349 mce.bank = bank;
350 mce.status = env->mce_banks[bank * 4 + 1];
351 mce.mcg_status = env->mcg_status;
352 mce.addr = env->mce_banks[bank * 4 + 2];
353 mce.misc = env->mce_banks[bank * 4 + 3];
354
355 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
356 }
ab443475
JK
357 return 0;
358}
359
1dfb4dd9 360static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 361{
317ac620 362 CPUX86State *env = opaque;
b8cc45d6
GC
363
364 if (running) {
365 env->tsc_valid = false;
366 }
367}
368
317ac620 369int kvm_arch_init_vcpu(CPUX86State *env)
05330448
AL
370{
371 struct {
486bd5a2
AL
372 struct kvm_cpuid2 cpuid;
373 struct kvm_cpuid_entry2 entries[100];
541dc0d4 374 } QEMU_PACKED cpuid_data;
ba9bc59e 375 KVMState *s = env->kvm_state;
486bd5a2 376 uint32_t limit, i, j, cpuid_i;
a33609ca 377 uint32_t unused;
bb0300dc 378 struct kvm_cpuid_entry2 *c;
bb0300dc 379 uint32_t signature[3];
e7429073 380 int r;
05330448 381
ba9bc59e 382 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
6c0d7ee8
AP
383
384 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
a75b3e0f 385 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
ba9bc59e 386 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
6c0d7ee8 387 env->cpuid_ext_features |= i;
a75b3e0f
LJ
388 if (j && kvm_irqchip_in_kernel() &&
389 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
390 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
391 }
6c0d7ee8 392
ba9bc59e 393 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 394 0, R_EDX);
ba9bc59e 395 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 396 0, R_ECX);
ba9bc59e 397 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
296acb64
JR
398 0, R_EDX);
399
05330448
AL
400 cpuid_i = 0;
401
bb0300dc 402 /* Paravirtualization CPUIDs */
bb0300dc
GN
403 c = &cpuid_data.entries[cpuid_i++];
404 memset(c, 0, sizeof(*c));
405 c->function = KVM_CPUID_SIGNATURE;
eab70139
VR
406 if (!hyperv_enabled()) {
407 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
408 c->eax = 0;
409 } else {
410 memcpy(signature, "Microsoft Hv", 12);
411 c->eax = HYPERV_CPUID_MIN;
412 }
bb0300dc
GN
413 c->ebx = signature[0];
414 c->ecx = signature[1];
415 c->edx = signature[2];
416
417 c = &cpuid_data.entries[cpuid_i++];
418 memset(c, 0, sizeof(*c));
419 c->function = KVM_CPUID_FEATURES;
ba9bc59e
JK
420 c->eax = env->cpuid_kvm_features &
421 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
0c31b744 422
eab70139
VR
423 if (hyperv_enabled()) {
424 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
425 c->eax = signature[0];
426
427 c = &cpuid_data.entries[cpuid_i++];
428 memset(c, 0, sizeof(*c));
429 c->function = HYPERV_CPUID_VERSION;
430 c->eax = 0x00001bbc;
431 c->ebx = 0x00060001;
432
433 c = &cpuid_data.entries[cpuid_i++];
434 memset(c, 0, sizeof(*c));
435 c->function = HYPERV_CPUID_FEATURES;
436 if (hyperv_relaxed_timing_enabled()) {
437 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
438 }
439 if (hyperv_vapic_recommended()) {
440 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
441 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
442 }
443
444 c = &cpuid_data.entries[cpuid_i++];
445 memset(c, 0, sizeof(*c));
446 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
447 if (hyperv_relaxed_timing_enabled()) {
448 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
449 }
450 if (hyperv_vapic_recommended()) {
451 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
452 }
453 c->ebx = hyperv_get_spinlock_retries();
454
455 c = &cpuid_data.entries[cpuid_i++];
456 memset(c, 0, sizeof(*c));
457 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
458 c->eax = 0x40;
459 c->ebx = 0x40;
460
461 c = &cpuid_data.entries[cpuid_i++];
462 memset(c, 0, sizeof(*c));
463 c->function = KVM_CPUID_SIGNATURE_NEXT;
464 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
465 c->eax = 0;
466 c->ebx = signature[0];
467 c->ecx = signature[1];
468 c->edx = signature[2];
469 }
470
0c31b744 471 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 472
bc9a839d
MT
473 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
474
a33609ca 475 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
476
477 for (i = 0; i <= limit; i++) {
bb0300dc 478 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
479
480 switch (i) {
a36b1029
AL
481 case 2: {
482 /* Keep reading function 2 till all the input is received */
483 int times;
484
a36b1029 485 c->function = i;
a33609ca
AL
486 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
487 KVM_CPUID_FLAG_STATE_READ_NEXT;
488 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
489 times = c->eax & 0xff;
a36b1029
AL
490
491 for (j = 1; j < times; ++j) {
a33609ca 492 c = &cpuid_data.entries[cpuid_i++];
a36b1029 493 c->function = i;
a33609ca
AL
494 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
495 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
496 }
497 break;
498 }
486bd5a2
AL
499 case 4:
500 case 0xb:
501 case 0xd:
502 for (j = 0; ; j++) {
31e8c696
AP
503 if (i == 0xd && j == 64) {
504 break;
505 }
486bd5a2
AL
506 c->function = i;
507 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
508 c->index = j;
a33609ca 509 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 510
b9bec74b 511 if (i == 4 && c->eax == 0) {
486bd5a2 512 break;
b9bec74b
JK
513 }
514 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 515 break;
b9bec74b
JK
516 }
517 if (i == 0xd && c->eax == 0) {
31e8c696 518 continue;
b9bec74b 519 }
a33609ca 520 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
521 }
522 break;
523 default:
486bd5a2 524 c->function = i;
a33609ca
AL
525 c->flags = 0;
526 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
527 break;
528 }
05330448 529 }
a33609ca 530 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
531
532 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 533 c = &cpuid_data.entries[cpuid_i++];
05330448 534
05330448 535 c->function = i;
a33609ca
AL
536 c->flags = 0;
537 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
538 }
539
b3baa152
BW
540 /* Call Centaur's CPUID instructions they are supported. */
541 if (env->cpuid_xlevel2 > 0) {
542 env->cpuid_ext4_features &=
ba9bc59e 543 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
b3baa152
BW
544 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
545
546 for (i = 0xC0000000; i <= limit; i++) {
547 c = &cpuid_data.entries[cpuid_i++];
548
549 c->function = i;
550 c->flags = 0;
551 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
552 }
553 }
554
05330448
AL
555 cpuid_data.cpuid.nent = cpuid_i;
556
e7701825
MT
557 if (((env->cpuid_version >> 8)&0xF) >= 6
558 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
559 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
560 uint64_t mcg_cap;
561 int banks;
32a42024 562 int ret;
e7701825 563
75d49497
JK
564 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
565 if (ret < 0) {
566 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
567 return ret;
e7701825 568 }
75d49497
JK
569
570 if (banks > MCE_BANKS_DEF) {
571 banks = MCE_BANKS_DEF;
572 }
573 mcg_cap &= MCE_CAP_DEF;
574 mcg_cap |= banks;
575 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
576 if (ret < 0) {
577 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
578 return ret;
579 }
580
581 env->mcg_cap = mcg_cap;
e7701825 582 }
e7701825 583
b8cc45d6
GC
584 qemu_add_vm_change_state_handler(cpu_update_state, env);
585
7e680753 586 cpuid_data.cpuid.padding = 0;
e7429073 587 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
588 if (r) {
589 return r;
590 }
e7429073 591
e7429073
JR
592 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
593 if (r && env->tsc_khz) {
594 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
595 if (r < 0) {
596 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
597 return r;
598 }
599 }
e7429073 600
fabacc0f
JK
601 if (kvm_has_xsave()) {
602 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
603 }
604
e7429073 605 return 0;
05330448
AL
606}
607
317ac620 608void kvm_arch_reset_vcpu(CPUX86State *env)
caa5af0f 609{
dd673288
IM
610 X86CPU *cpu = x86_env_get_cpu(env);
611
e73223a5 612 env->exception_injected = -1;
0e607a80 613 env->interrupt_injected = -1;
1a5e9d2f 614 env->xcr0 = 1;
ddced198 615 if (kvm_irqchip_in_kernel()) {
dd673288 616 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
617 KVM_MP_STATE_UNINITIALIZED;
618 } else {
619 env->mp_state = KVM_MP_STATE_RUNNABLE;
620 }
caa5af0f
JK
621}
622
c3a3a7d3 623static int kvm_get_supported_msrs(KVMState *s)
05330448 624{
75b10c43 625 static int kvm_supported_msrs;
c3a3a7d3 626 int ret = 0;
05330448
AL
627
628 /* first time */
75b10c43 629 if (kvm_supported_msrs == 0) {
05330448
AL
630 struct kvm_msr_list msr_list, *kvm_msr_list;
631
75b10c43 632 kvm_supported_msrs = -1;
05330448
AL
633
634 /* Obtain MSR list from KVM. These are the MSRs that we must
635 * save/restore */
4c9f7372 636 msr_list.nmsrs = 0;
c3a3a7d3 637 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 638 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 639 return ret;
6fb6d245 640 }
d9db889f
JK
641 /* Old kernel modules had a bug and could write beyond the provided
642 memory. Allocate at least a safe amount of 1K. */
7267c094 643 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
644 msr_list.nmsrs *
645 sizeof(msr_list.indices[0])));
05330448 646
55308450 647 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 648 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
649 if (ret >= 0) {
650 int i;
651
652 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
653 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 654 has_msr_star = true;
75b10c43
MT
655 continue;
656 }
657 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 658 has_msr_hsave_pa = true;
75b10c43 659 continue;
05330448 660 }
aa82ba54
LJ
661 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
662 has_msr_tsc_deadline = true;
663 continue;
664 }
21e87c46
AK
665 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
666 has_msr_misc_enable = true;
667 continue;
668 }
05330448
AL
669 }
670 }
671
7267c094 672 g_free(kvm_msr_list);
05330448
AL
673 }
674
c3a3a7d3 675 return ret;
05330448
AL
676}
677
cad1e282 678int kvm_arch_init(KVMState *s)
20420430 679{
39d6960a 680 QemuOptsList *list = qemu_find_opts("machine");
11076198 681 uint64_t identity_base = 0xfffbc000;
39d6960a 682 uint64_t shadow_mem;
20420430 683 int ret;
25d2e361 684 struct utsname utsname;
20420430 685
c3a3a7d3 686 ret = kvm_get_supported_msrs(s);
20420430 687 if (ret < 0) {
20420430
SY
688 return ret;
689 }
25d2e361
MT
690
691 uname(&utsname);
692 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
693
4c5b10b7 694 /*
11076198
JK
695 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
696 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
697 * Since these must be part of guest physical memory, we need to allocate
698 * them, both by setting their start addresses in the kernel and by
699 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
700 *
701 * Older KVM versions may not support setting the identity map base. In
702 * that case we need to stick with the default, i.e. a 256K maximum BIOS
703 * size.
4c5b10b7 704 */
11076198
JK
705 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
706 /* Allows up to 16M BIOSes. */
707 identity_base = 0xfeffc000;
708
709 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
710 if (ret < 0) {
711 return ret;
712 }
4c5b10b7 713 }
e56ff191 714
11076198
JK
715 /* Set TSS base one page after EPT identity map. */
716 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
717 if (ret < 0) {
718 return ret;
719 }
720
11076198
JK
721 /* Tell fw_cfg to notify the BIOS to reserve the range. */
722 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 723 if (ret < 0) {
11076198 724 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
725 return ret;
726 }
3c85e74f 727 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 728
39d6960a
JK
729 if (!QTAILQ_EMPTY(&list->head)) {
730 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
731 "kvm_shadow_mem", -1);
732 if (shadow_mem != -1) {
733 shadow_mem /= 4096;
734 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
735 if (ret < 0) {
736 return ret;
737 }
738 }
739 }
11076198 740 return 0;
05330448 741}
b9bec74b 742
05330448
AL
743static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
744{
745 lhs->selector = rhs->selector;
746 lhs->base = rhs->base;
747 lhs->limit = rhs->limit;
748 lhs->type = 3;
749 lhs->present = 1;
750 lhs->dpl = 3;
751 lhs->db = 0;
752 lhs->s = 1;
753 lhs->l = 0;
754 lhs->g = 0;
755 lhs->avl = 0;
756 lhs->unusable = 0;
757}
758
759static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
760{
761 unsigned flags = rhs->flags;
762 lhs->selector = rhs->selector;
763 lhs->base = rhs->base;
764 lhs->limit = rhs->limit;
765 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
766 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 767 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
768 lhs->db = (flags >> DESC_B_SHIFT) & 1;
769 lhs->s = (flags & DESC_S_MASK) != 0;
770 lhs->l = (flags >> DESC_L_SHIFT) & 1;
771 lhs->g = (flags & DESC_G_MASK) != 0;
772 lhs->avl = (flags & DESC_AVL_MASK) != 0;
773 lhs->unusable = 0;
7e680753 774 lhs->padding = 0;
05330448
AL
775}
776
777static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
778{
779 lhs->selector = rhs->selector;
780 lhs->base = rhs->base;
781 lhs->limit = rhs->limit;
b9bec74b
JK
782 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
783 (rhs->present * DESC_P_MASK) |
784 (rhs->dpl << DESC_DPL_SHIFT) |
785 (rhs->db << DESC_B_SHIFT) |
786 (rhs->s * DESC_S_MASK) |
787 (rhs->l << DESC_L_SHIFT) |
788 (rhs->g * DESC_G_MASK) |
789 (rhs->avl * DESC_AVL_MASK);
05330448
AL
790}
791
792static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
793{
b9bec74b 794 if (set) {
05330448 795 *kvm_reg = *qemu_reg;
b9bec74b 796 } else {
05330448 797 *qemu_reg = *kvm_reg;
b9bec74b 798 }
05330448
AL
799}
800
317ac620 801static int kvm_getput_regs(CPUX86State *env, int set)
05330448
AL
802{
803 struct kvm_regs regs;
804 int ret = 0;
805
806 if (!set) {
807 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 808 if (ret < 0) {
05330448 809 return ret;
b9bec74b 810 }
05330448
AL
811 }
812
813 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
814 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
815 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
816 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
817 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
818 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
819 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
820 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
821#ifdef TARGET_X86_64
822 kvm_getput_reg(&regs.r8, &env->regs[8], set);
823 kvm_getput_reg(&regs.r9, &env->regs[9], set);
824 kvm_getput_reg(&regs.r10, &env->regs[10], set);
825 kvm_getput_reg(&regs.r11, &env->regs[11], set);
826 kvm_getput_reg(&regs.r12, &env->regs[12], set);
827 kvm_getput_reg(&regs.r13, &env->regs[13], set);
828 kvm_getput_reg(&regs.r14, &env->regs[14], set);
829 kvm_getput_reg(&regs.r15, &env->regs[15], set);
830#endif
831
832 kvm_getput_reg(&regs.rflags, &env->eflags, set);
833 kvm_getput_reg(&regs.rip, &env->eip, set);
834
b9bec74b 835 if (set) {
05330448 836 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 837 }
05330448
AL
838
839 return ret;
840}
841
317ac620 842static int kvm_put_fpu(CPUX86State *env)
05330448
AL
843{
844 struct kvm_fpu fpu;
845 int i;
846
847 memset(&fpu, 0, sizeof fpu);
848 fpu.fsw = env->fpus & ~(7 << 11);
849 fpu.fsw |= (env->fpstt & 7) << 11;
850 fpu.fcw = env->fpuc;
42cc8fa6
JK
851 fpu.last_opcode = env->fpop;
852 fpu.last_ip = env->fpip;
853 fpu.last_dp = env->fpdp;
b9bec74b
JK
854 for (i = 0; i < 8; ++i) {
855 fpu.ftwx |= (!env->fptags[i]) << i;
856 }
05330448
AL
857 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
858 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
859 fpu.mxcsr = env->mxcsr;
860
861 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
862}
863
6b42494b
JK
864#define XSAVE_FCW_FSW 0
865#define XSAVE_FTW_FOP 1
f1665b21
SY
866#define XSAVE_CWD_RIP 2
867#define XSAVE_CWD_RDP 4
868#define XSAVE_MXCSR 6
869#define XSAVE_ST_SPACE 8
870#define XSAVE_XMM_SPACE 40
871#define XSAVE_XSTATE_BV 128
872#define XSAVE_YMMH_SPACE 144
f1665b21 873
317ac620 874static int kvm_put_xsave(CPUX86State *env)
f1665b21 875{
fabacc0f 876 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 877 uint16_t cwd, swd, twd;
fabacc0f 878 int i, r;
f1665b21 879
b9bec74b 880 if (!kvm_has_xsave()) {
f1665b21 881 return kvm_put_fpu(env);
b9bec74b 882 }
f1665b21 883
f1665b21 884 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 885 twd = 0;
f1665b21
SY
886 swd = env->fpus & ~(7 << 11);
887 swd |= (env->fpstt & 7) << 11;
888 cwd = env->fpuc;
b9bec74b 889 for (i = 0; i < 8; ++i) {
f1665b21 890 twd |= (!env->fptags[i]) << i;
b9bec74b 891 }
6b42494b
JK
892 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
893 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
894 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
895 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
896 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
897 sizeof env->fpregs);
898 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
899 sizeof env->xmm_regs);
900 xsave->region[XSAVE_MXCSR] = env->mxcsr;
901 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
902 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
903 sizeof env->ymmh_regs);
0f53994f 904 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
0f53994f 905 return r;
f1665b21
SY
906}
907
317ac620 908static int kvm_put_xcrs(CPUX86State *env)
f1665b21 909{
f1665b21
SY
910 struct kvm_xcrs xcrs;
911
b9bec74b 912 if (!kvm_has_xcrs()) {
f1665b21 913 return 0;
b9bec74b 914 }
f1665b21
SY
915
916 xcrs.nr_xcrs = 1;
917 xcrs.flags = 0;
918 xcrs.xcrs[0].xcr = 0;
919 xcrs.xcrs[0].value = env->xcr0;
920 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
921}
922
317ac620 923static int kvm_put_sregs(CPUX86State *env)
05330448
AL
924{
925 struct kvm_sregs sregs;
926
0e607a80
JK
927 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
928 if (env->interrupt_injected >= 0) {
929 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
930 (uint64_t)1 << (env->interrupt_injected % 64);
931 }
05330448
AL
932
933 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
934 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
935 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
936 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
937 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
938 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
939 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 940 } else {
b9bec74b
JK
941 set_seg(&sregs.cs, &env->segs[R_CS]);
942 set_seg(&sregs.ds, &env->segs[R_DS]);
943 set_seg(&sregs.es, &env->segs[R_ES]);
944 set_seg(&sregs.fs, &env->segs[R_FS]);
945 set_seg(&sregs.gs, &env->segs[R_GS]);
946 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
947 }
948
949 set_seg(&sregs.tr, &env->tr);
950 set_seg(&sregs.ldt, &env->ldt);
951
952 sregs.idt.limit = env->idt.limit;
953 sregs.idt.base = env->idt.base;
7e680753 954 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
955 sregs.gdt.limit = env->gdt.limit;
956 sregs.gdt.base = env->gdt.base;
7e680753 957 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
958
959 sregs.cr0 = env->cr[0];
960 sregs.cr2 = env->cr[2];
961 sregs.cr3 = env->cr[3];
962 sregs.cr4 = env->cr[4];
963
4a942cea
BS
964 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
965 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
966
967 sregs.efer = env->efer;
968
969 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
970}
971
972static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
973 uint32_t index, uint64_t value)
974{
975 entry->index = index;
976 entry->data = value;
977}
978
317ac620 979static int kvm_put_msrs(CPUX86State *env, int level)
05330448
AL
980{
981 struct {
982 struct kvm_msrs info;
983 struct kvm_msr_entry entries[100];
984 } msr_data;
985 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 986 int n = 0;
05330448
AL
987
988 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
989 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
990 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 991 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 992 if (has_msr_star) {
b9bec74b
JK
993 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
994 }
c3a3a7d3 995 if (has_msr_hsave_pa) {
75b10c43 996 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 997 }
aa82ba54
LJ
998 if (has_msr_tsc_deadline) {
999 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1000 }
21e87c46
AK
1001 if (has_msr_misc_enable) {
1002 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1003 env->msr_ia32_misc_enable);
1004 }
05330448 1005#ifdef TARGET_X86_64
25d2e361
MT
1006 if (lm_capable_kernel) {
1007 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1008 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1009 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1010 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1011 }
05330448 1012#endif
ea643051 1013 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
1014 /*
1015 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1016 * writeback. Until this is fixed, we only write the offset to SMP
1017 * guests after migration, desynchronizing the VCPUs, but avoiding
1018 * huge jump-backs that would occur without any writeback at all.
1019 */
1020 if (smp_cpus == 1 || env->tsc != 0) {
1021 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1022 }
ff5c186b
JK
1023 }
1024 /*
1025 * The following paravirtual MSRs have side effects on the guest or are
1026 * too heavy for normal writeback. Limit them to reset or full state
1027 * updates.
1028 */
1029 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1030 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1031 env->system_time_msr);
1032 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1033 if (has_msr_async_pf_en) {
1034 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1035 env->async_pf_en_msr);
1036 }
bc9a839d
MT
1037 if (has_msr_pv_eoi_en) {
1038 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1039 env->pv_eoi_en_msr);
1040 }
eab70139
VR
1041 if (hyperv_hypercall_available()) {
1042 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1043 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1044 }
1045 if (hyperv_vapic_recommended()) {
1046 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1047 }
ea643051 1048 }
57780495 1049 if (env->mcg_cap) {
d8da8574 1050 int i;
b9bec74b 1051
c34d440a
JK
1052 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1053 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1054 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1055 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1056 }
1057 }
1a03675d 1058
05330448
AL
1059 msr_data.info.nmsrs = n;
1060
1061 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1062
1063}
1064
1065
317ac620 1066static int kvm_get_fpu(CPUX86State *env)
05330448
AL
1067{
1068 struct kvm_fpu fpu;
1069 int i, ret;
1070
1071 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 1072 if (ret < 0) {
05330448 1073 return ret;
b9bec74b 1074 }
05330448
AL
1075
1076 env->fpstt = (fpu.fsw >> 11) & 7;
1077 env->fpus = fpu.fsw;
1078 env->fpuc = fpu.fcw;
42cc8fa6
JK
1079 env->fpop = fpu.last_opcode;
1080 env->fpip = fpu.last_ip;
1081 env->fpdp = fpu.last_dp;
b9bec74b
JK
1082 for (i = 0; i < 8; ++i) {
1083 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1084 }
05330448
AL
1085 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1086 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1087 env->mxcsr = fpu.mxcsr;
1088
1089 return 0;
1090}
1091
317ac620 1092static int kvm_get_xsave(CPUX86State *env)
f1665b21 1093{
fabacc0f 1094 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1095 int ret, i;
42cc8fa6 1096 uint16_t cwd, swd, twd;
f1665b21 1097
b9bec74b 1098 if (!kvm_has_xsave()) {
f1665b21 1099 return kvm_get_fpu(env);
b9bec74b 1100 }
f1665b21 1101
f1665b21 1102 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f 1103 if (ret < 0) {
f1665b21 1104 return ret;
0f53994f 1105 }
f1665b21 1106
6b42494b
JK
1107 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1108 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1109 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1110 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1111 env->fpstt = (swd >> 11) & 7;
1112 env->fpus = swd;
1113 env->fpuc = cwd;
b9bec74b 1114 for (i = 0; i < 8; ++i) {
f1665b21 1115 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1116 }
42cc8fa6
JK
1117 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1118 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1119 env->mxcsr = xsave->region[XSAVE_MXCSR];
1120 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1121 sizeof env->fpregs);
1122 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1123 sizeof env->xmm_regs);
1124 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1125 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1126 sizeof env->ymmh_regs);
1127 return 0;
f1665b21
SY
1128}
1129
317ac620 1130static int kvm_get_xcrs(CPUX86State *env)
f1665b21 1131{
f1665b21
SY
1132 int i, ret;
1133 struct kvm_xcrs xcrs;
1134
b9bec74b 1135 if (!kvm_has_xcrs()) {
f1665b21 1136 return 0;
b9bec74b 1137 }
f1665b21
SY
1138
1139 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1140 if (ret < 0) {
f1665b21 1141 return ret;
b9bec74b 1142 }
f1665b21 1143
b9bec74b 1144 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1145 /* Only support xcr0 now */
1146 if (xcrs.xcrs[0].xcr == 0) {
1147 env->xcr0 = xcrs.xcrs[0].value;
1148 break;
1149 }
b9bec74b 1150 }
f1665b21 1151 return 0;
f1665b21
SY
1152}
1153
317ac620 1154static int kvm_get_sregs(CPUX86State *env)
05330448
AL
1155{
1156 struct kvm_sregs sregs;
1157 uint32_t hflags;
0e607a80 1158 int bit, i, ret;
05330448
AL
1159
1160 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1161 if (ret < 0) {
05330448 1162 return ret;
b9bec74b 1163 }
05330448 1164
0e607a80
JK
1165 /* There can only be one pending IRQ set in the bitmap at a time, so try
1166 to find it and save its number instead (-1 for none). */
1167 env->interrupt_injected = -1;
1168 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1169 if (sregs.interrupt_bitmap[i]) {
1170 bit = ctz64(sregs.interrupt_bitmap[i]);
1171 env->interrupt_injected = i * 64 + bit;
1172 break;
1173 }
1174 }
05330448
AL
1175
1176 get_seg(&env->segs[R_CS], &sregs.cs);
1177 get_seg(&env->segs[R_DS], &sregs.ds);
1178 get_seg(&env->segs[R_ES], &sregs.es);
1179 get_seg(&env->segs[R_FS], &sregs.fs);
1180 get_seg(&env->segs[R_GS], &sregs.gs);
1181 get_seg(&env->segs[R_SS], &sregs.ss);
1182
1183 get_seg(&env->tr, &sregs.tr);
1184 get_seg(&env->ldt, &sregs.ldt);
1185
1186 env->idt.limit = sregs.idt.limit;
1187 env->idt.base = sregs.idt.base;
1188 env->gdt.limit = sregs.gdt.limit;
1189 env->gdt.base = sregs.gdt.base;
1190
1191 env->cr[0] = sregs.cr0;
1192 env->cr[2] = sregs.cr2;
1193 env->cr[3] = sregs.cr3;
1194 env->cr[4] = sregs.cr4;
1195
05330448 1196 env->efer = sregs.efer;
cce47516
JK
1197
1198 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1199
b9bec74b
JK
1200#define HFLAG_COPY_MASK \
1201 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1202 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1203 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1204 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1205
1206 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1207 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1208 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1209 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1210 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1211 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1212 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1213
1214 if (env->efer & MSR_EFER_LMA) {
1215 hflags |= HF_LMA_MASK;
1216 }
1217
1218 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1219 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1220 } else {
1221 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1222 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1223 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1224 (DESC_B_SHIFT - HF_SS32_SHIFT);
1225 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1226 !(hflags & HF_CS32_MASK)) {
1227 hflags |= HF_ADDSEG_MASK;
1228 } else {
1229 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1230 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1231 }
05330448
AL
1232 }
1233 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1234
1235 return 0;
1236}
1237
317ac620 1238static int kvm_get_msrs(CPUX86State *env)
05330448
AL
1239{
1240 struct {
1241 struct kvm_msrs info;
1242 struct kvm_msr_entry entries[100];
1243 } msr_data;
1244 struct kvm_msr_entry *msrs = msr_data.entries;
1245 int ret, i, n;
1246
1247 n = 0;
1248 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1249 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1250 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1251 msrs[n++].index = MSR_PAT;
c3a3a7d3 1252 if (has_msr_star) {
b9bec74b
JK
1253 msrs[n++].index = MSR_STAR;
1254 }
c3a3a7d3 1255 if (has_msr_hsave_pa) {
75b10c43 1256 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1257 }
aa82ba54
LJ
1258 if (has_msr_tsc_deadline) {
1259 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1260 }
21e87c46
AK
1261 if (has_msr_misc_enable) {
1262 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1263 }
b8cc45d6
GC
1264
1265 if (!env->tsc_valid) {
1266 msrs[n++].index = MSR_IA32_TSC;
1354869c 1267 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1268 }
1269
05330448 1270#ifdef TARGET_X86_64
25d2e361
MT
1271 if (lm_capable_kernel) {
1272 msrs[n++].index = MSR_CSTAR;
1273 msrs[n++].index = MSR_KERNELGSBASE;
1274 msrs[n++].index = MSR_FMASK;
1275 msrs[n++].index = MSR_LSTAR;
1276 }
05330448 1277#endif
1a03675d
GC
1278 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1279 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1280 if (has_msr_async_pf_en) {
1281 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1282 }
bc9a839d
MT
1283 if (has_msr_pv_eoi_en) {
1284 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1285 }
1a03675d 1286
57780495
MT
1287 if (env->mcg_cap) {
1288 msrs[n++].index = MSR_MCG_STATUS;
1289 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1290 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1291 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1292 }
57780495 1293 }
57780495 1294
05330448
AL
1295 msr_data.info.nmsrs = n;
1296 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1297 if (ret < 0) {
05330448 1298 return ret;
b9bec74b 1299 }
05330448
AL
1300
1301 for (i = 0; i < ret; i++) {
1302 switch (msrs[i].index) {
1303 case MSR_IA32_SYSENTER_CS:
1304 env->sysenter_cs = msrs[i].data;
1305 break;
1306 case MSR_IA32_SYSENTER_ESP:
1307 env->sysenter_esp = msrs[i].data;
1308 break;
1309 case MSR_IA32_SYSENTER_EIP:
1310 env->sysenter_eip = msrs[i].data;
1311 break;
0c03266a
JK
1312 case MSR_PAT:
1313 env->pat = msrs[i].data;
1314 break;
05330448
AL
1315 case MSR_STAR:
1316 env->star = msrs[i].data;
1317 break;
1318#ifdef TARGET_X86_64
1319 case MSR_CSTAR:
1320 env->cstar = msrs[i].data;
1321 break;
1322 case MSR_KERNELGSBASE:
1323 env->kernelgsbase = msrs[i].data;
1324 break;
1325 case MSR_FMASK:
1326 env->fmask = msrs[i].data;
1327 break;
1328 case MSR_LSTAR:
1329 env->lstar = msrs[i].data;
1330 break;
1331#endif
1332 case MSR_IA32_TSC:
1333 env->tsc = msrs[i].data;
1334 break;
aa82ba54
LJ
1335 case MSR_IA32_TSCDEADLINE:
1336 env->tsc_deadline = msrs[i].data;
1337 break;
aa851e36
MT
1338 case MSR_VM_HSAVE_PA:
1339 env->vm_hsave = msrs[i].data;
1340 break;
1a03675d
GC
1341 case MSR_KVM_SYSTEM_TIME:
1342 env->system_time_msr = msrs[i].data;
1343 break;
1344 case MSR_KVM_WALL_CLOCK:
1345 env->wall_clock_msr = msrs[i].data;
1346 break;
57780495
MT
1347 case MSR_MCG_STATUS:
1348 env->mcg_status = msrs[i].data;
1349 break;
1350 case MSR_MCG_CTL:
1351 env->mcg_ctl = msrs[i].data;
1352 break;
21e87c46
AK
1353 case MSR_IA32_MISC_ENABLE:
1354 env->msr_ia32_misc_enable = msrs[i].data;
1355 break;
57780495 1356 default:
57780495
MT
1357 if (msrs[i].index >= MSR_MC0_CTL &&
1358 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1359 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1360 }
d8da8574 1361 break;
f6584ee2
GN
1362 case MSR_KVM_ASYNC_PF_EN:
1363 env->async_pf_en_msr = msrs[i].data;
1364 break;
bc9a839d
MT
1365 case MSR_KVM_PV_EOI_EN:
1366 env->pv_eoi_en_msr = msrs[i].data;
1367 break;
05330448
AL
1368 }
1369 }
1370
1371 return 0;
1372}
1373
317ac620 1374static int kvm_put_mp_state(CPUX86State *env)
9bdbe550
HB
1375{
1376 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1377
1378 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1379}
1380
317ac620 1381static int kvm_get_mp_state(CPUX86State *env)
9bdbe550
HB
1382{
1383 struct kvm_mp_state mp_state;
1384 int ret;
1385
1386 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1387 if (ret < 0) {
1388 return ret;
1389 }
1390 env->mp_state = mp_state.mp_state;
c14750e8
JK
1391 if (kvm_irqchip_in_kernel()) {
1392 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1393 }
9bdbe550
HB
1394 return 0;
1395}
1396
317ac620 1397static int kvm_get_apic(CPUX86State *env)
680c1c6f
JK
1398{
1399 DeviceState *apic = env->apic_state;
1400 struct kvm_lapic_state kapic;
1401 int ret;
1402
3d4b2649 1403 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1404 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1405 if (ret < 0) {
1406 return ret;
1407 }
1408
1409 kvm_get_apic_state(apic, &kapic);
1410 }
1411 return 0;
1412}
1413
317ac620 1414static int kvm_put_apic(CPUX86State *env)
680c1c6f
JK
1415{
1416 DeviceState *apic = env->apic_state;
1417 struct kvm_lapic_state kapic;
1418
3d4b2649 1419 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1420 kvm_put_apic_state(apic, &kapic);
1421
1422 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1423 }
1424 return 0;
1425}
1426
317ac620 1427static int kvm_put_vcpu_events(CPUX86State *env, int level)
a0fb002c 1428{
a0fb002c
JK
1429 struct kvm_vcpu_events events;
1430
1431 if (!kvm_has_vcpu_events()) {
1432 return 0;
1433 }
1434
31827373
JK
1435 events.exception.injected = (env->exception_injected >= 0);
1436 events.exception.nr = env->exception_injected;
a0fb002c
JK
1437 events.exception.has_error_code = env->has_error_code;
1438 events.exception.error_code = env->error_code;
7e680753 1439 events.exception.pad = 0;
a0fb002c
JK
1440
1441 events.interrupt.injected = (env->interrupt_injected >= 0);
1442 events.interrupt.nr = env->interrupt_injected;
1443 events.interrupt.soft = env->soft_interrupt;
1444
1445 events.nmi.injected = env->nmi_injected;
1446 events.nmi.pending = env->nmi_pending;
1447 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1448 events.nmi.pad = 0;
a0fb002c
JK
1449
1450 events.sipi_vector = env->sipi_vector;
1451
ea643051
JK
1452 events.flags = 0;
1453 if (level >= KVM_PUT_RESET_STATE) {
1454 events.flags |=
1455 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1456 }
aee028b9 1457
a0fb002c 1458 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1459}
1460
317ac620 1461static int kvm_get_vcpu_events(CPUX86State *env)
a0fb002c 1462{
a0fb002c
JK
1463 struct kvm_vcpu_events events;
1464 int ret;
1465
1466 if (!kvm_has_vcpu_events()) {
1467 return 0;
1468 }
1469
1470 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1471 if (ret < 0) {
1472 return ret;
1473 }
31827373 1474 env->exception_injected =
a0fb002c
JK
1475 events.exception.injected ? events.exception.nr : -1;
1476 env->has_error_code = events.exception.has_error_code;
1477 env->error_code = events.exception.error_code;
1478
1479 env->interrupt_injected =
1480 events.interrupt.injected ? events.interrupt.nr : -1;
1481 env->soft_interrupt = events.interrupt.soft;
1482
1483 env->nmi_injected = events.nmi.injected;
1484 env->nmi_pending = events.nmi.pending;
1485 if (events.nmi.masked) {
1486 env->hflags2 |= HF2_NMI_MASK;
1487 } else {
1488 env->hflags2 &= ~HF2_NMI_MASK;
1489 }
1490
1491 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1492
1493 return 0;
1494}
1495
317ac620 1496static int kvm_guest_debug_workarounds(CPUX86State *env)
b0b1d690
JK
1497{
1498 int ret = 0;
b0b1d690
JK
1499 unsigned long reinject_trap = 0;
1500
1501 if (!kvm_has_vcpu_events()) {
1502 if (env->exception_injected == 1) {
1503 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1504 } else if (env->exception_injected == 3) {
1505 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1506 }
1507 env->exception_injected = -1;
1508 }
1509
1510 /*
1511 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1512 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1513 * by updating the debug state once again if single-stepping is on.
1514 * Another reason to call kvm_update_guest_debug here is a pending debug
1515 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1516 * reinject them via SET_GUEST_DEBUG.
1517 */
1518 if (reinject_trap ||
1519 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1520 ret = kvm_update_guest_debug(env, reinject_trap);
1521 }
b0b1d690
JK
1522 return ret;
1523}
1524
317ac620 1525static int kvm_put_debugregs(CPUX86State *env)
ff44f1a3 1526{
ff44f1a3
JK
1527 struct kvm_debugregs dbgregs;
1528 int i;
1529
1530 if (!kvm_has_debugregs()) {
1531 return 0;
1532 }
1533
1534 for (i = 0; i < 4; i++) {
1535 dbgregs.db[i] = env->dr[i];
1536 }
1537 dbgregs.dr6 = env->dr[6];
1538 dbgregs.dr7 = env->dr[7];
1539 dbgregs.flags = 0;
1540
1541 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1542}
1543
317ac620 1544static int kvm_get_debugregs(CPUX86State *env)
ff44f1a3 1545{
ff44f1a3
JK
1546 struct kvm_debugregs dbgregs;
1547 int i, ret;
1548
1549 if (!kvm_has_debugregs()) {
1550 return 0;
1551 }
1552
1553 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1554 if (ret < 0) {
b9bec74b 1555 return ret;
ff44f1a3
JK
1556 }
1557 for (i = 0; i < 4; i++) {
1558 env->dr[i] = dbgregs.db[i];
1559 }
1560 env->dr[4] = env->dr[6] = dbgregs.dr6;
1561 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1562
1563 return 0;
1564}
1565
317ac620 1566int kvm_arch_put_registers(CPUX86State *env, int level)
05330448
AL
1567{
1568 int ret;
1569
b7680cb6 1570 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1571
05330448 1572 ret = kvm_getput_regs(env, 1);
b9bec74b 1573 if (ret < 0) {
05330448 1574 return ret;
b9bec74b 1575 }
f1665b21 1576 ret = kvm_put_xsave(env);
b9bec74b 1577 if (ret < 0) {
f1665b21 1578 return ret;
b9bec74b 1579 }
f1665b21 1580 ret = kvm_put_xcrs(env);
b9bec74b 1581 if (ret < 0) {
05330448 1582 return ret;
b9bec74b 1583 }
05330448 1584 ret = kvm_put_sregs(env);
b9bec74b 1585 if (ret < 0) {
05330448 1586 return ret;
b9bec74b 1587 }
ab443475
JK
1588 /* must be before kvm_put_msrs */
1589 ret = kvm_inject_mce_oldstyle(env);
1590 if (ret < 0) {
1591 return ret;
1592 }
ea643051 1593 ret = kvm_put_msrs(env, level);
b9bec74b 1594 if (ret < 0) {
05330448 1595 return ret;
b9bec74b 1596 }
ea643051
JK
1597 if (level >= KVM_PUT_RESET_STATE) {
1598 ret = kvm_put_mp_state(env);
b9bec74b 1599 if (ret < 0) {
ea643051 1600 return ret;
b9bec74b 1601 }
680c1c6f
JK
1602 ret = kvm_put_apic(env);
1603 if (ret < 0) {
1604 return ret;
1605 }
ea643051 1606 }
ea643051 1607 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1608 if (ret < 0) {
a0fb002c 1609 return ret;
b9bec74b 1610 }
0d75a9ec 1611 ret = kvm_put_debugregs(env);
b9bec74b 1612 if (ret < 0) {
b0b1d690 1613 return ret;
b9bec74b 1614 }
b0b1d690
JK
1615 /* must be last */
1616 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1617 if (ret < 0) {
ff44f1a3 1618 return ret;
b9bec74b 1619 }
05330448
AL
1620 return 0;
1621}
1622
317ac620 1623int kvm_arch_get_registers(CPUX86State *env)
05330448
AL
1624{
1625 int ret;
1626
b7680cb6 1627 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1628
05330448 1629 ret = kvm_getput_regs(env, 0);
b9bec74b 1630 if (ret < 0) {
05330448 1631 return ret;
b9bec74b 1632 }
f1665b21 1633 ret = kvm_get_xsave(env);
b9bec74b 1634 if (ret < 0) {
f1665b21 1635 return ret;
b9bec74b 1636 }
f1665b21 1637 ret = kvm_get_xcrs(env);
b9bec74b 1638 if (ret < 0) {
05330448 1639 return ret;
b9bec74b 1640 }
05330448 1641 ret = kvm_get_sregs(env);
b9bec74b 1642 if (ret < 0) {
05330448 1643 return ret;
b9bec74b 1644 }
05330448 1645 ret = kvm_get_msrs(env);
b9bec74b 1646 if (ret < 0) {
05330448 1647 return ret;
b9bec74b 1648 }
5a2e3c2e 1649 ret = kvm_get_mp_state(env);
b9bec74b 1650 if (ret < 0) {
5a2e3c2e 1651 return ret;
b9bec74b 1652 }
680c1c6f
JK
1653 ret = kvm_get_apic(env);
1654 if (ret < 0) {
1655 return ret;
1656 }
a0fb002c 1657 ret = kvm_get_vcpu_events(env);
b9bec74b 1658 if (ret < 0) {
a0fb002c 1659 return ret;
b9bec74b 1660 }
ff44f1a3 1661 ret = kvm_get_debugregs(env);
b9bec74b 1662 if (ret < 0) {
ff44f1a3 1663 return ret;
b9bec74b 1664 }
05330448
AL
1665 return 0;
1666}
1667
317ac620 1668void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
05330448 1669{
ce377af3
JK
1670 int ret;
1671
276ce815
LJ
1672 /* Inject NMI */
1673 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1674 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1675 DPRINTF("injected NMI\n");
ce377af3
JK
1676 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1677 if (ret < 0) {
1678 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1679 strerror(-ret));
1680 }
276ce815
LJ
1681 }
1682
db1669bc 1683 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1684 /* Force the VCPU out of its inner loop to process any INIT requests
1685 * or pending TPR access reports. */
1686 if (env->interrupt_request &
1687 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
db1669bc 1688 env->exit_request = 1;
05330448 1689 }
05330448 1690
db1669bc
JK
1691 /* Try to inject an interrupt if the guest can accept it */
1692 if (run->ready_for_interrupt_injection &&
1693 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1694 (env->eflags & IF_MASK)) {
1695 int irq;
1696
1697 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1698 irq = cpu_get_pic_interrupt(env);
1699 if (irq >= 0) {
1700 struct kvm_interrupt intr;
1701
1702 intr.irq = irq;
db1669bc 1703 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1704 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1705 if (ret < 0) {
1706 fprintf(stderr,
1707 "KVM: injection failed, interrupt lost (%s)\n",
1708 strerror(-ret));
1709 }
db1669bc
JK
1710 }
1711 }
05330448 1712
db1669bc
JK
1713 /* If we have an interrupt but the guest is not ready to receive an
1714 * interrupt, request an interrupt window exit. This will
1715 * cause a return to userspace as soon as the guest is ready to
1716 * receive interrupts. */
1717 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1718 run->request_interrupt_window = 1;
1719 } else {
1720 run->request_interrupt_window = 0;
1721 }
1722
1723 DPRINTF("setting tpr\n");
1724 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1725 }
05330448
AL
1726}
1727
317ac620 1728void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
05330448 1729{
b9bec74b 1730 if (run->if_flag) {
05330448 1731 env->eflags |= IF_MASK;
b9bec74b 1732 } else {
05330448 1733 env->eflags &= ~IF_MASK;
b9bec74b 1734 }
4a942cea
BS
1735 cpu_set_apic_tpr(env->apic_state, run->cr8);
1736 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1737}
1738
317ac620 1739int kvm_arch_process_async_events(CPUX86State *env)
0af691d7 1740{
232fc23b
AF
1741 X86CPU *cpu = x86_env_get_cpu(env);
1742
ab443475
JK
1743 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1744 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1745 assert(env->mcg_cap);
1746
1747 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1748
1749 kvm_cpu_synchronize_state(env);
1750
1751 if (env->exception_injected == EXCP08_DBLE) {
1752 /* this means triple fault */
1753 qemu_system_reset_request();
1754 env->exit_request = 1;
1755 return 0;
1756 }
1757 env->exception_injected = EXCP12_MCHK;
1758 env->has_error_code = 0;
1759
1760 env->halted = 0;
1761 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1762 env->mp_state = KVM_MP_STATE_RUNNABLE;
1763 }
1764 }
1765
db1669bc
JK
1766 if (kvm_irqchip_in_kernel()) {
1767 return 0;
1768 }
1769
5d62c43a
JK
1770 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1771 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1772 apic_poll_irq(env->apic_state);
1773 }
4601f7b0
JK
1774 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1775 (env->eflags & IF_MASK)) ||
1776 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1777 env->halted = 0;
1778 }
0af691d7
MT
1779 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1780 kvm_cpu_synchronize_state(env);
232fc23b 1781 do_cpu_init(cpu);
0af691d7 1782 }
0af691d7
MT
1783 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1784 kvm_cpu_synchronize_state(env);
232fc23b 1785 do_cpu_sipi(cpu);
0af691d7 1786 }
d362e757
JK
1787 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1788 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1789 kvm_cpu_synchronize_state(env);
1790 apic_handle_tpr_access_report(env->apic_state, env->eip,
1791 env->tpr_access_type);
1792 }
0af691d7
MT
1793
1794 return env->halted;
1795}
1796
317ac620 1797static int kvm_handle_halt(CPUX86State *env)
05330448
AL
1798{
1799 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1800 (env->eflags & IF_MASK)) &&
1801 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1802 env->halted = 1;
bb4ea393 1803 return EXCP_HLT;
05330448
AL
1804 }
1805
bb4ea393 1806 return 0;
05330448
AL
1807}
1808
317ac620 1809static int kvm_handle_tpr_access(CPUX86State *env)
d362e757
JK
1810{
1811 struct kvm_run *run = env->kvm_run;
1812
1813 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1814 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1815 : TPR_ACCESS_READ);
1816 return 1;
1817}
1818
317ac620 1819int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9 1820{
38972938 1821 static const uint8_t int3 = 0xcc;
64bf3f4e 1822
e22a25c9 1823 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1824 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1825 return -EINVAL;
b9bec74b 1826 }
e22a25c9
AL
1827 return 0;
1828}
1829
317ac620 1830int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
1831{
1832 uint8_t int3;
1833
1834 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1835 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1836 return -EINVAL;
b9bec74b 1837 }
e22a25c9
AL
1838 return 0;
1839}
1840
1841static struct {
1842 target_ulong addr;
1843 int len;
1844 int type;
1845} hw_breakpoint[4];
1846
1847static int nb_hw_breakpoint;
1848
1849static int find_hw_breakpoint(target_ulong addr, int len, int type)
1850{
1851 int n;
1852
b9bec74b 1853 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1854 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1855 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1856 return n;
b9bec74b
JK
1857 }
1858 }
e22a25c9
AL
1859 return -1;
1860}
1861
1862int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1863 target_ulong len, int type)
1864{
1865 switch (type) {
1866 case GDB_BREAKPOINT_HW:
1867 len = 1;
1868 break;
1869 case GDB_WATCHPOINT_WRITE:
1870 case GDB_WATCHPOINT_ACCESS:
1871 switch (len) {
1872 case 1:
1873 break;
1874 case 2:
1875 case 4:
1876 case 8:
b9bec74b 1877 if (addr & (len - 1)) {
e22a25c9 1878 return -EINVAL;
b9bec74b 1879 }
e22a25c9
AL
1880 break;
1881 default:
1882 return -EINVAL;
1883 }
1884 break;
1885 default:
1886 return -ENOSYS;
1887 }
1888
b9bec74b 1889 if (nb_hw_breakpoint == 4) {
e22a25c9 1890 return -ENOBUFS;
b9bec74b
JK
1891 }
1892 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1893 return -EEXIST;
b9bec74b 1894 }
e22a25c9
AL
1895 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1896 hw_breakpoint[nb_hw_breakpoint].len = len;
1897 hw_breakpoint[nb_hw_breakpoint].type = type;
1898 nb_hw_breakpoint++;
1899
1900 return 0;
1901}
1902
1903int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1904 target_ulong len, int type)
1905{
1906 int n;
1907
1908 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1909 if (n < 0) {
e22a25c9 1910 return -ENOENT;
b9bec74b 1911 }
e22a25c9
AL
1912 nb_hw_breakpoint--;
1913 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1914
1915 return 0;
1916}
1917
1918void kvm_arch_remove_all_hw_breakpoints(void)
1919{
1920 nb_hw_breakpoint = 0;
1921}
1922
1923static CPUWatchpoint hw_watchpoint;
1924
f2574737 1925static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1926{
f2574737 1927 int ret = 0;
e22a25c9
AL
1928 int n;
1929
1930 if (arch_info->exception == 1) {
1931 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1932 if (cpu_single_env->singlestep_enabled) {
f2574737 1933 ret = EXCP_DEBUG;
b9bec74b 1934 }
e22a25c9 1935 } else {
b9bec74b
JK
1936 for (n = 0; n < 4; n++) {
1937 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1938 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1939 case 0x0:
f2574737 1940 ret = EXCP_DEBUG;
e22a25c9
AL
1941 break;
1942 case 0x1:
f2574737 1943 ret = EXCP_DEBUG;
e22a25c9
AL
1944 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1945 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1946 hw_watchpoint.flags = BP_MEM_WRITE;
1947 break;
1948 case 0x3:
f2574737 1949 ret = EXCP_DEBUG;
e22a25c9
AL
1950 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1951 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1952 hw_watchpoint.flags = BP_MEM_ACCESS;
1953 break;
1954 }
b9bec74b
JK
1955 }
1956 }
e22a25c9 1957 }
b9bec74b 1958 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1959 ret = EXCP_DEBUG;
b9bec74b 1960 }
f2574737 1961 if (ret == 0) {
b0b1d690
JK
1962 cpu_synchronize_state(cpu_single_env);
1963 assert(cpu_single_env->exception_injected == -1);
1964
f2574737 1965 /* pass to guest */
b0b1d690
JK
1966 cpu_single_env->exception_injected = arch_info->exception;
1967 cpu_single_env->has_error_code = 0;
1968 }
e22a25c9 1969
f2574737 1970 return ret;
e22a25c9
AL
1971}
1972
317ac620 1973void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
e22a25c9
AL
1974{
1975 const uint8_t type_code[] = {
1976 [GDB_BREAKPOINT_HW] = 0x0,
1977 [GDB_WATCHPOINT_WRITE] = 0x1,
1978 [GDB_WATCHPOINT_ACCESS] = 0x3
1979 };
1980 const uint8_t len_code[] = {
1981 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1982 };
1983 int n;
1984
b9bec74b 1985 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1986 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1987 }
e22a25c9
AL
1988 if (nb_hw_breakpoint > 0) {
1989 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1990 dbg->arch.debugreg[7] = 0x0600;
1991 for (n = 0; n < nb_hw_breakpoint; n++) {
1992 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1993 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1994 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1995 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1996 }
1997 }
1998}
4513d923 1999
2a4dac83
JK
2000static bool host_supports_vmx(void)
2001{
2002 uint32_t ecx, unused;
2003
2004 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2005 return ecx & CPUID_EXT_VMX;
2006}
2007
2008#define VMX_INVALID_GUEST_STATE 0x80000021
2009
317ac620 2010int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2a4dac83
JK
2011{
2012 uint64_t code;
2013 int ret;
2014
2015 switch (run->exit_reason) {
2016 case KVM_EXIT_HLT:
2017 DPRINTF("handle_hlt\n");
2018 ret = kvm_handle_halt(env);
2019 break;
2020 case KVM_EXIT_SET_TPR:
2021 ret = 0;
2022 break;
d362e757
JK
2023 case KVM_EXIT_TPR_ACCESS:
2024 ret = kvm_handle_tpr_access(env);
2025 break;
2a4dac83
JK
2026 case KVM_EXIT_FAIL_ENTRY:
2027 code = run->fail_entry.hardware_entry_failure_reason;
2028 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2029 code);
2030 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2031 fprintf(stderr,
12619721 2032 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2033 "unrestricted mode\n"
2034 "support, the failure can be most likely due to the guest "
2035 "entering an invalid\n"
2036 "state for Intel VT. For example, the guest maybe running "
2037 "in big real mode\n"
2038 "which is not supported on less recent Intel processors."
2039 "\n\n");
2040 }
2041 ret = -1;
2042 break;
2043 case KVM_EXIT_EXCEPTION:
2044 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2045 run->ex.exception, run->ex.error_code);
2046 ret = -1;
2047 break;
f2574737
JK
2048 case KVM_EXIT_DEBUG:
2049 DPRINTF("kvm_exit_debug\n");
2050 ret = kvm_handle_debug(&run->debug.arch);
2051 break;
2a4dac83
JK
2052 default:
2053 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2054 ret = -1;
2055 break;
2056 }
2057
2058 return ret;
2059}
2060
317ac620 2061bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
4513d923 2062{
d1f86636 2063 kvm_cpu_synchronize_state(env);
b9bec74b
JK
2064 return !(env->cr[0] & CR0_PE_MASK) ||
2065 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2066}
84b058d7
JK
2067
2068void kvm_arch_init_irq_routing(KVMState *s)
2069{
2070 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2071 /* If kernel can't do irq routing, interrupt source
2072 * override 0->2 cannot be set up as required by HPET.
2073 * So we have to disable it.
2074 */
2075 no_hpet = 1;
2076 }
cc7e0ddf 2077 /* We know at this point that we're using the in-kernel
614e41bc 2078 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2079 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2080 */
2081 kvm_irqfds_allowed = true;
614e41bc 2082 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2083 kvm_gsi_routing_allowed = true;
84b058d7 2084}
b139bd30
JK
2085
2086/* Classic KVM device assignment interface. Will remain x86 only. */
2087int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2088 uint32_t flags, uint32_t *dev_id)
2089{
2090 struct kvm_assigned_pci_dev dev_data = {
2091 .segnr = dev_addr->domain,
2092 .busnr = dev_addr->bus,
2093 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2094 .flags = flags,
2095 };
2096 int ret;
2097
2098 dev_data.assigned_dev_id =
2099 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2100
2101 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2102 if (ret < 0) {
2103 return ret;
2104 }
2105
2106 *dev_id = dev_data.assigned_dev_id;
2107
2108 return 0;
2109}
2110
2111int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2112{
2113 struct kvm_assigned_pci_dev dev_data = {
2114 .assigned_dev_id = dev_id,
2115 };
2116
2117 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2118}
2119
2120static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2121 uint32_t irq_type, uint32_t guest_irq)
2122{
2123 struct kvm_assigned_irq assigned_irq = {
2124 .assigned_dev_id = dev_id,
2125 .guest_irq = guest_irq,
2126 .flags = irq_type,
2127 };
2128
2129 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2130 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2131 } else {
2132 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2133 }
2134}
2135
2136int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2137 uint32_t guest_irq)
2138{
2139 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2140 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2141
2142 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2143}
2144
2145int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2146{
2147 struct kvm_assigned_pci_dev dev_data = {
2148 .assigned_dev_id = dev_id,
2149 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2150 };
2151
2152 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2153}
2154
2155static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2156 uint32_t type)
2157{
2158 struct kvm_assigned_irq assigned_irq = {
2159 .assigned_dev_id = dev_id,
2160 .flags = type,
2161 };
2162
2163 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2164}
2165
2166int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2167{
2168 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2169 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2170}
2171
2172int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2173{
2174 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2175 KVM_DEV_IRQ_GUEST_MSI, virq);
2176}
2177
2178int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2179{
2180 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2181 KVM_DEV_IRQ_HOST_MSI);
2182}
2183
2184bool kvm_device_msix_supported(KVMState *s)
2185{
2186 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2187 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2188 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2189}
2190
2191int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2192 uint32_t nr_vectors)
2193{
2194 struct kvm_assigned_msix_nr msix_nr = {
2195 .assigned_dev_id = dev_id,
2196 .entry_nr = nr_vectors,
2197 };
2198
2199 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2200}
2201
2202int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2203 int virq)
2204{
2205 struct kvm_assigned_msix_entry msix_entry = {
2206 .assigned_dev_id = dev_id,
2207 .gsi = virq,
2208 .entry = vector,
2209 };
2210
2211 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2212}
2213
2214int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2215{
2216 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2217 KVM_DEV_IRQ_GUEST_MSIX, 0);
2218}
2219
2220int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2221{
2222 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2223 KVM_DEV_IRQ_HOST_MSIX);
2224}
This page took 0.898025 seconds and 4 git commands to generate.