]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
9c17d615 PB |
24 | #include "sysemu/sysemu.h" |
25 | #include "sysemu/kvm.h" | |
1d31f66b | 26 | #include "kvm_i386.h" |
05330448 | 27 | #include "cpu.h" |
022c62cb | 28 | #include "exec/gdbstub.h" |
1de7afc9 PB |
29 | #include "qemu/host-utils.h" |
30 | #include "qemu/config-file.h" | |
0d09e41a PB |
31 | #include "hw/i386/pc.h" |
32 | #include "hw/i386/apic.h" | |
e0723c45 PB |
33 | #include "hw/i386/apic_internal.h" |
34 | #include "hw/i386/apic-msidef.h" | |
022c62cb | 35 | #include "exec/ioport.h" |
92067bf4 | 36 | #include <asm/hyperv.h> |
a2cb15b0 | 37 | #include "hw/pci/pci.h" |
68bfd0ad MT |
38 | #include "migration/migration.h" |
39 | #include "qapi/qmp/qerror.h" | |
4c663752 | 40 | #include "exec/memattrs.h" |
05330448 AL |
41 | |
42 | //#define DEBUG_KVM | |
43 | ||
44 | #ifdef DEBUG_KVM | |
8c0d577e | 45 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
46 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
47 | #else | |
8c0d577e | 48 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
49 | do { } while (0) |
50 | #endif | |
51 | ||
1a03675d GC |
52 | #define MSR_KVM_WALL_CLOCK 0x11 |
53 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
54 | ||
c0532a76 MT |
55 | #ifndef BUS_MCEERR_AR |
56 | #define BUS_MCEERR_AR 4 | |
57 | #endif | |
58 | #ifndef BUS_MCEERR_AO | |
59 | #define BUS_MCEERR_AO 5 | |
60 | #endif | |
61 | ||
94a8d39a JK |
62 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
63 | KVM_CAP_INFO(SET_TSS_ADDR), | |
64 | KVM_CAP_INFO(EXT_CPUID), | |
65 | KVM_CAP_INFO(MP_STATE), | |
66 | KVM_CAP_LAST_INFO | |
67 | }; | |
25d2e361 | 68 | |
c3a3a7d3 JK |
69 | static bool has_msr_star; |
70 | static bool has_msr_hsave_pa; | |
f28558d3 | 71 | static bool has_msr_tsc_adjust; |
aa82ba54 | 72 | static bool has_msr_tsc_deadline; |
df67696e | 73 | static bool has_msr_feature_control; |
c5999bfc | 74 | static bool has_msr_async_pf_en; |
bc9a839d | 75 | static bool has_msr_pv_eoi_en; |
21e87c46 | 76 | static bool has_msr_misc_enable; |
79e9ebeb | 77 | static bool has_msr_bndcfgs; |
917367aa | 78 | static bool has_msr_kvm_steal_time; |
25d2e361 | 79 | static int lm_capable_kernel; |
7bc3d711 PB |
80 | static bool has_msr_hv_hypercall; |
81 | static bool has_msr_hv_vapic; | |
48a5f3bc | 82 | static bool has_msr_hv_tsc; |
d1ae67f6 | 83 | static bool has_msr_mtrr; |
18cd2c17 | 84 | static bool has_msr_xss; |
b827df58 | 85 | |
0d894367 PB |
86 | static bool has_msr_architectural_pmu; |
87 | static uint32_t num_architectural_pmu_counters; | |
88 | ||
1d31f66b PM |
89 | bool kvm_allows_irq0_override(void) |
90 | { | |
91 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
92 | } | |
93 | ||
b827df58 AK |
94 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
95 | { | |
96 | struct kvm_cpuid2 *cpuid; | |
97 | int r, size; | |
98 | ||
99 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 100 | cpuid = g_malloc0(size); |
b827df58 AK |
101 | cpuid->nent = max; |
102 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
103 | if (r == 0 && cpuid->nent >= max) { |
104 | r = -E2BIG; | |
105 | } | |
b827df58 AK |
106 | if (r < 0) { |
107 | if (r == -E2BIG) { | |
7267c094 | 108 | g_free(cpuid); |
b827df58 AK |
109 | return NULL; |
110 | } else { | |
111 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
112 | strerror(-r)); | |
113 | exit(1); | |
114 | } | |
115 | } | |
116 | return cpuid; | |
117 | } | |
118 | ||
dd87f8a6 EH |
119 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
120 | * for all entries. | |
121 | */ | |
122 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
123 | { | |
124 | struct kvm_cpuid2 *cpuid; | |
125 | int max = 1; | |
126 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
127 | max *= 2; | |
128 | } | |
129 | return cpuid; | |
130 | } | |
131 | ||
a443bc34 | 132 | static const struct kvm_para_features { |
0c31b744 GC |
133 | int cap; |
134 | int feature; | |
135 | } para_features[] = { | |
136 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
137 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
138 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 139 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
140 | }; |
141 | ||
ba9bc59e | 142 | static int get_para_features(KVMState *s) |
0c31b744 GC |
143 | { |
144 | int i, features = 0; | |
145 | ||
8e03c100 | 146 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 147 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
148 | features |= (1 << para_features[i].feature); |
149 | } | |
150 | } | |
151 | ||
152 | return features; | |
153 | } | |
0c31b744 GC |
154 | |
155 | ||
829ae2f9 EH |
156 | /* Returns the value for a specific register on the cpuid entry |
157 | */ | |
158 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
159 | { | |
160 | uint32_t ret = 0; | |
161 | switch (reg) { | |
162 | case R_EAX: | |
163 | ret = entry->eax; | |
164 | break; | |
165 | case R_EBX: | |
166 | ret = entry->ebx; | |
167 | break; | |
168 | case R_ECX: | |
169 | ret = entry->ecx; | |
170 | break; | |
171 | case R_EDX: | |
172 | ret = entry->edx; | |
173 | break; | |
174 | } | |
175 | return ret; | |
176 | } | |
177 | ||
4fb73f1d EH |
178 | /* Find matching entry for function/index on kvm_cpuid2 struct |
179 | */ | |
180 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
181 | uint32_t function, | |
182 | uint32_t index) | |
183 | { | |
184 | int i; | |
185 | for (i = 0; i < cpuid->nent; ++i) { | |
186 | if (cpuid->entries[i].function == function && | |
187 | cpuid->entries[i].index == index) { | |
188 | return &cpuid->entries[i]; | |
189 | } | |
190 | } | |
191 | /* not found: */ | |
192 | return NULL; | |
193 | } | |
194 | ||
ba9bc59e | 195 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 196 | uint32_t index, int reg) |
b827df58 AK |
197 | { |
198 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
199 | uint32_t ret = 0; |
200 | uint32_t cpuid_1_edx; | |
8c723b79 | 201 | bool found = false; |
b827df58 | 202 | |
dd87f8a6 | 203 | cpuid = get_supported_cpuid(s); |
b827df58 | 204 | |
4fb73f1d EH |
205 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
206 | if (entry) { | |
207 | found = true; | |
208 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
209 | } |
210 | ||
7b46e5ce EH |
211 | /* Fixups for the data returned by KVM, below */ |
212 | ||
c2acb022 EH |
213 | if (function == 1 && reg == R_EDX) { |
214 | /* KVM before 2.6.30 misreports the following features */ | |
215 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
216 | } else if (function == 1 && reg == R_ECX) { |
217 | /* We can set the hypervisor flag, even if KVM does not return it on | |
218 | * GET_SUPPORTED_CPUID | |
219 | */ | |
220 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
221 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
222 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
223 | * and the irqchip is in the kernel. | |
224 | */ | |
225 | if (kvm_irqchip_in_kernel() && | |
226 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
227 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
228 | } | |
41e5e76d EH |
229 | |
230 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
231 | * without the in-kernel irqchip | |
232 | */ | |
233 | if (!kvm_irqchip_in_kernel()) { | |
234 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 235 | } |
c2acb022 EH |
236 | } else if (function == 0x80000001 && reg == R_EDX) { |
237 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
238 | * so add missing bits according to the AMD spec: | |
239 | */ | |
240 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
241 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
242 | } |
243 | ||
7267c094 | 244 | g_free(cpuid); |
b827df58 | 245 | |
0c31b744 | 246 | /* fallback for older kernels */ |
8c723b79 | 247 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 248 | ret = get_para_features(s); |
b9bec74b | 249 | } |
0c31b744 GC |
250 | |
251 | return ret; | |
bb0300dc | 252 | } |
bb0300dc | 253 | |
3c85e74f HY |
254 | typedef struct HWPoisonPage { |
255 | ram_addr_t ram_addr; | |
256 | QLIST_ENTRY(HWPoisonPage) list; | |
257 | } HWPoisonPage; | |
258 | ||
259 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
260 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
261 | ||
262 | static void kvm_unpoison_all(void *param) | |
263 | { | |
264 | HWPoisonPage *page, *next_page; | |
265 | ||
266 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
267 | QLIST_REMOVE(page, list); | |
268 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 269 | g_free(page); |
3c85e74f HY |
270 | } |
271 | } | |
272 | ||
3c85e74f HY |
273 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
274 | { | |
275 | HWPoisonPage *page; | |
276 | ||
277 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
278 | if (page->ram_addr == ram_addr) { | |
279 | return; | |
280 | } | |
281 | } | |
ab3ad07f | 282 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
283 | page->ram_addr = ram_addr; |
284 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
285 | } | |
286 | ||
e7701825 MT |
287 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
288 | int *max_banks) | |
289 | { | |
290 | int r; | |
291 | ||
14a09518 | 292 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
293 | if (r > 0) { |
294 | *max_banks = r; | |
295 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
296 | } | |
297 | return -ENOSYS; | |
298 | } | |
299 | ||
bee615d4 | 300 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 301 | { |
bee615d4 | 302 | CPUX86State *env = &cpu->env; |
c34d440a JK |
303 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
304 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
305 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
e7701825 | 306 | |
c34d440a JK |
307 | if (code == BUS_MCEERR_AR) { |
308 | status |= MCI_STATUS_AR | 0x134; | |
309 | mcg_status |= MCG_STATUS_EIPV; | |
310 | } else { | |
311 | status |= 0xc0; | |
312 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 313 | } |
8c5cf3b6 | 314 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
c34d440a JK |
315 | (MCM_ADDR_PHYS << 6) | 0xc, |
316 | cpu_x86_support_mca_broadcast(env) ? | |
317 | MCE_INJECT_BROADCAST : 0); | |
419fb20a | 318 | } |
419fb20a JK |
319 | |
320 | static void hardware_memory_error(void) | |
321 | { | |
322 | fprintf(stderr, "Hardware memory error!\n"); | |
323 | exit(1); | |
324 | } | |
325 | ||
20d695a9 | 326 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 327 | { |
20d695a9 AF |
328 | X86CPU *cpu = X86_CPU(c); |
329 | CPUX86State *env = &cpu->env; | |
419fb20a | 330 | ram_addr_t ram_addr; |
a8170e5e | 331 | hwaddr paddr; |
419fb20a JK |
332 | |
333 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 334 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
1b5ec234 | 335 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
a60f24b5 | 336 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
337 | fprintf(stderr, "Hardware memory error for memory used by " |
338 | "QEMU itself instead of guest system!\n"); | |
339 | /* Hope we are lucky for AO MCE */ | |
340 | if (code == BUS_MCEERR_AO) { | |
341 | return 0; | |
342 | } else { | |
343 | hardware_memory_error(); | |
344 | } | |
345 | } | |
3c85e74f | 346 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 347 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 348 | } else { |
419fb20a JK |
349 | if (code == BUS_MCEERR_AO) { |
350 | return 0; | |
351 | } else if (code == BUS_MCEERR_AR) { | |
352 | hardware_memory_error(); | |
353 | } else { | |
354 | return 1; | |
355 | } | |
356 | } | |
357 | return 0; | |
358 | } | |
359 | ||
360 | int kvm_arch_on_sigbus(int code, void *addr) | |
361 | { | |
182735ef AF |
362 | X86CPU *cpu = X86_CPU(first_cpu); |
363 | ||
364 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 365 | ram_addr_t ram_addr; |
a8170e5e | 366 | hwaddr paddr; |
419fb20a JK |
367 | |
368 | /* Hope we are lucky for AO MCE */ | |
1b5ec234 | 369 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
182735ef | 370 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 371 | addr, &paddr)) { |
419fb20a JK |
372 | fprintf(stderr, "Hardware memory error for memory used by " |
373 | "QEMU itself instead of guest system!: %p\n", addr); | |
374 | return 0; | |
375 | } | |
3c85e74f | 376 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 377 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 378 | } else { |
419fb20a JK |
379 | if (code == BUS_MCEERR_AO) { |
380 | return 0; | |
381 | } else if (code == BUS_MCEERR_AR) { | |
382 | hardware_memory_error(); | |
383 | } else { | |
384 | return 1; | |
385 | } | |
386 | } | |
387 | return 0; | |
388 | } | |
e7701825 | 389 | |
1bc22652 | 390 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 391 | { |
1bc22652 AF |
392 | CPUX86State *env = &cpu->env; |
393 | ||
ab443475 JK |
394 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
395 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
396 | struct kvm_x86_mce mce; | |
397 | ||
398 | env->exception_injected = -1; | |
399 | ||
400 | /* | |
401 | * There must be at least one bank in use if an MCE is pending. | |
402 | * Find it and use its values for the event injection. | |
403 | */ | |
404 | for (bank = 0; bank < bank_num; bank++) { | |
405 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
406 | break; | |
407 | } | |
408 | } | |
409 | assert(bank < bank_num); | |
410 | ||
411 | mce.bank = bank; | |
412 | mce.status = env->mce_banks[bank * 4 + 1]; | |
413 | mce.mcg_status = env->mcg_status; | |
414 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
415 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
416 | ||
1bc22652 | 417 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 418 | } |
ab443475 JK |
419 | return 0; |
420 | } | |
421 | ||
1dfb4dd9 | 422 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 423 | { |
317ac620 | 424 | CPUX86State *env = opaque; |
b8cc45d6 GC |
425 | |
426 | if (running) { | |
427 | env->tsc_valid = false; | |
428 | } | |
429 | } | |
430 | ||
83b17af5 | 431 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 432 | { |
83b17af5 | 433 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 434 | return cpu->apic_id; |
b164e48e EH |
435 | } |
436 | ||
92067bf4 IM |
437 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
438 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
439 | #endif | |
440 | ||
441 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
442 | { | |
443 | return cpu->hyperv_vapic || | |
444 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
445 | } | |
446 | ||
447 | static bool hyperv_enabled(X86CPU *cpu) | |
448 | { | |
7bc3d711 PB |
449 | CPUState *cs = CPU(cpu); |
450 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
451 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 452 | cpu->hyperv_time || |
7bc3d711 | 453 | cpu->hyperv_relaxed_timing); |
92067bf4 IM |
454 | } |
455 | ||
68bfd0ad MT |
456 | static Error *invtsc_mig_blocker; |
457 | ||
f8bb0565 | 458 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 459 | |
20d695a9 | 460 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
461 | { |
462 | struct { | |
486bd5a2 | 463 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 464 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 465 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
466 | X86CPU *cpu = X86_CPU(cs); |
467 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 468 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 469 | uint32_t unused; |
bb0300dc | 470 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 471 | uint32_t signature[3]; |
234cc647 | 472 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 473 | int r; |
05330448 | 474 | |
ef4cbe14 SW |
475 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
476 | ||
05330448 AL |
477 | cpuid_i = 0; |
478 | ||
bb0300dc | 479 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
480 | if (hyperv_enabled(cpu)) { |
481 | c = &cpuid_data.entries[cpuid_i++]; | |
482 | c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
eab70139 VR |
483 | memcpy(signature, "Microsoft Hv", 12); |
484 | c->eax = HYPERV_CPUID_MIN; | |
234cc647 PB |
485 | c->ebx = signature[0]; |
486 | c->ecx = signature[1]; | |
487 | c->edx = signature[2]; | |
0c31b744 | 488 | |
234cc647 PB |
489 | c = &cpuid_data.entries[cpuid_i++]; |
490 | c->function = HYPERV_CPUID_INTERFACE; | |
eab70139 VR |
491 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
492 | c->eax = signature[0]; | |
234cc647 PB |
493 | c->ebx = 0; |
494 | c->ecx = 0; | |
495 | c->edx = 0; | |
eab70139 VR |
496 | |
497 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
498 | c->function = HYPERV_CPUID_VERSION; |
499 | c->eax = 0x00001bbc; | |
500 | c->ebx = 0x00060001; | |
501 | ||
502 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 503 | c->function = HYPERV_CPUID_FEATURES; |
92067bf4 | 504 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
505 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
506 | } | |
92067bf4 | 507 | if (cpu->hyperv_vapic) { |
eab70139 VR |
508 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
509 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
7bc3d711 | 510 | has_msr_hv_vapic = true; |
eab70139 | 511 | } |
48a5f3bc VR |
512 | if (cpu->hyperv_time && |
513 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { | |
514 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
515 | c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; | |
516 | c->eax |= 0x200; | |
517 | has_msr_hv_tsc = true; | |
518 | } | |
eab70139 | 519 | c = &cpuid_data.entries[cpuid_i++]; |
eab70139 | 520 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 521 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
522 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
523 | } | |
7bc3d711 | 524 | if (has_msr_hv_vapic) { |
eab70139 VR |
525 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
526 | } | |
92067bf4 | 527 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
528 | |
529 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
530 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
531 | c->eax = 0x40; | |
532 | c->ebx = 0x40; | |
533 | ||
234cc647 | 534 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 535 | has_msr_hv_hypercall = true; |
eab70139 VR |
536 | } |
537 | ||
f522d2ac AW |
538 | if (cpu->expose_kvm) { |
539 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
540 | c = &cpuid_data.entries[cpuid_i++]; | |
541 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 542 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
543 | c->ebx = signature[0]; |
544 | c->ecx = signature[1]; | |
545 | c->edx = signature[2]; | |
234cc647 | 546 | |
f522d2ac AW |
547 | c = &cpuid_data.entries[cpuid_i++]; |
548 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
549 | c->eax = env->features[FEAT_KVM]; | |
234cc647 | 550 | |
f522d2ac | 551 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 552 | |
f522d2ac | 553 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
bc9a839d | 554 | |
f522d2ac AW |
555 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
556 | } | |
917367aa | 557 | |
a33609ca | 558 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
559 | |
560 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
561 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
562 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
563 | abort(); | |
564 | } | |
bb0300dc | 565 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
566 | |
567 | switch (i) { | |
a36b1029 AL |
568 | case 2: { |
569 | /* Keep reading function 2 till all the input is received */ | |
570 | int times; | |
571 | ||
a36b1029 | 572 | c->function = i; |
a33609ca AL |
573 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
574 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
575 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
576 | times = c->eax & 0xff; | |
a36b1029 AL |
577 | |
578 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
579 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
580 | fprintf(stderr, "cpuid_data is full, no space for " | |
581 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
582 | abort(); | |
583 | } | |
a33609ca | 584 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 585 | c->function = i; |
a33609ca AL |
586 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
587 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
588 | } |
589 | break; | |
590 | } | |
486bd5a2 AL |
591 | case 4: |
592 | case 0xb: | |
593 | case 0xd: | |
594 | for (j = 0; ; j++) { | |
31e8c696 AP |
595 | if (i == 0xd && j == 64) { |
596 | break; | |
597 | } | |
486bd5a2 AL |
598 | c->function = i; |
599 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
600 | c->index = j; | |
a33609ca | 601 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 602 | |
b9bec74b | 603 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 604 | break; |
b9bec74b JK |
605 | } |
606 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 607 | break; |
b9bec74b JK |
608 | } |
609 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 610 | continue; |
b9bec74b | 611 | } |
f8bb0565 IM |
612 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
613 | fprintf(stderr, "cpuid_data is full, no space for " | |
614 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
615 | abort(); | |
616 | } | |
a33609ca | 617 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
618 | } |
619 | break; | |
620 | default: | |
486bd5a2 | 621 | c->function = i; |
a33609ca AL |
622 | c->flags = 0; |
623 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
624 | break; |
625 | } | |
05330448 | 626 | } |
0d894367 PB |
627 | |
628 | if (limit >= 0x0a) { | |
629 | uint32_t ver; | |
630 | ||
631 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
632 | if ((ver & 0xff) > 0) { | |
633 | has_msr_architectural_pmu = true; | |
634 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
635 | ||
636 | /* Shouldn't be more than 32, since that's the number of bits | |
637 | * available in EBX to tell us _which_ counters are available. | |
638 | * Play it safe. | |
639 | */ | |
640 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
641 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
642 | } | |
643 | } | |
644 | } | |
645 | ||
a33609ca | 646 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
647 | |
648 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
649 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
650 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
651 | abort(); | |
652 | } | |
bb0300dc | 653 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 654 | |
05330448 | 655 | c->function = i; |
a33609ca AL |
656 | c->flags = 0; |
657 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
658 | } |
659 | ||
b3baa152 BW |
660 | /* Call Centaur's CPUID instructions they are supported. */ |
661 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
662 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
663 | ||
664 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
665 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
666 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
667 | abort(); | |
668 | } | |
b3baa152 BW |
669 | c = &cpuid_data.entries[cpuid_i++]; |
670 | ||
671 | c->function = i; | |
672 | c->flags = 0; | |
673 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
674 | } | |
675 | } | |
676 | ||
05330448 AL |
677 | cpuid_data.cpuid.nent = cpuid_i; |
678 | ||
e7701825 | 679 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 680 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 681 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 682 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
e7701825 MT |
683 | uint64_t mcg_cap; |
684 | int banks; | |
32a42024 | 685 | int ret; |
e7701825 | 686 | |
a60f24b5 | 687 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
688 | if (ret < 0) { |
689 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
690 | return ret; | |
e7701825 | 691 | } |
75d49497 JK |
692 | |
693 | if (banks > MCE_BANKS_DEF) { | |
694 | banks = MCE_BANKS_DEF; | |
695 | } | |
696 | mcg_cap &= MCE_CAP_DEF; | |
697 | mcg_cap |= banks; | |
1bc22652 | 698 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap); |
75d49497 JK |
699 | if (ret < 0) { |
700 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
701 | return ret; | |
702 | } | |
703 | ||
704 | env->mcg_cap = mcg_cap; | |
e7701825 | 705 | } |
e7701825 | 706 | |
b8cc45d6 GC |
707 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
708 | ||
df67696e LJ |
709 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
710 | if (c) { | |
711 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
712 | !!(c->ecx & CPUID_EXT_SMX); | |
713 | } | |
714 | ||
68bfd0ad MT |
715 | c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0); |
716 | if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) { | |
717 | /* for migration */ | |
718 | error_setg(&invtsc_mig_blocker, | |
719 | "State blocked by non-migratable CPU device" | |
720 | " (invtsc flag)"); | |
721 | migrate_add_blocker(invtsc_mig_blocker); | |
722 | /* for savevm */ | |
723 | vmstate_x86_cpu.unmigratable = 1; | |
724 | } | |
725 | ||
7e680753 | 726 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 727 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
728 | if (r) { |
729 | return r; | |
730 | } | |
e7429073 | 731 | |
a60f24b5 | 732 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL); |
e7429073 | 733 | if (r && env->tsc_khz) { |
1bc22652 | 734 | r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz); |
e7429073 JR |
735 | if (r < 0) { |
736 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
737 | return r; | |
738 | } | |
739 | } | |
e7429073 | 740 | |
fabacc0f JK |
741 | if (kvm_has_xsave()) { |
742 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
743 | } | |
744 | ||
d1ae67f6 AW |
745 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
746 | has_msr_mtrr = true; | |
747 | } | |
748 | ||
e7429073 | 749 | return 0; |
05330448 AL |
750 | } |
751 | ||
50a2c6e5 | 752 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 753 | { |
20d695a9 | 754 | CPUX86State *env = &cpu->env; |
dd673288 | 755 | |
e73223a5 | 756 | env->exception_injected = -1; |
0e607a80 | 757 | env->interrupt_injected = -1; |
1a5e9d2f | 758 | env->xcr0 = 1; |
ddced198 | 759 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 760 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
761 | KVM_MP_STATE_UNINITIALIZED; |
762 | } else { | |
763 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
764 | } | |
caa5af0f JK |
765 | } |
766 | ||
e0723c45 PB |
767 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
768 | { | |
769 | CPUX86State *env = &cpu->env; | |
770 | ||
771 | /* APs get directly into wait-for-SIPI state. */ | |
772 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
773 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
774 | } | |
775 | } | |
776 | ||
c3a3a7d3 | 777 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 778 | { |
75b10c43 | 779 | static int kvm_supported_msrs; |
c3a3a7d3 | 780 | int ret = 0; |
05330448 AL |
781 | |
782 | /* first time */ | |
75b10c43 | 783 | if (kvm_supported_msrs == 0) { |
05330448 AL |
784 | struct kvm_msr_list msr_list, *kvm_msr_list; |
785 | ||
75b10c43 | 786 | kvm_supported_msrs = -1; |
05330448 AL |
787 | |
788 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
789 | * save/restore */ | |
4c9f7372 | 790 | msr_list.nmsrs = 0; |
c3a3a7d3 | 791 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 792 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 793 | return ret; |
6fb6d245 | 794 | } |
d9db889f JK |
795 | /* Old kernel modules had a bug and could write beyond the provided |
796 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 797 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
798 | msr_list.nmsrs * |
799 | sizeof(msr_list.indices[0]))); | |
05330448 | 800 | |
55308450 | 801 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 802 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
803 | if (ret >= 0) { |
804 | int i; | |
805 | ||
806 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
807 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 808 | has_msr_star = true; |
75b10c43 MT |
809 | continue; |
810 | } | |
811 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 812 | has_msr_hsave_pa = true; |
75b10c43 | 813 | continue; |
05330448 | 814 | } |
f28558d3 WA |
815 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
816 | has_msr_tsc_adjust = true; | |
817 | continue; | |
818 | } | |
aa82ba54 LJ |
819 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
820 | has_msr_tsc_deadline = true; | |
821 | continue; | |
822 | } | |
21e87c46 AK |
823 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
824 | has_msr_misc_enable = true; | |
825 | continue; | |
826 | } | |
79e9ebeb LJ |
827 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
828 | has_msr_bndcfgs = true; | |
829 | continue; | |
830 | } | |
18cd2c17 WL |
831 | if (kvm_msr_list->indices[i] == MSR_IA32_XSS) { |
832 | has_msr_xss = true; | |
833 | continue; | |
834 | } | |
05330448 AL |
835 | } |
836 | } | |
837 | ||
7267c094 | 838 | g_free(kvm_msr_list); |
05330448 AL |
839 | } |
840 | ||
c3a3a7d3 | 841 | return ret; |
05330448 AL |
842 | } |
843 | ||
b16565b3 | 844 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 845 | { |
11076198 | 846 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 847 | uint64_t shadow_mem; |
20420430 | 848 | int ret; |
25d2e361 | 849 | struct utsname utsname; |
20420430 | 850 | |
c3a3a7d3 | 851 | ret = kvm_get_supported_msrs(s); |
20420430 | 852 | if (ret < 0) { |
20420430 SY |
853 | return ret; |
854 | } | |
25d2e361 MT |
855 | |
856 | uname(&utsname); | |
857 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
858 | ||
4c5b10b7 | 859 | /* |
11076198 JK |
860 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
861 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
862 | * Since these must be part of guest physical memory, we need to allocate | |
863 | * them, both by setting their start addresses in the kernel and by | |
864 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
865 | * | |
866 | * Older KVM versions may not support setting the identity map base. In | |
867 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
868 | * size. | |
4c5b10b7 | 869 | */ |
11076198 JK |
870 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
871 | /* Allows up to 16M BIOSes. */ | |
872 | identity_base = 0xfeffc000; | |
873 | ||
874 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
875 | if (ret < 0) { | |
876 | return ret; | |
877 | } | |
4c5b10b7 | 878 | } |
e56ff191 | 879 | |
11076198 JK |
880 | /* Set TSS base one page after EPT identity map. */ |
881 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
882 | if (ret < 0) { |
883 | return ret; | |
884 | } | |
885 | ||
11076198 JK |
886 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
887 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 888 | if (ret < 0) { |
11076198 | 889 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
890 | return ret; |
891 | } | |
3c85e74f | 892 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 893 | |
4689b77b | 894 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
895 | if (shadow_mem != -1) { |
896 | shadow_mem /= 4096; | |
897 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
898 | if (ret < 0) { | |
899 | return ret; | |
39d6960a JK |
900 | } |
901 | } | |
11076198 | 902 | return 0; |
05330448 | 903 | } |
b9bec74b | 904 | |
05330448 AL |
905 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
906 | { | |
907 | lhs->selector = rhs->selector; | |
908 | lhs->base = rhs->base; | |
909 | lhs->limit = rhs->limit; | |
910 | lhs->type = 3; | |
911 | lhs->present = 1; | |
912 | lhs->dpl = 3; | |
913 | lhs->db = 0; | |
914 | lhs->s = 1; | |
915 | lhs->l = 0; | |
916 | lhs->g = 0; | |
917 | lhs->avl = 0; | |
918 | lhs->unusable = 0; | |
919 | } | |
920 | ||
921 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
922 | { | |
923 | unsigned flags = rhs->flags; | |
924 | lhs->selector = rhs->selector; | |
925 | lhs->base = rhs->base; | |
926 | lhs->limit = rhs->limit; | |
927 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
928 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 929 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
930 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
931 | lhs->s = (flags & DESC_S_MASK) != 0; | |
932 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
933 | lhs->g = (flags & DESC_G_MASK) != 0; | |
934 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
935 | lhs->unusable = 0; | |
7e680753 | 936 | lhs->padding = 0; |
05330448 AL |
937 | } |
938 | ||
939 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
940 | { | |
941 | lhs->selector = rhs->selector; | |
942 | lhs->base = rhs->base; | |
943 | lhs->limit = rhs->limit; | |
b9bec74b JK |
944 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
945 | (rhs->present * DESC_P_MASK) | | |
946 | (rhs->dpl << DESC_DPL_SHIFT) | | |
947 | (rhs->db << DESC_B_SHIFT) | | |
948 | (rhs->s * DESC_S_MASK) | | |
949 | (rhs->l << DESC_L_SHIFT) | | |
950 | (rhs->g * DESC_G_MASK) | | |
951 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
952 | } |
953 | ||
954 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
955 | { | |
b9bec74b | 956 | if (set) { |
05330448 | 957 | *kvm_reg = *qemu_reg; |
b9bec74b | 958 | } else { |
05330448 | 959 | *qemu_reg = *kvm_reg; |
b9bec74b | 960 | } |
05330448 AL |
961 | } |
962 | ||
1bc22652 | 963 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 964 | { |
1bc22652 | 965 | CPUX86State *env = &cpu->env; |
05330448 AL |
966 | struct kvm_regs regs; |
967 | int ret = 0; | |
968 | ||
969 | if (!set) { | |
1bc22652 | 970 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 971 | if (ret < 0) { |
05330448 | 972 | return ret; |
b9bec74b | 973 | } |
05330448 AL |
974 | } |
975 | ||
976 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
977 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
978 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
979 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
980 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
981 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
982 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
983 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
984 | #ifdef TARGET_X86_64 | |
985 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
986 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
987 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
988 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
989 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
990 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
991 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
992 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
993 | #endif | |
994 | ||
995 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
996 | kvm_getput_reg(®s.rip, &env->eip, set); | |
997 | ||
b9bec74b | 998 | if (set) { |
1bc22652 | 999 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 1000 | } |
05330448 AL |
1001 | |
1002 | return ret; | |
1003 | } | |
1004 | ||
1bc22652 | 1005 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1006 | { |
1bc22652 | 1007 | CPUX86State *env = &cpu->env; |
05330448 AL |
1008 | struct kvm_fpu fpu; |
1009 | int i; | |
1010 | ||
1011 | memset(&fpu, 0, sizeof fpu); | |
1012 | fpu.fsw = env->fpus & ~(7 << 11); | |
1013 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1014 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1015 | fpu.last_opcode = env->fpop; |
1016 | fpu.last_ip = env->fpip; | |
1017 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1018 | for (i = 0; i < 8; ++i) { |
1019 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1020 | } | |
05330448 | 1021 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 PB |
1022 | for (i = 0; i < CPU_NB_REGS; i++) { |
1023 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].XMM_Q(0)); | |
1024 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].XMM_Q(1)); | |
1025 | } | |
05330448 AL |
1026 | fpu.mxcsr = env->mxcsr; |
1027 | ||
1bc22652 | 1028 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1029 | } |
1030 | ||
6b42494b JK |
1031 | #define XSAVE_FCW_FSW 0 |
1032 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1033 | #define XSAVE_CWD_RIP 2 |
1034 | #define XSAVE_CWD_RDP 4 | |
1035 | #define XSAVE_MXCSR 6 | |
1036 | #define XSAVE_ST_SPACE 8 | |
1037 | #define XSAVE_XMM_SPACE 40 | |
1038 | #define XSAVE_XSTATE_BV 128 | |
1039 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1040 | #define XSAVE_BNDREGS 240 |
1041 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1042 | #define XSAVE_OPMASK 272 |
1043 | #define XSAVE_ZMM_Hi256 288 | |
1044 | #define XSAVE_Hi16_ZMM 416 | |
f1665b21 | 1045 | |
1bc22652 | 1046 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1047 | { |
1bc22652 | 1048 | CPUX86State *env = &cpu->env; |
fabacc0f | 1049 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
42cc8fa6 | 1050 | uint16_t cwd, swd, twd; |
b7711471 | 1051 | uint8_t *xmm, *ymmh, *zmmh; |
fabacc0f | 1052 | int i, r; |
f1665b21 | 1053 | |
b9bec74b | 1054 | if (!kvm_has_xsave()) { |
1bc22652 | 1055 | return kvm_put_fpu(cpu); |
b9bec74b | 1056 | } |
f1665b21 | 1057 | |
f1665b21 | 1058 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 1059 | twd = 0; |
f1665b21 SY |
1060 | swd = env->fpus & ~(7 << 11); |
1061 | swd |= (env->fpstt & 7) << 11; | |
1062 | cwd = env->fpuc; | |
b9bec74b | 1063 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1064 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1065 | } |
6b42494b JK |
1066 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; |
1067 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
42cc8fa6 JK |
1068 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); |
1069 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
f1665b21 SY |
1070 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
1071 | sizeof env->fpregs); | |
f1665b21 SY |
1072 | xsave->region[XSAVE_MXCSR] = env->mxcsr; |
1073 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
79e9ebeb LJ |
1074 | memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs, |
1075 | sizeof env->bnd_regs); | |
1076 | memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs, | |
1077 | sizeof(env->bndcs_regs)); | |
9aecd6f8 CP |
1078 | memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs, |
1079 | sizeof env->opmask_regs); | |
bee81887 PB |
1080 | |
1081 | xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE]; | |
b7711471 PB |
1082 | ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE]; |
1083 | zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256]; | |
1084 | for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) { | |
bee81887 PB |
1085 | stq_p(xmm, env->xmm_regs[i].XMM_Q(0)); |
1086 | stq_p(xmm+8, env->xmm_regs[i].XMM_Q(1)); | |
b7711471 PB |
1087 | stq_p(ymmh, env->xmm_regs[i].XMM_Q(2)); |
1088 | stq_p(ymmh+8, env->xmm_regs[i].XMM_Q(3)); | |
1089 | stq_p(zmmh, env->xmm_regs[i].XMM_Q(4)); | |
1090 | stq_p(zmmh+8, env->xmm_regs[i].XMM_Q(5)); | |
1091 | stq_p(zmmh+16, env->xmm_regs[i].XMM_Q(6)); | |
1092 | stq_p(zmmh+24, env->xmm_regs[i].XMM_Q(7)); | |
bee81887 PB |
1093 | } |
1094 | ||
9aecd6f8 | 1095 | #ifdef TARGET_X86_64 |
b7711471 PB |
1096 | memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16], |
1097 | 16 * sizeof env->xmm_regs[16]); | |
9aecd6f8 | 1098 | #endif |
1bc22652 | 1099 | r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
0f53994f | 1100 | return r; |
f1665b21 SY |
1101 | } |
1102 | ||
1bc22652 | 1103 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1104 | { |
1bc22652 | 1105 | CPUX86State *env = &cpu->env; |
bdfc8480 | 1106 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 1107 | |
b9bec74b | 1108 | if (!kvm_has_xcrs()) { |
f1665b21 | 1109 | return 0; |
b9bec74b | 1110 | } |
f1665b21 SY |
1111 | |
1112 | xcrs.nr_xcrs = 1; | |
1113 | xcrs.flags = 0; | |
1114 | xcrs.xcrs[0].xcr = 0; | |
1115 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1116 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1117 | } |
1118 | ||
1bc22652 | 1119 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1120 | { |
1bc22652 | 1121 | CPUX86State *env = &cpu->env; |
05330448 AL |
1122 | struct kvm_sregs sregs; |
1123 | ||
0e607a80 JK |
1124 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1125 | if (env->interrupt_injected >= 0) { | |
1126 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1127 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1128 | } | |
05330448 AL |
1129 | |
1130 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1131 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1132 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1133 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1134 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1135 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1136 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1137 | } else { |
b9bec74b JK |
1138 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1139 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1140 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1141 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1142 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1143 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1144 | } |
1145 | ||
1146 | set_seg(&sregs.tr, &env->tr); | |
1147 | set_seg(&sregs.ldt, &env->ldt); | |
1148 | ||
1149 | sregs.idt.limit = env->idt.limit; | |
1150 | sregs.idt.base = env->idt.base; | |
7e680753 | 1151 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1152 | sregs.gdt.limit = env->gdt.limit; |
1153 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1154 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1155 | |
1156 | sregs.cr0 = env->cr[0]; | |
1157 | sregs.cr2 = env->cr[2]; | |
1158 | sregs.cr3 = env->cr[3]; | |
1159 | sregs.cr4 = env->cr[4]; | |
1160 | ||
02e51483 CF |
1161 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1162 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1163 | |
1164 | sregs.efer = env->efer; | |
1165 | ||
1bc22652 | 1166 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1167 | } |
1168 | ||
1169 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
1170 | uint32_t index, uint64_t value) | |
1171 | { | |
1172 | entry->index = index; | |
c7fe4b12 | 1173 | entry->reserved = 0; |
05330448 AL |
1174 | entry->data = value; |
1175 | } | |
1176 | ||
7477cd38 MT |
1177 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1178 | { | |
1179 | CPUX86State *env = &cpu->env; | |
1180 | struct { | |
1181 | struct kvm_msrs info; | |
1182 | struct kvm_msr_entry entries[1]; | |
1183 | } msr_data; | |
1184 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1185 | ||
1186 | if (!has_msr_tsc_deadline) { | |
1187 | return 0; | |
1188 | } | |
1189 | ||
1190 | kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1191 | ||
c7fe4b12 CB |
1192 | msr_data.info = (struct kvm_msrs) { |
1193 | .nmsrs = 1, | |
1194 | }; | |
7477cd38 MT |
1195 | |
1196 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1197 | } | |
1198 | ||
6bdf863d JK |
1199 | /* |
1200 | * Provide a separate write service for the feature control MSR in order to | |
1201 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1202 | * before writing any other state because forcibly leaving nested mode | |
1203 | * invalidates the VCPU state. | |
1204 | */ | |
1205 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1206 | { | |
1207 | struct { | |
1208 | struct kvm_msrs info; | |
1209 | struct kvm_msr_entry entry; | |
1210 | } msr_data; | |
1211 | ||
1212 | kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL, | |
1213 | cpu->env.msr_ia32_feature_control); | |
c7fe4b12 CB |
1214 | |
1215 | msr_data.info = (struct kvm_msrs) { | |
1216 | .nmsrs = 1, | |
1217 | }; | |
1218 | ||
6bdf863d JK |
1219 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
1220 | } | |
1221 | ||
1bc22652 | 1222 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1223 | { |
1bc22652 | 1224 | CPUX86State *env = &cpu->env; |
05330448 AL |
1225 | struct { |
1226 | struct kvm_msrs info; | |
d1ae67f6 | 1227 | struct kvm_msr_entry entries[150]; |
05330448 AL |
1228 | } msr_data; |
1229 | struct kvm_msr_entry *msrs = msr_data.entries; | |
0d894367 | 1230 | int n = 0, i; |
05330448 AL |
1231 | |
1232 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1233 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1234 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
0c03266a | 1235 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); |
c3a3a7d3 | 1236 | if (has_msr_star) { |
b9bec74b JK |
1237 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
1238 | } | |
c3a3a7d3 | 1239 | if (has_msr_hsave_pa) { |
75b10c43 | 1240 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1241 | } |
f28558d3 WA |
1242 | if (has_msr_tsc_adjust) { |
1243 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust); | |
1244 | } | |
21e87c46 AK |
1245 | if (has_msr_misc_enable) { |
1246 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1247 | env->msr_ia32_misc_enable); | |
1248 | } | |
439d19f2 PB |
1249 | if (has_msr_bndcfgs) { |
1250 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs); | |
1251 | } | |
18cd2c17 WL |
1252 | if (has_msr_xss) { |
1253 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss); | |
1254 | } | |
05330448 | 1255 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1256 | if (lm_capable_kernel) { |
1257 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1258 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1259 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1260 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1261 | } | |
05330448 | 1262 | #endif |
ff5c186b | 1263 | /* |
0d894367 PB |
1264 | * The following MSRs have side effects on the guest or are too heavy |
1265 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1266 | */ |
1267 | if (level >= KVM_PUT_RESET_STATE) { | |
0522604b | 1268 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
ea643051 JK |
1269 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
1270 | env->system_time_msr); | |
1271 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc JK |
1272 | if (has_msr_async_pf_en) { |
1273 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1274 | env->async_pf_en_msr); | |
1275 | } | |
bc9a839d MT |
1276 | if (has_msr_pv_eoi_en) { |
1277 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1278 | env->pv_eoi_en_msr); | |
1279 | } | |
917367aa MT |
1280 | if (has_msr_kvm_steal_time) { |
1281 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME, | |
1282 | env->steal_time_msr); | |
1283 | } | |
0d894367 PB |
1284 | if (has_msr_architectural_pmu) { |
1285 | /* Stop the counter. */ | |
1286 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1287 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1288 | ||
1289 | /* Set the counter values. */ | |
1290 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1291 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i, | |
1292 | env->msr_fixed_counters[i]); | |
1293 | } | |
1294 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1295 | kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i, | |
1296 | env->msr_gp_counters[i]); | |
1297 | kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i, | |
1298 | env->msr_gp_evtsel[i]); | |
1299 | } | |
1300 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS, | |
1301 | env->msr_global_status); | |
1302 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1303 | env->msr_global_ovf_ctrl); | |
1304 | ||
1305 | /* Now start the PMU. */ | |
1306 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1307 | env->msr_fixed_ctr_ctrl); | |
1308 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, | |
1309 | env->msr_global_ctrl); | |
1310 | } | |
7bc3d711 | 1311 | if (has_msr_hv_hypercall) { |
1c90ef26 VR |
1312 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, |
1313 | env->msr_hv_guest_os_id); | |
1314 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, | |
1315 | env->msr_hv_hypercall); | |
eab70139 | 1316 | } |
7bc3d711 | 1317 | if (has_msr_hv_vapic) { |
5ef68987 VR |
1318 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, |
1319 | env->msr_hv_vapic); | |
eab70139 | 1320 | } |
48a5f3bc VR |
1321 | if (has_msr_hv_tsc) { |
1322 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC, | |
1323 | env->msr_hv_tsc); | |
1324 | } | |
d1ae67f6 AW |
1325 | if (has_msr_mtrr) { |
1326 | kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype); | |
1327 | kvm_msr_entry_set(&msrs[n++], | |
1328 | MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
1329 | kvm_msr_entry_set(&msrs[n++], | |
1330 | MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
1331 | kvm_msr_entry_set(&msrs[n++], | |
1332 | MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
1333 | kvm_msr_entry_set(&msrs[n++], | |
1334 | MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
1335 | kvm_msr_entry_set(&msrs[n++], | |
1336 | MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
1337 | kvm_msr_entry_set(&msrs[n++], | |
1338 | MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
1339 | kvm_msr_entry_set(&msrs[n++], | |
1340 | MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
1341 | kvm_msr_entry_set(&msrs[n++], | |
1342 | MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
1343 | kvm_msr_entry_set(&msrs[n++], | |
1344 | MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
1345 | kvm_msr_entry_set(&msrs[n++], | |
1346 | MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
1347 | kvm_msr_entry_set(&msrs[n++], | |
1348 | MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
1349 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
1350 | kvm_msr_entry_set(&msrs[n++], | |
1351 | MSR_MTRRphysBase(i), env->mtrr_var[i].base); | |
1352 | kvm_msr_entry_set(&msrs[n++], | |
1353 | MSR_MTRRphysMask(i), env->mtrr_var[i].mask); | |
1354 | } | |
1355 | } | |
6bdf863d JK |
1356 | |
1357 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1358 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1359 | } |
57780495 | 1360 | if (env->mcg_cap) { |
d8da8574 | 1361 | int i; |
b9bec74b | 1362 | |
c34d440a JK |
1363 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
1364 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1365 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1366 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
57780495 MT |
1367 | } |
1368 | } | |
1a03675d | 1369 | |
c7fe4b12 CB |
1370 | msr_data.info = (struct kvm_msrs) { |
1371 | .nmsrs = n, | |
1372 | }; | |
05330448 | 1373 | |
1bc22652 | 1374 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
05330448 AL |
1375 | |
1376 | } | |
1377 | ||
1378 | ||
1bc22652 | 1379 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1380 | { |
1bc22652 | 1381 | CPUX86State *env = &cpu->env; |
05330448 AL |
1382 | struct kvm_fpu fpu; |
1383 | int i, ret; | |
1384 | ||
1bc22652 | 1385 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1386 | if (ret < 0) { |
05330448 | 1387 | return ret; |
b9bec74b | 1388 | } |
05330448 AL |
1389 | |
1390 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1391 | env->fpus = fpu.fsw; | |
1392 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1393 | env->fpop = fpu.last_opcode; |
1394 | env->fpip = fpu.last_ip; | |
1395 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1396 | for (i = 0; i < 8; ++i) { |
1397 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1398 | } | |
05330448 | 1399 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 PB |
1400 | for (i = 0; i < CPU_NB_REGS; i++) { |
1401 | env->xmm_regs[i].XMM_Q(0) = ldq_p(&fpu.xmm[i][0]); | |
1402 | env->xmm_regs[i].XMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
1403 | } | |
05330448 AL |
1404 | env->mxcsr = fpu.mxcsr; |
1405 | ||
1406 | return 0; | |
1407 | } | |
1408 | ||
1bc22652 | 1409 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1410 | { |
1bc22652 | 1411 | CPUX86State *env = &cpu->env; |
fabacc0f | 1412 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
f1665b21 | 1413 | int ret, i; |
b7711471 | 1414 | const uint8_t *xmm, *ymmh, *zmmh; |
42cc8fa6 | 1415 | uint16_t cwd, swd, twd; |
f1665b21 | 1416 | |
b9bec74b | 1417 | if (!kvm_has_xsave()) { |
1bc22652 | 1418 | return kvm_get_fpu(cpu); |
b9bec74b | 1419 | } |
f1665b21 | 1420 | |
1bc22652 | 1421 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1422 | if (ret < 0) { |
f1665b21 | 1423 | return ret; |
0f53994f | 1424 | } |
f1665b21 | 1425 | |
6b42494b JK |
1426 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; |
1427 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1428 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1429 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
f1665b21 SY |
1430 | env->fpstt = (swd >> 11) & 7; |
1431 | env->fpus = swd; | |
1432 | env->fpuc = cwd; | |
b9bec74b | 1433 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1434 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1435 | } |
42cc8fa6 JK |
1436 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); |
1437 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
f1665b21 SY |
1438 | env->mxcsr = xsave->region[XSAVE_MXCSR]; |
1439 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1440 | sizeof env->fpregs); | |
f1665b21 | 1441 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; |
79e9ebeb LJ |
1442 | memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS], |
1443 | sizeof env->bnd_regs); | |
1444 | memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR], | |
1445 | sizeof(env->bndcs_regs)); | |
9aecd6f8 CP |
1446 | memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK], |
1447 | sizeof env->opmask_regs); | |
bee81887 PB |
1448 | |
1449 | xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE]; | |
b7711471 PB |
1450 | ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE]; |
1451 | zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256]; | |
1452 | for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) { | |
bee81887 PB |
1453 | env->xmm_regs[i].XMM_Q(0) = ldq_p(xmm); |
1454 | env->xmm_regs[i].XMM_Q(1) = ldq_p(xmm+8); | |
b7711471 PB |
1455 | env->xmm_regs[i].XMM_Q(2) = ldq_p(ymmh); |
1456 | env->xmm_regs[i].XMM_Q(3) = ldq_p(ymmh+8); | |
1457 | env->xmm_regs[i].XMM_Q(4) = ldq_p(zmmh); | |
1458 | env->xmm_regs[i].XMM_Q(5) = ldq_p(zmmh+8); | |
1459 | env->xmm_regs[i].XMM_Q(6) = ldq_p(zmmh+16); | |
1460 | env->xmm_regs[i].XMM_Q(7) = ldq_p(zmmh+24); | |
bee81887 PB |
1461 | } |
1462 | ||
9aecd6f8 | 1463 | #ifdef TARGET_X86_64 |
b7711471 PB |
1464 | memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM], |
1465 | 16 * sizeof env->xmm_regs[16]); | |
9aecd6f8 | 1466 | #endif |
f1665b21 | 1467 | return 0; |
f1665b21 SY |
1468 | } |
1469 | ||
1bc22652 | 1470 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1471 | { |
1bc22652 | 1472 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1473 | int i, ret; |
1474 | struct kvm_xcrs xcrs; | |
1475 | ||
b9bec74b | 1476 | if (!kvm_has_xcrs()) { |
f1665b21 | 1477 | return 0; |
b9bec74b | 1478 | } |
f1665b21 | 1479 | |
1bc22652 | 1480 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1481 | if (ret < 0) { |
f1665b21 | 1482 | return ret; |
b9bec74b | 1483 | } |
f1665b21 | 1484 | |
b9bec74b | 1485 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1486 | /* Only support xcr0 now */ |
0fd53fec PB |
1487 | if (xcrs.xcrs[i].xcr == 0) { |
1488 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1489 | break; |
1490 | } | |
b9bec74b | 1491 | } |
f1665b21 | 1492 | return 0; |
f1665b21 SY |
1493 | } |
1494 | ||
1bc22652 | 1495 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1496 | { |
1bc22652 | 1497 | CPUX86State *env = &cpu->env; |
05330448 AL |
1498 | struct kvm_sregs sregs; |
1499 | uint32_t hflags; | |
0e607a80 | 1500 | int bit, i, ret; |
05330448 | 1501 | |
1bc22652 | 1502 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1503 | if (ret < 0) { |
05330448 | 1504 | return ret; |
b9bec74b | 1505 | } |
05330448 | 1506 | |
0e607a80 JK |
1507 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1508 | to find it and save its number instead (-1 for none). */ | |
1509 | env->interrupt_injected = -1; | |
1510 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1511 | if (sregs.interrupt_bitmap[i]) { | |
1512 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1513 | env->interrupt_injected = i * 64 + bit; | |
1514 | break; | |
1515 | } | |
1516 | } | |
05330448 AL |
1517 | |
1518 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1519 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1520 | get_seg(&env->segs[R_ES], &sregs.es); | |
1521 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1522 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1523 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1524 | ||
1525 | get_seg(&env->tr, &sregs.tr); | |
1526 | get_seg(&env->ldt, &sregs.ldt); | |
1527 | ||
1528 | env->idt.limit = sregs.idt.limit; | |
1529 | env->idt.base = sregs.idt.base; | |
1530 | env->gdt.limit = sregs.gdt.limit; | |
1531 | env->gdt.base = sregs.gdt.base; | |
1532 | ||
1533 | env->cr[0] = sregs.cr0; | |
1534 | env->cr[2] = sregs.cr2; | |
1535 | env->cr[3] = sregs.cr3; | |
1536 | env->cr[4] = sregs.cr4; | |
1537 | ||
05330448 | 1538 | env->efer = sregs.efer; |
cce47516 JK |
1539 | |
1540 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1541 | |
b9bec74b JK |
1542 | #define HFLAG_COPY_MASK \ |
1543 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1544 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1545 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1546 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 | 1547 | |
7125c937 | 1548 | hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
05330448 AL |
1549 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
1550 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1551 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 AL |
1552 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
1553 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
b9bec74b | 1554 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
05330448 AL |
1555 | |
1556 | if (env->efer & MSR_EFER_LMA) { | |
1557 | hflags |= HF_LMA_MASK; | |
1558 | } | |
1559 | ||
1560 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1561 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1562 | } else { | |
1563 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1564 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1565 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1566 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1567 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1568 | !(hflags & HF_CS32_MASK)) { | |
1569 | hflags |= HF_ADDSEG_MASK; | |
1570 | } else { | |
1571 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1572 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1573 | } | |
05330448 AL |
1574 | } |
1575 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1576 | |
1577 | return 0; | |
1578 | } | |
1579 | ||
1bc22652 | 1580 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1581 | { |
1bc22652 | 1582 | CPUX86State *env = &cpu->env; |
05330448 AL |
1583 | struct { |
1584 | struct kvm_msrs info; | |
d1ae67f6 | 1585 | struct kvm_msr_entry entries[150]; |
05330448 AL |
1586 | } msr_data; |
1587 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1588 | int ret, i, n; | |
1589 | ||
1590 | n = 0; | |
1591 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1592 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1593 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
0c03266a | 1594 | msrs[n++].index = MSR_PAT; |
c3a3a7d3 | 1595 | if (has_msr_star) { |
b9bec74b JK |
1596 | msrs[n++].index = MSR_STAR; |
1597 | } | |
c3a3a7d3 | 1598 | if (has_msr_hsave_pa) { |
75b10c43 | 1599 | msrs[n++].index = MSR_VM_HSAVE_PA; |
b9bec74b | 1600 | } |
f28558d3 WA |
1601 | if (has_msr_tsc_adjust) { |
1602 | msrs[n++].index = MSR_TSC_ADJUST; | |
1603 | } | |
aa82ba54 LJ |
1604 | if (has_msr_tsc_deadline) { |
1605 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1606 | } | |
21e87c46 AK |
1607 | if (has_msr_misc_enable) { |
1608 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1609 | } | |
df67696e LJ |
1610 | if (has_msr_feature_control) { |
1611 | msrs[n++].index = MSR_IA32_FEATURE_CONTROL; | |
1612 | } | |
79e9ebeb LJ |
1613 | if (has_msr_bndcfgs) { |
1614 | msrs[n++].index = MSR_IA32_BNDCFGS; | |
1615 | } | |
18cd2c17 WL |
1616 | if (has_msr_xss) { |
1617 | msrs[n++].index = MSR_IA32_XSS; | |
1618 | } | |
1619 | ||
b8cc45d6 GC |
1620 | |
1621 | if (!env->tsc_valid) { | |
1622 | msrs[n++].index = MSR_IA32_TSC; | |
1354869c | 1623 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
1624 | } |
1625 | ||
05330448 | 1626 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1627 | if (lm_capable_kernel) { |
1628 | msrs[n++].index = MSR_CSTAR; | |
1629 | msrs[n++].index = MSR_KERNELGSBASE; | |
1630 | msrs[n++].index = MSR_FMASK; | |
1631 | msrs[n++].index = MSR_LSTAR; | |
1632 | } | |
05330448 | 1633 | #endif |
1a03675d GC |
1634 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1635 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
c5999bfc JK |
1636 | if (has_msr_async_pf_en) { |
1637 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1638 | } | |
bc9a839d MT |
1639 | if (has_msr_pv_eoi_en) { |
1640 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1641 | } | |
917367aa MT |
1642 | if (has_msr_kvm_steal_time) { |
1643 | msrs[n++].index = MSR_KVM_STEAL_TIME; | |
1644 | } | |
0d894367 PB |
1645 | if (has_msr_architectural_pmu) { |
1646 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL; | |
1647 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL; | |
1648 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS; | |
1649 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL; | |
1650 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1651 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i; | |
1652 | } | |
1653 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1654 | msrs[n++].index = MSR_P6_PERFCTR0 + i; | |
1655 | msrs[n++].index = MSR_P6_EVNTSEL0 + i; | |
1656 | } | |
1657 | } | |
1a03675d | 1658 | |
57780495 MT |
1659 | if (env->mcg_cap) { |
1660 | msrs[n++].index = MSR_MCG_STATUS; | |
1661 | msrs[n++].index = MSR_MCG_CTL; | |
b9bec74b | 1662 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
57780495 | 1663 | msrs[n++].index = MSR_MC0_CTL + i; |
b9bec74b | 1664 | } |
57780495 | 1665 | } |
57780495 | 1666 | |
1c90ef26 VR |
1667 | if (has_msr_hv_hypercall) { |
1668 | msrs[n++].index = HV_X64_MSR_HYPERCALL; | |
1669 | msrs[n++].index = HV_X64_MSR_GUEST_OS_ID; | |
1670 | } | |
5ef68987 VR |
1671 | if (has_msr_hv_vapic) { |
1672 | msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE; | |
1673 | } | |
48a5f3bc VR |
1674 | if (has_msr_hv_tsc) { |
1675 | msrs[n++].index = HV_X64_MSR_REFERENCE_TSC; | |
1676 | } | |
d1ae67f6 AW |
1677 | if (has_msr_mtrr) { |
1678 | msrs[n++].index = MSR_MTRRdefType; | |
1679 | msrs[n++].index = MSR_MTRRfix64K_00000; | |
1680 | msrs[n++].index = MSR_MTRRfix16K_80000; | |
1681 | msrs[n++].index = MSR_MTRRfix16K_A0000; | |
1682 | msrs[n++].index = MSR_MTRRfix4K_C0000; | |
1683 | msrs[n++].index = MSR_MTRRfix4K_C8000; | |
1684 | msrs[n++].index = MSR_MTRRfix4K_D0000; | |
1685 | msrs[n++].index = MSR_MTRRfix4K_D8000; | |
1686 | msrs[n++].index = MSR_MTRRfix4K_E0000; | |
1687 | msrs[n++].index = MSR_MTRRfix4K_E8000; | |
1688 | msrs[n++].index = MSR_MTRRfix4K_F0000; | |
1689 | msrs[n++].index = MSR_MTRRfix4K_F8000; | |
1690 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
1691 | msrs[n++].index = MSR_MTRRphysBase(i); | |
1692 | msrs[n++].index = MSR_MTRRphysMask(i); | |
1693 | } | |
1694 | } | |
5ef68987 | 1695 | |
d19ae73e CB |
1696 | msr_data.info = (struct kvm_msrs) { |
1697 | .nmsrs = n, | |
1698 | }; | |
1699 | ||
1bc22652 | 1700 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
b9bec74b | 1701 | if (ret < 0) { |
05330448 | 1702 | return ret; |
b9bec74b | 1703 | } |
05330448 AL |
1704 | |
1705 | for (i = 0; i < ret; i++) { | |
0d894367 PB |
1706 | uint32_t index = msrs[i].index; |
1707 | switch (index) { | |
05330448 AL |
1708 | case MSR_IA32_SYSENTER_CS: |
1709 | env->sysenter_cs = msrs[i].data; | |
1710 | break; | |
1711 | case MSR_IA32_SYSENTER_ESP: | |
1712 | env->sysenter_esp = msrs[i].data; | |
1713 | break; | |
1714 | case MSR_IA32_SYSENTER_EIP: | |
1715 | env->sysenter_eip = msrs[i].data; | |
1716 | break; | |
0c03266a JK |
1717 | case MSR_PAT: |
1718 | env->pat = msrs[i].data; | |
1719 | break; | |
05330448 AL |
1720 | case MSR_STAR: |
1721 | env->star = msrs[i].data; | |
1722 | break; | |
1723 | #ifdef TARGET_X86_64 | |
1724 | case MSR_CSTAR: | |
1725 | env->cstar = msrs[i].data; | |
1726 | break; | |
1727 | case MSR_KERNELGSBASE: | |
1728 | env->kernelgsbase = msrs[i].data; | |
1729 | break; | |
1730 | case MSR_FMASK: | |
1731 | env->fmask = msrs[i].data; | |
1732 | break; | |
1733 | case MSR_LSTAR: | |
1734 | env->lstar = msrs[i].data; | |
1735 | break; | |
1736 | #endif | |
1737 | case MSR_IA32_TSC: | |
1738 | env->tsc = msrs[i].data; | |
1739 | break; | |
f28558d3 WA |
1740 | case MSR_TSC_ADJUST: |
1741 | env->tsc_adjust = msrs[i].data; | |
1742 | break; | |
aa82ba54 LJ |
1743 | case MSR_IA32_TSCDEADLINE: |
1744 | env->tsc_deadline = msrs[i].data; | |
1745 | break; | |
aa851e36 MT |
1746 | case MSR_VM_HSAVE_PA: |
1747 | env->vm_hsave = msrs[i].data; | |
1748 | break; | |
1a03675d GC |
1749 | case MSR_KVM_SYSTEM_TIME: |
1750 | env->system_time_msr = msrs[i].data; | |
1751 | break; | |
1752 | case MSR_KVM_WALL_CLOCK: | |
1753 | env->wall_clock_msr = msrs[i].data; | |
1754 | break; | |
57780495 MT |
1755 | case MSR_MCG_STATUS: |
1756 | env->mcg_status = msrs[i].data; | |
1757 | break; | |
1758 | case MSR_MCG_CTL: | |
1759 | env->mcg_ctl = msrs[i].data; | |
1760 | break; | |
21e87c46 AK |
1761 | case MSR_IA32_MISC_ENABLE: |
1762 | env->msr_ia32_misc_enable = msrs[i].data; | |
1763 | break; | |
0779caeb ACL |
1764 | case MSR_IA32_FEATURE_CONTROL: |
1765 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 1766 | break; |
79e9ebeb LJ |
1767 | case MSR_IA32_BNDCFGS: |
1768 | env->msr_bndcfgs = msrs[i].data; | |
1769 | break; | |
18cd2c17 WL |
1770 | case MSR_IA32_XSS: |
1771 | env->xss = msrs[i].data; | |
1772 | break; | |
57780495 | 1773 | default: |
57780495 MT |
1774 | if (msrs[i].index >= MSR_MC0_CTL && |
1775 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1776 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 1777 | } |
d8da8574 | 1778 | break; |
f6584ee2 GN |
1779 | case MSR_KVM_ASYNC_PF_EN: |
1780 | env->async_pf_en_msr = msrs[i].data; | |
1781 | break; | |
bc9a839d MT |
1782 | case MSR_KVM_PV_EOI_EN: |
1783 | env->pv_eoi_en_msr = msrs[i].data; | |
1784 | break; | |
917367aa MT |
1785 | case MSR_KVM_STEAL_TIME: |
1786 | env->steal_time_msr = msrs[i].data; | |
1787 | break; | |
0d894367 PB |
1788 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
1789 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
1790 | break; | |
1791 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
1792 | env->msr_global_ctrl = msrs[i].data; | |
1793 | break; | |
1794 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
1795 | env->msr_global_status = msrs[i].data; | |
1796 | break; | |
1797 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
1798 | env->msr_global_ovf_ctrl = msrs[i].data; | |
1799 | break; | |
1800 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
1801 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
1802 | break; | |
1803 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
1804 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
1805 | break; | |
1806 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
1807 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
1808 | break; | |
1c90ef26 VR |
1809 | case HV_X64_MSR_HYPERCALL: |
1810 | env->msr_hv_hypercall = msrs[i].data; | |
1811 | break; | |
1812 | case HV_X64_MSR_GUEST_OS_ID: | |
1813 | env->msr_hv_guest_os_id = msrs[i].data; | |
1814 | break; | |
5ef68987 VR |
1815 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
1816 | env->msr_hv_vapic = msrs[i].data; | |
1817 | break; | |
48a5f3bc VR |
1818 | case HV_X64_MSR_REFERENCE_TSC: |
1819 | env->msr_hv_tsc = msrs[i].data; | |
1820 | break; | |
d1ae67f6 AW |
1821 | case MSR_MTRRdefType: |
1822 | env->mtrr_deftype = msrs[i].data; | |
1823 | break; | |
1824 | case MSR_MTRRfix64K_00000: | |
1825 | env->mtrr_fixed[0] = msrs[i].data; | |
1826 | break; | |
1827 | case MSR_MTRRfix16K_80000: | |
1828 | env->mtrr_fixed[1] = msrs[i].data; | |
1829 | break; | |
1830 | case MSR_MTRRfix16K_A0000: | |
1831 | env->mtrr_fixed[2] = msrs[i].data; | |
1832 | break; | |
1833 | case MSR_MTRRfix4K_C0000: | |
1834 | env->mtrr_fixed[3] = msrs[i].data; | |
1835 | break; | |
1836 | case MSR_MTRRfix4K_C8000: | |
1837 | env->mtrr_fixed[4] = msrs[i].data; | |
1838 | break; | |
1839 | case MSR_MTRRfix4K_D0000: | |
1840 | env->mtrr_fixed[5] = msrs[i].data; | |
1841 | break; | |
1842 | case MSR_MTRRfix4K_D8000: | |
1843 | env->mtrr_fixed[6] = msrs[i].data; | |
1844 | break; | |
1845 | case MSR_MTRRfix4K_E0000: | |
1846 | env->mtrr_fixed[7] = msrs[i].data; | |
1847 | break; | |
1848 | case MSR_MTRRfix4K_E8000: | |
1849 | env->mtrr_fixed[8] = msrs[i].data; | |
1850 | break; | |
1851 | case MSR_MTRRfix4K_F0000: | |
1852 | env->mtrr_fixed[9] = msrs[i].data; | |
1853 | break; | |
1854 | case MSR_MTRRfix4K_F8000: | |
1855 | env->mtrr_fixed[10] = msrs[i].data; | |
1856 | break; | |
1857 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
1858 | if (index & 1) { | |
1859 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data; | |
1860 | } else { | |
1861 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
1862 | } | |
1863 | break; | |
05330448 AL |
1864 | } |
1865 | } | |
1866 | ||
1867 | return 0; | |
1868 | } | |
1869 | ||
1bc22652 | 1870 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 1871 | { |
1bc22652 | 1872 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 1873 | |
1bc22652 | 1874 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
1875 | } |
1876 | ||
23d02d9b | 1877 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 1878 | { |
259186a7 | 1879 | CPUState *cs = CPU(cpu); |
23d02d9b | 1880 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
1881 | struct kvm_mp_state mp_state; |
1882 | int ret; | |
1883 | ||
259186a7 | 1884 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
1885 | if (ret < 0) { |
1886 | return ret; | |
1887 | } | |
1888 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 1889 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 1890 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 1891 | } |
9bdbe550 HB |
1892 | return 0; |
1893 | } | |
1894 | ||
1bc22652 | 1895 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 1896 | { |
02e51483 | 1897 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1898 | struct kvm_lapic_state kapic; |
1899 | int ret; | |
1900 | ||
3d4b2649 | 1901 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 1902 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
1903 | if (ret < 0) { |
1904 | return ret; | |
1905 | } | |
1906 | ||
1907 | kvm_get_apic_state(apic, &kapic); | |
1908 | } | |
1909 | return 0; | |
1910 | } | |
1911 | ||
1bc22652 | 1912 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 1913 | { |
02e51483 | 1914 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1915 | struct kvm_lapic_state kapic; |
1916 | ||
3d4b2649 | 1917 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
1918 | kvm_put_apic_state(apic, &kapic); |
1919 | ||
1bc22652 | 1920 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
1921 | } |
1922 | return 0; | |
1923 | } | |
1924 | ||
1bc22652 | 1925 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 1926 | { |
1bc22652 | 1927 | CPUX86State *env = &cpu->env; |
076796f8 | 1928 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
1929 | |
1930 | if (!kvm_has_vcpu_events()) { | |
1931 | return 0; | |
1932 | } | |
1933 | ||
31827373 JK |
1934 | events.exception.injected = (env->exception_injected >= 0); |
1935 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
1936 | events.exception.has_error_code = env->has_error_code; |
1937 | events.exception.error_code = env->error_code; | |
7e680753 | 1938 | events.exception.pad = 0; |
a0fb002c JK |
1939 | |
1940 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1941 | events.interrupt.nr = env->interrupt_injected; | |
1942 | events.interrupt.soft = env->soft_interrupt; | |
1943 | ||
1944 | events.nmi.injected = env->nmi_injected; | |
1945 | events.nmi.pending = env->nmi_pending; | |
1946 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 1947 | events.nmi.pad = 0; |
a0fb002c JK |
1948 | |
1949 | events.sipi_vector = env->sipi_vector; | |
1950 | ||
ea643051 JK |
1951 | events.flags = 0; |
1952 | if (level >= KVM_PUT_RESET_STATE) { | |
1953 | events.flags |= | |
1954 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1955 | } | |
aee028b9 | 1956 | |
1bc22652 | 1957 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
1958 | } |
1959 | ||
1bc22652 | 1960 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 1961 | { |
1bc22652 | 1962 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1963 | struct kvm_vcpu_events events; |
1964 | int ret; | |
1965 | ||
1966 | if (!kvm_has_vcpu_events()) { | |
1967 | return 0; | |
1968 | } | |
1969 | ||
1bc22652 | 1970 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
1971 | if (ret < 0) { |
1972 | return ret; | |
1973 | } | |
31827373 | 1974 | env->exception_injected = |
a0fb002c JK |
1975 | events.exception.injected ? events.exception.nr : -1; |
1976 | env->has_error_code = events.exception.has_error_code; | |
1977 | env->error_code = events.exception.error_code; | |
1978 | ||
1979 | env->interrupt_injected = | |
1980 | events.interrupt.injected ? events.interrupt.nr : -1; | |
1981 | env->soft_interrupt = events.interrupt.soft; | |
1982 | ||
1983 | env->nmi_injected = events.nmi.injected; | |
1984 | env->nmi_pending = events.nmi.pending; | |
1985 | if (events.nmi.masked) { | |
1986 | env->hflags2 |= HF2_NMI_MASK; | |
1987 | } else { | |
1988 | env->hflags2 &= ~HF2_NMI_MASK; | |
1989 | } | |
1990 | ||
1991 | env->sipi_vector = events.sipi_vector; | |
a0fb002c JK |
1992 | |
1993 | return 0; | |
1994 | } | |
1995 | ||
1bc22652 | 1996 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 1997 | { |
ed2803da | 1998 | CPUState *cs = CPU(cpu); |
1bc22652 | 1999 | CPUX86State *env = &cpu->env; |
b0b1d690 | 2000 | int ret = 0; |
b0b1d690 JK |
2001 | unsigned long reinject_trap = 0; |
2002 | ||
2003 | if (!kvm_has_vcpu_events()) { | |
2004 | if (env->exception_injected == 1) { | |
2005 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
2006 | } else if (env->exception_injected == 3) { | |
2007 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
2008 | } | |
2009 | env->exception_injected = -1; | |
2010 | } | |
2011 | ||
2012 | /* | |
2013 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
2014 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
2015 | * by updating the debug state once again if single-stepping is on. | |
2016 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
2017 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
2018 | * reinject them via SET_GUEST_DEBUG. | |
2019 | */ | |
2020 | if (reinject_trap || | |
ed2803da | 2021 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 2022 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 2023 | } |
b0b1d690 JK |
2024 | return ret; |
2025 | } | |
2026 | ||
1bc22652 | 2027 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 2028 | { |
1bc22652 | 2029 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2030 | struct kvm_debugregs dbgregs; |
2031 | int i; | |
2032 | ||
2033 | if (!kvm_has_debugregs()) { | |
2034 | return 0; | |
2035 | } | |
2036 | ||
2037 | for (i = 0; i < 4; i++) { | |
2038 | dbgregs.db[i] = env->dr[i]; | |
2039 | } | |
2040 | dbgregs.dr6 = env->dr[6]; | |
2041 | dbgregs.dr7 = env->dr[7]; | |
2042 | dbgregs.flags = 0; | |
2043 | ||
1bc22652 | 2044 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
2045 | } |
2046 | ||
1bc22652 | 2047 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 2048 | { |
1bc22652 | 2049 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2050 | struct kvm_debugregs dbgregs; |
2051 | int i, ret; | |
2052 | ||
2053 | if (!kvm_has_debugregs()) { | |
2054 | return 0; | |
2055 | } | |
2056 | ||
1bc22652 | 2057 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2058 | if (ret < 0) { |
b9bec74b | 2059 | return ret; |
ff44f1a3 JK |
2060 | } |
2061 | for (i = 0; i < 4; i++) { | |
2062 | env->dr[i] = dbgregs.db[i]; | |
2063 | } | |
2064 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
2065 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
2066 | |
2067 | return 0; | |
2068 | } | |
2069 | ||
20d695a9 | 2070 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 2071 | { |
20d695a9 | 2072 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
2073 | int ret; |
2074 | ||
2fa45344 | 2075 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 2076 | |
6bdf863d JK |
2077 | if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) { |
2078 | ret = kvm_put_msr_feature_control(x86_cpu); | |
2079 | if (ret < 0) { | |
2080 | return ret; | |
2081 | } | |
2082 | } | |
2083 | ||
1bc22652 | 2084 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 2085 | if (ret < 0) { |
05330448 | 2086 | return ret; |
b9bec74b | 2087 | } |
1bc22652 | 2088 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 2089 | if (ret < 0) { |
f1665b21 | 2090 | return ret; |
b9bec74b | 2091 | } |
1bc22652 | 2092 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 2093 | if (ret < 0) { |
05330448 | 2094 | return ret; |
b9bec74b | 2095 | } |
1bc22652 | 2096 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 2097 | if (ret < 0) { |
05330448 | 2098 | return ret; |
b9bec74b | 2099 | } |
ab443475 | 2100 | /* must be before kvm_put_msrs */ |
1bc22652 | 2101 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
2102 | if (ret < 0) { |
2103 | return ret; | |
2104 | } | |
1bc22652 | 2105 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 2106 | if (ret < 0) { |
05330448 | 2107 | return ret; |
b9bec74b | 2108 | } |
ea643051 | 2109 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 2110 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 2111 | if (ret < 0) { |
ea643051 | 2112 | return ret; |
b9bec74b | 2113 | } |
1bc22652 | 2114 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
2115 | if (ret < 0) { |
2116 | return ret; | |
2117 | } | |
ea643051 | 2118 | } |
7477cd38 MT |
2119 | |
2120 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
2121 | if (ret < 0) { | |
2122 | return ret; | |
2123 | } | |
2124 | ||
1bc22652 | 2125 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 2126 | if (ret < 0) { |
a0fb002c | 2127 | return ret; |
b9bec74b | 2128 | } |
1bc22652 | 2129 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 2130 | if (ret < 0) { |
b0b1d690 | 2131 | return ret; |
b9bec74b | 2132 | } |
b0b1d690 | 2133 | /* must be last */ |
1bc22652 | 2134 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 2135 | if (ret < 0) { |
ff44f1a3 | 2136 | return ret; |
b9bec74b | 2137 | } |
05330448 AL |
2138 | return 0; |
2139 | } | |
2140 | ||
20d695a9 | 2141 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 2142 | { |
20d695a9 | 2143 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
2144 | int ret; |
2145 | ||
20d695a9 | 2146 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 2147 | |
1bc22652 | 2148 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 2149 | if (ret < 0) { |
05330448 | 2150 | return ret; |
b9bec74b | 2151 | } |
1bc22652 | 2152 | ret = kvm_get_xsave(cpu); |
b9bec74b | 2153 | if (ret < 0) { |
f1665b21 | 2154 | return ret; |
b9bec74b | 2155 | } |
1bc22652 | 2156 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 2157 | if (ret < 0) { |
05330448 | 2158 | return ret; |
b9bec74b | 2159 | } |
1bc22652 | 2160 | ret = kvm_get_sregs(cpu); |
b9bec74b | 2161 | if (ret < 0) { |
05330448 | 2162 | return ret; |
b9bec74b | 2163 | } |
1bc22652 | 2164 | ret = kvm_get_msrs(cpu); |
b9bec74b | 2165 | if (ret < 0) { |
05330448 | 2166 | return ret; |
b9bec74b | 2167 | } |
23d02d9b | 2168 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 2169 | if (ret < 0) { |
5a2e3c2e | 2170 | return ret; |
b9bec74b | 2171 | } |
1bc22652 | 2172 | ret = kvm_get_apic(cpu); |
680c1c6f JK |
2173 | if (ret < 0) { |
2174 | return ret; | |
2175 | } | |
1bc22652 | 2176 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 2177 | if (ret < 0) { |
a0fb002c | 2178 | return ret; |
b9bec74b | 2179 | } |
1bc22652 | 2180 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 2181 | if (ret < 0) { |
ff44f1a3 | 2182 | return ret; |
b9bec74b | 2183 | } |
05330448 AL |
2184 | return 0; |
2185 | } | |
2186 | ||
20d695a9 | 2187 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2188 | { |
20d695a9 AF |
2189 | X86CPU *x86_cpu = X86_CPU(cpu); |
2190 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2191 | int ret; |
2192 | ||
276ce815 | 2193 | /* Inject NMI */ |
259186a7 AF |
2194 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { |
2195 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
276ce815 | 2196 | DPRINTF("injected NMI\n"); |
1bc22652 | 2197 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); |
ce377af3 JK |
2198 | if (ret < 0) { |
2199 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2200 | strerror(-ret)); | |
2201 | } | |
276ce815 LJ |
2202 | } |
2203 | ||
e0723c45 PB |
2204 | /* Force the VCPU out of its inner loop to process any INIT requests |
2205 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2206 | * pending TPR access reports. | |
2207 | */ | |
2208 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
2209 | cpu->exit_request = 1; | |
2210 | } | |
05330448 | 2211 | |
e0723c45 | 2212 | if (!kvm_irqchip_in_kernel()) { |
db1669bc JK |
2213 | /* Try to inject an interrupt if the guest can accept it */ |
2214 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2215 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2216 | (env->eflags & IF_MASK)) { |
2217 | int irq; | |
2218 | ||
259186a7 | 2219 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2220 | irq = cpu_get_pic_interrupt(env); |
2221 | if (irq >= 0) { | |
2222 | struct kvm_interrupt intr; | |
2223 | ||
2224 | intr.irq = irq; | |
db1669bc | 2225 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2226 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2227 | if (ret < 0) { |
2228 | fprintf(stderr, | |
2229 | "KVM: injection failed, interrupt lost (%s)\n", | |
2230 | strerror(-ret)); | |
2231 | } | |
db1669bc JK |
2232 | } |
2233 | } | |
05330448 | 2234 | |
db1669bc JK |
2235 | /* If we have an interrupt but the guest is not ready to receive an |
2236 | * interrupt, request an interrupt window exit. This will | |
2237 | * cause a return to userspace as soon as the guest is ready to | |
2238 | * receive interrupts. */ | |
259186a7 | 2239 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2240 | run->request_interrupt_window = 1; |
2241 | } else { | |
2242 | run->request_interrupt_window = 0; | |
2243 | } | |
2244 | ||
2245 | DPRINTF("setting tpr\n"); | |
02e51483 | 2246 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
db1669bc | 2247 | } |
05330448 AL |
2248 | } |
2249 | ||
4c663752 | 2250 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2251 | { |
20d695a9 AF |
2252 | X86CPU *x86_cpu = X86_CPU(cpu); |
2253 | CPUX86State *env = &x86_cpu->env; | |
2254 | ||
b9bec74b | 2255 | if (run->if_flag) { |
05330448 | 2256 | env->eflags |= IF_MASK; |
b9bec74b | 2257 | } else { |
05330448 | 2258 | env->eflags &= ~IF_MASK; |
b9bec74b | 2259 | } |
02e51483 CF |
2260 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2261 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4c663752 | 2262 | return MEMTXATTRS_UNSPECIFIED; |
05330448 AL |
2263 | } |
2264 | ||
20d695a9 | 2265 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2266 | { |
20d695a9 AF |
2267 | X86CPU *cpu = X86_CPU(cs); |
2268 | CPUX86State *env = &cpu->env; | |
232fc23b | 2269 | |
259186a7 | 2270 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2271 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2272 | assert(env->mcg_cap); | |
2273 | ||
259186a7 | 2274 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2275 | |
dd1750d7 | 2276 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2277 | |
2278 | if (env->exception_injected == EXCP08_DBLE) { | |
2279 | /* this means triple fault */ | |
2280 | qemu_system_reset_request(); | |
fcd7d003 | 2281 | cs->exit_request = 1; |
ab443475 JK |
2282 | return 0; |
2283 | } | |
2284 | env->exception_injected = EXCP12_MCHK; | |
2285 | env->has_error_code = 0; | |
2286 | ||
259186a7 | 2287 | cs->halted = 0; |
ab443475 JK |
2288 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2289 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2290 | } | |
2291 | } | |
2292 | ||
e0723c45 PB |
2293 | if (cs->interrupt_request & CPU_INTERRUPT_INIT) { |
2294 | kvm_cpu_synchronize_state(cs); | |
2295 | do_cpu_init(cpu); | |
2296 | } | |
2297 | ||
db1669bc JK |
2298 | if (kvm_irqchip_in_kernel()) { |
2299 | return 0; | |
2300 | } | |
2301 | ||
259186a7 AF |
2302 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2303 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2304 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2305 | } |
259186a7 | 2306 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2307 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2308 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2309 | cs->halted = 0; | |
6792a57b | 2310 | } |
259186a7 | 2311 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2312 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2313 | do_cpu_sipi(cpu); |
0af691d7 | 2314 | } |
259186a7 AF |
2315 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2316 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2317 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2318 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2319 | env->tpr_access_type); |
2320 | } | |
0af691d7 | 2321 | |
259186a7 | 2322 | return cs->halted; |
0af691d7 MT |
2323 | } |
2324 | ||
839b5630 | 2325 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2326 | { |
259186a7 | 2327 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2328 | CPUX86State *env = &cpu->env; |
2329 | ||
259186a7 | 2330 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2331 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2332 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2333 | cs->halted = 1; | |
bb4ea393 | 2334 | return EXCP_HLT; |
05330448 AL |
2335 | } |
2336 | ||
bb4ea393 | 2337 | return 0; |
05330448 AL |
2338 | } |
2339 | ||
f7575c96 | 2340 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2341 | { |
f7575c96 AF |
2342 | CPUState *cs = CPU(cpu); |
2343 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2344 | |
02e51483 | 2345 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2346 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2347 | : TPR_ACCESS_READ); | |
2348 | return 1; | |
2349 | } | |
2350 | ||
f17ec444 | 2351 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2352 | { |
38972938 | 2353 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2354 | |
f17ec444 AF |
2355 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2356 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2357 | return -EINVAL; |
b9bec74b | 2358 | } |
e22a25c9 AL |
2359 | return 0; |
2360 | } | |
2361 | ||
f17ec444 | 2362 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2363 | { |
2364 | uint8_t int3; | |
2365 | ||
f17ec444 AF |
2366 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2367 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2368 | return -EINVAL; |
b9bec74b | 2369 | } |
e22a25c9 AL |
2370 | return 0; |
2371 | } | |
2372 | ||
2373 | static struct { | |
2374 | target_ulong addr; | |
2375 | int len; | |
2376 | int type; | |
2377 | } hw_breakpoint[4]; | |
2378 | ||
2379 | static int nb_hw_breakpoint; | |
2380 | ||
2381 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2382 | { | |
2383 | int n; | |
2384 | ||
b9bec74b | 2385 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2386 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2387 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2388 | return n; |
b9bec74b JK |
2389 | } |
2390 | } | |
e22a25c9 AL |
2391 | return -1; |
2392 | } | |
2393 | ||
2394 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2395 | target_ulong len, int type) | |
2396 | { | |
2397 | switch (type) { | |
2398 | case GDB_BREAKPOINT_HW: | |
2399 | len = 1; | |
2400 | break; | |
2401 | case GDB_WATCHPOINT_WRITE: | |
2402 | case GDB_WATCHPOINT_ACCESS: | |
2403 | switch (len) { | |
2404 | case 1: | |
2405 | break; | |
2406 | case 2: | |
2407 | case 4: | |
2408 | case 8: | |
b9bec74b | 2409 | if (addr & (len - 1)) { |
e22a25c9 | 2410 | return -EINVAL; |
b9bec74b | 2411 | } |
e22a25c9 AL |
2412 | break; |
2413 | default: | |
2414 | return -EINVAL; | |
2415 | } | |
2416 | break; | |
2417 | default: | |
2418 | return -ENOSYS; | |
2419 | } | |
2420 | ||
b9bec74b | 2421 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2422 | return -ENOBUFS; |
b9bec74b JK |
2423 | } |
2424 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2425 | return -EEXIST; |
b9bec74b | 2426 | } |
e22a25c9 AL |
2427 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2428 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2429 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2430 | nb_hw_breakpoint++; | |
2431 | ||
2432 | return 0; | |
2433 | } | |
2434 | ||
2435 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2436 | target_ulong len, int type) | |
2437 | { | |
2438 | int n; | |
2439 | ||
2440 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 2441 | if (n < 0) { |
e22a25c9 | 2442 | return -ENOENT; |
b9bec74b | 2443 | } |
e22a25c9 AL |
2444 | nb_hw_breakpoint--; |
2445 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
2446 | ||
2447 | return 0; | |
2448 | } | |
2449 | ||
2450 | void kvm_arch_remove_all_hw_breakpoints(void) | |
2451 | { | |
2452 | nb_hw_breakpoint = 0; | |
2453 | } | |
2454 | ||
2455 | static CPUWatchpoint hw_watchpoint; | |
2456 | ||
a60f24b5 | 2457 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 2458 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 2459 | { |
ed2803da | 2460 | CPUState *cs = CPU(cpu); |
a60f24b5 | 2461 | CPUX86State *env = &cpu->env; |
f2574737 | 2462 | int ret = 0; |
e22a25c9 AL |
2463 | int n; |
2464 | ||
2465 | if (arch_info->exception == 1) { | |
2466 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 2467 | if (cs->singlestep_enabled) { |
f2574737 | 2468 | ret = EXCP_DEBUG; |
b9bec74b | 2469 | } |
e22a25c9 | 2470 | } else { |
b9bec74b JK |
2471 | for (n = 0; n < 4; n++) { |
2472 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
2473 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
2474 | case 0x0: | |
f2574737 | 2475 | ret = EXCP_DEBUG; |
e22a25c9 AL |
2476 | break; |
2477 | case 0x1: | |
f2574737 | 2478 | ret = EXCP_DEBUG; |
ff4700b0 | 2479 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2480 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2481 | hw_watchpoint.flags = BP_MEM_WRITE; | |
2482 | break; | |
2483 | case 0x3: | |
f2574737 | 2484 | ret = EXCP_DEBUG; |
ff4700b0 | 2485 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2486 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2487 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
2488 | break; | |
2489 | } | |
b9bec74b JK |
2490 | } |
2491 | } | |
e22a25c9 | 2492 | } |
ff4700b0 | 2493 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 2494 | ret = EXCP_DEBUG; |
b9bec74b | 2495 | } |
f2574737 | 2496 | if (ret == 0) { |
ff4700b0 | 2497 | cpu_synchronize_state(cs); |
48405526 | 2498 | assert(env->exception_injected == -1); |
b0b1d690 | 2499 | |
f2574737 | 2500 | /* pass to guest */ |
48405526 BS |
2501 | env->exception_injected = arch_info->exception; |
2502 | env->has_error_code = 0; | |
b0b1d690 | 2503 | } |
e22a25c9 | 2504 | |
f2574737 | 2505 | return ret; |
e22a25c9 AL |
2506 | } |
2507 | ||
20d695a9 | 2508 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
2509 | { |
2510 | const uint8_t type_code[] = { | |
2511 | [GDB_BREAKPOINT_HW] = 0x0, | |
2512 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2513 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2514 | }; | |
2515 | const uint8_t len_code[] = { | |
2516 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2517 | }; | |
2518 | int n; | |
2519 | ||
a60f24b5 | 2520 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 2521 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 2522 | } |
e22a25c9 AL |
2523 | if (nb_hw_breakpoint > 0) { |
2524 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2525 | dbg->arch.debugreg[7] = 0x0600; | |
2526 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2527 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2528 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2529 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 2530 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
2531 | } |
2532 | } | |
2533 | } | |
4513d923 | 2534 | |
2a4dac83 JK |
2535 | static bool host_supports_vmx(void) |
2536 | { | |
2537 | uint32_t ecx, unused; | |
2538 | ||
2539 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2540 | return ecx & CPUID_EXT_VMX; | |
2541 | } | |
2542 | ||
2543 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2544 | ||
20d695a9 | 2545 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 2546 | { |
20d695a9 | 2547 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
2548 | uint64_t code; |
2549 | int ret; | |
2550 | ||
2551 | switch (run->exit_reason) { | |
2552 | case KVM_EXIT_HLT: | |
2553 | DPRINTF("handle_hlt\n"); | |
839b5630 | 2554 | ret = kvm_handle_halt(cpu); |
2a4dac83 JK |
2555 | break; |
2556 | case KVM_EXIT_SET_TPR: | |
2557 | ret = 0; | |
2558 | break; | |
d362e757 | 2559 | case KVM_EXIT_TPR_ACCESS: |
f7575c96 | 2560 | ret = kvm_handle_tpr_access(cpu); |
d362e757 | 2561 | break; |
2a4dac83 JK |
2562 | case KVM_EXIT_FAIL_ENTRY: |
2563 | code = run->fail_entry.hardware_entry_failure_reason; | |
2564 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2565 | code); | |
2566 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2567 | fprintf(stderr, | |
12619721 | 2568 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
2569 | "unrestricted mode\n" |
2570 | "support, the failure can be most likely due to the guest " | |
2571 | "entering an invalid\n" | |
2572 | "state for Intel VT. For example, the guest maybe running " | |
2573 | "in big real mode\n" | |
2574 | "which is not supported on less recent Intel processors." | |
2575 | "\n\n"); | |
2576 | } | |
2577 | ret = -1; | |
2578 | break; | |
2579 | case KVM_EXIT_EXCEPTION: | |
2580 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2581 | run->ex.exception, run->ex.error_code); | |
2582 | ret = -1; | |
2583 | break; | |
f2574737 JK |
2584 | case KVM_EXIT_DEBUG: |
2585 | DPRINTF("kvm_exit_debug\n"); | |
a60f24b5 | 2586 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
f2574737 | 2587 | break; |
2a4dac83 JK |
2588 | default: |
2589 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2590 | ret = -1; | |
2591 | break; | |
2592 | } | |
2593 | ||
2594 | return ret; | |
2595 | } | |
2596 | ||
20d695a9 | 2597 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 2598 | { |
20d695a9 AF |
2599 | X86CPU *cpu = X86_CPU(cs); |
2600 | CPUX86State *env = &cpu->env; | |
2601 | ||
dd1750d7 | 2602 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
2603 | return !(env->cr[0] & CR0_PE_MASK) || |
2604 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 2605 | } |
84b058d7 JK |
2606 | |
2607 | void kvm_arch_init_irq_routing(KVMState *s) | |
2608 | { | |
2609 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2610 | /* If kernel can't do irq routing, interrupt source | |
2611 | * override 0->2 cannot be set up as required by HPET. | |
2612 | * So we have to disable it. | |
2613 | */ | |
2614 | no_hpet = 1; | |
2615 | } | |
cc7e0ddf | 2616 | /* We know at this point that we're using the in-kernel |
614e41bc | 2617 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 2618 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 2619 | */ |
614e41bc | 2620 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 2621 | kvm_gsi_routing_allowed = true; |
84b058d7 | 2622 | } |
b139bd30 JK |
2623 | |
2624 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2625 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2626 | uint32_t flags, uint32_t *dev_id) | |
2627 | { | |
2628 | struct kvm_assigned_pci_dev dev_data = { | |
2629 | .segnr = dev_addr->domain, | |
2630 | .busnr = dev_addr->bus, | |
2631 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2632 | .flags = flags, | |
2633 | }; | |
2634 | int ret; | |
2635 | ||
2636 | dev_data.assigned_dev_id = | |
2637 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2638 | ||
2639 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2640 | if (ret < 0) { | |
2641 | return ret; | |
2642 | } | |
2643 | ||
2644 | *dev_id = dev_data.assigned_dev_id; | |
2645 | ||
2646 | return 0; | |
2647 | } | |
2648 | ||
2649 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2650 | { | |
2651 | struct kvm_assigned_pci_dev dev_data = { | |
2652 | .assigned_dev_id = dev_id, | |
2653 | }; | |
2654 | ||
2655 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2656 | } | |
2657 | ||
2658 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2659 | uint32_t irq_type, uint32_t guest_irq) | |
2660 | { | |
2661 | struct kvm_assigned_irq assigned_irq = { | |
2662 | .assigned_dev_id = dev_id, | |
2663 | .guest_irq = guest_irq, | |
2664 | .flags = irq_type, | |
2665 | }; | |
2666 | ||
2667 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2668 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2669 | } else { | |
2670 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2671 | } | |
2672 | } | |
2673 | ||
2674 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2675 | uint32_t guest_irq) | |
2676 | { | |
2677 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2678 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2679 | ||
2680 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2681 | } | |
2682 | ||
2683 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2684 | { | |
2685 | struct kvm_assigned_pci_dev dev_data = { | |
2686 | .assigned_dev_id = dev_id, | |
2687 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2688 | }; | |
2689 | ||
2690 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
2691 | } | |
2692 | ||
2693 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
2694 | uint32_t type) | |
2695 | { | |
2696 | struct kvm_assigned_irq assigned_irq = { | |
2697 | .assigned_dev_id = dev_id, | |
2698 | .flags = type, | |
2699 | }; | |
2700 | ||
2701 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
2702 | } | |
2703 | ||
2704 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
2705 | { | |
2706 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
2707 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
2708 | } | |
2709 | ||
2710 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
2711 | { | |
2712 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
2713 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
2714 | } | |
2715 | ||
2716 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
2717 | { | |
2718 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
2719 | KVM_DEV_IRQ_HOST_MSI); | |
2720 | } | |
2721 | ||
2722 | bool kvm_device_msix_supported(KVMState *s) | |
2723 | { | |
2724 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
2725 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
2726 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
2727 | } | |
2728 | ||
2729 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
2730 | uint32_t nr_vectors) | |
2731 | { | |
2732 | struct kvm_assigned_msix_nr msix_nr = { | |
2733 | .assigned_dev_id = dev_id, | |
2734 | .entry_nr = nr_vectors, | |
2735 | }; | |
2736 | ||
2737 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
2738 | } | |
2739 | ||
2740 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
2741 | int virq) | |
2742 | { | |
2743 | struct kvm_assigned_msix_entry msix_entry = { | |
2744 | .assigned_dev_id = dev_id, | |
2745 | .gsi = virq, | |
2746 | .entry = vector, | |
2747 | }; | |
2748 | ||
2749 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
2750 | } | |
2751 | ||
2752 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
2753 | { | |
2754 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
2755 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
2756 | } | |
2757 | ||
2758 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
2759 | { | |
2760 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
2761 | KVM_DEV_IRQ_HOST_MSIX); | |
2762 | } | |
9e03a040 FB |
2763 | |
2764 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
2765 | uint64_t address, uint32_t data) | |
2766 | { | |
2767 | return 0; | |
2768 | } | |
1850b6b7 EA |
2769 | |
2770 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
2771 | { | |
2772 | abort(); | |
2773 | } |