]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
9c17d615 PB |
24 | #include "sysemu/sysemu.h" |
25 | #include "sysemu/kvm.h" | |
1d31f66b | 26 | #include "kvm_i386.h" |
05330448 | 27 | #include "cpu.h" |
022c62cb | 28 | #include "exec/gdbstub.h" |
1de7afc9 PB |
29 | #include "qemu/host-utils.h" |
30 | #include "qemu/config-file.h" | |
0d09e41a PB |
31 | #include "hw/i386/pc.h" |
32 | #include "hw/i386/apic.h" | |
e0723c45 PB |
33 | #include "hw/i386/apic_internal.h" |
34 | #include "hw/i386/apic-msidef.h" | |
022c62cb | 35 | #include "exec/ioport.h" |
92067bf4 | 36 | #include <asm/hyperv.h> |
a2cb15b0 | 37 | #include "hw/pci/pci.h" |
68bfd0ad | 38 | #include "migration/migration.h" |
4c663752 | 39 | #include "exec/memattrs.h" |
05330448 AL |
40 | |
41 | //#define DEBUG_KVM | |
42 | ||
43 | #ifdef DEBUG_KVM | |
8c0d577e | 44 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
45 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
46 | #else | |
8c0d577e | 47 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
48 | do { } while (0) |
49 | #endif | |
50 | ||
1a03675d GC |
51 | #define MSR_KVM_WALL_CLOCK 0x11 |
52 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
53 | ||
c0532a76 MT |
54 | #ifndef BUS_MCEERR_AR |
55 | #define BUS_MCEERR_AR 4 | |
56 | #endif | |
57 | #ifndef BUS_MCEERR_AO | |
58 | #define BUS_MCEERR_AO 5 | |
59 | #endif | |
60 | ||
94a8d39a JK |
61 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
62 | KVM_CAP_INFO(SET_TSS_ADDR), | |
63 | KVM_CAP_INFO(EXT_CPUID), | |
64 | KVM_CAP_INFO(MP_STATE), | |
65 | KVM_CAP_LAST_INFO | |
66 | }; | |
25d2e361 | 67 | |
c3a3a7d3 JK |
68 | static bool has_msr_star; |
69 | static bool has_msr_hsave_pa; | |
f28558d3 | 70 | static bool has_msr_tsc_adjust; |
aa82ba54 | 71 | static bool has_msr_tsc_deadline; |
df67696e | 72 | static bool has_msr_feature_control; |
c5999bfc | 73 | static bool has_msr_async_pf_en; |
bc9a839d | 74 | static bool has_msr_pv_eoi_en; |
21e87c46 | 75 | static bool has_msr_misc_enable; |
fc12d72e | 76 | static bool has_msr_smbase; |
79e9ebeb | 77 | static bool has_msr_bndcfgs; |
917367aa | 78 | static bool has_msr_kvm_steal_time; |
25d2e361 | 79 | static int lm_capable_kernel; |
7bc3d711 PB |
80 | static bool has_msr_hv_hypercall; |
81 | static bool has_msr_hv_vapic; | |
48a5f3bc | 82 | static bool has_msr_hv_tsc; |
d1ae67f6 | 83 | static bool has_msr_mtrr; |
18cd2c17 | 84 | static bool has_msr_xss; |
b827df58 | 85 | |
0d894367 PB |
86 | static bool has_msr_architectural_pmu; |
87 | static uint32_t num_architectural_pmu_counters; | |
88 | ||
1d31f66b PM |
89 | bool kvm_allows_irq0_override(void) |
90 | { | |
91 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
92 | } | |
93 | ||
b827df58 AK |
94 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
95 | { | |
96 | struct kvm_cpuid2 *cpuid; | |
97 | int r, size; | |
98 | ||
99 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 100 | cpuid = g_malloc0(size); |
b827df58 AK |
101 | cpuid->nent = max; |
102 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
103 | if (r == 0 && cpuid->nent >= max) { |
104 | r = -E2BIG; | |
105 | } | |
b827df58 AK |
106 | if (r < 0) { |
107 | if (r == -E2BIG) { | |
7267c094 | 108 | g_free(cpuid); |
b827df58 AK |
109 | return NULL; |
110 | } else { | |
111 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
112 | strerror(-r)); | |
113 | exit(1); | |
114 | } | |
115 | } | |
116 | return cpuid; | |
117 | } | |
118 | ||
dd87f8a6 EH |
119 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
120 | * for all entries. | |
121 | */ | |
122 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
123 | { | |
124 | struct kvm_cpuid2 *cpuid; | |
125 | int max = 1; | |
126 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
127 | max *= 2; | |
128 | } | |
129 | return cpuid; | |
130 | } | |
131 | ||
a443bc34 | 132 | static const struct kvm_para_features { |
0c31b744 GC |
133 | int cap; |
134 | int feature; | |
135 | } para_features[] = { | |
136 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
137 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
138 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 139 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
140 | }; |
141 | ||
ba9bc59e | 142 | static int get_para_features(KVMState *s) |
0c31b744 GC |
143 | { |
144 | int i, features = 0; | |
145 | ||
8e03c100 | 146 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 147 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
148 | features |= (1 << para_features[i].feature); |
149 | } | |
150 | } | |
151 | ||
152 | return features; | |
153 | } | |
0c31b744 GC |
154 | |
155 | ||
829ae2f9 EH |
156 | /* Returns the value for a specific register on the cpuid entry |
157 | */ | |
158 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
159 | { | |
160 | uint32_t ret = 0; | |
161 | switch (reg) { | |
162 | case R_EAX: | |
163 | ret = entry->eax; | |
164 | break; | |
165 | case R_EBX: | |
166 | ret = entry->ebx; | |
167 | break; | |
168 | case R_ECX: | |
169 | ret = entry->ecx; | |
170 | break; | |
171 | case R_EDX: | |
172 | ret = entry->edx; | |
173 | break; | |
174 | } | |
175 | return ret; | |
176 | } | |
177 | ||
4fb73f1d EH |
178 | /* Find matching entry for function/index on kvm_cpuid2 struct |
179 | */ | |
180 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
181 | uint32_t function, | |
182 | uint32_t index) | |
183 | { | |
184 | int i; | |
185 | for (i = 0; i < cpuid->nent; ++i) { | |
186 | if (cpuid->entries[i].function == function && | |
187 | cpuid->entries[i].index == index) { | |
188 | return &cpuid->entries[i]; | |
189 | } | |
190 | } | |
191 | /* not found: */ | |
192 | return NULL; | |
193 | } | |
194 | ||
ba9bc59e | 195 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 196 | uint32_t index, int reg) |
b827df58 AK |
197 | { |
198 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
199 | uint32_t ret = 0; |
200 | uint32_t cpuid_1_edx; | |
8c723b79 | 201 | bool found = false; |
b827df58 | 202 | |
dd87f8a6 | 203 | cpuid = get_supported_cpuid(s); |
b827df58 | 204 | |
4fb73f1d EH |
205 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
206 | if (entry) { | |
207 | found = true; | |
208 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
209 | } |
210 | ||
7b46e5ce EH |
211 | /* Fixups for the data returned by KVM, below */ |
212 | ||
c2acb022 EH |
213 | if (function == 1 && reg == R_EDX) { |
214 | /* KVM before 2.6.30 misreports the following features */ | |
215 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
216 | } else if (function == 1 && reg == R_ECX) { |
217 | /* We can set the hypervisor flag, even if KVM does not return it on | |
218 | * GET_SUPPORTED_CPUID | |
219 | */ | |
220 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
221 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
222 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
223 | * and the irqchip is in the kernel. | |
224 | */ | |
225 | if (kvm_irqchip_in_kernel() && | |
226 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
227 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
228 | } | |
41e5e76d EH |
229 | |
230 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
231 | * without the in-kernel irqchip | |
232 | */ | |
233 | if (!kvm_irqchip_in_kernel()) { | |
234 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 235 | } |
c2acb022 EH |
236 | } else if (function == 0x80000001 && reg == R_EDX) { |
237 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
238 | * so add missing bits according to the AMD spec: | |
239 | */ | |
240 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
241 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
242 | } |
243 | ||
7267c094 | 244 | g_free(cpuid); |
b827df58 | 245 | |
0c31b744 | 246 | /* fallback for older kernels */ |
8c723b79 | 247 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 248 | ret = get_para_features(s); |
b9bec74b | 249 | } |
0c31b744 GC |
250 | |
251 | return ret; | |
bb0300dc | 252 | } |
bb0300dc | 253 | |
3c85e74f HY |
254 | typedef struct HWPoisonPage { |
255 | ram_addr_t ram_addr; | |
256 | QLIST_ENTRY(HWPoisonPage) list; | |
257 | } HWPoisonPage; | |
258 | ||
259 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
260 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
261 | ||
262 | static void kvm_unpoison_all(void *param) | |
263 | { | |
264 | HWPoisonPage *page, *next_page; | |
265 | ||
266 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
267 | QLIST_REMOVE(page, list); | |
268 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 269 | g_free(page); |
3c85e74f HY |
270 | } |
271 | } | |
272 | ||
3c85e74f HY |
273 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
274 | { | |
275 | HWPoisonPage *page; | |
276 | ||
277 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
278 | if (page->ram_addr == ram_addr) { | |
279 | return; | |
280 | } | |
281 | } | |
ab3ad07f | 282 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
283 | page->ram_addr = ram_addr; |
284 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
285 | } | |
286 | ||
e7701825 MT |
287 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
288 | int *max_banks) | |
289 | { | |
290 | int r; | |
291 | ||
14a09518 | 292 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
293 | if (r > 0) { |
294 | *max_banks = r; | |
295 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
296 | } | |
297 | return -ENOSYS; | |
298 | } | |
299 | ||
bee615d4 | 300 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 301 | { |
bee615d4 | 302 | CPUX86State *env = &cpu->env; |
c34d440a JK |
303 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
304 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
305 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
e7701825 | 306 | |
c34d440a JK |
307 | if (code == BUS_MCEERR_AR) { |
308 | status |= MCI_STATUS_AR | 0x134; | |
309 | mcg_status |= MCG_STATUS_EIPV; | |
310 | } else { | |
311 | status |= 0xc0; | |
312 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 313 | } |
8c5cf3b6 | 314 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
c34d440a JK |
315 | (MCM_ADDR_PHYS << 6) | 0xc, |
316 | cpu_x86_support_mca_broadcast(env) ? | |
317 | MCE_INJECT_BROADCAST : 0); | |
419fb20a | 318 | } |
419fb20a JK |
319 | |
320 | static void hardware_memory_error(void) | |
321 | { | |
322 | fprintf(stderr, "Hardware memory error!\n"); | |
323 | exit(1); | |
324 | } | |
325 | ||
20d695a9 | 326 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 327 | { |
20d695a9 AF |
328 | X86CPU *cpu = X86_CPU(c); |
329 | CPUX86State *env = &cpu->env; | |
419fb20a | 330 | ram_addr_t ram_addr; |
a8170e5e | 331 | hwaddr paddr; |
419fb20a JK |
332 | |
333 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 334 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
1b5ec234 | 335 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
a60f24b5 | 336 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
337 | fprintf(stderr, "Hardware memory error for memory used by " |
338 | "QEMU itself instead of guest system!\n"); | |
339 | /* Hope we are lucky for AO MCE */ | |
340 | if (code == BUS_MCEERR_AO) { | |
341 | return 0; | |
342 | } else { | |
343 | hardware_memory_error(); | |
344 | } | |
345 | } | |
3c85e74f | 346 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 347 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 348 | } else { |
419fb20a JK |
349 | if (code == BUS_MCEERR_AO) { |
350 | return 0; | |
351 | } else if (code == BUS_MCEERR_AR) { | |
352 | hardware_memory_error(); | |
353 | } else { | |
354 | return 1; | |
355 | } | |
356 | } | |
357 | return 0; | |
358 | } | |
359 | ||
360 | int kvm_arch_on_sigbus(int code, void *addr) | |
361 | { | |
182735ef AF |
362 | X86CPU *cpu = X86_CPU(first_cpu); |
363 | ||
364 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 365 | ram_addr_t ram_addr; |
a8170e5e | 366 | hwaddr paddr; |
419fb20a JK |
367 | |
368 | /* Hope we are lucky for AO MCE */ | |
1b5ec234 | 369 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
182735ef | 370 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 371 | addr, &paddr)) { |
419fb20a JK |
372 | fprintf(stderr, "Hardware memory error for memory used by " |
373 | "QEMU itself instead of guest system!: %p\n", addr); | |
374 | return 0; | |
375 | } | |
3c85e74f | 376 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 377 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 378 | } else { |
419fb20a JK |
379 | if (code == BUS_MCEERR_AO) { |
380 | return 0; | |
381 | } else if (code == BUS_MCEERR_AR) { | |
382 | hardware_memory_error(); | |
383 | } else { | |
384 | return 1; | |
385 | } | |
386 | } | |
387 | return 0; | |
388 | } | |
e7701825 | 389 | |
1bc22652 | 390 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 391 | { |
1bc22652 AF |
392 | CPUX86State *env = &cpu->env; |
393 | ||
ab443475 JK |
394 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
395 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
396 | struct kvm_x86_mce mce; | |
397 | ||
398 | env->exception_injected = -1; | |
399 | ||
400 | /* | |
401 | * There must be at least one bank in use if an MCE is pending. | |
402 | * Find it and use its values for the event injection. | |
403 | */ | |
404 | for (bank = 0; bank < bank_num; bank++) { | |
405 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
406 | break; | |
407 | } | |
408 | } | |
409 | assert(bank < bank_num); | |
410 | ||
411 | mce.bank = bank; | |
412 | mce.status = env->mce_banks[bank * 4 + 1]; | |
413 | mce.mcg_status = env->mcg_status; | |
414 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
415 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
416 | ||
1bc22652 | 417 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 418 | } |
ab443475 JK |
419 | return 0; |
420 | } | |
421 | ||
1dfb4dd9 | 422 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 423 | { |
317ac620 | 424 | CPUX86State *env = opaque; |
b8cc45d6 GC |
425 | |
426 | if (running) { | |
427 | env->tsc_valid = false; | |
428 | } | |
429 | } | |
430 | ||
83b17af5 | 431 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 432 | { |
83b17af5 | 433 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 434 | return cpu->apic_id; |
b164e48e EH |
435 | } |
436 | ||
92067bf4 IM |
437 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
438 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
439 | #endif | |
440 | ||
441 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
442 | { | |
443 | return cpu->hyperv_vapic || | |
444 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
445 | } | |
446 | ||
447 | static bool hyperv_enabled(X86CPU *cpu) | |
448 | { | |
7bc3d711 PB |
449 | CPUState *cs = CPU(cpu); |
450 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
451 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 452 | cpu->hyperv_time || |
7bc3d711 | 453 | cpu->hyperv_relaxed_timing); |
92067bf4 IM |
454 | } |
455 | ||
68bfd0ad MT |
456 | static Error *invtsc_mig_blocker; |
457 | ||
f8bb0565 | 458 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 459 | |
20d695a9 | 460 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
461 | { |
462 | struct { | |
486bd5a2 | 463 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 464 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 465 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
466 | X86CPU *cpu = X86_CPU(cs); |
467 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 468 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 469 | uint32_t unused; |
bb0300dc | 470 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 471 | uint32_t signature[3]; |
234cc647 | 472 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 473 | int r; |
05330448 | 474 | |
ef4cbe14 SW |
475 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
476 | ||
05330448 AL |
477 | cpuid_i = 0; |
478 | ||
bb0300dc | 479 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
480 | if (hyperv_enabled(cpu)) { |
481 | c = &cpuid_data.entries[cpuid_i++]; | |
482 | c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
eab70139 VR |
483 | memcpy(signature, "Microsoft Hv", 12); |
484 | c->eax = HYPERV_CPUID_MIN; | |
234cc647 PB |
485 | c->ebx = signature[0]; |
486 | c->ecx = signature[1]; | |
487 | c->edx = signature[2]; | |
0c31b744 | 488 | |
234cc647 PB |
489 | c = &cpuid_data.entries[cpuid_i++]; |
490 | c->function = HYPERV_CPUID_INTERFACE; | |
eab70139 VR |
491 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
492 | c->eax = signature[0]; | |
234cc647 PB |
493 | c->ebx = 0; |
494 | c->ecx = 0; | |
495 | c->edx = 0; | |
eab70139 VR |
496 | |
497 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
498 | c->function = HYPERV_CPUID_VERSION; |
499 | c->eax = 0x00001bbc; | |
500 | c->ebx = 0x00060001; | |
501 | ||
502 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 503 | c->function = HYPERV_CPUID_FEATURES; |
92067bf4 | 504 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
505 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
506 | } | |
92067bf4 | 507 | if (cpu->hyperv_vapic) { |
eab70139 VR |
508 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
509 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
7bc3d711 | 510 | has_msr_hv_vapic = true; |
eab70139 | 511 | } |
48a5f3bc VR |
512 | if (cpu->hyperv_time && |
513 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { | |
514 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
515 | c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; | |
516 | c->eax |= 0x200; | |
517 | has_msr_hv_tsc = true; | |
518 | } | |
eab70139 | 519 | c = &cpuid_data.entries[cpuid_i++]; |
eab70139 | 520 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 521 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
522 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
523 | } | |
7bc3d711 | 524 | if (has_msr_hv_vapic) { |
eab70139 VR |
525 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
526 | } | |
92067bf4 | 527 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
528 | |
529 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
530 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
531 | c->eax = 0x40; | |
532 | c->ebx = 0x40; | |
533 | ||
234cc647 | 534 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 535 | has_msr_hv_hypercall = true; |
eab70139 VR |
536 | } |
537 | ||
f522d2ac AW |
538 | if (cpu->expose_kvm) { |
539 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
540 | c = &cpuid_data.entries[cpuid_i++]; | |
541 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 542 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
543 | c->ebx = signature[0]; |
544 | c->ecx = signature[1]; | |
545 | c->edx = signature[2]; | |
234cc647 | 546 | |
f522d2ac AW |
547 | c = &cpuid_data.entries[cpuid_i++]; |
548 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
549 | c->eax = env->features[FEAT_KVM]; | |
234cc647 | 550 | |
f522d2ac | 551 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 552 | |
f522d2ac | 553 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
bc9a839d | 554 | |
f522d2ac AW |
555 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
556 | } | |
917367aa | 557 | |
a33609ca | 558 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
559 | |
560 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
561 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
562 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
563 | abort(); | |
564 | } | |
bb0300dc | 565 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
566 | |
567 | switch (i) { | |
a36b1029 AL |
568 | case 2: { |
569 | /* Keep reading function 2 till all the input is received */ | |
570 | int times; | |
571 | ||
a36b1029 | 572 | c->function = i; |
a33609ca AL |
573 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
574 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
575 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
576 | times = c->eax & 0xff; | |
a36b1029 AL |
577 | |
578 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
579 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
580 | fprintf(stderr, "cpuid_data is full, no space for " | |
581 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
582 | abort(); | |
583 | } | |
a33609ca | 584 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 585 | c->function = i; |
a33609ca AL |
586 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
587 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
588 | } |
589 | break; | |
590 | } | |
486bd5a2 AL |
591 | case 4: |
592 | case 0xb: | |
593 | case 0xd: | |
594 | for (j = 0; ; j++) { | |
31e8c696 AP |
595 | if (i == 0xd && j == 64) { |
596 | break; | |
597 | } | |
486bd5a2 AL |
598 | c->function = i; |
599 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
600 | c->index = j; | |
a33609ca | 601 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 602 | |
b9bec74b | 603 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 604 | break; |
b9bec74b JK |
605 | } |
606 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 607 | break; |
b9bec74b JK |
608 | } |
609 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 610 | continue; |
b9bec74b | 611 | } |
f8bb0565 IM |
612 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
613 | fprintf(stderr, "cpuid_data is full, no space for " | |
614 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
615 | abort(); | |
616 | } | |
a33609ca | 617 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
618 | } |
619 | break; | |
620 | default: | |
486bd5a2 | 621 | c->function = i; |
a33609ca AL |
622 | c->flags = 0; |
623 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
624 | break; |
625 | } | |
05330448 | 626 | } |
0d894367 PB |
627 | |
628 | if (limit >= 0x0a) { | |
629 | uint32_t ver; | |
630 | ||
631 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
632 | if ((ver & 0xff) > 0) { | |
633 | has_msr_architectural_pmu = true; | |
634 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
635 | ||
636 | /* Shouldn't be more than 32, since that's the number of bits | |
637 | * available in EBX to tell us _which_ counters are available. | |
638 | * Play it safe. | |
639 | */ | |
640 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
641 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
642 | } | |
643 | } | |
644 | } | |
645 | ||
a33609ca | 646 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
647 | |
648 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
649 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
650 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
651 | abort(); | |
652 | } | |
bb0300dc | 653 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 654 | |
05330448 | 655 | c->function = i; |
a33609ca AL |
656 | c->flags = 0; |
657 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
658 | } |
659 | ||
b3baa152 BW |
660 | /* Call Centaur's CPUID instructions they are supported. */ |
661 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
662 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
663 | ||
664 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
665 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
666 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
667 | abort(); | |
668 | } | |
b3baa152 BW |
669 | c = &cpuid_data.entries[cpuid_i++]; |
670 | ||
671 | c->function = i; | |
672 | c->flags = 0; | |
673 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
674 | } | |
675 | } | |
676 | ||
05330448 AL |
677 | cpuid_data.cpuid.nent = cpuid_i; |
678 | ||
e7701825 | 679 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 680 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 681 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 682 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
e7701825 MT |
683 | uint64_t mcg_cap; |
684 | int banks; | |
32a42024 | 685 | int ret; |
e7701825 | 686 | |
a60f24b5 | 687 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
688 | if (ret < 0) { |
689 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
690 | return ret; | |
e7701825 | 691 | } |
75d49497 JK |
692 | |
693 | if (banks > MCE_BANKS_DEF) { | |
694 | banks = MCE_BANKS_DEF; | |
695 | } | |
696 | mcg_cap &= MCE_CAP_DEF; | |
697 | mcg_cap |= banks; | |
1bc22652 | 698 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap); |
75d49497 JK |
699 | if (ret < 0) { |
700 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
701 | return ret; | |
702 | } | |
703 | ||
704 | env->mcg_cap = mcg_cap; | |
e7701825 | 705 | } |
e7701825 | 706 | |
b8cc45d6 GC |
707 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
708 | ||
df67696e LJ |
709 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
710 | if (c) { | |
711 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
712 | !!(c->ecx & CPUID_EXT_SMX); | |
713 | } | |
714 | ||
68bfd0ad MT |
715 | c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0); |
716 | if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) { | |
717 | /* for migration */ | |
718 | error_setg(&invtsc_mig_blocker, | |
719 | "State blocked by non-migratable CPU device" | |
720 | " (invtsc flag)"); | |
721 | migrate_add_blocker(invtsc_mig_blocker); | |
722 | /* for savevm */ | |
723 | vmstate_x86_cpu.unmigratable = 1; | |
724 | } | |
725 | ||
7e680753 | 726 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 727 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
728 | if (r) { |
729 | return r; | |
730 | } | |
e7429073 | 731 | |
a60f24b5 | 732 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL); |
e7429073 | 733 | if (r && env->tsc_khz) { |
1bc22652 | 734 | r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz); |
e7429073 JR |
735 | if (r < 0) { |
736 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
737 | return r; | |
738 | } | |
739 | } | |
e7429073 | 740 | |
fabacc0f JK |
741 | if (kvm_has_xsave()) { |
742 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
743 | } | |
744 | ||
d1ae67f6 AW |
745 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
746 | has_msr_mtrr = true; | |
747 | } | |
748 | ||
e7429073 | 749 | return 0; |
05330448 AL |
750 | } |
751 | ||
50a2c6e5 | 752 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 753 | { |
20d695a9 | 754 | CPUX86State *env = &cpu->env; |
dd673288 | 755 | |
e73223a5 | 756 | env->exception_injected = -1; |
0e607a80 | 757 | env->interrupt_injected = -1; |
1a5e9d2f | 758 | env->xcr0 = 1; |
ddced198 | 759 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 760 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
761 | KVM_MP_STATE_UNINITIALIZED; |
762 | } else { | |
763 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
764 | } | |
caa5af0f JK |
765 | } |
766 | ||
e0723c45 PB |
767 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
768 | { | |
769 | CPUX86State *env = &cpu->env; | |
770 | ||
771 | /* APs get directly into wait-for-SIPI state. */ | |
772 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
773 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
774 | } | |
775 | } | |
776 | ||
c3a3a7d3 | 777 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 778 | { |
75b10c43 | 779 | static int kvm_supported_msrs; |
c3a3a7d3 | 780 | int ret = 0; |
05330448 AL |
781 | |
782 | /* first time */ | |
75b10c43 | 783 | if (kvm_supported_msrs == 0) { |
05330448 AL |
784 | struct kvm_msr_list msr_list, *kvm_msr_list; |
785 | ||
75b10c43 | 786 | kvm_supported_msrs = -1; |
05330448 AL |
787 | |
788 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
789 | * save/restore */ | |
4c9f7372 | 790 | msr_list.nmsrs = 0; |
c3a3a7d3 | 791 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 792 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 793 | return ret; |
6fb6d245 | 794 | } |
d9db889f JK |
795 | /* Old kernel modules had a bug and could write beyond the provided |
796 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 797 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
798 | msr_list.nmsrs * |
799 | sizeof(msr_list.indices[0]))); | |
05330448 | 800 | |
55308450 | 801 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 802 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
803 | if (ret >= 0) { |
804 | int i; | |
805 | ||
806 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
807 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 808 | has_msr_star = true; |
75b10c43 MT |
809 | continue; |
810 | } | |
811 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 812 | has_msr_hsave_pa = true; |
75b10c43 | 813 | continue; |
05330448 | 814 | } |
f28558d3 WA |
815 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
816 | has_msr_tsc_adjust = true; | |
817 | continue; | |
818 | } | |
aa82ba54 LJ |
819 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
820 | has_msr_tsc_deadline = true; | |
821 | continue; | |
822 | } | |
fc12d72e PB |
823 | if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) { |
824 | has_msr_smbase = true; | |
825 | continue; | |
826 | } | |
21e87c46 AK |
827 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
828 | has_msr_misc_enable = true; | |
829 | continue; | |
830 | } | |
79e9ebeb LJ |
831 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
832 | has_msr_bndcfgs = true; | |
833 | continue; | |
834 | } | |
18cd2c17 WL |
835 | if (kvm_msr_list->indices[i] == MSR_IA32_XSS) { |
836 | has_msr_xss = true; | |
837 | continue; | |
838 | } | |
05330448 AL |
839 | } |
840 | } | |
841 | ||
7267c094 | 842 | g_free(kvm_msr_list); |
05330448 AL |
843 | } |
844 | ||
c3a3a7d3 | 845 | return ret; |
05330448 AL |
846 | } |
847 | ||
b16565b3 | 848 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 849 | { |
11076198 | 850 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 851 | uint64_t shadow_mem; |
20420430 | 852 | int ret; |
25d2e361 | 853 | struct utsname utsname; |
20420430 | 854 | |
c3a3a7d3 | 855 | ret = kvm_get_supported_msrs(s); |
20420430 | 856 | if (ret < 0) { |
20420430 SY |
857 | return ret; |
858 | } | |
25d2e361 MT |
859 | |
860 | uname(&utsname); | |
861 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
862 | ||
4c5b10b7 | 863 | /* |
11076198 JK |
864 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
865 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
866 | * Since these must be part of guest physical memory, we need to allocate | |
867 | * them, both by setting their start addresses in the kernel and by | |
868 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
869 | * | |
870 | * Older KVM versions may not support setting the identity map base. In | |
871 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
872 | * size. | |
4c5b10b7 | 873 | */ |
11076198 JK |
874 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
875 | /* Allows up to 16M BIOSes. */ | |
876 | identity_base = 0xfeffc000; | |
877 | ||
878 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
879 | if (ret < 0) { | |
880 | return ret; | |
881 | } | |
4c5b10b7 | 882 | } |
e56ff191 | 883 | |
11076198 JK |
884 | /* Set TSS base one page after EPT identity map. */ |
885 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
886 | if (ret < 0) { |
887 | return ret; | |
888 | } | |
889 | ||
11076198 JK |
890 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
891 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 892 | if (ret < 0) { |
11076198 | 893 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
894 | return ret; |
895 | } | |
3c85e74f | 896 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 897 | |
4689b77b | 898 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
899 | if (shadow_mem != -1) { |
900 | shadow_mem /= 4096; | |
901 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
902 | if (ret < 0) { | |
903 | return ret; | |
39d6960a JK |
904 | } |
905 | } | |
11076198 | 906 | return 0; |
05330448 | 907 | } |
b9bec74b | 908 | |
05330448 AL |
909 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
910 | { | |
911 | lhs->selector = rhs->selector; | |
912 | lhs->base = rhs->base; | |
913 | lhs->limit = rhs->limit; | |
914 | lhs->type = 3; | |
915 | lhs->present = 1; | |
916 | lhs->dpl = 3; | |
917 | lhs->db = 0; | |
918 | lhs->s = 1; | |
919 | lhs->l = 0; | |
920 | lhs->g = 0; | |
921 | lhs->avl = 0; | |
922 | lhs->unusable = 0; | |
923 | } | |
924 | ||
925 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
926 | { | |
927 | unsigned flags = rhs->flags; | |
928 | lhs->selector = rhs->selector; | |
929 | lhs->base = rhs->base; | |
930 | lhs->limit = rhs->limit; | |
931 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
932 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 933 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
934 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
935 | lhs->s = (flags & DESC_S_MASK) != 0; | |
936 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
937 | lhs->g = (flags & DESC_G_MASK) != 0; | |
938 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
939 | lhs->unusable = 0; | |
7e680753 | 940 | lhs->padding = 0; |
05330448 AL |
941 | } |
942 | ||
943 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
944 | { | |
945 | lhs->selector = rhs->selector; | |
946 | lhs->base = rhs->base; | |
947 | lhs->limit = rhs->limit; | |
b9bec74b JK |
948 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
949 | (rhs->present * DESC_P_MASK) | | |
950 | (rhs->dpl << DESC_DPL_SHIFT) | | |
951 | (rhs->db << DESC_B_SHIFT) | | |
952 | (rhs->s * DESC_S_MASK) | | |
953 | (rhs->l << DESC_L_SHIFT) | | |
954 | (rhs->g * DESC_G_MASK) | | |
955 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
956 | } |
957 | ||
958 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
959 | { | |
b9bec74b | 960 | if (set) { |
05330448 | 961 | *kvm_reg = *qemu_reg; |
b9bec74b | 962 | } else { |
05330448 | 963 | *qemu_reg = *kvm_reg; |
b9bec74b | 964 | } |
05330448 AL |
965 | } |
966 | ||
1bc22652 | 967 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 968 | { |
1bc22652 | 969 | CPUX86State *env = &cpu->env; |
05330448 AL |
970 | struct kvm_regs regs; |
971 | int ret = 0; | |
972 | ||
973 | if (!set) { | |
1bc22652 | 974 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 975 | if (ret < 0) { |
05330448 | 976 | return ret; |
b9bec74b | 977 | } |
05330448 AL |
978 | } |
979 | ||
980 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
981 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
982 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
983 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
984 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
985 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
986 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
987 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
988 | #ifdef TARGET_X86_64 | |
989 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
990 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
991 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
992 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
993 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
994 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
995 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
996 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
997 | #endif | |
998 | ||
999 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
1000 | kvm_getput_reg(®s.rip, &env->eip, set); | |
1001 | ||
b9bec74b | 1002 | if (set) { |
1bc22652 | 1003 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 1004 | } |
05330448 AL |
1005 | |
1006 | return ret; | |
1007 | } | |
1008 | ||
1bc22652 | 1009 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1010 | { |
1bc22652 | 1011 | CPUX86State *env = &cpu->env; |
05330448 AL |
1012 | struct kvm_fpu fpu; |
1013 | int i; | |
1014 | ||
1015 | memset(&fpu, 0, sizeof fpu); | |
1016 | fpu.fsw = env->fpus & ~(7 << 11); | |
1017 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1018 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1019 | fpu.last_opcode = env->fpop; |
1020 | fpu.last_ip = env->fpip; | |
1021 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1022 | for (i = 0; i < 8; ++i) { |
1023 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1024 | } | |
05330448 | 1025 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 PB |
1026 | for (i = 0; i < CPU_NB_REGS; i++) { |
1027 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].XMM_Q(0)); | |
1028 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].XMM_Q(1)); | |
1029 | } | |
05330448 AL |
1030 | fpu.mxcsr = env->mxcsr; |
1031 | ||
1bc22652 | 1032 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1033 | } |
1034 | ||
6b42494b JK |
1035 | #define XSAVE_FCW_FSW 0 |
1036 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1037 | #define XSAVE_CWD_RIP 2 |
1038 | #define XSAVE_CWD_RDP 4 | |
1039 | #define XSAVE_MXCSR 6 | |
1040 | #define XSAVE_ST_SPACE 8 | |
1041 | #define XSAVE_XMM_SPACE 40 | |
1042 | #define XSAVE_XSTATE_BV 128 | |
1043 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1044 | #define XSAVE_BNDREGS 240 |
1045 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1046 | #define XSAVE_OPMASK 272 |
1047 | #define XSAVE_ZMM_Hi256 288 | |
1048 | #define XSAVE_Hi16_ZMM 416 | |
f1665b21 | 1049 | |
1bc22652 | 1050 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1051 | { |
1bc22652 | 1052 | CPUX86State *env = &cpu->env; |
fabacc0f | 1053 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
42cc8fa6 | 1054 | uint16_t cwd, swd, twd; |
b7711471 | 1055 | uint8_t *xmm, *ymmh, *zmmh; |
fabacc0f | 1056 | int i, r; |
f1665b21 | 1057 | |
b9bec74b | 1058 | if (!kvm_has_xsave()) { |
1bc22652 | 1059 | return kvm_put_fpu(cpu); |
b9bec74b | 1060 | } |
f1665b21 | 1061 | |
f1665b21 | 1062 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 1063 | twd = 0; |
f1665b21 SY |
1064 | swd = env->fpus & ~(7 << 11); |
1065 | swd |= (env->fpstt & 7) << 11; | |
1066 | cwd = env->fpuc; | |
b9bec74b | 1067 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1068 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1069 | } |
6b42494b JK |
1070 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; |
1071 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
42cc8fa6 JK |
1072 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); |
1073 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
f1665b21 SY |
1074 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
1075 | sizeof env->fpregs); | |
f1665b21 SY |
1076 | xsave->region[XSAVE_MXCSR] = env->mxcsr; |
1077 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
79e9ebeb LJ |
1078 | memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs, |
1079 | sizeof env->bnd_regs); | |
1080 | memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs, | |
1081 | sizeof(env->bndcs_regs)); | |
9aecd6f8 CP |
1082 | memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs, |
1083 | sizeof env->opmask_regs); | |
bee81887 PB |
1084 | |
1085 | xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE]; | |
b7711471 PB |
1086 | ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE]; |
1087 | zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256]; | |
1088 | for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) { | |
bee81887 PB |
1089 | stq_p(xmm, env->xmm_regs[i].XMM_Q(0)); |
1090 | stq_p(xmm+8, env->xmm_regs[i].XMM_Q(1)); | |
b7711471 PB |
1091 | stq_p(ymmh, env->xmm_regs[i].XMM_Q(2)); |
1092 | stq_p(ymmh+8, env->xmm_regs[i].XMM_Q(3)); | |
1093 | stq_p(zmmh, env->xmm_regs[i].XMM_Q(4)); | |
1094 | stq_p(zmmh+8, env->xmm_regs[i].XMM_Q(5)); | |
1095 | stq_p(zmmh+16, env->xmm_regs[i].XMM_Q(6)); | |
1096 | stq_p(zmmh+24, env->xmm_regs[i].XMM_Q(7)); | |
bee81887 PB |
1097 | } |
1098 | ||
9aecd6f8 | 1099 | #ifdef TARGET_X86_64 |
b7711471 PB |
1100 | memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16], |
1101 | 16 * sizeof env->xmm_regs[16]); | |
9aecd6f8 | 1102 | #endif |
1bc22652 | 1103 | r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
0f53994f | 1104 | return r; |
f1665b21 SY |
1105 | } |
1106 | ||
1bc22652 | 1107 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1108 | { |
1bc22652 | 1109 | CPUX86State *env = &cpu->env; |
bdfc8480 | 1110 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 1111 | |
b9bec74b | 1112 | if (!kvm_has_xcrs()) { |
f1665b21 | 1113 | return 0; |
b9bec74b | 1114 | } |
f1665b21 SY |
1115 | |
1116 | xcrs.nr_xcrs = 1; | |
1117 | xcrs.flags = 0; | |
1118 | xcrs.xcrs[0].xcr = 0; | |
1119 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1120 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1121 | } |
1122 | ||
1bc22652 | 1123 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1124 | { |
1bc22652 | 1125 | CPUX86State *env = &cpu->env; |
05330448 AL |
1126 | struct kvm_sregs sregs; |
1127 | ||
0e607a80 JK |
1128 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1129 | if (env->interrupt_injected >= 0) { | |
1130 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1131 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1132 | } | |
05330448 AL |
1133 | |
1134 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1135 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1136 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1137 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1138 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1139 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1140 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1141 | } else { |
b9bec74b JK |
1142 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1143 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1144 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1145 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1146 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1147 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1148 | } |
1149 | ||
1150 | set_seg(&sregs.tr, &env->tr); | |
1151 | set_seg(&sregs.ldt, &env->ldt); | |
1152 | ||
1153 | sregs.idt.limit = env->idt.limit; | |
1154 | sregs.idt.base = env->idt.base; | |
7e680753 | 1155 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1156 | sregs.gdt.limit = env->gdt.limit; |
1157 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1158 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1159 | |
1160 | sregs.cr0 = env->cr[0]; | |
1161 | sregs.cr2 = env->cr[2]; | |
1162 | sregs.cr3 = env->cr[3]; | |
1163 | sregs.cr4 = env->cr[4]; | |
1164 | ||
02e51483 CF |
1165 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1166 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1167 | |
1168 | sregs.efer = env->efer; | |
1169 | ||
1bc22652 | 1170 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1171 | } |
1172 | ||
1173 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
1174 | uint32_t index, uint64_t value) | |
1175 | { | |
1176 | entry->index = index; | |
c7fe4b12 | 1177 | entry->reserved = 0; |
05330448 AL |
1178 | entry->data = value; |
1179 | } | |
1180 | ||
7477cd38 MT |
1181 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1182 | { | |
1183 | CPUX86State *env = &cpu->env; | |
1184 | struct { | |
1185 | struct kvm_msrs info; | |
1186 | struct kvm_msr_entry entries[1]; | |
1187 | } msr_data; | |
1188 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1189 | ||
1190 | if (!has_msr_tsc_deadline) { | |
1191 | return 0; | |
1192 | } | |
1193 | ||
1194 | kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1195 | ||
c7fe4b12 CB |
1196 | msr_data.info = (struct kvm_msrs) { |
1197 | .nmsrs = 1, | |
1198 | }; | |
7477cd38 MT |
1199 | |
1200 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1201 | } | |
1202 | ||
6bdf863d JK |
1203 | /* |
1204 | * Provide a separate write service for the feature control MSR in order to | |
1205 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1206 | * before writing any other state because forcibly leaving nested mode | |
1207 | * invalidates the VCPU state. | |
1208 | */ | |
1209 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1210 | { | |
1211 | struct { | |
1212 | struct kvm_msrs info; | |
1213 | struct kvm_msr_entry entry; | |
1214 | } msr_data; | |
1215 | ||
1216 | kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL, | |
1217 | cpu->env.msr_ia32_feature_control); | |
c7fe4b12 CB |
1218 | |
1219 | msr_data.info = (struct kvm_msrs) { | |
1220 | .nmsrs = 1, | |
1221 | }; | |
1222 | ||
6bdf863d JK |
1223 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
1224 | } | |
1225 | ||
1bc22652 | 1226 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1227 | { |
1bc22652 | 1228 | CPUX86State *env = &cpu->env; |
05330448 AL |
1229 | struct { |
1230 | struct kvm_msrs info; | |
d1ae67f6 | 1231 | struct kvm_msr_entry entries[150]; |
05330448 AL |
1232 | } msr_data; |
1233 | struct kvm_msr_entry *msrs = msr_data.entries; | |
0d894367 | 1234 | int n = 0, i; |
05330448 AL |
1235 | |
1236 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1237 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1238 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
0c03266a | 1239 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); |
c3a3a7d3 | 1240 | if (has_msr_star) { |
b9bec74b JK |
1241 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
1242 | } | |
c3a3a7d3 | 1243 | if (has_msr_hsave_pa) { |
75b10c43 | 1244 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1245 | } |
f28558d3 WA |
1246 | if (has_msr_tsc_adjust) { |
1247 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust); | |
1248 | } | |
21e87c46 AK |
1249 | if (has_msr_misc_enable) { |
1250 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1251 | env->msr_ia32_misc_enable); | |
1252 | } | |
fc12d72e PB |
1253 | if (has_msr_smbase) { |
1254 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase); | |
1255 | } | |
439d19f2 PB |
1256 | if (has_msr_bndcfgs) { |
1257 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs); | |
1258 | } | |
18cd2c17 WL |
1259 | if (has_msr_xss) { |
1260 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss); | |
1261 | } | |
05330448 | 1262 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1263 | if (lm_capable_kernel) { |
1264 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1265 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1266 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1267 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1268 | } | |
05330448 | 1269 | #endif |
ff5c186b | 1270 | /* |
0d894367 PB |
1271 | * The following MSRs have side effects on the guest or are too heavy |
1272 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1273 | */ |
1274 | if (level >= KVM_PUT_RESET_STATE) { | |
0522604b | 1275 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
ea643051 JK |
1276 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
1277 | env->system_time_msr); | |
1278 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc JK |
1279 | if (has_msr_async_pf_en) { |
1280 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1281 | env->async_pf_en_msr); | |
1282 | } | |
bc9a839d MT |
1283 | if (has_msr_pv_eoi_en) { |
1284 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1285 | env->pv_eoi_en_msr); | |
1286 | } | |
917367aa MT |
1287 | if (has_msr_kvm_steal_time) { |
1288 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME, | |
1289 | env->steal_time_msr); | |
1290 | } | |
0d894367 PB |
1291 | if (has_msr_architectural_pmu) { |
1292 | /* Stop the counter. */ | |
1293 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1294 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1295 | ||
1296 | /* Set the counter values. */ | |
1297 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1298 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i, | |
1299 | env->msr_fixed_counters[i]); | |
1300 | } | |
1301 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1302 | kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i, | |
1303 | env->msr_gp_counters[i]); | |
1304 | kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i, | |
1305 | env->msr_gp_evtsel[i]); | |
1306 | } | |
1307 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS, | |
1308 | env->msr_global_status); | |
1309 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1310 | env->msr_global_ovf_ctrl); | |
1311 | ||
1312 | /* Now start the PMU. */ | |
1313 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1314 | env->msr_fixed_ctr_ctrl); | |
1315 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, | |
1316 | env->msr_global_ctrl); | |
1317 | } | |
7bc3d711 | 1318 | if (has_msr_hv_hypercall) { |
1c90ef26 VR |
1319 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, |
1320 | env->msr_hv_guest_os_id); | |
1321 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, | |
1322 | env->msr_hv_hypercall); | |
eab70139 | 1323 | } |
7bc3d711 | 1324 | if (has_msr_hv_vapic) { |
5ef68987 VR |
1325 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, |
1326 | env->msr_hv_vapic); | |
eab70139 | 1327 | } |
48a5f3bc VR |
1328 | if (has_msr_hv_tsc) { |
1329 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC, | |
1330 | env->msr_hv_tsc); | |
1331 | } | |
d1ae67f6 AW |
1332 | if (has_msr_mtrr) { |
1333 | kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype); | |
1334 | kvm_msr_entry_set(&msrs[n++], | |
1335 | MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
1336 | kvm_msr_entry_set(&msrs[n++], | |
1337 | MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
1338 | kvm_msr_entry_set(&msrs[n++], | |
1339 | MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
1340 | kvm_msr_entry_set(&msrs[n++], | |
1341 | MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
1342 | kvm_msr_entry_set(&msrs[n++], | |
1343 | MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
1344 | kvm_msr_entry_set(&msrs[n++], | |
1345 | MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
1346 | kvm_msr_entry_set(&msrs[n++], | |
1347 | MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
1348 | kvm_msr_entry_set(&msrs[n++], | |
1349 | MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
1350 | kvm_msr_entry_set(&msrs[n++], | |
1351 | MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
1352 | kvm_msr_entry_set(&msrs[n++], | |
1353 | MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
1354 | kvm_msr_entry_set(&msrs[n++], | |
1355 | MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
1356 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
1357 | kvm_msr_entry_set(&msrs[n++], | |
1358 | MSR_MTRRphysBase(i), env->mtrr_var[i].base); | |
1359 | kvm_msr_entry_set(&msrs[n++], | |
1360 | MSR_MTRRphysMask(i), env->mtrr_var[i].mask); | |
1361 | } | |
1362 | } | |
6bdf863d JK |
1363 | |
1364 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1365 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1366 | } |
57780495 | 1367 | if (env->mcg_cap) { |
d8da8574 | 1368 | int i; |
b9bec74b | 1369 | |
c34d440a JK |
1370 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
1371 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1372 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1373 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
57780495 MT |
1374 | } |
1375 | } | |
1a03675d | 1376 | |
c7fe4b12 CB |
1377 | msr_data.info = (struct kvm_msrs) { |
1378 | .nmsrs = n, | |
1379 | }; | |
05330448 | 1380 | |
1bc22652 | 1381 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
05330448 AL |
1382 | |
1383 | } | |
1384 | ||
1385 | ||
1bc22652 | 1386 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1387 | { |
1bc22652 | 1388 | CPUX86State *env = &cpu->env; |
05330448 AL |
1389 | struct kvm_fpu fpu; |
1390 | int i, ret; | |
1391 | ||
1bc22652 | 1392 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1393 | if (ret < 0) { |
05330448 | 1394 | return ret; |
b9bec74b | 1395 | } |
05330448 AL |
1396 | |
1397 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1398 | env->fpus = fpu.fsw; | |
1399 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1400 | env->fpop = fpu.last_opcode; |
1401 | env->fpip = fpu.last_ip; | |
1402 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1403 | for (i = 0; i < 8; ++i) { |
1404 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1405 | } | |
05330448 | 1406 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 PB |
1407 | for (i = 0; i < CPU_NB_REGS; i++) { |
1408 | env->xmm_regs[i].XMM_Q(0) = ldq_p(&fpu.xmm[i][0]); | |
1409 | env->xmm_regs[i].XMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
1410 | } | |
05330448 AL |
1411 | env->mxcsr = fpu.mxcsr; |
1412 | ||
1413 | return 0; | |
1414 | } | |
1415 | ||
1bc22652 | 1416 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1417 | { |
1bc22652 | 1418 | CPUX86State *env = &cpu->env; |
fabacc0f | 1419 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
f1665b21 | 1420 | int ret, i; |
b7711471 | 1421 | const uint8_t *xmm, *ymmh, *zmmh; |
42cc8fa6 | 1422 | uint16_t cwd, swd, twd; |
f1665b21 | 1423 | |
b9bec74b | 1424 | if (!kvm_has_xsave()) { |
1bc22652 | 1425 | return kvm_get_fpu(cpu); |
b9bec74b | 1426 | } |
f1665b21 | 1427 | |
1bc22652 | 1428 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1429 | if (ret < 0) { |
f1665b21 | 1430 | return ret; |
0f53994f | 1431 | } |
f1665b21 | 1432 | |
6b42494b JK |
1433 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; |
1434 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1435 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1436 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
f1665b21 SY |
1437 | env->fpstt = (swd >> 11) & 7; |
1438 | env->fpus = swd; | |
1439 | env->fpuc = cwd; | |
b9bec74b | 1440 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1441 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1442 | } |
42cc8fa6 JK |
1443 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); |
1444 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
f1665b21 SY |
1445 | env->mxcsr = xsave->region[XSAVE_MXCSR]; |
1446 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1447 | sizeof env->fpregs); | |
f1665b21 | 1448 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; |
79e9ebeb LJ |
1449 | memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS], |
1450 | sizeof env->bnd_regs); | |
1451 | memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR], | |
1452 | sizeof(env->bndcs_regs)); | |
9aecd6f8 CP |
1453 | memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK], |
1454 | sizeof env->opmask_regs); | |
bee81887 PB |
1455 | |
1456 | xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE]; | |
b7711471 PB |
1457 | ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE]; |
1458 | zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256]; | |
1459 | for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) { | |
bee81887 PB |
1460 | env->xmm_regs[i].XMM_Q(0) = ldq_p(xmm); |
1461 | env->xmm_regs[i].XMM_Q(1) = ldq_p(xmm+8); | |
b7711471 PB |
1462 | env->xmm_regs[i].XMM_Q(2) = ldq_p(ymmh); |
1463 | env->xmm_regs[i].XMM_Q(3) = ldq_p(ymmh+8); | |
1464 | env->xmm_regs[i].XMM_Q(4) = ldq_p(zmmh); | |
1465 | env->xmm_regs[i].XMM_Q(5) = ldq_p(zmmh+8); | |
1466 | env->xmm_regs[i].XMM_Q(6) = ldq_p(zmmh+16); | |
1467 | env->xmm_regs[i].XMM_Q(7) = ldq_p(zmmh+24); | |
bee81887 PB |
1468 | } |
1469 | ||
9aecd6f8 | 1470 | #ifdef TARGET_X86_64 |
b7711471 PB |
1471 | memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM], |
1472 | 16 * sizeof env->xmm_regs[16]); | |
9aecd6f8 | 1473 | #endif |
f1665b21 | 1474 | return 0; |
f1665b21 SY |
1475 | } |
1476 | ||
1bc22652 | 1477 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1478 | { |
1bc22652 | 1479 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1480 | int i, ret; |
1481 | struct kvm_xcrs xcrs; | |
1482 | ||
b9bec74b | 1483 | if (!kvm_has_xcrs()) { |
f1665b21 | 1484 | return 0; |
b9bec74b | 1485 | } |
f1665b21 | 1486 | |
1bc22652 | 1487 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1488 | if (ret < 0) { |
f1665b21 | 1489 | return ret; |
b9bec74b | 1490 | } |
f1665b21 | 1491 | |
b9bec74b | 1492 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1493 | /* Only support xcr0 now */ |
0fd53fec PB |
1494 | if (xcrs.xcrs[i].xcr == 0) { |
1495 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1496 | break; |
1497 | } | |
b9bec74b | 1498 | } |
f1665b21 | 1499 | return 0; |
f1665b21 SY |
1500 | } |
1501 | ||
1bc22652 | 1502 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1503 | { |
1bc22652 | 1504 | CPUX86State *env = &cpu->env; |
05330448 AL |
1505 | struct kvm_sregs sregs; |
1506 | uint32_t hflags; | |
0e607a80 | 1507 | int bit, i, ret; |
05330448 | 1508 | |
1bc22652 | 1509 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1510 | if (ret < 0) { |
05330448 | 1511 | return ret; |
b9bec74b | 1512 | } |
05330448 | 1513 | |
0e607a80 JK |
1514 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1515 | to find it and save its number instead (-1 for none). */ | |
1516 | env->interrupt_injected = -1; | |
1517 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1518 | if (sregs.interrupt_bitmap[i]) { | |
1519 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1520 | env->interrupt_injected = i * 64 + bit; | |
1521 | break; | |
1522 | } | |
1523 | } | |
05330448 AL |
1524 | |
1525 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1526 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1527 | get_seg(&env->segs[R_ES], &sregs.es); | |
1528 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1529 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1530 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1531 | ||
1532 | get_seg(&env->tr, &sregs.tr); | |
1533 | get_seg(&env->ldt, &sregs.ldt); | |
1534 | ||
1535 | env->idt.limit = sregs.idt.limit; | |
1536 | env->idt.base = sregs.idt.base; | |
1537 | env->gdt.limit = sregs.gdt.limit; | |
1538 | env->gdt.base = sregs.gdt.base; | |
1539 | ||
1540 | env->cr[0] = sregs.cr0; | |
1541 | env->cr[2] = sregs.cr2; | |
1542 | env->cr[3] = sregs.cr3; | |
1543 | env->cr[4] = sregs.cr4; | |
1544 | ||
05330448 | 1545 | env->efer = sregs.efer; |
cce47516 JK |
1546 | |
1547 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1548 | |
b9bec74b JK |
1549 | #define HFLAG_COPY_MASK \ |
1550 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1551 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1552 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1553 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 | 1554 | |
7125c937 | 1555 | hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
05330448 AL |
1556 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
1557 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1558 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 AL |
1559 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
1560 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
b9bec74b | 1561 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
05330448 AL |
1562 | |
1563 | if (env->efer & MSR_EFER_LMA) { | |
1564 | hflags |= HF_LMA_MASK; | |
1565 | } | |
1566 | ||
1567 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1568 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1569 | } else { | |
1570 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1571 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1572 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1573 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1574 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1575 | !(hflags & HF_CS32_MASK)) { | |
1576 | hflags |= HF_ADDSEG_MASK; | |
1577 | } else { | |
1578 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1579 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1580 | } | |
05330448 AL |
1581 | } |
1582 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1583 | |
1584 | return 0; | |
1585 | } | |
1586 | ||
1bc22652 | 1587 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1588 | { |
1bc22652 | 1589 | CPUX86State *env = &cpu->env; |
05330448 AL |
1590 | struct { |
1591 | struct kvm_msrs info; | |
d1ae67f6 | 1592 | struct kvm_msr_entry entries[150]; |
05330448 AL |
1593 | } msr_data; |
1594 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1595 | int ret, i, n; | |
1596 | ||
1597 | n = 0; | |
1598 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1599 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1600 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
0c03266a | 1601 | msrs[n++].index = MSR_PAT; |
c3a3a7d3 | 1602 | if (has_msr_star) { |
b9bec74b JK |
1603 | msrs[n++].index = MSR_STAR; |
1604 | } | |
c3a3a7d3 | 1605 | if (has_msr_hsave_pa) { |
75b10c43 | 1606 | msrs[n++].index = MSR_VM_HSAVE_PA; |
b9bec74b | 1607 | } |
f28558d3 WA |
1608 | if (has_msr_tsc_adjust) { |
1609 | msrs[n++].index = MSR_TSC_ADJUST; | |
1610 | } | |
aa82ba54 LJ |
1611 | if (has_msr_tsc_deadline) { |
1612 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1613 | } | |
21e87c46 AK |
1614 | if (has_msr_misc_enable) { |
1615 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1616 | } | |
fc12d72e PB |
1617 | if (has_msr_smbase) { |
1618 | msrs[n++].index = MSR_IA32_SMBASE; | |
1619 | } | |
df67696e LJ |
1620 | if (has_msr_feature_control) { |
1621 | msrs[n++].index = MSR_IA32_FEATURE_CONTROL; | |
1622 | } | |
79e9ebeb LJ |
1623 | if (has_msr_bndcfgs) { |
1624 | msrs[n++].index = MSR_IA32_BNDCFGS; | |
1625 | } | |
18cd2c17 WL |
1626 | if (has_msr_xss) { |
1627 | msrs[n++].index = MSR_IA32_XSS; | |
1628 | } | |
1629 | ||
b8cc45d6 GC |
1630 | |
1631 | if (!env->tsc_valid) { | |
1632 | msrs[n++].index = MSR_IA32_TSC; | |
1354869c | 1633 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
1634 | } |
1635 | ||
05330448 | 1636 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1637 | if (lm_capable_kernel) { |
1638 | msrs[n++].index = MSR_CSTAR; | |
1639 | msrs[n++].index = MSR_KERNELGSBASE; | |
1640 | msrs[n++].index = MSR_FMASK; | |
1641 | msrs[n++].index = MSR_LSTAR; | |
1642 | } | |
05330448 | 1643 | #endif |
1a03675d GC |
1644 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1645 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
c5999bfc JK |
1646 | if (has_msr_async_pf_en) { |
1647 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1648 | } | |
bc9a839d MT |
1649 | if (has_msr_pv_eoi_en) { |
1650 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1651 | } | |
917367aa MT |
1652 | if (has_msr_kvm_steal_time) { |
1653 | msrs[n++].index = MSR_KVM_STEAL_TIME; | |
1654 | } | |
0d894367 PB |
1655 | if (has_msr_architectural_pmu) { |
1656 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL; | |
1657 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL; | |
1658 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS; | |
1659 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL; | |
1660 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1661 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i; | |
1662 | } | |
1663 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1664 | msrs[n++].index = MSR_P6_PERFCTR0 + i; | |
1665 | msrs[n++].index = MSR_P6_EVNTSEL0 + i; | |
1666 | } | |
1667 | } | |
1a03675d | 1668 | |
57780495 MT |
1669 | if (env->mcg_cap) { |
1670 | msrs[n++].index = MSR_MCG_STATUS; | |
1671 | msrs[n++].index = MSR_MCG_CTL; | |
b9bec74b | 1672 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
57780495 | 1673 | msrs[n++].index = MSR_MC0_CTL + i; |
b9bec74b | 1674 | } |
57780495 | 1675 | } |
57780495 | 1676 | |
1c90ef26 VR |
1677 | if (has_msr_hv_hypercall) { |
1678 | msrs[n++].index = HV_X64_MSR_HYPERCALL; | |
1679 | msrs[n++].index = HV_X64_MSR_GUEST_OS_ID; | |
1680 | } | |
5ef68987 VR |
1681 | if (has_msr_hv_vapic) { |
1682 | msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE; | |
1683 | } | |
48a5f3bc VR |
1684 | if (has_msr_hv_tsc) { |
1685 | msrs[n++].index = HV_X64_MSR_REFERENCE_TSC; | |
1686 | } | |
d1ae67f6 AW |
1687 | if (has_msr_mtrr) { |
1688 | msrs[n++].index = MSR_MTRRdefType; | |
1689 | msrs[n++].index = MSR_MTRRfix64K_00000; | |
1690 | msrs[n++].index = MSR_MTRRfix16K_80000; | |
1691 | msrs[n++].index = MSR_MTRRfix16K_A0000; | |
1692 | msrs[n++].index = MSR_MTRRfix4K_C0000; | |
1693 | msrs[n++].index = MSR_MTRRfix4K_C8000; | |
1694 | msrs[n++].index = MSR_MTRRfix4K_D0000; | |
1695 | msrs[n++].index = MSR_MTRRfix4K_D8000; | |
1696 | msrs[n++].index = MSR_MTRRfix4K_E0000; | |
1697 | msrs[n++].index = MSR_MTRRfix4K_E8000; | |
1698 | msrs[n++].index = MSR_MTRRfix4K_F0000; | |
1699 | msrs[n++].index = MSR_MTRRfix4K_F8000; | |
1700 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
1701 | msrs[n++].index = MSR_MTRRphysBase(i); | |
1702 | msrs[n++].index = MSR_MTRRphysMask(i); | |
1703 | } | |
1704 | } | |
5ef68987 | 1705 | |
d19ae73e CB |
1706 | msr_data.info = (struct kvm_msrs) { |
1707 | .nmsrs = n, | |
1708 | }; | |
1709 | ||
1bc22652 | 1710 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
b9bec74b | 1711 | if (ret < 0) { |
05330448 | 1712 | return ret; |
b9bec74b | 1713 | } |
05330448 AL |
1714 | |
1715 | for (i = 0; i < ret; i++) { | |
0d894367 PB |
1716 | uint32_t index = msrs[i].index; |
1717 | switch (index) { | |
05330448 AL |
1718 | case MSR_IA32_SYSENTER_CS: |
1719 | env->sysenter_cs = msrs[i].data; | |
1720 | break; | |
1721 | case MSR_IA32_SYSENTER_ESP: | |
1722 | env->sysenter_esp = msrs[i].data; | |
1723 | break; | |
1724 | case MSR_IA32_SYSENTER_EIP: | |
1725 | env->sysenter_eip = msrs[i].data; | |
1726 | break; | |
0c03266a JK |
1727 | case MSR_PAT: |
1728 | env->pat = msrs[i].data; | |
1729 | break; | |
05330448 AL |
1730 | case MSR_STAR: |
1731 | env->star = msrs[i].data; | |
1732 | break; | |
1733 | #ifdef TARGET_X86_64 | |
1734 | case MSR_CSTAR: | |
1735 | env->cstar = msrs[i].data; | |
1736 | break; | |
1737 | case MSR_KERNELGSBASE: | |
1738 | env->kernelgsbase = msrs[i].data; | |
1739 | break; | |
1740 | case MSR_FMASK: | |
1741 | env->fmask = msrs[i].data; | |
1742 | break; | |
1743 | case MSR_LSTAR: | |
1744 | env->lstar = msrs[i].data; | |
1745 | break; | |
1746 | #endif | |
1747 | case MSR_IA32_TSC: | |
1748 | env->tsc = msrs[i].data; | |
1749 | break; | |
f28558d3 WA |
1750 | case MSR_TSC_ADJUST: |
1751 | env->tsc_adjust = msrs[i].data; | |
1752 | break; | |
aa82ba54 LJ |
1753 | case MSR_IA32_TSCDEADLINE: |
1754 | env->tsc_deadline = msrs[i].data; | |
1755 | break; | |
aa851e36 MT |
1756 | case MSR_VM_HSAVE_PA: |
1757 | env->vm_hsave = msrs[i].data; | |
1758 | break; | |
1a03675d GC |
1759 | case MSR_KVM_SYSTEM_TIME: |
1760 | env->system_time_msr = msrs[i].data; | |
1761 | break; | |
1762 | case MSR_KVM_WALL_CLOCK: | |
1763 | env->wall_clock_msr = msrs[i].data; | |
1764 | break; | |
57780495 MT |
1765 | case MSR_MCG_STATUS: |
1766 | env->mcg_status = msrs[i].data; | |
1767 | break; | |
1768 | case MSR_MCG_CTL: | |
1769 | env->mcg_ctl = msrs[i].data; | |
1770 | break; | |
21e87c46 AK |
1771 | case MSR_IA32_MISC_ENABLE: |
1772 | env->msr_ia32_misc_enable = msrs[i].data; | |
1773 | break; | |
fc12d72e PB |
1774 | case MSR_IA32_SMBASE: |
1775 | env->smbase = msrs[i].data; | |
1776 | break; | |
0779caeb ACL |
1777 | case MSR_IA32_FEATURE_CONTROL: |
1778 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 1779 | break; |
79e9ebeb LJ |
1780 | case MSR_IA32_BNDCFGS: |
1781 | env->msr_bndcfgs = msrs[i].data; | |
1782 | break; | |
18cd2c17 WL |
1783 | case MSR_IA32_XSS: |
1784 | env->xss = msrs[i].data; | |
1785 | break; | |
57780495 | 1786 | default: |
57780495 MT |
1787 | if (msrs[i].index >= MSR_MC0_CTL && |
1788 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1789 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 1790 | } |
d8da8574 | 1791 | break; |
f6584ee2 GN |
1792 | case MSR_KVM_ASYNC_PF_EN: |
1793 | env->async_pf_en_msr = msrs[i].data; | |
1794 | break; | |
bc9a839d MT |
1795 | case MSR_KVM_PV_EOI_EN: |
1796 | env->pv_eoi_en_msr = msrs[i].data; | |
1797 | break; | |
917367aa MT |
1798 | case MSR_KVM_STEAL_TIME: |
1799 | env->steal_time_msr = msrs[i].data; | |
1800 | break; | |
0d894367 PB |
1801 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
1802 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
1803 | break; | |
1804 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
1805 | env->msr_global_ctrl = msrs[i].data; | |
1806 | break; | |
1807 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
1808 | env->msr_global_status = msrs[i].data; | |
1809 | break; | |
1810 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
1811 | env->msr_global_ovf_ctrl = msrs[i].data; | |
1812 | break; | |
1813 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
1814 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
1815 | break; | |
1816 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
1817 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
1818 | break; | |
1819 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
1820 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
1821 | break; | |
1c90ef26 VR |
1822 | case HV_X64_MSR_HYPERCALL: |
1823 | env->msr_hv_hypercall = msrs[i].data; | |
1824 | break; | |
1825 | case HV_X64_MSR_GUEST_OS_ID: | |
1826 | env->msr_hv_guest_os_id = msrs[i].data; | |
1827 | break; | |
5ef68987 VR |
1828 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
1829 | env->msr_hv_vapic = msrs[i].data; | |
1830 | break; | |
48a5f3bc VR |
1831 | case HV_X64_MSR_REFERENCE_TSC: |
1832 | env->msr_hv_tsc = msrs[i].data; | |
1833 | break; | |
d1ae67f6 AW |
1834 | case MSR_MTRRdefType: |
1835 | env->mtrr_deftype = msrs[i].data; | |
1836 | break; | |
1837 | case MSR_MTRRfix64K_00000: | |
1838 | env->mtrr_fixed[0] = msrs[i].data; | |
1839 | break; | |
1840 | case MSR_MTRRfix16K_80000: | |
1841 | env->mtrr_fixed[1] = msrs[i].data; | |
1842 | break; | |
1843 | case MSR_MTRRfix16K_A0000: | |
1844 | env->mtrr_fixed[2] = msrs[i].data; | |
1845 | break; | |
1846 | case MSR_MTRRfix4K_C0000: | |
1847 | env->mtrr_fixed[3] = msrs[i].data; | |
1848 | break; | |
1849 | case MSR_MTRRfix4K_C8000: | |
1850 | env->mtrr_fixed[4] = msrs[i].data; | |
1851 | break; | |
1852 | case MSR_MTRRfix4K_D0000: | |
1853 | env->mtrr_fixed[5] = msrs[i].data; | |
1854 | break; | |
1855 | case MSR_MTRRfix4K_D8000: | |
1856 | env->mtrr_fixed[6] = msrs[i].data; | |
1857 | break; | |
1858 | case MSR_MTRRfix4K_E0000: | |
1859 | env->mtrr_fixed[7] = msrs[i].data; | |
1860 | break; | |
1861 | case MSR_MTRRfix4K_E8000: | |
1862 | env->mtrr_fixed[8] = msrs[i].data; | |
1863 | break; | |
1864 | case MSR_MTRRfix4K_F0000: | |
1865 | env->mtrr_fixed[9] = msrs[i].data; | |
1866 | break; | |
1867 | case MSR_MTRRfix4K_F8000: | |
1868 | env->mtrr_fixed[10] = msrs[i].data; | |
1869 | break; | |
1870 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
1871 | if (index & 1) { | |
1872 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data; | |
1873 | } else { | |
1874 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
1875 | } | |
1876 | break; | |
05330448 AL |
1877 | } |
1878 | } | |
1879 | ||
1880 | return 0; | |
1881 | } | |
1882 | ||
1bc22652 | 1883 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 1884 | { |
1bc22652 | 1885 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 1886 | |
1bc22652 | 1887 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
1888 | } |
1889 | ||
23d02d9b | 1890 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 1891 | { |
259186a7 | 1892 | CPUState *cs = CPU(cpu); |
23d02d9b | 1893 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
1894 | struct kvm_mp_state mp_state; |
1895 | int ret; | |
1896 | ||
259186a7 | 1897 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
1898 | if (ret < 0) { |
1899 | return ret; | |
1900 | } | |
1901 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 1902 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 1903 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 1904 | } |
9bdbe550 HB |
1905 | return 0; |
1906 | } | |
1907 | ||
1bc22652 | 1908 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 1909 | { |
02e51483 | 1910 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1911 | struct kvm_lapic_state kapic; |
1912 | int ret; | |
1913 | ||
3d4b2649 | 1914 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 1915 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
1916 | if (ret < 0) { |
1917 | return ret; | |
1918 | } | |
1919 | ||
1920 | kvm_get_apic_state(apic, &kapic); | |
1921 | } | |
1922 | return 0; | |
1923 | } | |
1924 | ||
1bc22652 | 1925 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 1926 | { |
02e51483 | 1927 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1928 | struct kvm_lapic_state kapic; |
1929 | ||
3d4b2649 | 1930 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
1931 | kvm_put_apic_state(apic, &kapic); |
1932 | ||
1bc22652 | 1933 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
1934 | } |
1935 | return 0; | |
1936 | } | |
1937 | ||
1bc22652 | 1938 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 1939 | { |
fc12d72e | 1940 | CPUState *cs = CPU(cpu); |
1bc22652 | 1941 | CPUX86State *env = &cpu->env; |
076796f8 | 1942 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
1943 | |
1944 | if (!kvm_has_vcpu_events()) { | |
1945 | return 0; | |
1946 | } | |
1947 | ||
31827373 JK |
1948 | events.exception.injected = (env->exception_injected >= 0); |
1949 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
1950 | events.exception.has_error_code = env->has_error_code; |
1951 | events.exception.error_code = env->error_code; | |
7e680753 | 1952 | events.exception.pad = 0; |
a0fb002c JK |
1953 | |
1954 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1955 | events.interrupt.nr = env->interrupt_injected; | |
1956 | events.interrupt.soft = env->soft_interrupt; | |
1957 | ||
1958 | events.nmi.injected = env->nmi_injected; | |
1959 | events.nmi.pending = env->nmi_pending; | |
1960 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 1961 | events.nmi.pad = 0; |
a0fb002c JK |
1962 | |
1963 | events.sipi_vector = env->sipi_vector; | |
1964 | ||
fc12d72e PB |
1965 | if (has_msr_smbase) { |
1966 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
1967 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
1968 | if (kvm_irqchip_in_kernel()) { | |
1969 | /* As soon as these are moved to the kernel, remove them | |
1970 | * from cs->interrupt_request. | |
1971 | */ | |
1972 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
1973 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
1974 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
1975 | } else { | |
1976 | /* Keep these in cs->interrupt_request. */ | |
1977 | events.smi.pending = 0; | |
1978 | events.smi.latched_init = 0; | |
1979 | } | |
1980 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
1981 | } | |
1982 | ||
ea643051 JK |
1983 | events.flags = 0; |
1984 | if (level >= KVM_PUT_RESET_STATE) { | |
1985 | events.flags |= | |
1986 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1987 | } | |
aee028b9 | 1988 | |
1bc22652 | 1989 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
1990 | } |
1991 | ||
1bc22652 | 1992 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 1993 | { |
1bc22652 | 1994 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1995 | struct kvm_vcpu_events events; |
1996 | int ret; | |
1997 | ||
1998 | if (!kvm_has_vcpu_events()) { | |
1999 | return 0; | |
2000 | } | |
2001 | ||
fc12d72e | 2002 | memset(&events, 0, sizeof(events)); |
1bc22652 | 2003 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
2004 | if (ret < 0) { |
2005 | return ret; | |
2006 | } | |
31827373 | 2007 | env->exception_injected = |
a0fb002c JK |
2008 | events.exception.injected ? events.exception.nr : -1; |
2009 | env->has_error_code = events.exception.has_error_code; | |
2010 | env->error_code = events.exception.error_code; | |
2011 | ||
2012 | env->interrupt_injected = | |
2013 | events.interrupt.injected ? events.interrupt.nr : -1; | |
2014 | env->soft_interrupt = events.interrupt.soft; | |
2015 | ||
2016 | env->nmi_injected = events.nmi.injected; | |
2017 | env->nmi_pending = events.nmi.pending; | |
2018 | if (events.nmi.masked) { | |
2019 | env->hflags2 |= HF2_NMI_MASK; | |
2020 | } else { | |
2021 | env->hflags2 &= ~HF2_NMI_MASK; | |
2022 | } | |
2023 | ||
fc12d72e PB |
2024 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
2025 | if (events.smi.smm) { | |
2026 | env->hflags |= HF_SMM_MASK; | |
2027 | } else { | |
2028 | env->hflags &= ~HF_SMM_MASK; | |
2029 | } | |
2030 | if (events.smi.pending) { | |
2031 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2032 | } else { | |
2033 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2034 | } | |
2035 | if (events.smi.smm_inside_nmi) { | |
2036 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
2037 | } else { | |
2038 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
2039 | } | |
2040 | if (events.smi.latched_init) { | |
2041 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2042 | } else { | |
2043 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2044 | } | |
2045 | } | |
2046 | ||
a0fb002c | 2047 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
2048 | |
2049 | return 0; | |
2050 | } | |
2051 | ||
1bc22652 | 2052 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 2053 | { |
ed2803da | 2054 | CPUState *cs = CPU(cpu); |
1bc22652 | 2055 | CPUX86State *env = &cpu->env; |
b0b1d690 | 2056 | int ret = 0; |
b0b1d690 JK |
2057 | unsigned long reinject_trap = 0; |
2058 | ||
2059 | if (!kvm_has_vcpu_events()) { | |
2060 | if (env->exception_injected == 1) { | |
2061 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
2062 | } else if (env->exception_injected == 3) { | |
2063 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
2064 | } | |
2065 | env->exception_injected = -1; | |
2066 | } | |
2067 | ||
2068 | /* | |
2069 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
2070 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
2071 | * by updating the debug state once again if single-stepping is on. | |
2072 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
2073 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
2074 | * reinject them via SET_GUEST_DEBUG. | |
2075 | */ | |
2076 | if (reinject_trap || | |
ed2803da | 2077 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 2078 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 2079 | } |
b0b1d690 JK |
2080 | return ret; |
2081 | } | |
2082 | ||
1bc22652 | 2083 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 2084 | { |
1bc22652 | 2085 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2086 | struct kvm_debugregs dbgregs; |
2087 | int i; | |
2088 | ||
2089 | if (!kvm_has_debugregs()) { | |
2090 | return 0; | |
2091 | } | |
2092 | ||
2093 | for (i = 0; i < 4; i++) { | |
2094 | dbgregs.db[i] = env->dr[i]; | |
2095 | } | |
2096 | dbgregs.dr6 = env->dr[6]; | |
2097 | dbgregs.dr7 = env->dr[7]; | |
2098 | dbgregs.flags = 0; | |
2099 | ||
1bc22652 | 2100 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
2101 | } |
2102 | ||
1bc22652 | 2103 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 2104 | { |
1bc22652 | 2105 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2106 | struct kvm_debugregs dbgregs; |
2107 | int i, ret; | |
2108 | ||
2109 | if (!kvm_has_debugregs()) { | |
2110 | return 0; | |
2111 | } | |
2112 | ||
1bc22652 | 2113 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2114 | if (ret < 0) { |
b9bec74b | 2115 | return ret; |
ff44f1a3 JK |
2116 | } |
2117 | for (i = 0; i < 4; i++) { | |
2118 | env->dr[i] = dbgregs.db[i]; | |
2119 | } | |
2120 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
2121 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
2122 | |
2123 | return 0; | |
2124 | } | |
2125 | ||
20d695a9 | 2126 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 2127 | { |
20d695a9 | 2128 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
2129 | int ret; |
2130 | ||
2fa45344 | 2131 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 2132 | |
6bdf863d JK |
2133 | if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) { |
2134 | ret = kvm_put_msr_feature_control(x86_cpu); | |
2135 | if (ret < 0) { | |
2136 | return ret; | |
2137 | } | |
2138 | } | |
2139 | ||
1bc22652 | 2140 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 2141 | if (ret < 0) { |
05330448 | 2142 | return ret; |
b9bec74b | 2143 | } |
1bc22652 | 2144 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 2145 | if (ret < 0) { |
f1665b21 | 2146 | return ret; |
b9bec74b | 2147 | } |
1bc22652 | 2148 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 2149 | if (ret < 0) { |
05330448 | 2150 | return ret; |
b9bec74b | 2151 | } |
1bc22652 | 2152 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 2153 | if (ret < 0) { |
05330448 | 2154 | return ret; |
b9bec74b | 2155 | } |
ab443475 | 2156 | /* must be before kvm_put_msrs */ |
1bc22652 | 2157 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
2158 | if (ret < 0) { |
2159 | return ret; | |
2160 | } | |
1bc22652 | 2161 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 2162 | if (ret < 0) { |
05330448 | 2163 | return ret; |
b9bec74b | 2164 | } |
ea643051 | 2165 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 2166 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 2167 | if (ret < 0) { |
ea643051 | 2168 | return ret; |
b9bec74b | 2169 | } |
1bc22652 | 2170 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
2171 | if (ret < 0) { |
2172 | return ret; | |
2173 | } | |
ea643051 | 2174 | } |
7477cd38 MT |
2175 | |
2176 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
2177 | if (ret < 0) { | |
2178 | return ret; | |
2179 | } | |
2180 | ||
1bc22652 | 2181 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 2182 | if (ret < 0) { |
a0fb002c | 2183 | return ret; |
b9bec74b | 2184 | } |
1bc22652 | 2185 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 2186 | if (ret < 0) { |
b0b1d690 | 2187 | return ret; |
b9bec74b | 2188 | } |
b0b1d690 | 2189 | /* must be last */ |
1bc22652 | 2190 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 2191 | if (ret < 0) { |
ff44f1a3 | 2192 | return ret; |
b9bec74b | 2193 | } |
05330448 AL |
2194 | return 0; |
2195 | } | |
2196 | ||
20d695a9 | 2197 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 2198 | { |
20d695a9 | 2199 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
2200 | int ret; |
2201 | ||
20d695a9 | 2202 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 2203 | |
1bc22652 | 2204 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 2205 | if (ret < 0) { |
05330448 | 2206 | return ret; |
b9bec74b | 2207 | } |
1bc22652 | 2208 | ret = kvm_get_xsave(cpu); |
b9bec74b | 2209 | if (ret < 0) { |
f1665b21 | 2210 | return ret; |
b9bec74b | 2211 | } |
1bc22652 | 2212 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 2213 | if (ret < 0) { |
05330448 | 2214 | return ret; |
b9bec74b | 2215 | } |
1bc22652 | 2216 | ret = kvm_get_sregs(cpu); |
b9bec74b | 2217 | if (ret < 0) { |
05330448 | 2218 | return ret; |
b9bec74b | 2219 | } |
1bc22652 | 2220 | ret = kvm_get_msrs(cpu); |
b9bec74b | 2221 | if (ret < 0) { |
05330448 | 2222 | return ret; |
b9bec74b | 2223 | } |
23d02d9b | 2224 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 2225 | if (ret < 0) { |
5a2e3c2e | 2226 | return ret; |
b9bec74b | 2227 | } |
1bc22652 | 2228 | ret = kvm_get_apic(cpu); |
680c1c6f JK |
2229 | if (ret < 0) { |
2230 | return ret; | |
2231 | } | |
1bc22652 | 2232 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 2233 | if (ret < 0) { |
a0fb002c | 2234 | return ret; |
b9bec74b | 2235 | } |
1bc22652 | 2236 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 2237 | if (ret < 0) { |
ff44f1a3 | 2238 | return ret; |
b9bec74b | 2239 | } |
05330448 AL |
2240 | return 0; |
2241 | } | |
2242 | ||
20d695a9 | 2243 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2244 | { |
20d695a9 AF |
2245 | X86CPU *x86_cpu = X86_CPU(cpu); |
2246 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2247 | int ret; |
2248 | ||
276ce815 | 2249 | /* Inject NMI */ |
fc12d72e PB |
2250 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
2251 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
2252 | qemu_mutex_lock_iothread(); | |
2253 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
2254 | qemu_mutex_unlock_iothread(); | |
2255 | DPRINTF("injected NMI\n"); | |
2256 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
2257 | if (ret < 0) { | |
2258 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2259 | strerror(-ret)); | |
2260 | } | |
2261 | } | |
2262 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
2263 | qemu_mutex_lock_iothread(); | |
2264 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
2265 | qemu_mutex_unlock_iothread(); | |
2266 | DPRINTF("injected SMI\n"); | |
2267 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
2268 | if (ret < 0) { | |
2269 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
2270 | strerror(-ret)); | |
2271 | } | |
ce377af3 | 2272 | } |
276ce815 LJ |
2273 | } |
2274 | ||
4b8523ee JK |
2275 | if (!kvm_irqchip_in_kernel()) { |
2276 | qemu_mutex_lock_iothread(); | |
2277 | } | |
2278 | ||
e0723c45 PB |
2279 | /* Force the VCPU out of its inner loop to process any INIT requests |
2280 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2281 | * pending TPR access reports. | |
2282 | */ | |
2283 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
2284 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
2285 | !(env->hflags & HF_SMM_MASK)) { | |
2286 | cpu->exit_request = 1; | |
2287 | } | |
2288 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
2289 | cpu->exit_request = 1; | |
2290 | } | |
e0723c45 | 2291 | } |
05330448 | 2292 | |
e0723c45 | 2293 | if (!kvm_irqchip_in_kernel()) { |
db1669bc JK |
2294 | /* Try to inject an interrupt if the guest can accept it */ |
2295 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2296 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2297 | (env->eflags & IF_MASK)) { |
2298 | int irq; | |
2299 | ||
259186a7 | 2300 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2301 | irq = cpu_get_pic_interrupt(env); |
2302 | if (irq >= 0) { | |
2303 | struct kvm_interrupt intr; | |
2304 | ||
2305 | intr.irq = irq; | |
db1669bc | 2306 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2307 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2308 | if (ret < 0) { |
2309 | fprintf(stderr, | |
2310 | "KVM: injection failed, interrupt lost (%s)\n", | |
2311 | strerror(-ret)); | |
2312 | } | |
db1669bc JK |
2313 | } |
2314 | } | |
05330448 | 2315 | |
db1669bc JK |
2316 | /* If we have an interrupt but the guest is not ready to receive an |
2317 | * interrupt, request an interrupt window exit. This will | |
2318 | * cause a return to userspace as soon as the guest is ready to | |
2319 | * receive interrupts. */ | |
259186a7 | 2320 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2321 | run->request_interrupt_window = 1; |
2322 | } else { | |
2323 | run->request_interrupt_window = 0; | |
2324 | } | |
2325 | ||
2326 | DPRINTF("setting tpr\n"); | |
02e51483 | 2327 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
2328 | |
2329 | qemu_mutex_unlock_iothread(); | |
db1669bc | 2330 | } |
05330448 AL |
2331 | } |
2332 | ||
4c663752 | 2333 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2334 | { |
20d695a9 AF |
2335 | X86CPU *x86_cpu = X86_CPU(cpu); |
2336 | CPUX86State *env = &x86_cpu->env; | |
2337 | ||
fc12d72e PB |
2338 | if (run->flags & KVM_RUN_X86_SMM) { |
2339 | env->hflags |= HF_SMM_MASK; | |
2340 | } else { | |
2341 | env->hflags &= HF_SMM_MASK; | |
2342 | } | |
b9bec74b | 2343 | if (run->if_flag) { |
05330448 | 2344 | env->eflags |= IF_MASK; |
b9bec74b | 2345 | } else { |
05330448 | 2346 | env->eflags &= ~IF_MASK; |
b9bec74b | 2347 | } |
4b8523ee JK |
2348 | |
2349 | /* We need to protect the apic state against concurrent accesses from | |
2350 | * different threads in case the userspace irqchip is used. */ | |
2351 | if (!kvm_irqchip_in_kernel()) { | |
2352 | qemu_mutex_lock_iothread(); | |
2353 | } | |
02e51483 CF |
2354 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2355 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
2356 | if (!kvm_irqchip_in_kernel()) { |
2357 | qemu_mutex_unlock_iothread(); | |
2358 | } | |
f794aa4a | 2359 | return cpu_get_mem_attrs(env); |
05330448 AL |
2360 | } |
2361 | ||
20d695a9 | 2362 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2363 | { |
20d695a9 AF |
2364 | X86CPU *cpu = X86_CPU(cs); |
2365 | CPUX86State *env = &cpu->env; | |
232fc23b | 2366 | |
259186a7 | 2367 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2368 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2369 | assert(env->mcg_cap); | |
2370 | ||
259186a7 | 2371 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2372 | |
dd1750d7 | 2373 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2374 | |
2375 | if (env->exception_injected == EXCP08_DBLE) { | |
2376 | /* this means triple fault */ | |
2377 | qemu_system_reset_request(); | |
fcd7d003 | 2378 | cs->exit_request = 1; |
ab443475 JK |
2379 | return 0; |
2380 | } | |
2381 | env->exception_injected = EXCP12_MCHK; | |
2382 | env->has_error_code = 0; | |
2383 | ||
259186a7 | 2384 | cs->halted = 0; |
ab443475 JK |
2385 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2386 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2387 | } | |
2388 | } | |
2389 | ||
fc12d72e PB |
2390 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
2391 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
2392 | kvm_cpu_synchronize_state(cs); |
2393 | do_cpu_init(cpu); | |
2394 | } | |
2395 | ||
db1669bc JK |
2396 | if (kvm_irqchip_in_kernel()) { |
2397 | return 0; | |
2398 | } | |
2399 | ||
259186a7 AF |
2400 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2401 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2402 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2403 | } |
259186a7 | 2404 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2405 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2406 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2407 | cs->halted = 0; | |
6792a57b | 2408 | } |
259186a7 | 2409 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2410 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2411 | do_cpu_sipi(cpu); |
0af691d7 | 2412 | } |
259186a7 AF |
2413 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2414 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2415 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2416 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2417 | env->tpr_access_type); |
2418 | } | |
0af691d7 | 2419 | |
259186a7 | 2420 | return cs->halted; |
0af691d7 MT |
2421 | } |
2422 | ||
839b5630 | 2423 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2424 | { |
259186a7 | 2425 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2426 | CPUX86State *env = &cpu->env; |
2427 | ||
259186a7 | 2428 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2429 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2430 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2431 | cs->halted = 1; | |
bb4ea393 | 2432 | return EXCP_HLT; |
05330448 AL |
2433 | } |
2434 | ||
bb4ea393 | 2435 | return 0; |
05330448 AL |
2436 | } |
2437 | ||
f7575c96 | 2438 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2439 | { |
f7575c96 AF |
2440 | CPUState *cs = CPU(cpu); |
2441 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2442 | |
02e51483 | 2443 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2444 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2445 | : TPR_ACCESS_READ); | |
2446 | return 1; | |
2447 | } | |
2448 | ||
f17ec444 | 2449 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2450 | { |
38972938 | 2451 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2452 | |
f17ec444 AF |
2453 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2454 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2455 | return -EINVAL; |
b9bec74b | 2456 | } |
e22a25c9 AL |
2457 | return 0; |
2458 | } | |
2459 | ||
f17ec444 | 2460 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2461 | { |
2462 | uint8_t int3; | |
2463 | ||
f17ec444 AF |
2464 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2465 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2466 | return -EINVAL; |
b9bec74b | 2467 | } |
e22a25c9 AL |
2468 | return 0; |
2469 | } | |
2470 | ||
2471 | static struct { | |
2472 | target_ulong addr; | |
2473 | int len; | |
2474 | int type; | |
2475 | } hw_breakpoint[4]; | |
2476 | ||
2477 | static int nb_hw_breakpoint; | |
2478 | ||
2479 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2480 | { | |
2481 | int n; | |
2482 | ||
b9bec74b | 2483 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2484 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2485 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2486 | return n; |
b9bec74b JK |
2487 | } |
2488 | } | |
e22a25c9 AL |
2489 | return -1; |
2490 | } | |
2491 | ||
2492 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2493 | target_ulong len, int type) | |
2494 | { | |
2495 | switch (type) { | |
2496 | case GDB_BREAKPOINT_HW: | |
2497 | len = 1; | |
2498 | break; | |
2499 | case GDB_WATCHPOINT_WRITE: | |
2500 | case GDB_WATCHPOINT_ACCESS: | |
2501 | switch (len) { | |
2502 | case 1: | |
2503 | break; | |
2504 | case 2: | |
2505 | case 4: | |
2506 | case 8: | |
b9bec74b | 2507 | if (addr & (len - 1)) { |
e22a25c9 | 2508 | return -EINVAL; |
b9bec74b | 2509 | } |
e22a25c9 AL |
2510 | break; |
2511 | default: | |
2512 | return -EINVAL; | |
2513 | } | |
2514 | break; | |
2515 | default: | |
2516 | return -ENOSYS; | |
2517 | } | |
2518 | ||
b9bec74b | 2519 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2520 | return -ENOBUFS; |
b9bec74b JK |
2521 | } |
2522 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2523 | return -EEXIST; |
b9bec74b | 2524 | } |
e22a25c9 AL |
2525 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2526 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2527 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2528 | nb_hw_breakpoint++; | |
2529 | ||
2530 | return 0; | |
2531 | } | |
2532 | ||
2533 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2534 | target_ulong len, int type) | |
2535 | { | |
2536 | int n; | |
2537 | ||
2538 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 2539 | if (n < 0) { |
e22a25c9 | 2540 | return -ENOENT; |
b9bec74b | 2541 | } |
e22a25c9 AL |
2542 | nb_hw_breakpoint--; |
2543 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
2544 | ||
2545 | return 0; | |
2546 | } | |
2547 | ||
2548 | void kvm_arch_remove_all_hw_breakpoints(void) | |
2549 | { | |
2550 | nb_hw_breakpoint = 0; | |
2551 | } | |
2552 | ||
2553 | static CPUWatchpoint hw_watchpoint; | |
2554 | ||
a60f24b5 | 2555 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 2556 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 2557 | { |
ed2803da | 2558 | CPUState *cs = CPU(cpu); |
a60f24b5 | 2559 | CPUX86State *env = &cpu->env; |
f2574737 | 2560 | int ret = 0; |
e22a25c9 AL |
2561 | int n; |
2562 | ||
2563 | if (arch_info->exception == 1) { | |
2564 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 2565 | if (cs->singlestep_enabled) { |
f2574737 | 2566 | ret = EXCP_DEBUG; |
b9bec74b | 2567 | } |
e22a25c9 | 2568 | } else { |
b9bec74b JK |
2569 | for (n = 0; n < 4; n++) { |
2570 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
2571 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
2572 | case 0x0: | |
f2574737 | 2573 | ret = EXCP_DEBUG; |
e22a25c9 AL |
2574 | break; |
2575 | case 0x1: | |
f2574737 | 2576 | ret = EXCP_DEBUG; |
ff4700b0 | 2577 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2578 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2579 | hw_watchpoint.flags = BP_MEM_WRITE; | |
2580 | break; | |
2581 | case 0x3: | |
f2574737 | 2582 | ret = EXCP_DEBUG; |
ff4700b0 | 2583 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2584 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2585 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
2586 | break; | |
2587 | } | |
b9bec74b JK |
2588 | } |
2589 | } | |
e22a25c9 | 2590 | } |
ff4700b0 | 2591 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 2592 | ret = EXCP_DEBUG; |
b9bec74b | 2593 | } |
f2574737 | 2594 | if (ret == 0) { |
ff4700b0 | 2595 | cpu_synchronize_state(cs); |
48405526 | 2596 | assert(env->exception_injected == -1); |
b0b1d690 | 2597 | |
f2574737 | 2598 | /* pass to guest */ |
48405526 BS |
2599 | env->exception_injected = arch_info->exception; |
2600 | env->has_error_code = 0; | |
b0b1d690 | 2601 | } |
e22a25c9 | 2602 | |
f2574737 | 2603 | return ret; |
e22a25c9 AL |
2604 | } |
2605 | ||
20d695a9 | 2606 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
2607 | { |
2608 | const uint8_t type_code[] = { | |
2609 | [GDB_BREAKPOINT_HW] = 0x0, | |
2610 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2611 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2612 | }; | |
2613 | const uint8_t len_code[] = { | |
2614 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2615 | }; | |
2616 | int n; | |
2617 | ||
a60f24b5 | 2618 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 2619 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 2620 | } |
e22a25c9 AL |
2621 | if (nb_hw_breakpoint > 0) { |
2622 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2623 | dbg->arch.debugreg[7] = 0x0600; | |
2624 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2625 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2626 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2627 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 2628 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
2629 | } |
2630 | } | |
2631 | } | |
4513d923 | 2632 | |
2a4dac83 JK |
2633 | static bool host_supports_vmx(void) |
2634 | { | |
2635 | uint32_t ecx, unused; | |
2636 | ||
2637 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2638 | return ecx & CPUID_EXT_VMX; | |
2639 | } | |
2640 | ||
2641 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2642 | ||
20d695a9 | 2643 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 2644 | { |
20d695a9 | 2645 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
2646 | uint64_t code; |
2647 | int ret; | |
2648 | ||
2649 | switch (run->exit_reason) { | |
2650 | case KVM_EXIT_HLT: | |
2651 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 2652 | qemu_mutex_lock_iothread(); |
839b5630 | 2653 | ret = kvm_handle_halt(cpu); |
4b8523ee | 2654 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
2655 | break; |
2656 | case KVM_EXIT_SET_TPR: | |
2657 | ret = 0; | |
2658 | break; | |
d362e757 | 2659 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 2660 | qemu_mutex_lock_iothread(); |
f7575c96 | 2661 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 2662 | qemu_mutex_unlock_iothread(); |
d362e757 | 2663 | break; |
2a4dac83 JK |
2664 | case KVM_EXIT_FAIL_ENTRY: |
2665 | code = run->fail_entry.hardware_entry_failure_reason; | |
2666 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2667 | code); | |
2668 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2669 | fprintf(stderr, | |
12619721 | 2670 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
2671 | "unrestricted mode\n" |
2672 | "support, the failure can be most likely due to the guest " | |
2673 | "entering an invalid\n" | |
2674 | "state for Intel VT. For example, the guest maybe running " | |
2675 | "in big real mode\n" | |
2676 | "which is not supported on less recent Intel processors." | |
2677 | "\n\n"); | |
2678 | } | |
2679 | ret = -1; | |
2680 | break; | |
2681 | case KVM_EXIT_EXCEPTION: | |
2682 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2683 | run->ex.exception, run->ex.error_code); | |
2684 | ret = -1; | |
2685 | break; | |
f2574737 JK |
2686 | case KVM_EXIT_DEBUG: |
2687 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 2688 | qemu_mutex_lock_iothread(); |
a60f24b5 | 2689 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 2690 | qemu_mutex_unlock_iothread(); |
f2574737 | 2691 | break; |
2a4dac83 JK |
2692 | default: |
2693 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2694 | ret = -1; | |
2695 | break; | |
2696 | } | |
2697 | ||
2698 | return ret; | |
2699 | } | |
2700 | ||
20d695a9 | 2701 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 2702 | { |
20d695a9 AF |
2703 | X86CPU *cpu = X86_CPU(cs); |
2704 | CPUX86State *env = &cpu->env; | |
2705 | ||
dd1750d7 | 2706 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
2707 | return !(env->cr[0] & CR0_PE_MASK) || |
2708 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 2709 | } |
84b058d7 JK |
2710 | |
2711 | void kvm_arch_init_irq_routing(KVMState *s) | |
2712 | { | |
2713 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2714 | /* If kernel can't do irq routing, interrupt source | |
2715 | * override 0->2 cannot be set up as required by HPET. | |
2716 | * So we have to disable it. | |
2717 | */ | |
2718 | no_hpet = 1; | |
2719 | } | |
cc7e0ddf | 2720 | /* We know at this point that we're using the in-kernel |
614e41bc | 2721 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 2722 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 2723 | */ |
614e41bc | 2724 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 2725 | kvm_gsi_routing_allowed = true; |
84b058d7 | 2726 | } |
b139bd30 JK |
2727 | |
2728 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2729 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2730 | uint32_t flags, uint32_t *dev_id) | |
2731 | { | |
2732 | struct kvm_assigned_pci_dev dev_data = { | |
2733 | .segnr = dev_addr->domain, | |
2734 | .busnr = dev_addr->bus, | |
2735 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2736 | .flags = flags, | |
2737 | }; | |
2738 | int ret; | |
2739 | ||
2740 | dev_data.assigned_dev_id = | |
2741 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2742 | ||
2743 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2744 | if (ret < 0) { | |
2745 | return ret; | |
2746 | } | |
2747 | ||
2748 | *dev_id = dev_data.assigned_dev_id; | |
2749 | ||
2750 | return 0; | |
2751 | } | |
2752 | ||
2753 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2754 | { | |
2755 | struct kvm_assigned_pci_dev dev_data = { | |
2756 | .assigned_dev_id = dev_id, | |
2757 | }; | |
2758 | ||
2759 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2760 | } | |
2761 | ||
2762 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2763 | uint32_t irq_type, uint32_t guest_irq) | |
2764 | { | |
2765 | struct kvm_assigned_irq assigned_irq = { | |
2766 | .assigned_dev_id = dev_id, | |
2767 | .guest_irq = guest_irq, | |
2768 | .flags = irq_type, | |
2769 | }; | |
2770 | ||
2771 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2772 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2773 | } else { | |
2774 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2775 | } | |
2776 | } | |
2777 | ||
2778 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2779 | uint32_t guest_irq) | |
2780 | { | |
2781 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2782 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2783 | ||
2784 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2785 | } | |
2786 | ||
2787 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2788 | { | |
2789 | struct kvm_assigned_pci_dev dev_data = { | |
2790 | .assigned_dev_id = dev_id, | |
2791 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2792 | }; | |
2793 | ||
2794 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
2795 | } | |
2796 | ||
2797 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
2798 | uint32_t type) | |
2799 | { | |
2800 | struct kvm_assigned_irq assigned_irq = { | |
2801 | .assigned_dev_id = dev_id, | |
2802 | .flags = type, | |
2803 | }; | |
2804 | ||
2805 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
2806 | } | |
2807 | ||
2808 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
2809 | { | |
2810 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
2811 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
2812 | } | |
2813 | ||
2814 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
2815 | { | |
2816 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
2817 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
2818 | } | |
2819 | ||
2820 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
2821 | { | |
2822 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
2823 | KVM_DEV_IRQ_HOST_MSI); | |
2824 | } | |
2825 | ||
2826 | bool kvm_device_msix_supported(KVMState *s) | |
2827 | { | |
2828 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
2829 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
2830 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
2831 | } | |
2832 | ||
2833 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
2834 | uint32_t nr_vectors) | |
2835 | { | |
2836 | struct kvm_assigned_msix_nr msix_nr = { | |
2837 | .assigned_dev_id = dev_id, | |
2838 | .entry_nr = nr_vectors, | |
2839 | }; | |
2840 | ||
2841 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
2842 | } | |
2843 | ||
2844 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
2845 | int virq) | |
2846 | { | |
2847 | struct kvm_assigned_msix_entry msix_entry = { | |
2848 | .assigned_dev_id = dev_id, | |
2849 | .gsi = virq, | |
2850 | .entry = vector, | |
2851 | }; | |
2852 | ||
2853 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
2854 | } | |
2855 | ||
2856 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
2857 | { | |
2858 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
2859 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
2860 | } | |
2861 | ||
2862 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
2863 | { | |
2864 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
2865 | KVM_DEV_IRQ_HOST_MSIX); | |
2866 | } | |
9e03a040 FB |
2867 | |
2868 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
2869 | uint64_t address, uint32_t data) | |
2870 | { | |
2871 | return 0; | |
2872 | } | |
1850b6b7 EA |
2873 | |
2874 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
2875 | { | |
2876 | abort(); | |
2877 | } |