]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
21 | ||
22 | #include "qemu-common.h" | |
23 | #include "sysemu.h" | |
24 | #include "kvm.h" | |
25 | #include "cpu.h" | |
e22a25c9 | 26 | #include "gdbstub.h" |
0e607a80 | 27 | #include "host-utils.h" |
4c5b10b7 | 28 | #include "hw/pc.h" |
408392b3 | 29 | #include "hw/apic.h" |
35bed8ee | 30 | #include "ioport.h" |
e7701825 | 31 | #include "kvm_x86.h" |
05330448 | 32 | |
bb0300dc GN |
33 | #ifdef CONFIG_KVM_PARA |
34 | #include <linux/kvm_para.h> | |
35 | #endif | |
36 | // | |
05330448 AL |
37 | //#define DEBUG_KVM |
38 | ||
39 | #ifdef DEBUG_KVM | |
8c0d577e | 40 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
41 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
42 | #else | |
8c0d577e | 43 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
44 | do { } while (0) |
45 | #endif | |
46 | ||
1a03675d GC |
47 | #define MSR_KVM_WALL_CLOCK 0x11 |
48 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
49 | ||
c0532a76 MT |
50 | #ifndef BUS_MCEERR_AR |
51 | #define BUS_MCEERR_AR 4 | |
52 | #endif | |
53 | #ifndef BUS_MCEERR_AO | |
54 | #define BUS_MCEERR_AO 5 | |
55 | #endif | |
56 | ||
25d2e361 MT |
57 | static int lm_capable_kernel; |
58 | ||
b827df58 AK |
59 | #ifdef KVM_CAP_EXT_CPUID |
60 | ||
61 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | |
62 | { | |
63 | struct kvm_cpuid2 *cpuid; | |
64 | int r, size; | |
65 | ||
66 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
67 | cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); | |
68 | cpuid->nent = max; | |
69 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
70 | if (r == 0 && cpuid->nent >= max) { |
71 | r = -E2BIG; | |
72 | } | |
b827df58 AK |
73 | if (r < 0) { |
74 | if (r == -E2BIG) { | |
75 | qemu_free(cpuid); | |
76 | return NULL; | |
77 | } else { | |
78 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
79 | strerror(-r)); | |
80 | exit(1); | |
81 | } | |
82 | } | |
83 | return cpuid; | |
84 | } | |
85 | ||
c958a8bd SY |
86 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, |
87 | uint32_t index, int reg) | |
b827df58 AK |
88 | { |
89 | struct kvm_cpuid2 *cpuid; | |
90 | int i, max; | |
91 | uint32_t ret = 0; | |
92 | uint32_t cpuid_1_edx; | |
93 | ||
94 | if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) { | |
95 | return -1U; | |
96 | } | |
97 | ||
98 | max = 1; | |
99 | while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { | |
100 | max *= 2; | |
101 | } | |
102 | ||
103 | for (i = 0; i < cpuid->nent; ++i) { | |
c958a8bd SY |
104 | if (cpuid->entries[i].function == function && |
105 | cpuid->entries[i].index == index) { | |
b827df58 AK |
106 | switch (reg) { |
107 | case R_EAX: | |
108 | ret = cpuid->entries[i].eax; | |
109 | break; | |
110 | case R_EBX: | |
111 | ret = cpuid->entries[i].ebx; | |
112 | break; | |
113 | case R_ECX: | |
114 | ret = cpuid->entries[i].ecx; | |
115 | break; | |
116 | case R_EDX: | |
117 | ret = cpuid->entries[i].edx; | |
19ccb8ea JK |
118 | switch (function) { |
119 | case 1: | |
120 | /* KVM before 2.6.30 misreports the following features */ | |
121 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
122 | break; | |
123 | case 0x80000001: | |
b827df58 AK |
124 | /* On Intel, kvm returns cpuid according to the Intel spec, |
125 | * so add missing bits according to the AMD spec: | |
126 | */ | |
c958a8bd | 127 | cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); |
c1667e40 | 128 | ret |= cpuid_1_edx & 0x183f7ff; |
19ccb8ea | 129 | break; |
b827df58 AK |
130 | } |
131 | break; | |
132 | } | |
133 | } | |
134 | } | |
135 | ||
136 | qemu_free(cpuid); | |
137 | ||
138 | return ret; | |
139 | } | |
140 | ||
141 | #else | |
142 | ||
c958a8bd SY |
143 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, |
144 | uint32_t index, int reg) | |
b827df58 AK |
145 | { |
146 | return -1U; | |
147 | } | |
148 | ||
149 | #endif | |
150 | ||
bb0300dc GN |
151 | #ifdef CONFIG_KVM_PARA |
152 | struct kvm_para_features { | |
153 | int cap; | |
154 | int feature; | |
155 | } para_features[] = { | |
156 | #ifdef KVM_CAP_CLOCKSOURCE | |
157 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
158 | #endif | |
159 | #ifdef KVM_CAP_NOP_IO_DELAY | |
160 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
161 | #endif | |
162 | #ifdef KVM_CAP_PV_MMU | |
163 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
bb0300dc GN |
164 | #endif |
165 | { -1, -1 } | |
166 | }; | |
167 | ||
168 | static int get_para_features(CPUState *env) | |
169 | { | |
170 | int i, features = 0; | |
171 | ||
172 | for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | |
173 | if (kvm_check_extension(env->kvm_state, para_features[i].cap)) | |
174 | features |= (1 << para_features[i].feature); | |
175 | } | |
176 | ||
177 | return features; | |
178 | } | |
179 | #endif | |
180 | ||
e7701825 MT |
181 | #ifdef KVM_CAP_MCE |
182 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, | |
183 | int *max_banks) | |
184 | { | |
185 | int r; | |
186 | ||
187 | r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE); | |
188 | if (r > 0) { | |
189 | *max_banks = r; | |
190 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
191 | } | |
192 | return -ENOSYS; | |
193 | } | |
194 | ||
195 | static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap) | |
196 | { | |
197 | return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap); | |
198 | } | |
199 | ||
200 | static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m) | |
201 | { | |
202 | return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m); | |
203 | } | |
204 | ||
c0532a76 MT |
205 | static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n) |
206 | { | |
207 | struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs); | |
208 | int r; | |
209 | ||
210 | kmsrs->nmsrs = n; | |
211 | memcpy(kmsrs->entries, msrs, n * sizeof *msrs); | |
212 | r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs); | |
213 | memcpy(msrs, kmsrs->entries, n * sizeof *msrs); | |
214 | free(kmsrs); | |
215 | return r; | |
216 | } | |
217 | ||
218 | /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */ | |
219 | static int kvm_mce_in_exception(CPUState *env) | |
220 | { | |
221 | struct kvm_msr_entry msr_mcg_status = { | |
222 | .index = MSR_MCG_STATUS, | |
223 | }; | |
224 | int r; | |
225 | ||
226 | r = kvm_get_msr(env, &msr_mcg_status, 1); | |
227 | if (r == -1 || r == 0) { | |
228 | return -1; | |
229 | } | |
230 | return !!(msr_mcg_status.data & MCG_STATUS_MCIP); | |
231 | } | |
232 | ||
e7701825 MT |
233 | struct kvm_x86_mce_data |
234 | { | |
235 | CPUState *env; | |
236 | struct kvm_x86_mce *mce; | |
c0532a76 | 237 | int abort_on_error; |
e7701825 MT |
238 | }; |
239 | ||
240 | static void kvm_do_inject_x86_mce(void *_data) | |
241 | { | |
242 | struct kvm_x86_mce_data *data = _data; | |
243 | int r; | |
244 | ||
f8502cfb HS |
245 | /* If there is an MCE exception being processed, ignore this SRAO MCE */ |
246 | if ((data->env->mcg_cap & MCG_SER_P) && | |
247 | !(data->mce->status & MCI_STATUS_AR)) { | |
248 | r = kvm_mce_in_exception(data->env); | |
249 | if (r == -1) { | |
250 | fprintf(stderr, "Failed to get MCE status\n"); | |
251 | } else if (r) { | |
252 | return; | |
253 | } | |
254 | } | |
c0532a76 | 255 | |
e7701825 | 256 | r = kvm_set_mce(data->env, data->mce); |
c0532a76 | 257 | if (r < 0) { |
e7701825 | 258 | perror("kvm_set_mce FAILED"); |
c0532a76 MT |
259 | if (data->abort_on_error) { |
260 | abort(); | |
261 | } | |
262 | } | |
e7701825 MT |
263 | } |
264 | #endif | |
265 | ||
266 | void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status, | |
c0532a76 MT |
267 | uint64_t mcg_status, uint64_t addr, uint64_t misc, |
268 | int abort_on_error) | |
e7701825 MT |
269 | { |
270 | #ifdef KVM_CAP_MCE | |
271 | struct kvm_x86_mce mce = { | |
272 | .bank = bank, | |
273 | .status = status, | |
274 | .mcg_status = mcg_status, | |
275 | .addr = addr, | |
276 | .misc = misc, | |
277 | }; | |
278 | struct kvm_x86_mce_data data = { | |
279 | .env = cenv, | |
280 | .mce = &mce, | |
281 | }; | |
282 | ||
c0532a76 MT |
283 | if (!cenv->mcg_cap) { |
284 | fprintf(stderr, "MCE support is not enabled!\n"); | |
285 | return; | |
286 | } | |
287 | ||
e7701825 | 288 | run_on_cpu(cenv, kvm_do_inject_x86_mce, &data); |
c0532a76 MT |
289 | #else |
290 | if (abort_on_error) | |
291 | abort(); | |
e7701825 MT |
292 | #endif |
293 | } | |
294 | ||
05330448 AL |
295 | int kvm_arch_init_vcpu(CPUState *env) |
296 | { | |
297 | struct { | |
486bd5a2 AL |
298 | struct kvm_cpuid2 cpuid; |
299 | struct kvm_cpuid_entry2 entries[100]; | |
05330448 | 300 | } __attribute__((packed)) cpuid_data; |
486bd5a2 | 301 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 302 | uint32_t unused; |
bb0300dc GN |
303 | struct kvm_cpuid_entry2 *c; |
304 | #ifdef KVM_CPUID_SIGNATURE | |
305 | uint32_t signature[3]; | |
306 | #endif | |
05330448 | 307 | |
f8d926e9 JK |
308 | env->mp_state = KVM_MP_STATE_RUNNABLE; |
309 | ||
c958a8bd | 310 | env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); |
6c0d7ee8 AP |
311 | |
312 | i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; | |
c958a8bd | 313 | env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX); |
6c0d7ee8 AP |
314 | env->cpuid_ext_features |= i; |
315 | ||
457dfed6 | 316 | env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
c958a8bd | 317 | 0, R_EDX); |
457dfed6 | 318 | env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
c958a8bd | 319 | 0, R_ECX); |
296acb64 JR |
320 | env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A, |
321 | 0, R_EDX); | |
322 | ||
6c1f42fe | 323 | |
05330448 AL |
324 | cpuid_i = 0; |
325 | ||
bb0300dc GN |
326 | #ifdef CONFIG_KVM_PARA |
327 | /* Paravirtualization CPUIDs */ | |
328 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
329 | c = &cpuid_data.entries[cpuid_i++]; | |
330 | memset(c, 0, sizeof(*c)); | |
331 | c->function = KVM_CPUID_SIGNATURE; | |
332 | c->eax = 0; | |
333 | c->ebx = signature[0]; | |
334 | c->ecx = signature[1]; | |
335 | c->edx = signature[2]; | |
336 | ||
337 | c = &cpuid_data.entries[cpuid_i++]; | |
338 | memset(c, 0, sizeof(*c)); | |
339 | c->function = KVM_CPUID_FEATURES; | |
340 | c->eax = env->cpuid_kvm_features & get_para_features(env); | |
341 | #endif | |
342 | ||
a33609ca | 343 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
344 | |
345 | for (i = 0; i <= limit; i++) { | |
bb0300dc | 346 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
347 | |
348 | switch (i) { | |
a36b1029 AL |
349 | case 2: { |
350 | /* Keep reading function 2 till all the input is received */ | |
351 | int times; | |
352 | ||
a36b1029 | 353 | c->function = i; |
a33609ca AL |
354 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
355 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
356 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
357 | times = c->eax & 0xff; | |
a36b1029 AL |
358 | |
359 | for (j = 1; j < times; ++j) { | |
a33609ca | 360 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 361 | c->function = i; |
a33609ca AL |
362 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
363 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
364 | } |
365 | break; | |
366 | } | |
486bd5a2 AL |
367 | case 4: |
368 | case 0xb: | |
369 | case 0xd: | |
370 | for (j = 0; ; j++) { | |
486bd5a2 AL |
371 | c->function = i; |
372 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
373 | c->index = j; | |
a33609ca | 374 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 375 | |
a33609ca | 376 | if (i == 4 && c->eax == 0) |
486bd5a2 | 377 | break; |
a33609ca | 378 | if (i == 0xb && !(c->ecx & 0xff00)) |
486bd5a2 | 379 | break; |
a33609ca | 380 | if (i == 0xd && c->eax == 0) |
486bd5a2 | 381 | break; |
a33609ca AL |
382 | |
383 | c = &cpuid_data.entries[cpuid_i++]; | |
486bd5a2 AL |
384 | } |
385 | break; | |
386 | default: | |
486bd5a2 | 387 | c->function = i; |
a33609ca AL |
388 | c->flags = 0; |
389 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
390 | break; |
391 | } | |
05330448 | 392 | } |
a33609ca | 393 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
394 | |
395 | for (i = 0x80000000; i <= limit; i++) { | |
bb0300dc | 396 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 397 | |
05330448 | 398 | c->function = i; |
a33609ca AL |
399 | c->flags = 0; |
400 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
401 | } |
402 | ||
403 | cpuid_data.cpuid.nent = cpuid_i; | |
404 | ||
e7701825 MT |
405 | #ifdef KVM_CAP_MCE |
406 | if (((env->cpuid_version >> 8)&0xF) >= 6 | |
407 | && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA) | |
408 | && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) { | |
409 | uint64_t mcg_cap; | |
410 | int banks; | |
411 | ||
412 | if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) | |
413 | perror("kvm_get_mce_cap_supported FAILED"); | |
414 | else { | |
415 | if (banks > MCE_BANKS_DEF) | |
416 | banks = MCE_BANKS_DEF; | |
417 | mcg_cap &= MCE_CAP_DEF; | |
418 | mcg_cap |= banks; | |
419 | if (kvm_setup_mce(env, &mcg_cap)) | |
420 | perror("kvm_setup_mce FAILED"); | |
421 | else | |
422 | env->mcg_cap = mcg_cap; | |
423 | } | |
424 | } | |
425 | #endif | |
426 | ||
486bd5a2 | 427 | return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); |
05330448 AL |
428 | } |
429 | ||
caa5af0f JK |
430 | void kvm_arch_reset_vcpu(CPUState *env) |
431 | { | |
e73223a5 | 432 | env->exception_injected = -1; |
0e607a80 | 433 | env->interrupt_injected = -1; |
a0fb002c JK |
434 | env->nmi_injected = 0; |
435 | env->nmi_pending = 0; | |
ddced198 MT |
436 | if (kvm_irqchip_in_kernel()) { |
437 | env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE : | |
438 | KVM_MP_STATE_UNINITIALIZED; | |
439 | } else { | |
440 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
441 | } | |
caa5af0f JK |
442 | } |
443 | ||
75b10c43 MT |
444 | int has_msr_star; |
445 | int has_msr_hsave_pa; | |
446 | ||
447 | static void kvm_supported_msrs(CPUState *env) | |
05330448 | 448 | { |
75b10c43 | 449 | static int kvm_supported_msrs; |
05330448 AL |
450 | int ret; |
451 | ||
452 | /* first time */ | |
75b10c43 | 453 | if (kvm_supported_msrs == 0) { |
05330448 AL |
454 | struct kvm_msr_list msr_list, *kvm_msr_list; |
455 | ||
75b10c43 | 456 | kvm_supported_msrs = -1; |
05330448 AL |
457 | |
458 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
459 | * save/restore */ | |
4c9f7372 | 460 | msr_list.nmsrs = 0; |
05330448 | 461 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 462 | if (ret < 0 && ret != -E2BIG) { |
75b10c43 | 463 | return; |
6fb6d245 | 464 | } |
d9db889f JK |
465 | /* Old kernel modules had a bug and could write beyond the provided |
466 | memory. Allocate at least a safe amount of 1K. */ | |
467 | kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + | |
468 | msr_list.nmsrs * | |
469 | sizeof(msr_list.indices[0]))); | |
05330448 | 470 | |
55308450 | 471 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
05330448 AL |
472 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
473 | if (ret >= 0) { | |
474 | int i; | |
475 | ||
476 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
477 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
478 | has_msr_star = 1; | |
75b10c43 MT |
479 | continue; |
480 | } | |
481 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
482 | has_msr_hsave_pa = 1; | |
483 | continue; | |
05330448 AL |
484 | } |
485 | } | |
486 | } | |
487 | ||
488 | free(kvm_msr_list); | |
489 | } | |
490 | ||
75b10c43 MT |
491 | return; |
492 | } | |
493 | ||
494 | static int kvm_has_msr_hsave_pa(CPUState *env) | |
495 | { | |
496 | kvm_supported_msrs(env); | |
497 | return has_msr_hsave_pa; | |
498 | } | |
499 | ||
500 | static int kvm_has_msr_star(CPUState *env) | |
501 | { | |
502 | kvm_supported_msrs(env); | |
503 | return has_msr_star; | |
05330448 AL |
504 | } |
505 | ||
20420430 SY |
506 | static int kvm_init_identity_map_page(KVMState *s) |
507 | { | |
508 | #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR | |
509 | int ret; | |
510 | uint64_t addr = 0xfffbc000; | |
511 | ||
512 | if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { | |
513 | return 0; | |
514 | } | |
515 | ||
516 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr); | |
517 | if (ret < 0) { | |
518 | fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret)); | |
519 | return ret; | |
520 | } | |
521 | #endif | |
522 | return 0; | |
523 | } | |
524 | ||
05330448 AL |
525 | int kvm_arch_init(KVMState *s, int smp_cpus) |
526 | { | |
527 | int ret; | |
528 | ||
25d2e361 MT |
529 | struct utsname utsname; |
530 | ||
531 | uname(&utsname); | |
532 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
533 | ||
05330448 AL |
534 | /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code |
535 | * directly. In order to use vm86 mode, a TSS is needed. Since this | |
536 | * must be part of guest physical memory, we need to allocate it. Older | |
537 | * versions of KVM just assumed that it would be at the end of physical | |
538 | * memory but that doesn't work with more than 4GB of memory. We simply | |
539 | * refuse to work with those older versions of KVM. */ | |
984b5181 | 540 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); |
05330448 AL |
541 | if (ret <= 0) { |
542 | fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n"); | |
543 | return ret; | |
544 | } | |
545 | ||
546 | /* this address is 3 pages before the bios, and the bios should present | |
547 | * as unavaible memory. FIXME, need to ensure the e820 map deals with | |
548 | * this? | |
549 | */ | |
4c5b10b7 JS |
550 | /* |
551 | * Tell fw_cfg to notify the BIOS to reserve the range. | |
552 | */ | |
553 | if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) { | |
554 | perror("e820_add_entry() table is full"); | |
555 | exit(1); | |
556 | } | |
20420430 SY |
557 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); |
558 | if (ret < 0) { | |
559 | return ret; | |
560 | } | |
561 | ||
562 | return kvm_init_identity_map_page(s); | |
05330448 AL |
563 | } |
564 | ||
565 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
566 | { | |
567 | lhs->selector = rhs->selector; | |
568 | lhs->base = rhs->base; | |
569 | lhs->limit = rhs->limit; | |
570 | lhs->type = 3; | |
571 | lhs->present = 1; | |
572 | lhs->dpl = 3; | |
573 | lhs->db = 0; | |
574 | lhs->s = 1; | |
575 | lhs->l = 0; | |
576 | lhs->g = 0; | |
577 | lhs->avl = 0; | |
578 | lhs->unusable = 0; | |
579 | } | |
580 | ||
581 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
582 | { | |
583 | unsigned flags = rhs->flags; | |
584 | lhs->selector = rhs->selector; | |
585 | lhs->base = rhs->base; | |
586 | lhs->limit = rhs->limit; | |
587 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
588 | lhs->present = (flags & DESC_P_MASK) != 0; | |
589 | lhs->dpl = rhs->selector & 3; | |
590 | lhs->db = (flags >> DESC_B_SHIFT) & 1; | |
591 | lhs->s = (flags & DESC_S_MASK) != 0; | |
592 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
593 | lhs->g = (flags & DESC_G_MASK) != 0; | |
594 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
595 | lhs->unusable = 0; | |
596 | } | |
597 | ||
598 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
599 | { | |
600 | lhs->selector = rhs->selector; | |
601 | lhs->base = rhs->base; | |
602 | lhs->limit = rhs->limit; | |
603 | lhs->flags = | |
604 | (rhs->type << DESC_TYPE_SHIFT) | |
605 | | (rhs->present * DESC_P_MASK) | |
606 | | (rhs->dpl << DESC_DPL_SHIFT) | |
607 | | (rhs->db << DESC_B_SHIFT) | |
608 | | (rhs->s * DESC_S_MASK) | |
609 | | (rhs->l << DESC_L_SHIFT) | |
610 | | (rhs->g * DESC_G_MASK) | |
611 | | (rhs->avl * DESC_AVL_MASK); | |
612 | } | |
613 | ||
614 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
615 | { | |
616 | if (set) | |
617 | *kvm_reg = *qemu_reg; | |
618 | else | |
619 | *qemu_reg = *kvm_reg; | |
620 | } | |
621 | ||
622 | static int kvm_getput_regs(CPUState *env, int set) | |
623 | { | |
624 | struct kvm_regs regs; | |
625 | int ret = 0; | |
626 | ||
627 | if (!set) { | |
628 | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); | |
629 | if (ret < 0) | |
630 | return ret; | |
631 | } | |
632 | ||
633 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
634 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
635 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
636 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
637 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
638 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
639 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
640 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
641 | #ifdef TARGET_X86_64 | |
642 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
643 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
644 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
645 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
646 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
647 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
648 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
649 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
650 | #endif | |
651 | ||
652 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
653 | kvm_getput_reg(®s.rip, &env->eip, set); | |
654 | ||
655 | if (set) | |
656 | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); | |
657 | ||
658 | return ret; | |
659 | } | |
660 | ||
661 | static int kvm_put_fpu(CPUState *env) | |
662 | { | |
663 | struct kvm_fpu fpu; | |
664 | int i; | |
665 | ||
666 | memset(&fpu, 0, sizeof fpu); | |
667 | fpu.fsw = env->fpus & ~(7 << 11); | |
668 | fpu.fsw |= (env->fpstt & 7) << 11; | |
669 | fpu.fcw = env->fpuc; | |
670 | for (i = 0; i < 8; ++i) | |
671 | fpu.ftwx |= (!env->fptags[i]) << i; | |
672 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | |
673 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
674 | fpu.mxcsr = env->mxcsr; | |
675 | ||
676 | return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); | |
677 | } | |
678 | ||
f1665b21 SY |
679 | #ifdef KVM_CAP_XSAVE |
680 | #define XSAVE_CWD_RIP 2 | |
681 | #define XSAVE_CWD_RDP 4 | |
682 | #define XSAVE_MXCSR 6 | |
683 | #define XSAVE_ST_SPACE 8 | |
684 | #define XSAVE_XMM_SPACE 40 | |
685 | #define XSAVE_XSTATE_BV 128 | |
686 | #define XSAVE_YMMH_SPACE 144 | |
687 | #endif | |
688 | ||
689 | static int kvm_put_xsave(CPUState *env) | |
690 | { | |
691 | #ifdef KVM_CAP_XSAVE | |
0f53994f | 692 | int i, r; |
f1665b21 SY |
693 | struct kvm_xsave* xsave; |
694 | uint16_t cwd, swd, twd, fop; | |
695 | ||
696 | if (!kvm_has_xsave()) | |
697 | return kvm_put_fpu(env); | |
698 | ||
699 | xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
700 | memset(xsave, 0, sizeof(struct kvm_xsave)); | |
701 | cwd = swd = twd = fop = 0; | |
702 | swd = env->fpus & ~(7 << 11); | |
703 | swd |= (env->fpstt & 7) << 11; | |
704 | cwd = env->fpuc; | |
705 | for (i = 0; i < 8; ++i) | |
706 | twd |= (!env->fptags[i]) << i; | |
707 | xsave->region[0] = (uint32_t)(swd << 16) + cwd; | |
708 | xsave->region[1] = (uint32_t)(fop << 16) + twd; | |
709 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, | |
710 | sizeof env->fpregs); | |
711 | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | |
712 | sizeof env->xmm_regs); | |
713 | xsave->region[XSAVE_MXCSR] = env->mxcsr; | |
714 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
715 | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | |
716 | sizeof env->ymmh_regs); | |
0f53994f MT |
717 | r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave); |
718 | qemu_free(xsave); | |
719 | return r; | |
f1665b21 SY |
720 | #else |
721 | return kvm_put_fpu(env); | |
722 | #endif | |
723 | } | |
724 | ||
725 | static int kvm_put_xcrs(CPUState *env) | |
726 | { | |
727 | #ifdef KVM_CAP_XCRS | |
728 | struct kvm_xcrs xcrs; | |
729 | ||
730 | if (!kvm_has_xcrs()) | |
731 | return 0; | |
732 | ||
733 | xcrs.nr_xcrs = 1; | |
734 | xcrs.flags = 0; | |
735 | xcrs.xcrs[0].xcr = 0; | |
736 | xcrs.xcrs[0].value = env->xcr0; | |
737 | return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs); | |
738 | #else | |
739 | return 0; | |
740 | #endif | |
741 | } | |
742 | ||
05330448 AL |
743 | static int kvm_put_sregs(CPUState *env) |
744 | { | |
745 | struct kvm_sregs sregs; | |
746 | ||
0e607a80 JK |
747 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
748 | if (env->interrupt_injected >= 0) { | |
749 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
750 | (uint64_t)1 << (env->interrupt_injected % 64); | |
751 | } | |
05330448 AL |
752 | |
753 | if ((env->eflags & VM_MASK)) { | |
754 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | |
755 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
756 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
757 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
758 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
759 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
760 | } else { | |
761 | set_seg(&sregs.cs, &env->segs[R_CS]); | |
762 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
763 | set_seg(&sregs.es, &env->segs[R_ES]); | |
764 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
765 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
766 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
767 | ||
768 | if (env->cr[0] & CR0_PE_MASK) { | |
769 | /* force ss cpl to cs cpl */ | |
770 | sregs.ss.selector = (sregs.ss.selector & ~3) | | |
771 | (sregs.cs.selector & 3); | |
772 | sregs.ss.dpl = sregs.ss.selector & 3; | |
773 | } | |
774 | } | |
775 | ||
776 | set_seg(&sregs.tr, &env->tr); | |
777 | set_seg(&sregs.ldt, &env->ldt); | |
778 | ||
779 | sregs.idt.limit = env->idt.limit; | |
780 | sregs.idt.base = env->idt.base; | |
781 | sregs.gdt.limit = env->gdt.limit; | |
782 | sregs.gdt.base = env->gdt.base; | |
783 | ||
784 | sregs.cr0 = env->cr[0]; | |
785 | sregs.cr2 = env->cr[2]; | |
786 | sregs.cr3 = env->cr[3]; | |
787 | sregs.cr4 = env->cr[4]; | |
788 | ||
4a942cea BS |
789 | sregs.cr8 = cpu_get_apic_tpr(env->apic_state); |
790 | sregs.apic_base = cpu_get_apic_base(env->apic_state); | |
05330448 AL |
791 | |
792 | sregs.efer = env->efer; | |
793 | ||
794 | return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); | |
795 | } | |
796 | ||
797 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
798 | uint32_t index, uint64_t value) | |
799 | { | |
800 | entry->index = index; | |
801 | entry->data = value; | |
802 | } | |
803 | ||
ea643051 | 804 | static int kvm_put_msrs(CPUState *env, int level) |
05330448 AL |
805 | { |
806 | struct { | |
807 | struct kvm_msrs info; | |
808 | struct kvm_msr_entry entries[100]; | |
809 | } msr_data; | |
810 | struct kvm_msr_entry *msrs = msr_data.entries; | |
d8da8574 | 811 | int n = 0; |
05330448 AL |
812 | |
813 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
814 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
815 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
816 | if (kvm_has_msr_star(env)) | |
817 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | |
75b10c43 MT |
818 | if (kvm_has_msr_hsave_pa(env)) |
819 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); | |
05330448 | 820 | #ifdef TARGET_X86_64 |
25d2e361 MT |
821 | if (lm_capable_kernel) { |
822 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
823 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
824 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
825 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
826 | } | |
05330448 | 827 | #endif |
ea643051 | 828 | if (level == KVM_PUT_FULL_STATE) { |
384331a6 MT |
829 | /* |
830 | * KVM is yet unable to synchronize TSC values of multiple VCPUs on | |
831 | * writeback. Until this is fixed, we only write the offset to SMP | |
832 | * guests after migration, desynchronizing the VCPUs, but avoiding | |
833 | * huge jump-backs that would occur without any writeback at all. | |
834 | */ | |
835 | if (smp_cpus == 1 || env->tsc != 0) { | |
836 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | |
837 | } | |
ea643051 JK |
838 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
839 | env->system_time_msr); | |
840 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
841 | } | |
57780495 MT |
842 | #ifdef KVM_CAP_MCE |
843 | if (env->mcg_cap) { | |
d8da8574 | 844 | int i; |
57780495 MT |
845 | if (level == KVM_PUT_RESET_STATE) |
846 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); | |
847 | else if (level == KVM_PUT_FULL_STATE) { | |
848 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); | |
849 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
850 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) | |
851 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
852 | } | |
853 | } | |
854 | #endif | |
1a03675d | 855 | |
05330448 AL |
856 | msr_data.info.nmsrs = n; |
857 | ||
858 | return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); | |
859 | ||
860 | } | |
861 | ||
862 | ||
863 | static int kvm_get_fpu(CPUState *env) | |
864 | { | |
865 | struct kvm_fpu fpu; | |
866 | int i, ret; | |
867 | ||
868 | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); | |
869 | if (ret < 0) | |
870 | return ret; | |
871 | ||
872 | env->fpstt = (fpu.fsw >> 11) & 7; | |
873 | env->fpus = fpu.fsw; | |
874 | env->fpuc = fpu.fcw; | |
875 | for (i = 0; i < 8; ++i) | |
876 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
877 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | |
878 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
879 | env->mxcsr = fpu.mxcsr; | |
880 | ||
881 | return 0; | |
882 | } | |
883 | ||
f1665b21 SY |
884 | static int kvm_get_xsave(CPUState *env) |
885 | { | |
886 | #ifdef KVM_CAP_XSAVE | |
887 | struct kvm_xsave* xsave; | |
888 | int ret, i; | |
889 | uint16_t cwd, swd, twd, fop; | |
890 | ||
891 | if (!kvm_has_xsave()) | |
892 | return kvm_get_fpu(env); | |
893 | ||
894 | xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
895 | ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave); | |
0f53994f MT |
896 | if (ret < 0) { |
897 | qemu_free(xsave); | |
f1665b21 | 898 | return ret; |
0f53994f | 899 | } |
f1665b21 SY |
900 | |
901 | cwd = (uint16_t)xsave->region[0]; | |
902 | swd = (uint16_t)(xsave->region[0] >> 16); | |
903 | twd = (uint16_t)xsave->region[1]; | |
904 | fop = (uint16_t)(xsave->region[1] >> 16); | |
905 | env->fpstt = (swd >> 11) & 7; | |
906 | env->fpus = swd; | |
907 | env->fpuc = cwd; | |
908 | for (i = 0; i < 8; ++i) | |
909 | env->fptags[i] = !((twd >> i) & 1); | |
910 | env->mxcsr = xsave->region[XSAVE_MXCSR]; | |
911 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
912 | sizeof env->fpregs); | |
913 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | |
914 | sizeof env->xmm_regs); | |
915 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | |
916 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | |
917 | sizeof env->ymmh_regs); | |
0f53994f | 918 | qemu_free(xsave); |
f1665b21 SY |
919 | return 0; |
920 | #else | |
921 | return kvm_get_fpu(env); | |
922 | #endif | |
923 | } | |
924 | ||
925 | static int kvm_get_xcrs(CPUState *env) | |
926 | { | |
927 | #ifdef KVM_CAP_XCRS | |
928 | int i, ret; | |
929 | struct kvm_xcrs xcrs; | |
930 | ||
931 | if (!kvm_has_xcrs()) | |
932 | return 0; | |
933 | ||
934 | ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs); | |
935 | if (ret < 0) | |
936 | return ret; | |
937 | ||
938 | for (i = 0; i < xcrs.nr_xcrs; i++) | |
939 | /* Only support xcr0 now */ | |
940 | if (xcrs.xcrs[0].xcr == 0) { | |
941 | env->xcr0 = xcrs.xcrs[0].value; | |
942 | break; | |
943 | } | |
944 | return 0; | |
945 | #else | |
946 | return 0; | |
947 | #endif | |
948 | } | |
949 | ||
05330448 AL |
950 | static int kvm_get_sregs(CPUState *env) |
951 | { | |
952 | struct kvm_sregs sregs; | |
953 | uint32_t hflags; | |
0e607a80 | 954 | int bit, i, ret; |
05330448 AL |
955 | |
956 | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); | |
957 | if (ret < 0) | |
958 | return ret; | |
959 | ||
0e607a80 JK |
960 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
961 | to find it and save its number instead (-1 for none). */ | |
962 | env->interrupt_injected = -1; | |
963 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
964 | if (sregs.interrupt_bitmap[i]) { | |
965 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
966 | env->interrupt_injected = i * 64 + bit; | |
967 | break; | |
968 | } | |
969 | } | |
05330448 AL |
970 | |
971 | get_seg(&env->segs[R_CS], &sregs.cs); | |
972 | get_seg(&env->segs[R_DS], &sregs.ds); | |
973 | get_seg(&env->segs[R_ES], &sregs.es); | |
974 | get_seg(&env->segs[R_FS], &sregs.fs); | |
975 | get_seg(&env->segs[R_GS], &sregs.gs); | |
976 | get_seg(&env->segs[R_SS], &sregs.ss); | |
977 | ||
978 | get_seg(&env->tr, &sregs.tr); | |
979 | get_seg(&env->ldt, &sregs.ldt); | |
980 | ||
981 | env->idt.limit = sregs.idt.limit; | |
982 | env->idt.base = sregs.idt.base; | |
983 | env->gdt.limit = sregs.gdt.limit; | |
984 | env->gdt.base = sregs.gdt.base; | |
985 | ||
986 | env->cr[0] = sregs.cr0; | |
987 | env->cr[2] = sregs.cr2; | |
988 | env->cr[3] = sregs.cr3; | |
989 | env->cr[4] = sregs.cr4; | |
990 | ||
4a942cea | 991 | cpu_set_apic_base(env->apic_state, sregs.apic_base); |
05330448 AL |
992 | |
993 | env->efer = sregs.efer; | |
4a942cea | 994 | //cpu_set_apic_tpr(env->apic_state, sregs.cr8); |
05330448 AL |
995 | |
996 | #define HFLAG_COPY_MASK ~( \ | |
997 | HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
998 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
999 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1000 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
1001 | ||
1002 | ||
1003 | ||
1004 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
1005 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
1006 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
1007 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | |
1008 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | |
1009 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
1010 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | |
1011 | ||
1012 | if (env->efer & MSR_EFER_LMA) { | |
1013 | hflags |= HF_LMA_MASK; | |
1014 | } | |
1015 | ||
1016 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1017 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1018 | } else { | |
1019 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
1020 | (DESC_B_SHIFT - HF_CS32_SHIFT); | |
1021 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | |
1022 | (DESC_B_SHIFT - HF_SS32_SHIFT); | |
1023 | if (!(env->cr[0] & CR0_PE_MASK) || | |
1024 | (env->eflags & VM_MASK) || | |
1025 | !(hflags & HF_CS32_MASK)) { | |
1026 | hflags |= HF_ADDSEG_MASK; | |
1027 | } else { | |
1028 | hflags |= ((env->segs[R_DS].base | | |
1029 | env->segs[R_ES].base | | |
1030 | env->segs[R_SS].base) != 0) << | |
1031 | HF_ADDSEG_SHIFT; | |
1032 | } | |
1033 | } | |
1034 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1035 | |
1036 | return 0; | |
1037 | } | |
1038 | ||
1039 | static int kvm_get_msrs(CPUState *env) | |
1040 | { | |
1041 | struct { | |
1042 | struct kvm_msrs info; | |
1043 | struct kvm_msr_entry entries[100]; | |
1044 | } msr_data; | |
1045 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1046 | int ret, i, n; | |
1047 | ||
1048 | n = 0; | |
1049 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1050 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1051 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
1052 | if (kvm_has_msr_star(env)) | |
1053 | msrs[n++].index = MSR_STAR; | |
75b10c43 MT |
1054 | if (kvm_has_msr_hsave_pa(env)) |
1055 | msrs[n++].index = MSR_VM_HSAVE_PA; | |
05330448 AL |
1056 | msrs[n++].index = MSR_IA32_TSC; |
1057 | #ifdef TARGET_X86_64 | |
25d2e361 MT |
1058 | if (lm_capable_kernel) { |
1059 | msrs[n++].index = MSR_CSTAR; | |
1060 | msrs[n++].index = MSR_KERNELGSBASE; | |
1061 | msrs[n++].index = MSR_FMASK; | |
1062 | msrs[n++].index = MSR_LSTAR; | |
1063 | } | |
05330448 | 1064 | #endif |
1a03675d GC |
1065 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1066 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
1067 | ||
57780495 MT |
1068 | #ifdef KVM_CAP_MCE |
1069 | if (env->mcg_cap) { | |
1070 | msrs[n++].index = MSR_MCG_STATUS; | |
1071 | msrs[n++].index = MSR_MCG_CTL; | |
1072 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) | |
1073 | msrs[n++].index = MSR_MC0_CTL + i; | |
1074 | } | |
1075 | #endif | |
1076 | ||
05330448 AL |
1077 | msr_data.info.nmsrs = n; |
1078 | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); | |
1079 | if (ret < 0) | |
1080 | return ret; | |
1081 | ||
1082 | for (i = 0; i < ret; i++) { | |
1083 | switch (msrs[i].index) { | |
1084 | case MSR_IA32_SYSENTER_CS: | |
1085 | env->sysenter_cs = msrs[i].data; | |
1086 | break; | |
1087 | case MSR_IA32_SYSENTER_ESP: | |
1088 | env->sysenter_esp = msrs[i].data; | |
1089 | break; | |
1090 | case MSR_IA32_SYSENTER_EIP: | |
1091 | env->sysenter_eip = msrs[i].data; | |
1092 | break; | |
1093 | case MSR_STAR: | |
1094 | env->star = msrs[i].data; | |
1095 | break; | |
1096 | #ifdef TARGET_X86_64 | |
1097 | case MSR_CSTAR: | |
1098 | env->cstar = msrs[i].data; | |
1099 | break; | |
1100 | case MSR_KERNELGSBASE: | |
1101 | env->kernelgsbase = msrs[i].data; | |
1102 | break; | |
1103 | case MSR_FMASK: | |
1104 | env->fmask = msrs[i].data; | |
1105 | break; | |
1106 | case MSR_LSTAR: | |
1107 | env->lstar = msrs[i].data; | |
1108 | break; | |
1109 | #endif | |
1110 | case MSR_IA32_TSC: | |
1111 | env->tsc = msrs[i].data; | |
1112 | break; | |
aa851e36 MT |
1113 | case MSR_VM_HSAVE_PA: |
1114 | env->vm_hsave = msrs[i].data; | |
1115 | break; | |
1a03675d GC |
1116 | case MSR_KVM_SYSTEM_TIME: |
1117 | env->system_time_msr = msrs[i].data; | |
1118 | break; | |
1119 | case MSR_KVM_WALL_CLOCK: | |
1120 | env->wall_clock_msr = msrs[i].data; | |
1121 | break; | |
57780495 MT |
1122 | #ifdef KVM_CAP_MCE |
1123 | case MSR_MCG_STATUS: | |
1124 | env->mcg_status = msrs[i].data; | |
1125 | break; | |
1126 | case MSR_MCG_CTL: | |
1127 | env->mcg_ctl = msrs[i].data; | |
1128 | break; | |
1129 | #endif | |
1130 | default: | |
1131 | #ifdef KVM_CAP_MCE | |
1132 | if (msrs[i].index >= MSR_MC0_CTL && | |
1133 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1134 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 MT |
1135 | } |
1136 | #endif | |
d8da8574 | 1137 | break; |
05330448 AL |
1138 | } |
1139 | } | |
1140 | ||
1141 | return 0; | |
1142 | } | |
1143 | ||
9bdbe550 HB |
1144 | static int kvm_put_mp_state(CPUState *env) |
1145 | { | |
1146 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | |
1147 | ||
1148 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | |
1149 | } | |
1150 | ||
1151 | static int kvm_get_mp_state(CPUState *env) | |
1152 | { | |
1153 | struct kvm_mp_state mp_state; | |
1154 | int ret; | |
1155 | ||
1156 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | |
1157 | if (ret < 0) { | |
1158 | return ret; | |
1159 | } | |
1160 | env->mp_state = mp_state.mp_state; | |
1161 | return 0; | |
1162 | } | |
1163 | ||
ea643051 | 1164 | static int kvm_put_vcpu_events(CPUState *env, int level) |
a0fb002c JK |
1165 | { |
1166 | #ifdef KVM_CAP_VCPU_EVENTS | |
1167 | struct kvm_vcpu_events events; | |
1168 | ||
1169 | if (!kvm_has_vcpu_events()) { | |
1170 | return 0; | |
1171 | } | |
1172 | ||
31827373 JK |
1173 | events.exception.injected = (env->exception_injected >= 0); |
1174 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
1175 | events.exception.has_error_code = env->has_error_code; |
1176 | events.exception.error_code = env->error_code; | |
1177 | ||
1178 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1179 | events.interrupt.nr = env->interrupt_injected; | |
1180 | events.interrupt.soft = env->soft_interrupt; | |
1181 | ||
1182 | events.nmi.injected = env->nmi_injected; | |
1183 | events.nmi.pending = env->nmi_pending; | |
1184 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
1185 | ||
1186 | events.sipi_vector = env->sipi_vector; | |
1187 | ||
ea643051 JK |
1188 | events.flags = 0; |
1189 | if (level >= KVM_PUT_RESET_STATE) { | |
1190 | events.flags |= | |
1191 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1192 | } | |
aee028b9 | 1193 | |
a0fb002c JK |
1194 | return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); |
1195 | #else | |
1196 | return 0; | |
1197 | #endif | |
1198 | } | |
1199 | ||
1200 | static int kvm_get_vcpu_events(CPUState *env) | |
1201 | { | |
1202 | #ifdef KVM_CAP_VCPU_EVENTS | |
1203 | struct kvm_vcpu_events events; | |
1204 | int ret; | |
1205 | ||
1206 | if (!kvm_has_vcpu_events()) { | |
1207 | return 0; | |
1208 | } | |
1209 | ||
1210 | ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); | |
1211 | if (ret < 0) { | |
1212 | return ret; | |
1213 | } | |
31827373 | 1214 | env->exception_injected = |
a0fb002c JK |
1215 | events.exception.injected ? events.exception.nr : -1; |
1216 | env->has_error_code = events.exception.has_error_code; | |
1217 | env->error_code = events.exception.error_code; | |
1218 | ||
1219 | env->interrupt_injected = | |
1220 | events.interrupt.injected ? events.interrupt.nr : -1; | |
1221 | env->soft_interrupt = events.interrupt.soft; | |
1222 | ||
1223 | env->nmi_injected = events.nmi.injected; | |
1224 | env->nmi_pending = events.nmi.pending; | |
1225 | if (events.nmi.masked) { | |
1226 | env->hflags2 |= HF2_NMI_MASK; | |
1227 | } else { | |
1228 | env->hflags2 &= ~HF2_NMI_MASK; | |
1229 | } | |
1230 | ||
1231 | env->sipi_vector = events.sipi_vector; | |
1232 | #endif | |
1233 | ||
1234 | return 0; | |
1235 | } | |
1236 | ||
b0b1d690 JK |
1237 | static int kvm_guest_debug_workarounds(CPUState *env) |
1238 | { | |
1239 | int ret = 0; | |
1240 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1241 | unsigned long reinject_trap = 0; | |
1242 | ||
1243 | if (!kvm_has_vcpu_events()) { | |
1244 | if (env->exception_injected == 1) { | |
1245 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
1246 | } else if (env->exception_injected == 3) { | |
1247 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
1248 | } | |
1249 | env->exception_injected = -1; | |
1250 | } | |
1251 | ||
1252 | /* | |
1253 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
1254 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
1255 | * by updating the debug state once again if single-stepping is on. | |
1256 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
1257 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
1258 | * reinject them via SET_GUEST_DEBUG. | |
1259 | */ | |
1260 | if (reinject_trap || | |
1261 | (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | |
1262 | ret = kvm_update_guest_debug(env, reinject_trap); | |
1263 | } | |
1264 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
1265 | return ret; | |
1266 | } | |
1267 | ||
ff44f1a3 JK |
1268 | static int kvm_put_debugregs(CPUState *env) |
1269 | { | |
1270 | #ifdef KVM_CAP_DEBUGREGS | |
1271 | struct kvm_debugregs dbgregs; | |
1272 | int i; | |
1273 | ||
1274 | if (!kvm_has_debugregs()) { | |
1275 | return 0; | |
1276 | } | |
1277 | ||
1278 | for (i = 0; i < 4; i++) { | |
1279 | dbgregs.db[i] = env->dr[i]; | |
1280 | } | |
1281 | dbgregs.dr6 = env->dr[6]; | |
1282 | dbgregs.dr7 = env->dr[7]; | |
1283 | dbgregs.flags = 0; | |
1284 | ||
1285 | return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs); | |
1286 | #else | |
1287 | return 0; | |
1288 | #endif | |
1289 | } | |
1290 | ||
1291 | static int kvm_get_debugregs(CPUState *env) | |
1292 | { | |
1293 | #ifdef KVM_CAP_DEBUGREGS | |
1294 | struct kvm_debugregs dbgregs; | |
1295 | int i, ret; | |
1296 | ||
1297 | if (!kvm_has_debugregs()) { | |
1298 | return 0; | |
1299 | } | |
1300 | ||
1301 | ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs); | |
1302 | if (ret < 0) { | |
1303 | return ret; | |
1304 | } | |
1305 | for (i = 0; i < 4; i++) { | |
1306 | env->dr[i] = dbgregs.db[i]; | |
1307 | } | |
1308 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
1309 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
1310 | #endif | |
1311 | ||
1312 | return 0; | |
1313 | } | |
1314 | ||
ea375f9a | 1315 | int kvm_arch_put_registers(CPUState *env, int level) |
05330448 AL |
1316 | { |
1317 | int ret; | |
1318 | ||
dbaa07c4 JK |
1319 | assert(cpu_is_stopped(env) || qemu_cpu_self(env)); |
1320 | ||
05330448 AL |
1321 | ret = kvm_getput_regs(env, 1); |
1322 | if (ret < 0) | |
1323 | return ret; | |
1324 | ||
f1665b21 SY |
1325 | ret = kvm_put_xsave(env); |
1326 | if (ret < 0) | |
1327 | return ret; | |
1328 | ||
1329 | ret = kvm_put_xcrs(env); | |
05330448 AL |
1330 | if (ret < 0) |
1331 | return ret; | |
1332 | ||
1333 | ret = kvm_put_sregs(env); | |
1334 | if (ret < 0) | |
1335 | return ret; | |
1336 | ||
ea643051 | 1337 | ret = kvm_put_msrs(env, level); |
05330448 AL |
1338 | if (ret < 0) |
1339 | return ret; | |
1340 | ||
ea643051 JK |
1341 | if (level >= KVM_PUT_RESET_STATE) { |
1342 | ret = kvm_put_mp_state(env); | |
1343 | if (ret < 0) | |
1344 | return ret; | |
1345 | } | |
f8d926e9 | 1346 | |
ea643051 | 1347 | ret = kvm_put_vcpu_events(env, level); |
a0fb002c JK |
1348 | if (ret < 0) |
1349 | return ret; | |
1350 | ||
b0b1d690 JK |
1351 | /* must be last */ |
1352 | ret = kvm_guest_debug_workarounds(env); | |
1353 | if (ret < 0) | |
1354 | return ret; | |
1355 | ||
ff44f1a3 JK |
1356 | ret = kvm_put_debugregs(env); |
1357 | if (ret < 0) | |
1358 | return ret; | |
1359 | ||
05330448 AL |
1360 | return 0; |
1361 | } | |
1362 | ||
1363 | int kvm_arch_get_registers(CPUState *env) | |
1364 | { | |
1365 | int ret; | |
1366 | ||
dbaa07c4 JK |
1367 | assert(cpu_is_stopped(env) || qemu_cpu_self(env)); |
1368 | ||
05330448 AL |
1369 | ret = kvm_getput_regs(env, 0); |
1370 | if (ret < 0) | |
1371 | return ret; | |
1372 | ||
f1665b21 SY |
1373 | ret = kvm_get_xsave(env); |
1374 | if (ret < 0) | |
1375 | return ret; | |
1376 | ||
1377 | ret = kvm_get_xcrs(env); | |
05330448 AL |
1378 | if (ret < 0) |
1379 | return ret; | |
1380 | ||
1381 | ret = kvm_get_sregs(env); | |
1382 | if (ret < 0) | |
1383 | return ret; | |
1384 | ||
1385 | ret = kvm_get_msrs(env); | |
1386 | if (ret < 0) | |
1387 | return ret; | |
1388 | ||
5a2e3c2e JK |
1389 | ret = kvm_get_mp_state(env); |
1390 | if (ret < 0) | |
1391 | return ret; | |
1392 | ||
a0fb002c JK |
1393 | ret = kvm_get_vcpu_events(env); |
1394 | if (ret < 0) | |
1395 | return ret; | |
1396 | ||
ff44f1a3 JK |
1397 | ret = kvm_get_debugregs(env); |
1398 | if (ret < 0) | |
1399 | return ret; | |
1400 | ||
05330448 AL |
1401 | return 0; |
1402 | } | |
1403 | ||
1404 | int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) | |
1405 | { | |
1406 | /* Try to inject an interrupt if the guest can accept it */ | |
1407 | if (run->ready_for_interrupt_injection && | |
1408 | (env->interrupt_request & CPU_INTERRUPT_HARD) && | |
1409 | (env->eflags & IF_MASK)) { | |
1410 | int irq; | |
1411 | ||
1412 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
1413 | irq = cpu_get_pic_interrupt(env); | |
1414 | if (irq >= 0) { | |
1415 | struct kvm_interrupt intr; | |
1416 | intr.irq = irq; | |
1417 | /* FIXME: errors */ | |
8c0d577e | 1418 | DPRINTF("injected interrupt %d\n", irq); |
05330448 AL |
1419 | kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); |
1420 | } | |
1421 | } | |
1422 | ||
1423 | /* If we have an interrupt but the guest is not ready to receive an | |
1424 | * interrupt, request an interrupt window exit. This will | |
1425 | * cause a return to userspace as soon as the guest is ready to | |
1426 | * receive interrupts. */ | |
1427 | if ((env->interrupt_request & CPU_INTERRUPT_HARD)) | |
1428 | run->request_interrupt_window = 1; | |
1429 | else | |
1430 | run->request_interrupt_window = 0; | |
1431 | ||
8c0d577e | 1432 | DPRINTF("setting tpr\n"); |
4a942cea | 1433 | run->cr8 = cpu_get_apic_tpr(env->apic_state); |
05330448 AL |
1434 | |
1435 | return 0; | |
1436 | } | |
1437 | ||
1438 | int kvm_arch_post_run(CPUState *env, struct kvm_run *run) | |
1439 | { | |
1440 | if (run->if_flag) | |
1441 | env->eflags |= IF_MASK; | |
1442 | else | |
1443 | env->eflags &= ~IF_MASK; | |
1444 | ||
4a942cea BS |
1445 | cpu_set_apic_tpr(env->apic_state, run->cr8); |
1446 | cpu_set_apic_base(env->apic_state, run->apic_base); | |
05330448 AL |
1447 | |
1448 | return 0; | |
1449 | } | |
1450 | ||
0af691d7 MT |
1451 | int kvm_arch_process_irqchip_events(CPUState *env) |
1452 | { | |
1453 | if (env->interrupt_request & CPU_INTERRUPT_INIT) { | |
1454 | kvm_cpu_synchronize_state(env); | |
1455 | do_cpu_init(env); | |
1456 | env->exception_index = EXCP_HALTED; | |
1457 | } | |
1458 | ||
1459 | if (env->interrupt_request & CPU_INTERRUPT_SIPI) { | |
1460 | kvm_cpu_synchronize_state(env); | |
1461 | do_cpu_sipi(env); | |
1462 | } | |
1463 | ||
1464 | return env->halted; | |
1465 | } | |
1466 | ||
05330448 AL |
1467 | static int kvm_handle_halt(CPUState *env) |
1468 | { | |
1469 | if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && | |
1470 | (env->eflags & IF_MASK)) && | |
1471 | !(env->interrupt_request & CPU_INTERRUPT_NMI)) { | |
1472 | env->halted = 1; | |
1473 | env->exception_index = EXCP_HLT; | |
1474 | return 0; | |
1475 | } | |
1476 | ||
1477 | return 1; | |
1478 | } | |
1479 | ||
1480 | int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) | |
1481 | { | |
1482 | int ret = 0; | |
1483 | ||
1484 | switch (run->exit_reason) { | |
1485 | case KVM_EXIT_HLT: | |
8c0d577e | 1486 | DPRINTF("handle_hlt\n"); |
05330448 AL |
1487 | ret = kvm_handle_halt(env); |
1488 | break; | |
1489 | } | |
1490 | ||
1491 | return ret; | |
1492 | } | |
e22a25c9 AL |
1493 | |
1494 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
e22a25c9 AL |
1495 | int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
1496 | { | |
38972938 | 1497 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 1498 | |
e22a25c9 | 1499 | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
64bf3f4e | 1500 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) |
e22a25c9 AL |
1501 | return -EINVAL; |
1502 | return 0; | |
1503 | } | |
1504 | ||
1505 | int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) | |
1506 | { | |
1507 | uint8_t int3; | |
1508 | ||
1509 | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | |
64bf3f4e | 1510 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
e22a25c9 AL |
1511 | return -EINVAL; |
1512 | return 0; | |
1513 | } | |
1514 | ||
1515 | static struct { | |
1516 | target_ulong addr; | |
1517 | int len; | |
1518 | int type; | |
1519 | } hw_breakpoint[4]; | |
1520 | ||
1521 | static int nb_hw_breakpoint; | |
1522 | ||
1523 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
1524 | { | |
1525 | int n; | |
1526 | ||
1527 | for (n = 0; n < nb_hw_breakpoint; n++) | |
1528 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | |
1529 | (hw_breakpoint[n].len == len || len == -1)) | |
1530 | return n; | |
1531 | return -1; | |
1532 | } | |
1533 | ||
1534 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
1535 | target_ulong len, int type) | |
1536 | { | |
1537 | switch (type) { | |
1538 | case GDB_BREAKPOINT_HW: | |
1539 | len = 1; | |
1540 | break; | |
1541 | case GDB_WATCHPOINT_WRITE: | |
1542 | case GDB_WATCHPOINT_ACCESS: | |
1543 | switch (len) { | |
1544 | case 1: | |
1545 | break; | |
1546 | case 2: | |
1547 | case 4: | |
1548 | case 8: | |
1549 | if (addr & (len - 1)) | |
1550 | return -EINVAL; | |
1551 | break; | |
1552 | default: | |
1553 | return -EINVAL; | |
1554 | } | |
1555 | break; | |
1556 | default: | |
1557 | return -ENOSYS; | |
1558 | } | |
1559 | ||
1560 | if (nb_hw_breakpoint == 4) | |
1561 | return -ENOBUFS; | |
1562 | ||
1563 | if (find_hw_breakpoint(addr, len, type) >= 0) | |
1564 | return -EEXIST; | |
1565 | ||
1566 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | |
1567 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
1568 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
1569 | nb_hw_breakpoint++; | |
1570 | ||
1571 | return 0; | |
1572 | } | |
1573 | ||
1574 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
1575 | target_ulong len, int type) | |
1576 | { | |
1577 | int n; | |
1578 | ||
1579 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
1580 | if (n < 0) | |
1581 | return -ENOENT; | |
1582 | ||
1583 | nb_hw_breakpoint--; | |
1584 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
1585 | ||
1586 | return 0; | |
1587 | } | |
1588 | ||
1589 | void kvm_arch_remove_all_hw_breakpoints(void) | |
1590 | { | |
1591 | nb_hw_breakpoint = 0; | |
1592 | } | |
1593 | ||
1594 | static CPUWatchpoint hw_watchpoint; | |
1595 | ||
1596 | int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) | |
1597 | { | |
1598 | int handle = 0; | |
1599 | int n; | |
1600 | ||
1601 | if (arch_info->exception == 1) { | |
1602 | if (arch_info->dr6 & (1 << 14)) { | |
1603 | if (cpu_single_env->singlestep_enabled) | |
1604 | handle = 1; | |
1605 | } else { | |
1606 | for (n = 0; n < 4; n++) | |
1607 | if (arch_info->dr6 & (1 << n)) | |
1608 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | |
1609 | case 0x0: | |
1610 | handle = 1; | |
1611 | break; | |
1612 | case 0x1: | |
1613 | handle = 1; | |
1614 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
1615 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1616 | hw_watchpoint.flags = BP_MEM_WRITE; | |
1617 | break; | |
1618 | case 0x3: | |
1619 | handle = 1; | |
1620 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
1621 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1622 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
1623 | break; | |
1624 | } | |
1625 | } | |
1626 | } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) | |
1627 | handle = 1; | |
1628 | ||
b0b1d690 JK |
1629 | if (!handle) { |
1630 | cpu_synchronize_state(cpu_single_env); | |
1631 | assert(cpu_single_env->exception_injected == -1); | |
1632 | ||
1633 | cpu_single_env->exception_injected = arch_info->exception; | |
1634 | cpu_single_env->has_error_code = 0; | |
1635 | } | |
e22a25c9 AL |
1636 | |
1637 | return handle; | |
1638 | } | |
1639 | ||
1640 | void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) | |
1641 | { | |
1642 | const uint8_t type_code[] = { | |
1643 | [GDB_BREAKPOINT_HW] = 0x0, | |
1644 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
1645 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
1646 | }; | |
1647 | const uint8_t len_code[] = { | |
1648 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
1649 | }; | |
1650 | int n; | |
1651 | ||
1652 | if (kvm_sw_breakpoints_active(env)) | |
1653 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
1654 | ||
1655 | if (nb_hw_breakpoint > 0) { | |
1656 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
1657 | dbg->arch.debugreg[7] = 0x0600; | |
1658 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
1659 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
1660 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
1661 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
1662 | (len_code[hw_breakpoint[n].len] << (18 + n*4)); | |
1663 | } | |
1664 | } | |
f1665b21 SY |
1665 | /* Legal xcr0 for loading */ |
1666 | env->xcr0 = 1; | |
e22a25c9 AL |
1667 | } |
1668 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
4513d923 GN |
1669 | |
1670 | bool kvm_arch_stop_on_emulation_error(CPUState *env) | |
1671 | { | |
1672 | return !(env->cr[0] & CR0_PE_MASK) || | |
1673 | ((env->segs[R_CS].selector & 3) != 3); | |
1674 | } | |
1675 | ||
c0532a76 MT |
1676 | static void hardware_memory_error(void) |
1677 | { | |
1678 | fprintf(stderr, "Hardware memory error!\n"); | |
1679 | exit(1); | |
1680 | } | |
1681 | ||
f71ac88f HS |
1682 | #ifdef KVM_CAP_MCE |
1683 | static void kvm_mce_broadcast_rest(CPUState *env) | |
1684 | { | |
1685 | CPUState *cenv; | |
1686 | int family, model, cpuver = env->cpuid_version; | |
1687 | ||
1688 | family = (cpuver >> 8) & 0xf; | |
1689 | model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf); | |
1690 | ||
1691 | /* Broadcast MCA signal for processor version 06H_EH and above */ | |
1692 | if ((family == 6 && model >= 14) || family > 6) { | |
1693 | for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) { | |
1694 | if (cenv == env) { | |
1695 | continue; | |
1696 | } | |
1697 | kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC, | |
1698 | MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1); | |
1699 | } | |
1700 | } | |
1701 | } | |
1702 | #endif | |
1703 | ||
c0532a76 MT |
1704 | int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) |
1705 | { | |
1706 | #if defined(KVM_CAP_MCE) | |
1707 | struct kvm_x86_mce mce = { | |
1708 | .bank = 9, | |
1709 | }; | |
1710 | void *vaddr; | |
1711 | ram_addr_t ram_addr; | |
1712 | target_phys_addr_t paddr; | |
1713 | int r; | |
1714 | ||
1715 | if ((env->mcg_cap & MCG_SER_P) && addr | |
1716 | && (code == BUS_MCEERR_AR | |
1717 | || code == BUS_MCEERR_AO)) { | |
1718 | if (code == BUS_MCEERR_AR) { | |
1719 | /* Fake an Intel architectural Data Load SRAR UCR */ | |
1720 | mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
1721 | | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S | |
1722 | | MCI_STATUS_AR | 0x134; | |
1723 | mce.misc = (MCM_ADDR_PHYS << 6) | 0xc; | |
1724 | mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV; | |
1725 | } else { | |
1726 | /* | |
1727 | * If there is an MCE excpetion being processed, ignore | |
1728 | * this SRAO MCE | |
1729 | */ | |
1730 | r = kvm_mce_in_exception(env); | |
1731 | if (r == -1) { | |
1732 | fprintf(stderr, "Failed to get MCE status\n"); | |
1733 | } else if (r) { | |
1734 | return 0; | |
1735 | } | |
1736 | /* Fake an Intel architectural Memory scrubbing UCR */ | |
1737 | mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
1738 | | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S | |
1739 | | 0xc0; | |
1740 | mce.misc = (MCM_ADDR_PHYS << 6) | 0xc; | |
1741 | mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; | |
1742 | } | |
1743 | vaddr = (void *)addr; | |
1744 | if (qemu_ram_addr_from_host(vaddr, &ram_addr) || | |
1745 | !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) { | |
1746 | fprintf(stderr, "Hardware memory error for memory used by " | |
1747 | "QEMU itself instead of guest system!\n"); | |
1748 | /* Hope we are lucky for AO MCE */ | |
1749 | if (code == BUS_MCEERR_AO) { | |
1750 | return 0; | |
1751 | } else { | |
1752 | hardware_memory_error(); | |
1753 | } | |
1754 | } | |
1755 | mce.addr = paddr; | |
1756 | r = kvm_set_mce(env, &mce); | |
1757 | if (r < 0) { | |
1758 | fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno)); | |
1759 | abort(); | |
1760 | } | |
f71ac88f | 1761 | kvm_mce_broadcast_rest(env); |
c0532a76 MT |
1762 | } else |
1763 | #endif | |
1764 | { | |
1765 | if (code == BUS_MCEERR_AO) { | |
1766 | return 0; | |
1767 | } else if (code == BUS_MCEERR_AR) { | |
1768 | hardware_memory_error(); | |
1769 | } else { | |
1770 | return 1; | |
1771 | } | |
1772 | } | |
1773 | return 0; | |
1774 | } | |
1775 | ||
1776 | int kvm_on_sigbus(int code, void *addr) | |
1777 | { | |
1778 | #if defined(KVM_CAP_MCE) | |
1779 | if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
1780 | uint64_t status; | |
1781 | void *vaddr; | |
1782 | ram_addr_t ram_addr; | |
1783 | target_phys_addr_t paddr; | |
c0532a76 MT |
1784 | |
1785 | /* Hope we are lucky for AO MCE */ | |
1786 | vaddr = addr; | |
1787 | if (qemu_ram_addr_from_host(vaddr, &ram_addr) || | |
1788 | !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) { | |
1789 | fprintf(stderr, "Hardware memory error for memory used by " | |
1790 | "QEMU itself instead of guest system!: %p\n", addr); | |
1791 | return 0; | |
1792 | } | |
1793 | status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
1794 | | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S | |
1795 | | 0xc0; | |
1796 | kvm_inject_x86_mce(first_cpu, 9, status, | |
1797 | MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr, | |
1798 | (MCM_ADDR_PHYS << 6) | 0xc, 1); | |
f71ac88f | 1799 | kvm_mce_broadcast_rest(first_cpu); |
c0532a76 MT |
1800 | } else |
1801 | #endif | |
1802 | { | |
1803 | if (code == BUS_MCEERR_AO) { | |
1804 | return 0; | |
1805 | } else if (code == BUS_MCEERR_AR) { | |
1806 | hardware_memory_error(); | |
1807 | } else { | |
1808 | return 1; | |
1809 | } | |
1810 | } | |
1811 | return 0; | |
1812 | } |