]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
1814eab6 | 21 | #include "standard-headers/asm-x86/kvm_para.h" |
05330448 | 22 | |
33c11879 | 23 | #include "cpu.h" |
9c17d615 | 24 | #include "sysemu/sysemu.h" |
b3946626 | 25 | #include "sysemu/hw_accel.h" |
6410848b | 26 | #include "sysemu/kvm_int.h" |
1d31f66b | 27 | #include "kvm_i386.h" |
50efe82c | 28 | #include "hyperv.h" |
5e953812 | 29 | #include "hyperv-proto.h" |
50efe82c | 30 | |
022c62cb | 31 | #include "exec/gdbstub.h" |
1de7afc9 PB |
32 | #include "qemu/host-utils.h" |
33 | #include "qemu/config-file.h" | |
1c4a55db | 34 | #include "qemu/error-report.h" |
0d09e41a PB |
35 | #include "hw/i386/pc.h" |
36 | #include "hw/i386/apic.h" | |
e0723c45 PB |
37 | #include "hw/i386/apic_internal.h" |
38 | #include "hw/i386/apic-msidef.h" | |
8b5ed7df | 39 | #include "hw/i386/intel_iommu.h" |
e1d4fb2d | 40 | #include "hw/i386/x86-iommu.h" |
50efe82c | 41 | |
a2cb15b0 | 42 | #include "hw/pci/pci.h" |
15eafc2e | 43 | #include "hw/pci/msi.h" |
fd563564 | 44 | #include "hw/pci/msix.h" |
795c40b8 | 45 | #include "migration/blocker.h" |
4c663752 | 46 | #include "exec/memattrs.h" |
8b5ed7df | 47 | #include "trace.h" |
05330448 AL |
48 | |
49 | //#define DEBUG_KVM | |
50 | ||
51 | #ifdef DEBUG_KVM | |
8c0d577e | 52 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
53 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
54 | #else | |
8c0d577e | 55 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
56 | do { } while (0) |
57 | #endif | |
58 | ||
1a03675d GC |
59 | #define MSR_KVM_WALL_CLOCK 0x11 |
60 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
61 | ||
d1138251 EH |
62 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
63 | * 255 kvm_msr_entry structs */ | |
64 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 65 | |
94a8d39a JK |
66 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
67 | KVM_CAP_INFO(SET_TSS_ADDR), | |
68 | KVM_CAP_INFO(EXT_CPUID), | |
69 | KVM_CAP_INFO(MP_STATE), | |
70 | KVM_CAP_LAST_INFO | |
71 | }; | |
25d2e361 | 72 | |
c3a3a7d3 JK |
73 | static bool has_msr_star; |
74 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 75 | static bool has_msr_tsc_aux; |
f28558d3 | 76 | static bool has_msr_tsc_adjust; |
aa82ba54 | 77 | static bool has_msr_tsc_deadline; |
df67696e | 78 | static bool has_msr_feature_control; |
21e87c46 | 79 | static bool has_msr_misc_enable; |
fc12d72e | 80 | static bool has_msr_smbase; |
79e9ebeb | 81 | static bool has_msr_bndcfgs; |
25d2e361 | 82 | static int lm_capable_kernel; |
7bc3d711 | 83 | static bool has_msr_hv_hypercall; |
f2a53c9e | 84 | static bool has_msr_hv_crash; |
744b8a94 | 85 | static bool has_msr_hv_reset; |
8c145d7c | 86 | static bool has_msr_hv_vpindex; |
e9688fab | 87 | static bool hv_vpindex_settable; |
46eb8f98 | 88 | static bool has_msr_hv_runtime; |
866eea9a | 89 | static bool has_msr_hv_synic; |
ff99aa64 | 90 | static bool has_msr_hv_stimer; |
d72bc7f6 | 91 | static bool has_msr_hv_frequencies; |
ba6a4fd9 | 92 | static bool has_msr_hv_reenlightenment; |
18cd2c17 | 93 | static bool has_msr_xss; |
a33a2cfe | 94 | static bool has_msr_spec_ctrl; |
cfeea0c0 | 95 | static bool has_msr_virt_ssbd; |
e13713db | 96 | static bool has_msr_smi_count; |
aec5e9c3 | 97 | static bool has_msr_arch_capabs; |
597360c0 | 98 | static bool has_msr_core_capabs; |
b827df58 | 99 | |
0b368a10 JD |
100 | static uint32_t has_architectural_pmu_version; |
101 | static uint32_t num_architectural_pmu_gp_counters; | |
102 | static uint32_t num_architectural_pmu_fixed_counters; | |
0d894367 | 103 | |
28143b40 TH |
104 | static int has_xsave; |
105 | static int has_xcrs; | |
106 | static int has_pit_state2; | |
fd13f23b | 107 | static int has_exception_payload; |
28143b40 | 108 | |
87f8b626 AR |
109 | static bool has_msr_mcg_ext_ctl; |
110 | ||
494e95e9 | 111 | static struct kvm_cpuid2 *cpuid_cache; |
f57bceb6 | 112 | static struct kvm_msr_list *kvm_feature_msrs; |
494e95e9 | 113 | |
28143b40 TH |
114 | int kvm_has_pit_state2(void) |
115 | { | |
116 | return has_pit_state2; | |
117 | } | |
118 | ||
355023f2 PB |
119 | bool kvm_has_smm(void) |
120 | { | |
121 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
122 | } | |
123 | ||
6053a86f MT |
124 | bool kvm_has_adjust_clock_stable(void) |
125 | { | |
126 | int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); | |
127 | ||
128 | return (ret == KVM_CLOCK_TSC_STABLE); | |
129 | } | |
130 | ||
1d31f66b PM |
131 | bool kvm_allows_irq0_override(void) |
132 | { | |
133 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
134 | } | |
135 | ||
fb506e70 RK |
136 | static bool kvm_x2apic_api_set_flags(uint64_t flags) |
137 | { | |
138 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
139 | ||
140 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
141 | } | |
142 | ||
e391c009 | 143 | #define MEMORIZE(fn, _result) \ |
2a138ec3 | 144 | ({ \ |
2a138ec3 RK |
145 | static bool _memorized; \ |
146 | \ | |
147 | if (_memorized) { \ | |
148 | return _result; \ | |
149 | } \ | |
150 | _memorized = true; \ | |
151 | _result = fn; \ | |
152 | }) | |
153 | ||
e391c009 IM |
154 | static bool has_x2apic_api; |
155 | ||
156 | bool kvm_has_x2apic_api(void) | |
157 | { | |
158 | return has_x2apic_api; | |
159 | } | |
160 | ||
fb506e70 RK |
161 | bool kvm_enable_x2apic(void) |
162 | { | |
2a138ec3 RK |
163 | return MEMORIZE( |
164 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
e391c009 IM |
165 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
166 | has_x2apic_api); | |
fb506e70 RK |
167 | } |
168 | ||
e9688fab RK |
169 | bool kvm_hv_vpindex_settable(void) |
170 | { | |
171 | return hv_vpindex_settable; | |
172 | } | |
173 | ||
0fd7e098 LL |
174 | static int kvm_get_tsc(CPUState *cs) |
175 | { | |
176 | X86CPU *cpu = X86_CPU(cs); | |
177 | CPUX86State *env = &cpu->env; | |
178 | struct { | |
179 | struct kvm_msrs info; | |
180 | struct kvm_msr_entry entries[1]; | |
181 | } msr_data; | |
182 | int ret; | |
183 | ||
184 | if (env->tsc_valid) { | |
185 | return 0; | |
186 | } | |
187 | ||
188 | msr_data.info.nmsrs = 1; | |
189 | msr_data.entries[0].index = MSR_IA32_TSC; | |
190 | env->tsc_valid = !runstate_is_running(); | |
191 | ||
192 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
193 | if (ret < 0) { | |
194 | return ret; | |
195 | } | |
196 | ||
48e1a45c | 197 | assert(ret == 1); |
0fd7e098 LL |
198 | env->tsc = msr_data.entries[0].data; |
199 | return 0; | |
200 | } | |
201 | ||
14e6fe12 | 202 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
0fd7e098 | 203 | { |
0fd7e098 LL |
204 | kvm_get_tsc(cpu); |
205 | } | |
206 | ||
207 | void kvm_synchronize_all_tsc(void) | |
208 | { | |
209 | CPUState *cpu; | |
210 | ||
211 | if (kvm_enabled()) { | |
212 | CPU_FOREACH(cpu) { | |
14e6fe12 | 213 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
0fd7e098 LL |
214 | } |
215 | } | |
216 | } | |
217 | ||
b827df58 AK |
218 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
219 | { | |
220 | struct kvm_cpuid2 *cpuid; | |
221 | int r, size; | |
222 | ||
223 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 224 | cpuid = g_malloc0(size); |
b827df58 AK |
225 | cpuid->nent = max; |
226 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
227 | if (r == 0 && cpuid->nent >= max) { |
228 | r = -E2BIG; | |
229 | } | |
b827df58 AK |
230 | if (r < 0) { |
231 | if (r == -E2BIG) { | |
7267c094 | 232 | g_free(cpuid); |
b827df58 AK |
233 | return NULL; |
234 | } else { | |
235 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
236 | strerror(-r)); | |
237 | exit(1); | |
238 | } | |
239 | } | |
240 | return cpuid; | |
241 | } | |
242 | ||
dd87f8a6 EH |
243 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
244 | * for all entries. | |
245 | */ | |
246 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
247 | { | |
248 | struct kvm_cpuid2 *cpuid; | |
249 | int max = 1; | |
494e95e9 CP |
250 | |
251 | if (cpuid_cache != NULL) { | |
252 | return cpuid_cache; | |
253 | } | |
dd87f8a6 EH |
254 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
255 | max *= 2; | |
256 | } | |
494e95e9 | 257 | cpuid_cache = cpuid; |
dd87f8a6 EH |
258 | return cpuid; |
259 | } | |
260 | ||
a443bc34 | 261 | static const struct kvm_para_features { |
0c31b744 GC |
262 | int cap; |
263 | int feature; | |
264 | } para_features[] = { | |
265 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
266 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
267 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 268 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
269 | }; |
270 | ||
ba9bc59e | 271 | static int get_para_features(KVMState *s) |
0c31b744 GC |
272 | { |
273 | int i, features = 0; | |
274 | ||
8e03c100 | 275 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 276 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
277 | features |= (1 << para_features[i].feature); |
278 | } | |
279 | } | |
280 | ||
281 | return features; | |
282 | } | |
0c31b744 | 283 | |
40e80ee4 EH |
284 | static bool host_tsx_blacklisted(void) |
285 | { | |
286 | int family, model, stepping;\ | |
287 | char vendor[CPUID_VENDOR_SZ + 1]; | |
288 | ||
289 | host_vendor_fms(vendor, &family, &model, &stepping); | |
290 | ||
291 | /* Check if we are running on a Haswell host known to have broken TSX */ | |
292 | return !strcmp(vendor, CPUID_VENDOR_INTEL) && | |
293 | (family == 6) && | |
294 | ((model == 63 && stepping < 4) || | |
295 | model == 60 || model == 69 || model == 70); | |
296 | } | |
0c31b744 | 297 | |
829ae2f9 EH |
298 | /* Returns the value for a specific register on the cpuid entry |
299 | */ | |
300 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
301 | { | |
302 | uint32_t ret = 0; | |
303 | switch (reg) { | |
304 | case R_EAX: | |
305 | ret = entry->eax; | |
306 | break; | |
307 | case R_EBX: | |
308 | ret = entry->ebx; | |
309 | break; | |
310 | case R_ECX: | |
311 | ret = entry->ecx; | |
312 | break; | |
313 | case R_EDX: | |
314 | ret = entry->edx; | |
315 | break; | |
316 | } | |
317 | return ret; | |
318 | } | |
319 | ||
4fb73f1d EH |
320 | /* Find matching entry for function/index on kvm_cpuid2 struct |
321 | */ | |
322 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
323 | uint32_t function, | |
324 | uint32_t index) | |
325 | { | |
326 | int i; | |
327 | for (i = 0; i < cpuid->nent; ++i) { | |
328 | if (cpuid->entries[i].function == function && | |
329 | cpuid->entries[i].index == index) { | |
330 | return &cpuid->entries[i]; | |
331 | } | |
332 | } | |
333 | /* not found: */ | |
334 | return NULL; | |
335 | } | |
336 | ||
ba9bc59e | 337 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 338 | uint32_t index, int reg) |
b827df58 AK |
339 | { |
340 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
341 | uint32_t ret = 0; |
342 | uint32_t cpuid_1_edx; | |
8c723b79 | 343 | bool found = false; |
b827df58 | 344 | |
dd87f8a6 | 345 | cpuid = get_supported_cpuid(s); |
b827df58 | 346 | |
4fb73f1d EH |
347 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
348 | if (entry) { | |
349 | found = true; | |
350 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
351 | } |
352 | ||
7b46e5ce EH |
353 | /* Fixups for the data returned by KVM, below */ |
354 | ||
c2acb022 EH |
355 | if (function == 1 && reg == R_EDX) { |
356 | /* KVM before 2.6.30 misreports the following features */ | |
357 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
358 | } else if (function == 1 && reg == R_ECX) { |
359 | /* We can set the hypervisor flag, even if KVM does not return it on | |
360 | * GET_SUPPORTED_CPUID | |
361 | */ | |
362 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
363 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
364 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
365 | * and the irqchip is in the kernel. | |
366 | */ | |
367 | if (kvm_irqchip_in_kernel() && | |
368 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
369 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
370 | } | |
41e5e76d EH |
371 | |
372 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
373 | * without the in-kernel irqchip | |
374 | */ | |
375 | if (!kvm_irqchip_in_kernel()) { | |
376 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 377 | } |
2266d443 MT |
378 | |
379 | if (enable_cpu_pm) { | |
380 | int disable_exits = kvm_check_extension(s, | |
381 | KVM_CAP_X86_DISABLE_EXITS); | |
382 | ||
383 | if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { | |
384 | ret |= CPUID_EXT_MONITOR; | |
385 | } | |
386 | } | |
28b8e4d0 JK |
387 | } else if (function == 6 && reg == R_EAX) { |
388 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
40e80ee4 EH |
389 | } else if (function == 7 && index == 0 && reg == R_EBX) { |
390 | if (host_tsx_blacklisted()) { | |
391 | ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); | |
392 | } | |
485b1d25 EH |
393 | } else if (function == 7 && index == 0 && reg == R_EDX) { |
394 | /* | |
395 | * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. | |
396 | * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is | |
397 | * returned by KVM_GET_MSR_INDEX_LIST. | |
398 | */ | |
399 | if (!has_msr_arch_capabs) { | |
400 | ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; | |
401 | } | |
f98bbd83 BM |
402 | } else if (function == 0x80000001 && reg == R_ECX) { |
403 | /* | |
404 | * It's safe to enable TOPOEXT even if it's not returned by | |
405 | * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows | |
406 | * us to keep CPU models including TOPOEXT runnable on older kernels. | |
407 | */ | |
408 | ret |= CPUID_EXT3_TOPOEXT; | |
c2acb022 EH |
409 | } else if (function == 0x80000001 && reg == R_EDX) { |
410 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
411 | * so add missing bits according to the AMD spec: | |
412 | */ | |
413 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
414 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
64877477 EH |
415 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
416 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
417 | * be enabled without the in-kernel irqchip | |
418 | */ | |
419 | if (!kvm_irqchip_in_kernel()) { | |
420 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
421 | } | |
be777326 | 422 | } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { |
2af1acad | 423 | ret |= 1U << KVM_HINTS_REALTIME; |
be777326 | 424 | found = 1; |
b827df58 AK |
425 | } |
426 | ||
0c31b744 | 427 | /* fallback for older kernels */ |
8c723b79 | 428 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 429 | ret = get_para_features(s); |
b9bec74b | 430 | } |
0c31b744 GC |
431 | |
432 | return ret; | |
bb0300dc | 433 | } |
bb0300dc | 434 | |
f57bceb6 RH |
435 | uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) |
436 | { | |
437 | struct { | |
438 | struct kvm_msrs info; | |
439 | struct kvm_msr_entry entries[1]; | |
440 | } msr_data; | |
441 | uint32_t ret; | |
442 | ||
443 | if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ | |
444 | return 0; | |
445 | } | |
446 | ||
447 | /* Check if requested MSR is supported feature MSR */ | |
448 | int i; | |
449 | for (i = 0; i < kvm_feature_msrs->nmsrs; i++) | |
450 | if (kvm_feature_msrs->indices[i] == index) { | |
451 | break; | |
452 | } | |
453 | if (i == kvm_feature_msrs->nmsrs) { | |
454 | return 0; /* if the feature MSR is not supported, simply return 0 */ | |
455 | } | |
456 | ||
457 | msr_data.info.nmsrs = 1; | |
458 | msr_data.entries[0].index = index; | |
459 | ||
460 | ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); | |
461 | if (ret != 1) { | |
462 | error_report("KVM get MSR (index=0x%x) feature failed, %s", | |
463 | index, strerror(-ret)); | |
464 | exit(1); | |
465 | } | |
466 | ||
467 | return msr_data.entries[0].data; | |
468 | } | |
469 | ||
470 | ||
3c85e74f HY |
471 | typedef struct HWPoisonPage { |
472 | ram_addr_t ram_addr; | |
473 | QLIST_ENTRY(HWPoisonPage) list; | |
474 | } HWPoisonPage; | |
475 | ||
476 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
477 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
478 | ||
479 | static void kvm_unpoison_all(void *param) | |
480 | { | |
481 | HWPoisonPage *page, *next_page; | |
482 | ||
483 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
484 | QLIST_REMOVE(page, list); | |
485 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 486 | g_free(page); |
3c85e74f HY |
487 | } |
488 | } | |
489 | ||
3c85e74f HY |
490 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
491 | { | |
492 | HWPoisonPage *page; | |
493 | ||
494 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
495 | if (page->ram_addr == ram_addr) { | |
496 | return; | |
497 | } | |
498 | } | |
ab3ad07f | 499 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
500 | page->ram_addr = ram_addr; |
501 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
502 | } | |
503 | ||
e7701825 MT |
504 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
505 | int *max_banks) | |
506 | { | |
507 | int r; | |
508 | ||
14a09518 | 509 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
510 | if (r > 0) { |
511 | *max_banks = r; | |
512 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
513 | } | |
514 | return -ENOSYS; | |
515 | } | |
516 | ||
bee615d4 | 517 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 518 | { |
87f8b626 | 519 | CPUState *cs = CPU(cpu); |
bee615d4 | 520 | CPUX86State *env = &cpu->env; |
c34d440a JK |
521 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
522 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
523 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 524 | int flags = 0; |
e7701825 | 525 | |
c34d440a JK |
526 | if (code == BUS_MCEERR_AR) { |
527 | status |= MCI_STATUS_AR | 0x134; | |
528 | mcg_status |= MCG_STATUS_EIPV; | |
529 | } else { | |
530 | status |= 0xc0; | |
531 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 532 | } |
87f8b626 AR |
533 | |
534 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
535 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
536 | * guest kernel back into env->mcg_ext_ctl. | |
537 | */ | |
538 | cpu_synchronize_state(cs); | |
539 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
540 | mcg_status |= MCG_STATUS_LMCE; | |
541 | flags = 0; | |
542 | } | |
543 | ||
8c5cf3b6 | 544 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 545 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 546 | } |
419fb20a JK |
547 | |
548 | static void hardware_memory_error(void) | |
549 | { | |
550 | fprintf(stderr, "Hardware memory error!\n"); | |
551 | exit(1); | |
552 | } | |
553 | ||
2ae41db2 | 554 | void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 555 | { |
20d695a9 AF |
556 | X86CPU *cpu = X86_CPU(c); |
557 | CPUX86State *env = &cpu->env; | |
419fb20a | 558 | ram_addr_t ram_addr; |
a8170e5e | 559 | hwaddr paddr; |
419fb20a | 560 | |
4d39892c PB |
561 | /* If we get an action required MCE, it has been injected by KVM |
562 | * while the VM was running. An action optional MCE instead should | |
563 | * be coming from the main thread, which qemu_init_sigbus identifies | |
564 | * as the "early kill" thread. | |
565 | */ | |
a16fc07e | 566 | assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
20e0ff59 | 567 | |
20e0ff59 | 568 | if ((env->mcg_cap & MCG_SER_P) && addr) { |
07bdaa41 | 569 | ram_addr = qemu_ram_addr_from_host(addr); |
20e0ff59 PB |
570 | if (ram_addr != RAM_ADDR_INVALID && |
571 | kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { | |
572 | kvm_hwpoison_page_add(ram_addr); | |
573 | kvm_mce_inject(cpu, paddr, code); | |
2ae41db2 | 574 | return; |
419fb20a | 575 | } |
20e0ff59 PB |
576 | |
577 | fprintf(stderr, "Hardware memory error for memory used by " | |
578 | "QEMU itself instead of guest system!\n"); | |
419fb20a | 579 | } |
20e0ff59 PB |
580 | |
581 | if (code == BUS_MCEERR_AR) { | |
582 | hardware_memory_error(); | |
583 | } | |
584 | ||
585 | /* Hope we are lucky for AO MCE */ | |
419fb20a JK |
586 | } |
587 | ||
fd13f23b LA |
588 | static void kvm_reset_exception(CPUX86State *env) |
589 | { | |
590 | env->exception_nr = -1; | |
591 | env->exception_pending = 0; | |
592 | env->exception_injected = 0; | |
593 | env->exception_has_payload = false; | |
594 | env->exception_payload = 0; | |
595 | } | |
596 | ||
597 | static void kvm_queue_exception(CPUX86State *env, | |
598 | int32_t exception_nr, | |
599 | uint8_t exception_has_payload, | |
600 | uint64_t exception_payload) | |
601 | { | |
602 | assert(env->exception_nr == -1); | |
603 | assert(!env->exception_pending); | |
604 | assert(!env->exception_injected); | |
605 | assert(!env->exception_has_payload); | |
606 | ||
607 | env->exception_nr = exception_nr; | |
608 | ||
609 | if (has_exception_payload) { | |
610 | env->exception_pending = 1; | |
611 | ||
612 | env->exception_has_payload = exception_has_payload; | |
613 | env->exception_payload = exception_payload; | |
614 | } else { | |
615 | env->exception_injected = 1; | |
616 | ||
617 | if (exception_nr == EXCP01_DB) { | |
618 | assert(exception_has_payload); | |
619 | env->dr[6] = exception_payload; | |
620 | } else if (exception_nr == EXCP0E_PAGE) { | |
621 | assert(exception_has_payload); | |
622 | env->cr[2] = exception_payload; | |
623 | } else { | |
624 | assert(!exception_has_payload); | |
625 | } | |
626 | } | |
627 | } | |
628 | ||
1bc22652 | 629 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 630 | { |
1bc22652 AF |
631 | CPUX86State *env = &cpu->env; |
632 | ||
fd13f23b | 633 | if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { |
ab443475 JK |
634 | unsigned int bank, bank_num = env->mcg_cap & 0xff; |
635 | struct kvm_x86_mce mce; | |
636 | ||
fd13f23b | 637 | kvm_reset_exception(env); |
ab443475 JK |
638 | |
639 | /* | |
640 | * There must be at least one bank in use if an MCE is pending. | |
641 | * Find it and use its values for the event injection. | |
642 | */ | |
643 | for (bank = 0; bank < bank_num; bank++) { | |
644 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
645 | break; | |
646 | } | |
647 | } | |
648 | assert(bank < bank_num); | |
649 | ||
650 | mce.bank = bank; | |
651 | mce.status = env->mce_banks[bank * 4 + 1]; | |
652 | mce.mcg_status = env->mcg_status; | |
653 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
654 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
655 | ||
1bc22652 | 656 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 657 | } |
ab443475 JK |
658 | return 0; |
659 | } | |
660 | ||
1dfb4dd9 | 661 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 662 | { |
317ac620 | 663 | CPUX86State *env = opaque; |
b8cc45d6 GC |
664 | |
665 | if (running) { | |
666 | env->tsc_valid = false; | |
667 | } | |
668 | } | |
669 | ||
83b17af5 | 670 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 671 | { |
83b17af5 | 672 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 673 | return cpu->apic_id; |
b164e48e EH |
674 | } |
675 | ||
92067bf4 IM |
676 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
677 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
678 | #endif | |
679 | ||
92067bf4 IM |
680 | static bool hyperv_enabled(X86CPU *cpu) |
681 | { | |
7bc3d711 PB |
682 | CPUState *cs = CPU(cpu); |
683 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
2d384d7c | 684 | ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) || |
e48ddcc6 | 685 | cpu->hyperv_features || cpu->hyperv_passthrough); |
92067bf4 IM |
686 | } |
687 | ||
5031283d HZ |
688 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
689 | { | |
690 | X86CPU *cpu = X86_CPU(cs); | |
691 | CPUX86State *env = &cpu->env; | |
692 | int r; | |
693 | ||
694 | if (!env->tsc_khz) { | |
695 | return 0; | |
696 | } | |
697 | ||
698 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
699 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
700 | -ENOTSUP; | |
701 | if (r < 0) { | |
702 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
703 | * TSC frequency doesn't match the one we want. | |
704 | */ | |
705 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
706 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
707 | -ENOTSUP; | |
708 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
3dc6f869 AF |
709 | warn_report("TSC frequency mismatch between " |
710 | "VM (%" PRId64 " kHz) and host (%d kHz), " | |
711 | "and TSC scaling unavailable", | |
712 | env->tsc_khz, cur_freq); | |
5031283d HZ |
713 | return r; |
714 | } | |
715 | } | |
716 | ||
717 | return 0; | |
718 | } | |
719 | ||
4bb95b82 LP |
720 | static bool tsc_is_stable_and_known(CPUX86State *env) |
721 | { | |
722 | if (!env->tsc_khz) { | |
723 | return false; | |
724 | } | |
725 | return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) | |
726 | || env->user_tsc_khz; | |
727 | } | |
728 | ||
6760bd20 VK |
729 | static struct { |
730 | const char *desc; | |
731 | struct { | |
732 | uint32_t fw; | |
733 | uint32_t bits; | |
734 | } flags[2]; | |
c6861930 | 735 | uint64_t dependencies; |
6760bd20 VK |
736 | } kvm_hyperv_properties[] = { |
737 | [HYPERV_FEAT_RELAXED] = { | |
738 | .desc = "relaxed timing (hv-relaxed)", | |
739 | .flags = { | |
740 | {.fw = FEAT_HYPERV_EAX, | |
741 | .bits = HV_HYPERCALL_AVAILABLE}, | |
742 | {.fw = FEAT_HV_RECOMM_EAX, | |
743 | .bits = HV_RELAXED_TIMING_RECOMMENDED} | |
744 | } | |
745 | }, | |
746 | [HYPERV_FEAT_VAPIC] = { | |
747 | .desc = "virtual APIC (hv-vapic)", | |
748 | .flags = { | |
749 | {.fw = FEAT_HYPERV_EAX, | |
750 | .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, | |
751 | {.fw = FEAT_HV_RECOMM_EAX, | |
752 | .bits = HV_APIC_ACCESS_RECOMMENDED} | |
753 | } | |
754 | }, | |
755 | [HYPERV_FEAT_TIME] = { | |
756 | .desc = "clocksources (hv-time)", | |
757 | .flags = { | |
758 | {.fw = FEAT_HYPERV_EAX, | |
759 | .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | | |
760 | HV_REFERENCE_TSC_AVAILABLE} | |
761 | } | |
762 | }, | |
763 | [HYPERV_FEAT_CRASH] = { | |
764 | .desc = "crash MSRs (hv-crash)", | |
765 | .flags = { | |
766 | {.fw = FEAT_HYPERV_EDX, | |
767 | .bits = HV_GUEST_CRASH_MSR_AVAILABLE} | |
768 | } | |
769 | }, | |
770 | [HYPERV_FEAT_RESET] = { | |
771 | .desc = "reset MSR (hv-reset)", | |
772 | .flags = { | |
773 | {.fw = FEAT_HYPERV_EAX, | |
774 | .bits = HV_RESET_AVAILABLE} | |
775 | } | |
776 | }, | |
777 | [HYPERV_FEAT_VPINDEX] = { | |
778 | .desc = "VP_INDEX MSR (hv-vpindex)", | |
779 | .flags = { | |
780 | {.fw = FEAT_HYPERV_EAX, | |
781 | .bits = HV_VP_INDEX_AVAILABLE} | |
782 | } | |
783 | }, | |
784 | [HYPERV_FEAT_RUNTIME] = { | |
785 | .desc = "VP_RUNTIME MSR (hv-runtime)", | |
786 | .flags = { | |
787 | {.fw = FEAT_HYPERV_EAX, | |
788 | .bits = HV_VP_RUNTIME_AVAILABLE} | |
789 | } | |
790 | }, | |
791 | [HYPERV_FEAT_SYNIC] = { | |
792 | .desc = "synthetic interrupt controller (hv-synic)", | |
793 | .flags = { | |
794 | {.fw = FEAT_HYPERV_EAX, | |
795 | .bits = HV_SYNIC_AVAILABLE} | |
796 | } | |
797 | }, | |
798 | [HYPERV_FEAT_STIMER] = { | |
799 | .desc = "synthetic timers (hv-stimer)", | |
800 | .flags = { | |
801 | {.fw = FEAT_HYPERV_EAX, | |
802 | .bits = HV_SYNTIMERS_AVAILABLE} | |
c6861930 VK |
803 | }, |
804 | .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) | |
6760bd20 VK |
805 | }, |
806 | [HYPERV_FEAT_FREQUENCIES] = { | |
807 | .desc = "frequency MSRs (hv-frequencies)", | |
808 | .flags = { | |
809 | {.fw = FEAT_HYPERV_EAX, | |
810 | .bits = HV_ACCESS_FREQUENCY_MSRS}, | |
811 | {.fw = FEAT_HYPERV_EDX, | |
812 | .bits = HV_FREQUENCY_MSRS_AVAILABLE} | |
813 | } | |
814 | }, | |
815 | [HYPERV_FEAT_REENLIGHTENMENT] = { | |
816 | .desc = "reenlightenment MSRs (hv-reenlightenment)", | |
817 | .flags = { | |
818 | {.fw = FEAT_HYPERV_EAX, | |
819 | .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} | |
820 | } | |
821 | }, | |
822 | [HYPERV_FEAT_TLBFLUSH] = { | |
823 | .desc = "paravirtualized TLB flush (hv-tlbflush)", | |
824 | .flags = { | |
825 | {.fw = FEAT_HV_RECOMM_EAX, | |
826 | .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | | |
827 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
bd59fbdf VK |
828 | }, |
829 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
6760bd20 VK |
830 | }, |
831 | [HYPERV_FEAT_EVMCS] = { | |
832 | .desc = "enlightened VMCS (hv-evmcs)", | |
833 | .flags = { | |
834 | {.fw = FEAT_HV_RECOMM_EAX, | |
835 | .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} | |
8caba36d VK |
836 | }, |
837 | .dependencies = BIT(HYPERV_FEAT_VAPIC) | |
6760bd20 VK |
838 | }, |
839 | [HYPERV_FEAT_IPI] = { | |
840 | .desc = "paravirtualized IPI (hv-ipi)", | |
841 | .flags = { | |
842 | {.fw = FEAT_HV_RECOMM_EAX, | |
843 | .bits = HV_CLUSTER_IPI_RECOMMENDED | | |
844 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
bd59fbdf VK |
845 | }, |
846 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
6760bd20 | 847 | }, |
128531d9 VK |
848 | [HYPERV_FEAT_STIMER_DIRECT] = { |
849 | .desc = "direct mode synthetic timers (hv-stimer-direct)", | |
850 | .flags = { | |
851 | {.fw = FEAT_HYPERV_EDX, | |
852 | .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} | |
853 | }, | |
854 | .dependencies = BIT(HYPERV_FEAT_STIMER) | |
855 | }, | |
6760bd20 VK |
856 | }; |
857 | ||
858 | static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) | |
859 | { | |
860 | struct kvm_cpuid2 *cpuid; | |
861 | int r, size; | |
862 | ||
863 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
864 | cpuid = g_malloc0(size); | |
865 | cpuid->nent = max; | |
866 | ||
867 | r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); | |
868 | if (r == 0 && cpuid->nent >= max) { | |
869 | r = -E2BIG; | |
870 | } | |
871 | if (r < 0) { | |
872 | if (r == -E2BIG) { | |
873 | g_free(cpuid); | |
874 | return NULL; | |
875 | } else { | |
876 | fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", | |
877 | strerror(-r)); | |
878 | exit(1); | |
879 | } | |
880 | } | |
881 | return cpuid; | |
882 | } | |
883 | ||
884 | /* | |
885 | * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough | |
886 | * for all entries. | |
887 | */ | |
888 | static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) | |
889 | { | |
890 | struct kvm_cpuid2 *cpuid; | |
891 | int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ | |
892 | ||
893 | /* | |
894 | * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with | |
895 | * -E2BIG, however, it doesn't report back the right size. Keep increasing | |
896 | * it and re-trying until we succeed. | |
897 | */ | |
898 | while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { | |
899 | max++; | |
900 | } | |
901 | return cpuid; | |
902 | } | |
903 | ||
904 | /* | |
905 | * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature | |
906 | * leaves from KVM_CAP_HYPERV* and present MSRs data. | |
907 | */ | |
908 | static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) | |
c35bd19a EY |
909 | { |
910 | X86CPU *cpu = X86_CPU(cs); | |
6760bd20 VK |
911 | struct kvm_cpuid2 *cpuid; |
912 | struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; | |
913 | ||
914 | /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ | |
915 | cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); | |
916 | cpuid->nent = 2; | |
917 | ||
918 | /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ | |
919 | entry_feat = &cpuid->entries[0]; | |
920 | entry_feat->function = HV_CPUID_FEATURES; | |
921 | ||
922 | entry_recomm = &cpuid->entries[1]; | |
923 | entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; | |
924 | entry_recomm->ebx = cpu->hyperv_spinlock_attempts; | |
925 | ||
926 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { | |
927 | entry_feat->eax |= HV_HYPERCALL_AVAILABLE; | |
928 | entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; | |
929 | entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
930 | entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; | |
931 | entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; | |
932 | } | |
c35bd19a | 933 | |
6760bd20 VK |
934 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { |
935 | entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; | |
936 | entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; | |
c35bd19a | 937 | } |
6760bd20 VK |
938 | |
939 | if (has_msr_hv_frequencies) { | |
940 | entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; | |
941 | entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; | |
c35bd19a | 942 | } |
6760bd20 VK |
943 | |
944 | if (has_msr_hv_crash) { | |
945 | entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; | |
9445597b | 946 | } |
6760bd20 VK |
947 | |
948 | if (has_msr_hv_reenlightenment) { | |
949 | entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; | |
c35bd19a | 950 | } |
6760bd20 VK |
951 | |
952 | if (has_msr_hv_reset) { | |
953 | entry_feat->eax |= HV_RESET_AVAILABLE; | |
c35bd19a | 954 | } |
6760bd20 VK |
955 | |
956 | if (has_msr_hv_vpindex) { | |
957 | entry_feat->eax |= HV_VP_INDEX_AVAILABLE; | |
ba6a4fd9 | 958 | } |
6760bd20 VK |
959 | |
960 | if (has_msr_hv_runtime) { | |
961 | entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; | |
c35bd19a | 962 | } |
6760bd20 VK |
963 | |
964 | if (has_msr_hv_synic) { | |
965 | unsigned int cap = cpu->hyperv_synic_kvm_only ? | |
966 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
967 | ||
968 | if (kvm_check_extension(cs->kvm_state, cap) > 0) { | |
969 | entry_feat->eax |= HV_SYNIC_AVAILABLE; | |
1221f150 | 970 | } |
c35bd19a | 971 | } |
6760bd20 VK |
972 | |
973 | if (has_msr_hv_stimer) { | |
974 | entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; | |
c35bd19a | 975 | } |
9b4cf107 | 976 | |
6760bd20 VK |
977 | if (kvm_check_extension(cs->kvm_state, |
978 | KVM_CAP_HYPERV_TLBFLUSH) > 0) { | |
979 | entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; | |
980 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
981 | } | |
c35bd19a | 982 | |
6760bd20 VK |
983 | if (kvm_check_extension(cs->kvm_state, |
984 | KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { | |
985 | entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
c35bd19a | 986 | } |
6760bd20 VK |
987 | |
988 | if (kvm_check_extension(cs->kvm_state, | |
989 | KVM_CAP_HYPERV_SEND_IPI) > 0) { | |
990 | entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; | |
991 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
c35bd19a | 992 | } |
6760bd20 VK |
993 | |
994 | return cpuid; | |
995 | } | |
996 | ||
997 | static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) | |
998 | { | |
999 | struct kvm_cpuid_entry2 *entry; | |
1000 | uint32_t func; | |
1001 | int reg; | |
1002 | ||
1003 | switch (fw) { | |
1004 | case FEAT_HYPERV_EAX: | |
1005 | reg = R_EAX; | |
1006 | func = HV_CPUID_FEATURES; | |
1007 | break; | |
1008 | case FEAT_HYPERV_EDX: | |
1009 | reg = R_EDX; | |
1010 | func = HV_CPUID_FEATURES; | |
1011 | break; | |
1012 | case FEAT_HV_RECOMM_EAX: | |
1013 | reg = R_EAX; | |
1014 | func = HV_CPUID_ENLIGHTMENT_INFO; | |
1015 | break; | |
1016 | default: | |
1017 | return -EINVAL; | |
a2b107db | 1018 | } |
6760bd20 VK |
1019 | |
1020 | entry = cpuid_find_entry(cpuid, func, 0); | |
1021 | if (!entry) { | |
1022 | return -ENOENT; | |
a2b107db | 1023 | } |
6760bd20 VK |
1024 | |
1025 | switch (reg) { | |
1026 | case R_EAX: | |
1027 | *r = entry->eax; | |
1028 | break; | |
1029 | case R_EDX: | |
1030 | *r = entry->edx; | |
1031 | break; | |
1032 | default: | |
1033 | return -EINVAL; | |
a2b107db | 1034 | } |
6760bd20 VK |
1035 | |
1036 | return 0; | |
1037 | } | |
1038 | ||
1039 | static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, | |
1040 | int feature) | |
1041 | { | |
1042 | X86CPU *cpu = X86_CPU(cs); | |
1043 | CPUX86State *env = &cpu->env; | |
e48ddcc6 | 1044 | uint32_t r, fw, bits; |
c6861930 | 1045 | uint64_t deps; |
9dc83cd9 | 1046 | int i, dep_feat; |
6760bd20 | 1047 | |
e48ddcc6 | 1048 | if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { |
6760bd20 VK |
1049 | return 0; |
1050 | } | |
1051 | ||
c6861930 | 1052 | deps = kvm_hyperv_properties[feature].dependencies; |
9dc83cd9 HR |
1053 | while (deps) { |
1054 | dep_feat = ctz64(deps); | |
c6861930 VK |
1055 | if (!(hyperv_feat_enabled(cpu, dep_feat))) { |
1056 | fprintf(stderr, | |
1057 | "Hyper-V %s requires Hyper-V %s\n", | |
1058 | kvm_hyperv_properties[feature].desc, | |
1059 | kvm_hyperv_properties[dep_feat].desc); | |
1060 | return 1; | |
1061 | } | |
9dc83cd9 | 1062 | deps &= ~(1ull << dep_feat); |
c6861930 VK |
1063 | } |
1064 | ||
6760bd20 VK |
1065 | for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { |
1066 | fw = kvm_hyperv_properties[feature].flags[i].fw; | |
1067 | bits = kvm_hyperv_properties[feature].flags[i].bits; | |
1068 | ||
1069 | if (!fw) { | |
1070 | continue; | |
a2b107db | 1071 | } |
6760bd20 VK |
1072 | |
1073 | if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { | |
e48ddcc6 VK |
1074 | if (hyperv_feat_enabled(cpu, feature)) { |
1075 | fprintf(stderr, | |
1076 | "Hyper-V %s is not supported by kernel\n", | |
1077 | kvm_hyperv_properties[feature].desc); | |
1078 | return 1; | |
1079 | } else { | |
1080 | return 0; | |
1081 | } | |
6760bd20 VK |
1082 | } |
1083 | ||
1084 | env->features[fw] |= bits; | |
a2b107db | 1085 | } |
6760bd20 | 1086 | |
e48ddcc6 VK |
1087 | if (cpu->hyperv_passthrough) { |
1088 | cpu->hyperv_features |= BIT(feature); | |
1089 | } | |
1090 | ||
6760bd20 VK |
1091 | return 0; |
1092 | } | |
1093 | ||
2344d22e VK |
1094 | /* |
1095 | * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in | |
1096 | * case of success, errno < 0 in case of failure and 0 when no Hyper-V | |
1097 | * extentions are enabled. | |
1098 | */ | |
1099 | static int hyperv_handle_properties(CPUState *cs, | |
1100 | struct kvm_cpuid_entry2 *cpuid_ent) | |
6760bd20 VK |
1101 | { |
1102 | X86CPU *cpu = X86_CPU(cs); | |
1103 | CPUX86State *env = &cpu->env; | |
1104 | struct kvm_cpuid2 *cpuid; | |
2344d22e VK |
1105 | struct kvm_cpuid_entry2 *c; |
1106 | uint32_t signature[3]; | |
1107 | uint32_t cpuid_i = 0; | |
e48ddcc6 | 1108 | int r; |
6760bd20 | 1109 | |
2344d22e VK |
1110 | if (!hyperv_enabled(cpu)) |
1111 | return 0; | |
1112 | ||
e48ddcc6 VK |
1113 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || |
1114 | cpu->hyperv_passthrough) { | |
a2b107db VK |
1115 | uint16_t evmcs_version; |
1116 | ||
e48ddcc6 VK |
1117 | r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, |
1118 | (uintptr_t)&evmcs_version); | |
1119 | ||
1120 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { | |
6760bd20 VK |
1121 | fprintf(stderr, "Hyper-V %s is not supported by kernel\n", |
1122 | kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); | |
a2b107db VK |
1123 | return -ENOSYS; |
1124 | } | |
e48ddcc6 VK |
1125 | |
1126 | if (!r) { | |
1127 | env->features[FEAT_HV_RECOMM_EAX] |= | |
1128 | HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
1129 | env->features[FEAT_HV_NESTED_EAX] = evmcs_version; | |
1130 | } | |
a2b107db VK |
1131 | } |
1132 | ||
6760bd20 VK |
1133 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { |
1134 | cpuid = get_supported_hv_cpuid(cs); | |
1135 | } else { | |
1136 | cpuid = get_supported_hv_cpuid_legacy(cs); | |
1137 | } | |
1138 | ||
e48ddcc6 VK |
1139 | if (cpu->hyperv_passthrough) { |
1140 | memcpy(cpuid_ent, &cpuid->entries[0], | |
1141 | cpuid->nent * sizeof(cpuid->entries[0])); | |
1142 | ||
1143 | c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); | |
1144 | if (c) { | |
1145 | env->features[FEAT_HYPERV_EAX] = c->eax; | |
1146 | env->features[FEAT_HYPERV_EBX] = c->ebx; | |
1147 | env->features[FEAT_HYPERV_EDX] = c->eax; | |
1148 | } | |
1149 | c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); | |
1150 | if (c) { | |
1151 | env->features[FEAT_HV_RECOMM_EAX] = c->eax; | |
1152 | ||
1153 | /* hv-spinlocks may have been overriden */ | |
1154 | if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) { | |
1155 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1156 | } | |
1157 | } | |
1158 | c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); | |
1159 | if (c) { | |
1160 | env->features[FEAT_HV_NESTED_EAX] = c->eax; | |
1161 | } | |
1162 | } | |
1163 | ||
6760bd20 | 1164 | /* Features */ |
e48ddcc6 | 1165 | r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); |
6760bd20 VK |
1166 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); |
1167 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); | |
1168 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); | |
1169 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); | |
1170 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); | |
1171 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); | |
1172 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); | |
1173 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); | |
1174 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); | |
1175 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); | |
1176 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); | |
1177 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); | |
1178 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); | |
128531d9 | 1179 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); |
6760bd20 | 1180 | |
c6861930 | 1181 | /* Additional dependencies not covered by kvm_hyperv_properties[] */ |
6760bd20 VK |
1182 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && |
1183 | !cpu->hyperv_synic_kvm_only && | |
1184 | !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { | |
c6861930 | 1185 | fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", |
6760bd20 VK |
1186 | kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, |
1187 | kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); | |
1188 | r |= 1; | |
1189 | } | |
1190 | ||
1191 | /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ | |
1192 | env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
1193 | ||
2344d22e VK |
1194 | if (r) { |
1195 | r = -ENOSYS; | |
1196 | goto free; | |
1197 | } | |
1198 | ||
e48ddcc6 VK |
1199 | if (cpu->hyperv_passthrough) { |
1200 | /* We already copied all feature words from KVM as is */ | |
1201 | r = cpuid->nent; | |
1202 | goto free; | |
1203 | } | |
1204 | ||
2344d22e VK |
1205 | c = &cpuid_ent[cpuid_i++]; |
1206 | c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
1207 | if (!cpu->hyperv_vendor_id) { | |
1208 | memcpy(signature, "Microsoft Hv", 12); | |
1209 | } else { | |
1210 | size_t len = strlen(cpu->hyperv_vendor_id); | |
1211 | ||
1212 | if (len > 12) { | |
1213 | error_report("hv-vendor-id truncated to 12 characters"); | |
1214 | len = 12; | |
1215 | } | |
1216 | memset(signature, 0, 12); | |
1217 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
1218 | } | |
1219 | c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? | |
1220 | HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; | |
1221 | c->ebx = signature[0]; | |
1222 | c->ecx = signature[1]; | |
1223 | c->edx = signature[2]; | |
1224 | ||
1225 | c = &cpuid_ent[cpuid_i++]; | |
1226 | c->function = HV_CPUID_INTERFACE; | |
1227 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | |
1228 | c->eax = signature[0]; | |
1229 | c->ebx = 0; | |
1230 | c->ecx = 0; | |
1231 | c->edx = 0; | |
1232 | ||
1233 | c = &cpuid_ent[cpuid_i++]; | |
1234 | c->function = HV_CPUID_VERSION; | |
1235 | c->eax = 0x00001bbc; | |
1236 | c->ebx = 0x00060001; | |
1237 | ||
1238 | c = &cpuid_ent[cpuid_i++]; | |
1239 | c->function = HV_CPUID_FEATURES; | |
1240 | c->eax = env->features[FEAT_HYPERV_EAX]; | |
1241 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
1242 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
1243 | ||
1244 | c = &cpuid_ent[cpuid_i++]; | |
1245 | c->function = HV_CPUID_ENLIGHTMENT_INFO; | |
1246 | c->eax = env->features[FEAT_HV_RECOMM_EAX]; | |
1247 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1248 | ||
1249 | c = &cpuid_ent[cpuid_i++]; | |
1250 | c->function = HV_CPUID_IMPLEMENT_LIMITS; | |
1251 | c->eax = cpu->hv_max_vps; | |
1252 | c->ebx = 0x40; | |
1253 | ||
1254 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { | |
1255 | __u32 function; | |
1256 | ||
1257 | /* Create zeroed 0x40000006..0x40000009 leaves */ | |
1258 | for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; | |
1259 | function < HV_CPUID_NESTED_FEATURES; function++) { | |
1260 | c = &cpuid_ent[cpuid_i++]; | |
1261 | c->function = function; | |
1262 | } | |
1263 | ||
1264 | c = &cpuid_ent[cpuid_i++]; | |
1265 | c->function = HV_CPUID_NESTED_FEATURES; | |
1266 | c->eax = env->features[FEAT_HV_NESTED_EAX]; | |
1267 | } | |
1268 | r = cpuid_i; | |
1269 | ||
1270 | free: | |
6760bd20 VK |
1271 | g_free(cpuid); |
1272 | ||
2344d22e | 1273 | return r; |
c35bd19a EY |
1274 | } |
1275 | ||
e48ddcc6 VK |
1276 | static Error *hv_passthrough_mig_blocker; |
1277 | ||
e9688fab RK |
1278 | static int hyperv_init_vcpu(X86CPU *cpu) |
1279 | { | |
729ce7e1 | 1280 | CPUState *cs = CPU(cpu); |
e48ddcc6 | 1281 | Error *local_err = NULL; |
729ce7e1 RK |
1282 | int ret; |
1283 | ||
e48ddcc6 VK |
1284 | if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { |
1285 | error_setg(&hv_passthrough_mig_blocker, | |
1286 | "'hv-passthrough' CPU flag prevents migration, use explicit" | |
1287 | " set of hv-* flags instead"); | |
1288 | ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); | |
1289 | if (local_err) { | |
1290 | error_report_err(local_err); | |
1291 | error_free(hv_passthrough_mig_blocker); | |
1292 | return ret; | |
1293 | } | |
1294 | } | |
1295 | ||
2d384d7c | 1296 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { |
e9688fab RK |
1297 | /* |
1298 | * the kernel doesn't support setting vp_index; assert that its value | |
1299 | * is in sync | |
1300 | */ | |
e9688fab RK |
1301 | struct { |
1302 | struct kvm_msrs info; | |
1303 | struct kvm_msr_entry entries[1]; | |
1304 | } msr_data = { | |
1305 | .info.nmsrs = 1, | |
1306 | .entries[0].index = HV_X64_MSR_VP_INDEX, | |
1307 | }; | |
1308 | ||
729ce7e1 | 1309 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); |
e9688fab RK |
1310 | if (ret < 0) { |
1311 | return ret; | |
1312 | } | |
1313 | assert(ret == 1); | |
1314 | ||
701189e3 | 1315 | if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { |
e9688fab RK |
1316 | error_report("kernel's vp_index != QEMU's vp_index"); |
1317 | return -ENXIO; | |
1318 | } | |
1319 | } | |
1320 | ||
2d384d7c | 1321 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
9b4cf107 RK |
1322 | uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? |
1323 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
1324 | ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); | |
729ce7e1 RK |
1325 | if (ret < 0) { |
1326 | error_report("failed to turn on HyperV SynIC in KVM: %s", | |
1327 | strerror(-ret)); | |
1328 | return ret; | |
1329 | } | |
606c34bf | 1330 | |
9b4cf107 RK |
1331 | if (!cpu->hyperv_synic_kvm_only) { |
1332 | ret = hyperv_x86_synic_add(cpu); | |
1333 | if (ret < 0) { | |
1334 | error_report("failed to create HyperV SynIC: %s", | |
1335 | strerror(-ret)); | |
1336 | return ret; | |
1337 | } | |
606c34bf | 1338 | } |
729ce7e1 RK |
1339 | } |
1340 | ||
e9688fab RK |
1341 | return 0; |
1342 | } | |
1343 | ||
68bfd0ad | 1344 | static Error *invtsc_mig_blocker; |
18ab37ba | 1345 | static Error *nested_virt_mig_blocker; |
68bfd0ad | 1346 | |
f8bb0565 | 1347 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 1348 | |
20d695a9 | 1349 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
1350 | { |
1351 | struct { | |
486bd5a2 | 1352 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 1353 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
9115bb12 PM |
1354 | } cpuid_data; |
1355 | /* | |
1356 | * The kernel defines these structs with padding fields so there | |
1357 | * should be no extra padding in our cpuid_data struct. | |
1358 | */ | |
1359 | QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != | |
1360 | sizeof(struct kvm_cpuid2) + | |
1361 | sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); | |
1362 | ||
20d695a9 AF |
1363 | X86CPU *cpu = X86_CPU(cs); |
1364 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 1365 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 1366 | uint32_t unused; |
bb0300dc | 1367 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 1368 | uint32_t signature[3]; |
234cc647 | 1369 | int kvm_base = KVM_CPUID_SIGNATURE; |
ebbfef2f | 1370 | int max_nested_state_len; |
e7429073 | 1371 | int r; |
fe44dc91 | 1372 | Error *local_err = NULL; |
05330448 | 1373 | |
ef4cbe14 SW |
1374 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
1375 | ||
05330448 AL |
1376 | cpuid_i = 0; |
1377 | ||
ddb98b5a LP |
1378 | r = kvm_arch_set_tsc_khz(cs); |
1379 | if (r < 0) { | |
6b2341ee | 1380 | return r; |
ddb98b5a LP |
1381 | } |
1382 | ||
1383 | /* vcpu's TSC frequency is either specified by user, or following | |
1384 | * the value used by KVM if the former is not present. In the | |
1385 | * latter case, we query it from KVM and record in env->tsc_khz, | |
1386 | * so that vcpu's TSC frequency can be migrated later via this field. | |
1387 | */ | |
1388 | if (!env->tsc_khz) { | |
1389 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
1390 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
1391 | -ENOTSUP; | |
1392 | if (r > 0) { | |
1393 | env->tsc_khz = r; | |
1394 | } | |
1395 | } | |
1396 | ||
bb0300dc | 1397 | /* Paravirtualization CPUIDs */ |
2344d22e VK |
1398 | r = hyperv_handle_properties(cs, cpuid_data.entries); |
1399 | if (r < 0) { | |
1400 | return r; | |
1401 | } else if (r > 0) { | |
1402 | cpuid_i = r; | |
234cc647 | 1403 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 1404 | has_msr_hv_hypercall = true; |
eab70139 VR |
1405 | } |
1406 | ||
f522d2ac AW |
1407 | if (cpu->expose_kvm) { |
1408 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
1409 | c = &cpuid_data.entries[cpuid_i++]; | |
1410 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 1411 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
1412 | c->ebx = signature[0]; |
1413 | c->ecx = signature[1]; | |
1414 | c->edx = signature[2]; | |
234cc647 | 1415 | |
f522d2ac AW |
1416 | c = &cpuid_data.entries[cpuid_i++]; |
1417 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
1418 | c->eax = env->features[FEAT_KVM]; | |
be777326 | 1419 | c->edx = env->features[FEAT_KVM_HINTS]; |
f522d2ac | 1420 | } |
917367aa | 1421 | |
a33609ca | 1422 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1423 | |
1424 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
1425 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1426 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
1427 | abort(); | |
1428 | } | |
bb0300dc | 1429 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1430 | |
1431 | switch (i) { | |
a36b1029 AL |
1432 | case 2: { |
1433 | /* Keep reading function 2 till all the input is received */ | |
1434 | int times; | |
1435 | ||
a36b1029 | 1436 | c->function = i; |
a33609ca AL |
1437 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
1438 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
1439 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1440 | times = c->eax & 0xff; | |
a36b1029 AL |
1441 | |
1442 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
1443 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1444 | fprintf(stderr, "cpuid_data is full, no space for " | |
1445 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
1446 | abort(); | |
1447 | } | |
a33609ca | 1448 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 1449 | c->function = i; |
a33609ca AL |
1450 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
1451 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
1452 | } |
1453 | break; | |
1454 | } | |
a94e1428 LX |
1455 | case 0x1f: |
1456 | if (env->nr_dies < 2) { | |
1457 | break; | |
1458 | } | |
486bd5a2 AL |
1459 | case 4: |
1460 | case 0xb: | |
1461 | case 0xd: | |
1462 | for (j = 0; ; j++) { | |
31e8c696 AP |
1463 | if (i == 0xd && j == 64) { |
1464 | break; | |
1465 | } | |
a94e1428 LX |
1466 | |
1467 | if (i == 0x1f && j == 64) { | |
1468 | break; | |
1469 | } | |
1470 | ||
486bd5a2 AL |
1471 | c->function = i; |
1472 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1473 | c->index = j; | |
a33609ca | 1474 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 1475 | |
b9bec74b | 1476 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 1477 | break; |
b9bec74b JK |
1478 | } |
1479 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 1480 | break; |
b9bec74b | 1481 | } |
a94e1428 LX |
1482 | if (i == 0x1f && !(c->ecx & 0xff00)) { |
1483 | break; | |
1484 | } | |
b9bec74b | 1485 | if (i == 0xd && c->eax == 0) { |
31e8c696 | 1486 | continue; |
b9bec74b | 1487 | } |
f8bb0565 IM |
1488 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1489 | fprintf(stderr, "cpuid_data is full, no space for " | |
1490 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1491 | abort(); | |
1492 | } | |
a33609ca | 1493 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1494 | } |
1495 | break; | |
e37a5c7f CP |
1496 | case 0x14: { |
1497 | uint32_t times; | |
1498 | ||
1499 | c->function = i; | |
1500 | c->index = 0; | |
1501 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1502 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1503 | times = c->eax; | |
1504 | ||
1505 | for (j = 1; j <= times; ++j) { | |
1506 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1507 | fprintf(stderr, "cpuid_data is full, no space for " | |
1508 | "cpuid(eax:0x14,ecx:0x%x)\n", j); | |
1509 | abort(); | |
1510 | } | |
1511 | c = &cpuid_data.entries[cpuid_i++]; | |
1512 | c->function = i; | |
1513 | c->index = j; | |
1514 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1515 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1516 | } | |
1517 | break; | |
1518 | } | |
486bd5a2 | 1519 | default: |
486bd5a2 | 1520 | c->function = i; |
a33609ca AL |
1521 | c->flags = 0; |
1522 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
1523 | break; |
1524 | } | |
05330448 | 1525 | } |
0d894367 PB |
1526 | |
1527 | if (limit >= 0x0a) { | |
0b368a10 | 1528 | uint32_t eax, edx; |
0d894367 | 1529 | |
0b368a10 JD |
1530 | cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); |
1531 | ||
1532 | has_architectural_pmu_version = eax & 0xff; | |
1533 | if (has_architectural_pmu_version > 0) { | |
1534 | num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; | |
0d894367 PB |
1535 | |
1536 | /* Shouldn't be more than 32, since that's the number of bits | |
1537 | * available in EBX to tell us _which_ counters are available. | |
1538 | * Play it safe. | |
1539 | */ | |
0b368a10 JD |
1540 | if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { |
1541 | num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; | |
1542 | } | |
1543 | ||
1544 | if (has_architectural_pmu_version > 1) { | |
1545 | num_architectural_pmu_fixed_counters = edx & 0x1f; | |
1546 | ||
1547 | if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { | |
1548 | num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; | |
1549 | } | |
0d894367 PB |
1550 | } |
1551 | } | |
1552 | } | |
1553 | ||
a33609ca | 1554 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1555 | |
1556 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
1557 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1558 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
1559 | abort(); | |
1560 | } | |
bb0300dc | 1561 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 1562 | |
8f4202fb BM |
1563 | switch (i) { |
1564 | case 0x8000001d: | |
1565 | /* Query for all AMD cache information leaves */ | |
1566 | for (j = 0; ; j++) { | |
1567 | c->function = i; | |
1568 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1569 | c->index = j; | |
1570 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1571 | ||
1572 | if (c->eax == 0) { | |
1573 | break; | |
1574 | } | |
1575 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1576 | fprintf(stderr, "cpuid_data is full, no space for " | |
1577 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1578 | abort(); | |
1579 | } | |
1580 | c = &cpuid_data.entries[cpuid_i++]; | |
1581 | } | |
1582 | break; | |
1583 | default: | |
1584 | c->function = i; | |
1585 | c->flags = 0; | |
1586 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1587 | break; | |
1588 | } | |
05330448 AL |
1589 | } |
1590 | ||
b3baa152 BW |
1591 | /* Call Centaur's CPUID instructions they are supported. */ |
1592 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
1593 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
1594 | ||
1595 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
1596 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1597 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
1598 | abort(); | |
1599 | } | |
b3baa152 BW |
1600 | c = &cpuid_data.entries[cpuid_i++]; |
1601 | ||
1602 | c->function = i; | |
1603 | c->flags = 0; | |
1604 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1605 | } | |
1606 | } | |
1607 | ||
05330448 AL |
1608 | cpuid_data.cpuid.nent = cpuid_i; |
1609 | ||
e7701825 | 1610 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 1611 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 1612 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 1613 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 1614 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 1615 | int banks; |
32a42024 | 1616 | int ret; |
e7701825 | 1617 | |
a60f24b5 | 1618 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
1619 | if (ret < 0) { |
1620 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
1621 | return ret; | |
e7701825 | 1622 | } |
75d49497 | 1623 | |
2590f15b | 1624 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 1625 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 1626 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 1627 | return -ENOTSUP; |
75d49497 | 1628 | } |
49b69cbf | 1629 | |
5120901a EH |
1630 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
1631 | if (unsupported_caps) { | |
87f8b626 AR |
1632 | if (unsupported_caps & MCG_LMCE_P) { |
1633 | error_report("kvm: LMCE not supported"); | |
1634 | return -ENOTSUP; | |
1635 | } | |
3dc6f869 AF |
1636 | warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, |
1637 | unsupported_caps); | |
5120901a EH |
1638 | } |
1639 | ||
2590f15b EH |
1640 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
1641 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
1642 | if (ret < 0) { |
1643 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
1644 | return ret; | |
1645 | } | |
e7701825 | 1646 | } |
e7701825 | 1647 | |
b8cc45d6 GC |
1648 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
1649 | ||
df67696e LJ |
1650 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
1651 | if (c) { | |
1652 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
1653 | !!(c->ecx & CPUID_EXT_SMX); | |
1654 | } | |
1655 | ||
12604092 LA |
1656 | if (cpu_has_vmx(env) && !nested_virt_mig_blocker && |
1657 | ((kvm_max_nested_state_length() <= 0) || !has_exception_payload)) { | |
18ab37ba | 1658 | error_setg(&nested_virt_mig_blocker, |
12604092 LA |
1659 | "Kernel do not provide required capabilities for " |
1660 | "nested virtualization migration. " | |
1661 | "(CAP_NESTED_STATE=%d, CAP_EXCEPTION_PAYLOAD=%d)", | |
1662 | kvm_max_nested_state_length() > 0, | |
1663 | has_exception_payload); | |
18ab37ba | 1664 | r = migrate_add_blocker(nested_virt_mig_blocker, &local_err); |
d98f2607 PB |
1665 | if (local_err) { |
1666 | error_report_err(local_err); | |
18ab37ba | 1667 | error_free(nested_virt_mig_blocker); |
d98f2607 PB |
1668 | return r; |
1669 | } | |
1670 | } | |
1671 | ||
87f8b626 AR |
1672 | if (env->mcg_cap & MCG_LMCE_P) { |
1673 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
1674 | } | |
1675 | ||
d99569d9 EH |
1676 | if (!env->user_tsc_khz) { |
1677 | if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && | |
1678 | invtsc_mig_blocker == NULL) { | |
d99569d9 EH |
1679 | error_setg(&invtsc_mig_blocker, |
1680 | "State blocked by non-migratable CPU device" | |
1681 | " (invtsc flag)"); | |
fe44dc91 AA |
1682 | r = migrate_add_blocker(invtsc_mig_blocker, &local_err); |
1683 | if (local_err) { | |
1684 | error_report_err(local_err); | |
1685 | error_free(invtsc_mig_blocker); | |
6b2341ee | 1686 | goto fail2; |
fe44dc91 | 1687 | } |
d99569d9 | 1688 | } |
68bfd0ad MT |
1689 | } |
1690 | ||
9954a158 PDJ |
1691 | if (cpu->vmware_cpuid_freq |
1692 | /* Guests depend on 0x40000000 to detect this feature, so only expose | |
1693 | * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ | |
1694 | && cpu->expose_kvm | |
1695 | && kvm_base == KVM_CPUID_SIGNATURE | |
1696 | /* TSC clock must be stable and known for this feature. */ | |
4bb95b82 | 1697 | && tsc_is_stable_and_known(env)) { |
9954a158 PDJ |
1698 | |
1699 | c = &cpuid_data.entries[cpuid_i++]; | |
1700 | c->function = KVM_CPUID_SIGNATURE | 0x10; | |
1701 | c->eax = env->tsc_khz; | |
1702 | /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's | |
1703 | * APIC_BUS_CYCLE_NS */ | |
1704 | c->ebx = 1000000; | |
1705 | c->ecx = c->edx = 0; | |
1706 | ||
1707 | c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); | |
1708 | c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); | |
1709 | } | |
1710 | ||
1711 | cpuid_data.cpuid.nent = cpuid_i; | |
1712 | ||
1713 | cpuid_data.cpuid.padding = 0; | |
1714 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); | |
1715 | if (r) { | |
1716 | goto fail; | |
1717 | } | |
1718 | ||
28143b40 | 1719 | if (has_xsave) { |
5b8063c4 | 1720 | env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
fabacc0f | 1721 | } |
ebbfef2f LA |
1722 | |
1723 | max_nested_state_len = kvm_max_nested_state_length(); | |
1724 | if (max_nested_state_len > 0) { | |
1725 | assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); | |
1726 | env->nested_state = g_malloc0(max_nested_state_len); | |
1727 | ||
1728 | env->nested_state->size = max_nested_state_len; | |
1729 | ||
1730 | if (IS_INTEL_CPU(env)) { | |
1731 | struct kvm_vmx_nested_state_hdr *vmx_hdr = | |
1732 | &env->nested_state->hdr.vmx; | |
1733 | ||
1734 | env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; | |
1735 | vmx_hdr->vmxon_pa = -1ull; | |
1736 | vmx_hdr->vmcs12_pa = -1ull; | |
1737 | } | |
1738 | } | |
1739 | ||
d71b62a1 | 1740 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 1741 | |
273c515c PB |
1742 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
1743 | has_msr_tsc_aux = false; | |
1744 | } | |
d1ae67f6 | 1745 | |
e9688fab RK |
1746 | r = hyperv_init_vcpu(cpu); |
1747 | if (r) { | |
1748 | goto fail; | |
1749 | } | |
1750 | ||
e7429073 | 1751 | return 0; |
fe44dc91 AA |
1752 | |
1753 | fail: | |
1754 | migrate_del_blocker(invtsc_mig_blocker); | |
6b2341ee | 1755 | fail2: |
18ab37ba | 1756 | migrate_del_blocker(nested_virt_mig_blocker); |
6b2341ee | 1757 | |
fe44dc91 | 1758 | return r; |
05330448 AL |
1759 | } |
1760 | ||
b1115c99 LA |
1761 | int kvm_arch_destroy_vcpu(CPUState *cs) |
1762 | { | |
1763 | X86CPU *cpu = X86_CPU(cs); | |
ebbfef2f | 1764 | CPUX86State *env = &cpu->env; |
b1115c99 LA |
1765 | |
1766 | if (cpu->kvm_msr_buf) { | |
1767 | g_free(cpu->kvm_msr_buf); | |
1768 | cpu->kvm_msr_buf = NULL; | |
1769 | } | |
1770 | ||
ebbfef2f LA |
1771 | if (env->nested_state) { |
1772 | g_free(env->nested_state); | |
1773 | env->nested_state = NULL; | |
1774 | } | |
1775 | ||
b1115c99 LA |
1776 | return 0; |
1777 | } | |
1778 | ||
50a2c6e5 | 1779 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 1780 | { |
20d695a9 | 1781 | CPUX86State *env = &cpu->env; |
dd673288 | 1782 | |
1a5e9d2f | 1783 | env->xcr0 = 1; |
ddced198 | 1784 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 1785 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
1786 | KVM_MP_STATE_UNINITIALIZED; |
1787 | } else { | |
1788 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1789 | } | |
689141dd | 1790 | |
2d384d7c | 1791 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
689141dd RK |
1792 | int i; |
1793 | for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { | |
1794 | env->msr_hv_synic_sint[i] = HV_SINT_MASKED; | |
1795 | } | |
606c34bf RK |
1796 | |
1797 | hyperv_x86_synic_reset(cpu); | |
689141dd | 1798 | } |
caa5af0f JK |
1799 | } |
1800 | ||
e0723c45 PB |
1801 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
1802 | { | |
1803 | CPUX86State *env = &cpu->env; | |
1804 | ||
1805 | /* APs get directly into wait-for-SIPI state. */ | |
1806 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1807 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1808 | } | |
1809 | } | |
1810 | ||
f57bceb6 RH |
1811 | static int kvm_get_supported_feature_msrs(KVMState *s) |
1812 | { | |
1813 | int ret = 0; | |
1814 | ||
1815 | if (kvm_feature_msrs != NULL) { | |
1816 | return 0; | |
1817 | } | |
1818 | ||
1819 | if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { | |
1820 | return 0; | |
1821 | } | |
1822 | ||
1823 | struct kvm_msr_list msr_list; | |
1824 | ||
1825 | msr_list.nmsrs = 0; | |
1826 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); | |
1827 | if (ret < 0 && ret != -E2BIG) { | |
1828 | error_report("Fetch KVM feature MSR list failed: %s", | |
1829 | strerror(-ret)); | |
1830 | return ret; | |
1831 | } | |
1832 | ||
1833 | assert(msr_list.nmsrs > 0); | |
1834 | kvm_feature_msrs = (struct kvm_msr_list *) \ | |
1835 | g_malloc0(sizeof(msr_list) + | |
1836 | msr_list.nmsrs * sizeof(msr_list.indices[0])); | |
1837 | ||
1838 | kvm_feature_msrs->nmsrs = msr_list.nmsrs; | |
1839 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); | |
1840 | ||
1841 | if (ret < 0) { | |
1842 | error_report("Fetch KVM feature MSR list failed: %s", | |
1843 | strerror(-ret)); | |
1844 | g_free(kvm_feature_msrs); | |
1845 | kvm_feature_msrs = NULL; | |
1846 | return ret; | |
1847 | } | |
1848 | ||
1849 | return 0; | |
1850 | } | |
1851 | ||
c3a3a7d3 | 1852 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1853 | { |
75b10c43 | 1854 | static int kvm_supported_msrs; |
c3a3a7d3 | 1855 | int ret = 0; |
05330448 AL |
1856 | |
1857 | /* first time */ | |
75b10c43 | 1858 | if (kvm_supported_msrs == 0) { |
05330448 AL |
1859 | struct kvm_msr_list msr_list, *kvm_msr_list; |
1860 | ||
75b10c43 | 1861 | kvm_supported_msrs = -1; |
05330448 AL |
1862 | |
1863 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
1864 | * save/restore */ | |
4c9f7372 | 1865 | msr_list.nmsrs = 0; |
c3a3a7d3 | 1866 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 1867 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 1868 | return ret; |
6fb6d245 | 1869 | } |
d9db889f JK |
1870 | /* Old kernel modules had a bug and could write beyond the provided |
1871 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 1872 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
1873 | msr_list.nmsrs * |
1874 | sizeof(msr_list.indices[0]))); | |
05330448 | 1875 | |
55308450 | 1876 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 1877 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
1878 | if (ret >= 0) { |
1879 | int i; | |
1880 | ||
1881 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
1d268dec LP |
1882 | switch (kvm_msr_list->indices[i]) { |
1883 | case MSR_STAR: | |
c3a3a7d3 | 1884 | has_msr_star = true; |
1d268dec LP |
1885 | break; |
1886 | case MSR_VM_HSAVE_PA: | |
c3a3a7d3 | 1887 | has_msr_hsave_pa = true; |
1d268dec LP |
1888 | break; |
1889 | case MSR_TSC_AUX: | |
c9b8f6b6 | 1890 | has_msr_tsc_aux = true; |
1d268dec LP |
1891 | break; |
1892 | case MSR_TSC_ADJUST: | |
f28558d3 | 1893 | has_msr_tsc_adjust = true; |
1d268dec LP |
1894 | break; |
1895 | case MSR_IA32_TSCDEADLINE: | |
aa82ba54 | 1896 | has_msr_tsc_deadline = true; |
1d268dec LP |
1897 | break; |
1898 | case MSR_IA32_SMBASE: | |
fc12d72e | 1899 | has_msr_smbase = true; |
1d268dec | 1900 | break; |
e13713db LA |
1901 | case MSR_SMI_COUNT: |
1902 | has_msr_smi_count = true; | |
1903 | break; | |
1d268dec | 1904 | case MSR_IA32_MISC_ENABLE: |
21e87c46 | 1905 | has_msr_misc_enable = true; |
1d268dec LP |
1906 | break; |
1907 | case MSR_IA32_BNDCFGS: | |
79e9ebeb | 1908 | has_msr_bndcfgs = true; |
1d268dec LP |
1909 | break; |
1910 | case MSR_IA32_XSS: | |
18cd2c17 | 1911 | has_msr_xss = true; |
3c254ab8 | 1912 | break; |
1d268dec | 1913 | case HV_X64_MSR_CRASH_CTL: |
f2a53c9e | 1914 | has_msr_hv_crash = true; |
1d268dec LP |
1915 | break; |
1916 | case HV_X64_MSR_RESET: | |
744b8a94 | 1917 | has_msr_hv_reset = true; |
1d268dec LP |
1918 | break; |
1919 | case HV_X64_MSR_VP_INDEX: | |
8c145d7c | 1920 | has_msr_hv_vpindex = true; |
1d268dec LP |
1921 | break; |
1922 | case HV_X64_MSR_VP_RUNTIME: | |
46eb8f98 | 1923 | has_msr_hv_runtime = true; |
1d268dec LP |
1924 | break; |
1925 | case HV_X64_MSR_SCONTROL: | |
866eea9a | 1926 | has_msr_hv_synic = true; |
1d268dec LP |
1927 | break; |
1928 | case HV_X64_MSR_STIMER0_CONFIG: | |
ff99aa64 | 1929 | has_msr_hv_stimer = true; |
1d268dec | 1930 | break; |
d72bc7f6 LP |
1931 | case HV_X64_MSR_TSC_FREQUENCY: |
1932 | has_msr_hv_frequencies = true; | |
1933 | break; | |
ba6a4fd9 VK |
1934 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
1935 | has_msr_hv_reenlightenment = true; | |
1936 | break; | |
a33a2cfe PB |
1937 | case MSR_IA32_SPEC_CTRL: |
1938 | has_msr_spec_ctrl = true; | |
1939 | break; | |
cfeea0c0 KRW |
1940 | case MSR_VIRT_SSBD: |
1941 | has_msr_virt_ssbd = true; | |
1942 | break; | |
aec5e9c3 BD |
1943 | case MSR_IA32_ARCH_CAPABILITIES: |
1944 | has_msr_arch_capabs = true; | |
1945 | break; | |
597360c0 XL |
1946 | case MSR_IA32_CORE_CAPABILITY: |
1947 | has_msr_core_capabs = true; | |
1948 | break; | |
ff99aa64 | 1949 | } |
05330448 AL |
1950 | } |
1951 | } | |
1952 | ||
7267c094 | 1953 | g_free(kvm_msr_list); |
05330448 AL |
1954 | } |
1955 | ||
c3a3a7d3 | 1956 | return ret; |
05330448 AL |
1957 | } |
1958 | ||
6410848b PB |
1959 | static Notifier smram_machine_done; |
1960 | static KVMMemoryListener smram_listener; | |
1961 | static AddressSpace smram_address_space; | |
1962 | static MemoryRegion smram_as_root; | |
1963 | static MemoryRegion smram_as_mem; | |
1964 | ||
1965 | static void register_smram_listener(Notifier *n, void *unused) | |
1966 | { | |
1967 | MemoryRegion *smram = | |
1968 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
1969 | ||
1970 | /* Outer container... */ | |
1971 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
1972 | memory_region_set_enabled(&smram_as_root, true); | |
1973 | ||
1974 | /* ... with two regions inside: normal system memory with low | |
1975 | * priority, and... | |
1976 | */ | |
1977 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
1978 | get_system_memory(), 0, ~0ull); | |
1979 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
1980 | memory_region_set_enabled(&smram_as_mem, true); | |
1981 | ||
1982 | if (smram) { | |
1983 | /* ... SMRAM with higher priority */ | |
1984 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
1985 | memory_region_set_enabled(smram, true); | |
1986 | } | |
1987 | ||
1988 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
1989 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
1990 | &smram_address_space, 1); | |
1991 | } | |
1992 | ||
b16565b3 | 1993 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 1994 | { |
11076198 | 1995 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 1996 | uint64_t shadow_mem; |
20420430 | 1997 | int ret; |
25d2e361 | 1998 | struct utsname utsname; |
20420430 | 1999 | |
28143b40 | 2000 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
28143b40 | 2001 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
28143b40 | 2002 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); |
28143b40 | 2003 | |
e9688fab RK |
2004 | hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); |
2005 | ||
fd13f23b LA |
2006 | has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); |
2007 | if (has_exception_payload) { | |
2008 | ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); | |
2009 | if (ret < 0) { | |
2010 | error_report("kvm: Failed to enable exception payload cap: %s", | |
2011 | strerror(-ret)); | |
2012 | return ret; | |
2013 | } | |
2014 | } | |
2015 | ||
c3a3a7d3 | 2016 | ret = kvm_get_supported_msrs(s); |
20420430 | 2017 | if (ret < 0) { |
20420430 SY |
2018 | return ret; |
2019 | } | |
25d2e361 | 2020 | |
f57bceb6 RH |
2021 | kvm_get_supported_feature_msrs(s); |
2022 | ||
25d2e361 MT |
2023 | uname(&utsname); |
2024 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
2025 | ||
4c5b10b7 | 2026 | /* |
11076198 JK |
2027 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
2028 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
2029 | * Since these must be part of guest physical memory, we need to allocate | |
2030 | * them, both by setting their start addresses in the kernel and by | |
2031 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
2032 | * | |
2033 | * Older KVM versions may not support setting the identity map base. In | |
2034 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
2035 | * size. | |
4c5b10b7 | 2036 | */ |
11076198 JK |
2037 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
2038 | /* Allows up to 16M BIOSes. */ | |
2039 | identity_base = 0xfeffc000; | |
2040 | ||
2041 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
2042 | if (ret < 0) { | |
2043 | return ret; | |
2044 | } | |
4c5b10b7 | 2045 | } |
e56ff191 | 2046 | |
11076198 JK |
2047 | /* Set TSS base one page after EPT identity map. */ |
2048 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
2049 | if (ret < 0) { |
2050 | return ret; | |
2051 | } | |
2052 | ||
11076198 JK |
2053 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
2054 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 2055 | if (ret < 0) { |
11076198 | 2056 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
2057 | return ret; |
2058 | } | |
3c85e74f | 2059 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 2060 | |
4689b77b | 2061 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
2062 | if (shadow_mem != -1) { |
2063 | shadow_mem /= 4096; | |
2064 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
2065 | if (ret < 0) { | |
2066 | return ret; | |
39d6960a JK |
2067 | } |
2068 | } | |
6410848b | 2069 | |
d870cfde GA |
2070 | if (kvm_check_extension(s, KVM_CAP_X86_SMM) && |
2071 | object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) && | |
2072 | pc_machine_is_smm_enabled(PC_MACHINE(ms))) { | |
6410848b PB |
2073 | smram_machine_done.notify = register_smram_listener; |
2074 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
2075 | } | |
6f131f13 MT |
2076 | |
2077 | if (enable_cpu_pm) { | |
2078 | int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); | |
2079 | int ret; | |
2080 | ||
2081 | /* Work around for kernel header with a typo. TODO: fix header and drop. */ | |
2082 | #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) | |
2083 | #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL | |
2084 | #endif | |
2085 | if (disable_exits) { | |
2086 | disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | | |
2087 | KVM_X86_DISABLE_EXITS_HLT | | |
2088 | KVM_X86_DISABLE_EXITS_PAUSE); | |
2089 | } | |
2090 | ||
2091 | ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, | |
2092 | disable_exits); | |
2093 | if (ret < 0) { | |
2094 | error_report("kvm: guest stopping CPU not supported: %s", | |
2095 | strerror(-ret)); | |
2096 | } | |
2097 | } | |
2098 | ||
11076198 | 2099 | return 0; |
05330448 | 2100 | } |
b9bec74b | 2101 | |
05330448 AL |
2102 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
2103 | { | |
2104 | lhs->selector = rhs->selector; | |
2105 | lhs->base = rhs->base; | |
2106 | lhs->limit = rhs->limit; | |
2107 | lhs->type = 3; | |
2108 | lhs->present = 1; | |
2109 | lhs->dpl = 3; | |
2110 | lhs->db = 0; | |
2111 | lhs->s = 1; | |
2112 | lhs->l = 0; | |
2113 | lhs->g = 0; | |
2114 | lhs->avl = 0; | |
2115 | lhs->unusable = 0; | |
2116 | } | |
2117 | ||
2118 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
2119 | { | |
2120 | unsigned flags = rhs->flags; | |
2121 | lhs->selector = rhs->selector; | |
2122 | lhs->base = rhs->base; | |
2123 | lhs->limit = rhs->limit; | |
2124 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
2125 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 2126 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
2127 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
2128 | lhs->s = (flags & DESC_S_MASK) != 0; | |
2129 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
2130 | lhs->g = (flags & DESC_G_MASK) != 0; | |
2131 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 2132 | lhs->unusable = !lhs->present; |
7e680753 | 2133 | lhs->padding = 0; |
05330448 AL |
2134 | } |
2135 | ||
2136 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
2137 | { | |
2138 | lhs->selector = rhs->selector; | |
2139 | lhs->base = rhs->base; | |
2140 | lhs->limit = rhs->limit; | |
d45fc087 RP |
2141 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
2142 | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | | |
2143 | (rhs->dpl << DESC_DPL_SHIFT) | | |
2144 | (rhs->db << DESC_B_SHIFT) | | |
2145 | (rhs->s * DESC_S_MASK) | | |
2146 | (rhs->l << DESC_L_SHIFT) | | |
2147 | (rhs->g * DESC_G_MASK) | | |
2148 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
2149 | } |
2150 | ||
2151 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
2152 | { | |
b9bec74b | 2153 | if (set) { |
05330448 | 2154 | *kvm_reg = *qemu_reg; |
b9bec74b | 2155 | } else { |
05330448 | 2156 | *qemu_reg = *kvm_reg; |
b9bec74b | 2157 | } |
05330448 AL |
2158 | } |
2159 | ||
1bc22652 | 2160 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 2161 | { |
1bc22652 | 2162 | CPUX86State *env = &cpu->env; |
05330448 AL |
2163 | struct kvm_regs regs; |
2164 | int ret = 0; | |
2165 | ||
2166 | if (!set) { | |
1bc22652 | 2167 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 2168 | if (ret < 0) { |
05330448 | 2169 | return ret; |
b9bec74b | 2170 | } |
05330448 AL |
2171 | } |
2172 | ||
2173 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
2174 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
2175 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
2176 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
2177 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
2178 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
2179 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
2180 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
2181 | #ifdef TARGET_X86_64 | |
2182 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
2183 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
2184 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
2185 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
2186 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
2187 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
2188 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
2189 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
2190 | #endif | |
2191 | ||
2192 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
2193 | kvm_getput_reg(®s.rip, &env->eip, set); | |
2194 | ||
b9bec74b | 2195 | if (set) { |
1bc22652 | 2196 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 2197 | } |
05330448 AL |
2198 | |
2199 | return ret; | |
2200 | } | |
2201 | ||
1bc22652 | 2202 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 2203 | { |
1bc22652 | 2204 | CPUX86State *env = &cpu->env; |
05330448 AL |
2205 | struct kvm_fpu fpu; |
2206 | int i; | |
2207 | ||
2208 | memset(&fpu, 0, sizeof fpu); | |
2209 | fpu.fsw = env->fpus & ~(7 << 11); | |
2210 | fpu.fsw |= (env->fpstt & 7) << 11; | |
2211 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
2212 | fpu.last_opcode = env->fpop; |
2213 | fpu.last_ip = env->fpip; | |
2214 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
2215 | for (i = 0; i < 8; ++i) { |
2216 | fpu.ftwx |= (!env->fptags[i]) << i; | |
2217 | } | |
05330448 | 2218 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 2219 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
2220 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
2221 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 2222 | } |
05330448 AL |
2223 | fpu.mxcsr = env->mxcsr; |
2224 | ||
1bc22652 | 2225 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
2226 | } |
2227 | ||
6b42494b JK |
2228 | #define XSAVE_FCW_FSW 0 |
2229 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
2230 | #define XSAVE_CWD_RIP 2 |
2231 | #define XSAVE_CWD_RDP 4 | |
2232 | #define XSAVE_MXCSR 6 | |
2233 | #define XSAVE_ST_SPACE 8 | |
2234 | #define XSAVE_XMM_SPACE 40 | |
2235 | #define XSAVE_XSTATE_BV 128 | |
2236 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
2237 | #define XSAVE_BNDREGS 240 |
2238 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
2239 | #define XSAVE_OPMASK 272 |
2240 | #define XSAVE_ZMM_Hi256 288 | |
2241 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 2242 | #define XSAVE_PKRU 672 |
f1665b21 | 2243 | |
b503717d | 2244 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
f18793b0 | 2245 | ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) |
b503717d EH |
2246 | |
2247 | #define ASSERT_OFFSET(word_offset, field) \ | |
2248 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
2249 | offsetof(X86XSaveArea, field)) | |
2250 | ||
2251 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
2252 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
2253 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
2254 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
2255 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
2256 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
2257 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
2258 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
2259 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
2260 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
2261 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
2262 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
2263 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
2264 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
2265 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
2266 | ||
1bc22652 | 2267 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 2268 | { |
1bc22652 | 2269 | CPUX86State *env = &cpu->env; |
5b8063c4 | 2270 | X86XSaveArea *xsave = env->xsave_buf; |
f1665b21 | 2271 | |
28143b40 | 2272 | if (!has_xsave) { |
1bc22652 | 2273 | return kvm_put_fpu(cpu); |
b9bec74b | 2274 | } |
86a57621 | 2275 | x86_cpu_xsave_all_areas(cpu, xsave); |
f1665b21 | 2276 | |
9be38598 | 2277 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
2278 | } |
2279 | ||
1bc22652 | 2280 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 2281 | { |
1bc22652 | 2282 | CPUX86State *env = &cpu->env; |
bdfc8480 | 2283 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 2284 | |
28143b40 | 2285 | if (!has_xcrs) { |
f1665b21 | 2286 | return 0; |
b9bec74b | 2287 | } |
f1665b21 SY |
2288 | |
2289 | xcrs.nr_xcrs = 1; | |
2290 | xcrs.flags = 0; | |
2291 | xcrs.xcrs[0].xcr = 0; | |
2292 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 2293 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
2294 | } |
2295 | ||
1bc22652 | 2296 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 2297 | { |
1bc22652 | 2298 | CPUX86State *env = &cpu->env; |
05330448 AL |
2299 | struct kvm_sregs sregs; |
2300 | ||
0e607a80 JK |
2301 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
2302 | if (env->interrupt_injected >= 0) { | |
2303 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
2304 | (uint64_t)1 << (env->interrupt_injected % 64); | |
2305 | } | |
05330448 AL |
2306 | |
2307 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
2308 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
2309 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
2310 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
2311 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
2312 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
2313 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 2314 | } else { |
b9bec74b JK |
2315 | set_seg(&sregs.cs, &env->segs[R_CS]); |
2316 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
2317 | set_seg(&sregs.es, &env->segs[R_ES]); | |
2318 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
2319 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
2320 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
2321 | } |
2322 | ||
2323 | set_seg(&sregs.tr, &env->tr); | |
2324 | set_seg(&sregs.ldt, &env->ldt); | |
2325 | ||
2326 | sregs.idt.limit = env->idt.limit; | |
2327 | sregs.idt.base = env->idt.base; | |
7e680753 | 2328 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
2329 | sregs.gdt.limit = env->gdt.limit; |
2330 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 2331 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
2332 | |
2333 | sregs.cr0 = env->cr[0]; | |
2334 | sregs.cr2 = env->cr[2]; | |
2335 | sregs.cr3 = env->cr[3]; | |
2336 | sregs.cr4 = env->cr[4]; | |
2337 | ||
02e51483 CF |
2338 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
2339 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
2340 | |
2341 | sregs.efer = env->efer; | |
2342 | ||
1bc22652 | 2343 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
2344 | } |
2345 | ||
d71b62a1 EH |
2346 | static void kvm_msr_buf_reset(X86CPU *cpu) |
2347 | { | |
2348 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
2349 | } | |
2350 | ||
9c600a84 EH |
2351 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
2352 | { | |
2353 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
2354 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
2355 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
2356 | ||
2357 | assert((void *)(entry + 1) <= limit); | |
2358 | ||
1abc2cae EH |
2359 | entry->index = index; |
2360 | entry->reserved = 0; | |
2361 | entry->data = value; | |
9c600a84 EH |
2362 | msrs->nmsrs++; |
2363 | } | |
2364 | ||
73e1b8f2 PB |
2365 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
2366 | { | |
2367 | kvm_msr_buf_reset(cpu); | |
2368 | kvm_msr_entry_add(cpu, index, value); | |
2369 | ||
2370 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
2371 | } | |
2372 | ||
f8d9ccf8 DDAG |
2373 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
2374 | { | |
2375 | int ret; | |
2376 | ||
2377 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
2378 | assert(ret == 1); | |
2379 | } | |
2380 | ||
7477cd38 MT |
2381 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
2382 | { | |
2383 | CPUX86State *env = &cpu->env; | |
48e1a45c | 2384 | int ret; |
7477cd38 MT |
2385 | |
2386 | if (!has_msr_tsc_deadline) { | |
2387 | return 0; | |
2388 | } | |
2389 | ||
73e1b8f2 | 2390 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
48e1a45c PB |
2391 | if (ret < 0) { |
2392 | return ret; | |
2393 | } | |
2394 | ||
2395 | assert(ret == 1); | |
2396 | return 0; | |
7477cd38 MT |
2397 | } |
2398 | ||
6bdf863d JK |
2399 | /* |
2400 | * Provide a separate write service for the feature control MSR in order to | |
2401 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
2402 | * before writing any other state because forcibly leaving nested mode | |
2403 | * invalidates the VCPU state. | |
2404 | */ | |
2405 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
2406 | { | |
48e1a45c PB |
2407 | int ret; |
2408 | ||
2409 | if (!has_msr_feature_control) { | |
2410 | return 0; | |
2411 | } | |
6bdf863d | 2412 | |
73e1b8f2 PB |
2413 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
2414 | cpu->env.msr_ia32_feature_control); | |
48e1a45c PB |
2415 | if (ret < 0) { |
2416 | return ret; | |
2417 | } | |
2418 | ||
2419 | assert(ret == 1); | |
2420 | return 0; | |
6bdf863d JK |
2421 | } |
2422 | ||
1bc22652 | 2423 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 2424 | { |
1bc22652 | 2425 | CPUX86State *env = &cpu->env; |
9c600a84 | 2426 | int i; |
48e1a45c | 2427 | int ret; |
05330448 | 2428 | |
d71b62a1 EH |
2429 | kvm_msr_buf_reset(cpu); |
2430 | ||
9c600a84 EH |
2431 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
2432 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
2433 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
2434 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 2435 | if (has_msr_star) { |
9c600a84 | 2436 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 2437 | } |
c3a3a7d3 | 2438 | if (has_msr_hsave_pa) { |
9c600a84 | 2439 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 2440 | } |
c9b8f6b6 | 2441 | if (has_msr_tsc_aux) { |
9c600a84 | 2442 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 2443 | } |
f28558d3 | 2444 | if (has_msr_tsc_adjust) { |
9c600a84 | 2445 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 2446 | } |
21e87c46 | 2447 | if (has_msr_misc_enable) { |
9c600a84 | 2448 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
2449 | env->msr_ia32_misc_enable); |
2450 | } | |
fc12d72e | 2451 | if (has_msr_smbase) { |
9c600a84 | 2452 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 2453 | } |
e13713db LA |
2454 | if (has_msr_smi_count) { |
2455 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); | |
2456 | } | |
439d19f2 | 2457 | if (has_msr_bndcfgs) { |
9c600a84 | 2458 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 2459 | } |
18cd2c17 | 2460 | if (has_msr_xss) { |
9c600a84 | 2461 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 2462 | } |
a33a2cfe PB |
2463 | if (has_msr_spec_ctrl) { |
2464 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); | |
2465 | } | |
cfeea0c0 KRW |
2466 | if (has_msr_virt_ssbd) { |
2467 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); | |
2468 | } | |
2469 | ||
05330448 | 2470 | #ifdef TARGET_X86_64 |
25d2e361 | 2471 | if (lm_capable_kernel) { |
9c600a84 EH |
2472 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
2473 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
2474 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
2475 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 2476 | } |
05330448 | 2477 | #endif |
a33a2cfe | 2478 | |
d86f9636 | 2479 | /* If host supports feature MSR, write down. */ |
aec5e9c3 BD |
2480 | if (has_msr_arch_capabs) { |
2481 | kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, | |
2482 | env->features[FEAT_ARCH_CAPABILITIES]); | |
d86f9636 RH |
2483 | } |
2484 | ||
597360c0 XL |
2485 | if (has_msr_core_capabs) { |
2486 | kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, | |
2487 | env->features[FEAT_CORE_CAPABILITY]); | |
2488 | } | |
2489 | ||
ff5c186b | 2490 | /* |
0d894367 PB |
2491 | * The following MSRs have side effects on the guest or are too heavy |
2492 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
2493 | */ |
2494 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
2495 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
2496 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
2497 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
55c911a5 | 2498 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2499 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 2500 | } |
55c911a5 | 2501 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2502 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 2503 | } |
55c911a5 | 2504 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2505 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 2506 | } |
0b368a10 JD |
2507 | if (has_architectural_pmu_version > 0) { |
2508 | if (has_architectural_pmu_version > 1) { | |
2509 | /* Stop the counter. */ | |
2510 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2511 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2512 | } | |
0d894367 PB |
2513 | |
2514 | /* Set the counter values. */ | |
0b368a10 | 2515 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { |
9c600a84 | 2516 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
2517 | env->msr_fixed_counters[i]); |
2518 | } | |
0b368a10 | 2519 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 | 2520 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 2521 | env->msr_gp_counters[i]); |
9c600a84 | 2522 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
2523 | env->msr_gp_evtsel[i]); |
2524 | } | |
0b368a10 JD |
2525 | if (has_architectural_pmu_version > 1) { |
2526 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, | |
2527 | env->msr_global_status); | |
2528 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
2529 | env->msr_global_ovf_ctrl); | |
2530 | ||
2531 | /* Now start the PMU. */ | |
2532 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, | |
2533 | env->msr_fixed_ctr_ctrl); | |
2534 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, | |
2535 | env->msr_global_ctrl); | |
2536 | } | |
0d894367 | 2537 | } |
da1cc323 EY |
2538 | /* |
2539 | * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, | |
2540 | * only sync them to KVM on the first cpu | |
2541 | */ | |
2542 | if (current_cpu == first_cpu) { | |
2543 | if (has_msr_hv_hypercall) { | |
2544 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, | |
2545 | env->msr_hv_guest_os_id); | |
2546 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, | |
2547 | env->msr_hv_hypercall); | |
2548 | } | |
2d384d7c | 2549 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { |
da1cc323 EY |
2550 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, |
2551 | env->msr_hv_tsc); | |
2552 | } | |
2d384d7c | 2553 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { |
ba6a4fd9 VK |
2554 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, |
2555 | env->msr_hv_reenlightenment_control); | |
2556 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, | |
2557 | env->msr_hv_tsc_emulation_control); | |
2558 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, | |
2559 | env->msr_hv_tsc_emulation_status); | |
2560 | } | |
eab70139 | 2561 | } |
2d384d7c | 2562 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { |
9c600a84 | 2563 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 2564 | env->msr_hv_vapic); |
eab70139 | 2565 | } |
f2a53c9e AS |
2566 | if (has_msr_hv_crash) { |
2567 | int j; | |
2568 | ||
5e953812 | 2569 | for (j = 0; j < HV_CRASH_PARAMS; j++) |
9c600a84 | 2570 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
2571 | env->msr_hv_crash_params[j]); |
2572 | ||
5e953812 | 2573 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); |
f2a53c9e | 2574 | } |
46eb8f98 | 2575 | if (has_msr_hv_runtime) { |
9c600a84 | 2576 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 2577 | } |
2d384d7c VK |
2578 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) |
2579 | && hv_vpindex_settable) { | |
701189e3 RK |
2580 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, |
2581 | hyperv_vp_index(CPU(cpu))); | |
e9688fab | 2582 | } |
2d384d7c | 2583 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
866eea9a AS |
2584 | int j; |
2585 | ||
09df29b6 RK |
2586 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); |
2587 | ||
9c600a84 | 2588 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 2589 | env->msr_hv_synic_control); |
9c600a84 | 2590 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 2591 | env->msr_hv_synic_evt_page); |
9c600a84 | 2592 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
2593 | env->msr_hv_synic_msg_page); |
2594 | ||
2595 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 2596 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
2597 | env->msr_hv_synic_sint[j]); |
2598 | } | |
2599 | } | |
ff99aa64 AS |
2600 | if (has_msr_hv_stimer) { |
2601 | int j; | |
2602 | ||
2603 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 2604 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
2605 | env->msr_hv_stimer_config[j]); |
2606 | } | |
2607 | ||
2608 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 2609 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
2610 | env->msr_hv_stimer_count[j]); |
2611 | } | |
2612 | } | |
1eabfce6 | 2613 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
112dad69 DDAG |
2614 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
2615 | ||
9c600a84 EH |
2616 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
2617 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
2618 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
2619 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
2620 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
2621 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
2622 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
2623 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
2624 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
2625 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
2626 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
2627 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 2628 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
112dad69 DDAG |
2629 | /* The CPU GPs if we write to a bit above the physical limit of |
2630 | * the host CPU (and KVM emulates that) | |
2631 | */ | |
2632 | uint64_t mask = env->mtrr_var[i].mask; | |
2633 | mask &= phys_mask; | |
2634 | ||
9c600a84 EH |
2635 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
2636 | env->mtrr_var[i].base); | |
112dad69 | 2637 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
d1ae67f6 AW |
2638 | } |
2639 | } | |
b77146e9 CP |
2640 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2641 | int addr_num = kvm_arch_get_supported_cpuid(kvm_state, | |
2642 | 0x14, 1, R_EAX) & 0x7; | |
2643 | ||
2644 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, | |
2645 | env->msr_rtit_ctrl); | |
2646 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, | |
2647 | env->msr_rtit_status); | |
2648 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, | |
2649 | env->msr_rtit_output_base); | |
2650 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, | |
2651 | env->msr_rtit_output_mask); | |
2652 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, | |
2653 | env->msr_rtit_cr3_match); | |
2654 | for (i = 0; i < addr_num; i++) { | |
2655 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, | |
2656 | env->msr_rtit_addrs[i]); | |
2657 | } | |
2658 | } | |
6bdf863d JK |
2659 | |
2660 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
2661 | * kvm_put_msr_feature_control. */ | |
ea643051 | 2662 | } |
57780495 | 2663 | if (env->mcg_cap) { |
d8da8574 | 2664 | int i; |
b9bec74b | 2665 | |
9c600a84 EH |
2666 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
2667 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
2668 | if (has_msr_mcg_ext_ctl) { |
2669 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
2670 | } | |
c34d440a | 2671 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2672 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
2673 | } |
2674 | } | |
1a03675d | 2675 | |
d71b62a1 | 2676 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
2677 | if (ret < 0) { |
2678 | return ret; | |
2679 | } | |
05330448 | 2680 | |
c70b11d1 EH |
2681 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
2682 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2683 | error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, | |
2684 | (uint32_t)e->index, (uint64_t)e->data); | |
2685 | } | |
2686 | ||
9c600a84 | 2687 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
48e1a45c | 2688 | return 0; |
05330448 AL |
2689 | } |
2690 | ||
2691 | ||
1bc22652 | 2692 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 2693 | { |
1bc22652 | 2694 | CPUX86State *env = &cpu->env; |
05330448 AL |
2695 | struct kvm_fpu fpu; |
2696 | int i, ret; | |
2697 | ||
1bc22652 | 2698 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 2699 | if (ret < 0) { |
05330448 | 2700 | return ret; |
b9bec74b | 2701 | } |
05330448 AL |
2702 | |
2703 | env->fpstt = (fpu.fsw >> 11) & 7; | |
2704 | env->fpus = fpu.fsw; | |
2705 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
2706 | env->fpop = fpu.last_opcode; |
2707 | env->fpip = fpu.last_ip; | |
2708 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
2709 | for (i = 0; i < 8; ++i) { |
2710 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
2711 | } | |
05330448 | 2712 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 2713 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
2714 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
2715 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 2716 | } |
05330448 AL |
2717 | env->mxcsr = fpu.mxcsr; |
2718 | ||
2719 | return 0; | |
2720 | } | |
2721 | ||
1bc22652 | 2722 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 2723 | { |
1bc22652 | 2724 | CPUX86State *env = &cpu->env; |
5b8063c4 | 2725 | X86XSaveArea *xsave = env->xsave_buf; |
86a57621 | 2726 | int ret; |
f1665b21 | 2727 | |
28143b40 | 2728 | if (!has_xsave) { |
1bc22652 | 2729 | return kvm_get_fpu(cpu); |
b9bec74b | 2730 | } |
f1665b21 | 2731 | |
1bc22652 | 2732 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 2733 | if (ret < 0) { |
f1665b21 | 2734 | return ret; |
0f53994f | 2735 | } |
86a57621 | 2736 | x86_cpu_xrstor_all_areas(cpu, xsave); |
f1665b21 | 2737 | |
f1665b21 | 2738 | return 0; |
f1665b21 SY |
2739 | } |
2740 | ||
1bc22652 | 2741 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 2742 | { |
1bc22652 | 2743 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
2744 | int i, ret; |
2745 | struct kvm_xcrs xcrs; | |
2746 | ||
28143b40 | 2747 | if (!has_xcrs) { |
f1665b21 | 2748 | return 0; |
b9bec74b | 2749 | } |
f1665b21 | 2750 | |
1bc22652 | 2751 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 2752 | if (ret < 0) { |
f1665b21 | 2753 | return ret; |
b9bec74b | 2754 | } |
f1665b21 | 2755 | |
b9bec74b | 2756 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 2757 | /* Only support xcr0 now */ |
0fd53fec PB |
2758 | if (xcrs.xcrs[i].xcr == 0) { |
2759 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
2760 | break; |
2761 | } | |
b9bec74b | 2762 | } |
f1665b21 | 2763 | return 0; |
f1665b21 SY |
2764 | } |
2765 | ||
1bc22652 | 2766 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 2767 | { |
1bc22652 | 2768 | CPUX86State *env = &cpu->env; |
05330448 | 2769 | struct kvm_sregs sregs; |
0e607a80 | 2770 | int bit, i, ret; |
05330448 | 2771 | |
1bc22652 | 2772 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 2773 | if (ret < 0) { |
05330448 | 2774 | return ret; |
b9bec74b | 2775 | } |
05330448 | 2776 | |
0e607a80 JK |
2777 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
2778 | to find it and save its number instead (-1 for none). */ | |
2779 | env->interrupt_injected = -1; | |
2780 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
2781 | if (sregs.interrupt_bitmap[i]) { | |
2782 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
2783 | env->interrupt_injected = i * 64 + bit; | |
2784 | break; | |
2785 | } | |
2786 | } | |
05330448 AL |
2787 | |
2788 | get_seg(&env->segs[R_CS], &sregs.cs); | |
2789 | get_seg(&env->segs[R_DS], &sregs.ds); | |
2790 | get_seg(&env->segs[R_ES], &sregs.es); | |
2791 | get_seg(&env->segs[R_FS], &sregs.fs); | |
2792 | get_seg(&env->segs[R_GS], &sregs.gs); | |
2793 | get_seg(&env->segs[R_SS], &sregs.ss); | |
2794 | ||
2795 | get_seg(&env->tr, &sregs.tr); | |
2796 | get_seg(&env->ldt, &sregs.ldt); | |
2797 | ||
2798 | env->idt.limit = sregs.idt.limit; | |
2799 | env->idt.base = sregs.idt.base; | |
2800 | env->gdt.limit = sregs.gdt.limit; | |
2801 | env->gdt.base = sregs.gdt.base; | |
2802 | ||
2803 | env->cr[0] = sregs.cr0; | |
2804 | env->cr[2] = sregs.cr2; | |
2805 | env->cr[3] = sregs.cr3; | |
2806 | env->cr[4] = sregs.cr4; | |
2807 | ||
05330448 | 2808 | env->efer = sregs.efer; |
cce47516 JK |
2809 | |
2810 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
35b1b927 | 2811 | x86_update_hflags(env); |
05330448 AL |
2812 | |
2813 | return 0; | |
2814 | } | |
2815 | ||
1bc22652 | 2816 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 2817 | { |
1bc22652 | 2818 | CPUX86State *env = &cpu->env; |
d71b62a1 | 2819 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 2820 | int ret, i; |
fcc35e7c | 2821 | uint64_t mtrr_top_bits; |
05330448 | 2822 | |
d71b62a1 EH |
2823 | kvm_msr_buf_reset(cpu); |
2824 | ||
9c600a84 EH |
2825 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
2826 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
2827 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
2828 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 2829 | if (has_msr_star) { |
9c600a84 | 2830 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 2831 | } |
c3a3a7d3 | 2832 | if (has_msr_hsave_pa) { |
9c600a84 | 2833 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 2834 | } |
c9b8f6b6 | 2835 | if (has_msr_tsc_aux) { |
9c600a84 | 2836 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 2837 | } |
f28558d3 | 2838 | if (has_msr_tsc_adjust) { |
9c600a84 | 2839 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 2840 | } |
aa82ba54 | 2841 | if (has_msr_tsc_deadline) { |
9c600a84 | 2842 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 2843 | } |
21e87c46 | 2844 | if (has_msr_misc_enable) { |
9c600a84 | 2845 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 2846 | } |
fc12d72e | 2847 | if (has_msr_smbase) { |
9c600a84 | 2848 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 2849 | } |
e13713db LA |
2850 | if (has_msr_smi_count) { |
2851 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); | |
2852 | } | |
df67696e | 2853 | if (has_msr_feature_control) { |
9c600a84 | 2854 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 2855 | } |
79e9ebeb | 2856 | if (has_msr_bndcfgs) { |
9c600a84 | 2857 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 2858 | } |
18cd2c17 | 2859 | if (has_msr_xss) { |
9c600a84 | 2860 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 | 2861 | } |
a33a2cfe PB |
2862 | if (has_msr_spec_ctrl) { |
2863 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); | |
2864 | } | |
cfeea0c0 KRW |
2865 | if (has_msr_virt_ssbd) { |
2866 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); | |
2867 | } | |
b8cc45d6 | 2868 | if (!env->tsc_valid) { |
9c600a84 | 2869 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 2870 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
2871 | } |
2872 | ||
05330448 | 2873 | #ifdef TARGET_X86_64 |
25d2e361 | 2874 | if (lm_capable_kernel) { |
9c600a84 EH |
2875 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
2876 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
2877 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
2878 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 2879 | } |
05330448 | 2880 | #endif |
9c600a84 EH |
2881 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
2882 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
55c911a5 | 2883 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2884 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 2885 | } |
55c911a5 | 2886 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2887 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 2888 | } |
55c911a5 | 2889 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2890 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 2891 | } |
0b368a10 JD |
2892 | if (has_architectural_pmu_version > 0) { |
2893 | if (has_architectural_pmu_version > 1) { | |
2894 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2895 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2896 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
2897 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
2898 | } | |
2899 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { | |
9c600a84 | 2900 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 | 2901 | } |
0b368a10 | 2902 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 EH |
2903 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
2904 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
2905 | } |
2906 | } | |
1a03675d | 2907 | |
57780495 | 2908 | if (env->mcg_cap) { |
9c600a84 EH |
2909 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
2910 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
2911 | if (has_msr_mcg_ext_ctl) { |
2912 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
2913 | } | |
b9bec74b | 2914 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2915 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 2916 | } |
57780495 | 2917 | } |
57780495 | 2918 | |
1c90ef26 | 2919 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
2920 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
2921 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 2922 | } |
2d384d7c | 2923 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { |
9c600a84 | 2924 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 2925 | } |
2d384d7c | 2926 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { |
9c600a84 | 2927 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 2928 | } |
2d384d7c | 2929 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { |
ba6a4fd9 VK |
2930 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); |
2931 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); | |
2932 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); | |
2933 | } | |
f2a53c9e AS |
2934 | if (has_msr_hv_crash) { |
2935 | int j; | |
2936 | ||
5e953812 | 2937 | for (j = 0; j < HV_CRASH_PARAMS; j++) { |
9c600a84 | 2938 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
2939 | } |
2940 | } | |
46eb8f98 | 2941 | if (has_msr_hv_runtime) { |
9c600a84 | 2942 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 2943 | } |
2d384d7c | 2944 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
866eea9a AS |
2945 | uint32_t msr; |
2946 | ||
9c600a84 | 2947 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
9c600a84 EH |
2948 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); |
2949 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 2950 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 2951 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
2952 | } |
2953 | } | |
ff99aa64 AS |
2954 | if (has_msr_hv_stimer) { |
2955 | uint32_t msr; | |
2956 | ||
2957 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
2958 | msr++) { | |
9c600a84 | 2959 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
2960 | } |
2961 | } | |
1eabfce6 | 2962 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
9c600a84 EH |
2963 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
2964 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
2965 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
2966 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
2967 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
2968 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
2969 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
2970 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
2971 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
2972 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
2973 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
2974 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 2975 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
2976 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
2977 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
2978 | } |
2979 | } | |
5ef68987 | 2980 | |
b77146e9 CP |
2981 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2982 | int addr_num = | |
2983 | kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; | |
2984 | ||
2985 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); | |
2986 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); | |
2987 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); | |
2988 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); | |
2989 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); | |
2990 | for (i = 0; i < addr_num; i++) { | |
2991 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); | |
2992 | } | |
2993 | } | |
2994 | ||
d71b62a1 | 2995 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 2996 | if (ret < 0) { |
05330448 | 2997 | return ret; |
b9bec74b | 2998 | } |
05330448 | 2999 | |
c70b11d1 EH |
3000 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
3001 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
3002 | error_report("error: failed to get MSR 0x%" PRIx32, | |
3003 | (uint32_t)e->index); | |
3004 | } | |
3005 | ||
9c600a84 | 3006 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
fcc35e7c DDAG |
3007 | /* |
3008 | * MTRR masks: Each mask consists of 5 parts | |
3009 | * a 10..0: must be zero | |
3010 | * b 11 : valid bit | |
3011 | * c n-1.12: actual mask bits | |
3012 | * d 51..n: reserved must be zero | |
3013 | * e 63.52: reserved must be zero | |
3014 | * | |
3015 | * 'n' is the number of physical bits supported by the CPU and is | |
3016 | * apparently always <= 52. We know our 'n' but don't know what | |
3017 | * the destinations 'n' is; it might be smaller, in which case | |
3018 | * it masks (c) on loading. It might be larger, in which case | |
3019 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
3020 | * we're migrating to. | |
3021 | */ | |
3022 | ||
3023 | if (cpu->fill_mtrr_mask) { | |
3024 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
3025 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
3026 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
3027 | } else { | |
3028 | mtrr_top_bits = 0; | |
3029 | } | |
3030 | ||
05330448 | 3031 | for (i = 0; i < ret; i++) { |
0d894367 PB |
3032 | uint32_t index = msrs[i].index; |
3033 | switch (index) { | |
05330448 AL |
3034 | case MSR_IA32_SYSENTER_CS: |
3035 | env->sysenter_cs = msrs[i].data; | |
3036 | break; | |
3037 | case MSR_IA32_SYSENTER_ESP: | |
3038 | env->sysenter_esp = msrs[i].data; | |
3039 | break; | |
3040 | case MSR_IA32_SYSENTER_EIP: | |
3041 | env->sysenter_eip = msrs[i].data; | |
3042 | break; | |
0c03266a JK |
3043 | case MSR_PAT: |
3044 | env->pat = msrs[i].data; | |
3045 | break; | |
05330448 AL |
3046 | case MSR_STAR: |
3047 | env->star = msrs[i].data; | |
3048 | break; | |
3049 | #ifdef TARGET_X86_64 | |
3050 | case MSR_CSTAR: | |
3051 | env->cstar = msrs[i].data; | |
3052 | break; | |
3053 | case MSR_KERNELGSBASE: | |
3054 | env->kernelgsbase = msrs[i].data; | |
3055 | break; | |
3056 | case MSR_FMASK: | |
3057 | env->fmask = msrs[i].data; | |
3058 | break; | |
3059 | case MSR_LSTAR: | |
3060 | env->lstar = msrs[i].data; | |
3061 | break; | |
3062 | #endif | |
3063 | case MSR_IA32_TSC: | |
3064 | env->tsc = msrs[i].data; | |
3065 | break; | |
c9b8f6b6 AS |
3066 | case MSR_TSC_AUX: |
3067 | env->tsc_aux = msrs[i].data; | |
3068 | break; | |
f28558d3 WA |
3069 | case MSR_TSC_ADJUST: |
3070 | env->tsc_adjust = msrs[i].data; | |
3071 | break; | |
aa82ba54 LJ |
3072 | case MSR_IA32_TSCDEADLINE: |
3073 | env->tsc_deadline = msrs[i].data; | |
3074 | break; | |
aa851e36 MT |
3075 | case MSR_VM_HSAVE_PA: |
3076 | env->vm_hsave = msrs[i].data; | |
3077 | break; | |
1a03675d GC |
3078 | case MSR_KVM_SYSTEM_TIME: |
3079 | env->system_time_msr = msrs[i].data; | |
3080 | break; | |
3081 | case MSR_KVM_WALL_CLOCK: | |
3082 | env->wall_clock_msr = msrs[i].data; | |
3083 | break; | |
57780495 MT |
3084 | case MSR_MCG_STATUS: |
3085 | env->mcg_status = msrs[i].data; | |
3086 | break; | |
3087 | case MSR_MCG_CTL: | |
3088 | env->mcg_ctl = msrs[i].data; | |
3089 | break; | |
87f8b626 AR |
3090 | case MSR_MCG_EXT_CTL: |
3091 | env->mcg_ext_ctl = msrs[i].data; | |
3092 | break; | |
21e87c46 AK |
3093 | case MSR_IA32_MISC_ENABLE: |
3094 | env->msr_ia32_misc_enable = msrs[i].data; | |
3095 | break; | |
fc12d72e PB |
3096 | case MSR_IA32_SMBASE: |
3097 | env->smbase = msrs[i].data; | |
3098 | break; | |
e13713db LA |
3099 | case MSR_SMI_COUNT: |
3100 | env->msr_smi_count = msrs[i].data; | |
3101 | break; | |
0779caeb ACL |
3102 | case MSR_IA32_FEATURE_CONTROL: |
3103 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 3104 | break; |
79e9ebeb LJ |
3105 | case MSR_IA32_BNDCFGS: |
3106 | env->msr_bndcfgs = msrs[i].data; | |
3107 | break; | |
18cd2c17 WL |
3108 | case MSR_IA32_XSS: |
3109 | env->xss = msrs[i].data; | |
3110 | break; | |
57780495 | 3111 | default: |
57780495 MT |
3112 | if (msrs[i].index >= MSR_MC0_CTL && |
3113 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
3114 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 3115 | } |
d8da8574 | 3116 | break; |
f6584ee2 GN |
3117 | case MSR_KVM_ASYNC_PF_EN: |
3118 | env->async_pf_en_msr = msrs[i].data; | |
3119 | break; | |
bc9a839d MT |
3120 | case MSR_KVM_PV_EOI_EN: |
3121 | env->pv_eoi_en_msr = msrs[i].data; | |
3122 | break; | |
917367aa MT |
3123 | case MSR_KVM_STEAL_TIME: |
3124 | env->steal_time_msr = msrs[i].data; | |
3125 | break; | |
0d894367 PB |
3126 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
3127 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
3128 | break; | |
3129 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
3130 | env->msr_global_ctrl = msrs[i].data; | |
3131 | break; | |
3132 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
3133 | env->msr_global_status = msrs[i].data; | |
3134 | break; | |
3135 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
3136 | env->msr_global_ovf_ctrl = msrs[i].data; | |
3137 | break; | |
3138 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
3139 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
3140 | break; | |
3141 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
3142 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
3143 | break; | |
3144 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
3145 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
3146 | break; | |
1c90ef26 VR |
3147 | case HV_X64_MSR_HYPERCALL: |
3148 | env->msr_hv_hypercall = msrs[i].data; | |
3149 | break; | |
3150 | case HV_X64_MSR_GUEST_OS_ID: | |
3151 | env->msr_hv_guest_os_id = msrs[i].data; | |
3152 | break; | |
5ef68987 VR |
3153 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
3154 | env->msr_hv_vapic = msrs[i].data; | |
3155 | break; | |
48a5f3bc VR |
3156 | case HV_X64_MSR_REFERENCE_TSC: |
3157 | env->msr_hv_tsc = msrs[i].data; | |
3158 | break; | |
f2a53c9e AS |
3159 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
3160 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
3161 | break; | |
46eb8f98 AS |
3162 | case HV_X64_MSR_VP_RUNTIME: |
3163 | env->msr_hv_runtime = msrs[i].data; | |
3164 | break; | |
866eea9a AS |
3165 | case HV_X64_MSR_SCONTROL: |
3166 | env->msr_hv_synic_control = msrs[i].data; | |
3167 | break; | |
866eea9a AS |
3168 | case HV_X64_MSR_SIEFP: |
3169 | env->msr_hv_synic_evt_page = msrs[i].data; | |
3170 | break; | |
3171 | case HV_X64_MSR_SIMP: | |
3172 | env->msr_hv_synic_msg_page = msrs[i].data; | |
3173 | break; | |
3174 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
3175 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
3176 | break; |
3177 | case HV_X64_MSR_STIMER0_CONFIG: | |
3178 | case HV_X64_MSR_STIMER1_CONFIG: | |
3179 | case HV_X64_MSR_STIMER2_CONFIG: | |
3180 | case HV_X64_MSR_STIMER3_CONFIG: | |
3181 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
3182 | msrs[i].data; | |
3183 | break; | |
3184 | case HV_X64_MSR_STIMER0_COUNT: | |
3185 | case HV_X64_MSR_STIMER1_COUNT: | |
3186 | case HV_X64_MSR_STIMER2_COUNT: | |
3187 | case HV_X64_MSR_STIMER3_COUNT: | |
3188 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
3189 | msrs[i].data; | |
866eea9a | 3190 | break; |
ba6a4fd9 VK |
3191 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
3192 | env->msr_hv_reenlightenment_control = msrs[i].data; | |
3193 | break; | |
3194 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
3195 | env->msr_hv_tsc_emulation_control = msrs[i].data; | |
3196 | break; | |
3197 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
3198 | env->msr_hv_tsc_emulation_status = msrs[i].data; | |
3199 | break; | |
d1ae67f6 AW |
3200 | case MSR_MTRRdefType: |
3201 | env->mtrr_deftype = msrs[i].data; | |
3202 | break; | |
3203 | case MSR_MTRRfix64K_00000: | |
3204 | env->mtrr_fixed[0] = msrs[i].data; | |
3205 | break; | |
3206 | case MSR_MTRRfix16K_80000: | |
3207 | env->mtrr_fixed[1] = msrs[i].data; | |
3208 | break; | |
3209 | case MSR_MTRRfix16K_A0000: | |
3210 | env->mtrr_fixed[2] = msrs[i].data; | |
3211 | break; | |
3212 | case MSR_MTRRfix4K_C0000: | |
3213 | env->mtrr_fixed[3] = msrs[i].data; | |
3214 | break; | |
3215 | case MSR_MTRRfix4K_C8000: | |
3216 | env->mtrr_fixed[4] = msrs[i].data; | |
3217 | break; | |
3218 | case MSR_MTRRfix4K_D0000: | |
3219 | env->mtrr_fixed[5] = msrs[i].data; | |
3220 | break; | |
3221 | case MSR_MTRRfix4K_D8000: | |
3222 | env->mtrr_fixed[6] = msrs[i].data; | |
3223 | break; | |
3224 | case MSR_MTRRfix4K_E0000: | |
3225 | env->mtrr_fixed[7] = msrs[i].data; | |
3226 | break; | |
3227 | case MSR_MTRRfix4K_E8000: | |
3228 | env->mtrr_fixed[8] = msrs[i].data; | |
3229 | break; | |
3230 | case MSR_MTRRfix4K_F0000: | |
3231 | env->mtrr_fixed[9] = msrs[i].data; | |
3232 | break; | |
3233 | case MSR_MTRRfix4K_F8000: | |
3234 | env->mtrr_fixed[10] = msrs[i].data; | |
3235 | break; | |
3236 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
3237 | if (index & 1) { | |
fcc35e7c DDAG |
3238 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
3239 | mtrr_top_bits; | |
d1ae67f6 AW |
3240 | } else { |
3241 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
3242 | } | |
3243 | break; | |
a33a2cfe PB |
3244 | case MSR_IA32_SPEC_CTRL: |
3245 | env->spec_ctrl = msrs[i].data; | |
3246 | break; | |
cfeea0c0 KRW |
3247 | case MSR_VIRT_SSBD: |
3248 | env->virt_ssbd = msrs[i].data; | |
3249 | break; | |
b77146e9 CP |
3250 | case MSR_IA32_RTIT_CTL: |
3251 | env->msr_rtit_ctrl = msrs[i].data; | |
3252 | break; | |
3253 | case MSR_IA32_RTIT_STATUS: | |
3254 | env->msr_rtit_status = msrs[i].data; | |
3255 | break; | |
3256 | case MSR_IA32_RTIT_OUTPUT_BASE: | |
3257 | env->msr_rtit_output_base = msrs[i].data; | |
3258 | break; | |
3259 | case MSR_IA32_RTIT_OUTPUT_MASK: | |
3260 | env->msr_rtit_output_mask = msrs[i].data; | |
3261 | break; | |
3262 | case MSR_IA32_RTIT_CR3_MATCH: | |
3263 | env->msr_rtit_cr3_match = msrs[i].data; | |
3264 | break; | |
3265 | case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | |
3266 | env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; | |
3267 | break; | |
05330448 AL |
3268 | } |
3269 | } | |
3270 | ||
3271 | return 0; | |
3272 | } | |
3273 | ||
1bc22652 | 3274 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 3275 | { |
1bc22652 | 3276 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 3277 | |
1bc22652 | 3278 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
3279 | } |
3280 | ||
23d02d9b | 3281 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 3282 | { |
259186a7 | 3283 | CPUState *cs = CPU(cpu); |
23d02d9b | 3284 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
3285 | struct kvm_mp_state mp_state; |
3286 | int ret; | |
3287 | ||
259186a7 | 3288 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
3289 | if (ret < 0) { |
3290 | return ret; | |
3291 | } | |
3292 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 3293 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 3294 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 3295 | } |
9bdbe550 HB |
3296 | return 0; |
3297 | } | |
3298 | ||
1bc22652 | 3299 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 3300 | { |
02e51483 | 3301 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
3302 | struct kvm_lapic_state kapic; |
3303 | int ret; | |
3304 | ||
3d4b2649 | 3305 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 3306 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
3307 | if (ret < 0) { |
3308 | return ret; | |
3309 | } | |
3310 | ||
3311 | kvm_get_apic_state(apic, &kapic); | |
3312 | } | |
3313 | return 0; | |
3314 | } | |
3315 | ||
1bc22652 | 3316 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 3317 | { |
fc12d72e | 3318 | CPUState *cs = CPU(cpu); |
1bc22652 | 3319 | CPUX86State *env = &cpu->env; |
076796f8 | 3320 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
3321 | |
3322 | if (!kvm_has_vcpu_events()) { | |
3323 | return 0; | |
3324 | } | |
3325 | ||
fd13f23b LA |
3326 | events.flags = 0; |
3327 | ||
3328 | if (has_exception_payload) { | |
3329 | events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; | |
3330 | events.exception.pending = env->exception_pending; | |
3331 | events.exception_has_payload = env->exception_has_payload; | |
3332 | events.exception_payload = env->exception_payload; | |
3333 | } | |
3334 | events.exception.nr = env->exception_nr; | |
3335 | events.exception.injected = env->exception_injected; | |
a0fb002c JK |
3336 | events.exception.has_error_code = env->has_error_code; |
3337 | events.exception.error_code = env->error_code; | |
3338 | ||
3339 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
3340 | events.interrupt.nr = env->interrupt_injected; | |
3341 | events.interrupt.soft = env->soft_interrupt; | |
3342 | ||
3343 | events.nmi.injected = env->nmi_injected; | |
3344 | events.nmi.pending = env->nmi_pending; | |
3345 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
3346 | ||
3347 | events.sipi_vector = env->sipi_vector; | |
3348 | ||
fc12d72e PB |
3349 | if (has_msr_smbase) { |
3350 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
3351 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
3352 | if (kvm_irqchip_in_kernel()) { | |
3353 | /* As soon as these are moved to the kernel, remove them | |
3354 | * from cs->interrupt_request. | |
3355 | */ | |
3356 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
3357 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
3358 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
3359 | } else { | |
3360 | /* Keep these in cs->interrupt_request. */ | |
3361 | events.smi.pending = 0; | |
3362 | events.smi.latched_init = 0; | |
3363 | } | |
fc3a1fd7 DDAG |
3364 | /* Stop SMI delivery on old machine types to avoid a reboot |
3365 | * on an inward migration of an old VM. | |
3366 | */ | |
3367 | if (!cpu->kvm_no_smi_migration) { | |
3368 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
3369 | } | |
fc12d72e PB |
3370 | } |
3371 | ||
ea643051 | 3372 | if (level >= KVM_PUT_RESET_STATE) { |
4fadfa00 PH |
3373 | events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; |
3374 | if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
3375 | events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
3376 | } | |
ea643051 | 3377 | } |
aee028b9 | 3378 | |
1bc22652 | 3379 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
3380 | } |
3381 | ||
1bc22652 | 3382 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 3383 | { |
1bc22652 | 3384 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
3385 | struct kvm_vcpu_events events; |
3386 | int ret; | |
3387 | ||
3388 | if (!kvm_has_vcpu_events()) { | |
3389 | return 0; | |
3390 | } | |
3391 | ||
fc12d72e | 3392 | memset(&events, 0, sizeof(events)); |
1bc22652 | 3393 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
3394 | if (ret < 0) { |
3395 | return ret; | |
3396 | } | |
fd13f23b LA |
3397 | |
3398 | if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { | |
3399 | env->exception_pending = events.exception.pending; | |
3400 | env->exception_has_payload = events.exception_has_payload; | |
3401 | env->exception_payload = events.exception_payload; | |
3402 | } else { | |
3403 | env->exception_pending = 0; | |
3404 | env->exception_has_payload = false; | |
3405 | } | |
3406 | env->exception_injected = events.exception.injected; | |
3407 | env->exception_nr = | |
3408 | (env->exception_pending || env->exception_injected) ? | |
3409 | events.exception.nr : -1; | |
a0fb002c JK |
3410 | env->has_error_code = events.exception.has_error_code; |
3411 | env->error_code = events.exception.error_code; | |
3412 | ||
3413 | env->interrupt_injected = | |
3414 | events.interrupt.injected ? events.interrupt.nr : -1; | |
3415 | env->soft_interrupt = events.interrupt.soft; | |
3416 | ||
3417 | env->nmi_injected = events.nmi.injected; | |
3418 | env->nmi_pending = events.nmi.pending; | |
3419 | if (events.nmi.masked) { | |
3420 | env->hflags2 |= HF2_NMI_MASK; | |
3421 | } else { | |
3422 | env->hflags2 &= ~HF2_NMI_MASK; | |
3423 | } | |
3424 | ||
fc12d72e PB |
3425 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
3426 | if (events.smi.smm) { | |
3427 | env->hflags |= HF_SMM_MASK; | |
3428 | } else { | |
3429 | env->hflags &= ~HF_SMM_MASK; | |
3430 | } | |
3431 | if (events.smi.pending) { | |
3432 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3433 | } else { | |
3434 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3435 | } | |
3436 | if (events.smi.smm_inside_nmi) { | |
3437 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
3438 | } else { | |
3439 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
3440 | } | |
3441 | if (events.smi.latched_init) { | |
3442 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3443 | } else { | |
3444 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3445 | } | |
3446 | } | |
3447 | ||
a0fb002c | 3448 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
3449 | |
3450 | return 0; | |
3451 | } | |
3452 | ||
1bc22652 | 3453 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 3454 | { |
ed2803da | 3455 | CPUState *cs = CPU(cpu); |
1bc22652 | 3456 | CPUX86State *env = &cpu->env; |
b0b1d690 | 3457 | int ret = 0; |
b0b1d690 JK |
3458 | unsigned long reinject_trap = 0; |
3459 | ||
3460 | if (!kvm_has_vcpu_events()) { | |
fd13f23b | 3461 | if (env->exception_nr == EXCP01_DB) { |
b0b1d690 | 3462 | reinject_trap = KVM_GUESTDBG_INJECT_DB; |
37936ac7 | 3463 | } else if (env->exception_injected == EXCP03_INT3) { |
b0b1d690 JK |
3464 | reinject_trap = KVM_GUESTDBG_INJECT_BP; |
3465 | } | |
fd13f23b | 3466 | kvm_reset_exception(env); |
b0b1d690 JK |
3467 | } |
3468 | ||
3469 | /* | |
3470 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
3471 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
3472 | * by updating the debug state once again if single-stepping is on. | |
3473 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
3474 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
3475 | * reinject them via SET_GUEST_DEBUG. | |
3476 | */ | |
3477 | if (reinject_trap || | |
ed2803da | 3478 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 3479 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 3480 | } |
b0b1d690 JK |
3481 | return ret; |
3482 | } | |
3483 | ||
1bc22652 | 3484 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 3485 | { |
1bc22652 | 3486 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
3487 | struct kvm_debugregs dbgregs; |
3488 | int i; | |
3489 | ||
3490 | if (!kvm_has_debugregs()) { | |
3491 | return 0; | |
3492 | } | |
3493 | ||
3494 | for (i = 0; i < 4; i++) { | |
3495 | dbgregs.db[i] = env->dr[i]; | |
3496 | } | |
3497 | dbgregs.dr6 = env->dr[6]; | |
3498 | dbgregs.dr7 = env->dr[7]; | |
3499 | dbgregs.flags = 0; | |
3500 | ||
1bc22652 | 3501 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
3502 | } |
3503 | ||
1bc22652 | 3504 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 3505 | { |
1bc22652 | 3506 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
3507 | struct kvm_debugregs dbgregs; |
3508 | int i, ret; | |
3509 | ||
3510 | if (!kvm_has_debugregs()) { | |
3511 | return 0; | |
3512 | } | |
3513 | ||
1bc22652 | 3514 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 3515 | if (ret < 0) { |
b9bec74b | 3516 | return ret; |
ff44f1a3 JK |
3517 | } |
3518 | for (i = 0; i < 4; i++) { | |
3519 | env->dr[i] = dbgregs.db[i]; | |
3520 | } | |
3521 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
3522 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
3523 | |
3524 | return 0; | |
3525 | } | |
3526 | ||
ebbfef2f LA |
3527 | static int kvm_put_nested_state(X86CPU *cpu) |
3528 | { | |
3529 | CPUX86State *env = &cpu->env; | |
3530 | int max_nested_state_len = kvm_max_nested_state_length(); | |
3531 | ||
3532 | if (max_nested_state_len <= 0) { | |
3533 | return 0; | |
3534 | } | |
3535 | ||
3536 | assert(env->nested_state->size <= max_nested_state_len); | |
3537 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); | |
3538 | } | |
3539 | ||
3540 | static int kvm_get_nested_state(X86CPU *cpu) | |
3541 | { | |
3542 | CPUX86State *env = &cpu->env; | |
3543 | int max_nested_state_len = kvm_max_nested_state_length(); | |
3544 | int ret; | |
3545 | ||
3546 | if (max_nested_state_len <= 0) { | |
3547 | return 0; | |
3548 | } | |
3549 | ||
3550 | /* | |
3551 | * It is possible that migration restored a smaller size into | |
3552 | * nested_state->hdr.size than what our kernel support. | |
3553 | * We preserve migration origin nested_state->hdr.size for | |
3554 | * call to KVM_SET_NESTED_STATE but wish that our next call | |
3555 | * to KVM_GET_NESTED_STATE will use max size our kernel support. | |
3556 | */ | |
3557 | env->nested_state->size = max_nested_state_len; | |
3558 | ||
3559 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); | |
3560 | if (ret < 0) { | |
3561 | return ret; | |
3562 | } | |
3563 | ||
3564 | if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { | |
3565 | env->hflags |= HF_GUEST_MASK; | |
3566 | } else { | |
3567 | env->hflags &= ~HF_GUEST_MASK; | |
3568 | } | |
3569 | ||
3570 | return ret; | |
3571 | } | |
3572 | ||
20d695a9 | 3573 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 3574 | { |
20d695a9 | 3575 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
3576 | int ret; |
3577 | ||
2fa45344 | 3578 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 3579 | |
ebbfef2f LA |
3580 | ret = kvm_put_nested_state(x86_cpu); |
3581 | if (ret < 0) { | |
3582 | return ret; | |
3583 | } | |
3584 | ||
48e1a45c | 3585 | if (level >= KVM_PUT_RESET_STATE) { |
6bdf863d JK |
3586 | ret = kvm_put_msr_feature_control(x86_cpu); |
3587 | if (ret < 0) { | |
3588 | return ret; | |
3589 | } | |
3590 | } | |
3591 | ||
36f96c4b HZ |
3592 | if (level == KVM_PUT_FULL_STATE) { |
3593 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
3594 | * because TSC frequency mismatch shouldn't abort migration, | |
3595 | * unless the user explicitly asked for a more strict TSC | |
3596 | * setting (e.g. using an explicit "tsc-freq" option). | |
3597 | */ | |
3598 | kvm_arch_set_tsc_khz(cpu); | |
3599 | } | |
3600 | ||
1bc22652 | 3601 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 3602 | if (ret < 0) { |
05330448 | 3603 | return ret; |
b9bec74b | 3604 | } |
1bc22652 | 3605 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 3606 | if (ret < 0) { |
f1665b21 | 3607 | return ret; |
b9bec74b | 3608 | } |
1bc22652 | 3609 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 3610 | if (ret < 0) { |
05330448 | 3611 | return ret; |
b9bec74b | 3612 | } |
1bc22652 | 3613 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 3614 | if (ret < 0) { |
05330448 | 3615 | return ret; |
b9bec74b | 3616 | } |
ab443475 | 3617 | /* must be before kvm_put_msrs */ |
1bc22652 | 3618 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
3619 | if (ret < 0) { |
3620 | return ret; | |
3621 | } | |
1bc22652 | 3622 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 3623 | if (ret < 0) { |
05330448 | 3624 | return ret; |
b9bec74b | 3625 | } |
4fadfa00 PH |
3626 | ret = kvm_put_vcpu_events(x86_cpu, level); |
3627 | if (ret < 0) { | |
3628 | return ret; | |
3629 | } | |
ea643051 | 3630 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 3631 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 3632 | if (ret < 0) { |
680c1c6f JK |
3633 | return ret; |
3634 | } | |
ea643051 | 3635 | } |
7477cd38 MT |
3636 | |
3637 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
3638 | if (ret < 0) { | |
3639 | return ret; | |
3640 | } | |
1bc22652 | 3641 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 3642 | if (ret < 0) { |
b0b1d690 | 3643 | return ret; |
b9bec74b | 3644 | } |
b0b1d690 | 3645 | /* must be last */ |
1bc22652 | 3646 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 3647 | if (ret < 0) { |
ff44f1a3 | 3648 | return ret; |
b9bec74b | 3649 | } |
05330448 AL |
3650 | return 0; |
3651 | } | |
3652 | ||
20d695a9 | 3653 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 3654 | { |
20d695a9 | 3655 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
3656 | int ret; |
3657 | ||
20d695a9 | 3658 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 3659 | |
4fadfa00 | 3660 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 3661 | if (ret < 0) { |
f4f1110e | 3662 | goto out; |
b9bec74b | 3663 | } |
4fadfa00 PH |
3664 | /* |
3665 | * KVM_GET_MPSTATE can modify CS and RIP, call it before | |
3666 | * KVM_GET_REGS and KVM_GET_SREGS. | |
3667 | */ | |
3668 | ret = kvm_get_mp_state(cpu); | |
b9bec74b | 3669 | if (ret < 0) { |
f4f1110e | 3670 | goto out; |
b9bec74b | 3671 | } |
4fadfa00 | 3672 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 3673 | if (ret < 0) { |
f4f1110e | 3674 | goto out; |
b9bec74b | 3675 | } |
4fadfa00 | 3676 | ret = kvm_get_xsave(cpu); |
b9bec74b | 3677 | if (ret < 0) { |
f4f1110e | 3678 | goto out; |
b9bec74b | 3679 | } |
4fadfa00 | 3680 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 3681 | if (ret < 0) { |
f4f1110e | 3682 | goto out; |
b9bec74b | 3683 | } |
4fadfa00 | 3684 | ret = kvm_get_sregs(cpu); |
b9bec74b | 3685 | if (ret < 0) { |
f4f1110e | 3686 | goto out; |
b9bec74b | 3687 | } |
4fadfa00 | 3688 | ret = kvm_get_msrs(cpu); |
680c1c6f | 3689 | if (ret < 0) { |
f4f1110e | 3690 | goto out; |
680c1c6f | 3691 | } |
4fadfa00 | 3692 | ret = kvm_get_apic(cpu); |
b9bec74b | 3693 | if (ret < 0) { |
f4f1110e | 3694 | goto out; |
b9bec74b | 3695 | } |
1bc22652 | 3696 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 3697 | if (ret < 0) { |
f4f1110e | 3698 | goto out; |
b9bec74b | 3699 | } |
ebbfef2f LA |
3700 | ret = kvm_get_nested_state(cpu); |
3701 | if (ret < 0) { | |
3702 | goto out; | |
3703 | } | |
f4f1110e RH |
3704 | ret = 0; |
3705 | out: | |
3706 | cpu_sync_bndcs_hflags(&cpu->env); | |
3707 | return ret; | |
05330448 AL |
3708 | } |
3709 | ||
20d695a9 | 3710 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 3711 | { |
20d695a9 AF |
3712 | X86CPU *x86_cpu = X86_CPU(cpu); |
3713 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
3714 | int ret; |
3715 | ||
276ce815 | 3716 | /* Inject NMI */ |
fc12d72e PB |
3717 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
3718 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
3719 | qemu_mutex_lock_iothread(); | |
3720 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
3721 | qemu_mutex_unlock_iothread(); | |
3722 | DPRINTF("injected NMI\n"); | |
3723 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
3724 | if (ret < 0) { | |
3725 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
3726 | strerror(-ret)); | |
3727 | } | |
3728 | } | |
3729 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
3730 | qemu_mutex_lock_iothread(); | |
3731 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
3732 | qemu_mutex_unlock_iothread(); | |
3733 | DPRINTF("injected SMI\n"); | |
3734 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
3735 | if (ret < 0) { | |
3736 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
3737 | strerror(-ret)); | |
3738 | } | |
ce377af3 | 3739 | } |
276ce815 LJ |
3740 | } |
3741 | ||
15eafc2e | 3742 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
3743 | qemu_mutex_lock_iothread(); |
3744 | } | |
3745 | ||
e0723c45 PB |
3746 | /* Force the VCPU out of its inner loop to process any INIT requests |
3747 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
3748 | * pending TPR access reports. | |
3749 | */ | |
3750 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
3751 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
3752 | !(env->hflags & HF_SMM_MASK)) { | |
3753 | cpu->exit_request = 1; | |
3754 | } | |
3755 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
3756 | cpu->exit_request = 1; | |
3757 | } | |
e0723c45 | 3758 | } |
05330448 | 3759 | |
15eafc2e | 3760 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
3761 | /* Try to inject an interrupt if the guest can accept it */ |
3762 | if (run->ready_for_interrupt_injection && | |
259186a7 | 3763 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
3764 | (env->eflags & IF_MASK)) { |
3765 | int irq; | |
3766 | ||
259186a7 | 3767 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
3768 | irq = cpu_get_pic_interrupt(env); |
3769 | if (irq >= 0) { | |
3770 | struct kvm_interrupt intr; | |
3771 | ||
3772 | intr.irq = irq; | |
db1669bc | 3773 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 3774 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
3775 | if (ret < 0) { |
3776 | fprintf(stderr, | |
3777 | "KVM: injection failed, interrupt lost (%s)\n", | |
3778 | strerror(-ret)); | |
3779 | } | |
db1669bc JK |
3780 | } |
3781 | } | |
05330448 | 3782 | |
db1669bc JK |
3783 | /* If we have an interrupt but the guest is not ready to receive an |
3784 | * interrupt, request an interrupt window exit. This will | |
3785 | * cause a return to userspace as soon as the guest is ready to | |
3786 | * receive interrupts. */ | |
259186a7 | 3787 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
3788 | run->request_interrupt_window = 1; |
3789 | } else { | |
3790 | run->request_interrupt_window = 0; | |
3791 | } | |
3792 | ||
3793 | DPRINTF("setting tpr\n"); | |
02e51483 | 3794 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
3795 | |
3796 | qemu_mutex_unlock_iothread(); | |
db1669bc | 3797 | } |
05330448 AL |
3798 | } |
3799 | ||
4c663752 | 3800 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 3801 | { |
20d695a9 AF |
3802 | X86CPU *x86_cpu = X86_CPU(cpu); |
3803 | CPUX86State *env = &x86_cpu->env; | |
3804 | ||
fc12d72e PB |
3805 | if (run->flags & KVM_RUN_X86_SMM) { |
3806 | env->hflags |= HF_SMM_MASK; | |
3807 | } else { | |
f5c052b9 | 3808 | env->hflags &= ~HF_SMM_MASK; |
fc12d72e | 3809 | } |
b9bec74b | 3810 | if (run->if_flag) { |
05330448 | 3811 | env->eflags |= IF_MASK; |
b9bec74b | 3812 | } else { |
05330448 | 3813 | env->eflags &= ~IF_MASK; |
b9bec74b | 3814 | } |
4b8523ee JK |
3815 | |
3816 | /* We need to protect the apic state against concurrent accesses from | |
3817 | * different threads in case the userspace irqchip is used. */ | |
3818 | if (!kvm_irqchip_in_kernel()) { | |
3819 | qemu_mutex_lock_iothread(); | |
3820 | } | |
02e51483 CF |
3821 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
3822 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
3823 | if (!kvm_irqchip_in_kernel()) { |
3824 | qemu_mutex_unlock_iothread(); | |
3825 | } | |
f794aa4a | 3826 | return cpu_get_mem_attrs(env); |
05330448 AL |
3827 | } |
3828 | ||
20d695a9 | 3829 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 3830 | { |
20d695a9 AF |
3831 | X86CPU *cpu = X86_CPU(cs); |
3832 | CPUX86State *env = &cpu->env; | |
232fc23b | 3833 | |
259186a7 | 3834 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
3835 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
3836 | assert(env->mcg_cap); | |
3837 | ||
259186a7 | 3838 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 3839 | |
dd1750d7 | 3840 | kvm_cpu_synchronize_state(cs); |
ab443475 | 3841 | |
fd13f23b | 3842 | if (env->exception_nr == EXCP08_DBLE) { |
ab443475 | 3843 | /* this means triple fault */ |
cf83f140 | 3844 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
fcd7d003 | 3845 | cs->exit_request = 1; |
ab443475 JK |
3846 | return 0; |
3847 | } | |
fd13f23b | 3848 | kvm_queue_exception(env, EXCP12_MCHK, 0, 0); |
ab443475 JK |
3849 | env->has_error_code = 0; |
3850 | ||
259186a7 | 3851 | cs->halted = 0; |
ab443475 JK |
3852 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
3853 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
3854 | } | |
3855 | } | |
3856 | ||
fc12d72e PB |
3857 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
3858 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
3859 | kvm_cpu_synchronize_state(cs); |
3860 | do_cpu_init(cpu); | |
3861 | } | |
3862 | ||
db1669bc JK |
3863 | if (kvm_irqchip_in_kernel()) { |
3864 | return 0; | |
3865 | } | |
3866 | ||
259186a7 AF |
3867 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
3868 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 3869 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 3870 | } |
259186a7 | 3871 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 3872 | (env->eflags & IF_MASK)) || |
259186a7 AF |
3873 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
3874 | cs->halted = 0; | |
6792a57b | 3875 | } |
259186a7 | 3876 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 3877 | kvm_cpu_synchronize_state(cs); |
232fc23b | 3878 | do_cpu_sipi(cpu); |
0af691d7 | 3879 | } |
259186a7 AF |
3880 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
3881 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 3882 | kvm_cpu_synchronize_state(cs); |
02e51483 | 3883 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
3884 | env->tpr_access_type); |
3885 | } | |
0af691d7 | 3886 | |
259186a7 | 3887 | return cs->halted; |
0af691d7 MT |
3888 | } |
3889 | ||
839b5630 | 3890 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 3891 | { |
259186a7 | 3892 | CPUState *cs = CPU(cpu); |
839b5630 AF |
3893 | CPUX86State *env = &cpu->env; |
3894 | ||
259186a7 | 3895 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 3896 | (env->eflags & IF_MASK)) && |
259186a7 AF |
3897 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
3898 | cs->halted = 1; | |
bb4ea393 | 3899 | return EXCP_HLT; |
05330448 AL |
3900 | } |
3901 | ||
bb4ea393 | 3902 | return 0; |
05330448 AL |
3903 | } |
3904 | ||
f7575c96 | 3905 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 3906 | { |
f7575c96 AF |
3907 | CPUState *cs = CPU(cpu); |
3908 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 3909 | |
02e51483 | 3910 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
3911 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
3912 | : TPR_ACCESS_READ); | |
3913 | return 1; | |
3914 | } | |
3915 | ||
f17ec444 | 3916 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 3917 | { |
38972938 | 3918 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 3919 | |
f17ec444 AF |
3920 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
3921 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 3922 | return -EINVAL; |
b9bec74b | 3923 | } |
e22a25c9 AL |
3924 | return 0; |
3925 | } | |
3926 | ||
f17ec444 | 3927 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
3928 | { |
3929 | uint8_t int3; | |
3930 | ||
f17ec444 AF |
3931 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
3932 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 3933 | return -EINVAL; |
b9bec74b | 3934 | } |
e22a25c9 AL |
3935 | return 0; |
3936 | } | |
3937 | ||
3938 | static struct { | |
3939 | target_ulong addr; | |
3940 | int len; | |
3941 | int type; | |
3942 | } hw_breakpoint[4]; | |
3943 | ||
3944 | static int nb_hw_breakpoint; | |
3945 | ||
3946 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
3947 | { | |
3948 | int n; | |
3949 | ||
b9bec74b | 3950 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 3951 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 3952 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 3953 | return n; |
b9bec74b JK |
3954 | } |
3955 | } | |
e22a25c9 AL |
3956 | return -1; |
3957 | } | |
3958 | ||
3959 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
3960 | target_ulong len, int type) | |
3961 | { | |
3962 | switch (type) { | |
3963 | case GDB_BREAKPOINT_HW: | |
3964 | len = 1; | |
3965 | break; | |
3966 | case GDB_WATCHPOINT_WRITE: | |
3967 | case GDB_WATCHPOINT_ACCESS: | |
3968 | switch (len) { | |
3969 | case 1: | |
3970 | break; | |
3971 | case 2: | |
3972 | case 4: | |
3973 | case 8: | |
b9bec74b | 3974 | if (addr & (len - 1)) { |
e22a25c9 | 3975 | return -EINVAL; |
b9bec74b | 3976 | } |
e22a25c9 AL |
3977 | break; |
3978 | default: | |
3979 | return -EINVAL; | |
3980 | } | |
3981 | break; | |
3982 | default: | |
3983 | return -ENOSYS; | |
3984 | } | |
3985 | ||
b9bec74b | 3986 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 3987 | return -ENOBUFS; |
b9bec74b JK |
3988 | } |
3989 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 3990 | return -EEXIST; |
b9bec74b | 3991 | } |
e22a25c9 AL |
3992 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
3993 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
3994 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
3995 | nb_hw_breakpoint++; | |
3996 | ||
3997 | return 0; | |
3998 | } | |
3999 | ||
4000 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
4001 | target_ulong len, int type) | |
4002 | { | |
4003 | int n; | |
4004 | ||
4005 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 4006 | if (n < 0) { |
e22a25c9 | 4007 | return -ENOENT; |
b9bec74b | 4008 | } |
e22a25c9 AL |
4009 | nb_hw_breakpoint--; |
4010 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
4011 | ||
4012 | return 0; | |
4013 | } | |
4014 | ||
4015 | void kvm_arch_remove_all_hw_breakpoints(void) | |
4016 | { | |
4017 | nb_hw_breakpoint = 0; | |
4018 | } | |
4019 | ||
4020 | static CPUWatchpoint hw_watchpoint; | |
4021 | ||
a60f24b5 | 4022 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 4023 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 4024 | { |
ed2803da | 4025 | CPUState *cs = CPU(cpu); |
a60f24b5 | 4026 | CPUX86State *env = &cpu->env; |
f2574737 | 4027 | int ret = 0; |
e22a25c9 AL |
4028 | int n; |
4029 | ||
37936ac7 LA |
4030 | if (arch_info->exception == EXCP01_DB) { |
4031 | if (arch_info->dr6 & DR6_BS) { | |
ed2803da | 4032 | if (cs->singlestep_enabled) { |
f2574737 | 4033 | ret = EXCP_DEBUG; |
b9bec74b | 4034 | } |
e22a25c9 | 4035 | } else { |
b9bec74b JK |
4036 | for (n = 0; n < 4; n++) { |
4037 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
4038 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
4039 | case 0x0: | |
f2574737 | 4040 | ret = EXCP_DEBUG; |
e22a25c9 AL |
4041 | break; |
4042 | case 0x1: | |
f2574737 | 4043 | ret = EXCP_DEBUG; |
ff4700b0 | 4044 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
4045 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
4046 | hw_watchpoint.flags = BP_MEM_WRITE; | |
4047 | break; | |
4048 | case 0x3: | |
f2574737 | 4049 | ret = EXCP_DEBUG; |
ff4700b0 | 4050 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
4051 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
4052 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
4053 | break; | |
4054 | } | |
b9bec74b JK |
4055 | } |
4056 | } | |
e22a25c9 | 4057 | } |
ff4700b0 | 4058 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 4059 | ret = EXCP_DEBUG; |
b9bec74b | 4060 | } |
f2574737 | 4061 | if (ret == 0) { |
ff4700b0 | 4062 | cpu_synchronize_state(cs); |
fd13f23b | 4063 | assert(env->exception_nr == -1); |
b0b1d690 | 4064 | |
f2574737 | 4065 | /* pass to guest */ |
fd13f23b LA |
4066 | kvm_queue_exception(env, arch_info->exception, |
4067 | arch_info->exception == EXCP01_DB, | |
4068 | arch_info->dr6); | |
48405526 | 4069 | env->has_error_code = 0; |
b0b1d690 | 4070 | } |
e22a25c9 | 4071 | |
f2574737 | 4072 | return ret; |
e22a25c9 AL |
4073 | } |
4074 | ||
20d695a9 | 4075 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
4076 | { |
4077 | const uint8_t type_code[] = { | |
4078 | [GDB_BREAKPOINT_HW] = 0x0, | |
4079 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
4080 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
4081 | }; | |
4082 | const uint8_t len_code[] = { | |
4083 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
4084 | }; | |
4085 | int n; | |
4086 | ||
a60f24b5 | 4087 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 4088 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 4089 | } |
e22a25c9 AL |
4090 | if (nb_hw_breakpoint > 0) { |
4091 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
4092 | dbg->arch.debugreg[7] = 0x0600; | |
4093 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
4094 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
4095 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
4096 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 4097 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
4098 | } |
4099 | } | |
4100 | } | |
4513d923 | 4101 | |
2a4dac83 JK |
4102 | static bool host_supports_vmx(void) |
4103 | { | |
4104 | uint32_t ecx, unused; | |
4105 | ||
4106 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
4107 | return ecx & CPUID_EXT_VMX; | |
4108 | } | |
4109 | ||
4110 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
4111 | ||
20d695a9 | 4112 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 4113 | { |
20d695a9 | 4114 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
4115 | uint64_t code; |
4116 | int ret; | |
4117 | ||
4118 | switch (run->exit_reason) { | |
4119 | case KVM_EXIT_HLT: | |
4120 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 4121 | qemu_mutex_lock_iothread(); |
839b5630 | 4122 | ret = kvm_handle_halt(cpu); |
4b8523ee | 4123 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
4124 | break; |
4125 | case KVM_EXIT_SET_TPR: | |
4126 | ret = 0; | |
4127 | break; | |
d362e757 | 4128 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 4129 | qemu_mutex_lock_iothread(); |
f7575c96 | 4130 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 4131 | qemu_mutex_unlock_iothread(); |
d362e757 | 4132 | break; |
2a4dac83 JK |
4133 | case KVM_EXIT_FAIL_ENTRY: |
4134 | code = run->fail_entry.hardware_entry_failure_reason; | |
4135 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
4136 | code); | |
4137 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
4138 | fprintf(stderr, | |
12619721 | 4139 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
4140 | "unrestricted mode\n" |
4141 | "support, the failure can be most likely due to the guest " | |
4142 | "entering an invalid\n" | |
4143 | "state for Intel VT. For example, the guest maybe running " | |
4144 | "in big real mode\n" | |
4145 | "which is not supported on less recent Intel processors." | |
4146 | "\n\n"); | |
4147 | } | |
4148 | ret = -1; | |
4149 | break; | |
4150 | case KVM_EXIT_EXCEPTION: | |
4151 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
4152 | run->ex.exception, run->ex.error_code); | |
4153 | ret = -1; | |
4154 | break; | |
f2574737 JK |
4155 | case KVM_EXIT_DEBUG: |
4156 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 4157 | qemu_mutex_lock_iothread(); |
a60f24b5 | 4158 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 4159 | qemu_mutex_unlock_iothread(); |
f2574737 | 4160 | break; |
50efe82c AS |
4161 | case KVM_EXIT_HYPERV: |
4162 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
4163 | break; | |
15eafc2e PB |
4164 | case KVM_EXIT_IOAPIC_EOI: |
4165 | ioapic_eoi_broadcast(run->eoi.vector); | |
4166 | ret = 0; | |
4167 | break; | |
2a4dac83 JK |
4168 | default: |
4169 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
4170 | ret = -1; | |
4171 | break; | |
4172 | } | |
4173 | ||
4174 | return ret; | |
4175 | } | |
4176 | ||
20d695a9 | 4177 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 4178 | { |
20d695a9 AF |
4179 | X86CPU *cpu = X86_CPU(cs); |
4180 | CPUX86State *env = &cpu->env; | |
4181 | ||
dd1750d7 | 4182 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
4183 | return !(env->cr[0] & CR0_PE_MASK) || |
4184 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 4185 | } |
84b058d7 JK |
4186 | |
4187 | void kvm_arch_init_irq_routing(KVMState *s) | |
4188 | { | |
4189 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
4190 | /* If kernel can't do irq routing, interrupt source | |
4191 | * override 0->2 cannot be set up as required by HPET. | |
4192 | * So we have to disable it. | |
4193 | */ | |
4194 | no_hpet = 1; | |
4195 | } | |
cc7e0ddf | 4196 | /* We know at this point that we're using the in-kernel |
614e41bc | 4197 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 4198 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 4199 | */ |
614e41bc | 4200 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 4201 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
4202 | |
4203 | if (kvm_irqchip_is_split()) { | |
4204 | int i; | |
4205 | ||
4206 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
4207 | MSI routes for signaling interrupts to the local apics. */ | |
4208 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
d1f6af6a | 4209 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
15eafc2e PB |
4210 | error_report("Could not enable split IRQ mode."); |
4211 | exit(1); | |
4212 | } | |
4213 | } | |
4214 | } | |
4215 | } | |
4216 | ||
4217 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
4218 | { | |
4219 | int ret; | |
4220 | if (machine_kernel_irqchip_split(ms)) { | |
4221 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
4222 | if (ret) { | |
df3c286c | 4223 | error_report("Could not enable split irqchip mode: %s", |
15eafc2e PB |
4224 | strerror(-ret)); |
4225 | exit(1); | |
4226 | } else { | |
4227 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
4228 | kvm_split_irqchip = true; | |
4229 | return 1; | |
4230 | } | |
4231 | } else { | |
4232 | return 0; | |
4233 | } | |
84b058d7 | 4234 | } |
b139bd30 JK |
4235 | |
4236 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
4237 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
4238 | uint32_t flags, uint32_t *dev_id) | |
4239 | { | |
4240 | struct kvm_assigned_pci_dev dev_data = { | |
4241 | .segnr = dev_addr->domain, | |
4242 | .busnr = dev_addr->bus, | |
4243 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
4244 | .flags = flags, | |
4245 | }; | |
4246 | int ret; | |
4247 | ||
4248 | dev_data.assigned_dev_id = | |
4249 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
4250 | ||
4251 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
4252 | if (ret < 0) { | |
4253 | return ret; | |
4254 | } | |
4255 | ||
4256 | *dev_id = dev_data.assigned_dev_id; | |
4257 | ||
4258 | return 0; | |
4259 | } | |
4260 | ||
4261 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
4262 | { | |
4263 | struct kvm_assigned_pci_dev dev_data = { | |
4264 | .assigned_dev_id = dev_id, | |
4265 | }; | |
4266 | ||
4267 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
4268 | } | |
4269 | ||
4270 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
4271 | uint32_t irq_type, uint32_t guest_irq) | |
4272 | { | |
4273 | struct kvm_assigned_irq assigned_irq = { | |
4274 | .assigned_dev_id = dev_id, | |
4275 | .guest_irq = guest_irq, | |
4276 | .flags = irq_type, | |
4277 | }; | |
4278 | ||
4279 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
4280 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
4281 | } else { | |
4282 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
4283 | } | |
4284 | } | |
4285 | ||
4286 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
4287 | uint32_t guest_irq) | |
4288 | { | |
4289 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
4290 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
4291 | ||
4292 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
4293 | } | |
4294 | ||
4295 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
4296 | { | |
4297 | struct kvm_assigned_pci_dev dev_data = { | |
4298 | .assigned_dev_id = dev_id, | |
4299 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
4300 | }; | |
4301 | ||
4302 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
4303 | } | |
4304 | ||
4305 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
4306 | uint32_t type) | |
4307 | { | |
4308 | struct kvm_assigned_irq assigned_irq = { | |
4309 | .assigned_dev_id = dev_id, | |
4310 | .flags = type, | |
4311 | }; | |
4312 | ||
4313 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
4314 | } | |
4315 | ||
4316 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
4317 | { | |
4318 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
4319 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
4320 | } | |
4321 | ||
4322 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
4323 | { | |
4324 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
4325 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
4326 | } | |
4327 | ||
4328 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
4329 | { | |
4330 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
4331 | KVM_DEV_IRQ_HOST_MSI); | |
4332 | } | |
4333 | ||
4334 | bool kvm_device_msix_supported(KVMState *s) | |
4335 | { | |
4336 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
4337 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
4338 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
4339 | } | |
4340 | ||
4341 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
4342 | uint32_t nr_vectors) | |
4343 | { | |
4344 | struct kvm_assigned_msix_nr msix_nr = { | |
4345 | .assigned_dev_id = dev_id, | |
4346 | .entry_nr = nr_vectors, | |
4347 | }; | |
4348 | ||
4349 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
4350 | } | |
4351 | ||
4352 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
4353 | int virq) | |
4354 | { | |
4355 | struct kvm_assigned_msix_entry msix_entry = { | |
4356 | .assigned_dev_id = dev_id, | |
4357 | .gsi = virq, | |
4358 | .entry = vector, | |
4359 | }; | |
4360 | ||
4361 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
4362 | } | |
4363 | ||
4364 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
4365 | { | |
4366 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
4367 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
4368 | } | |
4369 | ||
4370 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
4371 | { | |
4372 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
4373 | KVM_DEV_IRQ_HOST_MSIX); | |
4374 | } | |
9e03a040 FB |
4375 | |
4376 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 4377 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 4378 | { |
8b5ed7df PX |
4379 | X86IOMMUState *iommu = x86_iommu_get_default(); |
4380 | ||
4381 | if (iommu) { | |
4382 | int ret; | |
4383 | MSIMessage src, dst; | |
4384 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
4385 | ||
0ea1472d JK |
4386 | if (!class->int_remap) { |
4387 | return 0; | |
4388 | } | |
4389 | ||
8b5ed7df PX |
4390 | src.address = route->u.msi.address_hi; |
4391 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
4392 | src.address |= route->u.msi.address_lo; | |
4393 | src.data = route->u.msi.data; | |
4394 | ||
4395 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
4396 | pci_requester_id(dev) : \ | |
4397 | X86_IOMMU_SID_INVALID); | |
4398 | if (ret) { | |
4399 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
4400 | return 1; | |
4401 | } | |
4402 | ||
4403 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
4404 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
4405 | route->u.msi.data = dst.data; | |
4406 | } | |
4407 | ||
9e03a040 FB |
4408 | return 0; |
4409 | } | |
1850b6b7 | 4410 | |
38d87493 PX |
4411 | typedef struct MSIRouteEntry MSIRouteEntry; |
4412 | ||
4413 | struct MSIRouteEntry { | |
4414 | PCIDevice *dev; /* Device pointer */ | |
4415 | int vector; /* MSI/MSIX vector index */ | |
4416 | int virq; /* Virtual IRQ index */ | |
4417 | QLIST_ENTRY(MSIRouteEntry) list; | |
4418 | }; | |
4419 | ||
4420 | /* List of used GSI routes */ | |
4421 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
4422 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
4423 | ||
e1d4fb2d PX |
4424 | static void kvm_update_msi_routes_all(void *private, bool global, |
4425 | uint32_t index, uint32_t mask) | |
4426 | { | |
a56de056 | 4427 | int cnt = 0, vector; |
e1d4fb2d PX |
4428 | MSIRouteEntry *entry; |
4429 | MSIMessage msg; | |
fd563564 PX |
4430 | PCIDevice *dev; |
4431 | ||
e1d4fb2d PX |
4432 | /* TODO: explicit route update */ |
4433 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
4434 | cnt++; | |
a56de056 | 4435 | vector = entry->vector; |
fd563564 | 4436 | dev = entry->dev; |
a56de056 PX |
4437 | if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { |
4438 | msg = msix_get_message(dev, vector); | |
4439 | } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { | |
4440 | msg = msi_get_message(dev, vector); | |
4441 | } else { | |
4442 | /* | |
4443 | * Either MSI/MSIX is disabled for the device, or the | |
4444 | * specific message was masked out. Skip this one. | |
4445 | */ | |
fd563564 PX |
4446 | continue; |
4447 | } | |
fd563564 | 4448 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); |
e1d4fb2d | 4449 | } |
3f1fea0f | 4450 | kvm_irqchip_commit_routes(kvm_state); |
e1d4fb2d PX |
4451 | trace_kvm_x86_update_msi_routes(cnt); |
4452 | } | |
4453 | ||
38d87493 PX |
4454 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
4455 | int vector, PCIDevice *dev) | |
4456 | { | |
e1d4fb2d | 4457 | static bool notify_list_inited = false; |
38d87493 PX |
4458 | MSIRouteEntry *entry; |
4459 | ||
4460 | if (!dev) { | |
4461 | /* These are (possibly) IOAPIC routes only used for split | |
4462 | * kernel irqchip mode, while what we are housekeeping are | |
4463 | * PCI devices only. */ | |
4464 | return 0; | |
4465 | } | |
4466 | ||
4467 | entry = g_new0(MSIRouteEntry, 1); | |
4468 | entry->dev = dev; | |
4469 | entry->vector = vector; | |
4470 | entry->virq = route->gsi; | |
4471 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
4472 | ||
4473 | trace_kvm_x86_add_msi_route(route->gsi); | |
e1d4fb2d PX |
4474 | |
4475 | if (!notify_list_inited) { | |
4476 | /* For the first time we do add route, add ourselves into | |
4477 | * IOMMU's IEC notify list if needed. */ | |
4478 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
4479 | if (iommu) { | |
4480 | x86_iommu_iec_register_notifier(iommu, | |
4481 | kvm_update_msi_routes_all, | |
4482 | NULL); | |
4483 | } | |
4484 | notify_list_inited = true; | |
4485 | } | |
38d87493 PX |
4486 | return 0; |
4487 | } | |
4488 | ||
4489 | int kvm_arch_release_virq_post(int virq) | |
4490 | { | |
4491 | MSIRouteEntry *entry, *next; | |
4492 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
4493 | if (entry->virq == virq) { | |
4494 | trace_kvm_x86_remove_msi_route(virq); | |
4495 | QLIST_REMOVE(entry, list); | |
01960e6d | 4496 | g_free(entry); |
38d87493 PX |
4497 | break; |
4498 | } | |
4499 | } | |
9e03a040 FB |
4500 | return 0; |
4501 | } | |
1850b6b7 EA |
4502 | |
4503 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
4504 | { | |
4505 | abort(); | |
4506 | } |