]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
1814eab6 | 21 | #include "standard-headers/asm-x86/kvm_para.h" |
05330448 | 22 | |
33c11879 | 23 | #include "cpu.h" |
9c17d615 | 24 | #include "sysemu/sysemu.h" |
b3946626 | 25 | #include "sysemu/hw_accel.h" |
6410848b | 26 | #include "sysemu/kvm_int.h" |
1d31f66b | 27 | #include "kvm_i386.h" |
50efe82c | 28 | #include "hyperv.h" |
5e953812 | 29 | #include "hyperv-proto.h" |
50efe82c | 30 | |
022c62cb | 31 | #include "exec/gdbstub.h" |
1de7afc9 PB |
32 | #include "qemu/host-utils.h" |
33 | #include "qemu/config-file.h" | |
1c4a55db | 34 | #include "qemu/error-report.h" |
0d09e41a PB |
35 | #include "hw/i386/pc.h" |
36 | #include "hw/i386/apic.h" | |
e0723c45 PB |
37 | #include "hw/i386/apic_internal.h" |
38 | #include "hw/i386/apic-msidef.h" | |
8b5ed7df | 39 | #include "hw/i386/intel_iommu.h" |
e1d4fb2d | 40 | #include "hw/i386/x86-iommu.h" |
50efe82c | 41 | |
a2cb15b0 | 42 | #include "hw/pci/pci.h" |
15eafc2e | 43 | #include "hw/pci/msi.h" |
fd563564 | 44 | #include "hw/pci/msix.h" |
795c40b8 | 45 | #include "migration/blocker.h" |
4c663752 | 46 | #include "exec/memattrs.h" |
8b5ed7df | 47 | #include "trace.h" |
05330448 AL |
48 | |
49 | //#define DEBUG_KVM | |
50 | ||
51 | #ifdef DEBUG_KVM | |
8c0d577e | 52 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
53 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
54 | #else | |
8c0d577e | 55 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
56 | do { } while (0) |
57 | #endif | |
58 | ||
1a03675d GC |
59 | #define MSR_KVM_WALL_CLOCK 0x11 |
60 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
61 | ||
d1138251 EH |
62 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
63 | * 255 kvm_msr_entry structs */ | |
64 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 65 | |
94a8d39a JK |
66 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
67 | KVM_CAP_INFO(SET_TSS_ADDR), | |
68 | KVM_CAP_INFO(EXT_CPUID), | |
69 | KVM_CAP_INFO(MP_STATE), | |
70 | KVM_CAP_LAST_INFO | |
71 | }; | |
25d2e361 | 72 | |
c3a3a7d3 JK |
73 | static bool has_msr_star; |
74 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 75 | static bool has_msr_tsc_aux; |
f28558d3 | 76 | static bool has_msr_tsc_adjust; |
aa82ba54 | 77 | static bool has_msr_tsc_deadline; |
df67696e | 78 | static bool has_msr_feature_control; |
21e87c46 | 79 | static bool has_msr_misc_enable; |
fc12d72e | 80 | static bool has_msr_smbase; |
79e9ebeb | 81 | static bool has_msr_bndcfgs; |
25d2e361 | 82 | static int lm_capable_kernel; |
7bc3d711 | 83 | static bool has_msr_hv_hypercall; |
f2a53c9e | 84 | static bool has_msr_hv_crash; |
744b8a94 | 85 | static bool has_msr_hv_reset; |
8c145d7c | 86 | static bool has_msr_hv_vpindex; |
e9688fab | 87 | static bool hv_vpindex_settable; |
46eb8f98 | 88 | static bool has_msr_hv_runtime; |
866eea9a | 89 | static bool has_msr_hv_synic; |
ff99aa64 | 90 | static bool has_msr_hv_stimer; |
d72bc7f6 | 91 | static bool has_msr_hv_frequencies; |
ba6a4fd9 | 92 | static bool has_msr_hv_reenlightenment; |
18cd2c17 | 93 | static bool has_msr_xss; |
a33a2cfe | 94 | static bool has_msr_spec_ctrl; |
cfeea0c0 | 95 | static bool has_msr_virt_ssbd; |
e13713db | 96 | static bool has_msr_smi_count; |
aec5e9c3 | 97 | static bool has_msr_arch_capabs; |
b827df58 | 98 | |
0b368a10 JD |
99 | static uint32_t has_architectural_pmu_version; |
100 | static uint32_t num_architectural_pmu_gp_counters; | |
101 | static uint32_t num_architectural_pmu_fixed_counters; | |
0d894367 | 102 | |
28143b40 TH |
103 | static int has_xsave; |
104 | static int has_xcrs; | |
105 | static int has_pit_state2; | |
106 | ||
87f8b626 AR |
107 | static bool has_msr_mcg_ext_ctl; |
108 | ||
494e95e9 | 109 | static struct kvm_cpuid2 *cpuid_cache; |
f57bceb6 | 110 | static struct kvm_msr_list *kvm_feature_msrs; |
494e95e9 | 111 | |
28143b40 TH |
112 | int kvm_has_pit_state2(void) |
113 | { | |
114 | return has_pit_state2; | |
115 | } | |
116 | ||
355023f2 PB |
117 | bool kvm_has_smm(void) |
118 | { | |
119 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
120 | } | |
121 | ||
6053a86f MT |
122 | bool kvm_has_adjust_clock_stable(void) |
123 | { | |
124 | int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); | |
125 | ||
126 | return (ret == KVM_CLOCK_TSC_STABLE); | |
127 | } | |
128 | ||
1d31f66b PM |
129 | bool kvm_allows_irq0_override(void) |
130 | { | |
131 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
132 | } | |
133 | ||
fb506e70 RK |
134 | static bool kvm_x2apic_api_set_flags(uint64_t flags) |
135 | { | |
136 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
137 | ||
138 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
139 | } | |
140 | ||
e391c009 | 141 | #define MEMORIZE(fn, _result) \ |
2a138ec3 | 142 | ({ \ |
2a138ec3 RK |
143 | static bool _memorized; \ |
144 | \ | |
145 | if (_memorized) { \ | |
146 | return _result; \ | |
147 | } \ | |
148 | _memorized = true; \ | |
149 | _result = fn; \ | |
150 | }) | |
151 | ||
e391c009 IM |
152 | static bool has_x2apic_api; |
153 | ||
154 | bool kvm_has_x2apic_api(void) | |
155 | { | |
156 | return has_x2apic_api; | |
157 | } | |
158 | ||
fb506e70 RK |
159 | bool kvm_enable_x2apic(void) |
160 | { | |
2a138ec3 RK |
161 | return MEMORIZE( |
162 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
e391c009 IM |
163 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
164 | has_x2apic_api); | |
fb506e70 RK |
165 | } |
166 | ||
e9688fab RK |
167 | bool kvm_hv_vpindex_settable(void) |
168 | { | |
169 | return hv_vpindex_settable; | |
170 | } | |
171 | ||
0fd7e098 LL |
172 | static int kvm_get_tsc(CPUState *cs) |
173 | { | |
174 | X86CPU *cpu = X86_CPU(cs); | |
175 | CPUX86State *env = &cpu->env; | |
176 | struct { | |
177 | struct kvm_msrs info; | |
178 | struct kvm_msr_entry entries[1]; | |
179 | } msr_data; | |
180 | int ret; | |
181 | ||
182 | if (env->tsc_valid) { | |
183 | return 0; | |
184 | } | |
185 | ||
186 | msr_data.info.nmsrs = 1; | |
187 | msr_data.entries[0].index = MSR_IA32_TSC; | |
188 | env->tsc_valid = !runstate_is_running(); | |
189 | ||
190 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
191 | if (ret < 0) { | |
192 | return ret; | |
193 | } | |
194 | ||
48e1a45c | 195 | assert(ret == 1); |
0fd7e098 LL |
196 | env->tsc = msr_data.entries[0].data; |
197 | return 0; | |
198 | } | |
199 | ||
14e6fe12 | 200 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
0fd7e098 | 201 | { |
0fd7e098 LL |
202 | kvm_get_tsc(cpu); |
203 | } | |
204 | ||
205 | void kvm_synchronize_all_tsc(void) | |
206 | { | |
207 | CPUState *cpu; | |
208 | ||
209 | if (kvm_enabled()) { | |
210 | CPU_FOREACH(cpu) { | |
14e6fe12 | 211 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
0fd7e098 LL |
212 | } |
213 | } | |
214 | } | |
215 | ||
b827df58 AK |
216 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
217 | { | |
218 | struct kvm_cpuid2 *cpuid; | |
219 | int r, size; | |
220 | ||
221 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 222 | cpuid = g_malloc0(size); |
b827df58 AK |
223 | cpuid->nent = max; |
224 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
225 | if (r == 0 && cpuid->nent >= max) { |
226 | r = -E2BIG; | |
227 | } | |
b827df58 AK |
228 | if (r < 0) { |
229 | if (r == -E2BIG) { | |
7267c094 | 230 | g_free(cpuid); |
b827df58 AK |
231 | return NULL; |
232 | } else { | |
233 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
234 | strerror(-r)); | |
235 | exit(1); | |
236 | } | |
237 | } | |
238 | return cpuid; | |
239 | } | |
240 | ||
dd87f8a6 EH |
241 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
242 | * for all entries. | |
243 | */ | |
244 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
245 | { | |
246 | struct kvm_cpuid2 *cpuid; | |
247 | int max = 1; | |
494e95e9 CP |
248 | |
249 | if (cpuid_cache != NULL) { | |
250 | return cpuid_cache; | |
251 | } | |
dd87f8a6 EH |
252 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
253 | max *= 2; | |
254 | } | |
494e95e9 | 255 | cpuid_cache = cpuid; |
dd87f8a6 EH |
256 | return cpuid; |
257 | } | |
258 | ||
a443bc34 | 259 | static const struct kvm_para_features { |
0c31b744 GC |
260 | int cap; |
261 | int feature; | |
262 | } para_features[] = { | |
263 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
264 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
265 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 266 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
267 | }; |
268 | ||
ba9bc59e | 269 | static int get_para_features(KVMState *s) |
0c31b744 GC |
270 | { |
271 | int i, features = 0; | |
272 | ||
8e03c100 | 273 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 274 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
275 | features |= (1 << para_features[i].feature); |
276 | } | |
277 | } | |
278 | ||
279 | return features; | |
280 | } | |
0c31b744 | 281 | |
40e80ee4 EH |
282 | static bool host_tsx_blacklisted(void) |
283 | { | |
284 | int family, model, stepping;\ | |
285 | char vendor[CPUID_VENDOR_SZ + 1]; | |
286 | ||
287 | host_vendor_fms(vendor, &family, &model, &stepping); | |
288 | ||
289 | /* Check if we are running on a Haswell host known to have broken TSX */ | |
290 | return !strcmp(vendor, CPUID_VENDOR_INTEL) && | |
291 | (family == 6) && | |
292 | ((model == 63 && stepping < 4) || | |
293 | model == 60 || model == 69 || model == 70); | |
294 | } | |
0c31b744 | 295 | |
829ae2f9 EH |
296 | /* Returns the value for a specific register on the cpuid entry |
297 | */ | |
298 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
299 | { | |
300 | uint32_t ret = 0; | |
301 | switch (reg) { | |
302 | case R_EAX: | |
303 | ret = entry->eax; | |
304 | break; | |
305 | case R_EBX: | |
306 | ret = entry->ebx; | |
307 | break; | |
308 | case R_ECX: | |
309 | ret = entry->ecx; | |
310 | break; | |
311 | case R_EDX: | |
312 | ret = entry->edx; | |
313 | break; | |
314 | } | |
315 | return ret; | |
316 | } | |
317 | ||
4fb73f1d EH |
318 | /* Find matching entry for function/index on kvm_cpuid2 struct |
319 | */ | |
320 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
321 | uint32_t function, | |
322 | uint32_t index) | |
323 | { | |
324 | int i; | |
325 | for (i = 0; i < cpuid->nent; ++i) { | |
326 | if (cpuid->entries[i].function == function && | |
327 | cpuid->entries[i].index == index) { | |
328 | return &cpuid->entries[i]; | |
329 | } | |
330 | } | |
331 | /* not found: */ | |
332 | return NULL; | |
333 | } | |
334 | ||
ba9bc59e | 335 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 336 | uint32_t index, int reg) |
b827df58 AK |
337 | { |
338 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
339 | uint32_t ret = 0; |
340 | uint32_t cpuid_1_edx; | |
8c723b79 | 341 | bool found = false; |
b827df58 | 342 | |
dd87f8a6 | 343 | cpuid = get_supported_cpuid(s); |
b827df58 | 344 | |
4fb73f1d EH |
345 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
346 | if (entry) { | |
347 | found = true; | |
348 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
349 | } |
350 | ||
7b46e5ce EH |
351 | /* Fixups for the data returned by KVM, below */ |
352 | ||
c2acb022 EH |
353 | if (function == 1 && reg == R_EDX) { |
354 | /* KVM before 2.6.30 misreports the following features */ | |
355 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
356 | } else if (function == 1 && reg == R_ECX) { |
357 | /* We can set the hypervisor flag, even if KVM does not return it on | |
358 | * GET_SUPPORTED_CPUID | |
359 | */ | |
360 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
361 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
362 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
363 | * and the irqchip is in the kernel. | |
364 | */ | |
365 | if (kvm_irqchip_in_kernel() && | |
366 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
367 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
368 | } | |
41e5e76d EH |
369 | |
370 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
371 | * without the in-kernel irqchip | |
372 | */ | |
373 | if (!kvm_irqchip_in_kernel()) { | |
374 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 375 | } |
2266d443 MT |
376 | |
377 | if (enable_cpu_pm) { | |
378 | int disable_exits = kvm_check_extension(s, | |
379 | KVM_CAP_X86_DISABLE_EXITS); | |
380 | ||
381 | if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { | |
382 | ret |= CPUID_EXT_MONITOR; | |
383 | } | |
384 | } | |
28b8e4d0 JK |
385 | } else if (function == 6 && reg == R_EAX) { |
386 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
40e80ee4 EH |
387 | } else if (function == 7 && index == 0 && reg == R_EBX) { |
388 | if (host_tsx_blacklisted()) { | |
389 | ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); | |
390 | } | |
485b1d25 EH |
391 | } else if (function == 7 && index == 0 && reg == R_EDX) { |
392 | /* | |
393 | * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. | |
394 | * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is | |
395 | * returned by KVM_GET_MSR_INDEX_LIST. | |
396 | */ | |
397 | if (!has_msr_arch_capabs) { | |
398 | ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; | |
399 | } | |
f98bbd83 BM |
400 | } else if (function == 0x80000001 && reg == R_ECX) { |
401 | /* | |
402 | * It's safe to enable TOPOEXT even if it's not returned by | |
403 | * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows | |
404 | * us to keep CPU models including TOPOEXT runnable on older kernels. | |
405 | */ | |
406 | ret |= CPUID_EXT3_TOPOEXT; | |
c2acb022 EH |
407 | } else if (function == 0x80000001 && reg == R_EDX) { |
408 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
409 | * so add missing bits according to the AMD spec: | |
410 | */ | |
411 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
412 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
64877477 EH |
413 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
414 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
415 | * be enabled without the in-kernel irqchip | |
416 | */ | |
417 | if (!kvm_irqchip_in_kernel()) { | |
418 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
419 | } | |
be777326 | 420 | } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { |
2af1acad | 421 | ret |= 1U << KVM_HINTS_REALTIME; |
be777326 | 422 | found = 1; |
b827df58 AK |
423 | } |
424 | ||
0c31b744 | 425 | /* fallback for older kernels */ |
8c723b79 | 426 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 427 | ret = get_para_features(s); |
b9bec74b | 428 | } |
0c31b744 GC |
429 | |
430 | return ret; | |
bb0300dc | 431 | } |
bb0300dc | 432 | |
f57bceb6 RH |
433 | uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) |
434 | { | |
435 | struct { | |
436 | struct kvm_msrs info; | |
437 | struct kvm_msr_entry entries[1]; | |
438 | } msr_data; | |
439 | uint32_t ret; | |
440 | ||
441 | if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ | |
442 | return 0; | |
443 | } | |
444 | ||
445 | /* Check if requested MSR is supported feature MSR */ | |
446 | int i; | |
447 | for (i = 0; i < kvm_feature_msrs->nmsrs; i++) | |
448 | if (kvm_feature_msrs->indices[i] == index) { | |
449 | break; | |
450 | } | |
451 | if (i == kvm_feature_msrs->nmsrs) { | |
452 | return 0; /* if the feature MSR is not supported, simply return 0 */ | |
453 | } | |
454 | ||
455 | msr_data.info.nmsrs = 1; | |
456 | msr_data.entries[0].index = index; | |
457 | ||
458 | ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); | |
459 | if (ret != 1) { | |
460 | error_report("KVM get MSR (index=0x%x) feature failed, %s", | |
461 | index, strerror(-ret)); | |
462 | exit(1); | |
463 | } | |
464 | ||
465 | return msr_data.entries[0].data; | |
466 | } | |
467 | ||
468 | ||
3c85e74f HY |
469 | typedef struct HWPoisonPage { |
470 | ram_addr_t ram_addr; | |
471 | QLIST_ENTRY(HWPoisonPage) list; | |
472 | } HWPoisonPage; | |
473 | ||
474 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
475 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
476 | ||
477 | static void kvm_unpoison_all(void *param) | |
478 | { | |
479 | HWPoisonPage *page, *next_page; | |
480 | ||
481 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
482 | QLIST_REMOVE(page, list); | |
483 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 484 | g_free(page); |
3c85e74f HY |
485 | } |
486 | } | |
487 | ||
3c85e74f HY |
488 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
489 | { | |
490 | HWPoisonPage *page; | |
491 | ||
492 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
493 | if (page->ram_addr == ram_addr) { | |
494 | return; | |
495 | } | |
496 | } | |
ab3ad07f | 497 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
498 | page->ram_addr = ram_addr; |
499 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
500 | } | |
501 | ||
e7701825 MT |
502 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
503 | int *max_banks) | |
504 | { | |
505 | int r; | |
506 | ||
14a09518 | 507 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
508 | if (r > 0) { |
509 | *max_banks = r; | |
510 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
511 | } | |
512 | return -ENOSYS; | |
513 | } | |
514 | ||
bee615d4 | 515 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 516 | { |
87f8b626 | 517 | CPUState *cs = CPU(cpu); |
bee615d4 | 518 | CPUX86State *env = &cpu->env; |
c34d440a JK |
519 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
520 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
521 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 522 | int flags = 0; |
e7701825 | 523 | |
c34d440a JK |
524 | if (code == BUS_MCEERR_AR) { |
525 | status |= MCI_STATUS_AR | 0x134; | |
526 | mcg_status |= MCG_STATUS_EIPV; | |
527 | } else { | |
528 | status |= 0xc0; | |
529 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 530 | } |
87f8b626 AR |
531 | |
532 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
533 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
534 | * guest kernel back into env->mcg_ext_ctl. | |
535 | */ | |
536 | cpu_synchronize_state(cs); | |
537 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
538 | mcg_status |= MCG_STATUS_LMCE; | |
539 | flags = 0; | |
540 | } | |
541 | ||
8c5cf3b6 | 542 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 543 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 544 | } |
419fb20a JK |
545 | |
546 | static void hardware_memory_error(void) | |
547 | { | |
548 | fprintf(stderr, "Hardware memory error!\n"); | |
549 | exit(1); | |
550 | } | |
551 | ||
2ae41db2 | 552 | void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 553 | { |
20d695a9 AF |
554 | X86CPU *cpu = X86_CPU(c); |
555 | CPUX86State *env = &cpu->env; | |
419fb20a | 556 | ram_addr_t ram_addr; |
a8170e5e | 557 | hwaddr paddr; |
419fb20a | 558 | |
4d39892c PB |
559 | /* If we get an action required MCE, it has been injected by KVM |
560 | * while the VM was running. An action optional MCE instead should | |
561 | * be coming from the main thread, which qemu_init_sigbus identifies | |
562 | * as the "early kill" thread. | |
563 | */ | |
a16fc07e | 564 | assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
20e0ff59 | 565 | |
20e0ff59 | 566 | if ((env->mcg_cap & MCG_SER_P) && addr) { |
07bdaa41 | 567 | ram_addr = qemu_ram_addr_from_host(addr); |
20e0ff59 PB |
568 | if (ram_addr != RAM_ADDR_INVALID && |
569 | kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { | |
570 | kvm_hwpoison_page_add(ram_addr); | |
571 | kvm_mce_inject(cpu, paddr, code); | |
2ae41db2 | 572 | return; |
419fb20a | 573 | } |
20e0ff59 PB |
574 | |
575 | fprintf(stderr, "Hardware memory error for memory used by " | |
576 | "QEMU itself instead of guest system!\n"); | |
419fb20a | 577 | } |
20e0ff59 PB |
578 | |
579 | if (code == BUS_MCEERR_AR) { | |
580 | hardware_memory_error(); | |
581 | } | |
582 | ||
583 | /* Hope we are lucky for AO MCE */ | |
419fb20a JK |
584 | } |
585 | ||
1bc22652 | 586 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 587 | { |
1bc22652 AF |
588 | CPUX86State *env = &cpu->env; |
589 | ||
ab443475 JK |
590 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
591 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
592 | struct kvm_x86_mce mce; | |
593 | ||
594 | env->exception_injected = -1; | |
595 | ||
596 | /* | |
597 | * There must be at least one bank in use if an MCE is pending. | |
598 | * Find it and use its values for the event injection. | |
599 | */ | |
600 | for (bank = 0; bank < bank_num; bank++) { | |
601 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
602 | break; | |
603 | } | |
604 | } | |
605 | assert(bank < bank_num); | |
606 | ||
607 | mce.bank = bank; | |
608 | mce.status = env->mce_banks[bank * 4 + 1]; | |
609 | mce.mcg_status = env->mcg_status; | |
610 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
611 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
612 | ||
1bc22652 | 613 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 614 | } |
ab443475 JK |
615 | return 0; |
616 | } | |
617 | ||
1dfb4dd9 | 618 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 619 | { |
317ac620 | 620 | CPUX86State *env = opaque; |
b8cc45d6 GC |
621 | |
622 | if (running) { | |
623 | env->tsc_valid = false; | |
624 | } | |
625 | } | |
626 | ||
83b17af5 | 627 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 628 | { |
83b17af5 | 629 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 630 | return cpu->apic_id; |
b164e48e EH |
631 | } |
632 | ||
92067bf4 IM |
633 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
634 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
635 | #endif | |
636 | ||
92067bf4 IM |
637 | static bool hyperv_enabled(X86CPU *cpu) |
638 | { | |
7bc3d711 PB |
639 | CPUState *cs = CPU(cpu); |
640 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
2d384d7c | 641 | ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) || |
e48ddcc6 | 642 | cpu->hyperv_features || cpu->hyperv_passthrough); |
92067bf4 IM |
643 | } |
644 | ||
5031283d HZ |
645 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
646 | { | |
647 | X86CPU *cpu = X86_CPU(cs); | |
648 | CPUX86State *env = &cpu->env; | |
649 | int r; | |
650 | ||
651 | if (!env->tsc_khz) { | |
652 | return 0; | |
653 | } | |
654 | ||
655 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
656 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
657 | -ENOTSUP; | |
658 | if (r < 0) { | |
659 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
660 | * TSC frequency doesn't match the one we want. | |
661 | */ | |
662 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
663 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
664 | -ENOTSUP; | |
665 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
3dc6f869 AF |
666 | warn_report("TSC frequency mismatch between " |
667 | "VM (%" PRId64 " kHz) and host (%d kHz), " | |
668 | "and TSC scaling unavailable", | |
669 | env->tsc_khz, cur_freq); | |
5031283d HZ |
670 | return r; |
671 | } | |
672 | } | |
673 | ||
674 | return 0; | |
675 | } | |
676 | ||
4bb95b82 LP |
677 | static bool tsc_is_stable_and_known(CPUX86State *env) |
678 | { | |
679 | if (!env->tsc_khz) { | |
680 | return false; | |
681 | } | |
682 | return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) | |
683 | || env->user_tsc_khz; | |
684 | } | |
685 | ||
6760bd20 VK |
686 | static struct { |
687 | const char *desc; | |
688 | struct { | |
689 | uint32_t fw; | |
690 | uint32_t bits; | |
691 | } flags[2]; | |
c6861930 | 692 | uint64_t dependencies; |
6760bd20 VK |
693 | } kvm_hyperv_properties[] = { |
694 | [HYPERV_FEAT_RELAXED] = { | |
695 | .desc = "relaxed timing (hv-relaxed)", | |
696 | .flags = { | |
697 | {.fw = FEAT_HYPERV_EAX, | |
698 | .bits = HV_HYPERCALL_AVAILABLE}, | |
699 | {.fw = FEAT_HV_RECOMM_EAX, | |
700 | .bits = HV_RELAXED_TIMING_RECOMMENDED} | |
701 | } | |
702 | }, | |
703 | [HYPERV_FEAT_VAPIC] = { | |
704 | .desc = "virtual APIC (hv-vapic)", | |
705 | .flags = { | |
706 | {.fw = FEAT_HYPERV_EAX, | |
707 | .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, | |
708 | {.fw = FEAT_HV_RECOMM_EAX, | |
709 | .bits = HV_APIC_ACCESS_RECOMMENDED} | |
710 | } | |
711 | }, | |
712 | [HYPERV_FEAT_TIME] = { | |
713 | .desc = "clocksources (hv-time)", | |
714 | .flags = { | |
715 | {.fw = FEAT_HYPERV_EAX, | |
716 | .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | | |
717 | HV_REFERENCE_TSC_AVAILABLE} | |
718 | } | |
719 | }, | |
720 | [HYPERV_FEAT_CRASH] = { | |
721 | .desc = "crash MSRs (hv-crash)", | |
722 | .flags = { | |
723 | {.fw = FEAT_HYPERV_EDX, | |
724 | .bits = HV_GUEST_CRASH_MSR_AVAILABLE} | |
725 | } | |
726 | }, | |
727 | [HYPERV_FEAT_RESET] = { | |
728 | .desc = "reset MSR (hv-reset)", | |
729 | .flags = { | |
730 | {.fw = FEAT_HYPERV_EAX, | |
731 | .bits = HV_RESET_AVAILABLE} | |
732 | } | |
733 | }, | |
734 | [HYPERV_FEAT_VPINDEX] = { | |
735 | .desc = "VP_INDEX MSR (hv-vpindex)", | |
736 | .flags = { | |
737 | {.fw = FEAT_HYPERV_EAX, | |
738 | .bits = HV_VP_INDEX_AVAILABLE} | |
739 | } | |
740 | }, | |
741 | [HYPERV_FEAT_RUNTIME] = { | |
742 | .desc = "VP_RUNTIME MSR (hv-runtime)", | |
743 | .flags = { | |
744 | {.fw = FEAT_HYPERV_EAX, | |
745 | .bits = HV_VP_RUNTIME_AVAILABLE} | |
746 | } | |
747 | }, | |
748 | [HYPERV_FEAT_SYNIC] = { | |
749 | .desc = "synthetic interrupt controller (hv-synic)", | |
750 | .flags = { | |
751 | {.fw = FEAT_HYPERV_EAX, | |
752 | .bits = HV_SYNIC_AVAILABLE} | |
753 | } | |
754 | }, | |
755 | [HYPERV_FEAT_STIMER] = { | |
756 | .desc = "synthetic timers (hv-stimer)", | |
757 | .flags = { | |
758 | {.fw = FEAT_HYPERV_EAX, | |
759 | .bits = HV_SYNTIMERS_AVAILABLE} | |
c6861930 VK |
760 | }, |
761 | .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) | |
6760bd20 VK |
762 | }, |
763 | [HYPERV_FEAT_FREQUENCIES] = { | |
764 | .desc = "frequency MSRs (hv-frequencies)", | |
765 | .flags = { | |
766 | {.fw = FEAT_HYPERV_EAX, | |
767 | .bits = HV_ACCESS_FREQUENCY_MSRS}, | |
768 | {.fw = FEAT_HYPERV_EDX, | |
769 | .bits = HV_FREQUENCY_MSRS_AVAILABLE} | |
770 | } | |
771 | }, | |
772 | [HYPERV_FEAT_REENLIGHTENMENT] = { | |
773 | .desc = "reenlightenment MSRs (hv-reenlightenment)", | |
774 | .flags = { | |
775 | {.fw = FEAT_HYPERV_EAX, | |
776 | .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} | |
777 | } | |
778 | }, | |
779 | [HYPERV_FEAT_TLBFLUSH] = { | |
780 | .desc = "paravirtualized TLB flush (hv-tlbflush)", | |
781 | .flags = { | |
782 | {.fw = FEAT_HV_RECOMM_EAX, | |
783 | .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | | |
784 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
bd59fbdf VK |
785 | }, |
786 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
6760bd20 VK |
787 | }, |
788 | [HYPERV_FEAT_EVMCS] = { | |
789 | .desc = "enlightened VMCS (hv-evmcs)", | |
790 | .flags = { | |
791 | {.fw = FEAT_HV_RECOMM_EAX, | |
792 | .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} | |
8caba36d VK |
793 | }, |
794 | .dependencies = BIT(HYPERV_FEAT_VAPIC) | |
6760bd20 VK |
795 | }, |
796 | [HYPERV_FEAT_IPI] = { | |
797 | .desc = "paravirtualized IPI (hv-ipi)", | |
798 | .flags = { | |
799 | {.fw = FEAT_HV_RECOMM_EAX, | |
800 | .bits = HV_CLUSTER_IPI_RECOMMENDED | | |
801 | HV_EX_PROCESSOR_MASKS_RECOMMENDED} | |
bd59fbdf VK |
802 | }, |
803 | .dependencies = BIT(HYPERV_FEAT_VPINDEX) | |
6760bd20 | 804 | }, |
128531d9 VK |
805 | [HYPERV_FEAT_STIMER_DIRECT] = { |
806 | .desc = "direct mode synthetic timers (hv-stimer-direct)", | |
807 | .flags = { | |
808 | {.fw = FEAT_HYPERV_EDX, | |
809 | .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} | |
810 | }, | |
811 | .dependencies = BIT(HYPERV_FEAT_STIMER) | |
812 | }, | |
6760bd20 VK |
813 | }; |
814 | ||
815 | static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) | |
816 | { | |
817 | struct kvm_cpuid2 *cpuid; | |
818 | int r, size; | |
819 | ||
820 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
821 | cpuid = g_malloc0(size); | |
822 | cpuid->nent = max; | |
823 | ||
824 | r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); | |
825 | if (r == 0 && cpuid->nent >= max) { | |
826 | r = -E2BIG; | |
827 | } | |
828 | if (r < 0) { | |
829 | if (r == -E2BIG) { | |
830 | g_free(cpuid); | |
831 | return NULL; | |
832 | } else { | |
833 | fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", | |
834 | strerror(-r)); | |
835 | exit(1); | |
836 | } | |
837 | } | |
838 | return cpuid; | |
839 | } | |
840 | ||
841 | /* | |
842 | * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough | |
843 | * for all entries. | |
844 | */ | |
845 | static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) | |
846 | { | |
847 | struct kvm_cpuid2 *cpuid; | |
848 | int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ | |
849 | ||
850 | /* | |
851 | * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with | |
852 | * -E2BIG, however, it doesn't report back the right size. Keep increasing | |
853 | * it and re-trying until we succeed. | |
854 | */ | |
855 | while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { | |
856 | max++; | |
857 | } | |
858 | return cpuid; | |
859 | } | |
860 | ||
861 | /* | |
862 | * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature | |
863 | * leaves from KVM_CAP_HYPERV* and present MSRs data. | |
864 | */ | |
865 | static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) | |
c35bd19a EY |
866 | { |
867 | X86CPU *cpu = X86_CPU(cs); | |
6760bd20 VK |
868 | struct kvm_cpuid2 *cpuid; |
869 | struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; | |
870 | ||
871 | /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ | |
872 | cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); | |
873 | cpuid->nent = 2; | |
874 | ||
875 | /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ | |
876 | entry_feat = &cpuid->entries[0]; | |
877 | entry_feat->function = HV_CPUID_FEATURES; | |
878 | ||
879 | entry_recomm = &cpuid->entries[1]; | |
880 | entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; | |
881 | entry_recomm->ebx = cpu->hyperv_spinlock_attempts; | |
882 | ||
883 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { | |
884 | entry_feat->eax |= HV_HYPERCALL_AVAILABLE; | |
885 | entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; | |
886 | entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
887 | entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; | |
888 | entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; | |
889 | } | |
c35bd19a | 890 | |
6760bd20 VK |
891 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { |
892 | entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; | |
893 | entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; | |
c35bd19a | 894 | } |
6760bd20 VK |
895 | |
896 | if (has_msr_hv_frequencies) { | |
897 | entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; | |
898 | entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; | |
c35bd19a | 899 | } |
6760bd20 VK |
900 | |
901 | if (has_msr_hv_crash) { | |
902 | entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; | |
9445597b | 903 | } |
6760bd20 VK |
904 | |
905 | if (has_msr_hv_reenlightenment) { | |
906 | entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; | |
c35bd19a | 907 | } |
6760bd20 VK |
908 | |
909 | if (has_msr_hv_reset) { | |
910 | entry_feat->eax |= HV_RESET_AVAILABLE; | |
c35bd19a | 911 | } |
6760bd20 VK |
912 | |
913 | if (has_msr_hv_vpindex) { | |
914 | entry_feat->eax |= HV_VP_INDEX_AVAILABLE; | |
ba6a4fd9 | 915 | } |
6760bd20 VK |
916 | |
917 | if (has_msr_hv_runtime) { | |
918 | entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; | |
c35bd19a | 919 | } |
6760bd20 VK |
920 | |
921 | if (has_msr_hv_synic) { | |
922 | unsigned int cap = cpu->hyperv_synic_kvm_only ? | |
923 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
924 | ||
925 | if (kvm_check_extension(cs->kvm_state, cap) > 0) { | |
926 | entry_feat->eax |= HV_SYNIC_AVAILABLE; | |
1221f150 | 927 | } |
c35bd19a | 928 | } |
6760bd20 VK |
929 | |
930 | if (has_msr_hv_stimer) { | |
931 | entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; | |
c35bd19a | 932 | } |
9b4cf107 | 933 | |
6760bd20 VK |
934 | if (kvm_check_extension(cs->kvm_state, |
935 | KVM_CAP_HYPERV_TLBFLUSH) > 0) { | |
936 | entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; | |
937 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
938 | } | |
c35bd19a | 939 | |
6760bd20 VK |
940 | if (kvm_check_extension(cs->kvm_state, |
941 | KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { | |
942 | entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
c35bd19a | 943 | } |
6760bd20 VK |
944 | |
945 | if (kvm_check_extension(cs->kvm_state, | |
946 | KVM_CAP_HYPERV_SEND_IPI) > 0) { | |
947 | entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; | |
948 | entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
c35bd19a | 949 | } |
6760bd20 VK |
950 | |
951 | return cpuid; | |
952 | } | |
953 | ||
954 | static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) | |
955 | { | |
956 | struct kvm_cpuid_entry2 *entry; | |
957 | uint32_t func; | |
958 | int reg; | |
959 | ||
960 | switch (fw) { | |
961 | case FEAT_HYPERV_EAX: | |
962 | reg = R_EAX; | |
963 | func = HV_CPUID_FEATURES; | |
964 | break; | |
965 | case FEAT_HYPERV_EDX: | |
966 | reg = R_EDX; | |
967 | func = HV_CPUID_FEATURES; | |
968 | break; | |
969 | case FEAT_HV_RECOMM_EAX: | |
970 | reg = R_EAX; | |
971 | func = HV_CPUID_ENLIGHTMENT_INFO; | |
972 | break; | |
973 | default: | |
974 | return -EINVAL; | |
a2b107db | 975 | } |
6760bd20 VK |
976 | |
977 | entry = cpuid_find_entry(cpuid, func, 0); | |
978 | if (!entry) { | |
979 | return -ENOENT; | |
a2b107db | 980 | } |
6760bd20 VK |
981 | |
982 | switch (reg) { | |
983 | case R_EAX: | |
984 | *r = entry->eax; | |
985 | break; | |
986 | case R_EDX: | |
987 | *r = entry->edx; | |
988 | break; | |
989 | default: | |
990 | return -EINVAL; | |
a2b107db | 991 | } |
6760bd20 VK |
992 | |
993 | return 0; | |
994 | } | |
995 | ||
996 | static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, | |
997 | int feature) | |
998 | { | |
999 | X86CPU *cpu = X86_CPU(cs); | |
1000 | CPUX86State *env = &cpu->env; | |
e48ddcc6 | 1001 | uint32_t r, fw, bits; |
c6861930 VK |
1002 | uint64_t deps; |
1003 | int i, dep_feat = 0; | |
6760bd20 | 1004 | |
e48ddcc6 | 1005 | if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { |
6760bd20 VK |
1006 | return 0; |
1007 | } | |
1008 | ||
c6861930 VK |
1009 | deps = kvm_hyperv_properties[feature].dependencies; |
1010 | while ((dep_feat = find_next_bit(&deps, 64, dep_feat)) < 64) { | |
1011 | if (!(hyperv_feat_enabled(cpu, dep_feat))) { | |
1012 | fprintf(stderr, | |
1013 | "Hyper-V %s requires Hyper-V %s\n", | |
1014 | kvm_hyperv_properties[feature].desc, | |
1015 | kvm_hyperv_properties[dep_feat].desc); | |
1016 | return 1; | |
1017 | } | |
1018 | dep_feat++; | |
1019 | } | |
1020 | ||
6760bd20 VK |
1021 | for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { |
1022 | fw = kvm_hyperv_properties[feature].flags[i].fw; | |
1023 | bits = kvm_hyperv_properties[feature].flags[i].bits; | |
1024 | ||
1025 | if (!fw) { | |
1026 | continue; | |
a2b107db | 1027 | } |
6760bd20 VK |
1028 | |
1029 | if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { | |
e48ddcc6 VK |
1030 | if (hyperv_feat_enabled(cpu, feature)) { |
1031 | fprintf(stderr, | |
1032 | "Hyper-V %s is not supported by kernel\n", | |
1033 | kvm_hyperv_properties[feature].desc); | |
1034 | return 1; | |
1035 | } else { | |
1036 | return 0; | |
1037 | } | |
6760bd20 VK |
1038 | } |
1039 | ||
1040 | env->features[fw] |= bits; | |
a2b107db | 1041 | } |
6760bd20 | 1042 | |
e48ddcc6 VK |
1043 | if (cpu->hyperv_passthrough) { |
1044 | cpu->hyperv_features |= BIT(feature); | |
1045 | } | |
1046 | ||
6760bd20 VK |
1047 | return 0; |
1048 | } | |
1049 | ||
2344d22e VK |
1050 | /* |
1051 | * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in | |
1052 | * case of success, errno < 0 in case of failure and 0 when no Hyper-V | |
1053 | * extentions are enabled. | |
1054 | */ | |
1055 | static int hyperv_handle_properties(CPUState *cs, | |
1056 | struct kvm_cpuid_entry2 *cpuid_ent) | |
6760bd20 VK |
1057 | { |
1058 | X86CPU *cpu = X86_CPU(cs); | |
1059 | CPUX86State *env = &cpu->env; | |
1060 | struct kvm_cpuid2 *cpuid; | |
2344d22e VK |
1061 | struct kvm_cpuid_entry2 *c; |
1062 | uint32_t signature[3]; | |
1063 | uint32_t cpuid_i = 0; | |
e48ddcc6 | 1064 | int r; |
6760bd20 | 1065 | |
2344d22e VK |
1066 | if (!hyperv_enabled(cpu)) |
1067 | return 0; | |
1068 | ||
e48ddcc6 VK |
1069 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || |
1070 | cpu->hyperv_passthrough) { | |
a2b107db VK |
1071 | uint16_t evmcs_version; |
1072 | ||
e48ddcc6 VK |
1073 | r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, |
1074 | (uintptr_t)&evmcs_version); | |
1075 | ||
1076 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { | |
6760bd20 VK |
1077 | fprintf(stderr, "Hyper-V %s is not supported by kernel\n", |
1078 | kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); | |
a2b107db VK |
1079 | return -ENOSYS; |
1080 | } | |
e48ddcc6 VK |
1081 | |
1082 | if (!r) { | |
1083 | env->features[FEAT_HV_RECOMM_EAX] |= | |
1084 | HV_ENLIGHTENED_VMCS_RECOMMENDED; | |
1085 | env->features[FEAT_HV_NESTED_EAX] = evmcs_version; | |
1086 | } | |
a2b107db VK |
1087 | } |
1088 | ||
6760bd20 VK |
1089 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { |
1090 | cpuid = get_supported_hv_cpuid(cs); | |
1091 | } else { | |
1092 | cpuid = get_supported_hv_cpuid_legacy(cs); | |
1093 | } | |
1094 | ||
e48ddcc6 VK |
1095 | if (cpu->hyperv_passthrough) { |
1096 | memcpy(cpuid_ent, &cpuid->entries[0], | |
1097 | cpuid->nent * sizeof(cpuid->entries[0])); | |
1098 | ||
1099 | c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); | |
1100 | if (c) { | |
1101 | env->features[FEAT_HYPERV_EAX] = c->eax; | |
1102 | env->features[FEAT_HYPERV_EBX] = c->ebx; | |
1103 | env->features[FEAT_HYPERV_EDX] = c->eax; | |
1104 | } | |
1105 | c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); | |
1106 | if (c) { | |
1107 | env->features[FEAT_HV_RECOMM_EAX] = c->eax; | |
1108 | ||
1109 | /* hv-spinlocks may have been overriden */ | |
1110 | if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) { | |
1111 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1112 | } | |
1113 | } | |
1114 | c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); | |
1115 | if (c) { | |
1116 | env->features[FEAT_HV_NESTED_EAX] = c->eax; | |
1117 | } | |
1118 | } | |
1119 | ||
6760bd20 | 1120 | /* Features */ |
e48ddcc6 | 1121 | r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); |
6760bd20 VK |
1122 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); |
1123 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); | |
1124 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); | |
1125 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); | |
1126 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); | |
1127 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); | |
1128 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); | |
1129 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); | |
1130 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); | |
1131 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); | |
1132 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); | |
1133 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); | |
1134 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); | |
128531d9 | 1135 | r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); |
6760bd20 | 1136 | |
c6861930 | 1137 | /* Additional dependencies not covered by kvm_hyperv_properties[] */ |
6760bd20 VK |
1138 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && |
1139 | !cpu->hyperv_synic_kvm_only && | |
1140 | !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { | |
c6861930 | 1141 | fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", |
6760bd20 VK |
1142 | kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, |
1143 | kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); | |
1144 | r |= 1; | |
1145 | } | |
1146 | ||
1147 | /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ | |
1148 | env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
1149 | ||
2344d22e VK |
1150 | if (r) { |
1151 | r = -ENOSYS; | |
1152 | goto free; | |
1153 | } | |
1154 | ||
e48ddcc6 VK |
1155 | if (cpu->hyperv_passthrough) { |
1156 | /* We already copied all feature words from KVM as is */ | |
1157 | r = cpuid->nent; | |
1158 | goto free; | |
1159 | } | |
1160 | ||
2344d22e VK |
1161 | c = &cpuid_ent[cpuid_i++]; |
1162 | c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
1163 | if (!cpu->hyperv_vendor_id) { | |
1164 | memcpy(signature, "Microsoft Hv", 12); | |
1165 | } else { | |
1166 | size_t len = strlen(cpu->hyperv_vendor_id); | |
1167 | ||
1168 | if (len > 12) { | |
1169 | error_report("hv-vendor-id truncated to 12 characters"); | |
1170 | len = 12; | |
1171 | } | |
1172 | memset(signature, 0, 12); | |
1173 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
1174 | } | |
1175 | c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? | |
1176 | HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; | |
1177 | c->ebx = signature[0]; | |
1178 | c->ecx = signature[1]; | |
1179 | c->edx = signature[2]; | |
1180 | ||
1181 | c = &cpuid_ent[cpuid_i++]; | |
1182 | c->function = HV_CPUID_INTERFACE; | |
1183 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | |
1184 | c->eax = signature[0]; | |
1185 | c->ebx = 0; | |
1186 | c->ecx = 0; | |
1187 | c->edx = 0; | |
1188 | ||
1189 | c = &cpuid_ent[cpuid_i++]; | |
1190 | c->function = HV_CPUID_VERSION; | |
1191 | c->eax = 0x00001bbc; | |
1192 | c->ebx = 0x00060001; | |
1193 | ||
1194 | c = &cpuid_ent[cpuid_i++]; | |
1195 | c->function = HV_CPUID_FEATURES; | |
1196 | c->eax = env->features[FEAT_HYPERV_EAX]; | |
1197 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
1198 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
1199 | ||
1200 | c = &cpuid_ent[cpuid_i++]; | |
1201 | c->function = HV_CPUID_ENLIGHTMENT_INFO; | |
1202 | c->eax = env->features[FEAT_HV_RECOMM_EAX]; | |
1203 | c->ebx = cpu->hyperv_spinlock_attempts; | |
1204 | ||
1205 | c = &cpuid_ent[cpuid_i++]; | |
1206 | c->function = HV_CPUID_IMPLEMENT_LIMITS; | |
1207 | c->eax = cpu->hv_max_vps; | |
1208 | c->ebx = 0x40; | |
1209 | ||
1210 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { | |
1211 | __u32 function; | |
1212 | ||
1213 | /* Create zeroed 0x40000006..0x40000009 leaves */ | |
1214 | for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; | |
1215 | function < HV_CPUID_NESTED_FEATURES; function++) { | |
1216 | c = &cpuid_ent[cpuid_i++]; | |
1217 | c->function = function; | |
1218 | } | |
1219 | ||
1220 | c = &cpuid_ent[cpuid_i++]; | |
1221 | c->function = HV_CPUID_NESTED_FEATURES; | |
1222 | c->eax = env->features[FEAT_HV_NESTED_EAX]; | |
1223 | } | |
1224 | r = cpuid_i; | |
1225 | ||
1226 | free: | |
6760bd20 VK |
1227 | g_free(cpuid); |
1228 | ||
2344d22e | 1229 | return r; |
c35bd19a EY |
1230 | } |
1231 | ||
e48ddcc6 VK |
1232 | static Error *hv_passthrough_mig_blocker; |
1233 | ||
e9688fab RK |
1234 | static int hyperv_init_vcpu(X86CPU *cpu) |
1235 | { | |
729ce7e1 | 1236 | CPUState *cs = CPU(cpu); |
e48ddcc6 | 1237 | Error *local_err = NULL; |
729ce7e1 RK |
1238 | int ret; |
1239 | ||
e48ddcc6 VK |
1240 | if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { |
1241 | error_setg(&hv_passthrough_mig_blocker, | |
1242 | "'hv-passthrough' CPU flag prevents migration, use explicit" | |
1243 | " set of hv-* flags instead"); | |
1244 | ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); | |
1245 | if (local_err) { | |
1246 | error_report_err(local_err); | |
1247 | error_free(hv_passthrough_mig_blocker); | |
1248 | return ret; | |
1249 | } | |
1250 | } | |
1251 | ||
2d384d7c | 1252 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { |
e9688fab RK |
1253 | /* |
1254 | * the kernel doesn't support setting vp_index; assert that its value | |
1255 | * is in sync | |
1256 | */ | |
e9688fab RK |
1257 | struct { |
1258 | struct kvm_msrs info; | |
1259 | struct kvm_msr_entry entries[1]; | |
1260 | } msr_data = { | |
1261 | .info.nmsrs = 1, | |
1262 | .entries[0].index = HV_X64_MSR_VP_INDEX, | |
1263 | }; | |
1264 | ||
729ce7e1 | 1265 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); |
e9688fab RK |
1266 | if (ret < 0) { |
1267 | return ret; | |
1268 | } | |
1269 | assert(ret == 1); | |
1270 | ||
701189e3 | 1271 | if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { |
e9688fab RK |
1272 | error_report("kernel's vp_index != QEMU's vp_index"); |
1273 | return -ENXIO; | |
1274 | } | |
1275 | } | |
1276 | ||
2d384d7c | 1277 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
9b4cf107 RK |
1278 | uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? |
1279 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
1280 | ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); | |
729ce7e1 RK |
1281 | if (ret < 0) { |
1282 | error_report("failed to turn on HyperV SynIC in KVM: %s", | |
1283 | strerror(-ret)); | |
1284 | return ret; | |
1285 | } | |
606c34bf | 1286 | |
9b4cf107 RK |
1287 | if (!cpu->hyperv_synic_kvm_only) { |
1288 | ret = hyperv_x86_synic_add(cpu); | |
1289 | if (ret < 0) { | |
1290 | error_report("failed to create HyperV SynIC: %s", | |
1291 | strerror(-ret)); | |
1292 | return ret; | |
1293 | } | |
606c34bf | 1294 | } |
729ce7e1 RK |
1295 | } |
1296 | ||
e9688fab RK |
1297 | return 0; |
1298 | } | |
1299 | ||
68bfd0ad | 1300 | static Error *invtsc_mig_blocker; |
d98f2607 | 1301 | static Error *vmx_mig_blocker; |
68bfd0ad | 1302 | |
f8bb0565 | 1303 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 1304 | |
20d695a9 | 1305 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
1306 | { |
1307 | struct { | |
486bd5a2 | 1308 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 1309 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
9115bb12 PM |
1310 | } cpuid_data; |
1311 | /* | |
1312 | * The kernel defines these structs with padding fields so there | |
1313 | * should be no extra padding in our cpuid_data struct. | |
1314 | */ | |
1315 | QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != | |
1316 | sizeof(struct kvm_cpuid2) + | |
1317 | sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); | |
1318 | ||
20d695a9 AF |
1319 | X86CPU *cpu = X86_CPU(cs); |
1320 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 1321 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 1322 | uint32_t unused; |
bb0300dc | 1323 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 1324 | uint32_t signature[3]; |
234cc647 | 1325 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 1326 | int r; |
fe44dc91 | 1327 | Error *local_err = NULL; |
05330448 | 1328 | |
ef4cbe14 SW |
1329 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
1330 | ||
05330448 AL |
1331 | cpuid_i = 0; |
1332 | ||
ddb98b5a LP |
1333 | r = kvm_arch_set_tsc_khz(cs); |
1334 | if (r < 0) { | |
1335 | goto fail; | |
1336 | } | |
1337 | ||
1338 | /* vcpu's TSC frequency is either specified by user, or following | |
1339 | * the value used by KVM if the former is not present. In the | |
1340 | * latter case, we query it from KVM and record in env->tsc_khz, | |
1341 | * so that vcpu's TSC frequency can be migrated later via this field. | |
1342 | */ | |
1343 | if (!env->tsc_khz) { | |
1344 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
1345 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
1346 | -ENOTSUP; | |
1347 | if (r > 0) { | |
1348 | env->tsc_khz = r; | |
1349 | } | |
1350 | } | |
1351 | ||
bb0300dc | 1352 | /* Paravirtualization CPUIDs */ |
2344d22e VK |
1353 | r = hyperv_handle_properties(cs, cpuid_data.entries); |
1354 | if (r < 0) { | |
1355 | return r; | |
1356 | } else if (r > 0) { | |
1357 | cpuid_i = r; | |
234cc647 | 1358 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 1359 | has_msr_hv_hypercall = true; |
eab70139 VR |
1360 | } |
1361 | ||
f522d2ac AW |
1362 | if (cpu->expose_kvm) { |
1363 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
1364 | c = &cpuid_data.entries[cpuid_i++]; | |
1365 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 1366 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
1367 | c->ebx = signature[0]; |
1368 | c->ecx = signature[1]; | |
1369 | c->edx = signature[2]; | |
234cc647 | 1370 | |
f522d2ac AW |
1371 | c = &cpuid_data.entries[cpuid_i++]; |
1372 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
1373 | c->eax = env->features[FEAT_KVM]; | |
be777326 | 1374 | c->edx = env->features[FEAT_KVM_HINTS]; |
f522d2ac | 1375 | } |
917367aa | 1376 | |
a33609ca | 1377 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1378 | |
1379 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
1380 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1381 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
1382 | abort(); | |
1383 | } | |
bb0300dc | 1384 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1385 | |
1386 | switch (i) { | |
a36b1029 AL |
1387 | case 2: { |
1388 | /* Keep reading function 2 till all the input is received */ | |
1389 | int times; | |
1390 | ||
a36b1029 | 1391 | c->function = i; |
a33609ca AL |
1392 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
1393 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
1394 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1395 | times = c->eax & 0xff; | |
a36b1029 AL |
1396 | |
1397 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
1398 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1399 | fprintf(stderr, "cpuid_data is full, no space for " | |
1400 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
1401 | abort(); | |
1402 | } | |
a33609ca | 1403 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 1404 | c->function = i; |
a33609ca AL |
1405 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
1406 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
1407 | } |
1408 | break; | |
1409 | } | |
486bd5a2 AL |
1410 | case 4: |
1411 | case 0xb: | |
1412 | case 0xd: | |
1413 | for (j = 0; ; j++) { | |
31e8c696 AP |
1414 | if (i == 0xd && j == 64) { |
1415 | break; | |
1416 | } | |
486bd5a2 AL |
1417 | c->function = i; |
1418 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1419 | c->index = j; | |
a33609ca | 1420 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 1421 | |
b9bec74b | 1422 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 1423 | break; |
b9bec74b JK |
1424 | } |
1425 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 1426 | break; |
b9bec74b JK |
1427 | } |
1428 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 1429 | continue; |
b9bec74b | 1430 | } |
f8bb0565 IM |
1431 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1432 | fprintf(stderr, "cpuid_data is full, no space for " | |
1433 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1434 | abort(); | |
1435 | } | |
a33609ca | 1436 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1437 | } |
1438 | break; | |
e37a5c7f CP |
1439 | case 0x14: { |
1440 | uint32_t times; | |
1441 | ||
1442 | c->function = i; | |
1443 | c->index = 0; | |
1444 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1445 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1446 | times = c->eax; | |
1447 | ||
1448 | for (j = 1; j <= times; ++j) { | |
1449 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1450 | fprintf(stderr, "cpuid_data is full, no space for " | |
1451 | "cpuid(eax:0x14,ecx:0x%x)\n", j); | |
1452 | abort(); | |
1453 | } | |
1454 | c = &cpuid_data.entries[cpuid_i++]; | |
1455 | c->function = i; | |
1456 | c->index = j; | |
1457 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1458 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1459 | } | |
1460 | break; | |
1461 | } | |
486bd5a2 | 1462 | default: |
486bd5a2 | 1463 | c->function = i; |
a33609ca AL |
1464 | c->flags = 0; |
1465 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
1466 | break; |
1467 | } | |
05330448 | 1468 | } |
0d894367 PB |
1469 | |
1470 | if (limit >= 0x0a) { | |
0b368a10 | 1471 | uint32_t eax, edx; |
0d894367 | 1472 | |
0b368a10 JD |
1473 | cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); |
1474 | ||
1475 | has_architectural_pmu_version = eax & 0xff; | |
1476 | if (has_architectural_pmu_version > 0) { | |
1477 | num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; | |
0d894367 PB |
1478 | |
1479 | /* Shouldn't be more than 32, since that's the number of bits | |
1480 | * available in EBX to tell us _which_ counters are available. | |
1481 | * Play it safe. | |
1482 | */ | |
0b368a10 JD |
1483 | if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { |
1484 | num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; | |
1485 | } | |
1486 | ||
1487 | if (has_architectural_pmu_version > 1) { | |
1488 | num_architectural_pmu_fixed_counters = edx & 0x1f; | |
1489 | ||
1490 | if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { | |
1491 | num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; | |
1492 | } | |
0d894367 PB |
1493 | } |
1494 | } | |
1495 | } | |
1496 | ||
a33609ca | 1497 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1498 | |
1499 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
1500 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1501 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
1502 | abort(); | |
1503 | } | |
bb0300dc | 1504 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 1505 | |
8f4202fb BM |
1506 | switch (i) { |
1507 | case 0x8000001d: | |
1508 | /* Query for all AMD cache information leaves */ | |
1509 | for (j = 0; ; j++) { | |
1510 | c->function = i; | |
1511 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1512 | c->index = j; | |
1513 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1514 | ||
1515 | if (c->eax == 0) { | |
1516 | break; | |
1517 | } | |
1518 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1519 | fprintf(stderr, "cpuid_data is full, no space for " | |
1520 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1521 | abort(); | |
1522 | } | |
1523 | c = &cpuid_data.entries[cpuid_i++]; | |
1524 | } | |
1525 | break; | |
1526 | default: | |
1527 | c->function = i; | |
1528 | c->flags = 0; | |
1529 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1530 | break; | |
1531 | } | |
05330448 AL |
1532 | } |
1533 | ||
b3baa152 BW |
1534 | /* Call Centaur's CPUID instructions they are supported. */ |
1535 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
1536 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
1537 | ||
1538 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
1539 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1540 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
1541 | abort(); | |
1542 | } | |
b3baa152 BW |
1543 | c = &cpuid_data.entries[cpuid_i++]; |
1544 | ||
1545 | c->function = i; | |
1546 | c->flags = 0; | |
1547 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1548 | } | |
1549 | } | |
1550 | ||
05330448 AL |
1551 | cpuid_data.cpuid.nent = cpuid_i; |
1552 | ||
e7701825 | 1553 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 1554 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 1555 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 1556 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 1557 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 1558 | int banks; |
32a42024 | 1559 | int ret; |
e7701825 | 1560 | |
a60f24b5 | 1561 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
1562 | if (ret < 0) { |
1563 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
1564 | return ret; | |
e7701825 | 1565 | } |
75d49497 | 1566 | |
2590f15b | 1567 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 1568 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 1569 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 1570 | return -ENOTSUP; |
75d49497 | 1571 | } |
49b69cbf | 1572 | |
5120901a EH |
1573 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
1574 | if (unsupported_caps) { | |
87f8b626 AR |
1575 | if (unsupported_caps & MCG_LMCE_P) { |
1576 | error_report("kvm: LMCE not supported"); | |
1577 | return -ENOTSUP; | |
1578 | } | |
3dc6f869 AF |
1579 | warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, |
1580 | unsupported_caps); | |
5120901a EH |
1581 | } |
1582 | ||
2590f15b EH |
1583 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
1584 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
1585 | if (ret < 0) { |
1586 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
1587 | return ret; | |
1588 | } | |
e7701825 | 1589 | } |
e7701825 | 1590 | |
b8cc45d6 GC |
1591 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
1592 | ||
df67696e LJ |
1593 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
1594 | if (c) { | |
1595 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
1596 | !!(c->ecx & CPUID_EXT_SMX); | |
1597 | } | |
1598 | ||
d98f2607 PB |
1599 | if ((env->features[FEAT_1_ECX] & CPUID_EXT_VMX) && !vmx_mig_blocker) { |
1600 | error_setg(&vmx_mig_blocker, | |
1601 | "Nested VMX virtualization does not support live migration yet"); | |
1602 | r = migrate_add_blocker(vmx_mig_blocker, &local_err); | |
1603 | if (local_err) { | |
1604 | error_report_err(local_err); | |
1605 | error_free(vmx_mig_blocker); | |
1606 | return r; | |
1607 | } | |
1608 | } | |
1609 | ||
87f8b626 AR |
1610 | if (env->mcg_cap & MCG_LMCE_P) { |
1611 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
1612 | } | |
1613 | ||
d99569d9 EH |
1614 | if (!env->user_tsc_khz) { |
1615 | if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && | |
1616 | invtsc_mig_blocker == NULL) { | |
d99569d9 EH |
1617 | error_setg(&invtsc_mig_blocker, |
1618 | "State blocked by non-migratable CPU device" | |
1619 | " (invtsc flag)"); | |
fe44dc91 AA |
1620 | r = migrate_add_blocker(invtsc_mig_blocker, &local_err); |
1621 | if (local_err) { | |
1622 | error_report_err(local_err); | |
1623 | error_free(invtsc_mig_blocker); | |
0c2ed83f | 1624 | return r; |
fe44dc91 | 1625 | } |
d99569d9 | 1626 | } |
68bfd0ad MT |
1627 | } |
1628 | ||
9954a158 PDJ |
1629 | if (cpu->vmware_cpuid_freq |
1630 | /* Guests depend on 0x40000000 to detect this feature, so only expose | |
1631 | * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ | |
1632 | && cpu->expose_kvm | |
1633 | && kvm_base == KVM_CPUID_SIGNATURE | |
1634 | /* TSC clock must be stable and known for this feature. */ | |
4bb95b82 | 1635 | && tsc_is_stable_and_known(env)) { |
9954a158 PDJ |
1636 | |
1637 | c = &cpuid_data.entries[cpuid_i++]; | |
1638 | c->function = KVM_CPUID_SIGNATURE | 0x10; | |
1639 | c->eax = env->tsc_khz; | |
1640 | /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's | |
1641 | * APIC_BUS_CYCLE_NS */ | |
1642 | c->ebx = 1000000; | |
1643 | c->ecx = c->edx = 0; | |
1644 | ||
1645 | c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); | |
1646 | c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); | |
1647 | } | |
1648 | ||
1649 | cpuid_data.cpuid.nent = cpuid_i; | |
1650 | ||
1651 | cpuid_data.cpuid.padding = 0; | |
1652 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); | |
1653 | if (r) { | |
1654 | goto fail; | |
1655 | } | |
1656 | ||
28143b40 | 1657 | if (has_xsave) { |
5b8063c4 | 1658 | env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
fabacc0f | 1659 | } |
d71b62a1 | 1660 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 1661 | |
273c515c PB |
1662 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
1663 | has_msr_tsc_aux = false; | |
1664 | } | |
d1ae67f6 | 1665 | |
e9688fab RK |
1666 | r = hyperv_init_vcpu(cpu); |
1667 | if (r) { | |
1668 | goto fail; | |
1669 | } | |
1670 | ||
e7429073 | 1671 | return 0; |
fe44dc91 AA |
1672 | |
1673 | fail: | |
1674 | migrate_del_blocker(invtsc_mig_blocker); | |
1675 | return r; | |
05330448 AL |
1676 | } |
1677 | ||
50a2c6e5 | 1678 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 1679 | { |
20d695a9 | 1680 | CPUX86State *env = &cpu->env; |
dd673288 | 1681 | |
1a5e9d2f | 1682 | env->xcr0 = 1; |
ddced198 | 1683 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 1684 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
1685 | KVM_MP_STATE_UNINITIALIZED; |
1686 | } else { | |
1687 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1688 | } | |
689141dd | 1689 | |
2d384d7c | 1690 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
689141dd RK |
1691 | int i; |
1692 | for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { | |
1693 | env->msr_hv_synic_sint[i] = HV_SINT_MASKED; | |
1694 | } | |
606c34bf RK |
1695 | |
1696 | hyperv_x86_synic_reset(cpu); | |
689141dd | 1697 | } |
caa5af0f JK |
1698 | } |
1699 | ||
e0723c45 PB |
1700 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
1701 | { | |
1702 | CPUX86State *env = &cpu->env; | |
1703 | ||
1704 | /* APs get directly into wait-for-SIPI state. */ | |
1705 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1706 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1707 | } | |
1708 | } | |
1709 | ||
f57bceb6 RH |
1710 | static int kvm_get_supported_feature_msrs(KVMState *s) |
1711 | { | |
1712 | int ret = 0; | |
1713 | ||
1714 | if (kvm_feature_msrs != NULL) { | |
1715 | return 0; | |
1716 | } | |
1717 | ||
1718 | if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { | |
1719 | return 0; | |
1720 | } | |
1721 | ||
1722 | struct kvm_msr_list msr_list; | |
1723 | ||
1724 | msr_list.nmsrs = 0; | |
1725 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); | |
1726 | if (ret < 0 && ret != -E2BIG) { | |
1727 | error_report("Fetch KVM feature MSR list failed: %s", | |
1728 | strerror(-ret)); | |
1729 | return ret; | |
1730 | } | |
1731 | ||
1732 | assert(msr_list.nmsrs > 0); | |
1733 | kvm_feature_msrs = (struct kvm_msr_list *) \ | |
1734 | g_malloc0(sizeof(msr_list) + | |
1735 | msr_list.nmsrs * sizeof(msr_list.indices[0])); | |
1736 | ||
1737 | kvm_feature_msrs->nmsrs = msr_list.nmsrs; | |
1738 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); | |
1739 | ||
1740 | if (ret < 0) { | |
1741 | error_report("Fetch KVM feature MSR list failed: %s", | |
1742 | strerror(-ret)); | |
1743 | g_free(kvm_feature_msrs); | |
1744 | kvm_feature_msrs = NULL; | |
1745 | return ret; | |
1746 | } | |
1747 | ||
1748 | return 0; | |
1749 | } | |
1750 | ||
c3a3a7d3 | 1751 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1752 | { |
75b10c43 | 1753 | static int kvm_supported_msrs; |
c3a3a7d3 | 1754 | int ret = 0; |
05330448 AL |
1755 | |
1756 | /* first time */ | |
75b10c43 | 1757 | if (kvm_supported_msrs == 0) { |
05330448 AL |
1758 | struct kvm_msr_list msr_list, *kvm_msr_list; |
1759 | ||
75b10c43 | 1760 | kvm_supported_msrs = -1; |
05330448 AL |
1761 | |
1762 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
1763 | * save/restore */ | |
4c9f7372 | 1764 | msr_list.nmsrs = 0; |
c3a3a7d3 | 1765 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 1766 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 1767 | return ret; |
6fb6d245 | 1768 | } |
d9db889f JK |
1769 | /* Old kernel modules had a bug and could write beyond the provided |
1770 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 1771 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
1772 | msr_list.nmsrs * |
1773 | sizeof(msr_list.indices[0]))); | |
05330448 | 1774 | |
55308450 | 1775 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 1776 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
1777 | if (ret >= 0) { |
1778 | int i; | |
1779 | ||
1780 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
1d268dec LP |
1781 | switch (kvm_msr_list->indices[i]) { |
1782 | case MSR_STAR: | |
c3a3a7d3 | 1783 | has_msr_star = true; |
1d268dec LP |
1784 | break; |
1785 | case MSR_VM_HSAVE_PA: | |
c3a3a7d3 | 1786 | has_msr_hsave_pa = true; |
1d268dec LP |
1787 | break; |
1788 | case MSR_TSC_AUX: | |
c9b8f6b6 | 1789 | has_msr_tsc_aux = true; |
1d268dec LP |
1790 | break; |
1791 | case MSR_TSC_ADJUST: | |
f28558d3 | 1792 | has_msr_tsc_adjust = true; |
1d268dec LP |
1793 | break; |
1794 | case MSR_IA32_TSCDEADLINE: | |
aa82ba54 | 1795 | has_msr_tsc_deadline = true; |
1d268dec LP |
1796 | break; |
1797 | case MSR_IA32_SMBASE: | |
fc12d72e | 1798 | has_msr_smbase = true; |
1d268dec | 1799 | break; |
e13713db LA |
1800 | case MSR_SMI_COUNT: |
1801 | has_msr_smi_count = true; | |
1802 | break; | |
1d268dec | 1803 | case MSR_IA32_MISC_ENABLE: |
21e87c46 | 1804 | has_msr_misc_enable = true; |
1d268dec LP |
1805 | break; |
1806 | case MSR_IA32_BNDCFGS: | |
79e9ebeb | 1807 | has_msr_bndcfgs = true; |
1d268dec LP |
1808 | break; |
1809 | case MSR_IA32_XSS: | |
18cd2c17 | 1810 | has_msr_xss = true; |
3c254ab8 | 1811 | break; |
1d268dec | 1812 | case HV_X64_MSR_CRASH_CTL: |
f2a53c9e | 1813 | has_msr_hv_crash = true; |
1d268dec LP |
1814 | break; |
1815 | case HV_X64_MSR_RESET: | |
744b8a94 | 1816 | has_msr_hv_reset = true; |
1d268dec LP |
1817 | break; |
1818 | case HV_X64_MSR_VP_INDEX: | |
8c145d7c | 1819 | has_msr_hv_vpindex = true; |
1d268dec LP |
1820 | break; |
1821 | case HV_X64_MSR_VP_RUNTIME: | |
46eb8f98 | 1822 | has_msr_hv_runtime = true; |
1d268dec LP |
1823 | break; |
1824 | case HV_X64_MSR_SCONTROL: | |
866eea9a | 1825 | has_msr_hv_synic = true; |
1d268dec LP |
1826 | break; |
1827 | case HV_X64_MSR_STIMER0_CONFIG: | |
ff99aa64 | 1828 | has_msr_hv_stimer = true; |
1d268dec | 1829 | break; |
d72bc7f6 LP |
1830 | case HV_X64_MSR_TSC_FREQUENCY: |
1831 | has_msr_hv_frequencies = true; | |
1832 | break; | |
ba6a4fd9 VK |
1833 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
1834 | has_msr_hv_reenlightenment = true; | |
1835 | break; | |
a33a2cfe PB |
1836 | case MSR_IA32_SPEC_CTRL: |
1837 | has_msr_spec_ctrl = true; | |
1838 | break; | |
cfeea0c0 KRW |
1839 | case MSR_VIRT_SSBD: |
1840 | has_msr_virt_ssbd = true; | |
1841 | break; | |
aec5e9c3 BD |
1842 | case MSR_IA32_ARCH_CAPABILITIES: |
1843 | has_msr_arch_capabs = true; | |
1844 | break; | |
ff99aa64 | 1845 | } |
05330448 AL |
1846 | } |
1847 | } | |
1848 | ||
7267c094 | 1849 | g_free(kvm_msr_list); |
05330448 AL |
1850 | } |
1851 | ||
c3a3a7d3 | 1852 | return ret; |
05330448 AL |
1853 | } |
1854 | ||
6410848b PB |
1855 | static Notifier smram_machine_done; |
1856 | static KVMMemoryListener smram_listener; | |
1857 | static AddressSpace smram_address_space; | |
1858 | static MemoryRegion smram_as_root; | |
1859 | static MemoryRegion smram_as_mem; | |
1860 | ||
1861 | static void register_smram_listener(Notifier *n, void *unused) | |
1862 | { | |
1863 | MemoryRegion *smram = | |
1864 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
1865 | ||
1866 | /* Outer container... */ | |
1867 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
1868 | memory_region_set_enabled(&smram_as_root, true); | |
1869 | ||
1870 | /* ... with two regions inside: normal system memory with low | |
1871 | * priority, and... | |
1872 | */ | |
1873 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
1874 | get_system_memory(), 0, ~0ull); | |
1875 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
1876 | memory_region_set_enabled(&smram_as_mem, true); | |
1877 | ||
1878 | if (smram) { | |
1879 | /* ... SMRAM with higher priority */ | |
1880 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
1881 | memory_region_set_enabled(smram, true); | |
1882 | } | |
1883 | ||
1884 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
1885 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
1886 | &smram_address_space, 1); | |
1887 | } | |
1888 | ||
b16565b3 | 1889 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 1890 | { |
11076198 | 1891 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 1892 | uint64_t shadow_mem; |
20420430 | 1893 | int ret; |
25d2e361 | 1894 | struct utsname utsname; |
20420430 | 1895 | |
28143b40 | 1896 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
28143b40 | 1897 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
28143b40 | 1898 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); |
28143b40 | 1899 | |
e9688fab RK |
1900 | hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); |
1901 | ||
c3a3a7d3 | 1902 | ret = kvm_get_supported_msrs(s); |
20420430 | 1903 | if (ret < 0) { |
20420430 SY |
1904 | return ret; |
1905 | } | |
25d2e361 | 1906 | |
f57bceb6 RH |
1907 | kvm_get_supported_feature_msrs(s); |
1908 | ||
25d2e361 MT |
1909 | uname(&utsname); |
1910 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
1911 | ||
4c5b10b7 | 1912 | /* |
11076198 JK |
1913 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
1914 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
1915 | * Since these must be part of guest physical memory, we need to allocate | |
1916 | * them, both by setting their start addresses in the kernel and by | |
1917 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
1918 | * | |
1919 | * Older KVM versions may not support setting the identity map base. In | |
1920 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
1921 | * size. | |
4c5b10b7 | 1922 | */ |
11076198 JK |
1923 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
1924 | /* Allows up to 16M BIOSes. */ | |
1925 | identity_base = 0xfeffc000; | |
1926 | ||
1927 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
1928 | if (ret < 0) { | |
1929 | return ret; | |
1930 | } | |
4c5b10b7 | 1931 | } |
e56ff191 | 1932 | |
11076198 JK |
1933 | /* Set TSS base one page after EPT identity map. */ |
1934 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
1935 | if (ret < 0) { |
1936 | return ret; | |
1937 | } | |
1938 | ||
11076198 JK |
1939 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
1940 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 1941 | if (ret < 0) { |
11076198 | 1942 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
1943 | return ret; |
1944 | } | |
3c85e74f | 1945 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 1946 | |
4689b77b | 1947 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
1948 | if (shadow_mem != -1) { |
1949 | shadow_mem /= 4096; | |
1950 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
1951 | if (ret < 0) { | |
1952 | return ret; | |
39d6960a JK |
1953 | } |
1954 | } | |
6410848b | 1955 | |
d870cfde GA |
1956 | if (kvm_check_extension(s, KVM_CAP_X86_SMM) && |
1957 | object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) && | |
1958 | pc_machine_is_smm_enabled(PC_MACHINE(ms))) { | |
6410848b PB |
1959 | smram_machine_done.notify = register_smram_listener; |
1960 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
1961 | } | |
6f131f13 MT |
1962 | |
1963 | if (enable_cpu_pm) { | |
1964 | int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); | |
1965 | int ret; | |
1966 | ||
1967 | /* Work around for kernel header with a typo. TODO: fix header and drop. */ | |
1968 | #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) | |
1969 | #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL | |
1970 | #endif | |
1971 | if (disable_exits) { | |
1972 | disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | | |
1973 | KVM_X86_DISABLE_EXITS_HLT | | |
1974 | KVM_X86_DISABLE_EXITS_PAUSE); | |
1975 | } | |
1976 | ||
1977 | ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, | |
1978 | disable_exits); | |
1979 | if (ret < 0) { | |
1980 | error_report("kvm: guest stopping CPU not supported: %s", | |
1981 | strerror(-ret)); | |
1982 | } | |
1983 | } | |
1984 | ||
11076198 | 1985 | return 0; |
05330448 | 1986 | } |
b9bec74b | 1987 | |
05330448 AL |
1988 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
1989 | { | |
1990 | lhs->selector = rhs->selector; | |
1991 | lhs->base = rhs->base; | |
1992 | lhs->limit = rhs->limit; | |
1993 | lhs->type = 3; | |
1994 | lhs->present = 1; | |
1995 | lhs->dpl = 3; | |
1996 | lhs->db = 0; | |
1997 | lhs->s = 1; | |
1998 | lhs->l = 0; | |
1999 | lhs->g = 0; | |
2000 | lhs->avl = 0; | |
2001 | lhs->unusable = 0; | |
2002 | } | |
2003 | ||
2004 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
2005 | { | |
2006 | unsigned flags = rhs->flags; | |
2007 | lhs->selector = rhs->selector; | |
2008 | lhs->base = rhs->base; | |
2009 | lhs->limit = rhs->limit; | |
2010 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
2011 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 2012 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
2013 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
2014 | lhs->s = (flags & DESC_S_MASK) != 0; | |
2015 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
2016 | lhs->g = (flags & DESC_G_MASK) != 0; | |
2017 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 2018 | lhs->unusable = !lhs->present; |
7e680753 | 2019 | lhs->padding = 0; |
05330448 AL |
2020 | } |
2021 | ||
2022 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
2023 | { | |
2024 | lhs->selector = rhs->selector; | |
2025 | lhs->base = rhs->base; | |
2026 | lhs->limit = rhs->limit; | |
d45fc087 RP |
2027 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
2028 | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | | |
2029 | (rhs->dpl << DESC_DPL_SHIFT) | | |
2030 | (rhs->db << DESC_B_SHIFT) | | |
2031 | (rhs->s * DESC_S_MASK) | | |
2032 | (rhs->l << DESC_L_SHIFT) | | |
2033 | (rhs->g * DESC_G_MASK) | | |
2034 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
2035 | } |
2036 | ||
2037 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
2038 | { | |
b9bec74b | 2039 | if (set) { |
05330448 | 2040 | *kvm_reg = *qemu_reg; |
b9bec74b | 2041 | } else { |
05330448 | 2042 | *qemu_reg = *kvm_reg; |
b9bec74b | 2043 | } |
05330448 AL |
2044 | } |
2045 | ||
1bc22652 | 2046 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 2047 | { |
1bc22652 | 2048 | CPUX86State *env = &cpu->env; |
05330448 AL |
2049 | struct kvm_regs regs; |
2050 | int ret = 0; | |
2051 | ||
2052 | if (!set) { | |
1bc22652 | 2053 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 2054 | if (ret < 0) { |
05330448 | 2055 | return ret; |
b9bec74b | 2056 | } |
05330448 AL |
2057 | } |
2058 | ||
2059 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
2060 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
2061 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
2062 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
2063 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
2064 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
2065 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
2066 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
2067 | #ifdef TARGET_X86_64 | |
2068 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
2069 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
2070 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
2071 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
2072 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
2073 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
2074 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
2075 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
2076 | #endif | |
2077 | ||
2078 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
2079 | kvm_getput_reg(®s.rip, &env->eip, set); | |
2080 | ||
b9bec74b | 2081 | if (set) { |
1bc22652 | 2082 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 2083 | } |
05330448 AL |
2084 | |
2085 | return ret; | |
2086 | } | |
2087 | ||
1bc22652 | 2088 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 2089 | { |
1bc22652 | 2090 | CPUX86State *env = &cpu->env; |
05330448 AL |
2091 | struct kvm_fpu fpu; |
2092 | int i; | |
2093 | ||
2094 | memset(&fpu, 0, sizeof fpu); | |
2095 | fpu.fsw = env->fpus & ~(7 << 11); | |
2096 | fpu.fsw |= (env->fpstt & 7) << 11; | |
2097 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
2098 | fpu.last_opcode = env->fpop; |
2099 | fpu.last_ip = env->fpip; | |
2100 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
2101 | for (i = 0; i < 8; ++i) { |
2102 | fpu.ftwx |= (!env->fptags[i]) << i; | |
2103 | } | |
05330448 | 2104 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 2105 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
2106 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
2107 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 2108 | } |
05330448 AL |
2109 | fpu.mxcsr = env->mxcsr; |
2110 | ||
1bc22652 | 2111 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
2112 | } |
2113 | ||
6b42494b JK |
2114 | #define XSAVE_FCW_FSW 0 |
2115 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
2116 | #define XSAVE_CWD_RIP 2 |
2117 | #define XSAVE_CWD_RDP 4 | |
2118 | #define XSAVE_MXCSR 6 | |
2119 | #define XSAVE_ST_SPACE 8 | |
2120 | #define XSAVE_XMM_SPACE 40 | |
2121 | #define XSAVE_XSTATE_BV 128 | |
2122 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
2123 | #define XSAVE_BNDREGS 240 |
2124 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
2125 | #define XSAVE_OPMASK 272 |
2126 | #define XSAVE_ZMM_Hi256 288 | |
2127 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 2128 | #define XSAVE_PKRU 672 |
f1665b21 | 2129 | |
b503717d | 2130 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
f18793b0 | 2131 | ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) |
b503717d EH |
2132 | |
2133 | #define ASSERT_OFFSET(word_offset, field) \ | |
2134 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
2135 | offsetof(X86XSaveArea, field)) | |
2136 | ||
2137 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
2138 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
2139 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
2140 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
2141 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
2142 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
2143 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
2144 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
2145 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
2146 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
2147 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
2148 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
2149 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
2150 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
2151 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
2152 | ||
1bc22652 | 2153 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 2154 | { |
1bc22652 | 2155 | CPUX86State *env = &cpu->env; |
5b8063c4 | 2156 | X86XSaveArea *xsave = env->xsave_buf; |
f1665b21 | 2157 | |
28143b40 | 2158 | if (!has_xsave) { |
1bc22652 | 2159 | return kvm_put_fpu(cpu); |
b9bec74b | 2160 | } |
86a57621 | 2161 | x86_cpu_xsave_all_areas(cpu, xsave); |
f1665b21 | 2162 | |
9be38598 | 2163 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
2164 | } |
2165 | ||
1bc22652 | 2166 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 2167 | { |
1bc22652 | 2168 | CPUX86State *env = &cpu->env; |
bdfc8480 | 2169 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 2170 | |
28143b40 | 2171 | if (!has_xcrs) { |
f1665b21 | 2172 | return 0; |
b9bec74b | 2173 | } |
f1665b21 SY |
2174 | |
2175 | xcrs.nr_xcrs = 1; | |
2176 | xcrs.flags = 0; | |
2177 | xcrs.xcrs[0].xcr = 0; | |
2178 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 2179 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
2180 | } |
2181 | ||
1bc22652 | 2182 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 2183 | { |
1bc22652 | 2184 | CPUX86State *env = &cpu->env; |
05330448 AL |
2185 | struct kvm_sregs sregs; |
2186 | ||
0e607a80 JK |
2187 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
2188 | if (env->interrupt_injected >= 0) { | |
2189 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
2190 | (uint64_t)1 << (env->interrupt_injected % 64); | |
2191 | } | |
05330448 AL |
2192 | |
2193 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
2194 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
2195 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
2196 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
2197 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
2198 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
2199 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 2200 | } else { |
b9bec74b JK |
2201 | set_seg(&sregs.cs, &env->segs[R_CS]); |
2202 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
2203 | set_seg(&sregs.es, &env->segs[R_ES]); | |
2204 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
2205 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
2206 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
2207 | } |
2208 | ||
2209 | set_seg(&sregs.tr, &env->tr); | |
2210 | set_seg(&sregs.ldt, &env->ldt); | |
2211 | ||
2212 | sregs.idt.limit = env->idt.limit; | |
2213 | sregs.idt.base = env->idt.base; | |
7e680753 | 2214 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
2215 | sregs.gdt.limit = env->gdt.limit; |
2216 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 2217 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
2218 | |
2219 | sregs.cr0 = env->cr[0]; | |
2220 | sregs.cr2 = env->cr[2]; | |
2221 | sregs.cr3 = env->cr[3]; | |
2222 | sregs.cr4 = env->cr[4]; | |
2223 | ||
02e51483 CF |
2224 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
2225 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
2226 | |
2227 | sregs.efer = env->efer; | |
2228 | ||
1bc22652 | 2229 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
2230 | } |
2231 | ||
d71b62a1 EH |
2232 | static void kvm_msr_buf_reset(X86CPU *cpu) |
2233 | { | |
2234 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
2235 | } | |
2236 | ||
9c600a84 EH |
2237 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
2238 | { | |
2239 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
2240 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
2241 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
2242 | ||
2243 | assert((void *)(entry + 1) <= limit); | |
2244 | ||
1abc2cae EH |
2245 | entry->index = index; |
2246 | entry->reserved = 0; | |
2247 | entry->data = value; | |
9c600a84 EH |
2248 | msrs->nmsrs++; |
2249 | } | |
2250 | ||
73e1b8f2 PB |
2251 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
2252 | { | |
2253 | kvm_msr_buf_reset(cpu); | |
2254 | kvm_msr_entry_add(cpu, index, value); | |
2255 | ||
2256 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
2257 | } | |
2258 | ||
f8d9ccf8 DDAG |
2259 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
2260 | { | |
2261 | int ret; | |
2262 | ||
2263 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
2264 | assert(ret == 1); | |
2265 | } | |
2266 | ||
7477cd38 MT |
2267 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
2268 | { | |
2269 | CPUX86State *env = &cpu->env; | |
48e1a45c | 2270 | int ret; |
7477cd38 MT |
2271 | |
2272 | if (!has_msr_tsc_deadline) { | |
2273 | return 0; | |
2274 | } | |
2275 | ||
73e1b8f2 | 2276 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
48e1a45c PB |
2277 | if (ret < 0) { |
2278 | return ret; | |
2279 | } | |
2280 | ||
2281 | assert(ret == 1); | |
2282 | return 0; | |
7477cd38 MT |
2283 | } |
2284 | ||
6bdf863d JK |
2285 | /* |
2286 | * Provide a separate write service for the feature control MSR in order to | |
2287 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
2288 | * before writing any other state because forcibly leaving nested mode | |
2289 | * invalidates the VCPU state. | |
2290 | */ | |
2291 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
2292 | { | |
48e1a45c PB |
2293 | int ret; |
2294 | ||
2295 | if (!has_msr_feature_control) { | |
2296 | return 0; | |
2297 | } | |
6bdf863d | 2298 | |
73e1b8f2 PB |
2299 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
2300 | cpu->env.msr_ia32_feature_control); | |
48e1a45c PB |
2301 | if (ret < 0) { |
2302 | return ret; | |
2303 | } | |
2304 | ||
2305 | assert(ret == 1); | |
2306 | return 0; | |
6bdf863d JK |
2307 | } |
2308 | ||
1bc22652 | 2309 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 2310 | { |
1bc22652 | 2311 | CPUX86State *env = &cpu->env; |
9c600a84 | 2312 | int i; |
48e1a45c | 2313 | int ret; |
05330448 | 2314 | |
d71b62a1 EH |
2315 | kvm_msr_buf_reset(cpu); |
2316 | ||
9c600a84 EH |
2317 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
2318 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
2319 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
2320 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 2321 | if (has_msr_star) { |
9c600a84 | 2322 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 2323 | } |
c3a3a7d3 | 2324 | if (has_msr_hsave_pa) { |
9c600a84 | 2325 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 2326 | } |
c9b8f6b6 | 2327 | if (has_msr_tsc_aux) { |
9c600a84 | 2328 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 2329 | } |
f28558d3 | 2330 | if (has_msr_tsc_adjust) { |
9c600a84 | 2331 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 2332 | } |
21e87c46 | 2333 | if (has_msr_misc_enable) { |
9c600a84 | 2334 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
2335 | env->msr_ia32_misc_enable); |
2336 | } | |
fc12d72e | 2337 | if (has_msr_smbase) { |
9c600a84 | 2338 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 2339 | } |
e13713db LA |
2340 | if (has_msr_smi_count) { |
2341 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); | |
2342 | } | |
439d19f2 | 2343 | if (has_msr_bndcfgs) { |
9c600a84 | 2344 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 2345 | } |
18cd2c17 | 2346 | if (has_msr_xss) { |
9c600a84 | 2347 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 2348 | } |
a33a2cfe PB |
2349 | if (has_msr_spec_ctrl) { |
2350 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); | |
2351 | } | |
cfeea0c0 KRW |
2352 | if (has_msr_virt_ssbd) { |
2353 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); | |
2354 | } | |
2355 | ||
05330448 | 2356 | #ifdef TARGET_X86_64 |
25d2e361 | 2357 | if (lm_capable_kernel) { |
9c600a84 EH |
2358 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
2359 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
2360 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
2361 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 2362 | } |
05330448 | 2363 | #endif |
a33a2cfe | 2364 | |
d86f9636 | 2365 | /* If host supports feature MSR, write down. */ |
aec5e9c3 BD |
2366 | if (has_msr_arch_capabs) { |
2367 | kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, | |
2368 | env->features[FEAT_ARCH_CAPABILITIES]); | |
d86f9636 RH |
2369 | } |
2370 | ||
ff5c186b | 2371 | /* |
0d894367 PB |
2372 | * The following MSRs have side effects on the guest or are too heavy |
2373 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
2374 | */ |
2375 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
2376 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
2377 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
2378 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
55c911a5 | 2379 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2380 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 2381 | } |
55c911a5 | 2382 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2383 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 2384 | } |
55c911a5 | 2385 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2386 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 2387 | } |
0b368a10 JD |
2388 | if (has_architectural_pmu_version > 0) { |
2389 | if (has_architectural_pmu_version > 1) { | |
2390 | /* Stop the counter. */ | |
2391 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2392 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2393 | } | |
0d894367 PB |
2394 | |
2395 | /* Set the counter values. */ | |
0b368a10 | 2396 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { |
9c600a84 | 2397 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
2398 | env->msr_fixed_counters[i]); |
2399 | } | |
0b368a10 | 2400 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 | 2401 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 2402 | env->msr_gp_counters[i]); |
9c600a84 | 2403 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
2404 | env->msr_gp_evtsel[i]); |
2405 | } | |
0b368a10 JD |
2406 | if (has_architectural_pmu_version > 1) { |
2407 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, | |
2408 | env->msr_global_status); | |
2409 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
2410 | env->msr_global_ovf_ctrl); | |
2411 | ||
2412 | /* Now start the PMU. */ | |
2413 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, | |
2414 | env->msr_fixed_ctr_ctrl); | |
2415 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, | |
2416 | env->msr_global_ctrl); | |
2417 | } | |
0d894367 | 2418 | } |
da1cc323 EY |
2419 | /* |
2420 | * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, | |
2421 | * only sync them to KVM on the first cpu | |
2422 | */ | |
2423 | if (current_cpu == first_cpu) { | |
2424 | if (has_msr_hv_hypercall) { | |
2425 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, | |
2426 | env->msr_hv_guest_os_id); | |
2427 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, | |
2428 | env->msr_hv_hypercall); | |
2429 | } | |
2d384d7c | 2430 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { |
da1cc323 EY |
2431 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, |
2432 | env->msr_hv_tsc); | |
2433 | } | |
2d384d7c | 2434 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { |
ba6a4fd9 VK |
2435 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, |
2436 | env->msr_hv_reenlightenment_control); | |
2437 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, | |
2438 | env->msr_hv_tsc_emulation_control); | |
2439 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, | |
2440 | env->msr_hv_tsc_emulation_status); | |
2441 | } | |
eab70139 | 2442 | } |
2d384d7c | 2443 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { |
9c600a84 | 2444 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 2445 | env->msr_hv_vapic); |
eab70139 | 2446 | } |
f2a53c9e AS |
2447 | if (has_msr_hv_crash) { |
2448 | int j; | |
2449 | ||
5e953812 | 2450 | for (j = 0; j < HV_CRASH_PARAMS; j++) |
9c600a84 | 2451 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
2452 | env->msr_hv_crash_params[j]); |
2453 | ||
5e953812 | 2454 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); |
f2a53c9e | 2455 | } |
46eb8f98 | 2456 | if (has_msr_hv_runtime) { |
9c600a84 | 2457 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 2458 | } |
2d384d7c VK |
2459 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) |
2460 | && hv_vpindex_settable) { | |
701189e3 RK |
2461 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, |
2462 | hyperv_vp_index(CPU(cpu))); | |
e9688fab | 2463 | } |
2d384d7c | 2464 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
866eea9a AS |
2465 | int j; |
2466 | ||
09df29b6 RK |
2467 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); |
2468 | ||
9c600a84 | 2469 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 2470 | env->msr_hv_synic_control); |
9c600a84 | 2471 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 2472 | env->msr_hv_synic_evt_page); |
9c600a84 | 2473 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
2474 | env->msr_hv_synic_msg_page); |
2475 | ||
2476 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 2477 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
2478 | env->msr_hv_synic_sint[j]); |
2479 | } | |
2480 | } | |
ff99aa64 AS |
2481 | if (has_msr_hv_stimer) { |
2482 | int j; | |
2483 | ||
2484 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 2485 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
2486 | env->msr_hv_stimer_config[j]); |
2487 | } | |
2488 | ||
2489 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 2490 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
2491 | env->msr_hv_stimer_count[j]); |
2492 | } | |
2493 | } | |
1eabfce6 | 2494 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
112dad69 DDAG |
2495 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
2496 | ||
9c600a84 EH |
2497 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
2498 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
2499 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
2500 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
2501 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
2502 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
2503 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
2504 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
2505 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
2506 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
2507 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
2508 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 2509 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
112dad69 DDAG |
2510 | /* The CPU GPs if we write to a bit above the physical limit of |
2511 | * the host CPU (and KVM emulates that) | |
2512 | */ | |
2513 | uint64_t mask = env->mtrr_var[i].mask; | |
2514 | mask &= phys_mask; | |
2515 | ||
9c600a84 EH |
2516 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
2517 | env->mtrr_var[i].base); | |
112dad69 | 2518 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
d1ae67f6 AW |
2519 | } |
2520 | } | |
b77146e9 CP |
2521 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2522 | int addr_num = kvm_arch_get_supported_cpuid(kvm_state, | |
2523 | 0x14, 1, R_EAX) & 0x7; | |
2524 | ||
2525 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, | |
2526 | env->msr_rtit_ctrl); | |
2527 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, | |
2528 | env->msr_rtit_status); | |
2529 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, | |
2530 | env->msr_rtit_output_base); | |
2531 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, | |
2532 | env->msr_rtit_output_mask); | |
2533 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, | |
2534 | env->msr_rtit_cr3_match); | |
2535 | for (i = 0; i < addr_num; i++) { | |
2536 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, | |
2537 | env->msr_rtit_addrs[i]); | |
2538 | } | |
2539 | } | |
6bdf863d JK |
2540 | |
2541 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
2542 | * kvm_put_msr_feature_control. */ | |
ea643051 | 2543 | } |
57780495 | 2544 | if (env->mcg_cap) { |
d8da8574 | 2545 | int i; |
b9bec74b | 2546 | |
9c600a84 EH |
2547 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
2548 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
2549 | if (has_msr_mcg_ext_ctl) { |
2550 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
2551 | } | |
c34d440a | 2552 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2553 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
2554 | } |
2555 | } | |
1a03675d | 2556 | |
d71b62a1 | 2557 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
2558 | if (ret < 0) { |
2559 | return ret; | |
2560 | } | |
05330448 | 2561 | |
c70b11d1 EH |
2562 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
2563 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2564 | error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, | |
2565 | (uint32_t)e->index, (uint64_t)e->data); | |
2566 | } | |
2567 | ||
9c600a84 | 2568 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
48e1a45c | 2569 | return 0; |
05330448 AL |
2570 | } |
2571 | ||
2572 | ||
1bc22652 | 2573 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 2574 | { |
1bc22652 | 2575 | CPUX86State *env = &cpu->env; |
05330448 AL |
2576 | struct kvm_fpu fpu; |
2577 | int i, ret; | |
2578 | ||
1bc22652 | 2579 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 2580 | if (ret < 0) { |
05330448 | 2581 | return ret; |
b9bec74b | 2582 | } |
05330448 AL |
2583 | |
2584 | env->fpstt = (fpu.fsw >> 11) & 7; | |
2585 | env->fpus = fpu.fsw; | |
2586 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
2587 | env->fpop = fpu.last_opcode; |
2588 | env->fpip = fpu.last_ip; | |
2589 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
2590 | for (i = 0; i < 8; ++i) { |
2591 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
2592 | } | |
05330448 | 2593 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 2594 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
2595 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
2596 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 2597 | } |
05330448 AL |
2598 | env->mxcsr = fpu.mxcsr; |
2599 | ||
2600 | return 0; | |
2601 | } | |
2602 | ||
1bc22652 | 2603 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 2604 | { |
1bc22652 | 2605 | CPUX86State *env = &cpu->env; |
5b8063c4 | 2606 | X86XSaveArea *xsave = env->xsave_buf; |
86a57621 | 2607 | int ret; |
f1665b21 | 2608 | |
28143b40 | 2609 | if (!has_xsave) { |
1bc22652 | 2610 | return kvm_get_fpu(cpu); |
b9bec74b | 2611 | } |
f1665b21 | 2612 | |
1bc22652 | 2613 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 2614 | if (ret < 0) { |
f1665b21 | 2615 | return ret; |
0f53994f | 2616 | } |
86a57621 | 2617 | x86_cpu_xrstor_all_areas(cpu, xsave); |
f1665b21 | 2618 | |
f1665b21 | 2619 | return 0; |
f1665b21 SY |
2620 | } |
2621 | ||
1bc22652 | 2622 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 2623 | { |
1bc22652 | 2624 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
2625 | int i, ret; |
2626 | struct kvm_xcrs xcrs; | |
2627 | ||
28143b40 | 2628 | if (!has_xcrs) { |
f1665b21 | 2629 | return 0; |
b9bec74b | 2630 | } |
f1665b21 | 2631 | |
1bc22652 | 2632 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 2633 | if (ret < 0) { |
f1665b21 | 2634 | return ret; |
b9bec74b | 2635 | } |
f1665b21 | 2636 | |
b9bec74b | 2637 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 2638 | /* Only support xcr0 now */ |
0fd53fec PB |
2639 | if (xcrs.xcrs[i].xcr == 0) { |
2640 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
2641 | break; |
2642 | } | |
b9bec74b | 2643 | } |
f1665b21 | 2644 | return 0; |
f1665b21 SY |
2645 | } |
2646 | ||
1bc22652 | 2647 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 2648 | { |
1bc22652 | 2649 | CPUX86State *env = &cpu->env; |
05330448 | 2650 | struct kvm_sregs sregs; |
0e607a80 | 2651 | int bit, i, ret; |
05330448 | 2652 | |
1bc22652 | 2653 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 2654 | if (ret < 0) { |
05330448 | 2655 | return ret; |
b9bec74b | 2656 | } |
05330448 | 2657 | |
0e607a80 JK |
2658 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
2659 | to find it and save its number instead (-1 for none). */ | |
2660 | env->interrupt_injected = -1; | |
2661 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
2662 | if (sregs.interrupt_bitmap[i]) { | |
2663 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
2664 | env->interrupt_injected = i * 64 + bit; | |
2665 | break; | |
2666 | } | |
2667 | } | |
05330448 AL |
2668 | |
2669 | get_seg(&env->segs[R_CS], &sregs.cs); | |
2670 | get_seg(&env->segs[R_DS], &sregs.ds); | |
2671 | get_seg(&env->segs[R_ES], &sregs.es); | |
2672 | get_seg(&env->segs[R_FS], &sregs.fs); | |
2673 | get_seg(&env->segs[R_GS], &sregs.gs); | |
2674 | get_seg(&env->segs[R_SS], &sregs.ss); | |
2675 | ||
2676 | get_seg(&env->tr, &sregs.tr); | |
2677 | get_seg(&env->ldt, &sregs.ldt); | |
2678 | ||
2679 | env->idt.limit = sregs.idt.limit; | |
2680 | env->idt.base = sregs.idt.base; | |
2681 | env->gdt.limit = sregs.gdt.limit; | |
2682 | env->gdt.base = sregs.gdt.base; | |
2683 | ||
2684 | env->cr[0] = sregs.cr0; | |
2685 | env->cr[2] = sregs.cr2; | |
2686 | env->cr[3] = sregs.cr3; | |
2687 | env->cr[4] = sregs.cr4; | |
2688 | ||
05330448 | 2689 | env->efer = sregs.efer; |
cce47516 JK |
2690 | |
2691 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
35b1b927 | 2692 | x86_update_hflags(env); |
05330448 AL |
2693 | |
2694 | return 0; | |
2695 | } | |
2696 | ||
1bc22652 | 2697 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 2698 | { |
1bc22652 | 2699 | CPUX86State *env = &cpu->env; |
d71b62a1 | 2700 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 2701 | int ret, i; |
fcc35e7c | 2702 | uint64_t mtrr_top_bits; |
05330448 | 2703 | |
d71b62a1 EH |
2704 | kvm_msr_buf_reset(cpu); |
2705 | ||
9c600a84 EH |
2706 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
2707 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
2708 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
2709 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 2710 | if (has_msr_star) { |
9c600a84 | 2711 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 2712 | } |
c3a3a7d3 | 2713 | if (has_msr_hsave_pa) { |
9c600a84 | 2714 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 2715 | } |
c9b8f6b6 | 2716 | if (has_msr_tsc_aux) { |
9c600a84 | 2717 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 2718 | } |
f28558d3 | 2719 | if (has_msr_tsc_adjust) { |
9c600a84 | 2720 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 2721 | } |
aa82ba54 | 2722 | if (has_msr_tsc_deadline) { |
9c600a84 | 2723 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 2724 | } |
21e87c46 | 2725 | if (has_msr_misc_enable) { |
9c600a84 | 2726 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 2727 | } |
fc12d72e | 2728 | if (has_msr_smbase) { |
9c600a84 | 2729 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 2730 | } |
e13713db LA |
2731 | if (has_msr_smi_count) { |
2732 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); | |
2733 | } | |
df67696e | 2734 | if (has_msr_feature_control) { |
9c600a84 | 2735 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 2736 | } |
79e9ebeb | 2737 | if (has_msr_bndcfgs) { |
9c600a84 | 2738 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 2739 | } |
18cd2c17 | 2740 | if (has_msr_xss) { |
9c600a84 | 2741 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 | 2742 | } |
a33a2cfe PB |
2743 | if (has_msr_spec_ctrl) { |
2744 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); | |
2745 | } | |
cfeea0c0 KRW |
2746 | if (has_msr_virt_ssbd) { |
2747 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); | |
2748 | } | |
b8cc45d6 | 2749 | if (!env->tsc_valid) { |
9c600a84 | 2750 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 2751 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
2752 | } |
2753 | ||
05330448 | 2754 | #ifdef TARGET_X86_64 |
25d2e361 | 2755 | if (lm_capable_kernel) { |
9c600a84 EH |
2756 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
2757 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
2758 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
2759 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 2760 | } |
05330448 | 2761 | #endif |
9c600a84 EH |
2762 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
2763 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
55c911a5 | 2764 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2765 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 2766 | } |
55c911a5 | 2767 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2768 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 2769 | } |
55c911a5 | 2770 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2771 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 2772 | } |
0b368a10 JD |
2773 | if (has_architectural_pmu_version > 0) { |
2774 | if (has_architectural_pmu_version > 1) { | |
2775 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2776 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2777 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
2778 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
2779 | } | |
2780 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { | |
9c600a84 | 2781 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 | 2782 | } |
0b368a10 | 2783 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 EH |
2784 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
2785 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
2786 | } |
2787 | } | |
1a03675d | 2788 | |
57780495 | 2789 | if (env->mcg_cap) { |
9c600a84 EH |
2790 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
2791 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
2792 | if (has_msr_mcg_ext_ctl) { |
2793 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
2794 | } | |
b9bec74b | 2795 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2796 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 2797 | } |
57780495 | 2798 | } |
57780495 | 2799 | |
1c90ef26 | 2800 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
2801 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
2802 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 2803 | } |
2d384d7c | 2804 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { |
9c600a84 | 2805 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 2806 | } |
2d384d7c | 2807 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { |
9c600a84 | 2808 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 2809 | } |
2d384d7c | 2810 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { |
ba6a4fd9 VK |
2811 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); |
2812 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); | |
2813 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); | |
2814 | } | |
f2a53c9e AS |
2815 | if (has_msr_hv_crash) { |
2816 | int j; | |
2817 | ||
5e953812 | 2818 | for (j = 0; j < HV_CRASH_PARAMS; j++) { |
9c600a84 | 2819 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
2820 | } |
2821 | } | |
46eb8f98 | 2822 | if (has_msr_hv_runtime) { |
9c600a84 | 2823 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 2824 | } |
2d384d7c | 2825 | if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { |
866eea9a AS |
2826 | uint32_t msr; |
2827 | ||
9c600a84 | 2828 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
9c600a84 EH |
2829 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); |
2830 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 2831 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 2832 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
2833 | } |
2834 | } | |
ff99aa64 AS |
2835 | if (has_msr_hv_stimer) { |
2836 | uint32_t msr; | |
2837 | ||
2838 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
2839 | msr++) { | |
9c600a84 | 2840 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
2841 | } |
2842 | } | |
1eabfce6 | 2843 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
9c600a84 EH |
2844 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
2845 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
2846 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
2847 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
2848 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
2849 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
2850 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
2851 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
2852 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
2853 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
2854 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
2855 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 2856 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
2857 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
2858 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
2859 | } |
2860 | } | |
5ef68987 | 2861 | |
b77146e9 CP |
2862 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2863 | int addr_num = | |
2864 | kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; | |
2865 | ||
2866 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); | |
2867 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); | |
2868 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); | |
2869 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); | |
2870 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); | |
2871 | for (i = 0; i < addr_num; i++) { | |
2872 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); | |
2873 | } | |
2874 | } | |
2875 | ||
d71b62a1 | 2876 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 2877 | if (ret < 0) { |
05330448 | 2878 | return ret; |
b9bec74b | 2879 | } |
05330448 | 2880 | |
c70b11d1 EH |
2881 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
2882 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2883 | error_report("error: failed to get MSR 0x%" PRIx32, | |
2884 | (uint32_t)e->index); | |
2885 | } | |
2886 | ||
9c600a84 | 2887 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
fcc35e7c DDAG |
2888 | /* |
2889 | * MTRR masks: Each mask consists of 5 parts | |
2890 | * a 10..0: must be zero | |
2891 | * b 11 : valid bit | |
2892 | * c n-1.12: actual mask bits | |
2893 | * d 51..n: reserved must be zero | |
2894 | * e 63.52: reserved must be zero | |
2895 | * | |
2896 | * 'n' is the number of physical bits supported by the CPU and is | |
2897 | * apparently always <= 52. We know our 'n' but don't know what | |
2898 | * the destinations 'n' is; it might be smaller, in which case | |
2899 | * it masks (c) on loading. It might be larger, in which case | |
2900 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
2901 | * we're migrating to. | |
2902 | */ | |
2903 | ||
2904 | if (cpu->fill_mtrr_mask) { | |
2905 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
2906 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
2907 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
2908 | } else { | |
2909 | mtrr_top_bits = 0; | |
2910 | } | |
2911 | ||
05330448 | 2912 | for (i = 0; i < ret; i++) { |
0d894367 PB |
2913 | uint32_t index = msrs[i].index; |
2914 | switch (index) { | |
05330448 AL |
2915 | case MSR_IA32_SYSENTER_CS: |
2916 | env->sysenter_cs = msrs[i].data; | |
2917 | break; | |
2918 | case MSR_IA32_SYSENTER_ESP: | |
2919 | env->sysenter_esp = msrs[i].data; | |
2920 | break; | |
2921 | case MSR_IA32_SYSENTER_EIP: | |
2922 | env->sysenter_eip = msrs[i].data; | |
2923 | break; | |
0c03266a JK |
2924 | case MSR_PAT: |
2925 | env->pat = msrs[i].data; | |
2926 | break; | |
05330448 AL |
2927 | case MSR_STAR: |
2928 | env->star = msrs[i].data; | |
2929 | break; | |
2930 | #ifdef TARGET_X86_64 | |
2931 | case MSR_CSTAR: | |
2932 | env->cstar = msrs[i].data; | |
2933 | break; | |
2934 | case MSR_KERNELGSBASE: | |
2935 | env->kernelgsbase = msrs[i].data; | |
2936 | break; | |
2937 | case MSR_FMASK: | |
2938 | env->fmask = msrs[i].data; | |
2939 | break; | |
2940 | case MSR_LSTAR: | |
2941 | env->lstar = msrs[i].data; | |
2942 | break; | |
2943 | #endif | |
2944 | case MSR_IA32_TSC: | |
2945 | env->tsc = msrs[i].data; | |
2946 | break; | |
c9b8f6b6 AS |
2947 | case MSR_TSC_AUX: |
2948 | env->tsc_aux = msrs[i].data; | |
2949 | break; | |
f28558d3 WA |
2950 | case MSR_TSC_ADJUST: |
2951 | env->tsc_adjust = msrs[i].data; | |
2952 | break; | |
aa82ba54 LJ |
2953 | case MSR_IA32_TSCDEADLINE: |
2954 | env->tsc_deadline = msrs[i].data; | |
2955 | break; | |
aa851e36 MT |
2956 | case MSR_VM_HSAVE_PA: |
2957 | env->vm_hsave = msrs[i].data; | |
2958 | break; | |
1a03675d GC |
2959 | case MSR_KVM_SYSTEM_TIME: |
2960 | env->system_time_msr = msrs[i].data; | |
2961 | break; | |
2962 | case MSR_KVM_WALL_CLOCK: | |
2963 | env->wall_clock_msr = msrs[i].data; | |
2964 | break; | |
57780495 MT |
2965 | case MSR_MCG_STATUS: |
2966 | env->mcg_status = msrs[i].data; | |
2967 | break; | |
2968 | case MSR_MCG_CTL: | |
2969 | env->mcg_ctl = msrs[i].data; | |
2970 | break; | |
87f8b626 AR |
2971 | case MSR_MCG_EXT_CTL: |
2972 | env->mcg_ext_ctl = msrs[i].data; | |
2973 | break; | |
21e87c46 AK |
2974 | case MSR_IA32_MISC_ENABLE: |
2975 | env->msr_ia32_misc_enable = msrs[i].data; | |
2976 | break; | |
fc12d72e PB |
2977 | case MSR_IA32_SMBASE: |
2978 | env->smbase = msrs[i].data; | |
2979 | break; | |
e13713db LA |
2980 | case MSR_SMI_COUNT: |
2981 | env->msr_smi_count = msrs[i].data; | |
2982 | break; | |
0779caeb ACL |
2983 | case MSR_IA32_FEATURE_CONTROL: |
2984 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 2985 | break; |
79e9ebeb LJ |
2986 | case MSR_IA32_BNDCFGS: |
2987 | env->msr_bndcfgs = msrs[i].data; | |
2988 | break; | |
18cd2c17 WL |
2989 | case MSR_IA32_XSS: |
2990 | env->xss = msrs[i].data; | |
2991 | break; | |
57780495 | 2992 | default: |
57780495 MT |
2993 | if (msrs[i].index >= MSR_MC0_CTL && |
2994 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
2995 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 2996 | } |
d8da8574 | 2997 | break; |
f6584ee2 GN |
2998 | case MSR_KVM_ASYNC_PF_EN: |
2999 | env->async_pf_en_msr = msrs[i].data; | |
3000 | break; | |
bc9a839d MT |
3001 | case MSR_KVM_PV_EOI_EN: |
3002 | env->pv_eoi_en_msr = msrs[i].data; | |
3003 | break; | |
917367aa MT |
3004 | case MSR_KVM_STEAL_TIME: |
3005 | env->steal_time_msr = msrs[i].data; | |
3006 | break; | |
0d894367 PB |
3007 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
3008 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
3009 | break; | |
3010 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
3011 | env->msr_global_ctrl = msrs[i].data; | |
3012 | break; | |
3013 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
3014 | env->msr_global_status = msrs[i].data; | |
3015 | break; | |
3016 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
3017 | env->msr_global_ovf_ctrl = msrs[i].data; | |
3018 | break; | |
3019 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
3020 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
3021 | break; | |
3022 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
3023 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
3024 | break; | |
3025 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
3026 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
3027 | break; | |
1c90ef26 VR |
3028 | case HV_X64_MSR_HYPERCALL: |
3029 | env->msr_hv_hypercall = msrs[i].data; | |
3030 | break; | |
3031 | case HV_X64_MSR_GUEST_OS_ID: | |
3032 | env->msr_hv_guest_os_id = msrs[i].data; | |
3033 | break; | |
5ef68987 VR |
3034 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
3035 | env->msr_hv_vapic = msrs[i].data; | |
3036 | break; | |
48a5f3bc VR |
3037 | case HV_X64_MSR_REFERENCE_TSC: |
3038 | env->msr_hv_tsc = msrs[i].data; | |
3039 | break; | |
f2a53c9e AS |
3040 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
3041 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
3042 | break; | |
46eb8f98 AS |
3043 | case HV_X64_MSR_VP_RUNTIME: |
3044 | env->msr_hv_runtime = msrs[i].data; | |
3045 | break; | |
866eea9a AS |
3046 | case HV_X64_MSR_SCONTROL: |
3047 | env->msr_hv_synic_control = msrs[i].data; | |
3048 | break; | |
866eea9a AS |
3049 | case HV_X64_MSR_SIEFP: |
3050 | env->msr_hv_synic_evt_page = msrs[i].data; | |
3051 | break; | |
3052 | case HV_X64_MSR_SIMP: | |
3053 | env->msr_hv_synic_msg_page = msrs[i].data; | |
3054 | break; | |
3055 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
3056 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
3057 | break; |
3058 | case HV_X64_MSR_STIMER0_CONFIG: | |
3059 | case HV_X64_MSR_STIMER1_CONFIG: | |
3060 | case HV_X64_MSR_STIMER2_CONFIG: | |
3061 | case HV_X64_MSR_STIMER3_CONFIG: | |
3062 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
3063 | msrs[i].data; | |
3064 | break; | |
3065 | case HV_X64_MSR_STIMER0_COUNT: | |
3066 | case HV_X64_MSR_STIMER1_COUNT: | |
3067 | case HV_X64_MSR_STIMER2_COUNT: | |
3068 | case HV_X64_MSR_STIMER3_COUNT: | |
3069 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
3070 | msrs[i].data; | |
866eea9a | 3071 | break; |
ba6a4fd9 VK |
3072 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
3073 | env->msr_hv_reenlightenment_control = msrs[i].data; | |
3074 | break; | |
3075 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
3076 | env->msr_hv_tsc_emulation_control = msrs[i].data; | |
3077 | break; | |
3078 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
3079 | env->msr_hv_tsc_emulation_status = msrs[i].data; | |
3080 | break; | |
d1ae67f6 AW |
3081 | case MSR_MTRRdefType: |
3082 | env->mtrr_deftype = msrs[i].data; | |
3083 | break; | |
3084 | case MSR_MTRRfix64K_00000: | |
3085 | env->mtrr_fixed[0] = msrs[i].data; | |
3086 | break; | |
3087 | case MSR_MTRRfix16K_80000: | |
3088 | env->mtrr_fixed[1] = msrs[i].data; | |
3089 | break; | |
3090 | case MSR_MTRRfix16K_A0000: | |
3091 | env->mtrr_fixed[2] = msrs[i].data; | |
3092 | break; | |
3093 | case MSR_MTRRfix4K_C0000: | |
3094 | env->mtrr_fixed[3] = msrs[i].data; | |
3095 | break; | |
3096 | case MSR_MTRRfix4K_C8000: | |
3097 | env->mtrr_fixed[4] = msrs[i].data; | |
3098 | break; | |
3099 | case MSR_MTRRfix4K_D0000: | |
3100 | env->mtrr_fixed[5] = msrs[i].data; | |
3101 | break; | |
3102 | case MSR_MTRRfix4K_D8000: | |
3103 | env->mtrr_fixed[6] = msrs[i].data; | |
3104 | break; | |
3105 | case MSR_MTRRfix4K_E0000: | |
3106 | env->mtrr_fixed[7] = msrs[i].data; | |
3107 | break; | |
3108 | case MSR_MTRRfix4K_E8000: | |
3109 | env->mtrr_fixed[8] = msrs[i].data; | |
3110 | break; | |
3111 | case MSR_MTRRfix4K_F0000: | |
3112 | env->mtrr_fixed[9] = msrs[i].data; | |
3113 | break; | |
3114 | case MSR_MTRRfix4K_F8000: | |
3115 | env->mtrr_fixed[10] = msrs[i].data; | |
3116 | break; | |
3117 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
3118 | if (index & 1) { | |
fcc35e7c DDAG |
3119 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
3120 | mtrr_top_bits; | |
d1ae67f6 AW |
3121 | } else { |
3122 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
3123 | } | |
3124 | break; | |
a33a2cfe PB |
3125 | case MSR_IA32_SPEC_CTRL: |
3126 | env->spec_ctrl = msrs[i].data; | |
3127 | break; | |
cfeea0c0 KRW |
3128 | case MSR_VIRT_SSBD: |
3129 | env->virt_ssbd = msrs[i].data; | |
3130 | break; | |
b77146e9 CP |
3131 | case MSR_IA32_RTIT_CTL: |
3132 | env->msr_rtit_ctrl = msrs[i].data; | |
3133 | break; | |
3134 | case MSR_IA32_RTIT_STATUS: | |
3135 | env->msr_rtit_status = msrs[i].data; | |
3136 | break; | |
3137 | case MSR_IA32_RTIT_OUTPUT_BASE: | |
3138 | env->msr_rtit_output_base = msrs[i].data; | |
3139 | break; | |
3140 | case MSR_IA32_RTIT_OUTPUT_MASK: | |
3141 | env->msr_rtit_output_mask = msrs[i].data; | |
3142 | break; | |
3143 | case MSR_IA32_RTIT_CR3_MATCH: | |
3144 | env->msr_rtit_cr3_match = msrs[i].data; | |
3145 | break; | |
3146 | case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | |
3147 | env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; | |
3148 | break; | |
05330448 AL |
3149 | } |
3150 | } | |
3151 | ||
3152 | return 0; | |
3153 | } | |
3154 | ||
1bc22652 | 3155 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 3156 | { |
1bc22652 | 3157 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 3158 | |
1bc22652 | 3159 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
3160 | } |
3161 | ||
23d02d9b | 3162 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 3163 | { |
259186a7 | 3164 | CPUState *cs = CPU(cpu); |
23d02d9b | 3165 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
3166 | struct kvm_mp_state mp_state; |
3167 | int ret; | |
3168 | ||
259186a7 | 3169 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
3170 | if (ret < 0) { |
3171 | return ret; | |
3172 | } | |
3173 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 3174 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 3175 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 3176 | } |
9bdbe550 HB |
3177 | return 0; |
3178 | } | |
3179 | ||
1bc22652 | 3180 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 3181 | { |
02e51483 | 3182 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
3183 | struct kvm_lapic_state kapic; |
3184 | int ret; | |
3185 | ||
3d4b2649 | 3186 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 3187 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
3188 | if (ret < 0) { |
3189 | return ret; | |
3190 | } | |
3191 | ||
3192 | kvm_get_apic_state(apic, &kapic); | |
3193 | } | |
3194 | return 0; | |
3195 | } | |
3196 | ||
1bc22652 | 3197 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 3198 | { |
fc12d72e | 3199 | CPUState *cs = CPU(cpu); |
1bc22652 | 3200 | CPUX86State *env = &cpu->env; |
076796f8 | 3201 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
3202 | |
3203 | if (!kvm_has_vcpu_events()) { | |
3204 | return 0; | |
3205 | } | |
3206 | ||
31827373 JK |
3207 | events.exception.injected = (env->exception_injected >= 0); |
3208 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
3209 | events.exception.has_error_code = env->has_error_code; |
3210 | events.exception.error_code = env->error_code; | |
3211 | ||
3212 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
3213 | events.interrupt.nr = env->interrupt_injected; | |
3214 | events.interrupt.soft = env->soft_interrupt; | |
3215 | ||
3216 | events.nmi.injected = env->nmi_injected; | |
3217 | events.nmi.pending = env->nmi_pending; | |
3218 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
3219 | ||
3220 | events.sipi_vector = env->sipi_vector; | |
68c6efe0 | 3221 | events.flags = 0; |
a0fb002c | 3222 | |
fc12d72e PB |
3223 | if (has_msr_smbase) { |
3224 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
3225 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
3226 | if (kvm_irqchip_in_kernel()) { | |
3227 | /* As soon as these are moved to the kernel, remove them | |
3228 | * from cs->interrupt_request. | |
3229 | */ | |
3230 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
3231 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
3232 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
3233 | } else { | |
3234 | /* Keep these in cs->interrupt_request. */ | |
3235 | events.smi.pending = 0; | |
3236 | events.smi.latched_init = 0; | |
3237 | } | |
fc3a1fd7 DDAG |
3238 | /* Stop SMI delivery on old machine types to avoid a reboot |
3239 | * on an inward migration of an old VM. | |
3240 | */ | |
3241 | if (!cpu->kvm_no_smi_migration) { | |
3242 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
3243 | } | |
fc12d72e PB |
3244 | } |
3245 | ||
ea643051 | 3246 | if (level >= KVM_PUT_RESET_STATE) { |
4fadfa00 PH |
3247 | events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; |
3248 | if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
3249 | events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
3250 | } | |
ea643051 | 3251 | } |
aee028b9 | 3252 | |
1bc22652 | 3253 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
3254 | } |
3255 | ||
1bc22652 | 3256 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 3257 | { |
1bc22652 | 3258 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
3259 | struct kvm_vcpu_events events; |
3260 | int ret; | |
3261 | ||
3262 | if (!kvm_has_vcpu_events()) { | |
3263 | return 0; | |
3264 | } | |
3265 | ||
fc12d72e | 3266 | memset(&events, 0, sizeof(events)); |
1bc22652 | 3267 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
3268 | if (ret < 0) { |
3269 | return ret; | |
3270 | } | |
31827373 | 3271 | env->exception_injected = |
a0fb002c JK |
3272 | events.exception.injected ? events.exception.nr : -1; |
3273 | env->has_error_code = events.exception.has_error_code; | |
3274 | env->error_code = events.exception.error_code; | |
3275 | ||
3276 | env->interrupt_injected = | |
3277 | events.interrupt.injected ? events.interrupt.nr : -1; | |
3278 | env->soft_interrupt = events.interrupt.soft; | |
3279 | ||
3280 | env->nmi_injected = events.nmi.injected; | |
3281 | env->nmi_pending = events.nmi.pending; | |
3282 | if (events.nmi.masked) { | |
3283 | env->hflags2 |= HF2_NMI_MASK; | |
3284 | } else { | |
3285 | env->hflags2 &= ~HF2_NMI_MASK; | |
3286 | } | |
3287 | ||
fc12d72e PB |
3288 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
3289 | if (events.smi.smm) { | |
3290 | env->hflags |= HF_SMM_MASK; | |
3291 | } else { | |
3292 | env->hflags &= ~HF_SMM_MASK; | |
3293 | } | |
3294 | if (events.smi.pending) { | |
3295 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3296 | } else { | |
3297 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
3298 | } | |
3299 | if (events.smi.smm_inside_nmi) { | |
3300 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
3301 | } else { | |
3302 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
3303 | } | |
3304 | if (events.smi.latched_init) { | |
3305 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3306 | } else { | |
3307 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
3308 | } | |
3309 | } | |
3310 | ||
a0fb002c | 3311 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
3312 | |
3313 | return 0; | |
3314 | } | |
3315 | ||
1bc22652 | 3316 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 3317 | { |
ed2803da | 3318 | CPUState *cs = CPU(cpu); |
1bc22652 | 3319 | CPUX86State *env = &cpu->env; |
b0b1d690 | 3320 | int ret = 0; |
b0b1d690 JK |
3321 | unsigned long reinject_trap = 0; |
3322 | ||
3323 | if (!kvm_has_vcpu_events()) { | |
3324 | if (env->exception_injected == 1) { | |
3325 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
3326 | } else if (env->exception_injected == 3) { | |
3327 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
3328 | } | |
3329 | env->exception_injected = -1; | |
3330 | } | |
3331 | ||
3332 | /* | |
3333 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
3334 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
3335 | * by updating the debug state once again if single-stepping is on. | |
3336 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
3337 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
3338 | * reinject them via SET_GUEST_DEBUG. | |
3339 | */ | |
3340 | if (reinject_trap || | |
ed2803da | 3341 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 3342 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 3343 | } |
b0b1d690 JK |
3344 | return ret; |
3345 | } | |
3346 | ||
1bc22652 | 3347 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 3348 | { |
1bc22652 | 3349 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
3350 | struct kvm_debugregs dbgregs; |
3351 | int i; | |
3352 | ||
3353 | if (!kvm_has_debugregs()) { | |
3354 | return 0; | |
3355 | } | |
3356 | ||
3357 | for (i = 0; i < 4; i++) { | |
3358 | dbgregs.db[i] = env->dr[i]; | |
3359 | } | |
3360 | dbgregs.dr6 = env->dr[6]; | |
3361 | dbgregs.dr7 = env->dr[7]; | |
3362 | dbgregs.flags = 0; | |
3363 | ||
1bc22652 | 3364 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
3365 | } |
3366 | ||
1bc22652 | 3367 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 3368 | { |
1bc22652 | 3369 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
3370 | struct kvm_debugregs dbgregs; |
3371 | int i, ret; | |
3372 | ||
3373 | if (!kvm_has_debugregs()) { | |
3374 | return 0; | |
3375 | } | |
3376 | ||
1bc22652 | 3377 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 3378 | if (ret < 0) { |
b9bec74b | 3379 | return ret; |
ff44f1a3 JK |
3380 | } |
3381 | for (i = 0; i < 4; i++) { | |
3382 | env->dr[i] = dbgregs.db[i]; | |
3383 | } | |
3384 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
3385 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
3386 | |
3387 | return 0; | |
3388 | } | |
3389 | ||
20d695a9 | 3390 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 3391 | { |
20d695a9 | 3392 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
3393 | int ret; |
3394 | ||
2fa45344 | 3395 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 3396 | |
48e1a45c | 3397 | if (level >= KVM_PUT_RESET_STATE) { |
6bdf863d JK |
3398 | ret = kvm_put_msr_feature_control(x86_cpu); |
3399 | if (ret < 0) { | |
3400 | return ret; | |
3401 | } | |
3402 | } | |
3403 | ||
36f96c4b HZ |
3404 | if (level == KVM_PUT_FULL_STATE) { |
3405 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
3406 | * because TSC frequency mismatch shouldn't abort migration, | |
3407 | * unless the user explicitly asked for a more strict TSC | |
3408 | * setting (e.g. using an explicit "tsc-freq" option). | |
3409 | */ | |
3410 | kvm_arch_set_tsc_khz(cpu); | |
3411 | } | |
3412 | ||
1bc22652 | 3413 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 3414 | if (ret < 0) { |
05330448 | 3415 | return ret; |
b9bec74b | 3416 | } |
1bc22652 | 3417 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 3418 | if (ret < 0) { |
f1665b21 | 3419 | return ret; |
b9bec74b | 3420 | } |
1bc22652 | 3421 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 3422 | if (ret < 0) { |
05330448 | 3423 | return ret; |
b9bec74b | 3424 | } |
1bc22652 | 3425 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 3426 | if (ret < 0) { |
05330448 | 3427 | return ret; |
b9bec74b | 3428 | } |
ab443475 | 3429 | /* must be before kvm_put_msrs */ |
1bc22652 | 3430 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
3431 | if (ret < 0) { |
3432 | return ret; | |
3433 | } | |
1bc22652 | 3434 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 3435 | if (ret < 0) { |
05330448 | 3436 | return ret; |
b9bec74b | 3437 | } |
4fadfa00 PH |
3438 | ret = kvm_put_vcpu_events(x86_cpu, level); |
3439 | if (ret < 0) { | |
3440 | return ret; | |
3441 | } | |
ea643051 | 3442 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 3443 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 3444 | if (ret < 0) { |
680c1c6f JK |
3445 | return ret; |
3446 | } | |
ea643051 | 3447 | } |
7477cd38 MT |
3448 | |
3449 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
3450 | if (ret < 0) { | |
3451 | return ret; | |
3452 | } | |
1bc22652 | 3453 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 3454 | if (ret < 0) { |
b0b1d690 | 3455 | return ret; |
b9bec74b | 3456 | } |
b0b1d690 | 3457 | /* must be last */ |
1bc22652 | 3458 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 3459 | if (ret < 0) { |
ff44f1a3 | 3460 | return ret; |
b9bec74b | 3461 | } |
05330448 AL |
3462 | return 0; |
3463 | } | |
3464 | ||
20d695a9 | 3465 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 3466 | { |
20d695a9 | 3467 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
3468 | int ret; |
3469 | ||
20d695a9 | 3470 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 3471 | |
4fadfa00 | 3472 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 3473 | if (ret < 0) { |
f4f1110e | 3474 | goto out; |
b9bec74b | 3475 | } |
4fadfa00 PH |
3476 | /* |
3477 | * KVM_GET_MPSTATE can modify CS and RIP, call it before | |
3478 | * KVM_GET_REGS and KVM_GET_SREGS. | |
3479 | */ | |
3480 | ret = kvm_get_mp_state(cpu); | |
b9bec74b | 3481 | if (ret < 0) { |
f4f1110e | 3482 | goto out; |
b9bec74b | 3483 | } |
4fadfa00 | 3484 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 3485 | if (ret < 0) { |
f4f1110e | 3486 | goto out; |
b9bec74b | 3487 | } |
4fadfa00 | 3488 | ret = kvm_get_xsave(cpu); |
b9bec74b | 3489 | if (ret < 0) { |
f4f1110e | 3490 | goto out; |
b9bec74b | 3491 | } |
4fadfa00 | 3492 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 3493 | if (ret < 0) { |
f4f1110e | 3494 | goto out; |
b9bec74b | 3495 | } |
4fadfa00 | 3496 | ret = kvm_get_sregs(cpu); |
b9bec74b | 3497 | if (ret < 0) { |
f4f1110e | 3498 | goto out; |
b9bec74b | 3499 | } |
4fadfa00 | 3500 | ret = kvm_get_msrs(cpu); |
680c1c6f | 3501 | if (ret < 0) { |
f4f1110e | 3502 | goto out; |
680c1c6f | 3503 | } |
4fadfa00 | 3504 | ret = kvm_get_apic(cpu); |
b9bec74b | 3505 | if (ret < 0) { |
f4f1110e | 3506 | goto out; |
b9bec74b | 3507 | } |
1bc22652 | 3508 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 3509 | if (ret < 0) { |
f4f1110e | 3510 | goto out; |
b9bec74b | 3511 | } |
f4f1110e RH |
3512 | ret = 0; |
3513 | out: | |
3514 | cpu_sync_bndcs_hflags(&cpu->env); | |
3515 | return ret; | |
05330448 AL |
3516 | } |
3517 | ||
20d695a9 | 3518 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 3519 | { |
20d695a9 AF |
3520 | X86CPU *x86_cpu = X86_CPU(cpu); |
3521 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
3522 | int ret; |
3523 | ||
276ce815 | 3524 | /* Inject NMI */ |
fc12d72e PB |
3525 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
3526 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
3527 | qemu_mutex_lock_iothread(); | |
3528 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
3529 | qemu_mutex_unlock_iothread(); | |
3530 | DPRINTF("injected NMI\n"); | |
3531 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
3532 | if (ret < 0) { | |
3533 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
3534 | strerror(-ret)); | |
3535 | } | |
3536 | } | |
3537 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
3538 | qemu_mutex_lock_iothread(); | |
3539 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
3540 | qemu_mutex_unlock_iothread(); | |
3541 | DPRINTF("injected SMI\n"); | |
3542 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
3543 | if (ret < 0) { | |
3544 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
3545 | strerror(-ret)); | |
3546 | } | |
ce377af3 | 3547 | } |
276ce815 LJ |
3548 | } |
3549 | ||
15eafc2e | 3550 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
3551 | qemu_mutex_lock_iothread(); |
3552 | } | |
3553 | ||
e0723c45 PB |
3554 | /* Force the VCPU out of its inner loop to process any INIT requests |
3555 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
3556 | * pending TPR access reports. | |
3557 | */ | |
3558 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
3559 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
3560 | !(env->hflags & HF_SMM_MASK)) { | |
3561 | cpu->exit_request = 1; | |
3562 | } | |
3563 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
3564 | cpu->exit_request = 1; | |
3565 | } | |
e0723c45 | 3566 | } |
05330448 | 3567 | |
15eafc2e | 3568 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
3569 | /* Try to inject an interrupt if the guest can accept it */ |
3570 | if (run->ready_for_interrupt_injection && | |
259186a7 | 3571 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
3572 | (env->eflags & IF_MASK)) { |
3573 | int irq; | |
3574 | ||
259186a7 | 3575 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
3576 | irq = cpu_get_pic_interrupt(env); |
3577 | if (irq >= 0) { | |
3578 | struct kvm_interrupt intr; | |
3579 | ||
3580 | intr.irq = irq; | |
db1669bc | 3581 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 3582 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
3583 | if (ret < 0) { |
3584 | fprintf(stderr, | |
3585 | "KVM: injection failed, interrupt lost (%s)\n", | |
3586 | strerror(-ret)); | |
3587 | } | |
db1669bc JK |
3588 | } |
3589 | } | |
05330448 | 3590 | |
db1669bc JK |
3591 | /* If we have an interrupt but the guest is not ready to receive an |
3592 | * interrupt, request an interrupt window exit. This will | |
3593 | * cause a return to userspace as soon as the guest is ready to | |
3594 | * receive interrupts. */ | |
259186a7 | 3595 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
3596 | run->request_interrupt_window = 1; |
3597 | } else { | |
3598 | run->request_interrupt_window = 0; | |
3599 | } | |
3600 | ||
3601 | DPRINTF("setting tpr\n"); | |
02e51483 | 3602 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
3603 | |
3604 | qemu_mutex_unlock_iothread(); | |
db1669bc | 3605 | } |
05330448 AL |
3606 | } |
3607 | ||
4c663752 | 3608 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 3609 | { |
20d695a9 AF |
3610 | X86CPU *x86_cpu = X86_CPU(cpu); |
3611 | CPUX86State *env = &x86_cpu->env; | |
3612 | ||
fc12d72e PB |
3613 | if (run->flags & KVM_RUN_X86_SMM) { |
3614 | env->hflags |= HF_SMM_MASK; | |
3615 | } else { | |
f5c052b9 | 3616 | env->hflags &= ~HF_SMM_MASK; |
fc12d72e | 3617 | } |
b9bec74b | 3618 | if (run->if_flag) { |
05330448 | 3619 | env->eflags |= IF_MASK; |
b9bec74b | 3620 | } else { |
05330448 | 3621 | env->eflags &= ~IF_MASK; |
b9bec74b | 3622 | } |
4b8523ee JK |
3623 | |
3624 | /* We need to protect the apic state against concurrent accesses from | |
3625 | * different threads in case the userspace irqchip is used. */ | |
3626 | if (!kvm_irqchip_in_kernel()) { | |
3627 | qemu_mutex_lock_iothread(); | |
3628 | } | |
02e51483 CF |
3629 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
3630 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
3631 | if (!kvm_irqchip_in_kernel()) { |
3632 | qemu_mutex_unlock_iothread(); | |
3633 | } | |
f794aa4a | 3634 | return cpu_get_mem_attrs(env); |
05330448 AL |
3635 | } |
3636 | ||
20d695a9 | 3637 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 3638 | { |
20d695a9 AF |
3639 | X86CPU *cpu = X86_CPU(cs); |
3640 | CPUX86State *env = &cpu->env; | |
232fc23b | 3641 | |
259186a7 | 3642 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
3643 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
3644 | assert(env->mcg_cap); | |
3645 | ||
259186a7 | 3646 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 3647 | |
dd1750d7 | 3648 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
3649 | |
3650 | if (env->exception_injected == EXCP08_DBLE) { | |
3651 | /* this means triple fault */ | |
cf83f140 | 3652 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
fcd7d003 | 3653 | cs->exit_request = 1; |
ab443475 JK |
3654 | return 0; |
3655 | } | |
3656 | env->exception_injected = EXCP12_MCHK; | |
3657 | env->has_error_code = 0; | |
3658 | ||
259186a7 | 3659 | cs->halted = 0; |
ab443475 JK |
3660 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
3661 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
3662 | } | |
3663 | } | |
3664 | ||
fc12d72e PB |
3665 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
3666 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
3667 | kvm_cpu_synchronize_state(cs); |
3668 | do_cpu_init(cpu); | |
3669 | } | |
3670 | ||
db1669bc JK |
3671 | if (kvm_irqchip_in_kernel()) { |
3672 | return 0; | |
3673 | } | |
3674 | ||
259186a7 AF |
3675 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
3676 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 3677 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 3678 | } |
259186a7 | 3679 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 3680 | (env->eflags & IF_MASK)) || |
259186a7 AF |
3681 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
3682 | cs->halted = 0; | |
6792a57b | 3683 | } |
259186a7 | 3684 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 3685 | kvm_cpu_synchronize_state(cs); |
232fc23b | 3686 | do_cpu_sipi(cpu); |
0af691d7 | 3687 | } |
259186a7 AF |
3688 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
3689 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 3690 | kvm_cpu_synchronize_state(cs); |
02e51483 | 3691 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
3692 | env->tpr_access_type); |
3693 | } | |
0af691d7 | 3694 | |
259186a7 | 3695 | return cs->halted; |
0af691d7 MT |
3696 | } |
3697 | ||
839b5630 | 3698 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 3699 | { |
259186a7 | 3700 | CPUState *cs = CPU(cpu); |
839b5630 AF |
3701 | CPUX86State *env = &cpu->env; |
3702 | ||
259186a7 | 3703 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 3704 | (env->eflags & IF_MASK)) && |
259186a7 AF |
3705 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
3706 | cs->halted = 1; | |
bb4ea393 | 3707 | return EXCP_HLT; |
05330448 AL |
3708 | } |
3709 | ||
bb4ea393 | 3710 | return 0; |
05330448 AL |
3711 | } |
3712 | ||
f7575c96 | 3713 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 3714 | { |
f7575c96 AF |
3715 | CPUState *cs = CPU(cpu); |
3716 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 3717 | |
02e51483 | 3718 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
3719 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
3720 | : TPR_ACCESS_READ); | |
3721 | return 1; | |
3722 | } | |
3723 | ||
f17ec444 | 3724 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 3725 | { |
38972938 | 3726 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 3727 | |
f17ec444 AF |
3728 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
3729 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 3730 | return -EINVAL; |
b9bec74b | 3731 | } |
e22a25c9 AL |
3732 | return 0; |
3733 | } | |
3734 | ||
f17ec444 | 3735 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
3736 | { |
3737 | uint8_t int3; | |
3738 | ||
f17ec444 AF |
3739 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
3740 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 3741 | return -EINVAL; |
b9bec74b | 3742 | } |
e22a25c9 AL |
3743 | return 0; |
3744 | } | |
3745 | ||
3746 | static struct { | |
3747 | target_ulong addr; | |
3748 | int len; | |
3749 | int type; | |
3750 | } hw_breakpoint[4]; | |
3751 | ||
3752 | static int nb_hw_breakpoint; | |
3753 | ||
3754 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
3755 | { | |
3756 | int n; | |
3757 | ||
b9bec74b | 3758 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 3759 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 3760 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 3761 | return n; |
b9bec74b JK |
3762 | } |
3763 | } | |
e22a25c9 AL |
3764 | return -1; |
3765 | } | |
3766 | ||
3767 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
3768 | target_ulong len, int type) | |
3769 | { | |
3770 | switch (type) { | |
3771 | case GDB_BREAKPOINT_HW: | |
3772 | len = 1; | |
3773 | break; | |
3774 | case GDB_WATCHPOINT_WRITE: | |
3775 | case GDB_WATCHPOINT_ACCESS: | |
3776 | switch (len) { | |
3777 | case 1: | |
3778 | break; | |
3779 | case 2: | |
3780 | case 4: | |
3781 | case 8: | |
b9bec74b | 3782 | if (addr & (len - 1)) { |
e22a25c9 | 3783 | return -EINVAL; |
b9bec74b | 3784 | } |
e22a25c9 AL |
3785 | break; |
3786 | default: | |
3787 | return -EINVAL; | |
3788 | } | |
3789 | break; | |
3790 | default: | |
3791 | return -ENOSYS; | |
3792 | } | |
3793 | ||
b9bec74b | 3794 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 3795 | return -ENOBUFS; |
b9bec74b JK |
3796 | } |
3797 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 3798 | return -EEXIST; |
b9bec74b | 3799 | } |
e22a25c9 AL |
3800 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
3801 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
3802 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
3803 | nb_hw_breakpoint++; | |
3804 | ||
3805 | return 0; | |
3806 | } | |
3807 | ||
3808 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
3809 | target_ulong len, int type) | |
3810 | { | |
3811 | int n; | |
3812 | ||
3813 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 3814 | if (n < 0) { |
e22a25c9 | 3815 | return -ENOENT; |
b9bec74b | 3816 | } |
e22a25c9 AL |
3817 | nb_hw_breakpoint--; |
3818 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
3819 | ||
3820 | return 0; | |
3821 | } | |
3822 | ||
3823 | void kvm_arch_remove_all_hw_breakpoints(void) | |
3824 | { | |
3825 | nb_hw_breakpoint = 0; | |
3826 | } | |
3827 | ||
3828 | static CPUWatchpoint hw_watchpoint; | |
3829 | ||
a60f24b5 | 3830 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 3831 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 3832 | { |
ed2803da | 3833 | CPUState *cs = CPU(cpu); |
a60f24b5 | 3834 | CPUX86State *env = &cpu->env; |
f2574737 | 3835 | int ret = 0; |
e22a25c9 AL |
3836 | int n; |
3837 | ||
3838 | if (arch_info->exception == 1) { | |
3839 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 3840 | if (cs->singlestep_enabled) { |
f2574737 | 3841 | ret = EXCP_DEBUG; |
b9bec74b | 3842 | } |
e22a25c9 | 3843 | } else { |
b9bec74b JK |
3844 | for (n = 0; n < 4; n++) { |
3845 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
3846 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
3847 | case 0x0: | |
f2574737 | 3848 | ret = EXCP_DEBUG; |
e22a25c9 AL |
3849 | break; |
3850 | case 0x1: | |
f2574737 | 3851 | ret = EXCP_DEBUG; |
ff4700b0 | 3852 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3853 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3854 | hw_watchpoint.flags = BP_MEM_WRITE; | |
3855 | break; | |
3856 | case 0x3: | |
f2574737 | 3857 | ret = EXCP_DEBUG; |
ff4700b0 | 3858 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3859 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3860 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
3861 | break; | |
3862 | } | |
b9bec74b JK |
3863 | } |
3864 | } | |
e22a25c9 | 3865 | } |
ff4700b0 | 3866 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 3867 | ret = EXCP_DEBUG; |
b9bec74b | 3868 | } |
f2574737 | 3869 | if (ret == 0) { |
ff4700b0 | 3870 | cpu_synchronize_state(cs); |
48405526 | 3871 | assert(env->exception_injected == -1); |
b0b1d690 | 3872 | |
f2574737 | 3873 | /* pass to guest */ |
48405526 BS |
3874 | env->exception_injected = arch_info->exception; |
3875 | env->has_error_code = 0; | |
b0b1d690 | 3876 | } |
e22a25c9 | 3877 | |
f2574737 | 3878 | return ret; |
e22a25c9 AL |
3879 | } |
3880 | ||
20d695a9 | 3881 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
3882 | { |
3883 | const uint8_t type_code[] = { | |
3884 | [GDB_BREAKPOINT_HW] = 0x0, | |
3885 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
3886 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
3887 | }; | |
3888 | const uint8_t len_code[] = { | |
3889 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
3890 | }; | |
3891 | int n; | |
3892 | ||
a60f24b5 | 3893 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 3894 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 3895 | } |
e22a25c9 AL |
3896 | if (nb_hw_breakpoint > 0) { |
3897 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
3898 | dbg->arch.debugreg[7] = 0x0600; | |
3899 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
3900 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
3901 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
3902 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 3903 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
3904 | } |
3905 | } | |
3906 | } | |
4513d923 | 3907 | |
2a4dac83 JK |
3908 | static bool host_supports_vmx(void) |
3909 | { | |
3910 | uint32_t ecx, unused; | |
3911 | ||
3912 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
3913 | return ecx & CPUID_EXT_VMX; | |
3914 | } | |
3915 | ||
3916 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
3917 | ||
20d695a9 | 3918 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 3919 | { |
20d695a9 | 3920 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
3921 | uint64_t code; |
3922 | int ret; | |
3923 | ||
3924 | switch (run->exit_reason) { | |
3925 | case KVM_EXIT_HLT: | |
3926 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 3927 | qemu_mutex_lock_iothread(); |
839b5630 | 3928 | ret = kvm_handle_halt(cpu); |
4b8523ee | 3929 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
3930 | break; |
3931 | case KVM_EXIT_SET_TPR: | |
3932 | ret = 0; | |
3933 | break; | |
d362e757 | 3934 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 3935 | qemu_mutex_lock_iothread(); |
f7575c96 | 3936 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 3937 | qemu_mutex_unlock_iothread(); |
d362e757 | 3938 | break; |
2a4dac83 JK |
3939 | case KVM_EXIT_FAIL_ENTRY: |
3940 | code = run->fail_entry.hardware_entry_failure_reason; | |
3941 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
3942 | code); | |
3943 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
3944 | fprintf(stderr, | |
12619721 | 3945 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
3946 | "unrestricted mode\n" |
3947 | "support, the failure can be most likely due to the guest " | |
3948 | "entering an invalid\n" | |
3949 | "state for Intel VT. For example, the guest maybe running " | |
3950 | "in big real mode\n" | |
3951 | "which is not supported on less recent Intel processors." | |
3952 | "\n\n"); | |
3953 | } | |
3954 | ret = -1; | |
3955 | break; | |
3956 | case KVM_EXIT_EXCEPTION: | |
3957 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
3958 | run->ex.exception, run->ex.error_code); | |
3959 | ret = -1; | |
3960 | break; | |
f2574737 JK |
3961 | case KVM_EXIT_DEBUG: |
3962 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 3963 | qemu_mutex_lock_iothread(); |
a60f24b5 | 3964 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 3965 | qemu_mutex_unlock_iothread(); |
f2574737 | 3966 | break; |
50efe82c AS |
3967 | case KVM_EXIT_HYPERV: |
3968 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
3969 | break; | |
15eafc2e PB |
3970 | case KVM_EXIT_IOAPIC_EOI: |
3971 | ioapic_eoi_broadcast(run->eoi.vector); | |
3972 | ret = 0; | |
3973 | break; | |
2a4dac83 JK |
3974 | default: |
3975 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
3976 | ret = -1; | |
3977 | break; | |
3978 | } | |
3979 | ||
3980 | return ret; | |
3981 | } | |
3982 | ||
20d695a9 | 3983 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 3984 | { |
20d695a9 AF |
3985 | X86CPU *cpu = X86_CPU(cs); |
3986 | CPUX86State *env = &cpu->env; | |
3987 | ||
dd1750d7 | 3988 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
3989 | return !(env->cr[0] & CR0_PE_MASK) || |
3990 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 3991 | } |
84b058d7 JK |
3992 | |
3993 | void kvm_arch_init_irq_routing(KVMState *s) | |
3994 | { | |
3995 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
3996 | /* If kernel can't do irq routing, interrupt source | |
3997 | * override 0->2 cannot be set up as required by HPET. | |
3998 | * So we have to disable it. | |
3999 | */ | |
4000 | no_hpet = 1; | |
4001 | } | |
cc7e0ddf | 4002 | /* We know at this point that we're using the in-kernel |
614e41bc | 4003 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 4004 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 4005 | */ |
614e41bc | 4006 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 4007 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
4008 | |
4009 | if (kvm_irqchip_is_split()) { | |
4010 | int i; | |
4011 | ||
4012 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
4013 | MSI routes for signaling interrupts to the local apics. */ | |
4014 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
d1f6af6a | 4015 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
15eafc2e PB |
4016 | error_report("Could not enable split IRQ mode."); |
4017 | exit(1); | |
4018 | } | |
4019 | } | |
4020 | } | |
4021 | } | |
4022 | ||
4023 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
4024 | { | |
4025 | int ret; | |
4026 | if (machine_kernel_irqchip_split(ms)) { | |
4027 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
4028 | if (ret) { | |
df3c286c | 4029 | error_report("Could not enable split irqchip mode: %s", |
15eafc2e PB |
4030 | strerror(-ret)); |
4031 | exit(1); | |
4032 | } else { | |
4033 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
4034 | kvm_split_irqchip = true; | |
4035 | return 1; | |
4036 | } | |
4037 | } else { | |
4038 | return 0; | |
4039 | } | |
84b058d7 | 4040 | } |
b139bd30 JK |
4041 | |
4042 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
4043 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
4044 | uint32_t flags, uint32_t *dev_id) | |
4045 | { | |
4046 | struct kvm_assigned_pci_dev dev_data = { | |
4047 | .segnr = dev_addr->domain, | |
4048 | .busnr = dev_addr->bus, | |
4049 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
4050 | .flags = flags, | |
4051 | }; | |
4052 | int ret; | |
4053 | ||
4054 | dev_data.assigned_dev_id = | |
4055 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
4056 | ||
4057 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
4058 | if (ret < 0) { | |
4059 | return ret; | |
4060 | } | |
4061 | ||
4062 | *dev_id = dev_data.assigned_dev_id; | |
4063 | ||
4064 | return 0; | |
4065 | } | |
4066 | ||
4067 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
4068 | { | |
4069 | struct kvm_assigned_pci_dev dev_data = { | |
4070 | .assigned_dev_id = dev_id, | |
4071 | }; | |
4072 | ||
4073 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
4074 | } | |
4075 | ||
4076 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
4077 | uint32_t irq_type, uint32_t guest_irq) | |
4078 | { | |
4079 | struct kvm_assigned_irq assigned_irq = { | |
4080 | .assigned_dev_id = dev_id, | |
4081 | .guest_irq = guest_irq, | |
4082 | .flags = irq_type, | |
4083 | }; | |
4084 | ||
4085 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
4086 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
4087 | } else { | |
4088 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
4089 | } | |
4090 | } | |
4091 | ||
4092 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
4093 | uint32_t guest_irq) | |
4094 | { | |
4095 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
4096 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
4097 | ||
4098 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
4099 | } | |
4100 | ||
4101 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
4102 | { | |
4103 | struct kvm_assigned_pci_dev dev_data = { | |
4104 | .assigned_dev_id = dev_id, | |
4105 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
4106 | }; | |
4107 | ||
4108 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
4109 | } | |
4110 | ||
4111 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
4112 | uint32_t type) | |
4113 | { | |
4114 | struct kvm_assigned_irq assigned_irq = { | |
4115 | .assigned_dev_id = dev_id, | |
4116 | .flags = type, | |
4117 | }; | |
4118 | ||
4119 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
4120 | } | |
4121 | ||
4122 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
4123 | { | |
4124 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
4125 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
4126 | } | |
4127 | ||
4128 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
4129 | { | |
4130 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
4131 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
4132 | } | |
4133 | ||
4134 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
4135 | { | |
4136 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
4137 | KVM_DEV_IRQ_HOST_MSI); | |
4138 | } | |
4139 | ||
4140 | bool kvm_device_msix_supported(KVMState *s) | |
4141 | { | |
4142 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
4143 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
4144 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
4145 | } | |
4146 | ||
4147 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
4148 | uint32_t nr_vectors) | |
4149 | { | |
4150 | struct kvm_assigned_msix_nr msix_nr = { | |
4151 | .assigned_dev_id = dev_id, | |
4152 | .entry_nr = nr_vectors, | |
4153 | }; | |
4154 | ||
4155 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
4156 | } | |
4157 | ||
4158 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
4159 | int virq) | |
4160 | { | |
4161 | struct kvm_assigned_msix_entry msix_entry = { | |
4162 | .assigned_dev_id = dev_id, | |
4163 | .gsi = virq, | |
4164 | .entry = vector, | |
4165 | }; | |
4166 | ||
4167 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
4168 | } | |
4169 | ||
4170 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
4171 | { | |
4172 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
4173 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
4174 | } | |
4175 | ||
4176 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
4177 | { | |
4178 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
4179 | KVM_DEV_IRQ_HOST_MSIX); | |
4180 | } | |
9e03a040 FB |
4181 | |
4182 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 4183 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 4184 | { |
8b5ed7df PX |
4185 | X86IOMMUState *iommu = x86_iommu_get_default(); |
4186 | ||
4187 | if (iommu) { | |
4188 | int ret; | |
4189 | MSIMessage src, dst; | |
4190 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
4191 | ||
0ea1472d JK |
4192 | if (!class->int_remap) { |
4193 | return 0; | |
4194 | } | |
4195 | ||
8b5ed7df PX |
4196 | src.address = route->u.msi.address_hi; |
4197 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
4198 | src.address |= route->u.msi.address_lo; | |
4199 | src.data = route->u.msi.data; | |
4200 | ||
4201 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
4202 | pci_requester_id(dev) : \ | |
4203 | X86_IOMMU_SID_INVALID); | |
4204 | if (ret) { | |
4205 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
4206 | return 1; | |
4207 | } | |
4208 | ||
4209 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
4210 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
4211 | route->u.msi.data = dst.data; | |
4212 | } | |
4213 | ||
9e03a040 FB |
4214 | return 0; |
4215 | } | |
1850b6b7 | 4216 | |
38d87493 PX |
4217 | typedef struct MSIRouteEntry MSIRouteEntry; |
4218 | ||
4219 | struct MSIRouteEntry { | |
4220 | PCIDevice *dev; /* Device pointer */ | |
4221 | int vector; /* MSI/MSIX vector index */ | |
4222 | int virq; /* Virtual IRQ index */ | |
4223 | QLIST_ENTRY(MSIRouteEntry) list; | |
4224 | }; | |
4225 | ||
4226 | /* List of used GSI routes */ | |
4227 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
4228 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
4229 | ||
e1d4fb2d PX |
4230 | static void kvm_update_msi_routes_all(void *private, bool global, |
4231 | uint32_t index, uint32_t mask) | |
4232 | { | |
a56de056 | 4233 | int cnt = 0, vector; |
e1d4fb2d PX |
4234 | MSIRouteEntry *entry; |
4235 | MSIMessage msg; | |
fd563564 PX |
4236 | PCIDevice *dev; |
4237 | ||
e1d4fb2d PX |
4238 | /* TODO: explicit route update */ |
4239 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
4240 | cnt++; | |
a56de056 | 4241 | vector = entry->vector; |
fd563564 | 4242 | dev = entry->dev; |
a56de056 PX |
4243 | if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { |
4244 | msg = msix_get_message(dev, vector); | |
4245 | } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { | |
4246 | msg = msi_get_message(dev, vector); | |
4247 | } else { | |
4248 | /* | |
4249 | * Either MSI/MSIX is disabled for the device, or the | |
4250 | * specific message was masked out. Skip this one. | |
4251 | */ | |
fd563564 PX |
4252 | continue; |
4253 | } | |
fd563564 | 4254 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); |
e1d4fb2d | 4255 | } |
3f1fea0f | 4256 | kvm_irqchip_commit_routes(kvm_state); |
e1d4fb2d PX |
4257 | trace_kvm_x86_update_msi_routes(cnt); |
4258 | } | |
4259 | ||
38d87493 PX |
4260 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
4261 | int vector, PCIDevice *dev) | |
4262 | { | |
e1d4fb2d | 4263 | static bool notify_list_inited = false; |
38d87493 PX |
4264 | MSIRouteEntry *entry; |
4265 | ||
4266 | if (!dev) { | |
4267 | /* These are (possibly) IOAPIC routes only used for split | |
4268 | * kernel irqchip mode, while what we are housekeeping are | |
4269 | * PCI devices only. */ | |
4270 | return 0; | |
4271 | } | |
4272 | ||
4273 | entry = g_new0(MSIRouteEntry, 1); | |
4274 | entry->dev = dev; | |
4275 | entry->vector = vector; | |
4276 | entry->virq = route->gsi; | |
4277 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
4278 | ||
4279 | trace_kvm_x86_add_msi_route(route->gsi); | |
e1d4fb2d PX |
4280 | |
4281 | if (!notify_list_inited) { | |
4282 | /* For the first time we do add route, add ourselves into | |
4283 | * IOMMU's IEC notify list if needed. */ | |
4284 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
4285 | if (iommu) { | |
4286 | x86_iommu_iec_register_notifier(iommu, | |
4287 | kvm_update_msi_routes_all, | |
4288 | NULL); | |
4289 | } | |
4290 | notify_list_inited = true; | |
4291 | } | |
38d87493 PX |
4292 | return 0; |
4293 | } | |
4294 | ||
4295 | int kvm_arch_release_virq_post(int virq) | |
4296 | { | |
4297 | MSIRouteEntry *entry, *next; | |
4298 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
4299 | if (entry->virq == virq) { | |
4300 | trace_kvm_x86_remove_msi_route(virq); | |
4301 | QLIST_REMOVE(entry, list); | |
01960e6d | 4302 | g_free(entry); |
38d87493 PX |
4303 | break; |
4304 | } | |
4305 | } | |
9e03a040 FB |
4306 | return 0; |
4307 | } | |
1850b6b7 EA |
4308 | |
4309 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
4310 | { | |
4311 | abort(); | |
4312 | } |